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ABSTRACT

This thesis investigates the interaction between an elastic compliant surface and a
turbulent boundary layer exposed to dynamic roughness forcing. The goals are to
explore a unique perspective of this fluid-structural problem through narrow-band
forcing, and to further develop the understanding of dynamic roughness. Water
tunnel experiments are designed with flow and surface measurements, both phase-
locked to the roughness actuation. This enables a phase-averaged analysis, which
leverages the deterministic input to isolate the temporally correlated components
of the flow and surface response. Identifying the directly interacting velocity and
deformation modes allows the complex, fluid-structural system to be studied in a
more tractable, input-output manner.

The first experiment is conducted with a smooth-wall turbulent boundary layer
forced by dynamic roughness, and contributes to the knowledge of this type of
forcing through structure-resolved particle image velocimetry. This allows for
the streamwise-spatial nature and the wall-normal velocity component (v) of the
roughness-forced flow to be explored, which had not been previously studied. A
spatial amplitude modulation is observed in the synthetic structure and investigated
directly through the spatial spectra. Through a parametric study and an empirical fit,
the forcing frequency may now be selected to target a particular streamwise length
scale.

The second experiment implements a gelatin sample subject to an unforced tur-
bulent boundary layer. The surface response is characterized and serves as a
base case with which to identify the roughness-forced component of the defor-
mations. This naturally leads to the third experiment, where the full compliant-wall,
dynamic-roughness-forced turbulent boundary layer system is considered. The sur-
face response to the synthetic flow structure is confirmed, which sets the stage for a
comparison between the smooth-wall and compliant-wall data to study the effect of
the compliant surface.

The smooth/compliant comparison is guided by a resolvent analysis, which predicts a
virtualwall feature in the v velocitymode for the elasticmaterial under consideration.
Using this prediction to inform a conditional average, the virtual wall is revealed
in the experimental data. Thus, the action of the elastic surface is interpreted as
opposing the v velocity near the wall, in a manner similar to wall-jet opposition
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control.

Previous experimental studies of viscoelastic compliant surfaces have demonstrated
the potential for turbulent drag reduction, though either indirectly via the turbulence
intensities or with relatively high skin friction measurement error. A common
observation in these studies was the importance of the interaction between the
surface and the coherent structures in the flow. To that end, this study has isolated
andmodeled the behavior of the fluid-structural systemwith a single spatio-temporal
scale generated by dynamic roughness forcing. The results provide a physical
interpretation of the effect of an elastic surface on turbulent boundary layer flow
structures and informs the ongoing development of a reduced-order modeling tool
in the resolvent analysis.
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by the peak in |ûωf |. © — SW-DRF; � — CW-DRF; — smooth-
wall resolvent mode (kx = 2.67); – – compliant-wall resolvent mode
(Y = 0.003i, kx = 2.78). . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1 Water-gelatin mixture, (a) with bubbles, soon after blending, and (b)
without bubbles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2 Gelatin sample with non-Teflon cover on, bubble formed in corner
due to curvature of cover plate. . . . . . . . . . . . . . . . . . . . . . 147

A.3 Gelatin sample with cover removed. Several surface fissures and
tears have developed from the lid removal. . . . . . . . . . . . . . . 147

A.4 Successfully fabricated gelatin sample, dyed white for a DIC test. . . 148



xxi

LIST OF TABLES

Number Page
3.1 Mean flow properties from PIV taken at x = 120 mm for the

canonical, SW-DRF, and CW-DRF studies. U∞ is calculated from
freestream PIV data when available (SW- and CW-DRF studies). . . . 36

3.2 Relevant physical length dimensions of the experiment in dimensional
and outer-scaled forms. The coordinate variables indicate which
dimension is provided below. Outer scaling is done with δ from the
canonical TBL study, listed in Table 3.1. . . . . . . . . . . . . . . . 38

3.3 FOV and interrogation window dimensions for 2D-PIV measure-
ments, in dimensional, outer-, and inner-scaled forms. Because the
interrogation windows used were square (32×32 px2), only one side
length is given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 FOV and interrogation window dimensions for freestream PIV mea-
surements, in dimensional, outer-, and inner-scaled forms. Because
the interrogation windows used were square (32×32 px2), only one
side length is given. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 FOV and subset dimensions for stereo-DIC measurements, in dimen-
sional, outer-, and inner-scaled forms. Because the interrogation
windows used were square (31×31 px2), only one side length is given. 39

4.1 Roughness actuation conditions explored in these experiments, pa-
rameterized by motion rms height and frequency. i-iv indicate con-
ditions that were tested and are labeled for reference; dashed cells
indicate those that were excluded. . . . . . . . . . . . . . . . . . . . 41

4.2 Locations of the PIV planes for the spanwise study, scaled by δ. For
reference, the roughness element spans z/δ = [−6, 6]. . . . . . . . . . 53

4.3 Maximum and rms values of uωf and vωf for each actuation condition,
scaled by U∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Streamwise wavenumbers, kxfδ, (and wavelengths, λxf/δ, in paren-
theses) calculated for each actuation condition. . . . . . . . . . . . . 58

4.5 Wave speed, cf/U∞, for each actuation condition. . . . . . . . . . . . 58
4.6 Amplitudes and phases of the ωf-kxf velocity modes at the critical

layer location, for the SW-DRF study, cases ii and iii. The amplitudes
are scaled to reflect the physical velocity and normalized by U∞. . . . 68



xxii

5.1 Rms values of each deformation component for the LE FOV of the
CW-unforced study, provided in dimensional, outer-scaled, and inner-
scaled forms. For reference, the uncertainty values on the stereo-DIC
calculation were 0.3, 0.3, and 0.2 um for dx , dy, and dz, respectively. . 73

5.2 Names and corresponding frequency bands for the spectral features
in the CW-unforced deformations from Figure 5.1. . . . . . . . . . . 74

5.3 The mean rms-amplitude for each deformation component, as well
as the mean (dµ) and standard deviation (dσ) of the deformation
magnitudes, for each feature from the power spectra in Figure 5.1
from the CW-unforced study. All quantities are in um. . . . . . . . . 78

5.4 Summary of the discussed features from the power spectra in Figure
5.1 from the CW-unforced study. The mean deformation magnitude
values are computed over all x and z, and all three FOVs, and are
provided in dimensional, outer-scaled, and inner-scaled forms. . . . . 79

5.5 Streamwise wavenumbers and wave speeds computed for each FOV
for the 11-16 Hz wave system observed in the CW-unforced study. . . 91

6.1 Streamwise wavenumbers, kxfδ, (and wavelengths, λxf/δ, in paren-
theses) calculated for each actuation condition for the CW-DRF study. 103

6.2 Wave speed, cf/U∞, for each actuation condition for the CW-DRF
study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Amplitudes and phases of the ωf-kxf velocity modes at the critical
layer location, for the CW-DRF study, actuation conditions ii and
iii. The amplitudes are scaled to reflect the physical velocity and
normalized by U∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Amplitudes and phases of theωf-kxf wall-normal surface deformation
mode and corresponding wall velocity mode for the CW-DRF study,
actuation conditions ii and iii. ̂̂d y |ωf kxf amplitudes are scaled to
reflect the physical deformations and are provided in dimensional,
outer-scaled, and inner-scaled forms. ̂̂v w |ωf kxf amplitudes are scaled
to reflect the physical velocity and normalized by U∞. . . . . . . . . 108



1

C h a p t e r 1

INTRODUCTION

Turbulent flow is a ubiquitous and visually beautiful phenomenon, and has been
a focus of fluid mechanics research for over a century. It is present at an impres-
sive range of scales, from stirred coffee cups to planetary atmospheres and stellar
dynamics, and is unrelentingly pervasive in many engineering applications. Turbu-
lence is the ‘high’ setting on nature’s blender, mixing mass, momentum, and heat
with marked efficiency. Inside the combustor of an aircraft engine, this enhanced
mixing boosts fuel efficiency, while just outside on the wing, the same phenomenon
massively increases drag. In both cases, understanding the behavior of the flow
is critical to designing faster, quieter, and more efficient transport. As expected
of such a long-lived subject of research, the field of turbulence has evolved from
its primarily experimental and analytical roots to incorporate recent computational
capabilities, such as highly-resolved direct numerical simulations (DNS) and nu-
merical reduced-order models. It will no doubt require the efforts of a three-pronged
approach to develop tools and technologies to understand, modify, and control the
effects of turbulence.

This thesis investigates the longstanding topic of compliant surfaces interacting
with a turbulent boundary layer, with the unique input-output perspective enabled
by the novel experimental tool that is dynamic roughness. This chapter provides a
brief overview of turbulent boundary layers and compliant surfaces, motivates the
input-output viewpoint, and outlines the approach taken in this work.

1.1 Description of turbulent boundary layer flows
Incompressible and viscous fluid flows are governed by the incompressible Navier-
Stokes and continuity equations:

∂Ù
∂ t̀
+ Ù · ∇̀Ù = −

1
ρ
∇p̀ + ν∇̀2Ù (1.1)

∇̀ · Ù = 0 , (1.2)

where U is the flow velocity (vector), p is pressure, ρ is the fluid density, and ν
the fluid kinematic viscosity. ∇, ∇·, and ∇2 represent the gradient, divergence, and
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Laplacian operators, respectively. The grave accent, `(·), indicates a dimensional
quantity.

Wall-bounded shear flows are differentiated from free-shear flows by the presence
of boundaries in the domain, typically rigid walls, which introduce a geometric
length scale to the problem. In internal shear flows like in a pipe or channel, the
flow is bounded on all/both sides and the geometric length scale is the radius (r) or
channel half-height (h), respectively. External wall-bounded shear flows do not have
a fully encapsulating geometries. One such flow of common interest is a boundary
layer, which has a single flat wall and introduces length scales like the boundary
layer thickness (δ) and momentum thickness (θ), defined in the next section, which
evolve in the primary direction fo the flow. Another effect of the presence of the
wall(s) is an inhomogeneity in the direction perpendicular to the boundary, caused
by friction dragging to the fluid to zero relative velocity at the wall. This is known
as the no-slip boundary condition, and for viscous fluids, it causes a shear-stress
gradient to penetrate into the flow. The coordinate system that will be used here
for three-dimensional, wall-bounded shear flows is x aligned to the dominant flow
direction (‘streamwise’), y aligned to the outward-pointing normal from the wall
(‘wall-normal’), and z aligned to the right-hand consistent perpendicular direction
(‘spanwise’), with t being time. In equations 1.1 and 1.2, U and p are functions of
x, y, z, and t.

Equations 1.1 and 1.2 can be non-dimensionalized using characteristic length, ve-
locity, and pressure scales, Ls, Us, and ρU2

s , respectively, yielding:

∂U
∂t
+ U · ∇U = −∇p +

1
Re
∇2U (1.3)

∇ · U = 0 , (1.4)

where Re is the well-known Reynolds number, Re = UsLs

ν . The length scale is often
chosen based on a feature of the flow geometry, such as the boundary layer thickness
or momentum thickness for a boundary layer flow. Choosing the velocity scale to
represent the condition away from the boundary, i.e. the freestream velocity (U∞)
for a boundary layer, the Reynolds number, Re∞ =

U∞δ
ν can be interpreted as a ratio

of inertial to viscous forces. The same procedure and interpretation can be made for
pipe and channel flows as well. For sufficiently high Reynolds number, these flows
become turbulent, a chaotic flow state characterized by instantaneously fluctuating
flow fields and enhanced mass, momentum, and thermal mixing, leading to, among
other things, increased skin friction drag. Several texts have been written discussing
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the details of these flows, e.g. [49, 53, 57, 58]. Here, a brief overview of relevant
observations of turbulent boundary layer flows will be provided.

1.1.1 Mean flow properties
Though chaotic in nature, canonical turbulent flows have been found to have robust
mean characteristics. Thus, the velocity field of such a flow is often separated into
a mean and fluctuating component using the Reynolds decomposition:

U = U + u , (1.5)

where U is the temporal mean velocity (or simply mean velocity), and u is the
fluctuation about the mean. The temporal mean operation, denoted by (·), is esti-
mated by an ensemble average by invoking the assumption of ergodicity of the flow.
For fully developed internal shear flows or boundary layer flows under the locally-
parallel-flow assumption, only the streamwise component of the mean velocity is
considered, as the other components are very small or zero by the geometry, and
this component is a function of only y, i.e. U = U(y).

In turbulent boundary layer flows, the wall-normal profile of the mean velocity
has been observed to contain two sets of dynamically relevant scales, defining
two regions of the flow where each scaling holds. In the ‘outer’ region farther
from the wall, the flow is dominated by the inertial terms in Navier-Stokes and
the relevant length and velocity scales are the boundary layer thickness (δ) and
freestream velocity (U∞), respectively. U∞ is the streamwise velocity of the flow far
from the wall, where the shear-stress gradient is zero. δ is defined as the y location
at which the mean profile attains 99% of the freestream value. As the choice of 99%
is somewhat arbitrary, an alternative or accompanying integral length scale that is
often used is the momentum thickness, θ, defined for an incompressible (uniform
density) flow as:

θ =

∫ ∞

0

U(y)
U∞

(
1 −

U(y)
U∞

)
dy , (1.6)

which is related to the reduction in the time rate transfer of momentum due to the
presence of the boundary layer versus an equivalent inviscid flow, matching the
freestream velocities and mass flow rates. θ defines the corresponding momentum
thickness Reynolds number, Reθ =

U∞θ
ν , which is a frequently used parameter when

comparing turbulent boundary layer data.

In the ‘inner’ region very near the wall, the viscous terms dominate and the relevant
scaling quantities are the kinematic viscosity (ν) and themean shear stress at thewall,
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τw = ρν ∂U
∂y

���
0
. These quantities are used to define the friction velocity, uτ =

√
τw
ρ ,

which in turn is used to define a viscous length scale, δν = ν
uτ
. Scaling using uτ and

δν is commonly referred to as inner scaling, and inner scaled quantities are typically
denoted by the superscript +. The friction Reynolds number is correspondingly
defined as Reτ =

uτδ
ν =

δ
δν
= δ+, and can be thought of as the scale separation

between the outer and inner length scales. Under inner scaling, the mean velocity
profile has been found to collapse near the wall for a wide range of Reτ and different
wall-bounded geometries [49].

Pope (2001) [49] defines the outer region of the flow to be y+ & 50 and the inner
region y/δ . 0.1. Thus, with sufficient scale separation (i.e. sufficiently high
Reτ), there is a region of overlap where both inner and outer scalings hold. This
overlap leads to the famous result of a logarithmic region within the mean profile,
the so-called ‘log law’:

U
+
=

1
κ

log y+ + B , (1.7)

where B is a constant and κ is the Kármán constant. Pope (2001) [49] defines the
wall-normal range where the log law holds to be 30δν < y < 0.3δ. Among other
consequences, the log law allows experimentalists to estimate the value of uτ by
fitting equation 1.7 to mean velocity data, a process known as the Clauser chart
method [15].

A brief mention of critical layers is given here, with a more thorough discussion
provided in Maslowe (1986) [44] and Schmid & Henningson (2001) [54]. Critical
layers are a key idea in classical stability analysis of parallel shear flows, and are
located at the wall-normal height, yCL, at which the wave speed, c, of a given
traveling wave matches the base flow profile, i.e. Ubase(yCL) = c. These concepts
have found utility in fully turbulent flows as well; for example, McKeon & Sharma
(2010) [45] found critical-layer-type behavior in their resolvent-based investigation
of a turbulent pipe flow. For a turbulent flow, the critical layer is based off the
turbulent mean profile, i.e. U(yCL) = c. yCL underpins the mode shape structure
for many traveling wave perturbations, as will be seen in later chapters.

1.1.2 Coherent flow structures
In addition to robust statistical characteristics, many researchers have observed re-
current structural flow features in instantaneous data of turbulent boundary layer
flows. These ‘coherent structures’, so called because of their spatio-temporal co-
herence, are thought to play key dynamical roles in the behavior and self-sustaining
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nature of turbulence. Coherent structures are often broadly categorized as small-
scale motions, corresponding to near-wall cycle (NWC) features with size O(δ),
and large-scale and very-large-scale motions (LSMs and VLSMs, respectively), as-
sociated with turbulent bulges and organization of bulges, O(2 − 3δ) and O(10δ)
respectively [1]. The near-wall cycle is characterized by streamwise velocity streaks
and quasi-streamwise vortices appearing near the wall, and is believed to play a
critical role in the self-sustaining nature of turbulence. LSMs are associated with
turbulent bulges and thought to be made of organized packets of hairpin vortices.
At high enough Reynolds numbers, these packets are believed to further streamwise
align into superstructures deemed VLSMs, centered in the logarithmic region of the
flow [1]. LSMs and VLSMs are considered dynamically relevant, as they carry a
significant portion of the turbulent kinetic energy and Reynolds shear stress [24].

Though localized in different regions of the flow and often at vastly different scales,
several studies have found the behavior of these large- and small-scale motions to
be correlated. In particular, the studies of Hutchins & Marusic (2007) [28] and
Ganapathisubramani et al. (2012) [22] have suggested that large-scale motions act
to modulate the amplitude and frequency of the small scales. In these studies, the
amplitude of the small-scales was found to be positively correlated with the value
of the large-scale near the wall and negatively correlated away from the wall. The
observed frequency modulation was restricted to the near-wall region, where the
frequency corresponding to the peak in small-scale activity was found to increase
with increasing value of the large-scale.

The idea of coherent structures is very enticing from a flowmodeling perspective, as
it may allow for critical flow features to be described and predicted without requiring
huge amounts of information. Several advances in understanding are still necessary
to fulfill that potential, but coherent structures continue to play a central role in the
field of turbulence.

1.2 Compliant surfaces
As mentioned at the beginning of this chapter, there are many practical incentives
to develop control mechanisms in turbulent flows to achieve performance goals, one
example being reduction of turbulent skin-friction drag. Many potential control
schemes have been explored, one of which is the compliant surface. A compliant
surface is one that deforms under and modifies the surrounding flow, and in its
simplest implementation offers a passive and cost-effective means of flow control.
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A thorough review of the literature and history is given in Gad el Hak (2002) [21],
with a brief overview provided here.

The seminal publications by Kramer (1957, 1960) [37–39] were inspired his obser-
vation of wave-like ripples forming on the skin of dolphins as they swam. Kramer
hypothesized that, like the dolphins, one could reduce the frictional drag on a ship by
applying a compliant coating to its hull, tuned to damp Tollmien-Schlichting (T-S)
instabilities and delay transition to turbulence. He created flexible rubber coatings
that were filled with silicone oil or other viscous fluids, and applied the coatings to
a model that he then towed behind a motor boat in Long Beach Harbor, California.
Kramer reported drag reduction in excess of 50%with these coatings, a result which
quickly drew the attention of many researchers. Several follow-up studies failed to
replicate Kramer’s drag reduction findings, leading to a good deal of controversy
to surround the quickly booming field of compliant coatings. It is now appreciated
that experimental investigations concerning drag reduction via compliant surfaces
require extremelywell controlled conditions. Many factors such as freestream turbu-
lence and slight geometrical surface defects can adversely affect the drag outcome,
and are likely a large part of the inconsistent results in the early literature. Though
there was a large body of skeptics, the numerical and analytical studies by Carpenter
[5, 6] and Carpenter & Garrad [7] and the experiments of Gaster [23] suggested
that a Kramer-type surface could indeed delay transition and yield significant drag
reduction. Carpenter et al. (2000) [8] suggested that an optimized coating may in
fact play an important role in the efficient swimming of dolphins by maintaining
laminar flow along their skin, as envisioned by Kramer.

Much of the early compliant coating work centered around reducing skin friction
drag by delaying the onset of turbulence. The problem of reducing drag in an al-
ready turbulent flow was understandably much more challenging. However, some
experimental studies have found encouraging results. Lee et al. (1993) [40] per-
formed water tunnel experiments of a turbulent boundary layer with a single-layer
viscoelastic compliant surface and found that the low-speed streaks associated with
the near-wall cycle had an increased spanwise spacing and elongated spatial coher-
ence over the smooth-wall case. In addition, the authors observed a reduction in
streamwise turbulence intensity and Reynolds shear stress, suggesting a possible
interruption of the self-sustaining turbulence cycle. In the water tunnel experiments
of Choi et al. (1997) [9], drag reduction on a slender body of revolution with a
single-layer viscoelastic coating was reported, with a maximum drag reduction of
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7%. However, the strain-gauge skin friction measurement error was estimated to
be as high as ±4%, and so this drag reduction should be interpreted cautiously.
A common observation of these experimental studies was the importance of the
interaction between the surface and the coherent structures in the flow. A recent
experimental effort has been made by Zhang et al. (2015, 2017) [63, 64], who
leveraged modern flow and surface measurement techniques. The authors studied a
relatively stiff polydimethylsiloxane (PDMS) wall in a turbulent channel flow, using
tomographic-PIV and Mach-Zehnder interferometry to obtain the 3D flow field and
2D surface deformation field. This work was able to categorize classes of surface
deformation waves and propose potential scalings for these classes.

As computational capabilities have grown in recent decades, several DNS studies
have been performed on turbulent channel flows with compliant walls and reported
somewhat less optimistic results than experiments. Xu et al. (2003) [62] simulated
a turbulent channel flow with a compliant wall modeled as a spring-supoprted plate
and found little change to the turbulent skin friction. In the work of Fukagata et
al. (2008) [17], an anisotropic compliant wall led to 8% maximum drag reduction
rate; however, the drag was found to increase as the computational domain was
increased. Kim & Choi (2014) [36] parametrically studied the effect of stiffness
of the compliant walls and observed that stiff materials led to minimal changes in
the skin-friction drag and coherent structures, while soft materials led to significant
drag increase due to resonant surface behavior.

Clearly the daunting parameter space, difficulty in measuring skin-friction drag,
and resource-intensive nature of simulations and experiments make the question
of turbulent drag reduction via rationally-designed compliant surfaces incredibly
challenging, and one that will likely require the advent of new and refined reduced-
order modeling tools.

1.3 Input-output analysis
The current work aims to take a different approach to other experimental studies
of compliant surfaces in turbulent boundary layer flows. Rather than consider the
material response to the broad spatio-temporal spectrum typical of turbulence, this
work attempts to study the response to a single, externally-forced flow structure
in an otherwise turbulent flow. This input-output type analysis intends to reduce
the complexity of the problem and provide a fundamental framework with which
to build up to the full flow. Such an approach is motivated by the dynamical
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significance of coherent structures in canonical and compliant-wall turbulent flows.
In this work, the novel technique of dynamic roughness is employed to force the
flow structure. This analysis also leverages the resolvent framework of McKeon &
Sharma (2010) [45] to guide the interpretation of the experimental results. Both of
these methodologies are discussed in the following sections.

1.3.1 Overview of dynamic roughness
Jacobi & McKeon (2011) [33] studied a turbulent boundary layer subject to a short,
static strip of two-dimensional roughness elements in a wind tunnel. Through
hot-wire anemometry and particle image velocimetry (PIV) measurements, they
observed that the spatially impulsive roughness patch had a prolonged imprint on
the downstream flow in the form of two internal layers that developed from the
roughness. Each layer corresponded to the changes in the boundary condition over
the roughness, going smooth-to-rough and then rough-to-smooth. The signature of
the internal layers was readily observed in the flow statistics, with the mean profile
exhibiting a deficit (most notably for y/δ . 0.3) and the streamwise turbulence
intensity showing a distinct hump (centered at y = 0.08δ) over the smooth-wall
case. Jacobi & McKeon (2011) drew comparison with a previous study [2] and
interpreted the hump in turbulence intensity as a stress bore, or local region of
increased shear stress, introduced by the roughness that propagated away from the
wall. Indeed, as the flow recovered downstream, the hump in turbulence intensity
drifted away from the wall, consistent with the stress bore analogy, and allowed
the wall-normal growth rate of the internal layers to be estimated by a power-law
fit. Though the signature of the roughness decayed in the streamwise direction, it
persisted and remained discernible over the 10δ measurement domain.

Building on these finding, Jacobi & McKeon (2011) [32] considered the same
roughness element and imparted a temporal oscillation using a crank-shaft assembly
and DC motor. They then studied the flow response to the now dynamic roughness.
They were able to decompose the flow response into spatially small-scale and large-
scale components, with the former congruent with the static effects of the previous
study, and the latter associated with an organized wave introduced by the roughness
dynamics. The large-scale, dynamic effects were found to permeate the mean and
higher-order statistics, and took on critical-layer-type velocity mode shapes. These
effects persisted for 20δ from the roughness, highlighting the potential impact of a
relatively small, local control mechanism on the downstream life of the flow.
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Later, Duvvuri &McKeon (2015) [14] performedwind tunnel experiments with hot-
wiremeasurements, using a similar dynamic roughness setup to study the interaction
between the roughness-forced, synthetic large scale and the triadically consistent
small scales. Rather than a strip of two-dimensional elements, Duvvuri & McKeon
(2015) used a single two-dimensional rib and actuatedwith reduced amplitude versus
Jacobi &McKeon (2011) [32], so as to not modify the mean profile as substantially.
The authors reported a streamwise wavelength of the synthetic structure on the
order of 15δ, comparable to the scale of VLSMs in high-Reynolds number flows.
They calculated the correlation coefficient between the synthetic large scale and the
envelope of the triadically coupled small scales, and found that triadic envelope
was nearly perfectly in-phase with the synthetic mode near the wall, and jumped
near the critical layer to be almost exactly out-of-phase. This was interpreted as a
phase organization by the synthetic large scale, acting to modulate the amplitude
of the small scales. This is analogous to the observation of Hutchins & Marusic
(2007) [28] discussed in Section 1.1.2, and demonstrates the utility of studying the
interactions in turbulent flows through the lens of an externally-introduced synthetic
scale.

Dynamic roughness offers a tractable means to investigate flow structure dynamics
and interactions, as well as provides a basis from which to understand and evaluate
other types of flow control schemes, as discussed in McKeon, Jacobi, & Duvvuri
(2018) [46].

1.3.2 Resolvent framework
Dynamic roughness forcing introduces a dominant synthetic scale into a turbulent
flow. This lends itself to a reduced-order-modeling framework, with the synthetic
scale serving as a deterministic input, and the velocity/surface response interpreted
as the output. Such input-output frameworks have been explored in previous stud-
ies. In the turbulent channel flow experiments of Hussain & Reynolds (1970, 1972)
[26, 27], spanwise-constant dynamic disturbances were generated by vibrating rib-
bons located near thewall. The authors attempted tomodel the downstream behavior
of the disturbances by the laminar Orr-Sommerfeld equations, augmented with var-
ious closure schemes to model the effect of the Reynolds stresses. Jovanović &
Bamieh (2001) [35] studied the linearized NSEs for a laminar channel flow. The
authors considered a spatio-temporally impulsive external forcing (representative of
transitional ‘turbulent spots’) that mapped to the velocity response through the lin-
earized resolvent operator. Hwang & Cossu (2010) [30] also explored the resolvent
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operator, but with respect to the turbulent mean profile instead of the linearized base
flow. They use an eddy viscosity term to model the effect of the Reynolds stresses
to circumvent the closure problem.

In this work, the modeling framework considered is the resolvent operator-based
formulation put forward by McKeon & Sharma (2010) [45]. In this method, the
Navier-Stokes equations for a turbulent flow are recast into an input-output form,
with the nonlinear term explicitly retained and acting to force the velocity through
the linear dynamics captured in the resolvent operator. The turbulent mean profile is
assumed known (via experiments, simulations, or models) and is incorporated into
the resolvent operator, serving as the only data input for the analysis. The resolvent
operator is discretized and a singular value decomposition (SVD) is performed to
identify the operator’s singular response and forcing modes, and the corresponding
singular values. McKeon & Sharma (2010) [45] found that this operator is low
rank for a range of physically relevant wavenumber vectors, which allows for a
rank-1 approximation to be made, significantly reducing the computational cost of
the analysis. This rank-1 model has been found to approximate key statistical ([47])
and structural ([42, 45, 46, 55]) features of the flow. What’s more, the analysis
was extended by Luhar et al. (2015) [43] to consider a compliant-wall boundary
condition and compared favorably to DNS studies [17, 36, 62]. Thus, it is used
as a lens through which to view the results of the compliant surface experiments.
Greater detail on the precise formulation will be provided in Chapter 7.

1.4 Approach
In the present work, a dynamic roughness element is used to force a flat plate turbu-
lent boundary layer and study the interaction between the roughness-forced synthetic
mode and an embedded compliant surface. Rather than aim for a particular perfor-
mance goal such as turbulent drag reduction, this work seeks a well-characterized
input and measurable and attributable output to contribute to a fundamental frame-
work, with an ultimate view to extend to fully complex flows and surfaces. This
work provides an experimental demonstration of the efficacy of the compliant-wall
resolvent framework, as it is used to predict subtle modifications to the synthetic
velocity structures. In addition to the compliant surface study, this work seeks to
contribute to the understanding dynamic roughness by performing spatially resolved
measurements and exploring the relevant parameter space.

Chapter 2 describes the design, apparatus, and methodology developed for these
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experiments. This work was done in a water tunnel, which has two significant
benefits for this type of study. First, the higher density of water enables flow-driven
surface deformations more readily. As discussed in Gad el Hak (2002) [21], there
have been some studies with favorable results of compliant surfaces in air flows, but
the higher fluid-to-surface mass ratio of water allows much more practical surfaces
to be designed and tested. The second advantage of water is the inherently longer
timescales, which grant access to higher non-dimensional frequencies and thus
shorter streamwise structures than previous studies [14, 32]. This allows for a more
streamwise-resolved picture of the synthetic scale to be developed. This chapter also
discusses gelatin as the selected compliant material and a simple characterization of
its properties. Flow measurements were made with two-dimensional particle image
velocimetry (2D-PIV) and surface measurements made through stereo digital image
correlation (stereo-DIC). Stereo-DIC is not a common measurement technique for
compliant surface studies due to the difficulty in creating and maintaining a reliable
speckle pattern on the surface, particularly in a submerged environment. A speckle
generation method has been developed that overcomes these challenges. These
measurement techniques and processes are also discussed in the chapter.

Chapter 3 provides a characterization of the flat plate facility in the water tunnel, as
it was newly developed for this study. Typical flow statistics are compared to DNS
[60, 61] to ensure a canonical flow base case.

Chapter 4 presents the data from the smooth-wall, dynamic-roughness-forced (SW-
DRF) studies, with the dynamic roughness actuated sinusoidally from the flat plate
in a similar manner to previous work [14, 32]. The signature of the synthetic mode
on the flow statistics is discussed and found to agree closely with the internal
layer-structures of Jacobi & McKeon (2011) [33]. The velocity field is triple
decomposed following Hussain & Reynolds (1970) [26], and the synthetic mode
identified through phase-averaging of the data. Spanwise-spaced 2D-PIV planes are
acquired to provide insight on any three-dimensionality of the flow. The temporal
Fourier mode corresponding to the roughness forcing frequency is extracted and
used to characterize the streamwise wavenumber of the synthetic mode. A full
streamwise-temporal Fourier decomposition is employed and the spatial nature of
the synthetic mode is explored in a manner not previously done.

Chapter 5 discusses the stereo-DIC measurements made on the compliant-wall
without the dynamic roughness forcing (CW-unforced). This ‘unforced’ response
is characterized in order to determine whether the ‘forced’ surface response is
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attributable to the synthetic mode from the roughness, or an amplification of a
naturally occurring response. A number of deformation features are observed and
characterized.

Chapter 6 followswith the stereo-DICmeasurements of the compliant-wall, dynamic-
roughness-forced (CW-DRF) study. Comparison of the CW-unforced and CW-DRF
DIC data provide confidence that an identifiable portion of the surface response is
due to interaction with the synthetic mode. The PIV data are processed in a paral-
lel manner to the SW-DRF studies, in preparation to compare the spatio-temporal
Fourier modes and investigate the effect of the compliant-wall.

Chapter 7 outlines the compliant-wall resolvent framework used to guide the analysis
of the experimental data through prediction of flow features, namely a virtual wall.
The experimental mode shapes are then examined, with some favorable comparisons
with the resolvent predictions, but the anticipated virtual wall is not distinguishable.
An additional conditional averaging approach is taken, which does reveal aspects of
the virtual wall in the mode shapes. This suggests that the elastic, gelatin surface is
acting to oppose the wall-normal velocity near the wall, in a manner similar to the
wall jets of opposition control.

Chapter 8 closes the thesis with concluding remarks and potential future work.
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C h a p t e r 2

EXPERIMENTAL DESIGN

The study of a gelatin surface interacting with a dynamic-roughness-forced flow
was developed as three separate sets of experiments of increasing complexity. First,
a flat-plate boundary layer facility was constructed and tested. Next, the dynamic
roughness apparatus was designed and implemented. Finally, the fabrication and
molding process for the gelatin surfacewere developed. All flowmeasurementswere
made through 2D particle image velocimetry (2D-PIV) and surface deformation
measurements were primarily made through stereo digital image correlation (stereo-
DIC). Preliminary surface deformation measurements were made with a Keyence
laser displacement sensor as a qualitative diagnostic tool, but were not used in
the analysis and will only be mentioned briefly when relevant. Details of each
experimental stage, the 2D-PIV and stereo-DIC measurements, and phase-locking
process are presented in this chapter.

2.1 Flat-plate boundary layer facility
All the experiments were done in the NOAH water tunnel in GALCIT. The test
section of the tunnel is 1500 mm long, 460 mm deep, and 460 mm wide, with
Plexiglas side walls and bottom. The tunnel freestream velocity calibration is

U∞( fp) = 1.62 fp − 0.677 ,

where U∞ is the tunnel freestream velocity in cm/s and fp is the pump frequency in
Hz. For all experiments, the pump was operated at 18.94 Hz for an unobstructed
freestream velocity of 30 cm/s.

The flat plate facility was designed as a series of acrylic plates sections, as shown
in the SolidWorks drawing in Figure 2.1. Measurements were performed on the un-
derside of the plate to avoid free-surface effects and to have the dynamic roughness
actuator to above the water. Accordingly, the positive coordinate directions used are
streamwise (x) aligned with the tunnel’s downstream, wall-normal (y) aligned with
the outward-pointing normal of the plate underside, and spanwise (z) along the test
section’s width (right-hand consistent), as illustrated in Figure 2.1. Dimensions of
experimental components will be provided in streamwise, wall-normal, and span-
wise order unless otherwise specified. The full plate dimensions are 1280 mm long
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(excluding the trailing-edge flap), 32 mm thick, and 440 mm wide, nearly spanning
the length and width of the tunnel test section. The leading-edge andmiddle sections
are each 603 mm long, and the trailing-edge section is 178 mm long (excluding the
flap), with a 50.5 mm overlap between each section. The leading-edge section has
an elliptical edge with semi-major and semi-minor axes of 63.5 mm and 31.8 mm,
respectively. Acrylic plates were selected to minimize laser reflections off the plate
surface and reduce weight. The modular plate design allowed the middle section to
be refitted per the needs of the current experiment. Large pockets were cut out of
the leading and middle sections to reduce weight. The joins between the plates use
screws and spring washers in tandem to adjust the transition from one plate to the
next to be smooth within ∼25 um, as confirmed by a dial indicator. The trailing-
edge flap angle was set to about 30◦ to bias the leading-edge stagnation point to the
underside of the plate, as confirmed through dye visualization.

Figure 2.1: Model of the full acrylic plate assembly, with leading-edge, middle, and
trailing-edge sections.

The plate was submerged 230mm under the free surface (about half the water depth)
with an aluminum 80/20 frame, supported by the rails on top of the tunnel side walls.
The sides of the plate were sealed to the tunnel walls using latex tubing running
the length of the apparatus to minimize any flow between the top and bottom of the
plate.

Measurements were made over the middle plate section, where the freestream ve-
locity ranged between 33.4 and 36.4 cm/s. As mentioned, the flow fields were
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measured using 2D-PIV. Data were acquired for an unmodified, flat-plate boundary
layer to ensure a canonical flow base case. These data will be presented in Chapter
3.

2.2 Dynamic roughness apparatus
A dynamic roughness element was used to force the turbulent boundary layer in a
similar manner to Duvvuri et al. [14]. The roughness element is two-dimensional
(spanwise-constant), consisting of a thin rib, 1.5 mm wide, 6.2 mm tall, and 304
mm long (70% of the plate’s width), protruding from a rectangular body, with a 13
mm diameter set screw shaft coupler attached, and is shown in Figure 2.2. Pockets
were cut into the roughness body to reduce the dynamic load on the actuator. The
entire roughness element is made of aluminum that was hard anodized to prevent
corrosion. The time-varying roughness height will be denoted by h(t), where h = 0
indicates that the top of the rib is flush with the plate and h > 0 indicates that the
rib is protruding into the flow. The actuation condition of the roughness height
is parameterized by the motion amplitude, either peak-to-peak or rms, hp−p or
hrms, respectively, and the motion frequency, either ordinary or angular, ff or ωf ,
respectively, where the subscript ‘f’ indicates ‘forcing’.

Figure 2.2: Model of the roughness element.

A middle plate section was designed with a cavity and through-slot to accept the
roughness element, as shown in Figure 2.3. The slot is located 626 mm downstream
of the leading edge, with dimensions 2.2 mm wide, 3.2 mm deep, and 307 mm long,
to provide tight clearancewhen the roughness was inserted and aligned, as illustrated
in Figure 2.4. The clearance wasmade as small as possible to minimize flow through
the slot, while still allowing a feasible alignment process. This flow was tested by
injecting dye through the slot and actuating the rib with the water tunnel off. A
Stokes-like flow was observed, where a small amount of dye was dragged out as
the rib extended, and pulled back in as the rib retracted, confirming that there was
no jet-like flow through the slot. For all experiments involving dynamic roughness,
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the origin of the coordinate system is located on the underside of the plate, at the
downstream-edge, spanwise-center of the slot, as illustrated in Figures 2.3 and 2.4.

(a)

(b)

Figure 2.3: Model of the plate section for smooth-wall, dynamic roughness experi-
ments: (a) top view, (b) bottom view. Coordinate system and origin illustrated.

A Bose ElectroForce LM1 linear motor was used to actuate the roughness element.
Among other capabilities, thismotor is able to execute a singly periodic displacement
with amplitude precision of∼1 um and frequency accuracy of∼0.1mHz, using built-
in optical encoders to construct a compensating transfer function between the control
signal and motor shaft displacement. The motor’s encoders also serve as a time-
resolved, high-resolution roughness displacement measurement. The motor was
suspended above the test section (motor shaft pointed downward), and connected
to the roughness element via a 13 mm diameter, 457 mm long shaft and set screw
coupler, as shown in Figure 2.5.
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Figure 2.4: A cross-sectional view of the roughness element and slot alignment.

Figure 2.5: Photo of the smooth-wall, dynamic roughness experimental setup.
The roughness element is connected to the Bose motor, which is mounted to the
motorized gantry frame. A PVC-pipe housing is placed around the roughness shaft
to shield the element from the flow.

Themotor-roughness systemwasmounted to amotorized gantry frame in theNOAH
lab, also shown in Figure 2.5. The gantry frame uses stepper motors to enable sub-
mm translation along three axes. Initially, a shaft bearing was mounted to the plate
and used to align the roughness shaft to slot. The slight contact between the shaft and
bearing appeared to slightly distort the displacement waveform through amplified
harmonic content. More pressingly, this contact transferred the motor’s actuation to
direct vibrations in the plate, which was later found to excite significant response in
the gelatin sample.

Thus, to best isolate vibrations from the plate, the shaft bearing was removed and the
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roughness element was ‘freely’ suspended in the tunnel. The gantry frame was used
to establish and maintain alignment between the roughness and the slot in the plate
section. To minimize fluid loading and preserve the displacement waveform, the
roughness shaft was encased on the non-measurement side by a cylindrical housing,
as seen in Figure 2.5. This provided a local region of quiescent flow during operation
and noticeably improved the motor’s performance. Thin aluminum plates were
machined to cover the plate inset and roughness body, in order to reduce any cavity
flow. The result of the specialized equipment, design choices, and careful alignment
processes was a precise, repeatable, pure-tone displacement signal, as illustrated by
the encoder signal in Figure 2.6. The signal, hnorm, has been mean subtracted and
normalized to have unit amplitude, and was acquired with the water tunnel running.
The time trace in Figure 2.6a is predominantly a single-frequency sinusoid, and the
power spectrum in Figure 2.6b confirms and quantifies this, indicating that the next
harmonic peak is more than three orders of magnitude smaller than the fundamental
frequency. These data are for an actuation with hp−p = 2.5 mm and ff = 5 Hz,
which had the greatest and still minute distortion. Better results are obtained for
other actuation conditions, with some having a spectral peak separation greater than
a factor of 104. Such ideal actuation signals were key enablers for the unique,
spectrally-targeted analysis in this work.

(a) (b)

Figure 2.6: Encoder signal of the motor/roughness element displacement: (a) time
signal, (b) power spectrum. The signal is single-frequency to good approximation.
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2.3 Gelatin surface
Naturally, the first step in designing the compliant surface portion of this study
was determining a suitable material. As previously emphasized, the goal of this
work was not to achieve a particular performance metric (e.g. drag reduction), but
rather to elicit and study a measurable surface response to the synthetic structure
generated by the dynamic roughness. To that end, it was key that the material be able
to be made sufficiently soft, to promote detectable deformations. Anticipating an
iterative design process for the fabrication and molding of the compliant sample, it
was desirable that the material be inexpensive and simple to manufacture. Lastly, a
linearly elastic material was ideal to facilitate the modeling of the surface’s behavior.

Gad el Hak (1987) [20] mentions three ‘easy-to-make’ materials: plastisol gel,
gelatin, and polydimethylsiloxane (PDMS). PDMS is a commonly studied and well-
documented material, used in many works [14, 63]. However, a solidified gelatin-
water mixture is able to be made the softest, the least expensive, and known to
behave linear elastically for small deformations [12]. Thus, gelatin was selected as
the material for study.

Asmentioned, the process of fabricating the gelatin samples is fairly simple. Briefly,
boiling water is added to (Knox, unflavored) gelatin powder, the two are mixed
thoroughly and allowed to cool, and the mixture is poured into a mold. The full
procedure took care to minimize bubbles and gelatin clumps, and is outlined in
Appendix A. A gelatin-water ratio of 4:100 was used in this study, which is near the
minimum ratio for which a cohesive solid still forms.

To characterize the elastic properties, compression tests were performed with an
Instron 5500, on 25.4×25.4 cm2 cylindrical gelatin samples. Though cylindrical
molds were used in fabrication, the samples tended to ‘slump’ due to their softness.
A photo of the test setup is provided in Figure 2.7. A plastic plate was affixed to
the compressing arm to ensure full and flat contact with the sample’s top face. The
sample displacementwasmeasured optically using anEIRLE-01 laser extensometer,
which uses a high-speed scanning laser and a CCD camera to measure the distance
between strips of reflective tape. The extensometer has a measurement range of
8-80 mm, resolution of 1 um, repeatability of ±1 um, and a scan rate of 100 scans/s
[50]. In these tests, the reflective strips were placed on side of the compressing
plastic plate and the metal base supporting the sample. Tests were performed at
displacement rates of 5 and 10mm/min, with identical results. Thus rate-dependent,
viscoelastic effects were deemed negligible. Four samples were fabricated and each
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Figure 2.7: Compression test setup

(a) (b)

Figure 2.8: Stress-strain curves from the compression tests.

was tested three times consecutively at a displacement rate of 10 mm/min and a
total displacement of 5 mm. Force and displacement time signals were recorded
and used to calculate stress-strain curves, as shown in Figure 2.8. The data reflect
a linearly elastic behavior for small strains (Figure 2.8b), which were expected for
the flow-driven deformations. From the slopes of these curves, the average Young’s
modulus, E , was calculated to be 4.5 kPa, with a standard deviation of 0.2 kPa,
which was consistent with values reported by Gad el Hak (1986) [19]. This is
extremely compliant; for comparison, the PDMS studied by Zhang et al. [63] had a
Young’s modulus of ∼1 MPa. It is noted that while these simple compression tests
may not have been as accurate as other methods, e.g. tensile tests, they were suitable
for an estimate of the elastic properties, particularly for such a soft material.

The Poisson’s ratio, νs, was assumed to be 0.5, i.e. the material was assumed in-
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compressible, as is typically done with gelatin [12]. With two elastic moduli known,
the remaining elastic properties are determined for a homogeneous, isotropic, linear
elastic material. Of particular relevance is the shear modulus, G, which determines
the shear or transverse wave speed of the solid, Us:

G =
E

2(1 + νs)
∼ 1.4 kPa (2.1)

Us =
√

G/ρs ∼ 1.2 m/s , (2.2)

where ρs is the density of the gelatin (taken to be the same as water due to the
mixture ratio). The shear wave speed was several factors higher than the freestream
velocity (∼0.3 m/s), and thus hydroelastic instability waves were not expected [19].
This provided confidence that most measured deformations would be attributable
to the material’s response to the dynamic roughness forcing. The shear wave speed
was also used to estimate the wave speeds of potential surface waves in the gelatin.
Rayleigh waves are surface waves that propagate in a semi-infinite elastic solid. For
incompressible materials, the Rayleigh wave speed is 95.5% of the shear wave speed
[16], which was 1.15 m/s for the gelatin in consideration. The finite thickness of the
gelatin sample (relative to the wavelength of the deformations) can be accounted for
through generalized Rayleigh waves [4] and Love waves [18]. For completeness,
the generalized Rayleigh and Love wave speeds were calculated to be 1.18 and 1.32
m/s, respectively, assuming the gelatin to be incompressible and incorporating the
sample geometry and the observed deformation wavelengths. In general, the semi-
infinite-domain Rayleigh wave speed is a lower bound on surface wave speeds for a
given material, and as will be shown in Chapter 5, the deformation waves measured
in the surface were found to be lower than the Rayleigh wave speed of 1.15 m/s.
More discussion will be provided in Chapter 5.

To integrate the gelatin sample into the flat-plate facility, a middle plate section
was designed with the same cavity and slot for the roughness element as previous
discussed, with the addition of a large, rectangular inset beginning 21.2 mm down-
stream of the roughness slot. A SolidWorks model is provided in Figure 2.9. The
inset dimensions are 305 mm long, 25.4 mm deep, and 343 mm wide, to match
the roughness element’s spanwise length and reduce edge effects along the center-
line of the sample. This plate section was placed on a leveling apparatus, and the
liquid gelatin mixture was poured into the inset. The mixture was then covered
with a lubricated, acrylic-backed, Teflon-sheet lid to achieve a flatter surface and a
smoother transition from the acrylic plate to the gelatin. The mixture was cooled
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for 12-16 hours, after which the lid was carefully removed to prevent tearing of the
surface. Initially, the rounded corners of the inset had 6.4 mm radii. However, a
high rate of tearing at the corners was experienced when removing the lid. The
cause of the tearing was suspected to be high stress concentrations due to the small
corners. The corner radii were increased to 25.4 mm, which essentially eliminated
corner-initiated failure. Figure 2.10 shows a photo of a finished, undamaged gelatin
sample. Note in the shown sample that white ink was added to the mixture for
testing purposes. The final gelatin samples were translucent.

Figure 2.9: Model of middle plate section machined for the gelatin sample

Figure 2.10: A finished gelatin sample. Note the sample pictured was dyed white
for a DIC test. The gelatin used in the experiments was translucent.

Once the lid was removed, the sample was left for ∼1 hour until the surface was
dry enough to receive the speckle pattern, as will be discussed in Section 2.5. After
the speckle pattern was applied, the sample was left for another ∼1-2 hours for the
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pattern to dry. The sample-embedded plate section was then integrated with the rest
of the flat-plate facility, which would already be suspended above the tunnel test
section. This required both a cautious and quick process, as the plate section had
to be flipped upside-down such that the gelatin sample faced downward. Once the
middle plate section was made flush with the leading and trailing sections, the entire
plate was lowered into the tunnel. The dynamic roughness apparatus was then set
up and aligned, as discussed in Section 2.2. The gelatin samples had a fairly short
lifetime. If left exposed to air for more than a few hours, a sample would begin
to evaporate, changing both the surface geometry and material properties. Once
submerged, a sample would gradually hydrate and eventually disintegrate into the
water, again altering geometry and material properties, as well as degrading the
speckle pattern quality. Even with precautions to protect the gelatin from the water,
it was estimated that a given sample had a lifetime of one week in the test section
before requiring replacement.

As discussed, several measures were taken to make the gelatin surface as level and
flat as possible. The surface quality was examined in the PIV images taken for the
compliant-wall study. An image, cropped to be near the surface, is given in Figure
2.11. The white pixels for x ∈ [0, 21] mm are the acrylic plate and for x > 21 mm
are the gelatin. Clearly the gelatin sample is not level with the plate, as the transition
to the surface first rises to about y ∼ 0.6 mm and gradually falls to below y = 0.
Not shown in the figure, the surface reaches a minimum height of about y ∼ −0.3
mm near the sample center and then rises towards the downstream edge. This large
bow in the gelatin is well characterized by a parabolic fit, and is likely the result of
the material absorbing water and equilibrating to its downward-facing state in the
test section. This surface characteristic was addressed in the processing by masking
the image below the surface. The varying wall was taken into account in the PIV
results by shifting each wall-normal profile to such that the data point nearest to
the gelatin surface was moved to the wall-normal location nearest to y = 0. This
is only a first-order correction, but was chosen to not augment the data more than
necessary.

In addition to the bow, the surface also contains a wave-like structure with an
approximate wavelength of 18.5 mm and peak-to-peak amplitude of 0.08 mm. After
observing this feature, the Teflon lid was inspected for a corresponding signature.
Indeed, the lid had small ridges with spacing matching the 18.5 mm. These ridges
were caused by the adhesive used to secure the Teflon to the acrylic backing. Though
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unfortunate, the amplitude of this wavy pattern is much smaller than the bow feature,
and so is not expected to be of first-order concern in the analysis. The DIC data later
support this, as no energetic content is observed with a matching wavelength.

Both the bow and wave surface traits highlight the difficulty in fabricating ‘ideal’
compliant surfaces. Given that the bow is likely due to the material hydrating and
adjusting to the inverted orientation, there may be few options to prevent it, other
than possibly coating the sample with a sealant to lock out the water. This would
change the surface properties and would have to be taken into account. The wave
feature can likely be avoided by using a smoother adhesive method to bond the
Teflon-acrylic lid. Also worth noting is that the surface variation is exaggerated
by the aspect ratio in Figure 2.11. Using a true aspect ratio, the variation is barely
perceptible. Despite these imperfections in the gelatin sample, a surface deformation
is still observed in response to the dynamic roughness forcing, as will be shown in
Chapter 6, which demonstrates the utility of targeted forcing in compliant surface
research.

Figure 2.11: Stitched images of the gelatin sample surface from PIV data, highlight-
ing the non-level and non-flat nature of the surface. Note the axes are not in true
aspect ratio.

2.4 2D-PIV
2D, planar PIV measurements were made to obtain streamwise and wall-normal
velocity fields. These measurements were key to studying the spatio-temporal
character of the synthetic structures generated by the dynamic roughness. Two
cameras were used to better resolve the anticipated long streamwise extent of these
structures, and contribute a novel perspective of this forced system. The flow was
seeded with neutrally buoyant, 5 um hollow glass spheres (Vestosint 2070, density:
1.016 g/cm3) and illuminated using a Photonics DM20-527(nm) dual-head YLF
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laser, with a laser pulse separation of 1000 us. The laser beam was expanded into a
sheet using a -20 mm focal length cylindrical lens, directed up through the bottom of
the test section by a 45◦ mirror, and through the bottom surface of the acrylic plate.
The sheet was about 1 mm thick at the acrylic plate. Images were acquired with two
PhantomMiro LAB 320 high-speed cameras at full resolution, 1920×1200 px2, and
a frame rate of 100 Hz or varying depending on the roughness actuation frequency.
Initially, two AF 180mm f/3.5D Tamron lenses were used with each camera, later
to be replaced by two AF Mirco-NIKKOR 200mm f/4D Nikon lenses for improved
distortion properties. The laser and cameras were operated and the resulting images
processed using LaVision’s DaVis software. Unless otherwise specified, vector
fields were calculated using a decreasing multi-pass method (1 pass at 64×64 px2

and 3 passes at 32×32 px2) with 75% overlap. The region below the plate surface,
which will be referred to as ‘the wall,’ was masked. The calibration target and
method will be discussed later in this section.

The optical setup for PIV evolved along with the experiments. For the canoni-
cal and preliminary smooth-wall, dynamic-roughness-forced (SW-DRF) turbulent
boundary layer studies, a traditional PIV setup was used, with both cameras oriented
perpendicular to the desired field of view (FOV), as sketched in Figure 2.12. The
size of each camera’s FOV was 47×30 mm2 (streamwise × spanwise), and the min-
imum distance between each camera’s FOV was constrained by the physical size of
the cameras. Positioning the cameras side-by-side, the streamwise gap between the
FOVs was 61 mm. Data were acquired at one streamwise position (illustrated as the
green lines in Figure 2.12), and then both cameras were translated in the streamwise
direction to acquire data in the gap (illustrated as the blue lines). However, there
remained an average gap of 7 mm between each FOV pair. Flow statistics were
calculated for each FOV, and the information in the gap regions was interpolated
using Taylor’s hypothesis to stitch together all FOVs.

To eliminate the gaps between FOVs and improve the streamwise spectral resolution
of the data, a setup was designed to implement a knife-edge, right-angle prism,
as illustrated in Figure 2.13. As shown, the prism splits a single, long FOV into
two, half-length, horizontally-reflected FOVs. This allows the cameras’ FOVs to
be adjacent or slightly overlapping, without being constrained by the physical size
of the devices. This benefit comes at the cost of increased optical and alignment
complexity, as well as a reduction of signal due to losses at the prism. The former
concern was addressed through the optomechanical design discussed shortly, and
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Figure 2.12: Sketch of the camera setup used for PIV for the canonical and prelim-
inary SW-DRF turbulent boundary layer studies (not to scale).

the latter was found to be non-prohibitive as the images acquired in this configuration
had sufficient particle intensities for reliable correlations. Thus, this setup was used
for the final SW-DRF and compliant-wall, dynamic-roughness-forced (CS-DRF)
turbulent boundary layer studies. The camera FOVs in these experiments were
54×34 mm2, with about a 6 mm overlap between them. As with the traditional PIV
setup, data were acquired at one streamwise position, and then the camera-prism
system was translated to acquire data at the next position. The streamwise positions
were selected to have about a 6 mm overlap between one composite FOV and the
next. This way, flow statistics could be stitched with a more reliable blending
method, rather than the extrapolation method used in the traditional PIV setup.

Figure 2.13: Sketch of the knife-edge, right-angle prism camera setup used for PIV
for the final SW-DRF and CW-DRF turbulent boundary layer studies (not to scale).
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(a)

(b)

Figure 2.14: (a) Photo and (b) diagram of the optomechanical system used to align
and translate the PIV camera setup. Each box in the diagram represents an alignment
component, with all contained boxes being mounted to that component. The boxes
are colored by the adjustment axis of the component: x- (blue), y- (red), z- (green),
and rotational (white) axes. The adjustment axes are also given in the parentheses,
with “T” and “R” indicating translation and rotation, respectively.

As mentioned, an optomechanical system was designed to meet the alignment and
translational needs of the knife-edge prism PIV configuration. A photo of the full
system is shown in Figure 2.14a and a diagram of the alignment components is
provided in Figure 2.14b. The two cameras and the prism were each mounted to
a tip-tilt-rotation (TTR) stage, which enabled adjustment about all three rotational
axes. Each camera was also mounted to a micrometer stage and optical track for z-
and x-axis translation, respectively, while the prism was mounted to an adjustable
post holder for y-axis translation. These components allowed the cameras and prism
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to be aligned to each other and to the laser sheet/FOV in the test section. The camera
and prism modules were supported by an 80/20 frame affixed to a lab jack, which
allowed for the composite FOV to be vertically adjusted to best position the wall
location in the images. The jack was connected to a streamwise-oriented optical
track, used to rigidly translate the entire system to the desired streamwise positions.
Finally, spanwise-oriented optical tracks served as the base of the system to facilitate
a study of the spanwise-variation of the roughness-forced synthetic structure. This
involved acquiring PIV at four equispaced, off-centerline, x − y planes. To adjust
the laser sheet alignment, the 45◦ mirror under the test section was mounted to a
single-axis rotational stage (for rotation about the y-axis) and an optical track (for
translation in the z-axis). This is not pictured nor included in the diagram in Figure
2.14.

It was important to obtain accurate measurements of the freestream velocity, to scale
the data and to note any changes to freestream conditions as the dynamic roughness
and compliant surface were added to the experiment. However, it was also important
to maintain relatively high spatial resolution to capture any near-wall flow features.
To decouple these opposing requirements, separate PIV measurements were made
solely to acquire the freestream velocity, and will be referred to as the ‘freestream
PIV.’ These measurements were made in sequence with the aforementioned PIV,
using the same laser sheet, with a laser pulse separation of 6900 us. The images
were acquired with a FLIR Flea3 USB3 camera at full resolution, 1280×1024 px2,
and a frame rate of 12 Hz, with a 50mm C series TechSpec lens. The Flea3 camera
was positioned on the opposite side of the test section to the Phantom cameras,
as shown in Figure 2.15, and was operated using FLIR FlyCapture software. The
images were then imported to and processed in DaVis, using a multi-pass method
(3 passes at 48×48 px2) with 75% overlap. The FOV for these measurements was
121×97 mm, with the wall in-frame, to have a sufficient number of vectors in the
freestream flow.

A robust calibration process and sufficiently resolved target were critical in achieving
high-quality PIV, particularly for accurate stitching between FOVs to study very long
flow features. The process of calibratingwas challenging due to inaccessibility of the
measurement location, being on the underside of andmidway downstream the acrylic
plate. Not only did the calibration target have to be supported on the underside, but
the alignment also had to be precisely controlled. Through iterative design, suitable
devices were developed, as shown in the SolidWorks model in Figure 2.16. The
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Figure 2.15: Photo of the Flea3 camera setup, used to acquire freestream velocity
measurements.

calibration target (red) was held by two threaded plate holders, fixed to an 80/20 arm.
The 80/20 was connected to an acrylic block (blue), in which two 38 mm diameter ×
13 mm thick neodymium magnets were embedded. This apparatus constituted the
calibration support device, and was positioned under the flat plate, with the acrylic
block made flush to the plate’s bottom surface. A second, magnet-embedded acrylic
block was aligned with the first block on the top surface, and the magnetic force
between both blocks suspended the support device. By slowly sliding the top block,
the support device could be maneuvered along the bottom surface of the plate. Both
acrylic blocks were upholstered with a microfiber cloth to prevent scratching of the
plate surface. Not visible in the image, the edge of the 80/20 arm was shaved to
allow the laser sheet to pass through the calibration target to ensure the two were
coplanar.

Figure 2.16 also shows the spacer mechanism used to align the support apparatus.
A 6.4 mm thick acrylic sheet (green) was machined to a precise width and such that
its long edges were parallel, to act as a spacer. This sheet was attached to an 80/20
arm and positioned under the flat plate, adjacent to the support device. The spacer
was butted up against the side wall of the test section, and the magnetic acrylic
block was made flush to the other side of the spacer. In this way, the calibration
target was brought a fixed distance from and parallel to the test section wall. The
support device was free to translate along the spacer, maintaining the calibration
target’s alignment for all streamwise PIV positions. Pieces of plastic packing foam
were attached to the support and alignment devices to provide positive buoyancy
and prevent the them from sinking.

The calibration target used in the final stages of this experiment was an Edmund
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Figure 2.16: Model of the calibration target, support device, and alignment device.

Optics glass distortion target (#62-207), with 0.5 mm diameter dots spaced 1 mm
apart. The full 150×150 mm2 target was cut in half to 150×75 mm2 to reduce its
weight and applied torque on the support device. This target was selected for its
size, able to simultaneously span the FOVs of both cameras, and for its high feature
density, ∼1500 dots per FOV. The need for this unusually high feature density came
from an early observation that the streamlines of the mean streamwise velocity
appeared to have a pronounced parabolic-type distortion, which occurred in both
cameras and for various flow conditions. Upon further investigation, the distortion
was found to be radially symmetric and attributed to the change in index of refraction
through the test section wall. The initial calibration target (LaVision, type 58-5)
had insufficient feature density to adequately correct for this distortion, while the
Edmund Optics target yielded a successful correction. The image calibration and
correction were done through DaVis, using a 3rd order polynomial fit and having a
standard deviation of fit of <0.1 pixels.

An uncertainty analysis was performed on the PIV results using DaVis’s uncertainty
calculations. The average uncertainties on the streamwise andwall-normal velocities
are 2.9 mm/s and 2.8 mm/s, respectively, both about 0.8% of the freestream velocity.
For each roughness actuation condition, records of 1837 image pairs were acquired,
each yielding a dataset of 1837 velocity fields. 10 records were acquired for the
SW-DRF experiments, and 5 records for the CW-DRF experiments (due to limited
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sample lifetimes). For full ensemble statistics, this equates to 18,370 samples (9185
for the CW-DRF), and for phase-averaged statistics, 910 (455) samples. The factor
of ∼20 reduction in number of samples for the phase-averaged statistics is due to
the sampling rate over the actuation period, as will be discussed in Section 2.6. 2.7
mm/s uncertainty for Flea.

2.5 Stereo-DIC
Stereo-DIC measurements were made to obtain two-dimensional, three-component
surface deformations of the gelatin sample. These measurements enabled direct
study of the compliant wall response to the roughness-forced synthetic mode.
Though these data were not acquired simultaneously with PIV, because both mea-
surements were phase-locked to the roughness actuation, their statistics and phave-
averaged quantities could be correlated. A photo of the setup is shown in Figure
2.17. Two Photron Fastcam APS-RS cameras were used, each equipped with an
AF NIKKOR 50mm f/1.8D Nikon lens. Images were acquired at full resolution,
1024×1024 px2, and a frame rate of 100 Hz or varying depending on the roughness
actuation frequency. The cameras were positioned under the test section, at a 22◦

viewing angle from FOV. This angle was selected for sufficient depth information
to resolve the wall-normal displacements without requiring prisms to correct the
distortion from the refractive index change. The gelatin sample was frontlit via an
LED flood lamp. The images were acquired and processed in DaVis, using a least
squares matching (LSM) method with 7 seeding points, a subset size of 31×31 px2

and a step size of 8 px, and built-in ‘medium’ calculation mode.

DIC measurements were acquired in the x − z plane coincident with the gelatin
surface. Data were taken in three locations, as illustrated in Figure 2.18:

1. Along the upstream edge of the sample, roughly centered on the centerline,
referred to as the leading-edge or LE FOV.

2. In the upstream, −z corner of the sample, referred to as the corner FOV.

3. Along the downstream edge of the sample, roughly centered on the centerline,
referred to as the trailing-edge or TE FOV.

The majority of the data were acquired at the LE FOV, since this corresponded
with the location of the PIV measurements. The corner and TE data were taken
to characterize the surface behavior at the other boundaries of the sample. The
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Figure 2.17: Photo of stereo-DIC camera setup. The two cameras were positioned
under the test section, at an angle of 22◦ from the normal.

Figure 2.18: Diagram of the three FOV locations for the DIC study: leading-edge
(LE), corner, and trailing-edge (TE).

streamwise-spanwise dimensions for the three FOVs were roughly 133×147 mm2;
note these were not square because a portion of the streamwise dimension was
masked out for the acrylic plate.

For accurate DICmeasurements, an adequate speckle pattern is required. According
to Correlated Solutions [56], an optimal speckle pattern should have the following
characteristics:

• High contrast

• 50% speckle-to-background ratio

• Speckle features of size 3-5 pixels
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• Pattern isotropy and randomness

These qualities are typically achieved by a stamp roller applicator, spray paint,
Sharpie marker, or direct printing. However, each of these methods either failed
to create a high-contrast mark due to the gelatin’s wet surface, damaged the soft
sample, or were impractical for the desired spatial resolution. Instead, the speckle
pattern was applied using a Flairosol spray bottle and black India ink. The spray
bottle created a fine mist from the ink, which settled onto and stained the gelatin
surface, forming a pattern such as the one shown in Figure 2.19. This speckle pattern
met most of the aforementioned requirements, with a speckle density slightly less
than 50%. This was because spraying too much ink led to large droplets to form.
Still, this pattern was found to yield good DIC results.

Figure 2.19: Photo of the speckle pattern generated with a fine mist water bottle and
black India ink. The photo dimensions are 40×40 mm2.

The DIC was calibrated using a LaVision, type 58-5 stereo calibration plate. The
target was mounted to the end of an 80/20 extrusion and carefully made parallel
to the extrusion’s faces. This apparatus was positioned in the test section, with the
80/20 flush to the plate’s bottom surface. The target was moved into the center
of the FOV and the calibration image acquired. This was processed using DaVis,
accounting for the wall-normal distance between the calibration and measurement
planes.

An uncertainty analysis was performed on the DIC results using DaVis’s uncer-
tainty calculations. The average uncertainties on the streamwise, wall-normal, and
spanwise displacements are 0.3, 0.3, and 0.2 um, respectively. In addition, the noise



34

floor was estimated by processing a record of the stationary sample. The average
noise floor for the streamwise, wall-normal, and spanwise displacements are 0.5,
1.4, and 0.5 um, respectively. For each roughness actuation condition, records of
2048 images were acquired, each yielding a dataset of 2047 displacement fields. 10
records were acquired when operating in the LE FOV, and 5 records in the corner
and TE FOVs. For full ensemble statistics, this equates to 20,470 (10,235 for the
corner and TE) samples, and for phase-averaged statistics, 1020 (510) samples. The
factor of ∼20 reduction in number of samples for the phase-averaged statistics is due
to the sampling rate over the actuation period, as will be discussed in Section 2.6.

2.6 Phase-locking
A critical element of the smooth- and compliant-wall dynamic roughness experi-
ments was the phase-locking of the PIV and DIC measurements to the roughness
actuation. In the previous studies [14, 32], the hotwire data were acquired at
sufficiently high rates such that the phase-locking was able to be done in post-
processing. In the PIV done by Jacobi [32], phase-locking was done independently
of the roughness position by setting the acquisition rate to be a multiple of the actua-
tion frequency. However, this approach did not allow for data from separate records
to be averaged as the relative phase information was lost. In these experiments, to
preserve the phase information, the roughness motion and image acquisition were
phase-locked. The camera frame rates, fs, were set to a multiple of the roughness
actuation frequency, ff:

fs = SR · ff , (2.3)

where SR is the integer sampling rate or number of samples acquired per actuation
period. For these experiments, SR was 20. Take the roughness height, h(t), to
be a cosine with amplitude and mean of hrms/

√
2, and h(t) = 0 indicates that the

roughness is flushwith thewall. For a record of N images, the jth image corresponds
to a roughness height of:

h(t j) = h j =
hrms
√

2

[
− cos

(
2π

j + n0
SR

)
+ 1

]
j ∈ [0, N − 1], n0 ∈ [0, SR − 1] ,

(2.4)

where n0 is the integer shift for the first ( j = 0) image, since it may occur at any of the
SR phase positions. The cosine is negated such that when its argument is zero, the
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roughness is in the wall-flush position. To achieve phase-locking in the experiment,
the digital clock signal for the cameras and laser had to be synchronized to the
analog encoder signal from the Bose motor. This was done through a National
Instruments PCIe-6321 DAQ card and the MATLAB DAQ Toolbox. A timing
diagram illustrating this process is provided in Figure 2.20. The analog encoder
signal was first acquired for one actuation period (Buffer A). The signal was mean-
subracted, and the rising zero-crossing was found (the black dot in Buffer A) and
used as the starting phase for the digital clock. During a second actuation period
(Buffer B), a clock trigger signal was constructed with a rising-edge pulse aligned
to this starting phase. After Buffer B, the trigger was sent and initiated a digital
clock signal, with frequency fs. This clock was sent to the high-speed controller
operating the cameras and laser. Once the clock signal was received, a record trigger
was manually sent through DaVis to begin (rising-edge) and complete (falling-edge)
image acquisition, illustrated as the blue circles on the encoder signal. In order to
minimize frequency drift during the record, before image acquisition, a long record
of the encoder’s signal was taken and the actuation frequency determined to 0.01
mHz using a peak-finding method. This was used to set the clock signal frequency.
Over a typical record of ∼2000 images, the clock and encoder signal remained
synchronized to within 0.015% of the actuation period.

Figure 2.20: Timing diagram for phase-locking process. In this example, SR = 4
and n0 = 3.
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C h a p t e r 3

FLAT-PLATE BOUNDARY LAYER CHARACTERIZATION
AND MEAN FLOW PROPERTIES

A study was performed of the flow over the unmodified, flat plate to ensure that
the new facility generated a canonical, turbulent boundary layer. The measure-
ments were made starting near 626 mm downstream of the leading edge, where the
roughness slot would be situated in later experiments. As mentioned previously,
the streamwise origin (x = 0) is located on the downstream edge of the roughness
slot. Based on the PIV data at x = 120 mm, the freestream velocity, U∞, was 33.4
cm/s, the boundary layer thickness (based on 99% of U∞), δ, was 25.4 mm, and the
momentum thickness, θ, was 2.6 mm. The Reynolds number based on momentum
thickness was then Reθ = 870. These values are presented in Table 3.1, alongside
the values for the SW-DRF and CW-DRF studies for later reference.

The friction velocity, uτ was estimated using the Clauser chart method discussed
in Chapter 1. The constants κ and B were taken to be 0.41 and 5.0 [11, 13],
respectively. The points used for the Clauser fit were those that satisfied y+ > 40
and y/δ < 0.3, using an initial guess of uτ = 0.05U∞ and re-selecting the points
after the initial fit was performed. uτ was calculated to be 1.60 cm/s, which gave
friction Reynolds number of Reτ = 410. The Clauser method was not employed for
the dynamic-roughness-forced cases, as they are non-equilibrium flows. Alternative
methods to estimate uτ are available, as laid out by Jacobi (2013) [31], but instead,
outer scaling is used for the majority of the results. The freestream velocity and
boundary layer thickness from the canonical study are used to scale all data to
facilitate comparison. Any inner-scaled quantities are calculated using Reτ = 410
from the canonical study.

U∞ [cm/s] δ [mm] θ [mm] uτ [cm/s] Reθ Reτ
Canonical 33.6 25.5 2.60 1.60 870 410
SW-DRF 36.4 23.2 2.35 - 860 -
CW-DRF 34.8 25.3 2.64 - 920 -

Table 3.1: Mean flow properties from PIV taken at x = 120 mm for the canonical,
SW-DRF, and CW-DRF studies. U∞ is calculated from freestream PIV data when
available (SW- and CW-DRF studies).
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The mean flow statistics from x = 120 mm are plotted in Figure 3.1, alongside tur-
bulent boundary layer DNS data from Wu et al. (2009, 2017) [60, 61] at Reθ = 900
for comparison. The experimental mean profile (3.1a) shows excellent agreement
with the DNS, only deviating slightly for y/δ < 0.03. The streamwise and wall-
normal turbulence intensities (3.1b-3.1c) are also in very good correspondence with
the DNS data, with the vrms only slightly underestimating the numerical data in the
outer part of the flow. The discrepancy in the Reynolds shear stress (3.1d) is more
pronounced, but still quite small. Based on these comparisons, the flow over the
unmodified flat plate was confirmed to be that of a canonical turbulent boundary
layer.

(a) (b)

(c) (d)

Figure 3.1: Profiles of mean flow statistics (x = 120 mm): (a) mean streamwise
velocity, (b) streamwise turbulence intensity, (c) wall-normal turbulence intensity,
(d) Reynolds shear stress. Velocities are scaled by the freestream velocity and
plotted in outer scaling, y/δ. © PIV data; — Wu et al. (2009, 2017) [60, 61],
Reθ = 900.
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To quantify any pressure gradient effects, the acceleration parameter was calculated,
defined in previous studies [13, 48] as:

K =
ν

U2
∞

dU∞
dx

. (3.1)

The acceleration parameter is very small in all cases, and on average K = 3 · 10−8.
This is well below the limit of K > 1.6 · 10−6, above which deviation from log law
occurs. Thus, any pressure gradient effects were deemed negligible.

In the following tables, the relevant dimensions of the experimental design are reca-
pitulated and scaled based on the boundary layer thickness (and δν in some cases).
Table 3.2 contains the relevant physical lengths of the experimental apparatus. Ta-
bles 3.3, 3.4, and 3.5 have the camera FOVs and processing window sizes for each
optical measurement, 2D-PIV, freestream PIV, and stereo-DIC, respectively.

Flat plate Roughness element Gelatin inset
x y z x y z x y z

[mm] 1280 32 440 2.2 3.2 307 305 25.4 343
(·)/δ 50 1.3 17 0.086 0.13 12 12 1.0 13

Table 3.2: Relevant physical length dimensions of the experiment in dimensional and
outer-scaled forms. The coordinate variables indicate which dimension is provided
below. Outer scaling is done with δ from the canonical TBL study, listed in Table
3.1.

2D-PIV
[mm] (·)/δ (·)+

Single FOV 54×34 2.1×1.3 860×540
Composite FOV

(SW-DRF) 282×34 11.0×1.3 4510×540

Composite FOV
(CW-DRF) 195×34 7.6×1.3 3120×540

Int. window 0.9 0.035 14

Table 3.3: FOV and interrogation window dimensions for 2D-PIV measurements,
in dimensional, outer-, and inner-scaled forms. Because the interrogation windows
used were square (32×32 px2), only one side length is given.
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Freestream PIV
[mm] (·)/δ (·)+

FOV 121×97 4.7×3.8 1940×1550
Int. window 4.54 0.18 73

Table 3.4: FOV and interrogation window dimensions for freestream PIV measure-
ments, in dimensional, outer-, and inner-scaled forms. Because the interrogation
windows used were square (32×32 px2), only one side length is given.

Stereo-DIC
[mm] (·)/δ (·)+

FOV 133×147 5.2×5.8 2130×2350
Subset size 4.6 0.18 74

Table 3.5: FOV and subset dimensions for stereo-DIC measurements, in dimen-
sional, outer-, and inner-scaled forms. Because the interrogation windows used
were square (31×31 px2), only one side length is given.
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C h a p t e r 4

SPATIO-TEMPORAL RESPONSE OF A TURBULENT
BOUNDARY LAYER TO DYNAMIC ROUGHNESS FORCING

The dynamic roughness setup described in Section 2.1 was used to generate a
synthetic flow structure over a smooth wall. This smooth-wall, dynamic-roughness-
forced study is abbreviated ‘SW-DRF’ for conciseness. Similar flows were study
by Jacobi & McKeon [32] and Duvvuri & McKeon [14] in a wind tunnel at a
lower non-dimensional actuation frequency and higher Reynolds number. These
studies relied largely on hot-wire measurements, and thus had limited streamwise
resolution and focused primarily on the streamwise velocity. In the present work, a
thorough investigation was performed to explore the spatial nature of both velocity
components of the synthetic mode, validate the 2D assumption through spanwise
measurements, study the parametric behavior of this type of forcing, and investigate
its spatial spectral signature. This also provides a base case with which to compare
the results of the compliant wall study. The majority of the data presented in this
chapter are from the final SW-DRF study, with a comparison made to data from a
preliminary SW-DRF study. 1

The roughness actuation signal was singly-periodic with angular frequency ωf and
rms amplitude hrms, as shown in Equation 4.1.

h(t) =
hrms
√

2
[− cos (2πωft) + 1] (4.1)

Per the description in Section 2.6, the PIV data were phase-locked to the roughness
motion and acquired at a sampling rate of SR = 20 samples per actuation period.
Thus, for data acquired at phase index j ∈ [0, SR − 1], the corresponding height of
the roughness is described by Equation 4.2.

h j =
hrms
√

2

[
− cos

(
2π

j
SR

)
+ 1

]
j ∈ [0, SR − 1]

(4.2)

The actuation conditions explored in these experiments are provided in Table 4.1,
numbered i-iv for reference. The conditions are given in dimensionless form (and

1Discussion of the preliminary study and methodologies are given in Huynh & McKeon (2018)
[29].
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dimensional form parenthetically), with the dimensionless frequency scaled in outer
units, ωfδ

U∞
. From the table, the range of outer-scaled frequencies studiedwas 1.4−4.8,

and the two actuation amplitudes were hrms/δ=0.042 and 0.069 or h+rms=17 and
28. For comparison, the single-frequency oscillation conditions of Duvvuri &
McKeon [14] were ωfδ

U∞
= 0.24 and hrms/δ = 0.033. The order-of-magnitude higher

frequencies used in this study generated much shorter wavelength flow structures,
enabling a more spatially-resolved investigation. Most of the results presented will
pertain to case iii, which had the highest amplitude actuation, though comparisons
with other conditions will be made when appropriate.

hrms/δ [hrms]
0.042 [1.1 mm] 0.069 [1.8 mm]

ωfδ
U∞
[ ff]

1.4 [3 Hz] i -
2.4 [5 Hz] ii iii
4.8 [10 Hz] iv -

Table 4.1: Roughness actuation conditions explored in these experiments, parame-
terized by motion rms height and frequency. i-iv indicate conditions that were tested
and are labeled for reference; dashed cells indicate those that were excluded.

4.1 Triple decomposition and mean flow statistics
As discussed in Chapter 1, the velocity of a turbulent flow is typically Reynolds de-
composed using a ensemble-approximated temporalmean, repeated here in Equation
4.3 for comparison.

U = U + u (4.3)

For a flow with a deterministically periodic component, it is natural to define the
phase-average operation, denoted by (̃·). A formal definition of this operation is given
in Appendix B, but simply, the process computes the ensemble mean of the subset
of data corresponding to phase j of the roughness, for all phases j ∈ [0, SR−1]. The
resulting phase-averaged quantity is strictly periodic in time with frequenciesωf and
its resolvable harmonics. This allows the velocity to be phase-average decomposed
as:

U = Ũ + u′ , (4.4)

where Ũ is the phase-averaged full velocity (referred to as the phase-averaged
mean for convenience), u′ is the fluctuation about the phase-averaged full velocity.
Substituting equation 4.3 into the Ũ term of equation 4.4, we arrive at the triple
decomposition of Hussain and Reynolds [26]:

U = U + ũ + u′ , (4.5)
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where ũ is the phase-average of u (referred to as the phase-averaged velocity).
Much of the focus of the analysis will be concerned with ũ and ṽ, as these are
the components temporally coherent with the roughness actuation. Note that by
definition, all terms involving the fluctuating velocity, u, have zero temporal mean,
u = ũ = u′ = 0, and that the perturbation about the phase-averaged mean has a zero
phase-average, ũ′ = 0. This leads to the property that the phase-averaged velocity
and the perturbation about the phase-averaged mean are uncorrelated in time, i.e.
ũiu′j = 0, as shown in Appendix B. This property will be useful in decomposing the
Reynolds stress terms, discussed shortly.

The mean flow statistics for the roughness-forced flow for actuation condition iii
are presented as red squares (�) in Figure 4.1, along with the statistics from the
canonical flow study as blue circles (©). In Figure 4.1a, the forced mean exhibits a
deficit for 0.07 < y/δ < 0.6. Figures 4.1b-4.1d show that the turbulence intensities
and Reynolds shear stress all have increased value over the canonical case. To
determine whether these energetic humps are due to static, blockage-type effects
or dynamic, synthetic mode-related effects, we can leverage the aforementioned
property that ũiu′j = 0 to decompose the Reynolds stress terms:

uiu j = (ũi + u′i)(ũ j + u′j)

= ũiũ j + ũiu′j + u′i ũ j + u′iu
′
j

= ũiũ j + u′iu
′
j .

(4.6)

ũiũ j is a (co)variance term for the phase-averaged velocities, and u′iu
′
j is the Reynolds

stress for the rest of the flow that is non-harmonic with the dynamic forcing.

Both uiu j (�) and u′iu
′
j (•) for actuation condition iii are plotted in Figure 4.2,

showing that the two are nearly identical. In the streamwise and wall-normal
Reynolds stresses, the non-harmonic component is only slightly less than the full
component, indicating that relatively little kinetic energy is contained in the phase-
averaged terms. In the shear term, the non-harmonic component is slightly larger,
indicating that ũ and ṽ are positively correlated in that wall-normal region, and
again the covariance of the phase-averaged fields is quite small relative to the rest
of the flow. Clearly the majority of the uiu j Reynolds stresses are carried by the
non-harmonic components of the flow, suggesting that the modification to the mean
flow properties is largely a static roughness effect and a signature of an internal
layer, like those reported by Jacobi & McKeon [32, 33]. Given that the roughness
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element used here is essentially spatially impulsive, it is anticipated that a single
internal layer has developed, rather than the two layers of Jacobi & McKeon.

The turbulence intensities and Reynolds shear stress for actuation condition iii
are plotted in Figure 4.3 to illustrate the streamwise behavior of the mean flow
properties. The data are plotted as lines rather than symbols for visual clarity. As
may be expected, the elevated energetics quickly decay and approach (but do not
quite return to) the unforced flow values as the flow moves downstream.

(a) (b)

(c) (d)

Figure 4.1: Comparison of canonical and SW-DRF (actuation condition iii) mean
flow statistics (x/δ = 4.7): (a) mean streamwise velocity, (b) streamwise turbulence
intensity, (c) wall-normal turbulence intensity, (d) Reynolds shear stress. Velocities
are scaled by the freestream velocity and plotted in outer scaling, y/δ. © canonical;
� SW-DRF.
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(a)

(b) (c)

Figure 4.2: Comparison of Reynolds stresses and their corresponding non-harmonic
components (x/δ = 4.7), for actuation condition iii: (a) streamwise, (b)wall-normal,
and (c) shear Reynolds stresses. Stresses are scaled by the square of the freestream
velocity and plotted in outer scaling, y/δ. � full Reynolds stress; • non-harmonic
component.
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(a)

(b) (c)

Figure 4.3: Flow statistics (actuation condition iii) at increasing streamwise sta-
tions: (a) streamwise turbulence intensity, (b) wall-normal turbulence intensity, (c)
Reynolds shear stress. Velocities are scaled by the freestream velocity and plotted
in outer scaling, y/δ. — x/δ = 2.8; – – x/δ = 4.7; • – x/δ = 6.7; © canonical
flow.
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4.2 Phase-averaged velocity fields
The phase-averaged velocity fields capture the portion of the flow that is temporally
coherent with the actuation frequency. Identically, the phase-averaging process is
a Fourier filter that retains only the temporal components that are harmonic with
ωf , without imposing any spatial constraints on the data. Phase snapshots of the
streamwise and wall-normal phase-averaged velocities from actuation condition iii
are given in Figure 4.4, where red and blue indicate regions of high and low speed,
respectively, and the plots top to bottom are increasing in phase index. A white
rectangle is drawn to scale at x = 0 to indicate the roughness height in each frame.
A streamwise-periodic structure is immediately apparent, and is seen to convect
downstream. ũ exhibits a sharp π phase jump in y, with the near-wall structure
leaning downstream and the outer-flow structure slightly leaning upstream. In
contrast, ṽ is very tall and straight in y. ũ and ṽ are also π/2 phase-shifted with
respect to one another, which means ũ ṽ is expected to be very small. Thus, even
if the variances of the phase-averaged flow were a significant portion of the total
Reynolds normal stresses, it is expected that Figure 4.2c would look similar due to
the phase relationship between ũ and ṽ.

In ũ, there are four structures that form from the motion of the roughness: the high
and low speed lobes that reside near the wall, and the high and low speed lobes that
sit on top of them. The outer-flow structures form on top of the roughness. The
positive lobe forms halfway through the upstroke of the rib ( j = 6) and pinches
off halfway through the downstroke ( j = 15). Reciprocally, the negative lobe
forms halfway through the downstroke ( j = 15) and pinches off halfway through
the upstroke ( j = 6). Once pinch-off occurs, the lobes convect downstream and
gradually drift away from the wall. These top lobes may be generated through the
periodic contraction and expansion, and thus acceleration and deceleration, of the
flow just above the roughness. The inner-flow structures form just downstream of
the rib. The positive lobe forms at the end of the upstroke ( j = 9) and pinches off at
the end of the downstroke ( j = 18). Again in complementary fashion, the negative
lobe forms at the end of the downstroke ( j = 18) and pinches off at the end of the
upstroke ( j = 9). These bottom structures form as small pockets near the roughness
and rapidly broaden downstream, as well gradually become taller while remaining
attached to the wall.

In ṽ, there are only two tall structures (high and low velocity lobes) that form from
the motion of the roughness. The positive lobe forms at the start of the upstroke
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( j = 0) near the roughness and continues to grow through the stroke. Though
slightly difficult to see, the negative lobe does form at the start of the downstroke
( j = 9) and continues to grow through the stroke. The vertical velocity structures
appear to be driven by a blockage mechanism, as the flow is forced to navigate over
the roughness.

An interesting observation is that the positive-negative structures in ũ and ṽ are
slightly asymmetric in streamwise size. The top negative lobes in ũ are slightly
broader than the positive lobes, and the reverse is true for the bottom lobes, with
positive broader than negative. In ṽ, the positive lobes are quite clearly wider than
the negative lobes. As will be shown shortly, these asymmetries are a result of
higher frequency content in the phase-averages.

As mentioned, the phase-averaging process is directly related to Fourier analysis.
Thus, it is natural to employ a discrete Fourier transform in time to further decompose
the flow fields into a fundamental component corresponding toωf and its harmonics:

ũ(x, y, t) =
SR/2∑
m=1

ûmωf (x, y)e
−imωf t + c.c., (4.7)

where ûmωf are the 2D Fourier modes and ‘c.c.’ stands for complex conjugate to
recover a real velocity field. Note that the m = 1 mode corresponds to the forcing
frequency component, ûωf . The velocity field reconstructed by ûωf is accordingly
referred to as uωf . Phase snapshots of uωf and vωf are shown in Figure 4.5, in parallel
format to Figure 4.4. The forcing frequency components are nearly identical to their
full phase-averaged counterparts, but are spatially smoother. The aforementioned
asymmetry in the lobes is removed, as it was a manifestation of the higher temporal
harmonic content superimposed on the ωf mode. In Figure 4.6, the j = 0 snapshot
is shown for the full phase-averaged velocities (top), followed by the snapshots for
the m = 1, 2, and 3 modes. These plots reinforce the observation in Figure 4.5 that
the fundamental component carries the majority of the energy of ũ, as the two fields
agree quite closely. The higher harmonic content is lower in amplitude and decays
more rapidly than the fundamental mode, and is higher in streamwise wavenumber,
accounting for the spatial asymmetry and ‘noisiness’ in the full field. The wavenum-
ber increases in lock-step with the frequency, and thus the Fourier modes have the
same wave speed. Interestingly, the harmonic modes closely resemble the funda-
mental mode in wall-normal shape, but are scaled in the streamwise and wall-normal
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direction. The remaining analysis will focus on the fundamental component of the
flow response, but is noted that the harmonic content is readily available as well.

The smoother nature of the forcing component fields provides an opportunity to
reevaluate the mechanism behind the synthetic mode structure from a vorticity
perspective. The spanwise vorticity was calculated by taking the curl of the 2D
velocity field, Ωωf =

∂vωf
∂x −

∂uωf
∂y . Phase snapshots of Ωωfare given in Figure 4.7.

As expected, there is a clear streamwise-periodic structure to the fields, taking the
form of a series of counter-rotating vortices. Negative vorticity is generated on
the roughness upstroke ( j = 0 to j = 9), and positive vorticity generated on the
downstroke ( j = 12 to j = 18). These vortices undergo strong shear as they convect
downstream, likely due to the lower convection speed near the wall. Similar vortex
pairs are observed in studies of synthetic jets in cross flow [3]; however the vortices
in Figure 4.7 are more diffuse and have less compact, core structure, likely due to
the lesser momentum of the dynamic roughness versus the synthetic jets.
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(a)

(b)

Figure 4.4: Phase snapshots of phase-averaged (a) streamwise (ũ) and (b) wall-
normal (̃v) fluctuating velocities (actuation condition iii). Phase indices increase
from top to bottom, j = [0, 3, 6, 9, 12, 15, 18]. The colorbar limits are [−0.2, 0.2].
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(a)

(b)

Figure 4.5: Phase snapshots of (a) uωf and (b) vωf (actuation condition iii). Phase
indices and colorbar follow the same format as Figure 4.4.
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(a)

(b)

Figure 4.6: Temporal Fourier decomposition of the (a) streamwise and (b) wall-
normal phase-averaged velocities (actuation condition iii). The top plot is the full,
phase-averaged field, followed by the ωf , 2ωf , and 3ωf modes, respectively. All
plots are at phase index j = 0. The colorbar limits are [−0.2, 0.2].
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Figure 4.7: Phase snapshots of Ωωf (actuation condition iii). Phase indices follow
the same format as Figure 4.4. The colorbar limits are [−0.08, 0.08].
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4.3 Spanwise variation study
As described in Section 2.4, an investigation was performed for the spanwise vari-
ation of the synthetic mode through streamwise-wall-normal PIV measurements
at 5 spanwise locations, z−1 to z3, with z0 corresponding to the centerline. The
measurement planes were equispaced 46.6 mm (1.83δ) apart, as given in Table 4.2.
The span on the roughness element was z/δ ∈ [−6, 6], so these PIV locations were
expected to give insight into the three-dimensionality of the flow, or lack thereof.
This study was done exclusively for actuation condition iii.

z−1 z0 z1 z2 z3
-1.83 0 1.83 3.67 5.50

Table 4.2: Locations of the PIV planes for the spanwise study, scaled by δ. For
reference, the roughness element spans z/δ = [−6, 6].

Figure 4.8 shows the j = 0 phase snapshots of uωf and vωf at each of the spanwise
locations. Qualitatively, positions z−1 through z2 are very similar and are all consis-
tent with the j = 0 snapshots of Figures 4.5a and 4.5b. There is a clear breakdown of
the synthetic mode by z3, as seen in both velocity components. At z3, uωf no longer
exhibits the four-lobe structure, as instead the bottom lobes grow more rapidly, con-
vect downstream sooner, and merge with their same-sign top lobe counterparts. The
lack of a π phase jump in uωf is an indicator of the presence of spanwise flow, or
more specifically, ∂wωf

∂z , based on continuity. The outer region of the synthetic mode
at z3 appears to be reasonably well-aligned with the other spanwise positions, with
the deviation growing as the wall is approached. This suggests that the 3D effects
of the finite-span roughness impact the near-wall structures first and then percolate
outwards.

As in Section 4.2, the vorticity perspective is explored by plotting isosurfaces of
Ωωf in Figure 4.9, with the axes having a true aspect ratio. The data between the
spanwise positions has been linearly interpolated to generate these surfaces, and
the z2 and z3 data have been reflected across the z = 0 centerline to form the full
span. The isosurfaces show essentially two-dimensional vortex tubes forming from
the roughness and convecting downstream. The view in Figure 4.9b highlights the
shearing that occurs in the vortex tubes, as they are deformed into more sheet-like
structures downstream. The vortex tubes decay as they convect, but remain mostly
2D. This was anticipated, given the 2D geometry of the roughness element, but is
now confirmed through measurement. Certainly along the centerline, where the
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majority of the data were taken, the synthetic mode remains two-dimensional for a
significant streamwise extent, and thus the assumption of 2D flow is validated.

(a)

(b)

Figure 4.8: j = 0 phase snapshot of (a) uωf and (b) vωf at each spanwise position
(actuation condition iii).
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(a)

(b)

Figure 4.9: Isosurfaces (-0.08 and 0.08) of spanwise vorticity (Ωωfδ/U∞) from
actuation condition iii, with data linearly interpolated between spanwise positions
and z2 and z3 reflected across the centerline (z = 0) to form the full span. (a) top
view, (b) side view.
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4.4 Parametric study of the synthetic modes
Figure 4.10 shows the j = 0 snapshots for uωf and vωf at actuation conditions i-iv.
There is a clear positive correlation between actuation frequency and synthetic mode
wavenumber. The structures also share a general shape, though the structures at
the highest frequency (condition iv) depart from this pattern and appear much less
distinct than the lower frequency cases. The twomiddle frames show the cases ii and
iii, having the same frequency but different amplitudes. The structures have very
similar streamwise wavelengths, with case ii appearing more sheared in shape and
losing formmore quickly than case iii. Two useful metrics are themaximum and rms
values of the velocity fields, which are given in Table 4.3. The uωf maxima do not
appear to be very sensitive to the actuation conditions, all being within 11% of their
mean value, with a slight negative correlation with increasing actuation frequency
and amplitude. The vωf maxima have much more variation relative to their mean,
and a positive correlation with increasing frequency and amplitude. Given that the
kinetic energy of the roughness is proportional to the square of the frequency and
linearly with amplitude, these trends suggest that the vωf structures are more directly
coupled to the dynamics of the motion than the uωf structures. The rms values tend
to decrease with increasing frequency, reflecting the fact that the higher frequency
structures decay more rapidly. Case iii shows that the highest amplitude actuation
results in the highest rms value by a factor of ∼2-3.

i ii iii iv
max(uωf )×10 3.6 3.4 3.2 3.2
max(vωf )×10 0.8 1.1 1.5 1.3
rms(uωf )×103 7.3 6.3 12.2 5.4
rms(vωf )×103 4.4 4.1 11.5 3.2

Table 4.3: Maximum and rms values of uωf and vωf for each actuation condition,
scaled by U∞.

To characterize the synthetic modes, their streamwise wavenumbers, kxf , were
calculated by treating them as simple, downstream-traveling waves. This allowed
the wavenumber to be determined by the streamwise derivative of the phase of the
Fourier modes:
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uωf = ei(kxf x−ωf t) + c.c.

ûωf = eikxf x

∠ûωf = kxf x

⇒ kxf =
∂∠ûωf

∂x
.

(4.8)

This approach was equally valid for the streamwise and wall-normal velocities, and
they generally yielded similar results (within 2% of one another). However, the vωf

fields were typically smoother than uωf and did not have any abrupt phase jumps, so
vωf was used to determine kxf . Figure 4.11a shows the phase of vωf at y/δ = 0.5,
plotted as a function of x (for actuation condition iii). The phase is essentially
linear in x, strengthening the traveling-wave assumption, with only a slight kink at
x/δ = 6.5 due to the stitching of the FOVs. The streamwise derivative of ∠v̂ωf was
estimated by calculating the slopes of secant lines whose endpoints were 20 points
apart and taking the trimmed mean (excluding the top and bottom 5% values) to
reduce the effect of noise. Only points for x/δ > 2 were taken to avoid the transient
region immediately downstream of the roughness. This process was performed and
a kxf calculated at every wall-normal location, and the result is shown in Figure
4.11b (for actuation condition iii). For y/δ > 0.1, the estimated kxf is essentially the
constant in y. The average of these values was taken over 0.3 < y/δ < 1.0 to avoid
near-wall variations, and that value was taken to be the streamwise wavenumber
for a given actuation condition. This calculation was done for each dataset except
for case iv, and the resulting wavenumbers and wavelengths are given in Table 4.4.
The flow field for case iv was found to be much more complex and the single-
traveling-wave assumption was not appropriate. This was not explored further, and
a rough wavenumber was estimated by hand-selecting a few peaks in the velocity
and calculating the distance between them.

Table 4.4 supports the observation from Figure 4.10 that kxf increases as ωf in-
creases, and that cases ii and iii have comparable kxf . With kxf and λxf determined,
the wave speeds of the forced modes were calculated, cf = ωf/kxf = ffλxf , and are
provided in Table 4.5. Here, the scaling is done with the freestream velocities from
the SW-DRF datasets, rather than the canonical flow dataset, for a more accurate
sense of wave speed. Though the wave speeds are all fairly similar, within 10% of
their mean, there is a trend of increasing wave speed with increasing frequency. To
better understand the contents of Tables 4.4 and 4.5, the synthetic modewavenumber
and wave speed are plotted as functions of actuation frequency in Figure 4.12, for
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cases i, ii, and iv (hrms/δ = 0.042). The data point from the single-frequency study
by Duvvuri & McKeon [14],

(
ωfδ
U∞
= 0.24, kxfδ = 0.41

)
, is included to examine the

agreement between the experiments, and is a reasonable comparison due to the fairly
similar amplitude (hrms/δ = 0.033). In Figure 4.12a, kxf appears to be linear in ωf .
A simple least-squares linear fit is also plotted and found to agree quite well with
the data. The calculated linear fit is:

kxfδ

(
ωfδ

U∞
,

hrms
δ
= 0.042

)
= 1.10

ωfδ

U∞
+ 0.18. (4.9)

The non-zero kxf-axis intercept of the fit is likely unphysical, and indicates nonlinear
behavior for very small ωf . This could be reasonable, as the dynamic nature of the
perturbation would breakdown for very long actuation timescales, i.e. the quasi-
static limit. The greater-than-one coefficient on ωf in Equation 4.9 is physically
reasonable, as it bounds the wave speed to be less than the freestream velocity in
the limit as ωf approaches infinity. The coefficients of this fit may also be functions
of the actuation amplitude, though likely weak functions based on the similarity
between the wavenumbers/wave speeds of cases ii and iii. Thus, Equation 4.9 may
be able to predict the streamwise scale of the synthetic mode for a given frequency
of dynamic roughness actuation.

hrms/δ [hrms]
0.042 [1.1 mm] 0.069 [1.8 mm]

ωfδ
U∞
[ ff]

1.4 [3 Hz] i. 1.69 (3.71) -
2.4 [5 Hz] ii. 2.60 (2.41) iii. 2.67 (2.36)
4.8 [10 Hz] iv. 5.02 (1.25) -

Table 4.4: Streamwise wavenumbers, kxfδ, (and wavelengths, λxf/δ, in parentheses)
calculated for each actuation condition.

hrms/δ [hrms]
0.042 [1.1 mm] 0.069 [1.8 mm]

ωfδ
U∞
[ ff]

1.4 [3 Hz] i. 0.79 -
2.4 [5 Hz] ii. 0.85 iii. 0.83
4.8 [10 Hz] iv. 0.88 -

Table 4.5: Wave speed, cf/U∞, for each actuation condition.
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(a)

(b)

Figure 4.10: Comparison of the (a) uωf and (b) vωf synthetic structures generated at
different roughness actuation conditions, with top to bottom plots corresponding to
(i-iv) from Table 4.1. All plots are at phase index j = 0. The colorbar limits vary
for each plot for visibility.
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(a) (b)

Figure 4.11: (a) ∠v̂ωf (y/δ = 0.5) as a function of x, and (b) kxf calculated at each
wall-normal location. Both plots correspond to actuation condition iii.

(a) (b)

Figure 4.12: (a) Streamwise wavenumber, kxf , and (b) streamwise wave speed, cf ,
of the synthetic mode versus angular forcing frequency, ωf . © SW-DRF data; – –
SW-DRF linear fit; ∗ Duvvuri & McKeon (2015) [14].
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4.5 Temporal Fourier mode shapes and amplitude modulation
Given the natural Fourier framework for the phase-averaged velocities, the Fourier
mode shapes were explored to better understand the flow’s dynamic roughness re-
sponse. The 1D amplitude mode shapes are given in Figure 4.13 at three streamwise
locations from actuation condition iii. A clear dual-peak is observed in |ûωf |, while
|̂vωf | is seen to be quite tall, both in agreement with the previously shown 2D snap-
shots in Figure 4.5. Tracking the maxima supports the previous observation that
the modes decay and drift away from the wall downstream, consistent with internal
layer structures. The decay rate is estimated by a streamwise decaying exponential
fit to the mode amplitude, done for each wall-normal location:

|ûωf |(x, y) = Ae−αu x/δ . (4.10)

The wall-normal profiles of the streamwise and wall-normal velocity decay rates are
given in Figure 4.14 for actuation condition iii. The maximum decay rates for |ûωf |

and |̂vωf | are 0.3 and 0.4, respectively, and the mean decay rate is 0.12 for both. It is
clear that the decay is not uniform in y. The decay profiles seem to reflect features
of the mode amplitudes in Figure 4.13, with the dual-peak in αu and a single peak
in αv, though the peak in αv sits much lower to the wall than the peak in |̂vωf |, more
closely aligned to the near-wall peak of αu. Both decay rates are negative very near
the wall, though this is obviously unphysical and likely due to noise in the data and
the lack of exponential behavior. αu is also negative farther from the wall, around
0.3 < y/δ < 0.42. This corresponds to the location of the π phase jump in uωf ,
which gradually shifts away from the wall, and thus is a region where a growth or
decay rate is ill-defined. In general, the decay rates observed here are slightly larger
than Jacobi & McKeon (2011) [32], who observed a maximum decay rate on the
order of 0.07 for the streamwise velocity mode.

Returning to Figure 4.13, it is also evident in that the maxima in |̂vωf | correspond
well with the (near) zero crossings in |ûωf |. This is required by continuity for
a 2D flow with a constant-phase wall-normal component, and provides evidence
that the present perturbation is indeed two-dimensional. In sum, the mode shapes
are reminiscent of 2D Tollmien-Schlichting instability waves. This structure is
interesting given that the flow is fully turbulent.

The PIV data also allowed access to the 2D, streamwise-resolved mode shapes,
which are shown in Figure 4.15 for actuation condition iii. The (wrapped) phase
contours in 4.15b make clear the earlier observation that uωf undergoes a sharp, π
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phase jump in y, as well as highlight the downstream inclination of the structure
near the wall and the subtle upstream inclination away from the wall. ∠v̂ωf is nearly
constant in y except near the wall, where ∂∠v̂ωf

∂y < 0. As expected, the amplitude
contours in 4.15a are consistent with the plots in Figure 4.13, with the dual-peak
structure in |ûωf | seen as the two bright stripes, while |̂vωf | has a single, tall band.
These contours provide a 2D description of the observations from the 1D profiles,
and the internal layer-like drift and decay of the mode amplitudes are well-resolved.
To quantify the internal layer shape, a power law fit is applied y-locations of the
mode amplitude maxima using MATLAB’s non-linear least squares solver:

g(x) = A (x/δ)β . (4.11)

The fit is calculated for the inner and outer peaks in |uωf | and for the single peak
in |vωf |. The fits are plotted as the blue dashed lines in Figure 4.15a, and given for
actuation condition iii below:

gu,inner(x) = 0.05 (x/δ)0.60 (4.12)

gu,outer(x) = 0.40 (x/δ)0.35 (4.13)

gv(x) = 0.23 (x/δ)0.41 . (4.14)

Visually, the power law fits describe the gradual drift of the maxima well. All of
equations 4.12-4.14 indicate that the synthetic structures are gradually detaching
from the wall. Jacobi & McKeon (2011) [32] calculated a similar fit to the single
peak in their observed roughness-forced u structure to be 0.08(x/δ)0.45. The fit
coefficients in of equations 4.12-4.14 are of a comparable scale to those calculated
by Jacobi & McKeon, and the disparities may be explained by the differences in
roughness geometry, flow conditions, and overall synthetic mode shape.

Close inspection of the contours reveals a sinuous pattern oriented in x, and is best
seen along the top of the |ûωf | plot. Such a feature indicates amplitude modulation,
as the amplitude is not simply decaying, but is beating, albeit weakly. In Figure 4.16,
the x-axis is scaled by λxf instead of δ, which highlights that the modulation length
scale is the same as the length scale of the synthetic mode itself. This is a special
case of amplitude modulation and can be understood through a simple example.

For a single-wavenumber signal, the amplitude of the Fourier mode is constant, e.g.:

ûωf = eikx1 x

|ûωf | = 1.
(4.15)
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In contrast, for multi-wavenumber signal, the amplitude is a sum of sinusoids
with wavenumbers equal to the difference of wavenumber pairs, e.g. for a two-
wavenumber signal:

ûωf = eikx1 x + eikx2 x

|ûωf | =
(
eikx1 x + eikx2 x

) (
e−ikx1 x + e−ikx2 x

)
= ei(kx1−kx2)x + ei(kx2−kx1)x + 2

= 2 (cos ((k1 − k2)x) + 1) .

(4.16)

From Equation 4.16, it is clear that the amplitude modulation requires multiple
scales, as with any amplitude modulation, and for the modulation wavenumber to
be the same as the dominant structure in the flow, the interaction must be between
two wavenumbers whose difference is equal to kxf . Direct interaction with the
dominant kxf content would require either a DC scale (kx = 0), a first-harmonic
scale (kx = 2kxf), or both. However, any two wavenumbers with sufficient energy
and satisfying kx1 − kx2 = kxf would contribute to this modulation. Generally, the
presence of this modulation suggests a somewhat broad kx spectral peak around kxf ,
as will be explored further in the next section.

To better visualize this modulation, the mode amplitudes are plotted along the power
law curves from equations 4.12-4.14 in Figure 4.17, corresponding to actuation
condition iii. Figure 4.17a shows the data from the final and currently presented
SW-DRF study, with very small modulations visible in the |ûωf | peaks. In contrast,
Figure 4.17b shows the data from the initial SW-DRF study [29], where amuchmore
pronounced modulation is observed in |ûωf | and possibly in |̂vωf | as well. The flow
and actuation conditions between the initial and final studies were essentially the
same. The primary differences were the removal of the shaft bearing, addition of the
PVC-pipe housing around the roughness shaft, and overall improved alignment of
the apparatus in the final study, described in Section 2.2. These changes minimized
the load on the Bose motor and noticeably improved the actuation signal quality,
as shown in Figure 2.6. This suggests a direct connection between the actuation
motion and the modulation phenomenon, as opposed to a flow-born interaction. The
interpretation of this difference in modulation intensity will be revisited in the next
section.
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(a) (b)

Figure 4.13: Mode amplitudes at increasing streamwise stations (actuation condition
iii), normalized by the peak amplitude of the upstream-most station: (a) streamwise
and (b) wall-normal component. — x/δ = 2.8; – – x/δ = 4.7; • – x/δ = 6.7.

(a) (b)

Figure 4.14: Wall-normal profiles of the streamwise exponential decay rates for the
ωf mode amplitudes (actuation condition iii): (a) streamwise velocity decay rate,
αu, and (b) wall-normal velocity decay rate, αv.
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(a)

(b)

Figure 4.15: 2D contours of mode (a) amplitude and (b) phase (wrapped) for
actuation condition iii. Top plots are of the streamwise component, ûωf , bottom
plots the wall-normal component, v̂ωf .

Figure 4.16: 2D contour of mode amplitude (actuation condition iii), with the x-axis
scaled by λxf to highlight the modulation length scale. The top plot is the streamwise
component, ûωf , and bottom plot the wall-normal component, v̂ωf .
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(a) (b)

Figure 4.17: Peak mode amplitude (in y) as a function of x for actuation condition
iii. (a) Data from the final and (b) the initial SW-DRF study. — |ûωf |, inner peak;
– – |ûωf |, outer peak; • – |̂vωf |.

4.6 Spatio-temporal analysis and spectral signature of the synthetic mode
With the temporal coherence of the synthetic scale given by ωf and the spatial co-
herence characterized by kxf , a streamwise-spatio-temporal decomposition is now
employed to better understand the spatial spectral content of the synthetic mode.
Ideally, this would involve a transformation of the wall-normal coordinate, y, to
account for the non-parallel nature of the flow, i.e. ûωf (x, y) = ûωf (x, η(x)). How-
ever, such a coordinate transformation adds other complexities to the analysis, and
based on the drift behavior of the flow described in equations 4.12-4.14, a single
transformation may not apply to both velocity components or to the whole domain.
Instead, a more straightforward approach is taken here by assuming locally parallel
flow.

Anticipating the kxf content, the temporal Fourier modes, ûωf (x, y) and v̂ωf (x, y),
are zero-padded in x to accommodate the next multiple of λxf =

2π
kxf

, such that
the spectral resolution is an optimal fraction of the synthetic mode wavenumber.
This zero-padding amounts to a total-energy-preserving spectral interpolation that
leverages the knowledge of kxf . For the full procedure, the ωf velocity field is
discrete Fourier transformed in time (equation 4.17), zero-padded in x, and then
discrete Fourier transformed in x (equation 4.18):

uωf (x, y, t) = ûωf (x, y)e
−iωf t + c.c. (4.17)

=

[∑
n

̂̂u ωf (y; nkxf)ei(nkxf x−ωf t)

]
+ c.c., (4.18)
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where ̂̂
(·) indicates a quantity that has been discrete Fourier transformed in t and

x. The (rational, not necessarily integer) values of n are determined by the zero-
padding process, and by construction include n = 1. The n = 1 Fourier coefficient
corresponds to the ωf-kxf spatio-temporal Fourier component of the velocity and is
referred to as ̂̂u ωf kxf =

̂̂u ωf (y; n = 1). Accordingly, the velocity field reconstructed
by this Fourier coefficient is referred to as uωf kxf , and is purely sinusoidal in x and t

and varies in y. This procedure was performed for x/δ > 2 (to avoid the transient
region just downstream of the roughness) and for all y.

The streamwise and wall-normal ωf-kxf mode shapes for actuation condition iii
are provided in Figures 4.18 and 4.19, respectively. The mode amplitudes are
both normalized by the peak in |̂̂u ωf kxf | for comparison. The overall features are
consistent with the mode shapes in Figures 4.13, 4.15, with strong T-Swave features.
Despite ûωf and v̂ωf exhibiting a gradual drift in the wall-normal direction, ̂̂u ωf kxf

and ̂̂v ωf kxf appear well-defined, suggesting that the local-parallel-flow assumption
is reasonable. Comparing the normalized amplitudes of the modes, the inner peak
of |̂̂u ωf kxf | is the largest at 1.0, followed by the peak of |̂̂v ωf kxf | at 0.7, and the
outer peak of |̂̂u ωf kxf | at 0.4. The inner peak of |̂̂u ωf kxf | is notably more narrow
than the other peaks. The streamwise mode phase in Figure 4.18b still contains the
sharp π jump. The phase difference between ̂̂u ωf kxf and ̂̂v ωf kxf is nearly constant at
π/2 in the outer portion of the profiles. After the phase jump in ̂̂u ωf kxf , the phase
difference is roughly π/2 in the opposite sense. Both ̂̂u ωf kxf and ̂̂v ωf kxf exhibit a
slight downstream incline for 0.05 < y/δ < 0.4, and both reverse to be upstream
inclined for y/δ < 0.05.

The kx amplitude spectra were calculated for the ωf Fourier modes and averaged
in y, and are given in Figure 4.20 for actuation condition iii. The spectra are
normalized by the larger of the two spectral peaks, which is the peak in |̂̂v ωf | in
this case, though both are very close in value. The two spectra have similar shapes,
both with a distinct peak at n = 1 or kx = kxf , as expected. Though the Fourier
amplitudes do drop off adjacent to kxf , they maintain non-trivial, ∼ 0.1 − 0.3 of
the peak value. This supports the amplitude modulation phenomenon in Figures
4.15a and 4.16, and agrees with the supposition of the previous section that the
spatial spectral peak is at least somewhat broad. It is noted that part of the broad
kx spectrum is expected given the decaying nature of the flow, making it not strictly
periodic. However, reconstructing a toy signal based on the n = [0, 2] amplitudes
and arbitrary phases captures both the decaying nature and the modulating envelope
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observed in the data. Thus, the amplitude modulation feature is a reflection of the
broadness of the kxf peak of the synthetic mode.

This spectral analysis provides context for the earlier note that the preliminary
SW-DRF study observed more intense amplitude modulation than the final study.
A reduction in the modulation phenomenon corresponds to a narrowing of the
kxf spectral peak, in other words, a ‘cleaner’ synthetic structure. By improving
the alignment and actuation quality, the spectral characteristics of the roughness-
forced mode must have been improved. Precisely how these additional scales come
about remains unclear. One possible explanation is that slight misalignment of
the roughness induces a small streamwise component to the nominally wall-normal
actuation. This streamwisemotionwould temporally coherent withωf , but may have
shifted kx content from the dominant synthetic mode. By improving the alignment
and minimizing the streamwise motion, this spatial harmonic content would be
reduced and the amplitude modulation would diminish.

Lastly, the amplitude and phase values of the streamwise and wall-normal ωf-kxf

modes are given in Table 4.6 for actuation conditions ii and iii. These values are
taken from the critical layer location for the modes, yCL, also provided in the table,
and will be used for comparison to the compliant-wall study. As might be expected,
the amplitude for both velocity components is notably higher for the larger hrms

condition. The amplitude of ̂̂v ωf kxf is larger than the corresponding ̂̂u ωf kxf , which
is also expected given that these data are taken at the critical layer, where ̂̂u ωf kxf

undergoes a zero crossing. The phase values are consistent for ̂̂v ωf kxf between the
two cases, and much less consistent for ̂̂u ωf kxf . This, again, is due to the phase jump
in ̂̂u ωf kxf around yCL.

Case ii Case iii
yCL/δ Amplitude Phase yCL/δ Amplitude Phasê̂u ωf kxf (yCL) 0.34 0.7 · 10−3 0.23π 0.35 3.8 · 10−3 0.67π̂̂v ωf kxf (yCL) 0.34 2.1 · 10−3 0.31π 0.35 9.7 · 10−3 0.39π

Table 4.6: Amplitudes and phases of the ωf-kxf velocity modes at the critical layer
location, for the SW-DRF study, cases ii and iii. The amplitudes are scaled to reflect
the physical velocity and normalized by U∞.
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(a) (b)

Figure 4.18: Mode (a) amplitude and (b) phase of the ωf-kxf Fourier component
of the streamwise velocity, ̂̂u ωf kxf , from actuation condition iii. The amplitude is
normalized by its peak.

(a) (b)

Figure 4.19: Mode (a) amplitude and (b) phase of the ωf-kxf Fourier component
of the wall-normal velocity, ̂̂v ωf kxf , from actuation condition iii. The amplitude is
normalized by the peak of |̂̂u ωf kxf | for comparison.
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(a)

(b)

Figure 4.20: kx amplitude spectra (averaged in y) of the ωf component of the (a)
streamwise (̂̂u ωf ) and (b) wall-normal (̂̂v ωf ) velocities, from actuation condition iii.
The spectra are normalized by the peak in |̂̂v ωf |, larger of the two spectral peaks.
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4.7 Chapter summary
Asmooth-wall, turbulent boundary layerwas forced by dynamic roughness in awater
tunnel, generating a synthetic flow structure that was measured using phase-locked
PIV. The prior dynamic roughness studies by Jacobi & McKeon (2011) [32] and
Duvvuri & McKeon (2015) [14] were done in a wind tunnel and relied primarily
on hot-wire measurements. As such, they mostly considered temporal analyses
of the streamwise velocity, or spatial analyses by invoking Taylor’s hypothesis.
Though PIV measurements were made by Jacobi & McKeon (2011), Jacobi &
McKeon (2013) [34] later discussed that the finite camera FOV essentially acted
as an implicit, spatial highpass filter, limiting the spatial analysis available on the
incredibly large, ∼15 − 18δ length scale of the synthetic mode. In this work, the
multi-FOV, phase-locked PIV measurements enabled resolved spatial and spatio-
temporal investigations of both u and v signatures of the synthetic mode. The longer
timescales of water granted access to higher non-dimensional frequencies, resulting
in shorter synthetic structures.

The mean flow statistics were modified primarily by the static roughness component
of the forcing, with signatures of internal layer development consistent with observa-
tions of Jacobi&McKeon (2011) [32, 33]. The streamwise andwall-normal velocity
fields were phase-averaged and revealed a coherent traveling wave associated with
the forcing. The forcing frequency (ωf) component of the flow response was iso-
lated using a discrete Fourier decomposition, and found to account for the majority
of the structure’s energy. The harmonic frequency content contained correspond-
ingly harmonic wavenumber content, which acted to slightly distort the dominant
ωf mode. A study of x − y plane PIV measurements at various spanwise locations
was performed to vet the assumption of two-dimensionality of the synthetic mode.
Significant deviations in the velocity fields were only observed near the spanwise
edge of the roughness. Thus, the 2D assumption was confirmed along the centerline
for the synthetic structure. Isosurfaces of spanwise vorticity also highlighted the
alternating vortex tubes that make up the flow structure and illustrated the shearing
that takes place as these tubes convect downstream.

A parametric study was done by altering the forcing frequency and roughness
amplitude for actuation conditions i-iv. The streamwisewavenumber of the synthetic
scale, kxf , was calculated by estimating the streamwise derivative of the phase of
the wall-normal velocity mode, v̂ωf . kxf ranged from [1.69 − 5.02]/δ (λxf from
[3.71 − 1.25]δ), and was found to increase with ωf in an approximately linear
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fashion, though coherence of the synthetic structure departs dramatically for the
highest frequency tested (actuation condition iv). This linear relationship agreed
well with the data of Duvvuri & McKeon (2015) [14], and the resulting empirical
linear fit may be used to select a forcing frequency to achieve a particular streamwise
length scale of synthetic mode.

The 1D and 2D ωf Fourier mode shapes were investigated and found to resemble
T-S instability modes, with ûωf being dual-peaked and undergoing a π phase jump,
and v̂ωf being single-peaked and tall, with nearly constant phase. The mode features
gradually decayed and drifted away from the wall in x, in a manner again consistent
with an internal layer structure. Careful examination of the 2D mode amplitudes
revealed an amplitude modulation feature, with the modulation envelope having the
same streamwise wavenumber as the synthetic structure itself, kxf . This indicated
a somewhat broad peak around kx = kxf , and was able to be tested directly by a
(zero-padded) discrete Fourier decomposition in x. The now ωf-kxf mode shapes
remained reminiscent of T-S waves and were well-defined despite the flow not
being strictly parallel in x. The kx spectra displayed a peak at kxf with non-trivial
adjacent spectral content, confirming the interpretation of the amplitude modulation
phenomenon. Comparison with the initial SW-DRF study, which observed a more
notable modulation feature, highlighted the importance of careful alignment and
equipment isolation in the experiment for a clean synthetic mode.

The analysis laid out in this chapter provides a framework with which to process
and analyze the data from the subsequent compliant-wall studies. The SW-DRF
study also provides a base case for comparison with the CW-DRF study. The
judicious design and construction of the experiment and the novel experimental
technologies enabled the precision actuation of the dynamic roughness element and
the phase-locked PIV measurements. These measurements allowed for a thorough
spatio-temporal treatment of the streamwise and wall-normal velocity components,
and the subsequent analysis contributed to our understanding of dynamic roughness
forcing of a turbulent boundary layer.
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C h a p t e r 5

RESPONSE OF AN ELASTIC, COMPLIANT-WALL TO A
CANONICAL, TURBULENT BOUNDARY LAYER

Before analyzing the compliant-wall’s response to the dynamic roughness forcing,
the response of the gelatin sample to the unforced turbulent boundary layer flow
was studied. This was done by submerging the compliant sample in the test section,
fixing the roughness element to be flush with the wall, and running the water
tunnel. The non-dynamic-roughness-forced, compliant-wall system is referred to as
‘CW-unforced’ for conciseness, though it is recognized that the flow-surface system
is indeed being driven by the flow. The characterization of the unforced system
is important to determine whether the synthetic mode directly causes a surface
response, or simply amplifies a naturally occurring mode. Stereo-DIC data were
acquired in three FOVs as discussed in Section 2.5 and illustrated in Figure 2.18,
referred to as: leading-edge (LE), corner, and trailing-edge (TE). The streamwise,
wall-normal, and spanwise deformation fields (temporally mean subtracted) are
denoted by dx , dy, and dz, respectively, and are each functions of x, z, and t.

For a sense of scale, the rms values for the LE FOV deformations are given in Table
5.1. The deformation distributions are essentially Gaussian, with the vast majority
of the displacements within 3 times the rms value for a given component. From
Chapter 2, the average uncertainty values of the stereo-DIC processing are 0.3, 0.3,
and 0.2 um and the estimated noise floor is 0.5, 1.4, and 0.5 um for dx , dy, and dz,
respectively. Thus, the instantaneous displacements are generally resolvable.

dx dy dz
rms(·) [um] 4.2 4.0 2.6

rms(·)/δ · 10−4 1.6 1.6 1.0
rms(·)+ 0.07 0.06 0.04

Table 5.1: Rms values of each deformation component for the LE FOV of the CW-
unforced study, provided in dimensional, outer-scaled, and inner-scaled forms. For
reference, the uncertainty values on the stereo-DIC calculation were 0.3, 0.3, and
0.2 um for dx , dy, and dz, respectively.



74

5.1 Features of the unforced deformation power spectra
To identify energetic features in the deformations, the temporal power spectral
densities (PSDs) are calculated from single DIC records, using Welch’s method in
MATLAB, with 10 windows and 50% overlap. The DIC records were 2047 samples
long and acquired at 100 Hz, and the FOVs dimensions were roughly 133×147
mm2 (946×1024 px2). The PSDs are calculated for each deformation component,
at each x and z spatial position in the data. The spectra are then averaged over x

and z (removing the top and bottom 5% values) to arrive at a representative PSD for
a given deformation component in a given FOV. The power spectra are plotted in
Figure 5.1, with the spectra of dx , dy, and dz plotted together for a single FOV. There
are several features highlighted by the power spectra, and a brief discussion of five
select frequencies bands will be given. For reference, each frequency band/feature
will be named A-E in order of increasing frequency content, per Table 5.2 and
the labels in Figure 5.1. In addition to observations from the PSDs in Figure 5.1,
the spatial structure of each feature will be explored by discrete Fourier bandpass
filtering the deformation signal over the corresponding frequency band. This is
performed on the same 2047-sample-length, 100 Hz DIC records as the PSDs. A
Fourier bandpass filtered signal is denoted with a subscript ω(·), with (·) replaced
by the feature name; for example, the wall-normal deformation, Fourier filtered for
feature A is denoted dy |ωA

. An amplitude is defined for each filtered field at each
x − z location by calculating the rms value in time. This amplitude is referred to as
the rms-amplitude and denoted by rmsa(·) to distinguish from taking an rms along
other dimensions.

Feature A B C D E
f band [Hz] 0-3 4.5-5.5 11-16 18.3-19.3 41-45

Table 5.2: Names and corresponding frequency bands for the spectral features in
the CW-unforced deformations from Figure 5.1.
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(a)

(b)

(c)

Figure 5.1: Power spectra of the deformations from the CW-unforced study: (a) LE,
(b) corner, and (c) TE FOV. — dx; — dy; — dz.
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Feature A sits in a low, 0-3 Hz frequency band and is visible in all three deformation
components in all three FOVs. The amplitude of the peaks for dx and dz are fairly
uniform in the FOVs, but is significantly higher in the TE for dy. A snapshot of the
Fourier bandpass filtered deformation fields for feature A is given in Figure 5.2, for
each of the FOVs (columns) and each deformation component (rows). Large spatial
structures are observable in dx |ωA

and dy |ωA
, and somewhat less so in dz |ωA

. The
dy |ωA

deformations are the highest amplitude of the three components. These large
structures are observed to convect downstream very slowly. Because of its very low
frequency content, it is possible that this feature is driven by the mean shear, with
the surface slowly deforming and restoring. Another possible driver may be the
near-wall cycle (NWC), which is often characterized by the inner scaled wavelength
and wave speed of (λ+x , c+)=(1000, 10). This converts to an inner scaled frequency
of f +=0.01, which equates to f =2.6 Hz for these flow conditions. However, while
this does fall within the frequency range for feature A, the structures in Figure 5.2
appear more spanwise/obliquely aligned than the quasi-streamwise vortices typical
of the NWC.

Feature B is a small peak near 5 Hz (taken to be the band 4.5-5.5 Hz) that is not
immediately apparent in the power spectra of Figure 5.1. It is examined not because
of its energetic content, but because it resides near the 5 Hz forcing frequency for
actuation conditions ii and iii, which are the focus of the compliant-wall studies.
The peak of feature B is present in all three deformation components and all three
FOVs, as is slightly higher for dy. Though the peak is made broad in Figure
5.1 by the window averaging process, taking the windows to be the full record
length to maximize the spectral resolution resolves the peak location at 5.18 Hz,
well outside the range of the precise 5 Hz forcing frequency. A snapshot of the
Fourier filtered deformations for feature B is provided in Figure 5.3. dx |ωB

is fairly
uniform and does not exhibit a great deal of structure in any of the FOVs. dz |ωB

is
similar, with some weak streamwise-aligned features in the corner FOV. In contrast,
dy |ωB

contains well-defined structures that are nearly spanwise-aligned, and the
wall-normal deformation is slightly higher in amplitude than the other components,
consistent with the power spectra in Figure 5.3. These dy |ωB

structures are seen
to convect downstream, occasionally organizing into distinct spanwise-constant,
streamwise-traveling waves, and then quickly breaking up. Given the downstream
directionality of these structures, it is likely that they are somehow flow driven.
Their semi-spanwise alignment may indicate origins from the smooth-to-compliant
transition at the upstream edge of the sample.
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Feature C is the broadband spectral content observed for 11-16 Hz in Figure 5.1. It
is present in all three deformation components and all three FOVs, and appears to be
stronger in dx and dy, though in the TEFOV, dz has comparablemagnitude aswell. A
snapshot of the Fourier filtered deformations for feature C is provided in Figure 5.3.
Here, we see strong coherent structures in dx |ωC

, dy |ωC
, dz |ωC

for all FOVs. dx |ωC

appears to contain predominantly spanwise waves, while dy |ωC
and dz |ωC

exhibit
primarily streamwise waves, with a distinct spanwise modulation. Strikingly, all
waves tend to travel towards the compliant sample’s center, i.e. spanwisewavesmove
towards z = 0 and streamwise waves towards x/δ = 7. The streamwise and spanwise
nature of the deformation waves suggests that a geometry-dependent mechanism is
involved, imprinting the sample’s rectangular geometry into the surface response.
This is in contrast to feature B, that exhibits only streamwise waves that travel
strictly downstream. dx |ωC

and dy |ωC
dominate the deformations of feature C near

the upstream edge of the sample (LE and corner FOV), while all three components
are comparable at the TE. The energy for this frequency content may come from
natural vibration modes of the plate/support structure. This feature will be discussed
in more detail later in the chapter.

Feature D is a large peak centered at f =18.8 Hz in Figure 5.1. The peak amplitude
is highest for dx in all of the FOVs, and is strongest at the TE. A snapshot of the
Fourier filtered deformations for feature D is provided in Figure 5.5. There are very
strong similarities between the structures in Figures 5.5 and 5.4, both containing
distinct streamwise and spanwise waves. Notably, feature D appears to contain
slightly higher wavenumber content than C. Given the slightly higher frequency
band of D, this is consistent with the two features having similar wave speeds. The
structural similarity suggests that features C and Dmay share a geometry-dependent
mechanism that dictates their spatial coherence. The 18.8 Hz frequency of feature D
matches very well with the tunnel pump frequency of 18.94 Hz, so it is likely that the
energy for this feature is derived from oscillations induced by the pump. However, it
is not obvious the medium through which these oscillations transmit to the gelatin,
whether through the water, by flow-driven vibrations of the plate structure, or by
structural vibrations directly from the pump.

Feature E resides in the 41-46 Hz frequency band, nearer to the 50 Hz Nyquist
limit than the other features. Though not as apparent as some of the other features,
there is some broadband content appearing in this frequency range. Looking at
the associated Fourier bandpass filtered deformations in Figure 5.6, the fields are
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uniformly incoherent and appear noise-like. Thus, this content may be the result of
some source of noise in high-speed cameras.

The mean rms-amplitude for each deformation component of each feature is given in
Table 5.3. The deformation magnitude was estimated using the rms-amplitudes of
the components, and the mean (dµ) and standard deviation (dσ) of the deformation
magnitudes are also provided in the table. These values allow for the features to
be compared in a general sense and for trends to be observed. Looking at the dµ
values, features A and C contain higher deformations than the others. This is due
to the features’ strong and broad spectral peaks, integrating to a relatively large
deformation contribution. In contrast, features B and E are quite weak, and sit
close to or below the estimated noise floor. This coupled with the lack of spatial
incoherence of feature E further supports that E is signal noise. Also noteworthy is
the prominence of the wall-normal deformation. Indeed, the mean rms-amplitude
of dy |ω is 0.6dσ, 1.0dσ, and 2.0dσ greater than the next highest deformation for
features A, B, and E, and is within 0.2dσ and 1.0dσ of the highest deformation (dx |ω)
for features C and D, respectively. Given that dy is such a significant deformation
component, and in anticipation of a strong relationship to the wall-normal velocity
near the wall, dy will be the focus of the analysis in the next section and all of
Chapter 6. This also serves to narrow the otherwise very broad scope of the data. A
summary of the observations for each feature is provided in Table 5.4 for reference.

Feature A B C D E
mean(rmsa(dx |ω)) 1.5 0.6 3.1 2.2 0.2
mean(rmsa(dy |ω)) 3.0 0.9 2.9 1.1 2.0
mean(rmsa(dz |ω)) 2.1 0.3 2.2 0.6 0.2

dµ 4.0 1.1 4.9 2.7 1.0
dσ 1.4 0.3 1.1 1.2 0.4

Table 5.3: The mean rms-amplitude for each deformation component, as well as
the mean (dµ) and standard deviation (dσ) of the deformation magnitudes, for each
feature from the power spectra in Figure 5.1 from the CW-unforced study. All
quantities are in um.
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Feature A B C

f band [Hz] 0-3 4.5-5.5
(5.2 peak) 11-16

Mean deformation
magnitude

4.0 um
1.6 · 10−4δ

0.06δν

1.1 um
0.4 · 10−4δ

0.02δν

4.9 um
1.9 · 10−4δ

0.08δν
Strongest
component dy dy dx , dy

Spatial
structure

Large-scale,
slow traveling

Semi-coherent
streamwise waves

Coherent streamwise
& spanwise waves;
geometry-dependent

Potential
driver

Mean shear,
NWC

Flow interaction
w/upstream edge

Plate/support
vibrations

Feature D E

f band [Hz] 18.3-19.3
(18.8 peak) 41-45

Mean deformation
magnitude

2.7 um
1.1 · 10−4δ

0.04δν

1.0 um
0.4 · 10−4δ

0.02δν
Strongest
component dx dy

Spatial
structure

Same as C,
scaled for
higher f

Incoherent

Potential
driver Tunnel pump Noise

Table 5.4: Summary of the discussed features from the power spectra in Figure
5.1 from the CW-unforced study. The mean deformation magnitude values are
computed over all x and z, and all three FOVs, and are provided in dimensional,
outer-scaled, and inner-scaled forms.
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Figure 5.2: A snapshot of the Fourier bandpass filtered deformation fields for
feature A. Columns: (left) LE, (center) corner, (right) TE FOVs. Rows: (top) dx |ωA

,
(middle) dy |ωA

, (bottom) dz |ωA
. Colorbar limits are [−6.0, 6.0] um.
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Figure 5.3: A snapshot of the Fourier bandpass filtered deformation fields for feature
B. Same plot format as Figure 5.2. Note the different colorbar limits of [−2.0, 2.0]
um.
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Figure 5.4: A snapshot of the Fourier bandpass filtered deformation fields for feature
C. Same plot format as Figure 5.2. Note the different colorbar limits of [−9.0, 9.0]
um.
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Figure 5.5: A snapshot of the Fourier bandpass filtered deformation fields for feature
D. Same plot format as Figure 5.2. Note the different colorbar limits of [−3.0, 3.0]
um.
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Figure 5.6: A snapshot of the Fourier bandpass filtered deformation fields for feature
E. Same plot format as Figure 5.2. Note the different colorbar limits of [−2.0, 2.0]
um.
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5.2 Spatio-temporal analysis of dynamic, broadband content
As mentioned at the beginning of this chapter, the characterization of the unforced
compliant-wall system is important to identifying and attributing the deformation
response to the synthetic mode in the roughness-forced system. The synthetic mode
in the flow has been shown to be strongly coherent in space and time and have a
2D, streamwise-traveling-wave structure, and so a corresponding surface response
is expected to have similar properties. From the summary of the spectral features in
the unforced system in Table 5.4, only features C and D exhibit strongly coherent,
traveling-wave structures, and so their content is explored further for comparison
with the roughness-forced surface response in Chapter 6. Because features C and D
are so similar in nature, feature C is taken to be representative of both and will be
discussed. Again, only the dy component will be considered, given its prevalence
and for a more manageable analysis.

To better understand the spatial content of the wave system in feature C, a single
frequency is selected to enable a full spatio-temporal discrete Fourier analysis.
14.65 Hz is chosen from the 11-16 Hz band, but all the mode shapes within the
frequency band have nearly identical characteristics. The temporal Fourier mode
corresponding to this frequency is extracted and denoted by d̂y |ω0 . As mentioned
previously, the spatial content of these waves appears to consist of streamwise
(kz = 0) and spanwise (kx = 0) waves, and so for comparison, d̂y |ω0 is additionally
discrete Fourier filtered in x and z, retaining only the kz = 0 and kx = 0 modes,
denoted by d̂y |ω0kx0kz0 .

The mode shapes of d̂y |ω0 and d̂y |ω0kx0kz0 for the LE, corner, and TE FOVs are given
in Figures 5.7, 5.8, and 5.9, respectively. The figures provide the (a) amplitude
and (b) wrapped phase contours of the full 14.65 Hz mode (d̂y |ω0), as well as the
(c) amplitude and (d) wrapped phase contours of the mode reconstructed with only
kz=0 and kx=0 modes (d̂y |ω0kx0kz0). Figure 5.7a displays streamwise and spanwise
amplitude modulation, creating oblique rays that are symmetric about the centerline.
These ray features can be understood as the interaction of streamwise waves corre-
sponding to a broad kx peak and positive/negative spanwise waves corresponding
to broad kz peaks. The phase in Figure 5.7b is predominantly streamwise-oriented,
with spanwise variation on top, indicating that the streamwise waves are higher
in amplitude than the spanwise. The mode amplitude and phase in Figures 5.7c
and 5.7d match closely, with the streamwise structure captured very well and the
spanwise modulation reasonably represented too. This highlights the fact that the
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dominant content of d̂y |ω0 is indeed streamwise and spanwise waves.

Figure 5.8 is consistent with Figure 5.7, having streamwise and spanwise modula-
tions that form rays directed towards the centerline. The phase is also similar to
the LE data, exhibiting a spanwise variation on an otherwise streamwise-oriented
structure, except for very near the spanwise edge of the sample. Once again, the
kz=0 and kx=0 modes accurately represent the mode features, deviating only near
the spanwise edge of the sample. The data from the LE and corner FOVs strongly
suggest a system of waves generated at the boundaries of the sample, propagating
inwards towards the sample’s center. Streamwise waves emanate from the upstream
edge of the sample, while spanwise waves radiate from the spanwise edge, and these
waves appear to be generated in-phase rather than in alternating fashion, since the
corner, where the edges meet, is an amplitude antinode rather than a node.

Figure 5.9 reveals that the structures in the TE FOV are noticeably weaker and less
distinct than their upstream counterparts. The mode amplitude is less interpretable,
while the phase still appears relatively streamwise coherent, but horizontally re-
flected relative to the LE and corner FOVs, indicative of upstream traveling waves.
Looking at the streamwise/spanwise wave reconstruction, the amplitude in Figure
5.9c is quite different than what is seen in the upstream FOVs, much more resem-
bling a standing wave system. As the ray features in Figures 5.7 and 5.8 could be
explained by waves with broad kx and kz spectral peaks, the transition to standing
waves downstreammay indicate waves with narrower spectral peaks near the trailing
edge. The mechanism for this change in behavior is not clear, but its presence is
evident in the data.
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(a) (b)

(c) (d)

Figure 5.7: Mode shapes of the LE FOV 14.65 Hz Fourier mode from the CW-
unforced study: (a) amplitude and (b) wrapped phase of the full Fourier mode; (c)
amplitude and (d) wrapped phase of the kz=0 and kx=0 reconstructed Fourier mode.
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(a) (b)

(c) (d)

Figure 5.8: Mode shapes of the corner FOV 14.65 Hz Fourier mode from the
CW-unforced study, following the same format as Figure 5.7.
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(a) (b)

(c) (d)

Figure 5.9: Mode shapes of the TE FOV 14.65 Hz Fourier mode from the CW-
unforced study, following the same format as Figure 5.7.
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The wave speeds of the streamwise waves were computed for comparison with the
dynamic roughness-forced structures. This was done in a similar manner to Section
4.4, by assuming a simple traveling wave and estimating the streamwise derivative
of the phase of the temporal Fourier mode. Plots of ∠d̂y |ω0 versus x are given in
Figure 5.10 for each FOV, with data taken from the spanwise center of the FOV.
The phases are primarily linear, with some modulation which is expected based
on the previously discussed spanwise content. The streamwise derivative and thus
streamwise wavenumber were estimated by a linear fit to the data. The method of
secant lines was not employed because the DIC data are single FOV and thus do not
have the issue of stitched regions. This process was performed for each frequency in
the 11-16 Hz band, and the resulting kx values plotted in Figure 5.11. As expected,
the kx for the LE and corner FOVs agree very well, both with positive values that
increase linearly with f . In the TE data, the kx are more scattered, reflective of the
less smooth phase observed in Figure 5.9b. However, the kx are primarily negative,
as expected of upstream traveling waves, and roughly exhibit a similar linear trend
as the LE and corner data. The linearity of the kx values with f suggests a common
wave speed among the Fourier modes, which is evidence for the modes sharing a
governingmechanism, as might be expected for a broadband spectral peak signature.
A trimmed mean was computed across the frequency band (excluding the top and
bottom 5% values) to determine a representative wavenumber, and used with the
average frequency of 13.5 Hz to compute a wave speed for each FOV, provided
in Table 5.5. The wave speeds are ∼80 cm/s, and are higher than the freestream
velocity of 33-36 cm/s, yet lower than the gelatin’s estimated shear wave speed of
120 cm/s and Rayleigh wave speed of 115 cm/s. As mentioned in Chapter 2, the
generalized Rayleigh and Lovewave speeds that take into account the finite thickness
of the gelatin layer are higher than the semi-infinite-domain Rayleigh wave speed,
and are a poorer match to the measured wave speeds. It is possible and perhaps
likely that the material’s shear wave speed was not estimated with sufficient accuracy
given the extreme softness of the material and simple compression tests performed.
Additionally, it is almost certain that the material’s properties would have changed
after being submerged in the water tunnel for multiple days, likely further softening
it and reducing its shear wave speed. Given the phase relationship between the
streamwise and spanwise waves, it is proposed that these waves occur as the flat
plate structure vibrates along the y-axis. These vibrations would translate into shear
deformation waves, emanating from the sample boundaries simultaneously and
propagating inwards to the sample’s center, and in this way, the sample geometry is
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embedded in the shape of the deformation waves. Were the geometry altered, one
would expect the response shape to change accordingly.

LE Corner TE
kxδ 2.48 2.64 -2.78

c [cm/s] 86.9 81.6 -77.5

Table 5.5: Streamwise wavenumbers and wave speeds computed for each FOV for
the 11-16 Hz wave system observed in the CW-unforced study.

(a) (b)

(c)

Figure 5.10: Phase of the dy Fourier mode (14.65 Hz) as a function of x for the (a)
LE, (b) corner, and (c) TE FOVs, from the CW-unforced study.
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Figure 5.11: Streamwise wavenumbers versus frequency, computed for each fre-
quency in the 11-16 Hz band and for each FOV in the CW-unforced study: © LE;
� corner; 4 TE FOV.

5.3 Chapter summary
The surface response of the unforced, compliant-wall system studied. From the
power spectra of the deformations, several features (A-E) were observed and ex-
plored, and are summarized in Table 5.4. Feature A (0-3 Hz) consisted of large-
scale, slow moving structures that may be connected to the mean shear or NWC.
Feature B (5.2 Hz peak) showed semi-coherent streamwise-traveling waves and may
be due to a flow interaction with the smooth-to-compliant wall transition at the
upstream sample edge. Feature E (41-45 Hz) was spatially incoherent and likely a
noise-related signal. Features C (11-16 Hz) and D (18.8 Hz peak) contained very
similar structures, both with strongly coherent streamwise and spanwise waves. Fea-
ture C was proposed to stem from flow-driven plate or support structure vibrations,
while the frequency of D corresponded closely to the tunnel pump frequency. The
spatial content of C and D was investigated by considering the 14.65 Hz Fourier
mode, d̂y |ω0 , in detail, taken to represent the general characteristics of the two fea-
tures. d̂y |ω0 was found to be well-captured by streamwise (kz = 0) and spanwise
(kx = 0) deformation waves, which appeared to emanate from the sample’s edges
and propagate towards the sample’s center. The wave speeds of these deformations
were estimated to be ∼80 cm/s. This thorough characterization of the CW-unforced
system provides a basis from which to attribute the deformation response of the
CW-DRF discussed in the next chapter.
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C h a p t e r 6

SURFACE AND FLOW RESPONSE OF A COMPLIANT-WALL,
TURBULENT-BOUNDARY-LAYER SYSTEM UNDER

DYNAMIC ROUGHNESS FORCING

With the response of the unforced compliant-wall systemcharacterized, the compliant-
wall, dynamic-roughness-forced (CW-DRF) system is now analyzed. The surface
response will first be compared to the CW-unforced study of the previous chapter
to confirm the direct relationship between the synthetic mode in the flow and the
phase-averaged deformations. Themean flow properties and synthetic mode charac-
teristics will then be described. Knowledge of the synthetic mode will be leveraged
to extract the ωf-kxf component of the surface response. The data presented in this
chapter will be from actuation conditions ii and iii, with hrms/δ of 0.042 and 0.069,
respectively, and both at ff = 5 Hz. As mentioned in Chapter 5, this analysis will
focus on the wall-normal deformation, dy.

6.1 Attribution of the forced surface deformation
In the previous chapter, several features were identified in the power spectra of the
deformations and their spatial structures were explored. To leverage that analysis,
the power spectra are calculated for the roughness-forced deformation fields. Using
the same process as in Chapter 5, the PSDs of the wall-normal deformation are
calculated from single DIC records, using Welch’s method in MATLAB, with 10
windows and 50% overlap. The PSDs are calculated at each x and z spatial position
in the data, and then averaged over x and z (removing the top and bottom 5% values)
to arrive at a representative PSD for a given FOV.

Figure 6.1 shows the temporal power spectra of dy from actuation condition ii for
each FOV. Many of the spectral features from the CW-unforced study are present,
with the addition of a pronounced peak at the 5 Hz forcing frequency. While the
location of the ff peak is the same for all FOVs, this peak is strongest in the TE FOV,
the reason for which will be explained later. The spectra of Figure 6.1 also differ in
the magnitude of the low frequency peak, corresponding to feature A (0-3 Hz) from
the CW-unforced study. The amplitude of the low frequency peak increases from
LE, to corner, to TE, which is the same FOV trend for feature A of the unforced
surface. Other than the low frequency peaks, the spectra are very similar across the
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FOVs.

A direct comparison between the roughness-forced and unforced spectra is given
in Figure 6.2 for the LE FOV. The two agree well for features/frequency bands C
(11-16 Hz), D (18.8 Hz peak), and E (41-46 Hz), though there is a slightly more
amplified high frequency peak in CW-DRF. The low frequency peaks (feature A)
are co-located in f , with the forced case exhibiting a higher peak. As a note,
feature A is roughly equal between the CW-unforced and CW-DRF cases for the
corner FOV, and the CW-unforced peak is higher in the TE FOV, so the difference
in the low frequency peak is not strictly biased towards the forced or unforced data.
The most obvious difference between the two spectra in Figure 6.2 is the 5 Hz
forcing frequency peak. As mentioned, though feature B (5.2 Hz peak) from the
CW-unforced data resides near ff , it is at a resolvably distinct frequency, and is
quite small in amplitude compared to the other features. This comparison strongly
suggests that the energy injected into the system by the roughness acts primarily
at the forcing frequency and does not significantly alter the energy content of the
other surface modes. There does seem to be a modification of the low frequency
content, but in a non-straightforward manner. Additionally, the forcing appears to
be at frequency that is otherwise relatively inactive in the surface.

Figure 6.1: Power spectra of dy from all three FOVs of the CW-DRF study (actuation
condition ii): — LE; — corner; — TE.
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Figure 6.2: Power spectra of dy from the LE FOV of the CW-DRF study (actuation
condition ii): — CW-DRF; — CW-unforced.

Now that the energy of the roughness-forcing has been identified at the forcing
frequency, the spatial structure of this content is explored to compare with un-
forced deformation features. To do this, the DIC data are phase-averaged and the
forcing frequency component extracted in the same manner as the PIV velocity
fields in Chapter 4, yielding dy |ωf . While an interaction with the synthetic mode
was anticipated, preliminary laser displacement measurements indicated that the
compliant surface responded to the roughness actuation even when the water tun-
nel remained off. Such a response indicated that oscillations from the roughness
apparatus were somehow transmitted to the compliant surface, even with no flow.
Great care was taken to completely isolate the roughness element/motor apparatus,
the acrylic plate/support structure, and the camera/laser/optics from one another. In
addition, the forcing frequency signature was still observed in the gelatin surface
in the preliminary laser displacement data when the roughness was actuated far
from the plate, with no possibility of direct contact or direct vibration transmission.
Thus, quite surprisingly, it is likely that this signature is due to pressure fluctuations
from the roughness element, transmitted through the water, into the acrylic, and
finally to the gelatin. To characterize and possibly separate this response, DIC data
were acquired with the roughness actuation on and the tunnel off. These data were
also phase-averaged and the forcing component extracted, and are denoted by an
additional subscript ‘TO’ for ‘tunnel-off’, i.e. dy,TO|ωf .

Phase snapshots of the phase-averaged deformation fields are given in Figures 6.3,
6.4, and 6.5, where j is the phase index variable defined in equation 4.2, with
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j = 0 corresponding to the roughness-flush position. The left column plots are the
data with the tunnel on, dy |ωf , and the center column plots the data with the tunnel
off, dy,TO|ωf . As a simple attempt to remove the signature of the latter from the
former, the tunnel-off data are uniformly scaled and subtracted from the tunnel-on
data. This scaling factor, γ, is determined as the minimizer of the square difference,(
dy |ωf − γdy,TO|ωf

)2. Additional consideration could have been taken to account for
a slight phase difference in the two signals; however, as this is primarily a visual
aid, the simple scaling factor is used. This scaled difference is plotted in the right
column of the figures.

In the left column of Figure 6.3 (LE FOV), nearly spanwise-constant waves are
observed to convect downstream, where they are slightly obscured by a low-
wavenumber, high-amplitude component. This low-wavenumber content in dy |ωf

correlates very well with the dy,TO|ωf field in the center column, where the stream-
wise waves are absent. dy,TO|ωf appears to be similar to the first normal mode of a
vibrating membrane, and is the signature of the pressure waves from the roughness
oscillation. In contrast, the traveling-wave structure observed in dy |ωf is best at-
tributed to interaction with the synthetic mode in the flow. The scaled difference in
the right column better highlights the streamwise waves, though the vibration signal
is still somewhat present.

Figure 6.4 is consistent with 6.3, showing clear streamwise traveling waves in dy |ωf

and signs of the vibration mode in both dy |ωf and dy,TO|ωf . Notably, there are no
spanwise waves emanating from the side edge of the sample, as is the case in features
C and D from the CW-unforced data. Once again, the scaled difference in the right
plot is able to highlight the streamwise wave component of the deformation. In
the TE data given in Figure 6.5, the traveling waves even more obscured by the
now more pronounced vibration mode. The scaled difference is less successful in
drawing out the waves. However, the kz = 0 waves are present and do convect
downstream. Despite the traveling waves being more obscured, the vibration mode
is notably stronger at the TE, and this is the reason for the ff peak being highest for
the TE FOV in Figure 6.1. The TE also contains the largest low frequency (feature
A) peak in Figure 6.1, as well as for the CW-unforced data in Figure 5.1 from the
previous chapter. Feature A appeared to consist of large-scale, low wavenumber
structures. It may be that some asymmetry in the geometry or properties of the
gelatin sample leads to the TE area being more sensitive to large-scale deformation
modes. It may also have to do with the interaction with the mean flow, biasing the
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surface’s response.

In all, the data from the three FOVs in Figures 6.3, 6.4, and 6.5 describe streamwise-
traveling waves, with a wavelength of ∼2δ, convecting strictly downstream with a
wave speed of ∼25 cm/s or ∼0.7U∞. Comparing to the observations of the CW-
unforced study, these waves are decidedly not consistent with features A (large-scale,
slowly convecting) or E (noise signal). There are some similarities to B (semi-
coherent streamwise waves), but dy |ωf is significantly more coherent. Features C
and D do contain distinct streamwise and spanwise traveling waves. However, these
waves propagate towards the sample’s center at a speed of ∼80 cm/s, in contrast with
the dy |ωf waves traveling strictly downstream and with a much lower wave speed. In
conclusion, the traveling-wave component of the roughness-forced surface response
is best attributed to direct interaction with the synthetic mode. Thus, the experiment
has successfully elicited a detectable surface response to the flow structure generated
by the dynamic roughness.
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Figure 6.3: Phase snapshots of LE FOV from the CW-DRF study (actuation con-
dition ii) of (left column) dy |ωf , (center) dy,TO|ωf , and (right) dy |ωf −γdy,TO|ωf . The
colorbar limits are [−6, 6] um.
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Figure 6.4: Phase snapshots of corner FOV from the CW-DRF study (actuation
condition ii), following the same column format as Figure 6.3. The colorbar limits
are [−6, 6] um.
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Figure 6.5: Phase snapshots of TE FOV from the CW-DRF study (actuation con-
dition ii), following the same column format as Figure 6.3. The colorbar limits are
[−6, 6] um.
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6.2 Extracting the spatial component of the forced deformation (part 1)
Aswith the velocity data of the syntheticmode, amethodwas developed to extract the
spatial component of the deformation data that is directly correlated to the dynamic
roughness forcing. In the case of the flow measurements, this was accomplished by
temporally phase-averaging the data and estimating the streamwise derivative of the
phase of the resulting Fourier mode, yielding the synthetic mode wavenumbers, kxf .
This method was applicable because the velocity response is well approximated by
a single (decaying) traveling wave and has a nearly linear streamwise phase. As
already discussed, the surface deformations contain at least one traveling wave and
a vibration mode, and possibly other spatial scales. This is readily observable in
the streamwise mode shapes of d̂y |ωf , as shown in Figure 6.6 for the LE data and
actuation condition ii. Figure 6.6a gives the amplitude of d̂y |ωf as a function of x,
displaying strong modulation due to interacting spatial scales. Figure 6.6b gives the
streamwise phase, which is clearly nonlinear, again due tomultiple scales interacting,
and thus the previous method of calculating kxf is not valid. However, it has already
been shown that the traveling-wave component of the surface response is directly
attributable to interaction with the synthetic mode. Thus, rather than independently
identifying kxf from the deformation data, the well-defined kxf of the synthetic
mode in the flow will be leveraged to extract the kxf-coherent spatial component
of the surface response. This is the same process as was used to isolate the ωf-kxf

component of the velocity fields in Chapter 4. Before applying this procedure, the
velocity measurements for the CW-DRF study will be briefly discussed.

(a) (b)

Figure 6.6: (a) amplitude and (b) phase of d̂y |ωf as functions of x, taken from the
LE FOV of the CW-DRF study for actuation condition ii.
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6.3 Mean properties and spatio-temporal signature of the CW-DRF flow
The mean flow statistics for the compliant-wall, dynamic-roughness-forced flow (4)
are presented in Figure 6.7, along with the statistics from the SW-DRF (�) and
canonical (©) flow studies. The forced data are for actuation condition iii, and
each data set is scaled using the freestream velocity and boundary layer thickness
from the corresponding SW- and CW-unforced data sets (values given in Table 3.1).
All profiles are taken from the x/δ = 4.7 station in the PIV. In Figure 6.7a, the
compliant-wall mean profile closely resembles the smooth-wall profile, exhibiting
the same deficit for 0.07 < y/δ < 0.6. Likewise, Figures 6.7b-6.7d show close
agreement in the turbulence intensities and Reynolds shear stress, having increased
values over the canonical case, again indicative of internal layers. Some deviation
can be seen in the streamwise turbulence intensity near the wall, as the urms peak in
the compliant-wall profile has shifted nearer to the wall to an unresolved y location.

The j = 0 (roughness-flush) phase snapshots of the ωf velocity components are
shown in Figure 6.8 for the SW- and CW-DRF data (actuation condition iii). The
smooth-wall data have been truncated in x to match the compliant-wall FOV. Both
the streamwise and wall-normal structures are very similar between the two studies,
containing T-S wave traits. Close inspection of the downstream region shows that
the compliant-wall synthetic mode begins to lag slightly behind the smooth-wall
mode. This is a result of the compliant-wall structure having a slightly shorter
wavelength, as will be quantified shortly. Nearly all the observations of the SW-
DRF study discussed in Chapter 4 apply to the CW-DRF data, including broad kxf

spectral peak and resulting the amplitude modulation, and will not be repeated here.

The method to estimate the streamwise wavenumber of the synthetic mode em-
ployed in Chapter 4 (calculating the streamwise derivative of ∠v̂ωf ) is applied to
the compliant-wall PIV data here. The resulting wavenumbers and wave speeds
are given in Tables 6.1 and 6.2. kxf for the smooth- and compliant-wall studies are
plotted together in Figure 6.9. As in the smooth-wall case, the compliant-wall kxf

is a nearly linear function of ωf . The least-squares linear fit to the compliant-wall
data (not including the Duvvuri & McKeon (2015) [14] data point) is also plotted
and is calculated to be:

kxfδ

(
ωfδ

U∞
,

hrms
δ
= 0.042

)
= 1.20

ωfδ

U∞
+ 0.17. (6.1)

The coefficient onωf in Equation 6.1 is 9% larger than the coefficient for the smooth-
wall case (Equation 4.9), indicating that the compliant-wall system supports shorter
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synthetic structures. The kxf-axis intercepts appear similar in Figure 6.9, with the
compliant-wall value being 5.5% lower than the smooth-wall value. As discussed
in Chapter 4, the non-zero kxf-axis intercept is unphysical and suggests nonlinear
behavior for very small ωf .

hrms/δ [hrms]
0.042 [1.1 mm] 0.069 [1.8 mm]

ωfδ
U∞
[ ff]

1.4 [3 Hz] i. 1.99 (3.17) -
2.4 [5 Hz] ii. 2.88 (2.19) iii. 2.78 (2.26)
4.8 [10 Hz] iv. 5.93 (1.06) -

Table 6.1: Streamwise wavenumbers, kxfδ, (and wavelengths, λxf/δ, in parentheses)
calculated for each actuation condition for the CW-DRF study.

hrms/δ [hrms]
0.042 [1.1 mm] 0.069 [1.8 mm]

ωfδ
U∞
[ ff]

1.4 [3 Hz] i. 0.67 -
2.4 [5 Hz] ii. 0.77 iii. 0.80
4.8 [10 Hz] iv. 0.74 -

Table 6.2: Wave speed, cf/U∞, for each actuation condition for the CW-DRF study.

The method to isolate the ωf-kxf component of the velocity fields employed in
Chapter 4 (DFT in t and x, zero-padding in x to match kxf) is applied to the
compliant-wall PIV data. Following the analysis of Chapter 4, the amplitude and
phase values of the streamwise and wall-normal modes are given in Table 6.3.
Comparing to the values of Table 4.6, the amplitudes between the two studies are
comparable. As in the smooth-wall case, the amplitude of ̂̂v ωf kxf is noticeably higher
for the higher actuation condition, while the phases are both π/2 from the phase
of the roughness. A more detailed comparison and analysis of the ωf-kxf velocity
mode shapes in these studies will be presented in Chapter 7.

Case ii Case iii
yCL/δ Amplitude Phase yCL/δ Amplitude Phasê̂u ωf kxf (yCL) 0.27 3.3 · 10−3 0.46π 0.31 3.0 · 10−3 0.84π̂̂v ωf kxf (yCL) 0.27 3.0 · 10−3 0.50π 0.31 11.1 · 10−3 0.52π

Table 6.3: Amplitudes and phases of the ωf-kxf velocity modes at the critical layer
location, for the CW-DRF study, actuation conditions ii and iii. The amplitudes are
scaled to reflect the physical velocity and normalized by U∞.
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(a) (b)

(c) (d)

Figure 6.7: Comparison of canonical, SW-DRF, and CW-DRF mean flow statistic,
taken from x/δ = 4.7 and for actuation condition iii for the forced data: (a) mean
streamwise velocity, (b) streamwise turbulence intensity, (c) wall-normal turbulence
intensity, (d) Reynolds shear stress. Velocities are scaled by the freestream velocity
and plotted in outer scaling, y/δ. © canonical; � SW-DRF; 4 CW-DRF.
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(a)

(b)

Figure 6.8: j = 1 phase snapshot of (a) uωf and (b) vωf for the SW-DRF (top) and
CW-DRF (bottom) studies, both at actuation condition iii. The colorbar limits are
[−0.2, 0.2].

Figure 6.9: Streamwise wavenumber of the synthetic mode, kxf , versus angular
forcing frequency, ωf , for the actuation amplitude hrms=0.042. © SW-DRF data;
– – SW-DRF linear fit; � CW-DRF; – – CW-DRF linear fit; ∗ Duvvuri & McKeon
(2015) [14].
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6.4 Extracting the spatial component of the forced deformation (part 2)
The wavenumbers calculated for the CW-DRF synthetic flow mode are now used
to inform the extraction of the synthetic mode-forced component of the surface
response. The method is identical to the one used to isolate the ωf-kxf component
of the velocity fields: the DIC data are zero-padded in x for the optimal spectral
resolution that is a fraction of kxf . This procedure was performed for x/δ > 2 (to
avoid the transient region just downstream of the roughness) and for all z.

The phase-averaged, ωf component of the wall-normal deformation is discrete
Fourier transformed in time, and then zero-padded and transformed in the stream-
wise direction, as shown in Equations 6.2 and 6.3, respectively:

dy |ωf (x, z, t) = d̂y |ωf (x, z)e
−iωf t + c.c. (6.2)

=

[∑
n

̂̂d y |ωf (z; nkxf)ei(nkxf x−ωf t)

]
+ c.c., (6.3)

where, again, ̂̂
(·) indicates a quantity that has been discrete Fourier transformed in t

and x. As with the velocity data, the ωf-kxf Fourier component of the deformations
is referred to as ̂̂d y |ωf kxf =

̂̂d y |ωf (z; n = 1) and the reconstructed deformation field
referred to as dy |ωf kxf . The phase snapshots of dy |ωf kxf from the LE are given on
the right in Figure 6.10. Qualitatively, the ωf-kxf component captures the traveling
wave deformations well.

The amplitudes of theωf-kxf Fourier coefficient for the LE (©) and corner (�) FOVs
are plotted as a function of z in Figure 6.11 to investigate any spanwise variation.
The data from the two FOVs agree well in the region of overlap, and both indicate
that the amplitude of the ωf-kxf response is slightly weaker along the centerline,
increases towards the spanwise edge, plateaus between−4.5 < z/δ < −2.5, and then
decays to the edge (z/δ = 6). To explore a possible reason for the convex bowing
in |̂̂d y |ωf kxf |, the kx-amplitude spectrum is plotted in Figure 6.12 for two spanwise
locations, z/δ = 0 and −2.8δ. The kx-axis is scaled by kxf . For both locations,
a local peak is seen at kx = kxf , but the peak is notably higher in the off-center
location, while the kx = 0 content, related to the vibration mode, is higher in the
centerline location. The synthetic mode in the flow has already been shown to be 2D,
so this variation is unlikely to be due to a variation in the flow forcing. The inverse
relationship between the kx = kxf and kx = 0 peaks suggests that the presence of
the vibration mode reduces the signature of the traveling-wave mode. This could
be a dynamical interaction, with the vibration mode altering the compliant surface
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and reducing its receptivity to the synthetic mode forcing. Alternatively, it could be
a kinematical interaction, if the vibration mode is sufficiently broadband in kx and
has a kx = kxf component out of phase with the synthetic mode forcing, resulting
in destructive interference.

Even with the decreased amplitude, the ωf-kxf component of the deformation is
still discernible along the centerline, and allows for an amplitude and phase of the
surface response mode to be defined. The amplitude and phase of the wall-normal
deformation can be related to the amplitude and phase of the wall-normal velocity
at the wall (vw) by the Fourier transformed no-through flow boundary condition:

̂̂v w |ωf kxf = −iωf
̂̂d y |ωf kxf (6.4)

⇒

���̂̂v w |ωf kxf

��� = ωf

����̂̂d y |ωf kxf

���� (6.5)

⇒ ∠̂̂v w |ωf kxf = ∠
̂̂d y |ωf kxf −

π

2
. (6.6)

The amplitudes and phases of the ωf-kxf wall-normal deformation and wall velocity
were computed for actuation conditions ii and iii, and are given in Table 6.4. In
both cases ii and iii, the deformation amplitude is very small, ∼1 um or ∼10−4δ.
Though the amplitudes are comparable to those measured in the unforced study, it
is expected that these deformations are more reliably measured due to the phase-
averaging process. Taking the uncertainty or noise floor of the DIC processing to
be a standard error of the measurement, the phase-averaging process reduces the
propagated error by a factor of

√
N , where N is the number of samples. In this

case, the error is reduced by a factor of 30 by the phase-averaging procedure. While
the wall velocity magnitudes are also small relative to U∞, they are on the order of
1% of the critical layer values in Table 6.3. The phase difference between the wall
velocity and critical layer values is difficult to interpret using only two points. This
ambiguity will be resolved in Chapter 7 using the full mode shape.
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Case ii Case iii
Amplitude Phase Amplitude Phasê̂d y |ωf kxf

0.61 um
0.2 · 10−4δ

0.01δν
1.37π

1.81 um
0.7 · 10−4δ

0.03δν
1.46π

̂̂v w |ωf kxf 5.3 · 10−5 0.87π 1.6 · 10−4 0.96π

Table 6.4: Amplitudes and phases of the ωf-kxf wall-normal surface deformation
mode and corresponding wall velocity mode for the CW-DRF study, actuation con-
ditions ii and iii. ̂̂d y |ωf kxf amplitudes are scaled to reflect the physical deformations
and are provided in dimensional, outer-scaled, and inner-scaled forms. ̂̂v w |ωf kxf

amplitudes are scaled to reflect the physical velocity and normalized by U∞.
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Figure 6.10: Phase snapshots from the LE FOV (actuation condition iii) of the (a)
forcing frequency deformations, dy |ωf and (b) ωf-kxf component, dy |ωf kxf . Phase
indices increase from top to bottom, j = [1, 3, 7, 10, 13, 16, 19]. The colorbar limits
are [−5.5, 5.5] um. The colorbar limits are [−1.5, 1.5] um.
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Figure 6.11: Amplitudes of the of the ωf-kxf deformation versus z for actuation
condition ii. The amplitudes are scaled to reflect the corresponding physical surface
displacements in um. © LE FOV; � corner FOV.

Figure 6.12: kx-amplitude spectrum of the of the wall-normal deformation at two
spanwise locations. The kx-axis is normalized by kxf , and the amplitudes are scaled
to reflect the corresponding physical surface displacements in um. © — z/δ = 0;
�— z/δ = −2.8.



111

6.5 Chapter summary
The deformation response of the CW-DRF system was studied. Comparing the
dy power spectra between the CW-unforced and CW-DRF cases, the forced data
appeared very similar to the unforced, with slightly modified low frequency content
and the addition of a prominent peak at the forcing frequency. The spatial struc-
ture of the ff content was examined and found to contain a large amplitude, low
wavenumber, vibration-type component, and a nearly-spanwise constant, stream-
wise traveling wave. The vibration-type deformation was present even when there
was no flow, and was attributed to the pressure waves emanating from the roughness
as it oscillated, which transmitted indirectly to the gelatin, through the water and
the acrylic plate. The traveling wave was best attributed to the surface’s response
to the synthetic mode in the flow, as it was not consistent with any of the unforced
deformation modes from the CW-unforced study. Thus, the experiment successfully
elicited a surface response from the roughness-generated synthetic mode.

The flow response of theCW-DRFwas then characterized. Themean flowproperties
were found to be very similar to the SW-DRF case, with evidence of internal layer
development. Phase snapshots from the SW and CW studies were compared and
found to share dominant, T-S-like structure, with the CW data having a slightly
higher streamwise wavenumber. kxf values were calculated for the CW data and
exhibited a similar linear relationship with ωf as the SW study, though with a higher
slope such that the CW kxf were higher than the SW for a given ωf .

The kxf values were then used to extract the spatial component of the forced surface
deformation using an identical zero-padded DFT process as the velocity fields in
Chapter 4. dy |ωf kxf captured the traveling-wave component of the phase-averaged

deformations well. The LE and corner data for the |̂̂d y |ωf kxf |(z) revealed that the
amplitude of theωf-kxf deformationmode has a convex bow-shape centered at z = 0.
As |̂̂d y |ωf kxf | increases towards the spanwise edge, the kx = 0 (vibration-type) mode

amplitude, |̂̂d y |ωf |(z; n = 0), decreases. This may suggest an interaction between
the vibration and traveling-wave modes, whereby the vibration acts to reduce the
amplitude of the synthetic mode surface response. The ̂̂d y |ωf kxf component was
used to estimate the wall-normal velocity of the surface, ̂̂v w |ωf kxf , which in turn
allowed for a ̂̂v ωf kxf amplitude ratio and phase difference to be defined between the
critical layer and wall locations.
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C h a p t e r 7

COMPARISON OF SMOOTH- AND COMPLIANT-WALL
RESPONSES TO DYNAMIC ROUGHNESS FORCING
THROUGH THE LENS OF RESOLVENT ANALYSIS

As mentioned in Chapter 6, the flows in the SW- and CW-DRF studies share many
features. The structure of the synthetic mode is certainly visually similar in both
cases. One notable difference is in the streamwise wave numbers of the synthetic
modes, with the compliant-wall kxf being measurably shorter than the smooth-wall
values. To explore other, possibly more nuanced effects of the compliant wall
on the synthetic mode, the resolvent framework will be used to provide a guiding
perspective. In this chapter, the resolvent methodology will be briefly outlined,
resolvent modes will be computed to predict flow features, and the ωf-kxf velocity
modes will be compared to the predictions in addition to conditionally averaged
modes.

7.1 Resolvent formulation
The resolvent framework was applied by McKeon & Sharma (2010) [45] as an
approach to study problems turbulent flows in a low-rank manner by investigating
the preferentially amplified modes of the resolvent operator. Here, the formulation
by Luhar et al. (2015) [43] will be considered, for a fully developed channel
flow, with x, y, and z corresponding to the streamwise, wall-normal, and spanwise
directions, walls at y=0 and y=2, the channel half-height denoted h. All terms in the
following methodology have been non-dimensionalized using h and uτ. A Fourier
decomposition is employed in the homogeneous directions, x, z, and t:

g(x, y, z, t) =
∭ ∞

−∞

g

∧

k(y)e
i(kx x+kz z−ωt) dkxdkzdω , (7.1)

where k = (kx, kz, ω) is the Fourier wavenumber vector and (·)

∧

indicates a Fourier-
transformed quantity in all three homogeneous directions, to avoid confusion with
the (̂·) notation for a 1D-DFT used up until this point.

The Navier-Stokes equations (NSEs) are written in primitive-variable form, with
pressure explicitly retained to later solve for the boundary condition. The NSEs are
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then Fourier-transformed and written in an input-output form:[
u∧

k

p∧

k

]
=

(
−iω

[
I

0

]
−

[
Lk −∇k

∇T
k 0

])−1 [
I
0

]
f

∧

k (7.2)

= Hk f

∧

k , (7.3)

where u∧

k and p∧

k are the Fourier-transformed velocity and pressure fields and f

∧

k is
the Fourier-transformed nonlinear term:

f

∧

k = (−u · ∇u)

∧

k , (7.4)

all corresponding to the wavenumber vector k. ∇k = [ikx, ∂/∂y, ikx]
T and ∇T

k
represent the Fourier-transformedgradient and divergence operators, respectively. In
this framework, the nonlinear term acts as an endogenous forcing to the velocity and
pressure through the resolvent operator,Hk, which depends on the linear component
of the NSEs:

Lk =


−ikxU + Re−1

τ ∇
2
k −∂U/∂y 0

0 −ikxU + Re−1
τ ∇

2
k 0

0 0 −ikxU + Re−1
τ ∇

2
k

 , (7.5)

where ∇2
k is the Fourier-transformed Laplacian. Note that Hk contains terms with

the mean velocity, U(y), which is assumed to be known a priori.

The problem is discretized in y using N Chebyshev collocation points, then the
discrete resolvent operator Hk is constructed, and a singular value decomposition
(SVD) is performed:

Hk(y) =
N∑

q=1
ψkq(y) σkq φ

∗
kq(y) , (7.6)

where ψkq are the singular response modes (henceforth referred to as resolvent
modes), σkq are the (ordered) singular values, and φkq are the singular forcing
modes. Velocity and pressure can then be expressed as:[

u∧

k(y)

p∧

k(y)

]
=

N∑
q=1

ψkq(y) σkq

(
φkq , f

∧

k

)
(7.7)

=

N∑
q=1

ψkq(y) σkq χkq , (7.8)
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where (· , ·) indicates an inner product and χkq are the weights formed by projecting
the nonlinear forcing onto the singular forcing modes.

At this point, the rank-1 approximation discussed in Chapter 1 is invoked to approx-
imate the resolvent operator by the first resolvent mode, singular value, and singular
forcing mode:

Hk(y) ≈ ψk1(y) σk1 φ
∗
k1(y). (7.9)

This then allows the velocity and pressure to be approximated by:[
u∧

k(y)

p∧

k(y)

]
≈ σk1 ψk1(y) (7.10)

with the additional assumption of broadband forcing, discussed in McKeon &
Sharma (2010) [45]. In this analysis, the shapes of the resolvent modes, ψk1, are
used to predict features of the SW- and CW-DRF data. In the discussion, the
subscript ‘k1’ will be suppressed and will indicate the response component, i.e. ψx ,
ψy, and ψp for the streamwise, wall-normal, and pressure resolvent modes.

The framework by Luhar et al. (2015) [43] models the effect of a compliant-wall by
modifying the otherwise rigid, smooth-wall boundary condition. The compliantwall
is considered by introducing a wall displacement term at the boundaries, η(x, z, t),
constrained to be in the wall-normal direction. Along the boundary, the no-slip and
no-through flow conditions are applied and a Taylor’s expansion performed about the
undeformed wall location. These boundary conditions can be made for an arbitrarily
large wall deformation by retaining higher-order terms in the expansion, at the cost
of amore complex, nonlinear set of equations. Instead, following Luhar et al. (2015)
[43], the deformations are assumed small and the boundary conditions are linearized
to enable a more computationally tractable analysis. Given the small deformations
observed in the DIC data, O

(
10−4)δ, this assumption is at least somewhat justified

and will be considered when interpreting the results. Thus, the linearized, Fourier-
transformed velocity boundary conditions can be written as:

u∧

k(0) = −η

∧

k
dU
dy

�����
0

(7.11)

v

∧

k(0) = −iωη∧

k (7.12)

w

∧

k(0) = 0. (7.13)

A derivation of the compliant-wall boundary conditions is provided in Appendix
C. Note that u∧

k(0) is required to balance a mean shear term introduced by the wall
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deformation, and that v∧

k(0) is related to the deformation by the no-through flow
boundary condition. Also, equations 7.11 and 7.12 together require that u∧

k(0) has a
π/2 phase lead with respect to v

∧

k(0) at the wall.

The pressure boundary condition is determined by the dynamic coupling between
pressure and the wall motion. Here, this coupling is modeled as a spring-mass-
damper system [62], for which the wall pressure and wall deformation are connected
by: [

Cm(−ω
2) + Cd(−iω) + Ck

]
η

∧

k = −p∧

k(0) , (7.14)

where Cm, Cd , and Ck are the dimensionless mass, damping, and spring coefficients.
These coefficients are defined as:

Cm =
ρwbw
ρh

(7.15)

Cd =
dw
ρuτ

(7.16)

Ck =
k′swh

ρu2
τ

, (7.17)

where the following are all plate properties with subscript ‘w’ for ‘wall’: ρw is
the density, bw the thickness, dw the damping coefficient, and k′sw the area-spring
stiffness. Though not considered in this analysis, additional tension and stiffness
coefficients can be included to account for the effects of tension and flexural rigidity
(stiffness) of the plate.

A complex wall admittance term, Y , is defined that connects the pressure and the
wall-normal velocity at the wall, and using equations 7.12 and 7.14 is written as:

Y =
v

∧

k(0)
p∧

k(0)
(7.18)

=
iω

−ω2Cm − iωCd + Ck
. (7.19)

This complex admittance is used to account for the material properties of the wall.
Thus, equations 7.11-7.13 and 7.18-7.19 are used as the boundary conditions for the
velocities and pressure at y=0 and y=2, with the sign of Y flipped between the two
walls due to centerline symmetry.

The value of Y was calculated for the gelatin material used in this study, using the
canonical flow values of δ and uτ from Table 3.1. As discussed in Chapter 2, the
viscoelastic effects in the gelatin were found to be minimal, and so the material is
considered linearly elastic. Accordingly, the damping coefficient was assumed zero,



116

and thus Y was guaranteed to be purely imaginary. Taking the channel half-height
to be the boundary layer thickness and taking the gelatin’s density to be the same as
water, the mass coefficient was calculated to be Cm = 1. An effective area-spring
stiffness was related to the gelatin’s Young’smodulus, E , by considering thematerial
to be in uniaxial tension/compression:

k′sw =
ksw

Aw
=

E
bw

, (7.20)

where ksw is the typical spring stiffness and Aw is the (x−z) area of the gelatin
sample. Thus, the spring coefficient was calculated to be Ck = 1.7 · 104. The
frequency was taken to be the forcing frequency from actuation condition iii and
non-dimensionalized by h and uτ, yielding ω = 50. This gave an admittance
of Y = 0.003i. The purely imaginary nature of Y indicates that the wall-normal
velocity leads the pressure at the wall by π/2. The boundary condition in equation
7.12 implies that the wall deformation, in turn, leads the velocity by π/2. This is
precisely the expected behavior of the damping-less spring-mass model being used.
The amplitude ofY is low relative to values explored by Luhar et al. [43], indicating
that the material is relatively rigid, despite the gelatin being fabricated as soft as
possible. This may provide perspective on the level of compliance required by a
physical material to achieve a modeled performance, or suggest that other coefficient
terms need to be exploited. Note that though arriving at this value of Y required
a number of assumptions, the results are fairly insensitive to the precise value of
Y , with key features only being scaled in magnitude and wall-normal location for
10−4 < Y < 10−2.

TheMATLABcode for channel flow resolvent analysiswith a compliant-wall bound-
ary condition [43] was used to generate the results discussed in this chapter. A study
was done with code for a boundary layer flow as well [32, 52], with identical results
near the wall and only slight differences in the outer part of the flow, as expected.
Themean velocity profile is generated using the eddy viscosity model of Reynolds &
Tiederman (1967) [51], with more description provided in Luhar et al. (2015) [43].
An experimental mean profile could have been used to account for the modification
from the dynamic roughness, but this would have required a choice of interpolation
scheme and would have become difficult near the wall, where the averaging effect
of PIV is more pronounced. Therefore, the following analysis considers an uncon-
trolled, numerically-generated mean, which is an additional simplification. Note
that the same mean profile is used for both the smooth-wall and compliant-wall
resolvent modes. The grid resolution used was N = 200, and the friction Reynolds
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number was matched to the canonical flow value of Reτ = 410 from Table 3.1. The
code was executed on a single-core laptop and took about 0.5 s to compute one set
of singular values and resolvent modes.

7.2 Prediction of compliant-wall flow features from resolvent modes
Resolvent modes were computed for smooth-wall (Y=0) and compliant-wall (Y =
0.003i) boundary conditions, using wavenumber vectors k=[kx, kz, ω]

T that corre-
sponded to the synthetic mode from the experiments, kf = [kxf, 0, ωf]

T, for actuation
condition iii. As kxf differs between the SW- and CW-DRF studies, kx=2.67 and
kx=2.78 are used for the smooth-wall and compliant-wall resolvent modes, respec-
tively. The mode shapes are plotted in outer scaling, y/h, to facilitate comparison
with the experimental data. All amplitudes are normalized by the peaks of |ψx | to
preserve the relative amplitude information between ψx and ψy. The phase of the
smooth-wall ψy mode is matched to the phase of the compliant-wall ψy mode at
y=h, and all other mode phases are shifted accordingly. This normalization and
phase matching are done for all comparisons of smooth- and compliant-wall modes.

Figures 7.1 and 7.2 show the amplitudes and phases for both the SW and CW ψx and
ψy. The streamwise modes in Figure 7.1 are dual-peaked in amplitude and undergo
a π phase jump at the wall-normal location corresponding to the amplitude zero-
crossing, with the jump indicative of a downstream inclination of the modes. The
wall-normal modes in Figure 7.2 are single-peaked and tall, with a nearly constant
phase except very near the wall. The amplitude of ψx is notably higher than ψy.
Comparing the SW and CW cases, there is a clear difference in where the modes
are centered; the compliant-wall mode is shifted more towards the wall. This can be
understood from a critical layer perspective, since the CWmode has a larger kx with
the same ω, and thus has a lower wave speed and lower critical layer location than
the SW mode. If the CW modes were scaled in y to match the SW yCL location,
the two would still not match identically. In |ψx |, the second peak is slightly more
amplified (relative to the first peak) for the CW mode than the SW mode. Looking
at |ψy |, the CWmode is distinctly less amplified than the SWmode, again relative to
the peak in |ψx |. The phases of ψx and ψy between the two sets have nearly identical
shape and shift, with the shifted critical layer clearly evident in ∠ψx . The phases
deviate between the SW and CW modes very near the wall, which is explored next.

The same amplitude and phase plots are shown in Figures 7.3 and 7.4 for 0 < y/δ <

0.1 to examine the near-wall behavior. In Figure 7.3a, the CW streamwise mode
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amplitude appears higher compared to the SW, though it is difficult to discern if
this is an effect of the boundary condition or simply the difference in yCL. Note
that the CW amplitude does not go to zero at y = 0, as expected for the modified
boundary condition. The phases in Figure 7.3b show a more distinct feature in ψx ,
with the CW phase deviating from the SW around y/h = 0.016 and going from a
positive to negative gradient as the wall is approached. In Figure 7.4a, the CW |ψy |

has a minimum at y/h = 0.016, while ∠ψy in Figure 7.4b undergoes a −π phase
jump at the same location. Both of these details are absent in the SW modes. The
local minimum or cusp in |ψy | and −π phase jump in ∠ψy are similar to the features
observed in the resolvent-based opposition control study by Luhar et al. (2014)
[41], who drew comparison with the ‘virtual wall’ described by DNS opposition
control studies [10, 25]. In these opposition control studies, wall jets were simulated
and induced vertical blowing/sucking to oppose the vertical velocity measured at
a selected wall-normal measurement plane. From a mode phase perspective, this
opposition requires that∠ψy undergoes a π jump near the wall. This control scheme
developed a virtual wall above the actual wall, limiting momentum transfer in the
near-wall region.

The fact that spring-mass-modeled, compliant-wall resolvent modes act in a similar
way to the opposition control can be understood by considering the phase behavior
of ψy and ψp, which are plotted for the SW and CW case in Figure 7.5. Outside
of the near-wall region, ψy and ψp have a nearly constant π/2 phase difference,
∠ψy − ∠ψp = −π/2. As explained by Luhar et al. (2014) [42], this constant
π/2 phase difference stems from the fact that, for the resolvent modes, the primary
contribution to the pressure term is from the so-called ‘fast pressure’ term in the
Poisson equation for pressure. Within the scope of the mode phases, this implies
ψp ∼ −iψy to within a real-valued scaling, leading to∠ψy −∠ψp = −π/2. However,
the purely imaginary complex admittance, Y , in the resolvent boundary condition
requires that the velocity leads pressure by π/2 at the wall, ∠ψy(0) −∠ψp(0) = π/2,
per equation 7.18. As also observed by Luhar et al., the pressure modes in Figure
7.5 have essentially constant phase through the entire domain, down to the wall.
With ∠ψp constant, ∠ψy is required to undergo a π phase jump to satisfy the phase
boundary condition, just as in the case with opposition control. Thus, from the
resolvent perspective, a purely elastic (and relatively rigid) wall mimics the action
of thewall jets in opposition control, and yields the familiar virtual wall. This feature
provides a lens through which the experimental mode shapes can be examined.
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(a) (b)

Figure 7.1: Comparison of the (a) amplitudes and (b) phases of the streamwise
resolvent response mode, ψx , with the smooth- and compliant-wall kx values match-
ing those of the experiment. Mode amplitudes are normalized by their peaks, and
the smooth-wall mode phase is matched to the compliant-wall phase at y = h. —
smooth-wall (kx = 2.67); – – compliant-wall (Y = 0.003i, kx = 2.78)

(a) (b)

Figure 7.2: Comparison of the (a) amplitudes and (b) phases of the wall-normal
resolvent response mode, ψy, with the smooth- and compliant-wall kx values match-
ing those of the experiment. Mode amplitudes are normalized by the peak in |ψx |,
and the smooth-wall mode phase is matched to the compliant-wall phase at y = h.
— smooth-wall (kx = 2.67); – – compliant-wall (Y = 0.003i, kx = 2.78)
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(a) (b)

Figure 7.3: Comparison of the (a) amplitudes and (b) phases of the streamwise
resolvent response mode, ψx , with the smooth- and compliant-wall kx values match-
ing those of the experiment. Mode amplitudes are normalized by their peaks, and
the smooth-wall mode phase is matched to the compliant-wall phase at y = h. —
smooth-wall (kx = 2.67); – – compliant-wall (Y = 0.003i, kx = 2.78)

(a) (b)

Figure 7.4: Comparison of the (a) amplitudes and (b) phases of the wall-normal
resolvent response mode, ψy, with the smooth- and compliant-wall kx values match-
ing those of the experiment. Mode amplitudes are normalized by the peak in |ψx |,
and the smooth-wall mode phase is matched to the compliant-wall phase at y = h.
— smooth-wall (kx = 2.67); – – compliant-wall (Y = 0.003i, kx = 2.78)
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(a) (b)

Figure 7.5: Comparison of the phases of the wall-normal (ψy, solid lines) and
pressure (ψp, dashed lines) resolvent response modes, with kx values matching those
of the experiment.: (a) full view, 0 < y/δ < 1, (b) near-wall view, 0 < y/δ < 0.1.
— SW ψy; — CW ψy; – – SW ψp; · · · CW ψp.

7.3 Comparison of smooth- and compliant-wall experimental mode shapes
The streamwise and wall-normal ωf-kxf Fourier mode shapes from the SW- and
CW-DRF studies (actuation condition iii) are given in Figures 7.6 and 7.7, with the
corresponding resolventmodes fromFigures 7.1 and 7.2 plotted for comparison. The
amplitudes are normalized and phases shifted in the same manner as the previous
section. The SW and CW mode shapes look structurally similar in amplitude
and phase, and have several striking resemblances to the resolvent modes. The
T-S characteristics remain present, with a dual-peaked amplitude and (downstream
inclined) π phase jump in ̂̂u ωf kxf and a single-peaked, tall amplitude and nearly
constant phase in ̂̂u ωf kxf . The CW |̂̂u ωf kxf |, |̂̂v ωf kxf |, and ∠̂̂u ωf kxf exhibit a shift
towards the wall relative to the corresponding SW modes. This is in agreement
with the resolvent modes, and again, is consistent with a yCL mechanism due to
the lesser wave speed of the CW synthetic mode. The second peak in |̂̂u ωf kxf | is
more amplified for the CWmode than the SWmode, as is observed for the resolvent
modes. The peaks in |̂̂v ωf kxf | are both less amplified than the peak in |̂̂u ωf kxf |, as
was the case for |ψy |. However, the SW and CW |̂̂v ωf kxf | match much more closely
in amplitude than the SW and CW |ψy |, for which the SWmode is discernibly more
amplified. A noticeable deviation occurs in the ∠̂̂v ωf kxf between the SW and CW
near the wall, as the CW phase shifts in the positive direction.



122

As done with the resolvent modes, a closer inspection is made of the 0 < y/δ < 0.1
near-wall region in Figures 7.8 and 7.9. There are no discernible aspects of ̂̂u ωf kxf

akin to the aforementioned virtual wall feature. In Figure 7.9a with the amplitude
of ̂̂v ωf kxf , there does appear to be a knee in the CW profile around y/δ ∼ 0.03,
but is modest at best in comparison to the cusp in Figure 7.9b. As noted, the CW
phase of ̂̂v ωf kxf in Figure 7.9c does diverge from the SW phase by over π/2. It seems
plausible that the phase may continue to a full π phase difference if the measurement
extended closer to the wall, which would agree with the required π phase jump of
ψy in Figure 7.9d for the resolvent prediction. However, the sense of this jump is
flipped, with the CW ̂̂v ωf kxf structure leaning downstream, while the CW ψy mode
leaned upstream.

The overall structure of the SW and CW ωf-kxf modes is similar, with a relative
wall-normal shift consistent with the different critical layer locations. There is a
substantial deviation in ∠̂̂v ωf kxf near the wall between the two cases, but this is in
the opposite sense as the prediction based on the resolvent modes. The cusp feature
in |̂̂v ωf kxf |, one of the clear signatures of a virtual wall, is notably absent in the CW
mode. Certainly, several assumptions have been made in the resolvent analysis, not
the least of which is the linearized boundary condition, which has an immediate
impact on the region of interest. However, even if a virtual wall phenomenon is
present in the experimental data, there are several reasons that a Fourier analysis
may not be unable to capture it. First, the signature is expected to be very near the
wall, for which the resolution of the data has not been optimized. For example, the
potential ‘knee’ feature in Figure 7.9a is contained in the 4-5 points nearest the wall.
Second, as mentioned in Chapter 2, the gelatin surface is not perfectly smooth nor
flat. This has been addressed to first order, but the surface geometry certainly effects
the DFT analysis. Third and relatedly, as discussed in Chapters 5 and 6, there are
other deformation modes present in the surface besides the response to the synthetic
mode. Though the energy of these other deformations are removed by the phase-
averaging and DFT processes, their imprint on the ωf-kxf modes percolates through
via a changing of the wall location and nonlinear interactions. Even neglecting
the nonlinear contributions, the compounding effects of surface geometry and non-
harmonic deformations on the wall location would distort an existing, near-wall,
streamwise structure, and require a nontrivial coordinate transformation to capture
the structure by Fourier decomposition. Thus, despite not appearing as expected in
the ωf-kxf modes, the virtual wall feature is not yet ruled out. Instead, an alternative
analysis based on conditional averaging will be done in an attempt to circumvent
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the above listed challenges in the data.

(a) (b)

(c) (d)

Figure 7.6: The smooth-wall and compliant-wall (a) amplitudes and (c) phases
of the ̂̂u ωf kxf Fourier modes for actuation condition iii, with the (b) amplitudes
and (d) phases of the streamwise resolvent modes, ψx , plotted for comparison.
Mode amplitudes are normalized by their peaks, and the smooth-wall mode phase
is matched to the compliant-wall phase at y=δ (y=h for the resolvent modes).
© — SW-DRF; �— CW-DRF; — smooth-wall resolvent mode (kx = 2.67); – –
compliant-wall resolvent mode (Y = 0.003i, kx = 2.78).
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(a) (b)

(c) (d)

Figure 7.7: The smooth-wall and compliant-wall (a) amplitudes and (c) phases of
the ̂̂v ωf kxf Fourier modes for actuation condition iii, with the (b) amplitudes and
(d) phases of the wall-normal resolvent modes, ψy, plotted for comparison. Mode
amplitudes are normalized by the peaks in |̂̂u ωf kxf | (|ψx | for the resolventmodes), and
the smooth-wall mode phase is matched to the compliant-wall phase at y=δ (y=h
for the resolvent modes). ©—SW-DRF;�—CW-DRF;— smooth-wall resolvent
mode (kx = 2.67); – – compliant-wall resolvent mode (Y = 0.003i, kx = 2.78).
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(a) (b)

(c) (d)

Figure 7.8: Near-wall close-up of the smooth-wall and compliant-wall (a) amplitudes
and (c) phases of the ̂̂u ωf kxf Fourier modes for actuation condition iii, with the
(b) amplitudes and (d) phases of the streamwise resolvent modes, ψx , plotted for
comparison. Mode amplitudes are normalized by their peaks, and the smooth-
wall mode phase is matched to the compliant-wall phase at y=δ (y=h for the
resolvent modes). ©— SW-DRF; �—CW-DRF; — smooth-wall resolvent mode
(kx = 2.67); – – compliant-wall resolvent mode (Y = 0.003i, kx = 2.78).
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(a) (b)

(c) (d)

Figure 7.9: Near-wall close-up of the smooth-wall and compliant-wall (a) amplitudes
and (c) phases of the ̂̂v ωf kxf Fourier modes for actuation condition iii, with the (b)
amplitudes and (d) phases of the wall-normal resolvent modes, ψy, plotted for
comparison. Mode amplitudes are normalized by the peaks in |̂̂u ωf kxf | (|ψx | for the
resolvent modes), and the smooth-wall mode phase is matched to the compliant-
wall phase at y=δ (y=h for the resolvent modes). ©— SW-DRF; �— CW-DRF;
— smooth-wall resolvent mode (kx = 2.67); – – compliant-wall resolvent mode
(Y = 0.003i, kx = 2.78).
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7.4 Conditional averaging
To avoid the limitations in the data brought on by a nontrivial wall location, a
condition is devised that can be applied to each streamwise position in the data to
search for the anticipated virtual wall feature. From the resolvent modes in Figure
7.4a, the virtual wall’s most identifying aspect is the cusp in |ψy |. Because of this,
the condition is based on the wall-normal gradient of |̂vωf (x, y)|. The gradient,
∂ |̂vωf |

∂y , is generally positive near the wall, as the mode amplitude increases to its
peak value. However, with a virtual wall, the gradient would be negative nearest to
the wall and change signs at a cusp point away from the wall. Accordingly, ∂ |̂vωf |

∂y

is calculated using a one-sided difference scheme, and each streamwise station is
conditioned on whether ∂ |̂vωf |

∂y < 0 for the first, second, or third points from the wall.
A profile meeting this condition from the CW data (actuation condition iii) is plotted
in Figure 7.10. In this profile, a clear cusp feature is observed around y/δ = 0.3 and
resembles the resolvent mode shape in Figure 7.4a.

Proceeding cautiously, the statistical significance of this type of profile is examined.
The conditioning is performed on |̂vωf | for both the smooth- and compliant-wall data,
to determine if this feature is present in both data sets and is possibly an artifact of
the PIV processing. This is done for 2 < x/δ < 7 to match the smaller FOV of the
CW study. 10% of the SW data meets the gradient condition, while 64% of the CW
data satisfy the criterion. This is a statistically significant increase and suggestive of
a change to a physical mechanism. The locations where the condition is met, xc, are
visualized for both data sets in Figure 7.11, where it is seen that the SW locations
are spread and sparse, while the CW locations indeed occupy the majority of the
domain and form relatively cohesive regions.

The conditioned streamwise locations, xc, provide a subset of data where a change
in sign of ∂ |̂vωf |

∂y occurs and over which an average can be taken. However, any cusp-
like features may vary in wall-normal location across xc and would be diminished
by a blind average. Thus, before averaging, the cusp location, yc, is estimated by
the near-wall zero-crossing of ∂ |̂vωf |

∂y for each xc. Then, the profiles |ûωf |(xc, y) and
|̂vωf |(xc, y) are shifted in y such that the cusp point occurs at the same wall-normal
location, y0, for each xc station. Finally, the shifted profiles are averaged together,
yielding |ûωf |cond and |̂vωf |cond, both of which are functions of y. Note that phase
information is not considered in this process and would require special treatment
due to the profiles no longer being equispaced in x. Also, because each of the xc

profiles are shifted in y to move the cusp locations to y0, y0 is somewhat arbitrary



128

and must be chosen. Here, y0 is selected to be the average of the cusp locations,
yc, which for this data was the 4th point from the wall. The conditionally averaged
profiles of the CW amplitudes are compared to the fully streamwise averaged SW
amplitudes, as conditionally averaging the SW data is not appropriate.

The averaged mode amplitudes are given in Figure 7.12 with the resolvent modes for
comparison. Plots of the near-wall region are given in Figure 7.13. As in previous
sections, the amplitudes are normalized by the peak in |ûωf | to preserve the relative
difference between the streamwise and wall-normal velocities. As expected, the
overall characteristics of the mode amplitudes remain in agreement, with T-S wave-
like characteristics. However, in the near-wall region in Figure 7.13c, a distinct cusp
can be seen in |̂vωf | around y/δ = 0.35, and the SW-CW comparison quite closely
resembles the ψy resolvent modes in Figure 7.13d. As mentioned, the cusp has
been selected to sit at the average cusp location, 4 points from the wall, allowing
the feature to be resolved. There does not appear to be a corresponding feature in
|ûωf | in Figure 7.13a, though there is also a lack of distinguishable difference in
the ψx resolvent modes in Figure 7.13b. The CW |ûωf | profile is more amplified
than the SW profile near the wall, which is consistent with the |ψx | behavior. These
conditionally averaged mode shapes are consistent with the observations of previous
opposition control studies [10, 25, 41] and suggest the formation of a virtual wall.
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(a) (b)

Figure 7.10: A sample of a |̂vωf | profile from theCW-DRF study (actuation condition
iii) satisfying the near-wall ∂ |̂vωf |

∂y < 0 condition. (a) The full mode shape and (b) a
near-wall close-up. The mode amplitudes is normalized by its peak.

Figure 7.11: A visualization of the streamwise locations where the near-wall ∂ |̂vωf |

∂y <
0 condition is met in the by the data from actuation condition iii: � SW-DRF; •
CW-DRF.
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(a) (b)

(c) (d)

Figure 7.12: Comparison of the (a) streamwise, |ûωf |, and (c) wall-normal, |̂vωf |,
spatially averaged ωf Fourier modes from actuation condition iii The smooth-wall
data are fully spatially averaged, while the compliant-wall data are conditionally
averaged on ∂ |̂vωf |

∂y < 0 events near the wall. The amplitudes of the (b) ψx and (d) ψy

resolvent modes are plotted for comparison. Mode amplitudes are normalized by
the peak in |ûωf |. ©— SW-DRF; �— CW-DRF; — smooth-wall resolvent mode
(kx = 2.67); – – compliant-wall resolvent mode (Y = 0.003i, kx = 2.78).
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(a) (b)

(c) (d)

Figure 7.13: Near-wall close-up of the (a) streamwise, |ûωf |, and (c) wall-normal,
|̂vωf |, spatially averaged ωf Fourier modes from actuation condition iii The smooth-
wall data are fully spatially averaged, while the compliant-wall data are conditionally
averaged on ∂ |̂vωf |

∂y < 0 events near the wall. The amplitudes of the (b) ψx and (d) ψy

resolvent modes are plotted for comparison. Mode amplitudes are normalized by
the peak in |ûωf |. ©— SW-DRF; �— CW-DRF; — smooth-wall resolvent mode
(kx = 2.67); – – compliant-wall resolvent mode (Y = 0.003i, kx = 2.78).
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7.5 Chapter summary
The compliant-wall resolvent analysis developed by Luhar et al. (2015) [43] was
used to predict differences in the smooth- and (purely elastic) compliant-wall mode
shapes with wavenumber vectors matching those of the roughness-forced synthetic
modes from the experiments. In this analysis, both mode shapes exhibited T-S
wave characteristics. The CW mode was expected to be shifted towards the wall
relative to the SW mode, explained by the lower wave speed and thus lower yCL

location in the CW case. The resolvent modes also showed a zero-crossing, cusp
feature in |ψy | and accompanying π phase shift in ∠ψy. Both of these traits were
consistent with observations from previous resolvent and DNS studies of opposition
control [10, 25, 41], where a virtual wall structure developed above the physical
wall location. The presence of a virtual wall in the compliant-wall resolvent was
explained by the π phase jump in ∠ψy, required by the purely imaginary wall
admittance (Y ) corresponding to a purely elastic wall, which mimics the phase jump
imposed by the wall jets in opposition control. The critical layer shift and virtual
wall features were used as context for the comparison of the experimental SW-CW
spatio-temporal mode shapes.

The SW-CW ωf-kxf Fourier mode shapes were compared and indeed had T-S wave
qualities, as observed in the earlier chapters and anticipated by the resolvent analysis.
The CWmode was shifted towards the wall relative to the SWmode, congruent with
a critical layer mechanism. The relative amplitudes of the second peaks in the SW-
CW |̂̂u ωf kxf | profileswas in agreement with the resolventmodes, while in contrast the
peaks in SW-CW |̂̂v ωf kxf | were more comparable. Notably, the resolvent-predicted,
near-wall cusp was absent in |̂̂v ωf kxf |, and though a significant phase shift was seen
in ∠̂̂v ωf kxf , it was in the opposite sense as what was seen in ∠ψy. The expected
agreement between the resolvent and experimental modes is certainly limited, as the
resolvent analysis uses several assumptions, such as the linearized, compliant-wall
boundary condition. However, the existence of the virtual wall in the experimental
data was not ruled out, as several factors may have masked it out in the DFT analysis,
namely a streamwise varying wall location.

In an attempt to avoid the limitations in the data, an alternative analysis was devel-
oped using on conditional averaging. Anticipating a near-wall cusp feature in |̂vωf |,
the condition was chosen to be ∂ |̂vωf |/∂y < 0 for the first, second, or third points
from the wall. This condition was applied at each streamwise position to the SW
and CW data, and 10% of the SW profiles met the condition, while 64% of the CW
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profiles satisfied the criterion. This was a statistically significant increase, and so
the CW |ûωf | and |̂vωf | were conditionally averaged (shifting the profiles for a con-
sistent cusp location) and compared to the fully streamwise averaged SW profiles.
A distinct cusp feature emerged in |̂vωf | from the conditional averaging, and was
quite similar to the feature in the resolvent modes. This suggests the presence of
a virtual wall-type structure forming due to the elastic, compliant surface acting to
oppose the v velocity above it.
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C h a p t e r 8

CONCLUSIONS AND FUTURE WORK

In the present work, an elastic gelatin sample was exposed to a turbulent boundary
layer flow, and the fluid-structural system was forced by a dynamic roughness ele-
ment. This approach to studying the interaction between a compliant surface and
a turbulent flow was unique due to the narrow-band forcing enabled by dynamic
roughness, as opposed to considering the full broad-band flow-surface interaction.
The synthetic, traveling-wave structure induced by the roughness was strongly co-
herent and readily characterized. The surface, in turn, exhibited a traveling-wave
deformation response. By studying the interaction between the roughness-forced
flow and surface structures, the complex multiscale nature of the full fluid-structural
problem was simplified for a more tractable analysis. The velocity mode shapes
for smooth- and compliant-wall conditions were compared, and the effect of the
compliant-wall understood by leveraging a resolvent-based perspective.

In the context of dynamic roughness forcing, this work has contributed to a better
understanding of the spatial nature of the synthetic mode, as well as the behavior of
the v velocity component. This was enabled by the nontraditional knife-edge-prism
PIV setup and the naturally shorter length scale of the syntheticmode inwater, which
allowed for a large, structure-resolved streamwise measurement domain. Through
2D measurements at various spanwise locations, the three-dimensional structure
of the synthetic mode was studied and confirmed to be two-dimensional along the
z=0 centerline to good approximation. An amplitude modulation phenomenon
was observed whereby the synthetic mode would beat as it convected downstream.
This was investigated through a simple, quasi-parallel analysis of the flow, and in
particular the kx spectrum of the flow, where a slightly broad spectral peak centered
at kx=kxf was observed. The broadness of the peak was found to reflect the quality
of the dynamic roughness alignment. A parametric study lead to an empirical linear
relationship between the synthetic mode wavenumber and the forcing frequency.
This empirical fit may allow future studies to determine the actuation frequency to
target a desired flow length scale, further developing the capabilities of dynamic
roughness as an experimental tool.

Several of the challenges in designing the compliant surface component of these
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experiments were identified and many were addressed. A fabrication and molding
process were developed for the gelatin and a speckle-generation technique was
created to enable stereo-DIC surface measurements. Phase-locked surface and
flow measurements were made to correlate the synthetic velocity structure and
the deformation response. The phase-averaged deformation measurements revealed
surfacewaves in the roughness-forced case that were distinct in frequency and spatial
coherence from the structures in the unforced case, and were consistent with the
structure of the synthetic mode in the flow. This confirmed that a surface response
to the roughness-forced synthetic scale had been achieved.

With the roughness-forced flow-surface interaction confirmed, a comparison was
made between the smooth- and compliant-wall velocity modes to study the impact
of the compliant surface. The resolvent analysis was used as a lens through which to
examine the experimental data by predicting features introduced by the compliant-
wall boundary condition, namely a virtual wall signature. The virtual wall was
a result of the π phase jump in the wall-normal velocity mode required by the
purely elastic surface boundary condition. The experimental mode shapes generated
through a discrete Fourier decomposition showed the CW mode shifted closer to
the wall than the SW mode, consistent with a critical layer mechanism and with the
resolvent mode prediction. However, the virtual wall feature was not observed in the
compliant-wall data, and the near-wall differences between the SW and CW modes
were difficult to interpret and nondefinitive. This may have been at least partly due to
some limitations in the data, the primary one being a non-flat and non-harmonically
varying wall position. As an attempt to circumvent these limitations, an alternative,
conditional averaging process was devised based on the wall-normal gradient of the
amplitude of v, in anticipation of the virtual wall signature from the resolvent modes.
Indeed, the condition was met for 64% of the CW profiles, a statistically significant
increase over the 10% of the SW data. Executing the conditional averaging, the v
modes exhibited a distinct zero-crossing cusp that agreed well with the resolvent
prediction. This strongly suggests that the elastic, gelatin surface acted to oppose
the v velocity near the wall, forming a feature that resembles the virtual wall of
wall-jet opposition control studies, which is known to lead to drag reduction under
some conditions.

As with any study, there are limitations to these experiments and opportunities for
improvement. The PIV was not optimized for near-wall measurements, which was
the region of most significant flow modification. Performing a dedicated near-wall
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study could reveal more aspects of the compliant-wall effects. In a similar vein,
the gelatin surface was neither completely flat nor smooth, despite best efforts. An
improved molding process (as was suggested in Chapter 2) could make the analysis
more robust and allow for subtle features to be detected more readily. Also enabled
by near-wall PIV and smoother surface conditions are modern image-based shear
stress estimation methods [59], which could add a novel dimension to both dynamic
roughness understanding and compliant surface effects. In terms of the resolvent
analysis, an uncontrolled mean profile generated by an eddy viscosity model was
used. This is a significant simplification and does not incorporate the modification
to the mean by the dynamic roughness nor the compliant surface. Finding a method
to appropriately interpolate the experimental mean profiles could provide resolvent
modes that are more faithful to the data.

Also worth consideration for future work is that the dynamic roughness disturbance
employed here was 2D and primarily a single spatio-temporal scale. Though this
made for a more tractable experiment and analysis, turbulence is inherently three-
dimensional andmultiscaled. As such, a 3D dynamic roughness could lead to results
more directly applicable to fully turbulent flows, though the measurement technique
would become more complex as well. Likewise, a two-frequency roughness signal
could be implemented, as done by Duvvuri & McKeon (2015) [14], which would
lead to multiscale synthetic flow structures and possibly allow for the study of
nonlinear interactions in the flow, surface, and between the two. In pursuing these
more complex disturbances, it would be wise to have in hand a modeling framework
with which to navigate the results, as the amount of information and data for the 2D,
single-scale case was already quite large and complex.

Naturally, a more complex, viscoelastic material could be considered, as done in
other studies. This would require a more complete material characterization to
reasonably model the surface behavior. In the context of the resolvent analysis, a
viscoelastic material would correspond to a non-zero damping coefficient, leading
to a complex wall admittance as opposed to the purely imaginary admittance for an
elastic material. This in turn changes the phase difference between the wall-normal
velocity and pressure at the wall and would alter the near-wall behavior, weakening
or eliminating the virtual wall and establishing a different feature. Studies of such
materials could contribute to the understanding of how different material properties
impact this fluid-structural interaction andwork towards ameans to rationally design
compliant surfaces to achieve a desired performance goal.
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The utility of the resolvent model in this study is worth remark given its numerous
assumptions and limited inputs. In the compliant-wall framework employed here,
the wall deformations were constrained to be in the wall-normal direction, the wall
dynamics were modeled as a spring-damper-backed plate boundary condition, the
kinematic boundary condition was linearized, and the material was assumed to be
purely elastic, i.e. damping was neglected and the wall admittance term, Y , was
constrained to be purely imaginary. In addition, a channel geometry formulation
was used, which assumes a parallel flow and does not consider the streamwise
development in a boundary layer flow. By using a Fourier analysis in the homoge-
neous directions, it was inherently assumed that the domain was infinite in x and
z. Lastly, the mean velocity profile used was generated through an eddy viscosity
model and thus did not account for modifications to the mean due to the dynamic
roughness nor the compliant surface. Besides these assumptions, the model also
had limit inputs from the experimental data. The only inputs to the compliant-wall
resolvent analysis were the wavenumber vector of interest, the wall admittance, and
the mean profile, with only the first two coming from the experiment. Despite the
many assumptions and restricted inputs, the resolvent modes predicted the general
T-S characteristics of the synthetic velocity modes quite well. What’s more, the
model provided physical insight into the effect of the compliant wall, drawing a con-
nection to opposition control and predicting the virtual wall signature. This guided
the conditional averaging process and allowed for the subtle virtual wall feature to
be revealed in the data, which would have been difficult to identify otherwise. In
this way, this work serves as an experimental demonstration of the efficacy of a
compliant-wall resolvent framework.

Future work may consider addressing some of the underlying assumptions in the
resolvent analysis. The wall-normal constraint on the surface deformations could
be loosened to consider streamwise and spanwise deformations. This would require
additional dynamic boundary conditions that relate the fluctuating streamwise and
spanwisewall-shear terms to the surface deformations. However, it is anticipated that
these additional terms would be quite small, especially relatively to the mean shear
for the streamwise deformation, andmaynot offer significant benefits. The linearized
compliant-wall boundary condition restricts the analysis to small deformations and
may not apply to more performance-optimized compliant surfaces, requiring higher-
order terms to be considered. Naturally, this would increase the complexity of
the analysis. The spring-mass-damper model of the wall dynamics may also be
exchanged for a viscoelastic wall model, which could better predict the material’s
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behavior. Ultimately, to translate compliant-wall modified mode shapes to an effect
on the mean flow properties and the turbulent drag will require modeling of the
nonlinear interactions in the flow, i.e. closing the loop with the nonlinear forcing.
Work in extending the boundary condition and developing the resolvent model will
help build the framework towards its ultimate goal of being a practical, efficient,
and widely-used flow control design tool.
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A p p e n d i x A

GELATIN FABRICATION PROCESS

Equipment

• Heatable container: large beakers, pot

• Blending container (preferably transparent/translucent): large beaker, bowl

• Heating unit: microwave, stovetop, hot pad

• Heat-resistant gloves

• Emulsion blender

• Weighing scale

• Weigh boats

• Mold for sample

– Preferably transparent material (see step 9)

– Any corners in mold should be generously rounded (R>0.5 inches).
Sharp corners may lead to fissuring sites when uncovering sample.

• Cover plate, non-stick face with rigid backing, e.g.:

– Teflon sheet (non-stick face)

– 1/4” acrylic plate (rigid backing)

Note: The most dilute mixture tested was 3:100, gelatin to water. More dilute
mixtures did not fully solidify at room temperature, though it may be possible with
refrigeration. Higher gelatin concentrations should make the fabrication process
easier and more robust, but will naturally yield more rigid samples. For these
experiments, a ratio of 4:100 was used.
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Instructions:

1. Fill beakers with measured water, leaving space for blending process.

• Make sure to have slightly more mixture than the mold volume in order
to be able to overfill the mold and avoid surface bubbles.

2. Microwave water to a rolling boil, ∼5 minutes.

3. While water is heating, measure appropriate amount of gelatin powder and
pour into blending container.

4. Once water is boiling, add to blending container.

5. Immediately blend with emulsion blender.

• Blend for ∼30 seconds at a time, then check for remaining chunks of
gelatin.

• Continue until no gelatin chunks remain.

• Mixturewill froth (FigureA.1); these bubbleswill be allowed to dissipate
before pouring the solution.

6. Allow mixture to cool and bubbles to pop (∼10-20 minutes).

• To expedite process, slowly and gently transfer mixture to clean beaker,
so as to not introduce new bubbles.

• Rinse empty beaker to remove froth, and repeat.

7. Once bubbles have popped (figure 2), carefully pour mixture into mold (avoid-
ing introduction of bubbles) and allow to cool for another ∼10 minutes.

8. Once mixture has cooled (minimal steam), coat Teflon cover plate with thin
layer of oil.

9. Slowly cover mold with cover plate .

• Lay one edge of cover plate down, just off to the side of the mold. This
edge will act as the hinge. Keep the rest of the plate elevated at an angle.

• Gradually lower the rest of the cover plate until the mold is covered.
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• Tip: if moldmaterial is transparent (e.g. acrylic) and cover platematerial
is sufficiently translucent, place a strong light source underneath and
pointing up through the mold. This will make the regions of contact
between the gelatin mixture and the cover plate visible. User may check
real-time for poor contact or bubbles.

10. Apply weights to cover plate if desired, avoiding excessive weight as it may
cause rapid delamination upon removal.

11. Allow gelatin to solidify for ∼12 hours (will vary depending on mixture ratio).

12. Very carefully remove cover, starting with one corner and gently prying cover
off.

• This is the most sensitive step of the process. Aggressive or early cover
removal may cause fissuring and rupturing of sample surface.

• User is encouraged to practice cover removal on smaller samples.

(a) (b)

Figure A.1: Water-gelatin mixture, (a) with bubbles, soon after blending, and (b)
without bubbles.
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Figure A.2: Gelatin sample with non-Teflon cover on, bubble formed in corner due
to curvature of cover plate.

Figure A.3: Gelatin sample with cover removed. Several surface fissures and tears
have developed from the lid removal.
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Figure A.4: Successfully fabricated gelatin sample, dyed white for a DIC test.
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A p p e n d i x B

PHASE-AVERAGING

B.1 Definition of the phase-averaging operation
Consider a discrete, finite-time signal, gk , with record length N and sampling
frequency fs. Let ωf be an angular frequency of interest with a per-period sampling
rate of SR, which requires the full sampling rate to be fs =

ωf
2π · SR. Let M be the

integer number of periods, 2π
ωf
, contained in the record, M = N

SR . We can then define
the ωf phase-average of gk as:

g̃ j =
1
M

M−1∑
m=0

g(m·SR+ j)

j ∈ [0, SR − 1],

(B.1)

where g̃ j is the phase-average of gk . We can periodically tile g̃ j to construct the
phase-averaged signal g̃k of length N:

g̃k =
1
M

M−1∑
m=0

g(m·SR+k mod SR)

k ∈ [0, N − 1].

(B.2)

Note that g̃k is SR-periodic or ωf-periodic by construction, i.e. g̃k = g̃m·SR+k for
integer m.

B.2 Effect of phase-averaging on frequency content
It is clear that the frequency content of g̃k has been modified from gk by the phase-
averaging operation. To show what this modification is, define the discrete Fourier
transform (DFT) and inverse discrete Fourier transform (IDFT) pair:

Gn =

N−1∑
k=0

gk e−i2πnk/N, n ∈ [0, N − 1] (B.3)

gk =
1
N

N−1∑
n=0

Gnei2πnk/N, k ∈ [0, N − 1]. (B.4)

We apply a DFT to g̃k :

G̃n =

N−1∑
k=0

g̃k e−i2πnk/N

n ∈ [0, N − 1].

(B.5)
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Writing out the summation terms:

G̃n =g̃0e(−i2πn/N)0 + g̃1e(−i2πn/N)1 + . . .

g̃SRe(−i2πn/N)SR + g̃SR+1e(−i2πn/N)(SR+1) + . . .

...

g̃(M−1)SRe(−i2πn/N)(M−1)SR + g̃(M−1)SR+1e(−i2πn/N)((M−1)SR+1) + . . .

(B.6)

Because g̃k is SR-periodic, the column-aligned terms can be grouped and written
as:

G̃n = g̃0

M−1∑
m=0

e−i2πnm/M + g̃1

M−1∑
m=0

e−i2πn( mM +
1
N ) + . . . (B.7)

This can then be written as an additional summation over the SR period:

G̃n =

SR−1∑
j=0

g̃ j

M−1∑
m=0

e−i2πn
(
m
M +

j
N

)

=

SR−1∑
j=0

g̃ je−i2πn j
N

M−1∑
m=0

e−i2πnm/M .

(B.8)

Focusing on the m summation, let n = pM + q, where p and q are integers,
p ∈ [0, SR − 1] and q ∈ [0, M − 1], such that n ∈ [0, N − 1]. The m summation then
becomes:

M−1∑
m=0

e−i2πnm/M =

M−1∑
m=0

e−i2π(pM+q)m/M

=

M−1∑
m=0

��
���:1

e−i2πpm e−i2πqm/M

=

M−1∑
m=0

e−i2πqm/M .

(B.9)

Note that e−i2πqm/M , m ∈ [0, M − 1] represents M equispaced points on the unit
circle in the complex plane, and thus the m summation equals zero unless q = 0:

M−1∑
m=0

e−i2πnm/M =


M ∀n = pM + q, q = 0

0 otherwise.
(B.10)

This leads to the Fourier coefficients of g̃k to take the form:

G̃n =


M

SR−1∑
j=0

g̃ je−i2πpj/SR ∀n = pM, p ∈ [0, SR − 1]

0 otherwise.
(B.11)
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It is clear from equation B.11 that the phase-averaging process acts as a discrete
Fourier filter, retaining the n = pM terms, i.e. only the frequencies harmonic with
ωf .

For comparison, applying a DFT to the single-period-length g̃ j , we have:

G̃n′ =

SR−1∑
j=0

g̃ je−i2πn′ j/SR

n′ ∈ [0, SR − 1].

(B.12)

We see that equation B.12 is identical to the non-trivial case in equation B.11, except
for the prefactor M in equation B.11, which is incurred because the DFT was done
on the full, length-N record, and so the transform pair has a 1

N factor, as opposed to
the 1

SR =
M
N factor for the transform pair associated with equation B.12.

B.3 Interpretations of phase-averaging
Equation B.11 shows that phase-averaging is identical to a discrete Fourier filter
for the ωf harmonic frequencies in a signal. Indeed, phase-averaging and discrete
Fourier transforming are intimately related. A sketch proof is given here to illustrate
this fact. Construct an M × SR matrix, gmj , by reorganizing the signal gk :

gmj =


g0 g1 . . . gSR−1

gSR gSR+1 . . . g2SR−1
...

g(M−1)SR g(M−1)SR+1 . . . gN−1


. (B.13)

Phase-averaging gk amounts to averaging along the columns of gmj , yielding a 1×SR
row vector, g̃1 j :

g̃1 j =
[
g̃0 g̃1 . . . g̃SR−1

]
. (B.14)

g̃1 j can then be discrete Fourier transformed along its row to arrive at G̃1n′:

G̃1n′ =
[
G̃0 G̃1 . . . G̃SR−1

]
. (B.15)

Alternatively, we could have applied a DFT along the rows of gmj first, to get Gmn′.
Note that this is a equivalent to performing aDFT on consecutive SR-lengthwindows
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of gk and stacking the results into Gn,tr, with ‘tr’ for ‘truncated’:

Gmn′ =


G0,tr G1,tr . . . GSR−1,tr

GSR,tr GSR+1,tr . . . G2SR−1,tr
...

G(M−1)SR,tr G(M−1)SR+1,tr . . . GN−1,tr


. (B.16)

We can then average Gmn′ along its columns to arrive at the same G̃1n′ in equation
B.15. This exercise highlights the fact that, because the DFT and phase-averaging
(simply reorganized averaging) are both linear operations, they commute with one
another. Thus, phase-averaging can be accomplished by phase-locked averaging in
time as defined in equation B.1, or equivalently by discrete Fourier transforming
consecutive SR-length windows, averaging the result, and inverse transforming back
to time. The latter description draws a parallel to Welch’s method of averaging pe-
riodogram spectra, except that in this case, the full Fourier coefficients are averaged
because the relative phases of the Fourier coefficient sets are consistent.

Note that the above procedure required no knowledge of the phase of the periodic
content of interest, only the frequency, ωf . This means that phase-averaging can
be done for a given record without actually phase-locking the measurement to the
reference signal. However, by phase-locking, multiple records can be phase-shifted
to be consistent with one another, and thus more samples can be used to calculate
the phase-averaged fields.

B.4 Summary and remarks on the phase-averaging operation

1. Phase-averaging is identical to discrete Fourier filtering at the resolvable,
ωf-harmonics.

2. Phase-averaging can be achieved through phase-locked averaging, per equa-
tion B.1, or by dividing the data into SR-length (2π/ωf-length) windows,
applying a DFT to each, averaging the resulting Fourier coefficient sets, and
applying an IDFT. This is a consequence of the discrete Fourier transform and
phase-averaging being linear operations.

3. Phase-averaging operates strictly on one dimension of a signal, like a DFT.
A phase-average in time applies no constraints on spatial information, only
separates it into components with ωf-harmonic temporal coherence.
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4. The definition of phase-averaging in equationB.1 can be extended to continuous-
time functions by taking the phase index, j, to be a continuous variable, phi,
and on an infinite or semi-infinite time horizon by taking the limit as M →∞.
Consider a continuous-time variable, g(t), defined for t ≥ 0. The ωf phase-
average, g̃(φ), is defined as:

g̃(φ) = lim
M→∞

1
M

M−1∑
m=0

g

(
m

2π
ωf
+ φ

)
φ ∈ [0, 2π).

(B.17)

B.5 Proof of ũiu′j = 0
In Section 4.1, it is stated that the phase-averaged velocity and the perturbation
about the phase-averaged mean are uncorrelated in time, i.e. ũiu′j = 0. To show
this, consider two arbitrary discrete time signals of length N , ak and bk , triple
decomposed following Equation 4.5. It follows that:

ãb′ =
1
N

N−1∑
k=0

ãk b′k

=
1
N

[
ã0b′0 + . . . + ãSRb′SR + . . . + ã2SRb′2SR + . . .

]
=

1
N

[
ã0b′0 + . . . + ã0b′SR + . . . + ã0b′2SR + . . .

]
=

1
N

[
ã0

(
b′0 + b′SR + b′2SR + . . .

)
+ . . .

]
=

1
N

[
SR ã0b̃′0 + SR ã1b̃′1 + . . .

]
=

SR
N

SR−1∑
k=0

ãk b̃′k , b̃′k
!
= 0

⇒ ãb′ = 0.

(B.18)
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A p p e n d i x C

DERIVATION OF COMPLIANT-WALL BOUNDARY
CONDITION FOR RESOLVENT ANALYSIS

Start by considering the full, streamwise velocity. Perform a Reynolds decomposi-
tion and Taylor series expansion about the wall location, y=0:

U(y, t) = U(y) + u(y, t) (C.1)

= U(0) + y
dU
dy

�����
0

+ u(0, t) + y
∂u
∂y

����
0
+ H.O.T. , (C.2)

where the x and z dependence has been suppressed for conciseness.

Allow for a wall deformation η(t) constrained to be in the wall-normal direction (in
full notation, η is a function of x, z, and t). Thus, along the wall:

U(η, t) = U(0) + η(t)
dU
dy

�����
0

+ u(0, t) + η(t)
∂u
∂y

����
0
+ H.O.T. (C.3)

= U(0) + η(t)
dU
dy

�����
0

+ u(0, t) + η(t)
∂u
∂y

����
0
+ H.O.T. (C.4)

Assume that the wall deformation is small, η � 1, and that near the boundary, u

shrinks to be the same order as η:

η = εηε

u = εuε

}
ηε, uε ∼ O(1) , ε � 1 (C.5)

⇒ U(η, t) = U(0) + ε

(
ηε (t)

dU
dy

�����
0

+ uε (0, t)

)
+ O

(
ε2

)
. (C.6)

With the wall deformations constrained to be in wall-normal direction, there is a
no-slip boundary condition on U for all orders of ε . Retaining only up to the O(ε)
terms and applying the boundary conditions (i.e. a linearized boundary condition)
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yields:

O(1) : U(0) = 0 (C.7)

O(ε) : ε

(
ηε (t)

dU
dy

�����
0

+ uε (0, t)

)
= η(t)

dU
dy

�����
0

+ u(0, t) = 0 (C.8)

u(0, t) = −η(t)
dU
dy

�����
0

. (C.9)

The same procedure is applied to the wall-normal velocity:

V(y, t) =�
��>

0
V(y) + v(y, t) (C.10)

= v(0, t) + y
∂v

∂y

����
0
+ H.O.T. (C.11)

V(η, t) = v(0, t) + η(t)
∂v

∂y

����
0
+ H.O.T. (C.12)

= εvε (0, t) + O
(
ε2

)
. (C.13)

Applying the no-through flow boundary condition at the wall kinematically relates
v to η:

εvε (0, t) = v(0, t) =
∂η

∂t
. (C.14)

The same procedure and the no-slip boundary condition are applied to the spanwise
velocity:

w(0, t) = 0. (C.15)

These boundary conditions are then Fourier transformed in x, z, and t:

u∧

k(0) = −η

∧

k
dU
dy

�����
0

v

∧

k(0) = −iωη∧

k

w

∧

k(0) = 0.

(C.16)

(C.17)

(C.18)
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