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ABSTRACT

Graphene supports surface plasmons bound to an atomically thin layer of car-

bon, characterized by tunable propagation characteristics and distinctly strong

spatial confinement of the electromagnetic energy. Such collective excitations

in graphene enable the strong interactions of massless Dirac fermions with light.

In this work, I explore fundamental properties and applications of graphene

plasmons both near and far from equilibrium. I discuss the ability of graphene

plasmons to interact with its local environment in various forms of mid-infrared,

optically active excitations, demonstrated by tunable graphene plasmon disper-

sions and an emergence of a new mode via addition of a monoatomic dielec-

tric layer. Furthermore, the viability of graphene for optics-based applications

and large-scale integration is epitomized by the experimental demonstration of

perfect tunable absorption in a large-area chemically grown graphene by us-

ing a noble-metal-graphene metasurfaces. Using these properties of graphene

plasmons, electronically tunable thermal radiation is demonstrated. Finally, I

present theoretical predictions and experimental validations of nonequilibrium

graphene plasmon excitations via ultrafast optical excitation, originating from

a previously unobserved decay channel: hot plasmons generated from optically

excited carriers. These studies reveal novel infrared light emitting processes,

both spontaneous and stimulated, and provide a platform for achieving ultra-

fast, ultrabright mid-infrared light sources.
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1

C h a p t e r 1

INTRODUCTION

1.1 Graphene

Graphene is a two-dimensional material consisting of carbon atoms in a honey-

comb lattice as shown in Fig. 1.1(a). Since its discovery [14], it has attracted

significant attention from the scientific community due to its extraordinary

electronic, mechanical, and thermal properties [1, 2, 7]. Many of the studied

properties arise from its electronic structure, which shows the relativistic nature

of charge carriers in graphene. The electronic properties of graphene combined

with its monoatomic thickness makes graphene an exceptional plasmonic mate-

rial. The collective excitations of the 2D electron gas bound to an atomically

thin layer of carbon exhibit extreme spatial confinement, low loss, and large

tunability [4, 9, 12, 16, 18]. In this chapter, we introduce basic concepts of

the electronic, optical, and plasmonic properties of graphene, which serve as

background for the detailed discussions in the following chapters.

Linear Electronic Dispersion

As shown in Fig. 1.1(a), the carbon atoms in a hexagonal lattice of graphene

are covalently bonded through the in-plane σ bonds formed by the hybridized

sp2 orbitals. The remaining electron in a carbon atom occupies the pz orbital

that is perpendicular to graphene sheet, forming a half-filled π band. The π

band is responsible for the low-energy electronic band structure, which gives

rise to many of the interesting physical phenomena. The lattice structure of
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graphene can be explained with a basis of two carbon atoms per primitive unit

cell with the two lattice vectors: a1 = a
2 (3,
√
3) and a2 = a

2 (3,−
√
3), where a

is the carbon-carbon distance given by 1.42 Å. Using the tight binding model,

the electronic band structure near Dirac points (K and K′) is given by Eq. 1.1

[16, 21]. Here we neglect electrons hopping to next nearest neighbors.

E±(k) = ±t

√√
3 + 2cos

(√
3kya

)
+ 4cos *

,

√
3

2
kya+

-
cos

(
3

2
kxa

)
(1.1)

where t is a nearest neighbor hopping energy (∼ 2.8 eV), and a is the carbon-

carbon distance. Eq. 1.1 reveals that the electronic dispersion is symmetric

around zero energy, displaying particle-hole symmetry. When the full electronic

band structure is expanded near a Dirac point (K or K′) with respect to the

relative momentum vector, q = k − K, with |q| � |K|, a linear dispersion is

obtained given by Eq. 1.2 (also shown in Fig. 1.1(c)).

E±(q) ≈ ~vF |q| (1.2)

where vF is the Fermi velocity in graphene (≈ 1×106 m/s). This linear disper-

sion has an important implication. The low-energy excitations in graphene are

massless, chiral Dirac fermions, which exhibit many of the unusual properties of

quantum electrodynamics (QED), but with an approximately 300 times smaller

speed [10, 11, 16].

1.2 Graphene plasmons

Plasmonics has become a key ingredient towards realization of nanophotonics

due to the ability of surface plasmons to confine and control light at scales
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Figure 1.1: (a) Schematic of monolayer graphene (b) Full electronic band
structure of graphene (c) Linear electronic band structure expanded near Dirac
points.

substantially smaller than the free space wavelength. Graphene has shown

to be an exceptional plasmonic material, as its atomic thinness enables low

losses and significantly large wave confinement of plasmons compared to those

exhibited in noble metals [9].

Dispersion relation

Graphene plasmon dispersion relation can be obtained by solving the Maxwell’s

equations with the boundary conditions given by Eq. 1.3 and Eq. 1.4. The

boundary conditions display a discontinuity in the magnetic field due to a sheet
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current, σEz , flowing in the graphene sheet.

Ez (x → 0+) = Ez (x → 0−) (1.3)

Hy (x → 0+) −Hy (x → 0−) = σEz (x = 0) (1.4)

We consider TM modes of graphene plasmons propagating along graphene

surface at x = 0. The plasmon dispersion relation for graphene, kp(ω), sand-

wiched between two dielectric layers with relative permittivities of ε1 ad ε2 can

be written as Eq. 1.5.

ε1√
k2p − ε1(ω2/c2)

+
ε2√

k2p − ε2(ω2/c2)
= −i

σ

ωε0
(1.5)

In a quasi-static regime (kp � ω/c), the dispersion relation can be further

approximated as Eq. 1.6.

kp ≈
iωε0(ε1 + ε2)

σ
(1.6)

To model the sheet conductivity of graphene, a semi-classical Drude-like ex-

pression is adopted [5, 6]. In the local limit of random phase approximation

(i.e., in-plane, parallel wavevector k‖ → 0), the frequency-dependent surface

conductivity of graphene, σ(ω), can be represented as a sum of intraband and

interband contributions of particle-hole excitations as given by Eq. 1.7.

σ(ω) = σintra(ω) + σinter(ω)

=
e2ω

iπ



∫ ∞

−∞
dE

|E|
(~ω)2

·
dfd(E)
dE

−
∫ ∞

0
dE

fd(−E) − fd(E)
(~ω)2 − 4E2



(1.7)
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where fd(E) = 1

1+exp
(
E−µ
kBT

) is the Fermi-Dirac distribution function. Considering

scattering losses, we can make the following transformation to the frequency:

ω → ω+iτ−1, where τ is the scattering loss time. At low frequencies, losses are

dominated by electron-impurity scattering process, and the relevant relaxation

time can be expressed as τimpurity =
ξEF
ev2F

, where ξ is the carrier mobility, EF

is the Fermi energy, and vF is the Fermi velocity. For ω above the optical

phonon energy (∼ 0.2eV), electron-phonon scattering becomes a significant

loss channel. σinter and σintra can be simplified to Eq. 1.8 and Eq. 1.9,

respectively.

σinter = σ0G

(
~ω

2

)
+
4i~ωσ0
π

∫ ∞

0
dE

G(E) − G
(
~ω
2

)
(~ω)2 − (2E)2

(1.8)

where G(E) =
sinh

(
E
kBT

)
cosh

(
E
kBT

)
+cosh

(
µ
kBT

) , and σ0 = e2/(4~) is the universal conduc-

tivity.

σintra =
i

π

D

ω + iτ−1
(1.9)

where D = 8σ0kBT~ ln
[
2cosh

(
µ
2kBT

)]
is the Drude weight, which is a function

of chemical potential, µ, and carrier temperature, T . Eq. 1.6 implies kp ∝

ω/σ. For sufficiently high doping (when the sheet conductivity is dominated

by the intraband contribution), graphene plasmon dispersion shows a quadratic

dependence of kp on ω (i.e., kp ∝ ω2), which is characteristic of 2D electron

gases [19]. This contrasts with low-energy surface plasmon polariton (SPP)

dispersion on bulk metals (ω ∝ kp).

Graphene plasmons are characterized by large wave confinement and low loss.

Surface plasmons for graphene on a silicon substrate are compared with the
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surface plasmon excitations arising at the interface of a bulk silver and silicon.

The SPP dispersion at a bulk silver-silicon interface was solved using ω =

ckp

√
εm+εd
εmεd

, where εm and εd are the relative permittivities of silver and silicon,

respectively [15, 17]. The wave confinement of associated surface plasmons

(SPs) is quantified as kp/k0, and the normalized propagation length, which

represents how many SP wavelengths can travel before it loses most of its

energy, is quantified as Lp/λp, where Lp is given by 1/2Im(kp). The wave

confinement and propagation length associated with the bulk silver-silicon SPPs

are shown in Fig. 1.2. The corresponding wave confinement and propagation

length of graphene plasmons are calculated assuming graphene carrier mobility

of 104 cm2 V−1 s−1 and temperature of 300K, and the results are shown in

Fig. 1.3 and 1.4, respectively. Graphene plasmons exhibit significantly higher

wave confinement and lower loss than surface plasmons excited at the surface

of noble metals. In addition, the calculations suggest that graphene plasmons

are highly tunable with graphene Fermi levels. Unlike bulk metals, graphene

Fermi levels (or carrier density) can be easily varied via electrostatic gating,

much like in field effect transistors (FET). Due to its two-dimensionality and

linear electronic band structure, there exists a unique way to modulate graphene

plasmons as discussed in the next section.
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Figure 1.2: Wave localization (solid) and propagation length normalized by
plasmon wavelength (dotted) for surface plasmons at silver-silicon interface.

Figure 1.3: Wave localization of graphene plasmons with varying graphene
Fermi levels.
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Figure 1.4: Normalized propagation length of graphene plasmons with varying
graphene Fermi levels.
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Drude Weight

As suggested by Eq. 1.9, the plasmonic responses of graphene are dominated

by the intraband Drude weight [20]. Drude weight quantifies the oscillator

strength of free carrier absorption. Here, a general form of Drude weight is

derived assuming general quasiparticle dispersion, E = A|k |α, and the density of

states, DOS(E) = N
∫

ddk
(2π)d δ(E−E(k )) = γE

d
α
−1, where N is the degeneracy

and d is the dimension of the system [8].

D =
α2A2/α

~2
e2π

d

(
1 +

d − 2
α

) ∫
dEfd(E)

(
γE (d−2)/α

)
(1.10)

where fd(E) is the Fermi-Dirac distribution function. For a bulk material (d =

3) with a parabolic dispersion (α = 2), the integrand of Eq. 1.10 becomes

fd(E) times the density of states, resulting in a temperature-independent Drude

weight (i.e., Dbulk, parabolic = D(n). In case of graphene (d = 2 and α = 1),

we obtain the Drude weight that is a function of both chemical potential and

temperature as shown in Eq. 1.11.

Dgraphene =
8σ0kBT

~
ln


2cosh

(
µ

2kBT

)
(1.11)

In the zero-temperature limit, Eq. 1.11 reduces to Dgraphene =

(
e2

~2

)
µ ∝

√
|n|,

where n is the carrier density of graphene. This leads to ωp ∝ n1/4 for a

sufficiently doped graphene device operating at a moderate temperature.

Due to the atomic thinness, graphene carrier density (thus its plasmon disper-

sions) can be easily varied via electrostatic gating [3], and Fig. 1.5 shows a

typical device configuration, which allows us to vary carrier densities in graphene



10

via applying gate voltages and monitor changes in resistance of the graphene

sheet. The resistance between the source and the drain is measured as varying

the gate voltage (VG) between the graphene and the back electrode as shown

in Fig. 1.6. By sweeping gate voltages, graphene can change its characteris-

tics from gapless semiconducting to metallic as graphene carrier densities are

modulated. The resistance is maximized at the charge neutral point (CNP),

at which the graphene Fermi level is positioned at the Dirac point. Typically,

the CNP is not located at zero gate due to background doping from impurities

in graphene as well as the substrate. In most of the cases, such impurities

mentioned above induce hole doping in graphene.
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Figure 1.5: Schematic of a device configuration which allows transport mea-
surement in graphene. The resistance between the source and the drain is
measured as varying the gate voltage (VG) between the graphene and the back
electrode.

Figure 1.6: Resistance changes of the graphene sheet measured with varying
gate voltages.
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In the high electron temperature limit (i.e., kBT � µ), D asymptotes to a lin-

early increasing function of electron temperature (i.e., D → 8σ0ln(2)
~ kBT ∝ T ).

In this regime, an increase in electron temperature enhances plasmonic re-

sponses of graphene. As discussed above, this is distinct from a Drude weight

of a bulk material with a parabolic dispersion, which is independent of carrier

temperature. Ultrafast optical excitation can induce temperatures of electrons

that are much hotter than that of lattice, and it allows access to this regime

[13, 20]. The high-temperature regime leads to ωSP ∝ T 1/2electron. The sensitivity

of the Drude weight to electron temperature enables ultrafast optical control

of plasmons in graphene at femtosecond time scales. Wagner et al. (2014)

have shown that optical-pump-induced plasmon excitations resemble plasmonic

responses originating from electrostatic gating [20]. Furthermore, Ni et al.

(2016) have observed an emergence of plasmon excitations in a graphene sam-

ple, which displays no plasmonic responses under equilibrium condition, upon

ultrafast optical excitation [13]. The observed phenomenon was explained with

an increase in the Drude weight and was consistent with the solved dispersion

relation of graphene plasmons at an elevated electron temperature [13].

1.3 Scope of this thesis

In this thesis, we explore fundamental properties and applications of graphene

plasmons and light interactions both near and far from equilibrium. In Chapter

2, we discuss our work on understanding the characteristics of the confined

plasmonics modes of graphene nanoresonators near equilibrium. We present

examples of graphene plasmons serving as a sensitive local probe by coupling

to various optically active excitations in the mid-infrared spectrum. The high
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confinement of graphene plasmons allows them to strongly couple to optical

phonons in an atomically thin layer, such as hexagonal boron nitride. The

confined plasmonic modes in graphene can also strongly interact with ther-

mally induced motions of quasiparticles and act as antennae to couple out

local thermal energy, demonstrated by electronically tunable thermal radiation.

Engineering device architectures consisting of graphene plasmonic resonators

coupled with an external cavity and metallic plasmonic structures allows us to

achieve perfect absorption in a monoatomic graphene sheet. Graphene-light

interactions are no longer limited by the carrier mobility of graphene, making a

significant progress in realizing scalable graphene plasmonic devices. In Chap-

ters 3 and 4, we present theoretical prediction and experimental demonstration

of ultrafast optical excitation of bright mid-infrared plasmonic excitation. We

observe Fermi-level-dependent mid-infrared emission in graphene originating

from a previously unobserved decay channel: hot plasmons generated from op-

tically excited carriers. Under our experimental conditions, plasmon gain exists

on the sub-100fs time scale during which stimulated plasmon emission dom-

inates spontaneous plasmon emission. These observations set a framework

for achieving ultrafast and ultrabright mid-infrared light sources and suggest

an intriguing future possibility of achieving coherent graphene plasmon ampli-

fication. Finally, in Chapter 5, we present future opportunities for graphene

plasmons as novel infrared light sources.
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C h a p t e r 2

ACTIVE CONTROL OF GRAPHENE PLASMONS

In this chapter, we discuss the properties of tunable plasmonic modes of graphene

nanoresonators near equilibrium conditions across the infrared spectrum. The

tunability of graphene plasmons is achieved via electrostatic gating. We use an

infrared microscopy to study the roles of graphene plasmons in dynamic con-

trol of light absorption, emission, and coupling to various mid-infrared optically

active excitations in the near-field environment.

2.1 Tunable large absorption in graphene

Graphene exhibits a number of interesting optical phenomena, including a novel

photothermoelectric effect [17, 51], strong nonlinear behavior [23, 24], and

the potential for ultrafast photodetection [50]. The absolute magnitude of

these effects is, however, limited by the degree of light absorption in mono-

layer graphene, which is typically 2.3%. The graphene-light interaction can be

strongly enhanced by using novel light scattering and absorption geometries.

Such electromagnetic designs include coupling graphene to resonant metal

structures [8, 21, 29, 54–56] or optical cavities where the electromagnetic fields

are enhanced [16, 18, 34], or draping graphene over optical waveguides to ef-

fectively increase then overall optical path length along the graphene [33, 40].

These methods rely on enhancing interband absorption processes. By doping

and patterning graphene, plasmonic modes in graphene can also be explored to

achieve strong resonant absorption in the terahertz to mid-infrared regime [3,
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11, 28, 52, 53]. It has been theoretically predicted that perfect absorption in

graphene can be achieved using tunable graphene nanoresonators coupled to

an external cavity, whose structure resembles the original Salisbury screen de-

sign [2, 44]. Such a design offers an efficient manner of coupling micron-scale

free space light into nanoscale plasmonic modes in graphene. In this work, we

construct a device based on the Salisbury screen principle discussed above by

placing tunable graphene nanoresonators a fixed distance away from a metallic

reflector. A schematic of our device is shown in Fig. 2.1(a). A CVD-grown

monolayer graphene was placed on a 1-µm-thick SiNx member with a 200-nm-

thick gold layer, which served as both a reflector and a back-gate electrode.

Graphene nanoresonators with varying widths ranging from 20 nm to 60 nm

were patterned using electron beam lithography. An atomic force microscopy

(AFM) image of the resulting graphene nanoresonators is shown in the inset of

Fig. 2.1(b). The reflection measurements were done with a Fourier transform

infrared (FTIR) microscope with the incoming light polarized perpendicular to

the resonators in order to maximize the excitation of the resonant plasmon

modes [3, 52]. The graphene carrier density was varied by applying gate volt-

ages across the SiNx , and the resulting changes in graphene resistance are

shown in Fig. 2.1(b).

The total absorption from 40 nm graphene nanoresonators is shown in Fig.

2.2(a), revealing a large increase in absorption at 1400 cm−1 and a decrease

in absorption near 3500 cm−1 with increasing graphene carrier density. In or-

der to differentiate absorption contributions from graphene from those from

the environment (i.e., SiNx and gold back reflector), the measured absorption

was normalized by subtracting absorption from undoped graphene nanores-
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Figure 2.1: (a) Schematic device structure of graphene Salisbury screen. The
inset illustrates the device with the optical waves at the resonance condition.
(b) dc resistance of graphene as a function of the gate voltage. The gate volt-
age at which graphene resistance is maximized corresponds to charge neutral
point (CNP) of graphene. The inset is an AFM image of 40 nm nanoresonators.

onators as shown in Fig. 2.2(b). The normalization removes the carrier-

density-independent absorption peak seen below 1200 cm−1, which is due to

the broad optical phonon absorption in the SiNx layer. The absorption feature

at 1400 cm−1 shows a dramatic dependence on graphene carrier densities, with

absorption into the graphene nanoresonators varying from near 0% to 24.5%

as the carrier density is raised to 1.42 × 1013 cm−2. The absorption feature

at 3500 cm−1 exhibits an opposite trend with graphene-related absorption de-

creasing with higher carrier density. This feature is due to interband graphene

absorption, where electronic transitions are Pauli-blocked by state filling at

higher carrier densities [47]. The graphene absorption with varying widths of

nanoresonators was investigated at a fixed graphene carrier density. Figure

2.2(c) shows that the lower energy, plasmonic absorption peak has a strong
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frequency and intensity dependence on resonator width, with the maximum

absorption occurring in the 40 nm nanoresonators. Figures 2.2(b) and (c) re-

veal that the intensity of the graphene plasmonic absorption always occurs at

1400 cm−1. This observation can be understood by considering the role of the

Salisbury screen structure. At 1400 cm−1, the optical path length of the SiNx

is λ/4n, and the gold reflector creates a standing wave between the incident

and reflected light that maximizes the electric field on the SiNx surface. As a

consequence, when the graphene nanoresonators are tuned to absorb at 1400

cm−1, at which a double resonance condition is met, and the dissipation of

the incoming radiation is greatly enhanced. Similarly, the absorption feature at

3500 cm−1 is due to the second-order interference condition, under which the

SiNx optical path length becomes 3λ/4n, maximizing the interband absorption.

In order to illustrate the role of the interference effect, the electric field inten-

sity on the SiNx surface when graphene is absent is plotted as a dashed curve

in Fig. 2.2(c). The spectral dependence of the observed plasmonic absorption

displays a similar trend to that seen in the calculated field intensity.

The underlying mechanism for a large resonant absorption observed in this de-

vice structure can be understood as satisfying impedance matching conditions.

The impedance of the metasurface consisting of graphene nanoresonator arrays

is modified in such a way that it mimics a load whose admittance is close to the

free-space wave admittance Y0 =
√
ε0/µ0, and allows for the incident light to

be coupled efficiently into the graphene sheet [12]. For normally incident light,

absorption in graphene located a quarter wavelength away from the back reflec-

tor is given by A = 1−|(Y0−Y )/(Y0+Y )|2 [12]. This relation suggests that the

absorption in graphene approaches unity as the relative admittance, Y/Y0, ap-
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Figure 2.2: (a) The total absorption in the device for undoped (red dashed)
and hold doped (blue solid) 40 nm nanoresonators. (b) The change in absorp-
tion with respect to the absorption at the charge neutral point (CNP) in 40 nm
graphene nanoresonators at various doping levels. The solid black curve rep-
resents the absorption difference of bare (unpatterned) graphene. (c) Width
dependence of the absorption difference with the carrier concentration of 1.42
× 1013 cm−2. The resonator width varies from 20 to 60 nm. The dashed
curve shows the theoretical intensity of the surface parallel electric field at the
SiNx surface when graphene is absent.
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proaches 1. The admittance of an unpantterned, planar graphene is equivalent

to its sheet conductivity. For photon energies higher than the interband tran-

sition energies, the admittance is given by Y = σ ≈ e2/4~ = παY0 ≈ 0.023Y0,

where α is the fine structure constant. The surface admittance can be dra-

matically increased when graphene is patterned into optical resonators. On

resonance, strong charge oscillations in graphene nanoresonators maximize the

dipole moment of the resonators [44]. Recognizing that the absorption cross-

section of a dipole is σAbs = (ω/c )Im[a(ω)/ε0], the surface admittance is given

by Y = (σAbs/S)Y0 on resonance, where a(ω) is the polarizability of an indi-

vidual resonator, and S is the area of the unit cell. This relation suggests that

unity absorption is possible when the absorption cross-section of the graphene

nanoresonator array is large enough to cover the entire surface. For our device

at its highest doping level, the resulting surface admittance yields 0.13Y0, which

is an order of magnitude higher than that in unpatterned, planar graphene. The

observed resonant absorption can be further increased by improving carrier mo-

bility of graphene. Because the resonator absorption cross-section increases as

the graphene becomes less lossy, the resonant surface admittance increases

with increasing mobility. This strong optical response allows for graphene to

be an attractive platform for optoelectronic applications such as light modula-

tors, detectors, and selective thermal emitters.
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2.2 Perfect absorption in graphene

A major obstacle for realizing perfect absorption in graphene has been the

low carrier mobility in processed graphene samples due to PMMA residues [39]

and/or trapped impurities [5] as compared with the high carrier mobilities achiev-

able in pristine, unpatterned graphene sheets [38, 49]. In patterned graphene,

edge defects further degrade effective graphene carrier mobilities [10, 15, 45,

46].

In this work, we experimentally demonstrate tunable near-unity absorption in

CVD-grown graphene, which exhibits relatively low carrier mobility, covering

less than 10% of the surface area by carefully tailoring the graphene plasmonic

nanostructure to induce critical coupling to free space (i.e., matching of the

admittance of graphene resonators to free space). Such condition is met by uti-

lizing low-permittivity substrates and noble metal plasmonic structures. Lower-

permittivity substrates allow better wavevector matching between free-space

photons and graphene plasmons. In addition, noble metal plasmonic metal-

lic antennas serve as sub-wavelength-scale intermediaries (∼ λ0/10, where λ0

is the free-space wavelength) to further enhance radiative coupling to deep

sub-wavelength-scale GPRs (< λ0/70).

We explore three different device structures and compare their performances

(i.e., absorption in graphene) against the previously discussed Salisbury screen

structure. All of the studies in this work are oriented towards maximizing ab-

sorption in graphene at 1356 cm−1, and we consider the graphene carrier mo-

bility as a key metric required to achieve perfect absorption. Figure 2.3 shows

three designs for perfect absorption structures. SiO2 layers are incorporated int
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the type A-C structures beneath the GPRs, while the previously explored Sal-

isbury screen structure consists of only a SiNx layer (which is referred as Type

0). All structures utilize a membrane with a back reflector as a substrate to

create the Salisbury screen effect [12, 27, 44]. The type A structure depicted

in Figure 2.3(a) consists of periodically arrayed 100-nm-wide gap/100-nm-wide

GPRs on the 150-nm-thick SiO2/1-µm-thick SiNx/Au substrate. The type A

structure is identical to the original Salisbury screen structure (type 0), except

for the thin SiO2 layer. By incorporating a thin layer of the low-permittivity

layer, a large wavevector mismatch between free-space photons and graphene

plasmons can be alleviated [6, 13, 19]. Thus, the type A structure exhibits

perfect absorption for a graphene hole mobility of µh = 2271 cm2 V−1 s−1,

while µh = 3174 cm2 V−1 s−1 is required for the type 0 (Fig. 2.4(a)).

We can further alleviate momentum mismatch constraints by incorporating

noble metal plasmonic structures. The type B and C structures on the 150-

nm-thick SiO2/500-nm-thick SiNx/Au substrates have GPRs located inside

subwavelength metallic slits. In the type B structure, a 100-nm-wide GPR is

located in the center of a 200-nm-wide metallic slit. In the type C structure,

a 50-nm-wide GPR is located off to one side of the 100-nm-wide metallic slit.

The widths of the metallic strips in the type B and C structures are 910 and

615 nm, respectively. The metallic slits in the types B and C can concentrate

light by exhibiting field enhancement factors of 147 and 226, respectively. For

reference, in a original Salisbury screen design, the field strength is enhanced

by a factor 4. The narrower metallic slits in the type C result in a larger

field enhancement by more efficiently confining radiation. The graphene hole

mobilities required to achieve perfect absorption are 613 and 315 cm2 V−1



24

s−1 for the type B and C, respectively (Fig. 2.4(a)). A carrier mobility of

approximately 500 cm2 V−1 s−1 is easily achievable in a CVD-grown large area

graphene. Thus, perfect absorption is no longer limited by low graphene carrier

mobility.

Figure 2.3: Schematic of (a-c) type A, B, and C structures, respectively. In
parts a-c, panels at the back side present the out-of-plane electric field distribu-
tions, and Ez distributions in graphene are overlapped on graphene plasmonic
ribbons (GPRs). The images of GPRs in panels b and c are the virtual GPRs
created by metallic strips, which operate as mirrors. (d-f) Corresponding scan-
ning electron microscope (SEM) images (false color). The dark and bright
regions correspond to GPRs and exposed SiO2 areas, respectively. The GPRs
have 150-nm-wide bridges to ensure electrical connections, and the length of
the GPR strip is 3 µm.
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Finally, we experimentally demonstrate electronically tunable near-unity reso-

nant absorption via the reflection measurements in a Fourier transform infrared

(FTIR) microscope with a polarizer. As shown in Fig. 2.4(c), the metallic

plasmonic structures and the substrate contribute little to the total absorp-

tion. Thus, the absorption of a structure can be obtained by 1 − R, where R

is the reflectance of a corresponding structure. The modulation efficiencies in

reflection were calculated by ηR = 1− R/Rmax, where Rmax is the reflectance

when the absorption is minimized at a given graphene Fermi level. The ex-

perimentally measured spectra are shown in Fig. 2.5. In type A, the resonant

absorption is increased from 14.0% to 52.4%, demonstrating an on/off mod-

ulation efficiency of 44.6% at 1400 cm−1. In type B, the resonant absorption

is increased from 24.8% to 96.9%, demonstrating an on/off modulation effi-

ciency of 95.9% at 1389 cm−1. In type C, the resonant absorption is increased

from 29.6% to 94.8%, demonstrating an on/off modulation efficiency of 92.6%

at 1407 cm−1. These experimental results indicate perfect absorption can be

achieved in an atomically thin layer of material, which covers less than 10% of

the surface.
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Figure 2.4: (a) Absorption in type 0, A, B, and C at 1356 cm−1 as a function
of graphene hole mobility (µh). (b) Tunable absorption in each structure as a
function of graphene Fermi level (EF) for µh = 315 cm2 V−1 s−1.

Figure 2.5: (a) Absorption and (b) modulation efficiency as a function of
graphene Fermi level (EF) at the frequency for maximum absorption in each
structure.
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2.3 Tunable graphene plasmon dispersion relation and emergence of hy-

brid surface-phonon-plasmon polariton modes

The ability of graphene plasmons to focus electric field into smaller volumes

allows graphene plasmons to couple strongly to optical excitations in its local

environment, such as molecular vibrations [35], phonons [25], or excitons [7,

42, 43], than normal metal plasmons. The mode volume associated with the

plasmonic modes in graphene nanoresonators has been experimentally demon-

strated to be approximately 107 times smaller than free space. In compari-

son, surface plasmons supported by normal metals typically display mode vol-

umes are than 103 times smaller than free space with similar damping. In

this work, we experimentally show that graphene plasmons strongly couple to

optical phonons of a monolayer hexagonal boron nitride (h-BN) sheet, and

as a result, report an emergence of new hybrid modes referred to as surface-

phonon-plasmon-polaritons (SPPPs). This phenomenon has been explored in

surface plasmons of conventional noble metals coupled to underlying molecular

vibrations or dyes [1, 7, 22, 36, 37, 43]; in these studies, a thick (>20nm) layer

of optically active material was required. On the other hand, the high con-

finement associated graphene plasmons allows strong and sensitive interaction

with a small volume of optical phonons in an atomically thin material.

A schematic of the device is shown in Fig. 2.6. A CVD-grown monolayer h-

BN sheet was transferred to a 285-nm-thick SiO2/Si wafer, and a CVD-grown

graphene sheet was subsequently transferred onto the h-BN. Nanoresonators

were patterned into the graphene surface to form electronically continuous

bar array patterns with widths ranging from 30 to 300 nm. We performed

Fourier transform infrared spectroscopy (FTIR) transmission measurements
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with light polarized perpendicular to the width of the nanoresonators to probe

the frequency-wavevector dispersion relations of the electromagnetically cou-

pled graphene plasmon/h-BN phonon modes. The transmission spectra from

the graphene nanoresonators are shown in Fig. 2.7. The measured transmis-

sion spectra were normalized relative to spectra taken with zero carrier density.

The narrow peak seen in the bare h-BN spectrum near 1370 cm−1 has been as-

signed in previous studies as an in-plane optical phonon of the h-BN [20]. Two

sets of modes below and above 1200 cm−1 were observed. The two modes

below 1200 cm−1 were previously observed in graphene/SiO2 structures, and

have been assigned to SPPP modes associated with two SiO2 modes [3, 52].

The two modes above 1200 cm−1 display anticrossing behavior near the 1370

cm−1, optical phonon energy of the h-BN due to the coupling of graphene

plasmon mode and h-BN phonon mode.
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Figure 2.6: (a) Schematic of device measured and modeled in this work.
Graphene nanoresonators are fabricated on a monolayer h-BN sheet on a
SiO2(285 nm)/Si wafer. Gold contact pads are used to contact the grapheen
sheet, and the Si wafer is used to apply an in situ backgate voltage (VG).
Zoom-in shows cartoon of graphene plasmon coupling to h-BN optical phonon.
(b) Optical image of unpatterned area of device where both the graphene and
h-BN monolayers have been mechanically removed. (c) Scanning electron mi-
croscope image of the 80 nm graphene nanoresonators (light regions).
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Figure 2.7: (Left axis) Normalized transmission spectra of graphene nanores-
onators with widths varying from 30 to 300 nm, as well as transmission through
the unpatterned graphene/h-BN sheet. Spectra are measured at carrier den-
sities of 1.0 × 1013 cm−2 and normalized relative to zero carrier density. For
80 nm ribbons, the four different observable optical modes are labeled with the
symbols used to indicate experimental data points in Fig. 2.8. (Right axis,
bottom spectrum) Infrared transmission of the bare monolayer h-BN on SiO2
normalized relative to transmission through the SiO2(285 nm)/Si wafer. The
dotted vertical line indicates this peak position as a reference for the other
spectra.

For a comparison with the experimental results, the transmission spectra of

graphene nanoresonators for various widths were calculated using a finite el-
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ement method within a local random phase approximation [9]. The in-plane

dielectric function of monolayer h-BN is described using a Lorentz oscillator

model with parameters fitted from transmission measurement of the bare h-

BN on SiO2 [20], and its thickness is modeled to be 0.34 nm, which is the

interlayer spacing of bulk h-BN. The first-order plasmon resonance with the

width, W , was calculated using kp = (π−φ)/W , where φ is the plasmon phase

shift upon reflection at the nanoresonator edges. According to simulations

in Ref. [3], φ is found to be approximately 0.35π. The graphene-carrier-

density-dependent transmission is plotted in Fig. 2.8 for varying wavevector

and energy. The dispersion of the graphene/h-BN/SiO2 nanoresonator optical

modes can be observed in Fig. 2.8 as the maxima in the transmission mod-

ulation, −∆T/TCNP. The features observed in the calculations are in good

agreement with the experimentally measured features with modes appearing

above and below the h-BN optical phonon energy that display a clear anti-

crossing behavior. The relative intensities associated with these two modes

change with widths of the graphene nanoresonators. In addition, a pronounced

minimum in absorption near the h-BN phonon energy was seen for 60, 80,

and 100 nm nanoresonators, whose bare-graphene plasmon resonance energies

overlap with that of the h-BN phonon mode. When the graphene plasmon

mode is brought into resonance with the h-BN phonon, the polarizations of the

two modes cancel each other out, creating a transparency window where no

absorption occurs in the plasmonic modes. A classical strong coupling regime

is characterized by a splitting between the two hybridized modes larger than the

sum of the two line widths of individual modes and also its spectral intensity

approaching zero.
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Figure 2.8: Calculated change in transmission for graphene/monolayer
hiBN/SiO2 nanoresonators of varying width at a carrier density of 1.0 × 1013

cm−2, normalized relative to zero carrier density. Experimental data is plot-
ted as symbols indicating optical modes assigned in Fig 2.7. The error bars
represent uncertainty in the resonator width that is obtained from AFM mea-
surements. For small k-vectors (large resonators), this uncertainty is smaller
than the symbol size. The dashed line indicates the theoretical dispersion for
bare graphene plasmons, while the dash-dot line indicates the dispersion for
graphene/SiO2 The three horizontal dotted lines indicate the optical phonon
energies of h-BN and SiO2.

As shown in Fig. 2.9, the coupling strength varies with the spacing between

graphene ribbons and the h-BN layer. The splitting between two hybrid SPPP

modes and the depth of the transparency window rapidly decrease as the in-

terlayer distance increases. Due to the large mode confinement of graphene

plasmons, the range of interaction is restricted to tens of nanometers from

the graphene sheet. The small volume of the h-BN sheet indicates that a very
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small number of optical excitations with large oscillator strengths are sufficient

to achieve strong coupling to graphene plasmons, as long as the excitations

are in the immediate vicinity of the graphene sheet. This work indicates that

graphene nanoresonators can serve as extremely sensitive probes of their lo-

cal environments, and also opens the door for further investigations employing

excitations of single or a few quanta interacting with the graphene plasmons.

Figure 2.9: Calculated transmission spectra for 80-nm-wide graphene res-
onator/top SiO2/80-nm-wide monolayer h-BN/bottom SiO2 as the top SiO2
layer thickness is varied from 0 to 80 nm in 10 nm increments. Spectra are
for a carrier density of 1.0 × 1013 cm−2 and normalized relative to zero carrier
density.
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2.4 Tunable Planckian Thermal Emission

Graphene plasmonic modes have shown to create strong absorption pathways in

mid-infrared when the graphene is patterned to form plasmonic Fabry-Perot res-

onances. Furthermore, they display extremely large mode confinement, which

allows them to efficiently couple to local excitations to create new optical

modes [3, 4, 31, 52]. As the graphene sheet is heated up, all of these different

infrared absorption pathways become thermal emission sources, as Kirchoff’s

law ensures that thermal emissivity is equal to absorptivity under thermal equi-

librium. The graphene plasmons are particularly interesting as thermal emitters

because their small mode volumes allow for large Purcell factors that can en-

hance the emission rate of emitters within the plasmon mode volume [30].

Thus, electronic control of the graphene plasmonic modes could potentially

control thermal radiation at timescales much faster than the spontaneous emis-

sion rate for conventional light emitting diodes and classical blackbody emission

sources. Thermal emission is typically considered as broadband and slow light

emitting process.

In this work, we demonstrate that the dynamic tuning of blackbody emission

through electronic control of graphene plasmonic resonators. The graphene

nanoresonators act as antennas to effectively out-couple thermal energy within

the resonator mode volume, and change effective surface emissivities with vary-

ing carrier densities and widths of nanoresonators, giving rise to dynamically

tunable narrow spectral emission peaks in the mid-infrared. A schematic of

the measurement apparatus and device geometry are shown in Fig. 2.10. The

device geometry is identical to the original Salisbury screen geometry discussed

in the previous section, which was used as a gate-tunable absorber in the mid-
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infrared spectral range [27, 44]. In the previous reflection measurements, the

polarized absorption in the graphene nanoresonators could be tuned from 0%

to up to 24.5% for large carrier densities. In this work, the device displayed up

to 3% total absorption when probed using our apparatus. This smaller number

reflects the use of non-polarized light, the higher numerical aperture objective

of the apparatus, the effect of the window of the vacuum stage, and the lower

carrier densities used due to the onset of Poole-Frenkel tunnelling in the SiNx

at higher temperatures and high gate biases [27].

Figure 2.10: (a) Schematic of the experimental apparatus. The 70 µm ×
70 µm graphene nanoresonator arrays are placed on a 1-µm-thick SiNx mem-
brane with a 200-nm-thick gold backreflector. A gate bias is applied through
the SiNx membrane between the underlying Si frame and graphene sheet.
The temperature-controlled stage contains a feedback controlled, heated sil-
ver block that holds a 2-mm-thick copper sample carrier with a 100-µm-thick
sapphire layer used for electrical isolation. The temperature is monitored with
a thermocouple in the block, and the stage is held at a vacuum of 1 mtorr.
A 1-mm-thick potassium bromide (KBr) window is used to pass thermal ra-
diation out of the stage, which is collected with a Cassegrain objective and
passed into an FTIR with an MCT detector. (b) A representative SEM image
of 30-nm-wide graphene nanoresonators on a 1-µm-thick SiNx membrane. (c)
Source-drain resistance versus gate voltage curve of the device. The peak in
the resistance occurs at the charge neutral point (CNP) of graphene.
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In Fig. 2.11, the change in emissivity is obtained assuming unity emissivity

at all frequencies for the black soot reference and normalizing the measured

emission spectra accordingly. We investigate gate-tunable emissivity features

as the nanoresonator doping and width is varied, as well as their polarization

dependence. These results indicate that the intensity, width and energetic po-

sition of the thermal radiation feature near 1,360 cm−1 are widely tunable, and

that this feature is strongly polarized. The energy of this feature increases as

the nanoresonator width is decreased and as the carrier density is increased.

These observations are consistent with previously reported absorption mea-

surements performed on identical samples that showed a narrow absorption

feature near 1,360 cm−1 [27]. Thus, we attribute the prominent spectral fea-

ture at 1,360 cm−1 to a Fabry-Perot plasmonic resonance from the patterned

graphene. Specifically, the graphene plasmon resonant frequency should vary

as ωp ∝ n1/4W−1/2, where n is the grpahene carrier density, and W is the

resonator width. This behavior is in accord with the emission spectra, in which

we observe a blue shift of the plasmonic resonance at increased doping and

decreased graphene nanoresonator width. The intensity of the higher-energy

peak increases with graphene carrier density, an effect that results from the

increased polarizability of the resonant plasmonic modes. Finally, this feature

is strongly polarization dependent, as we would expect for laterally confined

graphene plasmonic resonant modes, and vanishes quickly as we rotate the po-

larization of the probing radiation from 90◦ to 0◦ relative to the nanoresonator

axis.

The microscopic processes which give rise to thermally excited plasmons in

the nanoresonators are expected to correspond to the plasmonic loss processes
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as emission is a reciprocal process of absorption in thermal equilibrium. The

plasmonic loss processes are attributed to the factors that limit the electron

mobility of the graphene, such as defect scattering, impurity scattering, and

inelastic electron–electron and electron–phonon interactions [3, 26, 27, 41,

52]. In addition, plasmons have been shown to decay via loss channels associ-

ated with the edges of graphene nanostructures and by coupling to substrate

phonons [3, 52]. The resonant enhancement of emission from plasmon gen-

erating processes is in competition with the blocking of interband transitions

that act as thermal emitters in the undoped graphene, but are forbidden due

to Pauli blocking when the sheet is doped [32, 48]. While interband transitions

should occur across a wide range of frequencies, for patterned graphene areas,

we find that doping the graphene allows for the resonant plasmonic modes to

create an emission enhancement that outweighs the decrease in emission due

to Pauli blocking. Thus, we get a net increase in emission near 1,360 cm−1.

The plasmonic resonators also interact with vibrations in the SiNx substrate.

When the SiNx is heated, the plasmonic modes act as antennae to enhance the

spontaneous thermal radiation from the nearby SiNx . The spontaneous emis-

sion radiative rate is enhanced by the graphene nanoresonators, which modify

the photonic mode density. The rate enhancement is correlated to the strong

polarizability of the graphene at its plasmonic resonance that enhances the

outcoupling of thermal radiation from the SiNx . In particular, the radiative

rate is expected to be most strongly amplified within the mode volume of the

resonant graphene plasmon, which for 40 nm resonators at 1.2 × 1013 cm−2

roughly corresponds to the area within 10 nm of the resonator. Therefore, we

assign the net increase of thermal emission near 1,360 cm−1 to a combination
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of thermal excitations in the graphene as well as thermal phonons in the SiNx

that is out-coupled through the confined plasmonic modes in the graphene

nanoresonators. In contrast to the emissivity features seen in the high-energy

peak, the lower-energy emissivity modulation feature near 730 cm−1 shows

an extremely weak polarization dependence and no noticeable dependence on

graphene nanoresonator width. As the carrier density is increased, there is a

small, non-monotonic increase in intensity for this feature, but it shows no spec-

tral shift. Finally, unlike the higher-energy peak, the lower-energy peak is also

observed in the bare, unpatterned graphene, where it appears as a slightly nar-

rower feature. The low-energy feature is related to an optically active phonon

in the SiNx substrate. This phonon mode is strongly absorbing (emitting) and

is typically located near 850 cm−1. The large divergence in the SiNx permit-

tivity due to this phonon, however, creates an additional λ/4nSiNx condition

in the structure that leads to a destructive interference effect, resulting in an

absorption (emission) maximum at 730 cm−1. When graphene is placed on

top of the SiNx , the intraband and interband transitions in the graphene act to

modify the surface impedance of the device. The result is that increasing the

doping in the graphene leads to a stronger destructive interference effect, which

manifests as larger emission from the SiNx layer. The graphene plasmons can

couple to the SiNx phonons to create new surface phonon plasmon polariton

modes [3, 4, 14, 52]. Since the observed low-energy emissivity features show

no polarization dependence, an increase in direct emission from the SiNx layer

likely plays the dominant role in creating the feature at 730 cm−1.
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Figure 2.11: (a) Carrier density dependence of change in emissivity with re-
spect to the CNP for 40-nm-wide graphene nanoresonators at 250◦C. (b) Width
dependence of change in emissivity for 20-, 30-, 40-, 50-, 60-nm-wide nanores-
onators at 250◦C and for a carrier density of 1.2 × 1013 cm−2. The black line
indicates the emissivity changes of bare, unpatterned graphene at the same
carrier density and temperature. (c) Polarization dependence of the emissivity
change for 40 nm graphene nanoresonators at 250 ◦C for a carrier density of
1.2 × 1013 cm−2.
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Here we test our structure as a mid-infrared spontaneous light source at higher

speeds, and demonstrate a 2 kHZ modulation of graphene-nanoresonator-

coupled thermal emission. We performed time-resolved emission measurements

on 50-nm-wide resonators at 250◦C. A 2-kHz-modulated square wave signal

was applied to the structure, with an “off” voltage of 0V, corresponding to the

CNP of graphene and an “on” voltage of 60V, corresponding to a graphene

carrier density of 1.2 × 1013 cm−2. The emission modulation was measured as

a raw voltage signal from a FTIR MCTA detector using an infrared filter with

transmission peaked at 1,383 cm−1 and central bandwidth of approximately

30 cm−1. This filter was selected to match the resonance frequency of the

50nm resonators at a doping of 1.2 × 1013 cm−2, therefore isolating the plas-

monic signal. The measurement results along with the applied voltage temporal

waveform are shown in Fig. 2.12. A clearly modulated emission signal is seen

in response to the input square wave. In these measurements, the maximum

modulation frequency was 2 kHz due to limitations in the speed of the detec-

tor and the RC time constant of the combined graphene nanoresonator device,

contact resistance, and electrical leads. This frequency is not indicative of the

inherent upper limits of the structure itself. As shown in Fig. 2.12, the applied

voltage signal exhibits a sharp rise time, indicating that the primary limitations

here are from the detector response.
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Figure 2.12: Temporal waveform of applied voltage signal (black line) and
detector signal of emission from 50 nm ribbons at 250◦C (green line).
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C h a p t e r 3

NON-EQUILIBRIUM GRAPHENE PLASMONS AND GAIN

In this chapter, we discuss non-equilibrium graphene plasmons excitations orig-

inating from a hot carrier distribution created by ultrafast optical pumping.

Plasmon emission is a decay path of photoexcited carriers in graphene that has

been theoretically proposed, but remained elusive experimentally. We present

a theoretical model [17] and resulting predictions for plasmon emission as an

ultrafast and ultrabright light emitting mechanism.

3.1 Carrier dynamics in graphene upon ultrafast optical excitation

Carrier relaxation in graphene is now understood to occur via several stages

and decay channels. The promptly excited carriers with a non-Fermi-like distri-

bution undergo carrier-carrier and carrier-plasmon scatterings on a 10-fs time

scale, followed by Auger recombination and optical phonon emission. Excited

carriers eventually reach a complete equilibrium with the lattice and environ-

ment through direct or disorder-assisted acoustic phonon emission, which occur

on a picosecond timescale. These carrier relaxation processes in graphene upon

optical pumping are depicted in Fig. 3.1 [4, 6, 10, 13, 26]. Several theoret-

ical studies have proposed that plasmon emission is another competing decay

channel [7, 24]. Previous studies have predicted and revealed the strong in-

terplay of plasmons and particle/hole excitations in graphene, which plays a

significant role in reducing the lifetime of photoexcited charge carrier [3, 8, 9,

18]. Experimental evidence for optically generated non-equilibrium plasmons
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was provided by near-field microscopy measurements, where an increase in the

Drude weight and the form of the resultant dispersion relations were consistent

with graphene plasmons at an elevated carrier temperature upon ultrafast opti-

cal excitation [15, 27]. Optical control of graphene plasmons allows excitation

and modulation of graphene plasmons on ultrafast time scales.

Figure 3.1: Carrier relaxation processes in graphene under ultrafast optical
excitation: (i) Sharply peaked distribution of photoexcited carriers upon optical
pumping. (ii) Carriers with a non-Fermi-like distribution undergoing carrier-
carrier scattering on a 10-fs time scale. (iii) Carriers in a quasi-equilibrium
state. (iv) Carriers that have been thermalized under interband processes, but
are still hotter than the lattice. (v) Complete equilibrium between the carriers
and the lattice.

The ability to achieve inversion and plasmon gain is of fundamental interest,

and is also interesting owing to the potential for a coherent amplification or

lasing medium from the infrared to THz spectral region [14, 19–21]. A co-

herent terahertz radiation was observed due to the parametric amplification

of Josephson plasma waves in layered superconductors [22]. It has been theo-

retically predicted that graphene plasmons can experience gain via stimulated

plasmon emission in photoinverted graphene at excitation levels achievable via

optical, electrical, or diffusion pumping [5, 16, 17, 23]. The only experimental

evidence for graphene plasmon gain, to best of our knowledge, was provided by
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polarization-dependent THz radiation, whose value exceeding the spontaneous

emission limit was qualitatively attributed to plasmon gain [28].

3.2 Non-equilibrium plasmon dispersion relation calculations

Previous theoretical work showed that photoexcited carriers can create condi-

tions for gain in non-equilibrium plasmon population via stimulated and sponta-

neous plasmon emission processes [7, 16, 17]. The plasmon emission/absorption

rates can be calculated using Fermi’s golden rule (FGR). According to FGR,

the plasmon emission rate takes the following semi-analytical equation under

the first-order approximation (first-order approximation is accurate as long as

the loss/gain rates are much lower than the plasmon frequency):

g ≈ αfck
θ(ω − vFk )√
ω2 − (vFk )2

2K(ω, k )
∂Re(ε(ω,k ))

∂ω

����ω=ωp(k )
(3.1)

K(ω, k ) =
∫ +1

−1
du

√
1− u2f

(
~(ω + vFku)

2

) ����
T

µc
× f

(
~(ω − vFku)

2

) ����
T

µv
(3.2)

where αf is the fine-structure constant, vF is the graphene Fermi velocity, and

K(ω, k ) is a measure for the phase space available for emission processes. As

seen in Eq. (3.1), the emission/absorption rates critically depend on the ex-

actness of the plasmon dispersion relations [17]. In order to accurately describe

plasmons in photoinverted graphene, the complex plasmon frequency dispersion

needs to be solved exactly in contrast to making the low loss approximation

under which the plasmon frequency is considered as a real variable and the de-

cay rate is solved perturbatively. We calculate the complex graphene plasmon

dispersion relation, ω(k ) = ωp(k ) + iγp(k ), by setting the dynamic dielectric
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function of graphene, ε(ω, k ), to zero (ωp is the plasmon energy for a given k ,

and γp is the plasmon decay rate, where γp > 0 means net plasmon generation

and γp < 0 means net plasmon loss) [16, 17].

The dielectric function, ε(ω, k ), can be expressed within the random phase

approximation as Eq. (3.3).

ε(ω, k ) = 1−
e2

2ε◦εeffk
Πfinal(ωp + iγp, k ) (3.3)

where εeff is the average dielectric function of the air-substrate interface defined

as εeff =
εair+εsubstrate

2 , and Πfinal(ω, k ) is the graphene dynamical polarizability.

The graphene polarizability, Π, of an arbitrary non-equilibrium carrier distribu-

tion that is well-defined on the complex frequency plane is reported in Ref. [17].

The polarizability for the two-component plasma system with finite tempera-

tures can be represented as the sum of the zero-temperature quasi-equilibrium

polarizability and the correction terms that account for smearing of the Fermi

edge due to finite temperatures as Eq. (3.4).

Πfinal = Π(ω, k )
����
T=0

quasi-eq
+

∫ ∞

0
dE



∂Π|T=0
µ=E

∂E
(δf |Tµc ) +

∂Π|T=0
µ=E

∂E
(δf |Tµv )


(3.4)

where ΠT=0quasi-eq is the zero-temperature quasi-equilibrium polarizability, µc and

µv are the chemical potentials for conduction and valence bands, respec-

tively, T is the shared temperature of the two-component plasma, and δf =

f (E)Tµ − f (E)T=0µ , where f (E) = 1

e (E−µ)/kBT+1
. In our case, µc and µv are not

necessary equal because the equilibrium carrier density of the graphene sample
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is externally controlled via electrostatic gating. The zero-temperature quasi-

equilibrium polarizability is defined as Eq. (3.5).

Π(ω, k )|T=0quasi-eq = Π(ω, k )|T=0µc + Π(ω, k )|T=0µv − Π(ω, k )|T=0µ=0 (3.5)

The finite-temperature correction terms in Eq. (S12) accounts for the Fermi

edge smearing as quantified by δf (E)|Tµ , and the evaluation of the integrand of

Eq. (S12) requires the derivative of ΠT=0µ , which can be written as Eq. (3.6).

Π
′
(ω, k ) =

∂Π+
∂µ
+
∂Π−
∂µ

=
g

8π~2v2F



−2
√
µ− u

√
µ− v + 2µ

√
u
√
v

− 2

+

g

8π~2v2F



−2i
√
i (µ + u)

√
i (µ + v ) − 2µ

√
u
√
v

− 2


(3.6)

where u = ω+k
2 and v = ω−k

2 . When solving for the complex-frequency dis-

persion, it needs to be ensured that the solved dispersion curve does not cross

a branch cut and remains continuous and physically meaningful. The details

about relevant branch points/cuts and integration path are further explained in

Ref. [16].

Upon ultrafast optical excitation, carriers quickly thermalize among themselves

via carrier-carrier scattering, and the system establishes a quasi-equilibrium

state on a sub-100-fs timescale. Because the carrier-carrier scattering is typi-

cally one to two orders of magnitude faster than the interband recombination

processes, in a quasi-equilibrium state, the carriers form the two-component

plasma by having separate Fermi-Dirac distributions within their bands with

their own chemical potential, but the shared temperature, as shown in stage
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(iii) of Fig. 3.1. The theoretical formalism developed to calculate complex-

frequency graphene non-equilibrium plasmon dispersion relations is applicable

to any arbitrary, non-Fermi-like carrier distributions Eq. (3.4) [17]. Page et al.

have shown that excited carriers need to relax within their band before they

contribute to plasmon gain processes [17]. It was shown that the loss of the

plasmon dispersion, in fact, increases with increasing excitation fluence imme-

diately after photoexcitation as there are not enough emission channels at any

particular energy to compete with absorption and have a net gain before these

photoexcited carriers relax within the band.

Thus, we apply the studied formalism to the photoinverted graphene in a

quasi-equilibrium state. As shown in Eq. (3.4), the non-equilibrium complex-ω

graphene plasmon dispersions are defined with three parameters: T , µc, and µv.

As the photoexcited carriers relax towards equilibrium, these three parameters

also evolve with time. we take phenomenological approaches to estimate these

parameters. For a given excitation fleunce of a sub-100fs laser pulse, the values

of T , µc, and µv at the time the system has just reached a quasi-equilibrium

can be obtained by solving for the following two equation simultaneously:

N = Np + N0 =

∫
f (E,µ, Te)D(E)dE (3.7)

U = Up + U0 =

∫
Ef (E,µ, Te)D(E)dE (3.8)

The quantities, N0 and Np, are the initial gate-controlled and photoexcited

carrier densities, respectively. The quantities, U0 and Up, are the initial energy

density and the energy density deposited by optical excitation, respectively.
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The photoexcited carrier density, Np, is approximated as Np ≈ Up
~ω0

, where Up

corresponds to the pump fluence, ω0 is the laser frequency, D(E) is the electron

density of states in graphene, and f (E,µ, Te) = 1

e (E−µ)/kBT+1
.

The temporal evolution of the carrier temperature as the carriers relax from

a quasi-equilibrium state to a complete equilibrium state is described with a

phenomenological two-temperature (2T) model. The model solves for the

temporal evolutions of electronic and phononic temperatures. A 2T model for

graphene was adopted from that used in Ref.[12]. It is assumed the optical

excitation energy goes to the electronic system, and the energy is transferred

to the phononic system through a electron-phonon coupling rate. In this phe-

nomenological approach, it is often assumed that photoexcited electrons equi-

librate with a particular branch of optical phonons, referred as strongly coupled

optical phonons (SCOPs), with an exceptionally higher electron-phonon cou-

pling rate, essentially leaving electrons decoupled from other phonons [25]. The

SCOP bath eventually achieve equilibrium with the rest of the phonons, whose

temperature stays approximately at ambient temperature, T0, on a picosecond

timescale. The electron and SCOP temperatures of graphene, Te and Tp, can

then be obtained by solving the following coupled equations:

∂Te
∂t
=
I (t)
β
−
Γe-p

Ce
(3.9)

∂Tp

∂t
=
Γe-p

Cp
−
Tp − T0
τp

(3.10)

where I(t) is the power density of the incident ultrafast pulse, Γe-p is the

electron-phonon energy exchange rate [1, 11], Ce and Cp are the electronic
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and phonon specific heats, and τp is the lifetime of the SCOPs. The temporal

profile of the excitation optical pulse is modeled as I (t) = AgraF
2τpulse

sech2
(

t
τpulse

)
,

where Agra is the absorption in graphene at the wavelength of the incident laser

light, τpulse is the laser pulse duration, and F is the laser fluence. The elec-

tronic specific heat is analytically determined from the linear electronic band

structure as Ce(Te) =
18ξ(3)k3BT

2
e

π(~vF)2 , where vF is the Fermi velocity of graphene.

The specific heat of the SCOPs, Cp, and the electron-SCOP exchange rate,

Γe-p, are expressed in Ref. [12]. τp is approximated as 1.5 ps [12, 25]. When

the system is far out of equilibrium, the temperature of the system, and thus

the specific heat, are not well defined. Thus, the power density of the incident

ultrafast pulse, I(t), is scaled by a parameter, β, which has the same units as

specific heat (eVm−2K−1) [11]. The parameter β determines the initial maxi-

mum electronic temperature, which is determined by solving Eq. (3.7) and Eq.

(3.8) simultaneously for a given laser fluence.

Figure 3.2 shows the temperature profiles of electrons and SCOPs of graphene

for a given laser fluence of 1.12 J m−1 with varying initial gate-controlled

graphene Fermi levels. The grey shaded region in Fig. 3.2 is when the system

does not have a well-defined temperature as carriers have not yet reached

a quasi-equilibrium state; this region is equivalent to stage (ii) in Fig. 3.1.

We note that the temperature profiles in graphene are gate-dependent; as the

initial Fermi level varied closer to the charge neutral point (CNP), the maximum

electronic temperature increases.

The time evolution of the chemical potentials is described phenomenologi-

cally based on the rate equation studies, solving for the relaxation dynamics
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of for an inverted massless Dirac fermion plasma in interaction with bosonic

reservoirs via emission and absorption processes [7]. Specifically, the effects

of plasmon and phonon emission processes on the rate of the inversion de-

pletion were studied. The temporal evolution of chemical potential can be

phenomenologically fitted with three exponential functions with characteristic

times: µ(t) = µ0
∑3
i=1 Aie

−t/τi. The initial chemical potential is determined

from Eqs. 3.7 and 3.8, and µ returns to the equilibrium gate-controlled chem-

ical potential.

Figure 3.2: Gate-dependent temperature profiles of graphene for a given laser
fluence of 1.12 J m−2.

3.3 Graphene Fermi level and time dependence

We consider a planar graphene sample on an underlying substrate of a 1-µm-

thick SiNx and a 50-nm-thick ITO, which can serve as a backgate. The solved

complex-frequency plasmon dispersion relations for varying gate-controlled graphene

Fermi levels for a given laser fluence of 1.12 J m−2 are shown in Fig. 3.3. These
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calculations are the snapshots of the graphene dispersion relations when the

carriers have just established a quasi-equilibrium state (equivalent to the end

of the grey shaded area in Fig. 3.2). When the imaginary part of the plasmon

frequency, γp, is positive (negative), by definition, plasmons experience gain

(loss) via net stimulated emission (absorption). As the emission rate scales

with γp, the calculations suggest that plasmon emission is enhanced with in-

creasing hole doping of graphene. The increase in emission with increased hole

doping of graphene can be intuitively understood as a result of enlarging the

phase space for the excited carriers to relax by emitting plasmons. For plasmon

emission being an interband process, having control over graphene Fermi level

via electrostatic gating can greatly enhance observation of plasmon emissions,

as hole-doping of graphene not only enlarges phase space for plasmon emission

but also raises the (Pauli-blocking) barrier for plasmon absorption. Figure 3.4

shows the time-depednent calculated plasmon dispersion relations for a given

gate-controlled graphene Fermi level of 0.34 eV and a laser fluence of 1.12

J m−2. The time-dependent calculations show that the spectral range that

allows net plasmon emission diminishes as the population inversion in graphene

depletes over time.
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Figure 3.3: Non-equilibrium plasmon dispersions for graphene on top of SiNx
for a given laser fluence of 1.12 J m−2 (the pulse width was assumed to be 100
fs). (a) The real part and (b) imaginary part of plasmon complex frequency
dispersion for different gate-controlled initial graphene Fermi levels at time
when the quasi-equilibrium has just been established.
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Figure 3.4: Non-equilibrium plasmon dispersions for graphene on top of SiNx .
(a) The real part and (b) imaginary part of plasmon complex frequency for
a given initial graphene Fermi level of 0.34 eV as time progresses since the
quasi-equilibrium has established. The laser fluence of 1.12 J m−2, and the
pulse width of 100 fs are assumed.
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3.4 Collision loss dependence

We also study the effects of collision losses. A collision time, τ , accounts for

plasmon lifetime due to collisions with impurities, acoustic phonons and optical

phonons. It varies from tens to hundreds of femtoseconds depending on the

quality of graphene and the underlying substrate. To include τ , the following

transformation was performed on the graphene polarizability Π(ω, k ):

Πτ =
(ω + iτ−1)Π(ω + iτ−1, k )

ω + iτ−1Π(ω+iτ−1,k )
Π1(0,k )

(3.11)

Figure 3.5 shows the calculated τ-dependent graphene plasmon dispersion re-

lations for a given laser fluence of 1.12 J m−2 and a gate-controlled graphene

Fermi level of 0.34 eV at time t0, which denotes the time at which the system

has reached a quasi-equilibrium state. The scattering time, τ , has no signif-

icant impact on the real part of the plasmon frequency, while increasing the

collision loss rate diminishes the imaginary part of the plasmon frequency, γp,

suggesting decreasing net plasmon emission as additional absorption channels

are introduced. The spontaneous emission spectra were calculated by scaling

the plasmon emission rates by the plasmon density of states, G = gDp, where

Dp =
k (ω)
2π

dk (ω)
dω , assuming that the generated plasmons emit incoherently into

all possible modes. As suggested by Eq. (3.1), the collision loss time, τ , does

not explicitly enter the emission rate equation, and also it affects only weakly

the plasmon dispersion relations [17]. Thus, as shown in Fig. 3.6, the cal-

culated plasmon emission spectra show weak dependence on the collision loss

rate.
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Figure 3.5: The effects of collision loss time, τ . (a) The real and (b) imaginary
part of plasmon dispersion relation at the time the system has reached a quasi-
equilibrium for a given gate-controlled graphene Fermi level of 0.34 eV. The
laser fluence of 1.12 J m−2 and the pulse width of 100 fs were assumed.
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Figure 3.6: Plasmon emission spectra with varying collision time, τ , calculated
based on the solved graphene plasmon relations shown in Fig. 3.5. The gate-
controlled graphene Fermi level was fixed at 0.34 eV.

3.5 Effects of underlying substrate

The dielectric function of graphene and thus the resulting plasmon behavior

are highly dependent on and sensitive to its surrounding. We show that plas-

mon generation can be heavily damped due to the phonons of an underlying

substrate. In this work, a SiNx membrane was used as a substrate. As shown

in Fig. 3.7, the imaginary part of the substrate permittivity starts to rise at

wavelength >8 µm due to the substrate phonons. The complex-k plasmon

dispersion relations were calculated for a given carrier temperature of 2,000 K

and collision loss time of 50 fs (Fig. 3.8(a)). In addition, the plasmon loss

was quantified by calculating the ratio of the imaginary and real parts of the

wavevector (Fig. 3.8(b)). As the substrate phonon starts to provide a damping

channel for graphene plasmons, the real part of the graphene plasmon propaga-

tion wavevector asymptotes to zero. As a result, the plasmon loss overshoots
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for wavelength >8 µm. For this reason, no plasmon emission is expected in

the spectral region of wavelengths >8 µm when graphene is placed on a SiNx

substrate.

Figure 3.7: Real and imaginary parts of the relative permittivity of SiNx .
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Figure 3.8: (a) Gate-dependent plasmon dispersion relation defined on a
complex-k plane for a given carrier temperature of 2,000 K and collision loss
time of τ = 50 fs. (b) Plasmon loss quantified by the ratio of imaginary and
real parts of graphene plasmon wavevector, kGP.
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3.6 The ratio of stimulated to spontaneous plasmon emission rates

There are three fundamental processes that contribute to the plasmon popula-

tion in the system: stimulated emission, spontaneous emission and absorption

(Fig. 3.9). The transition rate of an excited state of electron due to plasmon

emission can be derived from Fermi’s golden rule similarly to the photon emis-

sion rate assuming a two-level system in a vacuum. The plasmon emission rate

is given by Eq. (3.12) [2, 24].

γ =
2π

~

∑
k

~ω

2ε0S
|D12 · u1,k (z )|2(np + 1)δ(E2 − E1 − ~ω) (3.12)

where D12 =< 2|D|1 > is the matrix element of the dipole moment operator,

D, |1 > and |2 > are the ground and excited states of the two-level system,

uk(z ) is the polarization vector of the quantum electric field operator, and np

is the plasmon distribution function [2]. The np term in Eq. (3.12) accounts

for the contribution from stimulated emission, and the constant term accounts

for the contribution from spontaneous emission. The ratio of stimulated to

spontaneous emission rates, therefore, is given by γstim/γspont = np. The

time evolution of the plasmon distribution function, np, is obtained by solving

the rate equation, given by Eq. (3.13), assuming that spontaneous emission,

stimulated emission, absorption and collision loss are the processes changing

the plasmon population [2].

dnp

dt
= γemiss(np + 1) − γabsnp − γcollnp (3.13)

where γemiss and γabs are the plasmon emission and absorption rates, respec-

tively, and γcoll is the collision loss rate and assumed to be constant. The

plasmon distribution function, np, was solved for various values of γ−1coll rang-

ing from 10 fs to 100 fs. In first-order approximation, the plasmon interband
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emission/absorption rate, γemiss/abs, can be approximated as Eq. (3.14) [7,

17].

γemiss/abs ≈
αfckθ(ω − vFk )√
ω2 − (vFk )2

2Kemiss/abs(ω, k )
∂Re[ε(ω,k )]

∂ω

����ω=ωp
(3.14)

Kemiss(ω, k ) =
∫ 1

−1
du

√
1− u2f

(
~ω + ~vFku

2
, µc, Te

)
f

(
~ω − ~vFku

2
, µv, Te

)
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Kabs(ω, k ) =
∫ 1

−1
du

√
1− u2 *
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1− f
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2
, µc, Te
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+
-

*
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(
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)
+
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(3.16)

Figure 3.10 shows the calculated plasmonic distribution function as a function

of time for a given initial graphene Fermi level of 0.34 eV at λ=6 µm for a

given laser fluence of 1.12 J m−2. When the plasmonic distribution function

is greater than one (i.e., above the dotted line in Fig. 3.10), the stimulated

emission dominates spontaneous emission. On a 100-fs timescale, stimulated

emission dominates spontaneous emission when the collision time, τcoll, is suf-

ficiently long. Once the inversion is depleted, absorption starts to deplete the

plasmon population exponentially, and spontaneous emission starts to dominate

stimulated emission. When the plasmon distribution function (i.e., ratio of the

stimulated to spontaneous emission rates) is time-averaged up to t − t0=250

fs, stimulated emission is dominant over the frequency range between 4.5 µm

and 6 µm as shown in Fig. 3.10(b). This opens path to coherent plasmon

amplification on sub-100s fs time scale.
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Figure 3.9: Three fundamental processes that contribute to the total number
of plasmons in the system: spontaneous emission, stimulated emission, and
absorption of plasmons. A and B are the spontaneous emission and stimulated
emission/absorption Einstein coefficients, respectively. Np is the plasmon den-
sity, and Ne and Ng are the carrier densities in the excited and ground states,
respectively. γcoll is the collision rate.
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Figure 3.10: (a) The ratio of stimulated to spontaneous plasmon emission
rates as a function of time at λ = 6 µm for a given initial graphene Fermi level
of 0.34 eV. The laser fluence of 1.12 J m−2 and the pulse width of 100 fs are
assumed. t0 represents the time at which the system has just reached quasi-
equilibrium. (b) The time-averaged ratio for a given initial graphene Fermi
level of 0.34 eV and γ−1coll = 20 fs as a function of wavelength when the ratio is
integrated up to t − t0 = 250 fs, 500 fs, 1 ps, 2 ps, and 3 ps.
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C h a p t e r 4

OBSERVATION OF GRAPHENE PLASMON-COUPLED
NON-PLANCKIAN RADIATION

In this chapter, we report experimental demonstration of laser-pumped mid-

infrared radiative emission from graphene, originating from bright hot plasmons

emitted via decay of excited carriers. The experimental observations are consis-

tent with the previously discussed theoretical prediction for graphene plasmon

emission.

4.1 Experimental Setup

Our experimental configuration is shown in Fig. 4.1. A planar graphene sample

is illuminated with sub-100-fs pulses from a Ti:Sapphire laser operating at a

wavelength of 850 nm while the Fermi level of graphene is externally controlled

via electrostatic gating. The laser is focused onto the graphene surface from

the backside. The resulting infrared emission is collected with a 15× Cassegrain

objective and sent to a Fourier-transform infrared (FTIR) spectroscopy. The

spot size of the laser was expanded to ensure uniform illumination over the

collection area of 50 µm × 50 µm enclosed by an aperture. All of the emission

measurements are done under dry air purge. Laser pulses arrive periodically at

the sample approximately every 12 ns (i.e., laser repetition rate of 80 MHz),

while the moving mirror of the FTIR moves on a millisecond time scale. Thus,

the repetition rate of the laser is sufficiently high that a large number of pulse-

induced radiation events are integrated in each acquired spectrum. A black

soot sample is used as an emissivity reference, and the collected emission spec-
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tra are calibrated assuming unity emissivity for the black soot reference at all

wavelengths.

The sample consists of a CVD-grown monolayer graphene layer on a 1-µm-

thick SiNx and a 50-nm-thick ITO, which serves as a backgate. A 50-nm-thick

ITO film was deposited on the bottom side of a 1-µm-thick SiNx membrane

(Norcada, NX10500F) by RF sputtering with the flow rate of Ar+O2 of 0.4

sccm at a pressure of 3 mTorr at a power of 48 W. A CVD-grown monolayer

graphene was transferred onto the top side of the SiNx membrane.

Figure 4.1: Far-field infrared emission measurement setup.
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Optical properties of the device

Understanding the optical properties of the device structure is important in ana-

lyzing the emission spectra. The optical properties for graphene are determined

by the conductivity model within the random phase approximation [3]. The dy-

namic conductivity is defined as a function of frequency, carrier temperature

and graphene chemical potential as follows:

σ(ω) = σintra(ω) + σinter(ω) (4.1)

σintra(ω) =
i2e2kBT

π~2(ω + iτ−1)
log *

,
2cosh

(
EF
2kBT

)
+
-

(4.2)

σinter(ω) =
e2

4~
G

(
~ω

2

)
+
ie2ω

π

∫ ∞

0
dE

G(E) − G( ~ω2 )
(~ω)2 − (2E)2

(4.3)

where G(E) =
sinh

(
E
kBT

)
cosh

(
E
kBT

)
+cosh

(
EF
kBT

) .
The optical properties of ITO are modeled with the Drude model: ε(ω,ωp(T )) =

ε∞ −
ω2p

ω2+iγω
. The following parameters are used for ITO films grown with the

experimental conditions stated above: the high frequency permittivity ε∞ = 4,

the effective electron mass m∗ = 0.28 me, the scattering time τ = 5 fs, and

the background carrier density ne = 2.3 × 1020 cm−3. The departure from the

room temperature optical properties of ITO above sufficiently high electronic

temperature (which is the case under the pulsed laser excitation) is calculated

based on the previous study on the temperature-dependent plasma frequency of

ITO, ωp, due to its non-parabolicity of the conduction band [5]. By modelling

the non-parabolic band structure as ~
2k2

2m = E +
E2

Eg
, where 1/Eg represents the
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degree of non-parabolicity, the temperature-dependent plasma frequency takes

the following form:

ωp(µ, T )2 =
e2

3mπ2

∫ ∞

0
dE



2m

~2
*
,
E +

E2

Eg
+
-



3/2 (
1 +
2E

Eg

)−1 [
−
∂f (µ, T )
∂E

]

(4.4)

The temperature-dependent chemical potential, µ, was obtained for a given

carrier density, n, and temperature, T, by solving the following equation:

n(µ, T ) =
1

π2

∫ ∞

0
dE

m

~2

(
1 +
2E

Eg

) 

2m

~2
*
,
E +

E2

Eg
+
-



1/2

f (µ, T ) (4.5)

The optical properties of SiNx in the mid-infrared are modeled by a classical

Maxwell-Helmholtz-Drude dispersion model presented [12]. For the simulations

in the visible and near-infrared spectral ranges, the refractive index of SiNx is

assumed to be 2. We use a finite element method to calculate the temperature-

dependent optical absorptivity (emissivity) of the device, consisting of a planar

graphene layer on a 1-µm-thick SiNx and a 50-nm-thick ITO, under plane wave

incident using the temperature-dependent optical properties described above.

The calculated graphene-Fermi-level-dependent absorptivity (emissivity) of the

device is in good agreement with the measured absorptivity at ambient tem-

perature as shown in Fig. 4.2. The emissivity contribution from each layer

can also be extracted from the calculated electromagnetic power density. The

results are shown in Fig. 4.3. At the wavelength range longer than 8 µm, the

majority of the emissivity comes from the SiNx layer. The majority of the gate

dependence comes from the SiNx layer due to the Fabry-Perot mode formed

in the SiNx layer sandwiched between the graphene and ITO layers.
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Figure 4.2: Graphene-Fermi-level-dependent absorptivity (emissivity) of the
graphene/SiNx/ITO device. (a) measured and (b) calculated.

Figure 4.3: Graphene-Fermi-level-dependent absorptivity (emissivity) contribu-
tion from each layer at ambient temperature.
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4.2 Mid-infrared emission phenomena under pulsed laser excitation

Emission spectra from the graphene device under pulsed laser excitation with

a constant fluence of 1.12 J m−2 are shown in Fig. 4.4. Graphene Fermi levels

are controlled via applying gate voltages across the 1-µm-thick SiNx layer. The

graphene Fermi levels denoted in Fig. 4.4 are the gate-controlled Fermi levels

determined under equilibrium conditions. The laser-pumped spectra are com-

pared with the measured thermal emission spectrum from the device measured

at 95 ◦C. An increase in emission intensity with increasing graphene Fermi level

was observed between 4.5 µm and 8 µm under pulsed laser excitation. The

deviation from the measured thermal emission profile occurs in the equivalent

spectral range.

Figure 4.4: Graphene-Fermi-level-dependent emission in a planar graphene un-
der pulsed laser excitation with a constant fluence of 1.12 J m−2 (solid color
lines), compared with measured thermal emission spectrum at 95 ◦C (dotted
black line).
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Comparison with Planckian radiation spectra

Mid-infrared radiation falls in the spectral range in which heated objects typ-

ically emit blackbody radiation. To study contributions of plasmon emission,

which is non-Planckian, we compare the emission collected under pulsed laser

excitation with gate-dependent thermal emission. The solid lines in Fig. 4.5 are

the graphene-Fermi-level-dependent thermal emission spectra of the graphene-

SiNx -ITO device under isothermal conditions at 95 ◦C. They are obtained by

multiplying the gate-dependent absorptivity of our device measured at room

temperature by Planck’s blackbody radiation spectrum at 95 ◦C. The absorp-

tivity (or emissivity) of the device shows a gate dependence between 8 µm and

12 µm, which is due to Pauli-blocking as the graphene Fermi level is varied.

Notably, the gate dependence due to this effect shows an opposite trend to

that seen in emission under pulsed optical excitation, and occurs in a different

spectral region (>8 µm for isothermal; <8 µm for pulsed).

Under pulsed optical excitation, the temperature of the device is time-dependent,

and the temperature of each layer is expected to evolve differently as each

layer absorbs different degrees of the incoming laser light. Thus, to under-

stand how the time-dependent temperature evolution would manifest in a time-

averaged emission spectrum, a phenomenological two-temperature (2T) model

was adopted to calculate temporal evolutions of temperatures in graphene as

discussed in Chapter 2. The coupled partial differential equations for electron

and phonon temperatures of ITO take the same forms as those for graphene.

The electron-phonon exchange rate of ITO is expressed in Ref. [1], and is a

function of the Debye temperature, the Fermi velocity, the electron mean free

path, and the Fermi energy. All of these parameters were deduced from the
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parameters used in the Drude model, specifically ne , m∗, and τ . The values of

vF = 7.84× 105ms−1, l=3.92 nm, EF=0.49 eV, and θD ≈1,000 K were used.

A population of photo-excited electrons thermalizes via electron-electron scat-

tering and creates a hot bath of electrons that can be significantly hotter than

the lattice. It has been previously shown that these hot electrons can emit radi-

ation with a spectral density consistent with Planck’s law [9]. We used a finite

element method to calculate temperature-dependent emissivity contributions

from graphene and ITO layers. The SiNx layer exhibits negligible absorption

at the incoming laser wavelength. Thus, it is assumed that the SiNx is heated

via conduction only, and that its emissivity contribution does not deviate from

its room temperature values. The emission contribution at longer wavelengths

(> 8 µm) mostly comes from the SiNx , and an effective of SiNx was assumed

to maintain the overall spectral.

Emissivity and temperature are the parameters that define a Planckian emission

spectrum. Both parameters evolve with time and are different in each layer of

the device. The temperature dependent emissivity was then multiplied by a

blackbody thermal emission spectrum given by Planck’s law at a given time.

Emission contributions from all three layers of the device were calculated and

were added according to
∑
i=graphene,ITO,SiNx ξi (Ti (t)) × S(λ, Ti (t)), where ξ is

the temperature-dependent emissivity and S is the blackbody spectral radiance

given by Planck’s law. The time-dependent spectra were time-integrated ac-

cording to I (λ) =
∫
ξ(T (t))×Sλ(λ,T (t))dt∫

dt
, where Sλ(λ, T ) =

∫
2hc2

λ2
1

exp
(

hc
λkBT

)
−1
dΩ

is the blackbody spectral radiance given by Planck radiation integrated over the

collection solid angle, and ξ(T ) is the temperature-dependent emissivity [3, 5].
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The laser illumination was expanded to ensure uniform illumination over the

measurement area of 50 µm × 50 µm. Thus, it is assumed the temperature

is spatially uniform. The results are time-averaged and are shown as dotted

curves in Fig. 4.5. We note that the gate voltage dependence observed in

the 2T model-governed emission between 4.5 µm and 8 µm is opposite to that

seen in the measured spectra under pulsed optical excitation. The pulsed-laser-

induced behavior of the emission phenomena between 4.5 µm and 8 µm cannot

be explained with Planckian light emission mechanisms.

Figure 4.5: Planckian thermal emission under isothermal (solid color lines) and
varying temperature (dotted color lines) conditions.
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Gate dependence originating from graphene Fermi level modulation

We note that the gate dependence in the observed emission between 4.5 µm

and 8 µm under pulsed laser excitation arises only from graphene. For our

experimental conditions, the optical properties and temperature profile of ITO

do not change significantly upon applied gate voltages. It has been previously

reported that applying a sufficiently high gate voltage of order 1 V per 1 nm

to ITO can yield a charge accumulation layer in ITO [6]. However, the charge

accumulation in the ITO layer is negligible in our experimental conditions. A

gate voltage of approximately 0.1 V nm−1 was applied across the SiNx layer,

so the applied electric field in our experiment is an order of magnitude smaller

than that required to induce an ITO accumulation layer. As an independent

check to demonstrate that gate voltage-dependent modulation comes from the

Fermi level modulation in graphene rather than ITO, a control experiment was

performed. A graphene-less control sample was made, consisting of a 1-µm-

thick SiNx sandwiched between 50-nm-thick ITO layers, which served as top

and bottom gates. When illuminated with pulsed laser excitation with a fluence

of 1.12 J m−2, negligible gate dependence was observed as shown in Fig. 4.6.
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Figure 4.6: Measured emission spectra from ITO-SiNx -ITO for various gate
voltages under pulsed laser excitation with a constant laser fluence of 1.12 J
m−2.
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Comparison with emission under continuous wave (CW) laser excitation

The gate-dependent emission spectra under CW laser excitation with an equiv-

alent laser average power from the device are shown in Fig. 4.7, and are

compared with the observed emission behavior under pulsed laser excitation

(Fig. 4.7). Under CW laser excitation, the gate dependence occurs at longer

wavelengths (>8 µm) similar to that seen in thermal emission under isothermal

conditions (Fig. 4.5). The spectral shape observed in the emission spectra

under CW laser excitation is in good agreement with that of thermal emission

measured at 95 ◦C. Considering a peak power of a 100-fs laser pulse, which is

approximately 1.25×105 times higher than the average power, the carrier gen-

eration rate approximately five orders of magnitude higher under pulsed laser

excitation than that under CW laser excitation. Thus, in comparison to the

emission behavior under CW laser excitation, the observed emission phenom-

ena under pulsed laser excitation are due to carriers excited with a 100-fs laser

pulse (i.e., enough carriers to achieve inversion).
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Figure 4.7: Measured gate voltage-dependent emission spectra under contin-
uous wave (CW) laser excitation with a constant fluence of 1.12 J m−2 (solid
color lines), compared with measured thermal emission spectrum at 95 ◦C
(dotted black line).



84

4.3 Non-Planckian radiation contribution: plasmon emission

The plasmon decay rates, γp, as a function of wavelength for various gate-

controlled graphene Fermi levels for a given laser fluence of 1.12 J m−2 are

shown in Fig. 4.8. The dispersion calculations are carried out for wavelengths

<8 µm, as the phonons in SiNx strongly suppress plasmon excitation and as-

sociated gain for wavelengths above 8 µm. The main source of the observed

emission at wavelengths >8 µm is thermal emission due to substrate heating.

The calculations suggest that there is net plasmon gain (γp>0) under the given

experimental conditions for all gate-controlled graphene Fermi levels over the

spectral range of interest. Furthermore, the gate dependence observed in the

calculated plasmon decay rates suggests that plasmon emission rates increase

with gate-controlled graphene Fermi levels. This trend is consistent with the

gate dependence observed in emission under pulsed laser excitation (Fig. 4.4).

The snapshots of the plasmon decay rates at a given time for a given gate-

controlled graphene Fermi level of 0.34 eV in the spectral range of interest

(i.e., where the pulsed-laser-induced increase in emission with graphene Fermi

level is observed) are shown in Fig. 4.9. The spectral range that allows net

plasmon emission diminishes as the population inversion in graphene depletes

over time.
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Figure 4.8: For a fixed laser fluence of 1.12 J m−2, plasmon decay rates for
different gate-controlled graphene Fermi levels at t0, the time at which carriers
have just thermalized and the carrier temperature is at its maximum. γp >0
denotes net plasmon generation, and γp <0 denotes net plasmon loss.

Figure 4.9: For a given gate-controlled graphene Fermi level of 0.34 eV and
laser fluence of 1.12 J m−2, the temporal evolution of the plasmon decay rates.
Time denoted in the legend indicates the time that has passed since t0.
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The contributions of stimulated and spontaneous plasmon emission per ex-

citation pulse are discussed in Chapter 3. It was found that on a 100-fs

timescale, stimulated emission may dominate spontaneous emission depend-

ing on the scattering loss rates. Spontaneous emission dominates stimulated

emission at longer times, and the time-integrated emission collected from each

pulse is dominated by spontaneous plasmon emission (Fig. 3.10). Assum-

ing that the generated plasmons emit incoherently into all possible modes,

the spontaneous emission spectra can be estimated by weighting the plasmon

free space emission rates (Eq. 3.1) by the plasmon density of states given by

Dp(ω) = k (ω)
2π

dk (ω)
dω [10, 11]. The time-integrated spontaneous plasmon emis-

sion spectra for various gate-controlled graphene Fermi levels are shown in Fig.

4.10. The calculated spontaneous emission spectra predict the same gate-

dependent trend in the spectral region of interest as seen in the experimentally

measured emission under pulsed laser excitation. The increase in emission with

increased hole doping of graphene can be intuitively understood as a result of

enlarging the phase space for the excited carriers to relax by emitting plas-

mons. Moreover, as more carriers are added to the excited state population,

more spontaneous plasmon emission is expected. The time-integrated sponta-

neous emission spectra for a given gate-controlled graphene Fermi level with

increasing laser fluences are presented in Fig. 4.11. The calculations show that

with increasing laser fleunces, more plasmons are emitted per excitation pulse

with other experimental conditions held constant.
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Figure 4.10: Time-integrated spontaneous plasmon emission spectra for dif-
ferent gate-controlled graphene Fermi levels under a laser fluence of 1.12 J
m−2.

Figure 4.11: Time-integrated spontaneous plasmon emission spectra for a given
gate-controlled graphene Fermi level of 0.34 eV under different laser fluences.



88

4.4 Plasmon-coupled far-field radiation

We proceed to compare the calculated plasmon emission spectra with the

measured emission spectra under pulsed laser excitation. The measured gate-

dependent light emission is the result of emitted plasmons coupled out to the

far field. We obtain the out-coupling efficiency based on the experimental

emission data. First, a thermal background expected for a given laser fluence

was subtracted from the observed emission to determine the deviation from

the thermal background (i.e., excessive emission, which scales wtih plasmon

emission contribution). The subtracted spectra were divided by the calculated

plasmon emission spectra. The results represent out-coupling efficiencies of

plasmons, which were found to be in the order of 10−4, as shown in dotted

lines in Fig. 4.12(c). Two-dimensional full-wave simulations were used to ver-

ify the out-coupling efficiency. To confirm the spectral shape and the order

of magnitude of the experimentally determined out-coupling efficiency, we per-

formed two-dimensional full-wave simulations as depicted in Fig. 4.12(b). The

AFM measurement of a SiNx surface showed the root mean square rough-

ness of 0.4 nm as shown in Fig. 4.12(a). The rough surface was modeled by
√
2RRMScos(2πPxx ), where RRMS is the root mean square surface roughness

and period of sinusoidal function Px is chosen by 6 nm. Graphene is assumed to

conform to the roughness of the substrate, and graphene plasmons are launched

within one period of the rough surface enclosed by perfect electric conductors

to model uniformly excited plasmons over a laser-illuminated area. In these

simulations, the graphene carrier temperature of 2,000 K and the collision loss

time of 50 fs were assumed. The radiation efficiency was calculated by the ra-

diation power toward air divided by the launching power of graphene plasmons.
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Here, a substrate consisting of a 1-µm-thick SiNx layer and a 50-nm-thick

ITO layer was assumed. Figure 4.12(d) confirms that the surface roughness is

sufficient to scatter graphene plasmons into free-space. In particular, the spec-

tral shape and the order of magnitude of the calculated radiation efficiency are

consistent with the experimentally determined out-coupling efficiency. The cal-

culated value is slightly smaller than the experimentally determined out-coupling

efficiency. We note that there exist other possible scattering centers that are

difficult to simulate, such as residues (e.g., PMMA, metal nm-scale islands

from fabrication processes), graphene sheet folding, and grain boundaries, that

can further increase the out-coupling efficiencies of graphene plasmons.
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Figure 4.12: (a) AFM measurement of a SiNx surface, showing root mean
square roughness of 0.4 nm. (b) Schematic for calculating radiation efficiencies
of graphene plasmons propagating on a planar graphene surface which conforms
to the roughness of the underlying SiNx . (c) Experimentally determined out-
coupling efficiencies. (d) Calculated radiation efficiencies.
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Direct comparison with experimental results

For a direct comparison with the experimentally measured emission spectra, the

calculated spontaneous emission spectra are then multiplied by the out-coupling

efficiency of plasmons. The gate-dependent results are shown in dotted curves

in Fig. 4.13, and are in good agreement with the measured emission under

pulsed laser excitation. As the laser fluence increases, more plasmon-coupled

radiation was observed experimentally in the spectral region where net plasmon

gain is predicted (γp>0). The measured laser-fluence-dependent emission spec-

tra agree well with the calculated, out-coupled spontaneous plasmon emission

spectra as shown in Fig 4.14. In a planar graphene, the far-field observation of

bright plasmon emission is limited by inefficient out-coupling mechanisms. As

we demonstrate in the next section, such a limitation can be easily overcome

with appropriate nanophotonic structures.

The deviation from the theoretical prediction can be attributed to inevitable

uncertainty in determining gate-controlled graphene Fermi levels and charge

density fluctuations, which led to non-uniform charge neutral point across the

sample. The carrier densities of varying gate voltages were obtained from

a simple parallel capacity model with a 1-µm-thick SiNx dielectric. In our

previous studies [2, 7], we have identified that atmospheric impurities contribute

to the discrepancy between the extracted charge densities and the real values.

Our measurements were performed under FTIR purge gas (free of H2O and

CO2). Atmospheric impurities that are likely to present in the purge gas have

previously been shown to induce hysteresis effects in the conductance curves

of graphene FET devices [8, 15, 17, 18]. In addition, the concentration of

such impurities can depend on the applied gate bias. Also, the SiNx surface
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itself can contain charge traps that get filled or empty with the applied gate

bias. Such charge traps could induce anomalous behavior in the conductance

curves of the graphene FET devices, similar to what has been observed in the

presence of metallic impurities [13].

Figure 4.13: Gate-dependent measured emission spectra (solid color lines) un-
der pulsed laser excitation compared with the out-coupled, calculated sponta-
neous plasmon emission spectra (dotted color lines). In both cases, the relevant
laser fluence is 1.12 J m−2.
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Figure 4.14: Laser-fluence-dependent measured emission spectra under pulsed
laser excitation (solid color lines), compared with the calculated, out-coupled
spontaneous plasmon emission spectra (dotted color lines). In both cases, the
relevant gate-controlled graphene Fermi level is 0.34 eV.
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4.5 Roles of gold nanodisks

We demonstrate that the far-field intensity of the plasmon emission processes

can be enhanced by placing engineered metastructures on graphene surface.

Gold nanodisks (NDs) were fabricated by patterning onto a PMMA resist on

top of the graphene layer by 100 keV electron beam lithography and evaporat-

ing a 2-nm-thick Ti followed by a 80-nm-thick Au. The gold NDs promote lo-

calized plasmon excitations due to the plasmonic-resonance-induced near-field

enhancements, and also increase radiation efficiencies of plasmons by acting

as out-coupling scatterers. The plasmonic resonance of the NDs depends on

their diameter; the diameter was chosen to be 175 nm and 285 nm for the

NDs that are resonant and non-resonant, respectively, with the incoming laser

excitation light. The NDs are randomly distributed in order to prohibit in-plane

resonacnes originating from perfect periodicity. Over a 150 µm × 150 µm area,

10,000 nanodisks were fabricated, covering approximately 1% and 2.8% of the

graphene surface for the resonant and non-resonant nanodisks, respectively. In

addition, the nanodisks are separated by at least 800 nm in center-to-center

distance to suppress plasmonic interactions between the adjacent gold nan-

odisks. The electric field intensity profiles of the resonant and non-resonant

NDs on a semi-infinite SiNx substrate are presented in Fig. 4.15, and their

optical cross-sections are shown in Fig. 4.16. The NDs are designed to have a

negligible effect on the overall emissivity of the device. Figure 4.17 compares

the measured emissivity of the samples with and without the NDs. Because the

distribution of the NDs is sparse and the size of them is small in the perspective

of mid-infrared light, the NDs have negligible effect on the overall emissivity

of the sample in mid-infrared. In addition, full-wave simulation results suggest
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that the overall absorption as well as the absorption in graphene at the laser

wavelength of 850 nm are not significantly altered by the NDs, as shown in

Fig. 4.18.

Figure 4.15: Electric intensity distribution under the planar wave excitation
at the laser wavelength of 850 nm. Side view electric intensity distributions
of Graphene/SiNx/ITO structure with the (a) resonant and (b) non-resonant
NDs. Top view electric intensity distributions for the (c) resonant and (d)
non-resonant NDs.
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Figure 4.16: Optical cross-sections of the resonant and non-resonant NDs.
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Figure 4.17: Gate-dependent measured absorptivity (or emissivity) of the
graphene/SiNx/ITO structure with and without NDs at ambient temperature.
(a) Planar graphene. (b) Non-resonant NDs on graphene. (c) Resonant NDs
on graphene. (d) For a fixed graphene Fermi level at 0.34 eV, the measured
emissivities with and without the NDs.

Figure 4.18: (a) Total absorptions of the graphene/SiNx/ITO device with and
without the NDs. (b) Absorptions in graphene with and without the NDs.
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Figure 4.21 shows the measured emission spectra under pulsed laser excita-

tion from planar and ND-decorated graphene samples. At long wavelengths

(>8 µm), the observed emission spectra match well with the measured ther-

mal emission profiles, with the ND-decorated samples reaching apparent higher

temperatures than the planar graphene sample. This suggests that the gold

NDs act as local heating source due to their absorption at 850 nm. However,

in addition to those heating effects, the resonant and non-resonant NDs cause

a large gate-dependent deviation from the thermal emission profiles between

4.5 µm and 8 µm. At shorter wavelengths (<8 µm), we start to see deviations

from the measured thermal emission profiles and increasing gate dependence

that are distinct from that seen in gate-dependent thermal emission as well

as emission under CW laser excitation as shown in Figs. 4.19 and 4.20, re-

spectively. Such deviation and its gate dependence are larger when graphene is

decorated with the gold NDs for a given laser excitation fluence. In comparison

to the observed emission spectra under CW laser excitation (Fig. 4.20), the

large gate-dependent deviation from the measured thermal emission profiles

between 4.5 µm and 8 µm seen in Fig. 4.21 is the result of the excited car-

riers generated with a 100-fs pulsed laser excitation. As the emission spectra

measured under CW laser excitation resemble the measured thermal emission

profiles as shown in Fig. 4.19; thus, under CW laser excitation, the emission

contribution is mostly from thermal emission.
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Figure 4.19: Expected gate-dependent thermal emission spectra under isother-
mal conditions of given temperatures of 70 ◦C, 115 ◦C, and 150 ◦C. The spectra
were calculated by multiplying the measured gate-dependent absorptivity of the
device by Planck’s spectrum of a corresponding temperature.

Figure 4.20: Gate-dependent emission spectra from planar and ND-decorated
graphene samples under CW laser excitation with a laser fluence of 0.75 J m−2

(color solid lines). Measured thermal emission spectra from the device for given
temperatures of 70 ◦C, 95 ◦C, and 100 ◦C (black dotted lines).
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Figure 4.22 shows the spectra under pulsed laser excitation for a given gate-

controlled graphene Fermi level of 0.34 eV after the corresponding thermal

emission background is subtracted. The samples with resonant and non-

resonant NDs display seven and three times larger deviation from the corre-

sponding thermal backgrounds, respectively, in comparison to the planar sam-

ple. While localized heating near the NDs could lead to a non-uniform tem-

perature across the sample, the large gate dependence at shorter wavelengths

(<8 µm) in the presence of NDs suggests that their dominant effect is to

more efficiently generate and/or out-couple of hot-carrier generated graphene

plasmons (i.e., a given change in plasmon emission with changing EF higher

out-coupling efficiency = larger out-coupled gate dependence). We note that

the large gate-dependent emission seen between 4.5 µm and 8 µm is bigger

with resonant NDs than with non-resonant NDs. This effect can be understood

as arising from the large field enhancements near the NDs, which are 100 and

10 times larger for the resonant and non-resonant NDs, respectively, than the

planar graphene as shown in Fig. 4.23. This field enhancement will impact

both population inversion and plasmon emission rates, and it can also enhance

absorption in graphene locally, creating more excited carriers in the vicinity of

the NDs, where they are more efficiently out-coupled [14].
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Figure 4.21: Gate-dependent emission spectra from planar and ND-decorated
graphene samples under pulsed laser excitation with a constant laser fluence of
0.75 J m−2 (color solid lines). In the resonant ND data, the dotted lines for
0.24 eV and 0.34 eV correspond to the original measurements, and the solid
lines are fitted to compensate the offset, which appeared due to experimental
imperfections. Measured thermal emission spectra from the device for given
temperatures of 70 ◦C, 115 ◦C, and 150 ◦C (black dotted lines).
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Figure 4.22: Emission contributions that deviate from the corresponding ther-
mal emission background under pulsed laser excitation with a constant laser
fluence of 0.75 J m−2 from planar graphene and ND-decorated graphene sam-
ples at a given gate-controlled graphene Fermi level of 0.34 eV.

Figure 4.23: Field enhancement factor around the NDs due to the plasmonic
resonance.
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To study the electromagnetic effects on the radiation efficiency of graphene

plasmons, two-dimensional full-wave simulations were performed. The dotted

lines in Fig. 4.24 show radiation efficiencies of a single graphene plasmon

launched on a rough graphene surface in the presence of NDs without taking

the near-field enhancement into consideration (i.e., only considering geometric

factors). The ripple patterns in the calculated radiation efficiencies are due to

the interferences between the scattered graphene plasmons from the nanodisk

and those from the rough surface. As expected, plasmons launched closer to

a ND have a higher efficiency of out-coupling to free space. If we assume

they act only as scatterers (considering only geometric factors), the radiation

efficiency is slightly higher with the non-resonant NDs because its larger di-

ameter makes the non-resonant ND a more efficient out-coupling scatterer.

When the field enhancement factor is taken into consideration, the calculated

radiation efficiency in the presence of resonant NDs is approximately 105 times

higher near the NDs compared to that on a rough surface of planar graphene.

This suggests that the near-field enhancement takes part in improving radiation

efficiency of graphene plasmons. It also has been previously reported that res-

onantly excited nanodisks can inject carriers into graphene [4, 19], effectively

changing the doping level of graphene. While this process is difficult to quanti-

tatively assess under our conditions, any hot carrier doping process is likely to

contribute to increased plasmon emission. Fermi level pinning for graphene in

contact with a metal can locally change the effective chemical potential [16],

which could result in more plasmons emitted near the nanodisks. The localized

plasmon excitations scatter out more efficiently as they get created near a nan-

odisk, as shown in Fig. 4.24. These analyses suggest that there are no inherent
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limitations of achieving a ultrabright, ultrafast plasmon-assisted light emission,

and that engineering of more efficient plasmon out-coupling structures may

enable significantly increased brightness. In terms of the near-field enhance-

ment, there are better plasmonic structures than the nanodisks. For example,

nanorod antennas with a subwavelength gap and plasmonic bowtie antennas

exhibit much stronger plasmonic enhancement in the pumping wavelength than

the nanodisk structures. Therefore, we expect that such plasmonic antenna

structures could be helpful for enhancing the emission of graphene plasmons.

Figure 4.24: Calculated radiation efficiency of graphene plasmons with and
without NDs with varying distance from the edge of a ND. The dotted lines
represent the plasmon radiation efficiencies without considering the field. The
solid lines represent the plasmon radiation efficiencies considering the effects of
the near-field enhancement due to the plasmonic resonance of NDs. The yellow
dotted line represents the radiation efficiency of a single graphene plasmon
launched on a planar graphene surface. All calculations were performed at the
wavelength of 6 µm, and the graphene Fermi level was assumed to be 0.34 eV.
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4.6 Concluding Remark

The gate dependence of the observed radiation under pulsed laser excitation

rules out Planckian light emission mechanisms, and is distinctly different from

that observed under CW laser excitation. The major contribution of the emis-

sion observed under CW laser excitation is from thermal emission, as its gate

dependence is consistent and occurs in the same spectral region as that seen in

thermal emission. The gate dependence shown in emission under pulsed laser

excitation is not only opposite, but also occurs in a different spectral range

(>8 µm for CW and thermal emission; <8 µm for pulsed). The observation of

such behavior relies on the fact that enough carriers have been excited with a

100-fs laser pulse to achieve inversion. For plasmon emission being an inter-

band process, having control over graphene Fermi level via electrostatic gating

can greatly enhance observation of plasmon-coupled radiation, as hole-doping

of graphene enlarges phase space for plasmon emission and also raises the

(Pauli-blocking) barrier for plasmon absorption.
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C h a p t e r 5

CONCLUSION

In this thesis, the studied phenomena benefit from the large wave confinement

and tunability of graphene plasmons. I have demonstrated that graphene plas-

mons allow tunable interactions with their local environment, such as thermally

induced various motions of quasiparticles. Such interactions enable dynamic

control of thermal radiation, and open up new design avenues to novel infrared

sources. Furthermore, I have experimentally shown that quasi-equilibrium ’hot’

carrier distributions in graphene upon ultrafast optical excitation support bright

mid-infrared plasmonic excitation. This study reveals an unconventional way of

generating ultrafast and ultrabright mid-infrared light. The ability of graphene

plasmons to strongly interact with light makes graphene a great platform for

novel mid-infrared light sources. In this chapter, I extend this present work and

propose some future directions.

5.1 Super-Planckian radiation

The Purcell factor associated with graphene nanoresonators is found to be

106-107 [3]. Thermal emission is a form of spontaneous emission, and thus

the rate of thermal emission via graphene nanoresonators can be enhanced

by a factor of 106 to 107. In Chapter 2, the modulation speed of thermal

emission on the order of kHz from the original Salisbury screen device was

demonstrated by electronically switching on and off the plasmonic modes of
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graphene nanoresonators [2]. The modulation speed can further be improved

by engineering the device structure to reduce the RC constant of the device.

Even faster excitations of plasmons can be achieved on a femtosecond time

scale via optical excitation [4, 6]. This suggests that thermal emission can be

modulated on ultrafast timescales. A fundamentally interesting question to ask

is whether having ultrafast optical control of switching graphene plasmons will

enable Super-Planckian radiation.

5.2 Bright spontaneous emission sources

The spectral flux of spontaneous emitted plasmons per pulse can be several

orders of magnitude higher than that of photons emitted by a blackbody at

several representative temperatures of 500 K, 1,000 K, and 2,000 K as shown in

Fig. 5.1. In our present work, the observed spectral flux of plasmon emission is

limited by the time-integrated measurement method. Our current experimental

setup time-integrates plasmon flux emitted per pulse, and each laser pulse

arrives at the sample approximately ever 12 ns. The collected spectral flux can

be greatly enhanced by increasing the repetition of pulses or performing time-

resolved measurements. Figure 5.1 reports the cumulative plasmon emission

flux (i.e., spectra flux time-integrated up to t-t0 ∼ 100 fs, where t0 denotes

the time at which the system has reached a quasi-equilibrium state). The

calculations suggest that the plasmon emission process can provide a platform

for achieving ultrabright mid-infrared spontaneous light sources.
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Figure 5.1: Spectral flux of cumulative spontaneous plasmon emission from
planar graphene at various laser fluences for a given graphene Fermi level of
0.34 eV compared with the spectral flux of blackbody radiation at 500 K, 1,000
K, and 2,000 K, assuming unity out-coupling efficiency of plasmons.
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5.3 Coherent graphene plasmon amplification

Our analyses on the ratio of stimulated to spontaneous emission rates (Figure

3.10) showed that conditions of plasmon gain exist on a sub-100fs timescale,

and stimulated plasmon emission dominates over spontaneous plasmon in this

time interval. This suggests the intriguing future possibility of achieving coher-

ent graphene plasmon amplification on this timescale. Time-resolved pump-

probe techniques can directly probe such ultrafast phenomenon. Upon pump

excitation, an amplification in the mid-infrared probe beam can serve as evi-

dence for graphene plasmon amplification (Fig. ??). To facilitate coupling of

graphene plasmons with the probe pulse, various mid-infrared resonant nanopho-

tonic structures can be explored. Furthermore, by introducing an external plas-

monic cavity on graphene, selection of a particular plasmonic mode of interest

can be achieved, thus promoting spasing in graphene [1, 5].



112

References

[1] David J. Bergman and Mark I. Stockman. “Surface Plasmon Amplifi-
cation by Stimulated Emission of Radiation: Quantum Generation of
Coherent Surface Plasmons in Nanosystems”. In: Phys. Rev. Lett. 90.2
(Jan. 2003), p. 4. DOI: 10.1103/PhysRevLett.90.027402.

[2] Victor W. Brar et al. “Electronic modulation of infrared radiation in
graphene plasmonic resonators”. In: Nat. Commun. 6.1 (Dec. 2015),
p. 7032. DOI: 10.1038/ncomms8032.

[3] Min Seok Jang et al. “Tunable large resonant absorption in a midinfrared
graphene Salisbury screen”. In: Phys. Rev. B - Condens. Matter Mater.
Phys. 90.16 (Oct. 2014), p. 165409. DOI: 10.1103/PhysRevB.90.
165409.

[4] G. X. Ni et al. “Ultrafast optical switching of infrared plasmon polaritons
in high-mobility graphene”. In: Nat. Photonics 10.4 (2016), pp. 244–247.
DOI: 10.1038/nphoton.2016.45.

[5] Mark I. Stockman. “The spaser as a nanoscale quantum generator and
ultrafast amplifier”. In: J. Opt. A Pure Appl. Opt. 12.2 (Feb. 2010),
p. 024004. DOI: 10.1088/2040-8978/12/2/024004.

[6] Martin Wagner et al. “Ultrafast and nanoscale plasmonic phenomena
in exfoliated graphene revealed by infrared pump-probe nanoscopy”. In:
Nano Lett. 14.2 (2014), pp. 894–900. DOI: 10.1021/nl4042577.

http://dx.doi.org/10.1103/PhysRevLett.90.027402
http://dx.doi.org/10.1038/ncomms8032
http://dx.doi.org/10.1103/PhysRevB.90.165409
http://dx.doi.org/10.1103/PhysRevB.90.165409
http://dx.doi.org/10.1038/nphoton.2016.45
http://dx.doi.org/10.1088/2040-8978/12/2/024004
http://dx.doi.org/10.1021/nl4042577

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	Introduction
	Graphene
	Graphene plasmons
	Scope of this thesis

	Active Control of Graphene Plasmons
	Tunable large absorption in graphene
	Perfect absorption in graphene
	Tunable graphene plasmon dispersion relation and emergence of hybrid surface-phonon-plasmon polariton modes
	Tunable Planckian Thermal Emission

	Non-equilibrium Graphene Plasmons and Gain
	Carrier dynamics in graphene upon ultrafast optical excitation
	Non-equilibrium plasmon dispersion relation calculations
	Graphene Fermi level and time dependence
	Collision loss dependence
	Effects of underlying substrate
	The ratio of stimulated to spontaneous plasmon emission rates

	Observation of Graphene Plasmon-Coupled Non-Planckian Radiation
	Experimental Setup
	Mid-infrared emission phenomena under pulsed laser excitation
	Non-Planckian radiation contribution: plasmon emission
	Plasmon-coupled far-field radiation
	Roles of gold nanodisks
	Concluding Remark

	Conclusion
	Super-Planckian radiation
	Bright spontaneous emission sources
	Coherent graphene plasmon amplification


