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ABSTRACT.

Friction pressure drop measurements were made in vertical bubbly and par-
ticulate flows, and friction factors up to two orders of magnitude higher than
pure liquid values were obtained. The two-phase friction multiplier for air-water
flows was shown to attain values up to 15 times higher than the predictions given
by the Lockhart & Martinelli correlations (1949). These findings exemplify the
lack of detailed understanding of multi-component flow phenomena. The lack of
understanding of the flow kinematics and the small amount of information avail-
able on the topic has been primarily due to the primitive stage of development

of flow measuring instrumentation.

A shielded, temperature compensated and non-intrusive Impedance Volume -
Fraction Meter (IVFM) was built and shown to have good spatial and temporal
resolution. The dynamic calibration of the device demonstrated that the vol-
ume fraction measuring device could also be used to measure both the dispersed
medium velocity and concentration. This device enabled us to carry out mea-
surements of small and large amplitude kinematic stability and wave propagation
in two-component and three-component flows. The velocities of small amplitude
kinematic waves in both air-water and solids-water flows were measured using

a cross-correlation technique and these were shown to be non-dispersive. The

el

ersistence of flow structure was quantified using the coherence of the IVFM
noise at two locations. The structure in solids-water flows wae found to be
more persistent than in air-water flows, and the most coherent wave length was
measured to be of the order of .5 m, or five pipe diameters in both flows. The
statistical properties in the inherent noise in the IVFM output was shown to
contain valuable information on two- and three-component flow quantities and

regime.

In this thesis, we show that much can be learned about the complex nature
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of multi-component flows with adequate instrumentation, and we emphasize the
need for further development of critical flow measuring techniques for use not
only in fundamental investigations but also in the monitoring and control of

practical multiphase flow processes.
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NOMENCLATURE.

Cross-sectional area of pipe.
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Parameter of the liquid friction factor fit.
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Propagation speed of kinematic shocks.

Pipe diameter.

Particle diameter.

Rate of change of flux of component i with respect to the volume
fraction of component j.
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Friction factor in two-component fow.
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Froude number (= Vy/1/¢D,).

Gravitational acceleration.

Separation between IVFM’s.

Filter function of IVEM.

Ampli

itude of IVFM filter function.

Volumetric flux.

U

1.

Drift flux of disperse material.
Attenuation time constant of small amplitude kinematic perturbations

corresponding to the measured ¢.
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K Added mass coefficient (=1/2).

L Separation of pressure tappings.

m IVFM calibration slope (V/%).

n Dimensionless wave number of kinematic perturbations.

N Wave number of small amplitude kinematic perturbations.

D Liquid pressure.

q Generic variable.

Q Amplitude of generic variable.

r Correlation coefficient of regression fit.

Ry (1) Auto-correlation function of the fluctuating IVFM signal.

Ry (1) Cross-correaltion function of the fluctuating IVFM signal
at two closely spaced locations.

Re Reynolds number based on liquid flux (71) and liquid kinematic
viscosity.

S Reduced kinematic perturbation propagation speed.

Sy, (7) Spectral density of IVFM output noise.

Sy,v, (7) Cross-spectral density of thé IVFM output noise of two closely
spaced IVFM’s.

STNR Signal to Noise Ratio of IVFM output.

t time.

T(N) Residence time of small amplitude kinematic wave of number N between
the two IVFM’s.

v velocity.

VX corr velocity derived from the cross-correlation measurement.

1% Voltage output of IVEM.

Vo Velocity of particle or bubble relative to liquid at zero volume

fraction.
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V, Measured shock speed.

Vi Fourier transform of 171.

W; Weight of paticle of species i.

y Vertical spatial dimension.

a Volume fraction of air.

) Kronecker delta.

AHpg.o Head of water corresponding to measured pressure
difference.

Ap Measured pressure difference between the two pressure tappings.

Apig Friction pressure drop in pure liquid pure liquid flow.

Apag Friction pressure drop in a two-component flow between
the two pressure tappings.

~ Ratio of density differences.

~(N) Coherence of the IVFM fluctuating components of wave number N
at two locations.

e{q} error in generic measured quantity gq.

£¢ error factor in friction factor measurement.

¢(N) Attenuation of small amplitude kinematic wave of number N between
the two IVFM’s.

n Density of Poisson process (the number of bubbles per unit time).

K Dimensionless time constant of kinematic perturbations.

7 Liquid dynemic viscosity

v Volume fraction of solids.

‘If Decay time constant of IVFM filter function derived from the

auto-correlation function of IVFM noise.

p Material density.
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Cross-spectral density phase of wave number N.
Two-phase friction multiplier.

Reduced frequency of kinematic perturbations.

Air.

Continuous medium.
Disperse medium.
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Component j.
Liquid.
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Condition upstream of shock.

Condition downstream of shock.

Fluctuating quantity.

Time averaged quantity.
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Chapter 1. INTRODUCTION.
1.1 General Background.

Two-component flows have been of concern to the engineer for a long time
in a number of technologies. Of historical interest in early developments in the
field is Darcy’s work (1856) on the flow of a fluid through porous media. His
results are used to this day by civil engineers to evaluate the flow of water in
soils. Of no less significance is Albert Einstein’s (1906) first estimate of the
viscosity of a dilute two component medium.

Today’s advances are predominantly driven by emerging technological needs
in the fields of mechanical, petroleum, mining, chemical, nuclear engineering and
soil mechanics. Improvements in instrumentation have allowed objective studies .
and have been closely linked to improvements in understanding the mechanics
“of multi-component flows.

The advent of synthetic fuels such as coal slurries have called for flow man-
agement devices (pumps, let-down valves, etc.) with better resistance to the ad-
verse environment imposed by the fluid . This need has encouraged studies into
the factors reponsible for the destructive properties of these flows (Roco (1983),

Coughlin & Brennan (1980)).

r r

Accidents in nuclear power plants have focused concern for the safety of

this type of power station. For example, the event of forcing vapor into a pool

-

of water subsequent to z loss of coolant accident can lead to a thermohydraulic

1

instability (chugging} which can impose potentially destructive dynamic loads
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Chemical engineers have been mostly concerned with low Reynolds num-
1 fa] : h < B, X3 h] 3. Lot 1 H s~
ber fiows encountered in fluidized beds and sedimentation tanks. Because of
,

the large area of contact between the elements in multi-component flows and

good mixing in the host fluid, fluidized beds have found numerous industrial
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applications , for example, in catalytic reactions, mixing and coating processes
and the combustion of low grade coal. In most applications, efficient operation
of fluidized beds is only achieved with a homogeneously distributed flow. How-
ever, this ideal is not always attainable, particularly in gas fluidized beds where,
despite homogeneous initial fluidization, voidage irregularities known as “bub-
bles” have been shown to develop upon further increase of the gas flow rate.
Further details of the behavior of fluidized beds are given by Zenz (1971) and
Richardson (1971).

Separating the components of a suspension, for example, a precipitate or the
elements of a colloid, has received much attention in the chemical industries; a re-
curring objective has been to speed up the process. The topic of one-dimensional
sedimentation in a mono-disperse medium under the action of gravity is well
reviewed by Barnea & Mizrahi (1973). Faster techniques have recently been
suggested. Acrivos & Herbolzheimer (1979) were able to enhance sedimentation
by placing inclined walls in settling vessels. Fessas & Weiland (1981) showed
that introducing buoyant particles to render the homogeneous dipersion unsta-
ble can greatly increase the settling rates of the suspension. One suggested way
of implementing this finding is by introducing gas bubbles at the bottom of the

sedimentation tank.

Subsequent to the discovery of rich ma deposits on the bot-
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tom of the oceans much work was directed into bringing the minerzls o the

surface, thus opening the new field of deep ocean mining. The air-lift pump
has received much attention as a method of transporting the ore up (Grote &
Burns (1980)), to the surface. The air-lift pump has the advantage over regular
pumping techniques of having no moving parts. It bases its operation on the
entrainment of the solids into a buoyant air-water upward flow in a pipe. The

resulting flows are poorly understood and the technique is far from being well
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implemented for production. In both two- and three-phase flows, the nodules
have a tendency to plug up the pipe by forming a self supporting bridge or arch
across the pipe bore thus preventing further transport. Despite the engineering
problems in deep ocean mining tasks, the lack of progress has been primarily
caused by political obstacles concerning the rights of mining international ocean

floors.

With decreasing world oil reserves, less accessible deposits have become
econonomically profitable to exploit. The necessity of drilling deeper, often into
reservoirs of lesser yield than previously exploited, has led to developments in
enhanced oil recovery techniques. Topics in three component flows consisting
of crude oil, natural gas and rock chips have received much attention in the oil .
industry both in reservoir modelling and in oil well flow studies. Unfortunately,
much of this work is proprietary and therefore unavailable to the general scien-
tific public. Also, it is clear that the recent slump in the oil industry has diluted

the research efforts in this field.

The primary aim of this thesis is to investigate a) friction pressure drops
in two-component flows and b) the flow structure which was found to have a
marked effect on the flow pressure drop. We focus on vertical flows, a subject

1

that has received little attention in the past. Most of the work on this topic has

()

ot

o

m

¢33

-y
1

concentrated on horizontal flows, which are inherently different due t

T

pendicular orientation of the gravitational body force with respect to the fiow.
J

flows that in turn introduces uncertainty into the friction pressure drop mo-
d experimenté.l study on the stability of homogeneous

mono-disperse and bi-disperse media. The secondary purpose of this thesis is

to improve the existing Impedance Volume -Fraction Meter which was developed

by Bernier (1981). This device serves the purpose of monitoring the concentra-
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tion of the disperse medium by measuring the bulk electrical impedance of the
flowing material. The volume fraction signal typically displays “noise” which is
caused by the discrete nature of muli-component flows. Instead of eliminating
this “noise” by filtration or other means, we explore its information content,
with the aim of extracting flow quantities from its easily measured statistical

properties.
1.2 Thesis outline.

An experimental facility was built and instrumented for the study of ver-
tical one-dimensional, two- and three-component flows. The facility is able to
accommodate a wide range of different upward and downward flows of air-water,
solid-water and air-solid-water mixtures in a 4 inch (.1016 m) pipe. The solids -
used in this study were polyester particles of cylindrical shape (plastic stock
used for injection molding), and the air bubbles were introduced through small
perforations in brass tubes. The flow loop, its particle flow control equipment

and the instrumentation are described in detail in Chapter 2.

The problem of friction pressure drop in two-phase flows has been studied
by numerous investigators. Most of this work has concenirated on horizontal
flows , which do not have the ambiguity concerning the unknown hydrostatic
head contribution to the pressure gradient (Armand (1946), Lockhart & Mar-
tinelli (1949)). Aoki & Inoue (1965) and more recently Nakoryakov et al. (1981)

9
cast scrme doubt on the previously accepted models by demonstrating marked
deviations from those correlations under certain fiow conditions. The Three
Component Flow Facility designed and built for this work was used to study
friction pressure drops in vertical two-component flows of both air bubbles in
water and polyester particle-water mixtures. Friction factors of up to two orders

in magnitude higher than those at zero volume fraction were observed for both

bubbly and slurry flows. This deviation is shown to decrease with increasing
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liquid Reynolds number. Bubbly and slurry flow friction factors were compara-
bly large in magnitude and displayed the same decreasing trend as a function of
Reynolds number. The two-phase friction multiplier for bubbly flow was shown
to attain values up to one order in magnitude higher than the prediction given
by Lockhart & Martinelli, whose correlation is better for high air quality agi-
tated flows. Nakoryakov et al. (1981) measured higher bubble concentrations in
the vicinity of the pipe wall in bubbly flows, which supports the speculation that
the increased wall shear stress is due to enhanced mixing close to the wall. Fur-
thermore, the friction pressure drop in air-liquid flows exhibits non-monotonic
behavior as a function of the liquid flow rate. This is observed to take place in
conjunction with an onset of unsteadiness in the flow. The change in flow struc- .
ture is believed to be responsible for the pressure drop anomaly, and for this
reason, the stability of the homogeneous two-component dispersion is studied in

later chapters.

The lack of data on multi-component flow kinematics is not due to a lack of
interest in the topic, but rather to limited availability of instruments with ad-
equate dynamic response. Reviews of two-phase flow instrumentation (Hewitt
(1978, 1972), Jones & Delhaye (1976)) point out that only a few instruments can
be used for transient measurement of the volume fraction. In the past, the only
reliable and available methods of measuring volume fraction in two-component
mediz with good dynamic response were the X-ray attenuation technique (Zuber
et al (1967), Schrock (1963)) and the later developed ~-ray attenuation methods
(Taylor et al. (1979)). The accompanying equipment with this type of device is
typically costly and cumbersome and safety precautions must be exercised. Local
point measurement techniques using hot film anemometry (Toral (1981), Del-
haye & Galaup (1977), Jones O.C. (1966)), miniature resistivity probes (Burgess

& Calderbank (1975)), or more recently optical probes (Abuaf et al. (1978), van
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der Lans (1985)) have proved to be successful in gas-liquid flows, but are not
suited to the abrasive environment of solid-liquid flows. The advent of ultrasonic
detectors shows promise in measuring volume fraction of gas-liquid mixtures as
suggested by Arave and Fickas (1979). Volume fraction meters that base the
measurement on the electrical impedance of the medium have been shown to
be capable of unsteady dynamic measurement (Garrard & Ledwidge (1971),
Jallouk et al. (1979)).

Bernier (1981) developed an Impedance Volume Fraction Meter (IVFM)
designed to monitor the volume fraction of non-conducting material in water
(bubbles or particles). The instrument is entirely non-intrusive and has the
advantage of being rugged and easy to use in comparison with ray attenuation -
techniques. This device was modified for the present study by the installation of
" temperature compensation and by shielding the active electrodes. The steady
state and dynamic calibrations of this transducer are documented in Chapter 4.
The IVFM is shown to have good spatial and temporal resolution, and proved
to be a useful tool for monitoring the passage of individual particles or bubbles
as well as infinitesimal and finite kinematic waves.

1

Two phase flows are susceptible to numerous hydrodynamic instabilities
which are reviewed by Bouré et al. {1871). These instabilities are manifested by
waves which for our purposes can be grouped into acoustic or pressure waves and
kinematic waves (also called concentration or continuity waves). Both systems

il 1 ™1

f waves are generally coupled but they do have distinct characteristics. The

@}

acoustic waves typically assume high frequencies and high speeds whereas the
kinematic waves which are driven by slip between components are character-
ized by low speeds and frequencies. The kinematic instability is responsible for
flow regime changes where deviation from the homogeneous suspension occurs,

such as with bubbling in gas fluidized beds. Further details on fluidized bed
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instabilities are given by Zenz (1971) and Richardson (1971).

Kinematic waves were first uncovered by Kynch (1952) in his work on sedi-
mentation and were used by Lighthill & Whitham (1955) to analyze flood waves
and traffic flow on long highways. Later Wallis (1962) and Zuber (1964) used
kinematic wave theory to describe the propagation speed of volume fraction
which they showed to be quite different from the mean bubble speed. More
recent developments in modelling two-component flows have been made by An-

derson & Jackson (1967,1968) and Homsy et al. (1980).

In Chapter 4, the theory of one-dimensional kinematic wave propagation
and attenuation is studied using three approaches. The Drift Flux Model is first
described. This quasi-steady model based on the continuity of both components
yields the speed of infinitesimal waves, and predicts these to be neutrally stable.
Then the effect of inertia is introduced and shown to make perturbations of all
wave numbers unstable, while giving wave speeds that are in close agreement
with the Drift Flux Model. Finally, the effect of size distribution is studied.
Recent work by Batchelor (1986) is extended to predict the kinematic wave speed
and attenuation in bi-disperse flows. This model is applied to a two-component
medium which is narrowly distributed in size. The medium is represented by
a dispersion of two distinct size groups of narrowly spaced diameters. The
results yield wave speeds similar to the earlier ones. Of interest is the instability
which only sets in at high conzentrations, higher than the maximum physically
attainable values. This result may only be of academic interest, however it
does indicate that the size distribution has a destabilizing effect at high volume
fraction. The bi-disperse model is also used to determine the theoretical stability
boundary for the solid-liquid-gas medium which was studied experimentally. In
these studies, the loss of stability of the multi-component system is manifested

by the onset of large vortical structure in the flow. The results are compared
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with experimental observations in Chapter 8.

An experimental study of kinematic waves was carried out by measuring
the propagation and attenuation of the coherent component in the naturally
occurring random fluctuations in the volume fraction. This work is described in
Chapter 6. The volume fraction was measured at two locations and the coher-
ent signal common to both signals was used to extract the desired information.
Using a cross-correlation technique, small amplitude kinematic speeds were de-
termined. These are found to agree well with the predictions in Chapter 5.
The linear phase of the cross power spectrum proved the kinematic waves to
be non-dispersive. The coherence function in the frequency domain was used
to evaluate the attenuation of kinematic waves as a function of perturbation .
wave number. These results constitute an experimentally determined disper-
sion relation for two-component flows, of the bubbly and particulate kinds. In
bubbly flows of high volume fraction (40%) the IVFM fluctuations are found to
contain much more common coherent signal just before the onset of instability

(churn-turbulence) than at any other bubbly flow volume fraction.

In Chapter 7, the propagation speed of finite amplitude stable kinematic
shocks is studied in vertical bubbly and particulate fiows. Experimental mea-
surements of bubbly shock speeds are compared to the semi-empirical predictions
based the Drift Flux Model. The good agreement led us to use particle shock
speed measurements to extract the drift flux curve for solid-liquid mixtures at
low fiow rztes. This function is used in Chapter 5 to determine the infinitesimal
kinematic wave speed based on the Drift Flux Model.

Data for solidification shocks is also presented. The propagation of this type
of shock has been studied previously in conjunction with batch sedimentation

for zero net flow processes (Wallis (1962)). The problem has also attracted

interest in the field of soil mechanics in studies on of water-saturated sands
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(Scott (1986), Gibson (1958), Terzaghi (1943)). Violent shaking can cause such
deposits to liquefy such that individual sand grains become suspended in the host
liquid, resulting in a free flowing medium. Following liquefaction, solidification
of the material occurs. In the present experiments on high particle concentration
flows, solidification shocks were captured and all flow quantities were monitored.
Above such shocks, the medium is fluidized; below it the solids are packed. The
wave is called a solidification shock because the particles are supported by the
liquid above the shock whereas below the shock, the weight and forces on the
particles are supported by the particle matrix itself. These shocks are found to
be dramatically faster than fluidized flow shocks and therefore potentially more

destructive.

The regimes of two- and three-component flows are studied in Chapter 8
and novel measurement techniques are suggested for these flows based on the
statistical properties of the fluctuations of the IVFM output. In disperse two-
component flows, the coherent time scale, £, in this noise is found to be approx-
imately proportional to the particle or bubble speed. In churn turbulent flows,
¢ is found to be well correlated to the air volume flux. The Signal To Noise
Ratio (STNR) is shown to be uniquely related to the volume fraction in dis-
perse two-component flows. In three-component flows, the STNR and £ remain
good indicators of total volume fraction and the characteristic speed of the flow

structure respectively.

Fessas & Weiland (1981) demonstrated the existence of two flow regimes in
bi-disperse sedimenting flows of two solid species. In the present work, three-
component flows of intermediate Reynolds numbers (based on the particle di-

+ PR LAY r H :
ameter and speed) are found to undergo a regime change from a disperse nature
to a very agitated one. In the less viclent regime, the hindering in the rise

velocity of the bubbles is found to be high as manifested by the low mean air
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velocities measured. After the flow regime change, the mean air velocity relative
to the liquid-solid flux is found to rise dramatically and the flow exhibits a large
vortical structure. The relative velocity measurements show marked similarities
with the results of Fessas & Weiland; both studies observed a fall in hindered
settling velocities with increased volume fraction followed by an increase after

the flow regime change.
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Chapter 2. THREE COMPONENT FLOW FACILITY.

For the purpose of flow studies and instrumentation development a Three
Component Flow Facility (TCFF) was designed and constructed. This facility
(Figures (2.1)) is capable of generating a wide range of different liquid-gas,
liquid-solids or liquid-solids-gas flows in a test section (presently a vertical 2 m
length of .1016 m LD. lucite tube). It operates as follows. Liquid (water) is
circulated through the system by means of a 3 hp centrifugal pump producing
velocities of up to about 2 m/s in the .1016 m I.D. working section. The system
of valves shown in Figure (2.1) permits adjustment of the water flow rate to any
value up to this maximum in either direction. The water flow rate is measured
by means of an electromagnetic flowmeter in the water circuit. A gas (air) -
injector can be located at either end of the working section, though it is presently
 installed at the lower end. This air injector consists of 21, 1/8 in. tubes criss-
crossing the flow in various directions and staggered over an axial length of
about 6 in. Air is ejected through many 1/64 in. holes drilled in the 1/8 in.
tubes. This arrangement yields both a very uniform injection of bubbles over
the cross-section and a uniform resistance to the water flow through the device
so that the two-phase flow which emerges from the injector is as uniform as
possible. The mass flow rate of air is measured by means of a calibrated orifice
meter with a series of interchangeable orifices.

The most novel aspect of the present facility is its ability to handie solids
and to control the solids fow rate independently of the liquid without having
to continuocusly add or remove solids from the system. It operates as follows.
The facility is presently configured for the downward flow of solids which have a
specific gravity greater than unity. Such solids are initially stored in the upper
tank with the control cylinder (Figure (2.2)) in the fully down position. Water

can circulate in the system by passing up or down through the control cylinder
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which is essentially a continuation of the working section; the solids simply reside
in the backwater outside of the control cylinder. Raising the control cylinder
causes solids to flow down into the working section at a rate which can be
controlled by varying the gap between the control cylinder and the surrounding
tank bottom (conical). As is the case in most granular material hopper flows the
solids flow remains almost independent of the amount of material in the hopper
until the latter is almost exhausted. The experiment then continues until all the
solids have collected in the lower tank (they are prevented from travelling further
by a fine mesh screen). To recycle the solids the control cylinder is lowered to
the closed position and sufficient upward water flow is generated to fluidize the
solids in the lower tank (this accounts for the smaller I.D. and longer length of .
this tank) and to carry them back up to the upper tank where they settle into
their original position. A screen at the top of the upper tank prevents the solids

from escaping from that tank.

The present configuration of the facility is designed for solids with specific
gravities between unity and three. The lower density limit comes from the
requirement that the particles should sink, and the upper bound is dictated
by the pumps ability to fluidize the packed bed. For the work described in
this thesis the facility was loaded with polyester plastic stock which consists of

cylindrical beads of about 3 mm diameter and 1.43 specific gravity. Several size

ur

ol glass beads with specific gravity of 2.5 zre also available but have not, es vet,

been tested. The facility could alsc be used for coal.

If anything, the facility operated better than anticipated with the plastic
beads. The only problems experienéed occurred at large air flow rates with coun-
tercurrent downward fow of water. As the flooding condition was approached
(2nd this condition varied with the solid flow) there was an expected tendency

for excessive water rejection from the system via the water overflow.
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2.1 Instrumentation

Two Impedance Volume Fraction Meters (IVFM) were installed in the work-
ing section. This non-intrusive instrument was previously developed for the
purpose of measuring the void fraction in gas-liquid two component flows. It
is based on the measurement of the high frequency electrical impedance of the
mixture and consists of two shielded stainless steel electrodes laid flush with the
interior surface of the tube (.1016 m I.D.) as seen in Figure (4.1). The axial di-
mension of the electrodes is small (6.5 mm) in order to resolve short wavelength
structures in the flow. Essential characteristics of the electronic processing are
the 50 kHz excitation and the double-bridge signal processor. The device has
excellent frequency response and axial spatial resolution of a few centimeters. -
The device will measure either the air void fraction in water-air flow or the solid
volume fraction in water-solids flow. In either case, the calibration of the device
is obtained by comparison with the hydrostatic pressure gradient when there is
zero water flow. In a three component water-air-solids flow it will measure the
combined volume fraction of solids and air. Making use of a bulk hydrostatic
pressure gradient measurement, we are able to separate the volume fractions of
the two disperse components. The IVFM is described in more detail in Chap-

ter 4.

M

wo Llectromagnetic Flowmeters (EF) are installed in the facility. Thes
consist of standard Foxboro commercial hardware with special excitation/signal
nr SCing e Inment hiiit in + Caliech ] b atorv. [ he latter t 3130 hiot
y;OCQDSu;é Cqulpmcgiu DUt 11 The valtech la. Ord.bO;_y. L 0ne atier pI‘OGJ\,ES a zugn
frequency (328 Hz) magnetic field in order to obtzin good dynamic response (as
opposed to the standard 60 Hz field, which is inadequate in this respect). The
signal is processed through a 68 dB preamplifier and a demodulator. Previous
experiments have shown that this device has excellent dynamic response up to

a frequency of about 40 Hz in velocity fluctuations; indeed it proved superior
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to an Laser Doppler Velocimeter (LDV) system in those earlier experiments
insofar as measurement of unsteady volume flow rate of a single component
water flow was concerned. In single component water flows the EF has two
very useful characteristics. First, its calibration is independent of the electrical
conductivity of the fluid. Second, it yields the total volume flow rate independent
of the velocity profile provided the latter in axisymmetric. Even this caveat has
been shown to be minor in some recent experiments.

One of these meters is used to measure the total flow rate in the TCFF.
A previous test program investigated its use in an air-water two component
flow (Bernier (1983)). In those tests it was shown that the device has further
advantages. It measures the average water velocity (not the water flow rate) and A
does this irrespective of the distribution of voids over the cross-section, provided
again that the distribution is axisymmetric in the mean. This was confirmed
over a substantial range of void fractions, water flowrates, slip ratios and flow
regimes by Bernier. However, in the present work, it was found that slight non-
uniformities in the magnetic field introduce error into the measurements at low
flow velocities. Since most flows considered in this study were no larger than .3
m/s, the EF was not used in the multi-component test section, but only in the

single phase part of the loop.
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Chapter 3. MEASUREMENT OF FRICTION PRESSURE DROP
IN VERTICAL SLURRY AND BUBBLY FLOWS,

The problem of friction pressure drop in two-phase flows has been studied
by numerous investigators. Most of this work has concentrated on horizontal
flows on which models were based that have been widely used. Of note is Lock-
hart & Martinelli’s (1949) model which has been applied to both vertical and
horizontal flows. More recent studies have shed some doubt on these previously
accepted results by demonstrating marked departure from these under certain
flow conditions (Nakoryakov et al.(1981), Aoki & Inoue (1965)). The Three
Component Flow Facility is used to study friction pressure drops in vertical
two component flows of both air bubbles in water and polyester particle-water

mixtures.
3.1 Experimental facility and procedure.

The Three Component Flow Facility described in Chapter 2 was used to
study friction pressure drops in both air-water and polyester particle-water mix-
tures. The bubbly flows are formed by introducing air through an injector situ-
ated inside the vertical 4 inch (.1016 m) pipe, 60 crn below the test section. The
bubbles formed have an average diameter of 4 mm (=.7 mm). The polyester
particles are introduced at the top of the test section from the particle hoppper
through a particle flow control gate. The particles have an average diameter of

3 mm (= .5 mm) and are cylindrical in shape. A three horse power pump con-

[

trols the water fow rate which is monitored with an electromagnetic fow meter
The static pressure difference between two points 1.694 m apart in the test sec-

tion is measured with an inverted air on water manometer. The static pressure
measurement contains a large hydrostatic component and a smaller contribution

from the frictional pressure drop. The volume fraction of the disperse medium

Is monitored with the Impedance Volume Fraction Meter (IVFM). The accu-
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rate knowledge of the volume fraction allows us to extract the friction pressure
drop from the measured static pressure gradient by subtracting the hydrostatic
contribution.

Experiments with different air and water flow rates were carried out with
the air flow held constant and the water flux, j; (volume flow rate divided by
the pipe cross-sectional area), incremented from 0 to 1 m/s. This was done for
volume fractions of 0 to 40%. After each adjustment, conditions were allowed to
settle for 15 seconds and all monitored quantities were recorded. All air-water
flows studied were cocurrent and upward.

The polyester particle slurry flows studied were cocurrent and downward.
With a pre-set liquid flow rate the solid fraction was incremented between each '
run. For each set of conditions, the liquid flow rate, the static pressure gradient
in the test section and the solid fraction were monitored. The solid fraction
ranged from O to 50%. The liquid flux was incremented through a range of 0-.6
m/s. In both types of flow the raw data were stored in random access files on a
microcomputer floppy disc for manipulation and presentation.

3.2 Pressure losses in vertical upward éir-water flows.

Pressure losses in vertical upward air-water flows were obtained by subtract-
ing the vertical static pressure difference in the flow from the pressure gradient
caused by the gravitational body force. The latter was obtained by calculating
the bulk density, py, from the volume fraction, o and the known densities of aiz,

pg, and water, pi.

Apzg = Ap— ppglL,

— 3.1)
= pigL <ﬂpl—”9> (¢ = AHz,0/L). (3.1)

where Apgy is the two phase frictional pressure drop, and AHpyg,o is the mea-

sured pressure difference as a head of water. We have chosen to represent the
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pressure loss data in terms of both a friction factor, fs4, and a two phase mul-

tiplier, ®,,, defined as

Ap2¢ D
= — 3.2
Ap2¢,
3, = —22¢ 3.3

where Ap;4 is the pressure drop which would occur for the single component
flow with the same water flow rate.
3.2.1 Friction factor.

The friction factor is presented as a function of Reynolds number with the
volume fraction, «, as a parameter (Figure (3.1)). All the two phase friction
factors are significantly larger than the pure liquid (a = 0) curve, indicating a
trend of increased resistance to flow with large volume fractions. Non-monotonic
behavior can be seen within friction factor results which generally decrease with
Re. This is best shown by the 5% < a < 10% curve which goes through a
minimum at Re=2 x 10* and a maximum at Re=4 x 10%. This phenomenon
is somewhat similar in nature to the transition from laminar to turbulent flow
observed in pure liquid pipe flow. It is generally accepted that bulk two phase
viscosity is increased with volume fraction (Barnea & Mizrahi (1973)); there-

fore, for the higher volume fraction curves, 2 Reynolds number based on z bulk

kinematic viscosity would be much smailer than the one chosen here for simplic-
ity (based on the kinematic viscosity of w aue') Using such a Reynolds number
would then s constant a curves progressively to the left with increasing c.
Ultimately, the bulk Reynolds number will be small enough to be in the tran-

sition zone where non-monotonic f»s/Re behavior is seen in single component
flows. These results suggest the existence of bulk laminar and bulk turbulent
flows. At higher Reynolds numbers all the constant « curves com together

indicating a decreasing dependence of f on « at larger flow rates.
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3.2.2 Two phase friction multiplier.

The two phase friction multiplier is the mixture pressure loss normalized
with the pure liquid pressure loss at the same liquid flow rate. The pure liquid
friction factor curve used (shown in Figures (3.1) and (3.3)) was a least squares
regression fit of the present measurements to Prandtl’s Formula for fully turbu-

lent pipe flow:
1//Fig = Alog (Re VTis) + B, (3.4)

where A and B are the parameters of the fit. A complete derivation of this
equation is found in White (1974). The curve of best fit corresponds to the
friction factor curve of dimensionless pipe relative roughness of .0008 on the
Moody Diagram. This curve which is shown in Figures (3.1) and (3.3) (labelled -
a = 0) is used to determine the equivalent pure liquid friction pressure drop,
Api¢ required to calculate the friction multiplier. The air-water flow friction
multiplier results are shown in Figure (3.2). These are for the bubbly flow regime
only. The churn-turbulent results exhibited great scatter and are omitted for
clarity. In Figure (3.2) the friction multiplier takes on dramatically high values at
low flow rates. There is a rise and fall off with increasing air volume quality in the
form of 2 “hump” which decreases in size with increasing liquid flow rate. For a
Reynolds number of 30,000, the friction multiplier has & maximum of 15 whereas
ior Re=75,000 the maximum is 5. This same phenomenon was documented by
Aokl and Inoue (1965) and by Nakoryakov et al. (1981) whoe found friction
multiplier maxima of 20 (Re=6,000) and 11 (Re=10,000) respectively. The
values of Reynolds number over which Aoki observed this phenomenon (6 X
10% — 40 x 10°) are much below those of Nakoryakov’s (19 x 10% — 177 x 10%)
or the present experiments. The discrepancy between the results of the three
investigations and the geometrical fiow differences suggest that in addition to

the variation with the Reynolds number, the different bubble to pipe diameter
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ratios (Aoki .1, Nakoryakov .03, present experiments .035) in the investigations
has a strong effect on the friction multiplier. As can be expected, the results for
diameter ratios of .03 and .035 are closest to one another.

Air-water friction pressure drop measurements reveal large deviations from
previously accepted correlations. The discrepancy is particularly evident at
low liquid flow rates where the two-phase friction multiplier assumes as high
a value as 15 in comparison with a maximum of 1.1 according to Lockhart
and Martinelli’s correlations. The discrepancy decreases at higher flow rates at
which the dependence of the friction factor on volume fraction on volume fraction
weakens. The ratio of bubble to pipe diameter is noted to have a marked effect
on the friction pressure drop.

3.3 Pressure losses in vertical slurry flows.
- 3.3.1 Friction factor.

Frictional pressure drops in polyester particle slurry flows were obtained by
subtracting the vertical static pressure difference from the hydrostatic pressure
difference as in the bubbly flows. The hydrostatic component is derived from
the bulk density obtained from the monitored particle volume fraction. Then

the friction component of the pressure difference, Apsg, is given by

Apzg = —Ap+ prgL,

T / Pp — Pi - /7.\ (35)
=pgl\v———-AHyg,0/L},
b: /
where v is the volume fraction of solids. The friciion fector is defined zs
A Do s

f = il (3.6)

The slurry flow friction factor in Figure (3.3) reaches values of up to 15 times
the zero volume fraction equivalent at the lower Reynolds numbers considered.

This represents a static pressure loss gradient 15 times that experienced with the
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pure liquid (water) alone. The deviation from the zero volume fraction curve
decreases with increasing Reynolds number and the constant volume fraction
curves asymptotically tend to the zero volume fraction curve as the Reynolds
number increases. Unlike the bubbly flow friction factor results, these trends
are monotonic.

3.4 Error analysis.

The error analysis proved to be a vital tool in the presentation of our results
through the elimination of data with intolerable error content. Such an analysis
is found to be imperative when the required results are derived by subtracting
the large hydrostatic component from the measured pressure difference. Based
on the estimated error in each measurement we obtain an expression for the ‘
overall error in the frictional pressure drop.

The maximum errors in the volume fraction, the static pressure head and
the water Reynolds number were estimated in proportion to the measurement

amplitude; these estimates are shown below:

e{a} _e{AHy, 0} _ ¢{Re} _ o5 .
= = = .05, (3.7)
o AHy,0 ERe

where the notation €{¢} denotes the error in the quantity q. We have represented
the volume fraction using ¢, which is the air volume fraction. In this section,

we use o to interchangezbly denote either the air or the solids volume fraction.
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3.4.1 Error content in the friction multiplier.
The error in the friction multiplier, ®,,, can be written using its definition

(3.3):
{0, } _ E{Apzqs} i E{Aplq&}.

= 3.8
This can now be written in terms of the actual measurements using (3.1):
On) _ [de)+ lAMp0}/L)  dfig} ,elRe} o
@m o — AHH;O/L f]_qg Re

In single phase flows, a change in Reynolds number results in a comparatively
large change in the friction factor. The friction factor error term is therefore
negligible compared to the Reynolds number one. The error in the two phase

multiplier is rewritten as |

{3,.} = &,, {{ €{ai i Z{QZZ’/OL}/L} + +2%§l} . (3.10)

Equation (3.10) is used to determine the error in the air-liquid flow two-phase

multiplier, ®,,, and all measurements that did not satisfy
e{®,,} <5 (3.11)

were disgarded. The results containing smaller errors than the above tolerance
are shown in Figure (3.2).
3.4.2 Error content in the friction factor.

The error in the friction factor can be written using (3.1) a2nd (3.2) in

the case of air-liquid flows and {3.5) and (3.6) for solid-liquid fows. The error
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The friction multiplier is presented on a logarithmic scale. We therefore define

an error factor, €7, which behaves as a error of fixed size on a logarithmic scale:

_ J1+e{fap}/f2g
- () 12

Equations (3.11) and (3.12) are used to evaluate the only points satisfying

g < 5. (3.13)

are shown in Figures (3.1) and (3.3). All other points are disgarded.
3.5 Conclusions

The present study has revealed some very large discrepancies between the
measured frictional pressure gradients and existing empirical correlations.

The bubbly flow pressure loss measurements display a marked departure
from commonly used models (Lockhart-Martinelli (1949), Armand (1950)). At
small liquid and air flow rates, the measured pressure drops were up to an
order of magnitude higher than predicted by the aforementioned authors. This
phenomenon is as yet poorly understood and has only been documented in some
recognizable form in two other experimental studies (Aoki and Inouie (1965),
Nakoryakov et al. (1981)) which were carried out for different pipe diameters.
ier values were shown to correspond to flows with volume
fraction pezks in the vicinity of the wall by Nakoryakov at al. This supports the

increased wail shear siresses due to enhanced mixing close to the wall
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on this and empirically obtained constants has been developed by N. Clarke
(1983), who predicts a sharp rise in the friction multiplier with respect to the
air volume quality.

The bubbly and slurry flow friction factors were close to one another in

magnitude and in both cases were found to be much more sensitive to the volume
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fraction of the disperse medium at low liquid Reynolds numbers than at high Re.
~ At high Reynolds numbers (~ 7 x 10) unsteadiness can be observed in the flow
on a larger scale than the bubble or particle diameter. This visual evidence of a
“bulk turbulence” appears after the point at which the friction factor displays
non-monotonic behavior in Figure (3.1). Further work on the flow structure is

described in Chapter 5,6 and 8.
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Chapter 4. IMPEDANCE VOLUME FRACTION METER.
4.1 Introduction.

A variety of methods have been used by investigators for unsteady measure-
ment of volume fraction in two phase media. In liquid-gas mixtures, intrusive hot
wire anemometers (Toral (1981), Delhaye & Galaup (1977), Jones O.C. (1966))
and optical probes yield a point measurement (van der Lans (1985), Abuaf et
al. (1978)) representative of the medium in the vicinity of the probe (such de-
vices could not withstand the mechanical wear of particulate flows). With such
transducers, the signal needs to be averaged over time to obtain useful volume
fraction information thereby decreasing the dynamic resolution of the device.
On the other hand X-ray (Zuber et al. (1967)) and Gamma-ray attenuation .
(Taylor (1979)) techniques inherently carry out an instantaneous line average of
the volume fraction along the beam, with the added benefit of being nonintru-
sive. Capacitance and resistance measurements can be used to yield a volume
average of the concentration of the dispersed medium. The size and shape of

the averaging volume is determined by the geometry of the electrodes.

An impedance measuring technique with flush mounted electrodes was cho-
sen for our purposes because of its nonintrusive nature and its ease of use. By
comparison, ray attenuation methods are more cumbersome and often lack dy-
namic capability. The Impedance Volume Fraciion Meter (IVEM) used in our
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1g equipment are well documented in more detail in his thesis. This chapier
S PMuiy b

[g]

¢

will be confined to a discussion of the modifications made for temperature com-

pensation and the new shielded electrode configuration implemented to decrease

is calibrated against a hydrostatic measurement of volume fraction in homoge-

neously distributed two phase media. This was done for both liquid-solid and
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liquid-bubble mixtures. The device output is shown to vary linearly with the
volume fraction with a slope that is found to be independent of the material of

the disperse medium, solid or gas.

Due to the discrete nature of two and three component flows, the measure-
ment of steady state volume fraction exhibits oscillations about a mean value.
Statistical properties of the fluctuating flow quantities have been shown to con-
tain valuable information on the mean properties of the flow. The fluctuating
component of the pressure drop in two phase flow through an orifice has previ-
ously been used to derive the flow rates of the individual constituents by Ishagai
et al. (1965). Jones and Zuber (1975) used the probability density function of
X-ray attenuation volume fraction signals as a flow pattern discriminator for
vertical bubbly, slug and annular flows. In this study, statistical analysis of the
fluctuating component of the output signal of the present device is shown to
yield valuable information on the volume fraction, mean velocity and flow rate

of the disperse medium in two- and three-component flows.
4.2 Principle of operation of the Impedance Volume Fraction Meter.

This class of volume fraction measuring devices operates on the principle
that the bulk electrical 1mpedance of a two-component mixture differs from
that of its constituents as long as the electrical impedances of the individual

iy

constituents are not equal. In general there are components of both resistance

w

[®]

hs
i

1@ capacitance in the impedance, and the choice of criving frequency deter-

g3

1

mines the dominance of one or the other. In our cas £, water is the continuocus

mecdium and non-conductmc air bubbles and polyester pellets are the dispersed

K
5

medium. Polarization caused by ionization of the water in the vicinity of the
electrodes has been shown to introduce a parasitic impedance {Olsen (1967)).
This effect vanishes at high frequencies. For our experiments, a frequency of

40 KHz was chosen. This eliminates the parasitic impedance while keeping the
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fluid cell impedance predominantly resistive.
4.3 Electrode geometry and bridge configuration.

The active stainless steel electrodes used by Bernier formed two diametri-
cally opposed 90 degree circular arcs 6.35 mm in width and were flush mounted
in a piece of lucite of the same diameter as the test section (10.16 cm) . He
chose the axial dimension of the electrodes to be of the same order as the bub-
ble size for good axial resolution of volume fraction. However, he found that the
axial extent of his measurement was dictated by the spreading of the electric
field caused by end effects rather than the electrode width. This field spreading
effect was also found to be fesponsible for cross-talk between two electrode pairs
if these were brought too close together, thereby preventing volume fraction .

measurements from being made close to one another.

With the objective of increasing the spatial resolution of the IVFM and of
eliminating the cross-talk problem to allow a pair of IVFM’s to operate accu-
rately when closely spaced, shielding of the electrodes was introduced. Active
electrodes similar to Bernier’s were sandwiched between two 9.5 mm shielding
electrodes that also form diametrically opposed 90 degree arcs. An isometric
view of the described configuration is shown in Figure (4.1). The active elec-
trode potential is duplicated onto the shielding electrodes with z high input
impedance voltage buffer of gain one.

The resistance of the water was found to decrease significantly with increases

t are in contact with the water are used as a reference instead of variable
resistors (as used by Bernier) to eliminate the drift in the IVFM signal caused
by changes in electrical properties of the host fuid. The reference electrodes are
a replica of those in the test section and are installed in the pure water part of

the flow loop. The electrical bridge configuration is illustrated in Figure (4.2).
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This addition therefore compensates for temperature fluctuations.

The bridge offset signal (caused by an imbalance in resistance between the
reference and measuring electrodes) is demodulated and filtered in the signal
processor to yield a voltage output proportional to the volume fraction. This
process consists of multiplying the offset signal to the bridge driving signal and
filtering out the 40 KHz component using a 500Hz low pass filter. No useful
information is lost in filtering as the volume fraction signals in our experiments
contain frequencies no higher than 100 Hz.

4.4 Steady state calibration of Impedance Volume Fraction Meter.

The calibration of the IVFM is carried out by measuring the liquid pressure
gradient in the two-component medium. Two pressure tappings separated by
a vertical distance of 1.694 m in the test section are connected to a differential
pressure transducer. Under steady state conditions and zero liquid flow, the wall
friction contribution to the pressure gradient is negligible. Therefore the pressure
gradient in the test section is predominantly hydrostatic. The pressure difference
is measured relative to the hydrostatic pressure difference in pure water since the
lines leading to the pressure transducer were filled with water. Consequently,
the volume fraction is linearly proportional to the monitored pressure difference
for both solids and bubbles,

The volume fraction of air bubbles is given by the ratio of the measured

- e

pressure difference expressed as a head of water A X 7.0, and L the distance

between the taps:

. AHz. 0
a(%) = 100/
(%) 7

(¢.1)
Similarly, the solid fraction of polyester particles in = solid-liquid flow is given

by the following expression, where Pg, piand p, are the air, water and polyester

densities:

IsN
[\
N

AH ~ g
v(%) = 100=—222 (;” _"/’;1). (
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The IVFM is calibrated with both bubbly and particulate flows against the
volume fraction obtained in this way from the static pressure gradient measure-

ments. These two plots are shown in Figures (4.3) and (4.4).
(%) = 6.53V — 0.006. (4.3)

v(%) = 6.77TV — 0.41. (4.4)

Equations (4.3) and (4.4) are the respective linear regression fits of these cali-
brations. The corresponding correlation coefficients for these fits are .9992 and
.997. The discrepancy between the two fits (less than 1%) is attributed to exper-
imental error in the measurement. Changes in the electrical properties of water
are found to affect the slope of this calibration by £10%. For example after ex-
tensive pumping, which has the effect of warming up the water, the calibration
becomes inaccurate. In practical terms, regular recalibration is required and
was carried out. The IVFM is found to have excellent linearity up to volume
fractions of at least 50%. With a sensitivity of .15 Volts per percent of volume
fraction, the passage of individual bubbles (or particles) is readily detectable.

However, it must be noted that the calibration is a probably a function of
the volume fraction distribution since the sensitivity of the IVFM is not uniform
over the cross section. The volume fraction distribution has been shown to vary
with total flow rate by a number of investigators. Therefore slight variations in
the calibration can be expected for different fiow rates.
4.5 Dynamic calibration of the IVEM.
4.5.1 IVFM output modelled as a shot-noise process.

The discrete nature of multicomponent flows typically causes measured flow
quantities to exhibit fiuctuations about 2 mean. It was shown by Bernier (1981)
that the Impedance Volume Fraction Meter signal can be modelled as a shot-

noise process. This was supported by the skewed fluctuating signal probability
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density function which he demonstrated to shift toward a Gaussian distribution
for larger volume fractions, as is expected according to the law of large numbers.
We use the same approach for the new IVFM signals for bubbly and solids flows.
Mathematically, the bubbly and particulate flows are equivalent. In the following
outline of the shot-noise process, to prevent repetition, all the quantities refer to
bubbly ﬂoWs, but can be directly applied to solids flows. It is not the purpose
of this section to describe in detail the shot-noise process; therefore some detail
is omitted. More detail can be found in Papoulis (1965).

We model the volume fraction as a Poisson impulse distribution with each
impulse representing a bubble. A Poisson process consists of a random distri-

bution of constant magnitude impulses in time.
(%) = 100-— S "6t - ) 4s)
o’ = —_ —te). .
° Avy = ¢

Here T is the volume of the bubble, A the pipe cross-sectional area, v, the
average gas velocity, § is the Kronecker delta function, ¢ is time and t, are the

points in time at which the bubbles pass the IVFM. The expected value of « is

where 7 is the density of the Poisson process or the number of events per unit
time. As each bubble passes through the IVFM electric field, a “filter function”
output signal represented by h(t — t.) is produced. The IVFM output voltage,
V', is thus represented as the superposition of filter functions in time by the con-
volution integral of a Poisson impulse process (the volume fraction distribution)
and the filter function.

V= /W a(t)h(t — 7)dr. (4.7)

J =0

The filter function is analogous to a weighting function over which the volume

fraction measurement is made. The characteristic duration of this function is
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representative of the residence time of a bubble in the influence volume of the
IVFM electric field. This function is assumed to have the symmetric form:
Het, t<o0;
h(t) = (4.8)
He %, t>0.
This filter function is by no means exact. Bernier (1981) showed that the auto-
correlation function was not very sensitive to this function. The simple form
assumed (only two unknown parameters) is therefore considered qualitatively
adequate. The purpose of the dynamic calibration is to determine the variables

H and €. Substituting (4.5) into (4.7) yields

V= XTJ; h(t —t.). (4.9) -

€

The expected value of V is obtained by averaging (4.9) in time:

vt /m h(t)dt, (4.10)

Vg —co
and using (4.5)

<}
I
o]

/w h(t)dt. (4.11)

-CcQ

Thus the steady state IVFM calibration slope which we denote by m (see section

V = ma, (4.12)
iven by .
= [ hpe (4.13)
J—
Hence integrating (4.8) yields
m = 2—. 4.14
: (4.14)

Thus H can be eliminated by writing it in terms of m and £.
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Now we are interested in the statistical properties of the fluctuating com-
ponent of the IVEM output. The latter can be written as the convolution of the
fluctuating component of the volume fraction & with the filter function:

_ oo

7= / &(t)h(t — r)dr. (4.15)
By calculating the Fourier transform of the power spectrum of V we obtain the
following expression for the auto-correlation function of the fluctuating IVFM

voltage:

Ry (1) = Ry (0)e= (1 + ¢lr)), (4.16)

where the mean square of the fluctuations is given by

Ryp(0)=V <%) (é) : (4.17)

On the basis of (4.16) we proceed to experimentally determine &, which gives us
a measure of the axial penetration of the IVFM influence field. In the following
section, we show that the STNR based on (4.17) is only a function of volume
fraction and geometric parameters.
4.5.2 The significance of auto-correlation properties.

Equation (4.16) provides us with a direct means of evaluating the fall off
constant £ from experimental auto-correlation records. These were obtained us-
ing 2 Hewlett Packard 3562 spectral analyser. A typical auto-correlation record

is shown in Figure (4.5). The time T1/2, &t which the auto-correlation func-

tion has decayed to half of its maximum value, was noted for each record. The
following relation is satisfied at that time:

e trl(1 + hrgal) = . (4.15)

T /2 5" ( .15)

We numerically solve (4.18) for ¢ in terms of T1/2 to get:

£ = 1.6783/7y 5. (4.19)
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(4.19) is now used to derive ¢ from the known 7; /2. The resulting time con-
stants are plotted against the average bubble velocity in Figure (4.6). The ¢/v,
relationship is found to be close to linear and independent of volume fraction
or of total flux. The linearity between the time constant ¢ of fluctuations and
the measured average bubble velocity is hardly surprising since the larger the
velocity of the disperse medium, the shorter the residence time of the bubbles
in the influence volume. In fact we expect the quantity in (4.17) to be close to
constant for a homogeneous dispersion. Physically, this quantity is the decay
constant of the spatial fall off in the IVFM influence function. Measured values
of (vg/€) (the axial extent of the IVFM field to one side of the plane formed by
the electrodes) vary from 3 mm for lower bubble velocities (~ .15 m/s) down to
2mm at higher velocities (~ .4m/s). Since the influence volume of the elec-
trodes is symmetric and falls off in sensitivity to both sides of the electrode
plane, the axial length of the volume is twice the mentioned penetration. This
measured dimension ranges from 4 mm to 6 mm, which is of the same order as

the average bubble size (4 mm) and the electrode width (6.35 mm).

Thus, since the volume of influence remains bounded within a narrow range,
assuming it to be constant, the auto-correlation decay in time can be used to
monitor the velocity of the dispersed medium. In practice this would be done

~

by measuring £ and reading off v, from 2 calibration m

3
1
3

(@]

()

fored

4

indicates that the mean square of the voltage fluctuations should then be linearly
vfdependent on the mean IVEM voltage output for constant bubble volume and
IVFM sensitivity. For convenience, we chose to present the magnitude of the
fluctuations in terms of the dimensionless Signal To Noise Ratio (STNR) of the

IVFM output. This is defined as the mean output voltage divided by the rms
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value of the “noise” (fluctuations).
V-
STNR = —te . (4.20)
V& (0)
Using (4.17) this becomes

o= (%) (2)
ADE

According to this analysis, the STNR is proportional to the square root of
the mean volume fraction and the constant of proportionality is only a function
of geometric parameters. The STNR is therefore independent of flow quanti-
ties other than the volume fraction. It is also independent of the slope of the
calibration.

Experimental measurements of the STNR were made for steady state, con-
stant volume fraction bubbly flows. The STNR was calculated from the r = 0
values of the auto-correlation records and the known mean IVFM outputs. The
results are shown in Figure (4.7) and are plotted against the volume fraction of
air. The curve displays the expected half power relation up to volume fractions
of ~ 25%, above which the STNR assumes higher values than predicted by the
model as shown in Figure (4.7). Nevertheless, all bubbly flow points fall on the
same curve irrespective of the total flux. The same experiments were carried out
with solid-liquid flows. The particle flow STNR ic show= zgzinst solid fraction
in Figure (4.8). Again, all points fall on the same curve, and this curve coincides
with the bubbly fiow one in Figure (4.7), despite the difference of about 25% in
the diameter of the bubbles and particles. We have thus demonstrated that not
only does the average steady state IVFM output yield a measure of the volume
fraction, but so do the statistical properties of the “noise”. Moreover, the re-

markable advantage of the STNR as a volume fraction indicator is its absence
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in dependence on the device sensitivity. This property makes this measuring
technique attractive in adverse conditions where recalibration of the IVFM is

inconvenient if not impossible.

In Chapter 8 we explore the use of the IVFM in churn-turbulent air-water
flows, as well as solid-water and three-component flows. There the statistical
properties of the IVFM noise are used as a measure of flow quantities and as an
indicator of flow regime.

4.6 Conclusion.

The Impedance Volume Fraction Meter with shielded electrodes is found
to have excellent linearity up to volume fractions of at least 50%. The reason
for which shielding was introduced was to decrease the axial penetration of .
the influence volume over which the measurement is made with the purpose
of improving spatial resolution of dynamic volume fraction measurements. This
goal was achieved, with an influence volume of approximately half of the original
unshielded configuration.

The described dynamic calibration of the IVFM is based on measurements
of the statistical properties of the fluctuations of the IVFM output. The maxi-
mum value and characteristic “width” of the auto-correlation function were used
to describe these properties. For the mono-disperse bubbly and solids flows con-
sidered, the STNR which is representative of the size of the fuctuations car
readily be used as a measure of volume fraction by means of the calibration
Alsg, the time constant of the IVEM outpus
fluctuations calculated from measured cross-correlation records were close to
being linearly related to the average gas velocity, as was shown in Figure (4.8).

The curve of the time constant £ versus average gas velocity could zlso be
used to measure the average gas velocity given the time constant. This method

of determining the gas velocity involves computing the time the auto-correlation
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takes to decay to a certain fraction of its 7 = O value. This technique contrasts
favorably with the more demanding cross-correlation technique, in which the
bubble speed is determined from the peak offset of the cross-correlation of two
signals from two closely spaced transducers.

The fluctuations in the volume fraction signal contain a final bonus. Com-
bining the volume fraction obtained from the STNR with the bubble velocity
obtained from the filter function time constant £, we can compute the air volume

flux j4;r using the simple formula
Jair = Q. (4.22)

In summary, the concentration, speed and hence the flow rate of a mono-disperse -

medium can be extracted from the “noise” in the IVFM output.
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Chapter 5. ONE DIMENSIONAL TWO-COMPONENT FLOW
EQUATIONS.

5.1 Introduction.

In this chapter we summarize existing kinematic wave theories for incom-
pressible bubbly and particulate one-dimensional, two component flows. In-
finitesimal kinematic wave speeds and growth rates are obtained by studying
the time behavior of small perturbations in volume fraction using the principles

of conservation of mass and momentum.

Almost all conservation equations of two-component flows developed over
the past three decades describe the medium as two interpenetrating and inter-
acting continua. The variables are therefore averaged quantities over regions
larger than the particle or bubble scale, but smaller than the small scale of the

flow (bubble or particle diameter).

These models have led to better understanding of the properties of bubbly
flows, fluidized beds, sedimentation processes and other two-component flows.
However, many limitations and assumptions prevent the general use of any one
existing set of equations due to the empirical way in which many effects have to
be introduced. Indeed, we do not even know the exact solution for the unsteady
flow of a single particle or bubble at large Reynolds numbers. Therefore, for
example, in the particle equation of motion an experimentally obtained drag
coefficient is used, a quantity which is very sensitive 1o the Reynolds number,
and volume fraction.

Kynch (1952) derived a semi-empirical model for kinematic waves based on
the assumption that unsteady effects in the momentum equation are negligible.
The tﬁeory vields nondispersive infinitesimal kinematic wave speeds and predicts
neutral stability for all wave numbers. The wave speed results of this model

compare well with our experiments for both vertical bubbly and particle flows.
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The issue of the stability of kinematic waves as a function of wave number is
tackled in more detail by studying the full set of one-dimensional continuity and
momentum equations. Derivations of the continuum equations by local volume
averaging have been presented by many authors for different flow conditions
(see Anderson and Jackson (1967,1968), Slattery (1967), Whitaker (1973) etc.).
However, the observed relaxation effects in both finite and infinitesimal kine-
matic waves remain unexplained. Symington (1978) and Bernier (1981) both
have shown that inertial effects are not responsible for these observed effects.
The above efforts all have in common the assumption that the volume average
of the product of two variables equals the product of the average of the vari-
ables. This assumption automatically rejects Reynolds-stress like terms. As
shown by Anderson and Jackson (1967,1968), neglecting viscous effects other
than the drag on the particle or bubble yields unstable infinitesimal kinematic
waves for all wave numbers, contrary to the observed behavior. The additional
inclusion of viscosity predicts a finite range of unstable waves for wave numbers
between zero and a fixed value which depends on the initial volume fraction.
Even though viscosity has a stabilizing effect on kinematic waves, it does not
explain the observed stability of the air-water flows up to a volume fraction of
40% for bubbles in water and the complete stability of liquid-solid flows for all

volume fractions.

Recent work by Batchelor (1986 on the stability of bi-disperse medi

o
3
?
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concentration instabilities occur in media of two different dispersed species, one

rising, the other falling in a liquid under the action of gravity . He then shows
that 2 bi-disperse medium can become unstable due to the Auid mechanic cou-
pling (interference) between the components, but stops short of estimating the

magnitude of the coupling terms which are responsible for this phenomenon. In
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this section we summarize Batchelor’s work and proceed to estimate the pre-
viously undetermined coupling terms. These are then used to derive stability
boundaries for an air-solids-liquid bi-disperse medium. These results are also
applied to model a size-distributed mono-disperse medium as a bi-disperse sys-
tem of two species of slightly different diameters. The stability boundaries are
calculated for such a medium as a function of the two disperse species volume
fractions. This kind of instability is found to resemble our real flow observations
in its high total volume fraction onset.

5.2 Drift Flux model.

The Drift Flux Model was first introduced by Kynch (1952) and later em-
bellished by Zuber (1964) to account for absolute fiow rate effects. This model -
is based on the equations of continuity for the continuous and dispersed.media,
and the assumption that the relative velocity between the components is only
a function of their respective volume fractions. Unsteady inertial and viscous
effects are ignored, as well as effects of turbulent diffusion. Brownian diffusion
is neglected as it is small for the size of particles and bubbles considered. For an
infinite incompressible two-component medium with no heat or mass transfer

the two one-dimensional continuity equations are

ov a(uvd)

!

o oy

=0, (5.1)

for the cisperse phase where v and v, are the volume fraction and the volume
averaged speed of the dispersed medium respectively, and

o(1—-v)  8(1-v)v, _ _
Ey - 5y = Q, (5.2)

for the continuous phase where v, is the volume averaged continuous phase

velocity respectively. We define the average volumetric flux 7 as

J=rvg+ (1 — U)‘Uc, (5.3)
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which is the sum of the continuous and dispersed phase fluxes. The addition of

the continuity equations yields

- =o. (5.4)

Thus the volumetric flux depends only on time. A useful quantity is the aver-
age volumetric flux of the dispersed phase relative to the zero total flux plane,

otherwise known as jg4;, the dispersed phase drift flux.
Ja = v(vq — 7). (5.5)
With the above definitions, this can be rewritten as
Jai = V(1 = v)vge, (5.6) -

where v, is the average relative velocity between the dispersed and the contin-
uous phases. If the relative velocity is assumed to depend only on the volume
fraction, then, the drift flux similarly depends only on v. Using (5.5), vg can
be written in terms of the total flux, the drift flux and the volume fraction.

Substituting vg4 into (5.6) the dispersed phase continuity equation becomes

Ov ., 014 | Ov
A L. | LAY .
ot {j dv J Oy ' (

=
~1
N

since jg; is assumed to depend only on volume fraction. This equality has the

general form of a guasilinear first order wave equation:
91 r\,.
o324 1%
- - CiT = O, (& 8)
ot oy
where
e
-, a; -
C; = [’_7———‘1! (5.9)
L ov]

C; represents the propagation speed of infinitesimal perturbations in volume

fraction and is a function of total volumetric flux and the derivative of the
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drift flux function with respect to volume fraction. The validity of the predicted
infinitesimal kinematic wave speeds is established in Chapter (6) where measured
wave speeds are compared with predictions based on the experimentally obtained
drift flux curve for bubbly flows. It should be noted that this equation predicts
neutrally stable perturbations in volume fraction.

Due to the dependence of C; on volume fraction, the latter can easily be
shown to develop stable shocks using the method of characteristics. This has
also been shown experimentally. The speed of shocks, or sudden discontinuities
in volume fraction is obtained by applying the principles of conservation of mass
across the “jump”. The same result is also obtained by requiring continuous
partial derivatives in a direction parallel to the shock in the y,¢ plane used to .

present characteristics. The speed of the shock is thus found to be

c, = Jailvz) —Jg()

— (5.10)

In Chapter 6, the above equation in conjunction with the drift flux curve is
shown to accurately predict shock speeds for bubbly flows.
5.3 Equations of motion.

Unsteady inertial, viscous and Reynolds-stress like effects which were ig-

t
Q
4
(43
[N
.

the above section can be introduced with the two-component momen-
‘hese can be cerived by applying momentum conservation prin-
ciples to two components separately (Anderson and Jackson (1967,1968)) cr by
writing one equation for the two-component medium and the other for the mo-
tion of a sin
equivalent, in fact one set of equations can be derived from the other. In the
equation of motion care must be taken to include the effect of volume fraction.
It is easy to show that the steady state hydrostatic pressure gradient in the con-

tinuous phase is linearly proportional to the bulk density of the medium, and not
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the liquid density as assumed by Symington. The buoyancy force on a sinking
particle is increased by this effect which is responsible for the well documented
decrease in steady state relative velocity between phases as a function of volume
fraction.

We present these equations in the form derived by Symington with the
added pressure gradient term in the particle equation of motion. The general
one-dimensional combined momentum equation for the two-component medium

is

dv, Jv, Ovg Ovg _
pe(l —v) [ 5 + v, 6y} +(pd+Kpc)z/[ Y + vy ay} =
dp 8%y d(v!)? o(v!)? (5.11) .
2 — ) (1= )2+ K,
3y +u(l-v) 52 ° (1-v) E» (pa + Kpe)v 2y

- pc(l—v)g — pavy,

where p. and pg are the component densities, p is the liquid pressure, ¢ is the
acceleration due to gravity and p is the liquid viscosity. The terms (_’UD—E and
@5 are the volume averages of the products of the fluctuating components of
velocities and are not necessarily small. These terms are strong functions of the
disperse volume fraction and are commonly called the Reynolds-stresses. K is
a coefficient representative of the added mass for each particle. It is commonly
taken to be %, which is obtained from the potential flow field around a sphere.
However van Wijngaarden (1976) has shown that X can be 2 strong function of

v. The particle equation of motion is

8'Ud 6?./(1
Pd - Kp - T U4 =
( °) | ot oy |
8p 3{‘.’.";\)2 2 chD,
— o= = Pa+ Kp)—— - = [Vd = Ue|{Vg — ve) — pag
ayr ( C) ay 2 Dp | Cl( ¢ C) dY,

(5.12)

where D, is the particle diameter,and Cp(v, Re) is the drag coefficient for a
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single sphere. It is based on the relative velocity between the two components.

Fp
Cp = , 5.13
P spa(ug —uc)? (5:13)

where Fp is the drag force on the particle. For a given dispersed species, Cp
is found to increase with volume fraction. In these equations we have neglected
particle-particle pressures, which are of importance at high volume fractions
(~ 50%). Particle-particle stresses are addressed in a study of “solidification”
waves in solid-liquid flows in Chapter 7. The liquid pressure term can be elimi-

nated by combining (5.11) and (5.12) to yield

v, ‘ v, ' Bvy Ovy
pe(l—v) [ 57 T Ve ay} (pa+ Kpe)(1 —v) [ 5 T By]
8%v, 9(ve)? , O(vg)?
~ (=) 5 el = ) T — (o K1 - ) 2
3C c 7
D e vl (v v = (e )1 -v)g =0,

(5.14)
Equations (5.1),(5.2) and (5.14) form a system of three non-linear partial differ-
ential equations for unsteady one-dimensional two-component flows.

5.4 Linear Stability of an Unbounded Two-Component Medium.

~

This analysis addresses the stability of volume fraction perturbations in an

.o n

™ hi
initially uniform me

lium. Both Reynolds and viscous stresses are neglected.

24

T .

The value of the variables for the uniform fow solution is denoted by the suffix

—~ . 11
i1

+3 rtiea s so+icfs L TTaTinM nertirRatiam
- +nese quantities identically satisfy all four equations. A small perturbation

is applied to the variables about the uniform flow solution, writing
Vd = Udo T V3, Ve =Ueg Vi, V=uyg-+rt, (5.15)

These are substituted into (5.1),(5.2) and (5.14). For an observer following the

continuous medium, making use of the uniform flow solution and linearizing we
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obtain the following perturbation order equations:

ov* av* ov}
— Veodo— =0, .16
gt Uedo dy + Yo dy (5.16)
av* ov?
- 1-— < =0 5.17
w5 =0, (51)

*

pc(l—l/o) < —(Pd+Cpc)(1_V0) [

ov} Oov}
ot + Vedo ay }

+(pa — pe)gv* + %%ﬁvm[u; —-vyl =0, (5.18)
where v.q40 is the relative uniform flow velocity between the continuous and the
dispersed media. This quantity is a function of volume fraction for a given
dispersed species. To model this we choose a simple and adequate empirical
form for the dependence of v.q0.0n vo which was obtained by fitting data for

bubbly flows.
veao = Vo(1 — vo) % (5.19)

From (5.19) and the uniform flow equations, setting time and space derivatives
to zero in (5.18), we obtain a corresponding expression for the dependence of

Cp on vg:
1

—_— 5.20
(1—110)2’ (5 )

Cp(vo) = Cbl,,—o

We then substitute (5.20) into (5.18). One-dimensional plane wave solutions of
{5.16),(5.17) and (5.18) are sought in the form

Vit | . Y

—_— =
P,

* {e—iw) == +is = 913
q _Qe r ®, (0.21

/

where ¢ is a generic variable, k is the dimensionless time constant of the per-
turbation, w the reduced frequency and n the dimensionless wave number. The
scales ¥V and D,, are introduced for the purpose of non-dimensionalization. Real
solutions for the mentioned variables are sought. The amplitude Q is complex

in general. Using (5.21) the set of equations reduces to a set of three linear



-57-

homogeneous algebraic equations with three unknowns, the amplitudes of the
variables. A non-trivial solution exists only if the determinant of the coeffi-
cient matrix vanishes. Applying this condition yields the functions x(n,v,) and
w(n,vp) which describe all plane wave solutions. The determinant of the matrix
is complex; therefore both its real and imaginary parts must vanish. The two

equations obtained are shown here in dimensionless form.

— 2(p* — 1)
& [(p* + K)(1 — vo) + vo] + & YR
| [FT (1- VO)’J (5.22)
— [(1 —_ VO)(P* + K) (w + n(l - l/o)%> +w2uo} =0,
_ (-1 w + (1l — wo)(1 — vo) 3
= FT2(1 - U0)3 " {ipt_!.K)(l—uo)-{-l} + n(p* + K)(l _ Uo) ’ (5.23)
(1=wo)

where p* is the density ratio (pa/p.) and Fr is the Froude number based on the
particle diameter D, (Vo//9D,). Equations (5.22) and (5.23) can be reduced
to a single fourth order algebraic equation for k, with two real and two imaginary
roots. The form of (3.22) requires its real solutions to occur in pairs of values
opposite in sign for all values of the wave number. This signifies that there are

both stable and unstable solutions. An iterative scheme is used to obtain the

.- ~ - - . ‘ ] b} ~ 7 A b
real solutions for the reduced time constant x(n,v) 2nd S {n,vq),the reduced
perturbation propagation speed which is defined as
Srovo)= 2 =& (5.24)
nu) = = = — 5.24
VO n

The negative real solution to (3.26) is large in size (k < —1) in comparison with
the positive real root. It describes an attenuation of kinematic waves of typical

decay length of the order of the particle diameter. Since we are considering
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length scales much larger than the particle diameter, this result is not mean-
ingful. The positive time constant is found to increase monotonically with the
wave number. This was demonstrated by Jackson (1963). It is practically more
interesting to compare the stability at different volume fractions. For a given
wave number, the time constant is shown in Figure (5.1) to reach a maximum
at vo ~ 20% and to always remain positive for volume fractions up to 50%. It
should be noted that our model is no longer meaningful at wave numbers corre-
sponding to wave lengths of the order of the particle separation since considering
such small dimensions in the flow violates the averaging assumption that only
length scales significantly larger than particle separation can be considered. For
this reason our results are presented up to n = .8, which corresponds to a min- .
imum wavelength considered of approximately 8D,. The kinematic wave speed
5 is shown to be relatively insensitive to wave number in Figure (5.2). In sum-
mary, inertial effects have a destabilizing effect on two-component media for all
wave numbers. The infinitesimal kinematic speed however is hardly affected by

including these effects.

The purpose of this section was to study the stability of mono-disperse
media which were predicted to be neutrally stable for all wave lengths of the
perturbation by the Drift Flux Model. The infinitesimal kinematic wave speeds
calculated from the set of continuity and momentum equations used are found

to fall close to the results of the quasi-steady Drift Flux Model. The efect of

-

inertia was introduced by means of the equations of motion of both the disperse

[N

and continuous media. For an inviscid two-phase flow, neglecting effects of the

ipe wall, it has a destabilizing effect on the two-component system. All wave
& f o

lengths are found to be unstable for all volume fractions, with a least stable

volume fraction of ~ 20%. The growth rate of the perturbation increases mono-

tonically with wave number. Anderson & Jackson (1968) showed that viscosity
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stabilizes the high wave number perturbations, leaving a range of unstable wave
numbers. Experimental observations reveal that vertical air-water flows are sta-
ble up to a volume fraction of ~ 40%, and our solid-liquid flows are stable for
all volume fractions. We conclude that neither inertial or viscous effects explain
the observed stability of the vertical two-component flows studied.

5.5 Effect of Size Distribution.

All real multi-component flows exhibit a distribution in the dispersed
medium diameter. Considering only the continuity of individual particle size
groups, Batchelor (1986) showed that flow interference between these groups
can lead to instability of the initial distribution in one-dimensional unbounded
three- component flows. In his model for bi-disperse flows, the stability of the -
dispersion depends on the influence of one size group on the flow rate of the other
as a function of the two volume fractions. Batchelor falls short of quantifying this
function which is vital to the stability analysis. In the‘next section, we outline
Batchelor’s model and, making certain assumptions, proceed to quantitatively
estimate the flow coupling function between species for a general bi-disperse
flow. We apply the model to an air-solids-liquid three component flow for which
we determine the stability boundary. The bi-disperse analysis is also used to
determine the stability boundary of & size-distributed mon 10-disperse flow mod-
elled as medium of two species with a dizameter difference representative of the

P

width of the size

(o]
4
w
ot
-
-
@]
=
"
p
Q
=]

5.5.1 Batchelor’s bi-disperse model.
This model is based on the continuity equations of the two in ual dis-
Derse species. Let us consider a2 bi-dispersed medium which consists of two

distinct particle sizes. The continuity equations, one for each species, are

~

dl/l N 8(1/1L'd1)
ot Oy

=0,

~
v
o
(&1}
p S
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61/2 3(Ugvd2)
ot Ay

=0. (5.26)

As in the Drift Flux model, it is now assumed that for a given total flux,
the fluxes of the components are only a function of the two volume fractions.

(5.25) and (5.26) thus become

61/1 61/1 a1/2

— —_ — =0 27
ER + D11(vi,v9) 3y + Di2(vy,va) By ; (5.27)
81/2 81/1 6V2 _

_6t_ -+ D21(V1, IJ2) ay + ng(Vl,l/g)gy— = 0. (5.28)

where D;; is the rate of change of flux of component ¢ with respect to the volume

fraction of component j.

o v;ug
D;; =

(no summation over 1), (5.29)
ov; V1,03

(5.27) and (5.28) can be written as a matrix equation. Let us call [D;;] the flux
matrix. The system of two quasi-linear partial differential equations is perturbed
about the uniform flow solution to study the linear stability of the bi-disperse
medium. A perturbation order solution of the form of a plane wave is sought as
imposed by (5.23). The problem is now reduced to two simultaneous algebraic
equations for the amplitudes of the perturbations. A non-trivial solution exists
only if the determinant of the coefficient matrix vanishes. From this condition

we get the non-dimensional wave speed S (= w/n) and time constant .

g = ZiZ 22 5.30
4D, D D\?

k2 = {1+——&31—,} (——) . 5.31

L (D11 + Daz)? | \ Vo ( )

For the flow to be unstable, x must be positive. This can only occur if

(Dll -+ D22)2 + 4D12D21 < Q. (5.32)
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5.5.2 Bi-disperse stability analysis.

The flux matrix is derived by calculating the velocity of each of the disperse
components relative to the liquid through a steady state force balance. The
forces considered are the weight of the particle, the buoyancy force and the drag
on the particle. The weight of the particle of species 7 is

7er’
6

W.; = Pdig (2 = 1,2) (533)

The buoyancy force is the product of the liquid pressure gradient and the vol-
ume of the particle. In a fluidized medium, the particles are supported by the
continuous phase (the liquid). It follows that the liquid pressure gradient is
linearly proportiona.ll to the bulk density, not the liquid density. The buoyancy -

force, B; on a particle of species 7 is

3

B =[(1—v1—va)pe +vipar + l/z/’az]gzgi (r=1,2). (5.34)

In an infinite bi-disperse medium, the drag coefficient of the particles depends
on the volume fractions of the two species, and there is the additional efect of
forces imposed by one species on the other, that become important at large vol-
ume fractions. Lockett and Al-Habbooby (1973,1674) obtained good agreement
with experimental data for the vertical sedimentation of low Reynolds number
bi-disperse systems by assuming that the fall velocity of & particle relative to

ly on the total local particle concentration and apply-

(=g
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[N
je W
[¢]
J
m
=)
(oW
4]
s
O
]

ing & known momno-disperse sedimentazion velocity correlation. This approach
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bi-disperse drag coefficients are:

_ 49D (pai — pe) 1
3 V02, Pe (1 -V - l/2)2

Cp: (t=1,2), (5.35)

where the suffixes ; and » denote disperse components 1 and 2. This approach
is convenient, but it underestimates the extent of hindering to the particle ve-
locities at higher volume fractions, since we have neglected the effect of particle
collisions.

The sum of the forces given by (5.33)-(5.35) on a particle of species 7 settling
at a steady speed is equated to zero. This equation gives us the average velocity

of each disperse component relative to the liquid:

Vdes
,Oa = fi(Vs'vVJ"'Y)»
=(1-y - I/J-)% (1—v; —vy), (5.36)
where
y = 041 Pe (5.36)
Pdi = Pec

ties:
vivgr = v1(1 —v1) f1Vor — vivaVos fo, (5.37)
Votgn = Vo(1l — va) foVoo — vary Vo fy (5.38)

can now be computed using (5.32).
To apply this analysis to a specific problem, we need to specify the terminal

velocities of each species relative to the fluid at zero volume fraction (Vo1 and Vo)
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and the density ratio parameter 4. This is done below for two problems of
interest to demonstrate the typical high volume fraction onset of this class of
instability.

5.5.3 Instability in bi-disperse air-solids-liquid flow.

The stability of the three component medium studied experimentally in
Chapter 7 is analysed in this section. The material of the disperse media are air
bubbles and polyester particles; water is the continuous medium. The bubbles
and particles have average diameters of 4 mm and 3 mm, respectively. The
pertinent material properties for our analysis are the densities and terminal

velocities relative to the liquid at zero volume fraction:

solids:  pgy = 1429 Kg/m® Vo1 = .13m/s, (5.39) |
air : paz = 143 Kg/m® Voo = .24 m/s, (5.40)
liquid : pe = 1000 Kg/m>. (5.41)

These constants are substituted into (5.36)-(5.38). For each set of volume frac-

(
tion pairs, the flux matrix [D;;] is derived by numerically differentiating the

individual component fluxes in (5.37) and (5.38). Then we test to see if the

<

s not, the fow is considered neutrally stable,

bn

inequality (5.32) is satisfied. If it
if it is, the flow is unstable. The volume fractions of both disperse species were

scanned from O to 50%, and the result of the test is displayed in Figure (5 .3).
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=
.
ot
1
e
o

The curve shown separates the region of neutral stability znd inst

air volume fraction above 14% or values of solids fraction

\lﬁ

’:b

above 12%, the i s is expected to always be unstable.

5.5.4 Size-distribution driven instability in mono-disperse media.
We now proceed to another application and examine bi-disperse mixtures

-

of particles or bubbles with the same density but slightly diferent diameter.
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The difference in the diameters chosen is representative of the width of the size-
distribution in a mixture with a narrow size-distribution in such a way that 50%
of the particles fall between these sizes. These are D,,.q, + .670 and D, ean —
.670 where D,y is the mean diameter and o is the standard deviation of the
distribution being modelled. Values pertinent to the experimental observations
were obtained photographically for the bubbles and directly measured for the
particles.

Dbubb[e =4mm o=.7 mm, (5.42)
Dyparticte =3 mm o = .5 mm. (5.43)

Based on the above values and the densities of the materials, and imposing the
equality in (5.32), we obtain stability boundaries for the described bi-disperse
bubbly and particulate flows. These are shown in Figures (5.4) and (5.5). Ac-
cording to this model, instabilities set in at volume fractions much higher than
are physically attainable. The maximum volume fraction for a narrow size-
distribution of particles is typically 60%, whereas this analysis predicts onset of
the instability at total volume fractions above 80%. However, one must recall
that the hindrance is underestimated with the exclusion of forces between dis-
perse species. Including these effects is expected to bring the stability boundary
ne nature of this instability in its onset at
1igh volume fraction is similar to what is observed in the experiments unlike the

ore instabilities driven
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inematic waves (equation (5.30)) is similar
in form to the mono-disperse Drift Flux Model result where it was found to
be the'rate of change of the fiux of the disperse medium with respect to its
volume fraction. For the bi-disperse case, the wave speed is simply the mean

of these two quantities, one for each constituent. By observation, for a narrow
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size distribution of the kind considered, C; is not expected to differ significantly
from the mono-disperse result. Indeed, this is shown to be the case in Figure
(5.6), for the particulate and bubbly flows considered. The experimental results

are decribed in detail in Chapter 6.
5.6 Conclusion.

In this chapter we studied the stability of one-dimensional two-component
flows of intermediate Reynolds numbers using three different models based on
the conservation equations. The Drift Flux model is the simplest. It is a quasi-
steady model based on the equation of continuity and the assumption that the
relative (slip) velocity is only a function of the volume fraction. The momentum
equations were then introduced to account for inertial effects. This is followed
by a brief discussion of the effect of including viscosity in the model. Finally,
the influence of size distribution and coupling between different size groups on

the stability of the flow is studied.

The three linear perturbation approaches to infinitesimal kinematic waves
analysed yield similar results for the wave propagation speed. The differences
are seen in the growth rate of the perturbations. The Drift Flux Model yields
neutrally stable waves for all wave numbers. Inertial effects are found to have
a destabilizing effect on the two-phase medium predicting all wave numbers to

be unstable with the larger wave numbers (short wave lengths in perturbation)

-

being the least stabie. Size-distribution is taken intc account by modelling the
size-distributed two-component medium as a bi-disperse system.
efficient of the individual particles is assumed to depend on the total volume
fraction only, and forces between the dispersed species are neglected. This anal-
vsis yields unstable kinematic waves at very high volume fractions ~ 80%. The
hindrance between species is underestimated here; including particle-particle

pressures is likely to bring down the stability boundary to lower values of vol-



-66-

ume fraction. No wave number dependence of wave speed or growth rate is
obtained in this model. The results of the three models considered are limited
by the continuum assumption which breaks down at wave lengths of the order
of the particle separation. The developed bi-disperse model is used to find sta-
bility criteria in terms of the constituent volume fractions for an air-solid-liquid
mixture consisting of air bubbles and polyester particles in water. This analysis
predicts instability of the mixture if the volume fraction of either constituent is
approximately 15% or above. The resulting stability boundary is compared to

experimental observations in Chapter 8.
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Figure (5.4) Stability boundary of size distributed bubbly fows based on the

r»—t,

-

i-dispersed flow model assuming the size distribution can be represented by

=2

two distinct size groups. The size difference between. groups is taken as 1.34c,

-

the size distribution standard deviztion.
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Figure (5.5) Stebility boundary of size distributed solid-liquid fiows based on
the bi-dispersed flow model assuming the size distribution can be represented by
two distinct size groups. The size difference between groups is taken as 1.34c,

the size distribution standard deviation.
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Chapter 6. EXPERIMENTAL ANALYSIS OF SMALL AMPLI-
TUDE KINEMATIC WAVES.
6.1 Introduction. ‘

The aim in this chapter is to measure the propagation speed and growth
rate of small amplitude kinematic waves in steady state vertical bubbly and
particulate flows.

This can be done by imposing a perturbation of known size in volume frac-
tion at a known location and following its evolution in time. Such an approach is
limited by the difficulty involved in accurately throttling the disperse medium to
create an small amplitude perturbation. Alternatively, naturally occurring ran-
dom fluctuations in volume fraction can be used as the perturbations of which .
the speed and growth rate are sought. This is the method used in our study .
" For this, the “noise” in the volume fraction signals at two closely spaced loca-
tions is statistically manipulated to yield the travelling speed and attenuation

of coherent volume fraction fluctuations.
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6.2 The Cross Correlation Function and its Interpretation.

In Chapter 4, we established that the spatial resolution of the IVFM is
of the order of 1 cm in the axial direction, and that the influence volume of
the measurement remains unchanged for volume fractions and fiow rates consid-
ered. These properties make the IVFM suitable for the study of volume fraction
perturbations over a broad range of wave lengths. The shielded electrode con-
figuration eliminates the problem of cross-talk when two IVFM’s are used close
to one another. Measurements of the fluctuations in the volume fraction signal
were made simultaneously at two closely spaced locations (h=.0735 m) under
steady flow and volume fraction conditions for both bubbly and particulate
flows. The fluctuating components of the signal pair were cross-correlated to .
yield the residence time of coherent signal between the two concentration trans-
ducers. The residence time is obtained from the location in time of the peak
in cross-correlograms. Knowing the time taken by the coherent signal to travel
from one IVFM to the other, and the distance between the electrode pairs, we
calculate the speed of propagation of information in the two component flows in

question.

The cross-correlation (va.;?) of the fluctuating components of the two

IVFM signals is defined as

of propagation of this information:

h
VXcorr = T ’ (62)
maz

There exists some ambiguity in the interpretation of the transport speed This

propagation velocity is shown below to be the infinitesimal kinematic speed
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by comparing it with the disperse medium velocities (of bubbles and particles)
and the infinitesimal kinematic wave velocities as obtained using the Drift Flux
Model.

The IVFM fluctuating component was obtained by passing the IVFM out-
put signal through a high pass filter with a 3dB cut off frequency of .032H z and
a fall off slope of 10dB per octave. The filter output was recorded on magnetic
tape for reduction. The record length used was 1 minute. Cross-correlations
of simultaneously recorded data from the two IVFM’s were obtained on an
H P 3562a signal processor. 50 ensemble averages of the cross-correlation, each
of length of 1 second, proved to be adequate to give repeatable results. Typical
cross-correlations are shown in Figure (6.1).

Bernier (1981), who used an unshielded IVFM electrode configuration
showed that the velocity obtained through cross-correlation was the kinematic
wave speed, not the speed of bubbles. As the other extreme, it has been
shown that the cross-correlation peaks from the signals of two point volume

raction measuring devices such as hot film anemometers or fiber optic probes
separated by a small distance (of the order of the diameter of the dispersed
medium) correspond to the dispersed medium transport time. To verify that
the speeds measured here are indeed kinematic wave speeds and not that of

the disperse medium, we compare cross-correlztion speeds to actual bubble and

particle speeds and kinematic wave speeds as predicted by the Drift Flux Model.
The bubble speed relative to the liquid is obtained from the m red air
nd water filuxes (Juir 20d Jygter) and v the volume fraction using
Jair Jwaie,—
Vgir = — - (6.3)
Av A(l—-v)

Y -

The kinematic wave speed relative to the liquid is derived using the Drift Flux
Model outlined in Chapter 5. It is directly dependent on the relative velocity-

volume fraction function obtained experimentally. The bubble velocity, the Drift
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Flux infinitesimal kinematic wave speed and the transport velocity obtained us-
ing the outlined cross-correlation technique are compared in Figure (6.2). The
results eliminate the ambiguity in interpretation of our measurement and con-
clude that cross-correlation of IVFM fluctuations yields the speed of infinitesimal

kinematic waves for bubbly flows.

In polyester particle-water flows we are unable to directly measure the parti-
cle speed. The particle velocity relative to water as a function of volume fraction
was obtained indirectly by measuring the propagation speed of finite kinematic
shocks. This method which is outlined in more detail in Chapter 7 gives us
the particle velocity as the third order function of volume fraction which best
fits the kinematic shock speed results. The particle velocity, the infinitesimal -
kinematic wave speed obtained from it and the transport velocity deduced from
cross-correlation measurements are compared in Figure (6.3). These velocities
are presented relative to the liquid. The results allow us to conclude, as for
bubbles, that peaks in the cross-correlation of the IVFM fluctuations for steady
polyester particle-water flows correspond to the residence time of infinitesimal

kinematic waves between the IVFM’s.
6.3 The Non-dispersive Nature of Infinitesimal Kinematic Waves

The IVEM fluctuations are shown by the cross-correlations to be trans-
ported in the flow as infinitesimal kinematic waves. For the stable steady two-
component flows observed, we modei the continuous reordering of the disperse

species from one measuring location to the other as an attenuation of coher

ent signal from one IVFM to the other and a generation of uncorrelated noise.
The amplitude of the uncorrelated signal equals the amount removed from the
coherent signal through the attenuation, such that the power spectra of the
fluctuations of the two IVFM’s are the same, as measured experimentally, and

shown in Figure (6.4) for both bubbly and particulate flows. In general both the
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attenuation of the kinematic waves and their residence time between the IVFM’s
depend on the wave number. For this reason, the above model is best described
in the frequency domain in terms of the wave number of the perturbations. The
wave number and the frequency are linearly related by the following expression:
N=—2_| (6.4)

UXcorr

For kinematic waves travelling from IVFMI1 to IVFM2, the Fourier-transform

of the measured fluctuations can therefore be written as

¥ 1 00 —intyy
Vi) =5 [ A (6.5)
Va(N) = ¢(N)e NIV (N) + V2 uncorn., (6.6) .

where ¢(N) is the attenuation and T'(N) the transit time of the perturbation of
wave number N between the two detector positions. The e~*NT(¥) factor is the
characteristic “time delay exponential” which arises when taking the Fourier-
transform of a signal with a time lag. {72 uncorr. 15 a fluctuation term which is
uncorrelated to {71.

The well defined cross-correlation peaks obtained indicate that signal struc-
ture propagates at a fixed speed for each record. If the waves were strongly
dispersive, the peaks would be much broader. By analysing the problem in

~

the frequency domain we can find the frequency dependence of the celay time.

Lt ] M i1 1
H

This is best done by studying the phase of the cross-power spectrum of the

trum
fuctuations of IVEMI and IVEM2. This is defined as
C. . — T AN r -
Sy, = VI(N)V2(N), (6.7)
where *

denotes the complex conjugate of the function to which it is applied.

Substituting (6.6) into (6.7) we obtain

Sy, = ¢(N)e™*NT(N) (6.8)

s ‘/71 1/71 )



-78-

where Sj ;, is the power spectrum of the fluctuations of IVFM1, and is defined

as

g0, = VIIN)Vi(N). (6.9)

Power spectra are real functions, therefore the phase ¢(NN) of the cross-power

spectrum in (68) is
#(N) = —-NT(N). (6.10)

The cross-power spectrum phase was evaluated on the signal processor for the
recorded data used for the cross-correlation measurements; typical results are
shown in Figure (6.5). The phase was found to be linear in N in the region
where the cross-power spectrum amplitude is significant for both bubbly and
4particu1ate flows; in other words, T(N) is independent of the wave number.
This confirms our earlier statement that the kinematic waves are non-dispersive.
Therefore the slope of the phase is the time lag of the signal between the two de-
tectors. This was compared to the time lag obtained using the cross-correlation
technique. The two were found to be consistent.

6.4 The Attenuation of Infini mal Kinematic Waves.

The main motivation behind shielding the electrodes of the IVFM was to
(=]

rove the spatial resolution of the device thereby allowing us to study the

U LIl

properties of short wave length infinitesimal kinematic waves (< .1m}, which
- - Rl R -
have eluded many authors ¢

ue to the large geometry of their measuring devices.

-

This was successfully accomplished as indicated by the power spectra in Fig-

@]
2]

ure (6.6) which contain reduced wave numbers up to 0.5 or wave lengths down

to .08 m.

We seek the attenuation of infinitesimal kinematic waves as a function of

=9

the reduced wave number. This is readily obtained from the coherence ~(N)
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which is defined as

l 5%,v,

A(N) = (6.11)

5,7,
~(N) can only assume values between 0 and 1. Substituting for Sy, ¢, from (6.7)
we get,

Y(N) = ¢(N). (6.12)

The attenuation of the correlated signal is identically equal to the coherence of
the fluctuating signals V; and f;'z. Assuming that the attenuation is exponential
in form, we write

Y(N) = e FNIT, (6.13)

where k is the attenuation time constant of infinitesimal kinematic waves. This
form is valid for small fluctuations in the volume fraction signal, which is the
case as long as the fluctuations are stable and die away, i.e. £ > 0. Taking the

natural logarithm of (6.13) yields

1, .
EN) = —in (M) (6.14)
k(N) is always positive since v(N) is always found to be less than 1, as expected
since the flows considered here were all stable. Our assumption is thus justified.

The coherence as a funciion of wave number was obtalned from the record-

ings of IVFM voltage fluctuations on the signal processor. Amplitude resolution
of the coherence was enhanced by chosing 2 relatively broad flier band width
[ . (: C 1:} < "O“" in +3 {—". TenrY d —~— PP e - e ATET
(band th: An < .0015) iz the frequency domain computation, but narrow

enough not to “Hatten out” meaningful coherence fuctuations. The coherence
dispiays a “global” maximum zt the least stable wave number which can be seen
in Figure (6.6) for air-w ter flows and Figure (6.8) for solid-liquid flows. The
attenuation time constant was then deduced using (6.14) and is shown in Figures

g 18

(6.7) and (6.9)) in reduced form against reduced wave number for bubbles and
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solids respectively. The reduced attenuation time constant and wave number

are defined as

=" n=ND. (6.15)

where D is the disperse medium diameter and Vj is its terminal velocity relative

to the continuous medium at zero volume fraction.

6.5 Error analysis.

For all volume fraction of both bubbly and particulate flows, the coherence
exhibits a peak which corresponds to the least stable wave number. All exper-
imental coherence traces contain some error about the unknown “true value”.
This exhibits itself as parasitic non-repeatable fluctuations in the coherence ob- .
tained value. This error is proportional to the root of the reciprocal of the
length of the record used. Intuitively, the ideal record length should be very
large. Unfortunately, there often are record length constraints in experimental
situations. This is the case with the batch type particle flows studied due to the
finite volume of particulate material available for each run. The larger the total
flow rate or the solids volume fraction, the shorter the duration of the flow. The
shortest flow duration was of one minute for solids flows, and twenty minutes for
bubbly flows. The error in coherence is largest in large flow rate, high volume
fraction particle fiows. However, if the coherence is large then the relative size
of the error is decreased. Fortunately, large coherences were obtained for largse

volume fraction bubbly and solids flows. We are most interested in the values of

ot
by
[¢]
ct
Pl
H
[¢]
O

onstant corresponding to the pezk in coherence, therefore, the least
significant data obtained (low coherence away from the peak) is of little interest
to us. The error in the time constant which is algebraically derived from the

coherence is

elk} _ {v} | T}
= Tl T (6.16)
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Typical values of the error terms are :

e{v} = .1, (6.17)

and

e{T} _
=2 (6.18)

Using the above, we obtain the error in the time constant is

elk) |

7=.25 = .49, k (6°19)
e{k
{k } }1= o =49, (6.20)
e{k
A e 62)

The contribution to the error from inaccuracies in the delay time and coherence
are of equal order of importance.

6.6 Results and discussion.

6.6.1 Transition from bubbly to churn-turbulent flows.

The coordinates of the minimum reduced attenuation time constant, « and
the corresponding nn;, in Figures (6.7) and (6.9) were noted and plotted against
air and solid volume fraction respectively. A sharp decrease in magnitude of the
minimum attenuation constant was measured prior to the change in regime of

the air-liquid flow. The minimum reduced attenuation comnstant = is shown in

Fe 4 4

114

Figure {6.10) versus air volume fraction for bubbly flows. At a volume fraction

1

of 40%, k decreases from z value of .03 to less than .003. This sudden fall in &

is accompanied by a shift in the least stable reduced wave number n;, from

.3m and .8m respectively. These are very large in relation to the pipe diameter
which is .1016m. This result is shown in Figure (6.11). Upon further increase

of the air flux the flow becomes churn turbulent.
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Churn-turbulent flows consist of a broad size distribution of bubbles formed
by the agglomeration of the original small bubbles. For this to happen, the sur-
face tension forces which keep the spherical shape of the bubble must be over-
come. At a volume fraction of 40%, the bubble-bubble forces must be sufficient
to cause this break up. The natural extension of these experiments is to vary the
size of the bubbles created, and to measure the volume fraction at which churn-
turbulence onset occurs. The force required to overcome the surface tension of
a bubble can be calculated (it is proportional to the ratio of the surface tension
to the bubble diameter). We would thus obtain a measure of the bubble-bubble
forces as a function of volume fraction (the onset volume fractions). Unfortu-
nately, accurate control of the bubble diameter is a difficult practical problem, .

one that the author hopes will be tackled in the near future.

6.6.2 Solid-liquid flows.

For the solid-liquid flows, the minimum value of the reduced attenuation
constant k¥ of each experiment is plotted against the solid volume fraction in
Figure (6.12) for three groups of total flux. The points describe a curve which
has a maximum at v = 15%. The medium loses its structure faster at this
volume fraction. The low volume fraction part of this curve is very different from
the corresponding air-water results. However, the small number of low volume
fraction air-liquid fiows explored prevents us from drawing any conclusions on
this matter. At higher volume fraciions > 15%, the attenuation constant «

for solid-liquid fiows gradually decreases from a maximum of .025 to .0015 at

o

v = 55%. The monotonic decrease of the minimum attenuation constant for

volume fractions > 15% differs from the sudden fall off experienced with the
bubbly flows, and it seems to asymptote to a low value. As the extreme case
consider a plug flow in which there is no relative motion between particles. For

such a flow, the IVFM signals at the two monitoring locations would be identical
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and the exhibit a time delay. Consequently, the attenuation constant would be
zero for all wave numbers. The flows considered were not completely plug flows,
however low values (< .003) of k were obtained for flows 40% and above. Also, at
high volume fractions, the attenuation constant is found to drop to lower values
for all wave numbers. This explains the sharp increase in the wave number of
lowest x value displayed in Figure (6.13) for v > 40%. n,,;, assumes values of
.04 £ .02 for solid fractions up to 40%. The corresponding most persistent wave
length in the solid-liquid flows is .05m, which is approximately five times the
pipe diameter. At higher volume fractions the closely packed medium preserves
its structure over a broad band of wave lengths. The ability of the particles to
withstand particle-particle forces allows the medium to maintain its structure -
at high volume fractions unlike the bubbly flows and no distinct change in flow

" regime takes place.
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Figure (6.1) Typical cross-correlations of the IVFM output fluctuating voltage

in bubbly and particulate flows.
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Figure (6.4) Power spectra of the IVFM output fluctuating voltage measured

simultaneously at two locations separated by .0735 m, for bubbly flows.



Cross-spectral density

-88-

P
—
5 X |
§ Q o= 4.6% 5 =.05m/s
R
0
+180° r/-’/-{ M 35 Hz
5 o )\)A A
-~
W}
— 180° &
Frequency
10 =
:la,“
=
< X a=213% 5 =.05m/s
2w
= i
2~
<=
0 W
+1R80° [ | 35 Ty
: O I R
- ol

— 180°

Figure (6.5) Cross-power spectrum of the IVEM output fluctuating voltage 2t
two locations separated by .0735 m, for bubbly fiow showing the linear relation

between phase and wave number.
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Chapter 7. MEASUREMENTS OF FINITE WAVES IN BUBBLY
AND SOLID-LIQUID FLOWS.

7.1 Introduction.

The quasi-linear homogeneous continuity equation for a two-phase flow ex-
hibits wave front steepening which leads to the formation of stable kinematic
shocks (Wallis (1962)). The continuity equation based on the Drift Flux Model
was shown to accurately predict the propagation velocity of the concentration
discontinuities by Bernier (1981). In the present study similar experiments were
carried out at low total flow rates to test the shielded electrode IVFM’s and to
verify the above result. The agreement between measured and predicted speeds
proved to be very good. The Drift Flux Model assumes that the relative velocity
between species is a function of volume fraction. In bubbly flows the average
air-liquid relative velocity is directly determined by monitoring air mass flow
rate and the volume fraction. However, direct measurement of the solid-liquid
relative velocity is not possible with our present facility. The good agreement
obtained for bubbly flow shocks led us to a simple method of determining the -
particle-water drift flux '11_1 terms of volume fraction from particle shock speed
measurements at zero total flow rate. The drift flux function obtained was used
to calculate infinitesimal wave speeds in solid-liquid flows for comparison with
speeds obtained using the cross-correlation technique in Chapter 6.

In downward flows of large initial solid particle volume fractions (> 50%)
and total fiux between .1 and .4m/s the obsiruciion caused by the air injector
tube array causes a finite amplitude kinematic wave to travel up the test section
below which the medium behaves as a solid and above which the medium is
fluidized. Solidification shocks of this form are also encountered in batch sedi-

-mentation (Kynéh (1952), Smith (1966), Wallis (1969)) and in the solidification
of liquefied saturated sands ( Scott (1986), Gibson (1958), Terzaghi (1943)).
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The consolidation or compaction process of the solidified portion was observed
to exhibit relaxation under its own increasing weight and the downward body
like force from the liquid flowing through the packed solids. The occurrence of
solidification waves caused by obstructions in the pipe flow is not only particular
to vertical flows; it is argued that such waves can exist in horizontal and inclined
fiows also. The force imparted by the packed column on the obstruction is found
to be very large and potentially destructive.

7.2 Kinematic Shock Velocity in Bubbly Flows.

In this section we study the propagation speed of stable concentration or
kinematic shocks in bubbly flows. Experimental measurements were made and
compared to predictions based on the Drift Flux Model.

The continuity equation for the disperse component can be written in the
" form of a quasi-linear homogeneous first order partial differential equation as-

suming that inertial terms are negligible.

ov ov
e 2 O =
37 C:(v) 53 0. (7.1)

The derivation of (7.1) which is based on the Drift Flux Model is outlined in
detail in Chapter 5. Due to the dependence of C; on v, the solution to the
initial value problem with this type of equation displays wdve front steepening
that can lead to the formation of a kinematic shock which is best described as a
propagating step in volume fraction. In general, as with infinitesimal kinematic
waves, the propagation spéed of such a shock differs from the speed of either
constituent. Uﬁder the action of gravity, shocks are found to be stable only
when the bulk density is lower 2bove the step than below it. This is a direct
consequence of the monotonically decreasing trend of the relative velocity as a
function of volﬁme fraction. The reverse situation is unstable and was observed
to display finger-like flow patterns chafacteristic of the Rayleigh-Taylor insta-

bility. In this section, we only concern ourselves with the propagation of stable
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shocks. The shock speed is calculated by ensuring continuity of both species

across the shock, and was shown in Chapter 5 to be
AIEEINY "

where 7 is the total flux, j4; is the drift flux and subscripts ; and , represent
upstream and downstream conditions respectively.

The Drift Flux Model was shown to accurately predict shock speeds in
bubbly flows at zero liquid velocities by Bernier (1981). We verified this result
using two shielded IVEM’s separated by a distance of .0735 m for bubbly flows.
The drift flux was measured for different volume fractions steady flows and the
fourth order least squares fit to this data was calculated. The data and the '
resulting curve are shown in Figure (7.1). This curve was then used to predict
bubbly shock velocities for comparison with experimental measurements. Shocks
were created by suddenly turning off one of two parallel air low valves supplying
the air manifold. The output of the two IVFM’s was displayed on a strip chart
recorder and the time lag in the drop in volume fraction caused by the passage of
the shock by each IVFM was directly read off the chart. Figure (7.2) shows the
experimentally obtained shock velocities (relative to the zefo flow rate plane) as
individual points. These fall close to the Drift Flux predictions which are shown
as lines of constant upstream volume fraction (the lower value of the two). The
good agreement between the measuremenis and the Drift Flux Model results
the Drift Flux curve were not known but shock velocities could
be measured, these could be used to deduce the former.

7.3 Particle Drift Flux from Measured Kinematic Shock Velocities.

The Drift Flux Model proved to be accurate in both predicting infinitesimal
and finite kinematic wave speeds for bubbly flows. With no direct means of

determining or measuring the average Drift Flux between the solids and the
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liquid, we turn to kinematic shock speed measurements in solid-liquid flows to
indirectly derive the Drift Flux as a function of solid fraction.
7.3.1 Experimental Technique.

Particle kinematic shocks were created by suddenly throttling down the
solids species flow rate by altering the position of the particle flow control gate.
This was done manually; the technique was perfected after much practice. This
method was successful for kinematic waves which- propagate downward. How-
ever, in the case of upward propagating finite kinematic waves, which occur at
large volume fractions, the effect of throttling at the top of the test section is
never seen downstream. This difficulty was overcome by imposing a net down-
ward flow to force the created shock to travel downward. The downward flow .
is then turned off just after the shock passes the lower IVFM, to be recaptured
as it travels back up past the two IVFM’s. For each created and monitored
kinematic shock, the upstream and downstream volume fractions and the shock
speed were recorded. The results of measured shock speeds which are a function
of two independent variables are shown in the following section against shock
speed values based on the drift flux function of best fit .

7.3.2 Least Squares Fit of Drift Flux Model to Shock Speeds.
As shown in Chapter 5, the velocity of a kinematic shoc;k relative to the zero

net flow plane is a function of both the upstream znd the downstream volume

(53

-

is given by

(s ¥
1o

fractions an

Jar (va) = jar{v1)

V..s = 1;3 {Vls V2) =
Vg — V1

(7.1)
Jg is the drift flux at the volume fraction denoted by the argument. The sub-
scripts 1 and , denote upsiream and downstream conditions respectively. We
assume the drift flux to be 2 fourth order function in v, the volume fraction,

with four undetermined coefficients.



-101-

The “error” € in the measured kinematic shock speed which is taken to be the
difference between the measured and the predicted wave speed based on the two

volume fractions, multiplied by the shock strength for convenience is

e = (vo —v1)V, ~ (Jg(v2) — jg (V1)) - (7.3)

A measure of the total error of our fit is the sum of the squares of the error
over all points measured. For the best fit, we want this to be a minimum with
respect to each undetermined coefficient. We impose this condition by setting
the derivative of the sum of the squares of ¢ with respect t§ each of the four

undetermined coefficients to zero. This results in a matrix equation of the form

(A=} = {8}, (7:4)

where {z} is the vector of undetermined coefficients

K
L

@=L (75)
N

{b} is the vector

E{(Vg - Vl)(Vz - Vl)vé} \

{1im — 1. V(7,2 2Ya, 1
(2 =)z — 1)y

{6} = . (7.6)

T e — 1 2 — 3 ]
Ei{va —vy) (v — vi)v,]

El{ve = v1)(v3 = vf)v.] /-

¥ denotes summation over all the experimental points. The j’th term in the i’th

row of the symmetric four by four matrix [A] is

a;j = D(v3 - v)(v] = )). i (7.

~1
~X
e
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Equation (7.4) is solved by inverting [A]. Sixty four shock speed measure-

ments were made, for which the best fitting drift flux function was found to

be
ja = 1317w — 41207 + 5710° — 3760%, (7.8)

The correlation coefficient between the measured and the expected shock veloc-

ities serves as an indicator of the quality of the fit. This is defined as

_Rim——\/“'izz_’ (7.9)

where R,,. is the cross-correlation and R,,,, and R, are the auto-correlations

r =

of the measured and expected shock velocities respectively. The measured shock
velocities are plotted against the corresponding expected values in Figure (7.3).
A correlation coefficient of .993 demonstrates that the assumed model satisfacto-
rily describes kinematic shock speeds for solid-liquid flows of low total flow rate.
The drift flux curve is shown in Figure (7.4) with values of drift flux determined
from shocks of zero upstream volume fraction to indicate the degree of scatter.
7.4 Solidification Shocks in Solid-Liquid Flows.

It was found that when creating a high concentration flow (v ~ 50%) with
2 downward net flowrate (.1 < 7 < .4m/s), a compression shock was initiated at
the array of tubes at the very bottom of the test section when the initial particle
rich front reached it, while still maintaining 2 net downward flow of particles
through the array of tubes. This type of behavior is analogous to the “backing
up” of & traffic jam caused by some obstruction on the road.

The array of brass tubes in the pipe section acts as the obstruction in our
case. This shock which travelled up the test section (against the direction of
flow) &t speeds much larger than previously observed shocks (up to .5m/s)

relative to the zero flux plane compared with .03m/s for the fastest previous

upward moving shock) was found to be a “solidification wave” with the medium
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being fluidized above the shock and solidified below. Solidified is used in the

sense that the disperse species is able to sustain (compressive) stresses.

In batch sedimentation, the interface of settled material also propagates up
as a continuity shock (Kynch (1952)). This same phenomenon also occurs in
post liquefaction solidification of water-saturated sands (Scott (1986)), where
liquefaction of the soil can be caused by the violent shaking inherent to earth-
quakes. This phenomenon of sand liquefaction can be destructive, and cause
large earth masses to flow.

The solidified column formed in our experiments is supported by the grid
unlike the fluidized case in which the particles are supported by the liquid. The
downward liquid flow relative to the packed bed imparts a body type force on -
the solids which dramatically increases the total force on the grid, to the point of
being potentially destructive. This phenomenon can be induced just as readily
in horizontal two-component flow by any form of obstruction to the flow of the
disperse species and may lead to failure of the obstruction.

7.4.1 Experimental Technique.

The solidification waves were created not by throttling the feed of parti-
cles into the test section, but by the naturally occurring process of compaction
caused by the obstruction presented to the high volume fraction particle flow
by the array of 21 1/8” (3.2mm) OD brass tubes. The tubes lay inside the

4” (101.6 mm) pipe 2cross the flow in horizontal groups of three, with a vertical

m

eparaticn of 1”7 (25.4 mm) and an angle of rotation of 30° between groups.
The liquid static pressure difference was monitored between two points sep-
arated by .776 m with the lower pressure tapping located .2m above the tube
rray. The two IVEM’s were set 73.5 mm apart while the distance between the
upper pressure tapping and the lower IVEM was 42.5 mm. The total flow rate

was continuously monitored during experiments with an electromagnetic flow
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meter located in the pure water part of the loop. Figure (7.5) shows the instru-
mented test section. The instrument outputs were recorded simultaneously in
real time for each experiment on a multi-channel cathode ray tube strip chart

recorder to avoid inaccuracies caused by pen inertia.

The total flow rate was kept constant for each experimental run. After
initiation by opening the particle flow control gate to deliver the desired particle
volume fraction, the test section becomes filled with a fluidized high volume
fraction solid-liquid mixture. The solidification wave forms as the particle rich
front reaches the tube array. The upward travelling wave is first detected as it
passes the lower pressure tapping which causes a decrease and subsequent sign
reversal in the differential pressure as the wave resides between the tappings .
and passes them. No time discontinuity is observed in the rate of change of the
differential pressure as the wave passes the upper pressure tapping. Moreover,
the pressure trace displays marked relaxation before reaching a steady value.
This occurs shortly after the wave has passed the IVFM’s, but before the wave
reaches the mouth of the hopper, and above all before running out of particles.
The identification of the last two criteria is important for critical interpretation
of the results. Finally the hopper runs out, and as the end shock travels down it
is detected at all four monitoring locations. The diﬁerentialbpressure and volume
fraction traces are shown in Figure (7.6) for & total volume flux of 1.5m/s.

7.4.2 Solidification Shock Velocity.

The solicification waves travel upward in & net downward How at speeds
much larger than the kinematic shocks in a fluidized medium. By continuity,
Equation (7.2} still holds for the solidification wave speed, with a correction
to the downstream (solidified medium) drift fiux which is no longer given by
the drift flux function derived in Section (7.3). In the fluidized case the solids

flow down relative to the liquid whereas the situation is reversed in the moving
o
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packed bed flow. The downstream drift flux is determined from the known total
flux, the particle velocity which is directly obtained from the speed of the end-
of-batch-shock and the measured volume fraction. The packed bed drift flux is

given by
jdilpackedbed = V(vp - .7) (7.10)

The values of drift flux thus derived are shown on Figure (7.7) with the drift flux
curve obtained in Section (7.3) for comparison. The packed bed values of drift
flux are large and of the opposite sign compared with the fluidized counterpart.
The known upstream and downstream drift fluxes were then substituted into
(7.2) to determine the shock speed according to continuity. The results are
plotted against the measured solidification shock speeds in Figure (7.8). These -
fall on a the same line with little scatter. The correlation coefficient of the linear
best fit is .996 with a slope of one and zero intercept.
7.4.3 Choking of Particle Flow.

The change in flow regime from the fluidized state to solidified plug flow has
a dramatic effect on the flow rate of the particulate material. This is caused by
the force imposed by the tube array on the disperse medium and it oppposes the
flow of particles. We plot t'he particle flux versus volume fraction in Figure (7.9)
to demonstrate the choking of the solids flow. The solid lines are for fluidized
fiows which can exist up to concentrations as large as 60% as long as there are no

obstructions in the flow. The points shown z== the results of our experimenta

7.4.4 Forces on the Obstruction.

The force oppposing the particle flow supplied by the tube array required
to sustain the solidified or choked flows consists of two body forces, namely the -
buoyant weight of the solidified column and the force imparted on the packed

bed by the downward flowing liquid. The latter can be determined indirectly
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from the measured friction pressure drop in the packed bed. The packed bed

friction factor f and Reynolds number Re are defined by

Ap Dparticle
= . 7.11
! 1/2p1(vi —ve)2 L (7.11)
— Usg D article
Re = [ el Dparvicte pt (7.12)

pi
The friction factor is shown in Figure (7.10) against the Reynolds number. The

force caused by this friction pressure drop was calculated and compared to the
weight of the solid column. The ratio of friction forces to the weight for equal
height packed beds is shown in Figure (7.11). At a Reynolds number of 100,
the frictional forces and the bed weight are of the same order of magnitude.
At higher relative velocities the frictional forces dominate and are up to ten
times the weight at a Reynolds number of 500. A plot of ratio of the two forces
“indicates that the frictional forces dominate for most of the experiments carried
out. Therefore, the force generating mechanism on an obstruction can also exist
in a horizontal flow. At the slow relative velocities considered (up to .16 m/s)
body forces of up to 30 KN/m® were generated. For a bed height of 2m and a
cross-sectional area of .081 m?, the corresponding force is ~ 500 N, the weight of
an average man. Very large forces can be generated by obstructions that cause
solidification, which can lead to the ultimate fzilure of the obstruction.
7.5 Consolidation of moving packed bed.

WO VAlT

In the described experiments, after the solidification shock has passed the
upper pressure tapping such that the liquid pressure gradient in 2 moving packed
bed is now monitored, the pressure gradient is found to increase further until a
steady wvalue is reached. A typical pressure transducer trace is shown in Figure
(7.6). This gradual change in the pressure gradient is indicative of relaxation in
the compaction process of the packed bed under its own weight and the forces

imparted by the fluid flowing through it. This phenomenon has been identified
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in batch sedimentation (Wallis (1969)) and soil solidification (Scott (1986)).
Our case differs from these in the total flowrate. The batch sedimentation
process typically takes place at zero net flowrate, with an almost zero relative
flowrate between species in the solidified column. In our experiments on the
propagation of solidification waves, both the total flowrate and the slip velocity
between components are non-zero. The typical relaxation time for the measured
pressure difference to reach the mean value of the starting and finishing states
was of the order of 10 seconds. The corresponding characteristic relaxation zone
thickness was evaluated as the ratio of the half-life of the pressure signal to
the solidification wave velocity. Little scatter was found in the results and the
relaxation zone thickness measured to be .57m =& .05m; this thickness was found
to be relatively independent of the shock velocity over the range of solidification

shock velocities covered (.058-.093 m/s).

7.6 Conclusion.

The Drift Flux Model is found to accurately predict the finite kinematic
shock velocities in bubbly air-water flows. This good agreement was used to
derive indirectly the Drift Flux curve for solid-liquid flows by carrying out solid-
liquid kinematic shock speed measurements and extracting the Drift Flux func-
tion from the results. A non-linear regression scheme with two independent
variables was used to derive the unknown parameters in the assumed form for
the Drift Flux function. A regression coefficient of .993 indicatas the validity of

the assumed model. The result of this analysis is used to calculate infinitesimal
wave speeds in solid-liquid fiows for comparison with speeds obtained experi-

mentally using the cross-correlation technigued in Chapter 6.
Im downward flows of large initial solid particle volume fraction (> 50%)
and total flux between .1 and .4m/s, the obstruction in the form of the air-

injector at the bottom of the test section is found to cause a finite amplitude
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kinematic wave to travel up the test section. The wave is unlike the others
studied in that the medium is fluidized above it and in the form of a packed
bed below. The solidification wave propagation speed is found to conform with
the Drift Flux Model predictions, based on the drift flux of liquid flow through
the packed bed. The packed bed has the property of transmitting (compressive
stresses) from particle to particle, unlike the fluidized state in which the fluid
entirely supports each particle. The forces generated on the obstruction by the
process of solidification were shown to be very high and potentially destructive.
This force originates predominantly from the body force the liquid imparts on
the flowing packed bed. This phenomenon can therefore occur in horizontal
flows of high concentration slurries just as readily in the presence of an obstruc- .
tion. The process of solidification combined with the corrosive environment in a
large volume fraction solid-liquid medium reduces the life expectancy of slurry

handling equipment. Clearly obstructions of this type of flow should be avoided.
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Chapter 8. STATISTICAL PROPERTIES OF STEADY STATE

TWO- AND THREE-COMPONENT FLOW VOLUME FRACTION
SIGNALS.

8.1 Introduction.

It has been shown by a number of investigators (Ishagai (1965), Jones &
Zuber (1975), Bernier (1981)) and in the present work that the fluctuations in
measured multi-component flow quantities contain valuable information on the
mean properties of the flow. In Chapter 4 the perturbations of the IVFM out-
put signal about the mean were used in the dynamic calibration of the volume
fraction measuring device. There, we used the characteristic decay time of the
auto-correlation function of the fluctuations to deduce the spatial penetration
of the influence volume and showed it to remain approximately constant. In the
same chapter we also showed that the mean square value of the fluctuations in
the form of the IVFM Signal To Noise Ratio could also be used as a measure
of the mean volume fraction for both bubbly and particulate disperse flows.
Furthermore, the noise in the volume fraction signal at two closely spaced loca-
tions was used in Chapter 6 as the starting point of our analysis of propagation
and attenuation of inﬁnites'imal kinematic waves in both’bUEbly and solid-liquid
flows.

1

In this chapter we exploit the noise further to study the nature of both two
and three-component fiows as they undergo a transition from the disperse to the
agitated fow regime, and we demonstrate that it can be used to measure flow
quantities. The noise is characterized by two properties of its auto-correlation
function, its amplitude and “width™ (coherent time scale). These two quantities
are easily measured and are useful characterizations of the flows. The visual

observations of the transition of air-water flows from bubbly to churn-turbulent

are related to the amplitude and characteristic decay rate of the auto-correlation
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of the fluctuations. Based on the results, an entirely non-intrusive method of
measuring all disperse flow quantities for both bubbly and churn-turbulent air-
water flows is suggested.

In the fourth section of this chapter, three component air-solids-water flows
in a vertical pipe are investigated. Visual observations of the flow patterns
show that the three component flow can exhibit strong unsteady vortical mo-
tion. A flow regime map is presented showing both disperse and agitated three-
component flows; this is is compared to the results of the bi-disperse stability
analysis described in Chapter 5. The statistical properties of the fluctuations of
volume fraction signals are compared to flow quantity measurements and regime
observations.

8.2 Bubbly and churn-turbulent flows.

In Chapter 4, the statistical properties of the IVFM signal noise were used
in the dynamic calibration of the IVFM for bubbly flows of narrow bubble
size distribution. The two statistical criteria studied were based on the auto-
correlation function of the IVFM signal noise. These were the Signal To Noise
Ratio, which is a measure of the noise level relative to the mean signal amplitude,
and the time constant, £, which is a measure of the col_}erent time scale in
the noise. The quantity , £, is determined from the time, 7; /2> at which the
auto-correlation function has decayed to hall of its peak value. For dynamic

calibration purposes £ was defined as

In churn turbulent flows, the bubble size distribution is very broad and so
is the rise velocity distribution relative to the fluid. Evidently, analysis of this

problem is far from being simple and is beyond the scope of this thesis. However,
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we present results of measurements of global flow quantities and relate these to

the statistical properties of the IVFM noise.

The STNR was measured for churn turbulent flows in which the terminal
velocity difference between bubble size groups creates a very agitated flow. The
nature of bubbly and churn-turbulent flows is illustrated in Figures (8.1) and
(8.2) respectively. Large fluctuations are experienced in the churn-turbulent
volume fraction signal and lead to a dramatic drop in the STNR as shown in
Figure (8.3). At large air concentrations, just prior to transition, the STNR ex-
hibits a maximum value and it rapidly decreases upon onset of churn-turbulence.

Therefore, this quantity can be used as a flow regime indicator.

For a bubbly flow of narrow size distribution the time constant of the IVFM -
signal noise was shown in Figure (3.6) to be linearly related to the average bubble
velocity. This is a consequence of the constant influence volume of the ITVFM.
In general, £ is a function of both the size and the speed of the travelling flow
structure. In Figure (8.4) we present the time constant versus the mean air

velocity showing the marked decrease in £ at the onset of churn-turbulence.

The results are shown for different liquid flux values. Constant liquid flux
curves assume a “C” shape. Low volume fraction bubbly fows fall on the top
right hand tip of the “C”. As the air volume flow rate is increased, the measured
point proceeds counter-clockwise on the curve. The onset of churn-turbulence at
- high volume fraction (~ 40%) is manifested as a sharp fall in the time constant
away from the bubbly flow line. Small values of £ are indiczative of the presence
of large structure in the agitated flow regime. Transitional flows fall on the
vertical part of the curve and “fully developed” churn-turbulent flows on the
monotonically increasing lower branch of the curve. The average gas velocity is

found to assume a2 minimum during transiticn.

In engineering two component flows, one is interested in knowing the global
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flow quantities such as the flow rates. The air flow rate was directly measured in
our experiments. In Figure (8.5) we show £ versus the air flux for fully developed
churn-turbulent flows. All points fall on the same monotonically increase curve
with little scatter. Unlike bubbly flows, these results show that we can directly
monitor the total churn-turbulent air flow rate with a single measurement of the
time constant of the IVFM signal noise. The churn-turbulent flows are found to
be self limiting in volume fraction. In the flows considered, all measured volume
fractions fall between 35 and 45%. Consequently, the air flux, jg;r, which is
the product of the volume fraction and the average air velocity, was found to
behave like the mean gas velocity by displaying a monotonic rise in value when
presented versus £. Furthermore, the £-7,;, curve is found to contain less scatter

than the churn-turbulent part of the £-v, plot.

In conclusion, both the Signal To Noise Ratio and the time constant, £,
measured for air-liquid flows were found to undergo a sharp decrease in value
upon onset of churn-turbulence. This behavior can serve as an indicator of
the nature of the flow. It was also shown that the time constant, £, is well
correlated with the total air fiux in churn-turbulent flows. This finding shows
that the IVFM noise auto-correlation function can be used to monitor the air

flow rate non-intrusively.
8.3 Solid-liquid flows.

The solid-liqui¢ Zows studied consist of polyester particles of an average
diameter of 3 mm. These flows do not display any distinct chenge in flow regime
and remain disperse for the range of total volume fiux considered (0-.24 m/s)
and volume fractions of up to 60%. Figure (8.6) shows a disperse solids-water
flow of 12% volume fraction. At large volume fractions, the solids flow as a
plug. Such a flow is shown in Figure (8.7). We take advantage of the absence

of instabilities in solids-water flows to investigate whether the useful results for
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disperse bubbly flows hold for particulate flows. Namely that the STNR can
be used as a measure of total volume fraction and that the time constant ¢ is
linearly proportional to the average disperse medium velocity. Measured values
of ¢ are presented versus volume fraction for different total fluxes in Figure (8.8).
In the solid-liquid flows, ¢ behaves as one would expect the particle velocity v,
to behave. It gradually decreases with v for constant total flux (the settling
velocity decreases with increased volume fraction) and for a given value of v,
the higher the total flux the larger the resulting £.

In the present experimental facility, we have no direct means of evaluating
the particle flow rate or speed. In Chapter 7, we indirectly determined the
particle flow drift flux curve from shock speed measurements. We use this result

as the basis for a comparison. The estimate of the solids average velocity is
given by

Jos | .
vp = T+, (8.2)

which is derived directly from the definition of the drift flux. The velocity given
by (8.2) is not an exact measure since jp;(v) was derived for zero total flux, and
it is now applied to non-zero flowrates. For the maximum total flux considered
(.25 m/s which corresponds to Re=25 x 10%) it is used as an indicator of the
disperse medium velocity. Experiments were carried out for volume fractions
ranging from 6 to 55%. The results presented in Figure (8.9} show that indeed,
the suggested method based on the determination of the characteristic coherent
time scale of the IVEM “noise” can be used as a non-intrusive measurement
of the disperse medium velocity with an expected error within =25% of the
measurement.

8.4 Air-solid-liquid three component flows.

Three component flows consisting of polyester particles {3 mm diameter)

and air bubbles (uncoalesced diameter of 4 mm) in a continuous mediuvm of
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water were investigated for low total fluxes (; < .06 m/s), and total volume
fractions up to 50%. The results are described in the following sections.

8.4.1 Measurement of the individual volume fraction in a three-
component flow.

At the flow rates considered, the pressure gradient in the vertical test section
is predominantly hydrostatic. Thus, neglecting the wall effect at these low flow
rates, the pressure gradient is linearly proportional to the flow bulk density which
is a function of the volume fraction of the individual constituents. We measure
the pressure gradient in the medium using a differential inductance transducer
between two taps located 1.694 m apart. The lines leading to the device are filled
with water; therefore the measurement is relative to the hydrostatic pressure
difference in water over the same height. Hence, the device output pressure can

be presented as a linear combination of the disperse medium volume fractions:
Ap = piL{v(pp — pi) — alpi = pg)] - (8-3)

The mean IVFM output gives the sum of the air and solid volume fractions.
Since the material constants in (8.3) are known, the two volume fractions can
therefore be computed from the two measurements. |

We alsc monitor the total and air flow rates with an electromagnetic flow
meter in the pure liquid branch of the flow loop, and an orifice flow meter
respectively.
he ductuations in the IVFM output were recorded on analog magnetic
tape and a detailed study of their statistical properties are described in Sec-
tion (8.4.4).
8.4.2 Flow pattern observations.

One of the distinctive characteristics of three component flows is the dra-

matic increase in the level.of audible noise caused by particle impact against one
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another and the pipe wall. This was found to be true for all volume fractions of
air and solids. It is interpreted as a consequence of the increase in the disperse
medium pressure caused by bubble-particle interactions. This effect demon-
strates the enhanced erosive property of three component flows. The dominant
feature of the flows considered is the appearance of large vortical structures
above a total volume fraction of 30%. These vortices have a typical dimension
of the same order as the pipe diameter (Figure (8.11)). At high solid volume
fractions the air flow is hardly visible, indicating that the bubbles tend to flow
in the central region of the pipe. At larger air flow rates, air slugs do however
become visible. Below the total volume fraction threshold, the flow is well be-
haved; both components flow in a dispersed fashion and both are visible. A long

time exposure of this type of flow shows small streak-like structure in the flow

. (Figure (8.10)).

The visual observations for the three component flows studied are compiled
into a flow regime map which is shown in Figure (8.12). There are two flow
regimes, the disperse well behaved flows, and the agitated vortical flows. The
agitated vortical flows are represented by solid points. The three component
flow stability boundary, which we calculated in Cﬁéptér 5, is superposed on the
figure for comparison. It must be noted that at the onset of vortical flows the air
volume fraction typically decreases. This is 2 conseguence of a larger average
gas velocity for the same air voiume flow rate caused by bubble coalescence.
In practice, this means that once a flow turns unstable, it may fall back into
the stable side of the stability boundary according to the component volume
fractions. Therefore, only the “stable® experimental points can be compared
to the results of the linear stability model. Figure (8.12) shows reasonable

agreement between observations and the bi-disperse flow model. Some flows

were observed 1o be stable while the model predicts them to be unstable. It
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must be noted that the subjective method of determining the nature of the flow
inherently introduces inaccuracy into this comparison.
8.4.3 Average air velocity in a three component flow.

The average air velocity in the three component flows studied was computed

from the total air flux j, and the calculated air volume fraction c.
Jg
==, 8.4
Yo T, (8.4)

In Figure (8.13), we present the average air velocity relative to the combined

flux of liquid and solids, vg(pr)-

Vg(pl) = Vg — Jp — - (8.5)

The velocity vy(p) indicates the extent of flow interference between the -
bubbles and the liquid-solid medium. This quantity is shown versus the total
volume fraction of the medium (e + v). In this plot we find that for flows which
do not exhibit large vortical structure the relative gas velocity is small and falls
below .05 m/s, at total volume fractions between 15% and 30%. Upon onset
of the agitated flows, the relative velocity rises sharply up to .35 m/s. This
sudden rise in the relative velocity is characteristic of a change in regime as seen
with air-water flows. In their low Reynolds numbéf work on suspensions, Fessas
& Weiland (1981) observed similar behavior in the settling velocity of heavy
particles in a bi-disperse medium. They present the settling velocity of one
species as a function of the concentration of the other, with the concentration
of the first as a parameter. The curves display the same initial decrease that
we find followed by a sharp increase after a minimum value is reached. Visual
observation of their sedimenting flows revealed segregation of species into vertical
fingers’ subsequent to the regime change, unlike the flows studied at present,

which manifest large vortical structure subsequent to the loss of stability of the

disperse regime.
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All the present relative velocity data falls on the same general curve when
presented as a function of the total volume fraction of the disperse medium.
This is also true for Fessas & Weiland’s data though they do not make note
of this fact. This property was assumed in a low Reynolds number bi-disperse
model by Lockett & Al-Habbooby (1974) and proved to give good agreement
with experimental data. It therefore appears that this property holds not only
for flows of small Reynolds number but also for the higher disperse medium

Reynolds numbers of about 1000 which pertain to this study.

8.4.4 Statistical properties of volume fraction signals in three com-

ponent flows.

In this subsection, we study the statistical properties of the fluctuations -
in the measured volume fraction signals of three-component flows. In Sections
(8.2) and (8.3) we showed that the amplitude of the fluctuations presented in
the form of the Signal To Noise Ratio and the coherent {ime scale presented
in the form of a time constant £ both contained valuable information on the
nature of the flow allowing distinction of bubbly from churn turbulent flows.
The statistical measurements were shown to be correlated to the volume fraction

and the disperse phase velocity for bubbly flows, and the ﬁhurn-turbulent flow

air flux.

The STNR of the IVFM signal was calculated by dividing the mean IVFM
output by the root of the mean square value of the fluciuating component of the
signal. For the three component flows studied, the STNR shown in Figure (8.14)
displays a nearly linear dependence on total volume fraction, with a scatter of
= 5%. The STNR of well behaveaf disperse flows coincide with the disperse flow
curve which was obtained in Chapter 4 for both disperse bubbly and disperse
solid flows. The flows which exhibit 1aﬁ'ge vortical structure assume STNR values

below this curve. The narrow scatter of the results indicates that this type of
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measurement has potential as a means of monitoring the total volume fraction.
On the other hand, we saw in Section (8.2) that the STNR takes a dramatic
plunge for churn-turbulent flows thus assuming a large range of values for a
small range of volume fractions. This parameter would therefore be a poor
indicator of the total volume fraction in churn-turbulent flows. The validity
of the STNR as a measure of total volume fraction is therefore questionable
for very low solids volume fraction agitated three-component flows resembling
churn-turbulent flows. In general, the deviation of the STNR from the disperse

flow curve is found to be related to the level of unsteadiness in the flow.

The coherent time scale of the noise in three-component flows is presented
in the form of the time constant £ versus the average air velocity in Figure (8.15). .
Surprisingly, all points fall on one common curve with a maximum which coin-
cides with the onset of vortical motion in the flow. The maximum value of £ is 75
with a corresponding average gas velocity of .14 m/s. The behavior of the time
constant with churn-turbulent two component flows (Section (8.2}, Figure (8.4))
is markedly different from the presently described results. In common to both

sets of results is a decrease in the time constant upon onset of unsteadiness in

the flow.

8.5 Conclusion.

In this chapter air-liquid and air-liquid-solid mixtures were found to undergo
a change in flow regime from a disperse to an agitated nature, whereas solid-
liquid flows were found to be stable for all conditions studied. A simple method
of measuring the volume fraction of the two disperse components in a three-
component mixture allowed us to produce a régime map for bi-disperse flows of
low total flow rate. The observation were found to be in reasonable agreement

with the flow stability analysis of bi-disperse media developed in Chapter 5. We

showed that the auto-correlation of IVFM noise can be used as an indicator of
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flow regime and a measure of disperse two- and three-component flow quantities.
The noise time constant £ was found to be well correlated to the air flow rate
in churn-turbulent air-liquid flows.

The size and propagation speed of small and large scale structure in churn-
turbulent and unsteady three-component flows remains unexplored. Future ef-
forts should be concentrated on applying a combination of auto-correlation and
cross-correlation measuring techniques to help us better understand the mechan-

ics and statistics of these complicated flows.
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Figure (8.10) Three component flow of 12% solids volume fraction and 15% air
volume ffaction, showing the small scale structure of disperse flow. 1/30 second

exposure was used.
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Figure (8.11) Three component flow of 30% solids volume fraction and 15%

air volume fraction, showing large vortex structure. 1 /30 second exposure was

used.



‘[opowr agxadsip-1q
oy} Suisn paururIajep Arepunoq Ajiqe)s 9y) SI dAIND PI[OS BYJ, "UOITAIIS(O

[ensia uo paseq smof jusuodwod oo1y} jo dewr awidoxr mof (z1°8) ®Indyy

(94) 4 ‘SpIjOS JO UOIORL] DUIMOA

-142-

0S

0€

oc

P13y
asxadsi(q

A

=)

oV

ov

A

<

O/

I3

© IV JO WOIdRIF sWN|

)

%

(



‘[elzoyeur 9s1adsIp JO UOI)ORIJ DWIN[OA [@]0) SNSIdA SPLJOS plre

pinby| Jo Xnj pauIqUIOd dY} O} 3Alje[al Ie JO £3100[2A 0deIoAy (e1°8) @andLy

() 71+ © “Iry pue SpIog Jo uordRl] SWNOA O,

-143-

09 0g ob o€ ac 1]}
1 1 I3 i — 1 1 N ) — 1 ) 1 1 _ )i 1 i 1 ‘ S § I ,,_ _ 1.4 i i
N ]
iy M b Y
w x°
v X
W ,
v v v
v
+
»
v
Y.
++ N
4+ Y7
&
< ¢ —GI +
< G — 01 ~
" 0T — L

(%)

o

0

(=]

(s/u) (1d)2n ‘s

1-PHos o3

pmbr

g

-
]
L

BISAY

=]
o]

SATYR[OY L1007 ITY ©

s



juauodwod 921y} ut yndino WA oY) Jo ojey asiopN of, rudig (pr-g) sandyy

‘uoljoelj swInjoA Jelrojeur vm.uvﬁmw:u €307 SNsSIoA EMOT)

(%) 71 -+ 0 ‘ary-pue sprjog jo uordRy AWNJOA |0,

-144-

09 ov 02
t 1 1 1 | ) 1 1 1 ] 1 ! 1
V.S
v L 4
A4
4w v
> ﬂ&m.
v
x
IGA X
&ﬂ#T.TTM.(
Yy >
x ¢ — 41+
* G —01 -~
_ or— 4 x
X

(%)

oV

o€

oy

0G

Al

YNIS “nding wWJa
}O OEQ‘EH ES§ON OL [eu

o
3
el

IS



‘£100[0A 11 9FeIoAR A) SNEIOA BMO]]

juauodurod 931y} ul suoiyenjony jndino WIAJ Jo 3 juejsuod aunl ], (qy1°g) oandyy

(s/wr) Da ‘Aypofpp Ty dFeIdAy

-145-

0 Vo €°0 . 2’0 T'0 "0
....__._._...._._p._,__.ts..,-.o
v - 02
v
w5 X + .
= +y. * L
4 v
v_A N
v X«M, — oV
ya\<. x )
+ 14* -
s x
.‘( 4 -
X< < - 09
.ol -
¢6— G1  + v
GT —0I ~ ~ 0@
Or — 2 = )
(%) » ‘
— 00V

(09s/1) 3 ‘estoN
IWJIAIL JO 1Uueisuo)) swlT,



-146-

Chapter 9. SUMMMARY AND DISCUSSION.

For the purpose of experimental analysis of two- and three-component flow
phenomena, a versatile Three Component Flow Facility was built capable of
accommodating a variety of media consisting of air, liquid and solids with the
liquid as the continuous component. The facility was designed with a vertical
test section, but this can be readily changed to any new configuration of interest
to the investigator. The flow loop was fully instrumented with both existing and

newly developed flow measuring devices such as electromagnetic flow meters and

volume fraction meters.

Friction pressure drop measurements were made in bubbly and particulate
two-component flows. Very high values of friction pressure drop were revealed |
with marked departure from previously accepted correlations. The values ob-
tained in solid-liquid flows were up to an order of magnitude higher than the
pure liquid values. These behaved monotonically with volume fraction and to-
tal flow rate. The higher the volume fraction, the higher the friction pressure
drop for constant total flow rate. Bubbly flow results were of the same order
of magnitude and were shown to be up to 15 times larger than was accepted
according to commonly used models (Lockhart & Martinelli (1949), Armand
(1950)). Furthermore, the measured values were found to fall upon the onset of
unsteadiness in the flow. This phenomenon is as yet poorly undersiood zné has
only been documented in two other studies {Aoki & Inoue (1965), Nakoryakov et
al. (1981)) which were carried out for different pipe diameters, making quantita-
tive comparison difficult. Nakoryakov et al. measured volume fraction peaks in
the 'Vlczmty of the wall. This finding supports the speculation that the increased
wall shear siresses are due to enhanced mixing close to the wall caused by the

large concentration of bubbles. A semi-empirical mixing length theory based on

this observation was developed by N. Clarke (1983), who predicts the sharp rise
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of friction multiplier with respect to the air volume quality. The method used
in the present work to determine the friction pressure drop resulted in rather
large uncertainties due to the required subtraction of the hydrostatic contribu-
tion from the measured pressure difference. This uncertainty was particularly
large in flows that exhibited unsteadiness, nevertheless by careful analysis of

the error, useful data on the frictional properties of these two-component flows

could be obtained.

One of the aims of the present work was to improve the performance of the
Impedance Volume Fraction Meter (IVFM). The improved IVFM with shield-
ing electrodes and temperature compensation was demonstrated to have good
spatial resolution and better temporal response than was needed (the highest -
measured frequency was 100 Hz, and the ouput is limited by its 500 Hz low
pass filter) for the present investigation of unsteadiness in the fiow. The out-
put of this non-intrusive device varied linearly with the volume fraction of the
non-conducting disperse material. The inherent fluctuations in the output were
found to contain valuable information on the flow quantities and regime. The
fluctuations were quantitatively represented by the amplitude and half life of
the auto-correlation function, in the form of the Signal To ‘Noise Ratio (STNR)
and the time constant { respectively. These simple quantities characterize the
auto-correlation function and the hardware needed to carr_y'out such measure-
ments can be built easily and cheaply. For mono-disperse Zows, {he relationship
between the STNR and the volume fraciion is shown to be independent of the
IVFM output gain on the condition that the calibration remains linear. Fur-
thermore, the two curves obtained for bubbly and particulate flows were found
to overlap almost exactly despite the 25% difference in the bubble and particle
sizes. This property eliminates the need for constant recalibration and therefore

makes this measuring technique ideal for remote monitoring of volume fraction
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in locations where recalibration is difficult (for example in an oil well). The time
constant £ was approximately linearly proportional to the speed of individual
particles or bubbles in mono-disperse flows. This result shows that the coherent
time scale of the IVFM output fluctuations can be used as a direct measure of

the average speed of the disperse material.

Statistical measurements were also carried out in churn-turbulent air-liquid
flows and three-component flows. In churn-turbulent air-water flows, the STNR
exhibited a marked drop due to the onset of large structure in the flow. The time
constant ¢ was also found to exhibit much lower values than found in disperse
flows. These were well enough correlated to the air flux for £ to be used as a
non-intrusive measure of the total air flow rate. In three-component flows, the
STNR was shown to provide a measure of the total volume fraction, and agitated
three-component flows were shown to yield lesser values of STNR than the well
behaved disperse flows. All the time constant measurements were found to fall
on the same curve when plotted versus the average air velocity. This curve (Fig-
ure (8.14)) has a maximum which coincides with the change in flow regime from
disperse to agitated fiows. All disperse flows fall on the rising part of the curve
and the agitated flows on fhe falling part. This result was strprising, but found
to be quite consistent under the conditions studied. In conclusion, the IVFM
which was originally developed for the purpose of measuring V;olume fraction was
demonstrated to be capable of measuring other disperse fiow quantities, though
can only vield weighted averages over the pipe cross-section. There is a need
for non-intrusive instrumentation capable of measuring variations in the desired
flow quantities over the cross-section. Tomographic ray attenuation techniques
could be implemeted for this purpose though they have the disadvantages of -
being bulky and costly and needing safety precautions. Future work should con-

centrate on implementing tomographic methods in the present volume fraction
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measuring technique, which has the advantages of simplicity and low cost.

At the low flow rates studied, the flow regime changes are caused by an
instability in the homogeneous dispersion, as opposed to the type of instabil-
ity responsible for turbulence in single phase flows. In the present work we
extended Batchelor’s (1986) findings and developed a bi-disperse flow model
that showed that size distribution can be an important driving factor for the
growth of concentration perturbations at high volume fractions of the disperse
material. Indeed, a loss of stability in air-liquid mixtures was observed at high
volume fractions (~ 40%). Churn-turbulent flows were found to exhibit nearly
constant volume fraction (35-40%) even with increased air flow rates. Experi-
ments also showed a fundamental difference between air-liquid and solid-liquid .
systems. The homogeneously dispersed state of solid-liquid flows were found
" to be stable under all conditions studied. The suspected explanation lies in
the physical differences between the two systems, namely in the inability of the
bubbles to withstand bubble-bubble forces beyond a threshold value dictated by

the bubble size and surface tension.

The tendency of the medium to retain or lose structure and the propaga-
tion speed of the structure were evaluated experimentally in the present work
by analyzing the coherent signal common to two IVFM’'s separated by .0735 m
under steady siate two-component flow conditions. The structure was found to
propagate as small amplitude volume fraction waves (kinematic waves) whose
velocities agreed with theoretical predictions, particularly for bubbly flows. The
solid-liquid flow measurements exhibited more scatter. The kinematic waves
were found to be non-dispersive for the wave numbers for which the measured
volume fraction perturbations were significant. The frequency domain coher-
ence function of the noise of the two IVFM's was derived for the purpose of

determining the kinematic wave attenuation in terms of the wave number using
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an HP 3562 spectral analyser. A low value of coherence at a certain frequency
(which corresponds to a certain wave number) indicates that a perturbation of
that frequency does not sustain itself or grow, thus keeping the original homo-
geneous state free of perturbations of that wave number. On the other hand, a
high coherence value represents a sustained perturbation at that wave number,
indicative of structure that persists in the flow and can lead to instability. Thus
we were able to detect the onset of churn-turbulence in bubbly flows as a marked
increase in the coherence function prior to a change in regime. In bubbly flows,
the most persistent wave number was approximately .3 m for volume fractions
up to 35 % and it rose to as high a value as .8 m prior to the onset of churn-
turbulence. In solid-liquid flows, the structure was found to be increasingly -
persistent for flow volume fractions above 15%, but no change in regime was ob-
served under any conditions. The homogeneous state was found to be stable for
all conditions, despite the sustained structure in the flow. The most persistent
wave number in these particulate flows was measured to be approximately .5 m
up to a volume fraction of 40 % above which it decreased to .15 m. This decrease
is believed to be a consequence of the general broad band increase in coherence
at very high concentrations due to the process of‘solidiﬁéa.f;ion. The ability of
particles to sustain large forces therefore introduces persistent structure to the
medium particularly at high volume fractions. The kinematiés of the flow may
promote instability, but this is resisted by particle-particle forces. It was in-
deed shown theoretically by Garg & Pritchett (1975) and later by Needham &
Merkin (1983) that the collisional pressure has a strong stabilizing infiuence on
the uniform dispersion, but a direct measure of particle-particle pressure has
eluded.researchers to this day. There is a distinct need for better understand-
ing of the disperse medium pressure and its effect on the stability of two- and

three-component flows of low and high Reynolds numbers, as well as the in-
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fluence of the related particle-pipe wall pressure on the corrosion of the wall.
Savage (1979) and Jenkins & Savage (1983) have presented statistical models of
two-component flows for the case of zero density and interstitial fluid viscosity,
an asymptotic regime referred to as granular material flow. This approach needs

to be extended for the general case of a viscous and dense interstitial fluid.

Finite kinematic waves undergo wave front steepening (due to non-linear
properties of the flow), which ultimately leads to the formation of concentration
shocks. The propagation of such jumps in volume fraction were studied for both
air-water and solid-water mixtures. The direction of kinematic wave propagation
was found to be of practical importance in throttling the solids at the top of the
test section. In the case of upward propagating finite kinematic waves, which
occur at large volume fractions, the effect of throttling the solids flow does not
influence the medium downstream of the flow control device, despite the net
downward flow of the particles. Under these conditions, adjustment of volume
fraction should be done at the bottom of the test-section. In the present study of
finite kinematic waves, this difficulty was overcome by imposing a net downward
flow to force the created shock to travel downward. The Drift Flux Model was
found to describe the propagation speed accuratay in “térf-ns of the upstream

and downstream shock volume fractions. T

An obstruction at the botiom of the test section (the air-injector) is found
to cause a finite amplitude solidification wave to travel up the test section in
downward flows of large initizl solid particle volume fraction (> 50%) and total
flux between .1 and .4 m/s. The moving packed bed below the wave has the
property of transmitting stresses through the solid matrix. The resulting forces
on the obstruction were found to be large and potentially damaging. This force

originates predominantly from the body force the liquid imparts on the flowing

bed, and to a lesser extent from the weight of the bed. This implies that this
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process can also occur in horizontal flows of high concentration slurries in the
presence of an obstruction. The obstruction was shown to create choking of the
particle flux, which results in a sharp drop and a sign reversal in the drift flux
function. The speed of these waves was found to be high compared to fluidized
shocks, and in full agreement with the Drift Flux Model prediction based on the
choked flow drift flux. The fast propagation of a sudden discontinuity in density

therefore has a “water hammer”-like distructive property.

Three-component air-solid-liquid flow regimes were categorized into dis-
perse and agitated states based on visual observations. The individual volume
fractions of the constituents were measured and the results were compiled into
a flow regime map which was compared to the stability boundary predicted by
bi-disperse flow analysis, with reasonable agreement. The average air velocity
relative to the combined solid-liquid flux was monitored and found to be a strong
function of the total disperse volume fraction (as oppposed to the individual vol-
ume fractions). This function is shown to reach a minimum in magnitude (at
a+v = 28%) which corresponds to the most hindered state in disperse flow. This
minimum precedes the onset of the agitated vortical fiows, for which the average
air velocity relative to the liquid-solid flux undergges a sha:p increase. The size
and propagation speed of small and large scale structure in churn-turbulent and
three-component flows remains unexplored. Future efforts should be directed on
combinizg auio—<correlation and cross-correlation measuring techniques to help

us better understand the mechanics of these complicated flows.

Friction pressure drop measurements were made in vertical bubbly and
particulate flows, and friction factors up to two orders of magnitude higher than
pure liquid values were obtained. The two-phase friction multiplier for air-water
flows was shown to attain values up to 15 times higher than the predictions

given by the Lockhart & Martinelli correlations (1949).
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A shielded, temperature compensated and non-intrusive Impedance Vol-
ume Fraction Meter (IVFM) was built and shown to have good spatial and
temporal resolution. The dynamic calibration of the device demonstrated that
the volume fraction measuring device could also be used to measure both the
dispersed medium velocity and concentration. This device enabled us to carry
out measurements of small and large amplitude kinematic stability and wave
propagation in two-component and three-component flows.

The large deviation in measured and previously accepted values of friction
pressure drops in two-component flows exemplifies the lack of detailed under-
standing of multi-component flow phenomena . The small amount of information
available on the flow kinematics has been primarily due to the primitive stage ‘
of development of two-phase flow instrumentation. In this thesis, we show that
much can be learned about the complex nature of multi-component flows with
adequate instrumentation. Better understanding of the flow is much needed for
cheaper handling and efficient control of multi-component flow processes. We
therefore emphasize the need for further development of critical flow measur-
ing techniques for use not only in fundamental investigations but also in the

monitoring and control of ‘practical multiphase flow processes.
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