
Sparse deconvolution with applications to spike sorting

Thesis by
Kevin Qing Shan

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2019
Defended March 4, 2019

ii

© 2019

Kevin Qing Shan
ORCID: 0000-0002-2621-1274

All rights reserved

iii

ACKNOWLEDGEMENTS

First, I would like to thank Thanos Siapas for his support and mentorship over all
these years, and the rest of my committee—Joel Burdick, Richard Murray, and
Michael Dickinson—for everything they’ve done to make this thesis happen.

Thanks also to Eugene Lubenov for invaluable discussions and feedback (including
on this document), to Andreas Hoenselaar for being a positive role model for
software development practices, to Britton Sauerbrei for his dedication to data
visualization, and to Brad Hulse and Maria Papadopoulou for their conversations
and commiserations, both intellectual and otherwise.

I’d also like to thank my CDS cohort—Seungil, Ivan, Anandh—and other Caltech
friends—Andrew, Hannah, Denise, Max, Ioana—for being part of my life outside
the lab. Finally, I am immensely grateful to my parents and my brother Kyle for
their constant support and encouragment, and to my wonderful wife Sze for all of the
above and more.

iv

ABSTRACT

Chronic extracellular recording is the use of implanted electrodes to measure the
electrical activity of nearby neurons over a long period of time. It presents an
unparalleled view of neural activity over a broad range of time scales, offering sub-
millisecond resolution of single action potentials while also allowing for continuous
recording over the course of many months. These recordings pick up a rich collection
of neural phenomena—spikes, ripples, and theta oscillations, to name a few—that
can elucidate the activity of individual neurons and local circuits.

However, this also presents an interesting challenge for data analysis. Chronic
extracellular recordings contain overlapping signals from multiple sources, requiring
these signals to be detected and classified before they can be properly analyzed. The
combination of fine temporal resolution with long recording durations produces large
datasets, requiring efficient algorithms that can operate at scale.

In this thesis, I consider the problem of spike sorting: detecting spikes (the extracellu-
lar signatures of individual neurons’ action potentials) and clustering them according
to their putative source. First, I introduce a sparse deconvolution approach to spike
detection, which seeks to detect spikes and represent them as the linear combination
of basis waveforms. This approach is able to separate overlapping spikes without the
need for source templates, and produces an output that can be used with a variety of
clustering algorithms.

Second, I introduce a clustering algorithm based around a mixture of drifting
t-distributions. This model captures two features of chronic extracellular recordings—
cluster drift over time and heavy-tailed residuals in the distribution of spikes—that
are missing from previous models. This enables us to reliably track individual
neurons over longer periods of time. I will also show that this model produces more
accurate estimates of classification error, which is an important component to proper
interpretation of the spike sorting output.

Finally, I present a few theoretical results thatmay assist in the efficient implementation
of sparse deconvolution.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

Shan, K. Q., E. V. Lubenov, and A. G. Siapas (2017). “Model-based spike sorting
with a mixture of drifting t-distributions”. Journal of neuroscience methods 288,
pp. 82–98. doi: 10.1016/j.jneumeth.2017.06.017.
KQS conceived of the project, developed and analyzed the method, collected some
of the validation data, and wrote the manuscript.

Shan, K. Q., E. V. Lubenov, M. Papadopoulou, and A. G. Siapas (2016). “Spatial
tuning and brain state account for dorsal hippocampal CA1 activity in a non-spatial
learning task”. Elife 5, e14321. doi: 10.7554/eLife.14321.001.
KQS performed some of the experiments, analyzed the data, and wrote the
manuscript.

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Table of Contents . vi
List of Illustrations . vii
Chapter I: Introduction . 1
Chapter II: Spike detection via sparse deconvolution 5

2.1 Introduction . 5
2.2 Methods . 8
2.3 Results . 17
2.4 Discussion . 19

Chapter III: Spike sorting using a mixture of drifting t-distributions 20
3.1 Introduction . 20
3.2 Mixture of drifting t-distributions (MoDT) model 23
3.3 Model validation using empirical data 32
3.4 Use of the MoDT model for measuring unit isolation 39
3.5 Overlapping spikes . 46

Chapter IV: Improving regularizers for sparse deconvolution 49
4.1 The nonconvex log regularizer . 50
4.2 Nested group regularizers . 59

Chapter V: Conclusion . 72
Bibliography . 75

vii

LIST OF ILLUSTRATIONS

Number Page
1.1 An overview of spike sorting . 2
2.1 Spike detection as a sparse deconvolution problem 6
2.2 Issues with the convex l2,1 regularizer 13
2.3 Comparison of optimization algorithms 15
2.4 Spike detection performance on a hybrid ground truth dataset 17
2.5 Spike removal for LFP analysis . 18
3.1 Extracellular recordings contain drifting, heavy-tailed clusters 21
3.2 Scaling of computational runtime with MoDT model dimensions . . 28
3.3 Robust covariance estimation using the t-distribution 30
3.4 Cluster drift in well-isolated units 33
3.5 Heavy-tailed residuals in extracellular noise and well-isolated units . 34
3.6 Failure modes of a stationary approach 36
3.7 Spike sorting performance . 43
3.8 Comparison of unit quality metrics on hybrid ground truth datasets . 43
3.9 Spike sorting performance on overlapping spikes 46

3.10 Model-based overlap reassignment 47
4.1 Application of the nonconvex log regularizer to a sparse deconvolution

problem . 50
4.2 An illustration of the proximal operator of the log regularizer 53
4.3 Comparison of the proximal operator to prior work 58
4.4 Group lasso regularizer applied to the spike detection deconvolution

problem . 60

1

C h a p t e r 1

INTRODUCTION

Chronic extracellular recordings are a powerful tool for systems neuroscience,
offering access to the spiking activity of neurons over long periods over time. In
this technique, recording electrodes are chronically implanted in the brain to monitor
the activity of nearby neurons. Unlike imaging techniques, these passive recordings
do not damage the tissue through photobleaching or require expression of foreign
fluorophores, enabling continuous recordings over the course of many weeks or even
months. The ability to continuously monitor individual neurons over these time
scales is critical to advancing our understanding of learning and memory.

However, the analysis of extracellular data requires a process known as spike sorting,
inwhich spikes—the extracellular signatures of individual neurons’ action potentials—
are detected in the raw data and then assigned to putative sources (i.e., individual
neurons, also known as single units). This process is summarized in Figure 1.1 and
is typically broken into two stages: (1) spike detection, in which spikes are detected
as discrete events in a noisy signal, and (2) clustering, an unsupervised learning
problem in which the detected spikes are assigned to putative sources.

Unfortunately, prior work on this topic have two important shortcomings that prevent
us from achieving our goal of continuousmonitoring of spiking activity over long time
scales. In this document, I develop new methods to overcome these shortcomings.

First, traditional spike detection methods do not account for overlapping spikes, i.e.,
spikes from different neurons that occur nearly synchronously and thus overlap in
time. This is a rare occurrence, since the duration of individual spikes is short relative
to the average time between spikes, so traditional techniques can achieve a reasonable
overall performance despite failing to account for this overlap. However, the brain
sometimes exhibits patterns of coordinated activity that increase the prevalence of
overlapping spikes, and these patterns are of special interest to researchers. For
example, during a hippocampal activity pattern known as a ripple, a sizeable fraction
of pyramidal neurons all fire in close succession. These population bursts are a
prominent feature of slow-wave sleep (Siapas and Wilson, 1998), appear to be
involved in information transfer to other brain areas (Wierzynski et al., 2009), and
sometimes exhibit surprising sequences of neural firing (Foster and Wilson, 2006).

2

100 ms

1
m

V

R
aw

 d
at

a
S

pi
ke

s

18
-25
46
44
-77
3
21
-16
3
80
-46
2

29
-12
-1
16
-1
9
35
-11
-14
17
18
12

20
4
17
-4
-18
21
24
3
2
-4
-17
26

45
-6
20
66
-38
-15
34
10
3
84
-11
7

39
69
-34
97
5
19
21
21
-6
60
10
10

47
-13
-16
50
-20
12
29
15
0
72
-1
49

17
6
31
39
4

-19
7

-16
15
25
13
-31

27
8
37
51
-32
26
51
-3
5
81
-17
25

41
79
41
154
-45
104
40
44
27
222
37
93

16
33
10
123
-50
58
14
14
5

190
4
61

25
9

-14
22
15
-16
43
-17
-27
23
9
-9

26
14
46
60
-31
17
46
14
24
91
-34
25

F
ea

tu
re

 s
pa

ce

C
lu

st
er

in
g

in
 fe

at
ur

e
sp

ac
e

LF
P

S
in

gl
e

un
its

Figure 1.1: An overview of spike sorting. Spike sorting is the process of detecting spikes
(the extracellular signatures of neuronal action potentials) and assigning them to putative
sources. Raw data: Voltage traces from the four channels of a tetrode (a four-site recording
probe constructed from bundled microwires) in hippocampal area CA1 of a freely-behaving
rat. Spikes: During spike detection, we detect spikes in the raw data and extract their
waveforms for downstream analysis. The shape of the spike waveforms (particularly the
relative amplitude across the different channels) can be used to classify individual spikes
as originating from different sources. Feature space: This information about each spike’s
waveform is represented as a point in some low-dimensional feature space (the 12-dimensional
column vectors in this illustration), a format that is amenable to analysis with a variety of
unsupervised clustering algorithms. Clustering in feature space: This step groups the
spikes into clusters and produces an estimate of the misclassification error. Single units:
Well-isolated clusters that satisfy the appropriate criteria are known as single units and may
be interpreted as the spiking activity of individual neurons (shown as a raster plot here). The
last row (black) shows the detected spikes that were not classified as belonging to a single
unit. LFP: After spikes have been detected and removed from the raw data, the residual
signal may be analyzed as the local field potential (LFP), which offers valuable insight into
aggregate network activity.

3

Improving spike detection during these synchronous bursts is thus an important step
to advancing our understanding of these phenomena.

To this end, Chapter 2 describes a sparse deconvolution approach to spike detection.
This procedure approximates the observed signal as the convolution of a set of kernels
(representing the linear subspace of typical spike waveforms) with a column-sparse
feature matrix (which are the detected spikes). This approach explicitly accounts for
overlapping spikes and is able to reliably separate the contribution from each spike.
Unlike the class of techniques known as template matching, this approach does not
require fitting a source template for each neuron and does not seek to assign the
detected spikes to putative sources. It instead represents the detected spikes as points
in a low-dimensional feature space, a format that is amenable to downstream analysis
using a wide variety of clustering algorithms. This approach thereby maintains the
traditional decoupling of spike detection from the clustering problem.

The second shortcoming of prior spike-sorting methods lies in the clustering of long
datasets. Traditional clustering algorithms have been fairly successful when applied to
recordings up to an hour, which is the duration of a typical behavioral training session.
However, many behavioral tasks require multiple days to learn (Shan et al., 2016),
and the process of memory consolidation—the transfer of long-term memories from
the hippocampus to cortical brain areas—may require weeks (Takehara, Kawahara,
and Kirino, 2003). The ability to observe changes in neural activity over these
time scales is therefore critical to understanding the neural mechanisms underlying
learning and memory. Although there are few experimental barriers to acquiring
such long-term, continuous recordings, the analysis of such datasets presents a
major challenge to traditional clustering algorithms. This is because the clusters
corresponding to individual neurons drift substantially on the time scale of hours
(due to a combination of electrode motion and physiological changes in the neurons),
which violates the traditional assumption of cluster stationarity.

To address this issue, Chapter 3 describes a clustering algorithm based around fitting
the data with a mixture of drifting t-distributions. This generative model captures
two important features of chronic extracellular recordings—cluster drift over time
and heavy tails in the distribution of spikes—that are missing from previous models.
This model also provides accurate estimates of classification error, an important
metric for proper interpretation of the spike sorting output.

Finally, Chapter 4 derives some mathematical results (proximal operators for the
class of regularizers used in Chapter 2) that may assist in the efficient implementation

4

of sparse deconvolution.

5

C h a p t e r 2

SPIKE DETECTION VIA SPARSE DECONVOLUTION

2.1 Introduction
The first step in spike sorting is detecting the spikes to be sorted. The earliest
methods for spike detection simply involved bandpass filtering the signal and
detecting threshold-crossings. Refinements to this technique include the use of data
transformations such as the nonlinear energy operator (Mukhopadhyay and Ray,
1998) or a wavelet transform (Yang and Shamma, 1988; Nenadic and Burdick, 2005)
prior to thresholding. These transformations seek to improve detection performance
by accentuating certain features of neural spikes that distinguish them from the
background noise. After spikes are detected, their waveforms—a short segment of
data centered around each detected spike—may be extracted and then projected into
a low-dimensional feature space for subsequent clustering.

While this approach works well for isolated spikes, it can fail to detect spikes that
occur in close succession (less than 1 ms apart), since the overlapping waveforms may
fail to trigger the detection. Even if both spikes are detected, the presence of the other
spike may distort the observed waveform, leading to downstream misclassification
error if the contribution of the other spike is not accounted for1.

The issue of overlapping spikes is greatest in areas with a high density of cells, such
as the hippocampal pyramidal cell layer, since this leads to a large number of neurons
within the electrode’s recording volume. This is further compounded by synchronous
activity patterns, such as ripples, that may cause a large number of neurons to fire
within a short window of time.

An alternative class of spike detection methods, known as template matching,
addresses this issue by seeking to approximate the observed data as the sum of
template waveforms (Bankman, Johnson, and Schneider, 1993; Pachitariu et al.,
2016; Yger et al., 2018), which may be understood as a form of sparse deconvolution
(Figure 2.1A). Each template corresponds to a different source, so detecting a spike
and assigning it to a putative neuron occur as a single step. Although finding the

1I had previously developed a method to do precisely this (Shan, Lubenov, and Siapas, 2017,
section 2.6). In cases where both spikes are detected, a limited amount of deconvolution may be
performed during the process of dimensionality reduction (also known as feature extraction). However,
this approach still struggles with spikes that are less than 0.5 ms apart, due to failure of spike detection.

6

Data

B Sparse deconvolution in spike feature space
Spike basis waveforms

15
22
13
116
-44
40
19
12
11
185
8
48

46
19
-11
72
37
-4
68
15
-30
143
86
-59

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

Column-sparse feature matrix

Data

A Template matching
Spike templates

0
0

0
0
0
0
0
0
0
0
0
0
0
0

1

0
0
0

0
0
0
0
0
0
0
0
0
0
0

1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Sparse binary matrix

Figure 2.1: Spike detection as a sparse deconvolution problem. (A) Template matching
approximates the observed data (left, black traces) as the convolution of a set of spike
templates (one per source neuron) with a sparse binary matrix x, where x[i, j] represents
the presence of a spike from source i at time j. The product of this convolution is shown
as colored traces in the left panel. Since this procedure simultaneously detects spikes and
classifies them according to their putative source, it is very sensitive to the spike templates
used, which must be fitted to the dataset at hand. (B) We will instead approximate the data
as the convolution of spike basis waveforms (which define the linear subspace of neural spike
waveforms) with a column-sparse feature matrix. The nonzero columns of this feature matrix
can then be used for subsequent clustering in feature space, thereby decoupling the problems
of spike detection and classification. In this example, each basis waveform is restricted to a
single data channel; this allows for a more efficient convolution and easier interpretation of
the feature coordinates.

optimal solution to this problem is NP-hard, a combination of a greedy approach and
limited search seems to produce adequate results. These methods also offer improved
detection sensitivity, particularly when combined with pre-whitening, since they
provide a more explicit description of how neural spikes may be distinguished from
the background noise.

However, template matching has some important shortcomings. First, in order to
allow for an efficient implementation, the classifier boundaries between clusters
are typically constrained to simple forms such as hyperplanes, which may not be
appropriate when the data are highly heteroscedastic (which is often the case when

7

multiple neuronal cell types are present). Second, unless the spike templates are
somehow known beforehand, they need to be learned from the data through some
form of clustering. But clustering is a difficult problem. We may wish to run it
from multiple initializations or compare across different model classes, and each of
these runs may require an iterative fitting process. Since any change to the templates
requires re-detecting spikes, each iteration thus involves another pass through the
raw data.

In contrast, traditional spike detection only needs to be performed once and transforms
30 GB of raw data (a day’s worth of recordings from a single tetrode) into 0.3 GB of
spikes in feature space. This not only reduces the data size by 100x, but allows it to fit
into GPUmemory, which has access speeds 1000x faster than disk. This dramatically
improves fitting times and enables the use of more sophisticated classifiers for spike
sorting. Furthermore, this modularity—the fact that the spike detection process is
agnostic to the downstream clustering step—is immensely useful from a practical
standpoint, as it allows for rapid evaluation of novel clustering algorithms and allows
the raw data to be relegated to offline storage.

In this chapter, I will describe a new method of spike detection that combines the
modularity of traditional spike detection with the improved overlap resolution of
template matching. Like template matching, this approaches spike detection as a
sparse deconvolution problem (Figure 2.1B). But instead of convolving a set of
source-specific spike templates with a sparse binary matrix assigning spikes to
putative sources, which intertwines the problems of spike detection and clustering,
we will be convolving a set of spike basis waveforms with a column-sparse feature
matrix, which may then be used in the clustering algorithm of your choice.

Section 2.2 describes how to set up and solve this sparse deconvolution problem,
section 2.3 evaluates its performance as a spike detection algorithm, and section 2.4
closes this chapter with some additional discussion.

8

Table 2.1: Mathematical notation. For a [D × T] matrix x, the notation x[d, :] refers to its
d-th row and x[:, t] refers to its t-th column.

Dimensions

D Number of feature space dimensions
C Number of data channels
T Number of time samples
L Kernel length

Variables

b RC×T raw data (voltage traces from C recording channels)
x RD×T optimization decision variable. The nonzero columns of this matrix

form the feature space representation of the detected spikes.
kd RC×L convolution kernel (spike basis waveform) for feature coordinate d
β Nonnegative parameter that controls the relative importance of minimizing

the regularizer vs. the approximation error.

Functions

A RD×T 7→ RC×T linear operator that convolves each row x[d, :] by the
corresponding kernel kd and sums them together

A† Adjoint of A with respect to the standard inner product in RD×T and the
whitened inner product in RC×T

〈·, ·〉w Whitened inner product between two RC×T data matrices
‖·‖w Norm induced by the inner product 〈·, ·〉w
f (·) RD×T 7→ R approximation error function, equivalent to 1

2 ‖Ax − b‖2w
g(·) RD×T 7→ R regularizer function that encourages the optimization to

produce column-sparse x

2.2 Methods
In this section, we will pose spike detection as the regularized linear least-squares
problem

minimize
x

1
2
‖Ax − b‖2w + βg(x), (2.1)

where we seek to approximate the raw data (b) as the convolution of spike basis
waveforms (operatorA) with sparse coefficients (x). This notation is summarized in
Table 2.1 and will be examined in more detail in the following subsections. First,
section 2.2.1 explains the whitened error norm ‖Ax − b‖w. Next, section 2.2.2
explains the convolution operator A and section 2.2.3 discusses the kernels that
comprise it. Finally, section 2.2.4 explains the sparsity-inducing regularizer g(x),
and section 2.2.5 provides a comparison of optimization algorithms.

9

2.2.1 Whitened inner product in data space
The neural background activity in electrophysiological recordings, which we may
consider noise in our spike detection problem, does not have equal power at all
frequencies. Instead, we observe much less noise power at higher frequencies:
the rolloff is on the order of 1/ f , although it varies from channel to channel and
may be complicated by the presence of line noise and/or high-frequency neuronal
oscillations.

In order to account for this when measuring the approximation error ‖Ax − b‖, we
will use a whitened inner product in data space, defined as

〈a, b〉w = 〈Wa,Wb〉, (2.2)

where the right hand side uses the standard inner product and the linear operator
W : RC×T 7→ RC×T is known as the whitening filter. Ultimately, this is equivalent
to pre-whitening the data b and defining the convolution kernels kd in a whitened
data space, but treating the whitening as a separate operation allows us to discuss its
role separately and leads to a more efficient implementation when D > C.

This whitening can take many different forms. Temporal whitening using autoregres-
sive models is a very popular approach, but can lead to troublesome boundary issues.
For this reason, I favor a symmetric finite impulse response (FIR) whitening filter
designed using least squares to approximate a desired frequency response. For spike
detection, the exact response at low frequencies is typically irrelevant as long as it is
sufficiently attenuated, allowing us to get away with relatively short filters.

The whitening operator may also perform whitening across channels (also known
as spatial whitening) to make the spike detection less sensitive to common-mode
noise. This is typically applied to each time sample independently, after temporal
whitening.

For the experiments in this chapter, I used the empirical power spectral density to
design whitening filters for each channel. I also added a bandpass to the desired
frequency response (with -6 dB cutoff frequences at 400 Hz and 8 kHz) to further
discount the influence of other (non-spike) signals at lower frequencies and to avoid
excessive amplification of high-frequency noise. I used the matrix square root of the
channel covariance matrix as the spatial whitener.

10

2.2.2 Convolution
The linear operator A maps a given [D × T] feature matrix to a [C × T] convolution
output in data space. It is responsible for convolving each feature coordinate (each
row of x) with its corresponding kernel and summing them all together.

Although it is conceptually convenient to think of A as a [CT × DT] block Toeplitz
matrix, it is impractical to implement it as such, given the data dimensions that we
are considering (T ≈ 1 million). This section will describe how to evaluate A and
its adjoint A†.

First, each channel of y = Ax is given by the sum of one-dimensional convolutions,

y[c, :] =
D∑

d=1
kd[c, :] ∗ x[d, :], (2.3)

which may be computed using the overlap-add technique to emulate the linear
convolution as a sequence of circular convolutions that may then be diagonalized
using fast Fourier transform (FFT) algorithms.

Our examples (e.g., Figure 2.1B) use kernels that have single-channel support: each
kernel is restricted to a single channel only and kd[c, :] = 0 for all other channels. This
reduces the number of convolutions we need to perform and makes the coordinates
of the feature space easier to interpret, although it is less efficient in terms of the
number of feature space dimensions D required to achieve a desired approximation
error.

Second, we will also need the adoint of A, i.e., the linear operator A† such that

〈Ax, y〉w = 〈x,A†y〉,

where the left hand side uses the whitened inner product discussed in section 2.2.1
and the right hand side uses the standard inner product in RD×T . The adjoint A†

arises in our optimization problem because the gradient of the squared error f (x) is
given by

∇ f (x) = A†(Ax − b).

If we let ỹ =W†Wy, whereW is the whitening operator described in section 2.2.1,
then x = A†y is given by

x[d, :] =
C∑

c=1
k†d[c, :] ∗ ỹ[c, :], (2.4)

where k†d denotes the conjugate time-reversal of the kernel kd .

11

2.2.3 Determining the spike basis waveforms
One of the major shortcomings of template matching is the difficulty in determining
the appropriate spike templates to use. Yet our convolution operator assumes that we
are given an appropriate set of spike basis waveforms. How is that any different?

The fundamental difference is that the spike basis waveforms do not need to represent
the specific neurons present in the recording, but rather the general space of neural
spike waveforms that may be recorded on this probe. This has two important
consequences: (1) spike basis waveforms are stable over time, and (2) our choice
of spike basis waveforms does not directly impact spike classification, as that is
deferred to a later clustering step.

First, let us note that the spike waveforms recorded from a given neuron are not
constant but will drift over time (on the order of minutes or hours, see Shan, Lubenov,
and Siapas, 2017). The spike templates used in template matching therefore need to
track these changes over time, requiring frequent updating. In contrast, the spike
basis waveforms for a single channel depend primarily on the impedance of the
electrode (which affects its transfer function as a recording device) and the overall
distribution of cell types present (which affects the distribution of waveform shapes
that may be observed). These properties change relatively slowly over time, on the
order of days or weeks rather than minutes.

Second, unlike template matching, where the spike classifier boundaries are directly
determined by the spike templates used, the spike classification performance under
our approach is relatively insensitive to the choice of basis waveforms, as long as
they are able to capture a reasonable fraction of the spike waveform variability.
Furthermore, we can always err on the side of inclusivity and increase the dimension
of the feature space. The consequence may be additional detection of non-neural
events, but these are easily rejected during the clustering step.

For the experiments in this chapter, I initialized the spike basis waveforms by
performing traditional spike detection (using the nonlinear energy operator as the
detection heuristic) on a small batch of data (20 randomly-selected chunks of 3
seconds each) and performing a principal components analysis (PCA) of the extracted
waveforms, retaining the three largest principal components on each channel to act
as the spike basis waveforms. I then performed gradient descent iterations (again
using batches of small, randomly-selected chunks) to fine-tune the basis waveforms.

12

2.2.4 Choice of regularizer
In the previous three subsections, we discussed the f (x) = 1

2 ‖Ax − b‖2w term of our
objective function, which serves as a measure of our approximation error. However,
we also want our optimization to produce solutions that are sparse, so that we may
interpret the nonzero entries as detected spike events. It is the second term of
our objective function, the regularizer g(x), that is responsible for encouraging the
optimization algorithm to produce solutions with our desired sparsity pattern.

A common choice of sparsity-inducing regularizer is the l1 norm, also known as the
lasso penalty (Tibshirani, 1996), and it corresponds to the sum of the absolute values:

g(x) =
T∑

t=1

D∑
d=1

��x[d, t]��.
This regularizer has seen extensive use in compressive sensing (Donoho, Elad,
and Temlyakov, 2006; Candes, 2008) and sparse deconvolution (Taylor, Banks,
and McCoy, 1979; Chen, Donoho, and Saunders, 2001), including neuroscience
applications such as deconvolution of calcium imaging data (Vogelstein et al., 2010;
Pnevmatikakis et al., 2016).

However, we will need to make two modifications to this regularizer for our spike
detection application. First, while the l1 regularizer indeed produces sparse solutions,
it does not care how these nonzero elements are arranged. For our application, we
want the matrix x to be column-sparse, i.e., to have few columns containing nonzero
entries. This can be achieved using the matrix l2,1 norm (Udell et al., 2016), also
known as the group lasso (Yuan and Lin, 2006), which is the sum of the 2-norms of
the columns of x:

g(x) =
T∑

t=1

x[:, t]

. (2.5)

This regularizer produces solutions with few nonzero columns, but does not further
incentivize sparsity within a column.

Second, even though the l2,1 norm imposes the desired structure on the sparsity
pattern, its solutions are still not sparse enough2. In particular, since the regularizer

2How does this fit in with the fairly strong sparse recovery guarantees of l1-regularized minimiza-
tion (a.k.a. basis pursuit)? An unfortunate consequence of A being a convolution operator is that its
“dictionary items” correspond to time-shifted versions of the same waveforms and are therefore highly
correlated. As a result, sparse recovery theorems that rely on A satisfying the restricted isometry
condition (Needell and Vershynin, 2009) or having a low mutual coherence (Donoho, Elad, and
Temlyakov, 2006) are unable to guarantee recovery of more than one nonzero element.

13

Raw data
log reg

l
2,1

 norm

Individual spikes
with l

2,1
 norm

A Example approximations
with different regularizers

Lag (# of samples)

A
ut

oc
or

re
la

tio
n

B Detected spike autocorrelation

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

l
2,1

 norm

log regularizer

Figure 2.2: Issues with the convex l2,1 regularizer. (A) The black trace shows a single
spike from a single channel of data. Overlaid are the optimal approximations Ax using the
nonconvex log regularizer (red) and the convex l2,1 norm (blue). Regularization with l2,1 norm
leads to two issues. First, the approximation is biased towards zero since the regularizer is
always trying to shrink the feature vector norm. The log regularizer mitigates this by having
a flatter slope for larger norms; note how the red trace captures more of the spike energy
than the blue trace. Second, the l2,1 norm does nothing to discourage spikes from being
split across consecutive time steps. In fact, this blue trace is actually the sum of two smaller
spikes detected at consecutive time samples (bottom). (B) Autocorrelations of the detected
spike times. More than a third of the spikes detected using the l2,1 norm (blue) are followed
by another spike immediately afterwards (i.e., at a lag of 1). Such cases make it hard to
interpret the deconvolution solution as a set of detected spikes. However, switching to the log
regularizer (red) eliminates this problem.

is simply the sum of the column norms, there is no penalty to splitting a spike across
consecutive time steps. That is, from the regularizer’s point of view, there is no
difference between x1 and x2 below:

x1 =
[
· · · ξ 0 · · ·

]
x2 =

[
· · · λξ (1 − λ)ξ · · ·

]
,

where ξ ∈ RD and 0 ≤ λ ≤ 1. Even though x1 is the sparser solution, the regularizer
has no incentive to choose it, and x2 often results in lower approximation error since
it allows for a sort of linear interpolation (Figure 2.2A).

To discourage spikes from getting split up like this, we need to define the regularizer
so that x2 is more expensive than x2, i.e., g(x2) > g(x1). Unfortunately, this
necessarily implies that the regularizer is no longer convex. To see this, consider that
x2 = λx1 + (1 − λ)x3, where

x3 =
[
· · · 0 ξ · · ·

]
.

Since x3 is simply a time-shifted version of x1, time-invariance requires that
g(x1) = g(x3) = λg(x1)+ (1−λ)g(x3). The condition that g(x2) > g(x1) thus implies

14

that

g(λx1 + (1 − λ)x3) > λg(x1) + (1 − λ)g(x3),

therefore g cannot be convex.

A variety of nonconvex sparsity-encouraging regularizers have been proposed in the
literature. One such regularizer is the log penalty (Candes, Wakin, and Boyd, 2008),
and applying this to the column norms gives us our final regularizer:

g(x) =
T∑

t=1
α log(

x[:, t]

 + α). (2.6)

α > 0 is a parameter that controls the non-convexity of this regularizer; as α→∞,
this approaches the l2,1 norm3. Switching from the convex l2,1 norm (2.5) to the
nonconvex log regularizer (2.6) eliminates the incidence of double-detected spikes
(Figure 2.2B).

However, our choice of regularizer is also constrained by computational considera-
tions. Candes, Wakin, and Boyd (2008) implemented this log-regularized approxi-
mation using a reweighted l1 minimization scheme. This approach—which involves
wrapping an outer loop around a convex version of the optimization problem—is
less than ideal. Instead, we will approach this nonconvex minimization directly by
deriving a closed-form expression for the proximal operator of our columnwise log
regularizer (2.6) in Chapter 4. The existence of a simple proximal operator enables
us to solve our optimization problem (2.1) using a variety of large-scale optimization
algorithms, which I will discuss in the next section.

Finally, let me close this section with a few remarks on nonconvex optimization.
Since it is nonconvex, we are not guaranteed to converge to the global minimum,
and may instead get caught in local minima. Based on numerical experiments, it
seems that we can improve the quality of our solutions by (1) starting with the
convex solution by setting α = ∞, and (2) slowly ramping down α over the course
of many iterations in a process loosely analogous to simulated annealing. I found
that this approach produced sparser solutions with less approximation error than the
reweighted l1 minimization of Candes, Wakin, and Boyd (2008), and reached this
solution in far fewer iterations.

3I will note that equation (2.6) differs slightly from previous work by the addition of factor of α
in front of the log. This is not a substantive change, since it is equivalent to modifying β in (2.1), but
it does lend the convenient property that the derivative g′(0) = 1 for all α. This produces a family of
regularizers as seen in Figure 4.1, inset.

15

0 500 1000 1500 2000

10 -5

10 0

O
bj

ec
tiv

e
va

lu
e

Comparison of optimization algorithms

0 500 1000 1500 2000
0

1

2

3
D

en
si

ty

of convolution operations

ADMM
Gradient descent
Accelerated (FISTA)

Figure 2.3: Comparison of optimization algorithms. Comparison of three algorithms—
alternating directions method of multipliers (ADMM, yellow), proximal gradient descent (blue),
and a form of accelerated proximal gradient descent (FISTA, red)—on a convex deconvolution
problem. Runtime is measured in terms of the number of convolution operations, which is
the most computationally intensive step. Top: Relative objective value J(x)−J(x?)

J(x0)−J(x?)
, where

J(x) is the objective function (2.1), x0 is the starting point, and x? is the optimal solution as
determined by running the algorithms for several thousand more iterations. Bottom: Relative
density nnz(x)/nnz(x?), where nnz(x) is the number of nonzero entries in x.

2.2.5 Optimization algorithm
Figure 2.3 compares the performance4 of three popular optimization algorithms:
alternating direction method of multipliers (ADMM, yellow), proximal gradient
descent (blue), and a form of accelerated gradient descent known as the fast iterative
shrinkage-thresholding algorithm (FISTA, red).

ADMM (Boyd et al., 2011) is a very popular optimization algorithm that has shown
promising results in a variety of difficult optimization problems (Swaminathan and
Murray, 2014; Horowitz, Papusha, and Burdick, 2014). It has attracted considerable
attention for deconvolution applications (Bristow, Eriksson, and Lucey, 2013; Heide,
Heidrich, and Wetzstein, 2015; Wohlberg, 2016; Wang et al., 2018) because the
proximal operator of the approximation error f (x) has a simple expression in
frequency domain. However, since the proximal operator for the regularizer g(x) still
must be evaluated in time domain, this does not actually reduce the number of FFT

4As a disclaimer, note that these results are for a different sparse deconvolution problem, involving
a larger set of kernels spanning a wide range of frequencies, and using the convex l1 regularizer.
Given the superiority of the accelerated algorithm in these tests, I decided not to re-implement the
other algorithms after switching to the spike detection problem with the nonconvex regularizer.

16

operations per iteration as compared to gradient-based methods, and furthermore
precludes the use of the overlap-add technique to replace a large FFT with several
smaller transforms. Ignoring this last concern, this procedure requires the equivalent
of two convolution operations per iteration.

Proximal gradient descent (Parikh and Boyd, 2014) is an extension of standard
gradient descent techniques to cases where the objective function may be written as
the sum of a smooth term f (x) and a potentially nonsmooth term g(x) that admits a
simple proximal operator. This requires at least two convolutions per iteration, but
sometimes more due to backtracking5, and averaged 2.3 convolutions per iteration.

FISTA (Beck and Teboulle, 2009) is a form of accelerated gradient descent (see
Becker, Candès, andGrant, 2011, for an excellent overview), which adds amomentum-
like term that can help speed up convergence. I tried a variety of accelerated gradient
methods (Nesterov, 2013; Lan, Lu, and Monteiro, 2011; Auslender and Teboulle,
2006) and found their performance to be essentially identical (note that computing
the gradient is far more expensive than evaluating proxg in this problem). FISTA
was the easiest to implement and the most memory-efficient. This averaged 3.8
convolutions per iteration.

Despite requiring more convolutions per iteration, FISTA still converges much faster
than the other algorithms tested (Figure 2.3, top). More importantly, it arrives at a
sparse solution much sooner than the others (Figure 2.3, bottom). Here we see that
the accelerated algorithm produces a solution with near-optimal sparsity within 500
operations, while ADMM and gradient descent still contain twice as many nonzero
entries. Even after 2000 operations, these non-accelerated methods still contain
substantially more nonzero entries than optimal.

Using FISTA as the optimization algorithm, I could handle problem sizes up to
T = 1 million before running out of GPU memory. Since typical chronic datasets

5Backtracking is a way of automatically adjusting the step size. If a certain condition is not met,
then we backtrack, i.e., reduce the step size (by increasing our Lipschitz constant estimate L) and try
again. While we are on this topic, note that the usual backtracking termination criterion

f (xi+1) ≤ f (xi) + 〈∇ f (xi), xi+1 − xi〉 +
Li

2
‖xi+1 − xi ‖2

suffers from numerical cancellation issues since f (xi) and f (xi+1) may be much larger than the other
terms in this expression. But since f (x) = 1

2 ‖Ax − b‖2w , this is equivalent to

‖A(xi+1 − xi)‖2w ≤ Li ‖xi+1 − x‖2.

17

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100
Spike-sorting performance on overlapping spikes

Inter-spike interval (ms)

T
ru

e
po

si
tiv

e
ra

te
 (

%
)

Traditional spike detection 0.2 7.6
Sparse deconvolution 0.3 3.1
+ overlap reassignment 0.5 0.8

FP% FN%

Figure 2.4: Spike detection performance on a hybrid ground truth dataset. Fraction of
donor spikes that were detected and assigned to the correct source (true positive rate) as
a function of the time between spikes (inter-spike interval). The overall false discovery rate
(FP%) and false negative rate (FN%) for each method are reported in the legend.

range from 100 million to a few billion samples in duration, I processed these datasets
in chunks and merged them together.

2.3 Results
To evaluate the spike detection performance, I created a “hybrid ground truth” dataset
(section 3.4.3) by adding known “donor” spikes to a relatively quiet recording. We
can then perform spike detection and clustering and measure the number of donor
spikes that were detected and assigned to the correct source (Figure 2.4).

Traditional spike detection using the nonlinear energy operator as the detection heuris-
tic and PCA for dimensionality reduction (blue) performs well on non-overlapping
spikes, but struggles with spikes that are less than 1 ms apart. Since this dataset
contains a high incidence of overlapping spikes, this results in an overall false negative
rate of 7.6%.

The sparse deconvolution approach presented in this chapter (red) is able to reliably
deconvolve spikes down to 0.3 ms (for reference, the data shown in figure 2.1 shows
a pair of spikes separated by 0.3 ms), reducing the false negative rate by more than
half. Remarkably, it is able to deconvolve these spikes without any clustering or
other characterization of the spike sources.

Beyond this, it becomes increasingly difficult to distinguish two overlapping spikes

18

Raw
data

LFP

A Spikes distort the LFP

0.
5

m
V

20 ms

With spikes
Despiked

Ripple
band -20

-10

0

10

20

-180 -90 0 90 180

P
ha

se
 s

hi
ft

(d
eg

)
du

e
to

 s
pi

ke
s

Despiked ripple phase (deg)

C Shift in estimated ripple phase

-180 -90 0 90 180

Despiked ripple phase (deg)

N
um

be
r

of
 s

pi
ke

s

B Ripple phase-locking
for an example single unit

Ripple phase (deg)

Figure 2.5: Spike removal for LFP analysis. Failing to remove spikes may bias subsequent
analysis of the local field potential (LFP). (A) Top: After detecting spikes using our approach,
these spikes can be removed from the original raw data (red) to produce a despiked signal
(black). Middle: This broadband data is lowpass filtered to obtain an estimate of the LFP, a
measure of aggregate network activity. However, if spikes are not removed prior to filtering,
then they will distort our LFP estimate. Bottom: A close-up after filtering in the ripple band
(100–200 Hz). Note that failing to remove spikes has changed the amplitude and phase
of the observed ripple. (B) Ripple phase-locking analysis for a single unit (a putative CA1
interneuron), showing the histogram of spikes according to the phase of the ripple oscillation,
as estimated from despiked LFP (black) and a with-spikes LFP (red). Note that the peak of
the with-spikes histogram is narrower and shifted towards zero. (C) Shift in the estimated
ripple phase due to the presence of spikes. Each dot corresponds to a single spike from the
unit in panel B, and shows the phase shift θwith-spikes − θdespiked (i.e., the difference between
the despiked and with-spikes estimates of ripple phase) as a function of the ripple phase at
which this spike was observed. This shows that the with-spikes LFP consistently biases the
estimate of ripple phase towards zero.

from one very large spike. Resolving closely-overlapping spikes inevitably requires
some model of the individual sources (i.e., some idea of what the spikes produced
by each putative neuron will look like). One approach, described in section 3.5,
augments the fitted model with additional components that correspond to overlap
between pairs of neurons at various lags. This overlap reassignment procedure
(yellow) is able to correctly reassign most of these closely-overlapping spikes based
only on their feature space representation (i.e., without recourse to the raw data),
bringing the overall false negative below 1%.

This deconvolution-based spike detection has another useful application: spike
removal. Traditionally, the broadband signal (spikes and all) is simply lowpass

19

filtered and downsampled to form an estimate of the local field potential (LFP).
However, spikes still contain a fair amount of energy at lower frequencies, and this
lowpass filtering does not completely remove their influence on the recorded signal
(Figure 2.5A). Instead, our spike detection method allows us to analyze the residual
b − Ax as a “despiked” version of the recorded signal. This is particularly relevant
for the analysis of ripples (LFP oscillations in the range of 100–200 Hz), where
the activity of ripple-phase-locked neurons may produce consistent biases in the
apparent phase and amplitude of ripple oscillations (Figure 2.5B and C).

2.4 Discussion
In this chapter, I have presented a spike detection algorithm that follows the modular
approach of traditional spike detection—producing a feature-space representation of
the detected spikes without requiring any information about the clusters present in
the recording—while offering improved resolution of overlapping spikes.

At the moment, the main drawback of this approach is that it is quite slow, running
only slightly faster than realtime on tetrode data (an hour-long recording takes nearly
one hour to process). Although the current software implementation has some room
for improvement, that alone cannot produce the 10 or 100x speedup that would be
necessary for large-scale deployment of this technique. Instead, a greedy approach
such as orthogonal matching pursuit (Pati, Rezaiifar, and Krishnaprasad, 1993) may
be more appropriate.

Finally, I will note that the generality of this technique—the fact that, aside from the
choice of spike basis waveforms, nothing ties this approach to the specific problem
of spike detection—allows us to consider using this approach for the detection and
clustering of other transient events.

20

C h a p t e r 3

SPIKE SORTING USING A MIXTURE OF DRIFTING
T-DISTRIBUTIONS

Shan, K. Q., E. V. Lubenov, and A. G. Siapas (2017). “Model-based spike sorting
with a mixture of drifting t-distributions”. Journal of neuroscience methods 288,
pp. 82–98. doi: 10.1016/j.jneumeth.2017.06.017.

This chapter is based on previously-published material. In preparing this chapter, I
have condensed and rearranged the sections to be more amenable to selective reading.
I have also expanded section 3.5 to include results using a sparse deconvolution
approach to spike detection.

Section 3.1 provides some additional background on the spike sorting problem.
Section 3.2 describes the MoDT model and performs some benchmarking of our
software implementation of the model fitting algorithm. Section 3.3 evaluates the
model on several thousand hours of chronic tetrode recordings to show that it fits
the empirical data substantially better than a mixture of Gaussians. Section 3.4
then demonstrates that the MoDT-based estimate of misclassification error is more
accurate than previous unit isolation metrics, and Section 3.5 discusses the issue of
temporally overlapping spikes.

3.1 Introduction
Chronic extracellular recordings offer access to the spiking activity of neurons over
the course of days or even months. However, the analysis of extracellular data
requires a process known as spike sorting, in which extracellular spikes are detected
and assigned to putative sources. Despite many decades of development, there is no
universally-applicable spike sorting algorithm that performs best in all situations.

Approaches to spike sorting can be divided into two categories: model-based and
non-model-based (or non-parametric). In the model-based approach, one constructs
a generative model (e.g., a mixture of Gaussian distributions) that describes the
probability distribution of spikes from each putative source. This model may be used
for spike sorting by comparing the posterior probability that a spike was generated
by each source. Fitting of such models may be partially or fully automated using

21
A Feature space scatterplots

ch 1 ch 2 ch 3 ch 4

B Spike waveforms

0 1 2 3 4 5

Time (hr)

C Cluster location over time

0 2 4 6 8

Mahalanobis distance

D Deviation from
cluster center

ch 4

ch
 1

Gauss
t-dist

Figure 3.1: Extracellular recordings contain drifting, heavy-tailed clusters. (A) Scatter-
plots of spikes in feature space, color-coded by putative identity. Spike waveforms recorded
on 4 tetrode channels were projected onto a 12-dimensional feature space using 3 principal
components from each channel. Top: scatterplot of the first principal component from chan-
nels 1 and 4. Bottom: a different projection of the data, showing only the best-isolated single
units. (B) Spike waveforms (inverted polarity) for six example units. Scale bar: 200 µV, 0.5
ms. (C) Cluster drift in feature space. y-axis shows one of the 12 feature space dimensions.
Black line indicates the cluster center fitted using the MoDT model. (D) Distribution of the
non-squared Mahalanobis distance (δ) from the fitted cluster center to the observed spikes.
Lines indicate the theoretical distributions for Gaussian and t-distributed spikes.

maximum likelihood or Bayesian methods, and the model also provides an estimate
of the misclassification error.

In the non-parametric approach, spike sorting is treated solely as a classification
problem. These classification methods may range from manual cluster cutting to
a variety of unsupervised learning algorithms. Regardless of the method used,
scientific interpretation of the sorted spike train still requires reliable, quantitative
measures of unit isolation quality. Often, these heuristics either explicitly (Hill,
Mehta, and Kleinfeld, 2011) or implicitly (Schmitzer-Torbert et al., 2005) assume
that the spike distribution follows a mixture of Gaussian distributions.

However, a mixture of Gaussians does not adequately model the cluster drift and
heavy tails that are observed in experimental data (Figure 3.1). Cluster drift is

22

a slow change in the shape and amplitude of recorded waveforms (Figure 3.1C),
usually ascribed to motion of the recording electrodes relative to the neurons (Snider
and Bonds, 1998; Lewicki, 1998). This effect may be small for short recordings
(< 1 hour), but can produce substantial errors if not addressed in longer recordings
(Figure 3.6). Even in the absence of drift, spike residuals have heavier tails than
expected from a Gaussian distribution, and may be better fit using a multivariate
t-distribution (Figure 3.1D and Figure 3.5; see also Shoham, Fellows, and Normann,
2003; Pouzat et al., 2004).

To address these issues, wemodel the spike data as a mixture of drifting t-distributions
(MoDT). This model builds upon previous work that separately addressed the issues
of cluster drift (Calabrese and Paninski, 2011) and heavy tails (Shoham, Fellows, and
Normann, 2003), and we have found the combination to be extremely powerful for
modeling and analyzing experimental data. We also discuss the model’s robustness
to outliers, provide a software implementation of the fitting algorithm, and discuss
some methods for reducing errors due to spike overlap.

We used the MoDT model to perform spike sorting on 34,850 tetrode-hours of
chronic tetrode recordings (4.3 billion spikes) from the rat hippocampus, cortex, and
cerebellum. Using these experimental data, we evaluate the assumptions of our model
and provide recommended values for the model’s user-defined parameters. We also
analyze how the observed cluster drift may impact the performance of spike sorting
methods that assume stationarity. Finally, we evaluate the accuracy of MoDT-based
estimates of misclassification error and compare this to the performance of other
popular unit isolation metrics in the presence of empirically-observed differences in
firing rate and spike variability.

23

Table 3.1: Mathematical notation. Lowercase bold letters (yn, µkt) denote D-dimensional
vectors, and uppercase bold letters (Ck,Q) denote D×D symmetric positive definite matrices.

Dimensions

D Number of dimensions
N Number of spikes
K Number of clusters
T Number of time frames

Given data

yn Observed spike n
tn Time frame in which spike n occurred
wn Weighting of spike n (multiplier applied to log-likelihood)

User-defined constants

ν t-distribution degrees-of-freedom parameter
Q Drift regularization parameter

Fitted model parameters

αk Mixing proportion for cluster k
µkt Location parameter for cluster k in time frame t
Ck Scale parameter for cluster k

Latent variables introduced by EM procedure

znk Posterior probability that spike n belongs to cluster k
unk Scaling variable introduced in formulating the t distribution as a Gaussian-

Gamma compound distribution

3.2 Mixture of drifting t-distributions (MoDT) model
In this section, I will introduce the mixture of drifting t-distributions (MoDT) model
(section 3.2.1), describe an EM algorithm for fitting this model (section 3.2.2), and
analyze the computational scaling of this algorithm (section 3.2.3). Section 3.2.4
contains some stray remarks about how the multivariate t-distribution may be used
for robust covariance estimation. Finally, section 3.2.5 discusses some potential
extensions to this MoDT model.

3.2.1 Model description
Spike sorting begins with spike detection and feature extraction. During these
preprocessing steps, spikes are detected as discrete events in the extracellular voltage
trace and represented as points yn in some D-dimensional feature space.

The standard mixture of Gaussians (MoG) model treats this spike data yn as samples

24

drawn from a mixture distribution with PDF given by

fMoG(yn; φ) =
K∑

k=1
αk fmvG(yn; µk,Ck),

where φ = {. . . , αk, µk,Ck, . . . } is the set of fitted parameters, K is the number of
mixture components, αk are the mixing proportions, and fmvG(y; µ,C) is the PDF of
the multivariate Gaussian distribution with mean µ and covariance C:

fmvG(y; µ,C) =
1

(2π)D/2 |C |1/2
exp

[
−

1
2
δ2(y; µ,C)

]
.

For notational convenience, let δ2 denote the squared Mahalanobis distance

δ2(y; µ,C) = (y − µ)
ᵀ
C
−1
(y − µ).

We make two changes to this model. First, we replace the multivariate Gaussian
distribution with the multivariate t-distribution. The PDF for this distribution,
parameterized by location µ, scale C, and degrees-of-freedom ν, is given by

fmvt(y; µ,C, ν)
1

(νπ)D/2 |C |1/2

Γ(ν+D
2)

Γ(ν2)

[
1 +

1
ν
δ2(y; µ,C)

]−ν+D2
.

Second, we break up the dataset into T time frames (we used a frame duration
of 1 minute) and allow the cluster location µ to change over time. The mixture
distribution becomes

fMoDT(yn; φ, ν) =
K∑

k=1
αk fmvt(yn; µktn,Ck, ν),

where tn ∈ {1, . . . ,T} denotes the time frame for spike n. We use a common ν
parameter for all components and have chosen to treat it as a user-defined constant.
The fitted parameter set is thus φ = {. . . , αk, µk1, . . . , µkT,Ck, . . . }.

In order to enforce consistency of the component locations across time, we introduce
a prior on the location parameter that penalizes large changes over consecutive time
steps. This prior has a joint PDF proportional to

fprior(µk1, . . . , µkT) =

T∏
t=2

fmvG(µkt − µk(t−1); 0,Q), (3.1)

where Q is a user-defined covariance matrix that controls how much the clusters are
expected to drift.

25

3.2.2 EM algorithm for model fitting
Assuming independent spikes and a uniform prior on the other model parameters,
we can obtain the maximum a posteriori (MAP) estimate of the fitted parameters φ
by maximizing the log-posterior, which is equivalent (up to an additive constant) to
the following:

L(φ) =
N∑

n=1
wn log fMoDT(yn; φ) +

K∑
k=1

log fprior(µk1, . . . , µkT).

Note that we have introduced a weight wn for each spike. This allows us to fit the
model to a weighted subset of the data while remaining consistent with the full
dataset (Feldman, Faulkner, and Krause, 2011).

Aswithmostmixture distributions, it is intractable to optimize L(φ) directly. However,
by introducing additional latent random variables, we obtain a “complete-data” log-
posterior Lc(φ, Z,U) that allows us to decompose the problem and optimize it using
an expectation-maximization (EM) algorithm (McLachlan and Peel, 2000).

In the E-step, we compute the expected value of Lc assuming that these latent
variables follow their conditional distribution given the observed data and the fitted
parameters φ̂ from the previous EM iteration. The conditional expectations of these
latent variables are given by:

znk =
α̂k fmvt(yn; µ̂ktn, Ĉk, ν)∑
κ α̂κ fmvt(yn; µ̂κtn, Ĉκ, ν)

, (3.2)

unk =
ν + D

ν + δ2(yn; µ̂ktn, Ĉk)
. (3.3)

The znk correspond to the posterior probability that spike n was produced by
component k, and may thus be interpreted as a soft-assignment of spikes to clusters
(i.e., putative neurons). The unk arises from the formulation of the t-distribution
as a Gaussian-Gamma compound distribution and may be interpreted as a scaling
variable that “Gaussianizes” the multivariate t-distribution. In the Gaussian case
(the limit of a t-distribution as ν →∞), we have unk = 1 for all spikes. For finite ν,
note that unk decreases as the Mahalanobis distance δ increases.

Next we can compute the conditional expectation of Lc(φ, Z,U) over these latent
variables. Following Peel and McLachlan (2000), we find that this is equivalent (up

26

to an additive constant) to

J(φ; φ̂) =
N∑

n=1
wn

K∑
k=1

znk

[
logαk −

1
2

log|Ck | −
1
2

unkδ
2(yn; µktn,Ck)

]
+

T∑
t=2
−

1
2
δ2(µkt − µk(t−1); 0,Q).

In the M-step, we maximize J(φ, φ̂)with respect to the fitted parameters. The optimal
value for the mixing proportions α is simply a weighted version of the mixture of
Gaussians (MoG) M-step update:

arg max
αk

J(φ; φ̂) =
∑

n wnznk∑
n wn

. (3.4)

The optimal value for the cluster scale parameter C is also similar to the MoG case,
but each spike is additionally scaled by unk :

arg max
Ck

J(φ; φ̂) =
∑

n wnznkunk(yn − µktn)(yn − µktn)
ᵀ∑

n wnznk
. (3.5)

For the cluster location parameters µ, note that J(φ, φ̂) is quadratic with respect to µ

and its maximum occurs where the gradient ∇µJ(φ, φ̂) = 0. We can therefore find
the optimal µ by solving the following linear system of equations:

∇µk
J(φ, φ̂) =


bk1

bk2
...

bkT


− A


µk1

µk2
...

µkT


= 0, (3.6)

where

A =


M k1 + Q−1 −Q−1

−Q−1 M k2 + 2Q−1 −Q−1

−Q−1
. . .

. . .
. . . M kT + Q−1


and

M kt = C
−1
k

∑
n : tn=t

wnznkunk

bkt = C
−1
k

∑
n : tn=t

wnznkunk yn.

27

EM fitting of the MoDT model thus consists of iterative evaluation of equations (3.2)
through (3.6). A few remarks on this procedure:

1. Most of the znk end up very close to zero, and ignoring these spikes in the
M-step can reduce the complexity of that operation. However, the sparsity
needs to be very high (K > 20, as a rule of thumb) to outweigh the efficiency
advantages of the highly-optimized numerical routines for dense linear algebra.
We found that applying a threshold on znk produced more accurate results than
“hard EM” (in which each spike is assigned to only one cluster), which tends
to underestimate the covariance of highly-overlapping clusters.

2. The scaling variable unk acts as an additional weighting term in the optimization
of µ and C. Since unk decreases as spike n gets far away from cluster k, any
outliers are automatically discounted during the fitting process. As a result, the
fitted parameters are considerably more robust to the presence of outliers than
in the Gaussian case (Lange, Little, and Taylor, 1989; Peel and McLachlan,
2000).

3. The optimal value of µ depends on the value of C and vice-versa. Although the
standard EM algorithm calls for maximizing J(φ, φ̂) over all φ, the convergence
of a generalized EM algorithm requires only that we improve upon the previous
φ̂ (Dempster, Laird, and Rubin, 1977). Therefore we need not simultaneously
optimize µ and C, but may instead update them one at a time.

4. Although equation (3.6) involves solving a DT × DT linear system, its sparsity
structure allows us to solve for µ with a complexity that scales linearly with
T . For example, M kt and bkt appear in the information filter, an alternative
paramaterization of the Kalman filter (see, e.g., Anderson and Moore, 1979).
The acausal problem can then be solved using a backwards pass (Rauch, Tung,
and Striebel, 1965). However, we have found that it is faster to solve equation
(3.6) using standard numerical linear algebra routines for solving banded
positive semi-definite matrices (i.e., LAPACK dpbsv).

3.2.3 Software implementation and computational scaling
A MATLAB implementation of this EM algorithm, along with a demo script, is
available at https://github.com/kqshan/MoDT. In this section, we measure the
runtime on a desktop workstation with an Intel Core i5-7500 CPU, 32 GB of memory,
and an NVidia GeForce GTX 1080 graphics card, running MATLAB R2017a (64-bit)
on Ubuntu 16.04.2 with CUDA toolkit 8.0, using double-precision arithmetic.

28

Table 3.2: Computational runtime for model fitting. Time required to perform 20 EM itera-
tions on the sample dataset shown in Figure 3.1 (D=12, K=26, N=1.9 million). fitgmdist is a
mixture of Gaussians fitting routine that is part of the MATLAB Statistics and Machine Learning
Toolbox. modt is a MATLAB implementation of our EM algorithm that may be downloaded
from https://github.com/kqshan/MoDT. In addition to fitting the richer MoDT model, it
supports two additional features (data weights and GPU computing) that can dramatically
reduce fitting times.

Model type Algorithm description Runtime (s)

MoG fitgmdist 123.43
MoG modt in Gaussian mode 103.53
MoDT modt 104.56
MoDT modt on GPU 7.06
MoDT modt, 5% subset 5.74
MoDT modt, 5% subset, GPU 1.24

1 10 100 1k
Feature space dimensions (D)

0.01

0.1

1

10

100

R
un

tim
e

(s
) p

er
 E

M
 it

er
at

io
n

1 10 100 1k
Clusters (K)

10k 100k 1M 10M
Spikes (N)

1 10 100 1k
Time frames (T)

0.01

0.1

1

10

100

CPU only
With GPU
GPU, 32-bitGPU float32

Figure 3.2: Scaling of computational runtime with model dimensions. Starting from a
baseline of D = 12, K = 10, N = 500,000, T = 50, we varied each dimension and measured the
runtime on CPU (blue) and GPU (red). We also measured GPU runtime using single-precision
(32-bit floating point) arithmetic (yellow). For D, we show the theoretical limits imposed by
the hardware’s computing power (dashed line) and memory throughput (dotted line). Peak
memory usage is (5K + 4D)N elements, and the GPU line ends when we run out of GPU
memory (8 GB).

Our implementation offers a mild speedup over the MATLAB built-in mixture-of-
Gaussians fitting routine, despite fitting a more complex model (Table 3.2). In
addition, it supports the use of a weighted training subset, which offers a proportional
reduction in runtime at the expense of model accuracy, and supports the use of GPU
computing using the NVidia CUDA computing platform.

How does this runtime scale with the model dimensions D, K , N , and T? The

29

most computationally intensive operations are computing the Mahalanobis distance
(D2KN), updating the cluster location µ (DKN + D3KT), and updating the scale
parameter C (D2KN). Since the number of spikes is typically much larger than the
number of time frames or dimensions (N � DT), we expect the fitting time to scale
as D2KN overall. To test these scaling laws, we measured the runtime while varying
each model dimension (Figure 3.2).

Surprisingly, we found that the CPU runtime scaled almost linearly with D. This is
because the CPU’s memory throughput (17 GB/s), rather than its computing power
(218 GFLOPS), is the limiting factor1 when D < 500, and memory access scales
linearly with D.

The GPU’s higher memory throughput (320 GB/s) affords a substantial speedup on
small D. Like many consumer-grade GPUs, this device’s single-precision computing
power (8.2 TFLOPS) is substantially higher than its double-precision capacity
(257 GFLOPS), and switching to single-precision arithmetic dramatically increases
performance on compute-limited tasks.

As expected, we found the runtime scales linearly with K and N , and the effect of T

is negligible. The GPU shows similar trends, but with reduced efficiency at small N

and T due to poor utilization of the hardware resources.

Finally, we measured the peak memory usage to be approximately 5 N × K matrices
and 4 D × N matrices, for a total of 8(5K + 4D)N bytes (double-precision). Fitting
larger datasets may require using a weighted subset of spikes and/or performing the
optimization in batches.

3.2.4 Robust covariance estimation using the t-distribution
In this section, let us take a brief intermission from our consideration of drifting,
heavy-tailed data and look at the case where the underlying data are stationary
and Gaussian, but unmodeled noise or artifacts may be present. In such cases,
standard estimates of the data covariance may be unduly influenced by these outliers
(Figure 3.3A). Since the data covariance is a critical component of multivariate
statistics, it is important to have a covariance estimator that is robust to the presence
of outliers.

One very popular robust covariance estimator is the minimum covariance determinant
(MCD) estimator (Rousseeuw and Driessen, 1999). In this approach, the data points

1In other words, the arithmetic intensity of this operation is fairly low.

30

Using Gaussian Using ν=10

True
distribution

A B

Figure 3.3: Robust covariance estimation using the t-distribution. The t-distribution
may also be used to derive robust estimates of Gaussian parameters. In this example, we
generated 100 points from a Gaussian distribution and added a single outlier (red arrow). (A)
This has stretched out the estimated covariance when using a Gaussian fit. (B) The fitted
t-distribution is largely unaffected by the outlier. Equation (3.7) can then be used to convert
the fitted t-distribution scale parameter into an equivalent Gaussian covariance parameter.

are weighted according to their distance from the estimated center—specifically,
points with a Mahalanobis distance below some threshold are given a weight of 1
and points beyond that threshold are given a weight of 0—and then the weighted
covariance is multiplied by a correction factor to achieve consistency with an non-
truncated Gaussian distribution. Finding the appropriate set of points to include
in this estimate requires an iterative procedure, preferably with multiple random
initializations, and may be very slow to converge when there are many data points.

As we noted in the previous section, fitting the multivariate t-distribution also
discounts any points that are far away from the estimated center. In Figure 3.3B, we
have fit this same dataset using a t-distribution, and we can see that it automatically
rejects the influence of the outlier. However, this has also caused us to overestimate
the distribution tails: note how the fitted t-distribution’s 99% confidence ellipse
(green) is inflated relative to the true ellipse (black).

Rather than using the t-distribution directly, can we use the fitted parameters µ and
C to derive robust estimates of the Gaussian mean and covariance? As the number of
samples N →∞, the fitted µ converges to the Gaussian distribution’s true mean, but
the fitted C is a biased estimator of the Gaussian distribution’s covariance parameter.
However, we can compute a correction factor by solving for β in∫ ∞

0

ν + D
βν + x

xD/2e−x/2 dx = 2D/2
Γ(D/2)D, (3.7)

and then use βC as a robust estimate for the Gaussian covariance. The corresponding
99% confidence ellipse is also plotted in Figure 3.3B as a light grey ellipse, but it is
visually obscured by the 99% confidence ellipse of the true distribution (black).

31

Compared to the MCD approach, fitting the t-distribution is much faster to converge
and is less susceptible to local minima. This may be attributed to its use of “soft”
weights unk rather than a hard threshold. Although the theoretical properties of a
t-distribution-based robust covariance estimator remain to be characterized, it may
be a promising approach for larger datasets.

3.2.5 Model extensions
TheMoDTmodelwe have presented consists of three components: a spike distribution
model, a drift regularizer, and an EM fitting algorithm. These components may be
modified or extended in several ways.

For example, we modeled the spike distribution using a t-distribution, which is
elliptically symmetric. However, some neurons fire bursts in which subsequent
spikes exhibit a reduced amplitude, producing a skewed distribution that has a longer
tail in one direction. This one-dimensional skew may be modeled using a restricted
multivariate skew t-distribution, which can be fitted using an EM algorithm (Lee
and McLachlan, 2014).

We also used a very simple form of drift regularization, but this could be replaced
with a more sophisticated model. High-density probes may benefit from a model that
explicitly accounts for correlated changes in cluster location due to physical motion
of a rigid multi-site probe. This would improve tracking of neurons with a low firing
rate.

Finally, the EM algorithm has been widely studied and improved upon in many ways.
The basic algorithm is is well-suited for large-scale data processing and is amenable
to parallel computing on GPU hardware (Figure 3.2) or distributed computing using
high-level data flow engines (Meng et al., 2016). As we consider applying this
model to higher-dimensional data, a variety of algorithmic approximations may also
be useful to consider, such as masked EM (Kadir, Goodman, and Harris, 2014),
approximating C as the sum of low-rank and an isotropic component (Magdon-Ismail
and Purnell, 2010), and partial E- or M-step updates (Neal and Hinton, 1998).

The MoDT model thus offers a modular framework that may be adapted to experi-
mental needs.

32

3.3 Model validation using empirical data
In this section, I evaluate how well the MoDT model characterizes real data. Using
a large collection of in vivo extracellular recordings from a variety of brain areas
(section 3.3.1), I show that empirical data does indeed contain drifting clusters
(section 3.3.2) and heavy-tailed residuals (section 3.3.3), and I use these data to
provide recommendations for the corresponding user-defined parameters in the
MoDTmodel. I also use these data to consider the consequences of using a stationary
model for spike sorting (section 3.3.4). Finally, I discuss the implications on spike
sorting of chronic recordings (section 3.3.5).

3.3.1 How these data were collected
To evaluate the MoDT model for spike sorting, we collected 34,850 tetrode-hours (34
terabytes) of chronic tetrode data by implanting 10 Long-Evans rats with 24-tetrode
arrays targeting areas of the hippocampus, cortex, and cerebellum. Additional details
regarding the data acquisition, spike detection, feature extraction, human-guided
clustering, and computational infrastructure are described by Shan, Lubenov, and
Siapas (2017), sections 2.4–2.7.

Overall, we detected and sorted 4.3 billion spikes, of which 852 million (representing
89,127 unit-hours) were deemed to come from 20,630 putative single units.

However, in our subsequent analysis we are faced with the following challenge: we
wish to characterize the empirical properties of single units so that we can decide
what assumptions to make during spike sorting, but we need to perform spike sorting
in order to obtain single units to characterize. To break this circular dependency, we
focused our analysis on the best-isolated units because these are the least sensitive to
the spike sorting procedure used. This also ensures that we are studying the natural
tails of the spike distribution rather than artificially truncating them via the spike
classifier boundaries.

Therefore we applied a more conservative set of selection criteria than usual (Shan,
Lubenov, and Siapas, 2017, section 2.9), which narrowed this down to 4,432
high-amplitude, well-isolated single units, accounting for 338 million spikes over
32,890 unit-hours.

3.3.2 Cluster drift in empirical data
We quantified the cluster drift by measuring the distance from each unit’s current
location (determined using a 40-minute moving average) to its location at the start

33

0

20

40

0 1 4 5

D
is

t.
(

)

Time (hr)

A Example cluster drift

0

20

40

60

80

100

0 1 4 5

D
rif

t d
is

ta
nc

e
(

)

Time (hr)

B Cluster drift − all units

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ac

tio
n

of
 v

ar
ia

nc
e

du
e

to
 d

rif
t

Time (hr)

D Smearing due to drift

0.1 1 10 100 103 104

0

1

2

3

4

LL
R

 v
s.

 s
ta

tio
na

ry

C Model parameter q

0.1 1 10 100 103 104

D
is

tri
bu

tio
n

of
be

st
-fi

tti
ng

 q

q (2/hr)
Stationary Independent

time frames

98 %ile
75
Median
25
 2

1 uV2/hr

10

100

μV

μV
μV

Figure 3.4: Cluster drift in well-isolated units. (A) Cluster drift of the 6 example units from
Figure 3.1. Distances are measured from the unit’s current location (determined using a
40-minute moving average) to its location at the start of the dataset. (B) Cluster drift of all
well-isolated units in our analysis. Shaded regions indicate quantiles across units. Colored
lines show expected drift distances for 3 different drift rates. (C) Effect of changing the model’s
drift regularization parameter Q. We only considered isotropic matrices Q = qI . Top: Test-set
log-likelihood ratio (LLR per spike) comparing the drifting vs. stationary model for all units.
Bottom: Overall distribution of the best-fitting q for each unit. (D) If drift is not accounted for, it
produces an apparent “smearing” of the spike distribution in feature space. This panel shows
the fraction of spike variability that can be accounted for by cluster drift.

of the recording. Individual clusters may move closer or farther away from where
they started (Figure 3.4A), but over all units, the average distance increases and the
distribution spreads out (Figure 3.4B). These distances are measured in feature space
units (µV).

Note that the cluster location prior in equation (3.1) corresponds to a Gaussian
random walk with a constant rate of drift. However, the observed distribution of
drift distances is much broader than expected from such a process, and so this aspect
of the MoDT model should be treated as a regularizer rather than an attempt to
accurately model the underlying phenomena.

The MoDT model parameter Q is a user-defined constant that controls this regular-
ization. Figure 3.4C shows the effect of changing this parameter over a wide range
of values. The log-likelihood ratio (LLR) is a measure of the MoDT model’s quality
of fit compared to a stationary alternative; values greater than zero indicate that
the MoDT model provided a better fit. In this analysis, we measured the LLR on a
holdout test set, since increasing the allowable drift always improves the quality of
fit on the training set.

34

−60 −40 −20 0 20 40 60

Gaussian

A Extracellular noise

−60 −40 −20 0 20 40 60
Recorded noise (V)

0 15
10−3

0.01

0.1

1
Gaussian

B Example cluster residuals

U
pp

er
 ta

il
C

D
F

Mahalanobis distance

0 15
10−4

10−3

0.01

0.1

1

Gaussian

Mahalanobis distance

U
pp

er
 ta

il
C

D
F

C Cluster residuals − all units
1 10 1002 5 20 50

0

1

2

3

LL
R

 v
s.

 G
au

ss
ia

n

D Model parameter ν

1 10 1002 5 20 50

D
is

tri
bu

tio
n

of
be

st
-fi

tti
ng

 ν

ν parameter
Cauchy
(∞ variance)

Gaussian
μ

t-dist (ν=6.5)

t-dist (ν=5.5)

98 %ile
75
Median
25
 2

Figure 3.5: Heavy-tailed residuals in extracellular noise and well-isolated units. (A)
Distribution of extracellular noise for an example tetrode channel during periods where no
spikes were detected. Red and blue lines show a t-distribution and Gaussian fit, respectively.
Bottom panel shows the same histogram with a logarithmic y-scale. (B) Upper tail CDF
(fraction of a unit’s spikes that lie beyond a given Mahalanobis distance from the cluster
center) for the 6 example units from Figure 3.1. (C) Upper tail CDF for all well-isolated units.
Shaded areas indicate quantiles across units. Theoretical distributions for a t-distribution and
Gaussian are shown for reference. (D) Effect of changing the model’s ν parameter, which
controls the heavy-tailedness of the distribution. Top: Log-likelihood ratio (LLR per spike)
comparing the t-distribution vs. Gaussian model for all units. Bottom: Overall distribution of
best-fitting ν for each unit.

In this analysis we considered only isotropic matrices Q = qI , where q is a positive
scalar and I is the identity matrix. When q = 0, the MoDT model is equivalent to a
stationary (non-drifting) mixture model. As we increase q, we allow more drift in
the model.

The optimal value of q varies across units (Figure 3.4C, bottom) and depends on the
stability of the tetrode and the firing rate of the unit. Since we use the same value of q

for all units, we chose a relatively low value (2 µV2/hr), which is lower than optimal
for many units but still outperforms a stationary model for the vast majority of units.
This produces a smoothed estimate that may not follow all of the fluctuations in
cluster location, but is still able to capture slower trends (see, e.g., Figure 3.1C).
Despite this excessive smoothing, we still find that cluster drift accounts for 12–30%
of the spike variability observed in longer recordings (Figure 3.4D).

3.3.3 Heavy-tailed residuals in empirical data
We also quantified the heavy-tailed distributions of the spike clusters. First, we note
that these heavy tails are present even in the extracellular background noise when no

35

spikes are detected (Figure 3.5A). This is consistent with the data shown by previous
spike sorting studies, including those that have considered the Gaussian distribution
to be an adequate approximation (Fee, Mitra, and Kleinfeld, 1996; Pouzat et al.,
2004; Prentice et al., 2011).

However, modeling the spike residuals as a Gaussian distribution dramatically
underestimates the fraction of spikes that are located away from the cluster center
(Figure 3.5B,C). Again, the observed distribution is more consistent with a t-
distribution than a Gaussian.

In the MoDT model, the parameter ν is a user-defined constant that controls the
heavy-tailedness of the assumed spike distribution. At ν = 1, it corresponds to
a Cauchy distribution, which has infinite variance. As ν → ∞, it approaches a
Gaussian distribution. The Gaussian version of the MoDT model is equivalent to the
“Mixture of Kalman filters” (Calabrese and Paninski, 2011).

We found that most units were best fit with ν in the range 3–20 (Figure 3.5D), with
some differences between brain areas and cell types. For comparison, Shoham,
Fellows, and Normann (2003) reported a range of 7–15 for single-electrode recordings
in macaque motor cortex. We performed spike sorting using ν = 7 as this provided a
good approximation to both limits of the observed range.

3.3.4 Consequences of using a stationary model
Cluster drift is a well-known feature of chronic recordings, and many techniques
have been proposed to address this phenomenon. A common approach is to break
the recording into chunks, perform spike sorting on each chunk independently, and
finally link the clusters across time (Bar-Hillel, Spiro, and Stark, 2006; Tolias et al.,
2007; Wolf and Burdick, 2009; Shalchyan and Farina, 2014; Dhawale et al., 2017).

This approach comes with a tradeoff: short chunks may not contain enough spikes
from low-firing neurons, but long chunks suffer more from the effects of drifting
clusters. We characterized this tradeoff by breaking our recordings into chunks of
varying duration, re-fitting each chunk with a stationary model, and analyzing the
result. We identified three common failure modes of this approach (Figure 3.6): (A)
fragmented units due to non-clusterable chunks, (B) loss of isolation between units,
and (C) splitting of single units.

Unit fragmentation occurs when a unit cannot be linked across chunks. The proposed
linking algorithms do not link units over a gap in activity, so a single non-clusterable
chunk will break the chain of linked units. We evaluated this by counting how many

36

 Non-clusterable (< 25 spikes)
 Silent (0 spikes)

B

C1

C2

1 10 1002 5 20 50

Chunk duration (minutes)

0

5

10

15

20

25

Fa
ilu

re
 ra

te
 (%

)

Overall failure rates vs. chunk durationD

30 min

Fragmented unitsA

0

300

sp

ik
es

in
 c

hu
nk

Loss of isolationB

30 min

Splitting of single unitsC
C1

30 min

C2

30 min

Non-clusterable chunks

Fragm
ented units

Figure 3.6: Failure modes of a stationary approach. An alternative approach to handling
cluster drift is to break the recording into chunks, perform spike sorting on each chunk
independently, and finally link the spike clusters over time. We identified three common failure
modes of this approach. (A) In order to link a unit over time, each chunk must contain enough
of that unit’s spikes to form a cluster (we used a threshold of 25 spikes). If any chunk is
non-clusterable, then the unit cannot be successfully linked and will become fragmented.
Panel D shows the overall prevalence of these failures for varying chunk durations (dashed
and solid green lines). The light grey lines (dashed and solid) repeat this analysis with the
clusterability threshold set at 1 spike. (B) Drift causes clusters to become smeared out over
time. If we analyze these irregularly-shaped clusters as stationary distributions, then some
units will appear to overlap even though they remain well-isolated over time. This loss of
isolation artificially reduces the yield of good units. (C) Drift may produce a multi-modal density
distribution. As a result, the clustering algorithm may split a single unit into two clusters (C1).
In some cases, these two clusters may be quite well-isolated from each other (C2). (D) Overall
prevalence of these failure modes for varying chunk durations.

37

spikes a given unit fired within each chunk, and we considered any chunk with fewer
than 25 spikes to be non-clusterable for that unit (Figure 3.6A). Figure 3.6D shows
the overall fraction of non-clusterable chunks (dashed green line) and the fraction of
units that are thus fragmented (solid green line).

Longer chunks are therefore needed to ensure that each chunk contains enough spikes
to prevent unit fragmentation. However, longer chunks expose us to more cluster
drift, which can cause a loss of isolation and splitting of single units.

Loss of isolation occurs when two drifting clusters occupy the same region of feature
space at different times, which appears as cluster overlap under a stationary analysis
(Figure 3.6B). Figure 3.6D (line B) shows the fraction of our well-isolated units
would have failed to meet our quality threshold if we had instead used a stationary
model to evaluate the unit isolation.

Cluster drift may also produce a multi-modal distribution that leads to a single unit
being split into two clusters (Figure 3.6C). We quantified this effect by identifying
cases where the Bayes information criterion (BIC) would justify splitting a cluster
into two (Figure 3.6D, line C1). In some cases, the resulting clusters are well-isolated
from one another (less than 5% overlap; Figure 3.6D, line C2) and would likely
require timing information to identify them as a spuriously split unit.

These tradeoffs are faced by any approach, whether model-based or not, that performs
spike sorting on each chunk independently. Although the MoDT model also uses
discrete time frames, it avoids this tradeoff by aggregating data across frames: it
uses the same cluster scale matrix C for all time frames and incorporates a drift
regularizer that effectively smoothes the estimated cluster location µ over time. As
a result, it is able to track units regardless of how few spikes it may fire in a given
time frame, which enables us to use sufficiently short time frames (1 minute) that the
effects of drift are negligible.

Note that some other approaches also avoid this tradeoff. These also use models that
allow for gradual parameter variation and disallow splitting or merging of clusters
over time (Pouzat et al., 2004; Franke et al., 2010; Calabrese and Paninski, 2011;
Carlson et al., 2013).

3.3.5 Implications for spike sorting of chronic recordings
Continuous recordings over the course of days or weeks can be a powerful tool for
studying the long-term dynamics of neural firing properties (Harris et al., 2016).

38

This requires us to track single units over long periods of time, and model-based
clustering using the MoDT model is well-suited for this task.

In particular, establishing when a neuron is silent is often just as important as knowing
when it is firing. However, this involves demonstrating an absence of spikes in
the region of feature space where we expected to see them, and this fundamentally
requires a model-based approach.

This is why we did not consider the possibility of linking over non-clusterable chunks
in our earlier analysis (section 3.3.4). Although the proposed linking algorithms
could be modified to link over a non-clusterable chunk, doing so poses a problem
when using the sorted spike trains to draw conclusions about neural activity. Linking
a unit over a non-clusterable chunk would imply that it was silent during this period.
However, one’s inability to cluster a unit in a given chunk does not certify that it was
silent; it could have fired insufficient spikes to warrant its own cluster or it could have
been spuriously merged into another cluster.

In contrast, the MoDT model effectively interpolates the cluster’s expected location
between consecutive “sightings” of the unit, giving us a reasonable guarantee that
the lack of spikes assigned to this unit in the intervening period is indeed due to its
silence. Although linking is still necessary for continuous recordings, the MoDT
model simplifies the linking process by allowing us to perform spike sorting in
segments up to 10 hours in duration. The use of longer segments ensures that all
units will fire enough spikes to be clustered, reduces the number of segments that
need to be linked, and enables the use of overlapping segments. For example, a
week-long recording can be broken into 21 ten-hour segments with an overlap of
2 hours each. We can then establish cluster correspondences based on the spike
assignments of the overlapping data.

39

3.4 Use of the MoDT model for measuring unit isolation
Consider the following spike sorting algorithm: each spike is randomly assigned to
an arbitrary cluster until there are no more spikes left. This algorithm is completely
unsupervised, computationally efficient, and amenable to parallelization. It is also
very bad at spike sorting. But how do we know?

A common validation step is to run the algorithm on some labeled ground truth data,
i.e., extracellular recordings in which one of the neurons has been simultaneously
recorded using an intra- or juxta-cellular pipette that is able to isolate the action
potentials of a single neuron. We can then evaluate the spike sorting algorithm based
on the correspondence between the known spike train and the spike sorted output.

However, these ground truth datasets are quite rare—such paired recordings are
experimentally challenging to perform—and may not be representative of the
experimental conditions that you wish to record from. Differences in electrode
type and preparation will affect the spectral power density of the recorded signal,
differences in brain area will change the statistics of the background noise and
multi-unit activity, and differences in the specific cell types in the vicinity of the
electrode will affect the separability and ease of clustering. How can we tell if our
algorithm’s output can still be trusted under changing experimental conditions?

Answering this question requires reliable, quantitative measures of unit quality2.
Despite the proliferation of spike sorting methods, considerably less attention has
been paid to this problem. I will review some of these quality metrics (section 3.4.1),
discuss how the MoDT model may be used in this context (section 3.4.2), explain
the “hybrid ground truth” approach to producing labeled datasets (section 3.4.3),
and use this to compare the performance of these unit quality metrics (section 3.4.4).
Finally, I will discuss some of the additional considerations involved in applying
these metrics to chronic data (section 3.4.5).

3.4.1 Background: unit isolation metrics
Regardless of the algorithm used, the output of spike sorting will be spike trains that
have been grouped into clusters. However, not all of these clusters will correspond
to single units (i.e., the spiking activity of individual neurons). Spike detection
and sorting are not perfect, and a given cluster may contain spurious spikes (false
positives) or may not capture all of the spikes from a given neuron (false negatives).

2The spike sorted output (groups of spikes that supposedly correspond to individual neurons) are
also known as “single units” and so “unit quality” refers to these. This is often used synonymously
with “unit isolation”, since good isolation between clusters is a major component of overall quality.

40

Depending on the scientific question being addressed, our subsequent analysis may be
more or less sensitive to the presence of such errors. Reliable, quantitative measures
of unit quality are therefore critically important for the proper interpretation of the
spike sorting output.

Schmitzer-Torbert et al. (2005) introduced two such metrics of unit quality—isolation
distance and L-ratio—which have since found widespread use. These are estimates
of how well individual clusters are isolated from the rest, and are based on the
Mahalanobis distance δnk from cluster k to spike n. If there are Nk spikes in cluster
k, then its isolation distance is the Nk th smallest value of δ2

nk among the spikes not
assigned to that cluster. L-ratio is defined as L/Nk , where L is the sum, over all spikes
n not assigned to cluster k, of the complementary CDF of a χ2

D distribution evaluated
at δ2

nk . This summand can be interpreted as the P-value, using the Mahalanobis
distance as the test statistic, under the null hypothesis that the given spike came from
a Gaussian distribution fitted to the spikes assigned to cluster k.

Hill, Mehta, and Kleinfeld (2011) proposed a more direct quantification of the
number of expected false positives and negatives. By fitting a generative model, such
as a mixture of Gaussians, we can estimate the false positives and negatives due to
misclassification errors: spikes assigned to a cluster that should have been assigned
to a different cluster3. We will be using FP+FN as a shorthand for misclassification
error.

K-means consensus (Fournier et al., 2016) is a non-model-based approach in which
K-means is used to partition the data based on their Euclidean distance in feature
space. This is repeated multiple times from random initializations, and the estimated
misclassification error is computed from the fraction of a given cluster’s spikes that
have been co-partitioned with other clusters’ spikes.

Finally, we propose using a t-distribution to quantify the misclassification error.
We have previously shown that the t-distribution is a good fit for the tails of the
spike distribution (section 3.3.3), which suggests that it may be a good candidate
for estimating the overlap between clusters. We will therefore be comparing these
five metrics—isolation distance, L-ratio, FP+FN from a Gaussian distribution,

3Hill, Mehta, and Kleinfeld (2011) also describe steps for visual inspection and introduce
estimates of false negatives due to other sources, such as failure of spike detection and censoring
from overlapping spikes. These are very important steps and are a critical component in determining
which clusters correspond to putative single units. However, we will not discuss these further since
they are not affected by our choice of model.

41

FP+FN from K-means consensus, and FP+FN from a t-distribution—using hybrid
ground-truth data.

3.4.2 Measuring unit isolation using the MoDT model
The MoDT model may be fitted to previously spike-sorted data by using the given
spike assignments, rather than the znk computed in the E-step, during the M-step
update. If the spike sorting algorithm can provide soft assignments (i.e., each spike
has a probability of belonging to each cluster rather than being fully assigned to a
single cluster), then these probabilities can be substituted directly as ẑnk . For hard
assignments, the equivalent posterior is

ẑnk =


1 if spike n was assigned to cluster k

0 otherwise.

Model fitting still requires iterative evaluation of equations (3.3)–(3.6), but typically
converges in fewer than 10 iterations since ẑnk is fixed.

After fitting the model parameters (αk , µkt , Ck), the znk defined by equation (3.2)
provides a model-based estimate of the probability that spike yn was produced by
each of the source clusters. Summing these znk provides the expected number of
misclassified spikes. Following Hill, Mehta, and Kleinfeld (2011), we define the
false positive (FP) fraction and the false negative (FN) ratio for cluster k as

FP% =
1
|Nk |

∑
n∈Nk

∑
κ,k

znκ

FN% =
1
|Nk |

∑
n<Nk

znk,

whereNk is the set of spikes assigned to cluster k. In the hypothesis testing literature,
the FP fraction is also known as the false discovery rate. The FN ratio does not have
a similar analogue, and it may be greater than one.

The MoDT model also provides a natural generalization of Gaussian-based unit
isolation metrics to the drifting case. By setting ν = ∞, the fitted µkt and Ck

correspond to the time-varying cluster mean and the cluster covariance, respectively4.
These were used to compute Mahalanobis distances for the isolation distance and
L-ratio metrics in Figure 3.8.

4Alternatively, ν could be set to a finite value and the procedure described in section 3.2.4 used
to derive robust estimates of the Gaussian mean and covariance.

42

3.4.3 Hybrid ground truth datasets
To validate the performance of our spike sorting toolchain, we generated “hybrid
ground truth” datasets by injecting known spikes into an acceptor dataset (Rossant
et al., 2016). In order to more realistically capture the waveform variability, we used
the actual spike waveforms from the original data rather than synthesizing them from
the mean waveform, but otherwise followed the procedure described by Rossant et al.

We selected 45 well-isolated units to form our base set of donor units. However,
this selection is unavoidably biased towards units that are easy to cluster using our
current method. In order to more fully characterize the space of possible units, we
generated additional units by modifying the spike amplitude (by scaling the spike
waveforms), firing rate (by dropping a subset of spikes), and drift rate (by temporally
compressing the spike train) of these base units.

We thus obtained 450 donor units that ranged in spike peak amplitude from 50–
700 µV, firing rate from 0.003–30 Hz, and drift rate from 0.06–5000 µV2/hr. For
each donor, we selected an acceptor dataset from the same tetrode but several days
earlier or later. We then spike-sorted each of these 450 4-hour datasets, identified the
cluster that best corresponds to the injected spike set, and measured the number of
false positives and negatives. Unsurprisingly, the results varied widely and depended
on the amplitude and firing rate of the injected units (Figure 3.7A).

While the error rate is undeniably correlated to attributes such as the spike amplitude,
firing rate, and drift rate of the injected units, these properties are a poor predictor of
spike sorting performance on a case-by-case basis (Figure 3.7B).

These results underscore the difficulty of making general claims about spike sorting
performance. Given the variety of experimental conditions—brain area, cell type,
probe geometry, electrode impedance, presence of artifacts, etc.—it is difficult if not
impossible to guarantee that a particular spike sorting algorithm or parameter set
will achieve a given performance specification in all circumstances.

Instead, performance must be evaluated on a case-by-case basis, and in the absence
of ground truth, we must rely on quantitative estimates of unit quality. Indeed, our
proposed measure of misclassification error accurately estimates the true error on
these hybrid ground truth datasets (Figure 3.7C).

43

0 100 200 300 400 500 600 700

0.01

0.1

1

10

Amplitude (uV)
Fi

rin
g

ra
te

 (H
z)

A Error rates on hybrid ground truth datasets

< 0.1%
0.1−1%
1−10%
10−50%
> 50%
No cluster

0.1 1 10 100
0.1

1

10

100

Predicted error %

Tr
ue

 e
rro

r %

B Predicted performance

0.1 1 10 100
0.1

1

10

100

Estimated error %
Tr

ue
 e

rro
r %

C Estimated unit quality

ρ = 0.97ρ=0.73

Figure 3.7: Spike sorting performance. (A) Total error rates (false positives + false nega-
tives) on 450 hybrid ground truth datasets. The location of each dot indicates the amplitude
and firing rate of the injected unit, and its color indicates the total error rate for that unit. Red
X’s indicate cases where no single cluster corresponds to the injected unit. (B) Although
performance is correlated to many attributes of the injected unit, it is difficult to predict the
spike sorting performance based on these attributes alone. ρ is Spearman’s rank correlation.
(C) The misclassification error (section 3.4.2), combined with estimates of false negatives due
to failed spike detection and censoring from overlapping spikes (Hill, Mehta, and Kleinfeld,
2011), provides an accurate estimate of the true error rate.

Figure 3.8: Comparison of unit quality metrics on hybrid ground truth datasets. Using
450 hybrid ground truth datasets, we evaluated how well five unit isolation metrics—isolation
distance, L-ratio, total misclassification error (FP+FN) based on a Gaussian model, FP+FN
based on K-means consensus, and FP+FN based on a ν = 7 t-distribution model—were able
to estimate the true misclassification error. These metrics are defined in section 3.4.1.

44

3.4.4 Comparative analysis of unit isolation metrics
Using these 450 hybrid ground truth datasets, we evaluated how well these five
unit isolation metrics—isolation distance, L-ratio, FP+FN based on a Gaussian
model, FP+FN using K-means consensus, and FP+FN using a ν = 7 t-distribution
model—were able to estimate the true misclassification error (Figure 3.8). Note that
we are considering only misclassification errors and not false negatives due to spike
detection or censoring.

This analysis shows that isolation distance is a poormetric of unit isolation. Reviewing
its definition reveals an important flaw: the contaminating cluster is completely
ignored if it contains fewer spikes than the cluster being measured. In such cases,
the isolation distance is determined by the location of the second-nearest cluster, and
may be arbitrarily large. As a result, a large isolation distance does not imply a low
misclassification error, particularly for units with many spikes. Even under ideal
conditions, the relationship between the isolation distance and the error rate depends
heavily on the dimensionality of the feature space, making it difficult to compare
quality thresholds across experimental settings.

The L-ratio shares many of these same shortcomings: the correspondence between
L-ratio and error rate is pretty weak, and this relationship is also highly dependent
on the dimensionality of the feature space.

The remaining metrics—estimated misclassification error based on a Gaussian model,
K-means consensus, or a ν = 7 t-distribution model—are easier to interpret and
offer better performance. Of these, the t-distribution model provided the most
accurate estimates. Additional analysis indicates that it is robust to variations in the
underlying distribution of the clusters being measured (Shan, Lubenov, and Siapas,
2017, Figure C.1) and is able to provide accurate estimates of the false positives and
negatives separately (Shan, Lubenov, and Siapas, 2017, Figure C.2).

3.4.5 Measuring unit isolation quality in chronic recordings
The analysis of long recordings also requires unit quality metrics that can handle
drift. The MoDT model accomplishes this by explicitly tracking the clusters over
time. The use of a t-distribution also provides a natural robustness to outliers (Figure
3.3) and produces accurate estimates of misclassification error over a wide range of
conditions (Figure 3.8).

However, the MoDT model is still a highly structured model. Each cluster is ellipti-
cally symmetric with a predetermined tail distribution, and the drift regularization

45

discourages sudden changes in the cluster’s location. It is only through slow drift over
time that we can trace out an irregularly-shaped cluster in feature space (e.g., Figure
3.6B). In contrast, non-parametric approaches allow clusters to take on arbitrary
shapes, which may require additional review to ensure that they correspond to
biophysically plausible spike distributions.

Furthermore, it is important to acknowledge that unit isolation quality is a time-
varying quantity. Drift may cause two clusters to be well-separated at one point in
time, but begin to overlap later. If subsequent analyses are restricted to a particular
subset of the overall recording, then the unit isolation measures should be based
on those epochs as well. Model-based approaches accommodate this requirement
by providing a continuous estimate of misclassification error, which may then be
integrated over the appropriate epochs.

Finally, we would like to caution that isolation quality is only one aspect of unit
quality overall. Hill, Mehta, and Kleinfeld (2011) describe a number of additional
quality measures. For example, estimating false negatives due to spike detection is
an equally important yet frequently overlooked metric. This is especially important
in the presence of cluster drift, as fluctuations in spike amplitude may affect detection
efficiency, which could manifest as apparent changes in firing rate.

46

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100
Spike-sorting performance on overlapping spikes

Inter-spike interval (ms)

T
ru

e
po

si
tiv

e
ra

te
 (

%
)

Traditional spike detection 0.2 7.6
Sparse deconvolution 0.3 3.1
+ overlap reassignment 0.5 0.8

FP% FN%

Figure 3.9: Spike sorting performance on overlapping spikes. Fraction of hybrid ground
truth5 donor spikes that were detected and assigned to the correct source (true positive rate)
as a function of the time between spikes (inter-spike interval). The overall false discovery rate
(FP%) and false negative rate (FN%) for each method are reported in the legend. Traditional
spike detection uses the nonlinear energy operator for spike detection and principal com-
ponents analysis (PCA) for feature extraction. Sparse deconvolution is the spike detection
approach described in Chapter 2. Overlap reassignment is the described in section 3.5.1.

3.5 Overlapping spikes
If two neurons fire near-simultaneously, their spikes will overlap and produce a
waveform that is the sum of both waveforms. We discussed this earlier in section 2.3
in the context of spike detection. There, we showed that our spike detection method
could reliably deconvolve spikes that are separated by as little as 0.3 ms. Overall, it
offers a substantial improvement over traditional spike detection without sacrificing
performance on non-overlapping spikes (Figure 3.9).

However, this method still cannot deconvolve very closely-overlappig spikes; it
simply is not capable of distinguishing between the sum of two simultaneous spikes
and a single large spike. These then show up as outliers during the clustering process.
Fortunately, thanks to the t-distribution’s robustness to outliers, these outliers do
not substantially affect the model fitting (Figure 3.3) and can be ignored during the
interactive clustering process.

5 The hybrid ground truth dataset analyzed in figures 2.4 and 3.9 was created slightly differently
from the datasets described in section 3.4.3. Instead of choosing a donor unit and acceptor dataset
from the same tetrode on different days, I selected 12 simultaneously-recorded donor units (from
different tetrodes) in order to preserve the temporal structure of the spikes. The average firing rates of
the donor units ranged from 0.15 to 26.4 Hz, with a combined firing rate of 76.4 Hz. The acceptor
dataset was relatively quiet, with a spike detection rate of 1.5 Hz.

47

0.5 ms

10
0

V

A Detected spikes B Traditional
PCA features

C PCA with
deconvolution

D MoDT with added overlap clusters

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

20

40

60

80

100
E Detection and clustering efficiency for overlapped spikes

Inter-spike interval (ms)

Tr
ue

 p
os

iti
ve

 ra
te

 (%
)

Template matching
MoDT + overlap clusters
PCA with deconvolution
Traditional PCA

FP% FN%
1.1
0.4
0.2
0.2

1.2
2.5
5.7
7.6

Figure 3.10: Model-based overlap reassignment. Feature space scatterplot containing
some instances of overlapping spikes. Blue and red ellipses show the model clusters for
single spikes; overlapping spikes appear as outliers. By augmenting the model with overlap
clusters (green ellipses), we can reassign these overlapping spikes to the appropriate units.

Afterwards, a number of options are available. If the estimated number of false
negatives due to spike overlap (Hill, Mehta, and Kleinfeld, 2011) is sufficiently low,
then it may be adequate to leave the spike assignments as-is. Unless otherwise
specified, this is the method used for the analyses in section 3.3.

Alternatively, we can augment the fitted model with additional components corre-
sponding to these overlapped waveforms (Figure 3.10). This is described in more
detail in the next section. Any spikes assigned to these overlap clusters are then
reassigned to their source units. In our test dataset, this correctly reassigned more
than 80% of overlapping spikes (Figure 3.9), yielding an overall false negative rate
of less than 1%.

A third option is to transform the fitted cluster centers µkt back into waveform space
for use in a template matching algorithm. This approach is described in more detail
in (Shan, Lubenov, and Siapas, 2017).

3.5.1 Model-based overlap reassignment
In this section, we describe how we augmented the model with overlap clusters. To
generate the overlap cluster corresponding to units k1 and k2 firing with a particular
temporal offset, we first need to determine their temporal offsets τ1, τ2 relative to the
detected spike time. To do this, we construct an overlap waveform by overlapping
their individual mean waveforms Wµk1 and Wµk2 , where W is the P × D matrix
corresponding to the D basis waveforms. We then pass this through the spike
detection algorithm to determine the center of the detected spike. For example, all of
the overlap waveforms in Figure 3.10 ended up aligned to the blue spike. Note that
this is just an approximation; it doesn’t take into account the cluster drift over time or
the waveform variability, but it is easy to implement.

48

This gives us the transformation matrices

U1 = W
ᵀ
T τ1W

U2 = W
ᵀ
T τ2W ,

where T τ is the P × P matrix corresponding to a temporal shift by τ samples. These
can be used to derive the model parameters of the overlap cluster:

µ = U1µk1 + U2µk2

C = U1Ck1U
ᵀ

1 + U2Ck2U
ᵀ

2

α = αk1αk2β.

β is the probability of any two units firing with the given temporal offset, and depends
on the overall spike detection rate.

However, the number of possible cluster combinations is quite large (on the order of
K2) and is compounded by the number of temporal offsets that we need to consider
(we used 11 offsets from −0.2 to +0.2 ms). We pruned the number of overlap
clusters by evaluating the posterior probability (znk) that a spike located at the overlap
cluster’s center belongs to that cluster vs. one of the base clusters, and keeping
only the overlap clusters with the largest posterior. On our benchmarking computer
(section 3.2.3), it took 2.9 seconds to generate and prune the overlap clusters (from a
base model with K = 17) and 68.8 seconds to process the test dataset (4.2 million
spikes) with 750 overlap clusters.

This method works best when the overlapping spikes occur simultaneously (inter-
spike interval = 0 in Figure 3.9), because that provides the best conditions for feature
extraction. When the spikes are slightly offset, the contribution of the second spike
may be nearly orthogonal to the waveform bases, resulting in poor discrimination.

49

C h a p t e r 4

IMPROVING REGULARIZERS FOR SPARSE DECONVOLUTION

In Chapter 2, we set up sparse deconvolution as the regularized least-squares problem

minimize
x

1
2
‖Ax − b‖2 + βg(x), (4.1)

where x is the latent feature vector being optimized,A is a linear operator representing
convolution with a known set of kernels, b is the given data vector we wish to
approximate, and β is a tuning parameter that controls the relative importance of the
sparsity-inducing regularizer g(x).

The simplest and most popular sparsity-inducing regularizer is the l1 norm, the sum
of the absolute values of the vector elements. Also known as the lasso penalty,
this regularizer was originally developed for factor selection in regression problems
(Tibshirani, 1996), but has become extremely popular for sparse approximation
problems such as compressive sensing (Donoho, Elad, and Temlyakov, 2006; Candes,
2008) and deconvolution (Taylor, Banks, and McCoy, 1979; Chen, Donoho, and
Saunders, 2001), including for neuroscience applications such as deconvolution of
calcium imaging data (Vogelstein et al., 2010; Pnevmatikakis et al., 2016).

However, the l1 norm does not always produce the desired results, as we saw in
section 2.2.4, so in this chapter I will discuss two modifications that were necessary
for effective deconvolution, and were not adequately addressed by the prior work.

Section 4.1 discusses the nonconvex log regularizer, which produces sparser solutions
with less approximation error. However, efficient optimization using this regularizer
requires a closed-form expression for its proximal operator, and the prior work did
not provide an accurate expression for this operator. So in this section I will derive
the correct expression for the log regularizer’s proximal operator.

Section 4.2 discusses regularizers that are organized into nested groups of features.
These nested groups allow us to specify the desired sparsity structure for a decon-
volution solution. Under some conditions, the proximal operator of a nested group
regularizer corresponds to the composition of elementary proximal operators, and I
will show that this is true for a more general class of regularizers than previously
reported, including the nonconvex log regularizer discussed in section 4.1.

50

=0.2

=0.5

=1

=2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

=

=10

=1

=0.1

Regularizer
comparison
(=1)

0 1 2 3 4
0

1

2

3

4

Feature density nnz(x)/T

Ap
pr
ox

im
at
io
n
er
ro
r
‖
A

x
−

b‖
2 /
‖
b‖

2

Nonconvex log regularizer logreg(x) = α log(|x | + α)

Comparison of
different α

|x |

lo
gr

eg
(x
)

Figure 4.1: Application of the nonconvex log regularizer to a sparse deconvolution
problem. The log regularizer logreg(x) = α log(|x | + α) is a nonconvex sparsity-inducing
regularizer. Inset: This shows the shape of logreg(x) for different values of α. Note that the
slope is 1 at x = 0 and decreases for larger x. In particular, the slope is 1

2 at x = α. As
α→∞, logreg(x) → |x |. Main panel: This shows how the choice of regularizer affects the
approximation error and sparsity of the solution to a sparse deconvolution problem (see text).
Let us first consider the α = ∞ case (black line), which is equivalent to regularization using
the convex l1 norm. As we vary β, the parameter that weights the regularizer in the overall
objective, we move along some frontier that trades off sparsity for reduced approximation
error. By reducing α, however, we arrive at solutions that are both sparser and have less
approximation error.

4.1 The nonconvex log regularizer
In this section, we will investigate the use of a nonconvex log regularizer as the
sparsity-inducing regularizer g(x) in the sparse deconvolution problem

minimize
x

1
2
‖Ax − b‖2 + βg(x). (4.2)

Although other authors have used a slightly different notation, I will define the log
regularizer as

logreg(x) , α log(|x | + α). (4.3)

Including the factor of α in front makes the derivative logreg′(0+) = 1 for all α
(Figure 4.1, inset), and gives us logreg(x) → |x | as α→∞. The overall regularizer
in (4.2) is simply the sum over each element of the feature vector

g(x) =
∑

i

logreg(xi). (4.4)

51

This regularizer was analyzed by Candes, Wakin, and Boyd (2008), who demonstrated
that it may produce sparser solutions with less approximation error. I have observed
this same improvement in my own sparse deconvolution problems1 (Figure 4.1), and
can confirm that the log regularizer produces much better solutions for the spike
detection problem (Figure 2.2 in Section 2.2.4). Since the slope of this regularizer
flattens out for larger x (Figure 4.1 inset), it does not bias solutions towards zero as
much, and the concavity of this regularizer discourages single events from being
decomposed into the sum of two correlated events.

Defining a regularizer is all well and good, but how do we go about optimizing
it? Candes, Wakin, and Boyd (2008) used reweighted l1 minimization, which
entails wrapping an outer loop around a convex l1 minimization. In this section,
we will instead derive the proximal operator for this regularizer, which enables
us to minimize it directly. Section 4.1.1 provides some background on proximal
operators and reviews some prior work on this regularizer. Section 4.1.2 then derives
the proximal operator for this regularizer, which is then restated more concisely in
Section 4.1.3.

4.1.1 Background: proximal operators and prior work
The proximal operator of a cost function g(x) is defined as

proxg(y) , arg min
x

g(x) +
1
2
‖x − y‖2. (4.5)

In essence, the proximal operator seeks tominimize g(x)while also staying close to the
input point y. Algorithms that rely on this proximal operator (Parikh and Boyd, 2014)
have become the de facto standard for large-scale nonsmooth optimization, making
the existence of a simple proximal operator a necessity for practical implementation.

For example, in FISTA (Beck and Teboulle, 2009), the accelerated proximal gradient
descent algorithm that we used in Chapter 2, each iteration k of the algorithm requires
performing the minimization

x(k+1) = arg min
x

f (y(k)) + 〈∇ f (y
(k)), x − y(k)〉 + βg(x) +

L(k)

2
‖x − y(k)‖2

= arg min
x

β

L(k)
g(x) +

1
2

x −

(
y(k) −

1
L(k)
∇ f (y

(k))
)

2
.

1Specifically, this problem analyzed in Figure 4.1 is a form of sparse time-frequency analysis.
The kernels are a set of Gaussian-windowed complex sinusoids spanning many different frequencies
and window lengths with a high degree of redundancy. This is somewhat analogous to a continuous
wavelet transform using Morlet/Gabor wavelets, except that we are relying on the sparse deconvolution
to select the best wavelet σ parameter on a case-by-case basis.

52

Since our choice of g(x) is the sum of logreg over the elements xi, and the squared
norm ‖x − y‖2 is likewise separable over xi, we can find x(k+1) by performing the
minimization for each element independently:

x(k+1)
i = arg min

xi
β̃ logreg(xi) +

1
2
(xi − ỹi)

2,

where β̃ = β/L(k) and ỹ = y(k) − 1
L(k)∇ f (y

(k)). In other words, we need the proximal
operator of

h(x) = β̃ logreg(x) = β̃α log(x + α). (4.6)

As we will show in the next section, the cost function (4.6) admits a simple proximal
operator. This is discussed by Malioutov and Aravkin (2014), but they only provided
an expression for a local minimum and not necessarily the global minimum. They
rationalize this by arguing that the reweighted minimization of Candes, Wakin, and
Boyd (2008) also would have converged to this local minimum.

More concerning, however, is the fact that their expression is incorrect for certain
regions of parameter space (specifically, when α > β̃). The authors make no mention
of this2, and while it may not have been an issue for their choice of optimization
algorithm, which encounters only fixed values of α and β̃, our use of backtracking
(which adjusts L(k) and therefore β̃ on every iteration) and an annealing schedule for
α (which gradually reduces α from∞ over the course of multiple iterations) requires
that we have an expression for proxh that is correct for all values of α and β̃.

4.1.2 Deriving the proximal operator for the log regularizer
In this section, we will derive the proximal operator for

h(x) , βα log(|x | + α). (4.7)

That is, if we introduce the proximal objective function (Figure 4.2, left)

J(x; y) , h(x) +
1
2
(x − y)2, (4.8)

then we wish to find an expression for the proximal operator (Figure 4.2, right)

proxh(y) , arg min
x

J(x; y). (4.9)

2This incorrect expression for proxh was also repeated by Bayram (2015) and Li, Ding, and
Li (2015), and these authors also failed to pass along Malioutov and Aravkin’s warning that the
expression is only a local minimum.

53

0 0.5 1

0

Objective function

 = 1
 = 0.1

0 0.5 1 1.5
0

0.5

1

1.5
Proximal operator

Figure 4.2: An illustration of the proximal operator of the log regularizer. This figure
illustrates how we derive the proximal operator of the log regularizer h(x) = βα log(|x | + α).
In this example, α = 0.1 and β = 1. Left: The proximal objective function J(x; y) for different
values of y. Local minima are marked with dots. Right: proxh(y), i.e. the value of x that
minimizes J(x; y) for each value of y. Both panels are color-coded to show the different
regimes of this objective function. For small y, J(x; y) has no stationary points and our only
minimum is the boundary point x = 0 (blue). As y increases, we gain a stationary point at
some ξ > 0, giving us two distinct local minima (red): one at the boundary x = 0 and one at
the stationary point x = ξ. At some critical value yc , the global minimum switches from 0 to ξ.
For large y, x = 0 is no longer a local minimum, leaving only the nonzero minimum (purple).

We will make the following assumptions regarding α and β:

• α > 0. If α = 0, then h(x) = 0 for all x.

• β > 0. If β = 0, then h(x) = 0 for all x.

In the remainder of this section, we will derive an expression for proxh by establishing
the following:

• If y < 0, then proxh(y) = − proxh(−y).

• If 0 ≤ y ≤ y0, where y0 = 2
√
αβ − α, then proxh(y) = 0.

• If y0 < y ≤ β, then:

– If α ≥ β, then proxh(y) = 0.

– If α < β, then let yc be the solution to φ(yc) = 0, defined in (4.18), and:

∗ If y ≤ yc, then proxh(y) = 0.

∗ If y > yc, then proxh(y) = ξ2(y), where ξ2 is defined in (4.16).

• If y > β, then proxh(y) = ξ2(y).

54

For the first point (regarding y < 0), note that h(−x) = h(x) implies that J(−x;−y) =
J(x; y) and hence proxh(−y) = − proxh(y). Therefore, without loss of generality, we
will assume that y ≥ 0 in the remainder of this section.

This allows us to restrict our search to x ≥ 0. We can show this by contradiction: if
x < 0, then h(x) > h(0) since h is uniquely minimized at zero and (x− y)2 > (0− y)2

since y ≥ 0, therefore J(x; y) > J(0; y), indicating that this x < 0 cannot be a
minimizer of J.

Now let’s get an expression for the stationary points of J, i.e. the points ξ where the
derivative J′(ξ; y) = 0. Since we are only considering x ≥ 0, the derivative of J

with respect to x is given by

J′(x; y) =
αβ

x + α
+ x − y. (4.10)

A little bit of algebraic manipulation yields

J′(x; y) =
1

x + α

(
x2 + (α − y)x + α(β − y)

)
(4.11)

=
1

x + α

((
x +

α − y

2

)2
−

d
4

)
, (4.12)

where

d , (α − y)2 − 4α(β − y). (4.13)

If d < 0, then (4.12) shows that J′(x; y) > 0 for all x ≥ 0, and x = 0 must be the
unique global minimum. If d = 0, then we have an inflection point at x = 1

2 (y − α),
but J′(x; y) > 0 everywhere else, so x = 0 is still the unique global minimum.

If d ≥ 0, then we can factorize (4.12) further into

J′(x; y) =
(x − ξ1)(x − ξ2)

x + α
, (4.14)

where

ξ1 ,
1
2
(y − α −

√
d) (4.15)

ξ2 ,
1
2
(y − α +

√
d). (4.16)

Inspecting the sign of (4.14) shows that if ξ1 ≥ 0, then it is a local maximum, and if
ξ2 ≥ 0, then it is a local minimum.

To summarize what we’ve shown so far:

55

• If d ≤ 0, then x = 0 is the global minimum.

• If d > 0 and ξ2 ≥ 0, then ξ2 is a local minimum.

For the next part, it will help to identify a few regimes of our problem (the color-coded
regions in Figure 4.2). If we let

y0 , 2
√
αβ − α, (4.17)

then note that y0 ≤ β (since β − y0 = (
√
β −
√
α)2 ≥ 0), which allows us to partition

the real line into 3 regimes:

1. y ≤ y0.
Rearranging our definition of d (4.13), we find that d = (y + α)2 − 4αβ, so if
y + α ≤ y0 + α = 2

√
αβ, then d ≤ 0 and hence x = 0 is the global minimum.

2. y0 < y ≤ β.
Using a similar argument as above, we can note that d > 0, so ξ2 is real and
could potentially be a local minimum. Let’s save further discussion for later.

3. y > β.
We’ve already established that d > 0 since y > β ≥ y0. Substituting the fact
that β − y < 0 into our definition of d (4.13), we find that d > (α − y)2 and
hence

√
d > |y − α |. Substituting this into our definition of ξ2 (4.16) shows

that ξ2 >
1
2 (y − α + |y − α |) ≥ 0, and hence ξ2 is a local minimum.

Furthermore, the derivative (4.10) gives us J′(0; y) = β − y < 0, which means
that x = 0 is a local maximum and therefore ξ2 must be the global minimum.

We will need to further subdivide the middle regime (y0 < y ≤ β) into two cases:
α ≥ β and α < β.

If α ≥ β, then we have y ≤ β ≤ α, which means that both α − y ≥ 0 and β − y ≥ 0.
Substituting this into (4.11) shows that

J′(x; y) ≥
x2

x + α

and hence J′(x; y) > 0 for all x > 0, implying that x = 0 is the global minimum.

This last case (y0 < y ≤ β and α < β) is the trickiest and the rest of this section is
devoted to it. We will show that ξ2 > 0, meaning that it is a valid local minimum,
and then show that there exists a threshold yc that can be used to determine whether
x = 0 or x = ξ2 is the global minimum.

56

First, let’s show that ξ2 > 0.

ξ2 =
y − α +

√
d

2
(1)
>

y − α

2
(2)
>

y0 − α

2
=

√
αβ − α =

√
α(

√
β −
√
α)
(3)
> 0,

where the marked inequalities follow from the previously-established facts that (1)
d > 0, (2) y > y0, and (3) α < β. This means that ξ2 is a local minimum. However,
since J′(0; y) = β − y ≥ 0, our boundary point x = 0 may also be a local minimum.
We therefore need to determine whether J(0; y) or J(ξ2; y) is smaller.

To this end, let us define

φ(y) , J(ξ2(y); y) − J(0; y), (4.18)

where the notation ξ2(y) simply reminds us that our expression for ξ2 depends on y.
Taking the derivative of this, we get

φ′(y) = J′(ξ2(y); y) ξ′2(y) +
∂

∂y
J(ξ2(y); y) −

∂

∂y
J(0; y)

= [0] ξ′2(y) + [y − ξ2(y)] − [y]

= −ξ2(y). (4.19)

Here, we have used the fact that J′(ξ2; y) = 0 since ξ2 is a stationary point, and that
∂J(x; y)/∂y = y − x. Since we have already established that ξ2(y) > 0, this means
that φ(y) is strictly monotonically decreasing in y over the interval [y0, β].

Next, we will show that φ(y0) > 0 while φ(β) < 0. We had previously shown that
x = 0 is the unique global minimum when y = y0, and since ξ2(y0) =

√
αβ − α , 0,

we must have J(0; y0) < J(ξ2(y0); y0) and hence φ(y0) > 0.

To show that φ(β) < 0, note that ξ1(β) = 0 whereas ξ2(β) = β − α > 0, which means
that J′(x; β) = x(x−ξ2)

x+α < 0 for all x in the nonempty interval (0, ξ2). Since ξ2 > 0,
integrating J′(x; β) from 0 to ξ2 gives us J(ξ2; β) − J(0; β) < 0 and hence φ(β) < 0.

To summarize the last few paragraphs: φ(y0) > 0, φ(y) is monotonically decreasing
over the interval [y0, β], and φ(β) < 0. Therefore there must exist exactly one
yc ∈ (y0, β) such that φ(yc) = 0. This yc acts as a threshold such that x = 0 is the
unique global minimum for all y < yc and x = ξ2 is the unique global minimum for
all y > yc. At y = yc, the two are tied, and we can arbitrarily choose x = 0 as the
minimum.

Unfortunately, I do not have a closed-form expression for yc and we will need
to find it numerically by solving for φ(yc) = 0. However, the fact that φ(y) is

57

monotonic and we know that yc ∈ (y0, β) allows us to use very simple methods like
bisection. Since the derivative φ′(y) = −ξ2(y) is known and bounded away from
zero, Newton’s method can also be very effective. Furthermore, in a problem like
sparse deconvolution, the cost of computing yc is negligible compared to the cost of
applying the proximal operator to the millions of entries in the feature vector x.

4.1.3 Statement of the proximal operator for the log regularizer
For readers who skipped the previous section, we are considering the cost function

h(x) = βα log(|x | + α), (4.20)

where α, β > 0, and we wish to derive an expression for the proximal operator

proxh(y) = arg min
x

h(x) +
1
2
(x − y)2. (4.21)

First, let us define the following:

y0 = 2
√
αβ − α (4.22)

d(y) = (y − y0)(y + α + 2
√
αβ) (4.23)

ξ(y) =
1
2
(y − α +

√
d(y)) (4.24)

= y −
2αβ

y + α +
√

d(y)
. (4.25)

The two expressions for ξ(y) are mathematically equivalent, but the second form was
slightly better-behaved in my numerical tests.

Next, let us define the constant

yc =


(see below) α < β

β α ≥ β.
(4.26)

In the case where α < β, then yc is the solution to φ(yc) = 0, where

φ(y) = h(ξ(y)) − h(0) +
1
2
(ξ(y) − y)2 −

1
2
y2. (4.27)

Note that yc ∈ (y0, β) and that φ′(y) = −ξ(y) < 0 in this interval, so numerical
methods such as bisection or Newton’s method would be appropriate here. In my
numerical experiments, I found that Newton’s method typically converged to machine
epsilon within 6 iterations.

58

0 1 2
y

0

1

2

pr
ox

(y
)

 <

 = 0.2
 = 1

Prior work True argmin
0 1 2

y

0

1

2

pr
ox

(y
)

 >

 = 2
 = 1

Figure 4.3: Comparison of the proximal operator to prior work. This figure compares
our expression for the proximal operator (4.28) to the expression reported in the prior work
(Malioutov and Aravkin, 2014). Left: When α < β, there is a region in which there are two
local minima (Figure 4.2A). The prior work switches to the nonzero minimum immediately,
even though it is not the global minimum until y exceeds some higher threshold. Right: When
α > β, the prior work reports a negative result for some values of y, which is incorrect.

Then the proximal operator is given by

proxh(y) =


0 |y | ≤ yc

sgn(y)ξ(|y |) |y | > yc.
(4.28)

Malioutov and Aravkin (2014) arrived at a similar expression, but they used y0

instead of yc, which leads to the inaccuracies shown in Figure 4.3.

59

4.2 Nested group regularizers
As a regularizer, the l1 norm produces solutions with few active (i.e., nonzero)
elements but does not care how these active elements are arranged. As we saw in
Section 2.2.4, this is not appropriate for applications such as spike detection, where
we may wish to impose a different sparsity structure on the solution. In this section,
we will discuss how a generalization of the “group lasso” may be used to impose the
desired sparsity structure.

Like the traditional lasso, the group lasso regularizer was originally developed for
factor selection in regression problems (Yuan and Lin, 2006). It partitions the
elements of x into groups Gi and takes the l2 norm of each group

g(x) =
∑

i

βi‖xGi ‖. (4.29)

This produces solutions with few active groups, but does not further incentivize
sparsity within a group. This can be also seen as a generalization of other norms
that have been used for regularization: if the βi are all the same and each group
contains the same number of elements, then x may be reshaped into a matrix and
this reduces to the matrix l2,1 norm. If each group contains only one element of x,
then this reduces to the l1 norm.

The group lasso regularizer thus provides a mechanism by which we may impose
some sparsity structure on the solution. For example, consider a single-channel spike
detection problem (Figure 4.4A), where we’ve reshaped the x vector into a T × D

matrix (T time steps, D spike basis waveforms)3. We expect spikes to be sparse
over time, but once a spike is detected at time t, we don’t expect the basis loading
vector x[t, :] to be sparse. We can produce this sparsity structure by creating a lasso
group for each row of this matrix. Furthermore, since the l2 norm is invariant under
orthonormal transformations, this also guarantees that the sparsity pattern of our
solution is invariant to orthonormal transformations of the D basis waveforms.

This extends naturally to the multi-channel case (Figure 4.4B), where we’ve reshaped
the x vector into a T × DC matrix. We still expect spikes to be sparse over time, so
we have a lasso group for each row of the matrix. Additionally, we now expect spikes
to have a sparse spatial footprint (i.e., to be detected on a small number of channels),

3Apologies for transposing the matrix; Chapter 2 set up the features as a D × T matrix and opted
for column-sparsity rather than row-sparsity.

60

pca1 pca2 pca3

Basis waveforms

(A) Single-channel problem
using group lasso

1 0 0 0

2 0 0 0

3 270 154 43

4 0 0 0

5 509 95 149

6 0 0 0

7 0 0 0

8 346 -422 -13

9 0 0 0

Time

One lasso
group per
time step

(B) Multi-channel problem with nested lasso groups

1 2 3
Channel 1

1 2 3
Channel 2

1 2 3
Channel 3

1 2 3
Channel 4

1 2 3
Channel 5

Time

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 114 115 -3 270 154 43 145 34 11

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 289 82 46 502 94 149 439 171 -156 262 89 14 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 146 -192 -13 308 -426 -1 142 -180 23 0 0 0

One lasso group
per time step

One lasso group per
time step per channel

Figure 4.4: Group lasso regularizer applied to the spike detection deconvolution prob-
lem. The group lasso regularizer (equation 4.29) produces solutions that have few active
groups, but does not further incentivize sparsity within a group. (A) In the single-channel case,
we want our solution to be row-sparse, so we add a lasso group for every time step. (B) In the
multi-channel case, we can encourage the detected spikes to have a sparse spatial footprint
by adding a lasso group for each channel at every time step. These new lasso groups (red)
are nested within the old lasso groups (blue), allowing for a simple proximal operator.

so we now add a lasso group for each of the channel subsets at every time step4. As
before, this regularizer remains invariant to orthonormal transformations of the D

basis waveforms for each channel.

Note that these new per-channel lasso groups (red) are nested within the cross-channel
lasso groups (blue). It turns out that this nested structure is critically important
for ensuring that this regularizer still has a simple proximal operator, and the next
few subsections of this document are devoted to deriving this proximal operator.
Section 4.2.1 discusses some prior work on nested and otherwise overlapping group
regularizers. Section 4.2.2 introduces the concept of a coordinatewise minimized at
zero (CMZ) function, which is exploited in Section 4.2.3 to derive rules for combining
elementary functions into more complicated regularizers while maintaining a simple
proximal operator. Finally, Section 4.2.4 uses these propositions to derive the
proximal operator for the nested group lasso regularizer shown in Figure 4.4B.

4We did not include this spatial sparsity in Chapter 2, since we were primarily concerned with
tetrode data, for which this spatial sparsity does not make sense. However, this may be of concern for
data acquired using high-density probes.

61

4.2.1 Prior work
The main result of this section—that a regularizer constructed of nested l2 norms (also
known as “hierarchical” or “tree-structured” regularizer) admits a simple proximal
operator—was previously derived by Jenatton et al. (2011) and, for a special case
dubbed the “sparse group lasso”, by Simon et al. (2013). However, both sets of
authors relied heavily on the convexity of the regularizer and so it is not clear whether
their results would apply in a nonconvex setting, such as with the log regularizer
that we described in Section 4.1. Therefore5 we will re-derive those results without
assuming that the regularizer is convex. The proofs will be very different, but the
results (the expressions for the proximal operators) will end up being very similar.

But before we continue, it is worth discussing some additional related work. Besides
the l2 norm, other forms of nested regularizers are also convenient to optimize:
nested l∞ norms also admit a simple proximal operator (Zhao, Rocha, and Yu, 2009;
Jenatton et al., 2011), and nested l1 norms can be converted into an equivalent
non-overlapping regularizer.

For the more general case of overlapping groups (where they may not be nested in
a hierarchical structure), the problem becomes more difficult. Yuan, Liu, and Ye
(2011) consider applying the group lasso regularizer to non-nested groups, but are
unable to find a simple expression for the proximal operator, instead reformulating it
as a set of smaller constrained smooth optimization problems. Alternatively, Jacob,
Obozinski, and Vert (2009) propose a reformulation of the group lasso regularizer
that handles the overlapping case slightly differently and admits a simple proximal
operator, but at the cost of a larger problem size (see also Rao et al., 2016). This
can be applied to the multi-channel spike detection problem to create a point-set
topology on the channels that participate in a single spike, which may be of interest
for some applications.

4.2.2 Coordinatewise minimized at zero (CMZ) functions
This section and the next are pretty dense. The proofs are rather tedious and I can’t
promise that they’ll offer any useful insight into the structure of the problem. Based
on feedback from readers, I would advise skipping ahead to Section 4.2.4 to decide
for yourself whether the payoff is worth the effort.

Let us take an additive approach to deriving the proximal operator for the nested
5This is a bit of revisionist history; in reality, I was simply unaware of their results when I set out

to determine whether the log regularizer would be compatible with nested groups.

62

group regularizer. Assuming that we have a regularizer h with a simple proximal
operator, how can we combine this with some elementary function f so that the
combination still has a simple proximal operator?

It turns out that we will need some restrictions on h; specifically, we will be assuming
that it is coordinatewise minimized at zero (CMZ), defined below.

Definition 1 (Coordinatewise minimized at zero (CMZ) and CMZ nondecreasing).
A function g : Rn 7→ R is coordinatewise minimized at zero if for any x ∈ Rn and
any coordinate index i ∈ {1, . . . ,n}, g is minimized by setting the coordinate xi = 0
(holding the other coordinates x j,i fixed):

∀x, i 0 ∈ arg min
xi

g(
[
x1 · · · xi−1 xi xi+1 · · · xn

]
).

In other words, if we construct x̃ so that x̃i = 0 but x̃ j = x j for j , i, then g(x̃) ≤ g(x).
Additionally, g is CMZ nondecreasing if g(αx + (1 − α)x̃) is nondecreasing in α for
α ≥ 0.

Note that the lp norms ‖x‖p are all CMZ nondecreasing, as are any nondecreasing
function of these norms, such as 1

2 ‖x‖
2
2 . However, not all norms are CMZ; as a

counterexample, consider

g(x) = x
ᵀ

[
3 2
2 3

]−1
x g(

[
1
1

]
) = 0.4 g(

[
0
1

]
) = 0.6.

Conversely, not all CMZ functions are norms; consider the l0 “norm” or the log
regularizer described in Section 4.1, both of which are CMZ but are not norms.

Before we continue, we will need to discuss some notation regarding the proximal
operator. For a function g : Rn 7→ R, let

Jg(x; y) , g(x) +
1
2
‖x − y‖22 . (4.30)

This is the objective function being minimized by the proximal operator

proxg(y) , arg min
x

Jg(x; y). (4.31)

g is often assumed to be convex, in which case Jg is strongly convex and therefore
has a unique minimizer. However, if g is not convex, then there may be multiple
x that minimize Jg(x; y). To accommodate this case, this subsection and the next
will treat proxg(y) as a set-valued function, so a statement like proxg(y) = proxh(z)

63

indicates that the set of minimizers of Jg(x; y) is the same as the set of minimizers of
Jh(x; z). This is a slight abuse of notation, since the rest of this document (and the
optimization literature in general) expects proxg(y) to be a regular (single-valued)
function. In that context, if multiple x can minimize Jg(x; y), then proxg(y) will
select one arbitrarily.

We will always assume that a minimizer exists (i.e., proxg(y) is non-empty); this is
guaranteed if g is convex or if g is CMZ and lower semicontinuous (Proposition 1).

Proposition 1. If g is CMZ and lower semicontinuous, then proxg(y) is non-empty.

Proof. The CMZ property implies that g(0) ≤ g(x) for all x, and therefore Jg(x; y)
is bounded below by φ(x; y) , g(0) + 1

2 ‖x − y‖22 . Note that φ is continuous and
strongly convex, so its sublevel sets are closed and bounded (and therefore compact).

Consider the sublevel set L0 , {x : φ(x; y) ≤ φ(0; y)}, which contains the
point x = 0 by construction. Since g is lower semicontinuous, Jg is also lower
semicontinuous, and by the extreme value theorem must attain a minimum within
the compact set L0, i.e., there exists x? ∈ L0 such that Jg(x?; y) ≤ Jg(x; y) for all
x ∈ L0. Furthermore,

∀x < L0, Jg(x; y) ≥ φ(x; y)
x<L0
> φ(0; y) = Jg(0; y)

0∈L0
≥ Jg(x?; y).

so x? is a global minimizer of Jg(x; y).

4.2.3 Composition of CMZ regularizers
This section presents 3 propositions regarding the composition of 3 specific functions
with an arbitrary CMZ function. It is not meant to be a comprehensive list, just the
minimum necessary to implement the nested group lasso presented in Figure 4.4B.

Propositions 3 and 4 deal with the case where the regularizer g can be written as
the sum g(x) = h(x) + f (x). If h is CMZ and f is the l1 norm (Proposition 3) or a
nonnegativity constraint (Proposition 4), then proxg(y) = proxh(prox f (y)).

Proposition 5 deals with the case where the regularizer g can be written as a
function of the l2 norms of non-overlapping groups, i.e., g(x) = h(GroupNorms(x)).
If h is CMZ, then proxg(y) = ScaleGroups(y,proxh(GroupNorms(y))), where
ScaleGroups(y,a) scales the groups of y so that the resulting group norms are a.

These propositions also provide sufficient conditions under which g is also CMZ,
allowing us to continue combining it with additional terms. This will allow us to

64

implement the nested group lasso, including the case where a nonconvex regularizer
is applied to the top-level lasso groups. The details of this implementation are
described in Section 4.2.4.

The rest of this section contains the propositions and their proofs. But first, Lemma
2 presents a general property of CMZ functions. It will be used extensively in the
proofs of Propositions 3–5 to show that certain regions of solution space may be
safely ignored.

Lemma 2 (The proximal operator of a CMZ function is weakly sign-consistent). If
g is CMZ, then for any x? ∈ proxg(y),

∀i, sgn(x?i) ∈ {0} ∪ {sgn(yi)},

where sgn(α) = 1 if α is strictly positive, −1 if strictly negative, and 0 if zero. In
other words, x? is weakly sign-consistent with y, i.e., yi ≥ 0 =⇒ x?i ≥ 0 and
yi ≤ 0 =⇒ x?i ≤ 0.

Proof by contradiction. Suppose that x? is not weakly sign-consistent with y, i.e.,
there exists at least one coordinate such that x?i < 0 ≤ yi or x?i > 0 ≥ yi. Let us
consider an alternative x̃ such that x̃i = 0 but x̃ j = x?j for j , i. Then

Jg(x?; y) − Jg(x̃; y) = g(x?) − g(x̃) +
1
2

∑
k

(x?k − yk)
2 − (x̃k − yk)

2

= g(x?) − g(x̃) +
1
2
(x?i − yi)

2 −
1
2
(0 − yi)

2

(a)
≥

1
2
(x?i)

2 − yi x?i
(b)
≥

1
2
(x?i)

2 (c)
> 0.

The inequalities follow from our assumptions that (a) g is CMZ, (b) either x?i < 0 ≤ yi

or x? > 0 ≥ yi, and (c) x?i , 0. This yields Jg(x?; y) > Jg(x̃; y), which contradicts
our assumption that x? minimizes Jg.

Proposition 3 (CMZ + weighted l1 norm). For x ∈ Rn, let f (x) =
∑

i βi |xi | with
βi ≥ 0. For reference, z = prox f (y) is given by zi = sgn(yi)max(0, |yi | − βi).

If h : Rn 7→ R is CMZ, then g(x) = h(x) + f (x) is also CMZ and

proxg(y) = proxh(prox f (y)). (4.32)

Additionally, if h is CMZ nondecreasing, then g is CMZ nondecreasing as well.

65

Proof. First, note that f is CMZ nondecreasing because it is coordinatewise separable
and the contribution from each coordinate βi |xi | is nondecreasing as we move away
from zero. If h is CMZ, then g is the sum of two CMZ functions and therefore CMZ.
Likewise, if h is CMZ nondecreasing, then g is CMZ nondecreasing as well.

The proof of (4.32) is a bit longer, so I will outline it first. Let z , prox f (y). We
will define a set C ⊂ Rn and show that it satisfies the following properties:

proxh(z) ⊆ C (4.33)

∀x ∈ C, Jh(x; z) = Jg(x; y) + constants (4.34)

proxg(y) ⊆ C. (4.35)

In other words, this set C contains the unconstrained minimizers of both Jh and Jg,
and within this set, the values of the objective functions Jh and Jg differ only by a
constant that doesn’t depend on x. Taken together, these imply (4.32) because

proxh(z)
(4.33)
= arg min

x∈C
Jh(x; z)

(4.34)
= arg min

x∈C
Jg(x; y) (4.35)= proxg(y).

First, (4.33) follows directly from Lemma 2 because we will define C as the set of all
x that are weakly sign-consistent with z:

C , {x : ∀i, sgn(xi) ∈ {0} ∪ {sgn(zi)}}. (4.36)

Next, (4.34) follows from the remarkable property that for all x ∈ C, the inner
product 〈x, y − z〉 = f (x). Recall that z = prox f (y) and hence

zi = sgn(yi)max(0, |yi | − βi)

yi − zi =


yi zi = 0

βi sgn(zi) otherwise.

For any x ∈ C, x will be weakly sign-consistent with z, therefore sgn(zi)xi = sgn(xi)xi

and (zi = 0) =⇒ (xi = 0), hence

∀x ∈ C, xi(yi − zi) =


0 zi = 0

βi sgn(xi)xi otherwise
= βi |xi |.

66

Summing over the coordinates i, we have 〈x, y − z〉 = f (x) and thus

∀x ∈ C, Jh(x; z) = h(x) +
1
2
‖x − y‖22 + 〈x − y, y − z〉 +

1
2
‖y − z‖22

= h(x) +
1
2
‖x − y‖22 + 〈x, y − z〉 + constants

= h(x) +
1
2
‖x − y‖22 + f (x) + constants

= Jg(x; y) + constants.

Finally, (4.35) mostly follows from Lemma 2. Let x? ∈ proxg(y). Since g and f are
both CMZ, both x? and z must be weakly sign-consistent with y, therefore we cannot
have x?i < 0 < zi or x?i > 0 > zi. In order to conclude that x? ∈ C, we will also need
to rule out the possibility that x?i , 0 = zi, which we will do in the next paragraph.

Suppose this were true. Let us construct x̃ such that x̃i = 0 and x̃ j,i = x?j,i.
Since f is separable, let fi(ξ) , βi |ξ | so that f (x) =

∑
i fi(xi), and note that

zi = arg minξ J fi (ξ; yi) is the unique minimizer since fi is convex (and hence J fi is
strongly convex). Then

Jg(x?; y) − Jg(x̃; y) = h(x?) − h(x̃) +
∑

k

J fk (x
?
k ; yk) − J fk (x̃k ; yk)

= h(x?) − h(x̃) + J fi (x
?
i ; yi) − J fi (0; yi)

(a)
≥ J fi (x

?
i ; yi) − J fi (0; yi)

(b)
> 0.

The inequalities follow from our assumptions that (a) h is CMZ and (b) zi = 0
uniquely minimizes J fi and x?i , 0. This yields Jg(x?; y) > Jg(x̃; y), contradicting
x? ∈ proxg(y).

To summarize, we defined z , proxg(y) and C ⊂ Rn as the set of all x that are
weakly sign-consistent with z (4.36). Then (4.33) ⇐= (h is CMZ), (4.34) ⇐=
(∀x ∈ C, 〈x, y− z〉 = f (x)), and (4.35) ⇐= (f ,g, h are CMZ and f is coordinatewise
separable and convex). Together, these imply that proxg(y) = proxh(prox f (y)). We
will use this again in Proposition 4.

Proposition 4 (CMZ+nonnegativity constraint). For x ∈ Rn, let f (x) =
∑

i∈I 1≥0(xi),
where the indicator function 1≥0(xi) is 0 if xi ≥ 0 or +∞ otherwise, and I is the set of
coordinates that the nonegativity constraint applies to. For reference, z = prox f (y)

is given by zi = max(0, yi) for i ∈ I and zi = yi for i < I.

If h : Rn 7→ R is CMZ, then g(x) = h(x) + f (x) is also CMZ and

proxg(y) = proxh(prox f (y)). (4.37)

67

Additionally, if h is CMZ nondecreasing, then g is CMZ nondecreasing as well.

Proof. First, note that f is CMZ nondecreasing because it is coordinatewise separable
and the contribution from each coordinate 1≥0(xi) is nondecreasing as we move away
from zero. If h is CMZ, then g is the sum of two CMZ functions and therefore CMZ.
Likewise, if h is CMZ nondecreasing, then g is CMZ nondecreasing as well.

The proof of (4.37) follows the same outline as that of Proposition 3. Let z , prox f (y)

and let C , {x : ∀i, sgn(xi) ∈ {0} ∪ {sgn(zi)}}. We will show that

proxh(z)
(a)
= arg min

x∈C
Jh(x; z)

(b)
= arg min

x∈C
Jg(x; y) (c)= proxg(y).

As we discussed in the proof of Proposition 3, these set equality relationships
ultimately follow from (a) h is CMZ, (b) ∀x ∈ C, 〈x, y − z〉 = f (x), and (c) f ,g, h

are CMZ and f is coordinatewise separable and convex. We have already shown the
necessary conditions for (a) and (c) and will show (b) in the next paragraph.

First, note that the definition of z gives us either zi = yi (in which case yi − zi = 0)
or zi = 0 (in which case xi = 0 for any x ∈ C), therefore xi(yi − zi) = 0 and
hence 〈x, y − z〉 = 0. Next, note that zi ≥ 0 for all i ∈ I, so for any x ∈ C,
we must also have xi ≥ 0 for all i ∈ I and hence f (x) = 0. We therefore have
∀x ∈ C, 〈x, y − z〉 = 0 = f (x).

Proposition 5 (CMZ with nested group l2 norm). For x ∈ Rn and a set of m groups
Gi that partition the coordinates of x, let f : Rn 7→ Rm

+ compute the l2 norm of each
group. In other words, if a = f (x), then ai = ‖xGi ‖2. Elsewhere in this document,
f (x) is also known as GroupNorms(x).

Let us also define a linear function φy : Rm → Rn such that x = φy(a) is given by

xGi ,


0 yGi = 0
yGi

‖yGi
‖2

ai otherwise.
(4.38)

Elsewhere in this document, φy(a) is also known as ScaleGroups(y,a).

If h : Rm 7→ R is CMZ and g(x) = h(f (x)), then

proxg(y) = φy(proxh(f (y))). (4.39)

Additionally, if h is CMZ nondecreasing, then g is CMZ nondecreasing as well.

68

Proof. First, note that each coordinate of the vector-valued f (x) is CMZ nondecreas-
ing in x, so if h is also CMZ nondecreasing then the composition g(x) = h(f (x))

must be CMZ nondecreasing as well. Note that this requires h to be nondecreasing
(otherwise g may not even be CMZ) but that is not necessary for the rest of this proof.

For the main result, our first step will be to show that the optimal value of the
proximal problem minx Jg(x; y) is the same as that of mina Jh(a; b), where b , f (y).
To begin, let us rewrite the proximal problem as a nested optimization:

min
x

Jg(x; y) = min
a∈Rm+

min
x: f (x)=a

h(f (x)) +
1
2
‖x − y‖22

= min
a∈Rm+

h(a) +
1
2

min
x: f (x)=a

‖x − y‖22 . (4.40)

Our assumption that the groups Gi partition the coordinates of x yields ‖x − y‖22 =∑
i‖xGi − yGi ‖

2
2 , allowing us to separate the inner minimization problem (4.40) over

i:

x? ∈ arg min
x: f (x)=a

‖x − y‖22 ⇐⇒ ∀i, x?Gi
∈ arg min

xGi
:‖xGi

‖2=ai
‖xGi − yGi ‖

2
2 .

Each sub-problem is simply minimizing the distance from a sphere to a point, and so

∀ai ≥ 0, arg min
xGi

:‖xGi
‖2=ai
‖xGi − yGi ‖

2
2 =


{u : ‖u‖2 = ai} yGi = 0

{ai
yGi

‖yGi
‖2
} otherwise,

(4.41)

achieving a minimum value of (ai − ‖yGi ‖2)
2. Substituting this into (4.40) with

b , f (y),

min
x

Jg(x; y) = min
a∈Rm+

h(a) +
1
2
‖a − b‖22 = min

a∈Rm+
Jh(a; b).

Since h is CMZ, the nonnegativity constraint on a is unnecessary as long as b is
nonnegative (Proposition 4), and so we have

min
x

Jg(x; y) = min
a

Jh(a; b). (4.42)

How does this help? If we are given an a? ∈ proxh(b) and are able to construct
some x̂ such that Jg(x̂; y) = Jh(a?; b), then (4.42) implies that x̂ minimizes Jg, i.e.,
x̂ ∈ proxg(y).

One more thing: let us return to the inner minimization problem of (4.40) and denote
the set of minimizers (described in equation 4.41) as Ca , arg minx: f (x)=a‖x − y‖22 .

69

We already noted that for all x ∈ Ca, we have ‖x − y‖22 = ‖a − b‖22 . Since
Ca ⊆ {x : f (x) = a}, we also have g(x) = h(f (x)) = h(a), and adding these together
we get

∀a ∈ Rm
+ , x ∈ Ca, Jg(x; y) = Jh(a; b). (4.43)

Using (4.42) and (4.43), we will show that for any a? ∈ proxh(b), we have φy(a?) ∈
proxg(y) and therefore φy(proxh(b)) ⊆ proxg(y). The function φy : Rm 7→ Rn was
defined in (4.38). Conversely, we will also show that for any x? ∈ proxg(y), there
exists some a? ∈ proxh(b) such that φy(a?) = x?, therefore proxg(y) ⊆ φy(proxh(b)).
This pair of subset relationships thus imply that proxg(y) = φy(proxh(b)), our main
result.

First, given an a? ∈ proxh(b) we will show that φy(a?) ∈ proxg(y). Note that

yGi = 0
bi=‖yGi

‖2
⇐⇒ bi = 0

Lemma 2
=⇒ a?i = 0

and therefore {u : ‖u‖2 = a?i } = {0} for any i such that yGi = 0. Substituting this
into (4.41) yields the definition of φy (equation 4.38), hence Ca? = {φy(a?)} and
therefore

φy(a?) ∈ Ca?
(4.43)
=⇒ Jg(φy(a?); y) = Jh(a?; b)

(4.42)
=⇒ φy(a?) ∈ proxg(y)

Conversely, given an x? ∈ proxg(y), we will show f (x?) ∈ proxh(b) and φy(f (x?)) =
x?. First, note that x? ∈ C f (x?), otherwise any x̃ ∈ C f (x?) will have Jg(x̃; y) <
Jg(x?; y), a contradiction. Then

x? ∈ C f (x?)
(4.43)
=⇒ Jg(x?; y) = Jh(f (x?); b)

(4.42)
=⇒ f (x?) ∈ proxh(b).

We previously showed that Ca? is the singleton set {φy(a?)} for any a? ∈ proxh(b).
Applying that to this situation, we therefore have C f (x?) = {φy(f (x?))} and hence
x? = φy(f (x?)).

4.2.4 Proximal operator for nested groups with a nonconvex regularizer
The multi-channel group lasso regularizer presented in Figure 4.4B may be written
as

g(x) =
∑

t

x[t, :, :]

 +∑

t

∑
c

x[t, c, :],

70

where we have reshaped x into a [T × C × D] matrix (T time steps, C channels, D

spike basis waveforms per channel). The first term ‖x[t, :, :]‖2 corresponds to the
blue lasso groups (one per time step), and it should be interpreted as the vector l2
norm applied to a “flattened” vector of length CD. The second term ‖x[t, c, :]‖2
corresponds to the red lasso groups (one per time step per channel).

Hopefully it is apparent from this setup that the x[t, c, :] groups are nested within
the x[t, :, :] groups. To make this example a bit more realistic, we wish to apply the
nonconvex log regularizer to the outermost group (the one-per-time-step group) and
we will introduce weighting parameters βt and βc on these groups:

g(x) = βt

∑
t

logreg
(

x[t, :, :]

) + βc

∑
t

∑
c

x[t, c, :]

. (4.44)

Next, we will need to rewrite this a little to make it compatible with the propositions
of the previous section. Given a multidimensional array, let GroupNorms return the
l2 norm over the last dimension. So we can start to rewrite (4.44) by noting that

‖x[t, c, :]‖ = GroupNorms(x)[t, c]

‖x[t, :, :]‖ = ‖(GroupNorms(x)[t, :])‖

and hence we can write g(x) as

g(x) = g1(GroupNorms(x))

g1(ξ) = βt

∑
t

logreg
(

ξ[t, :]

) + βc

∑
t

∑
c

ξ[t, c].

Applying Proposition 5 then gives us

proxg(y) = ScaleGroups(y, ξ?)

ξ? = proxg1
(GroupNorms(y))

Formal definitions of ScaleGroups and GroupNorms are given in the statement of
Proposition 5.

Now we need the proximal operator of g1. Since ξ[t, c] ≥ 0, we can rewrite g1 as

g1(x) = g2(x) + βc‖x‖1

g2(x) = βt

∑
t

logreg
(

x[t, :]

) .

71

Applying Proposition 3 and noting that the proximal operator of the l1 norm is
proxβ‖·‖1(y) = Shrinkβ(y), we have

proxg1
(y) = proxg2

(Shrinkβc (y))

Now we need the proximal operator of g2. Once again, we can use the group norm

g2(x) = g3(GroupNorms(x))

g3(ξ) = βt

∑
t

logreg(ξ[t])

and then Proposition 5 to yield

proxg2
(y) = ScaleGroups(y, ξ?)

ξ? = proxg3
(GroupNorms(y)).

Finally, g3(x) is the same regularizer that we analyzed in Section 4.1, so we can stop
here. But hopefully it is clear from this exercise how we could continue in the case
where we had more nested groups to consider.

As far as the regularizer (4.44), we can compile our results into the following
algorithm:

ψ0 = y

ψ1 = proxβc ‖·‖1(GroupNorms(ψ0))

ψ2 = proxβt logreg(GroupNorms(ψ1))

ξ2 = ψ2

ξ1 = ScaleGroups(ψ1, ξ2)

ξ0 = ScaleGroups(ψ0, ξ1)

x = ξ0.

This is a bit more efficient than the expression derived by Jenatton et al. (2011), since
we can take advantage of data reduction at each of the GroupNorms stages, but is
otherwise very similar.

72

C h a p t e r 5

CONCLUSION

Spike sorting is a challenging problem that has resisted many attempts at simple
solutions. In part this is due to the heterogeneity of data that one may encounter
in practice: chronic vs. acute recordings, tetrode vs. silicon probe, and differences
among species and brain areas all present different sets of challenges that defy a
one-size-fits-all solution. Instead, a modular approach that can be tailored to the
specific problem at hand seems more appropriate.

In this document, I have described two new modules—spike detection via sparse
deconvolution and clustering using a mixture of drifting t-distributions—and this
chapter discusses their contributions, how they fit into the overall problem of spike
sorting, and potential avenues for future work.

Spike detection via sparse deconvolution offers improved spike detection by posing
it as a deconvolution problem in a spike subspace. This enables us to separate
moderately-overlapping spikes without incurring the main disadvantages of template
matching approaches, namely (1) the necessity of fitting source templates to each
putative neuron, and (2) inextricably coupling the problems of spike detection and
clustering. Instead, it represents each detected spike as a point in a low-dimensional
feature space, a format that is amenable to subsequent analysis using a wide variety
of techniques.

As such, this new approach is a drop-in replacement for traditional spike detection and
dimensionality reduction. It retains the practical advantages of being a single-pass
operation that dramatically reduces data size while preserving enough information
to perform clustering and evaluate cluster overlap. Without any changes to the
rest of the spike-sorting toolchain, it offers improved performance on overlapping
spikes without impacting performance on non-overlapping spikes (Figure 2.4).
Spike removal (Figure 2.5) is also easily incorporated into an existing LFP analysis
toolchain.

One natural direction for future work is extending this approach to high-density
silicon probes, in which a spike should only be detected on a local subset of channels
(in contrast, a spike is typically detected on all channels of a tetrode). Although these
spikes will still be represented in a feature space that spans all the probe’s channels,

73

a sparse representation of may be more appropriate for subsequent analysis (Kadir,
Goodman, and Harris, 2014).

Another direction for future work is to consider applications to other detection
problems. In addition to spike sorting in extracellular recordings, this deconvolution
approach may also be useful for spike detection in intra- or juxta-cellular recordings,
either because we wish to perform spike removal for analysis of subthreshold
membrane voltage, or because these spikesmay be difficult to detect (as in intracellular
recordings from insect neurons). Alternatively, by using a different set of basis
waveforms—one tailored to LFP events such as ripples or sharp waves—we can
use this approach to detect other types of neural events and represent them as
points in a feature space. Note that this need not be a prelude to clustering; this
low-dimensional feature space representation also enables downstream analysis in
which this characterization is correlated with other neural or behavioral phenomena.

Finally, it may be useful to develop theoretical guarantees on detection with this
approach. One approach is to recognize that the sparse deconvolution problem (2.1)
with l2,1 regularizer (2.5) is equivalent to maximum-likelihood estimation1 with a
matched subspace detector (Scharf and Friedlander, 1994), which can be used to
derive false positive rates and other performance metrics. Another approach is for the
case of single-cell spike detection (the intra- or juxta-cellular recordings discussed
above), where the cell refractory period allows us to use a different measure of
dictionary coherence (Papyan, Sulam, and Elad, 2017) that may enable us to make
stronger guarantees on sparse recovery with particular algorithms.

The second spike-sorting module described in this document is clustering using a
mixture of drifting t-distributions (MoDT) model. This generative model captures
two important features of experimental data—cluster drift and heavy tails—and its
fitting procedure is efficient and naturally robust to outliers. This model can then be
used wherever a simpler model, such as a mixture-of-Gaussians, has traditionally
been used. When used for spike sorting, the MoDT model can (1) increase unit yield
by separating clusters that would appear to overlap under a stationary model and (2)
decrease user workload by reducing the incidence of clusters that are spuriously split
due to drift. As a unit isolation metric, the MoDT model provides more accurate
estimates of misclassification error than previous approaches. Importantly, this
use case can be applied to data that have been spike-sorted using other techniques,

1In this MLE framework, the log regularizer 2.6 is equivalent to a Lomax (a shifted version of
the Pareto Type II distribution) prior on the signal magnitude.

74

including non-parametric techniques that otherwise do not produce estimates of
unit quality. Section 3.5 also describes a method for resolving highly-overlapping
spikes without recourse to the raw data, although this method may be applied to any
generative model, not just the MoDT model.

The main advantage of using the MoDT model for spike sorting, however, is that it
enables longer recordings to be clustered as a single segment. Although linking these
segments is still necessary for continuous recordings over several days or weeks, the
use of longer segments dramatically simplifies the process. Longer segments ensure
that all units will fire enough spikes to be clustered, reduces the number of segments
that need to be linked, and enables the use of overlapping segments. For example, a
week-long recording can be broken into 21 ten-hour segments with an overlap of two
hours. These two-hour overlapping segments are long enough to ensure that all units
will fire a sufficient number of spikes that we can establish cluster correspondences
between these segments based on the spike assignments of the overlapping data.

One direction for future work is to incorporate a more sophisticated model for cluster
drift. The current model allows each cluster to drift independently, but a major
source of cluster drift is rigid motion of the recording electrodes along the insertion
axis. This produces correlated changes in cluster location across all of the observed
clusters, and accounting for this phenomenon may improve tracking of neurons with
a low firing rate.

Another direction for future work is the analysis of spikes recorded from high-
density probes. The challenges here are (1) ensuring that there is enough data to fit
the heteroskedastic cluster covariance matrices and (2) keeping the computational
complexity in check. Since these are the same problems encountered in scaling up
a mixture-of-Gaussians model, many approaches have already been developed to
mitigate these concerns (Section 3.2.5).

In conclusion, these contributions to spike detection and clustering make concrete
steps to improving certain aspects of the spike sorting problem. Each is based in a
theoretical framework that enables future work to build upon and extend these results.
Finally, these methods are not restricted to spike sorting but may be applied more
broadly to problems of event detection and non-stationary clustering in general.

75

BIBLIOGRAPHY

Anderson, B. and J. B. Moore (1979). Optimal Filtering. Englewood Cliffs, NJ:
Prentice-Hall.

Auslender, A. and M. Teboulle (2006). “Interior gradient and proximal methods for
convex and conic optimization”. SIAM Journal on Optimization 16.3, pp. 697–725.

Bankman, I. N., K. O. Johnson, and W. Schneider (1993). “Optimal detection,
classification, and superposition resolution in neural waveform recordings”. IEEE
transactions on biomedical engineering 40.8, pp. 836–841.

Bar-Hillel, A., A. Spiro, and E. Stark (Oct. 2006). “Spike sorting: Bayesian clustering
of non-stationary data”. J. Neurosci. Methods 157.2, pp. 303–316. doi: 10.1016/
j.jneumeth.2006.04.023.

Bayram, I. (2015). “Penalty Functions Derived From Monotone Mappings.” IEEE
Signal Process. Lett. 22.3, pp. 264–268.

Beck, A. and M. Teboulle (2009). “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems”. SIAM journal on imaging sciences 2.1, pp. 183–202.

Becker, S. R., E. J. Candès, and M. C. Grant (2011). “Templates for convex cone
problems with applications to sparse signal recovery”.Mathematical programming
computation 3.3, p. 165.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (July 2011). “Distributed
Optimization and Statistical Learning via the Alternating Direction Method
of Multipliers”. Found. Trends Mach. Learn. 3.1, pp. 1–122. doi: 10.1561/
2200000016.

Bristow, H., A. Eriksson, and S. Lucey (2013). “Fast convolutional sparse coding”.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 391–398.

Calabrese, A. and L. Paninski (Mar. 2011). “Kalman filter mixture model for spike
sorting of non-stationary data.” J. Neurosci. Methods 196.1, pp. 159–169. doi:
10.1016/j.jneumeth.2010.12.002.

Candes, E. J. (2008). “The restricted isometry property and its implications for
compressed sensing”. Comptes rendus mathematique 346.9-10, pp. 589–592.

Candes, E. J., M. B.Wakin, and S. P. Boyd (2008). “Enhancing sparsity by reweighted
l1 minimization”. Journal of Fourier analysis and applications 14.5-6, pp. 877–
905.

Carlson, D. E., V. Rao, J. Vogelstein, and L. Carin (2013). “Real-Time Inference
for a Gamma Process Model of Neural Spiking”. Adv. Neural Inf. Process. Syst.
Pp. 2805–2813.

76

Chen, S. S., D. L. Donoho, and M. A. Saunders (2001). “Atomic decomposition by
basis pursuit”. SIAM review 43.1, pp. 129–159.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). “Maximum Likelihood
from Incomplete Data via the EM Algorithm”. J. R. Stat. Soc. 39, pp. 1–38. doi:
10.2307/2984875.

Dhawale, A. K., R. Poddar, S. B. Wolff, V. A. Normand, E. Kopelowitz, and B. P.
Ölveczky (2017). “Automated long-term recording and analysis of neural activity
in behaving animals”. Elife 6, e27702. doi: 10.7554/eLife.27702.

Donoho, D. L., M. Elad, and V. N. Temlyakov (2006). “Stable recovery of sparse
overcomplete representations in the presence of noise”. IEEE Transactions on
information theory 52.1, pp. 6–18.

Fee, M. S., P. P. Mitra, and D. Kleinfeld (Dec. 1996). “Variability of extracellular
spike waveforms of cortical neurons”. J. Neurophysiol. 76.6, pp. 3823–3833. doi:
10.1152/jn.00865.2015.

Feldman, D., M. Faulkner, and A. Krause (2011). “Scalable Training of Mixture
Models via Coresets”. Adv. Neural Inf. Process. Syst. Pp. 2142–2150.

Foster, D. J. and M. A. Wilson (2006). “Reverse replay of behavioural sequences in
hippocampal place cells during the awake state”. Nature 440.7084, p. 680.

Fournier, J., C. M. Mueller, M. Shein-Idelson, M. Hemberger, and G. Laurent (Aug.
2016). “Consensus-Based Sorting of Neuronal Spike Waveforms”. PLoS ONE
11.8, e0160494. doi: 10.1371/journal.pone.0160494.

Franke, F., M. Natora, C. Boucsein, M. H. J. Munk, and K. Obermayer (2010). “An
online spike detection and spike classification algorithm capable of instantaneous
resolution of overlapping spikes”. J. Comput. Neurosci. 29.1-2, pp. 127–148.

Harris, K. D., R. Q. Quiroga, J. Freeman, and S. L. Smith (Aug. 2016). “Improving
data quality in neuronal population recordings.” Nature Neurosci. 19.9, pp. 1165–
1174. doi: 10.1038/nn.4365.

Heide, F., W. Heidrich, and G. Wetzstein (2015). “Fast and flexible convolutional
sparse coding”. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5135–5143.

Hill, D. N., S. B. Mehta, and D. Kleinfeld (June 2011). “Quality metrics to accompany
spike sorting of extracellular signals.” J. Neurosci. 31.24, pp. 8699–8705.

Horowitz, M. B., I. Papusha, and J. W. Burdick (2014). “Domain decomposition
for stochastic optimal control”. 53rd IEEE Conference on Decision and Control.
IEEE, pp. 1866–1873.

Jacob, L., G. Obozinski, and J.-P. Vert (2009). “Group lasso with overlap and graph
lasso”. Proceedings of the 26th annual international conference on machine
learning. ACM, pp. 433–440.

77

Jenatton, R., J. Mairal, G. Obozinski, and F. Bach (2011). “Proximal methods
for hierarchical sparse coding”. Journal of Machine Learning Research 12.Jul,
pp. 2297–2334.

Kadir, S. N., D. F. M. Goodman, and K. D. Harris (Nov. 2014). “High-dimensional
cluster analysis with the masked EM algorithm.” Neural Comput. 26.11, pp. 2379–
2394. doi: 10.1162/NECO_a_00661.

Lan, G., Z. Lu, and R. D. Monteiro (2011). “Primal-dual first-order methods with
O(1/ε) iteration-complexity for cone programming”.Mathematical Programming
126.1, pp. 1–29.

Lange, K. L., R. J. Little, and J. M. Taylor (1989). “Robust statistical modeling
using the t distribution”. Journal of the American Statistical Association 84.408,
pp. 881–896.

Lee, S. and G. J. McLachlan (Mar. 2014). “Finite mixtures of multivariate skew
t-distributions: some recent and new results”. Stat. Comput. 24.2, pp. 181–202.

Lewicki, M. S. (1998). “A review of methods for spike sorting: the detection and
classification of neural action potentials”. Network: Comput. Neural Syst. 9, R53–
R78.

Li, Z., S. Ding, and Y. Li (2015). “Dictionary learning with log-regularizer for
sparse representation”. Digital Signal Processing (DSP), 2015 IEEE International
Conference on. IEEE, pp. 609–613.

Magdon-Ismail, M. and J. T. Purnell (Sept. 2010). “Approximating the Covariance
Matrix of GMMs with Low-Rank Perturbations”. Intelligent Data Engineering
and Automated Learning – IDEAL 2010. Springer, pp. 300–307.

Malioutov, D. and A. Aravkin (2014). “Iterative log thresholding”. Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE,
pp. 7198–7202.

McLachlan, G. and D. Peel (2000). Finite Mixture Models. John Wiley & Sons.

Meng, X., J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M.
Zaharia, and A. Talwalkar (Apr. 2016). “MLlib: Machine learning in apache
spark”. J. Mach. Learn. Res. 17.34.

Mukhopadhyay, S. and G. C. Ray (1998). “A new interpretation of nonlinear energy
operator and its efficacy in spike detection”. IEEE Trans. Biomed. Eng. 45.2,
pp. 180–187. doi: 10.1109/10.661266.

Neal, R. M. and G. E. Hinton (1998). “A view of the EM algorithm that justifies
incremental, sparse, and other variants”. Learning in Graphical Models. Dordrecht:
Springer Netherlands, pp. 355–368.

78

Needell, D. and R. Vershynin (2009). “Uniform uncertainty principle and signal recov-
ery via regularized orthogonal matching pursuit”. Foundations of computational
mathematics 9.3, pp. 317–334.

Nenadic, Z. and J. W. Burdick (2005). “Spike detection using the continuous wavelet
transform”. IEEE Transactions on Biomedical Engineering 52.1, pp. 74–87.

Nesterov, Y. (2013). “Gradient methods for minimizing composite functions”. Math-
ematical Programming 140.1, pp. 125–161.

Pachitariu, M., N. A. Steinmetz, S. N. Kadir, M. Carandini, and K. D. Harris (2016).
“Fast and accurate spike sorting of high-channel count probes with KiloSort”.
Advances in Neural Information Processing Systems, pp. 4448–4456.

Papyan, V., J. Sulam, and M. Elad (2017). “Working locally thinking globally:
Theoretical guarantees for convolutional sparse coding”. IEEE Transactions on
Signal Processing 65.21, pp. 5687–5701.

Parikh, N. and S. Boyd (2014). “Proximal algorithms”. Foundations and Trends® in
Optimization 1.3, pp. 127–239.

Pati, Y. C., R. Rezaiifar, and P. S.Krishnaprasad (1993). “Orthogonalmatching pursuit:
Recursive function approximation with applications to wavelet decomposition”.
Proceedings of 27th Asilomar conference on signals, systems and computers. IEEE,
pp. 40–44.

Peel, D. and G. J. McLachlan (Oct. 2000). “Robust mixture modelling using the t
distribution”. Stat. Comput. 10.4, pp. 339–348.

Pnevmatikakis, E. A., D. Soudry, Y. Gao, T. A. Machado, J. Merel, D. Pfau, T.
Reardon, Y. Mu, C. Lacefield, W. Yang, M. Ahrens, R. Bruno, T. M. Jessell, D. S.
Peterka, R. Yuste, and L. Paninski (2016). “Simultaneous denoising, deconvolution,
and demixing of calcium imaging data”. Neuron 89.2, pp. 285–299.

Pouzat, C., M. Delescluse, P. Viot, and J. Diebolt (June 2004). “Improved Spike-
Sorting By Modeling Firing Statistics and Burst-Dependent Spike Amplitude
Attenuation: A Markov Chain Monte Carlo Approach”. J. Neurophysiol. 91.6,
pp. 2910–2928. doi: 10.1152/jn.00227.2003.

Prentice, J. S., J. Homann, K. D. Simmons, G. Tkačik, V. Balasubramanian, and P. C.
Nelson (2011). “Fast, scalable, Bayesian spike identification for multi-electrode
arrays.” PLoS ONE 6.7, e19884. doi: 10.1371/journal.pone.0019884.

Rao, N. S., R. D. Nowak, C. R. Cox, and T. T. Rogers (2016). “Classification With
the Sparse Group Lasso.” IEEE Trans. Signal Processing 64.2, pp. 448–463.

Rauch, H. E., F. Tung, and C. T. Striebel (1965). “Maximum likelihood estimates of
linear dynamic systems”. AIAA journal 3.8, pp. 1445–1450.

79

Rossant, C., S. N. Kadir, D. F. M. Goodman, J. Schulman, M. L. D. Hunter, A. B.
Saleem, A. Grosmark, M. Belluscio, G. H. Denfield, A. S. Ecker, A. S. Tolias,
S. Solomon, G. Buzsáki, M. Carandini, and K. D. Harris (Mar. 2016). “Spike
sorting for large, dense electrode arrays”. Nature Neurosci. 19.4, pp. 634–641. doi:
10.1038/nn.4268.

Rousseeuw, P. J. and K. van Driessen (Aug. 1999). “A fast algorithm for the
minimum covariance determinant estimator”. Technometrics 41.3, pp. 212–223.
doi: 10.1080/00401706.1999.10485670.

Scharf, L. L. and B. Friedlander (1994). “Matched subspace detectors”. IEEE
Transactions on signal processing 42.8, pp. 2146–2157.

Schmitzer-Torbert, N., J. Jackson, D. A. Henze, K. D. Harris, and A. D. Redish
(2005). “Quantitativemeasures of cluster quality for use in extracellular recordings.”
Neuroscience 131.1, pp. 1–11. doi: 10.1016/j.neuroscience.2004.09.066.

Shalchyan, V. and D. Farina (Feb. 2014). “A non-parametric Bayesian approach for
clustering and tracking non-stationarities of neural spikes”. J. Neurosci. Methods
223, pp. 85–91. doi: 10.1016/j.jneumeth.2013.12.005.

Shan, K. Q., E. V. Lubenov, M. Papadopoulou, and A. G. Siapas (2016). “Spatial
tuning and brain state account for dorsal hippocampal CA1 activity in a non-spatial
learning task”. Elife 5, e14321. doi: 10.7554/eLife.14321.001.

Shan, K. Q., E. V. Lubenov, and A. G. Siapas (2017). “Model-based spike sorting
with a mixture of drifting t-distributions”. Journal of neuroscience methods 288,
pp. 82–98. doi: 10.1016/j.jneumeth.2017.06.017.

Shoham, S., M. R. Fellows, and R. A. Normann (Aug. 2003). “Robust, automatic
spike sorting using mixtures of multivariate t-distributions.” J. Neurosci. Methods
127.2, pp. 111–122.

Siapas, A. G. and M. A. Wilson (1998). “Coordinated interactions between hip-
pocampal ripples and cortical spindles during slow-wave sleep”. Neuron 21.5,
pp. 1123–1128.

Simon, N., J. Friedman, T. Hastie, and R. Tibshirani (2013). “A sparse-group lasso”.
Journal of Computational and Graphical Statistics 22.2, pp. 231–245.

Snider, R. K. and A. B. Bonds (Oct. 1998). “Classification of non-stationary neural
signals”. J. Neurosci. Methods 84.1-2, pp. 155–166.

Swaminathan, A. and R. M. Murray (2014). “Identification of Markov Chains
From Distributional Measurements and Applications to Systems Biology”. IFAC
Proceedings Volumes 47.3, pp. 4400–4405.

Takehara, K., S. Kawahara, and Y. Kirino (2003). “Time-dependent reorganization of
the brain components underlying memory retention in trace eyeblink conditioning”.
Journal of Neuroscience 23.30, pp. 9897–9905.

80

Taylor, H. L., S. C. Banks, and J. F. McCoy (1979). “Deconvolution with the l1
norm”. Geophysics 44.1, pp. 39–52.

Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso”. Journal of
the Royal Statistical Society. Series B (Methodological), pp. 267–288.

Tolias, A. S., A. S. Ecker, A. G. Siapas, A. Hoenselaar, G. A. Keliris, and N. K.
Logothetis (Dec. 2007). “Recording chronically from the same neurons in awake,
behaving primates.” J. Neurophysiol. 98.6, pp. 3780–3790. doi: 10.1152/jn.
00260.2007.

Udell, M., C. Horn, R. Zadeh, and S. Boyd (2016). “Generalized Low Rank Models”.
Found. Trends Mach. Learn. 9.1, pp. 1–118. doi: 10.1561/2200000055.

Vogelstein, J. T., A. M. Packer, T. A. Machado, T. Sippy, B. Babadi, R. Yuste, and
L. Paninski (2010). “Fast nonnegative deconvolution for spike train inference from
population calcium imaging”. Journal of neurophysiology 104.6, pp. 3691–3704.

Wang, Y., Q. Yao, J. T. Kwok, and L. M. Ni (2018). “Scalable Online Convolutional
Sparse Coding”. IEEE Transactions on Image Processing.

Wierzynski, C. M., E. V. Lubenov, M. Gu, and A. G. Siapas (2009). “State-dependent
spike-timing relationships between hippocampal and prefrontal circuits during
sleep”. Neuron 61.4, pp. 587–596.

Wohlberg, B. (2016). “Efficient algorithms for convolutional sparse representations”.
IEEE Transactions on Image Processing 25.1, pp. 301–315.

Wolf, M. T. and J. W. Burdick (Nov. 2009). “A Bayesian clustering method for
tracking neural signals over successive intervals.” IEEE Trans. Biomed. Eng. 56.11,
pp. 2649–2659. doi: 10.1109/TBME.2009.2027604.

Yang, X. and S. A. Shamma (1988). “A totally automated system for the detection
and classification of neural spikes”. IEEE Transactions on Biomedical Engineering
35.10, pp. 806–816.

Yger, P., G. L. Spampinato, E. Esposito, B. Lefebvre, S. Deny, C. Gardella, M.
Stimberg, F. Jetter, G. Zeck, S. Picaud, J. Deubel, and O. Marre (2018). “A spike
sorting toolbox for up to thousands of electrodes validated with ground truth
recordings in vitro and in vivo”. eLife 7, e34518. doi: 10.7554/eLife.34518.

Yuan, L., J. Liu, and J. Ye (2011). “Efficient methods for overlapping group lasso”.
Advances in Neural Information Processing Systems, pp. 352–360.

Yuan, M. and Y. Lin (2006). “Model selection and estimation in regression with
grouped variables”. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 68.1, pp. 49–67.

Zhao, P., G. Rocha, and B. Yu (2009). “The composite absolute penalties family
for grouped and hierarchical variable selection”. The Annals of Statistics 37.6A,
pp. 3468–3497.

