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"There cannot be the slightest doubt that on the borderlines of
physics, engineering and biology lie some of the most fascinating and

challenging aspects of animal locomotion,

Sir James Gray (1968)
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Abstract

The helical motion of an infinitely long flagellum with a cross-~
sectional radius b, along which a helical wave of amplitude h, wave-
length A and phase velocity c is propagated, has been analyzed by
using Stokes' equations in a helical coordinate system (r,&,x). In
order to satisfy all the boundary conditions, namely the no-slip condi-
tion on the flagellum surface and zero perturbation velocity at infinity,
the flagellum must propel itself with a propulsion velocity U in the
opposite direction to the phase velocity c¢. For small values of kb
(where k = 2w/\ 1is the wave number), by a single-harmonic approxima-~
tion for the outer region (r > h), the ratio of the propulsion velocity

U to the phase velocity ¢ is found to be

1 5. Kl(kh) 1, K (kh)
2+ g K'h"-kh gy - 5 KODY g
ER'S 0 2 + O(b/h)
S K (Kh) K_(Kh) g

where Kn(kh) is the modified Bessel function of the second kind,

A modified and improved version of the Gray and Hancock
method has been developed and applied to evaluate helical movements
of a freely swimming microorganism with a spherical head of radius a
and a tail of finite length and cross-sectional radius ba‘ The propul-
sion velocity U and the induced angular velocity € of the organism
are derived. In order that this type of motion can be realized, it is
necessary for the head of the organism to exceed a certain critical size,
and some amount of body rotation is inevitable, For fixed kb and kh,

an optimum head-~-tail ratio a/b, at which the propulsion velocity U
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reaches a maximum, has been discovered, The power required for
propulsion by means of helical waves is determined, based on which a
hydromechanical efficiency n is defined. This n reaches a maxi-
mum at kh = 0,9 for microorganisms with optimum head-tail ratios,
In the neighborhood of kh = 0,9, the optimum head-tail ratio varies

in the range 15 < a/b < 40, the propulsion velocity in

0.08< U/c<0.2, and the efficiency in 0,14<% < 0.24, as kb varies
over 0,03<kb< 0.2,

The modified version of the Gray and Hancock method has also
been utilized to describe the locomotion of spirochetes. It is found that
although a spirochete has no head to resist the induced viscous torque,
it can still propel by means of helical waves provided that the spiro-
chete spins with an induced angular velocity £, Thus the 'Spirochete
paradox' is resolved., In order to achieve a maximum propulsion ve-
locity, it is discovered that a spirochete should keep its amplitude-
wavelength ratio h/X around 1:6 (or kh=1), At kh =1, the propul-
sion velocity varies in the range 0< U/c < 0,2, and the induced angu-
lar velocity in 0.4 < Q/w< 1 (where w = kc i‘s the circular frequency
of the helical wave), as the radius~-amplitude ratio varies over |
0<b/h<1,

A series of experiments have been carried out to determine by
simulation the relative importance of the so-called 'neighboring' effect
and ‘end' effect, and results for the case of uniform helical waves are

presented.
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I. INTRODUCTION

The study of flagellated-propulsion of microscopic organisms
opens up a new field in hydrodynamics, As various kinds of bacteria
and spermatozoa are extremely minute in size, the Reynolds number
based on the body length or certain characteristic dimension, {, and
its mean forward veloéity U is very small, i,e. Re = %Q- «1, v being
the kinematic viscosity coefficient, For the motion of spermatozoa,
the Reynolds number is generally of order 107 or less, and for bac-
teria it is 107 % or less, Hence the predominant forces acting on micro-
organisms are entirely of a viscous origin, the inertia forces can be
neglected and Stokes' equations be used, Taylor (1952} applied Stokes'
equations in a cylindrical polar coordinate system to analyze the motion
of an infinitely long cylindrical tail which makes progressive helical
waves of small amplitude i,e. h &b (where h is the amplitude of the
helical wave and b the radius of the cylindrical tail), He was able to
find that the propulsion velocity U of this cylindrical tail is in the op-

posite direction to the phase velccity ¢ of the helical wave and the

magnitude of U for small values of kb is

1

K (kb) - =
lim Yo 2—F
kh « kb >0 © K_(kb) + 5

where k = 2w/\ 1is the wave number, M\ being the wavelength, and
Ko(kb) is the modified Bessel function of the second kind with argument
kb. Meanwhile, Taylor found that a constant couple (or torque) must be
applied to the tail about its length in order that it may not rotate. Un-

fortunately, he incorrectly used w' instead of v' in his equations
‘ 1 1
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(3.10) and (3.12). For small values of kb, the correct expression
for the torque M exerted on the cylinder in a wavelength by the sur-

rounding fluid should be (Drummond, 1966)

lim m1=-4mimﬁcx/[xow$)+ %} ,

kh « kb =~ 0
whgre i is the viscosity coefficient.

The assumption made in Taylor's work that the amplitude of
the helical wave, h, is small in comparison with the radius of the
tail, b, is not generally met in nature, since even though kh may be
small, h is usually greater than b. For a great variety of mo-
tions employed by microorganisms the kh wvalue is generally of order
O(l), as was found experimentally by the bioclogists, Hancock (1953)
suggested an alternative approach. He analyzed the movement of a
long thin cylindrical filament along which helical waves of lateral dis-
placement are pfopagatedo The flow around the filament is determined
by distributing a system of 'doublets' and 'Stokeslets' inside the sur~
face of the filament whose strengths are determined by the no-slip
boundary condition on the filament surface together with the condition
that the total energy of the induced velocity field remains finite, In
Hancock's theory, the amplitude of propagating helical waves, h,
need not be small as compared with the wavelength \, yet the radius
of the filament, b, shrinks to zero., Under these conditions, he was

able to find that the propulsion velocity U is

U _ _K'h
€ 1t+2KPn?

However, he did not obtain an expression for the torque exerted on the



filament by the surrounding fluid because of his 'zero radius' assump-
tion,

In this past decade, many biologists (e.g. Rikmenspoel, 1962)
reported that the velocities predicted by Taylor (1952) or Hancock
(1953) are too high, by a factor of 10 for the model of Taylor or a
factor of 5 for that of Hancock. In order to gain a deeper understanding
of t};e nature of helical waves, a new approach is developed here, as
will be presented in Chapter II of this thesis, By this new approach, it
is possible, at least in principle, to find the propulsion velocity U,
the torque acting on the flagellum in a wavelength and the energy re-
quired per wavelength of flagellum for heélical waves of arbitrary am-
plitude h produced by an'infinitely long flagellum. of arbitrary circular
cross=-sectional radius b with b < h,

In reality, the flagellum of a microorganism is not infinitely
long nor can it swim by making helical waves without some means to
counter~-balance the induced torque. To analyze the helical motion of
a freely swimming microorganism with a head and a finitely long tail,
a modified and improved version of the Gray and Hancock method (1955},
the original version of which was devised to investigate the planar wave
motion of minute creatures, has been developed and presented in
Chapter III, By this simple but powerful method, the locomotion of
microorganisms employing helical waves 1s studied with particular
emphasis on their optimum performances, Some new concepts, such
as the optimum head-tail ratio and the optimum amplitude-wavelength
ratio, are introduced. The value of kh =1 is found to be very signif-

icant, and it is a characteristic of all microorganisms employing
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helical waves whether the organism has an inertial head or not.

In Chapter IV, a series of experiments on rigid, uniform,
helical wires moving through a viscous fluid is discussed and the re-
sults are analyzed as a first step to investigate the so-called 'neighbor-
ing' effect and 'end’' effect on the helical movements of flagellated-

propelling microorganisms.
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II., THEORETICAL ANALYSIS OF HELICAL WAVES
PRODUCED BY AN INFINITELY ILONG FLAGELLUM

2.1 Governing equations and boundary conditions

For most microscopic organisms employing the flagellated
propulsion, such as spermatozoa and certain bacteria, the organism's
tail (or flagellum) is very long in comparison with its cross-sectional
rédius, also with the size of its head (or body). Hence, as a first
approximation, the flagellum can be idealized as a long section of an
infinitely long one. This implies that the end effects of the long flagel-
lum may be neglected, and the locomotion of this microorganism may
be comprehended by analyzing the movement of the infinitely long
flagellum,

The Reynolds number of the motion of spermatozoa and bac-
teria is very small, generally of the order 10—3 or less for sperma-~
tozoa and may be as small as 107 for bacteria. In this range of
small Reynolds numbers, the predominant forces acting on micro-
organisms are viscous forces, the inertia forces can be neglected and
Stokes' equations be used, For an incompressible viscous fluid, the
Stokes' equations are

Veu = 0 (2.1a)

Ed

0=VP+p VX (VXu) |, (2.2)

where |4 is the coefficient of viscosity, P is the pressure and u
is the velocity vector.
As a specific model of the actual motion, suppose that an

infinitely long flagellum, of circular cross-section with radius b,
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makes a helical wave of amplitude h, wavelength )\, phase velocity
¢ 1in the negative x direction, and in the meantime it propels itself
with a constant velocity U in the positive x direction. The position
of the centeﬂine of this flagellum, in a cylindrical polar coordinate
system (r,0,x) moving with the same constant velocity U in the

positive x direction as the flagellum does, is given by
r=h |, 0 = kix+ct) = kx + 0wt (2.3a)

where k = 2n/\N is the wave number (see Fig. la). It is convenient

to introduce a helical coordinate system (r,£,x) defined by
£ =0 - (kxtwt) . (2.4)
In this new coordinate system, Eq. (2.3a) becomes

r=h , £=0, (2.4a)

which exhibits a simple symmetry of the flagellum motion, It isas-
sumed that no stretching of the flagellum takes place throughout
motion, and that the circular cross-section which moves in a plane
perpendicular to the x direction remains circular., The boundary

surface of this flagellum is then given by

r-hcosgi\sz smg s
and

el < sn™ (2] . (2.52)

Alternatively, the boundary surface can be expressed as

r{a) :th - blsin*fa +bcosa |,
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and

£(a) = sm‘l(bfn“) 5 (2.5b)

where o is a parameter ranging from =-mw to w (see Fig. 1b). The
use of (2,5b) instead of (2.5a) has two main advantages. Firstly, since
a spans the full range, from -w to w, the set {1, sinna, cos na}
(n=1,2,3, . . .) is orthogonal and complete. Thus we can express
the velocity boundary conditions on the flagellum surface in Fourier
series in terms of the parameter «o. In contrast, the use of £ as

a running variable on fhe flagellum surface does not have the same
property, for £ only varies from -sin”* (E—) to +sin”’ (%) provided,
of course, b < h, Secondly, when the radius-amplitude ratio b/h be-
comes small, which is the case for practically all flagellated propulsion
of microorganisms, it is desirable to expand all quantities in ascending
power series of b/h, the superiority of (2.5b) over (2.5a) is thus
obvious,

Taking the divergence of (2.2)and making use of (2. 1a), wehave

VEp =0 (2, 6a)

Hence the pressure P 1is a harmonic function, In the helical coordi-

nate system (r,§,x), the Laplacian operator V? takes the form

82 82 82

I . .2
— 4+ k - 2k Fo— 2,7
2 agz EESX BXZ ( )

4

2
VZ:_B__.;-E._B_-f-
542 r oOr

Since the flagellum is assumed to be infinitely long, we have, in this

helical coordinate system, 5% =0,

By (2.6a) and (2.7},



2 2
9 + 1_.58_. +(...’L +kz) . ip=-0 . (2.6b)
91t r or r? 8&,2

Let the velocity components in the r,0,x directions (note that they are

notthe r,§{,x-components)be u,v, and w respectively, Theymay de-

pendon r and £, butmnoton x, Then (2.2) becomes

10 [82 1 @ 1 .| 8% 1} 2 &y

19F ;= +(-——-+k)—-——-—--———u-— . (2.8)
’uar [82 r or 22 8@2 72 2 E—g

1 ap [az 1 3 (1 z) 5% 1] 2 ou

= = — + = = + K| —— - —|V + — , (2.9)
L T ot 5y r or L2 ot 2 2 0
-EBP_[az L L2 +[ = +k2)-—?—z——}w (2.10)
u 9% 92 r or 2 a2 )

Equations (2.6b}), (2.8), (2.9), and (2.10) are the governing differential

equations for the pressure P(r,£) and three velocity components

u{r, &), v(r,€) and w(r,&). The boundary conditions on the flagellum

surface are no-slip conditions {see Fig. 2). Thus
u(r{a),(a))= whsin(e) = wbsina , (2.11)
be
vir{a),E(a) )= whcos§(a) = wh/l ey sinfa (2.12)
h
(2.13)

w(r(a),E(a) ) = 0

Since the fluid at infinity is otherwise at rest, and the helical coordin-

ates (r,£,x) is moving with velocity U in the positive x direction,

we have the boundary conditions at infinity as

lim w(r,£)=-U , (2.14)

lim u{r,£)=0 , limv(r,£)=0 |,
r > 00

r —* o r > o0
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and

lim P(r,£) =0 . (2.15)
r ~> o0

It should be noted here that if the pressure P at infinity is Poo’ a

constant other than zero, we can always define a new pressure by

P =P ~-P sothat P is zero at infinity,
new 0 new

z
4
PO

1N

k:? \ angular velocity

\ w = ke
/[ g

N o

2.2 Pressure and velocity distributions

Since &(a) is an odd function of o whereas r{a) is even in o,
as indicated by (2.5b), sinnf(e) (n=1,2,3, . . .) is odd, and

cosnf(a) (n=1,2,3, . . .) is even in «. Hence, by Egs, (2.8) -(2.13),
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the pressure P and the velocity component in the r-direction, u,
must be odd functions of «, whereas the velocity components in the
§- and x~directions, i.e, v and w, must be even in «, Let the

pressure P and the velocity components u,v, and w be of the form

)
P(r,£) = ku Z Pn(r)sinng s (2,16)
n=1
0
u(r, &) :Z un(r)sinng s (2.17)
n=1
0
v{r,§) = %— vo(r) +Z vn(r)cos n§ (2.18)
n=1
[e¢]
wir,&) = %—Wo(r)-%z“/n(r)cosng . (2.19)
n=1

Substituting (2.16) into (2. 6b) and collecting the coefficients of like

terms of sinnf, we have

acp dpP 2

n_L}_ n
Cor o dr

9

+n2k?-) P_=0 (n=1,2,3, . . .).

}le

dr?
(2.20)
Since the pressure must be finite throughout the unbounded fluid region
(0 r <w), we obtain from (2, 20) that
K_(nkr)
A e (r > h)
n Kp(nkh; ?

P (r)= (n=1,2,3, . . .) (2.21)
o In(nkr)

B, I_(nkh » (0<z<h)
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where In(nkr) and Kn(nkr) are the modified Bess‘el functions of the
first and second kind, respectively, of order n and argument nkr,
An and Bn are arbitrary constants which will be determined later to
guarantee the necessary smoothness of the function P(r,£) at r =h,
In fact, P{r,£) must be continucus and its derivatives of any order
should also be continuous in the entire fluid region (D - DO), where D
reéresents the whole space, D = D[(r,£,x)|0<r<w, ~n<ELT, ~0<x<w0],
and Do is the part of the space which is occupied by the flagellum.
Thus,
Pe cw(D - D )
o
It should be noted that at r = h, the variable £ for the fluid region
spans only a subinterval of [-mw, ], i.e. w2 |£] 28 =2 sin (—2%-)
Substituting (2,16) - (2.18), and (2.21) into (2.8) and collecting

the coefficients of like terms of sinnf, we have

An C! (nkr) 32
l’lkz o <R = [
Bn Cn(n ) dr® T

n?+1
2

1 d
t oo - -i-nzkz)] un(r)+—-—V (r)

(n=1,2,3, . . .) (2.22)

where the circular function Cn(z) is defined as

K (z) , {r >h)
{ & (2.23)

C‘ (Z) =
- I(z) , (0<r<h)

and C;l(z) denotes g;— [Cn(z)] . The expression involving two quanti-~

ties placed at two different levels inside a curly bracket means that the

upper one should be taken when r > h and the lower one for 0 r < h,
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This notation will be adopted throughout the remaining part of this

chapter.
Similarly, by substituting (2.16) - (2.18), and (2.21) into (2.9),

we obtain the following
(2.24)

- A Y C (nkr) z 2
Eili {Bn}cn(nkh} :[ <+ i*‘&c‘l; '(n oy zkz)} v (r) + 2 u (r)
ni ~n dr® r? r?
(n=1,2,3, ) . (2.25)
By (2.24), it follows that
h
C -
3T
Vo(r) = 9 (2.263«)
T
C‘1 H

where c, and <, are arbitrary constants, Making use of the well-

known identities for the modified Bessel functions that

C C {Hen C

n-i (z) - n+ (z) = +i z n(z) ’
-]

Cn_l {(z) + Cn—i—l {(z) :{+ }2 Cl'q(z) ?

where Cn(z) is defined by (2,23), the differential equations for

[un(r) + vn(r)] and [un(r) - vn(r)] can be obtained, by adding and

subtracting (2.22) and (2.25), as
A |, Gy i)
S = K [un(r)-i-vn(r):l = B nk W ’
n

d* 1 4d
[___..f-}_a_r_._
T



=14 =

z 2 ~ -A C (nkr)
2L e e vy e S
n

The solution of the above two equations consisting of complementary
functions and particular integrals can be found, for n =1,2,3,

as
Gn Cn_1 {(nkr) An Kr Cn(nkr)
C_ ) "\g (2 T_mEh)

n n

HiyC (nkr) A C_{(nkr)
n} n+l +{ n}£ n
En C nkh B 2 Cnlnkh$

n+i
n

u {z) - vn(r) :{

where Gn’Dn’ Hn and En are arbitrary constants., Therefore, it

follows immediately that, for n=1,2,3, . . . ,

1 Gy C . (nkr) K A Y C _(nkr) 1 H)C ) (nkr)
u(r) = 3¢ ° ““T‘E&Tn— t e ® "'—n("k"h"“}' A T T TR) ¢
n C n 2 Bn Cn n E Cn+1 n

D n-1
n n
(2.27)
and
. (5] - l{Gn}cn-l (nkr) ) }_{Hn}cnﬂ (nkr) (2.26b)
n T2 C nkh 2 C nkh ¢ :
n-1 E n+i

D
n

The continuity equation (2.1a) expressed in terms of the helical
coordinates (r,§,x), while keeping the velocity components in the

cylindrical polar ccordinates (r,0,x), is

§T§+‘§+§§%’.-k%§:o e (2.1b)

Therefore, from Egs. {2.1b), (2,10), (2,16) - (2.19), (2.21), (2.26)

and (2.27) we can derive that
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c
Wb(r):{ 5} ; (2.28a)
c
6
w_(r) = 1 G }Cn(nkr) . l_{Hn }Cn(nkr) . k_r_{An }cn_l (nkr)
n 2 -D Cn- nkh Z B Cn-H nkh 2 -Bn cn nkh
n n
n-2 (8 Cn(nkr) '
T m B_(C_(AKR) (n=1,2,3, . . .) .(2.28Db)

In (2,28a), c, and c, are arbitrary constants, and the term logr
is discarded.

So far, the solutions of Eqs, (2.1b), (2.8) - (2.10) are found
separately for the fluid regions (D - Do)ﬂ(r >h) and (D - Do)ﬂ(r <h),
nothing has been mentioned about how these two separate solutions
should match across r = h, and how smooth these solutions will be at
r =h., To ensure that the solutions given by (2.16) - (2.19) together
with (2,21), {2.26) - (2.28) behave properly at r =h, we first prove
the following theorem,

Theorem. If the pressure P(r,f) and the velocity components u(r,§),
vir,£), w(r,£) given by (2.16) - (2.19) together with (2.21), (2.26) -
(2.28) have the following properties that in the region (D - DO)[\(r = h)

(1} P is continuous,

(2} u 1is continuous,

(3) v is‘ continuous and has continuous first derivative w, r,t.

r and
{(4) w is continﬁous and has continuous first derivative w,r, t. r,

then the solutions P,u,v, and w are infinitely smooth in the entire

fluid region (D - DO); in other words,
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Pecw(D-Do) s uecoo(D-Do) , vec (D-D ) ,

00
we C (D"Do)

Proof, The proof of the above theorem is done by induction, First,
we note that modified Bessel functions lm(z) and Km(z) are regular
functions of z fhroughout the z-plane cut along the negative real axis,
and for fixed z($0) each is an entire function of m. For

m=0, x1,x2, . . ., Im(z) is an entire function of z, Since n is a
positive integer, the wave number k is real and positive, r is real
and non-negative, therefore Km(nkr) (m =0, £1,x2, . . .;

n:1,2,3, o

.} is regular in (D - Do)ﬂ(r > h), and Im(nkr)
(m=0,£1,%2, . . . ;n=1,2,3, . . .) is regular in (D—Do)f\(r< h).
Moreover, the trigonometric functions sinnf and cosn§

(n=1,2,3, . . .) are regular functions for real §, -w< & < w. By

the recurrence relations

de(Z) 1 dlm(Z) 1

Tdz T2 (Km-l(?) + m-{-l( R dz =7 (Im—l (Z)+Im+1(z))’
dsinnz

______ﬂ;zlnn.a = N COS nz 5 »—---—-——-—--.d Cd(;s nz - - nsinngz ,

we may conclude that the pressure P(r,f) and the velocity components
u(r, &), v(r,€), w(r,£) given by (2,16) - (2.19) are continuous and have
continuous derivatives of any order in (D - Do)ﬂ(r > h) and

(D - Do)ﬂ(r < h) separately. Now, in the region (D - Do)ﬂ(r:h), if

(i) P{r,£) is continuous and has continuous derivatives w,7r,t,

m
r up to and including order q, 9————12—(-%1-&—2— (m=0,1,2, . . .,q),
or
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(ii) u(r,&) is continuous and has continuous derivatives w, r,t.
0 u(r, £)

-~ (m=0,1,2, . . .,q),

r up to and including order q,

(iii) v(x,£) is continuous and has continuous derivatives w.r.t,
m
0 _v(r,§)

r up to and including order (q+1), =
or

(m:oylyz’ s e :q,Q+1),
and’

(iv) w(r,£) is continuous and has continuous derivatives wj r, t.
m
o wir,£)

r up to and including order (q+1), -
or

(m:O,I,Z, o . ‘- s s q+1),

then we will prove that in (D - Do)f\(r = h) the following are true,

89" P(r, ¢)
8r18§3

is continuous,

8% u(r, ¢)

(v) (i,j=0,1,2, . . ., q+l; i+) = g+l) exists and

(vi) T (i,j=0,1,2, . . ., q+1; i+j = g+l) exists and
9r 9¢
is continuous,
q+2 ‘
(vii) 9———%$Ej§l— (i,j=0,1,2, . . ., q+2; i+j = q+2) exists and
9r 0&
is continuous,
8q+2 ¥ ' o
(viii) -——-giﬁ%dil,(l,J =0,1,2, . . ., q+2; i+j = g+2) exists
gr 0§

and is continuous,

For jz 1, the proofis trivial. For instance, let us prove (v) is true
9% p(r, &)

ar oL

09" P(r,¢)
ariag3
also exists and is continuous in (D - DO){\(r < h), As r approaches to

09 p(r,£)

81'18&‘]

in the case j» 1. Since P@xgkcw((D-nDOVHr>lﬁL

does exist and is continuous in (D - Do)[\,(r > h), Similarly,

h from above and from below, the jump of the quantity

across r = h is
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+

1 41
aq“pgr,m] s b TEEE) o, T PGE)
ortoL? 0<(r-h)>0 0r'8t’ 0>(r~h)>0 8r'ag’

i ol ¥
.2 {a P(ri"g)] (i4j =q+l; 521 or i< q)
a¢? or
By assumption (i), . .
. 1
{op(;:,;)} 0 (i< q)
or -
Hence,
+
g+ 5
rg__ﬂjiz-mg)] =0 (i4j = q+l; 521 or i<q)
L oreed |

Therefore statement (v) is true for j 2> 1. Similarly, we can prove
(vi), (vii) and (viii) hold for j 21,

When j = 0, since P(r,£),u(r,§), v(r,§) and w(r,§) are

0% p(r, £)

infinitely smoothin (D - D )N\ (r >h) andin {D - D )\ (r <h), ,
o o qu+1

0% ur,e) oW g)  0%v(re) g 0% w(r,6)

, s exist and
qu.H 8rq+2 5rq+2 8rq+z

are continuous in (D - D_)()(r > h) and in (D - Do)ﬂ(r < h). Differen-
tiating (2.1b) w, r, t.r g-times and taking the limit as r approaches
h from above and from below, then subtracting, we have

+

Pqﬂ”u(ryg)Tr . 0% u/r) T . _éf__(_}_ 8V)+ S @ 8%y 0
L 81"(1_1_l J 3rq J_ arq r %% 5E ar

By (ii), (iii) and (iv)
+

+ +
{8%“/” :[ aq(l BV):} :Ij.‘?_q_‘f{:] -0
ord _ orit T 9t _ qu
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Therefore

g™ u(r,£) .
[W =0 . (lX)

If we differentiate (2.1b) w, r.t, r (q+l)-times, take the limit as r
approaches h from above and from below, subtract, and make use of

(ii), (iii), (iv) and (ix), we have

+
8 u(r, )] _
el I (x)
or
q+1 gd+2
Hence ———— and ———2 are continuous in (D -~ D )¥r =h). By dif-
prd™ ordt? ©

ferentiating (2.8) w.r,t, r g-times, taking the limit as r approaches
h from above and from below, subtracting and making use of (ii), (iii),

(ix) and (x), it follows immediately that
+

+1
08 P(re) |
8rq+1 )

Similarly, by differentiating (2.9) and (2,10} w, r, t. r g-times and

applying the same technique as before, we will find that

+ +
+2 t2
v, 6) ] Ly o 3w )]
8rq+z 8rq+Z )

Thus, if (i), (ii), (iii) and (iv) are true, (v), (vi), (vii) and (viii) follow
likewise. By our assumptions (1), (2), (3) and (4), they are true for

q = 0, hence they are true for any integer ¢ by induction. Therefore,
P(r,&), u(r,§&), v(r,&) and w(r,£) are infinitely smooth in

(D - D )N (r=h). But P,u,v, and w are infinitely smooth in(D-DO)ﬂ(r>h)

and in (D~Do)f\(r <h) by arguments in the beginning of this proof, hence
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) ) ) )
Pec(D-Do) s uec(D-DO) s vec(D-Do) s wec(D-DO).

(Q.E.D.)
From the above theorem, we know that if we make conditions
(1),(2),(3) and (4) hold, the solutions will be infinitely smooth in the
entire fluid region. By (1), {2.16), (2.21), it follows that

0
z (A - Bn)sinng =0 in (D-D )N{r=h) . (2.30)

n:l

Equation (2. 30) does not imply that An = Bn’ because in

(D - Do)f\(r =h), £ only varies over a subinterval, w2 lgl > go =
b
2h
(n=1,2,3, . . .) is no longer a completely orthogonal set, Although

2 sin”' ( ) , and in this subinterval, the set {1, sinnf, cosnf}

‘g sinn cosmfdE = 0 (2,31a)
£< el
yet
s sin(m+n)g sin{m-n)§
sinnf sinmg 4 = — o - — o £ 0, (m$n)
£ lel<
sin{2n§ )
=w-§ + —s——— , (m=n) , (2.31b)
and
~ sin{m+n)§ sin{m-nj)§
Q cosnf cosmé df = - —— e - — S +0 , (m¢n)
go'g Igl sw
81n(2n<¢,0)
:'n‘-g i PP ,(m:n) . (2,31C)
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Similarly, by (2), (3), (4), (2.17) - (2.19) and (2.26) - (2.28), we

require that for 50\< le] <,

co
- - - ' =0 2,32
[(Gn D_)+kh(A B_)+(H, En)] sinné , ( )
1’1:1
L)
c, - C4+Z [(Gn- Dn) - (Hn—En)] cosnf =0 (2.33)
n=1
o]
c,+e, +E[G K__, (nkh)+K_(nkh) . I__, (nkh)+I_(nkh)
h n Kn_l(nkh) n ]Zn__1 (nkh)
n:l
w K_(nkh)}+K__, (nkh) . I (nkh)MI_ (nkh)] Moo
n Km_l(nkh) n In+1 {nkh) 2
(2.34)
& K_(nkh) I (nkh) K_(nkh)
c -c +Z G, o + D 2 L H 2
nK (nkh) n T;l—('n_l?h_) n W)
n=1 -
I_(nkh)
+ E
n I (nkh
2 Kn_1 {nkh) In-1 {nkh)
o, o - —
(1 2)a, B rma R _(akh) T PBn T _fmmy | 0007 0
(2.35)
o0
z . K__, (nkh) ol I, (nkh) il K__, (nkh)
n Kn_linkhi nl I, nkh} | “n Kn_i_l?\nkhi
n:l
I__, (nkh)
~-E {1+
n I, (kh)
KhE_ (nkh)+(1 - %)Kn_l (nkh)+(1- rz—l)KnH(nkh)
+ An R (nkh) +khAn-kth
~KbI__, (akh)+ (1 - -4-)1 (n1<h)+(1 - -2-)1 (nkh)
LB n-2 n -1 ni n+4t £ =0
T n I (nkh) n cosn =

(2.36)
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The above equations, namely (2,30), (2.32) - (2.36), are the complete
matching conditions for P(r,§), u(r,§), v(r,§) and w(r,§) at r =h,
<legl <
On the flagellum surface, the velocity components can be expand-

ed in Fourier series with o as an independent variable, Thus

[e0]
u(r(oz),g(a/) ) :};Gﬁsinlia s k (2.37a)
=1
0
vir{a),E(a) ) = —;— T, t z 7, cosla , (2.38a)
2=1
[0}
w(r{a),E(a) ) = %—fpo'fzq?ﬂcosﬁa , (2.39a)

£=1

where the coefficients are determined from (2.11) - (2.13) as

cl:wb , 61:0 L= 2,34, .) (2.37b)
T :i"fﬁlE(B) , T =0 T, _th j /1———-smozcosiadar,
o] ™ h 1
=234 ...)
(2.38Db)
P =9 =0 , £ =1,2,3, . . .) . (2.39Db)

The function IE( 11—)1—) in (2. 38b) is the complete elliptic integral of the

second kind and is given by

1 2 12'3 4 2
Ex) = 5 1 - - .. L L], <L)y L (2.40)
2% 2%. 4%

By comparing the solution given by (2.17) - (2.19) at r = r(«)

and £ = {(a) with the boundary conditions (2,37) - (2, 39) together with
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the matching conditions (2, 30), (2,32) - (2.36), we can, at least in
principle, determine all the coefficients <, 04 s c5 s cb R An’ Gn’ Hn’ Bn’
Dn and En(nzl, 2, . . .). Consequently, the pressure and velocity
distributions are completely determined.

A final remark about the matching condition is that it can only
be done at some r in h-b<r<h+b, and r =h is a convenient one,
Suppose we want to match two solutions at r = h + ¢, Ie l > b then in

{D - Do)ﬂ(r =h +¢), £ varies over the whole interval [ -w,w] and the

set {1,sinnf, cosnf} (ﬁ:1,2,3, . . .) becomes complete, To make

m\
a Fourier series vanish, say Z ansin ng = 0, each coefficient must be

zero, i.e. a = 0 (n=1,2,3, Bn:} . ). Due to the fact that the Wronskian

of Kn(z) and Xn(z) does not vanish,

W{K_(z), I (z)} =| © = -i- , (2.41)

conditions (2,30), (2.32) - (2. 36) cannot be satisfied simultaneously
unless P(r,§) = u(r,§) =v(r,£) =0, w(r,£&) = c =c, which is a trivial

solution,

2.3 Torque exerted on the flagellum

As an infinitely long flagellum propels itself through a viscous
fluid by propagating a helical wave along it, there will be a constant
torque (or a moment of force) exerted on the flagellum by the surround-
ing fluid about an axis lying in the direction of its forward motion., This

torque is induced as a result of the helical movement of flagellum and
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it tends to rotate the flagellum in the opposite direction to that of its
forward motion. Thus, in order to make the helical movement of
flagellum possible, a constant torque of the same magnitude but in op-
posite direction of the induced torque must be applied on the flagellum,
For self-propelling microscopic organisms, this counter-torque is
provided by having an inertial head, Without such counter-torque,
heli>c:a1 waves will cease to exist and the flagellum becomes motion-
less.

The torque exerted on a flagellum in a wavelength by the
surrounding fluid due to the helical wave motion can be calculated by

the following formula,

AN T
_ 212 b cos
M=b 5‘ 3 {r(?ernr+766n9+7'exnx)\/1+k h* |1 + ﬂ

h?-b?sin® o
X=0 Q==~T r=r{a)

€=E(a)
dadx , (2.42)

where Tor 790 and Toyx 2F€ the stress tensor components, given by

ov v 1 ou
7'91‘ = l_l,(—a-—; - ;— + ;-::' 5 ) g (2.433)
1 8v u
769:"P+2“(?'§”§‘+?) ) (2.43Db)
1 ow v
79X=“(.r_5.§ -k&r) i (2.43c)

n_,ny and n _ are the components of the unit outwardnormalto the flagel-
lum surface in the r,6, and x directions respectively., They may be

found without much difficulty as

n, = cosa (2.44a)
J1+k%h® sin® (a+£)
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ng = sina , (2.44b)
\/1+k2 h? sin?® (a+£)
and
n - - kh sin(a+£) (2. 44c)
* \/1+k2 h? sin® (a+€)

£ and o being related by (2.5b).

Once the pressure and velocity components are found, we can
obtain the stress components Tor® 760 and L by substituting (2.16) -
(2.19) into (2,43). Finally, substituting (2.43) and (2,44) into (2.42),

the torque acting on a flagellum in a wavelength could be determined,

2.4 Energy required to maintain the flagellum in motion

The energy E required in a wavelength of the flagellum for
maintaining the helical motion may be found by integration, over the
flagellum surface, of the time-rate of work done by the surface stress-

es, This calculation yields

(‘h K g")'n' —
E=b ‘) 3 Z (thri51n§+wh7'eicos g+UTXi)
X=

o a=-w|i=r,0,x

I+ b cosa dadx

h® -b® sin® o

n, J1 +k* h?

o

(@)
(a)

r=r
£=¢

(2.45)

where T@i(i:r’ 6,x) and n, are given by (2.43) and (2.44) respectively,

T . and 7 . are as follows,
ri xi

du
Ter = P+ 2y or ? (2.46a)



T, =~ P -2k .  (2.46D)
"o =Tor “blroE ¥ (2.46¢)
"0 = Tox = (T 55 - X BF (2.46e)

2.5 Approximate propulsion velocity when b «h

For most flagellum-propelling microorganisms, the radius of
the circular cross-section of flagellum is small in comparison with the
amplitude of helical waves. In the limiting case when b/h 1, bound-

ary conditions (2.37) - {2.39) reduce to

u(r({a), £(a)) = wb sina

) (2.47)
b 2
v(z(a), @) =on +0O(2) (2.48)
w(r(a), £(a)) =0 . (2.49)
By (2.5b), we see that sina = % sinf. As is clearly suggested by

(2.47) - (2.49), we assume, as a first approximation, that for r > h,

Kl(kr) _
P(r,£) = k}.LA1 I_{jk—}?)_ sing (2.50)
1 Ko(kr) Kl(kr) Kz(kr)
U.(I‘,g): Z—GLW +Alkrm+H1 m Siné B (2‘51)

2 Ko(kh} 1 K (kh) (2.52)

Z

Kl(kr) Kl(kr) Ko(kr) Kl(kr)
[Gl o T e AR g A oyt s
c 2 i 1 (20 53)

C K (kr) K (kr)
vir,§) = -—gj %‘%- I[Gl o - H ——?-———Jcosf; ,
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The boundary surface, in the limit of b/h « 1, reduces to

r{a) = h[l + }E{ cosa + O(%)Z} ,

and

3
E(a) = % sina+0($—l) . (2.54)

h

boundary conditions, and noting that for arbitrary analytic function

2
Neglecting terms of order O(E) and higher orders in applying the

f{r{a)),
b Z
f(r(a)) = £(h) + bcosa £'(h) + O(K) ,
we obtain the following simultaneous equations,
G +Akh+H =20h (2.55a)
c +G - H =2wh (2.55¢)
3 1 1
K! (kh) K!(kh)
-c_+ kh - kh =0 2,55
¢ * KRG RERY R () ’ (2.55d)
K (kh) K (kh) K _(kh)
S SO + - =
¢, +G RTR%) +H R () khA KRBT A=0 , (2.55)
K'(kh) K'(kh) K (kh) K' (kh) K'(kh)
G + H + A + kKhA == - A =0
1 Koikh) 1 KZ (kh} 1 Kl(khs 1 Kl (kh} 1 K1 (kh>
(2.55f)

where K;l(z) (n=0,1,2) denotes dKn(z)/dzg The solution of the above

gimultaneous equations is

G - 2wh 1 TR +( + 1 = h3) Ko(kh) 2 56
Al kh + 5 R (T | (2.56a)
K (kh) K {kh)

_2wh |l 2.2 1 _1l e o
A1 = = [—2— k“h* + kh Ko(kh 5 ké h R (kh 5 (2.56b)
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26h - s s Kl(kh) ¢
H = % + (2-k* h* ) R:(?H) , (2.56c¢)
, K (kh) K (kh)
_ 2wh 1 1343 2 2y 1 _l.s.3 "o
= & [m‘h Pz G ) T2 K h K (K5 } (2.56d)

K (kh) K _(kh)
c = 2o o Leye piop .
N | p Kk (KB) " Z K(KR) |, (2.56e)

where
Kl(kh) Ko(kh)
A:3kh+2K—;(m + kh Kj(kh (2,56f)

Since the modified Bessel function of the second kind Km(nkr)

(m=0,£1,%2, ;n=1,2,3, . . .) decreases exponentially as

r approaches to infinity, the boundary conditions at infinity, (2.14) and
(2,15), are satisfied automatically with the propulsion velocity U

c
given by U = - =—%— or

1 .22 Kl(kh) I .22 Ko(kh)
2+ 3 K1 -kh R - > Kh R

U _ 3.3
g = Kkh K (KR) K_(ih) (2.57)
sich + 2 gy + b 2wy

The value of U/c given by (2.57) is plotted versus the kh value in

Fig. 3. The limiting value of U/c as kh approaches to zero is
ZKO(kh) - thl (kh)

. U 3.3
lim = = k™ h
Kh = o © Z.K1 {kh)

(2.58)

To determine the accuracy of the present single-harmonic ap-
proximation for the outer solution (r >h), (2.50) - (2.53), and to show

that it may differ from the exact solutions, (2.16) - (2.19), only by
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terms of order O(b/h), we proceed asfollows. By (2.54), we have
P

3
) n=1,2,3, . . .) ,

5o

sinng () = sin(n % Sinoz)+ Oi

and
3
) (n=1,2,3, . . .)

o o

cosn§(a) = cos(n ]%‘ Sinoz)-l- O(

From the integral representation of the Bessel function of the first

kind, Jﬁ (x), we have for £ =0, £1,%2,

2 . . £ b
= —mna)mnﬁadoz:[l-(—l) ]Jl(n H) ,

§ sm
f cos —-Sinax)cosladoz:[1+(-1)£]J£(n%)

=T

Thus, for the exact solution (2,16} - (2.19), the boundary conditions

(2.47) - (2.49) yield that, for £ = 0,2,4,6, . . . ,
o0
), ) T (n B)= % sotold] @55
n=1
99\ 2
2 bux‘l(h)[lz+1{n §)+ Ty e %)J: of 11‘;;) , (2.59b)
n=1
X 2
%c3aﬁo+zvn(h);r£(n%):whaﬂo +o(%) 9 (2.59¢)
n=1 :
.
S CUSDATTHAEHIEEE | S
n=1
o0

Leo, s an(h) 5(» ) -of) . (2.59)



Z bwr'l(h){Jﬂ (n %)Jr 3y e (n %)} - o(%)z , (2. 59f)
I

where un(r), vn(r) and wn(r) are given by (2.26) ~ (2,28), ur'l(r)

denotes dun(r)/dr and & is the Kronecker delta,

Lo

Since the ascending series for the Bessel function of the first

kind is 1 m
R (-— = XZ)
Tyx) = | ! x) | 4
FAR A ) mil (L +m+1) °
m=o0

we see immediately that the single-harmonic approximation (2.50) -
(2.53) with the coefficients determined by (2,55) and An:Gn:an 0
(n=2,3,4, . . .) satisfies the simultaneous equations (2.59)
(£ =0,2,4,6, . . .) upto the order O(b/h)

In order to make the solutions smooth at r = h, and that the

matching conditions (2.30), (2.32) - (2.36) be satisfied, we have to

take infinitely many terms for the solutions in the region

{(D-D )[\(r<h Thus, for r <h,

nkr}
= kit Z n ﬂ_—T sinnf | (2,60)
n=I
00
I (nkr) I (nkr) I (nkz)
1 n-i n n-H
u(r,€) = TZ[D I, (akh tkr By I_(akh) El I Y_nkh"y]smng .
n=1 h (2.61a)
m -
cr I . (nkr) I, (nkr)
i -1
vir,£) = 24}1 + .Z.Z{Dn IE—YHEE‘)‘ niil_}-jl?k—}-l—y}cosng , {2,61b)
n:l n-t
C X I (nkr) I (nkr) . I ﬂ(nkr)
1 n n n-1
w(r,§) = o= -D ’ - E —krB
2 n In-x (nkh) n In-H. {nkh) I anhﬁ
n=1
I (nkr)
n
- 1- EBHW]C05n§ N (2.,61C)

The coefficients ¢, ¢ ,D ,B_ and E (n=1,2,3, . . .) are to be
4 6 n n n
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determined by (2.11) - (2.13), (2.30), (2.32) - (2.36). Theoretically
this is possible, but practically it is a very tedious task because we

have to keep an infinite number of terms in the calculations. Any finite-

term approximations will make the solutions un~smooth at r = h,.

2,6 Comparison with G.I, Taylor's and G. J. Hancock's solutions

To study the flagellated propulsion of microscopic organisms,
Taylor (1952) applied the Stokes equations in a cylindrical polar co-
;Drdinate system and analyzed the motion of an infinitely long cylindri-
cal tail which makes progressive helical waves of small amplitude,
i.e, h «b (in the present notation). He was able to find that the
propulsion velocity U of this cylindrical tail is in the opposite direc-

tion to the phase velocity ¢ of the helical waves and the magnitude of

U for arbitrary values of kb is

1 I K; (kb)
5 K (kb) - > k 1(kb)+ > kb R TRET
= = k% h? L . (2.63)

[

2

bK
A K_(kb) [K_(Kb)]?
kal(kb){—z- t 5 B —[Kl (kb)} }+ K_(kb)

In the limiting case when kb approaches to zero, (2.63) reduces to

1
K (kb) - i
lim J=kKn 22 (2.64)
Kb~ 0 K_(kb) + &

Furthermore, Taylor found that a constant couple (or torque) must be
applied to the tail about its length in order that it may not rotate. In
the limiting case when kb approaches to zero, the torque M exerted

by the surrounding fluid on the cylinder per wavelength is (Drummond,
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1966)

lim M = - 4w kh? cx/[ K (kb) +3-] . (2.65)
kb ~ 0 ° 2
The negative sign in front of the expression (2, 65) means that the
torque acting on the tail is in the direction opposite to that of the for~
ward propulsion,

The assumption made in Taylor's work that the amplitude of the
helical wave, h, is small in comparison with the radius of the circu-
lar cyliﬁdrical tail, b, is not generally met in nature, since even
though kh may be small, h is usually observed to be greater than
b. For a great variety of motions employed by microscopic organisms,
the kh wvalue is about 1 as a typical estimate, It is necessary then
to develop a theory capable of solving problems involving helical waves
of arbitrary amplitudea However, the extension of the method used by
Taylor in an attempt to determine further terms in the series for the
velocity is very difficult, as has beennoted by Hancock(1953), An alter-
native approach was suggested by Hancock(1953}). He analyzed the movement
of a long thin cylindrical filament along which helical waves of lateral dis -
placementare propagated, Theflow aroundthe filamentis determinedby
distributing a system of 'doublets' and 'Stokeslets' inside the surface
of the filament whose strengths are determined from the no-slip
boundary conditions on the filament surface togcthex" with the condition
that the total energy of the induced velocity field remains finite. In
Hancock's theory, the amplitude of propagating helical waves, h, need

not be small as compared with the wavelength ., yet the radius of the
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filament, b, shrinks to zero. Under these conditions, he was able to

find that the propulsion velocity U is

21.2
%:___}f.ﬁl_.._ ) : (2.67)

1+2k* h?
However, he did not obtain an expression for the torque exerted on the
filament by the surrounding fluid, the reason for this difficulty is be-
cause of his initial assumption that kb must be very small. Even

when no "zero radius' assumption is made, he still could not find the
-1

: i
torque by means of his theory because it is only Hn ;‘i ) which is of
an order of magnitude not neglected in his calculations, but ?— itself.

In order to have a better understanding of the nature of helical
waves, we suggest here a third approach as presented in the previous
sections of this chapter. In this new approach, a helical coordinate
system (r,f,x) is employed., All the operators are expressed in
terms of this helical coordinate while the velocity components u, v
and w are still kept in the r,6 and x directions with r,f as the
independent variables. In so doing, the solutions for helical waves of
arbitrary amplitude h produced by an infinitely long flagellum of
radiue b, with b <h, can be found for the two regions (r > h) and
(r <h) separately., Based on the theorem proved in the foregoing, the
outer solution {(corresponding tc r > h) and the inner solution (cor-
responding to 0K r < h) can be matched infinitely smoothly at r = h,
Expressions for calculating the induced torque M and the energy
required to maintain éuch helical motion E are presented, In the

extreme case when b « h, by a single-harmonic approximation for
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2
the outer solution and neglecting second-order terms O(E-) in apply-

ing the boundary conditions, the propulsion velocity is found to be

K (kh) 1, K (kh)

1 ,2,2 1 2 o
24z KT - kh gy - 5 KB g
U 33 o 2 (2.57)
K (k) K_(Kh) .
3kh+2K_THTOk +thzkh
When kh is small, (2.57) reduces to
2K (kh) - khK (kh)
. 9] 3.3 O 1
lim = =Kh (2.58)
Khe 0 © 2K_(Kh)

However, the author has not been able to provide explicit solutions for
the induced torque M and the energy required E, because it requires
the knowledge of all coefficients, infinitely many of them, in the inner solution.
For small values of kb and kh, Taylor's (2.64), Hancock's
(2.67) and present (2.58) solutions are plotted in Fig, 4 for comparison,
From Tayloris or Hancock's solution, (2.64) and (2.67), we observe
that the propulsion velocity U is proportional to the square of kh,
According to the present approximate solution (2,58), however, U/c
is proportional to the product of (kh)® and logkh
(i,e. Ux-k*n* logkh), the order of which is between the third and
fourth powers of kh, In other words, the propulsion velocity U given
by the present approximation is smaller than that predicted by Taylor
or Hancock for the same phase velocity c¢. It was reported by many
biologists (e.g. Rikmenspoel, 1962) that the velocities predicted by
Taylor (1952) or Hancock (1953) are too high, by a factor of 10 for the

model of Taylor or a factor of 5 for that of Hancock. Hence the



36~

0.7 | l | |
0 TAYLOR'S EXPERIMENT (1952) /
—————  PRESENT APPROXIMATION (1971)
0.6 —=— HANCOCK (1953) /
———— TAYLOR (kb=0.1) (1952) /
0.5
0.4
U
c
0.3
0.2
O.1
0 0.2 0.4 0.6 0.8 0

kh

Fig. 4 Propulsion velocity of flagellum at
small values of kb and kh,
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present approximation is in a better agreement with the experimental
data measured by biologists,

Another interesting fact worth mentioning is that Taylor (1952)
made a working model of swimming spermatozoan which, when releas-
ed after being wound up, can make a helical wave to travel down its
rubber tail without rotating relative to the body. The only experimental
result on this model reported in his paper is the one in which (in the
present notation) kb = 0,1, kh = 0,5 and the observed value of Ulc
is

= 0,025

(U/C)observed -

which is alsc plotted in Fig. 4, Comparing this experimental result
with three theoretical curves, it further adds to one's confidence in the

present solution,
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III. THE SELF-PROPULSION OF A MICROORGANISM BY
SENDING HELICAL WAVES DOWN ITS FLAGELLATED TAIL

3,1 First principles of mechanics

In order to facilitate applications to the self-propulsion of flagel~
lated microscopic organisms, Gray and Hancock (1955) derived two
ve'r‘y useful approximate formulae based on the {irst principles of
mechanics and the concept of 'Stokeslets' for calculating the tangential
and normal coefficients of viscous resistance acting on the surface of
a long thin cylindrical element which is in motion through a viscous
fluid. If the tangential and normal velocities of this cylindrical ele-
ment of length ds are \75 and \_/:n respectively with respect to the
surrounding fluid, the tangential viscous force acting on this element
ds will be dfs = - CS\T;Sds, and the normal viscous force,
dfn = -Cn‘\?nds, where Cs and Cn are the F:orresponding coefficients

of resistance, which are given by Gray and Hancock (1955} as

{ - 2 ~
c_=2C_ , (3.1)
and
_ 2T
Cs"l (zx T ’ (3.2)
8 "E‘) z

where b is the radius of the slender filament, U the viscosity co-

efficient,
Equations (3.1) and (3.2) given by Gray and Hancock (1955) have
been adopted by many authors to make theoretical analyses of planar

waves generated by minute creatures, including the propulsion of
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sea~-urchin spermatozoa, Psammechinus miliaris (Gray and Hancock,
1955) and the movement of spermatozoa of a bull (Gray, 1958). The
results are remarkably good for planar waves. Based also on the
above formulae, Carlson (1959) derived an expression for the motile
power required to make such plane waves, However, when Gray and
Hancock's method is adopted to study the helical movement of flagel-
lated microorganisms, both the linear and angular momentum must be
simultaneously taken into account. For a body propelling itself at a
constant mean velocity in a viscous fluid, both the resultant force and
the resultant torque acted on the body by the fluid must vanish, The
purpose of this chapter is toc demonstrate that conditions of conservation
of both linear and angular momentum yield two equations relating four
flow quantities, the forward speed of propulsion, U, the induced
angular velocity §2 of body about the axis of propulsion, the resultant
thrust FX and resultant torque Mx experienced by the organism,
The forward speed U and angular velocity £ of a flagellated organism
in helical waving motion posterior to its head are thereby determined
by the conditions that both FX and Mx vanish,

Consider a model creature, which has a head and a flagellum,
swimming in a viscous fluid by making helical waves which propagate
distally, The motion will be considered here in two steps, For the
first, the flagellum bends itself simultaneously in two internal planes
normal to each other, and the cross sections of body do not rotate
‘about the body-axis {Fig. 5a,b). In terms of a cylindrical polar co-
ordinate system (r,0,x) fixed with respect to the fluid at infinity,

‘this type of helical wave form can be described by
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r=nh 3

0 = k(x+ct) = kx + wt (3.3)

where k = 2w/\N is the wave number and ¢ = w/k 1is the phase velocity,
Every element of the flagellum rotates about the x-axis with a fre-
quency f = w/2w cycles/sec in the 6-direction, but does not "gyrate'
around any point within the body, and moves parallel to the x-~axis
with velocity UO (Fig. 5c,d). The head and its attached tail, as a
whole, do not rotate about the x-axis, while they move along the x-axis
with velocity U,-

Now, from the free-body diagram of the forces acting on an
element ds of the tail, the propulsive force in the x-direction is seen
to be

dFX = (dF_sinB - dF _cosp) , (3.4)

and the force in the @-direction is dFy = -(dF _cosp + dF _sinf ),

which gives a torque, or a moment of force about the x-axis,

de = hdF6 = -h(ancosgB + dFssinB) , (3.5)

where B is the constant pitch-angle between the tail and the x-axis,

tanﬁ = g-)\.i h = kh B (36)

and an/ds, dFS/ds are the bi-normal and tangential components,
respectively, of the resultant force acting on the filament of unit length,
The negative sign in Eq. (3.5) means that the torque tends to rotate the

body" in the (-8)-direction, i,e. clockwise in the yz plane, The total
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,3’1‘ nx
force in the x-direction can be balanced, } dF -F = 0 (where-
Yoo x ~ head

n\ 1is the extension of flagellum in the x-direction, Fhead is the

- n)\

o

viscous drag on the head, but the net torque, de’ cannot van-

Jx:O
ish as will be shown explicitly later., Hence the creature, head and
tail as a whole, starts to rotate about the x-axis in the (-8)-direction,
While the microorganism rotates clockwise, the viscous fluid will
exert on it an additional counter torque. This effect of body rotation
reduces the speed at which the waves travel relative to the environ-
ment, and in turn reduces both the propulsive thrust and the torque
acting on the tail, Only until the creature reaches an induced angular
velocity £ = Zﬂfindgfind being the induced angular frequency of the
head and tail as a whole} at which the net torque and net force acting
on the entire body both vanish identically does the motion become
steady.

The resuiting body motion in the Lab-system (i.e. in this same
coordinate system (x,y,z) fixed with respect to the fluid at large
distances) is clearly the one in which every cross-section of the tail
rotates about the x~axis with an apparent angular velocity wapp: w=-£2,
in the 0-direction (counter~-clockwise), whereas the head rotates
{clockwise) about the x-axis with the induced angular velocity £,
while the body as a whole moves along the x-axis with a velocity U,
which in general may be different from Uo' Moreover, every cross-
section of the tail, like the head, also rotates about its own center

with angular velocity @ (about a line parallel to the x-axis) in the
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clockwise direction (see Fig. 6). Thus the motion of the central curve

of the tail can be described as

r=h )
6 = kx + (w-2)t (3.7)

. . dx
propulsion velocity: T =U

Thé viscous torque resulted from the fluid reaction on an element of
the cylindrical tail of radius b and arc length ds, which rotates
about the tangeﬁt of its central curve (given by (3.7) ) with angular
velocity (clockwise) Qs =§ cosB, is given by (see, e.g. Lamb (1932),

p. 588) dl\zs = 4Tr[.Lb2 Qsd; The x~component of this torque is

stail = exvdMs = dMScosﬁ = 4nub*Q cosp dx (3.8)

whereas its circumferential component (in the 0-direction) yields zero
resultant over a whole wavelength, The equilibrium conditions con-

cerning the net force and torque now become

ni nh
- - { i - - -
§ dFX Fhead = g \ansm B dFscos B) Fhead‘Fx )
X=0 X=0 .

nh ~ nh
5 (AM_+dL, . (dF_cos B +dF sinf)
n s

-h

%0 tall) head ‘Bﬁ_o
(e)

tall Mhead M » (3.10)

where

dF_ = Cn(Vecos@ - U sinB ) secP dx , (3.11)
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dFS :CS(VesinB + UcosfP)secP dx , (3.12)
=h 00 =h = h{w-£2 3,13
Vg =h gp=he  =hl-g) (3.13)

(e)

X

and FS) denotes the extraneous thrust, and M the extraneous
torque, both being applied on the body by external agencies such as
gravity or mechanical pull other than the fluid (whose contributions
are already given by the left hands of (3.9), (3.10)). For self-propel-~-
ling bodies at constant forward speed in the absence of external agen-
cies, Fﬁ{e) = 0 and M}({e) =0, Eqgs. (3.9) and (3.10) then provide two
basic equations to be solved for two unknowns, namely the propulsion
velocity U and the induced angular velocity §2. The force exerted on

the head F by the viscous fluid is a function of U, Fhead:Fhea (U)

head

and the torque acting on the head is a function of £, M

Mpeaa®)

head”
explicit relations of which will be given later in Section 3.2, We note
here that expressions {3,11), (3.12) for the forces exerted by the fluid
are written dccording to the theory of Gray and Hancock (1955),

It may be noted that although every cross-section of the flagel-
lum (or the tail) rotates about the x-axis with an apparent angular
velocity wap = w -  counter-clockwise, which is in general different
from that of the head (2, clockwise), yet the tail {(i,e. with its mater~
~iaLl substances) does not rotate as a whole relative to the head, This
state of operation can be realized by sending a helical wave with only
its wave formprogressing distally with angular velocity w relative to
the head, without twisting the flagellum into a rope-like strand (as the

latter situation would be a torture no creature could stand), as can also

be seen from Fig, 6. To an observer in a moving frame of reference
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which rotates about the x-axis with angular velocity 2 clockwise, the
microorganism will appear to make helical waves exactly the same as
in Fig. 5 and as descfibed by Eq. (3.3), except that the propulsive
mechanism is quite different since it is now affected by §2. In the
extreme case when w =, i, e, wapp = 0 (which will be shown later
to correspond to the case of a very small head), the tail will cease to
ex};ibit any bending waves (only in a stationary helical shape, although
it rotates about its longitudinal axis with a frequency § clockwise),
whilst its forward propulsion speed reduces to zero., The above argu~
ment roughly answers the question raised by Lord Rothschild (1961)
"Can a spermatozoon roll about its longitudinal axis when its tail
exhibits no bending waves?' It may further be noted that the effort
made bya spermatozoon to roll without exhibiting bending waves is not
in the form of a torsion, but a bending simultaneously in two perpen-
dicular internal planes. This may sound paradoxical, but it is not,
From the preceeding consideration of the first principles we
have seen that propagation of helical waves along a flagellum must be
accompanied by a rotation of the head in a direction opposite to that of
the angular phase velocity of the helical waves. The solution of Stokes'
equations involving rotation of a body may be comprised of the 'doublets’,
'Stokeslets’, and ‘rotlets' (Childress, 1964). Before ieaving for the
determination of the ‘rotlet’ and the torque exerted by a viscous fluid
on the head, it may be pointed out that it may be desirable to improve
the accuracy of (3.1) and (3,2) if higher accuracies are needed. For

instance, the normal coefficient of quasi-steady resistance based on

the Oseen equation, given by (see, e.g, Lamb (1932) )
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4Ty

C_= ) (3.1a)
n 1 4H

=-yv +1

2 Y og( prn)

can be tried out, where vy 1is the Euler's constant, v = 0,577 , . . ,
b is the radius of cylindrical tail, U the coefficient of viscosity, and
p the density of fluid. The tangential coefficient of resistance, again

based on the quasi-steady assumption, was employed by Wu (1966) as

_— 1 2y-1 -
CS = 411'!.},('5: + -ﬁ_é—-—-) 5 BO = 10g
C

__fﬂiil) (3. 2a)
pb2 Vs

3.2 The Rotlet and Torque

We summarize below the fundamental singular solutions of the
Stokes' equations {(Hancock {1953) and Childress (1964) ). For an in-

compressible viscous fluid, the Stokes' equations are

Veu =0 (3.14)

§

0=-VP+uViu (3.15)

where P is the pressure and v =zue_ +ve + we_  the velocity vector,

XX

s - i
€.s €. €, being unit vectors in x,y, and z directions, respectively.

Taking the divergence of (3.15) and making use of (3. 14) we have

VEp-0 | ' (3.16)

hence P is harmonic. For a 'Stokeslet' situated at the origin and
. -3
oriented in the direction of an arbitrary vector « with strength

—
o = faj , the pressure assumes the value
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P_ =2y @R (3.17)
R3

where R = ng + ng + zgz, RE=x* +y2+ 2%, Substituting (3.17) into

(3.15), and integrating (3.15) together with (3.14), we obtain

T .2 4 RlaR) ] ' (3.18)
s R RS

The force given by the Stokeslet of strength o is
fszg 0-dS = - 81y a (3.19)

where dS is a surface element, ¢ is the stress tensor, given by
.. =~ P6,. +1(0u./8x. + 8u./8x.), §.. being the Kronecker delta., The
1] 1] 1 ] ] 1 1]

above result can be shown by integration over the entire surface of the
body represented by the above singular solution,

The pressure field of Stokes' flow is unchanged by superposition
on the velocity of an irrotational component Zd which has a scalar poten-
tial ¢,

Tl’d =V . (3.20)

Taking the divergence of (3,20) gives
Vi =0 . (3.21)

—
For a 'doublet’ in the direction of arbitrary vector $ with strength

B =181,
B8R (3.22)

By substituting (3.22) into (3,20), the velocity vector of the doublet is



-50-

SamertR (3.23)

Doublets do not give any force,
To derive the third type singular solution, or the 'rotlet’, we
first note that the vorticity vector z -V XU satisfies automatically

the equation

Vel =0 . (3.24)

If P = constant, Z can be derived from a scalar potential, X,Z: V¥,

since by (3.14) and (3.15)

VXL =VX(VXa)=-Va=- :TVP:O

From {3, 24) and E = Vy it follows that VZX = 0, For a 'rotlet' in the

direction of an arbitrary vector ¢ with strength £ = ]?2 l )

x =2 2R (3.25)
RJ
hence
i =3 IXE :[V(Q'R” XE=SXR (3.26)
2 R®

M = -5 EX (0-dS) = - 8l . (3.27)

In summary, Stokeslets give singular forces but no torque,
rotlets give singular torques but no net force, whereas doublets gener-
ate neither. We now proceed to construct the solution to approximate

the flow around the head by employing these three types of singular
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solutions,

Suppose the head of the microorganism depicted in Fig., 5 is a
sphere of radius a. It moves along the x-axis with a velocity of ng
and rotates about the x-axis with an angular velocity —Q—e;_ At the
instant when the center of sphere coincides with the origin x = 0, the

instantaneous velocity field can be shown as

- >

3 - —n —3 —_ 3 e = -
> (-a QeX)X R . 320 e_x R R(eX R) . 2 U i’_‘. ) 3R(eX-R)
R 4 R R3 4 R3 RS
(3.28)

in which the strength of the rotlet, Stokeslet and doublet are deter-~
mined to satisfy the no-slip condition at the spherical surface. Hence,

by (3.27) and (3.28), the torque acting on the head is

M, g = -8nu(-a’ Qe ) = 8mia’ Qe . (3.29)

The above result was given earlier by Lamb (1932). The force acting
on the head is obtained from Eqgs. (3.19) and (3. 28)

3aU g
4

Fhead = —8’1’1‘“(——-—— = - 6mual e, (3.30)

which is the well-known Stokes' drag formula.

3.3 Propulsion Velocity U and Induced Angular Velocity £

We are now in position to give a complete account of the motion
of a microorganism having a spherical head of radius a, propelling

itself through a viscous fluid, with velocity U in the positive x direc-

tion, by propagating along its flagellum a helical wave of radial
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amplitude h, wavelength )\, and phase velocity ¢. As a result of
this movement, the head will rotate at an induced angular velocity £
in the negative 6 direction, and the movement of the flagellum is
given by (3.7). The total number of helical waves along the tail is n
(which need not be an integer) and the radius of the tail cross-section
is b (see Fig. 7). Substituting (3.1), (3.6) and (3.13) into (3.11), we
have

dF _ = ZCS[(kc-SZ) h - Ukh]dx . (3.31)
Similarly, from (3.6), (3.13) and (3.12),
dF = cs[(kc-sz Ykh® + Uldx . (3.32)

Upon substituting (3.29) - (3.32) in (3.9), (3.10), the force and torque
balance conditions F;e) =0, MS) = 0, vyield two simultaneous equa~

tions for two unknowns U and £,

(1 +2k*+A)U + kQh =g*c (3.33a)
KU + (2 + k2 +B)’h = k(2 + k% ), (3.33b)
where
Kk = kh A= iﬁ‘-’i(i) (14k* 2 B = iﬁ[wn(é)z+(i)3x(1+xz )ﬂ
- ’ - nC |k g ~ nC_ B h ’

(3.34)

Cs being the tangential force coefficient as given by (3.2), and n the
number of wavelength along the tail, From (3.33) it readily follows

that
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2
2 2 2 :
‘Ctj' _ 1+2k% + A 1+ 2(1+K%) + (24k° )A , (3.35)
K (1+2k% +A)B
I 2
{u;_: 1+ (1+2¢% + A)B . (3.36)

2(14+k2 ¥+ (2+%)A

From Egs, (3.35) and (3, 36) it is of interest to note the follow-
ing result, When the radius of the head of a microorganism becomes
neéligible (a = 0), while the wave motion of tail is of such a significant
amplitude that ¥ =kh = O(1) and b «h, as is rather typical in natural
environment, (3.34) indicates clearly that B = O(b/h)* whereas A = 0,
Consequently, by (3.35) and (3, 36), the forward propulsion velocity,
U/c = O(b/h), will also be small, and the induced angular velocity
2 becomes nearly equal to the circular frequency, w =kc, of the
helical wave, In this limit

lim U = O(b/h) , lim Q=w , (k=kh=0(1)) .
a/h,b/h ~ 0 a/h,b/h =0
Thus, the apparent angular velocity wapp = w ~ 2 is practically zero,
That is to say, to an observer in the fixed x,y,z space, the tail ap-
pears "motionless', thus indicating that all motions of this class tend
to cease, and the organism becomes unable to propel itself by means of
helical waves,

The above conclusion is at variance with that of Holwill and
Burge (1963), and Holwill (1966). They claimed that when the radius,
a, of the head, approaches zero, the forward propulsion velocity will

approach to the value (in the present notation)
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which is not correct. The error in Holwill's work is due to neglect-
ing a correct consideration of the balance between the torque and the
angular momentum. As indicated earlier in the present chapter, applica-
tion of the Gray and Hancock (1955) method to helical wave motions
must be accompanied by inclusion of 'rotlets' as a characteristic
element of rotational movements, Note that the above equation for
U/c is obtained from (3. 33a) by substitution of & = 0, but this result
is not compatible with (3. 33b) for real kh.

As was pointed out by Gray in his famous work (1953), the dif-
ference between planar and helical motions ''lies in the fact that where-
as the lateral components of all normal and tangential forces of a two-
dimensional wave summate to zero; those of a helical wave yield
couples tending to rotate the body in the opposite direction to that in
which the elements are moving round the median axis of motion, " '"In
freely swimming systems, however, some amount of spin is inevitable,
its effect is to reduce the effective speed at which the waves travel
relative to the environment, and since the latter factor determines the
magnitude of the propulsive thrust, the speed of progression must
inevitably be less than when all spin is eliminated, If the frequency of
spin were equal to the frequency of propagation of the waves down the
body, the waves would remain stationary relative to the medium and
no forward thrust would develop." Unfortunately, no successful mathe-

matical analysis has appeared since then, This author hopes that the
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present chapter will do its part in providing a theoretical basis for sup-

porting Gray's statement,

3.4 The Optimum Head-Tail Ratio for Maximum Propulsion Velocity

We have just seen that the propulsion velocity U tends to
O(b/h)* as the radius, a, of the head diminishes, The physical in-
terpretation of this result is now clear because a microorganism which
has no head to resist the rotation given rise by the viscous torque due
to its tail wave motion simply cannot manifest helical waves, It there-
fore cannot propel itself by means of helical Wavkes, although it may be
possible for éhe organism to derive propulsion by plane waves along
its tail, To the other extremity, as the radius a of the head becomes
exceedingly large compared with both h and b, we note from (3, 34)
that A = O(a/h), B = O(a/h)s, assuming K and n to be of O(l},
Consequently, by (3.35), (3.36)

Iim =0 |, and lim =20
a/h,al/b ~w a/h,a/b —+w

Physically this means that the head of the microorganism is, in this
limit, too big to be propelled by its tail,
Between these two extremities, the numerical results reveal

that the propulsion velocity U actually reaches a maximum at a cer-
tain value of a/b for each fixed set of values of K, kb, and

=n\ /b ({ being the ratio of the total extension of the flagellum in
the direction of propulsion to its radius), Generally { is of order
O(100). The optimum head-tail ratio a/b can be determined numerical-

ly from the curve U/c versus a/b for given values of k, kb, and
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L, as is demonstrated in Figs. 8 - 9 where £ is taken to be 156 as
a typical value derived from experimental observations. For example,
at kb = 0,1, K =kh =1, the optimum value of a/bis 21,4, and for
kb = 0,05, Kk = 0,5, itis 18,4, From these results the optimum a/b
is further cross-plotted in Fig, 10 versus Kk for several values of kb,
alternately, h/b. It is noted that the optimum a/b increases gradual-
ly with the pitch ¥ = kh of the helical wave at fixed h/b and increases
more rapidly as the wave amplitude h increases for fixed pitch K. |
As mentioned earlier, for a great variety of motions employed by
microorganiéms the pitch K = kh is generally of order O(l), In this
neighborhood the present analysis indicates, as shown by Fig, 10, that
the optimum head-tail ratic a/b lies in the range somewhere between
15 and 40 for 5 <h/b< 40, the latter about covering the range
actually observed, Although it would take further quantitative evalua-
%:ions (such as of the speed of propulsion U, induced angular velocity

§2, and the hydromechanical efficiency, as well as their comparison

with experimental observations) in order to ascertain whether most
microorganisms may utilize this feature of the optimum head-~tail ratio
in échieving the speed U to their advantage, it is nevertheless more
than a passing interest to note here that the above predicted values of
optimum a/b are fairly well supported by observed data, For instance,
the organism studied by Lowy and Spencer (1968, plate 6) has a head-
tail ratio of about 25:1, Leifson (1960) gave excellent photographs of

a number of different bacteria, showing that the head-tail ratios of

these bacteria are generally of order O(10).

The ratio of the propulsion velocity to the wave phase velocity,
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Fig. 10 Dependence of the optimum head=tail ratio
on the wave pitch-ratio kh and kb,
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Ul/c, of microorganisms having the optimum head-tail ratio is plot-
ted versus the wave pitch Kk = kh in Fig. 11 for several fixed values
of kb (again with £ =156), This optimum U/c increases with the
pitch k¥ and with increasing kb, In the vicinity of ¥ =1, U/c is seen
to have a value between 0,09 at kb = 0,03 and 0,19 at kb = 0,2, |
The ratio of the induced angular velocity 2 of the head to the
wave; circular frequency w, again for microorganisms with the
optimum head-tail ratio, is plotted versus K in Fig. 12 for various
kb, The result shows that £/w increases with decreasing kb, For
each fixed kb, however, it is of interest to note that Q2/w reaches a
maximum, at about ¥ = 0,8 for kb < 0,1, The significance of this
maximum of £ /w is further enlightened by the following consideration

of the hydromechanical efficiency,

3.5 Energy Consideration and Hydromechanical Efficiency

The power required to move the spherical head through the

fluid with a forward velocity U and an angular velocity £ is

P U+M Q = 6mual? + 8nua’Q® . (3.37)

head ~ B

head head

The power expended by the tail in propagating the helical wave distally
is given by the time-rate of work done by the force exerted by the tail
element, with the x~-component - dFX and f-component «-dFQ (the
negative signs signifying the reaction to the force acted by the fluid on
the tail), plus the time-rate of work done by the torque associated with

the tail rotation about its centroid, or
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Fig, 11 The propulsion velocity of a microorganism
with the optimum head=-tail ratio.
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~ nh
P . = . [-UdF_ - V,dF, + 2 dM ]
~ N
= [ ~UdF_ -(0-2)dM_ + Qstaﬂ]
=0
= = UFy gt (@M gt Dol #9504 (3.38)

In the second step above, use has been made of (3.5), (3.8), (3.13),
and in the last step the force and torque balance conditions (3, 9) and
(3.10){again with Ff‘f), M;e) - 0) have been applied . The total

power expended in propelling the microorganism by means of helical

. . o
waves is therefore the sum of Phead and Ptail’ giving

P-wM L, .,] = 4npw2[ 2a® + bPnN cosp] . (3.39)

head + tail

We shall define the hydromechanical efficiency n as the ratio
of the power required for propelling the head alone to the total power
expended in manifesting the whole motion,

P

T oo /g wet] o

This expression is general, whether or not the head-tail ratio is
optimum, For the microorganisms with the optimum a/b, however,

the two factors in square bracket of (3.40) are nearly equal to unity

o,

sEquation (3.38) may also be stated as

- 2 2
Ptail "S“ (Cnvn+ Csvs )ds + Protation of flagellum”’
‘The detailed manipulation, however, is simpler by following the steps of (3.38).
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within the range of Kk and £ of practical interest and kb « 1 so that

nopzﬂ/w ) (3.41)

The accuracy of this approximation is well substantiated by the num-
erical result of n computed from (3,40) for the case of optimum a/b,
as shown in Fig. 13, For fixed kb, the hydromechanical efficiency

! e;ttains a maximum at about K = 0.9 throughout the range of kb
covered, 0,01 <kb< 0,2, In fact, Nnax increases from 0,14 at

kb = 0.2 to about 0.28 at kb = 0,01, Itis now .clear that locomotion
of microorganisms by means of helical Waves can be made most ef~
ficiently by keeping kh around 0,9, the resulting motion being char-
acterized by the state that the head is induced to rotate at a maximum
rate with respect to the wave frequency w, In view of the significance
of this result, it is perhaps not altogether coincidental that most micro-
organisms do have their kh values about 1, as found in experimental
observations,

Finally, we remark here as to how the present result based on
the consideration of optimum performance can be utilized to predict
the specific helical motion, Suppose a microorganism is given with
known a and b, This value of a/b and kh = 0,9 determine, by
Fig. 10, the value of kb, and hence also h/b, h/a, and therefore the
wave amplitude h, The wavelength follows from A = 2w/k = 2th, The
values of U/c, R/w, and efficiency m can be read from Figs, 11 - 13,
However, separate determination of U and £ will require the know-
ledge of the wave frequency w, or the wave velocity ¢ = w/k, which

may be either observed experimentally or evaluated when a
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bio-chemical estimate can be obtained of the energy available for

delivering the tail power P, ..

3.6 The Spirochete paradox

From the analysis given in the previous sections of this chap-
ter, we have seen that for a microorganism to propel itself by manifest-
ing‘ helical waves, it must have some means to balance the viscous
torque due to its tail wave motion, One possible way is for the micro-
organism to have an inertial head or body to resist the viscous torque,
and by far it is the most general way, In particular, when the radius-
amplitude ratic b/h approaches to zero, it is the only way as explain-
ed in Section 3, 3, Howéver, for arbitrary values of b/h, there is
another possibility, namely with some amount of spin of the tail; a
microorganism can still propel itself by propagating helical waves
along it in this manner, One example of this type of microorganism
is spirochete, In the past, scientists have been puzzled by the loco-
motion of spirochetes. How could a spirochete propel itself by helical
waves without a head to balance the torque? Some biologists even sug-
gested that it is not necessary for a spirochete to balance the torque
provided that the torgque is small (Jahn and Landman, 1965), How-~
ever, this author believes that we should not, and we do not have to,
give up the first principles in order to resolve this "Spirochete Para-
dox,' In fact, the answer to this paradox is contained in Eqgs, (3. 34) ~
{3.36).

When the head vanishes {(a = 0), (3, 34) yields



)Z : (3.42)

oy Rox

A=0 and B:%—H-(
s

Substituting (3.42) into (3. 35) and (3. 36), we have

2
2 - BK (3.43)

- 9

(1+2K% )B+2(1+x% ¥

2
§u - 2(1+k%) ) (3.44)
@ (142k? )BH2(1+k% )

The value of U/c given by (3.43) is plotted in Fig. 14 versus K =kh
for several v‘alues of the radius-amplitude ratic b/h, changing from
0 to 1, From Fig. 14, one further observes that the propulsion
velocity increases with increasing b/h for fixed kh, and for fixed
b/h it attains a maximum about kh = I, Therefore a spirochete should
keep its amplitude=wavelength ratio h/A around 1:6(h/\ =kh/2w=1/6)
%.n order to achieve a maximum propulsion velocity, By measuring

the photographs given in Jahn and Landman (1965}, we find that the
amplitude -wavelength ratio h/\ for spirochetes is indeed 1:6, Thus,
the value of kh = 1 is very significant, and it is a characteristic of
all inicroorganisms employing helical waves whether the micro-
organism has an inertial head or not,

The ratio of the induced angular velocity £ to the phase
angular velocity « 1is plotted in Fig. 15 versus the kh value for b/h
between zero and one. This ratio $2/w increases as kh increases for
fixed values of b/h. For fixed kh, 2/w increases as b/h decreases,
and it becomes unity when b/h vanishes, At kh =1, 2/w varies

from 0.4 to 1 as b/h decreases from 1 to O,
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Iv., EXPERIMENTS ON THE NEIGHBORING EFFECT
AND END EFFECT

4.1 The neighboring effect and end effect

It should be noted that the two approximate formulae (3.1) and
(3.2) given by Gray and Hancock (1955) do not show dependence on the
total number of waves n and the amplitude-wavelength ratio
kh = 2rvh/\., Thus, two very important effects, namely the 'neighbor -
ing' effect and 'end' effect, have not been considered. By the 'neighbor-
ing' effect we mean the interaction between neighboring Waves, which
may be significant when kh is large. The force acted on an element
of the body by the surrounding fluid is certainly influenced by the
presence of elements in neighboring waves. The closer the neighbor-
ing waves (i.e, the larger the kh), the greater will be the neighbor-
ing effect, In the limit as kh tends to zero, the neighboring effect
vanishes, The 'end' effect provides a rﬁeasure of the difference be-
tween the flow near the flagellum produced by an infinitely long flagel-
lum and that by a finite one, This effect of course decreases with in-
creasing length of the flagellum, Furthermore, there is the 'wall'
effect arising from the proximity of solid boundaries containing the
fluid, Compared with the former two effects, the wall effect is usually
less significant since microscopic organisms generally occupy a very
small space in the surrounding fluid, That the end effect and neighbor-
ing effect may be significant is because of the known fact that an obsta-
cle moving through a viscous fluid at a small Reynolds number drags

along a large bulk of fluid with it,
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A serics of experiments have been carried out to determine
the relative importance of these two effects and efforts have been
made to estimate the accuracy of formulae (3.1) and (3, 2) by taking
these effects into account, The results are presented in the following

sections,

4,2 Experimental procedures

In the experiments, enamel wires which are bent into uniform
helices with various amplitudes and wavelengths are dropped down
vertically into a cylindrical tank filled with glycerine., Four different
sizes of enamel wires (No, 24,26,28 and 30) are used in these experi-
ments, and the corresponding radii b are 0.25527 mm, 0.20244 mm,
0,16053 mmand 0,12738 mm respectively.The amplitudes h of the
helices range from 0,242 cm to 0,734 cm and the wavelengths 2\
vary from 0.5 cm to 2 cm,

The cylindricai tank of 3/16 inch in wall thickness is 16 inches
in outside diameter and 60 inches long (see Fig, 16), It has two
rectangular observation windows, each of which is 6 inches wide and
30 inches long, opposite to each other on the side wall, The total
weight of the tank with glycerine in it is supported by three legs welded
to the lower end of the tank,

The density p of glycerine used in these experiments is
1,246 gm/cm’ , and its viscosity u is listed in Table I,

After the helical wire was released in glycerine, it moved
steadily down the cylindrical tank and soon reached the terminal velocity

under gravity, the only extraneous force, Two sets of data, namely
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o

Fig. 16



T4 =

TABLE 1
Viscosity K of glycerine with density p = 1,246 gm/cm?

Temp., °C Viscosity, poise Temp., °C Viscosity, poise
22,0 3.9810 23.5 3.5340
22,1 3,9512 23,6 3,.5042
22.2 3.9214 23,7 3.4744
22,3 3,8916 23,8 3,4446
22.4 3.8618 23.9 - 3.4148
22,5 3.8320 24,0 3,.3850
22,6 3.8022 24,1 3,3552
22,7 3,7724 24,2 3,3254
22,8 3.7426 24.3 3.2956
22,9 3,7128 24,4 3,2658
23.0 3.6830 24,5 3.2360
23,1 3. 6532 24,6 3,2062
23,2 3,6234 24,17 3.1764
23.3 3.5936 24,8 3,.1466
23,4 3.5638 24,9 ‘ 3.1168

the propulsion velocity U and the angular velocity w of the wire,

were measured simultaneously, The measurements of the propulsion
velocity U were accomplished by using a stop-watch to record the
time spent for the helical wire to travel a given distance., The observa-
tion was made through the side observation window. In the mean time,

the angular velocity w was measured by observing from the top of
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the cylindrical tank the rotational rate of the helical wire. The
measured data were then compared with the theoretically predicted
ones, To find the theoretical propulsion velocity U and angular
velocity w, we apply the basic equations (3.1), (3.2) and (3.8). By
deleting the head and including the gravity as the sole external force,
the equilibrium conditions (3.9) and (3.10) concerning the net force

and torque on the rigid helical wire become

(1 +2¢*)U - goh = W(I +£%)/C, (4.1)
] 2, dmp bV L
kU [2 + K-+ c, (h”wh— o , (4.2)

where g = kh, CS is the tangential force coefficient as given by (3. 2),
and W is the net weight per unit length of the helical wire in glycerine,
which is the same as the difference between the weight and the buoyant
force per unit length of the wire, For No. 24, 26, 28 and 30 enamel
wires in glycerine of density p = 1,246 gm/cm’ , W is 15,3368,
9.6461, 6.0659 and 3,8141 dynes/cm respectively, The presence
of the last term on the left hand side of Eq. (4.2) is due to the fact
that the wire is rigid, The motion of a rigid wire is equivalent to the
motion of a living flagellum plus that due to a spin of the flagellum (see
Fig. 17),

From (4.1) and (4.2} the theoretical propﬁlsion velocity U and
angular velocity « are found to be

W(1+k? )}‘Z-HCZ-{- %T—TE‘—(E-)ZJ
s

_ L
U, - - - (4.3)
2C_(1+4%) + 411-“(}7) (1+2K%)
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kKW(L + k%) - (4. 4)

(.Oth =

| (2

oo

2
2C (1+k%) + 4nu(

4.3 Data analysis

Let ary be the ratio of the measured propulsion velocity U
to the theoretical propulsion velocity Uth and @, be the ratio of the
measured angular velocity w to the theoretical counterpart @ Uth
and w, are given by (4.3) and (4.4) respectively. From the experi-

ments, it is found that ay and @, depend upon three parameters,
namely kb, kh and n, In Fig, 18 and Fig. 19, ary and «  are
plotted versus the number of waves, n, for kb = 0,067 and

kh =0,98, 1.0, 1.4, 1.5,2.3 and 3,1. From Fig. 18, we notice
that for fixed values of kb and kh, @y increases with the increase
of n and it asymptotes to a certain value, which is different for dif-
ferent kb and kh, as n becomes very large. This is due tc the
fact that the end effect diminishes fairly rapidly with increasing
length of the wire, For fixed kb and n, Qry increases as kh in-
creases, which reflects the importance of the neighboring effect in
the case when kh is fairly large. The influence of the neighboring
effect on the angular velocity w is shown in Fig. 19 in which we can
see clearly that an increase of kh value is accompanied by an in-
crease in @, for fixed kb and n. However, the end effect plays a
less important role in affecting the angular velocity « than its effect

on the propulsion velocity U, for the experiments show that @, is

relatively insensitive to the change of n., Comparing Fig. 18 with
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Fig. 19, we furfher notice that the values of ary are in a region
around 1,0, vet the values of a, are about 0.4. This indicates
that the theoretically predicted angular velocities are not in good
agreement with the experimental ones, but the theoretically predicted
propulsion velocities are, The same pattern appears in the case
Whgn kb = 0,053, In Fig. 20 and Fig. 21, Qg and o = are plotted
versus the number of waves, n, for kb = 0,053 and kh =1,0, 1.2
and 1,5, The dependence of ary and @,  on kh and n shown in
these two figures is entirely similar to the previous case,

The influence of kb on the ratios of g and @, can be seen
explicitly in Fig, 22 - 25, In the first two of these figures, kh is
fixed at 1,2 anid kb takes the value of 0,053, 0,067, 0,085 and
0,11, For fixed kh and n, Qg is seen to increase as kb increases
(see Fig. 22). However, a, decreases with increasing value of kb
as is revealed in Fig. 23, The above can be accounted for by the
presence of the neighboring effect which becomes greater as the value
of kb gets higher. Similar situation takes place in Fig. 24 and Fig.
25, except that kh is equal to 1,8 and kb changes from 0,080 to
0.16 in these two figures,

The data of the above experiments on uniform helical wires
indicate that Eq. (3.8) together with the approximate formulae (3.1)
and (3.2) provide a fairly good result for the propulsion velocity U,
yet they do not accurately predict the angular velocity w. However,
if we replace U by U/aU and w by w/ozw in the equilibrium con-
ditions (4.1) and (4.2), we would obtain a very accurate result for the

propulsion velocity U and the angular velocity w since the inclusion
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of 4y

ing effect and the end effect, The values of «

and @ in those equations takes care of the so-called neighbor-
U and @, for the values
of kh, kb and n in the range of practical interest can be obtained
from Fig. 18 - 25, Thus, for common practices, ary varies from
0.7 to 1.7 and @~ might be taken to be 0.4,

The above correction rule by replacing U and w by U/ozU
and w/ozw resp.ectively is valid for motions produced by a uniform
helical wire. But it does not quite apply to the actual flagellated-
propelling microscopic organisms, because the presence of the head
and a transition section between the head and the regular uniform
helical flagellum also affects somewhat the motion of the remaining
uniform helical flagellum, Nevertheless, when the head is small or

the transition section is short, one might expect that the correction

rule still holds,
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V. CONCLUSIONS

In this thesis, the helical movements of flagellated-propelling
microorganisms have been studied extensively. Stokes' equations
are applied to analyze the helical wave motion produced by an infinite-
ly long flagellum. It is convenient to solve these equations by expres-
sing all the operators in terms of a helical coordinate system (r,§g,
x), while keeping the velocity components u,v, and w in a cylin-
drical polar coordinate system (r,8,x). In so doing, the boundary
conditions, namely the no-slip condition on the flagellum surface and
zero perturbation velocity at infinity, can be satisfied without due in-
convenience, and the pressure and velocity distributions are deter-
mined. By a theorem proved in the thesis, the solutions can be made
infinitely smooth in the entire flow region. As a result of the helical
wave motion, an induced torque will exert on the flagellum about the
direction of its motion by the surrounding fluid. This torque tends to
rotate the flagellum in the direction opposite to that of the forward
propulsion. Hence, in order to make the helical movement of flagel-
lum possible, a constant torque of same magnitude but in the opposite
direction of the induced torque must be applied on the flagellum,
Formulae for calculating the induced torque in a wavelength and the
energy required per wavelength of the flagellum to maintain it in
helical motion are presented. In the limiting case when the radius of
the flagellum b is much less than the wave amplitude h, by neglect-
ing terms of second order O(b/h¥ and higher orders in applying the

boundary conditions, explicit formula for the propulsion velocity U



-89~

is obtained from a single-harmonic (in £) approximation,

For small values of kb and kh, a comparison is made be-
tween G,I. Taylor's, G. J. Hancock's and the present solutions,
The propulsion velocity U predicted by the present approximaltion is
proportional to (kh)* logkh, a quantity which is smaller than that
given by either Taylor or Hancock. It was reported by many biol-
ogists (e.g. Rikmenspoel, 1962) that the velocities predicted by
Taylor (1952) or Hancock (1953) are too high, by a factor of 10 for
the model of Taylor or a factor of 5 for that of Hancock., Hence the
present solution is in a better agrecement with the experimental data
measured by biologists, Moreover, the present solution agrees quite
well with the experimental result on a mechanical working model of
swimming spermatozoan tested by G.I. Taylor (1952). All the above
experimental evidences, biological or mechanical, suggest strongly
that the present approximation is a satisfactory one,

The Gray and Hancock method (1955), which is originally
devised to investigate the planar wave motion of minute creatures, is
extended to incorporate the rotational movement of the flagellum.,
This modified and improved version of the Gray and Hancock method
is then applied to evaluate the self-propulsion of a microorganism, in
a viscous fluid, by sending helical waves down its flagellated tail,
Under the equilibrium condition at a constan’t forward speed, both the
net force and net torque acting on the organism are required tovanish,
yielding two equations for the velocity of propulsion, U, and the in-
duced angular velocity, £, of the organism. In order that this type

of motion can be realized, it is necessary for the head of the
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organism to exceed a certain critical size, and some amount of body
rotation is inevitable. In fact, there exists an optimum head-tail
ratio a/b at which the propulsion velocity U reaches a maximum,
holding the other physical parameters fixed. The power required for
propulsion by means of helical waves is determined, based on which
a hydromechanical efficiency 7 is defined, When the head-~tail ratio
a/b assumes its optimum value and when b is very small compared
with the wavelength A, n = Q/w approximately, This n reaches a
maximum at kh = 0.9 throughout the range of kb covered,

0.01 <kb<0.2. In the neighborhood of kh = 0,9, the optimum head-
tail ratio varies in the range 15 < a/b < 40, the propulsion velocity
in 0,08<U/c<0,2, and the efficiency in 0.14<n < 0.24, as kb
varies over 0,03 < kb < 0,2, a range of practical interest, The
above predicted values of optimum head-tail ratio a/b are very well
supported by observational data,

The 'Spirochete paradox' is resolved upon application of the
modified version of the Gray and Hancock method, It is discovered
that a spirochete should keep its amplitude-wavelength ratio h/\
around 1:6 (or kh = 1)in order to achieve a maximum propulsion
velocity, At kh =1, the propulsion velocity varies in the range
0< U/g < 0.2, and the induced angular velocity in 0.4 < Q/w< 1,
as the radius-amplitude ratio varies from 0 to 1.

A series of experiments have been carried out to determine
the relative importance of the 'neighboring' effect and 'end' effect.
Based on the data obtained, a simple correcéion rule that replacing

U by U/aU and w by w/aw in the equilibrium equations has been
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suggested, The values of ayy and «a for rigid, uniform helical
wires are founvd experimentally. For common practices, @y varies
between 0,7 and 1.7, and a, is about 0.4, This correction rule
together with the experimental values of ay and @, are not quite
applicable to the actual flagellated-propulsion of microorganisms,
because the presence of the head and a transition section between the
héad and the regular uniform helical flagellum also affects some-
what the motion of the remaining uniform helical flagellum. Hence
further experiments, both mechanical and biological, are needed in
order to refine the theory and enable us to make more accurate pre-
dictions of the helical movements of flagellated-propelling micro-

organisms,
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