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ABSTRACT

This thesis develops an enhanced meshfree method based on the local maximum-
entropy (max-ent) approximation and explores its applications. The proposed
method offers an adaptive approximation that addresses the tensile instability which
arises in updated-Lagrangian meshfree methods during severe, finite deformations.
The proposed method achieves robust stability in the updated-Lagrangian setting
and fully realizes the potential of meshfree methods in simulating large-deformation
mechanics, as shown for benchmark problems of severe elastic and elastoplastic de-
formations. The improved local maximum-entropy approximation method is of a
general construct and has a wide variety of applications. This thesis presents an ex-
tensive study of two applications – the modeling of equal-channel angular extrusion
(ECAE) based on high-fidelity plasticity models, and the numerical relaxation of
nonconvex energy potentials. In ECAE, the aforementioned enhanced maximum-
entropy scheme allows the stable simulation of large deformations at the macroscale.
This scheme is especially suitable for ECAE as the latter falls into the category of
severe plastic deformation processes where simulations using mesh-based methods
(e.g. the finite element method (FEM)) are limited due to severe mesh distortions.
In the second application, the aforementioned max-ent meshfree method outper-
forms FEM and FFT-based schemes in numerical relaxation of nonconvex energy
potentials, which is essential in discovering the effective response and associated
energy-minimizing microstructures and patterns. The results from both of these
applications show that the proposed method brings new possibilities to the sub-
ject of computational solid mechanics that are not within the reach of traditional
mesh-based and meshfree methods.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
The finite element method (FEM) has been widely successful in simulating the
mechanics and physics of solids – from simple linear elasticity to complex multi-
physics [218] and multiscale [73] problems, and is accepted as the standard numer-
ical method across several industries. FEM traces its origins to the early works in
variational calculus by Ritz [184], Rayleigh [183], and Galerkin [84]. The notion of
amesh or spatial discretization of a continuous domain into finite elementswas intro-
duced in the 1940s by Hrennikoff [101] and Courant [63], and later mathematically
formalized into modern-day FEM in the 1970s [194]. Much of the success of FEM
is attributed to the mathematically well-understood error bounds and convergence
properties of the approximate solutions predicted by this method.

Unfortunately, FEM and other mesh-based methods have limited capabilities when
solving complex problems. In order to achieve satisfactory accuracy and capture
localized effects, complicated geometries often require high-resolution meshes and
higher-order elements, which can be computationally expensive to simulate. Ad-
ditionally, FEM approximates continuous fields with piece-wise polynomial func-
tions, which is problematic when solving higher-order partial differential equations
(PDEs). Furthermore, conventional FEM is significantly limited when solving prob-
lems involving large deformations that may lead to severe mesh distortions. In this
latter context, problems associated with classical FEM are two-fold. First, formu-
lating the governing equations in the initial or reference configuration (referred to as
total-Lagrangian description) becomes inapplicable in case of large deformations,
where the initial mesh loses relevance. Second, when formulated in the updated-
Lagrangian or Eulerian settings, severe mesh distortion may lead to entangled or
ill-shaped elements. As an instructive example, Figure 1.1 illustrates the mesh
distortion due to rotation of a rigid inclusion embedded in a soft matrix.

Solutions to mesh-related problems in FEM include adaptive remeshing and mesh
refinement. Such techniques are computationally expensive and heuristic in nature.
Additionally, these methods require interpolation of fields when mapping stresses
and strains from the old mesh to the new mesh, which can be complicated and prone
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(a) (b)

(c) (d)

Figure 1.1: Illustration of mesh distortion due to 90◦ rotation of a rigid circular
inclusion (shaded blue) embedded in a soft matrix. (a,c) Initial spatial discretization
in FEM and particle meshfree method, respectively. Dashed circle in (c) denotes the
domain of influence of a node located inside the inclusion. (b,d) Post-deformation
spatial discretization in FEM and particle meshfree method, respectively.

to errors, particularly for complicated material models such as history-dependent
constitutive laws (e.g. crystal plasticity) and multiscale models.

The Arbitrary Lagrangian-Eulerian (ALE) method [100] is a popular alternative to
overcomemesh-based challenges by coupling Lagrangian and Eulerian descriptions,
especially in the context of multiphase flows and fluid-structure interactions [69,
70, 187]. In ALE, the mesh is updated independent of the geometry in order to
avoid ill-shaped or entangled elements that may result in a numerically unstable
system. However, ALE methods face three limiting challenges [94] - (i) similar
to adaptive remeshing, updating the mesh is computationally expensive, (ii) lacks
robust algorithms to determine optimal mesh updates, and (iii) requires some prior
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(a) (b)

Figure 1.2: Illustration of (a) mesh-based and (b) meshfree shape function.

knowledge of the solution displacement field in order to advect the mesh.

1.2 Meshfree methods
In contrast to mesh-based methods, meshfree methods are more suited for simu-
lations involving large deformations and distortions, and circumvent mesh-related
problems by treating nodes as interacting particles. In mesh-based methods such
as FEM, a global approximation of an arbitrary field is constructed by stitching
together local approximations constructed within each element. On the other hand,
meshfree methods create a global approximation directly using the known values
at nodes and nodal positions, without using any mesh or stencil. Figure 1.2 illus-
trates a representative meshfree shape function, in contrast to a mesh-based shape
function. Figure 1.1 illustrates by example how particle meshfree methods over-
come problems like entangled elements encountered in conventional mesh-based
methods such as FEM. Furthermore, meshfree approximants have compact sup-
port along with high order of continuity, sometimes even infinitely-differentiable
[7], compared to FEM interpolation. Additionally, meshfree adaptive refinement
is performed by directly inserting nodes, and is significantly easier compared to
FEM where the mesh presents geometric and tessellation constraints. Meshfree
methods have found several applications, especially in the context of large defor-
mations, including rubber mechanics [44, 48], metal forming [45–47, 209, 212],
geomechanics [5, 36, 54, 211], high-velocity impact simulations [17, 107, 109],
bio-mechanics [52, 213], strain localization [136–139, 179], fracture mechanics
[177, 178, 180, 181, 217], shape optimization [111–113], etc.
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We now briefly review some of the popular meshfree methods and their limitations.
For the purpose of subsequent discussions, consider a spatial discretization of do-
main Ω ⊂ Rd into n nodes located at {xa ∈ Ω, a = 1, . . . , n}. For an arbitrary field
f : Ω→ R, we wish to construct an approximation of the form

f (x)h =
∑
a=1

Na(x) f a, x ∈ Ω, (1.1)

where Na : Ω → R denotes the shape function associated with node a, and
{ f a = f (xa), a = 1, . . . , n} is the set of known values of the field at nodal posi-
tions.

1.2.1 Smoothed-particle hydrodynamics
Meshfree methods trace their origin back to the 1970s and the introduction of
smoothed-particle hydrodynamics (SPH) [146, 157] in astrophysics, followed by
adoption in solid mechanics in the 1990s [25, 108, 142, 182]. In SPH, the approxi-
mation is constructed by convolution with a kernel K(x, h) as

f h(x) =

∫
Ω

K(x − y, h) f (y)dy, (1.2)

where h is a length scale parameter for the interpolation. If the kernel is a delta
function, the convolution exactly reproduces the field. The kernel function is subject
to certain constraints. The kernel must tend to the delta function in the limit
h→ 0. Additionally, the kernel must be normalized, positive, symmetric, and have
a compact support [156, 157]. The volume integral is further approximated as the
volume-weighted sum over all the nodal values

f h(x) ≈
n∑

a=1
K(x − xa, h) f aVa, (1.3)

where {Va, a = 1, . . . , n} denotes the volume of the nodes. For computational
efficiency, the compact support of kernels is exploited to only sum over the few
nodes that lie in a neighborhood of the evaluation point. Comparing with the
canonical form in (1.1), the SPH shape function associated with node a is given by

Na(x) = K(x − xa, h)Va. (1.4)

The most commonly used kernels are the Gaussian kernels

K(x, h) = ch−d exp
(
‖x‖2 /h2

)
, (1.5)
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and the Schoenberg splines (Mα, α = 1, 2, 3, . . . ) [157, 191]

K(x, h) = ch−d Mα(r, h) =
ch−d

2π

∫ ∞

−∞

(
sin(kh/2)

kh/2

)α
cos(kr)dk, (1.6)

where r = ‖x‖ and c is a normalization constant whose value depends on the
dimension d. The most commonly used spline kernel corresponds to α = 4, and
produces piece-wise cubic interpolation. The analytical expression of the cubic
spline [157, 191] is given by,

M4(r, h) =


1
6
(
(2 − r/h)3 − 4(1 − r/h)3

)
, if 0 ≤ r/h ≤ 1,

1
6
(
(2 − r/h)3

)
, if 1 ≤ r/h ≤ 2,

0, if r/h > 2.

(1.7)

Unfortunately, the discrete form of SPH interpolation (1.3) is not zeroth-order
consistent, i.e. it cannot exactly interpolate constant fields. This lack of consistency
in the interpolation scheme results in poor convergence of the approximate solution.
Several corrections [22, 30, 106, 156, 182] have been proposed to allow higher order
consistency within SPH, albeit with limited robustness, particularly in non-uniform
spatial discretizations in 2D and 3D.

1.2.2 Moving least squares
Moving least squares (MLS) was first introduced by Lancaster and Sakauskas [127]
for interpolation of surfaces and later adopted byNayroles et al. [162] andBelytschko
et al. [21] into MLS-based meshfree methods, namely the diffuse element method
(DEM) and the element free Galerkin method (EFG), respectively. MLS aims
to create a polynomial interpolation computed via minimization of weighted least
square error that is biased to nodes in the neighborhood of the evaluation point. An
approximation of the form

f h(x) = P(x)T a (1.8)

is constructed, where P is the monomial basis of degree p, and a is a vector
denoting coefficients of the polynomial interpolation. In one-dimensional setting,
for example, P(x) = (1, x, x2, . . . , xp)T , and a = (a0, a1, a2, . . . , ap)

T . The error
in the approximation is defined as the sum of squared approximation error at each
node weighted by a kernel/windowing function function that is biased towards nodes
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closer to the evaluation point,

J(x, a) =
n∑

a=1
K(x − xa, h)

(
f h(xa) − f a

)2

=

n∑
a=1

K(x − xa, h)
(
P(xa)T a − f a

)2
,

(1.9)

where K is a kernel/window function as described in Section 1.2.1. The unknown
coefficients, a, are computed by minimizing the approximation error, i.e.

a∗(x) = arg min
a

J(x, a). (1.10)

The optimization problem in 1.10 admits a unique minimizer computed as

a∗(x) = A−1(x)B(x) f , (1.11)

where

A(x) =
n∑

a=1
K(x − xa, h)P(xa)P(xa)T,

B(x) =

(
K(x − x1, h)P(x1), K(x − x2, h)P(x2), . . . , K(x − xn, h)P(xn)

)
,

f =
(

f 1, f 2, . . . , f n
)T
.

Rewriting (1.8) in the form of (1.1), the MLS shape functions are given by

Na(x) = PT (x)A−1(x)Ba(x), a = 1, . . . , n, (1.12)

where Ba denotes the ath column of matrix B.

1.2.3 Reproducing kernel particle method
Motivated by wavelet theory, Liu et al. [144] introduced the reproducing kernel
particle method (RKPM) with the aim to improve the accuracy and consistency of
SPH. RKPM introduces a correction function in the original formulation of SPH
to ensure consistency in the approximation. The SPH approximation in (1.2) is
modified as

f h(x) =

∫
Ω

C(x, y)K(x − y, h) f (y)dy, (1.13)

where C(x, x − y) corresponds to the aforementioned correction.

Similar toMLSapproximants, the approximation is also assumed to be of polynomial
form of degree p (see (1.8)), i.e. f h(x) = P(x)T a. Here, a again denotes the
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unknown polynomial coefficients. Analogous to discrete least square error in MLS
(see (1.8) and (1.10)), a continuous form of least square error is defined as

J(x) =
∫
Ω

K(x − y, h)
(

f h(y) − f (y)
)

dy; (1.14)

followed by minimization with respect to a in the continuous setting. The said
minimization further yields the following optimal approximation (for derivations,
see [144])

f h(x) = PT (x)M(x)−1
[∫
Ω

P(y)K(x − y, h) f (y)dy
]
,

where M(x) =
∫
Ω

P(y)P(y)T K(x − y, h) f (y)dy.
(1.15)

Comparing (1.13) and (1.15), the correction function is given by

C(x, y) = PT (x)M(x)−1P(y). (1.16)

Analogous to nodal integration in SPH, discretization of approximation in (1.13)
yields the RKPM shape functions computed as

Na(x) = C(x, xa)K(x − xa, h)Va, a = 1, . . . , n. (1.17)

1.3 Limitations of meshfree methods
Meshfree methods have problems that are different from those of mesh-based meth-
ods such as FEM. Most meshfree approximations, including SPH, RKPM, and
MLS-based schemes, do not possess the Kronecker delta property, i.e. Na(xb) , δab

for a, b = 1, . . . , n. As a result, interpolation at the boundary is not independent of
the internal nodes, and special treatments are needed for application of boundary
conditions, e.g., Lagrange multipliers, penalty methods, Nitsche’s method, ghost
particles, transition to FEM near the boundary, etc. [8, 19, 30, 31, 38, 43, 58, 78, 92,
144, 149, 150, 164, 215]. However, these techniques further aggravate consistency
issues in meshfree methods (and particularly in SPH).

In addition, meshfree methods suffer from accuracy, convergence, and stability
related issues in domain integration (in a Galerkin setting). The early works
[19, 21, 143] onmeshfree methods approximated domain integrals by Gauss quadra-
ture over a background mesh. However, the non-local nature of meshfree approx-
imants results in a mismatch between quadrature cells and nodal shape function
supports, particularly in non-uniform discretizations. Dolbow and Belytschko [68]
showed that this mismatch introduces significant quadrature errors and causes poor
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convergence rates. While high-order quadrature can restore acceptable accuracy and
convergence rates [10, 51, 68], the added computational cost becomes a limiting
factor. Griebel and Schweitzer [91] and Liu and Belytschko [145] have proposed al-
gorithms for constructing integration cells in consideration with meshfree supports
that minimize quadrature errors. However, such techniques can be computationally
expensive and even inapplicable for complex geometries.

On the other hand, direct nodal integration (DNI) schemes have gained popularity
because they do not require the use of a background mesh and hence are truly mesh-
free. Such schemes approximate a domain integral by volume-weighted sums over
nodes (see e.g. (1.3)). However, naive DNI also suffers from poor accuracy and
convergence rates [18, 49, 51]. Several modifications and corrections have been in-
troduced in the past two decades that significantly and robustly improve the accuracy
and convergence properties, such as stabilized conforming nodal integration (SCNI)
[49], stabilized non-conforming nodal integration (SNNI) [53], and variationally
consistent integration (VCI) [51].

Compared to accuracy and convergence, achieving stability in nodal integration
has been more challenging [18, 24, 49] and is an active topic of research in the
meshfree community. Belytschko et al. [24] identified two kinds of instabilities -
(i) a rank-deficiency instability, and (ii) a tensile instability. The rank deficiency
instability arises from presence of zero energy modes. Several improvements have
been proposed to stabilize these modes in nodal integration schemes [49, 50, 176].
Alternatively, the rank-deficiency can be eliminated by sampling (for the purpose of
quadrature) at points away from the nodes, called stress-points [71, 72] or material
points [132]. Unlike the rank-deficiency instability, the tensile instability [24, 71, 72,
197] arises only in the updated-Lagrangian setting. While using (total)-Lagrangian
kernels circumvents this instability, it limits the potential of meshfree methods in
simulating large-deformation mechanics. Tensile instability is a purely numerical
instability in meshfree methods that arises from interaction of the stress tensor
and the evolution of the updated-Lagrangian/Eulerian kernels, even if the material
model and the approximations schemes are stable individually. In a rigorous stability
analysis, Belytschko et al. [24] showed that increasing nodal spacing and separation
of adjacent shape function supports during a tensile deformation lead to a spurious
loss in (post-discretization or effective) stiffness. Swegle et al. [197] provided an
intuitive explanation of this instability, including an example of SPH applied to
linear elasticity in a one-dimensional setting.
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1.4 Maximum-entropy based meshfree methods
More recently, the class of maximum-entropy (max-ent) approximation schemes has
attracted interest among meshfree particle methods, as it addresses the majority of
the aforementioned limitations highlighted in Section 1.3. Sukumar [195] employed
the maximization of information entropy [105] encoded in the approximation to
formulate meshfree interpolants on polygonal elements, while Arroyo and Ortiz [7]
used a Pareto compromise between locality of approximation and maximization
of information entropy to create the local max-ent shape functions. Li et al. [132]
utilized the localmax-ent scheme to develop the optimal transportmethod (OTM) for
dynamic simulations of fluid and plastic flows involving severe distortion. Further
advances in the area of max-ent approximations include the convergence analysis
of Bompadre et al. [29], the variational formulation of the optimal support size of
max-ent shape functions [186], max-ent schemes with arbitrary order of consistency
[88], as well as tools to evaluate derivatives of max-ent shape functions near the
boundary [90]. Some of the recent and interesting applications of max-ent based
approximation schemes include phase-field modeling of bio-membranes [172, 185],
high-velocity impact [133], metal processing [80], fluid-structure interaction [77],
fracture modeling [4, 134, 171], coarse-graining in molecular simulations [118],
etc.

We now briefly review the local max-ent approximation introduced by Arroyo and
Ortiz [7]. Based on a probabilistic interpretation of shape functions, the total
information entropy H encoded in the set of shape functions N = {N1, . . . , Nn},
following Jaynes [105], as well as the locality U of the set of shape functions are
defined as, respectively,

H[N] = −
n∑

a=1

∫
Ω

Na(x) ln Na(x)dV, (1.18)

U[N] =
n∑

a=1

∫
Ω

Na(x) ‖x − xa‖2 dV . (1.19)

A Pareto optimality between maximum entropy and minimum locality of the ap-
proximation is found by introducing the functional F[N] = βU[N] − H[N] with β
being a scalar parameter controlling the locality of the approximation scheme. The
local max-ent shape functions are computed as solution to the optimization problem
N = arg min F[N] subject to the constraints of positivity of all shape functions as
well as zeroth- and first-order consistency of the shape functions. The minimization
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can be carried out pointwise, leading to the max-ent shape functions [7]

Na(x) =
1

Z(x, λ∗(x))
exp

[
−β‖x − xa‖2 + λ∗(x) · (x − xa)

]
, a = 1, . . . , n,

(1.20)
where the partition function Z and vector λ∗ are defined as, respectively

Z(x, λ) =
n∑

a=1
exp

[
−β ‖x − xa‖

2
+ λ · (x − xa)

]
, (1.21)

and
λ∗(x) = arg min

λ∈Rd
ln Z(x, λ). (1.22)

The minimization problem in (1.22) can be solved numerically with a nonlinear
iterative solver such as the Newton-Raphson method. The spatial derivatives of the
local max-ent shape functions follow as

∇Na(x) = −Na(x) J(x)−1(x − xa), (1.23)

with

J(x) =
n∑

a=1
Na(x)(x − xa) ⊗ (x − xa) . (1.24)

The local max-ent approximation offers the following advantages over other mesh-
free approximations.

• By varying the locality parameter β, the local max-ent shape functions provide
a seamless transition from a nonlocal meshless approximation with global
shape functions (β → 0+) to a simplicial FE interpolation with local shape
function support (β→ +∞) [7, 126], as illustrated in Figure 1.3.

• The zeroth- and first-order consistency are built into the underlying optimiza-
tion problem and ensure that affine functions are exactly interpolated.

• The max-ent shape functions possess the weak Kronecker property, i.e. shape
function associated with an internal node vanishes at the boundary. This is
illustrated in Figure 1.3f by the shape function of a node located close to the
boundary. As a consequence, interpolation at the boundary is independent of
information at the interior nodes. Therefore, essential boundary conditions
can be directly imposed, unlike when using other meshless approximants [78]
such as SPH, RKPM, and MLS-based schemes.
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(a) β = 5, xa = (0.5, 0.5)T

(b) β = 25, xa = (0.5, 0.5)T

(c) β = 300, xa = (0.5, 0.5)T

(d) β = 5, xa = (1.0, 1.0)T

(e) β = 5, xa = (1.0, 0.5)T

(f) β = 5, xa = (0.9, 0.5)T

Figure 1.3: (a, b, c) Local max-ent shape functions Na(x) where a is the central
node (located at xa = (0.5, 0.5)T ) of a 2D domain Ω = [0, 1]2 with equally spaced
nodes (shown as black dots), evaluated for three different values of the locality
parameter β. (d, e) Shape functions of nodes a lying on the corner and edge of the
domain, respectively. (f) Shape function of an internal node a near the boundary
∂Ω. Note that the shape function vanishes at the boundary, which demonstrates that
the interpolation on the boundary is independent of the internal nodes.
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However, tensile instability also arises in meshfree kernels/methods based on the
local max-ent approximations, when applied to finite deformations in the con-
text of updated-Lagrangian simulations. Note that the local max-ent scheme is a
stable approximation scheme by itself, as shown by the convergence analysis of
Bompadre et al. [29]. The tensile instability arises in the implementation of the
local max-ent scheme as an updated-Lagrangian meshfree method. Motivated to
eliminate tensile instability, we propose an enhanced max-ent based approximation
that leverages a novel adaptivity scheme to allow for stable meshfree simulations.
This is one of the major contributions of this thesis, and is explained in detail in
Chapter 2. To the best of author’s knowledge, the proposed adaptive scheme together
with the enhanced max-ent approximation is the first to achieve robust stability in
the updated-Lagrangian setting, and fully realizes the potential of meshfree methods
in simulating large-deformation mechanics within both (quasi-)static and dynamic
problems.

1.5 Outlook: Applications
This thesis further explores twodifferent applications of the aforementionedmaximum-
entropy based meshfree method.

1.5.1 Modeling of equal-channel angular extrusionbased onhigh-fidelity plas-
ticity models

Equal-channel angular extrusion (ECAE) is a metal forming technique where a
metal or alloy specimen is extruded though a channel with a 90◦ bend without
significant change in cross-sectional area of the specimen. Figure 1.4 illustrates the
schematics of the extrusion process. ECAE falls into the general class of severe
plastic deformation (SPD) processes that significantly improve bulk properties (e.g.,
strength, ductility, fatigue resistance, etc.) of metal and alloys. This is achieved
by inducing ultra-fine grain refinement in metals via application of large plastic
strains. Simulating these large strains in SPD processes, and in particular ECAE,
by mesh-based methods such as FEM is severely limited, and require the use of a
meshfree method for better accuracy and convergence.

Furthermore, SPD processes, including ECAE, are essentially multiscale in nature.
At the microscale, grain refinement is governed by recrystallization (nucleation and
migration) of grains, while the macroscale response is modeled as a mechanical
boundary value problem involving severe plastic strains. There have been multiple
studies for modeling recrystallization [67, 98, 102, 190, 193, 202, 203]; however,
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Figure 1.4: Illustration of equal-channel angular extrusion (ECAE). A metal billet
(shaded yellow) is extruded through a 90◦ angled channel (shaded blue) under the
action of a plunger (denoted in red).

they have been limited to a material point setting. On the other hand, modeling
of ECAE [2, 65, 76, 83, 104, 147, 148, 189] at the macroscale has been limited to
FEM and SPH based simulations with simple elasto-plastic constitutive laws that
lack high-fidelity description of grain refinement at the microscale. Additionally,
the well-known problems in SPH (treatment of boundary conditions, poor accuracy,
lack of consistency, and instabilities; see Sections 1.2.1 and 1.3) motivate the use
of a modern-day meshfree method. In this thesis, we develop a multiscale model
of the ECAE process, in which we use the stabilized max-ent scheme introduced
in Chapter 2 at the macroscale, coupled with a microstructural evolutionary model
(including grain refinement and texture evolution) introduced by Tutcuoglu et al.
[202] at the micro- and mesoscale.

1.5.2 Numerical energy relaxation in problems with nonconvex energetic po-
tentials

Energy-minimizing microstructures and patterns naturally emerge in problems with
non-quasiconvex potential energy landscapes such as those related to, e.g., phase
transformations [57], deformation twinning [56], hyperelasticity [128], and finite-
strain crystal plasticity [66, 119, 168]. The challenges associated with nonconvex
energy potentials are (i) the prediction of such emergent microstructural patterns,
and (ii) the resulting effective, macroscale mechanical behavior of the material.
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Mathematically speaking, the experimentally observed microstructural patterns are
infimizing sequences associated with the quasiconvex hull of the underlying non-
(quasi)convex energy potential [11, 27, 55, 74, 89]. Therefore, identifying both the
effective response and the microstructural features is intimately tied to finding the
quasiconvex hull.

Due to the nonlocal nature of the notion of quasiconvexity, quasiconvexification of
the energy density in such problems has traditionally been limited to (semi-) ana-
lytical techniques [60, 117, 154] such as finding matching upper and lower bounds
(and using, e.g., recursive lamination and polyconvexification for the upper and
lower bounds, respectively [9, 13, 95, 168]). Numerical techniques such as FEM
simulations of representative volume elements (RVE) [16, 41] are severely limited
by the ill-conditioning resulting from the loss of convexity; they have been restricted
to geometrically simple problems, oftentimes assuming two-dimensional (2D) sit-
uations. In the context of numerically quasiconvexifying complex material models
in 2D and 3D, we present a new numerical avenue based on meshfree max-ent
approximation, and compare its performance with two numerical techniques – clas-
sical FEM, and a FFT-based [205] methods. We show that max-ent approximation
leverages its non-local and infinitely-differentiable property of the shape functions
to produce superior numerical approximation of the quasiconvex hull compared to
the FEM and FFT schemes.

1.6 Outline
In Chapter 2, we explicate the enhanced local max-ent approximation scheme. We
then formulate and discretize an updated-Lagrangian formulation of a quasistatic
boundary value problem. Finally, we examine the source of tensile instability and
derive an adaptivity scheme to incrementally update shape function in order to
achieve stability. The chapter concludes with a suite of benchmarks demonstrating
the benefits and capabilities of the proposed scheme.

As a demonstration of an application extending from Chapter 2, we introduce a
multiscale framework of copper under ECAE in Chapter 3. This framework ranges
from microscale, to mesoscale, then to macroscale. The application of the proposed
max-ent method pertains to simulation on the macroscale. We present a Taylor
model at the mesoscale that captures grain recrystallization, coupled with a crystal
plasticity model representative of the material response of copper at the microscale.
We discuss the computational challenges in simulating such processes, particularly
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related to distortion in the spatial discretization, boundary conditions, and numerical
time-integration of internal variables. The rest of this chapter discusses the strain
distribution and grain refinement in a specimen undergoing ECAE.

InChapter 4, we showcase the application of themax-entmethod in numerical energy
relaxation of nonconvex energy potentials at the representative volume element
(RVE) level. We perform a detailed comparison of results achieved by the max-ent,
FEM and FFT methods by investigating the following benchmarks (introduced by
Vidyasagar [205]) – (i) the hyperelastic Saint Venant-Kirchhoff model, and (ii) a
finite-strain double- andmulti-phase solid-solid transformationmodel. We conclude
this chapter by analyzing the numerical limitations of the aforementioned methods
arising from the inability of the spatial discretization to resolve general energy-
minimizing microstructural patterns.

Chapter 5 finally summarizes the contributions of this thesis and provides an outlook
for future applications of max-ent based meshfree methods.
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C h a p t e r 2

ENHANCED LOCAL MAXIMUM-ENTROPY
APPROXIMATION FOR STABLE MESHFREE SIMULATIONS

Research presented in this chapter has been adapted from the following publication:

S. Kumar, K. Danas, and D. M. Kochmann. Enhanced local maximum-entropy
approximation for stable meshfree simulations. Computer Methods in Applied
Mechanics and Engineering, 344:858 - 886, 2019.
DOI: https://doi.org/10.1016/j.cma.2018.10.030

2.1 Introduction
So far we have introduced the premise of this research and its potential applications.
In this chapter, we detail the technical core of the proposed maximum-entropy ap-
proximation method for stable meshfree simulations. Addressing tensile instability
is a long standing open problem in the area of meshfree methods. While there
have been some efforts to improve stability by introducing stress point integration
[71, 72, 197], these techniques do not suppress tensile instability. For example,
Belytschko et al. [24] showed that stress point integration only delays the onset of
tensile instability with increasing deformation. The authors concluded that, if stress
point integration and “a reasonable constitutive law is used, the tensile instability
can be avoided” because the material necessarily undergoes yielding, failure, dam-
age, fracture, etc. before the tensile instability appears. Clearly, this solution places
a major constraint on range of materials and physics that can be simulated with
meshfree methods. For example, hyperelasticity avoids material instability and lo-
calization and therefore necessarily runs into the regime where the tensile instability
classically occurs (physically, it is highly relevant for, e.g., rubber elasticity). Be-
lytschko et al. [24] also hinted at adaptively correcting the shape function supports
as nodal spacing increases in order to alleviate tensile instability. In the context of
max-ent approximations, Li [135] proposed the use of an isotropic adaptive evolu-
tion of shape functions to overcome the problems associated with tensile instability.
Despite this adaptive evolution of shape functions, that scheme is still prone to
tensile instability in case of anisotropic deformations (as will be demonstrated in
Section 2.2.4).

https://doi.org/10.1016/j.cma.2018.10.030


17

In this chapter, we present an improved meshfree approximation scheme which
is based on the local max-ent strategy. The improved version is specifically de-
signed for severe, finite deformation and offers significantly enhanced stability
as opposed to the original formulation. This is achieved by (i) formulating the
quasistatic mechanical boundary value problem in a suitable updated-Lagrangian
setting, (ii) introducing anisotropy in the shape function support to accommodate
directional variations in nodal spacing with increasing deformation and eliminate
tensile instability, (iii) spatially bounding and evolving shape function support to re-
strict the domain of influence and increase efficiency, (iv) truncating shape functions
at interfaces in order to stably represent multi-component systems like composites
or polycrystals. The new scheme is applied to benchmark problems of severe elastic
and elastoplastic deformation that demonstrate its performance both in terms of
accuracy (as compared to exact solutions and, where applicable, finite element sim-
ulations) and efficiency. More importantly, the presented formulation overcomes
the classical tensile instability found in most meshfree methods, as shown for stable
simulations of, e.g., the inhomogeneous extension of a hyperelastic block up to
100% or the torsion of a hyperelastic cube by 200◦ – both in an updated Lagrangian
setting and without the need for remeshing.

The chapter is organized as follows. In Section 2.2.1, we present modified local
max-ent shape functions that are based on an anisotropic Pareto optimality between
maximizing information entropy and minimizing shape function width, which will
play a crucial role in eliminating the tensile instability under large deformations.
In Section 2.2.2, we begin with a quasistatic total-Lagrangian formulation of the
mechanical boundary value problem and transform it into a spatially discretized,
quasistatic updated-Lagrangian formulation. In Section 2.2.3, we examine the
tensile instability through an instructive one-dimensional toy problemand,motivated
by the same, in Section 2.2.4 we present a new, anisotropic adaption scheme for the
evolution of the shape function support that is able to cope with tensile instability.
Next, in Section 2.2.5, we discuss the application of essential boundary conditions
and propose a simple, computationally inexpensive scheme that leverages the weak
Kronecker delta property of local max-ent shape functions to accurately capture
discontinuous derivatives across material interfaces. Section 2.3 summarizes a suite
of numerical benchmark simulations of representative boundary value problems.
We demonstrate that the enhanced local max-ent scheme introduced here provides
better convergence and better handling of severe distortions than FEM. It accurately
captures discontinuous derivatives across material interfaces and, most remarkably,
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avoids the common tensile instability associated with anisotropically increasing
nodal spacings (for better understanding of the numerical implementation, a pseudo-
code for solving simple hyperelasticity problems is included in Appendix 2.B).
Finally, Section 2.4 concludes our investigation.

2.2 Enhanced local max-ent interpolation in updated-Lagrangian setting
The local max-ent scheme (see Section 2.2.1 for brief review) belongs to the class
of convex approximation schemes and provides a seamless transition between finite
elements (FE) and meshfree interpolations. The approximation scheme is based
on a compromise between minimizing the width of the shape function support and
maximizing the information entropy of the approximation. Building upon the idea
of anisotropic shape functions [7], we here introduce an enhanced version of the
original local max-ent scheme, which uses an anisotropic support to deal with tensile
instability in an updated Lagrangian formulation.

2.2.1 Anisotropic local max-ent approximation
Consider a finite set of nn distinct nodes in d dimensions, X = {xa, a = 1, . . . , nn}

with nodal positions xa ∈ Rd . The domain bounded by convex hull of the node set
is denoted by Ω ⊂ Rd . Let u : Ω → R be a function that we aim to approximate
based on the known values of the function at nodes, {ua = u(xa), a = 1, . . . , nn}.
We wish to construct an approximation of the type

uh(x) =
nn∑

a=1
uaNa(x), x ∈ Ω, (2.1)

where Na : Ω → R denotes the shape function corresponding to node a. Shape
functions are subject to the constraints

Na(x) ≥ 0 ∀ x ∈ Ω, (2.2a)
nn∑

a=1
Na(x) = 1 ∀ x ∈ Ω, (2.2b)

nn∑
a=1

xaNa(x) = x ∀ x ∈ Ω. (2.2c)

The first constraint (2.2a) ensures the non-negativity of shape functions1. The sec-
ond constraint (2.2b) enforces zeroth-order consistency (i.e., constant functions are

1Onemay also relax the first constraint and admit negative values of shape functions, see e.g. [29],
which however is not the focus here.
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exactly approximated), and whereas third constraint (2.2c) enforces first-order con-
sistency and guarantees the exact interpolation of affine functions. These together
ensure that the scheme is consistent under h-refinement. Local max-ent schemes
that satisfy higher-order consistency are also possible [88] but the formulation be-
comes increasingly complex. Hence, we limit ourselves to first-order consistency
for the scope of this contribution.

We define the width of a shape function Na as2

Ua[Na, β] =

∫
Ω

Na(x) ‖x − xa‖
2
β dV =

∫
Ω

Na(x) (x − xa) · β (x − xa)dV, (2.3)

where β ∈ Rd×d is a constant, positive-definite metric tensor defining the Euclidean
distance in Ω. Further, β is a tensorial analogue of the scalar locality parameter in
the original formulation of Arroyo and Ortiz [7]. A measure of the total width for
the set of shape functionsN = {Na, a = 1, . . . , nn} follows as the sum of individual
shape function widths, viz.,

U[N, β] =
nn∑

a=1
Ua[Na, β] =

∫
Ω

nn∑
a=1

Na(x) ‖x − xa‖
2
β dV . (2.4)

Minimum shape function support or maximum locality requires minimizing the
functional U[N]with respect to all shape functions subject to constraints (2.2). The
resulting scheme is equivalent to using linear interpolants on a Delaunay triangula-
tion of the node set X [7].

By interpreting the shape functions as probability distributions, the information
entropy encoded in the shape functions evaluated at a point x ∈ Ω is defined as [7]

H[N](x) = −
nn∑

a=1
Na(x) ln Na(x). (2.5)

The total information entropy is obtained by integration over the entire domain Ω,
i.e.,

H[N] = −
∫
Ω

nn∑
a=1

Na(x) ln Na(x)dV . (2.6)

Intuitively, the approximation scheme should be based on a minimum inference bias
by the nodal positions, which is equivalent to the maximum information entropy

2Here and in the following, we use classical tensor and index notation common to continuum
mechanics. Specifically, dots denote inner products of tensors of equal order, so v · u = viui and
T · S = Ti jSi j for vectors v, u ∈ Rd and second-order tensors T, S ∈ GL(d). For tensors as linear
mappings of vectors we write [Tv]j = Ti jvj and analogously [ST ]i j = SikTk j . Outer products are
represented by [v ⊗ u]i j = viu j .
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[105]. This requires maximizing the information entropy functional H[N] with re-
spect to all shape functions subject to constraints (2.2). Consequently, the resulting
shape functions have a global support that is too large for a reasonable approxima-
tion. Arroyo and Ortiz [7] proposed a Pareto optimality between the competing
optimizations (minimum locality vs. maximum entropy) to find the shape functions.
In adopting their approach, we define the functional

F[N, β] = U[N, β] − H[N]

=

∫
Ω

nn∑
a=1

(
Na(x)‖x − xa‖2β + Na(x) ln Na(x)

)
dV,

(2.7)

where the metric tensor β acts as a parameter controlling the Pareto optimality and
is referred to the locality parameter in subsequent discussions. For given β, the
local max-ent shape functions are thus computed as

Nβ = arg min
{
F[N, β] s.t. (2.2)

}
. (2.8)

For example, consider the simple isotropic case of β = βI , where β is a scalar
parameter [7]. In the limiting case of β → ∞, the problem reduces to minimizing
locality, which results in affine interpolation on aDelaunay triangulation. In contrast,
when β→ 0, the problem reduces tomaximizing information entropywith no regard
to locality of the approximation. A detailed discussion for general anisotropic
locality parameter is presented later in this section.

The structure of the minimization problem in (2.8) admits a pointwise optimization,
so the shape functions at a point x ∈ Ω are given by

{
N1(x), . . . , Nnn(x)

}
β
= arg min

[
nn∑

a=1

(
Na(x)‖x − xa‖2β + Na(x) ln Na(x)

)]

subject to


Na(x) ≥ 0, a = 1, . . . , nn∑nn

a=1 Na(x) = 1∑nn
a=1 Na(x)xa = x.

(2.9)
Analogous to the isotropic formulation of Arroyo and Ortiz [7], there exists a unique
set of minimizers given by

Na(x) =
1

Z(x, λ∗(x))
exp

[
−‖x − xa‖2β + λ

∗(x) • (x − xa)

]
, a = 1, . . . , nn,

(2.10)
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where we define the partition function Z : Rd × Rd → R as

Z(x, λ) =
nn∑

a=1
exp

[
− ‖x − xa‖

2
β + λ • (x − xa)

]
, (2.11)

and a unique minimizer λ∗ as

λ∗(x) = arg min
λ∈Rd

ln Z(x, λ). (2.12)

The derivation of (2.10)-(2.12) with the newly introduced tensorial locality param-
eter β is summarized in Appendix 2.A.

Again following Arroyo and Ortiz [7], the spatial derivatives of the shape functions
are given by

∇Na(x) = −Na(x) J (x, λ∗(x))−1
(x − xa) (2.13)

where

J(x, λ) =
∂2 ln Z(x, λ)

∂λ ∂λ
=

nn∑
a=1

Na(x, λ)(x−xa)⊗(x−xa)− r(x, λ)⊗ r(x, λ) (2.14)

and

r(x, λ) =
∂ ln Z(x, λ)

∂λ
=

nn∑
a=1

Na(x, λ)(x − xa). (2.15)

For a detailed derivation, the reader is referred to the analogous isotropic case
presented by Arroyo and Ortiz [7]. Note that β is assumed to be constant when
constructing the approximation andwhen computing the above gradients of the shape
functions. The justification of this assumption will be discussed in Section 2.2.3,
where the spatial discretization scheme is presented.

The transition from a scalar to a tensorial locality parameter is essential and allows
for anisotropic adaptivity of the shape functions, which forms the basis for our
approach to dealing with tensile instability, as will be demonstrated in Section 2.2.4.
Note that, for variational problems, the locality parameter β can be included in the
global functional to yield shape function supports that are optimal with respect to the
total potential energy [186]. However, this introduces additional complexity, both
theoretical and computational, and will not be pursued here. Instead, the locality
parameter β is defined by the user and chosen based on the initial nodal spacing and
the physics of the problem.

Figure 2.1 illustrates the transition of the shape function support from global to
local and from isotropic to anisotropic, as the locality parameter β changes. We
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(a) β =
(
10 0
0 10

)
, x =

(
0.5
0.5

)

(b) β =
(
25 0
0 25

)
, x =

(
0.5
0.5

)
(c) β =

(
25 0
0 10

)
, x =

(
0.5
0.5

)

(d) β =
(
300 0
0 300

)
, x =

(
0.5
0.5

)
(e) β =

(
300 0
0 10

)
, x =

(
0.5
0.5

)
Figure 2.1: Local max-ent shape functions Na(x) evaluated at fixed interior point
x (viz., the central node) of a 2D node set with different choices of the locality
parameter β. That is, the graphs show the value of each node’s shape function
Na when evaluated at the central node, thus illustrating the contributions of nodal
values to the interpolation at the central node. (We note that this visualization is
different from that of Arroyo and Ortiz [7] and Figure 1.3 where Na(x) is plotted as
a function of x for fixed a). Cases (a,b,d) show the isotropic and (c,e) the anisotropic
transition from global to local shape function support with increasing components
of β.
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(a) β =
(
25 0
0 25

)
, x =

(
0.5
1

)
(b) β =

(
25 0
0 25

)
, x =

(
0
1

)
Figure 2.2: Local max-ent shape functions Na(x) evaluated at fixed point x: (a) on
an edge, (b) on a corner of a 2D node set. As in Figure 2.1, note that we do not
plot a given shape function Na as a function of position x but we compute shape
functions Na at a given point x.

emphasize that, instead of plotting a particular shape function evaluated at different
points in space as commonly shown in the literature, Figure 2.1 illustrates the shape
function values of each node evaluated at a fixed point (thus demonstrating the
influence of each nodal contribution at that location in space). This is required
since shape functions are no longer associated with nodes only – viewed from
different material points with different β-tensors, a shape function evaluated at
a node may have distinct values for each material point under consideration. In
addition, shape functions are only evaluated at material points and there is no
unique definition of those at nodes. In the limit of any eigenvalue of β tending to
+∞, the functional F in (2.7) is dominated by the shape function width. As a result,
the shape functions reduce to simplicial interpolation on a Delaunay triangulation
of the node set in the corresponding eigen-direction (see Figures 2.1d and 2.1e).
In particular, Figure 2.1e illustrates global support in one direction and convergent
linear interpolation in the perpendicular direction. Unlike the FE method, the local
max-ent scheme does not satisfy the strong Kronecker property at the nodes, i.e.,
it is an approximation and not an interpolation. However, it does satisfy the weak
Kronecker property at the boundary nodes [7]. Figure 2.2 shows the shape function
support when evaluated at points on the convex hull of the node set. When the
evaluation point lies on an edge (see Figure 2.2a), shape functions of interior nodes
vanish at the point and the approximation only depends on boundary nodes. Further,
if the evaluation point coincides with a corner node, shape functions evaluate to
zero for all nodes but the corner node itself. More generally for convex schemes
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like local max-ent, the shape function support of interior nodes terminates at the
convex hull and, consequently, the approximation on the boundary is independent
of interior nodes. This fact is advantageous for straightforward application of
essential boundary conditions. In contrast, non-convex approximation schemes such
as smoothed particle hydrodynamics (SPH), element-free Galerkin method (EFG),
reproducing kernel particle method (RKPM), etc. do not satisfy this property and
require additional methods for imposing essential boundary conditions [19, 30, 78,
144].

The minimization problem in (2.12) can be solved in a few Newton-Raphson iter-
ations. The derivative and Hessian matrix of the objective function are given by
(2.15) and (2.14) respectively, and the Newton step

λ ← λ − J(x, λ)−1r(x, λ) (2.16)

is iterated until convergence. In the limit of the approximation converging to linear
interpolation along any direction (some eigenvalue of β → +∞), the Hessian matrix
becomes singular when the guess for λ is far away from the unique minimizer λ∗. Li
[135] suggested the use of a steepest descent technique in this case. Alternatively,
we found that the regularized Newton method proposed by Polyak [174] and applied
to local max-ent by Foca [80] gives a faster convergence in the aforementioned limit
of large eigenvalues of β. We consider the modified objective function

F(x, λ, ζ ) = ln Z(x, ζ ) +
1
2

∂ ln Z(x, λ)
∂λ

 ‖ζ − λ‖2. (2.17)

Since ln Z(x, ζ ) is a convex function and
 ∂ ln Z(x,λ)

∂λ

 ‖ζ − λ‖2 ≥ 0, the regularized
function F(x, λ, ζ ) is strongly convex in ζ . The minimizer of (2.12) is given by

λ∗(x) = arg min
ζ∈Rd

F(x, λ, ζ )|ζ=λ . (2.18)

The derivative and Hessian matrix of the objective function in (2.18) are obtained
as

∂F(x, λ, ζ )
∂ζ

����
ζ=λ

= r(x, λ),
∂F(x, λ, ζ )
∂ζ∂ζ

����
ζ=λ

= J(x, λ) + ‖r(x, λ)‖I . (2.19)

Clearly, the regularized Hessian is non-singular even when J(x, λ) is singular.
Therefore, the regularized Newton step for any λ , λ∗, viz.

λ ← λ −
(
J(x, λ) + ‖r(x, λ)‖I

)−1
r(x, λ), (2.20)

is expected to provide more robust convergence for the aforementioned limiting
case.
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2.2.2 Quasi-static updated-Lagrangian formulation
In a classical total-Lagrangian description, the initial configuration is always the
reference at any time or load steps. However, in simulations involving large defor-
mations and distortions, the initial reference configuration often loses its meaning.
An updated-Lagrangian formulation overcomes this limitation by using the de-
formed configuration of the previous step as the reference in an incremental fashion.
For instructive purposes, we first describe a quasi-static variational problem in the
total-Lagrangian setting and then reformulate it in an updated-Lagrangian frame-
work. The proposed scheme is general to all approximation schemes and is not
limited to local max-ent shape functions. Also, even though we limit our deriva-
tion to finite elasticity, the method can easily be extended to a more general class
of variational material models (e.g., by using variational constitutive updates for
inelasticity [169]).

We assume an incremental setting in which Ωn refers to the nth configuration of a
body Ω (likewise, all fields are denoted by subscripts (.)n), and in particular n = 0
corresponds to the initial configuration with domainΩ0. Consider the total potential
energy at step n with respect to the initial domain Ω0:

I[ϕn] =

∫
Ω0

W(Fn)dV −
∫
Ω0

ρ0Bn · ϕn dV −
∫
∂ΩN

0

T̂n · ϕn dS, (2.21)

where W : GL+(d) → R denotes the strain energy density, F = Grad ϕ is the
deformation gradient, ϕ : Ω → Rd is the deformation mapping, B represents
body forces and T̂ constant surface tractions applied over the Neumann boundary
∂ΩN

0 ⊂ ∂Ω0. All quantities are defined at a step n ≥ 0. We seek solutions as
infimizers of the total potential energy3, specifically,

ϕn = arg inf
{
I[ϕ] : ϕ ∈ Un

}
, (2.22)

where
Un =

{
ϕ ∈ H1(Ω0) : ϕ = ϕ̂n on ∂ΩD

0
}

(2.23)

defines the set of admissible solutions with ϕ̂n denoting essential boundary con-
ditions at step n defined on the Dirichlet boundary ∂ΩD

0 ⊂ Ω0. Without loss of
generality, we make two assumptions: the initial configuration is undeformed (i.e.,
F0 = I ), and the initial and deformed coordinate systems coincide. The latter allows

3Note that in subsequent benchmark examples the energy density is chosen to be quasiconvex,
so that unique solutions may be found. However, the same numerical procedure can, in principle, be
extended to non-convex potentials, in which the formation of microstructure is implied.



26

us to define the total displacement field at step n as un(x) = ϕn(x0) − x0, and we
seek solutions in terms of the displacement field. We thus write the deformation
gradient as

Fn =
∂ϕn

∂x0
= I + ∇0un, (2.24)

where ∇m =
∂

∂xm
is the spatial derivative with respect to the mth configuration.

Let us introduce a discretized approximation based on the above modified local
max-ent scheme, which gives

un(x0) ≈ uh
n(x0) =

nn∑
a=1

ua
n Na(x0) ⇒ Fn ≈ Fh

n = I +
nn∑

a=1
ua

n ⊗ ∇0Na(x0),

(2.25)
where the shape functions Na(x0) are computed in the initial configurationΩ0. The
set of all nodal displacements are denoted by Un = {u

1
n, . . . , u

nn
n , }. Computing

the first variation of (2.21) and inserting the approximate fields at step n yields the
discretized stationary condition in terms of nodal force balance:

f a
n (Un) = f a

int,n(Un) − f a
ext,n = 0, a = 1, . . . , nn. (2.26)

The internal force vector acting on node a is given by

f a
int,n(Un) =

∫
Ω0

P(Fn) · ∇0Na(x0)dV (2.27)

with the first Piola-Kirchoff stress tensor P = ∂W/∂F. Analogously, the external
force on node a is

f a
ext,n =

∫
Ω0

ρ0BnNa(x0)dV +
∫
∂ΩN

0

T̂nNa(x0)dS. (2.28)

Solving the quasi-static system of equations in (2.26) calls for a robust and efficient
iterative solver, which for optimal convergence rates uses the consistent tangent such
as the family of Newton-Raphson methods.

To this end, the submatrices of the tangent matrix Tn and its components are com-
puted as

T ab
n =

∂ f a
n

∂ub
n
(Un),

(
Tab

n

)
ik
=

∫
Ω0

Ci j kl(Fn) ∇0Na
j (x0) ∇0Nb

l (x0)dV −
∂

(
f a
ext,n

)
i

∂
(
ub

n
)

k

,

(2.29)
where we used indicial notation with the classical summation convention and the
incremental stiffness tensor Ci j kl = ∂Pi j/∂Fkl . Once the nodal displacements are
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found, the total strain energy of the domain at step n is given by the first term in (2.21),
i.e., En(Un) =

∫
Ω0

W(Fn)dV . This completes the total-Lagrangian description at the
nth step with respect to the initial configuration as reference.

To transform the formulation into an updated-Lagrangian framework, we introduce
an incremental deformation gradient Fn→n+1 which maps the configuration from
step n to n + 1 as

Fn→n+1 =
∂ϕn+1
∂xn

= I + ∇n(un+1 − un). (2.30)

Under the assumption that the step size is sufficiently small, the incremental defor-
mation gradient can be related to total deformation gradient by the composition

Fn+1 ≈ Fn→n+1Fn. (2.31)

Note that the mapping of gradients between the reference and current configurations
is

∇0(·) =
∂(·)

∂x0
=
∂xn

∂x0

∂(·)

∂xn
= Fn ∇n(·), (2.32)

while the density and volume integral are transformed, respectively, according to

ρ0 = Jnρn,

∫
Ω0

(·)dV =
∫
Ωn

1
Jn
(·)dV with Jn = detFn. (2.33)

To arrive at a consistent updated-Lagrangian description, we start with the total-
Lagrangian description at step n+1, analogous to (2.27), but nowcomputing all shape
functions with respect to the Ωn instead of Ω0. By exploiting the transformations
(2.32) and (2.33), the internal nodal forces at step n + 1 are thus given by

f a
int,n+1(Un+1) =

∫
Ω0

P(Fn+1) · ∇0Na(xn)dV

=

∫
Ωn

1
Jn
P(Fn→n+1Fn)F

T
n ∇nNa(xn)dV = f a

int,n+1(∆Un) (2.34)

where ∆Un = Un+1 − Un is the vector of nodal displacement increments from Ωn

to Ωn+1. Note that the term J−1
n P(Fn→n+1Fn)F

T
n in (2.34) can be interpreted as the

pull-back of the Cauchy stress tensor from Ωn+1 to Ωn or, alternatively, as the push-
forward of the first Piola-Kirchoff stress tensor from Ω0 to Ωn. This formulation
is a compromise between classical incremental/rate formulations and variational
modeling which typically uses a total-Lagrangian setting.
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The transformation of the external nodal forces (2.28) occurs in a similar fashion
(using (2.32), (2.33)), leading to

f a
ext,n+1 =

∫
Ωn

ρnBn+1Na(xn)dV +
∫
∂ΩN

n

T̂n+1Na(xn)dS, (2.35)

where Bn+1 and T̂n+1 are now defined in the nth configuration. Further, the tangent
matrix components of (2.29) and the total strain energy transform into, respectively,(

Tab
n+1

)
ik
=

∫
Ωn

Ci j kl(Fn→n+1Fn) Fq j∇nNa
q (xn) Frl∇nNb

r (xn)J−1
n dV −

∂
(

f a
ext,n+1

)
i

∂
(
∆ub

n+1

)
k

(2.36)
and

En+1(∆Un) =

∫
Ωn

1
Jn

W(Fn→n+1Fn)dV . (2.37)

To construct a numerical approximation of the spatial integrals in the above expres-
sions for energy, forces and tagent matrix, we introduce a second set of np so-called
material points which discretize the mass distribution in the domain according to
[132]

ρn(xn) =

np∑
p=1

ρ
p
nV p

n δ(xn − x
p
n) =

np∑
p=1

mpδ(xn − x
p
n), (2.38)

where ρp
n, V p

n , and mp are, respectively, the mass density, volume, and mass associ-
ated with the pth material point located at xp

n ∈ Ωn. In order to distinguish nodes
from material points, in the following superscripts {a, b} and p are reserved for
nodes and material points, respectively.

Material points are meshfree analogues of quadrature points in conventional FEM,
where sampling is performed for the purpose of numerical integration. At the
initial step, the pth material point is assigned a density ρ

p
0 = ρ(x0) based on the

mass density field ρ in the initial configuration. The initial material point volume
V p

0 is computed from an ad-hoc triangulation of the initial configuration (which is
discarded afterwards, as discussed below), akin to the volume of an element in the
FEM context. Here, we enforce the local conservation of mass [132], so that each
material point carries a constant mass (mp = ρ

p
nV p

n = const. ∀ n ≥ 0), while the
density and volume are updated accordingly at every step, resulting in

ρ
p
n+1 =

ρ
p
n

detFp
n→n+1

=
ρ

p
0

Jp
n+1

, V p
n+1 = V p

n detFp
n→n+1 = V p

0 Jp
n+1, (2.39)
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where Fp
n→n+1 = Fn→n+1(x

p) is the incremental deformation gradient at the material
point p. Nodes do not carry mass nor volume and solely provide the kinematic
interpolation required at thematerial points, while the constitutive laws are evaluated
at the material points only. Figure 2.3 illustrates the evolution of material points
and nodes in the total- and updated-Lagrangian settings.

Integration over the domain Ωn is now approximated by a sum over the material
points weighted by the their respective volumes:∫

Ωn

φ(xn)dV ≈
np∑

p=1
φ(x

p
n)V

p
n , (2.40)

where φ : Ωn → R is an arbitrary function. When applied to the meshfree governing
equations, the update-Lagrangian description with material point sampling leads to
the following set of equations:

F
p
n→n+1(∆Un) = I +

nn∑
a=1
∆ua

n ⊗ ∇nNa(x
p
n) and F

p
n+1 = F

p
n→n+1F

p
n ,

(2.41a)

f a
int,n+1(∆Un) =

np∑
p=1

V p
n

Jp
n
P(F

p
n→n+1F

p
n )F

p
n

T ∇nNa(x
p
n), (2.41b)

f a
ext,n+1 =

np∑
p=1

ρ
p
nV p

n Bn+1(x
p
n)N

a(x
p
n) +

∫
∂ΩN

n

T̂n+1Na(xn)dS, (2.41c)(
Tn+1

)ab

ik
(∆Un) =

np∑
p=1
Ci j kl(F

p
n→n+1F

p
n ) (F

p
n )q j∇nNa

q (x
p
n) (F

p
n )rl∇nNb

r (x
p
n)

V p
n

Jp
n

−

∂
(

f a
ext,n+1

)
i

∂
(
∆ub

n
)

k

, (2.41d)

En+1(∆Un) =

np∑
p=1

V p
n

Jp
n

W(Fp
n→n+1F

p
n ). (2.41e)

2.2.3 Tensile instability
Belytschko et al. [24] provided a unified analysis of stability for meshfree particle
methods. In particular, they identified two distinct instabilities – (i) an instability
due to presence of spurious modes introduced by the rank-deficiency of the dis-
cretization operator, and (ii) tensile instability. The first instability is particular
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Initial configuration

. . .

(n + 1)th configuration

F0→1 F1→2 F2→3 Fn→n+1

F1

F2

Fn+1

Figure 2.3: Illustration of the total-Lagrangian description (dashed arrows) where
the current configuration is referenced to the initial configuration via the total de-
formation gradient Fn+1, and of the updated-Lagrangian description (solid arrows)
where the current configuration is referenced to the previous configuration via the
incremental deformation gradient Fn→n+1. The red and black points denote material
points and nodes, respectively.

to nodal integration, and stress-point integration has been shown to eliminate this
type of instability; see, e.g., [24, 71, 72, 182]. Similar to stress-points, material
point integration also alleviates the instability due to rank-deficiency by performing
quadrature away from the nodes. By contrast, tensile instability is more nefari-
ous and appears when updated-Lagrangian/Eulerian discretization kernels are used.
Tensile instability can be eliminated by using (total) Lagrangian kernels [24], but
this defeats the purpose of using particle-based meshfree methods. Here, we study
the tensile instability with local max-ent shape functions in a simplified 1D setting,
which will later motivate our solution for dealing with this type of instability in
general 3D problems.

As an instructive example, consider a 1D chain of nn = 50 equally-spaced nodes
whose positions in the initial configurationΩ0 = [0, 1] are xa

0 =
a−1
nn−1, a = 1, . . . , nn.

Assume there is initially only a single material point (np = 1), located at xp
0 = 0.5

and carrying an initial volume V1
0 = 1 equal to the unit length of the chain, and a

constant unit stiffness (linear elastic constitutive law). The chain is now stretched
by a ratio λ > 1, while keeping the locality parameter β1 constant. Because the
shape functions are dependent on the nodal positions, increasing the nodal spacings
under extension results in a localization of the shape function support at the material
point, see Figure 2.4a; i.e., fewer and fewer nodes contribute to the approximation
of the fields of interest at the material point.

Recall that the internal nodal forces (2.41b) are given by the product of the first
Piola-Kirchoff stress tensor with a discretization kernel Fp

n
T ∇nNa(x

p
n)V

p
n /J

p
n =

F
p
n

T ∇nNa(x
p
n)V

p
0 . Figure 2.4b shows the changing nodal kernel values with in-

creasing nodal spacing (i.e., increasing applied stretch λ). From the point of view



31

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

 = 3

 = 5

 = 7

 = 9

 = 11

(a)

0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 = 3

 = 5

 = 7

 = 9

 = 11

(b)

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Node a=26

Node a=31

Node a=33

Node a=36

Node a=41

(c)

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

Node a=26

Node a=31

Node a=33

Node a=36

Node a=41

(d)

Figure 2.4: For all shape functions evaluated at a material point initially at xp
0 = 0.5

on a 1D domain Ω0 = [0, 1] with constant locality parameter βp
n = 1, (a) values Na

of all a = 1, . . . , nn shape functions, plotted for different stretch ratios λ = |Ωn |; (b)
associated internal nodal force kernels (Fp

n ∇nNaV p
0 ) of all shape functions evaluated

for different stretches λ; (c) internal nodal force kernels of selected nodes vs. strain
ε = λ − 1; (d) internal nodal force on selected nodes vs. strain ε = λ − 1.

of any particular node, increasing the stretch λ leads to changes in its kernel value
(evaluated at the material point p), which first increases strongly and then decays
to zero as the shape function support increasingly localizes, as illustrated in Fig-
ure 2.4c. Internal nodal forces can be computed using the kernel values and the
stress (from linear elastic constitute law). The non-monotonic behavior of the kernel
(with respect to stretch ratio λ) results in a non-monotonic nodal force that starts
to decrease after a certain strain, as shown in Figure 2.4d. This phenomenon of
non-physical stiffness is called tensile instability, and is a purely numerical artifact
arising due to the changing nature of the discretization kernel; see Swegle et al.
[197] for a related discussion in the context of SPH. In summary, increasing nodal
spacings causes a localization of the shape function support, which in turn leads to
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Figure 2.5: (a) Internal nodal force kernels and (b) internal nodal forces of selected
nodes vs. strain ε = λ − 1, with an adaptively modified locality parameter βp

n ∝ h−2
n

where hn is the (uniform) nodal spacing and with an initial βp
0 = 1.

tensile instability.

As suggested by Arroyo and Ortiz [7] and Li et al. [132], the tensile instability can
be overcome by evolving the locality parameter of the local max-ent shape functions
at every step. In their isotropic max-ent framework, those authors introduced a non-
dimensional constant γ such that β = γ/h2, where h is some appropriate measure
of average nodal spacing at a given time or load step4. In the simple problem of a
1D node set as in Figure 2.4, evolving β as per the aforementioned scheme, i.e.,

β
p
n+1 =

γ(
hp

n+1

)2 = β
p
n

(
hp

n

hp
n+1

)2

, (2.42)

produces exactly coincident shape function support at every step and hence correctly
reproduces constant nodal force kernels and linear nodal force responses as shown
in Figure 2.5. This adaptivity scheme can then be extended to higher dimensions as

βp
n+1 =

1

(Jp
n→n+1)

2/3 β
p
n (2.43)

where βp
n is the locality parameter at nth step, andwhere it is assumed that (Jp

n→n+1)
1/3

is a reasonable estimate of the relative average nodal spacing aroundmaterial point p.
Although well suited for 1D, the isotropic nature of this scheme does not properly

4Note that Li et al. [132] focused on dynamic problems solved by explicit updates, whereas we
are concerned with a quasistatic formulation. Therefore, the terminology of time vs. load steps is, in
principle, interchangeable.
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account for direction-dependent changes in nodal spacing and hence is severely
limited in the amount of anisotropic deformation that can be simulated before the
onset of tensile instability. As a simple example, consider a uniaxial extension test
in 2D, which leads to strongly increasing nodal spacings in the extension direction,
whereas the Poisson effect results in nodal spacings shrinking in the transverse
directions at the same time.

Local updates of the locality parameter of type (2.43) have an essential consequence,
which is key to the proposed methodology and a departure from classical discretiza-
tion schemes including the original maximum-entropy approximants of Arroyo and
Ortiz [7]. Here, βp is defined and updated only at each material point p, where it
is needed to evaluate shape functions Na(x

p
n) and their gradients ∇Na(x

p
n) for the

numerical integration of energy, forces and stiffness tensors according to (2.40).
Therefore, neither a shape function Na nor a node a is associated with a specific
β but, depending on the material point p at xp where shape functions are to be
evaluated, all shape functions Na (a = 1, . . . , n) are computed using the very same
βp of that material point. As a practical consequence, shape functions cannot be
evaluated at nodes, only at material points. It also means that there is no such
thing as unique shape functions Na(x), rather we have Na = Na(x, β) and β varies
based on where the shape function is being evaluated – here, Na(xp) = Na(xp, βp).
Hence we also cannot plot the shape function Na for any node a (this is why we
chose the discrete visualization in Fig. 2.1). This choice is necessitated by the
specific adaptivity scheme used here (see (2.43) and its anisotropic generalization
in Section 2.2.4 below).

While a node might inherit different β when computing shape functions at different
material points, it will be equal for all nodes in the context of the local approx-
imation at a given material point. We also note that shape functions and shape
function derivatives at step (n + 1) are calculated based on the previous values βp

n .
Therefore, we may drop the spatial dependence on the shape functions through β
when calculating their gradients in (2.13), as is also done for the nodal locations in
the updated-Lagrangian setting.

2.2.4 Anisotropic adaptivity and bounded shape function support
To eliminate tensile instability in higher dimensions, we need to anisotropically
update the support of themax-ent shape functions; i.e., the Pareto optimality between
shape function width and information entropy should be updated differently for each
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dimension based on the local deformation, which is exactly why a tensor-valued
locality parameter β was introduced in (2.3). Assuming the step size between
configurations n and n + 1 is sufficiently small, the invariance of the shape function
support in (2.10) implies

Na
n (x

p
n) = Na

n+1(x
p
n+1)

=⇒ (x
p
n − xa

n) · β
p
n(x

p
n − xa) = (x

p
n+1 − xa

n+1) · β
p
n+1(x

p
n+1 − xa

n+1). (2.44)

If the effective support size of Na is reasonably small to approximate the local
deformationwith an affinemap, wemay exploit the incremental deformation gradient
to obtain the approximation

βp
n+1 = (F

p
n→n+1)

−Tβp
n(F

p
n→n+1)

−1. (2.45)

Hence, even if we start with an isotropic shape function support, anisotropy is
introduced incrementally through the deformation gradient at a given material point
p. We will refer to this scheme as anisotropic adaptivity of the shape function
support. Figure 2.6 compares the evolution of a representative shape function
support based on a 2D node set that is stretched uniaxially. It is evident from
Figure 2.6d that the effective support size along the direction of stretch is maintained
for anisotropic adaptivity of the locality parameter, whereas it becomes localized for
constant and isotropic adaptive locality parameters in Figure 2.6b and Figure 2.6c,
respectively.

When local max-ent shape functions span over all nodes in the domain, their global
support makes the implementation computationally impractical. However, shape
functions decay exponentially with distance from their respective node according
to (2.10), implying that only a few nodes relatively close to a material point are
significant to the approximation accuracy at that material point. Hence, it is practical
to construct the approximation based only on nodes that lie inside a cut-off region
centered around each material point. An analogous remapping of nodes to material
points was discussed for the OTM method [132]. Since the shape functions decay
as exp(−β‖x − xa‖

2), the original formulation by [7] suggests the use of a cut-off
sphere whose radius is given by Rcut =

√
(− log ε)/β, where 0 < ε ≤ 1 is a small

tolerance, so the shape function support is truncated beyond the cut-off sphere.

In an updated-Lagrangian setting, the cut-off limits must evolve according to the
local deformation; otherwise, a loss in connectivity will effectively result in the
localization of shape functions. For example, analogous to the isotropic adaptivity
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(a) Initial shape function with βp
0 = 15I (b)Constant locality parameter: βp

1 = β
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0

(c) Isotropically adapted locality param-
eter: βp
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0→1 β

p
0

(d) Anisotropically adapted locality pa-
rameter: βp

1 = F−T0→1β
p
0 F
−1
0→1

Figure 2.6: Shape function support of a material point initially located at
x

p
0 = (0.5, 0.5)

T under homogeneous anisotropic deformation described by the

total deformation gradient F0→1 =

(
3 0
0 1

)
.

scheme (2.43), the radius of a cut-off sphere centered at a material point p can be
updated by

Rp
cut,n+1 = (J

p
n→n+1)

1/3Rp
cut,n. (2.46)

However, it is not surprising that updating the cut-off radius isotropically as in
(2.46) will result in a severe loss of connectivity during anisotropic deformation
and ultimately give rise to tensile instability. Instead, we propose the use of cut-off
ellipsoids to improve the connectivity updates. Using ellipsoidal cut-off regions
also provides a better approximation when the spatial distribution of nodes is highly
anisotropic.

We define that, at the nth step, the connectivity of each material point xp
n includes

all nodes xa
n which lie inside the ellipsoid described by

(xa
n − x

p
n) · M

p
n (x

a
n − x

p
n) ≤ 1, (2.47)
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■■

(a) Initial connectivity inside a cut-off circle of radius Rp
0

■■

(b) The isotropic update (2.46) maintains
a circular cut-off region that causes loss
in connectivity

■■

(c) The anisotropic update (2.49) gives an
elliptical cut-off region without a loss of
connectivity

Figure 2.7: Evolution of the nodal connectivity surrounding a material point p (pink
square) under significant affine shear deformation. Dashed lines denote the convex
boundary of the cut-off region surrounding all nodes (blue solid circles) included
in the material point’s connectivity; nodal points missed by the isotropic update are
shown as open (red) circles. Since, the simple shear deformation is isochoric, the
isotropic update (2.46), shown as case (b), implies Rp

1 = Rp
0 .

where M p
n is a d × d matrix with d positive eigenvalues. At the initial configuration,

the cut-off ellipsoid can be chosen appropriately based on the tolerance ε and the
average nodal spacing in each direction around the material point. To avoid any
significant loss in connectivity, the ellipsoid is updated based on the deformation
map at every material point p according to

(xa
n − x

p
n) · M

p
n (x

a
n − x

p
n) = (x

a
n+1 − x

p
n+1) · M

p
n+1(x

a
n+1 − x

p
n+1), (2.48)

which, under the assumption that the step size and changes in ellipsoid size are
sufficiently small, gives the scheme for updating the anisotropic connectivity:

M
p
n+1 = (F

p
n→n+1)

−TM
p
n (F

p
n→n+1)

−1. (2.49)

This is analogous to the update of the locality parameter β, see (2.45). Figure 2.7
illustrates how an anisotropic ellipsoidal cut-off region better maintains connectivity
compared to the isotropic scheme for the case of significant shear deformation.
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2.2.5 Treatment of essential boundary conditions and material interfaces
Local max-ent is not interpolatory, i.e., it does not satisfy the strong Kronecker
property. However, it does satisfy the weak Kronecker property on the boundary.
Precisely, if x lies on the convex hull Ω of the domain, then Na(x) is zero if the
node located at xa lies in the interior of theΩ. This implies that interpolation on the
boundary depends only on boundary nodes and is independent of the interior nodes.
Therefore, essential boundary conditions can be appliedwithoutmodifications of the
shape function support. Note that the max-ent shape functions only satisfy consis-
tency up to first-order and hence can only impose at most affine boundary conditions
exactly; however, this error vanishes with h-refinement as the essential boundary
conditions are recovered as a converging sequence of piecewise-linear functions.
Also, for problems involving non-convex domains, the weak Kronecker property
is not satisfied on the non-convex part of the boundary. Several techniques like
the visibility criterion [19, 125], diffraction method [23, 165] and the transparency
method [165] have been proposed to deal with non-convex domains in element-free
Galerkin methods and can be extended to max-ent approximants. However, all of
those have limitations for interpolation on non-convex boundaries; see, e.g., Be-
lytschko et al. [21] for a review. Alternatively, the max-ent shape function support
can be seamlessly made highly local (by increasing the eigenvalues of the locality
parameter β) in the proximity of a non-convex boundary and hence minimizing the
extraneous non-convex region included in the convex hull of shape function support
[88]; but requires manual control for problems involving complicated geometries.

Discontinuous derivatives like material discontinuities also pose a challenge in
meshfree methods. In conventional FE methods, nodes can conveniently be chosen
such that a discontinuity like a material interface does not pass through any element.
As a result, capturing solutions with discontinuous derivatives while ensuring dis-
placement continuity across the material interface is straightforward. In contrast,
without proper treatment, the support of non-local meshfree shape functions like
max-ent spreads across any discontinuity, which leads to incorrectly smearing out
of the interface. The problem is fundamentally the same as the inability to apply
essential boundary conditions. Several complicated techniques have been intro-
duced such as additional special shape functions with discontinuous derivatives
[124], including Lagrange multipliers [62], and the transition to finite elements near
interfaces [20, 103, 123].

The local max-ent scheme allows for a straightforward solution for capturing dis-
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(a) Non-truncated nodal connectivity (b) Truncated nodal connectivity

Figure 2.8: Domains of nodal connectivity of four representative material points
near an interface separating two different materials (indicated by the red and blue
regions). Material points and nodes are denoted by open and filled dots, respectively.
The hatched area around eachmaterial point indicates the cut-off region that encloses
all nodes whose shape functions are contributing to the material point.

continuous derivatives. Our approach is inspired by the technique developed by
Cordes and Moran [62] for material interfaces in the element-free Galerkin method.
Consider the example problem of a 2D domain containing two materials separated
by an interface, as illustrated in Figure 2.8. The spatial discretization is chosen such
that the interface contains only nodes and no material points. Each material point
and node is assigned uniquely to one material, while the interface nodes belong to
both and are shared by both regions5.

As a crucial step, the shape function support and the resulting connectivity of
each material point is truncated to include only those nodes that belong to the
same material as the material point itself (see Figure 2.8b). This ensures that the
kinematic interpolation at any material point does not explicitly depend on nodes
from the other side of the interface. Since the interfacial nodes are shared by
both regions and because of the weak Kronecker property, displacement continuity
at the interface is automatically ensured. As a result, there is no smoothing nor
spurious oscillations across the discontinuity, and discontinuous derivatives are
captured accurately (Section 2.3.3 presents a numerical validation example). The

5Note that the assignment of nodes to the different materials occurs only for purpose of shape
function definitions, whereas the materials’ constitutive models are evaluated only at the material
points. This justifies the unique assignment of material points and the non-unique assignment of
nodes to the materials
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Figure 2.9: Shape function support for a material point (blue open dot) in the
proximity of a non-convex material interface. The convex hull (indicated by black
solid line) extends beyond the interface. However, only nodes in the blue region
(indicated by blue filled dots) are considered during approximation construction.
Nodes from the red region (indicated by red filled dots) that lie inside the convex
hull are excluded from the approximation.

simplicity and the fact that no additional computational costs are associated with
this scheme is particularly advantageous for higher-dimensional problems involving
multiple material interfaces such as polycrystals, high-volume-fraction composites
(e.g., cermets or magneto-rheological elastomers), and fluid-structure interactions.

Note that in problems with complex geometry or large deformations, there may be
curved material interfaces that give rise to non-convex sub-regions (see e.g. Fig-
ure 2.9). As a result, the convex hull of the nodal connectivity extends beyond the
interface. However, as per the proposed scheme, nodes from the other side of the
material interface are still excluded and the approximation at the material point re-
mains unaffected by the kinematics of nodes across the interface. Analogous to the
case of non-convex boundaries, the extraneous region of the convex hull will dimin-
ish with h-refinement or, alternatively, can be minimized by seamlessly increasing
the locality of the shape functions near the interfaces.

2.3 Benchmark tests
We present a selection of benchmark simulations in three dimensions to study the
performance of the proposed enhanced local max-ent scheme in problems involving
large deformation. The first benchmark test simulates the inhomogeneous extension
of a hyperelastic block to demonstrate the convergence rate and accuracy of the
proposed scheme. The second benchmark simulates the torsion of a hyperelastic
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cube to illustrate its ability to simulate severe deformation and distortion. The third
benchmark showcases the stretching of a periodic representative volume element
(RVE) of a two-phase laminate composite to demonstrate the capability to accu-
rately capture discontinuous derivatives using truncated shape function supports.
The fourth benchmark simulates two spherical inclusions in a high-volume-fraction
composite RVE undergoing such severe deformation that the initially distant inclu-
sions get almost into Hertzian contact. The fifth and final benchmark simulates the
elastoplastic response of a cylindrical specimen impacting a wall at high speed, clas-
sically known as the Taylor anvil test. Importantly, all five benchmarks demonstrate
that the proposed adaptive use of anisotropic shape function supports successfully
eliminates tensile instability in the updated-Lagrangian framework up to very large
deformations. In fact, without the framework introduced here, all benchmark sim-
ulations become unstable even for small deformations. Even with the best chosen
parameters, the non-adaptive updated-Lagrangian framework could only simulate
no more than 10% of the deformations (in all benchmarks shown here) that our new
framework can handle.

All simulations follow the same protocol to set up the initial configuration. Once
the initial set of nodes is defined, an ad-hoc mesh is created by applying Delaunay
triangulation to the initial node set. Next, amaterial point is inserted at the barycenter
of each simplicial elementwith an initial volumeV p

0 equal to the product of simplicial
quadrature weight and volume of the containing simplex. The initial value of the
locality parameter associated with each material point is set to βp

0 = γh−2
p I , where

hp is the average distance between the associated material point and nodes of the
surrounding element in the initial mesh6, and γ is a user input, as discussed in
Section 2.2.3. The mesh creation is a one-time process and the ad-hoc mesh is
discarded after the initial material point setup. The initial connectivity of each
material point is given by the cutoff ellipsoid associated with M

p
n = R−2

cut,pI , where

Rcut,p =

√
(− log ε)h2

p/γ, and ε = 10−6. Only one material point is used per
tetrahedron in the initial auxiliary mesh. The proposed scheme to overcome tensile
instability is, in principle, independent of the number ofmaterial points and certainly
extensible to higher-order integration (i.e., to larger numbers of integration points
per tetrahedron in the auxiliary mesh). We have experimented with using a higher
number of material points per tetrahedron and, while minor improvements are seen,

6We note that all (structured and unstructured) node sets used in the following benchmark
simulations have sufficient regularity for an isotropic initial β. In case of strongly anisotropic initial
configurations, it is straightforward to adapt the definition of βp

0 accordingly.
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we could not draw any general conclusions. Our focus here is on overcoming
the tensile instability (which is achieved with only a single integration point per
initial tetrahedron in all examples shown). The effects of numerical quadrature were
studied by Arroyo and Ortiz [7] in the context of (isotropic) local maximum-entropy
approximants, which also extend to our method.

As a representative example, all hyperelastic benchmark simulations (wherever
applicable) use a compressible Neo-Hookean constitutive model to incorporate
material non-linearity. The specific strain energy density is given by

W(F) =
µ

2

[
tr

(
FTF

)
J−2/3 − 3

]
+
κ

2
(J − 1)2, (2.50)

where µ and κ are the shear and bulk moduli, respectively, and J = detF. For sim-
plicity, all subsequent simulations results are based on non-dimensional material and
geometry parameters. We note that the presented max-ent and updated-Lagrangian
schemes are sufficiently general to apply to, in principle, arbitrary material consti-
tutive laws including elastoplasticity (see benchmark V in Section 2.3.5); and may
make use of the extension in Li et al. [132] for general inelastic solids via variational
constitutive updates [169].

Newton-Raphson iteration is used to solve for the nodal displacements at each load
step (or time step in case of the fifth, dynamic benchmark in Section 2.3.5 where
explicit time integration is used). After every load/time step, the reference configura-
tion is updated according to the updated-Lagrangian framework. Where applicable,
obtained simulation results are compared to those of (total-Lagrangian) FEMoverkill
simulations (using 10-node tetrahedral elements). Since comparing quantities such
as the strain energy entails ambiguity due to the different reference configurations
in the total- vs. updated-Lagrangian settings, we use force-displacement curves
as a comparison metric, because they are independent of the choice of reference
configuration.

2.3.1 Benchmark I: extension of a hyperelastic block
The first benchmark test aims to reproduce the numerical experiment in the original
formulation by Arroyo and Ortiz [7] as a baseline. We simulate a hyperelastic Neo-
Hookean cube that is stretched vertically with the top and bottom faces being fixed
in all directions – due to symmetry it is sufficient to model one eighth of the block
with the top face fixed, two adjacent side faces traction-free and symmetry boundary
conditions applied on the rest of the faces, while the bottom face is vertically fixed
and free to deform in-plane. The shear and bulk moduli are set to µ = 5 and
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κ = 10, respectively. The cube is deformed up to 100% extension in 50 load
steps (see Video 1) and the total vertical reaction force on the top face is recorded.
Figure 2.10a and 2.10b show the final deformed state obtained using local max-ent
and FEM. For the purpose of a convergence study, the initial spatial discretization is a
uniform grid of nodes with varying degrees of nodal spacing (see Figure 2.10c), and
different values of γ to initialize the locality parameter β. Due to highly nonlinear
deformations, an overkill FEM simulation with 20 × 20 × 20 elements is used as a
proxy for the exact solution. Figure 2.10d illustrates the convergence in the reaction
force with refinement of the spatial discretization. Three important observations are
made: (i) The error produced by the local max-ent simulations is always smaller
than that of FEM, implying improved accuracy, as similarly observed by Arroyo and
Ortiz [7] for the same benchmark. (ii) The shown errors corresponding to larger
values of γ approach the FEM errors, which is corroborated by the fact that larger γ
implies higher locality in interpolation, thus tending towards the affine interpolation
of FEM. (iii) More importantly, the error produced by the updated-Lagrangian
formulation is lower than that obtained from total-Lagrangian calculations with the
same γ, which is expected due to the large deformations involved.

2.3.2 Benchmark II: torsion of a hyperelastic cube
We simulate the torsion response of a hyperelastic Neo-Hookean cube with fixed
top and bottom faces (this time the entire cube is modeled, see Figure 2.11a-2.11d).
The cube is deformed in incremental torsion steps of 0.05 rad ≈ 2.86◦ twist angle
per step (see Video 2). For added complication, the shear and bulk moduli are
set to µ = 5 and κ = 100, respectively. We note that Ortiz et al. [166, 167] have
developed maximum-entropy meshfree methods suited to near-incompressible and
incompressible materials. However, to avoid issues related to volumetric locking,
we do not consider truly incompressible materials within the scope of this work. The
initial spatial discretization is a uniform grid of nodes with varying degrees of nodal
spacing. The initial locality parameter for each material point is set isotropically
using γ = 6.0. Figure 2.11e shows the total vertical reaction force on the top
face in response to the applied torsion. Remarkably, the enhanced local max-ent
scheme is able to simulate up to 200◦ degrees of torsion, which is significantly
higher than the maximum torsion of 144◦ degrees achievable by our comparison
FEM simulation. Moreover, local max-ent achieves a similar level of accuracy
with the number of material points being only one-sixth the number of elements in
FEM. These observations demonstrate the superior capability of the enhanced local
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(a) Deformation at 100% extension using
local max-ent

(b) Deformation at 100% extension using
FEM

Initial discretization Nodal spacing per side length No. of nodes No. of material points
6×6×6 0.1667 559 2592
8×8×8 0.1250 1241 6144

10×10×10 0.1 2331 12000
12×12×12 0.0833 3925 20736
14×14×14 0.0714 6119 32928

(c) Spatial discretization schemes for varying nodal spacing
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(d) Signed relative error in the vertical reaction force on the top face

Figure 2.10: Benchmark I: extension of a hyperelastic block

max-ent scheme to simulate problems that are highly prone to mesh distortion and
tensile instability.
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(a) Initial state at 0◦ applied torsion (b) Deformation at 65.9◦ applied torsion

(c) Deformation at 131.8◦ applied torsion (d) Deformation at 200.5◦ applied torsion
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(e) Vertical reaction force vs. torsional angle (in degrees)

Figure 2.11: Benchmark II: torsion of a hyperelastic cube
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2.3.3 Benchmark III: hyperelastic laminate composite
We simulate the response of an RVE made of a hyperelastic two-phase laminate
composite subjected to uniaxial extension with traction-free lateral faces. As il-
lustrated in Figure 2.12a, the RVE consists of a material interface normal to the
x-axis separating the two Neo-Hookean materials. To pronounce the discontinuity
in derivatives across the interface, the elastic moduli are chosen such that one phase
is highly compressible (µ = 1, κ = 1), whereas the other phase is relatively less
compressible (µ = 5, κ = 100). Periodic boundary conditions are imposed on the
RVE. The initial spatial discretization is a uniform grid of 9 × 9 × 9 nodes. The
locality parameter for each material point is initialized using γ = 2.0. The normal
strain along the x-axis is computed at each material point and node up to 25% ex-
tension. The specific geometry admits an analytical solution within finite elasticity,
which predicts homogeneous deformation in each phase with a discontinuity in the
deformation gradient at the material interface. A derivation of the (semi-)analytical
solution is presented in Appendix 2.C. Figure 2.12 shows the strain distribution
when computed with and without shape function support truncation at the interface,
respectively. With truncated support as discussed in Section 2.2.5, the discontinuity
is accurately captured by the numerical solution (Figure 2.12b), whereas spurious
oscillations are observed when the support truncation is deactivated (Figure 2.12c).

2.3.4 Benchmark IV: high-volume-fraction compositewith spherical inclusion
We consider a hyperelastic composite consisting of a periodic array of spherical
inclusions embedded in a matrix. In order to accurately model the inclusions
while approaching contact under straining, we simulate a cubic RVE containing
two hemispheres of the inclusion phase, each of radius 0.45 with a spacing of 0.1
in between (see Figure 2.13a). We are interested in the stress distribution inside
the RVE under uniaxial extension with traction-free lateral faces. Each inclusion
(shown in red and green) is modeled by a stiff material (µ = 500, κ = 500) relative to
a soft matrix (µ = 1, κ = 1). Periodic boundary conditions are imposed on the RVE.
The locality parameter for each material point is initialized using γ = 6.0. The RVE
is incrementally stretched as much as possible until the poles of the hemispheres
almost come into contact. Figure 2.13 shows the deformation and reports the
normal Cauchy stress distribution at different levels of extension. Remarkably, at
135% extension the inclusions almost come into contact, which is accompanied by
a significant and localized increase in the compressive stress near the apparent point
of contact (Figure 2.13g). Due to the relatively soft matrix, the stress distribution
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(a) Deformation at 25% extension. The nodes are represented by yellow dots, and the
material points for the two laminates are shown as red and blue dots.
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Figure 2.12: Benchmark III: hyperelastic laminate composite in a periodic RVE
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Final height
(mm)

Final mushroom
radius (mm)

Max. effective
plastic strain

Kamoulakis [110]: FEM 21.47-21.66 7.02-7.12 2.47-3.24
Zhu and Cescotto [216]: FEM 21.26-21.49 6.89-7.18 2.75-3.03
Camacho and Ortiz [37]: FEM 21.42-21.44 7.21-7.24 2.97-3.25
Li et al. [132]: OTM 21.43 6.8 3.0
Belytschko et al. [24]: EFG

(using cell structures) 21.46 7.13 3.33

Belytschko et al. [24]: EFG
(using stress points) 21.46 6.98 3.18

This method 21.45 6.84 2.69

Table 2.1: Benchmark V-(A): Comparison of results from Taylor anvil test

is akin to the Hertzian solution for elastic bodies in contact. Note that the chosen
material models do not capture phenomena like inelasticity or damage near the point
of contact; the purpose of this particular benchmark is to demonstrate the numerical
capabilities of the method. It becomes apparent that the proposed framework is
capable of simulating matrix material being squeezed out quasistatically between
the inclusions to allow for contact to happen. By contrast, such simulation are not
easily feasible with FEM due to the large mesh distortion and entanglement in the
narrow region between the two inclusions.

2.3.5 Benchmark V: Taylor anvil test
As our final example, we depart from hyperelastic constitutive laws and quasistatic
simulations. We simulate the elastoplastic dynamic response of a copper specimen
impacting a wall at high speed (see Figure 2.14a), classically known as Taylor’s anvil
test (1948). The specimen is a homogeneous cylinder whose material response is
described by von Mises (J2) plasticity with linear isotropic hardening (the mass
density is 8930 kg/m3, Young’s modulus 117 GPa, Poisson’s ratio 0.35, yield stress
400 MPa, and plastic modulus 100 MPa). The wall is assumed to be frictionless
and oriented normal to the initial velocity of the specimen. A 3D simulation using
explicit dynamics is performed. We note that, when using explicit time integration,
the proposed method is similar to the Optimal Transportation Meshfree method of
Li et al. [132] with the exception of the anisotropic shape functions and adaptivity
schemes proposed here. The following two scenarios are simulated.

Case (A): a specimen of radius 3.2 mm and length 32.4 mm impacts the wall at
a speed of 227 m/s (see Figure 2.14a). The cylinder is discretized into 11, 313
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 2.13: Benchmark IV: hyperelastic high-volume-fraction composite with pe-
riodic spherical inclusions. (a) Initial state of the RVE with two hemispherical
inclusions (both nodes and material points are shown in red and green) embedded
in a matrix (both nodes and material points in blue). (b, c), (d,e), (f,g) show the
deformed configuration and the stress distribution at 45%, 90%, and 135% exten-
sion, respectively. The stresses shown in (c, e, g) are the Cauchy stress component
along the x-direction interpolated at the central plane of the RVE denoted by the red
rectangles in (b, d, f). Due to the large deformations involved, the stress plots use
different scales at each step for improved visibility.
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nodes and 52, 608 material points with the help of an initial tetrahedral mesh. A
stable time step of 0.01 µs is chosen and the results at time 80 µs are compared
to those obtained by FEM [37, 110, 216], EFG [24], and OTM [132] in Table 2.1.
Figures2.14b and 2.14c show the time history of the mushroom radius and height of
the specimen, respectively (seeBelytschko et al. [24] for comparison). Figures2.14d-
2.14f show the evolution of effective plastic strain at different times during the
impact. The results closely match those reported in the literature and obtained using
the aforementioned methods.

Case (B): a specimen of radius 3.2 mm and length 12.8 mm impacts the wall at a
speed of 750 m/s (see Figure 2.15a). The cylinder is discretized into 5, 483 nodes
and 26, 176 material points with the help of an initial tetrahedral mesh. A stable
time step of 0.0025 µs is chosen, and the evolution of the effective plastic strain
at different times during the impact is shown in Figure 2.15. While case (A) is
a well-known benchmark with experimental validation, (B) serves as a numerical
experiment without validation, proposed by Li et al. [132], to push the robustness
of the numerical scheme to extremes. In the latter case, due to considerably higher
speed at impact, the specimen undergoes severe plastic flow and flattens out. Par-
ticularly in the mushroom region, the nodal spacing increases rapidly, which may
cause tensile instability. In fact, without the anisotropic adaptive scheme outlined
here, tensile instability emerges early on during the simulation at around 2.75 µs.

This last benchmark shows that the proposed method equally applies to inelastic
constitutive laws and that the adaptivity scheme ensures the stability of the updated-
Lagrangian kernel in scenarios exhibiting severe deformation such as during plastic
flow. The benchmark further demonstrates that the adaptivity scheme is not limited
to quasistatic settings but can be extended without significant modifications to
dynamics.

2.4 Conclusions
We have presented a meshfree simulation framework with significantly enhanced
stability, particularly for boundary value problems involving severe, finite deforma-
tions. We have formulated an updated-Lagrangian scheme based on an incremental
deformation map and material point sampling. The scheme utilizes an improved
local maximum-entropy approximation that is extended to admit anisotropic shape
function support. This is achieved by establishing an anisotropic compromise
between minimal shape function widths and maximal information entropy via a ten-
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227 m/s

Radius = 3.2 mm

32.4 mm

(a) Initial state of the specimen
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(b) Time history of mushroom radius
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(c) Time history of specimen height

(d) Effective plastic strains
at time = 20 µs

(e) Effective plastic strains at
time = 40 µs

(f) Effective plastic strains at
time = 80 µs

Figure 2.14: Benchmark V-(A): Taylor anvil test, showing (a) the initial specimen,
(b) the time history of the mushroom radius, (c) the time history of the specimen
height, and (d,e,f) cut-section views of the specimen near the wall with effective
plastic strains evaluated at material points (nodes are shown as gray dots).

sorial locality parameter, in an extension of the original max-ent scheme of Arroyo
and Ortiz [7]. We have introduced an adaptive scheme for the anisotropic evolution
of shape function support and nodal connectivity, which jointly suppress tensile in-
stability up to large deformations, as demonstrated by several benchmark tests. The
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750 m/s

Radius = 3.2 mm

12.8 mm

(a) Initial state of the specimen (b) Effective plastic strains at time = 5 µs

(c) Effective plastic strains at time = 10 µs (d) Effective plastic strains at time = 15 µs

Figure 2.15: Benchmark V-(B): Taylor anvil test, showing (a) the initial specimen,
and (b,c,d) the effective plastic strains in the deformed sample, evaluated at the
material points (nodes are shown as gray dots).

weak Kronecker property of the original max-ent formulation is retained, which
allows for the direct application of essential boundary conditions. We have also
presented a scheme that utilizes truncated shape function connectivity to accurately
capture discontinuous derivatives across material interfaces as found, e.g., in com-
posite materials. The entire simulation framework has been tested through several
hyperelastic and elastoplastic benchmark problems involving severe deformations,
and we observed faster convergence and the ability to simulate significantly larger
distortions as compared to classical FEM and total-Lagrangian meshfree formu-
lations. We also demonstrated the performance of the methodology in dynamic
problems and reported excellent agreement of simulated Taylor impact results with
those reported in the literature. The presented approximation scheme as well as
the updated-Lagrangian setting are sufficiently general to apply to other problems
beyond the scope of the present investigation, including multi-physics problems and
incompressible materials, which will be presented in a subsequent study.
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APPENDIX

2.A Derivation of solution (2.10)-(2.12) to constrained optimization problem
in (2.9)

The following derivation follows closely that presented by Arroyo and Ortiz [7], here
modified for the proposed scheme and filling in details. The first-order consistency
condition in (2.2) can be reformulated by substituting the zeroth-order consistency
condition as

nn∑
a=1

Na(x)xa −

(
nn∑

a=1
Na

)
x =

nn∑
a=1

Na(x)(xa − x) = 0. (2.51)

The Lagrangian associated with the constrained optimization in (2.9) is therefore
given by

L
(
Nβ, λ0, λ

)
=

nn∑
a=1

f (Na, β) + λ0

(
nn∑

a=1
Na − 1

)
+ λ ·

(
nn∑

a=1
Na(xa − x)

)
, (2.52)

where λ0 ∈ R and λ ∈ Rd are Lagrange multipliers, and

f (Na, β) = Na‖x − xa‖2β + Na ln Na(x). (2.53)

Stationarity of (2.52) with respect to Na(x) for a = 1, . . . , nn yields

∂L
∂Na(x)

= ‖x − xa‖2β + 1 + ln Na + λ0 + λ · (x
a − x) = 0 ∀ a = 1, . . . , nn (2.54)

whose solution reads

Na(x) =
exp

(
−‖x − xa‖2β + λ · (x − xa)

)
exp(1 + λ0)

. (2.55)

Note that the exponential form ensures the positivity constraint on the shape func-
tions. The Lagrange dual function is given by

g(λ0, λ) = inf
Na(x)≥0, a=1,...,nn

L
(
Nβ

)
. (2.56)

The function conjugate of f (Na, β) is obtained as

f ∗(Qa, β) = sup
Na
(QaNa − f (Na, β)) . (2.57)

Stationarity with respect to Na requires

Qa − ‖x − xa‖2β − 1 − ln Na = 0 ⇒ Na = exp
(
Qa − ‖x − xa‖2β − 1

)
. (2.58)
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Therefore, the conjugate function f ∗(Qa, β) is given by

f ∗(Qa, β) = exp
(
Qa − ‖x − xa‖2β − 1

)
. (2.59)

Rewriting the Lagrange dual function (2.56) in terms of the function conjugate [32]
gives

g(λ0, λ) = −λ0 −

nn∑
a=1

f ∗ (−λ0 − λ.(x
a − x), β) . (2.60)

Substituting (2.59) gives

g(λ0, λ) = −λ0 −

nn∑
a=1

exp
(
−λ0 − λ.(x

a − x) − ‖x − xa‖2β − 1
)
. (2.61)

Maximizing the Lagrange dual function with respect to λ0 results in

exp(1 + λ∗0) =
nn∑

a=1
exp

(
−‖x − xa‖2β + λ · (x − xa)

)
= Z(x, λ), (2.62)

so that the Lagrange dual function reduces to

g(λ∗0, λ) = −λ
∗
0 − 1 = − ln Z(x, λ). (2.63)

Finally, maximizing the reduced Lagrange dual function with respect to λ gives

λ∗ = arg min
λ∈Rd

ln Z(x, λ). (2.64)

2.B Pseudo-code for hyperelastic boundary value problem
The following algorithms summarize the numerical realization of the presented
updated-Lagrangianmeshfree framework for the example of a hyperelastic boundary
value problem at finite strains.

Algorithm 1 Example algorithm for a hyperelasticity simulation using anisotropic
local max-ent
1: Initialize the spatial discretization (Algorithm 2)
2: for each material point p = 1, . . . , np do
3: Set initial configuration as undeformed: Fp

0 = I
4: end for
5: for n = 0, . . . , # of quasistatic load or time steps do
6: Compute/update shape functions (Algorithm 3)
7: Compute nodal displacement increments ∆Un by assembly and iterative

solution (Algorithm 4)
8: Update Lagrangian (Algorithm 5)
9: end for
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Algorithm 2 : Initialize the spatial discretization
Input: γ, c
1: Create a simplicial mesh based on a given geometry
2: Initialize nn nodes at mesh vertices xa

0 (a = 1, . . . , nn)
3: Initialize np material points at the simplex quadrature points xp

0 (p = 1, . . . , np)
4: Initialize all material point densities: ρp

0 = ρ0(x
p
0 )

5: Initialize all material point volumes: V p
0 = quadrature weight× simplex volume

6: Initialize the locality parameter for each material point: βp
0 = γ

(
hp

0

)−2
I , where

hp
0 is the mean distance from x

p
0 to nodes of the surrounding elements in the

mesh
7: Initialize cut-off region (ellipsoid) for each material point: M p

0 =
(
c hp

0

)−2
I

8: Discard the mesh

Algorithm 3 : Compute/update shape functions
1: for each material point p = 1, . . . , np do
2: Find nodal connectivity based on cut-off region Sp

n = {x
a
n : (xa

n − x
p
n) ·

M
p
n (x

a
n − x

p
n) ≤ 1}

3: if size(Sp
n ) ≥ (d + 1) and x

p
n ∈ conv(S

p
n ) then

4: // Compute shape functions:
5: Guess λ ← (0, . . . , 0)T
6: while ln(Z(xp

n, λ)) > Tolerance do
7: λ ← λ −

(
J(x

p
n, λ) + ‖r(x

p
n, λ)‖I

)−1
r(x

p
n, λ)

8: end while
9: λ∗ = λ
10: Evaluate shape functions at xp

n : N
p
βp
n
= {Na(x

p
n) : xa

n ∈ Sp
n }

11: else
12: Error: Insufficient nodal connectivity
13: end if
14: end for
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Algorithm 4 : Assembly and solver
Input: ∆Un (initial guess = solution of previous step)
1: do
2: Initialize global force vector and tangent matrix: fn+1 ← 0, Tn+1 ← 0
3: for each material point p = 1, . . . , np do
4: Compute incremental deformation gradient: Fp

n→n+1 ← I+
∑

a∈Sp
n
∆ua

n⊗

∇nNa(x
p
n)

5: Compute total deformation gradient: Fp
n+1 ← F

p
n→n+1F

p
n

6: for all nodes a in Sp
n do

7: Compute and assemble internal nodal forces:

f a
n+1 ← f a

n+1 +
V p

n

Jp
n
P(F

p
n→n+1F

p
n )F

p
n

T ∇nNa(x
p
n)

8: for all nodes b in Sp
n do

9: Compute and assemble tangent matrix:(
Tn+1

)ab

ik
←

(
Tn+1

)ab

ik
+ Ci j kl(F

p
n→n+1F

p
n ) (F

p
n )q j∇nNa

q (x
p
n) (F

p
n )rl∇nNb

r (x
p
n)

V p
n

Jp
n

10: end for
11: end for
12: end for
13: for each node a = 1, . . . , nn do
14: Assemble external forces: f a

n+1 ← f a
n+1 − f a

ext,n+1
15: for each node b = 1, . . . , nn do

16: Assemble external tangentmatrix:
(
Tn+1

)ab

ik
←

(
Tn+1

)ab

ik
−
∂
(

f aext,n+1

)
i

∂(∆ubn)k
,

17: end for
18: end for
19: Apply essential boundary conditions to force vector and tangent matrix
20: Newton-Raphson step: ∆Un ← ∆Un − T−1

n+1 fn+1
21: while (‖ fn+1‖ > Tolerance)
Return: ∆Un
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Algorithm 5 : Update Lagrangian
Input: ∆Un (solution)
1: for each material point p = 1, . . . , np do
2: Compute incremental deformation gradient:

F
p
n→n+1 = I +

∑
a∈Sp

n

∆ua
n ⊗ ∇nNa(x

p
n)

3: Compute total deformation gradient: Fp
n+1 = F

p
n→n+1F

p
n

4: Update material point density: ρp
n+1 = ρ

p
n

(
detFp

n→n+1

)−1

5: Update material point volume: V p
n+1 = V p

n detFp
n→n+1

6: Update locality parameter: βp
n+1 = (F

p
n→n+1)

−Tβp
n(F

p
n→n+1)

−1

7: Update cut-off region: M p
n+1 = (F

p
n→n+1)

−TM
p
n (F

p
n→n+1)

−1

8: end for

2.C Analytical solution of the finite-elasticity problem in Section 2.3.3
Consider a hyperelastic cube of unit length composed of two perfectly bonded Neo-
Hookean materials denoted by symbols A and B, which are arranged into a laminate
whose material interface is given by the plane x = 0.5 in the initial configuration
(see Figure 2.12). µi and κi denote the shear and bulk moduli, respectively, of
material i. For the prescribed boundary conditions, the overall deformation gradient
of the laminate is given by

F =
©«
λ1 0 0
0 λ2 0
0 0 λ3

ª®®®¬ , (2.65)

where λ1, λ2, and λ3 are the stretch ratios along the x-, y-, and z-axes, respectively.
Note that λ3 is a known value and is equal to the stretch applied by the boundary
conditions. Assuming that no instability occurs, the deformation is homogeneous
within each material and the deformation gradient for each material region is given
by

FA =
©«
λA

1 0 0
0 λ2 0
0 0 λ3

ª®®®¬ and FB =
©«
λB

1 0 0
0 λ2 0
0 0 λ3

ª®®®¬ , (2.66)

where λA
1 and λB

1 are the stretch ratios for each material along the x-axis. Since the
initial thickness of each laminate phase is the same, the overall stretch ratio λ1 is
related to λA

1 and λB
1 via

λ1 =
1
2
λA

1 +
1
2
λB

1 . (2.67)
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The overall strain energy density Π = 〈W〉 of the laminate block, using (2.50), is
thus given by

Π(λA
1 , λ

B
1 , λ2, λ3) =

1
2

( µA

2

[
tr

(
FAT

FA
)
(J A)−2/3 − 3

]
+
κA

2
(J A − 1)2

)
+

1
2

( µB

2

[
tr

(
FBT

FB
)
(JB)−2/3 − 3

]
+
κB

2
(JB − 1)2

)
. (2.68)

The principle of minimum potential energy requires that for a given applied λ3

(λA
1 , λ

B
1 , λ2) = arg minΠ(λA

1 , λ
B
1 , λ2, λ3), (2.69)

where the objective function being minimized is convex and admits a unique solu-
tion. Hence, the optimization problem in (2.69) can be easily solved numerically to
yield the required stretch ratios.
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C h a p t e r 3

MODELING OF EQUAL-CHANNEL ANGULAR EXTRUSION
BASED ON HIGH-FIDELITY PLASTICITY MODELS

Research presented in this chapter has been adapted from the following publication:

S. Kumar†, A. D. Tutcuoglu†, Y. Hollenweger, and D. M. Kochmann. A multiscale
meshfree approach to modeling ECAE. In preparation, 2019.

† Both authors contributed equally to this work.

3.1 Introduction
Macroscale mechanical properties of metals and alloys are directly linked to grain
sizes and orientations at the microscale. For example, inducing ultrafine grain
(UFG) refinement in a metal specimen by applying severe plastic deformation (SPD)
[39, 75, 204] is known to significantly improve its strength according to the Hall-
Petch relation [97, 173]. Valiev et al. [204] define UFG materials as bulk solids
with microstructure containing dominantly equiaxed grains on the sub-micrometer
scale with high-angle grain boundaries. Therefore, by applying severe plastic strains
to create a high density of crystalline defects that further induce UFG refinements,
SPD processes significantly improve the bulk properties of metals at the macroscale.
The history of SPD goes back to Nobel Prize winning work by Bridgman [33,
34, 35]. Modern-day SPD processes for UFG refinement include equal-channel
angular extrusion (ECAE) [192], high pressure torsion (HPT) [33], accumulative
roll bonding (ARB) [188], repetitive corrugation and straightening (RCS) [196], etc.
Detailed reviews of SPD processes can be found in [75]. Among the class of SPD
processes, ECAE has particularly attracted interest for achieving UFG refinement
[104, 192] because it conserves the cross-sectional area of the specimen. This is
achieved by extruding a specimen around a 90◦ corner that produces severe shear
strains. Furthermore, the specimen can be subjected to multiple extrusions, by
rotating and shearing in different planes. This allows activation of multiple slip
systems and produces round equiaxed grains.

Optimization of ECAE parameters to achieve desirable bulk properties in a wide
range of metals and alloys motivates a numerical simulation framework to comple-
ment expensive experimentation. Initial attempts at modeling ECAE were based
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on finite element method (FEM). Some of the notable works include the analysis
of friction and effects of channel geometry in ECAE by Luis et al. [147] and Fu
et al. [83], and the optimal design of ECAE parameters based on homogeneity of
strain distribution in the specimen by Djavanroodi et al. [65]. However, FEM based
models have been limited to simulations with simple elasto-plastic constitutive laws
with linear or power law hardening. This limitation is partly attributed to remeshing
in mesh-based modeling such as FEM. Remeshing is necessary to avoid numerical
artifacts and instabilities due to the distortion and entanglement of elements as the
mesh deforms around the corner. The application of remeshing, however, requires
interpolation of the data at the quadrature points to map material point descriptions,
including information of the several grains at each point, from the old to the new
mesh. While simple plasticity laws based on the additive decomposition of elastic
and inelastic strains in a small strain framework may provide acceptable condi-
tions for this, crystal plasticity frameworks in finite deformations endowed with a
multiplicative decomposition represent a more challenging environment.

In contrast, meshfreemethods do not experiencemesh-related issues arising from the
severe distortions in ECAE. Therefore, these methods do not require remeshing and
hence allow for more complex plasticity models. Smoothed-particle hydrodynamics
(SPH) (see Section 1.2.1 for brief review) has recently attracted interest for modeling
ECAE, and in general SPD processes. Fagan et al. [76] showed that SPH provided
better accuracy and robustness than FEM, albeit their simulations were based on
elasto-plastic constitutive law with linear isotropic hardening. Ma and Hartmaier
[148] were the first to develop an SPH formulation with crystal plasticity model,
and study face center cubic (FCC) polycrystals under ECAE. However, to address
the issue of lack of treatment for boundary conditions in SPH, they assumed linear
elasticity at the boundary nodes and constrained the motion along the channel walls
accordingly. Additional well-known problems in SPH methods, including poor
accuracy, lack of consistency, and instabilities (see Sections 1.2.1 and 1.3), motivate
the use of a modern-day meshfree method. Furthermore, all previous attempts, both
mesh-based and meshfree, simulate the process in a dynamics framework, which
does not strongly replicate the quasi-static processing conditions of ECAE.

While the aforementioned works concern the macroscale modeling only, a high fi-
delity description of ECAE also requires integration of the complex recrystallization
mechanisms at the mesoscale to understand the effects of grain refinement on bulk
properties. Previous attempts have been limited in capturing this multi-scale nature
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of ECAE. Saitoh and Ohnishi [189] included a phenomenological grain refinement
model in their SPH framework, although their simplified model does not have any
notion of physical grains (with individual inelastic deformation states) or texture
evolution. Sivakumar and Ortiz [193] used sequential lamination to model mi-
crostructures and predict texture evolution in Al-Cu alloy under ECAE. The study,
however, was limited to shearing of a single material point as an idealization of the
complex deformations in ECAE. Additionally, it did not account for multiple slip
planes as well as nucleation of grains [175, 190].

On the other hand, there has been extensive research on physically representative
models for grain recrystallization, in particular dynamic recrystallization such as
cellular automata, Monte-Carlo Potts, and vertex methods [67, 98, 102, 190]. Al-
though these models provide accurate descriptions of nucleation and migration of
grains at themesoscale, their integration intomultiscale frameworks has largely been
infeasible due to their high computational costs. Recently, Tutcuoglu et al. [202] in-
troduced a Taylor model for capturing discontinuous dynamic recrystallization and
showed good agreement in terms of microstructural evolution, texture evolution as
well as the homogenized stress response compared to a fully-resolved Monte-Carlo
Potts model [203], in spite of significantly reduced computational costs.

In this contribution, we develop amultiscale meshfree framework to simulate copper
undergoingECAE (see Figure 3.1 for illustration), which to the best of our knowledge
is the first such attempt. We employ the following strategies to bridge the multiple
scales in ECAE – from micro- to macroscale.

• Macroscale: Quasi-static mechanical boundary value problem is simulated
using the enhanced max-ent approximation and the updated-Lagrangian for-
mulation introduced in Chapter 2.

• Mesoscale: Dynamic recrystallization at the polycrystal level is captured by
the Taylor model of Tutcuoglu et al. [202] to track grain refinement and texture
evolution.

• Microscale: A finite-deformation crystal plasticity model with multiple slip
systems is used to model the response of individual grains of copper.

The remainder of this contribution is organized as follows. Section 3.2 intro-
duces the theory of the multiscale framework. Section 3.3 discusses the numerical
scheme for time evolution of internal variables in the aforementioned framework.
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Macroscale
(ECAE)

Mesoscale
(polycrystals/grains)

Microscale
(crystal)

Material pointGrain

Figure 3.1: Illustration of the multiscale framework for simulating ECAE.

In Section 3.4, we present the results of simulating ECAE using this approach.
Section 3.4.1 reports a convergence study with respect to spatial and temporal dis-
cretization. Section 3.4.2 studies the strain distribution in a specimen as it undergoes
ECAE, as well as the effects of channel geometry. Section 3.4.3 explains the effects
of recrystallization (migration and nucleation) on grain refinement and texture evo-
lution. In Section 3.4.4, we briefly explore the possibility of simulating multiple
passes of ECAE. Finally, Section 3.5 concludes our investigation and lists some
future outlooks of this approach.

3.2 Theory
3.2.1 Microscale: Copper material model
Following the work of Tutcuoglu et al. [203], we introduce a material model for
fcc copper endowed with nS = 12 slip systems. Slip directions and normals in
the reference configuration are denoted by s̃α and m̃α, α ∈ {1, ..., nS}. Based on
a grain’s crystallographic orientation, we introduce a rotation tensor R ∈ SO(3)
by which the slip directions and normals in the global coordinate system can be
expressed as sα = Rs̃α and mα = Rm̃α, respectively. The inelastic deformation
state is captured by a set of internal variables Q = {g, F in}, where g ∈ RnS denotes a
measure of the accumulated slip and F in ∈ GL(3) represents the isochoric inelastic
deformation gradient. The total deformation gradient is related to the inelastic
deformation gradient by the multiplicative composition

F = FeF in, (3.1)
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where Fe ∈ GL(3) denotes the elastic deformation gradient. The volume-preserving
time-evolution of the inelastic deformation gradient depends on the inelastic velocity
gradient l in and slip rates Ûγ ∈ RnS as

ÛF in = l inF in, where l in =

nS∑
α=1
Ûγα sα ⊗ mα. (3.2)

Since Tutcuoglu et al. [202] provide an in-depth analysis of the energetics that
govern this material model, we only provide a brief summary here. The effective
total energy at time t, excluding losses due to dissipation, is given by

W(F, Q, t) = We(Fe) +

∫ t

t0

ÛW in(g(τ))dτ. (3.3)

We(Fe) represents a compressible Neo-Hookean strain energy density given by

We(Fe) =
µ

2

(
(Je)−2/3tr

(
FeTFe

)
− 3

)
+
κ

2

(
(Je)2 − 1

)
, (3.4)

where µ and κ are the shear and bulk moduli, respectively, and Je = det Fe. The
time evolution for slip γ follows a power-law

Ûγα = Ûγ0

(
|τα |

Gα
r

)m

sign(τα), α ∈ {1, ..., nS}, (3.5)

where τα = mα · Σesα represents the resolved shear stress on the slip system
α, with Mandel stress tensor Σe = (Fe)TP(F in)T and first Piola-Kirchhoff stress
tensor P. Gα

r denotes the respective total shear resistance, which decomposes
as Gα

r = G0 + Gα into a constant slip resistance contribution G0 and a variable
contribution Gα =

∑nS
β=1 Q(δαβ + q(1 − δαβ))gβ, with plastic modulus Q, latent

hardening multiplicator q and Kronecker delta δ. The time evolution for g is
derived from energetics (see e.g. [151, 202]) and given as

Ûgα = (1 − Bgα)
τα

Gα
r
Ûγα, (3.6)

where B denotes a saturation factor. Mellbin et al. [151] showed that the time
evolution laws in (3.5) and (3.6) satisfy the dissipation inequality. Finally, the
inelastic energy density excluding losses due to dissipation is obtained as

W in =

∫ t

t0

ÛW in(g(τ))dτ =
∫ t

t0

nS∑
α=1

τα(1 − Bgα)
Gα

Gα
r
Ûγαdτ, (3.7)

where t0 denotes the time at which a grain is initiated, e.g. through nucleation.
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3.2.2 Mesoscale: Taylor model
The Taylor model idealizes the notion of a material point containing Ng number of
grains by endowing each grain with a volume fraction ηi∈{1,...,Ng} ≡ Vi∈{1,...,Ng}/V ,
whereVi denotes the volume of the ith grain andV denotes thematerial point volume.
It assumes that all grains interact with each other, and ignores any notion of selected
interaction between grains based on proximity. The model further assumes that each
grain experiences the same total deformation gradient F. This evidently satisfies
compatibility, but generally violates equilibrium which leads to the well known
upper-bound for the homogenized stress (see, e.g., Tutcuoglu et al. [202]). Each
grain is further endowed with an individual set of inelastic states {Qi}i∈{1,...,Ng}, the
evolution of which heavily depends on its respective crystallographic orientation
Ri∈{1,...,Ng}.

The Taylor model assumes a total energy of the form

E = E(F,Q, t)

=
∑

i∈{1,...,Ng}

ηiW(F, Qi, t) − ν
©«

∑
i∈{1,...,Ng}

ηi − 1.0ª®¬ ,
(3.8)

where Q =
{
{Qi}i∈{1,...,Ng}, {ηi}i∈{1,...,Ng}

}
denotes the set of all internal variables.

The last term contains a Lagrange multiplier ν, which ensures that the sum of all
volume fractions sums up to unity. The above total energy formulation and the energy
description of individual grains in (3.3) provide the framework for the modeling of
the twomechanisms inherent to discontinuous dynamic recrystallization –migration
and nucleation.

In the Taylor model, grain migration is captured by change in relative volume
fractions of the grains based on energetic principles. We assume a gradient flow
ansatz for the volume fractions as

Ûηi = −
1

κGBM

δE(F,Q, t)
δηi

= −
1

κGBM
(W(F, Qi, t) − ν) , (3.9)

with grain migration rate κGBM. Following the ansatz (3.9) in conjunction with the
aforementioned constraint yields the Lagrange multiplier [202]

ν =
∑

i∈{1,...,Ng}

W(F, Qi, t)/Ng . (3.10)

Nucleation is an inherently stochastic phenomenon during which heavily distorted
parts of one or multiple grains attain a thermodynamically unstable state, and
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reorientation and formation of a new, pristine grain becomes energetically more
favorable [98]. We introduce a critical inelastic strain energy density W in,cr, above
which nucleation is possible; and further define a nucleation thresholdwth to account
for an increased likelihood of nucleation with increasing inelastic strain energy
density. Adopting the formulation by Zhao et al. [214] and Tutcuoglu et al. [202],
the nucleation threshold is given by

wth(W in
i ) = ηi∆tκNCL

1 − exp
−

(
W in

i

CW in,cr

)d
 , (3.11)

with nucleation rate κNCL , nucleation constantC, and nucleation exponent d. Finally,
for every grain with W in

i > W in,cr, we generate a random number wi ∼ U([0, 1]) and
initiate nucleation of a new grain if wi < wth(W in

i ). The new grain is then endowed
with the same total deformation gradient F as all other grains. However, its internal
variables are reset to mimic a pristine grain, i.e., F in = Fe = I and all entries of
g are set to initial shear resistance g0. This, however, requires a redefinition of the
multiplicative decomposition of the total deformation gradient as F = FeFrF in with
Fr set to the total deformation gradient at the time of nucleation. Since nucleation
is an inherently atomistic process, we assume the initiation of a pristine grain with a
sufficiently small volume fraction, which is appropriate for the purpose of capturing
recrystallization in a Taylor model. In this light, Tutcuoglu et al. [202] showed that
ηNCL = (1/643) is a rational choice for the initial volume fraction of a nucleated
grain based on the migration and nucleation speeds. Based on ηNCL and an initial
number of grains Ng,init = 200, this would allow us to capture a refinement up to a
factor of 11, which for the purposes of this contribution is reasonable.

3.2.3 Macroscale: Max-ent & updated-Lagrangian
At the macroscale, we model the ECAE process as a quasi-static mechanical bound-
ary value problem (BVP) (see (2.21)) in a classical Galerkin setting outlined in
Section (2.2.2). In a classical total-Lagrangian setting, a deformed configuration
is always referenced to the initial configuration. In ECAE, however, the neighbor-
hood around a node undergoes severe distortion, both in terms of deformation and
connectivity, rendering the initial reference configuration irrelevant. Furthermore,
boundary conditions in ECAE evolve with time and depend on the current location
of the nodes, which necessitates an updated-Lagrangian formulation. For example,
the transition of boundary nodes from vertical to horizontal walls of the channel
requires a change in Dirichlet boundary conditions. Previous attempts at model-
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Time: t0

t1

. . . . . . . . .
tn−1

tn tn+1

F0→1 Fn−1→n Fn→n+1

F1

Fn

Fn+1

Figure 3.2: Illustration of the total- and updated-Lagrangian frameworks for sim-
ulating ECAE. The total deformation gradient Fn+1 maps the initial configuration
at time t0 to the configuration at time tn+1. The incremental deformation gradient
Fn→n+1 provides an incremental map between the configurations at tn and tn+1.

ing ECAE were based on explicit dynamics simulations which do not necessarily
require Dirichlet boundary conditions. However, dynamics simulations do not repli-
cate the strongly quasi-static processing conditions of ECAE. To this end, we use
the stabilized max-ent meshfree approximation scheme and the updated-Lagrangian
formulation introduced in Chapter 2 for quasi-static simulations. For the purpose
of subsequent discussions, the updated-Lagrangian formulation in the context of
ECAE is recapitulated in Figure 3.2.

Figure 3.3 illustrates the schematics of the ECAE channel, and a 3D billet of length l

and a square cross-section of unit length. To avoid any numerical artifacts and allow
a smoother transition of boundary nodes from the vertical section to the horizontal
section, 45◦ chamfers of lengths w1 and w2 (see Figure 3.3) are introduced at the two
corners of the channel. The billet faces that are in contact with the channel walls
normal to the x- and z-axes are constrained to in-plane displacements only. The
channel walls normal to the y-axis (i.e. the top and bottom walls of the horizontal
section) and the chamfers act as planar indenters (with cubic energy based on nodal
penetration). Although it is also possible tomodel the vertical sectionwith indenters,
replacing Dirichlet boundary conditions by indenters spoils the conditioning of the
consistent tangent matrix. Therefore, the use of planar indenters is only limited
to the horizontal section of the channel. The billet is extruded by a plunger near
the inlet and hence, the top face is constrained based on the plunger displacement,
while the other end of the billet is traction-free. At time t = 0, the undeformed
billet is positioned just above the outer chamfer, as illustrated in Figure 3.3. The
plunger moves a constant distance of utop in each time step ∆t until it reaches the
lower edge of the inner chamfer. The total duration of the process is given by
tmax = (l + w1 − 1)∆t/utop. The recrystallization parameters (see Section 3.2.2
and Appendix 3.A) in the Taylor model of Tutcuoglu et al. [202] were fitted based
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Figure 3.3: Schematics of 3D ECAE model including initial configuration and
boundary conditions on the specimen. All lengths are in non-dimensionalized units.

on the uniaxial compression experiments [28] of copper at the true strain rate
Ûεtrue = −0.002 s−1. To closely replicate the strain rates, the plunger displacement is
related to time step size as utop = | Ûεtrue |∆t.

Luis et al. [147] and Fu et al. [83] have also modeled the effects of friction against
the channel walls in dynamics simulation framework. However, the ECAE process
as well as the macroscale simulation is quasi-static wherein dynamic friction is
not present. Combined with the assumption that the channel walls are sufficiently
lubricated, static or dynamic friction is not included in our model.

3.3 Temporal evolution of internal variables
In this section, we present an explicit integration scheme for temporal evolution of
the internal variables. Although implicit updates offer better stability, the lack of a
closed form for variational formulation of the dissipation potential in our material
model limits the updates to explicit schemes only.

Following the notations of Chapter 2, subscript (.)n denotes a field in the configura-
tion at time tn. For the sake of brevity, the superscript (.)p denoting association of a
field with material point p is dropped. In the usual explicit scheme for evolution of
internal variables, themacroscale BVP assumes amaterial response based on themi-
croscale internal variables {Qi,n}i∈1,...,Ng of the previous step tn, and yields the total
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deformation gradient Fn+1 that satisfies mechanical equilibrium at time tn+1. This is
followed by an update of the internal variables to {Qi,n}i∈1,...,Ng using the current to-
tal deformation gradient Fn+1. Despite the simplicity, explicit updates require small
time steps to ensure stable evolution of the internal variables. However, this also
increases the number of calls to the meshfree solver which performs computation-
ally expensive operations that include construction of the meshfree shape functions
(2.10), assembly of the consistent tangent matrix (2.41d), and Newton-Raphson
iterations for solving the nonlinear equations in (2.26).

To overcome this stability vs. computational trade-off, we introduce an adaptive
multi-stepping approach for time integration outlined as follows. The time step
from tn to tn+1 is uniformly discretized into 2nm intermediate steps, where nm is
termed as the multi-step number. The incremental deformation gradient admits a
polar decomposition

Fn→n+1 = R̂Û, (3.12)

where Û =
√
FT

n→n+1Fn→n+1 denotes the principal stretch tensor, and R̂ = Fn→n+1Û
−1

is a rotation tensor. The incremental deformation gradient is then decomposed into
2nm number of compositions as

Fn→n+1 = R̂1/nm . . . R̂1/nm︸             ︷︷             ︸
nm times

Û1/nm . . . Û1/nm︸              ︷︷              ︸
nm times

. (3.13)

Using the multiplicative composition Fn+1 = Fn→n+1Fn of the updated-Lagrangian
formulation, the total deformation gradient at each intermediate step between tn and
tn+1 is recursively defined as

Fn+m/(2nm) ≡

{
Û1/nmFn+(m−1)/(2nm) if m ≤ nm,

R̂1/nmFn+(m−1)/(2nm) if m > nm,
for 1 < m ≤ 2nm, (3.14)

Finally, we leverage the intermediate total deformation gradients in (3.14) to incre-
mentally update the internal variables from {Qi,n}i∈1,...,Ng to {Qi,n+1}i∈1,...,Ng in 2nm

steps. Following Section 3.2.1, at each intermediate step m ∈ {1, . . . , 2nm}, the
internal variables Qi,n+m/(2nm) of the ith grain is computed based on Qi,n+(m−1)/(2nm),
the inelastic deformation gradient F in

i,n+(m−1)/(2nm)
, and the total deformation gradient

Fn+m/(2nm). This reduces the effective time step at the microscale to ∆t∗ = ∆t/2nm,
where ∆t = (tn+1 − tn), allowing improved stability in numerical integration of the
internal variables. On the other hand, the macroscale time step (∆t) is maintained to
avoid computational expenses arising from increased number of calls to the mesh-
free solver. An illustration of the multi-stepping integration scheme is presented in
Figure 3.4.
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Figure 3.4: Illustration of the time integration scheme at the micro-, meso-, and
macroscale with nm = 4.

The multi-step number nm also determines the computational cost of updating
internal variables between two time steps. For a material point undergoing severe
plastic deformation near the corner, the exponentiation of normalized resolved shear
stress in (3.5) can blow up if the effective time step∆t∗ is not small enough. However,
as the material point moves into the post-deformation region, i.e. away from the
corner, the resolved shear stress does not change significantly and using an extremely
small effective time step is unnecessary. We leverage this observation to propose the
following scheme that adaptively chooses the number of multi-steps at every time
step in order to reduce the computational expense. We define a lower bound on the
multi-step number as nm,l . At the beginning of a simulation, the multi-step number
at each material point is initialized to nm,l . At time tn, we compute the following
quantity based on the power law in (3.5) for each grain during each multi-step

ξn+m/(2nm) =

���ταn+m/(2nm)
/Gα

r,n+m/(2nm)

������ταn+(m−1)/(2nm)
/Gα

r,n+(m−1)/(2nm)

���, (3.15)

which is indicative of significant change in the normalized resolved shear stress. If
ξn+m/(2nm) > ξcr for some critical value ξcr (e.g., ξcr = 1.1), the effective time step is
reduced (i.e. nm is increased) by a factor of two, and the multi-step integration is
restarted from tn. At time tn+1, nm is re-initialized to half the number of multi-steps
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used for time-integration at tn or the lower bound nm,l , whichever is smaller. Note
that the adaptive scheme may lead to different multi-step numbers between any
two material points during the course of the simulation. Algorithm 6 explains the
adaptive multi-stepping scheme with the help of a pseudo-code.

Algorithm 6 : Adaptive multi-step evolution of internal variables at a givenmaterial
point
Input at time tn :

- Number of multi-steps: nm (equal to nm,l if tn = t0)
- Total deformation gradient at material point: Fn
- Internal variables of each grain: {γi,n, i = 1, . . . , Ng}, {gi,n, i = 1, . . . , Ng},
{Fin

i,n, i = 1, . . . , Ng}

1: ErrorFlag B true
2: while (ErrorFlag) do
3: ErrorFlag B false
4: for m = 1, . . . , 2nm do
5: Compute Fn+m/(2nm) using (3.14)
6: for i = 1, . . . , Ng do
7: Compute (Fe

i,n+m/(2nm)
)∗ B Fn+m/(2nm)(F

in
i,n+(m−1)/(2nm)

)−1

8: Compute γi,n+m/(2nm) using (3.5)
9: Compute gi,n+m/(2nm) using (3.6)
10: Compute F in

i,n+m/(2nm)
using (3.2)

11: Compute ξn+m/(2nm) using (3.15)
12: if (ξn+m/(2nm) > ξcr) then
13: ErrorFlag B true
14: break
15: end if
16: end for
17: if (ErrorFlag) then
18: break
19: end if
20: end for
21: if (ErrorFlag) then
22: nm B 2nm
23: end if
24: end while
25: // Prepare for next time step tn+1:
26: nm B max

{
nm/2, nm,l

}
3.4 Results
For the subsequent results, all simulations follow the protocols presented in Ap-
pendix 3.A, including those related to spatial discretization, simulation parameters,
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and material properties, with otherwise stated exceptions. At the mesoscale, migra-
tion (3.9) and nucleation (3.11) of grains are by default deactivated, but we activate
them only when studying the effects of recrystallization, which is further explained
in Section 3.4.3.

3.4.1 Convergence with refinement in spatial and temporal discretization
Figure 3.5 shows the convergence of total energy stored in the billet (excluding energy
penalization due to planar indenters) with respect to h-refinement. At low spatial
resolution, we observe some oscillatory artifacts which emerge when a set of nodes
passes through the corner causing a sharp increase in energy. With increasing spatial
resolution, these artifacts become less apparent. Figure 3.6 shows the convergence
of energy with decreasing ∆t. Similar oscillatory artifacts are observed at low
temporal resolution, which vanish with temporal refinement. While it is possible
to further increase the spatio-temporal resolution, updating internal variables of
large number of grains at multiple material points quickly becomes computationally
infeasible with increasing resolution. Based on the convergence studies, we choose
the spatial and temporal discretizations corresponding to nodal spacing equal to
0.16667 and ∆t = 0.1 s, respectively, for a reasonable balance between accuracy
and computational costs in the subsequent simulations.

Figure 3.7 illustrates the spatial discretization (chosen based on the aforementioned
convergence study) during the course of the simulation. Severe distortion in nodal
connectivity (in terms of relative position of the nodes and material points) is
observed, particularly near the corner and outlet of the channel. While mesh-based
methods such as FEM are limited due to entanglement and inversion of elements,
our proposed updated-Lagrangian meshfree framework is able to simulate such
deformations without any issues. Furthermore, the total-Lagrangian formulation,
even with ameshfree kernel, does not account for changes in connectivity and hence,
it will incorrectly introduce non-physical forces and kinematics.

3.4.2 Strain distribution and effect of channel geometry
Figure 3.8 illustrates the strain distribution in a specimen undergoing ECAE, vi-
sualized via deformation gradient component Fxy. To study the effect of channel
geometry on strain distribution, the strains are plotted for two different sets of cham-
fer dimensions – (i) w1 = 0.25, w2 = 0.1, and (ii) w1 = 0.125, w2 = 0.05; the latter
describes sharper corners in the channel. For both cases, we observe a strong shear
region that extends from the outer to the inner corner of the channel.
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(a)

(b)

Figure 3.5: Convergence of energy with respect to h-refinement. (a) Energy stored
in the billet vs. time for four different nodal spacings. (b) Energy vs. nodal spacing
evaluated at times t ∈ {tmax/2, 3tmax/4, tmax} as indicated in (a).
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(a)

(b)

Figure 3.6: Convergence of energy with respect to temporal refinement. (a) Energy
stored in the billet vs. time for four different time steps ∆t. (b) Energy vs. time step
∆t evaluated at times t ∈ {tmax/2, 3tmax/4, tmax} as indicated in (a).
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t = tmax/2

t = 3tmax/4

t = tmax

Figure 3.7: Deformed spatial discretization at three different stages of the ECAE
simulation. The yellow and red points denotematerial points and nodes, respectively.
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F F̃ = RFRT

Segal [192] ©«
1 −2 0
0 1 0
0 0 1

ª®¬
(i) w1 = 0.25

w2 = 0.1
©«
1.94 ± 0.23 −1.01 ± 0.05 0.00 ± 0.03
0.98 ± 0.05 0 ± 0.03 0.00 ± 0.01

0.00 0.00 1.00

ª®¬ ©«
0.96 ± 0.13 −1.97 ± 0.12 0.00 ± 0.03
0.03 ± 0.12 0.98 ± 0.12 0.00 ± 0.02

0.00 0.00 1.00

ª®¬
(ii) w1 = 0.125

w2 = 0.05
©«
2.11 ± 0.46 −1.00 ± 0.10 0.00 ± 0.05
0.96 ± 0.10 0.02 ± 0.06 −0.01 ± 0.01

0.00 0.00 1.00

ª®¬ ©«
1.04 ± 0.26 −2.03 ± 0.24 −0.01 ± 0.04
−0.07 ± 0.24 1.09 ± 0.22 0.00 ± 0.03

0.00 0.00 1.00

ª®¬
Table 3.1: Mean and standard deviation of deformation gradient over material
points in the homogeneous section indicated by black rectangles in Figure 3.8. The
deformation gradients are reported for t = tmax.

Homogeneity of strain distribution in a specimen is crucial for industrial applica-
tions. We observe that except the regions near the ends of the billet, there is reason-
able homogeneity in strain distribution (see Figure 3.8) throughout the specimen.
To quantify this homogeneity, Table 3.1 reports the mean and standard deviation
in deformation gradient at the material points that lie inside the black rectangles
indicated in Figure 3.8. Following the general convention in previous literature, we
also report the deformation gradient under the following coordinate transformation

F̃ = RFRT, with R =
©«
cos(−π/4) − sin(−π/4) 0
sin(−π/4) cos(−π/4) 0

0 0 1

ª®®®¬ , (3.16)

where R ∈ SO(3) applies a rotation of −π/4 about the z-axis. Our findings are
in agreement with the analytical derivations of Segal [192] and Iwahashi et al.
[104] that predict a 200% simple shear deformation under simplified assumptions.
We also note that spatial discretization with higher resolution may reveal more
heterogeneity, which is a limitation due to the computational costs of the multiscale
framework. Furthermore, the sharper corner (w1 = 0.125, w2 = 0.05) causes a
relatively stronger and more localized strain inhomogeneity, which is indicated by
the red circles in Figure 3.8 and also evident from the higher standard deviations
in Table 3.1. This observation is in contrast to the hypothesis by Segal [192] that a
sharper corner would produce a relatively more homogeneous strain distribution.

3.4.3 Grain recrystallization and texture evolution
In the previous simulations, grain recrystallization was ignored. In this section,
we activate recrystallization, i.e. migration and nucleation of grains (outlined in
Section 3.2.2), in order to capture grain refinement at the mesoscale. Figure 3.9a
illustrates evolution of the number of active grains at three representative material
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t = tmax/2 t = tmax

(a) Chamfer dimensions: w1 = 0.25, w2 = 0.1

t = tmax/2 t = tmax

(b) Chamfer dimensions: w1 = 0.125, w2 = 0.05

Figure 3.8: Distribution of deformation gradient component Fxy for two different
sets of chamfer dimensions. The black rectangles indicate regions of relatively
homogeneous strain distribution compared to the billet ends. The red circles indicate
regions of strong and localized strain inhomogeneity in the middle of the specimen.
The plots are obtained by interpolating the deformation gradients onto the cross-
sectional mid-plane via Gaussian interpolants of standard deviation equal to 0.3.
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points, as well as the mean and maximum over all the material points. When
the material points approach the channel corner, the severe shearing deformation
causes strong nucleation of new, pristine, and initially stress-free grains, which is
evident from the sharp increase (12-15 times) in the number of grains. As the
material points move away from the corner and into the post-deformation regime,
grain migration becomes dominant and results in gradual decrease in the number of
grains at the expense of heavily distorted and high-energy grains. This phenomenon
is also known as post-dynamic recrystallization, which is beyond the scope of this
work and the interested readers are referred to [190] for more details. The effects
of recrystallization are also observed in Figure 3.9b which illustrates the temporal
evolution of average grain volume fraction at the three representativematerial points.
Specifically, the shear zone near the corner experiences the strongest grain refinement
indicated by the sharp decrease in average volume fraction, followed by gradual
coarsening, i.e. gradual increase in average volume fraction due to post-dynamic
recrystallization. Figure 3.9b also shows the mean and standard deviation in average
grain volume fraction over all the material points. In particular, the mean of average
grain volume fraction is reduced by a factor of approximately 3.3 at t = tmax with
respect to the initial value, indicating strong grain refinement. The significant
standard deviation is indicative of spatial heterogeneity in grain refinement and is
attributed to the regions near the ends of billet specimen, similar to strain distribution
in Figure 3.8.

Grains at the material point level also undergo reorientation in response to the local
deformations and give rise to textures. We illustrate this texture evolution for a
representative material point in Figure 3.10 via (inverse) pole density figures which
are generated based on stereographic projection of 〈111〉 poles of the face-centered
cubic (fcc) copper crystals on the (001) plane (see e.g., [208]). To study the effects
of recrystallization, the pole figures are shown for the cases when recrystallization is
excluded and included. In both cases, the pole figures at t = tmax/4 indicate an initial
texture corresponding to aweak compression zone. As thematerial points plastically
flow around the corner, each grain reorients in order to allow shear along the
preferred slip systems. This evidently produces the characteristic texture classically
associated with shearing, i.e. four to six dominant orientations [208], with some
diffused features retained from the weak-compression phase. Moreover, for this set
of numerical experiments and using the proposed simulation framework, Tutcuoglu
[201] showed that prominence of texture features is correlated to the proximity of
a material point to the outer wall. In particular, material points closest to the outer
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t = 0:

t = tmax/2:

t = tmax:

(a) Evolution of number of active grains

(b) Evolution of average grain volume fraction

Figure 3.9: Temporal evolution of (a) number of active grains, and (b) average grain
volume fraction, evaluated at three representative material points (indicated as A,
B, and C).
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wall show six distinctly dominant orientations, while the points closer to the inner
wall show a more diffused texture. Compared to the case when recrystallization is
excluded, the texture at t = 3tmax/4 is more diffused with recrystallization included.
This is attributed to the random orientation of the new grains arising from the
strong nucleation during the shearing phase. In contrast, recrystallization produces
a significantlymore pronounced shearing-based texture at t = tmax. This is due to the
post-dynamic recrystallization that plays a crucial role in texture evolution during the
post-deformation phase [190]. The texture evolution obtained from our framework
corroborates experimental findings (via neutron diffraction of ECAE samples) of
Vogel et al. [208] and theoretical predictions (based on sequential lamination type
microstructures) of Sivakumar and Ortiz [193]. For more details on the texture and
microstructural evolution observed in these numerical experiments, the interested
readers are referred to Tutcuoglu [201].

Figure 3.11 shows evolution of the energy stored in the billet and the vertical force
exerted by the plunger when recrystallization at the mesoscale is included/excluded.
Notably, the total energy and the plunger force reduce significantly in the case when
recrystallization is enabled. The soft response is due to the nucleation of pristine
stress-free grains, in combination with diminution of highly stressed grains due
to migration that results in a decrease in the homogenized energy as well as the
plunger force. Compared to evolution of the energy, the oscillatory artifacts in the
plunger force due to coarseness of the spatial-temporal discretization (limited by
computational expense of the simulation) are more pronounced, but are expected
to vanish with refinement. The initial steep increase in force is attributed to the
compression in the beginning (as also observed in texture evolution) followed by
saturation as the material starts to plastically flow around the corner. The force
curves also show similar trends as those obtained by Luis et al. [147] for ECAE of
5083 aluminium alloy via FEM simulations1

3.4.4 Mutli-pass ECAE
Since the cross-section of the specimen remains unchanged during ECAE, it is
possible to extrude the specimen through the channel multiple times. Ferrasse
et al. [79] have shown that multiple passes of a specimen through the channel (also
known as multi-pass ECAE) further improves the grain refinement and reorienta-
tion of grains. Multi-pass ECAE usually involves shearing along different directions

1The comparison is purely qualitative. Thematerialmodel and process parameters of simulations
by Luis et al. [147] are entirely different from that of the presented study.
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Figure 3.10: Comparison of texture evolution when recrystallization is included
vs. excluded. The pole figures are evaluated at four time steps for a representative
material point indicated as red dot, along with position in the respective deformed
configurations. The minimum and maximum values of each pole figure are denoted
in blue and yellow boxes, respectively.

to produce more uniform grain refinement and strain distribution than single-pass
ECAE. This is achieved by rotating the specimen along its axis between subsequent
single passes, or extruding the specimen through a long channel consisting of mul-
tiple in-plane and out-of-plane bends. Computational modeling of both approaches
pose their own set of challenges [83] in terms of the realignment of spatial dis-
cretization and treatment of boundary conditions and hence will be covered in a
future study. For the scope of this thesis, we simulate a relatively simple multi-pass
ECAE setup where a specimen of length 2l is extruded through a channel shown in
Figure 3.12a. Effect of grain migration and nucleation, and hence grain refinement
is not considered in this study. Homogeneity in the resulting strain distribution in
the specimen, visualized via deformation gradient component Fxy, is illustrated in
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(a) Energy stored in the specimen (b) Vertical force exerted by the plunger

Figure 3.11: Evolution of (a) the total energy stored in the specimen, (b) the vertical
force exerted by the plunger, when recrystallization is included/excluded.

Figure 3.12b. Note that the shear strains vanish after the second corner, as one
would expect based on the anti-symmetry of the two corners. Figure 3.13 shows the
texture evolution at a representative material point during the simulation. Notably,
a strong grain reorientation and texture is retained, in spite of disappearance of
shear strains otherwise encountered in single-pass ECAE. This clearly demonstrates
the advantage of multi-pass ECAE over single-pass setups, and motivates further
research into optimization of such processes with high fidelity simulations.

3.5 Conclusion
In this chapter, we have introduced a novel multiscale framework for high-fidelity
simulations of ECAE and in general, SPD processes. The enhanced max-ent based
meshfree approximation scheme for stable updated-Lagrangian simulations (intro-
duced in Chapter 2) is used to capture severe deformations at the macroscale. The
Taylor model of Tutcuoglu et al. [202] is applied at the mesoscale to capture grain
nucleation and migration, while finite strain crystal plasticity model for copper is
used at the microscale. Additionally, we have proposed an adaptive multi-stepping
scheme for computationally efficient time integration of internal variables at the
material point level. Numerical studies draw several conclusions that include rea-
sonable homogeneity in strain distribution of the specimen as well as strong texture
evolution due to the reorientation of grains, which are in good agreement with
previous theoretical predictions and experimental results. More importantly, grain
nucleation and migration enable significant grain refinement and post-dynamic re-
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(a) Schematics (in 2D view) of a 3D channel consisting of two in-plane corners with equal
chamfer dimensions. The initial configuration and boundary conditions on the specimen are
also shown. All lengths are in non-dimensionalized units.

(b) Distribution of deformation gradient component Fxy at time t = 2842 s. Insets show
strain distribution in the relatively homogeneous regions indicated by dashed lines. The plots
are obtained by interpolating the deformation gradients onto the cross-sectional mid-plane
via Gaussian interpolants of standard deviation equal to 0.3.

Figure 3.12: Multi-pass ECAE
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Figure 3.13: Texture evolution in multi-pass ECAE (described by the schematics in
Figure 3.12a). The pole figures are evaluated at two time steps for a representative
material point indicated as red dot, along with position in the respective deformed
configurations. The minimum and maximum values of each pole figure are denoted
in blue and yellow boxes, respectively.

crystallization. To conclude this set of experiments and give directions to future
work, we have showed possible extension to multi-pass ECAE with the example of
double in-plane ECAE of a specimen. Due to the general and flexible nature of
the proposed framework, it can also be applied to ECAE with multiple out-of-plane
passes, which will be presented in a subsequent study. Overall, the proposed frame-
work offers a computational tool for optimizing process parameters of ECAE and
other SPD processes in the metal forming industry.
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APPENDIX

3.A Simulation protocols
Tables 3.2, 3.3, and 3.4 lists the default set of parameters used in each simulation,
unless explicitly stated otherwise. All simulations use the following protocols to
setup the initial configuration; detailed information can be found in Chapter 2.

• A uniform tetrahedral mesh is generated for the initial geometry (cuboid)
of the billet. Next, a material point is inserted at the barycenter of each
tetrahedron. The volume V p

0 associated with the material point p is initialized
with the volume of the containing tetrahedron. For each material point p, a
measure of nodal spacing hp is computed as mean distance to nodes of the
containing tetrahedron. The max-ent locality parameter βp

0 is then initialized
based on hp, as listed in Table 3.4. The initial connectivity is determined by
M

p
0 = −1/log(εcut) × βp

0 , where εcut is a small valued tolerance. For details,
see Section 2.2.4.

• At the mesoscale, the orientations of each grain, including those nucleated
during the loading, are randomly initialized using the Bunge-Euler angles:
φ1 = 2πr1, θ = cos−1(1− 2r2), ψ = 2πr3, where ri∈1,2,3 are randomly sampled
fromU([0, 1]) (for details, the interested reader is referred to [120]).

Parameter Symbol Unit Value Source
Temperature T [K] 775
Shear modulus µ [GPa] 34 [82]
Bulk modulus κ [GPa] 128 [131]
Initial shear resistance G0 [MPa] 6.5 [152]
Plastic modulus Q [MPa] 37.0 [152]
Latent hardening multiplicator q [-] 1.4 [96]
Hardening exponent m [-] 26 [96]
Saturation factor B [-] 8 [96]
Initial accumulated slip measure g0 [-] 0.007 [96]
Reference slip rate Ûγ0 [s−1] 0.001 [96]
Critical energy density threshold W in,cr [MPa] 0.424 [152]
Nucleation exponent d [-] 4.4 [214]

Table 3.2: Microscale parameters of the copper material model.



84

Parameter Symbol Unit Value
Initial number of grains Ng,init [-] 200
Migration rate κGBM [GPa·s] 204
Nucleation rate κNCL [s−1] 57.4
Nucleation parameter C [-] 10.9
Initial nucleation volume fraction ηNCL [-] 1/643

Table 3.3: Mesoscale parameters of the Taylor model.

Parameter Symbol Unit Value
Initial length of billet∗ l [-] 4
Lower-left chamfer dimension∗ w1 [-] 0.25
Upper-right chamfer dimension∗ w2 [-] 0.1
Initial max-ent locality parameter βp

0 [-] (3/hp2)I

Shape function cut-off tolerance εcut [-] 10−7

Initial connectivity cut-off region M
p
0 [-] −1/log(εcut) × βp

0
Time step ∆t [s] 0.1
Duration of ECAE process tmax [s] 1624
Lower bound on multi-step number nm,l [-] 8
Multi-stepping criterion ξcr [-] 1.1

Table 3.4: Macroscale parameters defining the geometry, boundary conditions,
and max-ent approximation scheme. Parameters marked with ∗ are listed in non-
dimensionalized units.
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C h a p t e r 4

NUMERICAL ENERGY RELAXATION IN PROBLEMS WITH
NONCONVEX ENERGETIC POTENTIALS

Research presented in this chapter has been adapted from the following publication:

S. Kumar, A. Vidyasagar, and D. M. Kochmann. An assessment of numerical tech-
niques to find energy-minimizing microstructures of nonconvex energy potentials.
Under review, 2019.

4.1 Introduction: Energy relaxation and microstructural patterns
Microstructural patterns are ubiquitous across materials systems: from the laminate
patterns accompanying deformation twinning [56] and martensitic phase transfor-
mations [26, 57] to networks of dislocation walls in metal plasticity [66, 116, 168],
to bi-continuous arrangements from phase separation [93], and instability-induced
pattern formation in periodic metamaterials [81, 87, 170]. The origin of those spa-
tially complex patterns is well understood and has been traced back to nonconvex
energetic potentials that result in fine-scale microstructures as energy minimizers
[11, 27, 55, 74, 89]. In order to understand both the intricate microstructural de-
tails and the resulting macroscopic material response, it is therefore imperative to
identify both the (quasi)convex hull of the underlying nonconvex potentials and the
corresponding fine-scale patterns. While there is rich literature on (semi-)analytical
methods for calculating or approximating the convexified energetic potentials of
relatively simple material models, numerically computing the quasiconvexified po-
tentials and predicting the formation of the associated microstructural patterns in
general are non-trivial tasks and subjects of this investigation.

By way of introduction, consider the classical mechanical boundary value problem
(BVP) of quasistatic equilibrium at finite strains. We seek a deformation mapping
ϕ : Ω→ Rd , which links the deformedposition x = ϕ(X) ∈ ϕ(Ω) to the undeformed
position X ∈ Ω of any material point inside a body Ω ⊂ Rd in d dimensions. By
adopting a variational framework [200], the equilibrium deformation map is found
by minimization of the total potential energy functional

I[ϕ] =

∫
Ω

W(∇ϕ)dV − `(ϕ), (4.1)



86

where W denotes the Helmholtz free energy density, and `(φ) represents the linear
potential of external forces. In linear elasticity, (4.1) has a unique minimizer [121];
in finite elasticity or inelasticity, the problem becomesmore involved and depends on
the choice of the energy density W . If W lacks quasiconvexity [64], then (4.1) lacks
weakly lower semicontinuity and solutions are to be found as minimizing (or, to
be exact, infimizing) sequences; i.e., fine-scale patterns form as energy minimizers,
which may be interpreted as microstructural patterns on a lower spatial scale. By
assuming a separation of scales between the fine-scale patterns and the macroscopic
BVP, the solution to the macro-problem can be found [1] by replacing the energy
density W by its quasiconvex hull QW , defined as [158]

QW(∇ϕ) = inf
{

1
|ω|

∫
ω

W(∇ϕ + ∇φ) dV
���� φ : φ = 0 on ∂ω

}
, (4.2)

where ω denotes a representative volume element (RVE) of arbitrary size. The
small-scale fluctuation field φ : ω → Rd describes the microstructural patterns at
the RVE-level. We note that the same principles hold in linearized kinematics, where
ϕ is replaced by the displacement field u and gradients are replaced by symmetrized
gradients.

The quasiconvex hull (4.2) and the associated microstructural fluctuations φ are
generally hard to calculate due to the non-local nature of (4.2). Most previous
approaches for microstructural pattern prediction relied on (i) analytical energy re-
laxation, see e.g. [60, 117, 154], or on (ii) RVE-level finite element (FE) simulations
[16, 41]. Successful analytical approaches have often relied on the construction of
matching upper and lower bounds in terms of, respectively, the rank-one-convex hull
and the polyconvex hull [13]. Examples include rate-independent single-slip plas-
ticity [42, 59–61] and isotropic hyperelasticity like the St. Venant-Kirchhoff model
[128]. The rank-one-convex hull construction [95, 168] is particularly appealing as
it implies a higher-order laminate construction and therefore admits a clear interpre-
tation of the associated microstructural patterns. The energy density of a first-order
laminate microstructure is constructed as

R1W(∇ϕ) = inf


λ1W(F1) + λ2W(F2)

�����������������

2∑
i=1

λi = 1,

λi ≥ 0,
2∑

i=1
λiFi = ∇ϕ,

rank(F1 − F2) ≤ 1


, (4.3)
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where F1, F2 ∈ GL+(d); i.e., the deformation gradients in both laminate phases
must be physically admissible. Recursive repetition leads to higher-order sequential
laminates [9, 168], with a laminate of order k defined by

Rk+1W(∇ϕ) = inf


λ1RkW(F1) + λ2RkW(F2)

�����������������

2∑
i=1

λi = 1,

λi ≥ 0,
2∑

i=1
λiFi = ∇ϕ,

rank(F1 − F2) ≤ 1


, (4.4)

Ultimately, the rank-one-convex hull is obtained as

RW(∇ϕ) = lim
k→∞

RkW(∇ϕ). (4.5)

Analytical laminate constructions of the above type are feasible for relatively simple
constitutive models such as, e.g., hyperelasticity [128] or single-slip single-crystal
plasticity [61]. Numerical approaches have been reported, e.g., for finite-strain
crystal plasticity [168]. On the downside, more complex material models produce
complex multi-phase patterns that would require intricate higher-order laminate
constructions (which are challenging due to the nonconvex problem and a myriad
of local and global energy minima). Further, interfaces in reality are not infinitely
sharp as in the above lamination model [115] where the computed patterns lack a
length scale. Finally, the rank-one-convex hull presents only an upper bound to the
sought quasiconvex hull and it can therefore be significantly off.

As an alternative, RVE-level numerical simulations have been performed, which
have primarily resorted to low-order local FE interpolations to approximate the
microstructural patterns in finite-dimensional spaces. Unfortunately, using the latter
in conjunctionwith unregularized nonconvex potentials results in: (i) ill-conditioned
systems due to the loss of convexity, and (ii) coarse microstructural patterns that are
mesh- and interpolation-dependent and incur heavy computational costs [14, 15, 40].
All prior examples have therefore been limited to RVEs of low resolution (or small
sizes), and primarily to two dimensions (2D).

In an attempt to overcome the limitations of FEM,Vidyasagar [205] proposed the use
of a Fourier spectral formulation [130, 159, 160] with improved finite-difference-
based stabilization [206, 207] for approximating the quasiconvex energy hull and
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identifying energy-minimizing microstructural patterns. Since the spectral treat-
ment enforces periodic boundary conditions, the affine boundary conditions in (4.2)
are replaced by periodic boundary conditions. This is admissible if the functional is
non-negative, continuous and the energy density has bounded growth [3, 12]. Thus,
we compute periodic microstructures instead of forcing the perturbation field to van-
ish on the RVE’s boundary ∂ω, i.e., we numerically approximate the quasiconvex
hull defined by

QW(∇ϕ) = inf
{

1
|ω|

∫
ω

W(∇ϕ + ∇φ) dV
���� φ : φ(X+) = φ(X−) on ∂ω

}
(4.6)

where X± implies a pair of periodically matching points on opposite faces (or, in 2D,
edges) of the boundary of a fixed-size RVEω. As demonstrated byVidyasagar [205],
this approach admits simulations of high resolution due to low computational costs
and ease of parallelization. The spectral scheme also introduces a relative length
scale that is beneficial in realizing physically relevant microstructures [205]. The
latter is particularly useful for phase transformations, whose multi-welled energy
landscape results in geometrically complex microstructural patterns (see e.g. Bhat-
tacharya [26] and references therein for experimental evidence). Despite the im-
pressive high-resolution of the predicted microstructures, this approach, however,
performs poorly in numerical relaxation of energy at the RVE level, as demonstrated
in the examples of [205].

With those shortcomings in mind, we use the meshfree maximum-entropy (max-
ent) approximants as a new numerical avenue to simulate the RVE problem. The
meshfree discretization, though coming with higher computational costs, avoids
the disadvantageous impact of element size and shape on solutions found by FE
interpolants. The specificmax-ent approximants are further least biased by the nodal
locations. This overall avoids spurious artifacts of the discretization with regards
to the simulated microstructural features. Here, we employ the enhanced version of
local max-ent based meshfree method for stable quasi-static simulations in total and
updated Lagrangian settings, proposed in Chapter 2. The asymptotic computational
cost ofmax-ent is the same as in FEMand hence suffers from a similar computational
limitation in terms of predicting high-resolution microstructures. However, as will
be shown in Sections 4.4 and 4.5, the non-local nature of max-ent is superior at
approximating the quasiconvex hull even at low resolution compared to the spectral
approach and FEM.

The remainder of this contribution is organized as follows. Section 4.2 describes
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the numerical relaxation challenge. The FEM and finite-difference-improved FFT
spectral formulations are outlined in Sections 4.3.1 and 4.3.2, respectively, followed
by themax-ent approach in Section 4.3.3. We then compare the FFT, FEM, andmax-
ent approaches. Section 4.4 studies a hyperelastic St. Venant-Kirchhoff solid as a first
benchmark. Next, Section 4.5 summarizes results for double- andmulti-phase solid-
solid transformations. In Section 4.6, we discuss the importance of microstructural
interfaces and the underlying spatial discretization by the aid of numerical and
analytical examples; and we provide insight into the numerical limitations and
convergence properties of the numerical schemes. Finally, Section 2.4 concludes
our study.

4.2 Numerical energy relaxation and pattern prediction
In order to approximate the quasiconvex hull in (4.6), we solve a periodic BVP on
an RVE ω whose discretization is denoted by ωh. Specifically, we aim to calculate
an numerical approximation of the quasiconvex hull defined by

NW(∇ϕ) = inf
{

1
|ωh |

∫
ωh

W(∇ϕ + ∇φh) dV
���� φh : φh(X

+) = φh(X
−) on ∂ωh

}
,

(4.7)
where φh is a perturbation field whose discretization depends on the chosen numeri-
cal scheme. Since we are only concerned with homogeneous media in our examples
(and not materials with pre-existing microstructure), the size of the RVE ωh is, in
principle, irrelevant and only enters through the spatial resolution of the numerical
discretization.

We note that the above can be extended to inelastic material models or, generally,
material models with a set of local internal variables denoted by z : Ω → Rq

(with some q ≥ 0) such that W = W(∇ϕ, z). In such cases, we assume that an
effective energy functional W∗ = W∗(∇ϕ) exists, in which the internal variables are
condensed out either by energy minimization or by solving an incremental evolution
equation, e.g., by invoking variational constitutive updates [169]. Here and in the
following, we simply write W∗(∇ϕ) and assume that W∗ is either the elastic energy
density (see the hyperelastic examples in Section 4.4) or a condensed effective
energy density (see the phase transformation examples in Section 4.5).

We aim to compute the energy density (4.7) by numerically finding φh : ωh → R
d

such that

φh = arg min
{∫

ωh

W(∇ϕ + ∇φh) dV
���� φh(X

+) = φh(X
−) on ∂ωh

}
. (4.8)
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Minimization of the energy functional is equivalent to solving the quasistatic con-
servation of linear momentum over the RVE ωh, viz.

Div P(X) = 0 in ω with P(X) =
∂W
∂∇ϕ

(
∇ϕ + ∇φh(X)

)
, (4.9)

where P represents the first Piola-Kirchhoff stress tensor.

Following classical first-order homogenization [122, 153], we apply periodic bound-
ary conditions on the boundary of anRVEωh while imposing an average deformation
gradient F0 = ∇ϕ. To this end, we constrain any point on the boundary ∂ωh to
deform according to

x = F0X + φh(X) with φh(X
+) = φh(X

−)

s.t. x+ − x− = F0(X+ − X−) on ∂ωh,
(4.10)

where x± and X± are, respectively, deformed and undeformed positions of periodi-
cally matching points on opposite surfaces of the RVE. Importantly, our simulations
reveal not only the energy density NW but also the associatedmicrostructures emerg-
ing as the minimizing fields φh(X) within the RVE ωh. In order to solve the above
RVE-level periodic BVP, we must define a spatial discretization scheme, for which
we choose the finite element method (FEM), a Fourier-based spectral formulation
(FFT), and a meshfree maximum-entropy (max-ent) approximation. Those will be
outlined in the following sections.

For completeness, we point out that from the numerically computed approximate
quasiconvex hull NW(∇ϕ), one may also extract the effective stress–strain response.
For example, the effective first Piola-Kirchhoff stress tensor is given by

P =
∂NW
∂∇ϕ

(∇ϕ), (4.11)

and in case of inelasticity the incremental formulation is used. Alternatively, the
above definitions admit the calculation of P as the average stress across the RVE.

4.3 Numerical solution schemes
4.3.1 Finite element solution scheme
We use a regular discretization of the RVE into equal-sized simplicial tetragonal
(constant-strain) elements with linear interpolation and a single quadrature point per
element. Since no microstructural features are known a priori in general, a regular
grid is chosen as the best option. Spatial resolution and number of elements vary
and will be indicated for each of the benchmark examples in subsequent sections.
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We solve the classical Galerkin form of the underlying variational problem, and we
solve the nonlinear system of the equations of equilibrium by an iterative Newton-
Raphson solver. The FE discretization is the simplest numerical choice, which has
traditionally been used for the purpose of numerical energy relaxation at the RVE-
level; see, e.g., Bartels et al. [16], Carstensen and Plecháč [41]. However, FEM
comes with significant disadvantageous since (i) the element shape and orientation
may bias (or even prevent) the formation of microstructural patterns not aligned
with the mesh, (ii) fine microstructures require high computational costs stemming
from significant mesh refinement (especially the application of periodic boundary
conditions destroys the beneficial bandedness of system matrices), (iii) Netwon-
Raphson solvers are prone to fail to convergence when dealing with nonconvex
problems where the stiffness matrix loses positive-definiteness.

4.3.2 Spectral solution scheme
We adopt the spectral framework outlined in Vidyasagar et al. [207], which is why
we here review the concepts only briefly to the extent required for the following
discussions. Following Moulinec and Suquet [159, 160] and [130], we introduce
the deformation gradient F(X) = ∇ϕ(X) and the perturbation stress tensor τ(X)
such that

PiJ(X) = C
0
iJkLFkL(X) − τkL(X) in ωh (4.12)

with a reference modulus tensor C0 which is taken, e.g., as the average

C0
iJkL =

1
|ωh |

∫
ωh

CiJkL(X) dV, CiJkL(X) =
∂2W

∂FiJ ∂FkL
(X). (4.13)

It is important that the obtained solution is independent of the specific choice
of the reference modulus tensor C0 (it does affect the convergence properties but
not the final solution). This implies that a non-positive-definite modulus tensor C0

(arising frequently in nonconvex problems) can be replaced by that of an approximate
convex energy, which renders the numerical method stable. This will be exploited
in our numerical examples and is a significant advantage over, e.g., FE formulations
whose Newton-Raphson solver requires C0 to be strongly elliptic at all times for
convergence.

Insertion of (4.12) into (4.9) and applying a discrete (inverse) Fourier transform,
translates the system of ODEs into an algebraic system of equations in Fourier space.
Specifically, we discretize the RVE into a regular grid with uniform spacing ∆X in
each direction, so that the solution in Fourier space is expressed in terms of the
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coefficients in K -space with discrete K -vectors T = {K1, . . . , Kn} of the reciprocal
grid. For details see, e.g., Vidyasagar et al. [206, 207]. In Fourier space, the system
is algebraic and can be solved for the deformation gradient in Fourier space, leading
to

F̂kL(K ) =


Â−1

ik (K )τ̂iJ(K )KJKL for K , 0,

F0
kL for K = 0,

(4.14)

where Âik(K ) = C
0
iJkL KJ KL is the acoustic tensor, and ·̂ = F (·) denotes a quantity

transformed into Fourier space. Note that τ(X) depends on F(X), so that an
iterative solver is required; here, we resort to (inefficient but stable and simple)
fixed-point iteration. Therefore, this spectral scheme does not require an assembly
or inversion of a global stiffness matrix as opposed to FEM. Hence, the number of
degrees of freedom that can be simulated scales quite efficiently compared to FE
simulations. This is beneficial for capturing high-resolution microstructures by the
spectral scheme, which is not realistically possible with other solution schemes due
to limited computational resources.

To avoid numerical ringing artifacts typically produced by truncated Fourier series
and the associated Gibbs phenomena [85, 86, 99], we employ a discrete spectral
differentiation with a finite difference-based scheme [129, 161, 210]. By applying
an 8th-order central-difference approximation to all spatial derivatives before the
Fourier transform (with h = 2π, based on the definition of the Fourier kernel), we
obtain the approximation [206]

F

(
∂ f
∂Xi

)
≈ −i

[
8 sin(hKi∆X)

5∆X
− 2

sin(2hKi∆X)
5∆X

+ 8
sin(3hKi∆X)

105∆X
−

sin(4hKi∆X)
140∆X

]
F ( f ),

(4.15)

which converges to the exact derivative with decreasing grid size (∆X → 0). For
optimal performance, these approximated wave vectors are used in the scheme for
the calculation of deformation gradients but not in the calculation of the acoustic
tensor.

Without the existence of an intrinsic length scale, microstructural patterns are in-
finitely fine, implying that in fact infimizing sequences, or Young measures [114],
are the solution of the non-quasiconvex variational problem, and the associated
energy is approached in the limit but not attained [64]. If a length scale exists
as, e.g., in strain-gradient plasticity, then laminate-type constructions have proven
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useful [6]. It was shown by [207] that the above finite-difference approximation
of the Fourier discretization introduces an intrinsic, numerical length scale. It thus
establishes nonlocality since the energy density is transformed into the nonlocal
form W ≈ W(∇ϕ) + W h(∇mϕ) where integer m ≥ 2 is controlled by the order
of the finite-difference approximation (e.g., m = 8 for the above 8th-order central-
difference approximation). Specifically, we may express the actual energy density
when the simulation uses the finite-difference approximation as [207]

W(∇ϕ) → W(∇ϕ) +
(∆X)m

(m + 1)!
∂W
∂ϕi,J

(∇ϕ)
∂(m+1)ϕi

∂Xm+1
J

≡ W(∇ϕ) +W h(∇m+1ϕ).

(4.16)

Since W h(∇m+1ϕ) scales as (∆X)m, the nonlocal energy contribution W h decays
with decreasing grid spacing ∆X . This has two important consequences. On the
one hand, it shows consistency of the scheme as ∆X → 0. On the other hand, it
introduces a length scale that is relative with respect to the RVE size. For a cubic
RVE of side length L represented by N3 grid points, we have∆X = L/(N−1). Thus,
∆X is relative to the RVE size, which has the benefit that diffuse interfaces maintain
their width irrespective of the absolute RVE size (i.e., microstructural patterns will
be independent of the absolute size/discretization of ωh), and no further numerical
regularization is required.

In summary, the finite-difference-improved Fourier scheme outlined above comes
with high efficiency and enables high-resolution microstructure prediction at low
computational costs (with the added benefit of not requiring a positive-definite in-
cremental average tangent stiffness), while introducing a numerical interface energy
for stable diffuse microstructural interfaces.

4.3.3 Max-ent solution scheme
In order to solve the RVE problem, we adopt the quasistatic, total-Lagrangian
formulation presented in Section 2.2.2. While the updated-Lagrangian formulation
allows simulation of large deformations, the loss of convexity in the energetic
potential implies that the incremental stiffness matrix loses positive definiteness,
posing numerical challenges. Hence, for the scope of this chapter, we restrict
ourselves to only total Lagrangian formulation. Since total-Lagrangian kernels
are free from tensile instability [24], and under the assumption that the spatial
discretization of the cubic RVE is uniform, anisotropic shape function supports
are not needed. Therefore, for simplicity, we employ the original local maximum-
entropy shape functions (with scalar locality parameter β) introduced by Arroyo and
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Ortiz [7]. A brief review is also presented in Sections 1.4 and 2.2. In summary, we
solve the classicalGalerkin problemusing localmax-ent shape functions (as opposed
to the piecewise-polynomial FE interpolation) in a total-Lagrangian setting.

The locality parameter β also introduces an implicit length scale relative to the
RVE size, which is important when simulating microstructural interfaces. A dimen-
sionless locality parameter is defined as γ = β(∆X)2, so that fixing γ and varying
β based on the nodal spacing ∆X for a uniform grid results in self-similar shape
functions. In the small-β-regime, the shape functions decay as exp

(
−β ‖X − Xa‖2

)
(see (2.10)), and hence the length scale is proportional to β−1/2 = γ−1/2∆X . In the
limit β → +∞ (where the shape functions converge to simplicial interpolants), the
length scale also converges to ∆X . Thus, similar to the FE and FFT schemes, the
max-ent scheme maintains the interfacial width and the resulting microstructural
patterns irrespective of the RVE size.

All max-ent simulations in subsequent sections follow the same protocol. An
auxiliary, structured mesh of tetrahedral elements is created within the RVE. Next,
a material point p is created at the barycenter of each tetrahedron with volume V p

equal to that of the containing tetrahedron. Each material point is assigned the
locality parameter β = γ(∆X)−2, where ∆X is the nodal spacing, and γ is a chosen
scalar parameter. Finally, themesh is discardedwhile retaining all nodes. Ideally, the
meshfree nature of the shape functions provides themwith global support. However,
the shape functions decay exponentially with relative distance, in particular, as
exp(−β‖X − Xa‖2) in (2.10). Hence, for the sake of computational efficiency,
only nodes that lie within a cut-off sphere centered around each material point are
considered for the approximation. Following the discussion in Section 2.2.4, the
radius of the cut-off sphere is given by Rcut =

√
− log(ε)/β, beyond which the shape

functions are truncated (ε is a tolerance chosen here as 10−6). Since, the auxiliary
mesh is uniform, β and Rcut are also uniform across all material points. For more
implementation details, the reader is referred to the algorithms in Appendix 2.B.

When compared to the FEM and FFT schemes, the max-ent approach is the com-
putationally most expensive and scales with system size in a comparable fashion
as FEM (solving the linear system is as expensive as with FEM, plus minor added
costs of shape function calculations). It therefore does not admit high-resolution
simulations of realistic microstructures (like FFT). As we will show below, however,
the fact that max-ent is least biased by the node set (unlike FEM and FFT) is an
essential advantage when it comes to predicting energy-minimizingmicrostructures.
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4.3.4 Comparison of FEM, FFT and max-ent
The following sections present comparative studies of the three numerical methods
– FEM, FFT and max-ent – when applied to RVEs whose material is described
by (elastic) nonconvex potentials. Our focus is on both relaxing the nonconvex
energetic potentials and identifying the associated microstructures. We choose the
representative examples from hyperelasticity and phase transformations proposed by
Vidyasagar [205] who studied performance of the FFT scheme only. A brief review
of each problem is presented here; for details of the corresponding material models,
interested reader is referred to [205]. For each problem, we set up homogeneous
RVEs to be treated by the three methods outlined above. Parameterized by the
average deformation gradient, we specify a loading path (such that it leads to a
loss of quasiconvexity in the energy) and determine the (relaxed) RVE energy and
associated patterns numerically during one cycle of loading, i.e., we first load
the RVE by increasing the deformation and then unload the RVE by decreasing
the deformation back to zero. This way, each average deformation gradient is
imposed twice. Since our examples involve pure energy minimization without
history dependence, we choose as the relaxed energy whichever energy for a given
deformation gradient (resulting from either loading or and unloading) is lower. For
each load step, we use as the initial guess of the Newton-Raphson solver the previous
solution with added random perturbations of the order 10−6 (in order to promote the
formation of microstructures).

We stress that finding the global minimum, i.e., the energy-minimizing deformation,
is a computationally NP-hard problem due to nonconvexity and due to the presence
of very many local minima. Furthermore, convergence in nonconvex optimization
problems is highly dependent on the initial guess. While it is possible to artificially
construct a good initial guess based on prior knowledge of a minimum-energy
microstructure (such as that obtained from recursive lamination) and then accurately
reproduce that solution, such an approach does not apply to general problems and
is not pursuit here. The subsequent simulations instead use random perturbations
to initiate microstructure formation. Hence, we are interested in the robustness and
general applicability of the numerical methods presented here to approximate the
quasiconvex hull and/or to find physically relevant microstructures. This may lead
to significant differences between the numerically found relaxed energy density and
the actual quasiconvex hull.
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4.4 Example 1: hyperelastic St. Venant-Kirchhoff solid
The St. Venant-Kirchhoff hyperelastic model serves as a good benchmark, owing
to the availability of an analytical solution for the quasiconvex hull. The energy
density reads

W(F) =
1
8
(FTF − I ) · C (FTF − I ), (4.17)

which is a simple hyperelastic extension of linear elasticity. The isotropic elastic
modulus tensor is given by

CI JKL = λ δI JδKL + µ (δIKδJL + δILδJK), λ, µ > 0 (4.18)

where λ and µ denote the Lamé moduli. The lack of quasiconvexity arises when
loading the material, e.g., under combined compression and simple shear, parame-
terized by the applied average deformation gradient

F0 =
©«
1 − γ −2γ 0

0 1 0
0 0 1

ª®®®¬ , 0 < γ < 1. (4.19)

We note that this example is a mathematical one and not a physical one, since the
nonconvexity of the energy density and the resulting formation of microstructure has
little relevance for actual materials, but is rather a shortcoming of the hyperelastic
energy density (which, unfortunately, is still quite popular in the mechanics of
materials modeling literature1). However, the availability of analytical quasiconvex
and semi-analytical rank-one-convex hulls makes this a useful benchmark example.
The analytical quasiconvex hull QW(F) [128] is given by

QW(F) =
E
8

[
χ2

3 − 1
]2
+
+

E
8(1 − ν2)

[
χ2

2 + ν χ
2
3 − (1 + ν)

]2
+

+
E

8(1 − ν2)(1 − 2ν)
[
(1 − ν)χ2

1 + ν(χ
2
2 + χ

2
3 ) − (1 + ν)

]2
+
,

(4.20)

where [·]+ = max(·, 0), further χ1, χ2, χ3 (arranged in increasing order) are the
singular values of F, and

E =
µ(3λ + 2µ)
λ + µ

, ν =
λ

2(λ + µ)
. (4.21)

1The St. Venant-Kirchhoff model is particularly popular, e.g., in modeling finite-strain plasticity,
since it provides a simple extension of linear elasticity to finite strains along with the simple adoption
of small-strain elasticmoduli. The fact that thismodel shows non(quasi-)convexity for certain loading
paths, however, is problematic because – if simulations predict the formation of microstructures or
patterns – it is unclear whether those have formed for physical reasons or as artifacts of the non(quasi-
)convex energy density. Polyconvex energy densities are therefore a more suitable choice.
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Figure 4.1: Loss of convexity of the normalized energy W(γ) = W(F0)/λ as the
modulus ratio µ/λ decreases.

As an upper bound of QW(F0), we may compute RWk(F
0) from (4.4) for any k by

numerical sequential lamination.

The strain energy density (4.17) for the applied average deformation gradient (4.19)
becomes

W(F0) =
1
8
γ2

[
2
(
25γ2 − 20γ + 12

)
µ + (2 − 5γ)2λ

]
. (4.22)

which loses convexity if the Lamé moduli are chosen such that

0 <
µ

λ
<

1
6
. (4.23)

This is illustrated in Figure 4.1, where decreasing the ratio of µ/λ below 1/6 results
in increasing nonconvexity of the energy landscape W(F0). We note that, in the
limit µ → 0, RW(F0) = RW1(F

0) = QW(F0) for γ > 0, i.e., the quasiconvex hull
is attained by a first-order laminate.

We proceed to use the three numerical schemes outlined in Sections 4.3.1, 4.3.2,
and 4.3.3 to compute the minimum RVE energy (as an approximation of the relaxed
energy density) and the associated microstructures for the two cases (i) µ/λ = 10−5

and (ii) µ/λ = 0.01, so that the two minima of the nonconvex unrelaxed energy
W(γ) are (almost) symmetric and asymmetric, respectively. The RVE is subjected
to the average deformation gradient defined in (4.19).

FE simulations, unfortunately, failed to converge for almost all values of the loading
parameters and elastic moduli, so that results cannot be presented for this benchmark
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and are omitted in the comparison. For the spectral scheme, the RVE is discretized
into 1283 nodes, and the 8th-order central-difference stencil presented of (4.15) is
applied in the FFT solution scheme. Finally, max-ent simulations are performed
with 203 nodes within the RVE, using β = 0.5(∆X)−2, where ∆X is the nodal
spacing.

For case (i), Figure 4.2 shows the numerical results for the relaxed energy density in
comparison with the analytical quasiconvex and rank-one-convex hulls. After ini-
tially deforming homogeneously (thus reproducing the unrelaxed nonconvex energy
density), the RVE forms domains to allow the numerically computed relaxed energy
density to approach the quasiconvex hull. The initial phase of increasing energy is
much more pronounced for the FFT scheme. Once microstructure has formed, the
computed relaxed energy density agrees well with the analytical quasiconvex hull.
This is especially the case for the max-ent scheme, which shows perfect agreement,
whereas the FFT scheme – though producing beautiful high-resolution microstruc-
tures – tends to frequently approach higher energy levels particularly for γ > 0.2.
Shown as insets are also specific RVE microstructures at three different strain levels
as obtained from the max-ent and FFT schemes.

For case (ii) with an asymmetric potential, the rank-one-convex hull no longer
coincides with the quasiconvex hull, as seen in Figure 4.3a. Here, the FFT and
max-ent schemes perform quite differently. While the FFT prediction of the relaxed
energy is even above the rank-one-convex hull (and thus significantly above the
quasiconvex hull), the max-ent prediction is lower than the rank-one-convex hull
and reasonably close to quasiconvex hull. Further, the max-ent solution converges
towards the quasiconvex hull with h-refinement, as indicated by the convergence
plot in Figure 4.3b. The computational expenses associated with max-ent (see the
discussion in Sections 4.3.3 and 4.3.4) prevents higher resolution.

In summary, the St. Venant-Kirchhoff benchmark revealed that max-ent is best at
approximating the quasiconvex hull by the numerically relaxed RVE energy, while
the FFT scheme consistently overpredicts the quasiconvex hull, and the FEM scheme
fails to converge for this nonconvex problem.

4.5 Example 2: phase transformations
4.5.1 A simple energetic model for phase transformations
We briefly review the phase transformation model introduced by Vidyasagar [205].
Phase transformations are classically described using multi-welled potential energy
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F11

Figure 4.2: Relaxed energy densities computed by the FFT and max-ent schemes
along with the analytical quasiconvex hull and the rank-one-convex hull (obtained
from lamination) for case (i): µ/λ = 10−5. The insets show energy-minimizing
microstructural patterns predicted by the max-ent (top row) and FFT (bottom row)
schemes at applied strain levels of γ = 0.1, 0.2, and 0.3 (indicated as A, B, and C,
respectively). Microstructural patterns are visualized by plotting the deformation
gradient component F11.

(a) (b)

Figure 4.3: (a) Relaxed energy densities computed by the FFT and max-ent schemes
along with the analytical quasiconvex hull and the rank-one-convex hull (obtained
from lamination) for case (ii): µ/λ = 0.01. (b) Convergence of the relaxed energy
with h-refinement, computed by max-ent at different strain levels γ. Here, the error
is defined as the difference between the numerically computed relaxed RVE energy
density and the analytical quasiconvex energy at the three strain levels indicated
by γ.
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landscapes that arise from a competition between multiple stable phases. We con-
sider a total of q phases, where each phase α ∈ {1, . . . , q} is associated with a
transformation strain Uα and a chemical energy Ψα. The deformation gradient in
phase α is given by F(X) = Fe(X)Uα(X), where Fe ∈ GL+(d) denotes the elastic
contribution to the deformation gradient and accounts for both rotations and elastic
deformations. The effective Helmholtz free energy density W at a material point
[11, 89] is defined as

W(F) = min
α=1,...,q

{
Wα(F)

}
, (4.24)

with
Wα(F) = We(FU

−1
α ) + Ψα, ∀α = 1, . . . , q. (4.25)

Depending on the choice of the transformation strains and the loading path, W(F)

loses quasiconvexity.

In spite of the mathematical simplicity, W(F) from (4.24) is not continuously differ-
entiable, which leads to discontinuity in stresses and poses a challenge for numerical
computations. To overcome this numerical issue, a Taylor-type approximation is
introduced wherein multiple phases coexist, with volume fractions given by

λ = {λα ∈ [0, 1], α = 1, . . . , q} , (4.26)

such that the sum of all volume fractions equals unity. Without enforcing compati-
bility between phases, the free energy density in (4.24) is redefined as

W(F, λ) =
q∑

α=1
λαWα(F). (4.27)

In order to penalize the formation of mixtures that strongly deviate from a single-
phase state, a configurational (not physical) entropy based regularization

S(λ) = −
q∑

α=1
kTλα log λα, kT > 0, (4.28)

is introduced such that the regularized free energy density is given by

F(F, λ) = W(F, λ) − S(λ) (4.29)

In this model, kT can be used as a tuning parameter that governs the influence of the
configurational entropy and hence of the penalization of phase mixtures. Finally, the
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regularized free energy F(F, λ) is minimized with respect to λ to yield the optimal
volume fractions

λ∗(F) = arg min
0≤λα,

∑q
α=1 λα=1

F(F, λ) ⇒ λ∗α(F) =

exp ©«−
Wα(F)

kT

ª®¬
q∑
β=1

exp ©«−
Wβ(F)

kT

ª®¬
, (4.30)

and the condensed energy density

F∗(F) = F (F, λ∗(F)) = −kT log


q∑
α=1

exp ©«−
Wα(F)

kT

ª®¬
 . (4.31)

For kT > 0, (4.31) provides a lower bound to the energy (4.24) and only approximates
the latter. Importantly, that approximate formulation uniquely defines continuously
differentiable stresses and tangent matrices for all deformation gradients. The first
Piola-Kirchhoff stress tensor is given by

P∗ =
dF∗

dF
=

q∑
α=1

λ∗α
∂Wα

∂F
(F) =

q∑
α=1

λ∗αP(FU
−1
α )U

−T
α , (4.32)

and the incremental stiffness tensor (in the summation convention) by

C∗iJkL =
dP∗iJ
dFkL

=

n∑
α=1

λ∗αCiMkN (FU
−1
α )U

−1
α,JMU−1

α,LN

+
1
kT

n∑
α=1

∑
γ,α

λ∗αλ
∗
γPiM(FU

−1
α )U

−1
α,JM PkN (FU

−1
γ )U

−1
γ,LN .

(4.33)

For more details, see derivations by Vidyasagar [205] and Tan and Kochmann [198].

In the limit kT → 0, (4.30) reduces to

lim
kT→0

λ∗α(F) =


1 if Wα(F) < Wβ(F) ∀ β , α,

0 if ∃ β s.t. Wα(F) > Wβ(F),

1/m if there are m phases with equal Wα(F) < Wβ(F)

for all q − m other phases β.

, (4.34)

and the free energy becomes

lim
kT→0

F∗(F) = min
α=1,...,q

{
Wα(F)

}
. (4.35)
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Figure 4.4: Plot of F∗(F) from (4.31) for the deformation gradient defined by (4.38)
with µ = 1 and κ = 3 for various values of kT .

That is, in the limit kT → 0, the Taylor-type model approaches the phase transforma-
tion model described by (4.24) with discontinuous stresses. For example, consider
a two-phase potential characterized by

U1 = I, U2 =
©«
1.2 0 0
0 1

1.2 0
0 0 1

ª®®®¬ , Ψ1 = 0, Ψ2 = 0.02. (4.36)

The elastic strain energy densityWe is given by that of a compressible Neo-Hookean
solid

We(F) =
µ

2

(
tr(FTF)

J2/3 − 3
)
+
κ

2
(J − 1)2, (4.37)

where µ and κ are the shear and bulk moduli, respectively, and J = detF. The
applied deformation gradient is parameterized by

F0 =
©«
1 + ε 0 0

0 1
1+ε 0

0 0 1

ª®®®¬ . (4.38)

Figure 4.4 illustrates the dependence of the condensed energy density F∗(F0) on
the tuning parameter kT , with kT → 0 showing agreement with (4.24).

For the purpose of following results, the condensed energy density F∗(F) in (4.31)
along with the stress (4.32) and stiffness tensors (4.33) are used in the numerical
energy relaxation methods outlined in Section 4.3. All subsequent simulations use
the Neo-Hookean energy density (4.37) with µ = 1, κ = 3 for each phase, and
kT = 0.01 in (4.31). The RVE is subject to the applied average deformation gradient
(4.38) for ε > 0. FEM and max-ent simulations are performed at an RVE resolution
of 16 × 16 × 16 nodes; max-ent uses β = 0.5(∆X)−2. For the spectral scheme, the
RVE is discretized into 64 × 64 × 64 grid points.



103

4.5.2 Results for a double-well potential
As a first example, we consider a double-well energy density defined by the trans-
formation strains

U1 =
©«
1 0 0
0 1 0
0 0 1

ª®®®¬ , U2 =
©«
1.2 0 0
0 1

1.2 0
0 0 1

ª®®®¬ . (4.39)

We further consider the two cases of (i) Ψ1 = Ψ2 = 0 (equal chemical energies, i.e.,
identical well depths) and (ii) Ψ1 = 0, Ψ2 = 4.5 · 10−3 (i.e., the second phase has
higher energy). Figures 4.5a and 4.5b show the numerically relaxed energy densities
for the load path described by deformation gradient (4.38) with 0 ≤ ε ≤ 0.25, as
predicted by the FEM, FFT and max-ent schemes. Figures 4.6a and 4.6b illustrate
the evolving volume fraction of the second phase as the RVE transitions from a
homogeneous state in the first phase (in the undeformed ground state at ε = 0) to a
homogeneous state in the second phase (at strains beyond the second energy well,
i.e., for ε ≥ 0.2).

The microstructural patterns obtained for case (i) during the loading stage ( Ûε > 0)
are illustrated in Figure 4.7. The microstructures predicted by the FFT scheme (Fig-
ure 4.7b) indicate a complex strain and phase distribution, wherein needle-like sec-
ond phase domains nucleate that do resemble laminates but show significantly higher
complexity. By contrast, the max-ent scheme shows only simple and low-resolution
laminate-type microstructures; yet the corresponding relaxed energy density is sig-
nificantly lower and a better approximation than that from the FFT scheme (this is
true for both sets of chemical energies). It is intriguing that FFT and max-ent both
show similar evolutions of the second-phase volume fraction and that the laminate
orientations are also identical, yet the FFT scheme forms highly detailed structures
while max-ent predicts only a single (largest possible) lamellar pattern. For com-
parison, FEM also forms a laminate microstructure but becomes unstable and fails
to converge, which we attribute to the combined effects of low-order interpolation
and loss of convexity.

4.5.3 Results for three-well potentials
As a further example that probes the influence of multiple competing wells in the
energy landscape, we consider a three-well problem with phases 1, 2 and 3 defined
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(a) Case (i): Ψ1 = 0, Ψ2 = 0 (b) Case (ii): Ψ1 = 0, Ψ2 = 4.5 · 10−3

Figure 4.5: Numerically computed relaxed energy density for the phase transforma-
tion model with a double-well energy. The dotted line denotes the nonconvex energy
potential W(F0) obtained from (4.24), while the solid line denotes the correspond-
ing smoothened potential F∗(F0) obtained from (4.31). Shown are the three curves
obtained from the FFT, max-ent, and FEM schemes (the latter failing to converge
early on).

(a) Case (i): Ψ1 = 0, Ψ2 = 0 (b) Case (ii): Ψ1 = 0, Ψ2 = 4.5 · 10−3

Figure 4.6: Average RVE volume fraction of the second phase corresponding to
the numerically computed relaxed energies shown in Fig. 4.5, using the phase
transformation model with a double-well energy.
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A: ε = 0.0625 B: ε = 0.125

Phase 1

Phase 2

(a) Max-ent scheme

A: ε = 0.0625 B: ε = 0.125

Phase 1

Phase 2

(b) Spectral scheme

A: ε = 0.0625

Convergence failure at
B: ε = 0.125

Phase 1

Phase 2

(c) FE method

Figure 4.7: Microstructural patterns, color-coded by the dominant phase at each
material point in the RVE, obtained numerically from energy relaxation using (a)
the max-ent scheme, (b) the FFT scheme, and (c) the FEM scheme for case (i)
with Ψ1 = 0, Ψ2 = 0. The two strain levels are indicated in Fig. 4.5, where the
corresponding relaxed energy densities are shown. Here, the dominant phase is
defined as the phase with higher volume fraction at a given material point.
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by the respective transformation strains

U1 =
©«
1 0 0
0 1 0
0 0 1

ª®®®¬ , U2 =
©«
1.2 0 0
0 1

1.2 0
0 0 1

ª®®®¬ , U3 =
©«
1.4 0 0
0 1

1.4 0
0 0 1

ª®®®¬ . (4.40)

We again consider two cases: case (i) assumes the three energy wells having in-
creasing energy levels at the three local minima, using

(i) Ψ1 = 0, Ψ2 = 4.5 · 10−3, Ψ3 = 8 · 10−3. (4.41)

By contrast, case (ii) assumes that the first and third wells have equal depths, defining

(ii) Ψ1 = 0, Ψ2 = 4.5 · 10−3, Ψ3 = 0. (4.42)

These two cases are quite distinct in that, when loading with F0 from (4.38),
(ii) is expected to form microstructural patterns that involve only phases 1 and 3
(involvement of phase 2 would lead to higher, non-zero energy levels), while (i) is
expected to gradually transition through phases 1, 2 and 3 to minimize the energy
along (4.38).

Let us first discuss case (i). In line with previous results, Figure 4.8a shows that,
despite the low spatial resolution, max-ent performs significantly better than the
FFT scheme in predicting the relaxed energy density. FEM fails to converge as soon
as the loading approaches the nonconvex regime of the (unrelaxed) energy density.
Figures 4.8c and 4.8d illustrate the corresponding microstructural patterns predicted
by the max-ent and FFT schemes, respectively. For both methods, simulations
indicate that the RVE undergoes sequential phase transformations from phase 1 to
phase 2 to phase 3. Particularly for max-ent, nucleation of phase 3 does not occur
until the RVE has first transformed into a homogeneous phase 2, following which
it undergoes a second transformation from phase 2 to phase 3. During this latter
transformation, phase 1 does not emerge, so at any strain level only two phases co-
exist. This is also evident from the volume fractions of the second and third phase, as
shown in Figure 4.8b for different strain levels. All three methods predict laminate-
type microstructures, with max-ent showing coarse laminates with few interfaces,
FFT predicting complex higher-order laminates with abundant interfaces, and FEM
showing a laminate aligning with the mesh at low strain levels.

In case (ii), the third well is at the same energy level as the first well. From analytical
energy relaxation, one may expect phases 1 and 3 to dominate, since involvement
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(a) (b)

A: ε = 0.125 B: ε = 0.25

Phase 1

Phase 2

Phase 3

(c) Max-ent scheme

A: ε = 0.125 B: ε = 0.25

Phase 1

Phase 2

Phase 3

(d) Spectral scheme

Figure 4.8: (a) Numerically computed relaxed energy densities of the three-well
phase transformation model for case (i): Ψ1 = 0, Ψ2 = 4.5 · 10−3, Ψ3 = 8 · 10−3.
The dotted line denotes the unrelaxed energy density (4.24), while the solid line
denotes the corresponding smoothened energy density (4.31). (b) Average volume
fractions of phases 2 and 3 corresponding to the relaxed energy curves, as obtained
from the max-ent and FFT schemes (all three volume fractions um up to 1). (c) and
(d) Associated microstructural patterns, color-coded by the dominant phase at each
point within the RVE, obtained from the max-ent and FFT schemes, respectively, at
strain levels marked as A and B in (a) (the dominant phase is defined as the phase
with highest volume fraction at a given point).
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of phase 2 would lead to higher energy levels (which is why no sequential trans-
formations as in case (i) are expected here). Yet, this presumes that, given the
large transformation strain of phase 3, vanishingly small volume fractions of phase
3 can be nucleated at low strain levels. The latter is strongly limited by the spatial
resolution in the numerical schemes. Therefore, simulations show mixed pattern
evolutions involving all three phases simultaneously during the loading process. The
consequences are visible in Figure 4.9, which summarizes the numerically computed
relaxed RVE energies and corresponding microstructures for all three schemes.

The FFT scheme indeed nucleates phase 3 at low strain levels, and only traces
of phase 2 emerge, as demonstrated by the microstructures (Figure 4.9d) and the
extracted phase volume fractions (Figure 4.9b). The obtained relaxed energy is
too high but well below the second well, so that a homogeneous phase 2 is in fact
avoided. We attribute the high, non-zero relaxed energy to the large number of
interfaces present in the RVE (which will be discussed in detail in Section 4.6).
The benchmark was also repeated with a 2563 grid2, and the corresponding high-
resolution microstructures (featuring sharp needle-like domains) are illustrated in
Figure 4.10. However, with increase in resolution, the number of interfaces increases
proportionally and hence, no significant decrease in the relaxed energywas observed.

By contrast, the spatial resolution of the max-ent scheme is not sufficiently high
to resolve complex microstructures involving direct nucleation of phase 3 at low
strain levels. Therefore, as observed in Figures 4.9b and 4.9c, phase 2 dominates
large fractions of the RVE during straining, leading to an even higher energy than
that obtained from FFT and higher than the quasiconvex hull (which is zero for
ε ∈ [0, 0.4]). In addition, our solver uses the previous solution as the initial guess
for the next load step, which further causes more nucleation of the second phase
and prevents the third phase from nucleating at low strains. While this latter
issue is resolvable by artificially engineering the initial guess to prevent the second
phase from nucleating, this does not generalize to arbitrary problems with unknown
microstructures. Therefore, such a strategy only applies if the energy-minimizing
microstructure is known a priori, which in turn defeats the purpose of this study.

4.6 Influence of spatial discretization and interfacial energy
It is intuitive to expect that increasing the spatial resolution allows for capturing
more complex, fine-grained microstructures, such that the numerically relaxed en-

2The spatial resolution of 2563 was only limited to this benchmark due to high computational
costs.
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(a) (b)

A: ε = 0.125 B: ε = 0.25

Phase 1

Phase 2

Phase 3

(c) Max-ent scheme

A: ε = 0.125 B: ε = 0.25

Phase 1

Phase 2

Phase 3

(d) Spectral scheme

Figure 4.9: (a) Numerically computed relaxed energy densities of the three-well
phase transformation model for case (ii): Ψ1 = 0, Ψ2 = 4.5 · 10−3, Ψ3 = 0. The
dotted line denotes the unrelaxed energy density (4.24), while the solid line denotes
the corresponding smoothened energy density (4.31). (b) Average volume fractions
of phases 2 and 3 corresponding to the relaxed energy curves, as obtained from
the max-ent and FFT schemes (all three volume fractions um up to 1). (c) and
(d) Associated microstructural patterns, color-coded by the dominant phase at each
point within the RVE, obtained from the max-ent and FFT schemes, respectively, at
strain levels marked as A and B in (a) (the dominant phase is defined as the phase
with highest volume fraction at a given point).
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F11

A: ε = 0.125 B: ε = 0.25

Figure 4.10: Microstructure patterns predicted by the FFT scheme at 2563 spatial
resolution for case (ii): Ψ1 = 0, Ψ2 = 4.5 · 10−3, Ψ3 = 0. The microstructures
are visualized by plotting the deformation gradient component F11 at strain levels
marked as A and B in Figure 4.9a.

ergy density converges to the quasiconvex hull with increasing resolution. However,
as observed in all our numerical examples in Sections 4.4 and 4.5, the numer-
ically obtained energy density is always higher than the quasiconvex hull by a
non-negligible amount, even at intriguingly high resolution as in the FFT approach.
As we demonstrate below, this energy difference stems from considerable interface
energy, especially when the true energy-minimizing volume fractions are not ac-
curately resolvable by the spatial discretization. In order to assess the importance
of the latter effect, we here present a simplified analytical study of the interface
energy for the representative example of our phase transformation model in 2D and
3D (considering the limiting case kT → 0, such that the energy density is given by
(4.35) and hence (4.24), and the smoothness of approximation (4.31) does not affect
our conclusions).

4.6.1 Interfaces in the phase transformation model in 2D
Consider a two-phase square-shaped RVE in 2D of unit length, filled with a material
whose constitutive behavior is described by the phase transformation model with
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transformation strains and chemical energies (with ξi ≥ 1)

U1 =

(
ξ1 0
0 1

)
, U2 =

(
ξ2 0
0 1

)
, Ψ1 = 0, Ψ2 = 0. (4.43)

The RVE is loaded by the average deformation gradient

F0 =

(
λ̂ 0
0 1

)
with ξ1 < λ̂ < ξ2. (4.44)

For the elastic strain energy density, we take the Neo-Hookean model in (4.37) and
assume plane strain condition along the x3-axis. The reduced strain energy density
is given by

We(F) =
µ

2

(
tr(FTF) + 1

J2/3 − 3
)
+
κ

2
(J − 1)2, F ∈ GL+(2). (4.45)

We construct a first-order laminate pattern inside the periodic RVE, as shown in
Figure 4.11a, where each of the two phases is uniformly strained by F1 = U1 and
F2 = U2, respectively. For the chosen chemical energies, this first-order laminate
construction attains the quasiconvex energy hull exactly. Let the width of phases
1 and 2 be, respectively, ν̂ and 1 − ν̂. Compatibility requires the laminate volume
fractions to satisfy

ν̂ ξ1 + (1 − ν̂)ξ2 = λ̂ ⇒ ν̂ =
ξ2 − λ̂

ξ2 − ξ1
for λ̂ ∈ (ξ1, ξ2). (4.46)

The resulting average RVE energy is identically zero, which coincides with the
quasiconvex hull. As is apparent from (4.46), ν̂ rises continuously from 0 to 1
between the two energy wells. In the case of a spatially discretized RVE, only
discrete jumps in ν̂ can be resolved by the mesh or grid, so that there are values
of λ̂ for which the energy-minimizing laminate microstructure is unresolvable (as
shown in Figure 4.11b) by the spatial discretization. As a consequence, alternative
microstructures with non-zero energy emerge. We aim to understand exactly those
microstructures and their associated energy by studying subspaces of admissible
solutions that are resolvable by a given spatial discretization. We differentiate
between two possible solutions in the following (both promising convergence under
refinement of the nodal spacing h). First, we assume a sharp interface coinciding
with a nodal plane, so that the volume fractions are not ν̂ and 1 − ν̂ but ν ≈ ν̂ and
1 − ν with |ν − ν̂ | ∼ h. In this case, the RVE minimizes its energy by adjusting the
deformation gradients in the two phases. Second, we assume a diffuse interface,
i.e., an interface layer of width ∼ h emerges to minimize the RVE energy, while the
two phases are homogeneous at zero energy.
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ν̂

Phase 1 Phase 2

(a) First-order laminate with a single
interface

h

(b)DiscretizedRVEwith nodal spac-
ing h.

ν ν

(c) Sharp-interface setup

ν 2h

Lateral shear

Transverse shear Mixed shear

(d) Diffuse-interface setup

Figure 4.11: Schematic of a laminate interface being unresolvable by the spatial
discretization, leading to an approximate energy-minimizing laminate with either a
sharp-interface or a diffuse-interface layer between laminate phases.
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h(λi − 1) + u

v

2h(λi − 1)

2h(λi − 1)

2h(λi − 1)

2h

2h

(a) Representative 2D shear cell with four constant-strain triangles

[2h(λi − 1), 0, 0]

[h(λi − 1) + u, v,w]

(b) Cut of a representative 3D shear cell with six constant-strain tetrahedra

Figure 4.12: Schematics of shear cells in the diffuse interface layer model in 2D
and 3D along with their nodal displacements. The interface width is exaggerated
for illustration purposes; the real interface width of 2h is small relative to the RVE
size.



114

Sharp interfaces

As one possible energy-minimizing microstructure that accommodates the limited
RVE resolution, the laminate interface (ideally situated between two nodes) may
shift to one of the two nearest nodal planes, as shown in Figure 4.11c. In this case,
the RVE energy is minimized in a nonlocal fashion by homogeneously straining
each of the two phases. The volume fraction of phase 1 is thus given by

ν = h
(⌊
ν̂

h

⌋
+

1
2

)
±

h
2
, (4.47)

where two possible solutions exist, depending on whether the interface shifts to the
left or to the right. Due to the structure ofUi and F0, the homogeneous deformation
gradients in both phases are expected of the form

F1 =

(
λ1 0
0 1

)
, F2 =

(
λ2 0
0 1

)
, (4.48)

where λ1 and λ2 are unknowns. Given the macroscopic loading in (4.44), compati-
bility enforces the constraint

ν λ1 + (1 − ν)λ2 = λ̂. (4.49)

Therefore, the relaxed energy in this case is given by minimizing the RVE energy
with respect to λ1 and λ2, i.e.,

NW(λ̂) = min
λ1,λ2
[νW1(F1) + (1 − ν)W2(F2) s.t. (4.49)]. (4.50)

Minimization is again carried out numerically. Note that this class of solutions is
nonlocal, i.e., it produces sharp interfaces but leads to the entire RVE being strained.
Thus, the increase in energy due to the unresolvable microstructure is not localized
at the interfaces but distributed across the entire RVE.

Diffuse interface layer

As an alternative energy-minimizing microstructure that accommodates the limited
RVE resolution, we consider a laminate microstructure as shown in Figure 4.11a
with two homogeneous phases strained by F1 = U1 and F2 = U2 (thus having zero
energy). If the energy-minimizing volume fraction ν̂ is resolvable by the nodal
planes, then a first-order laminate with sharp interface is realized and the RVE
energy vanishes. If, however, ν̂ cannot be accommodated by the FE mesh in a
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simple laminate fashion, as shown in Figure 4.11b, an interface layer of width 2h is
assumed to arise in order to minimize the RVE energy in a compatible fashion (see
Figure 4.11d). Let λi be the macroscopic stretch ratio of the interface layer in the
x1-direction, and let ν again denote the volume fraction (i.e., width) of phase 1 in
the laminated RVE. Compatibility imposes

ν ξ1 + 2h λi + (1 − ν − 2h)ξ2 = λ̂ ⇒ λi =
λ̂ − νξ1 − (1 − ν − 2h)ξ2

2h
. (4.51)

Based on the spatial discretization in an RVE of size 1 × 1, the interface layer is
divided into nh = (2h)−1 cells stacked vertically above one another, each of side
length 2h � 1 and consisting of four constant-strain triangles (CST), as shown for
a representative cell in Figure 4.12a. The nodal displacements in a representative
cell relative to the bottom-left node are also illustrated in Figure 4.12a, where(
h(λ̂ − 1) + u

)
and v are the horizontal and vertical displacements of the central

node, respectively. The relaxed energy of the RVE (exploiting that the energy
within each homogeneous phase vanishes) is thus obtained by minimization of the
total RVE energy with respect to the displacement of the central node of the shear
cells, i.e.,

NW(λ̂) = nh min
u,v

[ 4∑
k=1

min
{
W1(Fint,k),W2(Fint,k)

}
VCST

]
=

h
2

min
u,v

[ 4∑
k=1

min
{
W1(Fint,k),W2(Fint,k)

}]
,

(4.52)

where Fint,k is the uniform deformation gradient inside each of the four CSTs, and
VCST = (2h)2/4 is the (undeformed) area of each CST. For the sake of brevity,
we here omit the deformation gradients inside the CSTs as derived from the nodal
displacements. Minimization in (4.52) is carried out numerically. For illustrative
purposes, we find the energy-minimizing solution for four particular cases illustrated
in Figure 4.11d. Those correspond to the cases

• u = 0, v = 0 : none of the CSTs are sheared, no minimization necessary (no
shear),

• u , 0, v = 0 : only the top and bottom CSTs can shear (lateral shear),

• u = 0, v , 0 : only the left and right CSTs can shear (transverse shear),

• u , 0, v , 0 : all CSTs can shear (mixed shear).
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Figure 4.13: Numerically relaxed energy energy density of a 2D RVE of side length
1, whose uniform spatial discretization with grid point spacing h = 1/16 limits the
resolvability of the changing laminate volume fraction. Shown are the unrelaxed
energy density as well as the approximate relaxed energies obtained from the sharp-
interface scenario, (4.50), and from the diffuse-interface scenario, (4.52). Results
are for ξ1 = 1.0 and ξ2 = 1.2, and the elastic moduli µ = 1 and κ = 3.

The four resulting energies resulting from this diffuse-interface setup (computed
from (4.52)) as well as from the previous sharp-interface scenario (obtained from
(4.50)) are illustrated in Figure 4.13 for h = 1/16. The relaxed energy obtained
from the sharp-interface setting with distributed errors is significantly more accurate
than that obtained from the diffuse interface layer for any of the above four cases.
(Of those, as may expected, the mixed shear solution produces the lowest energy.)
Interestingly, the energy stored in the interface layer is independent of the applied
average strain.

4.6.2 Interfaces in the phase transformation model in 3D
To extend the above concepts to a 3D RVE of unit length, consider the double-well
phase transformation model with the Neo-Hookean energy density (4.37) and

U1 =
©«
ξ1 0 0
0 1 0
0 0 1

ª®®®¬ , U2 =
©«
ξ2 0 0
0 1 0
0 0 1

ª®®®¬ , Ψ1 = 0, Ψ2 = 0. (4.53)
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(a)

(b) (c)

Figure 4.14: (a) Numerically relaxed energy density of a 3D RVE of side length
1, whose uniform spatial discretization with grid point spacing h = 1/16 limits the
resolvability of the changing laminate volume fractions. Shown are the unrelaxed
energy density as well as the approximate relaxed energies obtained from the sharp-
interface scenario extended to 3D, (4.50), and from the diffuse-interface scenario,
(4.55). Results are for ξ1 = 1.0 and ξ2 = 1.2, and the elastic moduli µ = 1 and κ = 3.
(b) Convergence of the relaxed energy to the quasiconvex hull (zero for λ̂ ∈ [1, 1.2])
at fixed λ̂ = 1.075 with h-refinement. (c) Convergence rate of the relaxed energy
obtained from max-ent for different values of the locality parameter β.

The RVE is macroscopically strained according to

F0 =
©«
λ̂ 0 0
0 1 0
0 0 1

ª®®®¬ with ξ1 < λ̂ < ξ2. (4.54)
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The mathematical setting for the two classes of laminate solutions with sharp and
diffuse interfaces remains unchanged. For the case of a sharp interface, (4.50)
applies analogously in 3D. For a diffuse interface, the extension to 3D requires the
two laminate phases to be separated by an interface layer containing nh = (2h)−2

cubic cells, each of side length 2h and consisting of six constant-strain tetrahedra
(see Figure 4.12b). The macroscopic stretch in the interface layer (λi) is given
by (4.51). Assume the displacement of the central node in each cubic cell is[
h(λ̂ − 1) + u, v,w

]T . Relaxation of the RVE energy with respect to the central
node’s displacement gives the numerically relaxed energy density

NW(λ̂) = nh min
u,v,w

[ 6∑
k=1

min
{
W1(Fint,k),W2(Fint,k)

}
VCST

]
=

h
3

min
u,v,w

[ 6∑
k=1

min
{
W1(Fint,k),W2(Fint,k)

}]
,

(4.55)

where Fint,k is the uniform deformation gradient in the k th tetrahedron, and VCST =

(2h)3/6 is the volume of each tetrahedron. Analogous to the 2D case, six different
types of solutions may be constructed based on which degrees of freedom of the
central node are being constrained (to zero) or relaxed.

Figure 4.14a compares the numerically relaxed energies (4.50) (extended to 3D)
and (4.55) for a spatial resolution of h = 1/16 (with an RVE side length of 1).
Figure 4.14b illustrates the convergence of the relaxed energy from each class of
solutions under h-refinement. As in the 2D problem, the “mixed-shear” solution
yields the lowest energy for the lamiante with interface layer, and the obtained
energies are independent of the applied strain. Notably, the error of the sharp-
interface solution converges quadratically under h-refinement, which is in contrast
to the linear convergence observed for the diffuse-interface layer construction. For
reference, the relaxed energy computed by max-ent3 using the same discretizations
is also shown. Unlike in prior simulations, here we provide the exact laminate
solution with a single interface (see Figure 4.11a) as an initial guess at each load
step to ensure that the solver converges to a local minima that is in the proximity of
the respective analytical solution.

3The FFT scheme fails to converge in the limit kT → 0 (as discussed in Section 4.5) and is
therefore omitted in this comparison.
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4.6.3 Mesh-dependence of microstructures
In all of the above laminate examples, the energy-minimizing laminate orientation
was aligned with the FEM mesh, FFT grid, and max-ent node set. Numerically-
predicted microstructures are well-known to be highly mesh-dependent [163], so
that laminates tend to align with the discretization such as with the mesh in FEM.
Numerical approaches have aimed to reduce the influence of the FEmesh by rotating
or adaptively adjusting the mesh [141].

By contrast, the max-ent approximation uses shape functions that are least biased
with respect to the position of nodes, so that laminates of arbitrary orientation can be
capturedwithout significant artifacts from the spatial discretization. For verification,
we perform a numerical experiment. We consider a two-well phase-transformation
problem with equal well depths Ψ1 = 0 and Ψ2 = 0 and the rotated transformation
strains

U1 = R
©«
ξ1 0 0
0 1 0
0 0 1

ª®®®¬ R
T, U2 = R

©«
ξ2 0 0
0 1 0
0 0 1

ª®®®¬ R
T

with R =
©«
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

ª®®®¬ ,
(4.56)

and we let R ∈ SO(3) apply a rotation by θ ∈ [0, 2π) about the x3-axis. The average
RVE deformation gradient is rotated analogously, i.e.,

F0 = R
©«
λ̂ 0 0
0 1 0
0 0 1

ª®®®¬ R
T with ξ1 < λ̂ < ξ2. (4.57)

This setup yields the same laminate solution as in previous section except that the
laminate orientation is rotated by θ. This is equivalent to rotating the RVE mesh
while maintaining the original laminate orientation.

Figure 4.15 shows the numerically relaxed energy, evaluated for θ equal to 30◦,
40◦, 50◦, and 60◦, using both the max-ent and FEM schemes4 on a 10 × 10 × 10
grid. In order to study the effect of the orientation of the grid, we do not provide
the exact energy-minimizing laminate solution as the initial guess. Remarkably,

4By contrast to Section 4.5.2, FEM convergence was possible in this case only because of the
specific transformation strains and loading, which admit first-order laminate solutions.
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Figure 4.15: Numerically relaxed energy of a 3D RVE discretized by a 10× 10× 10
mesh/point set modeled by themax-ent and FEM schemes, using the two-well phase-
transformation model with the rotated transformation strains (4.56) and average
deformation gradient (4.57). The inset shows an FEMmesh illustrating the laminate
orientation with varying θ.

the relaxed energy predicted by max-ent shows considerably smaller variations for
varying θ, which are negligible compared to the FEM variations. The latter predicts
a significantly higher relaxed energy for θ = {40◦, 50◦} than for θ = {30◦, 60◦}.
This corroborates that the predicted microstructure depends significantly less on
the spatial discretization when using the max-ent scheme as compared to the FEM
scheme. For completeness, let us note that the FFT scheme bears similar issues
based on the RVE orientation’s alignment with the Fourier wave vectors. Yet, a
fair numerical comparison is hard to provide since FFT comes with much higher
resolution (and it also does not convergence in the kT → 0 limit).

4.6.4 Sharp vs. diffuse interfaces in the numerical schemes
Despite the previous studies in this section being specific to first-order laminates, the
underlying discretization-based issues persist in any microstructured RVE; and they
become evenworse for complexmicrostructureswith growing numbers of interfaces.
Max-ent, being a high-order nonlocal and smooth meshfree approximation, bears
another essential advantages over classical FEM. Li andCarstensen [140] argued that
smoothing or averaging techniques aid in the process of microstructure prediction
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(a) Total RVE energy = 2.464 × 10−4 (b) Total RVE energy = 4.360 × 10−4

Figure 4.16: Distribution of strain energy within a 3D RVE with 16×16×16 spatial
resolution, obtained by (a) the max-ent scheme (showing all material points) and (b)
the FEM scheme (showing all quadrature points). The RVE is strained to λ̂ = 1.075,
deliberately such that the optimal laminate interfaces yielding zero relaxed energy
for a sharp-interface lamiante do not coincide with any nodal planes of a discretized
RVE.

by FEM schemes. We make a similar observation here: both our FEM and FFT
schemes generate sharp interfaces and, especially in the FFT case, many of those, so
that the relaxed RVE energy is dominated by those interfaces. Max-ent, by contrast,
introduces an approximate deformation mapping ϕh ∈ C∞, which generally results
in smooth, diffuse interfaces and solutions in the sense of Modica [155]. This, in
turn, affects both the interface energy and the total interface area. The degree of
nonlocality in the max-ent scheme is controlled by the locality parameter β. This is
reflected in the energy convergence rates in Figure 4.14c, which were obtained with
different values of β. In particular, when β = 4h−2 (i.e., max-ent is almost equivalent
to simplicial FE, see Arroyo and Ortiz [7]) the converge rate is close to linear. As the
value of β decreases and the max-ent approximation becomes increasingly nonlocal,
the convergence rate also increases, ultimately reaching a convergence rate between
the two interface models presented in previous sections. Hence, max-ent offers a
compromise between sharp interfaces at nodal planes (thus raising the energy in the
homogeneous phases) and interface layers (thus contributing high interface energy
while keeping the homogeneous phases at the energy minima).

In contrast to the energetically-diffusemax-ent interfaces, the FEMandFFT schemes
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(the latter employing the finite-difference correction of derivatives5 [206, 207]) can
accurately capture localized discontinuities. This has two consequences: (i) in-
terfaces inconsistent with the spatial discretization tend to be approximated by
high-energy, localized interface layers; (ii) complex high-resolution microstructures
contribute many such high-energy interfaces, thereby increasing the total energy of
the RVE and decreasing the convergence rate. As an illustrative example, consider
the energy distribution within an RVE with a first-order laminate microstructure.
Shown in Figure 4.16 is the energy per material/quadrature point for such a first-
order laminate, produced by the max-ent and FEM schemes. Clearly, the max-ent
interfacial energy is spatially diffused, and the resulting RVE energy is lower than
that obtained from FEM.

4.7 Conclusions
We have discussed the ability of three numerical techniques – FEM, an FFT-based
spectral scheme, and a max-ent meshfree method – to find energy-minimizing
microstructural patterns and the associated relaxed energy density of a represen-
tative volume element, when the energy of the underlying material model lacks
(quasi)convexity. The numerical strategies were applied to benchmark problems of
hyperelasticity and phase transformations. We have showed that the spectral scheme
is capable of producing high-resolutionmicrostructures, whilemax-ent is superior at
numerical energy relaxation even at low spatial resolution. Classical FEMwas found
to be severely limited in both aspects. We note that the NP-hard nature of nonconvex
optimization limits the ability of any numerical method to find global minima, in this
case energy-minimizing microstructures. Through a simplified analytical study of
microstructural interfaces, we have shown that this limitation arises from the inabil-
ity of a spatial discretization to resolve general energy-minimizing microstructural
patterns. While the present study utilized basic Newton-Raphson iterations for en-
ergy minimization, the limitations imposed by unresolved interfaces is inherent to
the spatial discretization and will persist in any numerical simulation irrespective of
the choice of pre-conditioners, line-search techniques, gradient descents, or other
nonlinear solvers. Furthermore, we have shown that this can be alleviated to some
extent by using meshfree approximants (e.g., local max-ent), whose performance
was demonstrated in comparison with the FEM and FFT schemes. While the spatial
discretization can be chosen such that interfaces are accurately resolved by nodes,

5Without the finite difference approximation, the spectral scheme would suffer from Gibbs
phenomena near discontinuities.
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the lack of a priori knowledge of the energy-minimizing microstructures prevents
the creation of such meshes. Adaptive mesh refinement in terms of nodal positions
and spatial resolution, as well as the inclusion of (undeformed) nodal positions in
the variational problem, stand as a possible candidates for resolving the interface
issue, though these methods are complex and strongly dependent on the initial
guess. Therefore, the presented max-ent scheme is a viable and computationally
inexpensive strategy for approximating relaxed energies (while the presented, finite-
difference-enhanced FFT scheme is a viable solution for generating high-resolution
microstructures – with generally higher energy).
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C h a p t e r 5

CONCLUSION AND FUTURE OUTLOOK

This thesis proposed an enhanced meshfree method based on the local max-ent
approximation. This method is the first among the class of meshfree methods
that addresses the tensile instability associated with meshfree kernels in updated-
Lagrangian setting, and achieves robust stability in simulating large deformation
problems. Benchmark results on quasi-static and dynamic simulations showed
promising outcomes in terms of accuracy and stability. The enhanced local max-ent
method as well as the updated-Lagrangian formulation offer manymore possibilities
in simulating a plethora of materials under less restrictive settings, and is sufficiently
general to be applied to multi-physics and multi-scale problems. Furthermore, we
can extend the adaptive shape function strategy necessary for stability to other
meshfree approximation schemes such as SPH, MLS, RKPM, etc.

In this thesis, we have also showcased two applications of the proposed max-ent
method.

• First, we have developed a novel multiscale framework for modeling ECAE
that utilizes the max-ent based meshfree method for large deformations at
the macroscale, combined with grain refinement and reorientation at the mi-
croscale via material model of Tutcuoglu et al. [202]. The method is also
generalizable to a range of SPD processes including HPT, ARB, RCS, etc.,
which will be covered in subsequent studies. Therefore, the multiscale frame-
work presents itself as a powerful and high-fidelity computational tool for
predictive analysis and design optimization in the metal forming industry.

• Second, we have introduced the application of the max-ent based meshfree
method for numerically approximating the quasiconvex hull of non-convex po-
tentials. While the max-ent method enables large deformation simulations as
shownpreviously, the smoothness and nonlocality of the shape functions, com-
bined with unbiasedness with respect to nodal-positions/spatial discretization,
also allows for superior numerical energy relaxation of non-convex potentials
via RVE-level simulations. In a suite of benchmarks, we showed that max-ent
method performed better than FEM and FFT at approximating quasi-convex
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hulls. A possibility of future work is that we can extend this method for
applications to more complicated non-convex potentials such as those that are
history-dependent (e.g., crystal plasticity).

The success of applying the proposed max-ent method to the aforementioned en-
gineering problems makes it desirable and relatable to real-world problems. A
limitation would be the computational expense of high-resolution simulations for
improved accuracy. A framework that handles scalable parallelism would be nec-
essary to achieve large scale and high fidelity meshfree simulations. Another issue
is the lack of general reception and slow adoption of meshfree methods, especially
in the industry, which poses challenges for new meshfree methods like max-ent to
make a concrete impact in engineering applications. Upon addressing these issues,
the max-ent method presents a wider range of possibilities in dealing with more
complex simulations that would not have been otherwise possible using FEM and
traditional meshfree methods.
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