
Searching for gravitational waves from compact binary
coalescences in Advanced LIGO data

Thesis by
Surabhi Sachdev

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2019
Defended October 12, 2018



ii

© 2019

Surabhi Sachdev
ORCID: 0000-0002-0525-2317

All rights reserved



iii

ACKNOWLEDGEMENTS

Some of the happiest but also the hardest moments of my life happened during
graduate school. There are a lot of people who were with me through both the happy
and hard times and this thesis would not have happened without them.

First and foremost, I would like to thank my adviser Alan Weinstein for always
believing in me, even at times I didn’t believe in myself. He gave me the most exciting
projects to work on and was always there whenever I needed advice. I would like to
thank Tjonnie Li for mentoring me through the first couple years in grad school, for
holding my hand through some of the first lines of code I wrote, for supporting and
encouraging me, and for always lending his ears when I needed. Stephen Privitera,
for being the unexpected friend and also providing academic support. Chad Hanna,
Bangalore Sathyaprakash, Tania Regimbau have all provided me with both guidance
at work and moral support for which I am extremely grateful. I would also like to
thank collaborators Cody Messick, Ryan Magee, Sarah Caudill, Duncan Meacher,
Alex Pace, Patrick Godwin, Jolien Creighton, Shasvath Kapadia, Heather Fong, Kipp
Cannon, Richard Savage, Sudarshan Karki, Shivaraj Kandhasamy, Jeff Kissel. SURF
students Sophia Xiao, Sara Frederick, Ka Tung Lau, Johnathon Lowery, Ka Lok Lo,
Li Ka Yue were all amazing students who did exceptional work over summers and
made the summers more fun. Office mates Maximiliano Isi, Craig Cahillane, Sarah
Gossan, Thomas Callister always kept things fun at work, and conference buddies
Karelle Siellez and Ryan Lynch made the trips fun, a big thank you to them for that.
Julie, Elizabeth, Nicole, Sophie were always a friendly face and super helpful with
any official work.

I would like to thank Ma and Papa for being my first teachers, for always supporting
me, for letting me make my own decisions, and for always being there for me. To
bhaiyya, bhabhi, and Naina for being my home away from home. Corina Panda for
being the absolute best friend, roommate, cooking partner, dancing partner, gossip
partner, party partner, and for being with me through it all, I couldn’t have done
it without her. I would also like to thank Ramya Korlakai Vinayak, Brian Hong,
Akshay Sridhar, Maria Sakovsky, Alex Turzillo, Daniel Gonzalez Plaza, Paul Mazur,
Arnold Durel for adding fun and silliness to my time at Caltech. I am grateful to the
Caltech Tango Club and its members for beautiful dance evenings. And, Michael
Buehlmann for showing me love during my last year at Caltech.



iv

I am a member of the LIGO Laboratory. LIGO was constructed by the California
Institute of Technology and Massachusetts Institute of Technology with funding
from the National Science Foundation and operates under cooperative agreement
PHY-0757058. I carried out most of the work presented here as a member of the
LIGO Scientific Collaboration (LSC) and benefited from interaction with many of its
members. However, except where otherwise indicated, the descriptions and results
presented in this thesis are my own and not necessarily those of the Collaboration.



v

ABSTRACT

Advanced LIGO’s first observing run marked the birth of gravitational-wave as-
tronomy through the first detection of gravitational waves from coalescing black
holes- GW150914. Advanced LIGO’s second and Advanced Virgo’s first observing
run marked the birth of multimessenger astronomy with first joint observations
of gravitational and electromagnetic radiation associated with coalescing neutron
stars-GW170817. The electromagnetic observations included detection of a burst of
gamma rays produced by the merger, and a kilonova powered by the radioactive decay
of r-process nuclei synthesized in the neutron star coalescence ejecta. Gravitational
waves from compact binary coalescences carry fingerprints of the sources that gener-
ated them. Studying them allows us to test Einstein’s general relativity in the strongest
regimes, where it has never been tested before, and study matter at densities beyond
reach of the most powerful laboratories on our planet. Moreover, we can gain insight
about the evolution of stars, galaxies and even the Universe as a whole by studying
the merger rate of compact objects. Joint electromagnetic and gravitational-wave
observations help develop our understanding of the physical processes that occur in
such systems, and provide a new method of probing cosmological parameters.

GW170817 was detected by the GstLAL pipeline in low-latency making the extensive
electromagnetic followup possible. The GstLAL pipeline is a matched filtering
pipeline that uses compact binary coalescence waveform models to filter the data
from gravitational-wave detectors in the time-domain. It can detect gravitational
waves from coalescing compact binaries in near real time and provide point estimates
for binary parameters. This thesis describes the methods, developments, and the
results from the GstLAL pipeline over the course of the first two observing runs of
Advanced LIGO, focusing on the contributions made by the author. We also present
a study about the prospects of observing a cosmological stochastic background which
is expected to be buried under the astrophysical background from the population of
coalesceing compact binaries with third-generation gravitational-wave detectors.
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C h a p t e r 1

INTRODUCTION: THE FIRST DETECTION OF
GRAVITATIONAL WAVES FROM COMPACT BINARY

MERGERS

1.1 The age of gravitational-wave science
On September 14, 2015, the observation of gravitational waves [6] by the Advanced
LIGO detectors [19] marked the beginning of an era of gravitational-wave astronomy.
These waves were emitted during the final fraction of a second of the merger of
two black holes to produce one single black hole. This merger of two black holes
had been predicted but never observed. This binary black hole merger event was
followed by several other such events [9, 10, 16, 17], and a binary neutron star
merger event [11] in the course of the first two observing runs of the Advanced LIGO
detectors [19] and the first observing run of the Advanced Virgo detector [20].

The idea of gravitational waves was first anticipated by Henri Poincaré [21] in 1905,
and they were later predicted by Albert Einstein in 1916 [22] as a direct consequence
of his theory of general relativity [23]. The first evidence for the existence of
gravitational waves came in 1974 when Russell Alan Hulse and Joseph Hooton
Taylor, Jr. discovered a binary system composed of a pulsar in orbit around a neutron
star. In 1982, Taylor and Weisberg showed that the orbit of the pulsar was slowly
shrinking over time because of the release of energy in the form of gravitational
waves [24, 25]. For discovering the pulsar and showing that it would make possible
this unique test of general relativity in form of the gravitational-wave measurement,
Hulse and Taylor were awarded the 1993 Nobel Prize in Physics. Even though their
existence was demonstrated by Hulse and Taylor, Jr. in 1970s and 1980s, the direct
measurement of the stretching and squeezing of spacetime caused by the gravitational
waves eluded us for about a century after their prediction. In fact this observation
came after more than five decades of careful planning and building of the LIGO
detectors [19, 26].

The general theory of relativity is a widely accepted theory of gravity that was
developed by Albert Einstein between 1907 and 1915, and subsequently published
in the year 1916 [23]. According to the theory, gravity is a property of spacetime.
Matter and energy curve spacetime, and the paths followed by matter and energy in
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absence of any external forces are governed in turn by the curvature of spacetime.
Information about a change in the gravitational field (due to a change in the matter-
energy distribution) is propagated across long distances in form of gravitational
waves which carry energy, momentum, and angular momentum away from their
origin at the speed of light.

In general relativity, gravitational waves are transverse waves and they stretch and
squeeze spacetime perpendicular to the direction of propagation. The effects of
gravitational waves can be described by tidal forces they produce on free test masses.
Imagine we have gravitational waves passing through two free test masses. The
stretching and squeezing of spacetime due to the gravitational waves will result
in the masses moving back and forth relative to each other. If we have localized
gravitational waves that are moving across only one of the test masses, they would
cause oscillations in the ticking rate of the clock on the test mass that they are passing
through. So gravitational waves are ripples in the curvature of spacetime that stretch
and squeeze space and also warp time.

Gravitational radiation, however, is extremely weak far from the source. The sources
that can produce gravitational waves loud enough to be observed in a controlled
experiment on Earth are extremely violent astrophysical events such as the merger
of two black holes or a supernova explosion in the nearby Universe. Even for such
sources, we need extremely precise experiments to observe them. Advanced LIGO
(Laser Interferometer Gravitational-wave Observatory) detectors are arguably the
most precise measuring devices ever built. They are highly complex L-shaped
Michelson interferometers with 4 km long arms. They have mirrors at the ends of the
arms and a beam splitter at the center in order to combine light beams traveling up
and down the two arms and create an interference pattern. Any change in arm lengths
would change the interference pattern created by the light beams when they combine.
The LIGO interferometers are set such that in a null signal case, the light beams
from the two arms destructively interfere and cancel each other out. The Advanced
LIGO detectors can measure a change in length one-ten-thousandth the diameter of
a proton. The LIGO detectors were built by Caltech and MIT with funding from the
NSF. LIGO construction was approved in 1990, their construction began in 1994,
and the installation and commissioning of LIGO’s initial interferometers began in
1999. The LIGO Scientific Collaboration (LSC) which is responsible for organizing
and coordinating LIGO’s technical and scientific research and data analysis, and
includes scientists from all over the world was formed in 1997. The LIGO laboratory
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at Caltech, MIT, Hanford and Livingston, remain reponsible for LIGO operations and
advanced interferometer R&D. Using the initial LIGO interferometers, gravitational-
wave searches were carried out from 2002 to 2010 but found null results. The
construction of advanced interferometers was funded by the NSF in 2008, and after
5 years of installation and commissioning from 2010 to 2014, the Advanced LIGO
detectors came live in 2015. The Advanced detectors operate in a frequency band
of 20 Hz to 2000 Hz, and are sensitive to the binary inspirals from compact stars,
neutron stars and black holes. For their decisive contributions to the LIGO detector
and the observation of gravitational waves, Rainer Weiss, Barry Barish, and Kip
Thorne were awarded the Nobel prize in Physics in 2017.

The coalescence of compact objects plays a unique role in fundamental physics
and astrophysics. The gravitational waves carry physical information about their
sources and allow us to test Einstein’s general relativity in the strong regime [27]
and study matter at densities [28] beyond reach of the most powerful laboratories on
our planet. Moreover, we can gain insight about the evolution of stars, galaxies, and
even the Universe as a whole by studying the merger rate of compact objects [11,
18, 29, 30]. Joint electromagnetic and gravitational-wave observations help develop
our understanding of the physical processes that occur in such systems [12, 31],
and also provide a gravitational-wave standard siren method to measure the Hubble
constant [32, 33].

This thesis tells the story of the first gravitational-waves detections with Advanced
LIGO. We discuss the methodology used in analyzing the Advanced LIGO data that
led to these detections enabling the start of the field of gravitational wave astronomy.
In Chapter 2 we discuss basic theory behind the gravitational-wave phenomena being
studied and measured with Advanced LIGO, in Chapter 3 we discuss the compact
binary gravitational-wave sources and basic methods for their detection, in Chapter 4
we describe the methods of a low-latency search that can detect these sources, in
Chapters 5, 6, and 7 we discuss the developments in these methods and results from
the search from early tuning stages to the two observing runs of Advanced LIGO, in
Chapter 8 we discuss detecting astrophysical populations of such systems in the case
of third-generation detectors with sensitivities more than 10 times better than the
final design sensitivity of the Advanced LIGO detectors, and finally, in Chapter 9 we
discuss our conclusions and directions for future work.
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C h a p t e r 2

GRAVITATIONAL WAVES IN GENERAL RELATIVITY

2.1 Introduction
Conceptually, if gravity is sourced by mass and energy, which can move rapidly (close
to the speed of light) and thereby change the gravity sensed by a distant observer, the
"news" of changing gravity cannot be communicated to the observer instantaneously
(as Newtonian gravity implies), but must propagate from the source to the observer
at the speed of light or less. Also conceptually, if gravity is described in terms
of a dynamically-changing spacetime curvature, responding to rapidly-changing
sources, it is natural to expect the "news" of changing gravity to propagate as waves
of spacetime curvature. These conceptual foundations are built into general relativity,
and gravitational waves are thus a firm prediction of general relativity.

For many years after the publication of Einstein’s 1916 paper [23], the reality of
gravitational waves were in doubt [34]. The matter was finally settled through the
work of Pirani, Feynman, Bondi, and others [34, 35]. It has been shown theoretically
that GWs carry energy, momentum, and angular momentum from source to observer,
although it took decades for this to be firmly established. Hulse-Taylor observed the
loss of energy from GW emission from a compact binary system by measuring the
loss of orbital period.

Here we outline the elements of GR that lead to GWs and their fundamental properties.
Our discussion below draws from [36, 37].

2.2 Einstein’s field equations
As discussed in the previous chapter, according to general relativity, spacetime curves
in response to the presence of energy and momentum, and the curvature of spacetime
determines the motion of free particles. This relationship between the spacetime
curvature and energy-momentum is described by Einstein’s field equations

Gµν ≡ Rµν −
1
2

Rgµν =
8πG
c4 Tµν . (2.1)

Or in units where G = c = 1, Eq. 2.1 can be written as

Gµν ≡ Rµν −
1
2

Rgµν = 8πTµν . (2.2)
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All the quantities in these equations are a function of the spacetime basis vectors, xµ.
The indices in the equations run from 0 to 3, for the time and 3 spatial directions. Gµν,
Rµν,gµν, and gµν are tensors and R is a scalar. These equations relate the geometry
of the spacetime (described by Rµν, R, gµν, left-hand side of the equations) to matter
and energy (Tµν, right-hand side of the equations). Rµν is the Ricci curvature tensor,
R its trace, gµν is the field metric, and Tµν is the stress-energy tensor. Gµν is known
as Einstein tensor. These are highly nonlinear equations which can evolve the values
of the metric, gµν from some given initial values. The quantities in the equations are
symmetric 4 × 4 tensors, and therefore have ten independent components. We will
describe these quantities in the next section.

2.3 Geometry of spacetime
Metric tensor

The metric tensor field g (gµν) is the fundamental geometric construct in general
relativity. The metric tensor contains the information about the relative rate at which
the clocks run and the distance between points. For two infinitesimally separated
points in the spacetime, the proper distance ds between them is given in terms of the
metric tensor and the local coordinates as

ds2 = gµνdxµdxν . (2.3)

We adopt the Einstein summation convention that repeated indices indicate summation
over those indices.

For a flat spacetime, the metric gµν is given by the Minkowski spacetime metric
tensor

ηµν =

©«
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®®®¬
. (2.4)

In general, spacetime metric is not flat. But the spacetime metric tensor g is always
given by a covariant, nondegenerate and symmetric tensor. It can be shown that for
any point P on the spacetime manifold (except gravitational singularities like at the
centers of black holes), we can always find a coordinate transformation xα → xα

′

(x)

such that the metric is flat at the point P in terms of the new basis coordinates, and
is “nearly” flat in the neighborhood of the point P.



6

gα′β′(xµ(P)) = η, (2.5)

gα′β′(xµ(P) + dxµ) = η + O[(dxµ)2]. (2.6)

We will make use of this in the coming sections. The metric tensor is also used to
lower and raise indices of tensor fields.

Covariant derivative

The covariant derivative, ∇µ, is given by

∇µV ρ ≡ ∂µV ρ + Γ
ρ
µνV

ν, (2.7)

where ∂µ is the ordinary spacetime derivative operator, ∂/∂xµ, and Γρµν are the
connection coefficients, also known as the Christoffel symbols. The connection
coefficients provide ameasure of derivatives of the spacetime basis vectors themselves.
The basis unit 4-vectors are given by, êµ. The interpretation of Γρµν is that it is the
ρth component of ∂êµ/∂xν and is given by

Γ
ρ
µν =

1
2
gσρ(∂νgσµ + ∂µgσν − ∂σgµν). (2.8)

2.3.1 Riemann tensor, Ricci tensor, Ricci scalar
The Riemann tensor (also known as the curvature tensor) is given by

Rαβµν ≡ ∂µΓ
α
βν − ∂νΓ

α
βµ + Γ

α
σµΓ

σ
βν − Γ

α
σνΓ

σ
βµ. (2.9)

It measures the extent to which the metric tensor is not locally isometric to that of
Euclidean space, and helps in defining the geometry of spacetime. The spacetime is
flat if the Riemann tensor vanishes everywhere. Rαβµν = 0.

The Ricci tensor is defined by contracting over two indices of the Riemann tensor,

Rαβ ≡ Rµ
αµβ = Rβα, (2.10)

and the Ricci scalar is defined as

R ≡ gµνRµν = gµνgαβRαµβν . (2.11)
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The curvature tensor satisfies the following properties:

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ, (2.12)

Rαβµν + Rανβµ + Rαµνβ = 0, (2.13)

and the Bianchi identities

∂λRαβµν + ∂νRαβλµ + ∂µRαβνλ = 0, (2.14)

∇λRαβµν + ∇νRαβλµ + ∇µRαβνλ = 0. (2.15)

From the second Bianchi identity Eq. 2.14, and the definition of Einstein’s tensor, it
follows that

∇µGµν = 0. (2.16)

Consequently, from the Einstein’s field equations Eq. 2.1, the stress-energy tensor
satisfies

∇µT µν = 0. (2.17)

This means that energy and momentum are covariantly conserved in general relativity.

The four Bianchi identities reduce the number of independent Einstein’s field
equations Eq.2.1 from 10 to 6, leaving the metric with four gauge fixing degrees of
freedom, which correspond to the freedom to choose a coordinate system.

2.4 Linearlized gravity
In general relativity, the Einstein’s field equations are covariant under coordinate
transformations

xµ → xµ
′

(x), (2.18)

where xµ
′ is invertible, differentiable, and has a differentiable inverse. This means

that under such transformations, the metric transforms as

gµν → gµ′ν′ = Λ
α
µ′Λ

β
ν′gαβ, (2.19)

where Λαµ′ = ∂µ′x
α. In non-mathematical terms, it means that the physical outcomes

of the theory remain unchanged under a change of coordinates.
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In the weak-field regime where the spacetime is nearly flat, there exists a reference
frame where we can take the spacetime metric to be that of flat Minkowski spacetime,
ηµν, plus a small perturbation hµν

gµν = ηµν + hµν (2.20)

for
��hµν�� � 1.

(2.21)

However by choosing such a reference frame where Eq.2.20 holds, we break the
invariance of general relativity under coordinate transformations. But there is a subset
of transformations under which the form of metric given by Eq.2.20 is preserved.

2.4.1 Slow-varying gauge transformations
Consider transformations of the form

xµ → xµ
′

(x) = xµ + ε µ(xν), (2.22)

for
��∂µεν�� ≤ ��hµν��.

Then the metric transforms as

gµν → gµ′ν′ = ∂µ′xρ∂ν′xσgρσ, (2.23)

∂µxρ
′

= δ
ρ
µ + ∂µε

ρ, (2.24)

∂µ′xρ = δ
ρ
µ − ∂µε

ρ + O(∂µε
ρ)2, (2.25)

gµ′ν′ = ηµν − ∂νεµ − ∂µεν + hµν + O(∂ε2). (2.26)

Note that we use ηµν and ηµν for lowering and raising the indices in the linearized
theory. We can see from Eq.2.26 that

gµ′ν′ = ηµν + hµ′ν′ (2.27)

for

hµ′ν′ = hµν − ∂νεµ − ∂µεν . (2.28)

Therefore the slowly varying coordinate transformations Eq.2.22 are a symmetry
of the linearized Einstein’s field equations. In other words, under slowly varying
coordinate transformations, the form of linearized Einstein’s field equations is
preserved, as described below.
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2.4.2 Lorentz transformations
Another set of transformations that preserve Eq.2.20 are the global (x-independent)
Lorentz transformations:

xµ → xµ
′

= Λ
µ′

ν xν (2.29)

Λ
µ
ρ′Λ

ν
σ′ηµν = ηρ′σ′ . (2.30)

The metric then transforms as

gµν → gµ′ν′ = Λ
µ
µ′Λ

ν
ν′gµν (2.31)

= ηµ′ν′ + Λ
µ
µ′Λ

ν
ν′hµν . (2.32)

Therefore

hµν → hµ′ν′ = Λ
µ
µ′Λ

ν
ν′hµν . (2.33)

Under Lorentz transformations, hµν transforms like a tensor. Linearized theory is
invariant under Lorentz transformations.

2.4.3 Wave equation
Let us now derive the Einstein’s field equations in the linearized theory. To leading
order in the metric perturbation, the Christoffel symbol, Riemann tensor, Ricci tensor,
and Ricci scalar are given by

Γ
µ
αβ =

1
2
(∂βhµα + ∂αhµβ − ∂

µhαβ) (2.34)

Rµναβ =
1
2
(∂ν∂αhµβ + ∂µ∂βhνα − ∂µ∂αhνβ − ∂ν∂βhµα) (2.35)

Rµν =
1
2
(∂ν∂αhαµ + ∂µ∂αhαν − ∂α∂

αhµν − ∂µ∂νhαα) (2.36)

R =
1
2
(∂α∂βhαβ − ∂β∂βhαα). (2.37)

We now introduce the trace h given by

h = ηµνhµν, (2.38)

(2.39)
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and the trace-reversed metric perturbation h̄µν

h̄µν = hµν −
1
2
ηµνh. (2.40)

Using these, we can calculate the Einstein’s tensor to be

Gµν = −
1
2
(∂α∂

α h̄µν + ηµν∂α∂β h̄αβ − ∂α∂ν h̄µα − ∂α∂µh̄να + O(h2
µν)). (2.41)

Lorenz gauge

To simplify the Eq.2.41, we make use of gauge freedom to choose Lorenz gauge, also
known as the harmonic gauge

∂ν h̄µν = 0. (2.42)

In the Lorenz gauge, the Einstein’s field equation for a weakly perturbed metric
Eq.2.41 reduces to

−∂α∂
α h̄µν = −2h̄µν = 16πTµν, (2.43)

where 2 is the symbol used for the four-dimensional Laplacian ∂α∂α, also known as
the D’Alembertiam or the wave operator. Eq.2.43 are known as the Einstein’s field
equations of the weak field, linearized theory.

One can show that for infinitesimal coordinate transformations of the type discussed
in Sec.2.4.1, x → x′ = x + ε , where ε is arbitrary and O(h), the trace-reversed metric
perturbation transforms as

h̄µν → h̄µ′ν′ = h̄µν − ∂νεµ − ∂µεν + ηµν∂ρε ρ. (2.44)

Assuming that the Lorenz gauge holds in the new frame, we get

∂ν
′

h̄µ′ν′ = ∂ν h̄µν − ∂ν∂νεµ = 0 (2.45)

2εµ = ∂ν∂νεµ = ∂ν h̄µν . (2.46)

Lorenz gauge is not unique since a homogenous solution of the form

2εµ = 0 (2.47)

can always be added to move to a different Lorenz gauge.
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In order to gain insight into the propagation of gravitational waves, we consider the
field equations of the linearized theory in vacuum (Tµν = 0),

2h̄µν = 0. (2.48)

Eq.2.48 has complex wave solutions of the form

h̄µν = Aµνeikσ xσ . (2.49)

This gives us

2h̄µν = ∂α∂α h̄µν = −kσkσAµνeikσ xσ . (2.50)

(2.51)

From Eq.2.51 and Eq.2.48, we get

kσkσ = 0, (2.52)

so that the wave vector kµ is a null vector, implying that the gravitational waves
travel at the speed of light in general relativity. Imposing the harmonic gauge given
by Eq.2.42 on the solutions to the vacuum field equations Eq.2.49, we get

Aµνkν = 0 (2.53)

This shows that the wave vector kµ is orthogonal to the wave polarization, Aµν. In
other words, the perturbation of the metric is transverse to the direction of propagation.
Therefore solutions to the vacuum linearized field equations are plane-wave equations
with the null wave vectors.

Transverse traceless gauge

The metric perturbation hµν has ten independent components. By introducing the
Lorenz gauge, we have imposed four constraints. Lorenz gauge makes the metric
perturbation look like a transverse wave. Further specifying gauge using the extra
freedom from Eq.2.47 we introduce four extra constraints, and the metric perturbation
now has only two independent degrees of freedom remaining. The two degrees of
freedom correspond to the two polarizations of the perturbation of the metric caused
by the gravitational wave.
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We choose this extra freedom within the Lorenz gauge such that the perturbation is
traceless and also purely spatial. This is known as the trasverse traceless (TT) gauge.
In this gauge, the metric perturbation affects only the components of the metric which
are orthogonal to the direction of propagation (transverse), and is symmetric about
reflection through the direction of propagation (traceless). These extra constraints
are given by

Aµνuν = 0, (2.54)

and

Aµ
µ = 0, (2.55)

where uν is a fixed unit four-velocity vector.

Eq.2.55 implies that in the TT gauge, h̄µµ = 0, which means that the trace-reversed
metric perturbation is equal to the metric perturbation in this gauge. One can then use
a Lorentz transformation to make the explicit choice on uµ to fix the unit four-velocity
vector to be (1, 0, 0, 0) to get h̄µ0 = hµ0 = 0, which means that the metric perturbation
only has spatial components. If we choose our coordinates such the wave travels in
the +z direction, we can write the metric perturbation as

hTT
µν =

©«
0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

ª®®®®®¬
, (2.56)

where h+ and h× are functions of time satisfying the wave equation,

( ∂2

∂z2 −
1
c2

∂2

∂t2

)
h = 0, (2.57)

where h = h+ or h = h×. The amplitudes h+ and h× correspond to the two
polarizations of gravitational waves called plus and cross polarizaions.



13

Polarizations in general relativity

If the coordinate unit basis vectors in the plane perpendicular to the wave propagation
are êx and êy, then we can define the basis tensors for the two polarizations as

e+ = êx ⊗ êx − êy ⊗ êy (2.58)

e× = êx ⊗ êy + êy ⊗ êx . (2.59)

In terms of these basis tensors, the metric perturbation tensor can be written as

h = h+e+ + h×e×. (2.60)

If the coordinates in the transverse plane are rotated by an angle θ, then we can see
that

e′+ = cos2θe+ + sin2θe×, (2.61)

e′× = −sin2θe+ + cos2θe×, (2.62)

and

h′+ = cos2θh+ + sin2θh×, (2.63)

h′× = −sin2θh+ + cos2θh×. (2.64)

Therefore the gravitational wave polarizations are rotated by an angle 2θ when the
coordinates are rotated by an angle θ. This shows that gravitational wave frequency
is twice the frequency of motion of the source.

For more details, we refer the reader to [38–40].

2.4.4 Effect of gravitational waves on a ring of test masses
Consider a ring of test masses lying on the xy plane. The effect of a plus and a cross
polarized wave passing transverse to a plane in the +z direction is to cause a tidal
deformation of the circular ring into an elliptical ring with the same area. This is
illustrated in Fig. 2.1.

The maximum fractional change in length of the ring is given approximately by the
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Figure 2.1: Deformation of a ring of test masses caused by the plus (+) or cross (×)
polarized gravitational wave passing perpendicular to the plane of test masses. Fig.
taken and modified from [1]

gravitational wave amplitude which is a combination of the plus and cross amplitudes
- h+ and h×.

∆L
L
≈ |h| = |h+e+ + h×e× |. (2.65)

2.5 Generation of Gravitational Waves
So far we have studied the gravitational waves as perturbations of the flat Minkowski
metric. Now we briefly discuss how they are generated. The general, non-vacuum
solution of linearized Einstein’s field equations (Eq. 2.43) at a point xα are given by,

h̄µν(xα) = −16π
∫

G(xα − yα)Tµν(yα)d4y, (2.66)

where we are integration is performed over all spacetime yα. The Green’s function
G(x − y) for the d’Alembertian operator 2 is the solution to the wave equation in the
presence of a delta function

2G(xα − yα) = δ(xα − yα). (2.67)

Analogous to electromagnetism, the Green’s function is the retarded Green’s function,
given by

G(xα − yα) = −
1

4π
��xi − yi

��δ(tret − y0)θ(x0 − y0), (2.68)
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where the retarded time is given by tret = x0 −
��xi − yi

��, xi and yi refer to the spatial
vectors (x1, x2, x3) and (y1, y2, y3) respectively, and θ(x0− y0) equals 1 when x0 > y0

and is 0 otherwise.

Plugging in the Green’s function in the non-vacuum solution to the linearized field
equations (Eq. 2.66) we get

h̄µν(t = x0, xi) = 4
∫

d3y
Tµν(tret, y

i)��xi − yi
�� , (2.69)

where the integration is performed over the past light cone of the event (t, xi). The
perturbation at the point (t, xi) is the sum of effects from the energy and momentum
of all the sources on the past light cone of the event.

At large distances from the source, r =
��xi

��, the denominator in Eq. 2.69 can be
expanded as

1��xi − yi
�� ≈ 1

r
+ ... (2.70)

The solution therefore to first order in 1
r is given by

h̄i j(t = x0, xi) ≈
4
r

∫
d3yTi j(t − r, yi). (2.71)

The stress-energy tensor must be conserved, which in linearized theory means
∂µTµν = 0. This yields

4
r

∫
d3yTi j =

2
r
∂2

∂t2

∫
d3yT00yiy j . (2.72)

In a standard stress-energy tensor, the tt (or the 00) component denotes the rest-mass
energy density of the source ρ(x). We define the second moment of the mass
distribution as

Ii j(t) =
∫

d3yρ(t, yi)yiy j, (2.73)

and combining Eqs. 2.71 - 2.73, we get

h̄i j(t, xi) ≈
2
r
∂2

∂t2 Ii j(t − r). (2.74)
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We now want to project into the TT-gauge using the transverse projection operator

Pi j = δi j − n̂in̂ j, (2.75)

where n̂i = xi/r is the unit vector in the propagation direction (normal to the
transverse plane). The TT-gauge solution then becomes (recall that in the TT-gauge,
h̄µν = hµν),

hTT
i j ≈

2
r
∂2

∂t2 ITT
i j (t − r), (2.76)

with

ITT
i j = Pik I kl Pl j −

1
2

Pi j Pkl I kl . (2.77)

Therefore gravitational waves are generated by accelerated sources, the radiation
obeys a 1/r fall-off, and is of quadrupolar in nature, as the conservation laws do not
permit monopole and dipole gravitational radiation [41].

2.6 Gravitational-wave sources
In this section we summarize the most important gravitational-wave sources, for
which we have dedicated data analysis groups in the LIGO-Virgo Collaboration. For
more details, we refer the reader to [36, 37].

2.6.1 Compact binary coalescences
So far all the gravitational-wave detections in Advanced LIGO-Virgo have originated
from compact binary coalescences (CBCs). Even before the detections, these were
believed to be the most promising sources that could be observed with the ground
based interferometric gravitational-wave detectors. These binary systems comprise
two bound compact objects such as black holes, or neutron stars. As the masses
revolve around one another, they lose energy in form of gravitational waves, which
leads to the decay of their orbits until they plunge together and merge to form one
single object. These sources are the focus of this thesis and are discussed in more
detail in the next chapter.
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2.6.2 Continuous waves
Continuous sources are those sources that continuously emit gravitational waves
with approximately constant frequency compared to the observation time. The
prime candidates to emit such signals are rapidly rotating neutron stars, known as
pulsars, which are non-axisymmetric. The asymmetry is needed to induce a non-zero
time-varying quadrupole moment required for the generation of gravitational waves.
Although the GW amplitude is generally weaker compared to CBC sources, we can
integrate them over longer durations, which means that CW sources may also achieve
detectable SNRs. Analysis of known pulsars can be simplified if we know their sky
location and rotational frequency by application of targeted searches [42].

2.6.3 Burst Sources
Burst sources are associated with astronomical transient phenomena, such as super-
novae, instabilities in neutron stars, etc. A supernova occurs during a gravitational
collapse of a star, or core of a star, to form a neutron star or black hole. Such sources
are typically hard to model because of the complex physics associated with them.
Therefore, to search for searches, we employ the use of unmodelled filters, such as
sine-Gaussians. Note that high mass CBC sources that are loud and short in duration
are also detected by the burst searches. In fact, GW150914 was first detected by such
unmodeled burst searches in low-latency [43].

2.6.4 Stochastic background
Stochastic gravitational-wave background consists of gravitational-waves that are not
localized in either time or frequency. There are two classes of expected sources for
stochastic background: primordial gravitational wave background, which consists
of radiation from early universe, such as Big Bang; and astrophysical background,
which comes from the superposition of the population of astrophysical sources such
as CBCs, magnatars, etc. See Sec. 8.1 for a complete list of expected sources for
stochastic background.

Since the stochastic background is indistinguishable from instrumental noise, for
short observation times, it cannot be detected by a single detector. Instead, we
cross-correlate the output of several detectors over long durations. An excess in this
cross-correlation can be an indication of stochastic background.
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C h a p t e r 3

COMPACT BINARY COALESCENCES

CBCs, by virtue of their extremely strong accelerating quadrupole moment, are the
most efficient and the best modeled source of gravitational waves. They are detectable
(producing signal in the LIGO detection band) over a broad range of parameters
(total masses between 0.4M� and 500M�), and out to cosmological distances. They
provide a laboratory for testing strong-field gravity [44], and for first measurements
of fundamental properties of gravitational waves including speed [45, 46], graviton
mass [44], polarizations [47]. They are fascinating astrophysical objects, presenting
the strongest and most rapidly changing gravitational fields in the universe. Neutron
stars are spectacular laboratories for fundamental physics of the strong, weak,
electromagnetic and gravitational interactions. Binary neutron stars explore the
origin of the heaviest elements [31]. As the endpoints of the evolution of the most
massive stars, black holes are tracers of stellar evolution. Therefore binary black
holes can provide insight into formation mechanisms [48].

The CBC detection pipelines used by the LVC (there are at least 4 - GstLAL [3, 49, 50],
PyCBC [51–53], MBTA, GstLAL-spiir, with the GstLAL and the PyCBC pipelines
being run as "flagship" searches) have been under development for many years and
are now quite mature. They are even relatively robust against non-Gaussian noise
fluctuations. However, there’s always the need for continual improvement and feature
development. We will describe the GstLAL search pipeline in detail in the next
few chapters. This chapter describes the basic theory and techniques behind the
analysis of Advanced LIGO and Virgo data to look for gravitational-wave signals
from compact binary coalescences (CBCs). We begin with a brief description of the
CBC signal models that have been developed over the years and discuss their domain
of validity. We then describe how these waveforms are used in matched-filtering CBC
searches. The matched-filtering algorithm is used to estimate the signal-to-noise
ratio (SNR), which is the optimal statistic for the detection of a signal of known form
added to stationary Gaussian noise [54–62].

3.1 Waveform Models
CBCs are the most extensively modelled sources of gravitational waves. The fact that
these sources can be relatively well modeled is exploited by the matched-filtering
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searches in Advanced LIGO and Virgo.

The gravitational-wave signal from a CBC depends on a number of parameters.
These parameters are classified into two categories: intrinsic parameters, such as
the masses and spins of the binary (those that only depend on the source itself), and
extrinsic parameters, such as the distance, inclination angle, etc. (those that are
related to the position of the source with respect to the observer). There are at least
fifteen parameters needed to specify the expected gravitational-wave signal from a
compact binary coalescence. These are listed in the Table 3.1.

m1 & m2 component masses
®S1 & ®S2 binary spin vectors, having three components each
α & δ right ascension and declination, determining the sky position
i inclination of orbital plane of the binary w.r.t. the line of sight
ψ orientation of polarization vector (in radiation frame) w.r.t. detector arms
D luminosity distance
φc coalescence phase
tc time of coalescense

Table 3.1: The compact binary parameter space. At least fifteen parameters are
needed to uniquely specify a compact binary system. The parameters in blue are
the ones that are intrinsic to the source, and the parameters in red are the ones that
depend on the position of the observer.

In the case where the spins of the binary components are aligned with the orbital
angular momentum, all the extrinsic parameters only affect the overall phase and
amplitude of the system. However, when the component spins are misaligned with
the orbital angular momentum, the inclination and polarization angles become time
dependent and lead to non-trivial amplitude and phase modulation of the observed
signal.

Note that we restrict our attention to compact binaries on circular orbits, and do not
consider eccentricity of the orbit as a parameter. Studies show that the detection
efficiency is only negatively impacted for highly eccentric orbits, such systems are
expected to be rare. We also ignore any effects related to the matter and internal
structure of neutron stars. Matter effects become significant only in the last fraction
of second before merger, having almost negligible effect on overall detection SNR.
Lastly, we do not include additional parameters that arise when considering theories
beyond general relativity. In this section, we briefly describe the techniques that are
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used to model the waveforms, and also list the various waveform models that have
been developed.

3.1.1 Inspiral, merger, and ringdown
Due to the non-linear nature of the theory, the two-body problem in full general
relativity becomes extremely non-trivial. When two masses are in an orbit around
each other, they undergo a quasi-circular inspiral, losing energy due to emission of
gravitational waves, which leads to shrinking of the separation between them, and an
increase in the orbital velocity and frequency. The gravitational-wave frequency is
given by twice the orbital frequency (as seen in Sec. 2.4.3), so we see an increase in
the gravitational-wave frequency with time. Such a signal, in which the frequency
monotonically increases (or decreases) with time is called a chirp. The gravitational-
wave signal from compact binary coalescences is conventionally split into three
stages: inspiral, merger, and ringdown (see Fig. 3.1).

Figure 3.1: The three distinct stages of the binary evolution, and the different
approximation schemes used to model these stages. Wavy lines illustrate the regime
close to merger where analytical methods have to be bridged by numerical simulations.
Figure taken from [2].

The inspiral stage of the waveform is when the two gravitationally bound objects
are far apart such that their separation is larger than the innermost stable circular
orbit (ISCO). The frequency evolution of the waveform depends on the masses and
spins of the two objects in the inspiral. The higher the total mass of the system,
the larger the ISCO. The smaller the amount of spin aligned with orbital angular
momentum, the larger the ISCO. For a test particle orbiting a Schwarzschild black
hole with mass M, the ISCO occurs at a radius of rISCO = 6GM/c2. According to
Kepler’s law, the speed of the particle oribiting at a radius R is given by v =

√
GM

R ,
so, the velocity at this ISCO is given by vISCO ∼ c/

√
6. Although Kepler’s law is

Newtonian, it is approximately valid even in the post-Newtonian regime. For a
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Figure 3.2: Example time-domain (top) and frequency-domain (bottom) waveforms
for varying total mass of the system. The mass ratio is kept constant and set to 1.
We see that more massive systems are shorter in LIGO band (which was considered
as 15 Hz to 1024 Hz for making this figure. We used the model IMRPhenomD to
generate this waveform.

maximally spinning black hole with spin aligned with the orbital angular momentum,
the ISCO is at rISCO = GM/c2 and vISCO ∼ c, and for a maximally spinning black
hole with its spin anti-aligned with the orbital angular momentum, the ISCO occurs
at rISCO = 9GM/c2 and vISCO ∼ c/3. See Figs. 3.2, 3.3, and 3.4.

This means, for low mass systems, such as neutron star-neutron star binaries, the
masses can get extremely close to one another before undergoing merger, and the
merger frequencies for such systems is typically ∼ O(kHz), and is outside of the fre-
quency bands of ground-based gravitational-wave interferometer detectors. Therefore
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Figure 3.3: Example time-domain (top) and frequency-domain (bottom) waveforms
with different χeff values but same masses. We see that high spinning systems are
longer in band. We used the model IMRPhenomD to generate this waveform.

for low-mass systems, we only need to model the inspiral part of the waveform. In the
inspiral regime, approximate analytical solutions of Einstein’s equations can be found
using two main techniques: post-Newtonian (PN) approximation [63–67] and the
effective-one-body (EOB) approach [68, 69]. In the PN approximation, gravitational
waves are modeled in terms of an expansion in v

c , where v is the characteristic velocity
of the binary. This technique breaks down for high mass-ratio systems, and close to
merger as v approaches c (see Fig. 3.1). Some inspiral only waveform models used in
LIGO data analysis are, in frequency domain TaylorF2 and TaylorF2RedSpin and
in time-domain SpinTaylorT2, SpinTaylorT4, SpinTaylorT5, and TaylorT2.
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Figure 3.4: Example time-domain (top) and frequency-domain (bottom) waveforms
with different mass ratios but a constant total mass. We see that high mass-ratio
systems are longer in band, even though they merge at a lower frequency. We used
the model IMRPhenomD to generate this waveform.

Note the SpinTaylor waveforms are precessing models.

To the leading order, the evolution of waveforms in the inspiral phase is determined
by the chirp mass,Mc, which is given by

Mc =
(m1m2)

3/5

(m1 + m2)1/5
, (3.1)

= η3/5M,

where η = m1m2/(m1 + m2)
2 is the symmetric mass ratio, and M = m1 + m2 is the

total mass of the binary.
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The mass-ratio of the binary system and the spins on the component masses only
have an effect at the second order, in terms of, eta and χeff , where

χeff =
m1χ1 + m2χ2

m1 + m2
, (3.2)

where
χi = ®Si .L̂/m2

i (3.3)

are the dimensionless spin parameters aligned with the orbital angular momentum
of the component masses, ®Si are the component spin vectors and L̂ is the orbital
angular momentum vector. The EOB approach is valid for a larger parameter space,
including high mass-ratio systems, but is more computationally expensive, as it
requires differential-equations to be solved in the time domain for each unique set of
intrinsic parameters..

Even before the gravitational-wave detection of binary black holes by Advanced
LIGO-Virgo, black holes had been observed in X-ray binaries ranging up to ≈ 20M�.
Furthermore, a number of formation channels had been suggested through which
significantly more massive black-hole binaries could form. For such high mass
systems, the merger and ringdown part of the waveform would be in the detector
band as well. During the later stages of inspiral, close to merger, the approximation
methods mentioned above break down, and the Einstein’s equations have to be
solved in full general relativity. Since no analytical solutions are available for binary
spacetimes, the field equations have to be solved numerically on supercomputers.

The gravitational waveform decays exponentially during the ringdown, which can
either be approximated by black-hole perturbation theory or one may use the results
of numerical simulations.

3.1.2 Complete waveform models
For high mass systems (M = m1 +m2 > 12.0) , the merger of the waveform happens
in LIGO band. Therefore to detect such systems, we need waveform models that
include merger and ringdown as well, and not just the inspiral. Numerical simulations
are computationally expensive to perform, specially for high mass-ratio systems.
Only a finite number of such simulations exist, although the number of simulations
available are growing in number. Recently a numerical relativity waveform surrogate
model for generically precessing spins has been developed [70]. There exist different
approaches by which full IMR waveform models are obtained. One such approach is
the phenomenological approach [71], where a simple, analytic closed-form expression



25

for the full IMR model is obtained in terms of binary parameters. This is done by first
constructing hybrid waveforms in which the merger and ringdown from numerical
relativity is attached to an inspiral waveform calculated using the PN theory. This is
done by matching the two waveforms in an overlapping time or frequency interval.
A number of phenomenological methods are used in LIGO data analysis, and will be
referred to in this thesis. These include, IMRPhenomB [72], IMRPhenomD [73, 74],
IMRPhenomPv2 [75], etc.

Another successful method to create full IMR waveform models to map the two-body
problem in General Relativity onto an effective-one-body problem (EOB) to describe
the inspiral part of the waveform, This description is then extended to the merger
and ringdown using information from numerical theory. Some models that use
this strategy that we will refer to later are, in time-domain SEOBNRv2 [76] and
SEOBNRv4 [77], and the reduced order frequency domain models created from these,
SEOBNRv2_ROM_DoubleSpin [78] and SEOBNRv4_ROM. These waveform models
claim to be valid for high mass-ratio systems (upto m1/m2 ∼ 100) and extremal
magnitudes of aligned spins.

3.2 Detecting compact binary coalescences
In this section, we describe the signal processing techniques used to detect gravita-
tional waves from coalescing compact binaries buried in detector noise.

The detector output data stream, s(t) can be written as a sum of noise in the detector,
n(t), and possibly a gravitational-wave induced strain, h(t).

s(t) =


n(t), noise hypothesis

n(t) + h(t), signal hypothesis
(3.4)

Given the observed data and the predicted form of the signal, our goal is to decide
between the signal hypothesis and the noise hypothesis. Optimal methods for
extracting signals buried in detector noise are well developed for cases when the
statistical properties of detector noise are well characterized. We assume that the
noise is both stationary and Gaussian, despite the fact that this is not, in general, true;
we deal with non-stationarity and non-Gaussianity through a variety of techniques
discussed in the next chapter. Under these assumptions, the one-sided power spectral
density (PSD) is sufficient to describe the statistical properties of noise. It is defined
as
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Sn( f ) = lim
T→∞

2
T

�����∫ T/2

−T/2
n(t)e−2πi f t dt

�����2. (3.5)

Or equivalently,
1
2

Sn( f )δ( f − f ′) = 〈ñ∗( f ′)ñ( f )〉 , (3.6)

where ñ( f ) is the Fourier transform of n(t), F (n(t)), defined as,

ñ( f ) =
∫ ∞

−∞

n(t)e−2πi f t dt . (3.7)

The Fourier transform leaves variances in the transformed frequency series ñ( f ). To
remove these variances, we can divide by the square-root of the PSD to obtain,

ñwhite( f ) =
ñ( f )√
(12 Sn( f ))

, (3.8)

which is white noise and has a unit PSD. We define the inner product on the signal
space as [79]

〈a, b〉 =
∫ ∞

−∞

ã( f )b̃∗( f ) + ã∗( f )b̃( f )
Sn( f )

df (3.9)

In case of gravitational waves from CBCs, we are dealing with signals that are
usually of the order of the noise in our detector. Therefore, we have to make use of
matched − f iltering [54], which is a technique in signal processing used to extract
signals buried deep in noise in case the form of signal is known.

3.2.1 Matched-filtering
A matched-filter is obtained by cross-correlating a known signal waveform, or
template, with the data. The output of the matched-filter is the signal-to-noise ratio
(SNR), and in our case is just the inner product of the data with the normalized signal
template,

ρ =
〈
s, ĥ

〉
=

∫ ∞

−∞

s̃( f )ĥ∗( f ) + s̃∗( f )ĥ( f )
Sn( f )

df = 4R
(∫ ∞

0

s̃( f )ĥ∗( f )
Sn( f )

df
)
,

where ĥ∗( f ) and s̃( f ) are the Fourier transforms of the strain time series, s(t), and the
normalized signal time series, ĥ(t), respectively. The normalized signal waveform is

ĥ(t) =
h(t)√
〈h, h〉

. (3.10)
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As mentioned in Table 3.1, the signal waveform, h(t), or equivalently, h̃( f ) depends
on a number of parameters which are not known a priori. To calculate the SNR,
therefore, we have to maximize over all possible parameters. In the case where the
spins of the binary components are aligned with the orbital angular momentum,
the extrinsic waveform parameters are easy to deal with, as they enter only into the
overall amplitude and phase of the signal. For these parameters, the maximization
step can be performed analytically, or in a computationally efficient efficient way
using Fast Fourier Transform (FFT) algorithms1. The remaining intrinsic source
parameters, however, require the construction of a template bank (Sec. 3.2.3), which
is a set of discretized points in the intrinsic parameter space. The matched-filter
output is then calculated over all of these points to find the maximum overlap.

3.2.2 Maximizing the matched-filter output over the extrinsic parameters
In the CBC searches at the moment we only consider waveforms with spins aligned
with their orbital angular momentum. This not only reduces the parameter space
of the search, but also makes it easy to maximize over the extrinsic parameters.
However, efforts are being made to also include precession in our searches [80, 81].
The waveform observed at the detector, h(t), is the sum of the two gravitational-wave
polarizations, h+ and h×, multiplied by the response function of the detector to the
respective polarization, F+ and F× [82],

h(t) = F+(α, δ,ψ, tc)h+(t) + F×(α, δ,ψ, tc)h×(t). (3.11)

The detector response depends on the sky position of the source in the detector frame
(α, δ, tc : tc is needed to transform the sky position of the source from the celestial
coordinates to the frame of the detector), and the orientation of the polarization
vector of the source with respect to the detector arms (ψ).

In making the connection between the two waveform polarizations, h+(t) and h×(t),
the aligned-spin searches make the assumption that only the dominant (l, |m|) = (2,
2) mode of the waveform contribute to the SNR. In this approximation, the two
polarizations are π/2 phase-shifted from one-another, and can be written as [83],

h+(t) =
1 + cos2i

2D
Aζ (t − tc)cos[2(Φζ (t − tc) + φc)],

h×(t) =
cosi
D

Aζ (t − tc)sin[2(Φζ (t − tc) + φc)], (3.12)

1Only the frequency-domain searches can make use of the inverse FFT to maximize over
coalescence time in one shot. In time-domain searches, the maximization of the matched-filter output
over coalescence time has to do be done in a brute force way, as we will see in the next chapter.
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where Aζ and Φζ are functions of the intrinsic parameters, ζ = (m1,m2, χ1,and,χ2).
χ1 and χ2 are defined in Eq. 3.3.

Inserting Eq. 3.12 in Eq. 3.11, we get

h(t) =
Aζ (t − tc)

Deff
cos[2(Φζ (t − tc) + φ0)] , (3.13)

where

Deff =
D[

F2
+

(
1+cos2i

2

)2
+ F2
×cos2i

] (3.14)

is the effective distance, which is defined as the distance at which an optimally located
and oriented binary with the same intrinsic parameters would give the same signal
amplitude. It is always greater than the luminosity distance.

And

φ0 = φc −
1
2

tan−1
(

2F×cosi
F+(1 + cos2i)

)
(3.15)

is the termination phase, which is the phase of the waveform projected on the detector
at coalescence.

Thus, in the aligned-spin case, the waveform h(t) depends on the extrinsic parameters
only through combinations Deff and φ0, an overall amplitude and phase.

Recall that a time shift τ in a time-domain signal becomes a phase shift in its Fourier
transform,

h̃( f ; τ) = h̃( f )e−2πi f τ . (3.16)

We make the assumption that the stationary phase approximation holds [84], which
means that at any moment in time, Φζ (t) is dominantly one frequency. This allows
us to factorize the dependence of the Fourier domain waveform on φ0 using the
time-translation property of the Fourier transform as

h̃( f ) =
1

Deff
e2iφ0 h̃0( f ; tc), (3.17)

where h̃0( f ; tc) is the Fourier transform of h0(t − tc), which we have defined as

h0(t − tc) = Aζcos[2(Φζ (t − tc)], (3.18)
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which only depends on the intrinsic parameters, ζ = (m1,m2, χ1, χ2), and the time of
coalescence, tc.

We can now maximize the matched-filter output, ρ(tc, α, δ,ψ, φc, i, ζ) =
〈
s, ĥ

〉
, over

the parameters α, δ,ψ, φc, i by maximizing over their combinations Deff and φ0. Note
however, we do not need to maximize over the constant amplitude factor Deff as we
calculate the SNR by filtering with normalized templates.

max
α,δ,ψ,φc,i

(ρ(α, δ,ψ, φc, i, tc)) = max
φ0
(ρ(φ0, tc)) = max

φ0

〈
s, ĥ

〉
, (3.19)

= max
φ0

〈
s( f ), e2iφ0 ĥ0( f ; tc)

〉
, (3.20)

= max
φ0

4R(
∫ ∞

0

s̃∗( f )e2iφ0 ĥ0( f ; tc)
Sn( f )

df ). (3.21)

The maximum value of the real part of a complex number on varying its phase is
obtained when it’s equal to the absolute value. Therefore,

max
φ0
(ρ(φ0, tc)) =

��〈s( f ), e2iφ0 ĥ0( f ; tc)
〉��. (3.22)

If we define a complex snr time series, z, as

z(φ0, tc) =
∫ ∞

0

s̃∗( f )ĥ( f ; tc)
Sn( f )

df , (3.23)

then the matched-filter output mazimized over the termination phase can be written
as

max
φ0

ρ(φ0, tc) = |z(φ0, tc)|. (3.24)

Now we wish to also maximize this output over coalescence time,

ρ = max
φ0,tc

ρ(φ0; tc) = max
tc
|z(φ0, tc)|. (3.25)

Due to the time translation property of the Fourier transform Eq. 3.16, Eq. 3.17
becomes

h̃( f ) =
1

Deff
e2iφ0 e−2πi f tc h̃0( f ). (3.26)
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Therefore, from Eq. 3.25, we get that

ρ = max
φ0,tc

z(φ0, tc) = max
tc

��〈s(t), ĥ(t − tc)
〉�� = max

tc
4

�����
(∫ ∞

0
e2πi f tc s̃( f ) ˜̂h∗( f )

Sn( f )
df

)�����.
(3.27)

Frequency-domain searches can efficiently maximize the SNR over the coalescence
time tc through the use of an inverse Fourier transform. Note that the integral is
nothing more than an IFFT, and that fast numerical algorithms can be used to evaluate
it [85]. Eq. 3.27 provides a computationally efficient method for maximizing the
SNR over time, with a single, fast, inverse Fourier transform. Instead of having to
slide our template against the data to calculate the SNR at each sample, we can get
the entire SNR time series (ρ(t)) for all the time translations of the template against
the data by taking the inverse Fourier transform of s̃( f ) ˜̂h∗( f )

Sn( f )
.

3.2.3 Maximizing the matched-filter output over the intrinsic parameters :
Template bank

In the previous section, we covered the problem of searching over the extrinsic
parameters of the binary source while performing matched-filtering. Here, we
discuss searching over the instrinsic parameters of the binary, which are the masses
and spins of the binary components. These parameters enter into the phase and
amplitude of the gravitational-wave signal in a more complicated way as compared
to the extrinsic parameters. Therefore we resort to computing the matched-filter
output over the entire instrinsic parameter space and find the maximum overlap.
The intrinsic parameter space of the binary is continuous, and searching over it
completely requires an infinite amount of computational resources. Thus, we create a
template bank [86–89], containing a discrete set of waveforms spanning the intrinsic
parameter space of the search. These discrete points in the search parameter space are
chosen such that the mis-match between any signal and the best matching template
from the template bank (arising from the discrete nature of our template bank) is less
than a pre-specified tolerance. We will formalize shortly what we mean by “match”.
We closely follow the dicussion of template banks given in [90].

Given two waveforms h1 and h2, we define the match,M, between them by [79],

M ≡ max
®λextr

〈
ĥ1, ĥ2

〉
, (3.28)

where the inner product is maximized over the extrinsic parameters, ®λextr. So the
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match measures the maximum overlap between two waveforms given their intrinsic
parameters.

We denote the match byM(®λ,∆®λ), where ®λ = ®λh1, ∆®λ = ®λh1 − ®λh2 is the difference
between the intrinsic parameters of the two waveforms. For the match between two
templates with very similar parameters, which are neighboring in the parameters
space, we can Taylor-expand it about ∆®λ = 0. There are no linear terms in the
expansion, since the match function has its maximum value of unity at ∆®λ = 0 [86].

M(®λ,∆®λ) ≈ 1 − gi j∆®λ
i
∆®λ j (3.29)

is the Taylor-expansion of the match, where

gi j = −
1
2

(
∂2M

∂ ®λi∂ ®λ j

)
=

〈
ĥλi, ĥλ j

〉
(3.30)

can be interpreted as the local metric on a manifold in the coordinates of the binary
parameter space. ĥλiandĥλ j are partial differentials of the normalized waveform ĥ

with respect to the instrinsic parameters, λi, and λ j . The mismatch defined as 1−M,
between two neighboring waveforms has the interpretation of proper distance in this
manifold [86] and for small ∆®λ is approximately given by

1 −M ≈ gi j∆®λ
i
∆®λ j . (3.31)

The metric on the signal manifold is equal to the Fisher information matrix Γi j [87],
scaled down by the square of the SNR, i.e., gi j = ρ

−2Γi j . Also see Sec. 8.3.

Fitting factor

The fitting factor of a template bank towards a particular signal establishes the
“effectiveness” of a template bank for recovering the SNR [91]. The fitting factor of
a signal waveform with template bank is defined as the maximum match the signal
has with the templates in the bank,

FF( ®λs; B) = max
ĥ∈B
M(®λs, ®λs − ®λh). (3.32)

B here denotes the template bank, s the signal, and h the templates in the bank.
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We define the effective volume coverage of a template bank with respect to a set of
signals as a fraction of the sensitive volume (volume we would have been sensitive
to if we had templates exactly matching the signals in our template bank) as the
expectation value of the fitting factor,

Veff = Vsens
〈
FF3〉 . (3.33)

If we are willing to incur a 10% loss in volume, i.e., Veff = 0.9Vsens, this gives
〈FF〉 = 0.965. We typically construct template banks with a fitting factor criteria of
0.97 for our searches.

Template placement

There exist two basic methods for efficiently covering the intrinsic parameter space
of the binaries: lattice placement [80, 87, 92, 93] and stochastic placement [88, 89,
94, 95].

Lattice placementmethods make use of the metric of the waveforms given by Eq. 3.30
to calculate the match between neighboring waveforms (Eq. 3.31). Eq. 3.31 is only
valid for overlaps close to 1, but this method has been used for constructing banks
with a minimal match of 0.97. For bank construction, it is required that the metric
be constant in parameter space, or at least nearly constant. The metric coefficients
are coordinate dependent. For analytic inspiral-only waveform models, one can
construct a special set of coordinates in which the metric becomes nearly flat.

In the waveform given by the post-Newtonian expansion upto the second order,
for systems with negligible spins, these coordinates are the dimensionless chirp
times [87, 92],

θ0 =
5

128η
(πM flow)−5/3 , (3.34)

θ3 = −
π

4η
(πM flow)−2/3 , (3.35)

where M is the total mass of the binary and η = m1m2/M2 is the symmetric mass
ratio. flow is the starting frequency of the analysis, with with the match is calculated.
However, when merger and ringdown, or higher order post-Newtonian corrections
become important for detection, such coordinates are not known. Therefore, we look
for different methods to efficiently place templates.

Stochastic placementmethod is a brute force approach to construct template banks [88,
89]. In this method, we randomly select points in the given parameter space, and
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place a test template there. We calculate the fitting factor of this test template with the
already existing templates. If this fitting factor (which recall is the maximum match
over the existing templates) is greater than the fitting factor criteria, we discard the
test template, otherwise if the fitting factor is smaller than the minimum fitting factor
criteria, we keep it. We keep doing this until a pre-decided convergence condition is
reached.

Figure 3.5: A non-spinning bank created using the lattice technique (left). An
aligned-spin IMR template bank created using the stochastic method (right).

Fig. 3.5 shows examples of template banks created using the two placement techniques.

In this chapter, we have discussed how to perform matched-filtering in order to
detect CBC sources. However, the output of matched-filtering, SNR, is the optimal
detection statistic under the condition that noise is Gaussian. Our detector noise often
suffers from transient non-Gaussian features we call glitches. So in practice our CBC
search pipelines use more complex detection statistics than just SNR to distinguish
between noise and signal. At present there are two flagship CBC searches in the LVC,
the PyCBC (performs filtering in the frequency-domain, applies a signal-consistency
test in the frequency domain, uses time slides to establish significances) and the
GstLAL (time-domain matched-filtering, time-domain signal consistency test, uses
a multi-dimensional likelihood-ratio statistic to establish significance of events).
The two searches make use of very different methods, and therefore it is useful to
have them both to cross-validate results, more on this in Chapter 5. There also
exist other CBC searches in the collaboration that are actively being developed, e.g.,
GstLAL-spiir, MBTA among others.
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C h a p t e r 4

THE GSTLAL-INSPIRAL BASED PIPELINE

4.1 Introduction to the GstLAL pipeline
The GstLAL-inspiral based pipeline (henceforth referred to as the GstLAL pipeline) is
a matched-filtering analysis pipeline that can detect gravitational waves from compact
binary mergers in near real time, and provide point estimates for binary parameters
and the significance of events. Matched-filtering involves cross-correlating data
against a bank of waveform templates formed using general relativity. The pipeline is
built on the GstLAL library, a collection of GStreamer [96] libraries and plug-ins that
make use of the LIGO Algorithm Library, LALSuite [97]. It uses the GStreamer
library to stream the gravitational strain data in real time, performs matched-filtering
in the time-domain [3, 50] as opposed to the more traditional frequency-domain [84]
method, and uses a time-domain rather than a frequency-domain signal consistency
test [84]. It also employs multi-banding and singular value decomposition on signal
templates [3, 4] to reduce the number of filters and samples used in matched-filtering.
A multidimensional likelihood ratio statistic is used to rank the gravitational-wave
candidates according to the properties of noise and signal [3, 98]. Instead of
performing time-slides [84] for background estimation, a technique that is based on
tracking the noise distributions [99] and allows for rapid significance estimation is
used. In addition, the GstLAL pipeline can be run in an “offline" mode, where it
can process data archived on disks. The online pipeline uses background informed
from the past data to rank events, whereas the offline pipeline can make use of all
available data to inform the background. Furthermore, while analyzing data in the
offline mode, the pipeline can benefit from data quality products [100] which are not
available online1.

In this chapter we describe the methods used in the GstLAL pipeline.

4.1.1 Why low latency?
GW170817 is a perfect example of why we aim to detect gravitational-wave events in
low latency. On August 17, 2017, during the second observing run of the Advanced
LIGOdetectors and the first observing run of theAdvancedVirgo detector, theGstLAL

1Although there are plans to have low-latency data quality information for Advanced LIGO’s first
and Advanced Virgo’s second observing run (O3).
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pipeline identified a BNS merger event, GW170817 [11] in low latency. The Fermi
and INTEGRAL gamma-ray telescopes observed the gamma-ray burst GRB170817A
1.7 s after the binary’s coalescence time with an inferred sky-location consistent
with that measured for GW170817 [45]. The rapid identification of the gravitational-
wave event by the GstLAL pipeline spurred an extensive follow-up campaign by
astronomers all over the world and the optical transient SSS17a/AT 2017gfo was
discovered within 11 hours [12], localizing the source of the event to the galaxy NGC
4993. These joint gravitational-wave and electromagnetic observations support the
hypothesis that neutron star mergers are progenitors of short gamma-ray bursts and are
followed by transient electromagnetic events known as kilonovae [12]. Low-latency
gravitational-wave detection serves as early warning triggers for electromagnetic
and neutrino follow-up enabling multimessenger astrophysics. Furthermore, even in
the absence of a counterpart, low-latency observations can help provide feedback to
the detector characterization group about the data quality, and in a timely manner
minimize detector changes upon identification of a candidate in order to gather
enough data for background estimation.

Upon identification of an event that passes a predetermined significance threshold, it
is sent to the Gravitational-Wave Candidate Event Database (GraceDB) [101] which
provides an environment for collection of all the events and for recording information
about follow-ups.

Now that we have discussed the need for low-latency, we move on to describing the
methods of the GstLAL pipeline, highlighting the ones that are vital for allowing the
pipeline to keep up with the data in real time.

4.2 Pipeline methods
In this section we briefly describe the methods used by the GstLAL pipeline and
provide an overview of its workflow (See Fig. 4.1).

The GstLAL pipeline makes use of matched-filtering (Sec. 3.2.1) to extract signals
from noisy data by cross-correlating the detector output with a predicted waveform
signal. The CBC waveform models are described in Sec. 3.1.2.

4.2.1 Matched filtering in the time-domain
The output of the matched-filter is the SNR (Sec. 3.2.1), the inner product of the
whitened data with the whitened template. To facilitate low latency, it is calculated
in the time-domain [3, 50] by the GstLAL pipeline:
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Figure 4.1: Diagram of the workflow of the GstLAL pipeline. Figure taken from [3].

xi(t) =
∫ ∞

−∞

dτĥi(τ)d̂(τ + t), (4.1)

where

d̂(τ) =
∫ ∞

−∞

d f
d̃( f )√

Sn(| f |)/2
e2πi f τ (4.2)
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is the whitened data and the whitened template ĥi(τ) is defined similarly. Sn( f ) is
the single-sided noise power spectral density (PSD). The stationary noise amplitude
spectrum is estimated using a combined median–geometric-mean modification of
Welch’s method [3]. Piece-wise on overlapping Hann-windowed time-domain blocks
are whitened using this estimate of the PSD and subsequently summed together to
yield a continuous whitened time series.

The subscript i in Eq. 4.1 runs over each set of template parameters in our template
bank. For each set of parameter values in the template bank, there are two real
waveforms in the GstLAL filter bank, one corresponding to the ‘+’ polarization, and
the other corresponding to a ‘quadrature phase-shifted +’ waveform, which is equal
to the ‘×’ polarized waveform barring an overall amplitude factor.

We construct a complex signal-to-noise ratio (SNR) time series, real part of which is
the SNR time series from the ‘+’ polarized template (xi(t)), and the complex part
is the SNR time series from the ‘quadrature-phase shifted +’ polarized template
(yi(t)). We maximize over the unknown coalescence time and termination phase by
maximizing over the absolute value of the complex SNR time series over time,

ρ = max
t
|xi(t) + iyi(t)|. (4.3)

Time-domain filtering is naively more expensive than frequency-domain filtering.
Frequency-domain searches can make use of the computationally efficient inverse
FFT to calculate the SNR time series and maximize over coalescence time in one
shot, which is an advantage that the time-domain searches lack. The GstLAL pipeline
makes use of certain “tricks” to achieve low-latency computationally efficiently,
which we describe in the following section.

4.2.2 The LLOID method
The GstLAL pipeline makes use of the LLOID (Low Latency Online Inspiral
Detection) algorithm to efficiently perform matched filtering in the time-domain
and keep up with the data in low latency. This method combines singular value
decomposition (SVD) [4, 102] with near-critical sampling to construct a reduced set
of orthonormal filters with a reduced number of samples. For performing the SVD,
the template bank is first split into partially-overlapping “split-banks” of templates
with similar time-frequency evolution. This partitioning is performed based on the
intrinsic template parameters, as depicted in Fig. 4.2. In O1, this division was done
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on the basis on the chirp mass,Mc, and the effective aligned-spin, χeff parameter.
Mc and χeff are the leading order terms that describe the phase evolution of the
inspiral part of the waveform according to the Post Newtonian expansion.

The chirp massM is defined as

M =
(m1m2)

3/5

(m1 + m2)1/5
. (4.4)

The effective spin parameter is given by

χeff ≡
m1χ1 + m2χ2

m1 + m2
. (4.5)

2NT real templates are places in each split-bank, where NT is typically O(100). The
factor of 2 is a result of having two orthogonal real-valued templates (corresponding
to the two polarizations) in place of 1 complex-valued template (Sec. 4.2.1). The
adjacent bins are made to have some overlap in templates to mitigate the boundary
effects from the SVD. Overlapping templates are “clipped” after reconstruction so
that the output has no redundant waveforms. The waveforms are then whitened using
the PSD, and each split-bank is decomposed via the LLOID method as described
below. In addition to being used for the LLOID decomposition, split-banks are also
used as bins for estimating the background and the signal model for calculating the
likelihood-ratio detection statistic (Sec. 4.2.5). These are referred to as θ̄ bins.

Each split-bank is divided into various time slices after prepending the templates
with zeros such that every template has the same number of sample points; this
allows for an efficient sampling of the different regions of the waveforms with the
appropriate Nyquist frequency instead of over-sampling the low-frequency regions
of the waveform with the Nyquist frequency required for the high-frequency regions.
The SVD is then performed on each time slice of each split-bank. We retain only the
most important basis waveforms returned by the SVD algorithm, as measured by the
match between the original templates and the reconstructed waveforms [3, 50]. See
Fig. 4.3.

4.2.3 Signal-based vetoes
Detector data often contain glitches, which can produce high peaks in the SNR time
series. Because of that, SNR is not sufficient to distinguish noise from transient
signals in presence of non-Gaussian data. Therefore, in addition to recording the
peaks in the SNR time series, the pipeline performs a signal consistency check
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Figure 4.2: A visual representation of how the physical parameter space is tiled
into sub regions upon which the SVD and time slicing is performed. Figure taken
from [3]

whenever it records an SNR above a certain threshold. This is done by determining
how similar the SNR time series of the data around the peak value is to the SNR time
series expected from a real signal. The SNR time series is predicted by calculating
the auto-correlation between the complex template waveform and itself, and scaling
it by the peak complex SNR. This predicted SNR time series is equal to the SNR time
series under the assumption that the signal matches the template waveform exactly in
absence of any detector noise. This signal consistency test value, ξ2, is computed by
integrating the amplitude squared of the difference between the complex SNR time
series and the predicted SNR time series over a δt time window around the peak,
and normalizing it appropriately [3],

ξ2 =

∫ δt
−δt dt |z(t) − z(0)R(t)|2∫ δt
−δt dt(2 − 2|R(t)|2)

. (4.6)

Here z(t) is the complex SNR time series, z(0) its peak, and R(t) is the auto-correlation
series. Fig. 4.4 shows an example of the ξ2 test being performed for the GW170608
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Figure 4.3: An example of LLOID decomposition taken from [3]. In this example,
the number of templates in the split-bank is 2NT − 390. These are whitened binary
inspiral waveforms withMc between 0.87 and 0.88. The waveforms are prepended
with zeros to ensure they all contain the same number of sample points. They are
then decomposed into 30 time slices containing sample rates ranging between 128
Hz and 2048 Hz. A basis filter set was created from each time slice is constructed
after performing the SVD [4]. We find that only 6-10 basis filters per slice was
needed to reconstruct the 390 input waveforms to an accuracy of better than 99.9%.

event. Fig. 5.13 shows how the ξ2 test is helpful in distinguishing non-Gaussian
noise from signals.

4.2.4 Triggers
The raw SNR time series, typically sampled at 2 kHz, is discretized into “triggers"
before being stored to disk. This is done by maximizing the SNR over time in one-
second windows and recording the peak if it crosses a predetermined threshold. This
threshold was set to SNR = 4 for the Advanced LIGO detectors in the Engineering
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Figure 4.4: The two panels show the SNR time series near GW170608, a binary
black hole event that was detected by Advanced LIGO during the second observing
run (O2) on June 8th, 2016 along with the predicted SNR time series computed from
the autocorrelation of the template. Subtracting these two time series and integrating
their squared magnitude provides a signal consistency test, ξ2.

Runs 5 through 10 (ER5 - ER10), and the Observing Runs 1 and 2 (O1 & O2).
Whenever the pipeline records a peak in the SNR time-series that is greater than the
preset threshold, it records the SNR and ξ2, the template that returned those values
upon matched filtering (masses, spins of the binary, time of coalescence, phase of
coalescence, SNR, and ξ2). Together these quantities form a ‘trigger’. These triggers
are divided into the θ̄ bins corresponding to the bin that the template belongs to, as
described in the previous section. Given a trigger in one detector, we look for triggers
from the same template in other detectors within an appropriate time window, which
takes into account the maximum light travel time between detectors and statistical
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fluctuations in the measured event time due to detector noise. The latter is given by
the sum of the reciprocal bandwidths of the detectors. These are called coincident
triggers and are the candidates for the search2. After coincidences are formed, it is
necessary to rank the candidates (coincident events) and assign a significance to each.
The set of triggers that did not participate in a coincidence are used to characterize
noise for their respective θ̄ bin.

4.2.5 Significance estimation
After performing matched filtering, it is important that we assign significances to the
candidates of the search. The GstLAL pipeline uses the likelihood-ratio [98, 103] as
the detection statistic to rank coincident events by their SNR, ξ2, the instantaneous
sensitivity of each detector, expressed as their horizon distance, {DH1,DL1, . . . }),
and the detectors involved in the coincidence {H1, L1, . . . },

L

(
{DH1,DL1, . . . }, {H1,L1, . . . }, ρH1, ξ

2
H1, ρL1, ξ

2
L1, . . . , θ̄

)
= L

(
· · · | θ̄

)
L

(
θ̄
)
,

=
P

(
{DH1,DL1, . . . }, {H1,L1, . . . }, ρH1, ξ

2
H1, ρL1, ξ

2
L1, · · · | θ̄, s

)
P

(
{DH1,DL1, . . . }, {H1,L1, . . . }, ρH1, ξ

2
H1, ρL1, ξ

2
L1, · · · | θ̄,n

)L (
θ̄
)
. (4.7)

The numerator and denominator in Eq. 4.7 are factored into products of several terms
as described in [98], assuming that the noise distributions for each interferometer are
independent of each other. The numerator is given as

= P({DH1,DL1, . . . })P({H1,L1, . . . } | {DH1,DL1, . . . }, s)

× P(ρH1, ρL1, · · · | {DH1,DL1, . . . }, {H1,L1, . . . }, s)
∏

inst∈H1,L1
P(ξ2

inst | ρinst, s).

(4.8)

The signal model PDFs are constructed by performing a Monte Carlo integration by
generating sources that are uniformly distributed in volume, inclination angle and
sky location [98, 103]. The distribution of ξ2 is obtained by assuming a maximum
of 10% loss in SNR due to waveform mismatch [103, 104]. A detailed description
of how each of these terms is calculated can be found in [98]. The denominator of

2Note that starting in O2, the GstLAL pipeline also treated the non-coincident triggers as
candidates in the online search. Refer to Ch. 7.
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Eq. 4.7 is factored as

P
(
{DH1,DL1, . . . }, {H1,L1, . . . }, ρH1, ξ

2
H1, ρL1, ξ

2
L1, · · · | θ̄,n

)
∝

∏
inst∈{H1,L1,... }

P
(
ρinst, ξ

2
inst | θ̄,n

)
. (4.9)

The (SNR, ξ2) distributions for the noise hypothesis, P
(
ρinst, ξ

2
inst | θ̄,n

)
, are obtained

from histograms of non-coincident triggers, which are then normalized and smoothed
by a Gaussian smoothing kernel. The time dependence of these PDFs is not tracked3.
Examples of these PDFs used to assign the likelihood-ratio statistic can be found in
Figs. 6.22, 6.23, and 6.24.

Trigger Clustering

Signals can produce triggers associated with several templates at the same time.
While assigning significances we wish to ensure that we only consider the most
likely candidate associated with a given signal. To do so, in the offline pipeline,
we cluster the candidate events by keeping the set of triggers with the highest
likelihood-ratio across the entire template bank within a ±4 s window. The online
pipeline does not cluster events across different θ̄ bins in order to save time. The
online pipeline, however, does cluster triggers by keeping the trigger-set with the
highest likelihood-ratio in each θ̄ bin within a ±1 s window.

False-alarm probability and false-alarm rate

Now that we have obtained a clustered candidate-event list with likelihood-ratios
assigned, we would like to translate these numbers into physical significances: a
false-alarm probability and a false-alarm rate (FAR). False-alarm probability is the
probability that noise would produce an event with a ranking statistic greater or
equal to the ranking statistic of the event under consideration. Conventionally the
false-alarm probability (FAP or, the p-value) has been measured by performing
time-slides, where a set of time-shifts that are much larger than the gravitational-wave
travel time between the sites are performed in the data, and the result is used to
construct a background. But the bookkeeping of time slides is not desirable for a
low-latency search [105, 106]. In order to compute the FAP, we first need to construct
the likelihood-ratio PDF for the noise model, P(L | n). The likelihood distribution

3The dependence of these PDFs on time was added in O2. Refer to Ch. 7.
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for the noise hypothesis given a θ̄ bin is

P(L | θ̄,n) =
∫
Σ(L)

P(· · · | θ̄,n)dn−1
Σ, (4.10)

obtained by integrating the noise PDF for all n parameters in the ranking statistic over
n−1 dimensional surfaces Σ, of constantL. However, we do not know the Σ surfaces,
therefore we construct an approximation of P(L | θ̄,n) by sampling points in the
n-dimensional parameter space and computing L and P(· · · | θ̄,n) at each point,
constructing a histogram of L with each sample weighted by P(· · · | θ̄,n) [98, 103].

Next, we marginalize over the template bins to get

P(L | n) =
∫

P(L | θ̄,n)dθ̄ (4.11)

The FAP is then given by

P(L ≥ L∗ | n) =
∫ ∞

L∗
P(L | n)dL. (4.12)

In case of M observed events, this can be written as the complement of the binomial
distribution,

P(L ≥ L∗ | n1, . . . ,nM) = 1 −
(
M
0

)
P(L ≥ L∗ | n)0[1 − P(L ≥ L∗ | n)]M, (4.13)

= 1 − (1 − P(L ≥ L∗ | n))M .

In order to calculate the FAR, we assume that the noise events follow Poisson
statistics [103]. For a Poisson process with a mean λ, the probability of observing N

or more events is

P(N | λ) = 1 − e−λ
N−1∑
j=0

λ j

j!
. (4.14)

Setting N = 1 in Eq. 4.14 and combining with Eq. 4.13, we obtain the mean number
of noise events with likelihood ratio L ≥ L∗,

λ(L ≥ L∗) = −Mln(1 − P(L ≥ L∗ | n)). (4.15)

The quantity FAR is then given by

FAR =
λ

T
, (4.16)
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where T is the time of the experiment, and the inverse of false alarm rate which tells
us the waiting time before we see such an event from noise is given by

IFAR =
1

FAR
(4.17)

4.2.6 Estimating the sensitivity of the pipeline
Simulated gravitational wave signals known as “injections" are added in a duplicated
strain data stream in order to ascertain how our pipeline would fare against signals.
Injections are considered “found” if a coincident event is found above a threshold
significance in a certain timewindow around the injection. This threshold significance
requirement is set to IF AR ≤ 30 d. The sensitive volume space of the pipeline Vsens

is computed as

Vsens = 4π
∫ ∞

0
drε(r)r2. (4.18)

Here ε(r) is the efficiency parameter given by the fraction of found injections. Range,
which is the average furthest distance a signal can be detected from, is defined by the
radius corresponding to the sensitive volume,

R =
(
3Vsens

4π

)1/3
. (4.19)

In Chapters 5, 6, and 7, we describe searches carried out using these methods. We
also explain some figures of merit in Chapter 5 which are useful in understanding
how well the pipeline is performing. For a detailed description of these methods we
refer the reader to [3, 4, 50, 98].



46

C h a p t e r 5

BBH GSTLAL

Before the start of the first observing run of Advanced LIGO, the LIGO-CBC group,
as a legacy from the Initial LIGO’s science runs was divided into 3 main search
groups, targeting the three most anticipated source types: neutron star-neutron star
binaries (BNS), neutron star-black hole binaries (NSBH), and black hole-black hole
binaries (BBH). There were three search pipelines at the time: GstLAL (running
both in low-latency and in an offline configuration), pycbc offline, and MBTA online.
This chapter documents the developments in the BBH GstLAL pipeline that were
made before the start of O1.

5.1 Motivation to develop a low-latency BBH search using GstLAL
There were already plans to run the PyCBC search (Advanced LIGO version of the
ahope pipeline [83, 84] used to detect CBC signals in Initial LIGO). At that time,
however PyCBC could only run in high latency1. We wanted to develop a low-latency
BBH search using GstLAL. The main motivation for low-latency searches is to
send out prompt alerts to the broader astronomy community in order to provide
an opportunity of multi-messenger observations [50]. Even if we don’t expect any
electromagnetic counterparts to BBH mergers, it would be nice to confirm that (or
even better, contradict by detecting light from a BBH merger!). Furthermore a
low-latency matched-filtering search would prove useful to provide early feedback to
the Detector Characterization group about short-duration instrumental glitches which
will potentially trigger the short duration BBH templates. In case of GW150914, its
detection by the low-latency burst searches helped alert the detector commissioners
to freeze the commissioning activities. This allowed the searches to collect sufficient
data for background estimation before the configuration of the detectors was changed.
Since then, low-latency matched filtering searches have been successfully deployed
and have been analyzing data in real time using template banks covering a broad
parameter space that includes BNS, NSBH, and BBH regions. There have been no
highly significant multimessenger observations of BBH signals. GW170817, the
first BNS merger observed by Advanced LIGO, was observed in electromagnetic
over several bands.

1Now the PyCBC pipeline can also detect CBC signals in real time.
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The GstLAL pipeline and the PyCBC pipeline use different methods of filtering and
background and significance estimation. Therefore, running both could provide a
means of cross-checking the analyses results for clear loud events. In fact, studies
have shown that marginal events from the two pipelines can be very different, so
running both would mean that we could detect more marginal events. A study was
conducted with a common template bank and common sets of injections (simulated
signals) to compare the performance of the multiple pipelines. We briefly discuss
those results at the end of this chapter.

Parameter space considerations

Now that we have decided to develop a BBH search, it is necessary to also define the
search parameter space. The ringdown frequency of the final black hole is inversely
proportional to the total mass, and is approximately given by

fringdown = (1.5251 − 1.1568(1 − j)0.1292)
c3

(2.0πGM)
. (5.1)

Here M is the mass and j is the reduced Kerr spin parameter of the final black hole.
For neutron star-neutron star binary, the ringdown frequency is typically higher than
1 kHz and therefore outside of the LIGO band. For a non-spinning black hole, if
the mass is greater than ∼ 12M�, the ringdown frequency enters the LIGO band.
Therefore, for such systems a significant fraction of the SNR comes from the merger
and ringdown.

Such a search should use IMR templates (Sec. 3.1.2 ), ideally including at least
aligned spin. Studies have shown increase in sensitive volume of the search on
including the effect of spin in the tempplates [95].

It should cover a parameter range extending from where the low-latency low-mass,
inspiral-only search(es) end (at the time envisioned as masses of 3-3 M�) up to as
high as is sensible (100M� or more), and extend down to frequencies as low as 10-20
Hz.

5.2 Mock data challenge
To tune and test our pipelines for O1, and compare the pipelines among each other,
a mock data set was created by recoloring two calendar months of Initial LIGO’s
sixth science run (S6) data to the anticipated sensitivity of the Early Advanced LIGO
detectors [5]. See Fig. 5.1.
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Figure 5.1: Plausible sensitivity curves in the early phase of the aLIGO commis-
sioning. The pink curve was used to recolor the S6 data used in this study. Figure
taken from [5].

We started testing the GstLAL BBH pipeline by creating a template bank (Fig. 5.2
of full inspiral-merger-ringown waveforms that went from 3M�-3M� (component
masses) to 110M� (total mass). The spins were restricted between [-0.9, 0.9]. We
considered a starting frequency of 30Hz. The bank was created in three stages
using the program lalapps_cbc_sbank that lives in the LALSuite [97]: the “low-
mass bank”, which went up to 9.8M� in total mass was created using the lattice
placement method by using the TaylorF2RedSpin metric. Note that, even though
we used the TaylorF2RedSpin metric to create the template bank, while filtering
we used the IMRPhenomB waveforms. Since low-mass templates are longer in the
relevant frequency band (30 Hz onwards), it is more computationally expensive to
perform matches in the low-mass region, and to make use of the stochastic placement
technique. Since the merger and ringdown of the low-mass waveforms fall outside
the frequency band, it is sufficient to use inspiral-only models in the region only for
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Figure 5.2: Visual illustration of the template bank used for developing the BBH
GstLAL search and to analyze the ER6 data.

placement purposes.

The “intermediate-mass bank”, which went from 9.8M� to 44M� in total mass was
constructed using the stochastic placement method in multiple parallel processes
using a Condor DAG [107]. DAG, which stands for Directed Acyclic Graph, is a
job control system. The intermediate waveforms are long enough in the band that
the generation of the bank requires chopping up the parameter space in different
Mc slices and placing templates in parallel in these slices. We need to be careful
while dividing the parameter space into several bank placement jobs while using the
stochastic placement technique because it leads to overcoverage in the boundaries.

The density of the template banks decrease with the increase in the masses of the
binaries. The waveform of a system with smaller masses is longer in the frequency
band Advanced LIGO and Virgo detectors are the most sensitive in. Therefor even a
small change in masses can lead to a big mismatch in this region since there are a lot
of cycles in band for which the match is being performed. Very few templates are
required in the high mass region, and therefore they can be placed easily without any
parallelization of jobs. Finally, the “high-mass” bank, which went from 44M� to
110M� in total mass, was constructed using the stochastic method in one single job.

5.2.1 Challenges - new waveforms
Just before the start of the first Observing run (O1) of the Advanced LIGO detectors,
a new waveform model, SEOBNRv2 [76], became available. It allowed for the
waveforms to be generated with component spins, χ1, χ2 ∈ [−1,0.99], and mass
ratios, m1

m2
∈ [1,100]. Even though there are not many waveforms from numerical
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relativity to tune to at high mass ratios, the EOB formalism [68, 69] is designed to
work well for high mass-ratio systems. The only drawback was that the waveforms
are slow to generate and thus difficult to use for filtering purposes. Soon after a
frequency domain reduced order model based on the SEOBNRv2 waveform model,
SEOBNRv2_ROM_DoubleSpin [78] was developed. This model was shown to be
thousands of times faster for typical system masses with a faithfulness mismatch of
better than 0.1% than the original model [78]. This speedup in waveform generation
allowed us to use make use of this waveform model for filtering, and therefore
allowed us to increase the parameter space of our search, previously restricted
to χ1, χ2 ∈ [−0.9,0.9] and mass ratios, m1

m2
∈ [1,10], to χ1, χ2 ∈ [−1,0.99], and

m1
m2
∈ [1,100].

Subsequently, a new template bank was created to cover the extended BBH parameter
space. It is shown in Fig. 5.3. We started testing the GstLAL BBH pipeline with this
new template bank.

Figure 5.3: Visual illustration of the template bank created with increased BBH
parameter space, no mass ratio cut, component spins upto 0.99.

It was found that the pipeline didn’t find any of the software injections while filtering
with the new bank of waveforms. Software injections are simulated gravitational
waveforms that are used to assess the pipeline response to real gravitational-wave
signals. Furthermore, it was found that the problem remained if we replaced the
waveform model in the template bank from SEOBNRv2_ROM_DoubleSpin to that of
the previously tested IMRPhenomB. So it was concluded that the problem was not
with the way the pipeline handled the new waveform, but with the way the pipeline
handled the extended parameter space. Recall that, in order to be computationally
efficient, the GstLAL pipeline uses SVD’ed, multi-banded filters (Sec. 4.2.2). On
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visualizing the reconstructed waveforms from the SVD filter banks, the culprit for
the missing of injections was found. The reconstructed filter waveforms were clearly
suffering from under sampling, Fig. 5.4.

Figure 5.4: Reconstructed SEOBNRv2ROM_DoubleSpin waveform - undersampling
issues. The blue and green waveforms are the reconstructed h+ and h× waveforms
(top). The bottom figure shows the autocorrelation time series of the reconstructed
plus and cross waveforms.

5.2.2 Issue with the time slicing
In the GstLAL pipeline, each split-bank (Sec. 4.2.2) is divided into various time slices
before performing the SVD, such that all the templates in a split-bank have the same
number of samples in each time slice. This is done by calculating the number of
samples in each time slice starting from the highest sampling frequency. The number
of samples in a particular time slice depend on the waveform that is the longest
in the frequency band corresponding to fn−1/(2 × padding) and ( fn × padding)/2,
where fn/2 is the sampling frequency of the current time slice, and fn−1/2 is the next
highest sampling frequency coressponding to the next time slice (Fig. 5.5). “Padding”
is used to ensure that that the waveform doesn’t cross the Nyquist rate in the next
time slice.

The undersampling issues we saw earlier were happening because sampling rates
were being skipped over. As we can see in the snippet above, an exception is made
when imrchirptime raises an error. In the exception, however, the code simply
skips over a sampling frequency and continues. The idea behind that was to try a
smaller starting frequency so that imrchirptime returns a non-negative inspiral
time, but this had the unintended side effect of also reducing the current sample rate.
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Figure 5.5: Number of samples in a time slice is given by the duration of the waveform
that spends the longest amount of time in the frequency band fn−1/(2× padding) and
( fn × padding)/2.

Figure 5.6: imrchirptime raises an error whenever the inspiral time returned is
negative.

imrchirptime computes the inspiral time of a waveform in a given frequency band
according to 3.5 order in the Post Newtonian expansion. But the PN expansion
breaks down for high mass-ratios. Therefore imrchirptime returns nonsensical
results, i.e., negative times in a frequency band. Fig. 5.7 shows the points in the new
template bank that returned negative times for a frequency band and therefore had
some sample rates skipped over.

To fix the undersampling issue, we replaced the call to the imrchirptime function, with
a function that overestimates the IMR time. The inspiral time is calculated using the
2 PN formula, but dropping all the negative terms. The merger time is overestimated
by assuming the merger and the plunge takes one orbit at the maximum ISCO
radius. The maximum ISCO is for orbits about a Kerr black hole with maximum
dimensionless aligned spin and equals 9GM/c2 (Sec. 3.1.1). This corresponds to an
orbital speed of ≈ c/3. The ringdown time is overestimated by overestimating the
final spin of the black hole, and calculating time for 11 e folds.

Using the new function solved the undersampling issue that we were encountering in
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Figure 5.7: Points in the new template bank (Fig. 5.3) that imrchirptime returns
negative times for.

high mass-ratio part of the parameter space (see Fig. 5.8). But we ended up with an
inspiral-only waveform. The merger and ringdown was being cut-off.

After investigations, it was found that the merger and the ringdown of the waveform
were being wrapped to the front of the buffer by the new waveform approximant,
SEOBNRv2_ROM_DoubleSpin. We needed to fix that, since we need to sample the
merger and the ringdown of the waveform with the highest sampling frequency. We
also wanted to align the IMR waveforms before performing the SVD so as to get
maximum compression. We use the epoch information returned by the waveform
generator to find the merger time, and align them at merger.

5.2.3 Epoch returned by the LALSimulation waveform generator
Epoch information tells us the time by which we need to shift a given waveform to
get the merger at the beginning (or equivalently, at the end) of the buffer. We use
SimInspiralFD, which is a waveform generator in LALSimulation that conditions
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Figure 5.8: Reconstructed SEOBNRv2ROM_DoubleSpin waveform - sampling issue
fixed, but the merger and ringdown is being cut off.The blue and green waveforms
are the reconstructed h+ and h× waveforms (top). The bottom figure shows the
autocorrelation time series of the reconstructed plus and cross waveforms.

waveforms properly (both TD and FD). We find the position of peak amplitude
using the epoch returned by SimInspiralFD. We then align the peaks according the
maximum ringdown time (for a given split bank) from the end of the buffer, before
performing the SVD.

This fixed all the issues we were seeing with the use of new waveforms, and going
upto extreme mass ratios in the parameter space. Fig. 5.9 shows the final fixed
reconstructed SEOBNRv2_ROM_DoubleSpin waveform that we looked at before.

5.2.4 Results
Now that we have fixed the issues with waveform reconstruction from SVD basis
filters, we ran our BBH pipeline on the MDC data. We chose to run on a month’s
worth of MDC data, which was S6 data recolored to early Advanced LIGO sensitivity.

We will use these results to go over some figures of merit, which will come up in the
next chapters.

Injection accuracy

Injections are simulated signals that are injected in the data that we use to measure
the performance of the pipeline. We examine the pipeline’s ability to recover the
injected parameters. Recall that the purpose of a search pipeline is to detect signals,
and not perform detailed parameter estimation (which is done coherently across the
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Figure 5.9: Reconstructed SEOBNRv2ROM_DoubleSpin waveform - sampling
issue fixed, merger and ringdown not being cut off. The blue and green waveforms
are the reconstructed h+ and h× waveforms (top). The bottom figure shows the
autocorrelation time series of the reconstructed plus and cross waveforms.

detector network using a full multidimensional parameter space of the considered
models with a fine (stochastic) sampling). Still, these results are useful to trace
potential bugs, and they also provide us with an idea about the recovery we should
expect for high mass systems.

Recovery of chirp mass and effective spin

Chirp mass parameters for the low mass systems are recovered better than the chirp
mass parameters for the high mass systems (Fig. 5.10) most of the SNR comes
from the inspiral, the phase evolution for which is governed by the chirp mass. For
high mass systems, most of the SNR comes from the merger and ringdown; the
merger frequency is proportional to Mtot. High mass systems also contain merger
and ringdown in the band, and those phases are not as well parametrized by the
chirp mass. Degeneracy with chirp mass causes some outliers in recovering spins.
See Figs. 5.11 and 5.12. For the injections that have their spins aligned with the
orbital angular momentum, the recovery of the effective spin parameter is good. For
precessing injections (With spins arbitrartily aligned), the recovery of the effective
spin parameter becomes worse because we do not model the precession effects in
the templates. Chirp mass recovery can be seen in Fig. 5.10 and the effective spin
parameter recovery can be seen in Fig. 5.11.
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Figure 5.10: Mc recovery. We can see that the chirp mass recovery of low-mass
systems is better than that of high mass as expected.

Figure 5.11: χeff recovery. Majority of injections show good χeff recovery.

ξ2 vs. SNR distribution for background and injections

SNR is insufficient to distinguish signal from background in the presence of non-
Gaussian noise. A good ξ2 should be able to help separate background from injections
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Figure 5.12: χeff recovery. Note that these are precessing injections.

in presence of non-Gaussian noise. We just show the figure for one of the detectors
for reference. See Fig. 5.13. Notice that if we had just used SNR as a detection
statistic, the background points would have completely overlapped with the injections,
ruining our ability to find signals whatsoever.
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Figure 5.13: ξ2 vs. SNR distribution for background and injections in Hanford. The
black crosses are background coincident events (these are coincident events found in
time-shifted data between the two detectors), and the colored points are injections,
with the colors showing the spin range of the injections. A good ξ2 should be able to
help separate background from injections in presence of non-Gaussian noise. We
see two distinct background populations, one that centered around a ξ2 value of 1
and low SNRs is the Gaussian population, and the other population with high SNRs
are due to glitches. Notice that if we had just used SNR as a detection statistic, the
background points would have completely overlapped with the injections, ruining
our ability to find signals whatsoever.
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Search Sensitivity

We want to present the results of our searches in terms of the rate of binary mergers
per unit volume of space to which we are sensitive (in Mpc3), assuming that this "rate
density" is constant in the local universe (although it will change at cosmological
distances, when the universe was much younger; see chapter 8). Therefore, we need
to know the sensitive volume to which our pipeline can detect signals. Note that this
depends on the masses of the system being considered, since heavier systems are
intrinsically louder. In the pipeline, it is calculated by injecting signals uniform in
volume and uniform in sky location (see Sec. 4.2.6). It is defined as Vsens =

4
3πR3

where R is the range defined as the average distance to which our detcetors (and the
pipeline) can detect signals. It is a function of the FAR. At a higher FAR, we can
detect signals further away but the contamination fraction of noise incresaes. Refer
Fig. 5.14.

Figure 5.14: Mean sensitive distance as calculated by the pipeline for recovered S6
data recolored to Early Advanced LIGO sensitivity.
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Main results (“Money plots”)

Finally, we want to see results of the run. In order to ensure that the background
model is working, we perform exactly one time-slide analysis in GstLAL. It also
serves for the purpose of performing a blind analysis as discussed in Sec. 6.2.3
below. In Fig. 5.15, we plot IFAR (Eq. 4.17), which has a monotonic mapping
with the likelihood ratio statistic on the x-axis, and the cumulative counts (or
cumulative expected counts from noise in case of background model) on the y-axis.
Note that the expected background model (dashed line) is precisely of the form
dNcum/dIFAR = 1/(IFAR ∗ Tobs), with Poisson errors on Ncum shown as grey bands.
We want the time-shifted result to match with the background model within Poisson
errors, because we don’t expect to see any signals in the time-shifted analysis. When
we look at the un-shifted analysis, if there is a positive excess in the un-shifted result
compared to the background model, it could indicate a signal. Notice that this allows
us to be able to detect a population of signals at low IFAR values, which would not
be significant if taken individually, but collectively could indicate a sub-threshold
population.

Figure 5.15: Cumulative candidate counts vs. IFAR. The time-shifted result lies on
top of the background model as expected.

In the next chapter, we will see how the GstLAL BBH pipeline was successfully used
in O1.
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5.3 Appendix: Spin vs Non-spinning BNS Bank MDC
As described in Sec. 5.2, a mock data set was created in advance of O1 to test our
pipelines, and evaluate their efficiency as a function of source distance, masses,
and component spins. The BNS group wanted to test two banks, one that included
aligned-spin waveforms (we will call this the aligned-spin bank) and one that only
had non-spinning binary waveforms (we will call this the non-spin bank) against
common injection sets: one set that contained only aligned-spin waveforms (we
will call this the aligned-spin injection set), and another set that included precessing
waveforms with the spins of the binary components isotropically distributed (we will
call this the isotropic injection set). While the aligned-spin bank trivially covers a
larger parameter space as compared to the non-spin bank, we would like to quantify
these numbers to ascertain if the extra volume covered is worth the additional
computational costs.

The banks

1. The non-spin bank included inspiral only waveform templates describing
GW emission from systems with component masses in the range 1M� to
3M�. It contained ∼ 8,000 templates generated using the TaylorF2 waveform
model [63–67]. It was constructed using a geometric placement technique
(Sec. 3.2.3).

2. The aligned-spin bank also included inspiral only waveform templates describ-
ing GW emission from systems with component masses in the range 1M� to
3M�. In addition, it allowed the components to have a dimensionless spin
in the range −0.4 ≤ χ1, χ2 ≤ 0.4. It contained ∼ 80000 templates generated
using the TaylorF2 waveform model [63–67]. It was also constructed using a
geometric placement method that allows for spin [93].

The injections

1. The aligned-spin injection set included waveform templates describing GW
emission from systems uniformly distributed in component masses in the range
1M� to 3M�, with their spins restricted to be aligned with their orbital angular
momentum and uniformly distributed in magnitude from -0.4 to 0.4. The
injection set had ∼ 37000 injections.
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2. The isotropic-spin injection set also included systems uniformly distributed in
component masses in the range 1M� to 3M�. The spin magnitudes were also
required to be less than 0.4, however their direction was not restricted to be
aligned with the orbital angular momentum; they were isotropically distributed.
This injection set also contained sim37000 injections.

We perform a bank effectualness study with the two banks and the two injection sets
that were created by calculating the fitting factors for all the signals in the injection
sets against the two banks, and compute the effective sensitive volume covered by
the two banks against the two injection sets (Eq. 3.33).

5.3.1 Non-spin Bank - aligned-spin injection set
We compute the fitting factor for all the aligned-spinning injections with the non-spin
bank. The results are shown in Fig. 5.16 and Fig. 5.17. We see that 66% of the
injections have a fitting factor of less than 0.97, but there is good chirp mass parameter
agreement between the injections and templates.

Figure 5.16: Histogram of mismatch calculated for the aligned-spin injections with
the non-spin bank (left). The cumulative histogram is shown on the right. 24,742
out of the total 37,155 injections are found to have a fitting factor of less than 0.97.

The effective volume covered by the non-spin bank for the aligned-spin injection set
using Eq. 3.33 is found to be Veff = 0.66 × Vsens.

5.3.2 Non-spin Bank - isotropic spin injection set
We compute the fitting factors for all the injections in the isotropic-spin set with the
non-spin bank. The results are shown in Figs. 5.18 and 5.19. We find that ∼ 49% of
the injections are found to have a fitting factor less than 0.97. So, the isotropic-spin
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Figure 5.17: Best matching template total mass vs. injected total mass (left). Best
matching template chirp mass vs. injected chirp mass (right). We see an excellent
recovery of the chirp mass as expected, as it is the leading order term that describes
the inspiral part of the waveform. We will see later that such an agreement is not
seen in the high-mass parameter space of binaries.

injections are recovered better than aligned spin injections, with the non-spin bank.
This is because the effect of spin on a waveform is described by the effective spin
parameter to a leading order. The spins in the plane of orbit cause sub-dominant
amplitude and phase modulations. Since the isotropic injections have their spin
directions uniformly distributed, their effective spin component is on average less
than that for the aligned injection set (see Fig. 5.20).

Figure 5.18: Differential (left) and cumulative (right) histogram of mismatch between
the isotropic injections and the non-spin bank. 18,146 out of the 37,155 injections
are found to have a fitting factor of less than 0.97.

The effective volume covered by the non-spin bank for the isotropic injection set
using Eq. 3.33 is found to be Veff = 0.83 × Vsens.
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Figure 5.19: Best matching template total mass vs. injected total mass (left). Best
matching template chirp mass vs. injected chirp mass (right). As before, we see an
excellent recovery of the chirp mass.

5.3.3 Aligned-spin Bank - aligned-spin injection set
We see that almost all the aligned-spin injections have a fitting factor greater than
0.97 with the aligned-spin bank. The results are shown in Figs. 5.21 and 5.22. This
is expected if the bank was constructed correctly.

The effective volume covered by the aligned-spin bank for the aligned injection set is
found to be Veff = 0.97 × Vsens.

5.3.4 Aligned-spin Bank - isotropic injection set
We see that the aligned-spin bank covers the isotropic spin space relatively well,
and more than 90% of the injections have a fitting factor greater than 0.97. Refer to
Figs. 5.23 and 5.24.

The effective volume covered by the aligned-spin bank for the isotropic injection set
is found to be Veff = 0.95 × Vsens.

In conclusion we find that the aligned-spin bank covers the aligned-spin and isotropic
spin space considerably better than the non-spin bank. Given the considerably extra
computational cost (and much higher trials factor) associated with the use of a
full isotropic-spin template bank, which would have an order of magnitude more
templates, we choose to make use of the aligned-spin bank for O1.
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Figure 5.20: Effective spin distributions for aligned and isotropic injections. We see
that the aligned-spin injections have a higher effective spin parameter on average.

Figure 5.21: Differential (left) and cumulative (right) histogram of mismatch between
the aligned-spin injections and the aligned-spin bank. Only 20 out the 37,155 aligned-
spin injections have a fitting factor of less than 0.97 with the aligned-spin bank.
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Figure 5.22: Best matching template total mass vs. injected total mass (left). Best
matching template chirp mass vs. injected chirp mass (right).

Figure 5.23: Differential (left) and cumulative (right) histogram of mismatch between
the isotropic-spin injections and the aligned-spin bank.

Figure 5.24: Best matching template total mass vs. injected total mass (left). Best
matching template chirp mass vs. injected chirp mass (right).
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C h a p t e r 6

OBSERVING RUN 1

"Ladies and gentlemen. We have detected gravitational waves. We did it!"
- David Reitze

We could not have asked for a better start to our first observing run. The first
observing run (O1) of the Advanced LIGO detectors started on September 12, 2015,
and continued until January 19, 2016 (see Fig 6.1). On September 14, 2015 at

Figure 6.1: Reference strain sensitivity of the two Advanced LIGO detectors during
O1, which lasted from September 12, 2015 to January 19, 2016. Not yet operating at
their design sensitivity, these detectors were 3-4 times more sensitive than the initial
detectors in the frequency band 100 to 300 Hz. Figure taken from [6].

09:50:45 UTC, four days before the start of O1, during the Engineering Run 8
(ER8), the two LIGO detectors simultaneously observed a transient gravitational-
wave signal [6], refer to Fig. 6.2. But by then, the detectors were stable and were
being left undisturbed to observe the sky. The signal, GW150914, which sweeps
upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of
1.0 × 10−21 matches that of the waveform predicted by general relativity for the
inspiral and merger of a pair of black holes and the ringdown of the resulting merged
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black hole. This detection was a result of the hard work of thousands of people
spread across multiple experiments and decades. The initial detection of the event
was made by low-latency searches meant for generic gravitational-wave transients,
coherent Waveburst (cWB) and omicron-LALInference-Bursts (oLIB) [43]. Besides
GW150914, the matched filtering pipelines identified a possible (LVT151012), and
another confirmed (GW151226) gravitational-wave signal from binary black hole
mergers [9, 18, 108] during O1. The GstLAL pipeline analyzed the O1 data both in
an online and an offline mode1. GW151226 was detected by the GstLAL pipeline
within 70s [9] of its arrival at the detectors, and became the first event to be identified
by a matched-filtering search in low latency. While GW150914 was loud enough, and
localized in time enough to be clearly visible in a time-frequency representation [109]
of the strain data [6] (Fig. 6.2) and to be detected by a generic gravitational-wave
transient search, GW151226 required the accumulated SNR from matched filtering
for the signal to become apparent in both detectors [9] (Fig. 6.3). In this chapter, we
report the results from the GstLAL analysis of the O1 data. Sec. 6.1 briefly describes
the Advanced LIGO instruments, Sec. 6.2 describes the details of the O1 GstLAL
search, Sec. 6.3 discusses some of the challenges we encountered during O1, and
finally in Sec. 6.5 we describe the results from the GstLAL search.

1In the beginning of O1, the GstLAL pipeline was only looking for low-mass binary mergers
(BNSs and NSBHs) online. It wasn’t until 22nd December, 2015, that the pipeline started uploading
events from the full uberbank search (Sec. 6.2, Fig. 6.5) to the GraceDB (Gravitational Wave Candidate
Event Database [101], just 4 days before the detection of GW151226.
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Figure 6.2: The top row shows the observed strain for GW150914 after band-passing
and notching out instrumental spectral lines in each detector. Note that in the top right
plot, the Hanford data has been time shifted and inverted (to account for the detectors’
relative positions and orientations). The second row shows the gravitational-wave
strain signal projected onto the detectors according to a numerical relativity waveform
(red) [7] for a system consistent with GW150914 parameters. The dark and the light
gray shaded areas show 90% credible regions for binary black hole template waveform
reconstruction and a reconstruction that uses a linear combination of sine-Gaussian
wavelets respectively. The third row shows the residuals after subtracting the filtered
numerical relativity waveform from the filtered detector time series. The bottom row
shows a time-frequency representation of the strain data in which the signal is clearly
visible as a chirp with its frequency increasing over time. Figure taken from [6].
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Figure 6.3: The top row shows the best matching template that identified GW151226
buried in the detector noise. The modulations we see in the waveform are due
to the conditioning of the data and the template with a 30-600 Hz bandpass filter,
which was done to suppress the fluctuations outside this range and to remove strong
instrumental spectral lines [8]. The second row shows how the SNR is accumulated
over time by matched filtering and the third row shows the SNR time series with
a clear peak that happens when the coalescence time of the template matches the
signal. The fourth row shows the time-frequency representation of the signal. We
can see that in contrast to GW150914 (Fig. 6.2), this signal is not easily visible, and
needs matched-filtering for its detection. Figure taken from [9].
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6.1 The Advanced LIGO detectors
The Advanced LIGO detectors are modified Michelson interferometers. Each arm
contains a resonant optical cavity, formed by its two test mass mirrors, that multiplies
the effect of a gravitational wave on the light phase by a factor of ∼ 300 [110].
A partially transmissive power-recycling mirror at the input provides additional
resonant buildup of the laser light in the interferometer as a whole and in O1 20 W
of laser input is increased to 700 W incident on the beam splitter, which is further
increased to 100 kW circulating in each arm cavity [19]. A partially transmissive
signal-recycling mirror is used to extract the gravitational-wave signal by broadening
the bandwidth of arm cavities. A schematic diagram of the detector is shown in
Fig. 6.4.

A passing gravitational wave alters the arm lengths of the interferometers, such that the
measured difference is ∆L(t) = ∂Lx(t)− ∂Ly(t) = h(t)L, where h is the gravitational-
wave strain amplitude projected on to the detector (Eq. 3.11). Calibration of the
interferometers is performed by inducing test mass motion using photon pressure
from a modulated calibration laser [111, 112]. Calibrated strain data is produced in
the time domain using both a low-latency, online procedure and a high-latency, offline
procedure [113]. The searches use the low-latency calibration to get preliminary
results, and the analyses are repeated once we have a better version of calibrated data.
The methods to estimate the uncertainty in calibration and the numbers for both O1

Figure 6.4: Simplified diagram of an Advanced LIGO detector. Figure taken from [6].
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and O2 can be found in [114].
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6.2 Search description
For the first observing run, the two main matched-filtering searches, GstLAL and
PyCBC, both used a common template bank to analyze the data. They looked
for systems with component masses in the range 1M� to 99M�. The minimum
component masses of the templates used in the search were decided based on the
lowest expected neutron star mass at the time, which was 1M� [115]. Since then, we
have also searched for ultracompact binaries with component masses between 0.2M�
- 1.0M� in the O1 data, Sec. 6.5.2. There is no known number for the maximum black
hole mass, however the search we report results from here was limited to binaries
with total mass less than M = m1 + m2 ≤ 100M�. The LIGO detectors are sensitive
to higher mass binaries, however; the results of searches for binaries that lie outside
this search space (conducted separately) are briefly described in Sec. 6.5.2. The
spins on the component objects were restricted to be aligned to the orbital angular
momentum (Sec. 3.2.2). The masses between 1M� and 2M� were assumed to be
neutron stars, and those that were greater than 2M� were assumed to be black holes.
The magnitude of the dimensionless aligned spin (Eq. 3.3) for the neutron stars was
assumed to be between −0.05 ≤ χ ≤ 0.05. The shortest observed pulsar period
in a double neutron star system is 22 ms, corresponding to a spin of 0.02. The
fastest-spinning millisecond pulsar is known to have a spin of 0.4. At the current
detector sensitivity, limiting the spin magnitudes of the templates to χ1,2 ≤ 0.05
does not reduce the search sensitivity for sources containing neutron stars with spins
up to 0.4. Therefore for the template bank, we limit the spins on the neutron star
to be less than 0.05. For black holes this value was allowed to be 0 ≤ χ ≤ 0.9895,
since the observations of X-ray binaries indicate that astrophysical black holes may
have near extremal spins [116].

6.2.1 O1 template bank
As described in Sec. 3.2.3, since the parameters of signals are not known in advance,
each detector’s output is filtered against a discrete bank of templates that span
the search target space. Fig. 6.5 shows the template bank that was used by the
matched-filtering pipelines including the GstLAL pipeline in O1. The placement
of templates depends on the shape of the power spectrum of the detector noise,
Sec. 3.2.3 and Fig. 6.1. We see in Fig. 6.1 that the noise spectrum rises sharply at
lower frequencies; therefore, we used a low-frequency cutoff of 30 Hz for this search.
The average noise power spectral density of the LIGO detectors was measured over
the period September 12, 2015 to September 26, 2015, and the harmonic mean of
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Figure 6.5: The four-dimensional search parameter space covered by the O1 template
bank shown projected into the component-mass plane, using the convention m1 > m2.
Each point in the figure is a template in the bank. The different colors indicate the
different source types, and the spin limits considered for that part of the parameter
space. The symbols identify that the templates that found the 3 events in O1.
LVT151012 was identified by different templates in PyCBC and GstLAL. The bank
used in O1 shown here is fondly known as the uberbank.

these noise spectra was used to place a template bank that was used in the search.
Recall that we require exact template match between the two detectors for forming
candidates, therefore it is imperative that we use a common template bank for the
two detectors.

In Sec. 3.2.3 we talked about measuring the performance of the template bank using
the fitting factor [91]. Fig. 6.6 shows the distribution of fitting factors obtained for
the template bank against a set of injections spanning the same parameter space as
the template bank. The mismatch between signals and templates is less than 3% for
more than 99% of the 105 simulated signals.
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Figure 6.6: Cumulative distribution of the fitting factors obtained with the O1
template bank for a population of simulated signals spanning the same parameter
space as the templates. Less than 1% of the signals have a mismatch of more than
3% against the template bank.

6.2.2 Data conditioning
Matched filtering is optimal under the assumption that the data are both stationary
and Gaussian. Unfortunately, in reality that is not true. Non-stationarity over long
time scales can be handled by tracking the PSD. But short noise transients, commonly
referred to as “glitches", can cause high-SNRmatched filter outputs mimicking signal
detections. Therefore the pipelines cannot rely solely on SNR to detect signals.

Data quality vetoes

We have a dedicated team working towards the characterization of the noise trasients
that are specifically harmful to the CBC and burst searches. Several environmental
and instrumental monitors are maintained on sites which output information to
auxiliary channels that can ascertain times of clear coupling between local transient
noise sources. Data quality products are created based on these couplings, which can
then be applied by the pipelines on the data as “vetoes”. There are two different types
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of data quality products: data quality flags and data quality triggers. Data quality
flags are created whenever a reproducible criterion with known noise couplings are
met [117–120] and are typically have durations on the order of seconds to hours.
The data quality flags are further divided in two veto categories: CAT1 and CAT2.
CAT1 vetoes indicate times when the data should not be analyzed at all due to a
critical issue with a key detector component. CAT1 vetoes are identically applied to
all transient searches to the input data. CAT2 vetoes indicate times when a noise
source with a known physical coupling to the strain channel is active. These are
typically applied after the initial processing of data for a specific search. Most search
pipelines require a certain minimum stride of unbroken data, and applying CAT2
vetoes after the initial processing has been done allows more data to be used by
the pipelines. This minimum segment length of data was 512 s for the GstLAL
pipeline, 2048 s for the PyCBC pipeline, and 620 s for the burst searches. Data
quality triggers are short duration vetoes associated by algorithms that identify
significant statistical correlations between a transient in the strain channel with one
in an auxiliary channel [121–124]. Data quality triggers are applied as CAT3 vetoes
after the initial processing of the data by the pipelines, similar to CAT2 vetoes. These
are typically times when the coupling between the strain and auxiliary channels
are statistically generated but the coupling mechanism is not understood. For more
details about the data characterization process, we refer the reader to [100].

On top of applying the data quality vetoes, the GstLAL pipeline combats the glitches
present in the data in two ways. One is self-vetoing the data whenever the whitened
data exceeds a certain number of pre-decided standard deviations; this is referred to
as auto-gating; see below. The other is using signal consistency checks which have
been described in Sec. 4.2.3.

Auto-gating

Glitches can sometimes produce matched-filter outputs that have considerably higher
amplitudes than any expected output from a compact binary signal. These can
therefore safely be removed from the data through a process called gating. Whitened
data should have unit variance. If a momentary excess, greater than a pre-decided
number of standard deviations, σ, is observed in the whitened data, then the gating
process zeros this excess with a 0.25 s padding on each side. See Fig. 6.7.

For O1, this pre-decided number of standard deviations was 50σ. The lower this
threshold is set to, the more glitches this method can potentially gate. However, we
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Figure 6.7: Example of gating. The figure shows 2 s of LIGO S6 data, showing 3
glitches, but only one of them was loud enough to surpass the 50σ threshold and
therefore gated. Figure taken from [3].

don’t want it to be so low where we start gating real signals. The number 50σ was
decided based on the results of several injection studies conducted before O1 using
the ER7 and ER8 data and different gate thresholds. It was the lowest threshold
among our trials at which we were not gating out injections. See also Sec. 7.1.3.

O1 data

The GstLAL pipeline used coincident observations between the two LIGO detectors
in O1 (See also Sec. 7.1.5), from September 12, 2015 to January 19, 2016. During
the 129.7 days of operation, the detectors recorded 51.5 days of coincident data.

Unstable instrumental operation and hardware failures in form of CAT1 vetoes
affected 2.9 days of these coincident observations. These data were discarded and
the remaining 48.6 days of data were used as input to the pipelines [18].

The GstLAL pipeline takes this data and only analyzes continuous stretches that are
longer than 512 s. This condition reduces the available coincident data to 48.3 days.
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Note that the PyCBC pipeline applied a different minimum length criteria in O12 of
2048 s, and therefore analyzed 46.1 days of data.

6.2.3 Blind analysis
There are a number of tuning parameters in the search pipelines, and to eliminate
any bias, conscious or subconscious, both in producing results and upper limits,
we blind ourselves to the results of the search until the tuning configurations have
been frozen. But to decide on the tuning choices it is important that we look at
the performance of the pipeline in terms of its search sensitivity, ability to separate
signal and background, ability to predict the background model, etc. We study and
tune the performance of the pipeline to real signals, using software injections of
waveforms. We study the background (accidental coincidence of detector noise
fluctuations) using real data (as opposed to simulated Gaussian detector noise). This
is done by looking at the results of a time-shifted analysis, in which the data streams
of the instruments have been shifted by a constant time with respect to one another.
The candidates of the time-shifted analysis, which are the coincidences found in that
analysis are not real candidates, since they would not have been coincident in the
real “zerolag” unshifted analysis3. We call the results from the time-shifted analysis
“closed-box" results. We want to see a good agreement between the closed-box
results and the background predicted by the pipeline.

Before the start of O1, it was decided that the offline pipelines will wait until five days
of coincident data had been accumulated by the two detectors before analyzing those
data, and repeating this process for every 5-coincident-day “chunk". This time period
was decided based on two competing requirements; we wanted it to be long enough
to get a good background estimate (if we use too little time then the noise PDFs don’t
converge), but short enough that the character of the data or the sensitivity of the
instrument doesn’t change too much4. These five-day chunks of data were called
“analysis chunks”. We had nine such chunks in O1. For each chunk, the pipelines
had to prepare the closed box results along with a “checklist" whose goal was to
ensure that everything was working as expected, that all the data quality products
(Sec. 6.2.2) had been applied correctly, that the pipeline recovered the injections that

2The PyCBC analysis also used a minimum segment length of 512 s in O2.
3This is only true when the pipeline is only looking at coincident candidates. A “single-detector

search” where one can rank non-coincident events is being actively developed for both the GstLAL
(Sec. 7.1.5) and PyCBC [125] searches. It is yet unclear as to how to conduct a blind analysis in such a
case.

4The GstLAL pipeline now adapts itself to change in instrument sensitivity; see Sec. 7.1.8.
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were within the sensitivity range of the instruments, and that the background model
built by the pipeline is able to explain the closed box results. If an injection with a
high expected SNR was missed, there needed to be a satisfactory explanation for
it before we could open the box. Expected SNR is calculated assuming an exact
matching template is present in the template bank. An example of a satisfactory
explanation for an injection being missed is the presence of a glitch (see Fig. 6.8)
on the top or near the signal in one or both detectors (which would throw off the
ξ2 statistic), high precession of the injection making it fall outside the parameter
space being covered by our bank, etc. These results were presented to the entire
data analysis group and the boxes were to be opened once we had the go ahead from
everyone. The consequence of the unblinding is that there should be no further
tuning of the results. However, we do allow for a possibility for some things to
change after the unblinding of the analysis, for example if we find an error in the
analysis due to an accidental misconfiguration which is not the result of a deliberate
tuning choice or an unavoidable technical error due to a bug. We also allow for the
possibility to rerun on updated calibrated data. During the six science runs of initial
LIGO, scientists waited patiently and eagerly for the boxes opened, beseeching for a
signal. In O1, even before the first closed box analyses had been prepared for the
first O1 chunk, we knew that it contained a signal since GW150914 was detected
by the online coherent wave burst pipeline [43] and was loud enough to be seen in
an omegascan (time-frequency spectrogram). So it was not possible to conduct an
entirely blind analysis of these data, but we did the best we could to get an unbiased
estimate of the significance of GW150914 by freezing the tuning choices of the
pipelines when it was detected online.
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Figure 6.8: A glitch in the Hanford detector which caused the pipeline to miss an
injection made at the GPS time 113634374 (top). The heat map for SNRs recovered
by the pipeline in both detectors (bottom) as a function of time and chirp mass of the
templates. We see that there is no clear peak in the SNR time series for any of the
templates in the Hanford detector such as we expect for a signal, for example in the
Livingston detector.

6.3 Challenges in Observing run 1
6.3.1 Case of the missing templates - GW150914
Both the GstLAL and the PyCBC pipelines prepared the closed boxes for O1 chunk
1 that contained GW150914 following the guidelines that were set before O1 and
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described in the previous section.

On opening of the boxes, GW150914 was found as the loudest event in both the
analyses as expected. However, it was noted that it was found with significantly
different SNRs in PyCBC and GstLAL, Table 6.1.

Pipeline H1 SNR L1 SNR m1 m2 Mc
PyCBC 19.71 13.28 47.93 36.6 36.40
GstLAL 16.02 9.79 95.34 4.42 14.97

Table 6.1: Discrepancy in original recovered SNRs for GW150914 between the two
pipelines

The reason the two pipelines recovered such a different SNR for the same event is
because they recovered it with a different template. The GstLAL pipeline recovered
it with a template (let’s call it Tmplt2) with a chirp mass ofMc = 14.97, whereas
the chirp mass of the template that the PyCBC (let’s call it Tmplt1) pipeline recovered
it withMc = 36.4. Both the pipelines use a different ranking statistic and a different
method to estimate significance, so it is not impossible or even unlikely for the two
to recover something with different SNRs. But still the there was the question as
to why the GstLAL pipeline ranked a template that picked up a fraction of SNRs in
both the detectors highest.

We found that the reason behind this discrepancy was that the Tmplt1 was missing
from the GstLAL filter banks. Recall that the GstLAL pipeline uses the LLOID
algorithm for matched filtering (Sec. 4.2.2). Instead of performing the matched
filtering with physical templates, it performs matched filtering with a reduced set of
basis templates and then reconstructs the SNRs for the original physical templates.
To do this it divides the template bank into several smaller split banks. This is done by
first diving the template bank into χeff bins, and then diving each χeff bin into several
Mc bins, such that the neighboring bins have some overlap in the templates they
contain. The reconstruction of templates at the boundaries of split banks from the
basis filters is suboptimal, and therefore we borrow some templates from neighboring
bins which are discarded after performing the SVD (see Fig. 6.9). The problem was
that there was no overlap between the extreme χeff bins but the waveforms were
still being clipped after the SVD. This bug resulted in our filter bank containing
1170 templates less than the original template bank which included Tmplt1. These
templates are shown in Fig. 6.10.
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Figure 6.9: Cartoon illustration of the bank binning process in the GstLAL pipeline.
The black bars show thewaveforms that are not repeated because therewas erroneously
no overlap being clipped off. The green bars depict the waveforms that were present
twice in a bin because of an overlap being properly clipped off. Also refer back to
Fig. 4.2.

This bug was fixed by padding the split banks at the edge of χeff bins with duplicate
templates from themselves so that when we perform clipping we get rid of those
redundant templates. We reran the analysis with this fix, and the new recovered
SNRs matched with the PyCBC analysis, Table 6.2.

Pipeline H1 SNR L1 SNR m1 m2 Mc
PyCBC 19.71 13.28 47.93 36.6 36.40
GstLAL 20.08 13.35 47.93 36.6 36.40

Table 6.2: The recovered SNRs for GW150914 agree between the two pipelines after
fixing of the “missing templates” bug. They also find GW150914 with the same
template.

The fixed analysis also showed improvement in the accuracy in Mc parameter
(Fig. 6.11), signal and noise separation (Fig. 6.12), and the search sensitivity of the
pipeline (Fig. 6.13).
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Figure 6.10: Templates missing from GstLAL filter bank, inM − χeff space. The
templates shown in this figure correspond to the black bars in the cartoon illustration
in Fig. 6.9.

Figure 6.11: Comparison of Mc recovered by the pipeline for the same set of
injections before (left) and after (right) fixing the bug of missing templates. We
can see that the recovery has improved significantly specially in the high chirp
mass region. These figures are identical for the two detectors, since we only rank
coincident events; therefore, we only show the figure for Hanford.

Overall, the bug seemed to have affected the high mass region of the parameter
space in particular. The density of templates in the high mass region is low, and
each template covers a much larger space in masses as compared to the low-mass
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Figure 6.12: Comparison of signal and background separation in SNR-ξ2 plane
before (left) and after (right) fixing the bug of missing templates. We see that the ξ2

values for injections have shifted closer to 1, and the separation between the signal
and background has improved.

Figure 6.13: Comparison of sensitive distance as measured by the same set of
injections made in the pipeline before (left) and after (right) fixing the bug of missing
templates. The range has improved significantly, particularly for high mass injections.

region. The fixing of the bug didn’t require any changes to the core DAG or analysis
(Sec. 5.2); we just changed the input template filter banks used for matched-filtering.

6.3.2 Case of the missing injections
After fixing the bug that affected O1 chunk 1, the GstLAL offline pipeline continued
analyzing the data for the following chunks as they became available. Recall that for
opening the box, we are required to prepare a checklist in which among other things
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we followed up on any injections with high expected SNRs that were being missed.

While following up on missed injections from chunk 2, we stumbled upon three
injections (Table 6.3) that could not be explained by the usual acceptable reasons.
They were not being gated by the pipeline, they were not being injected in vetoed
data, they were not precessing, and there were no glitches in either detector at the
time of these injections. These injections belonged in the parameter space covered

Number H1 expected SNR L1 expected SNR H1 recovered SNR L1 recovered SNR
INJ1 39.82 22.41 5.50 6.71
INJ2 16.70 8.38 4.73 6.69
INJ3 16.58 14.45 6.86 6.83

Table 6.3: Missed injections from O1 chunk2 with high expected SNRs. These
injections were generated using the SEOBNRv2 model. We see that the pipeline is
only recovering a small fraction of the injected SNRs.

by the bank. The template bank has been shown to be effectual (Fig. 6.6) in this
parameter space, which means that any mismatch between the injection and the
template should only account for a maximum of 10% loss in SNR. To explicitly
quantify this number, we calculate the fitting factors of the three injections with the
template bank using a local PSD. We report the results in Fig. 6.14.

Figure 6.14: Best-matching template for each injection along with the fitting factor.
We see that the template bank has good fitting factors with all three injections.

After digging in the output databases of the pipeline, we found that the highest
likelihood-ratio triggers returned by the pipeline for the three injections corresponded
to templates much lower in masses as compared to the best-matching templates.
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Now the question is why were these triggers with low SNRs being assigned a higher
detection statistic as compared to the triggers from the best-matching templates.
To answer this question, we looked at unclustered outputs of the pipeline. Our
investigations are reported in Figs. 6.15, 6.16, and 6.17.

Figure 6.15: Recovered output from the pipeline for INJ1 with the best-matching
template vs. that saved by the pipeline. We see that both the SNRs and ξ2s for the
maximum overlap template are better as compared to those for the template returned
by the pipeline. There has been no likelihood-ratio value assigned to the triggers for
the best-match template.

Figure 6.16: Recovered output from the pipeline for INJ2 with the best-matching
template vs. that saved by the pipeline. We see that both the SNRs and ξ2s for the
maximum overlap template are better as compared to those for the template returned
by the pipeline. There has been no likelihood-ratio value assigned to the triggers for
the best-match template.
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Figure 6.17: Recovered output from the pipeline for INJ3 with the best-matching
template vs. that saved by the pipeline. We see that both the SNRs and ξ2s for the
maximum overlap template are better as compared to those for the template returned
by the pipeline. There has been no likelihood-ratio value assigned to the triggers for
the best-match template.

It turned out that the pipeline wasn’t assigning the coincident label to these “good”
triggers, so they weren’t treated as candidates or assigned a likelihood ratio.

The GstLAL pipeline finds coincident events in streaming manner, using a program
called streamthinca. It throws away single detector triggers that are older than a
time up to which it considers that the coincident event list should be complete. While
tuning the SVD for high mass waveforms, we had aligned them at their mergers
(Sec. 5.2.3). This offset was not being taken into account properly, and therefore for
some of the high mass templates, where the shift in the waveforms was a lot, the
pipeline failed to perform the coincidence test accurately. Once the bookkeeping
for coincident candidates was fixed, and the analysis rerun, the pipeline recovered
these missing injections. Once again, we compare the accuracy inMc parameter
(Fig. 6.18), signal and noise separation (Fig. 6.19) and the search sensitivity of the
pipeline (Fig. 6.20) before and after the fixing of coincident event candidate list.
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Figure 6.18: Comparison of Mc recovered by the pipeline for the same set of
injections before (left) and after (right) fixing the bug of missing coincident events.
We see fewer outliers in theMc recovery after fixing the list of candidates.

Figure 6.19: Comparison of background and signal separation before (left) and
after (right) fixing the bug of missing coincident events. We see less scatter (fewer
outliers) in ξ2 distribution after the bug fix.
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Figure 6.20: Comparison of sensitive distance as measured by the same set of
injections made in the pipeline before (left) and after (right) fixing the bug of missing
candidates from the list. The range has improved slightly, particularly for high mass
injections.
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6.4 First online detection
On December 26, 2015, the gravitational-wave candidate GW151226, fondly known
as the “Boxing day event" was identified within 70 s by the low-latency GstLAL
pipeline (Fig. 6.21), and was a huge success for the pipeline and GW science in
general. This detection came only a few days after the pipeline started uploading
events from the full uberbank (Fig. 6.5). Up until then, the pipeline was only running
on an EM-bright bank which contained BNS and NSBH templates which are expected
to have an EM counterpart signal and which therefore needed to be identified with
low latency in order to alert EM telescope operators. The pipeline was also running
a blind analysis on the full uberbank for testing purposes.

Figure 6.21: A screenshot of the uploaded GW151226 event in the GraceDB database.
The green labels are a sign that a notice/circular should be sent off to our partner
EM, neutrino, and other observatories alerting them of this event.

Besides being our second confirmed event, the boxing day event was the first event
where matched filtering proved to be crucial to the detection since the signal has
a smaller strain amplitude with energy spread over a longer time interval than
GW150914. GW151226 was also the first signal to provide a strong evidence for at
least one of its components having a nonzero spin [9].

6.5 Results
The fact that we had a very successful O1 is indisputable. Even though we saw some
problems that negatively affected the high mass parameter space with the GstLAL
pipeline early on, they were identified and fixed quickly.
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In this section we present the final results from the offline GstLAL pipeline on the
entirety of O1 data with the final calibration. These results have been presented
in [9, 18]. Since then we have reanalyzed the data from O1 using the template bank
that was constructed for O2, which covers a bigger parameter space, and an improved
version of the GstLAL pipeline. These will be presented in the next chapter.

6.5.1 Assigning significances
For the final results, we divided the data from O1 into 3 analysis blocks for running
the GstLAL pipeline. The 3 analysis blocks each corresponded to 3 original chunks
made for box-openings.

In O1, the GstLAL pipeline was not tracking the changes in detector sensitivity (as
quantified with horizon distances) over time. In practice it has been found that a
week or more of data is required before the non-coincident SNR-ξ2 histograms used
to model the background PDFs converge. Therefore it is not possible to monitor the
changes in the instruments’ horizon distances on time scales less than ∼O(1 week).
The way the pipeline incorporated the time-dependence of, for example, the SNR-ξ2

histograms was by analyzing data in blocks, so that the events are ranked based on
the data from just that block.

By dividing O1 data into 3 analysis blocks, we ensured that the assignment of the
likelihood-ratios to the candidates was being done based on the data from their
respective blocks. Finally in order to transform the likelihood-ratio numbers to FAP
or FAR, the construction of P(L | n) was done by sampling the background PDFs
marginalized over all 3 blocks of data.

Background estimation: Candidates in or out?

You will recall that in the GstLAL pipeline, we use the statistics of non-coincident
triggers to construct the background PDFs which are used to assign the likelihood-
ratio to the candidates. See Sec. 4.2.5 for details. By default, we leave the coincident
detection candidates of our search out of this calculation. If the candidates are just
noise events, they should follow the same distribution as the non-coincident noise
events, and the PDFs should not change significantly by their inclusion or exclusion,
since they are only a tiny fraction (< 1% in O1) of the non-coincident events. But
if they are gravitational-wave signals, their inclusion in the histograms that inform
the background PDFs would have the effect of contaminating the background PDF
with something signal-like which would mean that we would underestimate the
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significance of a real signal. There is one more possibility, however extremely
unlikely. If it so happened that there were noise events in the candidate list which
were different from all the other noise events (an extremely tiny probability) and they
accidentally ended up in the pile of coincident events (< 1%), then not including
these in the background PDFs would mean we could end up overestimating the
significance of the candidates.

To err on the side of producing conservative significance estimates we decided to
include the coincident detection candidates in our noisemodel, but only partially; after
all these were the very first detections. The way this was done was, we still assigned
the likelihood-ratios to the candidates based on background PDFs constructed out of
the non-coincident triggers. This means, in Eq. 4.7, the denominator is informed by
only non-coincident triggers. But while sampling the background PDFs to construct
P(L | n), we used the PDFs which included the coincident candidate events in them,
which means that in Eq. 4.10, the integration is performed over the PDFs that were
informed using all the triggers of the search.

Technically, thismeant thatwe could keep the results of gstlal_inspiral_calc_likelihood
from the default runs, but we had to recompute the likelihood distribution for each
θ̄ bin, which is the output of gstlal_inspiral_calc_rank_pdfs. This was
done using a DAG. DAG (Sec. 5.2) refers to a job scheduler system which defines
parent-child dependencies between different jobs.

Figs. 6.22, 6.23, and 6.24 show the various signal and noise PDFs marginalized
over all the template bins.

Fig. 6.25 shows the cumulative distribution of likelihood-ratio for O1, which tells us
how to map L : F AP(L).

We convert the FAP to single-sided Gaussian standard deviations according to
−
√

2erf−1(1 − 2(1 − F AP)), where erf−1 is the inverse function.

Now we have all the ingredients to report the final results (almost!). Recall that
the effect of putting in candidates that are real gravitational-wave events has the
effect of producing under-estimated significances. We get very different results for
the significance of the boxing day event if we use the candidates for GW150914 to
inform the background PDFs vs. if we take them out. We proceed as follows:

1. We assign FAP to all the events based on the background PDFs that contain all
the events.
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Figure 6.22: lnP(ξ2/SNR2 | SNR, s) for all of O1 in Hanford (left) and Livingston
(right). The red, blue, and green plus signs show the events GW150914, GW151226,
and LVT151012 for reference. Note that the PDFs have been marginalized over all
the θ̄ bins so they are not the same as the ones used to rank the events, but they give
us a pretty good idea about the (SNR-ξ2) position of the events in signal space.

Figure 6.23: lnP(SNR, ξ2/SNR2,n) for all of O1 in Hanford (left) and Livingston
(right). The red, blue, and green plus signs show the events GW150914, GW151226,
and LVT151012 for reference. Note that the PDFs have been marginalized over all
the θ̄ bins so they are not the same as the ones used to rank the events, but they give
us a pretty good idea about the (SNR-ξ2) position of the events noise space.

2. We note that the significance of GW150914 is > 6.7σ, even when including
the candidates in background PDFs.

3. We decide that GW150914 must be a gravitational-wave signal, and thus, we
remove the candidates corresponding to the time of event and form a second
background model which we then use to assign FAPs and FARs to all the other
events. See Fig. 6.26.

4. With this new background PDF which does not contain GW150914 candidates,
but still contains GW151226 candidates, we find the significance of GW151226
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Figure 6.24: Joint SNR PDF for the two detectors under the signal hypothesis. Note
that for O1, the pipeline assumed both detectors to have the same horizon distance in
order to compute this PDF.

Figure 6.25: The figure shows the mapping between lnL and FAP(L). This mapping
was constructed using background PDFs with all the candidates included.

to be 4.5σ. See Fig. 6.27.

5. Finally, we construct a third background model using PDFs that don’t have
candidates from either GW150914 or GW151226 and use it to assign the
significance of LVT151012. However, we note that at the lnL = 18.1, the
background models do not change significantly by addition or removal of the
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loud candidates from GW150914 and GW151226. The addition and removal
of these loud events affects the likelihood-ratio distribution for high values of
likelihood-ratio the most.
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Figure 6.26: Number of events per log likelihood-ratio bin (width = 1) for two
background models, one that includes all the candidates (black), and one without the
candidates from GW150914 (purple). Orange boxes show the zerolag search results.
The bars on the top show the significance levels based on the two backgrounds.
We see that the significance of GW150914 is > 5σ using both the models. The
significance of GW151226, however, increases when we use the background without
the candidates from GW150914 to 4.5σ.

We also show these results with cumulative counts on the y-axis, so we do not have
to pick an arbitrary bin width in terms of lnL. And the significance bars on the top
correspond directly to the values on the y-axis based on the background model we
are using. See Fig. 6.28.

We summarize the results from the GstLAL pipeline in Table 6.4.
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Figure 6.27: Number of events per log likelihood-ratio bin (width = 1) for two
background models, one that includes all but GW150914 candidates (black), and
one without the candidates from either GW150914 or GW151226 (purple). Orange
boxes show the zerolag search results. The bars on the top show the significance
levels based on the two backgrounds. We see that the significance of GW151226
is > 5σ using both the purple model. The significance of LVT151012, however,
remains at the 2σ level using either background model.

Event FAP lnL H1 SNR H1 ξ2 L1 SNR L1 ξ2

GW150914 8.8 × 10−12 84.7 19.96 1.07 13.39 0.73
GW151226 3.5 × 10−6 33.7 10.51 0.86 7.59 1.11
LVT151012 0.026 18.1 7.16 0.61 6.79 0.97

Table 6.4: Summary of O1 results from the GstLAL pipeline.

6.5.2 Other GstLAL searches on O1 data
Apart from the main search that covered the space of total masses between 2M�
and 100M�, searches were also conducted in higher (intermediate-mass black hole,
or IMBH) and lower mass (sub-solar mass) space for O1. The IMBH search also
detected GW150914, however with a lower significance. The sub-solar mass search
reported null results.
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Figure 6.28: Cumulative counts of events with a detection statistic greater than or
equal to the one on x-axis. We show the three background models described above,
with the corresponding σ bars on the top. Significance of GW150914 is greater than
5σ using all the background models. The significance of LVT151012 is ∼ 2σ using
all the models. The significance of GW151226 changes a lot based on the model
considered. We report 4.5σ based on the model that includes the candidates from
GW151226, but excludes those from GW150914.

The IMBH search covered the parameter space of 50M� ≤ M = m1 + m2 ≤ 600M�.
In addition a maximum mass-ratio cut of 10 (1 < m1

m2
< 10) was imposed. The spins

on the black holes were restricted to be aligned to the orbital angular momentum
but were allowed to have up to near maximal values of 0.99 (−0.99 < s1, s2 < 0.99).
The IMBH search space overlapped with the main search space, and detected
the three events found by the main search but with a lower significance. Since
parameter-estimation studies have placed these events outside of the IMBH mass
range [126, 127], these triggers were removed from the IMBH analysis. The IMBH
search reported no other significant events [128].

The sub-solar mass search covered the parameter space of ultracompact binary
systems with component masses between 0.2M� and 1.0M�. They used non-
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spinning templates, and a starting frequency of 40 Hz to restrict the size of the
template bank. Their null search result provided a constraint on the rate of such
objects to be less than 1.9 × 104Gpc−3yr−1 (at 90% confidence) [129, 130].

The next chapter describes the developments made in the GstLAL pipeline before
and during O2, and reports the results from the combined O1 and O2 data.
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C h a p t e r 7

OBSERVING RUN2

After our successful first observing run O1 (September 12, 2015 - January 12, 2016),
the Advanced LIGO detectors were upgraded to increase their sensitivity for the
second observing run, O2, (November 30, 2016 - August 26, 2017). The Advanced
Virgo detector joined the second observing run on August 1, 2017. Fig. 7.1 shows
the strain sensitivity of the three Advanced detectors during O2. We discuss the
updates that were applied to the GstLAL pipeline in this before and during O2, and
then present the results from the O2 search.

Figure 7.1: Amplitude spectral density of strain sensitivity of the Advanced
LIGO-Virgo network. Figure taken from [10].
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7.1 Developments in the GstLAL pipeline for O2
In Sec. 4.2, we discussed the methods used in the GstLAL pipeline for the O1 search.
In this section, we describe the updates that were made in the pipeline before or
during the O2 search. These updates include deployment of a zero-latency whitening
filter to reduce the over-all latency of the pipeline by up to 32 seconds, incorporation
of the Virgo data stream in the analysis, introduction of a single-detector search to
analyze data from the periods when only one of the detectors is running, addition of
new parameters to the likelihood ratio ranking statistic, increase in the parameter
space of the search, and introduction of a template mass-dependent glitch-excision
thresholding method.

7.1.1 Template bank and template bank splitting
As described in Sec. 3.2.3, template banks are a discrete set of waveforms that ensure
that the SNR loss due to signal and template waveform mismatch will not be greater
than a pre-specified threshold.

For Advanced LIGO’s second observing run, the parameter space of the template
bank was increased from a total mass of 2M�-100M� to 2M�-400M�. Neutron stars
were assumed to have masses less than 2M� with dimensionless spin parameters
in the range (-0.05, 0.05). Black holes were assumed to have masses greater than
2M� with dimensionless spins in the range (-0.999, 0.999). Individual masses of
the systems lie in the range 1-399 M� with mass ratios in the range 1-97.989. The
templates were placed in two stages, below a total mass of 4 M� the inspiral-only
templates of Post Newtonian approximation, TaylorF2, [131] were layed down
using a geometric technique [93], while above a total mass of 4M� the full inspiral-
merger-ringdown templates of effective-one-body approximation hybridized with
numerical relativity and black hole perturbation theory, SEOBNRv4_ROM, [77] were
placed using stochastic methods [89]. Refer [132] for a detailed description of
the construction of the bank and effectualness studies. The original templates that
were placed are shown in green (BNS), red (NSBH), and blue (BBH) in Fig. 7.2.
The colors denote the different source classes and the range of spins covered by the
template bank for each. The purple and the black points show the templates that
were needed to be added in order to get a good background estimation in the high
mass parameter space. The details are discussed in the following paragraphs.

For analyzing the O2 data in an offline mode, we waited until the Hanford and
Livingston detectors had recorded coincident data amounting to 5 days before
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Figure 7.2: A visual representation of the bank used in the second observing run
in the component mass space. Each point here represents a template in the bank.
All regions shown in the figure are discrete points, the continuous regions being the
highly dense regions. The bank used for O2 shown here is known as the hyperbank.

conducting an analysis. This is similar to what was done in O1, see Sec. 6.2.3. We
call these the “offline chunks”. In O2, we had a total of 22 such chunks of data. It
wasn’t until Chunk-5 that we started seeing problems in the closed box money plots
(Sec. 5.2.4). Fig. 7.3 shows the money plot for the GstLAL analysis of Chunk-5.
The closed box result should closely follow the background model when pipeline
is only treating coincident events as gravitational-wave candidates. However, we
see an excess in the closed box result compared to the background predicted by the
pipeline. This is bad because this means that the results from this analysis cannot be
trusted because the background model is insufficient to explain the null result. We
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Figure 7.3: Cumulative candidate count vs. IFAR plot for the GstLAL analysis of
O2, Chunk-5. We expect the closed box result to follow the noise model, which it
does not here.

saw a similar trend in the closed box results of the next few chunks. Opening of the
GstLAL boxes was put on hold until we could identify and fix this problem.

Thus began a hunt for the cause of discrepancy between the background model and
the closed box result. After several investigations, it was found that the template bank,
together with the grouping scheme of templates that was used in the first observing
run of Advanced LIGO detectors [3] for collecting noise statistics was inadequate to
construct a sufficiently accurate background model for the high mass region that was
added to the parameter space for this run. As a result, a different grouping scheme
was introduced in the run, and the template bank was also modified as described
below.

Recall that, for the purpose of background estimation in the pipeline, we first divide
the entire template bank into several sub banks, the “ θ̄ bins”, containing “similar”
waveforms, based on their intrinsic parameters. We want to group templates that
respond similarly to noise together. Noise statistics are collected for all templates
in a bin as a whole. These are typically formed by combining a certain number
of “split banks”, which were formed for performing the SVD (Sec. 4.2.2). In O2,
we were grouping 2 split banks containing 500 templates each, in each bin. We
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want the binning method to (a) group together similar templates to use the LLOID
method (Sec. 4.2.2) for computationally-efficient time-domain searches, and (b)
group together templates with similar noise statistics for accurate FAR estimates.
Prior to the run, the pipeline used two composite parameters, which are a combination
of the four intrinsic parameters, in order to group the waveforms into split banks: the
chirp mass and the effective spin. The chirp mass and the effective spin parameter
are the leading order terms that describe the phase evolution of the inspiral part of
the waveform according to the Post Newtonian expansion (Sec. 3.1.1).

In Fig. 7.2 we see that the density of the templates decrease with the increase in the
masses of the binaries. This is a typical feature seen in all template banks. The
waveform of a system with smaller masses is longer in the frequency band that
Advanced LIGO and Virgo detectors are most sensitive in (see Fig. 7.1). In O2, the
GstLAL pipeline filtered the data from 15 Hz to 1024 Hz. Therefore even a small
change in masses can lead to a big mismatch between two waveforms in this region
since there are more cycles in band for which the match has to be performed. This
means that we need more densely-spaced waveforms to cover the lower mass region
of the parameter space.

The much lower density of the templates in the high mass region of the bank, which
was added for the run caused templates vastly different inMc, but similar in χeff to be
grouped together in the low template density region, since the number of templates
in each bin was required to be the same (∼ 1000). This in turn led to sub-optimal
estimation of noise properties for these groups, which led to inaccurate significance
estimation of noise events. These are the highest M groups in each χeff bin, in
Fig. 7.4 where we show the grouping of templates used for background estimation
at the beginning of O2. In Fig. 7.5, we show the distribution of non-coincident
triggers in SNR-ξ2 space for two of these bins that span a largeMc range. The
pipeline uses these distributions to construct the background model used to assign
the likelihood-ratio statistic and ultimately the IFAR of candidates. For comparison
we also show some well-behaved background bins. The features marked in white in
the PDF happen when there are templates present in a bin whose properties are not
well represented by the rest of the templates in the bin.

We tried several new binning methods to solve the issue of background estimation in
the high-mass region. Here we document the the grouping scheme that was used
in the end. We changed the grouping scheme only for these high mass templates,
with total mass > 80M�. Instead of usingM and χeff , we use template duration in
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Figure 7.4: A visual representation of the old grouping of the templates inM - χeff
space. The colors in this plot have no intrinsic meaning; they are chosen randomly
in order to distinguish the different groupings into bins.

the LIGO sensitivity band (starting frequency 15 Hz) for grouping these high mass
templates. M and χeff are the leading order parameters that describe the inspiral
part of the waveforms, but not the merger and ringdown which have duration of only
a small fraction of a second, for all templates. However, for the short-duration high
mass systems, most of the power in the LIGO band comes from merger and ringdown
phases of the coalescence; thereforeM and χeff are no longer the best parameters
to group the templates. The number of templates in each of these high-mass bins
was also reduced to account for the sparse density of templates in this region. The
highest mass bins now contain 200, 400, or 800 templates instead of 1000 templates.
This helps in grouping only those templates that have the same noise properties
together. 15,665 extra templates were also added to the bank above a total mass of
80 to increase the density of the high mass, short duration templates, thus helping to
collect noise statistics in this region. This was done by increasing the convergence
threshold from 0.97 to 0.99, and by adding a grid of templates, to increase the
template density in that region. The templates that were added by increasing the
convergence threshold of the stochastic placement process are shown in magenta,
and those that were added as a grid are shown in black in Fig. 7.2. This brought the
total number of templates of the final O2 bank to 677,000.

Finally, in Fig. 7.6, we show the money plot from the fixed GstLAL analysis of O2,
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Figure 7.5: Example of well behaved SNR-ξ2 bins (top). The PDF on top-left
corresponds to a low-mass bin containing long duration templates which do not
suffer from the non-Gaussian glitches in the detector as much as the high-mass, short
duration templates. The PDF on the top-left shows an example of a relatively well
behaved background high-mass bin. The PDFs on the bottom correspond to some
of the “bad” background bins. We draw the reader’s attention to some of the island
features inside the white circles. These occur when the pipeline doesn’t have enough
statistics about the behavior of some of the templates in the bin that are different
from the majority.

Chunk-5 that uses the new binning method and the modified bank.

We could now continue analyzing the O2 data, and look at the open box results.

7.1.2 Zero latency whitener
The original whitening filter employed in GstLAL contributes to one of the bottleneck
processes in the pipeline’s latency, adding up to 32 seconds to the total latency
time [3]. The zero latency whitener was introduced in order to reduce the latency of
the pipeline [133].
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Figure 7.6: Cumulative candidate count vs. IFAR plot from the fixed GstLAL analysis
of O2, Chunk-5 that uses the new binning method, and the modified bank.

As described in Sec. 3.2.1, a matched filter is the inner product between a template
waveform and the strain data. However, since the strain data are strongly colored
by the frequency-dependent noise of the detector, we ‘whiten’ the inner product by
weighting both the data and the template waveform by a factor of 1/

√
Sn( f ) each,

where Sn( f ) is the single-sided power spectral density of the detector noise. The
method of a frequency-domain whitening filter described in [3] has discrete Fourier
transforms and window functions applied to 32-second blocks of input data, with the
PSD being updated every 16 seconds. Since a 32-second block is processed every
16 seconds, this filter has a latency between 16 to 32 seconds, which is almost half of
the pipeline’s total latency.

To reduce the latency, we need to whiten in the time-domain. To this end, a Finite
Impulse Response (FIR) filter-based algorithm to the frequency-domain whitening is
introduced. The square root of inverse PSD of a given strain data is used to construct
the FIR of a linear phase filter. This filter still requires 16 seconds of data from the
future for its evaluation [133]. It is not possible to further reduce the latency of this
filter without changing the whitening transformation. Therefore an approximation to
the original filter is introduced [133], which derives a minimum-phase approximation
of the desired filter [134]. The matched filter output depends on 1/Sn( f ) therefore is
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insensitive to the error in phase response of the whitening filter, i.e., error in the phase
response of 1/

√
Sn( f ). The minimum-phase whitening filter accurately approximates

the amplitude response of the FIR-based filter, introducing most errors only in the
phase response. This filter does not use any information from future samples for its
evaluation, and is therefore called a “zero-latency whitening filter”. A newwindowing
process has also been implemented for the newwhiteningmethod. The PSD transition
is now allowed to occur continuously, and the resulting filter is a linear combination of
the newest and next newest filters during their transition. This is recursively applied
to the zero-latency algorithm when a new whitening filter becomes available. It is
shown in [133] that the causal FIR filter approximation successfully whitens the data,
producing zero mean, unit variance, white Gaussian noise. Matched-filter outputs
(SNR and ξ2, Sec. 3.2.1) produced using the zero-latency whitener are compared to
those produced using the frequency-domain whitener for both noise and simulated
signal triggers, and we see a good agreement for both. The details of the filter, and
the consistency checks with the old filter are described in [133]. Fig. 7.7 shows the
comparison of the time taken by the GstLAL online pipeline to upload an event in
O1 vs. in O1. We can see that the latency of the pipeline has reduced by ∼ 40 s as
compared to O1, in which the zero-latency whitener played a significant role.

7.1.3 Data conditioning
The output of the matched filter is the SNR (Sec. 3.2.1), which is the optimal
detection statistic under the assumption that noise is stationary and Gaussian. For
offline analyses, where the pipeline processes archival gravitational-wave data, we
use data quality vetoes (Sec. 6.2.2) to flag poor data. However, such information
is not available for online analyses. Gating on the whitened strain data, whitened
h(t), is one of the techniques adopted by the pipeline to eliminate short transient
instrumental noise fluctuations. These fluctuations, also known as glitches, can cause
unreasonably high values of SNRs in the data, mimicking gravitational-wave signals,
and causing false alarm triggers.

In presence of glitches, the whitened h(t) may have values higher than the expected
values from the coalescences of binary systems that the pipeline is aiming to detect.
By construction, whitened h(t) should have a unit variance. Whenever the magnitude
of whitened h(t) is momentarily greater than a threshold value, set as some multiple
of the standard deviation σ of h(t), we gate that piece of data by setting the samples
around the peak with a window of 0.25 s on each side to zero [3]. Refer Fig. 6.7.
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Figure 7.7: Comparison of the latency of detections by the GstLAL online pipeline
in O1 (blue) vs. in O2 (red). We can see that the latency of the pipeline has been
reduced by ∼ 40 s. The application of the zero-latency whitener played a significant
contribution in decreasing the latency of the pipeline.

The amplitude of a signal at a fixed effective distance increases with the chirp mass
M of a binary system. Therefore we set the threshold based on the highest masses
we are sensitive to, such that it is higher than the whitened strain amplitude we expect
from such systems. We want the threshold to be such that it removes the maximum
number of glitches from our data without gating out real signals. During the first
observing run, the threshold value was set to 50σ. At lower threshold values, it was
seen that the pipeline started to gate some of the high mass and/or nearby (small dL)
simulated BBH signals that were injected in the data.

As described in Sec. 7.1.1, in the second observing run, the parameter space of our
search was increased from a maximum total mass of 100M� to 400M�. In order to
avoid gating the highest mass signals, we would have to increase our value of the gate
threshold. This would cause an increase in the number of glitches that pass through
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Figure 7.8: Comparison results between a run with constant gating scheme (left) and
linear gating scheme (right). The yellow stars highlight the additional background
glitches present in the constant gating run that have been removed in the run with the
linear gating scheme applied. No software injections were gated.

without being gated, and therefore an increase in the number of false alarm triggers.
Thus a linear gating scheme, in which the gate threshold value is a linear function
of chirp mass instead of a constant for all masses, was introduced. The pipeline
computes an appropriate threshold value according to the linear scale provided by
the user and the highest chirp mass template in a sub-bank. Fig. 7.8 shows that linear
gating scheme helps in removing more glitches as compared to the constant gating
scheme, while still recovering all the simulated signals injected in the data.

7.1.4 Likelihood-ratio statistic
Once all the candidate events are identified by the pipeline, each of them is assigned
a likelihood-ratio statistic in order to determine its significance. The likelihood
ratio as defined in [3, 98] was used in the analysis of data from the first observing
run of Advanced LIGO, during which only the Hanford and Livingston detectors
were operating. It is the ratio of probability of certain observables given the signal
hypothesis versus the noise hypothesis. Included observables were terms to account
for the set of detectors involved in the coincidence {H1, L1}, the detector horizon
distances (for a 1.4M� - 1.4M� system) at the time of coincidence {DH1,DL1}, the
SNRs for each trigger {ρH1, ρL1}, and the ξ2-signal-based-veto values for the each
trigger {ξ2

H1, ξ
2
L1}. For Advanced LIGO’s second observing run, the likelihood-ratio

statistic was modified to allow the pipeline to rank single detector events when only
one detector is operational and to include additional parameters when both advanced
LIGO facilities are operational. These modifications were introduced before the
start of O2. The ranking of single detector events is an active area of research
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(although it has already proven to be successful in the case of GW170817!), and
has not been used while analyzing the data offline as yet. It was used by the online
pipeline sparingly in O2. The inclusion of time and phase delay terms between the
two detectors as introduced before O2 (let’s call it LR1) was used by the online
pipeline, and the offline pipeline for preparing the closed box results and in the
results reported in [16, 17]. However, after the data taking for O2 had finished,
changes were introduced in the likelihood-ratio statistic to include time and phase
delay terms while generalizing it to an arbitrary number of detectors. We will refer
to this generalized likelihood-ratio statistic as LR2.

7.1.5 Single detector events
In Advanced LIGO’s first observing run, the pipeline could only identify gravitational-
wave events when both the detectors were operating. Gravitational-wave candidates
were formed by demanding coincidence between the two detectors. This meant that
we were blind to signals occurring during single-detector time (defined as time when
only one detector is operational) even though there was science quality data available
from that detector. For O2, the online analysis also looked at the non-coincident
candidates, and these were also assigned a log likelihood ratio statistic.

Non-coincident triggers found during single-detector time (defined as time when
only one detector is operational) were now excluded from informing the background
model, since these could potentially be loud signals that were found as non-coincident
triggers in absence of data frommultiple detectors. Since we use an SNR threshold of
4 for triggers, there are too many non-coincident triggers to write to disk. Therefore
the non-coincident triggers are first assigned a preliminary log likelihood-ratio, and
only those that have lnLprelim > 2 are considered as gravitational-wave candidates.
The likelihood-ratio defined in [3, 98] and Sec. 4.2.5 (Eq. 4.7) is still valid for single
detector events,

L

(
{DIFOnet}, {IFO}, ρIFO, ξ2

IFO, θ̄
)
= L

(
{DIFOnet}, {IFO}, ρIFO, ξ2

IFO | θ̄
)
L

(
θ̄
)

=
P

(
{DIFOnet}, {IFO}, ρIFO, ξ2

IFO | θ̄, s
)

P
(
{DIFOnet}, {IFO}, ρIFO, ξ2

IFO | θ̄,n
)L (

θ̄
)
.

(7.1)

Here, {DIFOnet} is the set of horizon distances for all instruments in the network at
the time the event is observed, {IFO} is the detector that produced the non-coincident
trigger, ρIFO, and ξ2

IFO are the SNR and ξ2 values of the trigger. The numerator and
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denominator of the fraction in Eq. 7.1 are factored in the same way as described
in [3, 98]. In particular the factorization leads to a form,

L

(
{DIFOnet}, {IFO}, ρIFO, ξ2

IFO, θ̄
)
= · · · ×

P
(
{IFO} | {DIFOnet}, θ̄, s

)
P

(
{IFO} | θ̄,n

) × · · · .

(7.2)

The probability that a signal yields a trigger above-threshold in only one of the
detectors depends on the horizon distances of all the detectors operating at the time,
and the duty cycles of all the detectors in the network. The probability that noise
yields an above-threshold trigger in one of the detectors is computed from the trigger
rates, coincidence window size, and the duty cycles of all the detectors in the network.
If more than one detector is operating, and the signal is only seen above-threshold in
one of the detectors then that becomes a constraint on the SNR distribution. The
single-variable SNR distribution is computed using a Monte Carlo generation of
samples described in [98]. In the case where only one detector is operating, the SNR
distribution reduces to P(ρ) ∝ ρ−4. Even though we were still testing the ranking of
single-detector events, including this feature in the online GstLAL analysis proved to
be the biggest success of O2. On August 17, 2018, at 12:41:04 UTC the Advanced
LIGO and Advanced Virgo gravitational-wave detectors made their first observation
of a binary neutron star inspiral. The signal, GW170817, was detected by the GstLAL
online search as a single-detector event in Hanford, because of the presence of an
instrumental noise transient in the Livingston detector 1.1 s before the coalescence
time of GW170817. Refer Fig. 7.9. Because of the glitch, the online pipeline did not
register a coincident candidate between Hanford and Livingston at the time of the
event, and had it not been for the single detector search, we would not have been able
to detect the BNS event in low-latency and possibly missed out on the followups that
led to the detection of an optical transient counterpart.

7.1.6 Inclusion of phase and time delay terms in the likelihood statistic
As discussed above, the inclusion of time and phase delay terms in the likelihood
statistic was done in two different ways. The first (LR1) assumes only two detectors,
Hanford and Livingston, and was used by the online and the offline pipeline during
O2, and in the early O2 detections. The other method (LR2) was introduced after O2,
in order to include Virgo in the detection statistic as well, and was used by the offline
GstLAL pipeline in the re-analysis of combined O1 and O2 cleaned data using the
final version of calibration. These results will be reported in [135].
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Figure 7.9: Time-frequency representation of the raw Livingston data at the time of
GW170817. The 0 in time marks the coalescence time of GW170817. There is a
loud glitch at -1.1 s in the figure because of which the online pipelines analyzing the
data at the time did not recover the event as an H1L1 double. The time-frequency
track of GW170817 is clearly visible despite the presence of the glitch. Figure taken
from [11].

LR1

Two additional parameters were added to the likelihood-ratio statistic for the case
where the Hanford (H1) and Livingston (L1) advanced LIGO detectors are both
operational: ∆t, the difference in end times between the H1 and L1 triggers, and ∆φ,
the difference in coalescence phase between the H1 and L1 triggers. We require
∆φ ∈ [−π, π] and compute the modulus ∆φ (mod 2π) to enforce a cyclic distribution.

This new likelihood-ratio statistic is defined as follows:

L =
P

(
{DH1,DL1}, {H1,L1}, ρH1, ρL1, ξ

2
H1, ξ

2
L1,∆φ,∆t

�� signal
)

P
(
{DH1,DL1}, {H1,L1}, ρH1, ρL1, ξ

2
H1, ξ

2
L1,∆φ,∆t

�� noise
) . (7.3)

This statistic only supports ranking coincidences found with the H1L1 network.
Future work for the third observing run will add support for the H1L1V1 network
with a goal towards a generalized N-detector network statistic. Additionally, we
make several assumptions when factoring the dependencies of the probability density
functions in Eq. 7.3. We assume that the noise distributions of ∆t and ∆φ are
independent of each other. As in [3], we assume that the ξ2 statistic is dominated by
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instrumental noise, thus the ξ2 term reduces to its previous form. We expect that the
signal (but not the noise) distributions for ∆t depend on trigger SNRs as well as on
detector sensitivities. The SNR ratio from the two detectors for a signal depends
on the position source with respect to the detectors, and the inherent sensitivities
of the detectors. ∆t for a signal depends only on the position of the source and the
location of the detectors. Thus we model the ∆t distributions as a function of a ratio
of SNRs normalized by horizon distances, to factor out the inherent sensitivities of
the detectors from the SNR ratios,

ρratio =
ρ1/D1
ρ2/D2

. (7.4)

On the other hand, we do not consider dependence on the detector sensitivities
when modeling the ∆φ distributions. We only consider dependence of ∆φ on ∆t and
network SNR, defined as

ρnetwork =
√
ρ2

1 + ρ
2
2. (7.5)

With these assumptions, we can factor Eq. 7.3 as

L ∝
P (∆t | {ρ}, {Horizon}, signal) P (∆φ| ∆t, {ρ}, {Horizon}, signal)

P (∆t | noise) P (∆φ| noise)

≈
P (∆t | {ρratio}, signal) P (∆φ| ∆t, {ρnetwork}, signal)

P (∆t | noise) P (∆φ| noise)
.

(7.6)

In order to construct distributions forP (∆t |{ρratio}, signal) andP (∆φ|∆t, {ρnetwork}, signal),
we performed an injection (simulated signal injected in the data to test the perfor-
mance of the pipeline) campaign in the data from the first observing run covering
the parameter space of binary neutron star and binary black hole systems. We
discarded any injection recovered with |∆t | > 0.01, assuming that this regime is
dominated by accidental coincidences. Smoothed, normalized ∆t histograms were
modeled as a function of ρratio using Chebyshev polynomials. Fig. 7.10 shows the
logarithm of the PDF for P (∆t |{ρratio}, signal) as defined over a range of ∆t and
ρratio. Normalized histograms of ∆φ were modeled using von Mises distributions
which is a continuous probability distribution on a circle since ∆φ is cyclic, plus a
uniform noise background as a function of ∆t and ρnetwork. In Fig. 7.11, we see the
logarithm of the PDF for P (∆φ|∆t, {ρnetwork = 14}) as defined over a range of ∆t

and ∆φ.

In order to construct the distributions for P (∆t |noise) and P (∆φ|noise), we simply
assume ∆t and ∆φ are uniformly distributed for noise triggers that form false
coincidences.
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.
Figure 7.10: Distribution of P (∆t |{ρratio}, signal)

7.1.7 Introducing Virgo: LR2
The Advanced Virgo [20] detector joined the second observing run of the Advanced
LIGO detectors on August 1st, 2017. The Advanced Virgo detector operated at a
lower sensitivity relative to the Advanced LIGO detectors (see Fig. 7.1). During
O2, the online search filtered over the Virgo data stream, but did not use the outputs
of the matched-filtering in the likelihood-ratio statistic. A lower SNR threshold
of 3 for triggers (Sec. 4.2.4) was used for Virgo (the threshold is 4 for the LIGO
detectors) due to its lower sensitivity. In the first observing run, gravitational-wave
candidates were formed by demanding coincidence (both in time and template)
between the LIGO Hanford and LIGO Livingston triggers [3], Sec. 4.2. However
in O2, due to the lower sensitivity of Virgo in the second observing run, if Virgo
participated in a coincidence with either one of the two detectors, the set of triggers
was still considered as a single-detector, non-coincident event. In other words H1V1
and L1V1 doubles were treated as H1 and L1 singles respectively. And if Virgo
participated in a triple event (H1L1V1 triple), it was still treated as an HL double.
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Figure 7.11: Distribution of P (∆φ|∆t, {ρnetwork}), where we have set ρH1 = 10 and
ρL1 = 10.

Nonetheless a network of three detectors improves the sky localization of the source.
GW170814 was the first gravitational-wave event that had a significant SNR in Virgo.
Including Virgo in the analysis helps in reducing the area of the 90% credible region
from 1160 deg2 when using only the two LIGO detectors to 60 deg2 when using all
three detectors for the binary black hole event GW170814 [10]. Using the fact that
Virgo did not pick up GW170817 with appreciable SNR also helped reduce the 90%
credible region in the skymap from 190 deg2 to 31 deg2 [11, 12].

Before the reruns of O1 and O2 cleaned and recalibrated data, modifications were
made to the likelihood-ratio statistic to also include the outputs of matched-filtering
with Virgo as terms for the likelihood-ratio statistic. The denominator in the
likelihood-ratio statistic, Eq. 7.3, is still computed like as in the LR1 method. We
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also begin factoring the numerator in a similar manner,
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(7.7)

But we choose a different factorization for the P
(
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)
term in

the numerator:
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(7.8)

where we have assumed that the distribution of the ξ2 values for signals is independent
of ®∆t and ®∆φ. The term P

(
®ρ, ®∆φ, ®∆t | ®O, ®DH, signal

)
is calculated using a Monte

Carlo integration of signals, and the term P
(
®ξ2 | ®ρ, ®O, ®DH, signal

)
is calculated as

before in LR1 or the O1 model, which was used in O1.

To compare the different likelihood models - O1, LR1, and LR2, we generate 10,000
noise and signal samples, and we assign the likelihood-ratio values using the different
methods. The results are shown in Figs. 7.12, 7.13, and 7.14.

7.1.8 Computing joint SNR PDF for different horizon distance ratios
The horizon distance Dh is the effective distance at which a binary system is observed
with a nominal SNR of 8 [84]. This means that horizon distance is a measure of a
detector’s sensitivity to a particular system. The horizon distances included in the
ranking statistic of the pipeline are computed for a 1.4M� − 1.4M� binary neutron
star system, and their fluctuations reflect fluctuations in the noise spectrum.

One of the factors in the numerator of the likelihood-ratio ranking statistic is the joint
SNR PDF given a set of horizon distances of all the detectors at the time of the event,
and the set of detectors that observed the event with an SNR above the threshold. [98].
For candidates that arise from genuine signals, the joint SNR PDF depends only
on the ratios of the horizon distances. In the first observing run, the pipeline was
limited to two detectors and assumed a fixed joint SNR PDF, corresponding to equal
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Figure 7.12: Histograms of likelihood-ratio assigned by O1 model (red) and LR1
model (blue) for noise (left) and signal (right) samples. We see that the LR model
assigns lower likelihood-ratio values for noise samples, and higher likelihood-ratio
values for signal samples as compared to the O1 model.

Figure 7.13: Histograms of likelihood-ratio assigned by LR1 model (blue) and LR2
model (green) for noise (left) and signal (right) samples. It is hard to tell from these
histograms, but Fig. 7.14 shows that the LR2 model is better at separating signal
from noise.

horizon distances. In the second observing run, this assumption was relaxed by
pre-computing joint SNR PDFs for a collection of discrete horizon distance ratios.
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Figure 7.14: Receiver Operating Characteristic (ROC) curve for the three different
likelihood-ratio models using the same set of samples for noise and signal. We see
that LR2 performs the best out of the models considered here.

In this section we discussed all the changes to the GstLAL pipeline since O1. We
discuss the final results from the GstLAL search using these methods over O2 (and
O1) in the next section.

7.2 Results
Perhaps the greatest success of the GstLAL pipeline was the detection of GW170817
in low-latency, found in coincidence with a GRB detected by Fermi and INTEGRAL.
The timely alert sent out by the pipeline made possible the extensive followup carried
out across the electromagnetic spectrum which led to the detection of the associated
optical transient (SSS17a/AT 2017gfo) in the galaxy NGC4993 [12]. This is exactly
what the pipeline was built to do, to send out prompt alerts to the broader astronomy
community making it possible to observe the onset of electromagnetic emission
from CBC [50]. The joint gravitational-wave and electromagnetic observations of
GW170817 support the hypothesis that it was produced by the merger of two neutron
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stars in the galaxy NGC 4993, followed by a GRB with a time-delay of ∼1.7s and a
kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized
in the ejecta [12].

Figure 7.15: Localization of GW170817 from gravitational-wave, gamma-ray, and
optical observations. The light green region shows the initial localization using only
the data from the Hanford and Livingston detectors, the dark green region shows
the updated localization using also the data from the Virgo detector. The blue and
the dark blue regions respectively show the IPN triangulation for the GRB using
the time-delay between Fermi and INTEGRAL observations, and the skymap from
Fermi-GBM. The inset shows the location of the apparent host galaxy NGC 4993
in the Swope optical discovery image at 10.9 hr after the merger (top right) and the
DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). Figure
taken from [12].

Using the gravitational-wave and electromagnetic data for GW170817, numerous
studies have been conducted, including but not limited to gravitational-wave standard
siren measurement of the Hubble constant, implications for the stochastic background,
measurement of neutron star radii and equation of state, estimation of the contribution
of dynamical ejecta in the kilonova associated with the event, and many others.

7.2.1 Offline analysis of final cleaned and calibrated data
In addition to reanalyzing the final cleaned and calibrated O2 data, we also use
the improved methods and the bank covering a bigger parameter space than in
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O1 described in this chapter to reanalyze data from O1. This was done so we
could properly combine the results. The analyses were conducted separately in the
original 5 day chunks (Sec. 6.2.3). The results from different analysis chunks were
combined using an analogous procedure to that used in O1, see Sec. 6.5.1, i.e., the
candidates were assigned likelihood-ratios based on their respective chunks, but
the likelihood-ratio distribution for noise was obtained by sampling background
distributions marginalized over the entire dataset. However, we don’t adapt the
procedure of including candidates in the background, and their hierarchical removal
as was done in O1, rather we just compute a single background model constructed
from non-candidates. The results are shown in Fig. 7.16, and we list the loudest
candidates in Table 7.1. The full results will be published soon in [135].

Figure 7.16: Cumulative count of candidate events as a function of lnL. We show the
noise model (blue), signal model (green), signal + noise model (red), and the error
bars on the signal + noise model. The solid black line shows the results of the search.
The dashed black line is the result of time-slid closed box analysis which is consistent
with the noise model. The top ten loudest detections are marked with their names.
Note however the absence of GW170608 from this plot. Due to the unusual analysis
that needed to be carried out for GW170608 which included analyzing Hanford data
that was not marked science quality and using a different starting frequency of 30 Hz
for Hanford, we do not combine its results with the other analyses.
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Event FAR lnL H1 SNR H1ξ2 L1 SNR LIξ2 Notes

GW170817 4.48 × 10−51 134.68 19.11 0.70 26.91 1.63 BNS, latency = 6 min
GW150914 6.30 × 10−40 110.05 20.31 0.91 13.54 0.77 loudest BBH, first detection from O1
GW170814 7 × 10−20 65.25 9.14 1.23 13.04 1.05 First BBH detected in coincidence with Advanced LIGO and Virgo. latency = 32.5 s
GW170608 5.27 × 10−17 56.87 11.88 1.53 8.99 1.11 Result from a special analysis, which included non-science H1 segments, and a starting frequency of 30 Hz for H1.
GW151226 1.10 × 10−15 55.79 10.51 0.85 7.82 1.11 Boxing day event. First online detection by the pipeline. latency = 70 s
GW170809 2.6 × 10−14 52.80 6.59 1.12 10.53 0.57 latency = 32.5 s
GW170823 2.62 × 10−12 48.35 6.40 1.05 9.51 0.70 latency = 32.5 s
GW170104 1.42 × 10−9 42.13 8.94 0.93 9.42 0.97
GW170818 2.42 × 10−5 32.45 4.13 1.07 9.66 0.96 detected by the online pipeline in coincidence with L1 and V1.latency = 37 s
GW151012 4.60 × 10−3 27.38 7.33 0.60 6.76 1.00
GW170729 0.11 24.42 7.90 1.08 7.34 0.89

Table 7.1: Loudest events from the combined O1+O2 run. Most of these events
were also detected by the GstLAL online search. Exceptions include events for
which one of the detectors was marked in non-science mode (GW170104 [16] and
GW170608 [17]) and events from O1 when the online search was only looking at
the low-mass em-bright search space (GW150914 [6] and GW151012 [18]).

In the loudest candidate table, Table 7.1, we see 10 binary black holes and 1 binary
neutron star detected in the combined O1+O2 analysis. The loudest event so far is
the BNS, GW170817, and the loudest BBH so far is the first detection, GW150914.
Most of the events were also identified online (see the latencies reported in Table 7.1).
In addition, the pipeline detected several marginal events which are being collected
in [135].

In addition to calculating the FAPs and the FARs (Sec. 4.2.5), we also assign a
Pcategory, which is the probability that a candidate event belongs to a certain category.
The categories we considered in O2 are - background (or, terrestrial) and astrophysical
(which is subdivided into BNS, BBH, and NSBH). This is done by fitting for number
of events in each category. The background model is derived from the background
distributions from the pipeline, and the signal model is derived from the distribution
of ranking statistics over astrophysical source categories. Of all the events listed
in the Table 7.1, GW170729, GW151012, and GW151226 have a non-zero PNSBH

eqaual to 0.01, 0.02, and 0.18 respectively. The O! search identified 151012 as a
marginally significant event, but the improved O2 pipeline analysis identified it as
more significant (Pastrophysical = 1), so LVT modifier became GW.
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C h a p t e r 8

ASTROPHYSICAL POPULATIONS OF COMPACT BINARY
SYSTEMS

8.1 Introduction
With the continued detections of gravitational waves from binary black hole coales-
cences [6, 9, 10, 16, 17] and the first direct detection of gravitational waves from a
binary neutron star system [11], the LIGO Scientific and Virgo Collaborations have
kept up to their promise of taking us into the era of gravitational-wave astronomy. In
addition to these loud and nearby sources that are seen as isolated transient events,
there is a population of weak, unresolved sources at higher redshifts [136–140].
The superposition of these sources is expected to be the main contributor to the
stochastic background which may be detectable in the next few years as the Advanced
LIGO [19] and Virgo detectors [20] reach their design sensitivity and accumulate
more data [141, 142]. Assuming the most probable rate for compact binary mergers
(103+110

−63 Gpc−3yr−1 [30] for BBH and 1540+3200
−1220Gpc

−3yr−1 [11] for BNS), it has
been shown that the total background may be detectable with a signal-to-noise-ratio
of 3 after 40 months of total observation time, based on the expected timeline for
Advanced LIGO and Virgo to reach their design sensitivity [142]. The astrophysical
background potentially contains a wealth of information about the history and
evolution of a population of point sources, but it is a confusion noise background that
obscures the observation of the primordial gravitational-wave background (PGWB)
produced in the very early stages of the Universe. Proposed theoretical cosmological
models include the amplification of vacuum fluctuations during inflation [143–145],
pre Big-Bang models [146–148], cosmic (super)strings [149–152], or phase transi-
tions [153–155]. For more comprehensive texts on cosmological backgrounds from
gravitational waves, we refer the reader to [156, 157].

Detection of the primordial gravitational-wave background would create a unique
window on the very first instants of the Universe, up to the limits of the Planck era,
and on the physical laws that apply at the highest energy scales. Needless to say that
such a detection would have a profound impact on our understanding of the evolution
of the Universe.

In addition to the astrophysical background from unresolved compact binary mergers,
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a contribution is expected to result from the superposition of several other unresolved
sources [158], such as cosmic strings [150], core collapse supernovae to neutron stars
or black holes [159–162], rotating neutron stars [163, 164], includingmagnetars [165–
168], phase transitions [169], or initial instabilities in young neutron stars [170–172].

With the increased sensitivity of the third generation gravitational-wave detectors,
such as the Einstein Telescope (ET) [173] and the Cosmic Explorer (CE) [174], it
will be possible to detect almost all of the binary black hole mergers, even the ones at
high redshifts. In this work, we explore the possibility of probing the cosmological
gravitational-wave background with the third generation detectors, after removing
the astrophysical background from compact binary mergers from the data. This
work is an extension to [15], where the authors have shown the level at which we
can expect amplitude of background from unresolved, sub threshold CBC signals for
various detector network cases. We extend the previous study to also provide of an
estimate of errors we introduced while subtracting the signals above threshold for
the most optimistic network of detectors considered in [15].

In Sec. 8.2, we describe the basic method that we use to calculate the gravitational-
wave spectrum from the error introduced by imperfect subtraction of CBC signals. In
Sec. 8.3, we describe the framework used to estimate the deviations of the estimated
parameters of the CBC sources from their true values. We discuss the results from
the simulation of a population of binaries in Sec. 8.4, and finally we present our
conclusions in Sec. 8.5.

8.2 Method
The energy-density spectrum in gravitational waves is described by the dimensionless
quantity [175],

ΩGW( f ) =
f
ρc

dρGW
df

, (8.1)

where dρGW is the energy density in the frequency interval f to f + df , ρc =

3H2
0 c2/8πG is the closure energy density, and H0 is the Hubble constant whose

current best value is 67.8 ± 0.9 km/c/Mpc [176].

The gravitational-wave energy spectrum density can be written as a sum of contribu-
tion from the astrophysical and cosmological energy densities,

ΩGW = Ωastro +Ωcosmo. (8.2)
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Taking the contribution of the compact binary coalescences out of the astrophysical
background, and writing it explicitly, we have

ΩGW = Ωastro, r +Ωcosmo +Ωcbc. (8.3)

Here Ωastro, r is the remaining astrophysical background after taking out the contribu-
tion from the CBC sources.

When estimating the parameters of a binary source, by using Monte Carlo methods,
or nested sampling, we invariably end up with parameters that deviate from the true
values because of the noise in the detector. Therefore when we subtract the recovered
CBC signals from the data, we introduce an additional background due to the error
in subtraction, Ωerror.

ΩGW = Ωcbc, rec +Ωerror+ (8.4)

Ωcbc, unres +Ωcosmo +Ωastro, r,

whereΩcbc, rec is the background from the recovered CBC sources that we can subtract
from our data, Ωerror is the contribution to the background because of the error
introduced from such a subtraction, Ωcbc, unres is the background from the unresolved
CBC sources which are not detected as resolvable “foreground” events. Let us
assume that we have an experiment where we have detected a list of CBC sources
and subtracted them from the data. Now we are left with the gravitational-wave
backgrounds Ωerror and Ωcbc, unres, on top of the cosmological and astrophysical
(from sources other than the CBCs) backgrounds. We want to answer the question
of whether the cosmological or astrophysical backgrounds from sources other than
CBCs can stand above the residue background after removal of the CBC sources.
That is,

Ωerror +Ωcbc, unres ? Ωcosmo ? Ωastro, r. (8.5)

In order for us to be able to detect the gravitational-wave background from cos-
mological sources or that from different astrophysical sources, we would need
Ωresidue = Ωerror +Ωcbc, unres to lie below these.

The gravitational-wave energy density from a population of compact binary sources
is given by [15]
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Ωcbc =
1
ρcc

f F( f ), (8.6)

where F( f ) is the total flux, computed as the sum of individual contributions

F( f ) = T−1 πc3

2G
f 2

N∑
k=1
(h̃2
+,k( f ) + h̃2

×,k( f )), (8.7)

where N is the number of sources in the Monte Carlo sample, and T−1 assures that
flux has the correct dimension, T being the length in time of the data sample. h̃+,k( f )

and h̃×,k( f ) are the Fourier domain waveforms for the two polarizations, and the
index k runs over all the sources. We calculate Ω error as

Ωerror =
1
ρcc

f Ferror( f ), (8.8)

where

Ferror( f ) = T−1 πc3

2G
f 2× (8.9)

×

N∑
k=1

[
(h̃true+,k ( f ) − h̃rec+,k( f ))

2 + (h̃true
×,k ( f ) − h̃rec

×,k( f ))
2
]
.

(8.10)

To get an estimate of Ωerror, we need to estimate the quantities, h̃rec
+,k( f ) and h̃rec

×,k( f ).

8.3 Estimating the deviation from the true value of parameters
Ideally we want the full Bayesian posteriors to estimate the deviation from the true
value of parameters. However, at present it is computationally unfeasible to compute
the full posterior probability distribution functions of all 15 binary parameters for the
hundreds of thousands of sources that we simulate upto a redshit of 10 in the following
section. The Fisher matrix provides a computationally cheap method to estimate
the errors in the case when the posteriors are Gaussian, which is unfortunately not
true in general. Nevertheless, for high SNRs, the Fisher matrix can give us a good
enough idea of the errors while estimating the value of parameters.

We follow the framework described in [177] to calculate the errors in estimating the
parameters of the compact binary system using the Fisher matrix method. According
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to the Post-Newtonian expansion formalism [131], the gravitational-wave waveform
from a compact binary coalescence in frequency domain is given by

h̃( f ) = A f −7/6eiΨ( f ), (8.11)

(8.12)

where A is the amplitude of the waveform, and Ψ( f ) is the phase given by

Ψ( f ) = 2π f tc − φc −
π

4
+

3
128ην5

N∑
k=0

αkν
k . (8.13)

Here tc is the time of coalescence, φc is the coalescence phase, ν = (πM f )1/3, M is
the total mass (M = m1 + m2), η is the symmetric mass ratio (η = m1m2/M2) of the
system, and the αk terms are known as the Post-Newtonian coefficients.
In the following discussion, we restrict ourselves to α0 terms. We will justify this
choice later in this chapter.

For the fisher matrix study, we choose a set of independent parameters θ for describing
the gravitational waveform,

θ = ( f0tc, φc, lnM), (8.14)

where f0 is a reference frequency needed to keep the parameters for the Fisher
matrix dimensionless. M is the dimensionless chirp mass, and is defined as
M = η3/5M/M�.

Writing the phase of the waveform in terms of these parameters, we have

Ψ( f ) = 2π
f
f0
( f0tc) − φc −

π

4
+

3
128
(πM f )−5/3, (8.15)

(8.16)

Ψ( f ) = 2π
f
f0
θ1 − θ2 −

π

4
+

3
128

(
πeθ3 f GM�

c3

)−5/3

. (8.17)

In going from Eq. (8.16) to Eq. (8.17), we have truncated the expansion at α0 term
(i.e., at k = 0), plugged in the value α0 = 1, and we have introduced the Newtonian
constant , G, the speed of light, c, and solar mass M�, explicitly to keep all quantities
in the Eq. (8.16) unitless, and define masses in solar mass units.

The Fisher matrix elements are given by
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Γi j = 2
∫ fH

fL

h̃∗θi ( f )h̃θ j ( f ) + h̃θi ( f )h̃
∗
θ j
( f )

Sn( f )
d f , (8.18)

where
h̃θi ( f ) =

∂

∂θi
h̃( f ), (8.19)

are the partial derivatives of the waveform with respect to θi, the parameters of the
waveforms, and Sn( f ) is the single-sided power spectral density of the detector. The
partial derivatives of the waveform can be calculated analytically:

h̃θ1( f ) =
2π f A

f0
f −7/6ei(Ψ( f )+π/2),

h̃θ2( f ) = A f −7/6ei(Ψ( f )−π/2),

and

h̃θ3( f ) = A f −7/6ei(Ψ( f )−π/2) 5
128

(
πeθ3 f G

c3

)−5/3

. (8.20)

The fisher matrix is then calculated by performing the integration in Eq. (8.18)
numerically. For a network of detectors, the fisher matrix is the sum of fisher matrices
for individual detectors,

Γ
net
i j =

∑
det
Γ
det
i j . (8.21)

The variance-covariance matrix, or simply the covariance matrix, defined as the
inverse of the Fisher information matrix, is given by

Σi j = (Γ
−1)i j . (8.22)

Oncewe have the covariancematrix, we use amultivariate normal randomgenerator to
generate observed value of the parameters, pO, based on the multivariate distribution
with the mean equal to the true value of the parameters, pT and covariance matrix as
Σ. The error in parameter estimation is then given by

R = [∆θ1,∆θ2,∆θ3] = pO − pT,

∆tc =
∆θ1

f0
,

∆φc = ∆θ2,
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and

∆M =M∆θ3.

(8.23)

8.4 Population synthesis for multiple detectors
We simulate a population of BBHs and BNSs upto a redshift of 10, and then calculate
an estimate of Ωcbc, rec, and Ωerror as outlined in Sec. 8.2 and Sec. 8.3. The list of
compact binaries (neutron star binaries or black hole binaries) is generated following
a Monte Carlo procedure described in [15, 178–180], and using the fiducial model
of [142] for the distribution of the parameters (masses, redshift, position in the sky,
polarization, and inclination angle of the binary). In particular, we assume a redshift
distribution which is derived from the star formation rate of [13] and accounts
for a delay between the formation of the progenitors and the merger. We further
consider the most recent median rates estimated from the LIGO/Virgo detections.
The procedure for generating the list of sources is described below.

1. For BBHs, the intrinsic masses m1,m2 (in the source frame) are selected from
the power-law distribution (Saltpeter initial mass function [181]) considered
in [18, 30] of the primary (i.e., the larger mass) companion p(m1) ∝ m−2.35

1 ,
and from a uniform distribution of the secondary companion. In addition, we
require that the component masses take values in the range 5-100 M�.

For BNSs, the intrinsic masses m1,m2 (in the source frame) are both drawn
from uniform distribution ranging from 1 to 2 M�. This is also the distribution
that was used to calculate the rates of binary neutron star mergers in [11].

2. The redshift z is drawn from a probability distribution p(z) given by (See
Fig. 8.3),

p(z) =
Rz(z)∫ 10

0 Rz(z)dz
, (8.24)

obtained by normalizing the merger rate of binaries in the observer frame,
Rz(z) per interval of redshift, over the range z ∈ [0,10]. We choose to cut off
the redshift integral at zmax = 10, since redshifts larger than 5 contribute little
to the background [142]. The merger rate in the observer frame is

Rz(z) =
∫

Rm(z)
1 + z

dV
dz
(z)dz, (8.25)
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where dV/dz is the comoving volume element and Rm(z) is the rate per
comoving volume in the source frame, given by

Rm(z) =
∫ tmax

tmin

R f (z f )P(td)dtd, (8.26)

where R f (z f ) is the binary formation rate as a function of the redshift at
formation time, t f , and P(td) is the distribution of the time delay td between
the formation and merger of the binary. The value of Rm(z = 0) is chosen
as the local merger rate estimate from the LIGO-Virgo observations. For
the rate of BBH mergers, we use the most recent published result associated
with the power-law mass distribution 103+110

−63 Gpc−3yr−1 [30]. For the BNS
case, we set Rm(z = 0) to 1540+3200

−1220Gpc
−3yr−1 obtained from the GW170817

calculation [11].

We assume that the binary formation rate R f (z) scales with the star formation
rate. We follow the the GRB-based cosmic star formation model of [13]. It
uses the Springer Hernquist functional form [182]

R f (z) = ν
aeb(z−zm)

a − b + be(a(z−zm)
, (8.27)

to fit to the GRB-based high-redshift SFR data of [183] but normalized based on
the [184] SFR ( [185, 186]). This fit results in ν = 0.146M�/yr/Mpc3, zm =

1.72,a = 2.80,andb = 2.46 [13]. The resulting model in illustrated in
Fig. 8.1 [14] by the solid line.

We consider a time delay distribution p(td) ∝ 1/td , for tmin < td < tmax.
For BNS, we set tmin = 20Myr [142, 187], whereas for BBH, we set tmin =

50Myr [141, 142, 188]. The maximum time delay, tmax is set to the Hubble
time [188, 188–195].

Massive black holes are formed preferentially in low-metallicity environ-
ments [44, 141]. For systems where at least one black hole has a mass larger
than 30M�, we re-weight the star formation rate R f (z) by the fraction of
stars with metallicities less than half the solar metallicity [142]. Follow-
ing [141, 142], we follow the mean metallicity-redshift relation of [196], and
scale it upwards by a factor of 3 to account for local observations [13, 197].
The mean metallicity-redshift relation is illustrated in Fig. 8.1 [14] by the solid
line.

3. The location in the sky, the cosine of orientation, the polarization, and the
coalescence phase are drawn from uniform distributions.
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Figure 8.1: The GRB-based star-formation rate from [13] (left, in solid). The mean
metallicity-redshift relation based on the GRB-SFR from [13] (right, solid). Figure
taken from [14].

8.4.1 Detector Network
We consider a network of five third generation detectors (Fig 8.2), specifically a
detector with the sensitivity of ET at the location of Virgo, and detectors with the
CE sensitivity at locations of LIGO Hanford, LIGO Livingston, LIGO India, and
KAGRA. We choose this configuration of detector-network because it was shown
in [15], that the astrophysical “confusion” background from unresolved BBH sources
is of the orderΩGW(10Hz) = 10−16−10−14, making the network sensitive to detection
of other backgrounds (PGWB) at that level.
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Figure 8.2: Design amplitude spectral density of second and third generation
detectors. Expected intermediate sensitivities such as Advanced LIGO Plus (A+)
and Voyager are also shown. Figure taken from [15].

8.5 Results
We simulate a population of BBH and BNS mergers according to the procedure
described in Sec. 8.4 for a year’s worth of data. There are 139,879 BBH and
2,408,262 BNS signals in our simulation. The redshift distribution for the generated
sources is shown in Fig. 8.3.

For each source, we calculate the expected network SNR assuming perfect template
match, given by

ρnet
i =

√∑
det
(ρdet

i )
2, (8.28)

where index i runs over all the sources, and ρdet
i

(ρdet
i )

2 = 4
∫ ∞

0
df

��h̃det
i ( f )

��2
Sdet

h ( f )
(8.29)

is the SNR for each source and detector pair (i,det), and h̃det
i ( f ) = Fdet

+ h̃i,+ + Fdet
× hi,×

is the Fourier domain waveform projected on the detector.
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Figure 8.3: Redshift distribution of the simulated BBH (blue) and BNS (red) sources.

We considered a source as resolvable and a part of the “foreground”, whenever ρnet
i ≥

ρthresh = 12.0. To begin with we calculate the quantities, ΩBBH,total, ΩBBH,unresolved,
ΩBNS,total, and ΩBNS,unresolved. We use two waveform models, a full IMR model
IMRPhenomD, and a model using 0th order PN approximation (Eq. 8.12). We show
the results in Fig. 8.4.

We can see that the results from the two models agree to a great extent below 100
Hz. It has been shown for various detector combinations that frequencies below
100 Hz account for more than 99% of the SNR for the stochastic search [179, 187].
Therefore for calculating Ωerror, we only consider the 0 PN model to compute the
Fisher matrix for each source in our simulation.

Now we calculate the Fisher matrices (and the variance-covariance matrices) for all
the sources in our simulation, and recover a set of parameters in order to calculate
Ωerror,BNS and ΩBBH.

We find that ∼20 % of all the BNS sources are unresolved, whereas only ∼0.1 % of
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Figure 8.4: Gravitational-wave energy spectrum from total and unresolved BBH
(blue) and total and unresolved BNS (red) sources using an IMR model and a 0 PN
waveform model. We can see that the results from the two models agree to a great
extent below 100 Hz.

all the BBH sources fall in the unresolved category.

The results are shown in Fig. 8.5.

Residual background from BBH sources (solid, blue: ΩBBH, residue) is dominated
by the deviation from true value of recovered parameters (ΩBBH, error), while the
residual background from BNS sources (solid, red:ΩBNS, residue) is dominated by
the unresolved sources (ΩBNS, unresolved). We notice that for the BNS sources,
ΩBNS, unresolved is very small as compared to ΩBNS, unresolved. Therefore, we lower the
SNR threshold for what we call something as resolved for the BNS sources to 8.
The results are shown in green in Fig. 8.5. The residual background from the BNS
sources goes down as expected when lowering the SNR threshold. It is still, however,
dominated by the unresolved sources. So we could keep lowering the threshold in
our framework to get a lower residual from the BNS sources. But the Fisher matrix
method to calculate the errors on parameters breaks down for low SNR values. So we
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Figure 8.5: Gravitational-wave energy spectrums from the total unresolved error,
and residue from BBH (blue) and the total, unresolved, error and residue from BNS
(red) sources. We see that the residue from BBH sources is dominated from the
error due to background subtraction, whereas for the BNS case it is dominated by
the unresolved sources. We therefore perform another simulation for the BNS case,
where we change the ρthresh to 8.0 instead of 12.0. The results are shown in green.
Overall the residual background is dominated by the BNS sources. The cosmological
background from inflation assuming a tensor-to-scalar ratio r = 0.1 is shown for
comparison, the horizontal solid purple line is the minimal flat spectrum that can be
detected with ρ = 3 with the HLVIK network after 5 years.
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will stop here and conclude that the residual background after removing the resolved
CBC sources will be dominated by the unresolved BNS sources. It will be at the
level of ΩBNS, unresolved(10Hz) = 10−12 − 10−11. The residual background from the
BBH sources will be at a level of ΩBBH, residue(10Hz) ∼ 10−13. For reference, we
also show the cosmological background from inflation assuming a tensor-to-scalar
ratio of 0.1 (in dashed, purple). But there is a lot of uncertainty in the BNS rates, and
it will be interesting to see how that will change with more detections. In a future
study, we will also repeat these calculations with a full IMR waveform model, and
eventually run them through a pipeline on mock data.
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C h a p t e r 9

CONCLUSIONS AND FUTURE-WORK

9.1 Summary of results
A century after their prediction, the stretching and squeezing effect of gravitational
waves wasmeasured [6] on September 14, 2015 by the Advanced LIGO detectors [19],
thereby marking the start of the era of gravitational-wave astronomy. The signal
observed by the two LIGO detectors was consistent with that produced during
the final fraction of a second of the merger of two black holes. This observation
came after more than five decades of careful planning and building of the LIGO
detectors [19, 26] and development of relevant technical and scientific research and
data analysis techniques. Since the first detection in 2015, Advanced LIGO and
Virgo have detected several other signals from binary black hole mergers and a
signal from a binary neutron star inspiral, which was extensively followed in the
elctromagnetic spectrum. Gravitational waves carry signatures of their sources,
and therefore play a unique role in shaping our understanding of the extremely
violent astrophysical events they originate from. We have tested general relativity
in the strong regime [27], and studied matter at densities [28] beyond reach of the
most powerful laboratories on our planet through these observations. They also
help us gain insight into the evolution of stars, galaxies, and even the Universe
as a whole by studying their merger rates [11, 18, 29, 30]. Joint electromagnetic
and gravitational-wave observations help develop our understanding of the physical
processes that occur in such systems [12, 31], and also provide a gravitational-wave
standard siren method to measure the Hubble constant [32, 33].

The main focus of this thesis is the detection of gravitational waves from compact
binary coalescences. We started with a brief description of gravitational waves
(Chapter 2), coalescing binaries (Chapter 3), and methods to detect them. GstLAL
is a matched-filtering search pipeline which used to detect compact binary mergers
in low-latency. Low-latency detection is crucial for sending out timely alerts to the
broader electromagnetic community to facilitate multi-messenger observations. We
go over the methods employed in the search (Chapter 4), and thereafter, we discuss
the development of a BBH GstLAL pipeline using full IMR aligned-spin waveforms
(Chapter 5). During O1, it was deployed as part of the uberbank search (Fig. 6.5), and
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as part of the hyperbank search (Fig. 7.2) in O2 (Chapters6, and 7). We discussed not
only the successful results but also the many challenges faced to achieve them. We
have shown that the GstLAL pipeline is not only capable of detecting gravitational
waves from compact binaries, but is able to do so in near real time. All the loudest
candidates found by the offline search, were also found online (except in the cases of
mislabelled data, or a detector not being in science mode), Table 7.1. The main goal
of the GstLAL pipeline was to provide prompt alerts to our partner electromagnetic
observatories to facilitate multi-messenger observations of electromagnetic transients
associated with the gravitational-wave phenomena [50]. With GW170817, we did
exactly that [11]. The timely alert sent out by the pipeline made possible the extensive
followup carried out across the electromagnetic spectrum which led to the detection
of the associated optical transient (SSS17a/AT 2017gfo) in the galaxy NGC4993.
The joint gravitational-wave and electromagnetic observations of GW170817 support
the hypothesis that it was produced by the merger of two neutron stars in the galaxy
NGC 4993, followed by a GRB with a time-delay of ∼1.7s and a kilonova/macronova
powered by the radioactive decay of r-process nuclei synthesized in the ejecta [12].
The time-delay between the gravitational-wave signal and the burst of gamma rays
of 1.7 s also told us that the speed of GWs is equal to the speed of light to a part in
1015 [45].

9.2 Future work
It sounds like we have achieved what we set out to do. Yes, partially but there is still
a long way to go.

From the recent joint gravitational-wave and gamma-ray detection of GW170817 [11],
we now know that the time delay between gravitational-wave emission and the onset of
the following burst of gamma rays is approximately 2 seconds, motivating achieving
alert latencies below 2 seconds. The median latency of the GstLAL pipeline in O2
was about 22 s (Fig. 7.7). This is already significantly lower than what it was in
O1 (∼ 67 s), but we need to work towards bringing it down even lower. One of the
places where the pipeline could benefit from a speed-up in in the assignment of the
likelihood-ratios. We have already started to look into the application of machine
learning to do this. The initial results look favourable, but it will need a lot of work
before making it to an end-to-end pipeline test.

The detection of GW170817 by the online pipeline using a single detector proves
that the GstLAL pipeline is capable of detecting signals from a single detector’s data.
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We would like to search over all of O1 and O2 using this search.

We have also started to develop a search to look for lensed counterparts of our
detection candidates among the sub-threshold candidates of the pipeline1. Any
lensed counterparts of the detection candidates should have the same intrinsic
parameters, but be louder or quieter in magnitude. In our case we are looking for
quieter, sub threshold counterparts as the louder ones would already have been
detected. To accomplish this, we make use of a restricted template bank which
contains only those templates that get rung up by the candidate events used as
injections in a search. Reducing the search space decreases the amount of false
triggers from noise, and therefore has the potential of elevating sub-threshold lensed
signals.

In Chapter 8, we conducted a study about removing the foreground astrophysical
CBC signals from our data to detect buried cosmological backgrounds with third
generation detectors. We found that after removal of the signals, we are left with a
residual background at the level of Ωresidual(10Hz) = 10−12 − 10−11, most of which
is dominated by the background from unresolved BNS sources. Therefore, our
study concludes that we would only be sensitive to cosmological backgrounds at
the level of Ωcosmo ∼ 10−11. But our study had a number of drawbacks. We used
waveforms using 0 order in post-Newtonian approximation, and we calculated the
errors from deviation of the resolved parameters from true values using the Fisher
matrix approach. The Fisher matrix approach breaks down for low SNRs. Therefore,
we would like to repeat our study using full IMR waveforms and run them through
a full CBC pipeline. If indeed some of the signals we have observed have been
magnified through lensing, we have under-estimated the true luminosity distance to
the source, and have therefore under-estimated the source redshift, and over-estimated
the redshift-corrected source masses. Therefore, although unlikely, it is important to
pursue this possibility.

There is lots of exciting work ahead of us. The Advanced LIGO detectors will start
taking data for the third observing run, in early 2019 and will continue taking data
for about a year. The sensitivities of the detectors is expected to be the best ever
recorded. No doubt we will detect many more CBC signals and use them to enhance
our knowledge of the Universe by leaps and bounds.

1This search is being developed in collaboration with Alvin Li, Tjonnie Li, and Alan Weinstein.
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