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ABSTRACT

In this thesis, we study gapped topological phases of matter in systems with strong
inter-particle interaction. They are challenging to analyze theoretically, because
interaction not only gives rise to a plethora of phases that are otherwise absent, but
also renders methods used to analyze non-interacting systems inadequate. By now,
people have had a relatively systematic understanding of topological orders in two
spatial dimensions. However, less is known about the higher dimensional cases.
In Chapter 2, we will explore three dimensional long-range entangled topological
orders in the framework ofWalker-Wangmodels, which are a class of exactly solvable
models for three-dimensional topological phases that are not known previously
to be able to capture these phases. We find that they can represent a class of
twisted discrete gauge theories, which were discovered using a different formalism.
Meanwhile, a systematic theory of bosonic symmetry protected topological (SPT)
phases in all spatial dimensions have been developed based on group cohomology.
A generalization of the theory to group supercohomology has been proposed to
classify and characterize fermionic SPT phases in all dimensions. However, it can
only handle cases where the symmetry group of the system is a product of discrete
unitary symmetries. Furthermore, the classification is known to be incomplete for
certain symmetries. In Chapter 3, wewill construct an exactly solvable model for the
two-dimensional time-reversal-invariant topological superconductors, which could
be valuable as a first attempt to a systematic understanding of strongly interacting
fermionic SPT phases with anti-unitary symmetries in terms of exactly solvable
models. In Chapter 4, we will propose an alternative classification of fermionic
SPT phases using the spin cobordism theory, which hopefully can capture all the
phases missing in the supercohomology classification. We test this proposal in the
case of fermionic SPT phases with Z2 symmetry, where Z2 is either time-reversal
or an internal symmetry. We find that cobordism classification correctly describes
all known fermionic SPT phases in space dimensions less than or equal to 3.
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C h a p t e r 1

INTRODUCTION

Quantum phases of matter are phases of matter at zero temperature. It was believed
that Landau’s theory of symmetry breaking describes all quantum phases and quan-
tum phase transitions. However, it was realized later that the fractional quantum
hall states [1, 2] lie beyond the symmetry breaking description. They contain a new
order called topological order, which is characterized not by local order parameters,
but by topological invariants that reveal the global properties of the ground state
wave function.

A key feature of these exotic phases is the existence of long-range entanglement in
their ground state wave function [3]. That is, the ground state wave function cannot
be connected to a product state by an adiabatic evolution that does not close the
energy gap. The classification of topological phases can thus be formulated as a
problem of classifying equivalence classes of entanglement patterns under gapped
adiabatic evolution. The identity class in the classification, dubbed the short-range
entangled phase, consists of all states that can be adiabatically evolved to a product
state.

The classification of topological phases by their entanglement patterns does not
include symmetry in the picture. If additional symmetries are present in the system,
the phase diagram becomes richer in general [3]. For example, all phases described
within the symmetry-breaking paradigm are short-range entangled. A long-range
entangled phase may also be split into different phases depending on how the
symmetry acts on the quasiparticle excitations in the system. A prototypical example
is the aforementioned fractional quantum hall states. For example, a fractional
quantum hall state with filling fraction ν = 1/3 has quasiparticle excitations that
carry 1/3 of the electron charge. The U(1) charge conservation symmetry is acting
projectively on the quasiparticle excitations, an example of what is known more
generally as symmetry fractionalization [4]. Different symmetry fractionalization
patterns give rise to different long-range entangled phases known as symmetry
enriched topological (SET) phases [5–9].

More recently, it was realized that short-range entangled states can belong to different
phases even if they do not break any symmetry spontaneously [10]. These phases are
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known as symmetry protected topological (SPT) phases. They have the interesting
property that the bulk of the material is trivial with no exotic excitations with
fractional statistics, but the boundary is nontrivial as long as the symmetry is
not broken. More precisely, the boundary state must realize the symmetry in an
anomalous way, meaning that it cannot be realized consistently on its own, without
the bulk material [11–23].

Over the past decade or so, there has been huge progress in the study of topological
phases, particularly for non-interacting systems. Without inter-particle interactions,
bosons simply form Bose-Einstein condensate, hence there is no nontrivial bosonic
topological phases in this regime. On the other hand, free electrons form band
structures. The band strctures can have nontrivial topology, leading to nontrivial
topological phases of free fermions. Examples include the famous topological
insulators and topological superconductors in two and three spatial dimensions [24–
32]. Topological insulators have a gapped bulk, and gapless boundary states of
Dirac fermions. They have the interesting property that the nontrivial gapless
boundary states are preserved as long as the charge conservation and time-reversal
symmetries are preserved. In other words, the topological insulators are protected
by these two symmetries. If either symmetry is broken – either spontaneously
or explicitly – the boundary states will be gapped, and the topological insulators
become ordinary band insulators. This makes them perfect examples of SPT phases.
Analogously, topological superconductors can also be understood as SPT phases,
with their nontrivial gapless boundary states of Majorana fermions protected by
time-reversal symmetry. Building on these examples, people gradually gained more
understanding of the free fermionic phases, which ultimately led to an exhaustive
classification of topological phases of free fermions in all spatial dimensions, known
as the ten-fold way [33, 34].

Strongly correlated topological phases, where particles interact strongly with each
other, pose much greater challenges to theoretical analysis. To begin with, strong
inter-particle interactions lead to a zoo of bosonic topological phases that are other-
wise absent. In addition, strongly correlated fermion systems cannot be understood
in terms of single particle states and the associated band structure. This renders
our analysis for the free fermion systems invalid in this regime. Thus, a complete
understanding of strongly correlated topological phases is still lacking, but people
have had a relatively systematic understanding of a subset of them. This includes
topological orders in two spatial dimensions and bosonic SPT phases in any spatial
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dimensions.

The low-energy effective theory of 2D topological orders are (2+1)D topological
quantum field theories (TQFT) [35–38], which are described mathematically by
modular tensor categories (MTC) [38]. Therefore, the proper mathematical tools to
describe 2D topological orders are the MTCs. Efforts have been made in classifying
theMTCs, and a classification of thosewith ranks smaller than 5 is now in place [39].
Hamiltonian formulation which realizes the topological order in MTCs with zero
central charge was proposed by Levin andWen [40]. This is known as the string-net
model, which we will introduce in more detail subsequently. If in addition, a 2D
topological order is equipped with some symmetry, the resulting SET is properly
described by the so-called G-crossed MTCs [8]. On the contrary, topological orders
in higher dimensions and the mathematical framework to describe them are much
less understood. In Chapter 2 of this thesis, we will make a modest exploration of
a family 3D topological phases – gauge theories with a discrete gauge group – and
hopefully provide a new perspective on these phases.

Meanwhile, a systematic theory of the bosonic SPT phases in all spatial dimensions
have been developed in terms of fixed-point ground state wave functions and parent
Hamiltonians constructed based on group cohomology [41]. A generalization of
the theory based on group supercohomology has been proposed to classify and
characterize fermionic SPT phases in all dimensions [42]. However, it can only
handle cases where the symmetry group of the system is a product of discrete
unitary symmetries. Furthermore, the classification is known to be incomplete for
certain symmetries. In Chapters 3 and 4 of this thesis, we will study strongly
correlated fermionic SPT phases using exactly solvable models and the cobordism
formalism.

Generic strongly interacting Hamiltonians are difficult to solve, and it is almost
impossible to decide what phases they belong to. Luckily, in certain cases, there
exists exactly solvable models which describe the fixed points in the phase diagram
under renormalization group flow. The Hamiltonians of these models consist of
sums of local commuting projectors, and their ground state wave functions have
zero correlation length. Besides providing explicit realization of the phases, the very
existence of an exactly solvable model has nontrivial implications about the phase.
First, the ground states of commuting projector Hamiltonians have efficient tensor
network representation [43], allowing them to be treated numerically. Secondly,
exactly solvable models can be useful in answering questions regarding many-body
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localization in the corresponding phases, because an SPT phase can be realized in
highly excited states of a many-body localized system if and only if it can be realized
by a commuting projector Hamiltonian [44].

Examples of exactly solvable models that are relevant to this thesis include the
string-net model [40], its three-dimensional analog the Walker-Wang model [45],
and the decorated domain wall construction of SPT phases [46].

The string-net model describes a large class of two-dimensional topological orders
that support a gapped edge [40]. String-net condensation provides a physical mech-
anism for the emergence of topological phases in real condensed matter systems.
Local energetic constraints can cause the microscopic degrees of freedom to orga-
nize into effective extended objects, dubbed string nets. If the kinetic energy of
these string nets is large, they can condense and give rise to a topological phase.
The specific phase it gives rise to is determined by the structure of the string nets,
and the form of the string-net condensation.

TheWalker-Wangmodel generalizes the string-net model to describe 3D topological
phases [45]. It has proven to be a useful tool in constructing exactly solvable
models for 3D topological phases with a confined bulk, and an anomalous surface
topological order [9, 14, 17, 47]. Like the string-net model, it models the ground
state wave function of these phases as a condensate of loops. More specifically,
Given a 2D topological order, the model is constructed such that the ground state
wave function is a superposition of “3D string-nets” labeled by the quasiparticle
content of the topological order, which describe the 2+1D space time trajectories of
the quasiparticles. The coefficient in front of each configuration in the superposition
is equal to the topological amplitude of the corresponding physical process.

The decorated domain wall construction provides a general approach to construct
exactly solvable models for SPT phases [46]. In this approach, the ground state
wave function is written as a superposition of all possible symmetry breaking
configurations with the symmetry breaking domain walls decorated with SPT states
of one lower dimension. The superposition restores the symmetry of the wave
function. Moreover, when symmetry is broken into opposite domains, the domain
wall carries the lower dimensional SPT state. When the domain wall ends on the
boundary of the system, the end point hosts the edge state of the lower dimensional
SPT state, reflecting the nontrivial nature of the original SPT order.

We make use of these models to address various issues regarding strongly correlated
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topological phases in the following chapters.

In Chapter 2, we address the following question: Can the Walker-Wang model be
adapted to realize the topological orders in 3D twisted gauge theories, which is a
family of 3D topological phases with deconfined bulk excitations with fractional
statistics? We give an affirmative answer to this question by studying the examples
with gauge group Z2 × Z2. We find that the Walker-Wang model can describe all
the Z2 × Z2 gauge theories if the input data are taken to be the Z2 × Z2 symmetry
charges and the quasiparticle content on the surface of some three-dimensional
Z2 × Z2 SPT phases. More specifically, when the surface theory is non-anomalous
(respectively, anomalous), the 3D Z2 × Z2 gauge theory is untwisted (respectively,
twisted). We also propose a general scheme to perform modular transformations on
theWalker-Wangmodel, which helps us identify the topological order in the models.
Our construction provides a new perspective on twisted gauge theories, where the
ground state wave function is a condensate of loops. It is in some sense, dual
to the known Dijkgraaf-Witten description, where the ground state wave function
is a condensate of membranes. By relating the Walker-Wang construction to the
Dijkgraaf-Witten construction, our result opens up a way to study twisted gauge
theories with fermonic charges, and correspondingly strongly interacting fermionic
SPT phases and their surface states, through exactly solvable models.

In Chapter 3, we address the following question: Does a free fermion model of
the two-dimensional time-reversal-invariant topological superconductor fit into the
description of commuting projector models, which necessarily involves strong in-
teractions between electrons? We will give a constructive proof of the existence of
such a model. Our construction is based on the idea of decorated domain walls and
makes use of the Kasteleyn orientation on a two dimensional lattice, which were
used for the construction of the fermionic SPT phase with Z2 symmetry by Tarantino
and Fidkowski [48], and Ware et al. [49] By decorating the time-reversal domain
walls with spinful Majorana chains, we are able to construct a commuting projector
Hamiltonian with zero correlation length ground state wave function that realizes
a strongly interacting version of the two dimensional topological superconductor.
From our construction, it can be seen that the T2 = −1 transformation rule for the
fermions is crucial for the existence of such a nontrivial phase; with T2 = 1, our
construction does not work. Our model could be valuable as a first attempt to a
systematic understanding of strongly interacting fermionic SPT phases with anti-
unitary symmetries in terms of exactly solvable models. Moreover, the method that
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we used to incorporate time reversal symmetry can be generalized to cases when
the total symmetry of the system is not of the direct product type, but a semidirect
product of groups [50], or more generally a group extension of one by another.

In Chapter 4, we address the issue that the supercohomology classification of
fermionic SPT phases [42] is incomplete and propose an alternative classification
using the spin cobordism theory. We test this proposal in the case of fermionic SPT
phases with Z2 symmetry, where Z2 is either time-reversal or an internal symmetry.
We find that cobordism classification correctly describes all known fermionic SPT
phases in space dimension D ≤ 3 and also predicts that all such phases can be real-
ized by free fermions. In higher dimensions we predict the existence of intrinsically
interacting fermionic SPT phases.
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C h a p t e r 2

TWISTED GAUGE THEORIES IN THREE-DIMENSIONAL
WALKER-WANG MODELS

2.1 Introduction
It is an important problem in condensed matter physics to understand gapped quan-
tum phases of matter. Two gapped systems are said to be equivalent if their Hamilto-
nians can be deformed into each otherwithout closing the energy gap, or equivalently,
if their ground states are related by a local unitary (LU) evolution [3]. We define a
topological phase as an equivalence class of gapped systems under such deformation
of the Hamiltonian or evolution of the ground state. Note that all systems whose
ground state can be transformed into a product state through an LU evolution lie in
the same phase called the short-range entangled (SRE) phase. Systems that are not
in the SRE phase are said to be in the long-range entangled (LRE) phase.

Substantial progress has beenmade in the study of 2D topological phases. Topologi-
cal phases in 2D are characterized by, for example, robust ground state degeneracy on
spaces with nontrivial topology [51–53], gapless edge excitations [54, 55], quasi-
particle excitations with anyonic statistics [56–58], and nonabelian Berry phases
induced by modular transformations in the degenerate ground space on a torus (the
S and T matrices) [59–61], which are directly related to the quasiparticle statis-
tics. It was conjectured that the S and T matrices give complete description of a
topological phase [60], and therefore serve as “non-local order parameters” of the
phase [62]. Another approach to study topological phases in 2D is from an effective
field theory point of view. Assuming that the macroscopic properties of the sys-
tem are described by a topological quantum field theory (TQFT) [35–38], which in
two spatial dimensions is described by the mathematical construction of a modular
tensor category (MTC) [38], one can have an algebraic description of anyons in the
system in terms of MTC. A subclass of the systems— those with vanishing thermal
Hall conductivity (vanishing MTC central charge) and gapped boundary, admits a
simple, exactly solvable Hamiltonian description in terms of the string-net models
proposed by Levin and Wen [40].

What about 3D topological phases? A systematic understanding of topological
phases in 3D systems is still lacking. An interesting family of 3D topological phases
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α β

γ

Figure 2.1: A three-loop braiding process. The process involves a flux loop α
sweeping out a torus enclosing a flux loop β while both linked with a “base” flux
loop γ. The blue curves indicate the trajectory of two points on loop α. If α and
β are identical, we can similarly define the process where α and β are exchanged
while both linked with γ.

is discrete gauge theories and their twisted versions, which can be described by
Dijkgraaf-Witten models [63, 64]. The theory contains both point excitations and
loop excitations, which are the gauge charges and flux loops, respectively. It was
proposed in Ref. [65] that for twisted gauge theories with abelian gauge groups, 3D
modular transformations applied to the degenerate ground states of the system on a
three-torus is related to certain three-loop braiding processes illustrated in Fig. 2.1
(such braiding process has also been discussed in Ref. [66]), and can be used
to distinguish different 3D twisted gauge theories. Thus, the three-loop braiding
statistics (or the 3D S and T matrices) can serve as “non-local order parameters” of
3D twisted gauge theories. Dijkgraaf-Witten models provide a systematic way to
study 3D twisted gauge theories. However, they fail to describe theories with (at
least one) fermionic gauge charges, so it would be nice to have some other exactly
solvable models, which not only give us new perspectives on 3D twisted gauge
theories, but also have the potential to describe theories involving fermionic gauge
charges.

Walker-Wang models [45, 47] are viable candidates to describe 3D twisted gauge
theories. Given the input of a set of anyons, they provide a way to write down
exactly solvable models with 3D topological order. There are two types of Walker-
Wang models: Those with a trivial (short-range entangled) bulk and those with a
nontrivial (long-range entangled) bulk. Quasiparticle excitations in these models
are well understood. First, there are anyons that appear only on the surface of both
types of models. Secondly, there are deconfined quasiparticle excitations in the



9

bulk of the second type of models, which can only be bosons or fermions. Besides
quasiparticle excitations, Walker-Wang models also support loop excitations, but
they are much less well understood. In this chapter, we address this issue by asking
the question: Can Walker-Wang models describe 3D twisted gauge theories with
nontrivial three-loop braiding statistics? We will give an affirmative answer to this
question by solving the following two problems:

1. How do we choose the input data of the Walker-Wang models?

2. How do we determine the topological order of the output theory?

In particular, we study the examples of 3D Z2 × Z2 gauge theories. There are 4
inequivalent such theories: one untwisted gauge theory and three twisted gauge
theories. We find that if we choose the input data of a Walker-Wang model to be
the Z2 × Z2 symmetry charges and the anyons in the non-anomalous (respectively,
anomalous) projective semion states studied in Ref. [22], the output theory is a 3D
untwisted (respectively, twisted) Z2 × Z2 gauge theory. As we will see, there are 1
non-anomalous and 3 anomalous projective semion states, corresponding precisely
to the 1 untwisted and 3 twisted Z2 × Z2 gauge theories, respectively.

To determine the topological order in our Walker-Wang models, we perform 3D
modular transformations to their ground space on a three-torus and calculate the
resulting nonabelian Berry phases. By a dimensional reduction argument, we are
able to obtain the three-loop braiding statistics, which distinguish the 3D Z2 × Z2

gauge theories.

The remainder of the chapter is organized as follows: In Section 2.2, we review
the Walker-Wang construction. In Section 2.3, we present the input data of the
Walker-Wang models that describe the 3D Z2 × Z2 gauge theories. We also explain
the physical intuition of why such input data is chosen. In Section 2.4, we introduce
the methods we use to deduce the topological order in our Walker-Wang models. In
Section 2.5, we summarize the results and discuss future directions. We also discuss
some subtleties involved in doing 3D modular transformations on the Walker-Wang
wave function. Some technical details involved in the arguments and calculations
can be found in the appendices.

2.2 Review of Walker-Wang models
The Walker-Wang models are a class of exactly solvable models for 3D topological
orders. The basic intuition behind the Walker-Wang construction is simple. Given a
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Figure 2.2: An example of the ground state wave function of a Walker-Wang model.
a and b here label the quasiparticle types.
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Figure 2.3: Graphical definition of F and R symbols.
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Figure 2.4: Planar projection of a trivalent resolution of the cublic lattice.
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Figure 2.5: Plaquette term in the Walker-Wang Hamiltonian.

2D anyon theory, the model is constructed such that the ground state wave function
is a superposition of “3D string-nets” labeled by the anyon types, which describe
the 2+1D space time trajectories of the anyons (Fig. 2.2). The coefficient in front of
each configuration is equal to the topological amplitude of the corresponding anyon
process. It can be evaluated by using the graphical rules depicting the algebraic data
of the anyon theory, captured essentially by the F and R symbols defined in Fig. 2.3,
which specify the fusion and braiding rules of the anyons, respectively. The bulk-
boundary correspondence described above is similar in spirit to the correspondence
between quantum Hall wave functions and the edge conformal field theories. There
the systems are in one dimension lower, and the bulk wave function is expressed as
a correlator in the boundary CFT.



12

Mathematically, the input anyon theory of a Walker-Wang model is described by a
braided fusion categoryA. IfA is modular, whichmeans that the only quasiparticle
that braids trivially with itself and all other quasiparticles in A is the vacuum,
the output theory would have a trivial bulk and a surface with topological order
described by A, and the model belongs to the first type of Walker-Wang models
we introduced in the previous section. On the other hand, if A is non-modular, the
output theory would have a nontrivial bulk, and the model belongs to the second
type of Walker-Wang models. The surface theory in this case is more complicated
because it contains not only the quasiparticles in A, but also the endpoints of bulk
loop excitations that are cut open by the system boundary.

To be more concrete, let us illustrate with two examples. First, we consider the
simplest nontrivial input A possible, which consists of only the vacuum I and a
boson e. A is non-modular because e is distinct from the vacuum but braids trivially
with everything in A. A Walker-Wang model with such input describes the 3D Z2

gauge theory with e being the Z2 gauge charge, which is deconfined in the bulk and
on the boundary [47]. Next, we modify A a bit by replacing the boson e with a
semion s. A becomes modular in this case, because s braids nontrivially with itself.
A Walker-Wang model with the modified input has a trivial bulk and a deconfined
semion excitation s on the boundary [47].

In general, deconfined bulk quasiparticle excitations of a Walker-Wang model cor-
respond to quasiparticles in the symmetric centerZ(A) of the input braided fusion
categoryA. A quasiparticle belongs toZ(A) if it has trivial braiding with itself and
all other quasiparticles in A. If A is modular, Z(A) is trivial, which is consistent
with the fact that a Walker-Wang model with modular input has a trivial bulk. If A
is non-modular, it is known that there are two possibilities forZ(A) [67]: (1)Z(A)
contains only bosons. In this case, it can be identified with the set of irreducible
representations of some finite group G; (2)Z(A) contains at least one fermion. In
this case, it can also be identified with the set of irreducible representations of some
finite group G, but each representation comes with a parity, and the set is split into
even and odd sectors, corresponding to the bosons and fermions in Z(A), respec-
tively. Thus, the deconfined bulk quasiparticle excitations of a Walker-Wang model
with non-modular input correspond to the irreducible representations of some finite
group, and it is plausible that the bulk topological order of the model is a gauge
theory of the corresponding group.

Before delving into the exploration of the above possibility, let us review some details
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of Walker-Wang models. We closely follow Ref. [45] and refer the reader there for
further details. Walker-Wang models are defined on a fixed planar projection of a
trivalent resolution of the cublic lattice as shown in Fig. 2.4. The Hilbert space of
a model defined on the lattice is spanned by all labelings of the edges by the input
anyon types. The Hamiltonian is of the form

H = −
∑
v

Av −
∑

p

Bp, (2.1)

where Av is a vertex term which enforces the fusion rules at v by giving an en-
ergy penalty to string configurations that violate the fusion rules at v, and Bp is
a plaquette term of the form Bp =

∑
s dsBs

p, where the summation is over all the
input anyon types s, weighted by the quantum dimension of s. Each Bs

p acts on the
anyon labels of the edges around plaquette p, in a way determined by the anyon
labels of the edges adjoining p. More explicitly, the matrix element of Bs

p sand-
wiched between states with plaquette edges (a′′, b′′, c′′, d′′, p′′, q′′, r′′, u′′, v′′,w′′) and
(a, b, c, d, p, q, r, u, v,w) is given by

(Bs
p)
(a′′,b′′,c′′,d ′′,p′′,q′′,r ′′,u′′,v′′,w′′)
(a,b,c,d,p,q,r,u,v,w) = Rbq′

q (R
rc′
c )
∗(Rb′′q′

q′′ )
∗×

Rr ′′c′
c′′ Fsa′′p′′

a′pa Fsp′′q′′

p′qp Fsq′′b′′

q′bq Fsb′′c′′
b′cb Fsc′′r ′′

c′rc Fsr ′′u′′
r ′us Fsu′′d ′′

u′du ×

Fsd ′′v′′
d ′vd Fsv′′w′′

v′wv Fsw′′a′′
w′aw , (2.2)

The above expression looks rather complicated, but there is a simple graphical way
of understanding the action of Bs

p. Namely, Bs
p temporarily displaces certain links

(c′ and q′ in Fig. 2.5) and fuses a loop with anyon label s to the skeleton of p.
One can check that all terms in the Hamiltonian commute, and the model is exactly
solvable.

To be able to discuss point and loop excitations in Walker-Wang models, we also
need to define string operators and membrane operators in these models. The string
operators have a graphical definition analogous to that of the plaquette operators.
Namely, to create a pair of quasiparticle excitations α ∈ A at two points, we just
need to lay an α-string connecting the two points, and then fuse it to the edges of the
lattice. Furthermore, one can show that the string operator commutes (respectively,
fails to commute) with the plaquette operators threaded by the string if α ∈ Z(A)
(respectively, α < Z(A)), and the corresponding quasiparticles are deconfined
(respectively, confined) in the bulk. On the other hand, all quasiparticles in A are
deconfined on the boundary, because string operators restricted to the boundary
do not thread any plaquettes and hence there is no energy penalty associated with
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them. Unlike the string operators, in general, we do not know how to implement
membrane operators in Walker-Wang models, but as we will show below, we can
deduce the statistics of the loop excitations without explicitly writing down the
membrane operators.

2.3 Z2 × Z2 gauge theories in the Walker-Wang models
In this section, we discuss how the 3D Z2 × Z2 gauge theories can be described
by Walker-Wang models. In particular, we ask the question: How do we find
the input data of the Walker-Wang models that will generate the twisted gauge
theories? Our insight into solving this problem comes from the study of 3D Z2 ×Z2

symmetry protected topological (SPT) phases, which are a class of gapped short-
range entangled phases of matter protected by a global symmetry. A nontrivial
SPT phase has the interesting property that its surface state is anomalous [19–22],
meaning that it cannot exist on its own and must be realized as the boundary of some
system in one dimension higher. This implies that a gapped symmetric surface of a
nontrivial SPT phase must have nontrivial topological order, and that the symmetry
must fractionalize on the anyons in an anomalous way. Specifically to the Z2 × Z2

SPTs, we will first review a particular kind of gapped symmetric surface states of
these SPTs, called the projected semion states. We will introduce its anyon content,
and the symmetry fractionalization pattern ofZ2×Z2 on the anyons. Next, we couple
the systems to a Z2 × Z2 gauge field, and study the surface theories of the gauged
systems. Finally, it is known that upon gauging, a trivial (respectively, nontrivial)
SPT becomes an untwisted (respectively, twisted) gauge theory [68], which leads us
to propose a Walker-Wang model description of the Z2 × Z2 gauge theories based
on the surface anyon content of the gauged Z2 × Z2 SPTs.

Projective semion states and 3D Z2 × Z2 SPTs
The projective semion states are 2D symmetry fractionalization patterns with a
semion and a Z2 × Z2 symmetry, first introduced and analyzed in Ref. [22] and
Ref. [20]. They may be considered as variants of the Kalmeyer-Laughlin chiral spin
liquid (CSL) [69].

We first give a brief review of the Kalmeyer-Laughlin CSL. The topological order
of the theory is the same as that of the ν = 1/2 bosonic fractional quantum Hall
state. The only nontrivial quasiparticle is a semion, which has topological spin i

and fuses into the vacuum with another semion. Moreover, the semion carries a
spin-1/2, transforming projectively under the SO(3) symmetry. The CSL can thus
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be understood as a symmetry fractionalization pattern of SO(3) on a semion. The
theory is non-anomalous, because it can be realized in a purely 2D system with the
explicit construction in Ref. [69].

To describe the projective semion states, we reduce the SO(3) symmetry to a Z2×Z2

subgroup, consisting of rotations along the x, y, and z axes by 180 degrees, which
we denote by gx , gy, and gz, respectively. By restricting the spin-1/2 representation
of SO(3) to this reduced symmetry group, we obtain a projective representation of
Z2 × Z2:

CSL: gx = iσx, gy = iσy, gz = iσz . (2.3)

The CSL is therefore a symmetry fractionalization pattern of Z2 × Z2 on a semion
where the semion carries a half charge under all nontrivial group elements, because
acting a nontrivial group element twice on a spin-1/2 is equivalent to rotating the
spin-1/2 by 360 degrees along the corresponding axis, which results in a phase factor
of −1.

However, the CSL is not the only possible symmetry fractionalization pattern of
Z2 × Z2 on a semion. The semion can also transform under other projective rep-
resentations of Z2 × Z2. More specifically, the semion can carry either integral
or half-integral charges under the nontrivial elements of Z2 × Z2, and we have 3
variants of the CSL, called the “anomalous projective semion” (APS) states, where
the symmetry action on the semion can be represented as

APS-X : gx = iσx, gy = σy, gz = σz,

APS-Y : gx = σx, gy = iσy, gz = σz,

APS-Z : gx = σx, gy = σy, gz = iσz . (2.4)

If we take gx and gy to be the two generators of Z2 × Z2, the APS-X, APS-Y, and
APS-Z theories correspond to the cases where the semion carries a half charge under
either the first, second, or both generators, respectively. It was argued in Ref. [22]
and Ref. [20] that the addition of such half charges to the CSL, though compatible
with the fusion rules of the semion, leads to anomalies in the theory. This can be
seen via the violation of the pentagon equations for the symmetry defects [22] or the
failure in promoting the global symmetry to a gauge symmetry [20] in the effective
field theory (dubbed the ’t Hooft anomaly [70]). The anomalous projective semion
theories are therefore not realizable in purely 2D systems. Nevertheless, they can
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Table 2.1: Berry phases associated with the bulk three-loop braiding processes in
the 3D Z2 × Z2 gauge theories. For simplicity, we use CSL, APS-X, APS-Y, and
APS-Z to label the Z2 × Z2 gauge theories obtained by gauging the corresponding
SPT models.

θx,y θy,x

CSL 0 0
APS-X 0 π/2
APS-Y π/2 0
APS-Z π/2 π/2

be realized on the boundary of some nontrivial 3D Z2 × Z2 SPT phases. Exactly
solvable models for such 3D SPT phases based on the “decorated” Walker-Wang
models were constructed in Ref. [22]. More specifically, the semion Walker-Wang
model studied in Ref. [47] is decorated with unitary linear representations of Z2×Z2,
such that the ground state wave function is a loop gas of semion lines dressed with
Z2 ×Z2 Haldane chains. The endpoints of open semion lines, which are deconfined
semion excitations on the boundary, carry projective representations of Z2 × Z2

as in Eq. (2.4). Therefore, the boundary of the 3D SPT phases are precisely the
anomalous projective semion states. Similarly, one can construct a trivial 3D SPT
phase which realizes the non-anomalous projective semion state on its boundary.
With a slight modification of the Z2 × Z2 Haldane chains, the boundary semion
excitations can be made to transform under Z2 × Z2 as in Eq. (2.3), as desired for a
CSL. We will not delve into the details of the construction. The interested reader
may refer to Ref. [22] for more information.

Gauging the Z2 × Z2 symmetry
Now, suppose we couple the models discussed above to a Z2 × Z2 gauge field. We
obtain a 3D untwisted (respectively, twisted) Z2 × Z2 gauge theory if the system
is in a trivial (respectively, nontrivial) SPT phase. These Z2 × Z2 gauge theories
can be distinguished by the following three-loop braiding processes in the bulk: (1)
Two gx-flux loops exchanged while both linked with a gy-flux loop; (2) Two gy-flux
loops exchanged while both linked with a gx-flux loop. We denote the associated
Berry phases by θx,y and θy,x , respectively. The numerical values of θx,y and θy,x
for the various 3D Z2 × Z2 gauge theories are listed in Table 2.1.

It is shown in Ref. [71] that the gauged systems host three types of excitations on or
near the surface (Fig. 2.6): (1) gauge charges that can appear in the bulk and on the
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α β
χ

q

Figure 2.6: Sketch of surface excitations in a gauged SPT model. The bulk is below
the plane. q represents a gauge charge that can appear in the bulk and on the surface.
χ represents an anyon that can appear only on the surface. α and β represent the
flux lines in the bulk that end on the surface.

boundary; (2) flux loops in the bulk that become open flux lines when ending on
the boundary; (3) anyons that are pinned to the boundary. It is further argued in the
same reference that each surface anyon χ̃ in the gaugedmodel is naturally associated
with a surface anyon χ in the ungauged model. χ is referred to as the “anyonic
flux” carried by χ̃. In our case, the only nontrivial surface anyon in the ungauged
model is a semion s. Correspondingly, there is one and only one nontrivial surface
anyon in the gauged model, which is s̃. The set of excitations in the gauged model
therefore consists of s̃ and the gauge charges and flux loops of Z2 × Z2.

Having understood the excitations in the 3D Z2 × Z2 gauge theories, let us try
to incorporate them into the Walker-Wang construction of the 3D Z2 × Z2 gauge
theories. Since the deconfined quasiparticle excitations on the surface include the
Z2 × Z2 gauge charges and the anyon with anyonic flux s, based on the physical
picture that the bulk wave function of a Walker-Wang model is the space time
trajectories of the quasiparticles on the surface, we expect that if we use the Z2 ×Z2

gauge charges and the surface anyon s̃ to write a Walker-Wang model, we should
get a 3D Z2 × Z2 gauge theory. In the next subsection, we will make this idea more
concrete by explicitly constructing the input data for the Walker-Wang models that
describe the Z2 × Z2 gauge theories.

Input data of the Walker-Wang models
We start by introducing some notations. We denote by ρI , ρx , ρy, and ρz the
1-dimensional representations of Z2 × Z2, defined by

ρI(gx) = 1, ρI(gy) = 1,

ρx(gx) = −1, ρx(gy) = 1,
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1× 1 = 0, 2× 2 = 0, 3× 3 = 0

1× 2 = 3, 2× 3 = 1, 3× 1 = 2

1×m = m, 2×m = m, 3×m = m

m×m = 0 + 1 + 2 + 3

R0;a
a = Ra;0

a = Ra;a
0 = 1

Rx;y
xy = −1

Ra;m
m = Rm;a

m = sa

Rm;m
a = nsa

Quantum dimensions and topological spins:

R symbols:

Fusion rules:

dm = 2nd0 = d1 = d2 = d3 = 1,

θ0 = θ1 = θ2 = θ3 = θm = 1

F symbols:

Fm;a;m
m;b;m = Fa;m;m

b;m;m = χ(a; b)

Fb;a;ab
abc;c;bc = Fb;a;ab

m;m;m = Fa;m;m
m;b;ab = Fm;a;m

ab;m;b = Fm;m;b
ab;a;m = 1

Fm;m;a
m;m;b = nχ(a; b)=2

Figure 2.7: Data for Rep(Q8) and Rep(D4). The (simple) objects are the irreducible
representations (charges) of eitherQ8 or D4, defined in Eq. (2.7) and Eq. (2.8). They
are all self-dual. Here a, b = 0, 1, 2, 3, and x, y = 1, 2, 3, x , y. χ is defined by
χ(0, a) = χ(a, 0) = 1, χ(x, x) = 1, and χ(x, y) = −1. The quantum dimension of a
charge is defined to be the product of its Frobenius-Schur indicator and dimension.
The F symbols with n = −1 (respectively, n = 1) are the 6 j symbols of Q8
(respectively, D4). The R symbols are solutions to the hexagon equations (given the
F symbols) with the constraint that all charges are bosonic and have trivial mutual
statistics. For Q8, there exists a unique solution, n = −1, s0 = 1, s1 = s2 = s3 = −1.
For D4, there exists 3 solutions, n = 1, s0 = 1, s1 = −1, s2 = 1, s3 = 1, and also the
ones resulting from the permutations 1↔ 2 and 1↔ 3, respectively.

ρy(gx) = 1, ρy(gy) = −1,

ρz(gx) = −1, ρz(gy) = −1, (2.5)

We start by introducing some notations. We denote by Q8 the quaternion group,
and D4 the dihedral group of order 8, defined by the presentations

Q8 = 〈x, y |x2 = y2 = (xy)2, x4 = 1〉,

D4 = 〈x, y |x4 = y2 = (xy)2 = 1〉. (2.6)

We denote by G either Q8 or D4. The irreducible representations (charges) of G

consist of four 1-dimensional charges, given by

ρ0(x) = 1, ρ0(y) = 1,

ρ1(x) = 1, ρ1(y) = −1,
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ρ2(x) = −1, ρ2(y) = 1,

ρ3(x) = −1, ρ3(y) = −1, (2.7)

and one 2-dimensional charge, given by

m(x) = iσz, m(y) = iσy, for G = Q8,

m(x) = iσz, m(y) = σx, for G = D4. (2.8)

For simplicity, we denote the 1-dimensional charges ρa of G by a (a = 0, 1, 2, 3),
which form a Z2 × Z2 group under the tensor product of representations. The
charges of G form a braided fusion category Rep(G) with the fusion and braiding
data presented in Fig. 2.7. It is known that a Walker-Wang model with input data
Rep(G) describes a 3D untwisted G-gauge theory [40].

Next, we construct the input data for the Walker-Wang models that describe the
Z2 × Z2 gauge theories. It is useful to first study the fusion rules satisfied by the
quasiparticles on the surface. From representation theory, we know that the tensor
product of the projective representation of Z2×Z2 carried by the semion s (Eq. (2.3)
or Eq. (2.4)) with itself gives a reducible linear representation of Z2 ×Z2, which can
be further decomposed into a direct sum of the four 1-dimensional representations
of Z2 × Z2. After the gauging procedure, the symmetry charges are promoted to
gauge charges, which are deconfined quasiparticle excitations, and the fusion rule
of representations becomes the fusion rule of quasiparticles:

s̃ × s̃ = 0 + 1 + 2 + 3, (2.9)

where we have identified the charges of Z2 × Z2 with the 1-dimensional charges
of G on the right hand side. Eq. (2.9) is identical to the fusion between two 2-
dimensional charges m of G in Fig. 2.7, provided that we further identify s̃ with
m. However, the topological spin of s̃ (respectively, m) is i (respectively, 1), so
m needs to be “twisted” by a semion before we can make the identification. The
precise meaning of this is that we multiply all the F symbols Fmma

mmb (a, b = 0, 1, 2, 3)
in Fig. 2.7 by −1, and all the R symbols Rmm

a (a = 0, 1, 2, 3) in Fig. 2.7 by i.
One can check that Rep(G) remains a consistent braided fusion category after the
modifications, i.e., the pentagon equations and hexagon equations are satisfied. For
convenience, we will denote the modified category by Reps(G).1 Furthermore,

1Fusion categories with fusion rules that of Rep(G) and Reps(G) are actually examples of
the Tambara-Yamagami categories [72] based on the group Z2 × Z2. Not all Tambara-Yamagami
categories admit consistent braiding as Rep(G) and Reps(G) do.
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comparison between Eq. (2.8) and Eq. (2.3) (respectively, Eq. (2.4)) shows that we
should take G to be Q8 (respectively, D4) if s carries the projective representation
in Eq. (2.3) (respectively, Eq. (2.4)).2 Therefore, after the identification above,
the fusion and braiding information of the quasiparticles on the surface of a 3D
untwisted (respectively, twisted) Z2 × Z2 gauge theory are neatly captured by the
braided fusion category Reps(Q8) (respectively, Reps(D4)), which leads us to the
proposal that a Walker-Wang model with input Reps(Q8) (respectively, Reps(D4))
describes a 3D untwisted (respectively, twisted) Z2 × Z2 gauge theory.

Physically, the semion-twisted 2-dimensional charge of G is an anyon, which is
confined in the bulk and deconfined on the boundary because it braids nontrivially
with itself. The 1-dimensional charges of G remain deconfined in the bulk and
on the boundary. The set of quasiparticle excitations in the Walker-Wang models
therefore agrees with that in the Z2 × Z2 gauge theories described in Section 2.3,
provided that our identification between the twisted 2-dimensional charge of G and
the surface anyon s̃ is correct. The identification between the 1-dimensional charges
of G and the Z2 × Z2 gauge charges are natural because their fusion and braiding
data are identical. In the next section, we will give a more direct verification that
the Walker-Wang models we proposed indeed describe the Z2 × Z2 gauge theories.
More specifically, we will compute the three-loop braiding statistics in our models
and check that they agree with those listed in Table 2.1.

2.4 Detecting the topological order in the Walker-Wang models
In this section, we verify that the Walker-Wang models we proposed in the previous
section describe the 3D Z2 × Z2 gauge theories. Our approach is to do 3D modular
transformations to the ground space of ourWalker-Wangmodels on a three-torus and
calculate the resulting nonabelian Berry phases. Similar methods have been used
to determine the topological order in chiral spin liquid [73], 2D topological orders
represented by tensor networks [74, 75], 2D string-net models [76], and untwisted
or twisted quantum double models in 2D [77] and 3D [65, 78, 79]. Furthermore,
by making a dimensional reduction argument, we are able to deduce the three-loop
braiding statistics of our models. We can compare them with the data listed in
Table 2.1 to determine which Z2 ×Z2 gauge theory a particular model is describing.

2It is a mathematical fact that given a projective representation of a group G, one can lift it to a
linear representation of a different group C, which is a central extension of G. In our cases, one can
actually show that the projective representation in Eq. (2.3) (respectively, Eq. (2.4)) can be lifted to
a linear representation of Q8 (respectively, D4), which is a central extension of Z2 × Z2 by Z2.
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Figure 2.8: S and T transformations on a three-torus.
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Figure 2.9: T transformation as the Dehn twist of a hollow cylinder.

S and T matrices from 3D modular transformations
The 3D modular transformations are elements of the mapping class group of the
three-torus MCG(T3) = SL(3,Z). The group has two generators, S and T , which
are of the form

S =
©­­«
0 0 1
1 0 0
0 1 0

ª®®®¬ , and T =
©­­«
1 0 0
0 1 1
0 0 1

ª®®®¬ . (2.10)

If we represent the three-torus as a cube with opposite faces identified, and if we
draw the cube in a right-handed coordinate frame as in Fig. 2.8, then S is a clockwise
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Figure 2.10: A “minimal” trivalent lattice on the three-torus, which consists of 4
vertices, 6 edges, and 3 plaquettes.

rotation of the cube by 120° along a diagonal, and T is a shear transformation in
the yz-plane. There is another way to visualize the T transformation. By closing
the periodic direction of the cube along the z axis, we can equivalently think of the
three-torus as a hollow cylinder with the top and bottom faces identified, and inner
and outer faces identified (Fig. 2.9). The T transformation then becomes the Dehn
twist of the hollow cylinder along the yz-plane.

Note that the 2D modular transformations in the yz-plane, generated by

Syz =
©­­«
1 0 0
0 0 −1
0 1 0

ª®®®¬ , and Tyz =
©­­«
1 0 0
0 1 1
0 0 1

ª®®®¬ , (2.11)

form an SL(2,Z) subgroup of SL(3,Z), so they can be written as a combination of
S, T , and their inverses. In particular,

Syz = (T−1S)3(ST)2ST−1, and Tyz = T . (2.12)

A presentation of SL(3,Z) is obtained by specifying the relations among the gener-
ators [? ]:

S3 = S4
yz = (SyzS)2 = (T−1SS2

yzS−1)2 = I,

S−1TSTS−1T−1ST−1 = SyzS−1TSS−1
yz ,

(T−1S−1
yz )

3 = (Syz)
2, [SyzTS−1

yz , STS−1] = I,

[SyzTS−1
yz , S

−1TS] = I, (2.13)

where [A, B] = ABA−1B−1 denotes the commutator of matrices A and B.
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Since Walker-Wang models are fixed-point models and are scale-invariant, we can
apply the S andT transformations to a model defined on a “minimal” trivalent lattice
on the three-torus (Fig. 2.10). The Hilbert space of a model defined on the lattice
is spanned by all labelings of the edges by the input anyon types that are consistent
with the fusion rules. Each such labeling can be denoted by a sextuple (i, j, k, l,m, n),
where each entry corresponds to a particular input anyon type. For the modified
Q8 and D4 input data discussed in Section 2.3, the Hilbert spaces on the lattice are
all of dimension 176. The matrix elements of the S and T matrices are derived in
Appendix A, and are given by

S(k,i, j,ñ,m̃,l̃)
(i, j,k,l,m,n) = F jil

kml̃
Fkmn

jiñ F j l̃m
jñm̃,

T (i,l̃,k,m,ñ, j̃)
(i, j,k,l,m,n) = Fk j̃n

kmñFkl̃ j
in j̃
(Rk j

l̃
)∗Fmkl

jil̃
Rkl

m . (2.14)

Note that there is an additional complication due to the non-abelian fusion rules of
the input anyons. By computing the Hamiltonian of ourWalker-Wang models on the
minimal lattice (see Appendix B), we find that the ground space of the Hamiltonian
is only a 64 dimensional subspace of the 176 dimensional Hilbert space on the
lattice, so the ground state degeneracy of our models matches that of the 3D Z2 ×Z2

gauge theories. To restrict the modular transformations to be within the ground
space, we need to diagonalize the Hamiltonian, and project the S and T matrices to
the ground space of the Hamiltonian, as explained in the appendix. The 64 by 64 S

and T matrices thus obtained satisfy the relations in Eq. (2.13), so that they form a
representation of the SL(3,Z) group. They encode all the braiding statistics of our
3D topological orders, but it takes a bit more work to read them out, which is done
in the next subsection.

Dimensional reduction and three-loop braiding statistics from the S and T

matrices.
Wefirst review the dimensional reduction phenomenon in 3D discrete gauge theories
and its connection to the three-loop braiding processes. For our purposes, it suffices
to consider theories with an abelian gauge group G and abelian statistics. It was
observed in Ref. [78] and Ref. [79] that the 2D modular matrices Syz and Tyz of a
3D G-gauge theory C3D admit the following direct sum decomposition:

Syz =
⊕
g

Syz,g, Tyz =
⊕
g

Tyz,g, (2.15)

where g runs over all gauge fluxes (group elements) of G, and each pair (Syz,g,Tyz,g)
describes some particular 2D G-gauge theory C2Dg . Furthermore, the basis in
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Table 2.2: Summary of dimensional reduction results in the Walker-Wang models.
We label the Walker-Wang models by their input data. The first row lists the Z2 ×Z2
gauge fluxes threaded through the “x-hole” after the x-direction is compactified.
The resulting 2D Z2 × Z2 gauge theories on the yz-plane are represented by the
Z2 × Z2 × Z2 group elements in the entries.

Trivial gx gy gz

Reps(Q8) 1 1 1 1
Reps(D4) 1 ω2 ω12 ω2ω12

Reps(D4) with 1↔ 2 1 ω12 ω1 ω1ω12

Reps(D4) with 1↔ 3 1 ω2ω12 ω1ω12 ω1ω2

γ
α0 β0α00β00

α β

γ

(a) (b) (c)

γ
α0 β0

α00β00

Figure 2.11: Decomposition of a three-loop braiding process into two separate
braiding processes in the dimensionally-reduced 2D system.

which Syz and Tyz take the above block diagonal form consists of the simultaneous
eigenstates of the charge Wilson loop operators along the x-axis.

The above observations can be understood in terms of the dimensional reduction of
the 3D G-gauge theory C3D. Physically, it implies that if we put the 3D G-gauge
theory C3D on a three-torus and make one spatial dimension (say the x-direction) of
the three-torus very small, then C3D can be viewed as a direct sum of 2D G-gauge
theories C2Dg with degenerate ground state energy:

C3D =
⊕
g

C2Dg . (2.16)

The degeneracy is accidental and can be lifted by fixing aG-gauge flux g through the
hole bound by the x-axis (dubbed the “x-hole” following Ref. [66]). This reduces
the 3D G-gauge theory C3D to the 2D G-gauge theory C2Dg . The gauge flux g can
be detected by winding the G-gauge charges around the “x-hole” and studying the
associated Aharonov-Bohm phases. Therefore, the ground space of each sector C2Dg
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is actually the eigenspace of the charge Wilson loop operators along the x-axis with
a particular set of eigenvalues, which agrees with the observations in the previous
paragraph.

To deduce the three-loop braiding statistics in C3D, we adopt the approach from
Ref. [66] to decompose a three-loop braiding process in a 3D system into two
separate processes in the dimensionally-reduced 2D systems. More specifically,
let us consider the three-loop braiding process depicted in Fig. 2.1, where a flux
loop α sweeps out a torus which contains another flux loop β while both linked
with a “base” flux loop γ. We denote the Berry phase associated with the above
braiding process by θαβ,γ. Without loss of generality, we suppose that γ lies in the
yz-plane, and α and β lie in the xy-plane. After we compactify the x-direction
into a small circle, α extends across the x-direction, fuses with itself, and splits into
two noncontractible loops α′ and α′′ (Fig. 2.11(b)). Similarly, β fuses with itself
and splits into β′ and β′′. The three-loop braiding process can then be decomposed
into two separate processes in which α′ is braided around β′ inside the base loop
γ and α′′ is braided around β′′ outside the base loop γ (Fig. 2.11(b)). For the
first process, we can stretch γ so that it subtends the yz-plane (Fig. 2.11(c)). This
leaves a flux line γ threaded through the “x-hole”, which reduces the 3D G-gauge
theory C3D to the 2D G-gauge theory C2Dφγ , where φγ denotes the gauge flux carried
by the loop γ. Similarly, for the second process, we can shrink γ till it fuses and
annihilates with itself (Fig. 2.11(c)). This leaves no gauge flux through the “x-hole”,
and C3D is reduced to C2D0 , where we denote the group identity of G by 0. In the
2D limit, noncontractible flux loops along the x-direction become point-like gauge
fluxes in the 2D G-gauge theories, because the extent of the x-direction is negligible
compared with that of the y and z-directions. Therefore, the three-loop braiding
process in C3D that we started with is reduced to two separate braiding processes
between gauge fluxes in C2Dφγ and C2D0 . This implies the following relation between
the associated Berry phases:

θαβ,γ = θ
2D
α′β′(γ) − θ

2D
α′′β′′(0), (2.17)

where the first and second terms on the right hand side are the Berry phases resulting
from braiding α′ around β′ in C2Dφγ and α′′ around β′′ in C2D0 , respectively. The
relative minus sign takes into account the fact that the two pairs of gauge fluxes are
braided in opposite directions.

Now, we carry out the above procedure to analyze the dimensional reduction phe-
nomenon and compute the three-loop braiding statistics in ourWalker-Wangmodels.
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First, we apply the relations in Eq. (2.12) to obtain the 2D modular matrices Syz

and Tyz from the 3D modular matrices S and T . Then we compute the charge string
operators along the non-contractible loops along the x, y, and z axes (see Appendix
C), which we denote by W s

x , W s
y , and W s

z , respectively. Here s = 0, 1, 2, 3 labels
the Z2 × Z2 charges. Without loss of generality, we identify 1 with gx , and 2 with
gy. Next, we do a basis transformation, and rewrite Syz and Tyz in the simultaneous
eigenstates ofW s

x ,W s
y , andW s

z . We find that if we organize the basis states according
to the eigenvalues ofW s

x (equivalently the eigenvalues of the pair (W1
x,W

2
x )), Syz and

Tyz are block diagonal with each block of size 16 by 16. For simplicity, we denote
by Sa,b and Ta,b (a, b = ±1) the block corresponding to (W1

x,W
2
x ) = (a, b). Since

W1
x (respectively, W2

x ) detects the gx (respectively, gy) flux through the “x-hole”,
(Sa,b,Ta,b) describes the 2D topological order obtained by making the x-direction of
the three-torus into a small circle, and threading some particular Z2×Z2 flux ν(a, b)
through the “x-hole”, where ν(a, b) = 0, gx , gy, or gz for (a, b) = (1, 1), (−1, 1),
(1,−1), or (−1,−1), respectively.

Note that Sa,b and Ta,b are written in the simultaneous eigenstates ofW s
y andW s

z , and
are not yet presented in their canonical form, where the entries of the S andT matrices
are the braiding statistics and topological spins of quasiparticles, respectively. It is
shown in Ref. [73] that by choosing the basis states in the ground space to be the
minimum entropy states (MESs), one can put S and T into the canonical form. The
MESs are the simultaneous eigenstates of the charge string operators and flux string
operators that encircle the two-torus. Without loss of generality, we define ourMESs
to be the simultaneous eigenstates of W s

y and V s
y , where we denote the flux string

operators along the y-axis by V s
y . The flux string operators are the flux membrane

operators in the xy-plane before we dimensionally reduce our system to the yz-plane.
In general, we do not know how to implement the membrane operators in Walker-
Wang models, so it is hard to write down V s

y explicitly. However, we do know that
V s
y and W s

z satisfy the following commutation and anticommutation relations:

{W1
z ,V

1
y } = 0, [W1

z ,V
2
y ] = 0, {W1

z ,V
3
y } = 0,

[W2
z ,V

1
y ] = 0, {W2

z ,V
2
y } = 0, {W2

z ,V
3
y } = 0,

{W3
z ,V

1
y } = 0, {W3

z ,V
2
y } = 0, [W3

z ,V
3
y ] = 0. (2.18)

This follows from the Aharonov-Bohm interaction between gauge charges and flux
loops in a 3D gauge theory. We are able to deduce from this the basis transformation
from the simultaneous eigenstates of W s

y and W s
z to the MESs. For details about the

basis transformation, we refer the reader to Appendix D.
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After rewriting Sa,b and Ta,b in the MES basis, we find that they are identical to the
2D modular matrices of the 2D Z2 × Z2 gauge theories. There are 8 inequivalent
such theories: 1 untwisted gauge theory and 7 twisted gauge theories. They can
be distinguished by a triple (θx, θy, θxy), where the first, second and third entries
are the Berry phases associated with the exchange of two gx fluxes, the exchange
of two gy fluxes, and the braiding of a gx flux around a gy flux, respectively. θx

and θy can take value either 0 or π/2, and θxy can take value either 0 or −π/2, and
the 8 combinations correspond to the 8 different 2D Z2 × Z2 gauge theories. The 8
theories are classified by the cohomology group H3(Z2 × Z2,U(1)) = Z2 × Z2 × Z2.
The trivial element of the group corresponds to the untwisted gauge theory, and the
7 nontrivial elements correspond to the twisted gauge theories. The three generators
of the group (written multiplicatively), which we denote by ω1, ω2, and ω12, can
be taken to be the 2D twisted Z2 × Z2 gauge theories with (θx, θy, θxy) = (π/2, 0, 0),
(0, π/2, 0), and (0, 0,−π/2), respectively. Each dimensionally-reduced 2D Z2 × Z2

gauge theory can then be represented by a combination of the three generators. The
results are summarized in Table 2.2.

To compute the three-loop braiding statistics in our Walker-Wang models, we follow
our earlier discussion to decompose a three-loop braiding process into two separate
braiding processes in the dimensionally-reduced 2D systems and find the relation
between their associated Berry phases. In particular, the three-loop braiding process
considered in Section 2.3, where two gx-flux loops are exchanged while both linked
with a gx-flux loop, can be decomposed into the following two braiding processes in
2D: (1) Two gy fluxes exchanged inside a gy-flux loop; (2) Two gx fluxes exchanged
outside the gy-flux loop. Therefore, we have the following relation between the
associated Berry phases:

θx,y = θ
2D
x (y) − θ

2D
x (0), (2.19)

where the first and second terms on the right hand side are the Berry phases resulting
from exchanging two gx fluxes either inside or outside a gy-flux loop, respectively.
Similar analysis applies to the case where the roles of gx and gy are switched and
we have the following expression:

θy,x = θ
2D
y (x) − θ

2D
y (0). (2.20)

Let us now apply Eq. (2.19) and Eq. (2.20) to two examples. First, we consider
a Walker-Wang model with input Reps(Q8). From Table 2.2, we know that after
dimensional reduction, we get the 2D untwisted Z2 × Z2 gauge theory both inside
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and outside each Z2 × Z2 flux loop, which implies that

θ2Dx (0) = θ
2D
y (0) = 0,

θ2Dx (y) = θ
2D
y (x) = 0. (2.21)

Hence
θx,y = 0, θy,x = 0, (2.22)

and the Walker-Wang model describes the 3D untwisted Z2 × Z2 gauge theory.

Next, we consider a Walker-Wang model with input Reps(D4). As in the previous
example, we get 2D Z2 × Z2 gauge theories both inside and outside each Z2 × Z2

flux loop after dimensional reduction. The only difference is that the Z2 × Z2 gauge
theory is twisted inside a nontrivial flux loop. More specifically, we get the 2D
twisted Z2 × Z2 gauge theory represented by the Z2 × Z2 × Z2 group element ω2

(respectively, ω12) inside a gx-flux (respectively, gy-flux) loop. We can deduce from
this that

θ2Dx (y) = 0, θ2Dy (x) =
π

2
. (2.23)

Together with
θ2Dx (0) = θ

2D
y (0) = 0, (2.24)

they imply that
θx,y = 0, θy,x =

π

2
, (2.25)

and theWalker-Wangmodel describes a 3D twistedZ2×Z2 gauge theory (the APS-X
theory).

We can carry out similar computations for Walker-Wang models with the other two
sets of input data in Table 2.2. We find that when we permute the labels 1 and 2
(respectively, 1 and 3) in Reps(D4), the resulting Walker-Wang model describes the
APS-Y (respectively, APS-Z) theory.

2.5 Summary and Discussion
In this chapter, we studied in detail the realization of the 3D Z2 ×Z2 gauge theories,
both twisted and untwisted, in terms of Walker-Wang models. Our proposal is based
on the study of the surface topological order of Z2 ×Z2 gauge theories [20, 22]. We
propose that if we take the input data of a Walker-Wang model to be the Z2 × Z2

symmetry charges and the surface anyon content of a trivial (respectively, nontrivial)
3D Z2 × Z2 SPT (or rather their corresponding excitations in the gauged models),
the output theory is a 3D untwisted (respectively, twisted) Z2 × Z2 gauge theory.
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To check the validity of our proposal, we perform 3D modular transformations to
the ground space of our Walker-Wang models on the three-torus and extract the
resulting S and T matrices. By making a dimensional reduction argument, we are
able to deduce the three-loop braiding statistics from the S and T matrices, which
determine the topological order in our models.

Note that there is a subtlety involved in doing modular transformations in Walker-
Wang models. In Walker-Wang models, we work with a fixed planar projection of
the 3D trivalent lattice. The strings living on the lattice are actually ribbons with
the blackboard framing. Therefore, it is important that we choose to calculate Berry
phases associated with the modular transformations that preserve the projection of
the 3D lattice (equivalently, the framing of the ribbon graphs). This is solely for
the sake of convenience. Otherwise, we need to transform the ribbon graphs back
to the original framing after the modular transformations, and this introduces extra
factors into the wave function. This is precisely the reason why we did not calculate
the Berry phases associated with the 2D modular transformation Syz directly in
Section 2.4. Syz changes the framing of the ribbon graphs, whereas S and T do
not. Thus, it is easier to first calculate S and T , and deduce Syz from the relation
Eq. (2.12).

So far we have only considered the Walker-Wang construction of 3D Z2 × Z2 gauge
theories. It would be interesting to generalize the construction to other 3D discrete
gauge theories. It would also be interesting to find the connection between the
Walker-Wang description and the Dijkgraaf-Witten description of these discrete
gauge theories. Note that the ground state wave function in the former (respectively,
latter) description is a condensate of loops (respectively, membranes), so the two
descriptions should be dual to each other in some sense. It would be nice to make
this duality more concrete and study how general it is. Another interesting direction
is to generalize the Walker-Wang construction to discrete gauge theories with (at
least one) fermionic gauge chareges. The simplest example of this kind is a 3D Z2

gauge theory with fermionic Z2 gauge charges. This theory can be described by a
Walker-Wang model [40]. One can simply take a Walker-Wang model describing
the 3D Z2 gauge theory, and “twisting” the R symbols of the input data by a fermion.
More precisely, R11

0 takes the value −1 in the fermionic case and 1 in the bosonic
case, where 1 labels the Z2 gauge charge, and 0 labels the vacuum. This example is
interesting because Dijkgraaf-Witten models fail to describe discrete gauge theories
with fermionic gauge charges. It would be nice to have a Walker-Wang description
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for more of such fermionic discrete gauge theories, especially ones that are twisted.
A detailed study of such cases is beyond the scope of this thesis.
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C h a p t e r 3

EXACTLY SOLVABLE MODEL FOR TWO-DIMENSIONAL
TOPOLOGICAL SUPERCONDUCTORS

3.1 Introduction
The discovery of topological insulators and superconductors [24–27, 30, 31] demon-
strates that a fermionic system can exhibit nontrivial topological properties if the
fermions occupy a band structure with nontrivial topology. The topological nature
of the systems ismanifested physically in the existence of gapless edgemodes around
a gapped bulk, which cannot be removed unless certain symmetry is explicitly or
spontaneously broken. It is also manifested at symmetry defects on the boundary
of the system. For example, in a 2D topological superconductor, a time-reversal
domain wall on the 1D boundary hosts a Majorana zero mode and in a 3D topo-
logical superconductor, a time- reversal domain wall on the 2D boundary hosts a
chiral Majorana mode. A complete classification of topological insulators and su-
perconductors in free fermion systems was given in Refs. [34, 80]. Such “Symmetry
Protected Topological (SPT)” order was found in interacting boson systems as well.
A whole class of exactly solvable models with commuting projector Hamiltonian
and zero correlation length ground state wave function were constructed to realize
such bosonic SPT order [41, 81].

Can topological insulators and superconductors discovered in the free fermion setup
be realized with exactly solvable models as well? This question is interesting not
only out of pure theoretical curiosity; it is also crucial for formulating a general
framework for both fermionic and bosonic SPT phases which may lead to the
discovery of new phases and a complete classification. Moreover, it can be useful in
answering questions regarding many-body localization in such phases when strong
disorder is present[44]. In this paper, we focus on the case of 2D topological
superconductor.

If an exactly solvable model is possible, it necessarily involves interactions as
the free fermion ground states always have a nonzero correlation length due to the
nontrivial topology of the band structure [44]. Refs. [82, 83] gave the exactly solvable
model realization of a large class of fermionic SPT phases which are protected by
symmetries of the form Gb × Z

f
2 , where Gb denotes symmetry transformation on
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Figure 3.1: The decorated domain wall approach. (a) Ground state is a superposition
of all symmetry breaking domain configurations (blue and grey patches)with domain
walls decorated with SPT states of one lower dimension (red curves). (b) The end
point of the domain wall on the boundary (star) hosts nontrivial edge states of the
lower dimensional SPT.

some bosonic degrees of freedom in the system and Z f
2 is the fermion parity part

of the symmetry. The symmetry protecting the topological superconductor falls
out of this class. In the topological superconductor, time-reversal symmetry acts
as T2 = P f , where P f is the fermion parity operator generating the Z f

2 symmetry
group. Therefore, the total symmetry group is Z4, with the odd group elements
being anti-unitary.

The decorated domain wall construction provides a different approach for construct-
ing exactly solvable models for SPT phases [46]. In this approach, the ground
state wave function is written as a superposition of all possible symmetry breaking
configurations with the symmetry breaking domain walls decorated with SPT states
of one lower dimension, as shown in Fig. 3.1(a). The superposition guarantees that
the total wave function is symmetric. Moreover, when symmetry is broken into
opposite domains, the domain wall carries the lower dimensional SPT state. When
the domain wall ends on the boundary of the system, the end point hence hosts the
edge state of the lower dimensional SPT state, reflecting the nontrivial nature of the
original SPT order, as shown in Fig. 3.1(b).

In a topological superconductor with helical Majorana edge mode, a mass term can
gap out the edge mode while breaking time-reversal symmetry. On the symmetry
domain wall, there is an isolated Majorana mode. Therefore, if the topological
superconductor can be written in the decorated domain wall way, we should decorate
the time-reversal domain walls with Majorana chains.
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Decorating symmetry domain walls with Majorana chains has proven to be more
difficult than with bosonic chains. A breakthrough was made recently in Refs. [48,
49] where a fermionic SPT phase with Z2×Z

f
2 symmetry was realized by decorating

the Z2 domain walls with 1D Majorana chains. Although the protecting symmetry
is still of the form Gb×Z

f
2 , this particular phase cannot be realized using the method

of Ref. [82]. It was realized that the incorporation of a Kasteleyn orientation on the
two dimensional lattice, which corresponds to a discrete version of spin structure in
2D, is crucial for a consistent decoration.

Using the Kasteleyn orientation, we present a decorated domain wall construction
of the 2D topological superconductor in this paper. Our construction is different
from that of the Z2 × Z

f
2 SPT phase in an important way. In the case of Z2 × Z

f
2 ,

the Majorana chain used for decoration does not transform under the Z2 part of the
symmetry, which acts only on the symmetry domains. In the case of topological su-
perconductor, time reversal acts both on the symmetry domains and on theMajorana
chains decorated onto the symmetry domain walls. In fact, the way the Majorana
chains transform under time reversal is crucial for the construction as we know that
topological superconductivity only exists for T2 = −1 fermions but not the T2 = +1
ones. Indeed, after we present carefully how a zero correlation length wave function
and a commuting projector Hamiltonian can be constructed for T2 = −1 fermions,
we will be able to see why a similar construction fails for the T2 = +1 ones. Our
discussion below focuses on the Honeycomb lattice, but the construction works for
any trivalent lattice using the same convention as defined below.

3.2 Wave function
Consider the planar trivalent lattice in Fig. 3.2 together with a Kasteleyn orientation,
i.e., orientation of the bonds of the lattice for which any plaquette has an odd number
of clockwise-oriented bonds. There are two types of faces in the lattice: the 12-sided
faces, which we will refer to as plaquettes, and the triangular faces, which we will
refer to as triangles. Let t(v) and t(w) be the triangles that contain the vertices v and
w, respectively. The bonds of the lattice also come in two types: the ‘short’ bonds
which connect different triangles (t(v) , t(w)), and the “long” bonds that are in the
same triangle (t(v) = t(w)).

The Hilbert space of our model consists of a bosonic spin-1/2 located on each
plaquette p, acted on by the Pauli operators τx

p , τ
y
p , τz

p, and a pair of complex
fermions located on each short bond l, created and annihilated by operators cσ†l and
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cσl (σ =↑, ↓), respectively. Let l = 〈
−→
vv′〉 be oriented from vertex v to vertex v′. Each

complex fermion on l can be represented by a pair of Majorana modes

γσv = cσ†l + cσl ,

γσv′ = i(cσ†l − cσl ), (3.1)

located at v and v′, respectively. We can also define a fictitious spin-1/2 degree of
freedom τt on each triangle following the majority rule: The value of τt is set to
1 if the majority of the three plaquettes bordering t have τz

p = 1, and is set to −1
otherwise.

Our system has a time-reversal symmetry T , which acts on both the plaquette
spins and the complex fermions. In the eigenbasis of τz

p, T maps between the two
eigenstates of τz

p:

T : |1〉 → |−1〉 , |−1〉 → |1〉 , (3.2)

together with the complex conjugation operation in this basis. The fictitious spins on
the triangles will also be flipped due to the majority rule. Since any fixed plaquette
spin configuration in the τz basis breaks time-reversal symmetry, we will refer to
a domain of plaquette spins in the same τz basis state as a time-reversal domain.
Furthermore, cσl transforms as a Kramers doublet under T : c↑l → c↓l , c↓l → −c↑l .
Written in terms of the Majorana modes, we have:

T :

γ
↑
v → γ

↓
v

γ
↓
v → −γ

↑
v,


γ
↑

v′ → −γ
↓

v′

γ
↓

v′ → γ
↑

v′ .
(3.3)

where the Kasteleyn orientation points from v to v′.

Now we describe in detail how we decorate the time-reversal domain walls with
Majorana chains. Away from the domain wall, we pair up Majorana modes that
share a short bond 〈

−→
vv′〉 as iγ↑vγ

↑

v′ + iγ↓vγ
↓

v′. On a domain wall, we pick out one
Majorana mode γσv

v from each vertex v and pair them along the long bonds 〈−→vw〉
as iγσv

v γσw
w so that they form a Majorana chain. The spin label σv is determined as

follows: If the left hand side of the short bond is a |1〉 domain, σv = ↑; otherwise,
σv = ↓. After the Majorana modes of the σv species pair into Majorana chains, we
are left with exactly one unpaired Majorana mode on each vertex on the domain
wall. The two unpaired Majorana modes that share a short bond 〈

−→
vv′〉 will have the

same spin σ̄v which can be paired as iγσ̄v
v γ

σ̄v′

v′ . This is the same kind of coupling
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Figure 3.2: (a) illustrates the lattice structure and degrees of freedom in our model.
Here 1 and −1 denote the eigenstates of τz

p with eigenvalues 1 and −1, respectively.
The blue bonds indicate the time-reversal domain wall. The solid red circles denote
the Majorana modes γσv (σ =↑, ↓). The arrow at each bond denotes the Kasteleyn
orientation of the bond. (b) (respectively, (c)) is a detailed illustration of the coupling
of Majorana modes away from (respectively, on) the domain wall. The dots and
crosses on the solid red circles indicate the up (↑) and down (↓) spins of theMajorana
modes, respectively. The yellow (respectively, grey) bond denotes the coupling of
Majorana modes that share a long (respectively, short) bond.

as that away from the domain wall, but with only one species of Majorana modes.
Fig. 3.2 (b) and (c) give a pictorial illustration of these coupling rules.

The ground state wave function of a topological superconductor is then given by
the superposition of all possible time-reversal domain configurations with domain
walls decorated with Majorana chains. It satisfies the following properties: It’s
time-reversal invariant, and every configuration in the superposition has the same
fermion parity. The latter fact is ensured by the Kasteleyn orientation. The reason
for this is very similar to that presented in Ref. [48, 49] although here we have two
species of fermion modes.

To see the time-reversal invariance, we note that time reversal acts by flipping
the plaquette spins, and transforms the Majorana modes in a way that conforms
to the decoration rules introduced above. In particular, for Majorana modes not
on a domain wall, they pair as iγ↑vγ

↑

v′ + iγ↓vγ
↓

v′ on a short bond which is invariant
under time reversal. For Majorana modes on a domain wall, the decoration rule
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says that the modes that form (do not form) Majorana chains flip their spin when the
plaquette spins are flipped, which is consistent with the time-reversal transformation
action. Moreover, the pairing terms along the domain wall, whose signs are fixed by
the Kasteleyn orientation, exactly map into each other under time reversal without
any sign ambiguity. To see this, first notice that for the modes which do not
form Majorana chains, the pairing maps from iγσv

v γ
σv′

v′ to iγσ̄v
v γ

σ̄v′

v′ , which are
both consistent with the Kasteleyn orientation. Secondly, for the modes that are
involved in forming Majorana chains, one can check that the pairing term iγσv

v γσw
w

is mapped into iγσ̄v
v γσ̄w

w which are both consistent with the Kasteleyn orientation.1
Therefore, we can conclude that time reversalmaps fromone to another the decorated
domain wall configurations in the superposition. The whole superposition is then
time-reversal invariant if the weight of the time-reversal partner configurations are
complex conjugate of each other. This will be demonstrated in detail in Section 3.4.

3.3 Hamiltonian
The Hamiltonian of our model can be written as

H = Hdecorate + Htunnel, (3.4)

where Hdecorate will be defined to realize the domain wall decoration described in
the above section for each plaquette spin configuration, and Htunnel will be defined
to tunnel between the different plaquette spin configurations.

More explicitly, let D〈−→vw〉 =
1
2

(
1 − τz

f−−→vw
τz

f ′−−→vw

)
be the operator which detects if the

bond (either short or long) 〈−→vw〉 is on a domain wall. f−→vw denotes the left-hand-side
face of the bond 〈−→vw〉; f ′−→vw denotes the right-hand-side one. If 〈−→vw〉 is a long bond,
we denote by 〈vv′〉 (〈ww′〉) the short bond that includes vertex v(w).2 We can define

two operators W±vw =
1
4

(
1 ± τz

f
vv′

) (
1 ∓ τz

f ′
ww′

)
to determine which γs

v,w( s =↑, ↓) to

pair in the Majorana chain on the domain wall. If W+vw = 1, W−vw = 0, the pairing
over the long bond 〈−→vw〉 is iγ↑vγ

↓
w; if W−vw = 1, W+vw = 0, it is iγ↓vγ

↑
w. If both are zero,

〈
−→vw〉 is not on a domain wall.

1The way γσv
v transforms into γσ̄v

v depends on the orientation of the short bond 〈vv′〉 and
similarly for w. One can check that with all four orientation possibilities, this conclusion is always
true.

2The overline on top of vv′ means that if v is oriented to v′, vv′ =
−−→
vv′, otherwise vv′ =

−−→
v′v.
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Now we write the decoration part of the Hamiltonian as

Hdecorate = −
∑
〈
−→vw〉

t(v)=t(w)

[iD〈−→vw〉W
+
vwγ
↑
vγ
↓
w + iD〈−→vw〉W

−
vwγ
↓
vγ
↑
w)]

−
∑
〈
−→vw〉

t(v),t(w)

[iD〈−→vw〉

(1 + τz
f

2

)
γ
↓
vγ
↓
w + iD〈−→vw〉

(1 − τz
f

2

)
γ
↑
vγ
↑
w

+ i
(1 − D〈−→vw〉

2

)
(γ
↑
vγ
↑
w + γ

↓
vγ
↓
w)], (3.5)

where t(v) (respectively, t(w)) denotes the triangular face that includes the vertex v

(respectively, w). Htunnel can be defined by

Htunnel =
∑

p

τx
p Xp, (3.6)

where the sum over p only involves the plaquettes, not the triangles. The plaquette
term Xp rearranges the Majorana chains to comply with the domain wall decoration
rules defined above after τx

p is applied. Specifically,

Xp =
∑
µp=±1
{µq=±1}

V {µp,q}p ΠpP{µp,q}p , (3.7)

where the sum over {µq = ±1} denotes the summation over all the adjacent plaquette
spin configurations around p.3 The operators P{µp,q}p and Πp are projectors: P{µp,q}p

projects onto bosonic spin states with precisely τz
p = µp and τz

q = µq, andΠp projects
onto states in the fermionic Hilbert space that conform to those spin configurations:

P{µp,q}p =

(1 + τz
pµp

2

) ∏
{q}

(1 + τz
qµq

2

)
(3.8)

Πp =
∏

〈
−→vw〉∈∂ ′p

t(v)=t(w)

D〈−→vw〉

[
W+vw

(
1 + iγ↑vγ

↓
w

2

)
+W−vw

(
1 + iγ↓vγ

↑
w

2

)]
∏

〈
−→vw〉∈∂ ′p

t(v),t(w)

{(1 − D〈−→vw〉
2

) (
1 + iγ↑vγ

↑
w

2

) (
1 + iγ↓vγ

↓
w

2

)
+

3Note that by using the “majority rule”, one can extend the spin configuration from plaquettes
to triangles.
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Figure 3.3: (a) The 36 Majorana modes denoted by the 18 red dots in this figure
are the Majorana modes surrounding the plaquette p, denoted by ∂′p. (b) Majorana
modes (labeled 1 − 14) involved in the definition of V {µp,q}p when flipping the
middle plaquette starting from this particular initial configuration. Red rectangles
correspond to the pair projector terms involved in V {µp,q}p . Note that the spins of the
involved Majorana modes are not shown in the figure.

D〈−→vw〉

[(1 + τz
fvw

2

) (
1 + iγ↓vγ

↓
w

2

)
+

(1 − τz
fvw

2

) (
1 + iγ↑vγ

↑
w

2

)]}
. (3.9)

Here ∂′p includes the 36 Majoranas in the triangles surrounding the plaquette p, as
shown in Fig. 3.3(a). The first line and third line of Eq. (3.9) enforce the pairing of
Majorana modes on the domain wall, and the second line of Eq. (3.9) enforces the
pairing of Majorana modes away from the domain wall.

The third part in the definition of Xp is

V {µp,q}p = 2−
n+1

2 (1 + is2,3γ
σ2
2 γσ3

3 )(1 + is4,5γ
σ4
4 γσ5

5 ) . . .

(1 + is2n,1γ
σ2n
2n γσ1

1 ), (3.10)

which takes the initial fermion configuration |Ψi〉 determined by Πp corresponding
to a fixed bosonic configuration determined by P{µp,q}p , and maps it to |Ψ f 〉. The
constant in the front is chosen so that |Ψ f 〉 has the same norm as |Ψi〉. The labels
σi (i = 1, 2, . . . 2n) can take values ↑ and ↓, specifying the spins of the Majorana
modes, and are determined by the bosonic spin configuration on and around the
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plaquette p following the aforementioned decoration rules. The Majorana modes
γi are arranged so that the initial state satisfy is2i−1,2iγ

σ2i−1
2i−1 γ

σ2i
2i = 1. Then V {µp,q}p

maps this state into a state |Ψ f 〉 with is2i,2i+1γ
σ2i
2i γ

σ2i+1
2i+1 = 1. Here si, j = 1 if the edge

〈viv j〉 points from vi to v j and si, j = −1 otherwise. A pictorial illustration is given
in Fig. 3.3(b).

V {µp,q}p defined above determines the relative weight and phase factor of different
configurations. With repeated application of Vp and τx

p , we can start from any initial
configuration (including both boson and fermion degrees of freedom) satisfying
Hdecorate, and reach any other final configuration. The total ground state wave
function is then a superposition of all the configurations obtained in this way.
The fact that the relative weight and phase factor of different configurations can
be uniquely and consistently determined is guaranteed by the commutativity of
different Vp terms, which we prove in Appendix E. Moreover, as we will discuss in
Section 3.4, the Hamiltonian thus defined is time-reversal invariant and ensures the
time-reversal invariance of the ground state wave function.

3.4 Time Reversal Invariance of the Hamiltonian and the Wave Function
Recall that time reversal acts on the spins and fermions as T =

∏
τx ⊗

∏
(iσy)K ,

whhere K is the complex conjugation operator. Under time reversal, terms in the
Hamiltonian change as follows:

D−→vw → D−→vw
i(γ↑vγ

↑
w + γ

↓
vγ
↓
w) → i(γ↑vγ

↑
w + γ

↓
vγ
↓
w)

W+vwiγ↑vγ
↓
w ↔ W−vwiγ↓vγ

↑
w(

1 + τz
f

2

)
γ
↓
vγ
↓
w ↔

(
1 − τz

f

2

)
γ
↑
vγ
↑
w (3.11)

Therefore Hdecorate is time reversal invariant. It is not obvious that the tunneling
term is also time reversal invariant, we need to check it explicitly. First, the spin
term τx

p is invariant under time reversal. Similar to Hdecorate, it is obvious that the
Πp’s are even under time reversal. P{µq,µq}p is mapped to its time reversal partner
because TP{µq,µq}p T−1 = P{−µq,−µq}p . It can be explicitly checked that V {µp,q}p is also
mapped to its time reversal partner under time reversal. Therefore, we see that

TV {µp,q}p ΠpP{µp,q}p T−1 = V {−µp,−µq}p ΠpP{−µp,−µq}p . (3.12)

Although X {µp,q}p ΠpP{µp,q}p alone is not time reversal invariant, the sum of all con-
figurations of {µp, µq} is invariant under time reversal.
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Finally, let us come back to prove that the ground state wave function is time-reversal
invariant. It suffices to prove that the weights of two configurations related by time
reversal are complex conjugate of each other. Let us consider a fermionic state
|Ψ f 〉 obtained by acting a sequence of plaquette operators on the initial fermionic
state |Ψi〉 associated with the plaquette spin configuration where τz

p = 1 for all
p: |Ψ f 〉 = Vp1Vp2 . . .Vpn |Ψi〉. The fermionic state |ΨT

f 〉 associated with the time-
reversal partner of this configuration can be obtained by acting another sequence of
plaquette operators on the initial fermionic state: |ΨT

f 〉 = Vp′1Vp′2 . . .Vp′m |Ψi〉, where
p′1∪ p′2∪· · ·∪ p′m form the complementary region of p1∪ p2∪· · ·∪ pn. Note that the
boundary of both regions agree. Using similar tricks as in Eq. (A11) of Ref. [48] for
spinless fermions, we find that both Vp1Vp2 . . .Vpn and Vp′1Vp′2 . . .Vp′m can be reduced
to the product of a sequence of projectors which act only on the Majoranas lying on
the boundary of the region p1 ∪ p2 ∪ · · · ∪ pn:

Vp1Vp2 . . .Vpn = 2−
n+1

2 (1 + is2,3γ
σ2
2 γσ3

3 )(1 + is4,5γ
σ4
4 γσ5

5 ) . . . (1 + is2n,1γ
σ2n
2n γσ1

1 ),

(3.13)

Vp′1Vp′2 . . .Vp′m = 2−
n+1

2 (1 + is2,3γ
σ̄2
2 γσ̄3

3 )(1 + is4,5γ
σ̄4
4 γσ̄5

5 ) . . . (1 + is2n,1γ
σ̄2n
2n γσ̄1

1 ).

(3.14)

Furthermore, both p1 ∪ p2 ∪ · · · ∪ pn and p′1 ∪ p′2 ∪ · · · ∪ p′m are in the τz
p = −1

configuration. Therefore, by the coupling rules we introduced earlier, σi and σ̄i must
be the opposite of each other for i = 1, 2, . . . , 2n. Hence Eq. (3.13) and Eq. (3.14)
can be mapped into each other term by term under time reversal. Hence the weights
associated with |Ψ f 〉 and |ΨT

f 〉 are complex conjugate of each other.

3.5 Why T2 = 1 fermion does not work
We now discuss why our decoration procedure discussed above does not work for
spinless fermions with T2 = 1. In particular, we will argue that if one decorates the
time reversal domain walls with spinless Majorana chains, then the requirement of
time reversal invariance for the wave function is not compatible with the requirement
that any two decorated domainwall configurations in the superposition have the same
fermion parity. This is consistent with the fact that there are no nontrivial fermionic
short-range entangled phases with T2 = 1.

Let the spinless complex fermion on a short bond l = 〈
−→
vv′〉 be created and annihilated

by operators cl and c†l , respectively. We first represent the complex fermion by a
pair of Majorana modes γv = c†l + cl , γv′ = i(c†l − cl) located at vertices v and v′,
respectively. Under time reversal, T : cl → cl . Written in terms of the Majorana
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Figure 3.4: Two configurations for spinless Majorana modes with opposite fermion
parity. Extra minus signs are added to the coupling on the green bonds according
to the modified coupling rule.

modes, we have:

T : γv → γv, γv′ → −γv′ . (3.15)

We may decorate the time-reversal domain walls with Majorana chains in a way
similar to the T2 = −1 case. Away from the domain wall, we pair up Majorana
modes that share a short bond l = 〈

−→
vv′〉 as iγvγ′v. On a domain wall, we pair up

Majorana modes that share a long bond l̃ = 〈−→vw〉 as iγvγw.

However, there is an issue with the above pairing rules, because it does not preserve
time-reversal invariance. In particular, let us consider the pairing of Majorana
modes that shares a long bond l̃ = 〈−→vw〉 on a domain wall. For the specific Kasteleyn
orientation we are workingwith, the short bonds 〈vv′〉 and 〈ww′〉must have opposite
Kasteleyn orientations. This implies that γv and γw transform identically under time
reversal, which renders the coupling term iγvγw odd under time reversal.

Onemay try to resolve this issue by adding aminus sign to the coupling when the left
hand side of the long bond is in the |1〉 state. But this inevitably breaks the fermion
parity invariance. Consider the two plaquette spin configurations in Fig. 3.4. Due to
the Kasteleyn orientation, the two configurations will have the same fermion parity
if we stick to the original coupling rule which breaks time-reversal invariance. The
modified coupling rule introduces some extra minus signs into the fermion parity
of the second configuration and the number of minus signs is exactly equal to the
number of clockwise oriented bonds on the domain wall, which is three in this case.
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Therefore, with the modified coupling rule, the two configurations have opposite
fermion parity.
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C h a p t e r 4

FERMIONIC SYMMETRY PROTECTED TOPOLOGICAL
PHASES AND COBORDISMS

4.1 Introduction
Classification of symmetry protected topological (SPT) phases has been a subject
of intensive activity over the last few years. In the case of free fermions, a complete
classification has been achieved in [34, 84] using such ideas as Anderson localization
and K-theory. In the case of bosonic systems, all SPT phases are intrinsically
interacting, so one has to use entirely different methods. Interactions are also
known to affect fermionic SPT phases [85–88]. Recently it has been proposed
that cobordism theory can provide a complete classification of both bosonic and
fermionic interacting SPT phases in all dimensions. This improves on the previous
proposal that group cohomology classifies interacting bosonic SPT phases [41],
while group supercohomology [42] classifies interacting fermionic SPT phases. For
bosonic systems with time-reversal and U(1) symmetries the cobordism proposal
has been tested in [89] and [90] respectively. Cobordism theory has been found
to describe all known bosonic SPT phases with such symmetries in D ≤ 3. In
this paper we test the proposal further by studying fermionic SPT phases with Z2

symmetry.

The Z2 symmetry in question can be either unitary or anti-unitary. In the former
case we will assume that the symmetry is internal (does not act on space-time). In
the latter case it must reverse the direction of time, so we will call it time-reversal
symmetry. In either case, the generator can square either to 1 or to (−1)F (fermion
parity). Fermionic SPT phases with time-reversal symmetry are also known as
topological superconductors, so in particular we describe a classification scheme for
interacting topological superconductors.

Compared to the bosonic case, fermionic SPT phases present several related diffi-
culties. First of all, one needs to decide what one means by a fermionic system. In
a continuum Lorentz-invariant field theory, anti-commuting fields are also spinors
with respect to the Lorentz group, but condensed matter systems are usually defined
on a lattice and lack Lorentz invariance on the microscopic level. Thus the connec-
tion between spin and statistics need not hold. A related issue is that all fermionic
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systems have Z2 symmetry called fermionic parity, usually denoted (−1)F . But all
observables, including the Hamiltonian and the action, are bosonic, i.e. invariant
under (−1)F . In a sense, every fermionic system has a Z2 gauge symmetry, which
means that the partition function must depend on a choice of a background Z2 gauge
field. It is tempting to identify this gauge field with the spin structure. However, it
is not clear how a spin structure should be defined for a lattice system, except in the
case of toroidal geometry.1

Instead of dealing with all these difficult questions, in this paper we take a more
“phenomenological” approach: we make a few assumptions about the long-distance
behavior of SPT phases which parallel those for bosonic SPT phases, and then test
these assumptions by comparing the results in space-time dimensions d ≤ 4 with
those available in the condensed matter literature. For various reasons, we limit
our selves to the cases of no symmetry, time-reversal symmetry, and unitary Z2

symmetry. Having found agreement with the known results, we make a conjecture
about the classification of fermionic SPT phases with any symmetry group G.

4.2 Spin and Pin structures
A smooth oriented d-manifold M equipped with a Riemannian metric is said to have
a spin structure if the transition functions for the tangent bundle, which take values
in SO(d), can be lifted to Spin(d) while preserving the cocycle condition on triple
overlaps of coordinate charts. Let us unpack this definition. On a general manifold
one cannot choose a global coordinate system, so one covers M with coordinate
charts Ui, i ∈ I. If over every coordinate chart Ui one picks an orthonormal basis
of vector fields with the correct orientation, then on double overlaps Ui j = Ui

⋂
U j

they are related by transition functions gi j which take values in the group SO(d) and
satisfy on Ui j k = Ui

⋂
U j

⋂
Uk the cocycle condition:

gi jg j k = gik . (4.1)

The group SO(d) has a double cover Spin(d), i.e. one has SO(d) = Spin(d)/Z2.
One can lift every smooth function gi j : Ui j → SO(d) to a smooth function hi j :
Ui j → Spin(d), with a sign ambiguity. Thus on every Ui j k one has

hi j h j k = ±hik . (4.2)

M has a spin structure if and only if one can choose the functions hi j so that the sign
on the right-hand side is +1 for all Ui j k . We also identify spin structures which are

1In 2d, there is a good combinatorial description of spin structures via so called Kasteleyn
orientations [91]. But a generalization of this construction to higher dimensions is unknown.
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related by Spin(d) gauge transformations:

hi j 7→ h′i j = hihi j h−1
j , hi : Ui → Spin(d).

A spin structure allows one to define Weyl spinors on M .

For d < 4 every oriented d-manifold admits a spin structure, but it is not unique, in
general. Namely, given any spin structure, one can modify it by multiplying every
hi j by constants ζi j = ±1 satisfying

ζi jζ j k = ζik .

Such constants define a Cech 1-cochain on M with values in Z2. The same data also
parameterize Z2 gauge fields on M , thus any two spin structures differ by a Z2 gauge
field. It is easy to see that gauge fields differing by Z2 gauge transformations lead
to equivalent transformations of spin structures, so the number of inequivalent spin
structures is equal to the order of the Cech cohomology group H1(M,Z2), whose
elements label gauge-equivalence classes of Z2 gauge fields.

In dimension d > 3 not every orientedmanifold admits a spin structure. For example,
the complex projective plane CP2 does not admit a spin structure. Nevertheless,
if a spin structure on M exists, the above argument still shows that the number of
inequivalent spin structures is given by |H1(M,Z2)|. The necessary and sufficient
condition for the existence of a spin structure is the vanishing of the 2nd Stiefel-
Whitney class w2(M) ∈ H2(X,Z2). This condition is purely topological and thus
does not depend on the choice of Riemannian metric on M .

If M is not oriented, the transition functions gi j take values in O(d) rather than
SO(d). They still satisfy (4.1). An analog of Spin group in this case is called a
Pin group. In the absence of orientation, fermions transform in a representation
of the Pin group. In fact, for all d > 0 there exist two versions of the Pin group
called Pin+(d) and Pin−(d). They both have the property Pin±(d)/Z2 = O(d). The
difference between Pin+ and Pin− is the way a reflection of any one of coordinate
axis is realized on fermions. Let r ∈ O(d) be such a reflection. It satisfies r2 = 1.
If r̃ ∈ Pin±(d) is a pre-image of r , it can satisfy either r̃2 = 1 or r̃2 = −1. The first
possibility corresponds to Pin+, while the second one corresponds to Pin−.

If we are given an unoriented d-manifold M , we can ask whether it admits Pin+

or Pin− structures (that is, lifts of transition functions to either Pin+(d) or Pin−(d)

so that the condition (4.2) on triple overlaps is satisfied). The conditions for this
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are again topological: in the case of Pin+ it is the vanishing of w2(M), while in
the case of Pin− it is the vanishing of w2(M) + w1(M)2. Note that if M happens
to be orientable, then w1(M) = 0, so the two conditions coincide and reduce to the
condition that M admit a Spin structure.

Note that these topological conditions are nontrivial already for d = 2. More
precisely, for d = 2 one has a relation between Stiefel-Whitney classes w2

1 +w2 = 0,
so every 2d manifold admits a Pin− structure, but not necessarily a Pin+ structure.
For example the real projective plane RP2 admits only Pin− structures, while the
Klein bottle admits both Pin+ and Pin− structures. Similarly, not every 3-manifold
admits a Pin+ structure, but all 3-manifolds admit a Pin− structure.

4.3 Working assumptions
We assume that fermionic SPTs in d space-time dimensions without time-reversal
symmetry can be defined on any oriented smooth d-manifold M equippedwith a spin
structure. Similarly, we assume that fermionic SPTs with time-reversal symmetry
can be defined on any smooth manifold M equipped with a Pin+ or Pin− structure
(we will see below that Pin+ corresponds to T2 = (−1)F while Pin− corresponds to
T2 = 1). If there are additional symmetries beyond (−1)F and time-reversal, M can
carry a background gauge field for this symmetry.

We also assume that given such M , a long-distance effective action is defined. The
action is related to the partition function by Z = exp(2πiSe f f ), thus Se f f is defined
modulo integers. The trivial SPT phase corresponds to the trivial (zero) action. The
effective action is additive under the disjoint union of manifolds. It also changes sign
under orientation-reversal. In the case of SPT phases with time-reversal symmetry,
this implies 2Se f f ∈ Z.

The effective action, in general, is not completely topological: it may depend on the
Levi-Civita connection on M . Such actions are gravitational Chern-Simons terms
and can exist if d = 4k − 1. Since we will be interested only in low-dimensional
SPT phases, the only case of interest is d = 3. The correspond gravitational
Chern-Simons term has the form

SCS =
k

192π

∫
Tr(ωdω +

2
3
ω3),

where the trace is in the adjoint representation of SO(3). Note that such a term
makes sense only on an orientable 3-manifold and therefore can appear only if the
symmetry group of the SPT phase does not involve time reversal.
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In the bosonic case, one can show that k must be an integral multiple of 16. In the
fermionic case, k can be an arbitrary integer. The quantization of k is explained in
Appendix F.

The physical meaning of SCS is that it controls the thermal Hall response of the SPT
phases [92]. The thermal Hall conductivity is proportional to k [92]:

κxy =
kπk2

BT
12~

,

where T is the temperature and kB is the Boltzmann constant. Thus for both bosonic
and fermionic SPT phases the quantity κxy/T is quantized, but in the fermionic case
the quantum is smaller than in the bosonic case by a factor 16. This is derived in
Appendix F.

SPT phases with a particular symmetry form an abelian group, where the group
operation amounts to forming the composite system. The effective action is additive
under this operation. Taking the inverse corresponds to applying time-reversal to
the SPT phase. The effective action changes sign under this operation. Thus the
effective action can be regarded as a homomorphisms from the set of SPT phases to
R/Z ' U(1).

The difference of two SPT phases with the same thermal Hall conductivity is an
SPT phase with zero thermal Hall conductivity. Thus it is sufficient to classify
SPT phases with zero thermal Hall conductivity. In such a case the action is purely
topological. Our final assumption is that this topological action depends only on
the bordism class of M . Equivalently, we assume that if M is a boundary of some
d + 1-manifold with the same structure (Spin or Pin±, as the case may be), then
Se f f vanishes. This assumption is supposed to encode locality.

4.4 Fermionic SPT phases without any symmetry
In the case when the only symmetry is (−1)F , the manifold M can be assumed to
be a compact oriented manifold with a spin structure. As explained above, without
loss of generality we may assume that the action is purely topological (depends
only on the spin bordism class of M). Thus possible effective actions in space-time
dimension d are classified by elements of the group Hom(ΩSpin

d (pt),U(1)), where
Ω

Spin
d (pt) is the group of bordism classes of spin manifold of dimension d.

The spin bordism groups ΩSpin
d (pt) have been computed by Anderson, Brown, and

Peterson [93]. In low dimensions, one gets

Ω
Spin
1 (pt) = Z2, Ω

Spin
2 (pt) = Z2, Ω

Spin
3 (pt) = 0, ΩSpin

4 (pt) = Z,
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Table 4.1: Spin and Pin± Bordism Groups

d = D + 1 Ω
Spin
d (pt) ΩPin−

d (pt) ΩPin+
d (pt) ΩSpin

d (BZ2)

1 Z2 Z2 0 Z2
2

2 Z2 Z8 Z2 Z2
2

3 0 0 Z2 Z8
4 Z 0 Z16 Z

5 0 0 0 0
6 0 Z16 0 0
7 0 0 0 Z16
8 Z2 Z2

2 Z2 × Z32 Z2

9 Z2
2 Z2

2 0 Z4
2

10 Z2
2 × Z Z2 × Z8 × Z128 Z3

2 Z4
2 × Z

Table 4.2: Interacting Fermionic SPT Phases

d = D + 1 no symmetry T2 = 1 T2 = (−1)F unitary Z2

1 Z2 Z2 0 Z2
2

2 Z2 Z8 Z2 Z2
2

3 Z 0 Z2 Z8 × Z

4 0 0 Z16 0
5 0 0 0 0
6 0 Z16 0 0
7 Z2 0 0 Z16 × Z

2

8 0 Z2
2 Z2 × Z32 0

9 Z2
2 Z2

2 0 Z4
2

10 Z2
2 Z2 × Z8 × Z128 Z3

2 Z4
2

If a bordism group contains a free part, its Pontryagin dual has a U(1) factor. This
means that the corresponding effective action can depend on a continuous parameter.
If we want to classify SPT phases up to homotopy, we can ignore such parameters.
This is equivalent to only considering the torsion subgroup of ΩSpin

d (pt). Thus we
propose that SPT phases in dimension d are classified by elements of the Pontryagin
dual of the torsion subgroup of ΩSpin

d (pt). We will denote this group Ωd,tors
Spin (pt).

The groupsΩSpin
d are displayed in Table 1. The classification of interacting fermionic

SPT phases can be deduced from it in the manner just described and is displayed in
Table 2. For comparison, the classification of free fermionic SPT phases described
in [84] and [34] is shown in Table 3. We see that there are nontrivial interacting
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Table 4.3: Free Fermionic SPT Phases

d = D + 1 mod 8 no symmetry T2 = 1 T2 = (−1)F

1 Z2 Z2 0
2 Z2 Z Z2
3 Z 0 Z2
4 0 0 Z

5 0 0 0
6 0 Z 0
7 Z 0 0
8 0 Z2 Z

Table 4.4: Classification of free fermionic SPT phases according to [84] and [34].
The “no symmetry” case corresponds to class D, the case T2 = 1 corresponds to
class BDI, the case T2 = (−1)F corresponds to class DIII.

fermionic SPT phases with zero thermal Hall response in D = 0 and 1 but not in
D = 2 and 3. However, for D = 2 there is a phase with a nontrivial thermal Hall
response; it is also present in the table of free fermionic SPT phases. In higher
dimensions the number of phases grows rapidly. For instance, the effective action
can be any combination of the Stiefel-Whitney numbers modulo w1 and w2 (such
effective actions correspond to fermionic phases which are independent of the spin
structure on M and thus can also be regarded as bosonic phases).

Let us consider the cases d = 1 and d = 2 in slightly more detail. For d = 1,
there is only one connected closed manifold, namely, the circle. There are two spin
structures on a circle: the periodic one and the anti-periodic one. The nontrivial
effective action assigns a different sign to each spin structure and is multiplicative
over disjoint unions. From the point of view of quantummechanics, such an effective
action corresponds to the d = 1 SPT phase whose unique ground state is fermionic.

In two space-time dimensions, the situation is more complicated. Spin structures
on an oriented 2d manifold X can be thought of as Z2 valued quadratic forms on
H1(X,Z2) satisfying q(x + y) = q(x) + x ∩ y + q(y) mod 2, where x ∩ y denotes
the Z2 intersection pairing. The bordism invariant is the Arf invariant, which is the
obstruction to finding a Lagrangian subspace for this quadratic form. The effective
action for the nontrivial SPT phase in D = 1 is given by the Arf invariant [94]

S(q) =
1√

|H1(X,Z2)|

∑
A∈H1(X,Z2)

exp(2πiq(A)/2). (4.3)
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Another way to describe the Arf invariant is to consider zero modes for the chiral
Dirac operator. Their number modulo 2 is an invariant of the spin structure and
coincides with the Arf invariant [95]. In string theory, spin structures for which the
Arf invariant is even (respectively, odd) are called even (respectively, odd).

The spin cobordism classification is consistent with existing results in condensed
matter literature. Fidkowski and Kitaev [85] have considered the Majorana chain
with just fermion parity. There are two distinct phases: one where all sites are de-
coupled and unoccupied in the unique ground state and one with dangling Majorana
operators which can be paired into a gapless Dirac mode representing a two-fold
ground state degeneracy. In the absense of any symmetry beyond (−1)F , a four-
fermion interaction can gap out the dangling modes in pairs, so these are the only
two phases.

4.5 Fermionic SPT phases with time-reversal symmetry
General considerations
In the presence of time-reversal symmetry, the manifold M can be unorientable. As
discussed in section 2, there are two distinct unoriented analogs of a spin structure,
called Pin+ and Pin− structures. They should correspond to the two possibilities
for the action of time-reversal: T2 = 1 and T2 = (−1)F .

Naively, it seems that T2 = 1 should correspond to Pin+ and T2 = (−1)F should
correspond to Pin−. Indeed, for Pin+ the reflection of a coordinate axis acts on a
fermion by an element r̃ satisfying r̃2 = 1, while for Pin− it acts by r̃ satisfying
r̃2 = −1. However, one should take into account that the groups Pin± are suitable for
space-time of Euclidean signature. A reflection of a coordinate axis in Euclidean
space is related to time-reversal by a Wick rotation. Let r be a reflection of the
coordinate axis which is to beWick-rotated. The corresponding element of Pin± acts
on the fermions by aDiracmatrix γd which satisfies γ2

d = ±1. Wick rotation amounts
to γd 7→ iγd , hence Pin+ corresponds to T2 = (−1)F , while Pin− corresponds to
T2 = 1. This identification will be confirmed by the comparison with the results
from the condensed matter literature.

T2 = (−1)F

We propose that interacting fermionic SPT phases protected by time-reversal sym-
metry T with T2 = (−1)F are classified by elements of

Ω
d
Pin+(pt) = Hom(ΩPin+

d (pt),U(1)).
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We will call this group the Pin+ cobordism group with U(1) coefficients.

The Pin+ bordism groups have been computed by Kirby and Taylor [96]

Ω
Pin+
1 (pt) = 0, ΩPin+

2 (pt) = Z2, Ω
Pin+
3 (pt) = Z2, Ω

Pin+
4 (pt) = Z16,

Pin+ bordism groups grow quickly with dimension, soon having multiple cyclic
factors.

In one space-time dimension, the Pin+ cobordism group vanishes. This is easily
interpreted in physical terms. Recall that without time-reversal symmetry, the
ground state can be bosonic or fermionic, and the latter possibility corresponds to
a nontrivial fermionic d = 1 SPT phases. However, if time-reversal symmetry T

with T2 = (−1)F is present, fermionic states are doubly-degenerate, and since by
definition the ground state of an SPT phase are non-degenerate, the ground state
cannot be fermionic.

In two space-time dimensions, there is an isomorphism

Ω
Pin+
2 (pt) → ΩSpin

2 (pt),

see [94]. The isomorphism arises from the fact that a Pin+ structure on an unoriented
manifold induces a spin structure on its orientation double cover. Thus there is a
unique nontrivial fermionic SPT phase in d = 2, and the corresponding effective
action is simply the action (4.3) on the orientation double cover:

S(q) =
1√

|H1(X̃,Z2)|

∑
A∈H1(X̃,Z2)

e2πiq(A)/2.

The classification of the free fermionic SPTs in d = 2 also predicts a unique
nontrivial phasewith time-reversal symmetryT2 = (−1)F [34, 84]. It can be realized
by a time-reversal-invariant version of the Majorana chain and is characterized by
the presence of a pair of dangling Majorana zero modes on the edge.

In three space-time dimensions, a similar map is not an isomorphism, as ΩSpin
3 = 0.

However, there is a map
[∩w1] : ΩPin+

3 → Ω
Spin
2 (4.4)

taking a Pin+ manifold to a codimension 1 submanifold Poincaré dual to the orien-
tation class w1. This submanifold is defined to be minimal for the property that the
complement can be consistently oriented. With this choice of partial orientation,
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crossing this submanifold reverses the orientation, so it can be thought of as a time-
reversal domain wall. For Pin+ 3-manifolds, we have w2

1 = 0, so this domain wall
is oriented and inherits a Spin structure from the ambient spacetime.

The map (4.4) is an isomorphism [94]. From the physical viewpoint this means that
away from the time-reversal domain walls the SPT is trivial and the boundary can be
gapped, but on the domain walls there is a d = 2 fermionic SPT, the Majorana chain,
so at locations where the domain walls meet the boundary there are Majorana zero
modes. This is a special case of a construction of SPTphases discussed in the bosonic
case in [46]. One starts with a system with symmetry G in a trivial phase, breaks
the G symmetry, decorates the resulting domain walls with an SPT in 1 dimension
lower, and finally proliferates the domain walls to restore the symmetry G. One can
also do this with defects of higher codimension. A mathematical counterpart of this
general construction is the Smith homomorphism discussed below.

The classification of free fermionic SPT phases also predicts a unique nontrivial
d = 3 SPT phase. It can be realized by a spin-polarized p ± ip superconductor
[34, 84]. It is characterized by the presence of a pair of counter-propagatingmassless
Majorana fermions on the edge of the SPT phase.

In four space-time dimensions, the cobordism classification says that fermionic SPT
phases are labeled by elements of Z16. Free fermionic SPTs in d = 4 are classified
by Z [34, 84], but with interactions turned on Z collapses to Z16 [86]. The generator
of ΩPin+

4 = Z16 is the eta invariant of a Dirac operator [97]. The corresponding
free fermionic SPT phase can be realized by a spin-triplet superconductor [34, 84].
It is characterized by the property that on its boundary there is a single massless
Majorana fermion.

Two layers of the basic phase can be constructed from the d = 2 phase with time-
reversal symmetry T2 = 1, via the map

[∩w2
1]

:
Ω
νPin+
4 → ΩνPin−

2 .

The map sends a the bordism class of a manifold X on the left hand side to the
bordism class of a codimension-2 submanifold of X representing w2

1(T X). From
the physical viewpoint, the order 8 phase with T2 = (−1)F can be obtained from the
trivial SPT phase by decorating certain codimension 2 defects (self-intersections of
time-reversal domain walls, see the 3d case above) with the order 8 D = 1 phase
with T2 = 1, i.e. the Kitaev chain.
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Eight copies of this fermionic SPT phase are equivalent to a bosonic SPT phase
with time-reversal symmetry and the effective action

∫
w4

1 (the bosonic SPT phase
predicted by group cohomology, see [89]). To show this, we need to show 8η = w4

1
for every Pin+ 4-manifold. The space RP4 generates the Pin+ bordism group in
4 dimensions, so every such manifold X is Pin+ bordant to a disjoint union of k

RP4s. Since η is a Pin+ bordism invariant, it follows 8η(X) = 8kη(RP4). Now
w4

1 is also a bordism invariant, so w4
1(X) = kw4

1(RP
4). Thus, we just need to show

8η(RP4) = w4
1(RP

4). We know the left hand side is −1 since the bordism group is
Z/16 and η generates the dual group, and it is simple to show w4

1(RP
4) = −1 as well.

The equivalence of these two phases was also argued in [87].

Note that the eta-invariant cannot be written as an integral over a Lagrangian density
L naturally associated to a lattice configuration on the underlying manifold M . In
particular, if we have a covering map, we can pullback configurations to the cover.
If the Lagrangian density were to simply pull back, then the action would just be
multiplied by the number of sheets of the cover. However, for M = RP4 the eta-
invariant associated to the standard Dirac operator is order 16 but trivial for its
orientation double cover, S4.

This signals that the effective field theory requires a certain amount of non-locality.
It cannot have a description where each Pin+ structure corresponds to a lattice con-
figuration which respects covering maps of spacetimes up to gauge transformations.

It is interesting to note that the topological Pin+ bordism group in 4d is Z8 rather
than Z16. There is a manifold homeomorphic to the smooth generator RP4 but not
smoothly Pin+ cobordant to it which has a Z16 invariant equal to 9 as opposed to
RP4’s 1 (these numbers are equal mod 8). The eta-invariant distinguishes these two
manifolds. Since the classification of topological insulators in 3+1d is known to be
at least Z16, this example shows that the spacetimes relevant to these systems always
carry smooth structure.

T2 = 1
We propose that interacting fermionic SPT phases protected by time-reversal sym-
metry with T2 = 1 are classified by the Pin− cobordism groups with U(1) coeffi-
cients. In low dimensions the Pin− bordism groups are [94]

Ω
Pin−
1 (pt) = Z2, Ω

Pin−
2 (pt) = Z8, Ω

Pin−
3 (pt) = 0, ΩPin−

4 (pt) = 0,

and the cobordism groups are their Pontryagin duals.
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In one space-time dimension, fermionic SPT phases are classified by Z2. This is
easily interpreted in physical terms: the non-degenerate ground state can be either
bosonic or fermionic, without breaking T .

In two space-time dimensions, a Pin− structure can be thought of as a Z4-valued
quadratic enhancement of the intersection form which in the oriented (Spin) case is
even and reduces to our description above[94]. Such a form q satisfies q(x + y) =

q(x)+2x∩ y+q(y) mod 4, where 2x∩ y represents the mod 2 intersection of x and
y mapped to Z4. The bordism group ΩPin−

2 = Z8 is generated by RP2. The effective
action is a generalization of the Arf invariant, the Arf-Brown-Kervaire invariant:

S(q) =
1√

|H1(X,Z2)|

∑
A∈H1(X,Z2)

exp(2πiq(A)/4). (4.5)

It takes values in Z8 ∈ U(1). If q(x) is even for all x (that is, if q is Z2-valued), it
reduces to the Arf invariant. This situation occurs when the space-time is orientable.

From the physical viewpoint, the generator ofZ8 is theMajorana chain, which can be
regarded as a time-reversal invariant system with T2 = 1. Time-reversal protects the
dangling Majorana zero modes from being gapped out in pairs. Instead, interactions
can only gap out octets, yielding a Z8 classification of phases labeled by the number
of dangling modes [85]. Moreover, four copies of the Majorana chain with T2 = 1
have states on the boundary on which T acts projectively, T2 = −1 [85]; hence, four
copies of the basic fermionic SPT phases with time-reversal T2 = 1 are equivalent
to the basic bosonic SPT phase in d = 2 with time-reversal symmetry. We can easily
see this from the cobordism viewpoint. The generator of the Pin− bordism group in
d = 2 is RP2, so the fourth power of the generator of the cobordism group is −1 for
this spacetime (here we are thinking about Z8 as a subgroup of U(1)). Meanwhile,
w2

1 is also −1 on RP2. Since both of these are Pin−-bordism invariants, they are
equal on all d = 2 spacetimes.

As with the eta-invariant discussed above, the Arf-Brown-Kervaire invariant does
not admit a local expression. There is a νPin+ structure on RP2 for which the
Arf-Brown-Kervaire invariant is a primitive 8th root of unity. However, the corre-
sponding Spin structure on the orientation double cover S2 has Arf-Brown-Kervaire
invariant 1 (the unique Spin structure on the 2-sphere extends to a 3-ball).

4.6 Fermionic SPT phases with a unitary Z2 symmetry
Let g denote the generator of a unitary Z2 symmetry. There are two possibilities:
either g2 = 1 or g2 = (−1)F . In this section we discuss the former possibility only;
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the other one is discussed in the next section.

We propose that interacting fermionic SPT phases with unitary Z2 symmetry g,
g2 = 1, are classified by

Ω
d
Spin,tors(BZ2) = Hom(ΩSpin,tors

d (BZ2),U(1))

The analogous group in the bosonic case is Ωd
SO,tors(BZ2). In all dimensions there

is an isomorphism called the Smith isomorphism

Ω̃
Spin
d (BZ2) → Ω

Pin−
d−1 (pt),

where on the left hand side we use the tilde to denote reduced bordism: the kernel of
the forgetful map to ΩSpin

d (pt). The torsion part of reduced bordism is dual to SPT
phases which can be made trivial after breaking the symmetry. Not all SPT phases
are of this sort. One could imagine that after breaking the symmetry the system is
reduced to some non-trivial SRE like the Kitaev chain. In general,

Ω
Spin
d (BG) = Ω̃Spin

d (BG) ⊕ ΩSpin
d (pt),

so these effects can be separated consistently and the Smith isomorphism is enough
to classify theG = Z2 phases. This splitting fails if any elements ofG are orientation
reversing or if G acts projectively on fermions.

The Smith isomorphism is defined as follows. Starting with a Spin manifold X

and some A ∈ H1(X,Z2) representing a class on the left hand side, we produce
a submanifold Y Poincaré dual to A. (That we can do this is a special fact about
codimension 1 classeswithZ2 coefficients. Not all homology classes are represented
by submanifolds.) The manifold Y is not necessarily orientable. The Spin structure
on T X restricts to a Spin structure on TY ⊕ NY , where NY is the normal bundle of
Y in X . In fact, NY is classified by the restriction of A to Y . We compute

0 = w1(T X)|Y = w1(TY ⊕ NY ) = w1(TY ) + A,

so on Y the gauge field A restricts to the orientation class, ie. the Z2 symmetry is
orientation-reversing for Y . We also have

w2(TY ⊕ NY ) = w2(TY ) + w1(TY )2,

so the Spin structure on X becomes a Pin− structure on Y .

Physically, the submanifold Y Poincaré dual to A represents Z2 domain walls. The
dual map from the Pin− cobordism of a point in d − 1 dimensions to the Spin
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cobordism of BZ2 in d dimensions has the following physical meaning. Picking an
element of the Pin− cobordism group gives us a d − 1-dimensional fermionic SPT
with time-reversal symmetry T2 = 1. To obtain a d-dimensional SPT, we decorate
Z2 domain walls with this d − 1-dimensional SPT and then proliferate the walls.

The inversemap can be described via compactification. One takes the d-dimensional
SPT on a spacetime which is a circle bundle over the d − 1-dimensional (perhaps
unorientable) spacetime. This circle bundle is the unit circle bundle of the orientation
line plus a trivial line, and is therefore oriented. We give the gauge field nontrivial
holonomy around this circle and compactify. The effective field theory in d − 1
dimensions is the d − 1-dimensional SPT phase with time-reversal symmetry.

Fermionic SPT phases with a unitary Z2 symmetry have not been much studied in
the physics literature. In one space-time dimension, they are classified by Z2 × Z2,
since the ground state can be either bosonic or fermionic, as well as g-even or g-
odd. In three space-time dimensions, Levin and Gu [88] argued that fermionic SPT
phases with Z2 symmetry and zero thermal Hall conductance are classified by Z8.
Both of these results agree with the cobordism approach.

4.7 Fermionic SPT phases with a general symmetry
A choice of spin structure gives a lift of the oriented frame bundle PSO(d) to a spin
frame bundle PSpin(d). Neutral Dirac spinors are sections of the bundle S associated
to this one by the complex spin representation. For Dirac spinors charged under
some G representation ρ, they are sections of the tensor bundle

ψ ∈ Γ(S ⊗C A∗ρ),

where A∗ρ denotes the vector bundle associated to the gauge bundle by ρ. Bosonic
observables are composed of fermion bilinears which are sections of the tensor
square of this bundle or the tensor product of this bundle with its dual. These are
composed of integral spin representations of SO(d) and exterior powers of ρ2.

However, the situations where the spacetime is not a spinmanifold are still physically
important if ρ is a projective representation. That is, while the spin frame bundle
PSpin(d) or charge bundle A∗ρ may not exist, the tensor product above does. For
example, when ρ is a half-charge representation of G = U(1) the choice of a tensor
product bundle is the same as a Spinc structure with determinant line ρ2. One also
knows that such a Spinc structure is the same as a spin structure on T X ⊕ A∗ρ2.
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One way to deal with this situation is to regard the fermions in d dimensions as
dimensional reduction of fermions in d + n dimensions. Under such a reduction, the
rotation group SO(n+d) decomposes into SO(d)×SO(n) (for themomentwe assume
that the d-dimensional theory does not have orientation-reversing symmetries, and
accordingly the d-dimensional space-time is orientable). We imagine that the
symmetry group G is embedded into SO(d), and denote by ξ the G-representation
in which the n-vector of SO(n) transforms. We can think of ξ as a particular G-
bundle over BG. Spinors in d + n dimensions are elements of an irreducible module
over the Clifford algebra built from Rn ⊕ ξ.

Consider now the theory on a curved space-time X equipped with a G-bundle A. As
usual, we can think of A as a map from X to BG, defined up to homotopy. To define
the theory on such a space-time we must specify the bundle in which the fermions
take value. This bundle must have the same rank as the spinor of SO(d + n) and be
a module over a bundle of Clifford algebras T∗X ⊕ A∗ξ. Such a bundle is called a
spin structure on the SO(d + n)-bundle T∗X ⊕ A∗ξ.

If some of the symmetries are orientation-reversing, we need to allow X to be
unorientable, so that the structure group of the tangent bundle is O(d) rather than
SO(d). But we can compensate for this by embedding G into O(n) so that the
generators of the Clifford algebra transform as a vector of SO(d+n). Then fermions
must take values in the irreducible Clifford module over the corresponding bundle
of Clifford algebras, as before.

This discussion leads us to the following proposal Given a bosonic symmetry group
G, and its representation ξ, fermionic SPT phases in d space-time dimensions with
this symmetry structure are classified by

Ω
d
Spin([BG, ξ),

a cobordism theory dual to the torsion part of the bordism theory of d-manifolds
X with a map A : X → [BG (the gauge field) and a spin structure on T X ⊕ A∗ξ.
It is important for continuous groups to use [BG rather than BG since gauging the
G symmetry means coupling to a flat G gauge field. Turning on curvature for the
gauge field requires a kinetic term which is non-canonical. One model for [BG is
to take the classifying space of G as a discrete group. For finite G this is of course
automatic.

The data (G, ξ) may seem to depend on some uphysical details, like the embedding
of G into SO(n), but one can show that cobordism groups thus defined depend
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only on w1(ξ) : G → Z2, which picks out the orientation reversing elements, and
w2(ξ) ∈ H2(G,Z2) [98], which determines how G is extended by fermion parity.

Let us illustrate this with some examples. For G = Z2, first there is the trivial rep-
resentation, for which this twisted cobordism group is the ordinary ones classifying
fermionic SPTs with an internal Z2 symmetry acting honestly on the fermions, so
the total symmetry group is Z2 × Z

F
2 .

The other irreducible is the 1d sign representation. For this representation we
have w1 equal to the generator of H1(BZ2,Z2), this being the determinant of the
representation, and w2 = 0 since ths representation is 1 dimensional. We compute

w1(T X ⊕ A∗ξ) = w1(T X) + A∗w1(ξ) = w1(T X) + A,

so an orientation of T X ⊕ A∗ξ identifies A with the orientation class of X . We also
have

w2(T X ⊕ A∗ξ) = w2(T X) + w1(T X)A∗w1(ξ) = w2(T X) + w1(T X)2,

a trivialization of which is a Pin− structure on T X . Thus,

Ω
d
Spin(BZ2, sign) = Ωd

Pin− .

Since w1(ξ) , 0 and w2(ξ) = 0 we interpret this group as classifying fermionic
SPTs with an orientation-reversing symmetry such as time reversal which satisfies
T2 = 1. Note that the same group classifies SPT phases with a reflection symmetry
squaring to 1.

We can also consider a sum of two sign representations, for which we havew1(ξ) = 0
and w2(ξ) , 0. This gives a bordism theory of oriented manifolds with A2 =

w2(T X). This symmetry structure is that associated to an orientation preserving
symmetry such as particle-hole symmetry which squares to the fermion parity.

The sum of three sign representations has both w1(ξ) and w2(ξ) nonzero. The
cohomology of BZ2 implies also w2(ξ) = w1(ξ)

2. With this we compute

w1(T X ⊕ A∗ξ) = w1(T X) + A

and
w2(T X ⊕ A∗ξ) = w2(T X) + A2 + A2 = w2(T X).

The first implies that A equals the orientation class of X . The second says that a
spin structure on T X ⊕ A∗ξ is the same as a Pin+ structure on T X . Thus

Ω
d
Spin(BZ2, 3 × sign) = Ωd

Pin+ .
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Therefore fermionic SPT phases with an orientation reversingZ2 symmetry squaring
to the fermion parity are classified by Pin+ cobordism.

For G = U(1) there are no continuous representations with w1 , 0 and w2 , 0
for a continuous representation precisely when the sum of charges is odd. In this
case A∗w2(ξ) is the mod 2 reduction of the gauge curvature FA. A spin structure
on w2(T X ⊕ A∗ξ) is therefore the same thing as a Spinc structure with determinant
line FA. Note that these are not the Spinc cobordism groups studied in most of the
mathematical literature since we require the determinant line to be flat.

For G = U(1) × Z2 we now have representations where the Z2 is orientation re-
versing. For example, consider ξ = charge 1 ⊗ trivial ⊕ trivial ⊗ sign. For this
representation, w1(ξ) is the map to Z2 which is trivial on U(1) and the identity on
Z2. We also find

w2(T X ⊕ A∗ξ) = w2(T X) + w1(T X)2 + FA.

If we instead used three copies of the sign representation, we would have

w2(T X ⊕ A∗ξ̃) = w2(T X) + FA.

It may first appear that these give different cobordism theories, but note thatw1(T X)2

lifts to an integral class, so a redefinition of the U(1) field produces an equivalence
between the two bordism groups. This is the same redefinition used in [87] to
show that the T2 = 1 and T2 = (−1)F classifications agree, a result verified here in
cobordism. This is also reflected in the uniqueness of the Pinc(d) group and we find
that both types of phase are classified by Pinc bordism with flat determinant line.

Now consider G = U(1) o Z2 with Z2 acting by conjugation. This group can be
thought of as SO(2) o Z2 = O(2). Consider first the standard 2d representation ξ.
For this, w1(ξ) is the determinant O(2) → Z2 and w2(ξ) is the obstruction to finding
a section of

Pin+(2) → O(2),

ie. it is the class in group cohomology H2(BO(2),Z2) classifying Pin+(2). The ring
H∗(BO(2),Z2) is generated by the universal Stiefel-Whitney classes w1 and w2, and
w2(ξ) is the universal w2. This representation corresponds to T2 = 1 since T2 = 1
in Pin+(2).

One can also consider T2 = (−1)F by using the representation ξ̃ = ξ + 2 × sign.
For this, w1(ξ̃) = w1(ξ), but w2(ξ̃) is the universal w2 + w2

1, which differs from the
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other representation, demonstrating that these two classifications differ when time
reversal does not commute with U(1).

4.8 Concluding remarks
We have seen that cobordism correctly predicts the known classification of interact-
ing fermionic SPT phases in D ≤ 3 with Z2 symmetry, either unitary or anti-unitary.
We find that for 0 ≤ D ≤ 3, all phases are realized by free fermions. However,
in higher dimensions new phenomena occur. First of all, while the classification
of free fermionic SPT phases with a fixed symmetry exhibits mod 8 periodicity in
dimension [34], in the interacting case there is no periodicity. Second, the deviations
from the free fermionic classification occur for high enough D, but the precise point
depends on the symmetry group. For example, for SPT phases with time-reversal
symmetry T , T2 = (−1)F, deviations start at D = 3. For SPT phases with no
symmetry beyond (−1)F deviations start at D = 6. (In D = 6 the free fermionic
classification predicts Z, but in the interacting case it is Z × Z because there are
two different gravitational Chern-Simons terms possible based on the Pontryagin
numbers p2

1 and p2, respectively.)

Third, while in low dimensions the effect of interactions is to truncate the free
fermionic classification, in high enough dimension inherently interacting fermionic
SPT phases appear. For example, in D = 7 free fermionic SPT phases with time-
reversal symmetryT , T2 = (−1)F , are classified by Z, while the cobordism approach
predicts Z2 × Z32. The latter group is not a quotient of the former, so truncation
alone cannot explain the discrepancy. The most likely interpretation is that Z32

is a truncation of Z, while the Z2 factor corresponds to an inherently interacting
fermionic SPT phase. Similarly, in D = 6 there should exist inherently interacting
fermionic SPT phases with only fermion parity as a symmetry.

We have found that the correct classification requires the use of smooth manifolds
rather than topological manifolds. It would be interesting to determine whether there
is some physical difference between the smooth and piecewise linear categories.

We find also that the fermionic SPT effective action has a degree of non-locality
that was not present in the case of bosonic SPTs. For D = 1, the effective action
can be written in terms of a sum over an auxiliary Z2 gauge field. It is tempting to
interpret it as a gauge field which couples to the fermion parity, but this needs to
be tested. We leave this and the determination of possible boundary behaviors of
fermionic SPT phases to further work.
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A p p e n d i x A

3D MODULAR TRANSFORMATIONS FOR WALKER-WANG
MODELS ON THE MINIMAL LATTICE

In this appendix, we calculate the matrix representation of the S and T transforma-
tions in the ground space of a Walker-Wang model defined on the minimal lattice.
For simplicity, we will use a labeling of the minimal lattice by the input anyons
to represent the amplitude of the associated string-net configuration in the ground
state wave function. The set of all string-net configurations constitute a basis for
the ground state Hilbert space. To compute the S and T matrices, we apply the
corresponding trasformations to a particular basis vector, and express the resulting
vector as a superposition of the basis vectors by applying the F and R moves. The
coefficients in front of the superposition are nothing but the matrix elements of S

and T .

A.1 S matrix

k

k

j

j

i

i

n
m l −−→

S

k

j

in

j

i

k

l

m

∑
l̃ F jil

kml̃
−−−−−−→
F move

i k

~l

j

j

i
k

m
n ∑

ñ Fkmn
jiñ

−−−−−−→
F move

i

i

k

k

~l
~n

j

j

m
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∑
m̃ F jl̃m

jñm̃

−−−−−−→
F move

j

j

i

i

k

k

~l ~m
~n

Collecting the coefficients from each step, we obtain

S(k,i, j,ñ,m̃,l̃)
(i, j,k,l,m,n) = F jil

kml̃
Fkmn

jiñ F j l̃m
jñm̃ . (A.1)

A.2 T matrix

k

k

j

j

i

i

n m
l −−→

T

k

j

j

i

i

n m

k
k

l

Rkl
m

−−−−−→
R move

k

j

j

i

i

n m

k
k

l Commute
−−−−−−−→

F and R

k

j

j

i

i

n m

k
k

l

∑
l̃ Fmkl

jil̃

−−−−−−→
F move

k

j

j

i

n
m

k k
i

~l

(Rk j

l̃
)∗

−−−−−→
R move

k

j

j

i

n
m

k
k

i

~l
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−−−−−−−−−→
Deformation

k

~l i

n m ~l

k

i

j

∑
j̃ Fkl̃ j

in j̃

−−−−−→
F move

i

~j

i

k

k

mn

~l

~l

∑
ñ Fk j̃n

kmñ
−−−−−−→

F move

k

k

i

~j

~l

~l
m~n

i

Collecting the coefficients from each step, we obtain

T (i,l̃,k,m,ñ, j̃)
(i, j,k,l,m,n) = Rkl

m Fmkl
jil̃
(Rk j

l̃
)∗Fkl̃ j

in j̃
Fk j̃n

kmñ. (A.2)
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A p p e n d i x B

HAMILTONIAN FOR WALKER-WANG MODELS ON THE
MINIMAL LATTICE

In this appendix, we calculate the plaquette operators of a Walker-Wang model
defined on the minimal lattice. For simplicity, we will calculate Bs

p for a particular
anyon label s, and the full plaquette operator can be obtained by summing over s

weighted by the quantum dimension of s: Bp =
∑

s dsBs
p.

B.1 Plaquette operator in the xy-plane

k

i

i

mnj

j
l

k

(Rnk
m )
∗

−−−−−−→
R move

k

i

i

n

l
m

j

j

k

−−−−−−−−−−−−−−−−−−−−−→
add an s-loop in the xy-plane

k

i
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n

l
m

j

j

k

s
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Deformation

k

i

i

n

lm
j

k

s

s

s

s

j

∑
j ′ F j j0

ss j ′

−−−−−−→
F move

k

i

i

n

m

k

s

s

s

s
j

l jj0 s

j
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∑
l′ Fil j

s j ′l′

−−−−−−−→
F move

k

i

n

m

k

s

s

s
jj0 s

j

l0
i

s
l

∑
m′ Fkml

sl′m′

−−−−−−−−→
F move

k

i

n

s

s

s
j

j0 s

j

l0

i

k

s

m0

m

∑
n′ Fknm

sm′n′

−−−−−−−−→
F move

k

i

n

s

s

s
j

j0 s

j

l0

i

k

m0

n0

sj

Commute
−−−−−−−→

F and R

i

n

s

s

s j
j0 s

j

l0

i

k

m0

s

k

n0

Rn′k
m′

−−−−−→
R move

i

n

s

s

s
j

j0 s

j

l0

i

k

m0

s

k

n0
Rkl′

m′

−−−−−→
R move

i

n

s

s

s j
j0 s

j

i

n0

k

s

k

l0

m0

∑
i′ F jin

sn′i′

−−−−−−−→
F move

i

ss j
j0 s

i

n0

k

k

l0

m0

s

j

s
i0

∑
l′′ Fl′ j ′i

si′l′′

−−−−−−−→
F move

ss
j

s

i0

n0

k

k

l0m0

j

s i0

l00 j0

∑
j ′′ F j ′s j

i′n′ j ′′

−−−−−−−−→
F move

ss
i0

n0

k

k

l0

m0

s

l00 j0

j0

i0
j00

∑
n′′ Fsl′′ j ′

j ′′n′n′′

−−−−−−−−−→
F move

i0

n0

k

k

l0

m0

s
i0
j00

n00l00

s

l00
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∑
i′′ F j ′′si′

l′l′′i′′

−−−−−−−−→
F move

n0

k

k

l0

m0
n00l00

l00

j00

j00

i00s ∑
m′′ Fsn′′n′

km′m′′

−−−−−−−−−→
F move

k

l0

m0
l00

l00

j00

j00

i00

k

s

n00
m00

∑
a Fsm′′m′

kl′a
−−−−−−−−→

F move

k

l0

l00

l00

j00

j00

i00

k

n00
m00

a

s
Commute
−−−−−−−→

F and R

l0

l00

l00

j00

j00

i00

k

n00 m00

k

a

s

(Rka
m′′
)∗

−−−−−→
R move

l0

l00

l00

j00

j00

i00

k

n00 m00

k

s

a
Fsi′′l′

as0 dsδai′′
−−−−−−−−−−−→
squeeze bubble

k

j00

j00

m00
n00l00

l00

k

i00

Collecting the coefficients from each step, we obtain

(Bs
xy)
( j ′′,l ′′,k,i′′,m′′,n′′)
(i, j,k,l,m,n) =

∑
j ′,l ′,m′,n′,i′

(Rnk
m )
∗F j j0

ss j ′×

Fil j
s j ′l ′F

kml
sl ′m′F

knm
sm′n′R

n′k
m′ Rkl ′

m′ F
jin

sn′i′F
l ′ j ′i
si′l ′′F

j ′s j
i′n′ j ′′F

sl ′′ j ′

j ′′n′n′′×

F j ′′si′

l ′l ′′i′′F
sn′′n′
km′m′′F

sm′′m′
kl ′i′′ (R

ki′′
m′′ )
∗Fsi′′l ′

i′′s0 ds . (B.1)
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B.2 Plaquette operator in the xz-plane
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R move

k

i

mnj

l

k

j

i

−−−−−−−−−−−−−−−−−−−−→
add an s-loop in the xz-plane
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∑
i′ Fl′sl

i ji′

−−−−−−→
F move
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F and R
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k00
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∑
n′′ Fsi′′i′

jn′n′′

−−−−−−−−→
F move

k00

k0

i00

s

l00

k0

j
m0

s

i00

j

n00
n0

Commute
−−−−−−−→

F and R
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j
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j n00

Rn′′ j
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R move
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j n00

∑
m′′ Fk ′′sk ′
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k00
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i00
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n00j
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Collecting the coefficients from each step, we obtain

(Bs
xz)
(i′′, j,k ′′,l ′′,m′′,n′′)
(i, j,k,l,m,n) =

∑
k ′,m′,l ′,i′,n′

(R ji
l )
∗Fkk0

ssk ′×

Fk ′sk
mnm′F

m′sm
lkl ′ F l ′sl

i ji′ R ji′

l ′ Fi′si
n jn′F

n′sn
k ′m′k ′′(R

n′ j
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∗Fm′l ′k
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sl ′′l ′
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Fsi′′i′
jn′n′′R

n′′ j
i′′ Fk ′′sk ′

m′l ′′m′′F
n′k ′′m′
m′′sn′′ Fsn′′n′

n′′s0 ds . (B.2)
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B.3 Plaquette operator in the yz-plane
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Collecting the coefficients from each step, we obtain

(Bs
yz)
(i, j ′′,k ′′,l ′′,m′′,n′′)
(i, j,k,l,m,n) =

∑
k ′,l ′, j ′,n′,m′

(R ji
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k ′′s0 ds . (B.3)
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A p p e n d i x C

STRING OPERATORS FOR WALKER-WANGMODELS ON THE
MINIMAL LATTICE

In this appendix, we calculate the string operators of a Walker-Wang model defined
on the minimal lattice. The string is labeled by s, where s is a generic anyon label
in the input anyon theory A.

C.1 String operator along the x-direction
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Commute
−−−−−−−→

F and R

i
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j

a
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−−−−−−−→
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−−−−−−−→
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Collecting the coefficients from each step, we obtain

(W s
x)
(ĩ, j,k,l̃,m̃,ñ)
(i, j,k,l,m,n) = (R

km
l )
∗Ri j

n Fss0
iiĩ

F ĩsi
l j l̃

F l̃ sl
mkm̃Fm̃sm

nkñ ×

F ñsn
i jĩ

dsFsĩi
ĩs0(R

ĩ j
ñ )
∗Rkm̃

l̃
. (C.1)
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C.2 String operator along the y-direction
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(Rs j
a )
∗

−−−−−→
R move

i

j

j

~j
s

~n

k

~m

k

~l

si

a
dsFs j̃ j

as0δa j̃
−−−−−−−−−−−→
squeeze bubble

k

i

i

~m~j

~j~l

k

~n

Collecting the coefficients from each step, we obtain

(W s
y)
(i, j̃,k,l̃,m̃,ñ)
(i, j,k,l,m,n) = F j j0

ss j̃
Fs j̃ j

inñ Fsñn
kmm̃Rsm

m̃ Fm̃sm
lkl̃
×

F l̃ sl
ji j̃
(Rs j

j̃
)∗dsFs j̃ j

j̃ s0
. (C.2)

C.3 String operator along the z-direction
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(Rsm
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Collecting the coefficients from each step, we obtain

(W s
z )
(i, j,k̃,l,m̃,n)
(i, j,k,l,m,n) = Fkk0

ssk̃
F k̃ sk

mnm̃(R
sm
m̃ )
∗Fsm̃m

lk k̃
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k̃
dsFsk̃k

k̃s0 . (C.3)
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A p p e n d i x D

MES BASIS AND CANONICAL FORM FOR S AND T
MATRICES

In this appendix, we explain the necessary steps involved in transforming the 16
by 16 blocks Sa,b and Ta,b in Section 2.4 from the simultaneous eigenstates of W s

y

and W s
z to the simultaneous eigenstates of W s

y and V s
y (the MES basis). We can

focus on the 4-dimensional eigenspaces of the pair (W1
y,W

2
y ) with fixed eigenvalues

(w1
y,w

2
y), where w1

y,w
2
y = ±1. Within each eigenspace, the problem is simplified to

a basis transformation from the simultaneous eigenstates of W s
z to the simultaneous

eigenstates of V s
y . We denote the former (respectively, latter) by {|w1

z,w
2
z 〉} (respec-

tively, {|v1
y, v

2
y〉}), where w1

z,w
2
z = ±1, and v1

y, v
2
y = ±. Due to the Aharonov-Bohm

interaction between charges and fluxes, the string operators satisfy the following
commutation and anticommutation relations:

{W1
z ,V

1
y } = 0, [W1

z ,V
2
y ] = 0,

{W2
z ,V

2
y } = 0, [W2

z ,V
1
y ] = 0. (D.1)

One can prove from these relations that the most general unitary change of basis
from {|w1

z,w
2
z 〉} to {|v1

y, v
2
y〉} is of the form

|+,+〉 = δ(|1, 1〉 + α |1,−1〉 + β |−1, 1〉 + γ |−1,−1〉),

|+,−〉 = δ(|1, 1〉 − α |1,−1〉 + β |−1, 1〉 − γ |−1,−1〉),

|−,+〉 = δ(|1, 1〉 + α |1,−1〉 − β |−1, 1〉 − γ |−1,−1〉),

|−,−〉 = δ(|1, 1〉 − α |1,−1〉 − β |−1, 1〉 + γ |−1,−1〉), (D.2)

where α, β, γ, and δ are independent U(1) phases. We can then rewrite Sa,b and Ta,b

in the transformed basis and try to match them with the S and T matrices of the 2D
Z2 ×Z2 gauge theories. We find that by choosing the U(1) phases appropriately, we
can match each Sa,b and Ta,b to the S and T matrices of precisely one of the eight 2D
Z2 × Z2 gauge theories. The results are listed in Table 2.2.

For concreteness, we present below the explicit form of Sa,b and Ta,b (a, b = ±1) in
the MES basis for the Walker-Wang models with input data Reps(Q8) and Reps(D4).
Data for models that permute the charge labels of D4 are omitted due to their
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similarity to those in the Reps(D4) case. The basis vectors in {|w1
y,w

2
y, v

1
y, v

2
y〉} are

listed from large to small according to the number v1
y + 2v2

y + 4w1
y + 8w2

y .

For the Walker-Wang model with input Reps(Q8), the data are the following:

S1,1 = S−1,1 = S1,−1 = S−1,−1 =

1
4

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(D.3)

T1,1 = T−1,1 = T1,−1 = T−1,−1 =
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©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(D.4)

For the Walker-Wang model with input Reps(D4), the data are the following:

S1,1 =
1
4

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(D.5)
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T1,1 =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(D.6)

S−1,1 =
1
4

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(D.7)
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T−1,1 =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −i 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −i 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −i 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(D.8)

S1,−1 =
1
4

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 −i i −i i −i i −i i

1 −1 1 −1 −1 1 −1 1 −i i −i i i −i i −i

1 −1 1 −1 1 −1 1 −1 i −i i −i i −i i −i

1 −1 1 −1 −1 1 −1 1 i −i i −i −i i −i i

1 1 −1 −1 −i −i i i 1 1 −1 −1 −i −i i i

1 1 −1 −1 i i −i −i 1 1 −1 −1 i i −i −i

1 1 −1 −1 −i −i i i −1 −1 1 1 i i −i −i

1 1 −1 −1 i i −i −i −1 −1 1 1 −i −i i i

1 −1 −1 1 −i i i −i −i i i −i −1 1 1 −1
1 −1 −1 1 i −i −i i −i i i −i 1 −1 −1 1
1 −1 −1 1 −i i i −i i −i −i i 1 −1 −1 1
1 −1 −1 1 i −i −i i i −i −i i −1 1 1 −1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(D.9)
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T1,−1 =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −i 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(D.10)

S−1,−1 =
1
4

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 −i i −i i −i i −i i

1 −1 1 −1 −1 1 −1 1 −i i −i i i −i i −i

1 −1 1 −1 1 −1 1 −1 i −i i −i i −i i −i

1 −1 1 −1 −1 1 −1 1 i −i i −i −i i −i i

1 1 −1 −1 −i −i i i −1 −1 1 1 i i −i −i

1 1 −1 −1 i i −i −i −1 −1 1 1 −i −i i i

1 1 −1 −1 −i −i i i 1 1 −1 −1 −i −i i i

1 1 −1 −1 i i −i −i 1 1 −1 −1 i i −i −i

1 −1 −1 1 −i i i −i i −i −i i 1 −1 −1 1
1 −1 −1 1 i −i −i i i −i −i i −1 1 1 −1
1 −1 −1 1 −i i i −i −i i i −i −1 1 1 −1
1 −1 −1 1 i −i −i i −i i i −i 1 −1 −1 1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
(D.11)
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T−1,−1 =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −i 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −i 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(D.12)
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A p p e n d i x E

PROOF THAT THE XP TERMS COMMUTE WITH EACH
OTHER

The Hamiltonian defined in Section 3.3 is a sum of commuting projectors. It is
straightforward to see that all terms in Htunnel commute with each other, and every
term in Htunnel commutes with every term in Hdecorate. In this section, we prove that
all terms in Htunnel commute with each other.

Proving that any pair of plaquette operators τx
p1

Xp1 and τx
p2

Xp2 commute is equivalent
to proving that for any state in the Hilbert space, the state obtained by applying the
two plaquette operators sequentially is independent of the order. Namely,

τx
p1

Xp1τ
x
p2

Xp2 |Ψ〉 = τ
x
p2

Xp2τ
x
p1

Xp1 |Ψ〉. (E.1)

For non-adjacent p1 and p2, these two terms involve different spins and Majorana
modes and the plaquette operators have even fermion parity, so they commute triv-
ially. However, for adjacent p1 and p2, some of the Majorana modes that the two
plaquette operators act on are the same, and it is not obvious that they should com-
mute. Since Xp by construction, guarantees that the Majorana configurations match
the plaquette spin configurations, and the plaquette spin configuration is indepen-
dent of the order in which we apply the plaquette operators, the final configuration
of the Majorana modes are actually the same, but the fermionic state can differ by
a complex phase, i.e., the plaquette operators commute up to a complex phase. As
we will argue below, such complex phases are actually all equal to zero, and the
plaquette operators commute exactly.

Recall that P{µp,q}p projects onto the spin configuration of {µp, µq} and Πp projects
onto the fermonic subspace that conforms to such spin configuration, sowe only need
to consider those states whose fermion configurations satisfy the decoration rules
specified by the spin configurations. We denote such states by |Ψ{µp,q}〉⊗ |τ1, τ2, . . . 〉,
where τ1 and τ2 denote the spins on p1 and p2, respectively. We compute

τx
p1

Xp1 |Ψ{µp,q}〉 ⊗ |τ1, τ2, . . . , τN〉

= X {µp,q}p1 |Ψ{µp,q}〉 ⊗ |τ
′
1, τ2, . . . , τN〉

∝ |Ψ{µ1
p,µq}
〉 ⊗ |τ′1, τ2, . . . , τN〉. (E.2)
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|Ψ{µp,q}〉 and |Ψ{µ1
p,µq}
〉 have the same Majorana configuration apart from those

around the plaquette p1, which we denote by γσ1
1 , γ

σ2
2 , . . . , γ

σ2n
2n . More explicitly,

we assume is2i−1,2iγ
σ2i−1
2i−1 γ

σ2i
2i |Ψ{µp,q}〉 = |Ψ{µp,q}〉, and is2i,2i+1γ

σ2i
2i γ

σ2i+1
2i+1 |Ψ{µ1

p,µq}
〉 =

|Ψ{µ1
p,µq}
〉. In this case, the expression of V {µp,q}p is exactly of the form in (3.10):

V
{µp1,q}
p1 =2−

n+1
2 (1 + is2,3γ

σ2({µp1,q})

2 γ
σ3({µp1,q})

3 )(1 + is4,5γ
σ4({µp1,q})

4 γ
σ5({µp1,q})

5 )

. . . (1 + is2n,1γ
σ2n({µp1,q})

2n γ
σ1({µp1,q})

1 ) (E.3)

Note that the choice of {σi({µp1,q})} depends on the spin configuration. This be-
comes important when considering two adjacent plaquettes. For adjacent plaquettes
p1 and p2, we consider first flipping the spin in p1 and then the spin in p2

τx
p2

Xp2τ
x
p1

Xp1 |Ψ{µp,q}〉 ⊗ |τ1, τ2, . . . 〉

= X
{µ1

p,µ
1
q}

p2 X {µp,q}p1 |Ψ{µp,q}〉 ⊗ |τ
′
1, τ
′
2, . . . 〉. (E.4)

Next, we reverse the order of the two plaquette operators

τx
p1

Xp1τ
x
p2

Xp2 |Ψ{µp,q}〉 ⊗ |τ1, τ2, . . . 〉

= X
{µ2

p,µ
2
q}

p1 X {µp,q}p2 |Ψ{µp,q}〉 ⊗ |τ
′
1, τ
′
2, . . . 〉. (E.5)

Proving τx
p1

Xp1 and τx
p2

Xp2 commute is then equivalent to proving that the final states
in (E.4) and (E.5) are the same, which is equivalent to proving that

X
{µ2

p,µ
2
q}

p1 X {µp,q}p2 P = X
{µ1

p,µ
1
q}

p2 X {µp,q}p1 P, (E.6)

where P is the Majorana projector on the Majorana configuration of |Ψ{µp,q}〉 that
satisfies the identity P |Ψ{µp,q}〉 = |Ψ{µp,q}〉. We will prove (E.6) in detail.

We denote by {µp,q} and {µ
f
p,q} the arbitrary initial and final spin configurations,

respectively. Let {µ1,2
p,q} be the corresponding intermediate spin configuration after

flipping the spin τp1,2 . p1 and p2 share two triangles and one short bond. In
the relation (E.6), projectors that do not cover the Majorana modes on the shared
triangles commute trivially, whereas those that do may not commute. Since the
configuration of the Majorana modes on the shared triangles depends on the spin
configuration around them, we enumerate all possible cases in Fig. E.1 and show
that (E.6) indeed holds.

Case I: τz
p1
= τz

p2

Without loss of generality, we assume that τz
p1
= τz

p2
= −1. See Fig. E.2 for an

example configuration. The proof demonstrated in this section applies similarly to
all configurations with τz

p1
= τz

p2
.
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Figure E.1: The three relevant spin configurations. Although there are in total
24 = 16 kinds of spin configurations around the shared triangles, the proof of
Eq. E.6 proceeds in a similar way for some of them. We find that the three cases
shown here represent the three essentially different classes.
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Figure E.2: The spin configuration and the corresponding Majorana configuration
for case I.

P = 2−24(1 + is12,1γ
↓

12γ
↑

1)(1 + is2,2′γ
↑

2γ
↓

2′)(1 + is1,2γ
↓

1γ
↓

2)(1 + is3,4γ
↑

3γ
↑

4)

(1 + is3,4γ
↓

3γ
↓

4)(1 + is5′,5γ
↓

5′γ
↑

5)(1 + is6,13γ
↑

6γ
↓

13)(1 + is5,6γ
↓

5γ
↓

6)

(1 + is7,8γ
↑

7γ
↑

8)(1 + is7,8γ
↓

7γ
↓

8)(1 + is9,10γ
↑

9γ
↑

10)(1 + is9,10γ
↓

9γ
↓

10)

(1 + is14,11γ
↑

14γ
↓

11)(1 + is11,12γ
↑

11γ
↑

12)(1 + is1′,14′γ
↓

1′γ
↑

14′)(1 + is2′,1′γ
↑

2′γ
↑

1′)

(1 + is12′,11′γ
↑

12′γ
↑

11′)(1 + is12′,11′γ
↓

12′γ
↓

11′)(1 + is10′,9′γ
↑

10′γ
↑

9′)(1 + is10′,9′γ
↓

10′γ
↓

9′)

(1 + is8′,7′γ
↑

8′γ
↑

7′)(1 + is8′,7′γ
↓

8′γ
↓

7′)(1 + is13′,6′γ
↑

13′γ
↓

6′)(1 + is5′,6′γ
↑

5′γ
↑

6′). (E.7)

X {dvw}p1 = 2−
9
2 (1 + is1,2γ

↑

1γ
↑

2)(1 + is2′,3γ
↓

2′γ
↑

3)(1 + is4,5′γ
↑

4γ
↓

5′)(1 + is5,6γ
↑

5γ
↑

6)

(1 + is13,7γ
↓

13γ
↑

7)(1 + is8,9γ
↑

8γ
↓

9)(1 + is10,14γ
↓

10γ
↑

14)(1 + is11,12γ
↓

11γ
↓

12), (E.8)
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X {d
1
vw}

p2 = 2−4(1 + is2′,1′γ
↓

2′γ
↓

1′)(1 + is14′,12′γ
↑

14′γ
↓

12′)(1 + is11′,10′γ
↓

11′γ
↑

10′)

(1 + is9′,8′γ
↑

9′γ
↓

8′)(1 + is7′,13′γ
↓

7′γ
↑

13′)(1 + is6′,5′γ
↓

6′γ
↓

5′)(1 + is4,3γ
↑

4γ
↑

3). (E.9)

X {dvw}p2 = 2−
9
2 (1 + is2′,1′γ

↓

2′γ
↓

1′)(1 + is14′,12′γ
↑

14′γ
↓

12′)(1 + is11′,10′γ
↓

11′γ
↑

10′)

(1 + is9′,8′γ
↑

9′γ
↓

8′)(1 + is7′,13′γ
↓

7′γ
↑

13′)(1 + is6′,5′γ
↓

6′γ
↓

5′)(1 + is5,4γ
↑

5γ
↓

4)

(1 + is3,2γ
↓

3γ
↑

2), (E.10)

X {d
2
vw}

p1 = 2−4(1 + is1,2γ
↑

1γ
↑

2)(1 + is3,4γ
↓

3γ
↓

4)(1 + is5,6γ
↑

5γ
↑

6)(1 + is13,7γ
↓

13γ
↑

7)

(1 + is8,9γ
↑

8γ
↓

9)(1 + is10,14γ
↓

10γ
↑

14)(1 + is11,12γ
↓

11γ
↓

12). (E.11)

Therefore, to show that X {d
1
vw}

p2 X {dvw}p1 P = X {d
2
vw}

p1 X {dvw}p2 P, it suffices to prove

Γext(1 + is3,4γ
↑

3γ
↑

4)(1 + is2′,3γ
↓

2′γ
↑

3)(1 + is4,5′γ
↑

4γ
↓

5′)P = 4ΓextP, (E.12)

Γext(1 + is3,4γ
↓

3γ
↓

4)(1 + is2,3γ
↑

2γ
↓

3)(1 + is4,5γ
↓

4γ
↑

5)P = 4ΓextP, (E.13)

where we define

Γext =2−
17
2 (1 + is2′,1′γ

↓

2′γ
↓

1′)(1 + is14′,12′γ
↑

14′γ
↓

12′)(1 + is11′,10′γ
↓

11′γ
↑

10′)

(1 + is9′,8′γ
↑

9′γ
↓

8′)(1 + is7′,13′γ
↓

7′γ
↑

13′)(1 + is6′,5′γ
↓

6′γ
↓

5′)(1 + is1,2γ
↑

1γ
↑

2)

(1 + is5,6γ
↑

5γ
↑

6)(1 + is13,7γ
↓

13γ
↑

7)(1 + is8,9γ
↑

8γ
↓

9)(1 + is10,14γ
↓

10γ
↑

14)

(1 + is11,12γ
↓

11γ
↓

12). (E.14)

To prove Eq. (E.12), we can first pull out the projector (1 + is3,4γ
↑

3γ
↑

4) from P and
write P = (1 + is3,4γ

↑

3γ
↑

4)P̃. Then we make use of the identity

(1 + is3,4γ
↑

3γ
↑

4)(1 + is2′,3γ
↓

2′γ
↑

3)(1 + is4,5′γ
↑

4γ
↓

5′)(1 + is3,4γ
↑

3γ
↑

4)

=2(1 + is2′,3s3,4s4,5′γ
↓

2′γ
↓

5′)(1 + is3,4γ
↑

3γ
↑

4) (E.15)

to simplify the left-hand side of Eq. (E.12). We get

Γext(1 + is3,4γ
↑

3γ
↑

4)(1 + is2′,3γ
↓

2′γ
↑

3)(1 + is4,5′γ
↑

4γ
↓

5′)P

=Γext2(1 + is2′,3s3,4s4,5′γ
↓

2′γ
↓

5′)P. (E.16)

We can use the following trick to further simplify the left-hand side of Eq. (E.16).
We can pull out fermion bilinears of the form isvwγ

sv
v γ

sw
w from both P and Γext, both

containing projectors that set these bilinears to 1. More specifically,

Γext(is2′,3s3,4s4,5′γ
↓

2′γ
↓

5′)P
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=Γext

(
is2′,3s3,4s4,5′(is1′,2′γ

↓

1′γ
↓

2′)γ
↓

2′γ
↓

5′

)
P

=Γext(−s1′,2′s2′,3s3,4s4,5′γ
↓

1′γ
↓

5′)P

=Γext

(
− s1′,2′s2′,3s3,4s4,5′γ

↓

1′γ
↓

5′(is14′,1′γ
↑

14′γ
↓

1′)

)
P

=Γext(−is14′,1′s1′,2′s2′,3s3,4s4,5′γ
↓

5′γ
↑

14′)P

=Γext

(
− is14′,1′s1′,2′s2′,3s3,4s4,5′γ

↓

5′(is12′,14′γ
↓

12′γ
↑

14′)γ
↑

14′

)
P

=Γext(s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ
↓

5′γ
↓

12′)P

=Γext

(
s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ

↓

5′γ
↓

12′(is11′,12′γ
↓

11′γ
↓

12′)

)
P

=Γext(−is11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ
↓

5′γ
↓

11′)P

=Γext

(
− is11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ

↓

5′(is10′,11′γ
↑

10′γ
↓

11′)γ
↓

11′

)
P

=Γext(s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ
↓

5′γ
↑

10′)P

=Γext

(
s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ

↓

5′γ
↑

10′(is9′,10′γ
↑

9′γ
↑

10′)

)
P

=Γext(−is9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ
↓

5′γ
↑

9′)P

=Γext

(
− is9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ

↓

5′(is8′,9′γ
↓

8′γ
↑

9′)γ
↑

9′

)
P

=Γext(s8′,9′s9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ
↓

5′γ
↓

8′)P

=Γext

(
s8′,9′s9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ

↓

5′γ
↓

8′(is7′,8′γ
↓

7′γ
↓

8′)

)
P

=Γext(−is7′,8′s8′,9′s9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ
↓

5′γ
↓

7′)P

=Γext

(
− is7′,8′s8′,9′s9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ

↓

5′

(is13′,7′γ
↑

13′γ
↓

7′)γ
↓

7′

)
P

=Γext(s13′,7′s7′,8′s8′,9′s9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ
↓

5′γ
↑

13′)P

=Γext

(
s13′,7′s7′,8′s8′,9′s9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′γ

↓

5′γ
↑

13′

(is6′,13′γ
↓

6′γ
↑

13′)

)
P

=Γext(−is6′,13′s13′,7′s7′,8′s8′,9′s9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′

γ
↓

5′γ
↓

6′)P
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Figure E.3: The spin configuration and the corresponding Majorana configuration
for case II(a).

=Γext

(
− is6′,13′s13′,7′s7′,8′s8′,9′s9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′

(is5′,6′γ
↓

5′γ
↓

6′)γ
↓

5′γ
↓

6′

)
P

=Γext(−s5′,6′s6′,13′s13′,7′s7′,8′s8′,9′s9′,10′s10′,11′s11′,12′s12′,14′s14′,1′s1′,2′s2′,3s3,4s4,5′)P

=ΓextP. (E.17)

Thus, Γext2(1+ is2′,3s3,4s4,5′γ
↓

2′γ
↓

5′)P = 4ΓextP, which implies Eq. (E.12). Eq. (E.13)
can be proved similarly, and Eqs. (E.12) and (E.13) together implies that

X {d
1
vw}

p2 X {dvw}p1 P = X {d
2
vw}

p1 X {dvw}p2 P. (E.18)

Case II: τz
p1
= −τz

p2

Without loss of generality, we assume that τz
p1
= 1, τz

p2
= −1. Unlike the previous

case, further subtleties may arise depending on the spin configuration of the two
plaquettes bordering both p1 and p2. We therefore discuss them separately. We
first consider the case where the two plaquettes bordering both p1 and p2 are in
opposite spin configurations. See Fig. E.3 for an example configuration. The proof
demonstrated below applies all configurations of this type.

P = 2−23(1 + is1,2γ
↑

1γ
↑

2)(1 + is1,2γ
↓

1γ
↓

2)(1 + is2′,3γ
↓

2′γ
↑

3)(1 + is3,4γ
↓

3γ
↓

4)

(1 + is4,5γ
↑

4γ
↓

5)(1 + is6,7γ
↓

6γ
↑

7)(1 + is5,6γ
↑

5γ
↑

6)(1 + is8,13γ
↑

8γ
↓

13)(1 + is7,8γ
↓

7γ
↓

8)

(1 + is9,10γ
↑

9γ
↑

10)(1 + is9,10γ
↓

9γ
↓

10)(1 + is11,12γ
↑

11γ
↑

12)(1 + is11,12γ
↓

11γ
↓

12)

(1 + is5′,6′γ
↑

5′γ
↑

6′)(1 + is5′,6′γ
↓

5′γ
↓

6′)(1 + is7′,8′γ
↑

7′γ
↑

8′)(1 + is7′,8′γ
↓

7′γ
↓

8′)

(1 + is9′,10′γ
↑

9′γ
↑

10′)(1 + is9′,10′γ
↓

9′γ
↓

10′)(1 + is13′,11′γ
↓

13′γ
↑

11′)(1 + is11′,12′γ
↓

11′γ
↓

12′)
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(1 + is12′,1′γ
↑

12′γ
↓

1′)(1 + is1′,2′γ
↑

1′γ
↑

2′). (E.19)

X {dvw}p1 = 2−4(1 + is12,1γ
↓

12γ
↑

1)(1 + is2,2′γ
↑

2γ
↓

2′)(1 + is3,4γ
↑

3γ
↑

4)(1 + is5,6γ
↓

5γ
↓

6)

(1 + is7,8γ
↑

7γ
↑

8)(1 + is13,9γ
↓

13γ
↑

9)(1 + is10,11γ
↑

10γ
↓

11), (E.20)

X {d
1
vw}

p2 = 2−4(1 + is1′,2′γ
↓

1′γ
↓

2′)(1 + is2,3γ
↑

2γ
↓

3)(1 + is4,5′γ
↓

4γ
↑

5′)(1 + is6′,7′γ
↑

6′γ
↓

7′)

(1 + is8′,9′γ
↓

8′γ
↑

9′)(1 + is10′,13′γ
↑

10′γ
↓

13′)(1 + is11′,12′γ
↑

11′γ
↑

12′). (E.21)

X {dvw}p2 = 2−4(1 + is1′,2′γ
↓

1′γ
↓

2′)(1 + is3,4γ
↑

3γ
↑

4)(1 + is5,5′γ
↓

5γ
↑

5′)(1 + is6′,7′γ
↑

6′γ
↓

7′)

(1 + is8′,9′γ
↓

8′γ
↑

9′)(1 + is10′,13′γ
↑

10′γ
↓

13′)(1 + is11′,12′γ
↑

11′γ
↑

12′), (E.22)

X {d
2
vw}

p1 = 2−4(1 + is2,3γ
↑

2γ
↓

3)(1 + is4,5′γ
↓

4γ
↑

5′)(1 + is5,6γ
↓

5γ
↓

6)(1 + is7,8γ
↑

7γ
↑

8)

(1 + is13,9γ
↓

13γ
↑

9)(1 + is10,11γ
↑

10γ
↓

11)(1 + is12,1γ
↓

12γ
↑

1). (E.23)

Therefore, to show that X {d
1
vw}

p2 X {dvw}p1 P = X {d
2
vw}

p1 X {dvw}p2 P, it suffices to prove

X {d
1
vw}

p2 X̃ {dvw}p1 2−1(1 + is2,2′γ
↑

2γ
↓

2′)P = X {d
1
vw}

p2 X̃ {dvw}p1 P, (E.24)

X {d
2
vw}

p1 X̃ {dvw}p2 2−1(1 + is5,5′γ
↓

5γ
↑

5′)P = X {d
2
vw}

p1 X̃ {dvw}p2 P, (E.25)

where we define

X̃ {dvw}p1 = 2−3(1 + is12,1γ
↓

12γ
↑

1)(1 + is3,4γ
↑

3γ
↑

4)(1 + is5,6γ
↓

5γ
↓

6)(1 + is7,8γ
↑

7γ
↑

8)

(1 + is13,9γ
↓

13γ
↑

9)(1 + is10,11γ
↑

10γ
↓

11), (E.26)

X̃ {dvw}p2 = 2−3(1 + is1′,2′γ
↓

1′γ
↓

2′)(1 + is3,4γ
↑

3γ
↑

4)(1 + is6′,7′γ
↑

6′γ
↓

7′)(1 + is8′,9′γ
↓

8′γ
↑

9′)

(1 + is10′,13′γ
↑

10′γ
↓

13′)(1 + is11′,12′γ
↑

11′γ
↑

12′). (E.27)

We can use the following trick to simplify the left-hand side of Eq. (E.24) (respec-
tively, Eq. (E.25)). We can pull out fermion bilinears of the form isvwγ

sv
v γ

sw
w from

both P and X̃ {dvw}p1 (respectively, X̃ {dvw}p2 ), both containing projectors that set these
bilinears to 1. More specifically,

X {d
1
vw}

p2 X̃ {dvw}p1 (is2,2′γ
↑

2γ
↓

2′)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
is2,2′γ

↑

2γ
↓

2′(is1,2γ
↑

1γ
↑

2)

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−s1,2s2,2′γ
↓

2′γ
↑

1)P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−s1,2s2,2′γ
↓

2′γ
↑

1)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− s1,2s2,2′γ

↓

2′(is12,1γ
↓

12γ
↑

1)γ
↑

1

)
P
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=X {d
1
vw}

p2 X̃ {dvw}p1 (−is12,1s1,2s2,2′γ
↓

2′γ
↓

12)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− is12,1s1,2s2,2′γ

↓

2′γ
↓

12(is11,12γ
↓

11γ
↓

12)

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−s11,12s12,1s1,2s2,2′γ
↓

2′γ
↓

11)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− s11,12s12,1s1,2s2,2′γ

↓

2′(is10,11γ
↑

10γ
↓

11)γ
↓

11

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−is10,11s11,12s12,1s1,2s2,2′γ
↓

2′γ
↑

10)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− is10,11s11,12s12,1s1,2s2,2′γ

↓

2′γ
↑

10(is9,10γ
↑

9γ
↑

10)

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−s9,10s10,11s11,12s12,1s1,2s2,2′γ
↓

2′γ
↑

9)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− s9,10s10,11s11,12s12,1s1,2s2,2′γ

↓

2′(is13,9γ
↓

13γ
↑

9)γ
↑

9

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−is13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ
↓

2′γ
↓

13)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− is13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ

↓

2′γ
↓

13(is8,13γ
↑

8γ
↓

13)

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ
↓

2′γ
↑

8)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ

↓

2′(is7,8γ
↑

7γ
↑

8)γ
↑

8

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−is7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ
↓

2′γ
↑

7)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− is7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ

↓

2′γ
↑

7(is6,7γ
↓

6γ
↑

7)

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−s6,7s7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ
↓

2′γ
↓

6)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− s6,7s7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ

↓

2′(is5,6γ
↓

5γ
↓

6)γ
↓

6

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−is5,6s6,7s7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ
↓

2′γ
↓

5)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− is5,6s6,7s7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ

↓

2′γ
↓

5

(is4,5γ
↑

4γ
↓

5)

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−s4,5s5,6s6,7s7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ
↓

2′γ
↑

4)P

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− s4,5s5,6s6,7s7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ

↓

2′

(is3,4γ
↑

3γ
↑

4)γ
↑

4

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−is3,4s4,5s5,6s6,7s7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ
↓

2′γ
↑

3)P
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Figure E.4: The spin configuration and the corresponding Majorana configuration
for case II(b).

=X {d
1
vw}

p2 X̃ {dvw}p1

(
− is3,4s4,5s5,6s6,7s7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′γ

↓

2′γ
↑

3

(is2′,3γ
↓

2′γ
↑

3)

)
P

=X {d
1
vw}

p2 X̃ {dvw}p1 (−s2′,3s3,4s4,5s5,6s6,7s7,8s8,13s13,9s9,10s10,11s11,12s12,1s1,2s2,2′)P

=X {d
1
vw}

p2 X̃ {dvw}p1 P. (E.28)

Hence, Eq. (E.24) holds. Similarly, one can show that

X {d
2
vw}

p1 X̃ {dvw}p2 (is5,5′γ
↓

5γ
↑

5′)P = X {d
2
vw}

p1 X̃ {dvw}p2 P, (E.29)

which implies Eq. (E.25). Combining Eqs. (E.24) and (E.25), we conclude that

X {d
1
vw}

p2 X {dvw}p1 P = X {d
2
vw}

p1 X {dvw}p2 P. (E.30)

Next, we consider the case where the two plaquettes bordering both p1 and p2 are
in the same spin configuration while p1 and p2 are initially in different spin states.
See Fig. E.4 for an example configuration. The proof demonstrated below applies
all configurations of this type.

P = 2−24(1 + is14,1γ
↑

14γ
↓

1)(1 + is2,3γ
↓

2γ
↑

3)(1 + is1,2γ
↑

1γ
↑

2)(1 + is3,4γ
↓

3γ
↓

4)

(1 + is4,5γ
↑

4γ
↓

5)(1 + is6,7γ
↓

6γ
↑

7)(1 + is5,6γ
↑

5γ
↑

6)(1 + is8,13γ
↑

8γ
↓

13)

(1 + is7,8γ
↓

7γ
↓

8)(1 + is9,10γ
↑

9γ
↑

10)(1 + is9,10γ
↓

9γ
↓

10)(1 + is11,12γ
↑

11γ
↑

12)

(1 + is11,12γ
↓

11γ
↓

12)(1 + is1′,2′γ
↑

1′γ
↑

2′)(1 + is1′,2′γ
↓

1′γ
↓

2′)(1 + is5′,6′γ
↑

5′γ
↑

6′)

(1 + is5′,6′γ
↓

5′γ
↓

6′)(1 + is7′,8′γ
↑

7′γ
↑

8′)(1 + is7′,8′γ
↓

7′γ
↓

8′)(1 + is9′,10′γ
↑

9′γ
↑

10′)
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(1 + is9′,10′γ
↓

9′γ
↓

10′)(1 + is13′,11′γ
↓

13′γ
↑

11′)(1 + is12′,14′γ
↑

12′γ
↓

14′)

(1 + is11′,12′γ
↓

11′γ
↓

12′). (E.31)

X {dvw}p1 = 2−4(1 + is1,2γ
↓

1γ
↓

2)(1 + is3,4γ
↑

3γ
↑

4)(1 + is5,6γ
↓

5γ
↓

6)(1 + is7,8γ
↑

7γ
↑

8)

(1 + is13,9γ
↓

13γ
↑

9)(1 + is10,11γ
↑

10γ
↓

11)(1 + is12,14γ
↓

12γ
↑

14), (E.32)

X {d
1
vw}

p2 = 2−4(1 + is14′,1′γ
↓

14′γ
↑

1′)(1 + is2′,3γ
↑

2′γ
↓

3)(1 + is4,5′γ
↓

4γ
↑

5′)(1 + is6′,7′γ
↑

6′γ
↓

7′)

(1 + is8′,9′γ
↓

8′γ
↑

9′)(1 + is10′,13′γ
↑

10′γ
↓

13′)(1 + is11′,12′γ
↑

11′γ
↑

12′). (E.33)

X {dvw}p2 = 2−
9
2 (1 + is14′,1′γ

↓

14′γ
↑

1′)(1 + is2′,2γ
↑

2′γ
↓

2)(1 + is3,4γ
↑

3γ
↑

4)(1 + is5,5′γ
↓

5γ
↑

5′)

(1 + is6′,7′γ
↑

6′γ
↓

7′)(1 + is8′,9′γ
↓

8′γ
↑

9′)(1 + is10′,13′γ
↑

10′γ
↓

13′)(1 + is11′,12′γ
↑

11′γ
↑

12′),

(E.34)

X {d
2
vw}

p1 = 2−
9
2 (1 + is1,2γ

↓

1γ
↓

2)(1 + is2′,3γ
↑

2′γ
↓

3)(1 + is4,5′γ
↓

4γ
↑

5′)(1 + is5,6γ
↓

5γ
↓

6)

(1 + is7,8γ
↑

7γ
↑

8)(1 + is13,9γ
↓

13γ
↑

9)(1 + is10,11γ
↑

10γ
↓

11)(1 + is12,14γ
↓

12γ
↑

14).

(E.35)

Therefore, to show that X {d
1
vw}

p2 X {dvw}p1 P = X {d
2
vw}

p1 X {dvw}p2 P, it suffices to prove

X {d
2
vw}

p1 X̃ {dvw}p2 2−1(1 + is5,5′γ
↓

5γ
↑

5′)P = X {d
2
vw}

p1
˜̃X {dvw}p2 P, (E.36)

where we define

˜̃X {dvw}p2 = 2−
7
2 (1 + is14′,1′γ

↓

14′γ
↑

1′)(1 + is3,4γ
↑

3γ
↑

4)(1 + is6′,7′γ
↑

6′γ
↓

7′)

(1 + is8′,9′γ
↓

8′γ
↑

9′)(1 + is10′,13′γ
↑

10′γ
↓

13′)(1 + is11′,12′γ
↑

11′γ
↑

12′), (E.37)

and

X̃ {dvw}p2 = ˜̃X {dvw}p2 (1 + is2′,2γ
↑

2′γ
↓

2). (E.38)

We can use the following trick to simplify the left-hand side of Eq. (E.36). We
can pull out fermion bilinears of the form isvwγ

sv
v γ

sw
w from both P and X̃ {dvw}p2 , both

containing projectors that set these bilinears to 1. More specifically,

X {d
2
vw}

p1 X̃ {dvw}p2 (is5,5′γ
↓

5γ
↑

5′)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
is5,5′γ

↓

5γ
↑

5′(is5′,6′γ
↑

5′γ
↑

6′)

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (−s5,5′s5′,6′γ
↓

5γ
↑

6′)P
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=X {d
2
vw}

p1 X̃ {dvw}p2

(
− s5,5′s5′,6′γ

↓

5(is6′,7′γ
↑

6′γ
↓

7′)γ
↑

6′

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (is5,5′s5′,6′s6′,7′γ
↓

5γ
↓

7′)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
is5,5′s5′,6′s6′,7′γ

↓

5γ
↓

7′(is7′,8′γ
↓

7′γ
↓

8′)

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (−s5,5′s5′,6′s6′,7′s7′,8′γ
↓

5γ
↓

8′)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
− s5,5′s5′,6′s6′,7′s7′,8′γ

↓

5(is8′,9′γ
↓

8′γ
↑

9′)γ
↓

8′

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (is5,5′s5′,6′s6′,7′s7′,8′s8′,9′γ
↓

5γ
↑

9′)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
is5,5′s5′,6′s6′,7′s7′,8′s8′,9′γ

↓

5γ
↑

9′(is9′,10′γ
↑

9′γ
↑

10′)

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (−s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′γ
↓

5γ
↑

10′)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
− s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′γ

↓

5(is10′,13′γ
↑

10′γ
↓

13′)γ
↑

10′

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (is5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′γ
↓

5γ
↓

13′)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
is5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′γ

↓

5γ
↓

13′(is13′,11′γ
↓

13′γ
↑

11′)

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (−s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′γ
↓

5γ
↑

11′)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
− s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′γ

↓

5

(is11′,12′γ
↑

11′γ
↑

12′)γ
↑

11′

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (is5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′γ
↓

5γ
↑

12′)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
is5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′γ

↓

5γ
↑

12′

(is12′,14′γ
↑

12′γ
↓

14′)

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (−s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′γ
↓

5γ
↓

14′)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
− s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′γ

↓

5

(is14′,1′γ
↓

14′γ
↑

1′)γ
↓

14′

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (is5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

γ
↓

5γ
↑

1′)P
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=X {d
2
vw}

p1 X̃ {dvw}p2

(
is5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

γ
↓

5γ
↑

1′(is1′,2′γ
↑

1′γ
↑

2′)

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (−s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

s1′,2′γ
↓

5γ
↑

2′)P

=X {d
2
vw}

p1 X̃ {dvw}p2 (−s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

s1′,2′γ
↓

5(is2′,2γ
↑

2′γ
↓

2)γ
↑

2′)P

=X {d
2
vw}

p1 X̃ {dvw}p2 (is5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

s1′,2′s2′,2γ
↓

5γ
↓

2)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
is5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

s1′,2′s2′,2γ
↓

5γ
↓

2(is2,3γ
↓

2γ
↑

3)

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (−s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

s1′,2′s2′,2s2,3γ
↓

5γ
↑

3)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
− s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

s1′,2′s2′,2s2,3γ
↓

5(is3,4γ
↑

3γ
↑

4)γ
↑

3

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (is5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

s1′,2′s2′,2s2,3s3,4γ
↓

5γ
↑

4)P

=X {d
2
vw}

p1 X̃ {dvw}p2

(
is5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

s1′,2′s2′,2s2,3s3,4γ
↓

5γ
↑

4(is4,5γ
↑

4γ
↓

5)

)
P

=X {d
2
vw}

p1 X̃ {dvw}p2 (−s5,5′s5′,6′s6′,7′s7′,8′s8′,9′s9′,10′s10′,13′s13′,11′s11′,12′s12′,14′s14′,1′

s1′,2′s2′,2s2,3s3,4s4,5)P

=X {d
2
vw}

p1 X̃ {dvw}p2 P. (E.39)

Therefore,

X {d
2
vw}

p1 X̃ {dvw}p2 2−1(1 + is5,5′γ
↓

5γ
↑

5′)P = X {d
2
vw}

p1 X̃ {dvw}p2 P. (E.40)

Next, we show that

X {d
2
vw}

p1 X̃ {dvw}p2 P = X {d
2
vw}

p1
˜̃X {dvw}p2 P. (E.41)
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One subtlety is that now X {d
2
vw}

p1 commutes with ˜̃X {dvw}p2 , so that on the left-hand
side of is2′,2γ

↑

2′γ
↓

2, we can pull fermion bilinears from both X̃ {dvw}p2 and X {d
2
vw}

p1 . We
compute

X {d
2
vw}

p1
˜̃X {dvw}p2 (is2′,2γ

↑

2′γ
↓

2)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
is2′,2γ

↑

2′γ
↓

2(is2′,1′γ
↑

2′γ
↑

1′)

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (s2′,2s2′,1′γ

↓

2γ
↑

1′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
s2′,2s2′,1′γ

↓

2(is1′,14′γ
↑

1′γ
↓

14′)γ
↑

1′

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (−is2′,2s2′,1′s1′,14′γ

↓

2γ
↓

14′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
− is2′,2s2′,1′s1′,14′γ

↓

2γ
↓

14′(is14′,12′γ
↓

14′γ
↑

12′)

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (s2′,2s2′,1′s1′,14′s14′,12′γ

↓

2γ
↑

12′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
s2′,2s2′,1′s1′,14′s14′,12′γ

↓

2(is12′,11′γ
↑

12′γ
↑

11′)γ
↑

12′

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (−is2′,2s2′,1′s1′,14′s14′,12′s12′,11′γ

↓

2γ
↑

11′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
− is2′,2s2′,1′s1′,14′s14′,12′s12′,11′γ

↓

2γ
↑

11′(is11′,13′γ
↑

11′γ
↓

13′)

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (s2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′γ

↓

2γ
↓

13′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
s2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′γ

↓

2(is13′,10′γ
↓

13′γ
↑

10′)γ
↓

13′

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (−is2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′γ

↓

2γ
↑

10′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
− is2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′γ

↓

2γ
↑

10′

(is10′,9′γ
↑

10′γ
↑

9′)

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (s2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′γ

↓

2γ
↑

9′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
s2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′γ

↓

2

(is9′,8′γ
↑

9′γ
↓

8′)γ
↑

9′

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (−is2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′γ

↓

2γ
↓

8′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
− is2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′γ

↓

2γ
↓

8′
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(is8′,7′γ
↓

8′γ
↓

7′)

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (s2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′γ

↓

2γ
↓

7′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
s2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′γ

↓

2

(is7′,6′γ
↓

7′γ
↑

6′)γ
↓

7′

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (−is2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′

s7′,6′γ
↓

2γ
↑

6′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
− is2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′

s7′,6′γ
↓

2γ
↑

6′(is6′,5′γ
↑

6′γ
↑

5′)

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (s2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′s7′,6′

s6′,5′γ
↓

2γ
↑

5′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
s2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′s7′,6′

s6′,5′γ
↓

2(is5′,4γ
↑

5′γ
↓

4)γ
↑

5′

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (−is2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′

s7′,6′s6′,5′s5′,4γ
↓

2γ
↓

4)P

=X {d
2
vw}

p1
˜̃X {dvw}p2

(
− is2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′

s7′,6′s6′,5′s5′,4γ
↓

2γ
↓

4(is4,3γ
↓

4γ
↓

3)

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (s2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′s7′,6′

s6′,5′s5′,4s4,3γ
↓

2γ
↓

3)P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (s2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′s7′,6′

s6′,5′s5′,4s4,3γ
↓

2(is3,2′γ
↓

3γ
↑

2′)γ
↓

3

)
P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (−is2′,2s2′,1′s1′,14′s14′,12′s12′,11′s11′,13′s13′,10′s10′,9′s9′,8′s8′,7′s7′,6′

s6′,5′s5′,4s4,3s3,2′γ
↓

2γ
↑

2′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (is2′,2γ

↓

2γ
↑

2′)P

=X {d
2
vw}

p1
˜̃X {dvw}p2 (−is2′,2γ

↑

2′γ
↓

2)P. (E.42)
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Hence

X {d
2
vw}

p1
˜̃X {dvw}p2 (is2′,2γ

↑

2′γ
↓

2)P = 0, (E.43)

which establishes Eq. (E.41). Eqs. (E.40) and (E.41) together implies Eq. (E.36),
and we conclude that

X {d
1
vw}

p2 X {dvw}p1 P = X {d
2
vw}

p1 X {dvw}p2 P. (E.44)
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A p p e n d i x F

QUANTIZATION OF THE GRAVITATIONAL CHERN-SIMONS
ACTION

In this appendix we discuss the quantization of the coefficient of the gravitational
Chern-Simons action. For all topological facts used here, the reader may consult
[99]. Let X be an oriented 3-manifold whose tangent bundle is equipped with a
connection ω. We can take ω to be a Levi-Civita connection for some Riemannian
metric on X , so ω can be thought of as an SO(3) connection.

We define the gravitational Chern-Simons action to be

Sgrav(ω) =
κ

192π

∫
M
Tr(ωdω +

2
3
ω3).

The choice of the normalization coefficient will be explained shortly. This formula is
only schematic, since ω is not a globally-defined 1-form, in general. A more precise
definition requires choosing a compact oriented 4-manifold M whose boundary is
X (this is always possible, since ΩSO

3 (pt) = 0). We also extend ω to X and define

SX
grav(ω) =

k
192π

∫
X
TrR ∧ R.

We need to ensure that exp(iSX
grav(ω)) does not depend on the choice of X or the

way ω is extended from M to X . If we choose another X′ with the same boundary
M , the difference between the two ways of defining the gravitational Chern-Simons
action is

k
192π

∫
X ′∪X̄

TrR(ω) ∧ R(ω),

where X̄ is X with orientation reversed, and R(ω) is the curvature 2-form of ω. This
expression can be rewritten as

πk
24

p1(X′ ∪ X̄) =
πk
8
σ(X′ ∪ X̄). (F.1)

Here p1(Y ) denotes the first Pontryagin number of a closed oriented 4-manifold Y ,
σ(Y ) denotes its signature, and we used the Hirzebruch signature theorem p1(Y ) =

3σ(Y ). Since the signature is an integer, we conclude that exp(iSgrav(ω)) is well-
defined provided k is an integer multiple of 16. This determines the quantization of
the thermal Hall conductivity for d = 3 bosonic SPTs with time-reversal symmetry.



101

Now suppose M is given a spin structure. We can exploit it to define exp(iSgrav) for
arbitrary integral k. We merely require the spin structure to extend to X . It is always
possible to find such an X , since ΩSpin

3 (pt) = 0. The difference between SX
grav(ω)

and SX ′
grav(ω) is again given by (F.1). Since now X′ ∪ X̄ is a closed spin 4-manifold,

we can appeal to the Rohlin theorem which says that the signature of a closed spin
4-manifold is divisible by 16, and conclude that exp(iSgrav(ω)) is well-defined if k

is integral. This determines the quantization of the thermal Hall conductivity for
d = 3 fermionic SPTs with time-reversal symmetry. Note that in the fermionic case
the quantum of conductivity is 16 times smaller than in the bosonic case.
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