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ABSTRACT 

The interaction of light propagating through a 

dielectric material with multiple perturbations is 

investigated. 

A general coupled mode theory of two gratings is 

presented. The acousto-electro-optic effect is 

introduced as an example of an indirect interaction due 

to the acousto-optic and electro-optic effects. The 

acousto-electro-optic effect is analyzed using the 

general theory and is demonstrated experimentally. The 

application of this effect to light modulation and 

deflection is discussed in detail. Also a correlator 

that is based on the photorefractive acousto-electro­

optic effect is demonstrated and analyzed theoretically. 
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1. OVERVIEW 

There are many different ways of perturbing the 

optical properties of materials. For example, we may 

launch acoustic waves to utilize the acousto-optic 

effect, or apply electric fields to change the index of 

refraction through the electro-optic effect. we may also 

consider the natural birefringence and optical activity 

inherent in some crystals as perturbations of the 

dielectric tensor. 

In general, the macroscopic polarization of a 

material can be decomposed into components that are 

induced by different perturbations caused by external or 

internal agents. If two or more different sources of 

dielectric perturbation are present at the same time. 

the interaction between the incoming optical wave and 

the material is very nonlinear in the sense that the 

resulting field is not equal to the sum of the fields 

that would result from the individual perturbations. 

This introduces additional flexibility in controlling 

optical waves. 

A general theory is needed to explore the full 

potentiality of optical interactions in materials with 

multiple perturbations. Coupled mode analysis is a 

powerful theoretical tool with which such higher 

interactions may be analyzed. we present a general 
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coupled mode theory for the interaction between multiple 

perturbations and optical waves. The theory is then used 

to study a phenomenon we refer to as the Acousto­

Electro-Optic (AEO) interaction in crystals. 

While the interactions known as the Acousto-Optic 

(AO) and the Electro-Optic (EO) effects have both been 

studied and used extensively. basic limitations in the 

performance of the devices utilizing such effects 

exist separately. When both AO and EO perturbations are 

applied simultaneously in a crystal. the combined effect 

(AEO) may be used to overcome some of the limitations 

inherent in the individual AO and EO devices. 

As a first step. we studied the AEO effect with a 

spatially homogeneous electric field and a single 

frequency acoustic wave. The general theory was used to 

calculate the diffracted light intensity of the constant 

electric field AEO interaction as a function of the 

applied voltage. To verify the theory experimentally. 

an acousto-optic device with electrodes to apply the 

voltage was designed and fabricated. The experimental 

results verified the predicted dependence of the 

diffracted intensity on the applied voltage. 

Based on the theoretical and experimental 

investigations of the AEO effect. a new one-dimensional 

spatial light modulator was devised. A new optical 
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deflector based on the AEO effect, called the AEO 

deflector, was also devised. This deflector can be 

described as a conventional AO deflector with the phase­

mismatch compensated by the EO effect, resulting in an 

increase in the number of resolvable spots. 

The capabilities of the AEO interaction can be 

exploited even further if a convenient method of 

applying a spatially varying electric field is 

available. An electric field grating can be created 

through yet another nonlinear interaction called the 

photorefractive effect, which is presently being 

investigated for applications in real -time holography. 

While the acoustic grating is dynamic and one­

dimensional, the photorefractive grating is stationary 

and two-dimensional. This effect was studied 

theoretically and experimentally verified, demonstrating 

the applicability of the general theory to the analysis 

of complicated, multiple perturbation interactions. The 

intermodu 1 at ion term that arises from the combined 

effect produces an output optical wave whose amplitude 

is the amplitude product of the two gratings. This 

product was used to construct a space- integrating 

correlator. 

There are significant advantages to be gained by 

using multiple perturbation interactions in materials 
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for optical signal processing. In one crystal. many 

different input signals corresponding to the physical 

sources of the perturbations may be present. and the 

appropriate optical interaction may perform the desired 

computation on the inputs. Such advantages are clearly 

apparent in the AEO interaction. The study of more 

general types of interactions. those involving many 

material perturbations. should be pursued further. 

Another important subject for research is the study of 

the physical mechanisms of the interaction of optical 

waves and material perturbations. While effects such as 

the AEO effect arise from the interaction of optical 

waves with the sum of the material perturbations. direct 

coupling between the perturbations themselves may give 

rise to new effects arising from the interaction of 

optical waves with the product of the perturbations. 

The study of such new effects. interesting in its own 

right, may culminate in the invention of new devices for 

contribution in the field of optical signal processing. 

In Chapter 2, we describe the general concept of 

the multiple perturbations of optical materials and the 

significance of the optical interaction of the multiple 

perturbations applied to optical signal processing and 

devices. The general coupled mode theory of two gratings 

is presented in Chapter 3. We will choose the simplest 
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example of a indirect interaction. the AEO interaction, 

and show how we can use this interaction to improve the 

functions of optical devices and to devise new devices 

in Chapters 4 and s. These examples will demonstrate 

the potentiality of the general concept developed in 

Chapter 2. 

A note on notation 

In this thesis the Einstein summation notation is 

used except when otherwise specified. Conventional 

arrow notation for a vector is used. Also component 

notation such as xi is used for a vector x. 
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2. MULTIPLE PERTURBATIONS IN OPTICAL MATERIALS 

2.1. Perturbations of optical properties in materials 

The fundamental equations which govern optical 

interaction with matter are Maxwell's equations and the 

material equations. In Maxwell's equations. optical 

waves are represented by electric and magnetic fields. 

The basic variables of the material are position 

vectors of molecules in classical physics. or wave 

functions of the material system in quantum physics. If 

there is no interaction between optical waves and 

matter. the fundamental equations consist of the free 

Maxwell and material equations. This means that there is 

no cross coupling between the two equations and we can 

solve them independently to get free optical waves and 

material system states. On the other hand. if there are 

interactions. Maxwell's equations and the material 

equations are coupled. and the two sets of variables 

which describe optical waves and materials appear in 

both equations. 

The standard method of solving the coupled Maxwell 

and material equation is the so-called self-consistent 

analysis 1 • In the self-consistent method we first obtain 

the response of the material to given electromagnetic 

fields. This response gives a constitutive relation for 
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the source term in Maxwell's equation, and then the 

wave equation is used to analyze the interaction of 

light with matter. 

In the preceding discussion, we considered the 

material equation in general, but we did not specify 

external physical agents which can change the material 

states. As we have seen before, the material equation is 

coupled with Maxwell's equations. Therefore, if we 

change the material properties by external agents. the 

optical properties of the material change accordingly. 

This means that the constitutive relations are functions 

of all possible physical agents which affect states of 

the material as well as electric and magnetic fields. 

There are many different types of physical agents we can 

apply. Among these the acoustic displacement of 

molecules in the material is well known and important. 

The variable that characterizes the acoustic wave is the 

strain which measures displacements of molecules from 

their equilibrium positions. Also the electric and 

magnetic fields are commonly used external physical 

agents. 

The magnitude of the change of the optical 

properties discussed above is usually small,implying 

that the terms in the power series expansion of the 

constitutive relation can be considered as 
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perturbations. Then we may call all physical agents 

that change optical properties of the material as 

perturbations. If there are many physical agents which 

simultaneously affect the optical properties of the 

material, we refer to these as multiple perturbations. 

There are several types of interactions of light in 

a medium with multiple perturbations which can be 

categorized as follows. First we consider the direct 

interaction of multiple perturbations. Direct 

interaction can be characterized by an irreducible 

susceptibility that cannot be reduced to a product of 

lower-order interactions. The effect of a direct 

interaction becomes smaller as more perturbations are 

considered, and there is only one overall phase matching 

condition. we take acoustically induced optical 

harmonic generation (AIOHG> 2 as an example to illustrate 

the various types of interaction. In Fig.2.1.l(A) the 

wave vector diagram of the direct interaction of AIOHG 

is drawn. In this case the polarization is proportional 

to SE 2 , where s is the strain and E is the optical 

electric field. In contrast to the direct interaction, 

an induced interaction of multiple perturbations can be 

reduced to a composite of lower-order interactions. In 

this case we can write the susceptibility of the 

induced interaction as a product of lower-order 
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interaction susceptibilities; however, the polarization 

has the same form as that of the direct interaction. 

AIOHG can happen via not only induced interaction but 

also direct interaction. In Fig. 2.1.1(B),(C) two types 

of the induced AIOHG are drawn. We have the same input 

and output acoustic and optical waves as in 

Fig.2.1.1(A), but the interaction mechanism is 

different. The third interaction of multiple 

perturbations we refer to as the indirect interaction. 

An indirect interaction can be expressed as a sum of 

direct or induced interact ions. In contrast to the 

indirect interaction, the direct or induced interactions 

can be attributed to one term in the power series 

expansion of the constitutive relation. As an example 

we draw the diagram corresponding to the indirect 

interaction for the AIOHG effect, which is 

represented by the polarization SE + E2 in Fig. 

2.1.1(D). The intermodulation of the indirect AIOHG 

effect may be represented by SE 2; however, to obtain 

large effect we need phasematching conditions separately 

for both interactions represented by the polarizations 

SE and E2 . In this way the indirect interaction may be 

much stronger than the direct interaction. 

thesis we focus on indirect interactions. 

In this 
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Fig 2.1.1 : wave vector diagrams of examples of various 

optical interactions. 

(a) Direct acoustically induced second harmonic 

generation( AIOHG). 

(b),(c) Induced interaction of AIOHG. 

(d) Indirect interaction of AIOHG. Two dots on the 

diagram implies phase matchings. 

---. Optical wave. 

----~ Acoustic wave. 
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2.2. Significance of multiple perturbations in optical 

materials 

In Section 2.1, we introduced the concept of 

multiple perturbations and the interactions they induce 

inside optical materials. In this section, we discuss 

the significance between the interaction of multiple 

perturbations and optical signal processing and optical 

devices. 

Optical signal processing systems and optical 

devices are based on intentional manipulations of 

optical waves which carry information to be processed. 

These manipulations are accomplished by selective 

physical interactions of optical waves and externally 

controlled physical agents(multiple perturbations) which 

contain information. From this consideration, we see the 

clear relation of interactions of multiple 

perturbations with the optical signal processing and 

optical devices. We need as many input signals as 

possible, which can be thought of multiple perturbations 

in the material, and we select the appropriate material 

and interaction to obtain the desired output result for 

the specific purpose of optical signal processing or 

optical device. This is the main motive of our 

investigation of interactions of multiple perturbations 

and optical waves. 
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The concept is illustrated in Fig.2.2.1. General 

input signals of the optical signal processing system or 

device may be an acoustic wave, electric fields provided 

by electrodes, magnetic fields or microwave, optical 

waves. We call these input signals as multiple 

perturbations that change the optical properties of the 

material. If we choose the correct material, orientation 

of the crystal cut and coupling geometry of multiple 

perturbations, the optical waves interact with multiple 

perturbations. It may be direct. indirect, induced or 

other types of interactions. Thus. the output optical 

waves or other types of perturbations are desired 

results of the optical signal processing and optical 

device. Ofcourse, we may need many different types of 

transducers to convert the information (for example. 

electrical) to perturbations of the material. 

The indirect AEO effect 3 is very interesting 

because of its flexibility and this is used to make new 

devices in Chapters 4 and 5. 
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Fig 2.2.1: Illustration of the concept of the general 

optical interaction of multiple perturbations in 

dielectric materials. 

---+:Optical wave. 

~: Acoustic wave. 

----•: Electric field. 

- ·-·+ : Other external physical agents. 
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3. COUPLED MODE THEORY 

3.1. Electric field coupled mode theory 

Coupled mode theory is a well-known method which 

has been used in solving problems of nonlinear optics. 

acousto-optics and other differential equations with 

perturbations. In this thesis we use coupled mode 

analysis to characterize interactions due to multiple 

perturbations. In this section we compare various 

coupled mode theories for the acousto-optic 

interaction. Acousto-optic interacton is an interaction 

between acoustic and optical waves. and it will be 

explained in detail in Section 4.1. There have been 

many papers analyzing this effect. In the review paper 

by I.C.Chang 4 in 1976, he used a scalar coupled mode 

equation of electric field amplitudes. J.M.Rouaven et 

al. 5 used correct electric displacement eigenmodes to 

analyze the acousto-optic interaction; however, they 

did not include the expression for the final diffracted 

light intensity. since it is not convenient to get this 

intensity from the electric displacement vectors. In 

this thesis we use electric field eigenmode expansions 

which are not an orthonormal set in an anisotropic 

medium but can be decoupled, as we will see. The use of 

electric field is preferable because it is the physical 
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quantity that is of importance and not the electric 

displacement vector. Also the simplest expression for 

the intensity of the diffracted light is given when we 

use the electric field. 

In this chapter we develop this electric field 

coupled-mode theory for the simple case of two gratings, 

which is the simplest example of multiple interactions 

and is also useful in the analysis of the AEO 

interaction. 

3.2. Polarization of optical materials 

Optical materials respond to applied external 

perturbations in various ways. In general, these 

interactions can be categorized as linear or nonlinear 

responses. The interaction is defined to be linear if 

the induced macroscopic polarization is proportional to 

the optical wave. Examples are natural birefringence, 

optical activity and also the acousto-optic and electro­

optic effects. 

One way of expressing the response of the material 

is to use macroscopic polarization. we can expand the 

macroscopic polarization of the optical material into 

products of external multiple perturbations. Also the 

response is expressed as a change in the relative 

inverse dielectric tensor. In this section we use both 
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definitions. Thus, we need the relation which connects 

these two definitions. The definition of the change of 

polarization and relative dielectric tensor is given by: 

(3.2.1) 

where a0 is the dielectric constant in vacuum and (~a)·· 
1] 

is the relative dielectric tensor. If the perturbation 

is small, to first order, a change in the relative 

inverse dielectric tensor is related to a change in the 

relative dielectric tensor by 

(3.2.2) 

where aik is the relative dielectric tensor for the 

unperturbed medium. If we use (3.2.1) and (3.2.2), we 

have : 

(3.2.3) 

Natural birefringence is a simple linear 

interaction. It is very important because of its 

critical contribution to other interactions as will be 

seen in later sections. For the case of monochromatic 

light, we can define the overall relative dielectric 

tensor of natural birefringence, which is the 
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characteristic constant of the unperturbed medium, as : 

8 .• = 
lJ (3.2.4} 

where & • • is the Kroneker delta and k · · is the natural lJ lJ 

relative dielectric susceptibility. 

Another linear response of the material that is 

important for our work is the linear electro-optic 

effect. This interaction comes from the quadratic 

term of the expansion of the polarization into electric 

fields. The linear electro-optic effect is defined as 

the change of the inverse relative dielectric tensor : 

-1 (A e } .. 
lJ 

__ r E (ext} 
ijk k (3.2.5} 

where rijk is the linear electro-optic coefficient and 

Ek(ext} is the applied external electric field which may 

be constant,or temporally or spatially varying. We treat 

different cases of linear electro-optic effects in 

later sections. 

The acousto-optic interaction may be explained 

intuitively as follows. If we launch an acoustic wave 

inside the crystal, we create a density change, and this 

alters the optical property, ( i.e., polarization > 

locally. We know that given a grating we can diffract 

the light; thus, the acousto-optic interaction couples 

the density grating of the crystal and the optical wave. 
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The definition of this interaction is given by 

(3.2.6} 

where Pijkl is the fourth rank elasto-optic tensor and 

Skl is the strain induced by the acoustic field inside 

the crystal. The strain is defined as : 

where u1 is the displacement vector field of material 

points of the crystal, and Dk is a partial differential 

operator with respect to xk. As we see in (3.2.6), 

Pijkl is dimensionless and has the following symmetry 

property 

Pijkl = Pjikl = Pijlk• (3.2.8) 

This is the direct acousto-optic interaction. For a 

piezo-electric crystal, i.e., a crystal that changes 

polarization when a strain is applied, the combined 

piezo-electric and linear electro-optic interactions 

give an indirect acousto-optic effect. This interaction 

is 

where si is the ith component of a unit vector in the 

direction of light propagation, bijm is the optical 
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mixing susceptibility and enkl is the piezo-electric 

stress tensor. The direct and indirect acousto-optic 

interactions described above depend only ori the strain. 

Nelson and Lazay6 showed that actually the acousto-

optic interaction depends also on the rotation. This 

effect is generally very small but it can, under proper 

conditions, be large. If we include this interaction, 

the complete expression of the acousto-optic effect is 

given by 

APi = -eo[ 8 im 8 jnPrnnkl + (ei[k&llj + 8 j[k&lli) 

+ (2bijmsmsnenkl) I <spepqsq> ]EjDl (uk). (3.2.10) 

Another effect that is important to our work is 

optical activity. This is an intrinsic property of the 

crystal, and it is difficult to change this property by 

applying external perturbations. However, recently 

liquid crystals or organic materials are being 

investigated to get large nonlinear coupling 

coefficients. In this case we can change the optical 

activity externally, in which case it can be treated 

using coupled mode analysis in a manner analogous to the 

way in which acoustic or electric field gratings are 

treated mathematically. Optical activity is written as a 

perturbation of the dielectric tensor as follows : 

a·· = &· · + 4nk· · +]'a· ·1g1 s 
~J ~J ~J ~J m m• (3.2.11) 
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where j = (-1)
1 ' 2 • eijl is the complete antisymmetric 

tensor. glm is the gyration tensor and sm is the mth 

component of the unit vector in the direction of the 

optical wave. 

Summarizing the above discussion. we use (3.2.11) 

as the relative dielectric tensor for the unperturbed 

medium with which we derive plane wave eigenmodes to be 

used in expanding the solution of the perturbed 

interaction. Next. the perturbation in the polarization 

introduced by simultaneous application of multiple 

perturbations is given by 

(3.2.12) 

where b represents all the perturbations. 

This is the fundamental relation for our work and we use 

this equation in Chapters 4 and s to treat the acousto­

electro-optic effect. 

In this section we focused primarily on acousto-

optic and linear electro-optic interactions. But there 

are many higher-order nonlinearities which are very 

interesting to future research work. For example. 

nonlinearities represented by SE 2 or s 2E terms in the 

expansion of the polarization can be very interesting. 

These nonlinearities are especially important in the 

case of surface acoustic waves because of the high 
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acoustic energy density. 

3.3. Optical and acoustic eigenmodes of the unperturbed 

medium 

In Section 3.2, we discussed various polarization 

changes of the crystal. Usually the effects of these 

interactions is very small, and can be treated as 

perturbations. This observation allows us to use in 

general a perturbative expansion of the solution 

describing this interaction. In the perturbative 

expansion, we need a complete set of eigenmodes of the 

unperturbed medium as a zero-order solution. In this 

section wefirst characterize optical eigenmodes and 

secondly, acoustic eigenmodes, which will be useful for 

the analysis of the acousto-electro-optic interaction. 

3.3.1. Optical eigenmodes 

Optical wave propagation can be explained using 

Max we 1 1 's e quat ions. Max we 1 1 's e quat ions f o r ac h a r g e­

free nonmagnetic material in the MKSA unit system is 

given by : 

Di v (y) =0 Div(B)=O (3.3.1.1) 

(3.3.1.2) 
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(3.3.1.3) 

where a 0 is the dielectric constant in vacuum,e is the 

relative dielectric tensor which has been discussed in 

Section 3.2, and Y is the displacement vector. ~le 

assume that e is a hermitian tensor since we will treat 

nonabsorbing materials. In this case the free charge 

density is zero, and the relative dielectric tensor 

should be hermitian. If e is a constant Hermitian 

tensor, then we obtain a set of infinite plane 

monochromatic waves as solutions of the free Maxwell 

wave equation. Let the plane wave propagate in the s 

direction. We can write this wave as : 

where p = 1,2 is an index used to distinguish the two 

different transverse polarizations, w is the optical 

frequency, cis the speed of light in vacuum, n<P> are 

indices of refraction and e 1 <p> and d 1 (p) are unit 

dimensionless vectors in the direction of the 

eigenvectors. From (3.3.1.2) and (3.3.1.3), we obtain 

the well-known Maxwell wave equation 
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To get the relations between e 1 <p> and n<P>, we 

substitute (3.3.1.4) into (3.3.1.6). We wind up with 

the following equation 

(3.3.1.7) 

From (3.3.1.7) the indices of refraction n<P> can be 

found from the condition that a nontrivial solution of 

the homogeneous equations exists. Then for each value of 

the index of refraction, the eigenvectors em(p) satisfy 

(3.3.1.7). Until now we have used electric field 

vectors to get electric field eigenmodes. It is well 

known that in an anisotropic medium the electric field 

eigenvectors are not orthogonal to each other. If we 

use electric displacement vectors, the eigenvectors are 

indeed orthogonal. So we use two sets of eigenmodes 

generally. Maxwell's wave equation for the displacement 

vectors is given by 

0 k0 k[(&-l)lmYml - Dk(Dl[(&-l)kmYm) 

= (1/c2)Dt2(yl). (3.3.1.8) 

If we substitute (3.3.1.5) into (3.3.1.8), we get 

-1 -1 (p) 
[ ( £) 1m - < £ > kmsk s 1 l dm 

= (n<P>)- 2d 1 <p> (3.3.1.9) 

We are now in a position to derive various conditions 
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for the eigenvectors e 1 (p) and d1 <P>. First we defined 

e <p> and d (p) to be unit vectors. 1 1 This gives : 

(3.3.1.10) 

Next, if we use the first part of (3.3.1.1) and 

(3.3.1.5), we get the transversality condition of d1 (p): 

d (p) s = 0 
1 1 p = 1,2. (3.3.1.11) 

The orthogonality relation between d1 <1> and d1 <
2> comes 

from (3.3.1.9), using the relation (3.3.1.11) and 

Hermiticity of the tensor elm 

(3.3.1.12) 

If we apply the same method used above and use the 

orthogonality relation between d 1 <
1 > and d 1 <

2>, we get 

the following relation : 

(3.3.1.13) 

It may now be apparent why we use two sets of 

eigenvectors. We like electric field eigenmodes but we 

use electric displacement eigenmodes to decouple the 

polarizations. Relations (3.3.1.10), (3.3.1.11), 

(3.3.1.12) and (3.3.1.13) with eigenmode equations 

(3.3.1.4), (3.3.1.5) will be used to derive the coupled 

mode equation. 
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The above method of getting eigenmodes is very 

general because it applies to any kind of constant 

Hermitian dielectric tensor. and this sort of generality 

is important. when we use a computer to design actual 

devices. Homogeneous perturbations can be thought as 

part of the unperturbed dielectic tensor. On the other 

hand. we can also think of the constant change of the 

dielectic tensor as a small perturbation. This gives 

rise to combined interactions of homogeneous 

perturbations and other effects. This point will be 

discussed in Chapters 4 and s. 

3.3.2. Acoustic eigenmodes 

The response of a material to applied strain obeys 

Hooke's law. Hooke's law gives a relation between 

stress and strain : 

T·. 
~J 

(3.3.2.1) 

where T · · 
~J 

is the stress and cijkl is the elastic 

stiffness tensor. The equation of motion for the 

displacement vectors of material points ui is given by : 

where p is the mass density of the material. Let us 

assume a plane acoustic wave with a frequency a and 
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propagating in the direction Ni 

a=1,2,3 • 

where u.<a> are constant. 
l. 

(3.3 . 2.3) 

If we substitute (3.3.2.3) into (3.3.2.2), we get a 

system of linear equations which give phase velocities 

V a and eigenvectors ui <a> : 

(3.3.2 . 4) 

From (3.3.2.4), we see that there are three different 

eigenmodes for a given direction Ni, and in general 

these eigenmodes are mixed. i.e., not pure transverse or 

longitudinal. Many crystals we are using are 

piezoelectric. This piezoelectricity changes the 

elastic stiffness tensor because it generates stress 

induced by the electric field. 

effective stress tensor is given by 

T·. 
l.J 

In this case the 

(3.3.2.5) 
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3.4. Coupled mode equation of two gratings 

The simplest case of multiple gratings is two 

gratings. In this section, we introduce the coupled mode 

equation of two gratings and discuss approximations to 

be used for the calculation of the AEO effect. Also the 

interaction of an incident beam with two gratings is of 

practical importance in devices such as an AO modulator. 

The wave equation that governs the interaction of 

the optical wave with multiple perturbations is : 

(3.4.1) 

The total relative dielectric tensor is taken to be the 

sum of two perturbations : 

e .. = 
~J 

s· .<o> +As· .< 1 > +As· .< 2 >. 
~J ~J ~J 

(3.4.2) 

In (3.4.2), two perturbations may be purely acoustic or 

acousto-electro-optic, i.e., acoustic and electro-optic 

gratings. usually we assume plane monochromatic 

gratings for As·· <1 > and As .. <2> 
~J ~J 

s·. = 1/2e· .<o> + 1/2a· ,(l>exp[j(O(l)t- K1 (1>x )] 
~J ~J ~J 1 

+ 1/2aij< 2 >exp[j(o< 2>t- K1 <
2 >x 1 >l + c.c., 

(3.4.3) 

where oO> and o<Z> are temporal frequencies of the two 

gratings, K1 (l) and K1 <
2> are the corresponding wave 
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vectors. Next we assume a plane monochromatic optical 

wave with unit amplitude incident on the crystal : 

E·(0,0,1) 
l. 

= e i < 0 ' 0 ' 1 > exp [ j { ( ( wn < 0 ' 0 ' 1 >I c> s1 x 1 )- w t} J. (3.4.4) 

where 1 in (0,0,1} represents the polarization of the 

input optical wave. We define various quantities which 

represent higher order modes : 

k·(I,J,p) = w<LJ)n(I.J,p}s.<LJ);c 
l. l. 

u<LJ} = x·s·(LJ>, 
l. l. 

where I,J are integers. 

(3.4.5) 

(3.4.6) 

(3.4.7) 

(3.4.8} 

(3.4.9) 

The trial solution for the electric field for the two 

gratings case is given by : 

Ei(x,t}= [p(LJ,p)(u<LJ))(n(I.J,p))-l/ 2 Jei<LJ,p} 

x exp[j <k 1 (I.J,p>x 1 - w<LJ>t)]. (3.4.10} 

Here we used normalized slowly varying amplitudes 

p(I,J,p} which give simple expressions for the 

diffracted 1 ight intensities. Next the phase mismatch 
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vectors for two gratings are 

Ak (I.Jip) - k (I.Jip) - X (I,J) 
a 1 - 1 1 • (3.4.11) 

we now use the following adiabatic condition 

(3.4.12) 

Next we substitute the trial solution (3.4.10) into the 

wave equation (3.4.1) and use the properties of the 

eigenmodes described in section 3.3 and approximations 

(3.4.12). Then we get the coupled mode equation for two 

gratings 

d<LJ>p<LJ~q> 

=K+(I~J~q~p~1)F(I+ 1 ~J~p)exp[j(Ak(I+ 11 J 1 p)_Ak(I~J~q))r] 

+K_(I~J~q~p~l)F(I- 1 ~J~p)exp[j(ll.k(I- 1 •J~p)_Ak(I~J~q>)r] 

+ K + (I 1 J 1 q 1 p 1 2 ) F '( 1 I J + 1 ~ P > ex p [ j (A k <I 1 J + 1 ~ P >-A.k <I I J I q > ) r 1 

+K_(I~J~q~p~2)F(I~J- 1 ~P>exp[j(ll.k(I~J- 1 ~P)-Ak(I 1 J 1 q))r]~ 

(3.4.13) 

where r=sixi. 

Temporal frequencies of acoustic waves or eletric 

signals are small compared with that of the optical 

wave. This allows us to use w instead of w<I.J) in 

(3.4.13). Of course. practical ranges of I~J are small. 

Next constant perturbations which give rise to the 
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anisotropy of the material are very small. And the 

difference between electric field eigenvectors 

e 1 (I,J,p) and electric displacement eigenvectors 

d 1 (I,J,p) are linear in the magnitude of the 

perturbation. So we can use e 1 (I,J,p) at any place. If 

we assume that the magnitude of the wave vectors of the 

gratings is small we can use u<O,O) instead of u<LJ>. 

One more approximation is applied to the approximate 

formula of the light intensity of the plane optical 

wave. The intensity is taken as the modulus square of 

the electric field. Given the initial conditions, we can 

easily solve the above coupled equation. The light 

intensity for each mode of order (I,J,p) is given by : 

(3.4.14) 

3.5. Bandwidth of an acousto-optic device with a finite 

size transducer 

In this section we apply the coupled mode equations 

derived in Section 3.4 to the problem of calculating the 

bandwidth of the acousto-optic device. The input 

electrical signal fed into the AO device consists of a 

range of frequencies. The center frequency of the signal 

is chosen for the specific AO device, and the angle of 
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the illuminating beam is set to give zero phase mismatch 

for the center frequency. Thus.there are many different 

acoustic gratings with different wave numbers inside the 

crystal of the AO device. We can observe harmonic or 

intermodulation modes for all acoustic gratings. Also. 

the finite size of the transducer or crystal gives rise 

to angular spectral components of the acoustic wave 

propagating inside the crystal. Then we can expand the 

acoustic wave into a sum of acoustic angular eigenmodes. 

One of the fundamental parameters of the AO device 

is the bandwidth. Due to the phasemismatch introduced by 

the deviation from the center frequency. the amplitude 

of the output diffracted optical wave becomes smaller 

as the frequency goes away from the center frequency. 

This determines the useful frequency range or the 

bandwidth of the device. As an example. the bandwidth 

defined above can be calculated as in Fig.3.5.1(a) for 

isotropic diffraction. Here we neglect harmonic or 

intermodulation modes. In Fig.3.5.1(a). the frequency 

deviation from the center frequency is introduced by AK 

and the phasemismatch is called Ak. From the diagram in 

Fig.3.5.1(a). we have 

Ak =k- {k 2 + [2ksin(~/2) - AK1 2 

- 2k[2ksin(~/2) - AK]cos(n/2- J3/2)} 112• (3.5.1) 



34 

(a) 

(b) 

FIG ).5.1 



35 

Fig 3.5.1 : wave vector diagram used in deriving 

formulae for the bandwidth. 

(a) Derivaton based on the phasemismatch. 

(b)Derivation based on the finite size of the 

transducer. 
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where k = 2nn/').. : optical wave length in a crystal, n: 

index of refraction of the crystal, ~ : Bragg angle for 

the center frequency. 

We assume AK I k < < 1. This is true because the wave 

length of the acoustic wave is much larger than that of 

the optical wave. Then the phasemismatch in (3.5.1) is 

approximated as : 

Ak .., AKsin(~/2). (3.5.2) 

We also have a relation between the frequency deviation 

AO and AK : 

AK = AO/Va, (3.5.3) 

where Va is the acoustic velocity. 

The well-known formula for the AO diffracted light 

intensity is given by : 

(3.5.4) 

where ll is the diffraction efficiency for the center 

frequency, L is the interaction length and 

sinc(x) = (sin(x))/x. From (3.5.4), the first zero of 

the diffracted light intensity is given by : 

AkL/2 = n. (3.5.5) 

Using (3.5.2), the bandwidth is given by 
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AK = 2n/[Lsin(~/2)]. (3 . 5.6) 

Another way of defining the bandwidth that is 

related to the subject matter of this thesis is shown in 

Fig.3.5.1(b). Due to the finite size of the transducer 

or the crystal for a given acoustic frequency, we have 

acoustic waves over an angular spectrum. Then. for a 

frequency deviation AK. we can find an angle A~a 

which gives exact phase matching. Only this phasematched 

component is nonzero because the interaction length is 

infinite and it results from the equation (3.4.13). In 

this case the amplitude of the acoustic wave is smaller 

than that of the center frequency. This reduces the 

diffracted light intensity and gives rise to the 

bandwidth of the device . A~a is the spread angle which 

gives exact phasematching. Simple trigonometry applied 

in the diagram in Fig.3.5.1(b) gives: 

2kcos(n/2 - fJ/2 - A~a> = 2ksin(fl/2) + AK. (3.5.7) 

As in the above. if we assume : 

(3.5.8) 

we get the approximate expression of A~a 

At>a- AK/[2kcos(fJ/2)J, (3.5.9) 
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If the size of the transducer is T, the angular spectrum 

is given by 

where W is the wavelength of the acoustic wave. 

So the first zero of the angular spectrum is : 

APa = W/T, 

And the bandwidth follows from (3.5.9) 

AK = 2kcos(P/2)(W/T). 

(3.5.10) 

(3.5.11) 

(3.5.12) 

Now we have two definitions for the bandwidth. But 

they are same as can be shown as follows. From (3.5.12): 

AK = [2ksin(JJ/2)/sin(JJ/2)] [W cos(JJ/2)/Tl. (3.5.13) 

If we use the Bragg condition, (3.5.13) becomes 

AK = [KW/sin(JJ/2)] [cos(JJ/2)/Tl 

= [2n/sin(P/2)] [cos(p/2)/Tl. (3.5.14) 

Next from the simple trigonometry , the relation between 

L and T is given by 

L cos(p/2) = T. (3.5.15) 

Using this relation in (3.5.14), we get 

AK = [2n/Ll [1/sin(P/2) ]. (3.5.16) 
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This is exactly the same as (3.5.6). This shows that we 

can calculate the bandwidth in either way described 

above. The latter method of calculating the bandwidth is 

more advantageous than the other method if we consider 

the case of acoustic anisotropy. 
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4. HOMOGENEOUS ACOUSTO-ELECTRO-OPTIC EFFECT 

4.1. Acousto-electro-optic(AEO) interaction 

We described the general idea of multiple 

perturbations in optical materials, and the general 

concept of optical signal processing and devices in 

Chapter 2. Also, we developed coupled mode equations 

which can be used to analyze the combined interaction of 

multiple perturbations theoretically. In the following 

two chapters. we take a specific combined interaction, 

i.e. ,AEO interaction. to demonstrate the usefulness of 

the concepts developed. 

The AEO interaction is a combined effect of AO and 

EO interactions. These two effects have been known for a 

long time.and used extensively for many types of optical 

devices, such as modulator, deflector. filter, etc •• 

Thus these individual effects have been analyzed 

theoretically by many authors. Our motive to investigate 

the AEO interaction was that, if we use both AO and EO 

effects. we may have more flexibility in making better 

devices. The limitations of each AO and EO device are 

well known. So we may improve functions of devices 

using both interactions. Examples of this idea will be 

given in Sections 4.4 and 4.S. 

The commonly used AO device is based on travelling 
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acoustic waves. On the other hand. both temporally and 

spatially varying electric fields have been used for EO 

devices. Homogeneous AEO interaction is represented by 

the sum of the polarization induced by the travelling 

acoustic wave and the homogeneous electric field. 

The theoretical tool we use to analyze the 

homogeneous AEO interaction is the general coupled mode 

equation for two gratings. In this case. only the 

acoustic wave is a grating. whereas the homogeneous 

electric field gives rise to a homogeneous perturbation 

via the linear electro-optic effect. There are two ways 

of analyzing the homogeneous AEO interaction. First. we 

may treat AO and EO effects as two perturbations. In 

this case. we can use the general coupled mode equation 

developed in the previous chapter. On the other hand. we 

may include the homogeneous perturbation induced by the 

constant electric field in the unperturbed dielectric 

tensor of the material. The effect of the homogeneous EO 

interaction is to change the index of refraction of the 

material of the conventional AO device. This 

interpretation of the homogeneous AEO interaction is 

more intuitive and physical. we get the same result 

using the coupled mode equation for the homogeneous AEO 

interaction in Section 4.2. 

Before analyzing the AEO interaction. we briefly 
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consider AO and EO interactions, and give some formulae 

for later use. First let's take the AO interaction. As 

we discussed in previous chapters, the AO effect is an 

interaction between optical and acoustic waves inside 

the crystal. The acoustic wave comes from collective 

molecular displacements of the material. A piezoelectric 

transducer generates an acoustic wave when we apply the 

electrical signal to the electrode. If we glue the 

transduceronto the crystaL we can launch the acoustic 

wave inside the crystal. Next,the incident optical wave 

interacts with the acoustic wave, and it is diffracted 

into many higher-order waves. The AO effect is nonlinear 

if the input to the system is considered to be the 

acoustic wave and the output the diffracted light. Thus 

if we have many acoustic waves inside the crystal, we 

have harmonic optical plane waves as well as 

intermodulation waves. The perturbation in polarization 

due to the AO interaction is given by : 

(4.1.1) 

where eil is the dielectric tensor of the unperturbed 

medium. If we assume one plane acoustic wave , the 

strain becomes : 

(4.1.2) 
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where smn : constant acoustic strain amplitude, 

o : acoustic wave frequency, 

Ki : acoustic wave vector. 

We assume that the amplitude of the acoustic wave does 

not change as it interacts with the optical wave. Then 

we can use one grating coupled mode equation to analyze 

the AO interaction. From the general coupled mode 

equation, we see that two mode coupling equation 

becomes as follows, assuming Bragg diffraction 

dF(0, 1 ) = jkF( 1•2>exp[jAkr1 

dF( 1 ,Z) = jk*F(0, 1 >exp[-jAkr], (4.1.3) 

where d is a differential operator with respect to 

r, and k is a coupling coefficient. 

The solution of (4.1.3) with the boundary condition 

p(0,1)(0) = 1, F(l,Z)(O) = o is given by: 

where 11 

L 

diffraction efficiency, 

interaction length, 

Ak : phasemismatch. 

(4.1.4) 

(4.1.4) is the fundamental formula with which we can 

calculate the bandwidth of the AO modulator, the number 

of resolvable spots of the AO deflector, or thewave­

length range of the optical filter and spectrum 
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analyzer. 

The linear EO effect comes from the interaction of 

the low-frequency electric field and optical wave. The 

effect is given by : 

(4.1.5) 

The general expression of the modulated light intensity 

with cross polarizers is : 

where IJ(1,2) I = (1/2)(w/c){n(l>n< 2>>-l/ 2 <e· 1s·) 
l. ]m 

x I e · (1 > r e · < 2 > E <ext> I 
l. lmk J k • 

This is the basic formula for the EO device. 

(4.1.6) 

In this section, we introduce the homogeneous AEO · 

interaction. In the following sections, we show how to 

improve the AO deflector, and make a new AEO modulator 

using the constant AEO interaction. These will exemplify 

the new possibility of using the simplest combined 

interaction of AO and EO effects. 

4.2. Coupled mode analysis of the homogeneous AEO 

interaction 

As explained above. the perturbation in the 

dielectric tensor for the homogeneous AEO interaction is 
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the sum of those of AO and EO effects. Thus. this is 

given by : 

e. . = 
1) 8 , ,(o) +Ae· .<AO) + Ae· .<EO), 

1) 1) 1) 

where Ae· .<AO) 
1) 

Ae· ,(EO) 
1) 

(4.2.1) 

In general. we may have a polarization perturbation 

which is a product of those for AO and EO effects. But 

this is a higher order perturbation, and sma ll.Thus we 

neglect the product effect of AO and EO interactions. 

The incident optical wave is assumed to be an eigenmode 

of the unperturbed material with polarization 1 

E· (0,1) (x,t) = (n(O,l))-1/2e. (0,1) 
1 1 

x exp[jw(o){(n< 0• 1 >r/c)-t}], (4.2.2) 

where r=sixi and s is the unit vector in the direction 

of propagation of the incident light wave. 

We assume that the acoustic wave is a plane wave 

(4.2.3) 

where Ui is the constant amplitude of the plane acoustic 

wave. and c.c. means complex conjugate. 

From the definition of the strain tensor Skl , 

(4.2.4) 
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we have the following expression for 

As .. (AO) 
l.J 

As· .<AO) 
l.J 

=(1/2)jsipsjqPpqkl(UlKk + UkKl) exp[j(Ot- Klxl)] 

-(1/2)jeipsjqPpqkl(u1 *Kk + uk*K 1 ) exp[-j(Ot-K1x 1 >l 

(4.2.5) 

where aij = jsipejqPpqkl(UlKk + UkKl). 

As we see in (4.2.1), we have two perturbations 

induced by AO and EO effects. If we have two 

perturbations, we need a two-dimensional integer set to 

describe the eigenmodes coupled by perturbations as 

seen in Section 3.4. But for the case of a homogeneous 

AEO interaction, one of two perturbations, i.e., EO 

effect, is homogeneous, and we need only a one-

dimensional integer set to describe coupled eigenmodes 

due to the AO effect. Thus our trial solution reads as 

follows : 

= p(I,p)(r(I))(n(I,p))-1/2e. (I,p) 
l. 

x exp[jw<I>(n(I,p)r(I)/c- t)], 

where r<I> = si<I>xi. 

(4.2.6) 

If we use the same approximations as used in Section 

3.4, we get the coupled mode equation for the constant 

AEO interaction 
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= H(I,q,p) p(I,p) exp[j(w<I>tc)(n(I,p) -n<I,q>)r] 

+J < I. q , p > F (I + 1, P >ex p [ j < w < I > I c > < A k < I + 1 ' P >-A k (I • q > > r l 

+J(I,q,p)F(I- 1•P>exp[j(w(I)/c)(Ak(I- 1 ,p)_Ak(I,q))r], 

where H(I,q,p)=(j/2)(w/c)(n<Lq>n<Lp))- 1 /2 

x e (I,q)Ae(EO) e (I,p) 
1 lm m ' 

J(I,q,p) =(j/4)(w/c)(n(I,q>n<I+1,p))-1/2 

x e (I,q)a e (I+1 ,p> 
1 lm m ' 

J(I,q,p) = (j/4)(w/c)(n<Lq)n(I-1,p))-1/2 

x el (I,q>alm.em<I-l,p), 

( 4 • 2 • 7 ) 

and d is a differential operator with respect to r. 

Let's look at (4.2.7) in detail. The mode of order I 

couples with eigenmodes of orders I. I+l, I-1 with 

respective phasemismatches. In Section 3.4, we saw that 

the rule of modes coupling is AI = ±1. But here, in 

addition to AI = ±1, we also have a sel:f~-coupling AI= 

o. The fact that one of the perturbations is 

homogeneous reduces to the self coupling with selection 

rule AI= o. (4.2.7) is the basic equation which can be 

used to analyze the general homogeneous AEO interaction. 

He r e, we d i d n ' t us e a spec i f i c f o r m of opt i c a 1 ,a c o u s t i c 

eigenmodes, or interaction geometries. (4.2.7) does not 

allow an analytic solution in general because of the 

phasemismatch factors. But if the interaction length is 
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large enough so that only two modes couple with each 

other. we can obtain an analytic solution. In this case. 

the general equation (4.2. 7) reduces to : 

dF(0, 1 ) = H(0,1,1)F(0, 1) + J(0,1,2)F( 1 • 2 ) exp[jAkr] 

dF( 1 • 2 ) = H(1,2,2)F( 1 • 2) + J(1,2,1)F(0, 1 ) exp[-jAkr]. 

(4.2.8) 

where Ak = Ak< 1 • 2 >. 

We can introduce new amplitudes 

G(0, 1 ) = exp[-H(0,1,1)]F(0, 1 ) 

G( 1•2) = exp[-H(1,2,2)]F(l, 2 ). 

Then (4.2.8) becomes : 

dG(0, 1 ) = J(0,1,2)G( 1 • 2) exp[j(Ak+q2-q1 )r] 

(4.2.9) 

dG(l. 2 ) = J(1,2,1)G(0, 1) exp[-j(Ak+q 2-q1 )r]. (4.2.10) 

where q 1 = H(0,1,1)/j, q 2 = H(1,2,2)/j. 

Next let us define the total phasemismatch AkT as : 

As we see in (4.2.11). the total phasemismatch consists 

of the phasemismatch due to the AO effect and that due 

to the EO effect; i.e •• q 2 - q 1 . 

Let us define the phase mismatch due to EO effect as 
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=-(1/2) (2n/ A.) (n< 1 • 2 )>-l 

x 8 • 8 • e ( 1, 2) r. . e ( 1, 2) E (ext) 
11 mJ 1 1Jk m k 

+(1/2) (2n/A.) (n< 0 • 1 >>-l 

x 8 ·8 ·e (0,1)r·. e (0,1)E (ext) 
11 mJ 1 1Jk m k • 

(4.2.12) 

If we define changes of indices of refraction of modes 

1, 2 due to the EO effect as , 

An 1 = (1/2)(n< 0 • 1 >>-l 

x 8 ·8 ·e (0,1>r .. e (0,1)E (ext) 
11 mJ 1 1J k m k 

An 2 = (1/2)(n< 1 • 2 >>- 1 

x 8 ·8 ·e (L2>r .. e (1,2)E (ext) 
11 mJ 1 1 J k m k • 

(4.2.13) 

then (4.2.12) becomes : 

(4.2.14) 

The initial condition is given by: 

G ( 0 ' 1 ) ( 0 ) = 1 , G ( 1 ' 2 ) ( 0 ) = O. (4.2.15) 

The solution of (4.2.10) with initial conditions given 

by (4.2.15) is : 

G(0, 1 ) = -j(4fJ(0,1,2)f 2 +(AkT) 2)-ll 2exp[jAkTrl 

X [C+exp(C+r) - c_exp(C_r)J 

G( 1 • 2 ) = jJ(0,1,2)*(4fJ(0,1,2)f 2 +(AkT> 2 >- 1 12 
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x exp[-1/2j~kTrl2jsin[4JJ(0,1,2) J2+(AkT) 2)-l/ 2rJ, 

(4.2.16) 

where C± = 1/2[-j~kT ± j(4JJ(0,1,2)J 2 +(AkT) 2)-l/ 2J. 

From (4.2.16), we see that the diffracted light 

amplitude is given by, at the length r = L 

p(1,2) =-2J(0,1,2)*exp[j(q 2-1/2AkT)L] 

X [4JJ(0,1,2) J2+(AkT) 2 J- 1/ 2 

x sin{[4JJ(0,1,2)J 2 +(AkT) 2 J 1 / 2LJ}. 

The diffracted light intensity follows : 

(4.2.17) 

(5.2.18) 

where ~AO = JJ(0,1,2)LJ 2 is the diffraction efficiency 

of the AO effect in the absence of the EO effect. 

If we compare the diffracted light intensity 

formula for AO and homogeneous AEO interactions, we see 

that the only difference is the phasemisrnatch. This was 

shown in detail in (4.2.12) and (4.2.18). So the 

physical interpretation of (4.2.18) can be explained as 

in Fig.4.2.1. If we apply an external electric field, we 

change the index of refraction. These changes are given 

by ~n 1 , ~n 2 , which are same as (4.2.13). The 

phasernisrnatch for the conventional AO interaction is 

given from Fig.4.2.1 : 
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FIG 4.2.1 

2 V=e {t) 
V=O 
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Fig 4.2.1:Wave vector diagram illustrating the 

principle of the homogeneous acousto-electro-optic 

interaction. 

Ak : Phase mismatch induced by the homogeneous AEO 

interaction. 
~ 

KA Acoustic wave vector. 
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(4.2.19) 

which is the same as (4.2.11). 

Then we can directly write down the intensity formula 

from that of the conventional AO interaction which gives 

exactly the same formula as (4.2.18). 

The above derivation of the formula for the 

constant AEO interaction using the change of index of 

refraction is possible only for homogeneous EO effects. 

If the electric field is spatially varying, we need a 

two-grating coupled mode equation to analyze the 

interaction. This subject will be considered in Chapter 

5 • 

4.3. Experimental verification of the homogeneous AEO 

interaction 

The wavevector diagram of the specific interaction 

geometry we choose for the experiment is shown in Fig. 

4.3.1. We considered anisotropic Bragg diffraction. As 

is shown in Fig.4.3.1, the acoustic frequency has been 

chosen to give maximum diffracted light intensity 

without an external voltage. When the external voltage 

is applied, we introduce phase mismatch, and the 

intensity of the diffracted light becomes smaller. 

The theoretical prediction for this interaction 
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geometry can be done using the general result derived in 

Section 4.2. Let us first consider the theoretical 

diffracted light intensity as a function of the applied 

external voltage. In Fig. 4.3.1, the acoustic wave 

travels in the x-direction. and the external voltage is 

applied in the y-direction. Let the height of the 

crystal be h. Then the amplitude of the electric field 

for the given voltage Vis 

E2 = V/h. (4.3.1) 

Next. let us define the voltage vAEO as 

From (4.2.11) and (4.2.13). we see that vAEO is given 

by 

vAEO=().h/L)[(l/2)(n(0,1))-18 •8 ·e (0,1)r·· e (0,1) 
11 mJ 1 1)2 m 

- (1/2)(n(1• 2 >)-l8 ·8 ·e <L 2 >r. · e (1. 2 >1-l 11 mJ 1 1)2 m • 

(4.3.3) 

where ). is the wave length of the optical wave and L is 

the interaction. 

For our case. AkAo = o. This gives the intensity formula 

from (4.2.18) 

(4.3.4) 
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Fig 4.3.1 : Configuration of the interaction geometry 

for the AEO light modulation experiment. 

ne index of refraction of the extraordinary 

wave. 

n0 index of refraction of the ordinary wave. 
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This is the theoretical expression of the diffracted 

light intensity as a function of the applied external 

voltage for our interaction geometry. If the AO 

diffraction efficiency is small, as is true for our 

experiment, (4.3.4) becomes 

(4.3.5) 

We see from (4.3.5) that if the applied voltage is equal 

to vAEO, the diffracted light intensity is zero. This 

shows that the voltage defined in (4.3.3) is the analog 

of the half-wave voltage for a conventional EO 

modulator. 

For the experimental demonstration of the result 

(4.3.5), we designed a Bragg cell with electrodes to 

apply the external voltage. The photograph of the device 

is shown in Fig. 4.3.2. We chose LiNb0 3 as the crystal 

of the Bragg cell. As shown in Fig. 4.3.2, the shear 

acoustic wave with polarization in the y-direction is 

launched from the transducer glued on the (1,0,0) 

surface. This acoustic wave propagates in the x­

direction, and the center frequency of the acoustic wave 

was chosen to be 20 MHz. The velocity of the acoustic 

wave is 4.2xlo 5 em/sec. The input impedance of the 

transducer was chosen to be 500. Then two metal 

electrodes were evaporated on the (0,1,0) surfaces and 
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Fig 4.3.2 : Photograph of the device for the AEOlight 

modulation experiment. 

Crystal is LiNb03 • 
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connected to a high-voltage power supply. The 

specifications of the device are summarized in Table 

4.3.1. 

we used a 5 mW polarized He-Ne laser as a light 

source. The input optical wave was polarized in they­

direction. propagating at an angle 1.8 deg with respect 

to the z-axis. This gives the maximum diffracted light 

intensity for the 20 MHz acoustic wave. The above angle 

has been calculated. In the experiment. we illuminated 

the Bragg ce 11 and rotated it to find the maximum 

diffracted light intensity. The angle experimentally 

determined isthe same as thatcalculated. Also. the 

polarization of the diffracted light was measured and it 

was in the x-direction. As expected. this interaction 

was anisotropic. After the Bragg cell. we used a 

polarizer to block the undiffracted light. This 

decreased the background light and increased the 

accuracy of the measurement. A spherical lens with focal 

length 60 em was used to focus the output diffracted 

optical plane wave on a detector. 

we measured the maximum diffracted light intensity 

for the 20 MHz acoustic frequency. Then we increased the 

external voltage up to 7.5 kV and measured the 

corresponding diffracted light intensities. we found 

that at 6 kV the diffracted light intensity was minimum. 



Table ~.3.1 

Specification of the Bragg cell 

• Crystal : LiNb03 . 

• Size of the crystal : 40-7-12(x-y-z> (mm). 

• (0,0,1)surfaces : Polished and A.R. coated. 

• Optical wave : 632.8 nm (He-Ne laser). 

• Acoustic wave : shear wave with a polarization [0,1,0] 

and propagating in the [1,0,0] direction. 

velocity is 4.2x10 5 (em/sec). 

• Acoustic wave center frequency : 20Z S(Mhz). 

• Diffraction efficiency : 10 ('/watt). 

• R.F. input power 2 watts. 

• (0,1,0) surfaces metal electrodes. 

• Size of the transducer : S-10(y-z> (mm). 
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This gave vAEO = 6 kV. Then we normalized the light 

intensity and voltage as prescribed in (4.3.5). we 

plotted the relation. and this experimental result is 

shown in Fig. 4.3.3. In Fig. 4.3.3, we also drew the 

theoretical curve which is given by (4.3.5). As we see, 

the experimental result agrees with the theoretical 

calculation very well. 

we calculated the voltage vAEO for ourexperiment. 

using the definition (4.3.3). As shown in Fig. 4.3.1, 

the light propagates near the z-axis. So the index of 

refraction is 2.29 for the LiNb03 crystal. 

From (4.3.3) : 

(4.3.6) 

where we used r 22 = - r 12. 

The wavelength of the He-Ne laser is 632.8 nm. and the 

height of the crystal is 7 rom. The interaction length L 

is 1 em. and the electro-optic coefficient r 12 for the 

low frequency electric field is 6.7xlo-12 <m/V). Then. if 

we plug all numbers into (4.3.6), we get s.s kv. This 

calculation agrees with the experimentally measured 

value of vAEO within an error. The acousto-optic 

diffraction efficiency measured was about 2 "· We used 

the elasto-optic coefficient P66 because the acoustic 

wave with polarization in the y-direction travels in the 
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Fig 4.3.3 Experimental results of an AEO modulator. 
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x-direction and polarizations of optical waves are in 

x- and y-directions. The value of P66 for the LiNb0 3 

crystal is 0.05. Thus, the diffraction efficiency per 

unit acoustic power is given by : 

where p is the mass density of the LiNbo 3, which is 

4.7810 kg/m; Va is the acoustic velocity. If we plug 

numb e r s into ( 4 . 3 • 7 ) , we g e t 7 • 5 4fo. T h i s r e s u 1 t a 1 s o 

agrees well with the experiment. 

4.4. AEO modulator 

The most widely used methods for wideband light 

modulation are either AO or EO effects. Each type of 

modulator has its own strength, and suffers from its 

own distinct limitations. We explain about these in this 

section in detail when we compare the AEO modulator 

with AO and EO modulators. When we use AO and EO effects 

simultaneously, a new flexibility is introduced with 

which we can overcome some of limitations of two 

individual modulators. 

Let me first consider AO and EO modulators 

separately. The AO light modulation has been described 

in Section 4.1. Within the bandwidth of the AO 

modu 1 a tor, we can neg 1 ect the phase mismatch. Then the 
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modulation function is given from (4.1.4) 

(4.4.1) 

The diffraction efficiency ~ is proportional to the 

acoustic power. And the acoustic power is given by : 

P = v2 /2R. a (4.4.2) 

where Vis the amplitude of the signal voltage, R is the 

impedance of the electrical network of the acoustic 

transducer. 

From (4.4.1) and (4.4.2), we see that the amplitude 

modulation function is given by : 

Ed = Ein sin [aVl, (4.4.3) 

where a is a constant. If the signal is small. we have : 

Ed - V (4.4.4) 

Thus. if the nonlinear effect which gives rise to 

harmonic and intermodulations is small. we get the 

modulation according to (4.4.4). In the following, we 

call (4.4.1) the modulation function of an AO 

modulator. 

The formula for the EO modulator has been given in 

(4.1.6). There are two different types of EO modulators. 

One is the longitudinal EO modulator for which the 
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electric field is applied in the direction of the light 

propagation. In this case, the electric field is given 

by E = V /L, where L is the interaction length. From 

(4.1.6), the modulation function for the longitudinal EO 

modulator becomes : 

lout = [sin(f(V))J 2 

where f(V) =(1/2)(w/c)(n< 1 >n< 2>>-l/ 2 s 1 ·e · l. mJ 
x I e (1 > r · · e < 2 > e <ext> IV and 1 l.Jk m k ' 

(4.4.5) 

ek<ext) is the direction of the external electric 

field. 

If we apply the electric field in the transverse 

direction from the light propagation, we have a 

transverse EO modulator. In this case, the electric 

field is given by V/h, where h is the height of the 

transverse dimension. Then the modulation function is 

given by : 

lout = [sin(g(V))J 2, 

where g (V) = (1/2)(w/c)(n< 1>n< 2>>-l/ 2 e ·s . ll. m] 
x le (l)r· · e <2>e (ext) IVL/h 

1 l.Jk m k · 

(4.4.6) 

As we see from (4.4.5), the diffracted light intensity 

for the longitudinal EO modulation does not depend on 

the interaction length L. But for the transverse EO 

modulation, it depends on the ratio L/h, and this gives 



68 

some flexibility to design a better modulator. Let's 

define the half-wave voltages which give the voltages 

required for the full modulation : 

f(V) = rr.V/2V L 
1f 

g{V) =rr.V/2Vrr.T· {4.4.7) 

From (4.4.5) and (4.4.6) the half-wave voltages are 

(4.4.8) 

V T = [(1/rr.)(w/c)(n(l>n< 2 >>- 112 s ·e . 
1T 1 ~ mJ 

x le (l)r· · e <2 >e (ext)IL/hJ- 1 
1 ~Jk m k • {4.4.9) 

In the actual modulation. the signal is biased at Vn/2. 

Thus the signal becomes 

If we plug {4.4.10) into {4.4.5) and (4.4.6), we have : 

If we use the Bessel function identities, (4.4.11) 

becomes : 

I = (1/2)[1 + 2J 1 Crr.Vm/Vrr.)sinwmt 

+ 2J 3 CnVm/Vn)sin3wmt+ ••• ], (4.4.12) 

where Jn are Bessel functions. 

As we see in (4.4.12) the EO modulation creates 
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nonlinear harmonic frequencies. 

AEO light modulation is based on the experimental 

curve obtained in Section 4.3 for the homogeneous AEO 

interaction. We use one fixed acoustic frequency which 

is the center frequency without the external voltage. 

The acoustic power is constant. Then the input signal 

for the AEO modulation is the external voltage applied 

to the device.Thus. we can think of this AEO modulation 

as the hybrid of AO and EO modulations. The modulation 

function of the AEO modulator is given by: 

(4.4.13) 

AEO modulator has some advantages or disadvantages 

over AO and EO modulators. In the following we compare 

various characteristics of the AEO modulator with those 

of AO and EO modulators. 

BANDWIDTH : The bandwidth of the AO modulator is 

limited by the diffraction efficiency. For larger 

bandwidth we need a small interaction length. which 

gives effective. small phasemismatch. This can be seen 

from (4.1.4). But the diffraction efficiency is 

proportional to the interaction length.Thus. there is a 

trade-off between the bandwidth and diffraction 

efficiency for the AO modulator. For the AEO modulator. 

we use only one fixed acoustic frequency with constant 
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acoust icpower. Thus, we can have arbitrary diffraction 

efficiency if we choose a large interaction length. The 

bandwidth of the AEO modulator is thus same as that of 

the EO modulator. The bandwidth of the EO modulator is 

given by 

(4.4.14) 

where RL is the shunting resistance and Cis the crystal 

capacitance. 

Next, the power needed is proportional to ll.f. Thus, the 

practical bandwidth of the AEO modulator is limited 

primarily by the maximum power supplied by the 

electrical driving circuit with which the voltage is 

applied across electrodes. 

DIFFRACTION EFFICIENCY : As discussed in the above 

for the AEO modulator, the diffraction efficiency 

depends on the acoustic power supplied by the acoustic 

port and the interaction length. Thus,there is no trade­

off between the diffraction efficiency and bandwidth. 

Furthermore, the piezoelectric transducer does not 

affect, unlike the AO case, the bandwidth of the 

modulator.Therefore, it can be designed to maximize the 

diffraction efficiency by increasing the transducer 

width and thus the interaction length. 
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HALF-WAVE VOLTAGE : Half-wave voltages defined for 

EO and AEO modulators are measures of the voltage that 

gives full modulation. We derived expressions for half­

wave voltages in (4.4.9) for the transverse EO 

modulation, and in (4.3.3) for the AEO modulation. From 

these expressions we see that the voltage level required 

for the AEO modulator is, within a geometricalfactor, 

close to unity, twice that needed in a transverse EO 

modulator of the same geometry. 

SYSTEM ALIGNING : The modulated light is angularly 

separated from the undiffracted light, because we used 

anisotropic AO interactions. Thus, as compared with an 

EO modulator. the need for ananalyzer is eliminated. 

Furthermore, if we use anisotropic AO diffraction, we 

don't need the input polarizer either. The alignment of 

an AEO modulator thus (like an AO modulator) is almost 

insensitive to the direction perpendicular to the 

interaction plane. This is to be compared to the small 

numerical aperture, in both directions, of an EO 

modulator , limited by the natural birefringence. If we 

use an analyzer for the anisotropic AO modulator, the 

signal -to -noise ratio will be enhanced, because 

polarizations of the diffracted and undiffracted light 

are orthogonal, and the analyzer suppresses the 

undiffracted light. The acoustic port can be used to 
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dynamically align the modulator in the plane of the 

interaction. by changing the center frequency. and to 

compensatefor the intensity of the acousticpower . The 

above factors make the system aligning of the AEO 

modulator very easy compared with the EO modulator. 

EXTENDED BEAM MODULATION : For an AO modulator, the 

modulation is done by the travelling acoustic wave. This 

means there is an acoustic transit time limit for the AO 

modulator. But in the AEO modulator the modulation is 

accomplished not by the acoustic wave but by the 

voltage. Thus. an extended collimated optical beam can 

be modu 1 a ted. 

MODULATION DEPTH The modulation depth of a 

modulator is defined as : 

(4.4.15) 

For the EO modulator the bias voltage which gives the 

largest linear region is Vn/2, because the modulation 

function is sin 2 CnV/2Vn>· One of criteria of the 

linearity of the nonlinear modulation function is the 

total harmonic distortion (THO). Let's first define THO. 

using an arbitrary modulation function E(V(t)). If we 

consider a sinusoidal input voltage with bias 

V(t) = vb + vd coswt. (4.4.16) 
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the modulated output follows : 

E(t} = E(Vb + V d coswt). (4.4.17} 

Now E(t) is a periodic function with period 2n/w and 

even in t. Thus. we can expand E(t) as a Fourier cosine 

series : 

E(t) = E(n) cosnwt. 

The total average output power is given by 

I = /E 2 (t)dt 

= 2n/w[(E(0}} 2 + 112'2: (E(n)} 2 ]. 
n 

THD is defined as : 

(4.4.18} 

(4.4.19} 

The modulation function of an AEO modulator has no 

obvious bias point because of its sinc2 nature. Also. it 

has a second order harmonic. But EO modulator does not 

generate a second harmonic. Thus, it is difficult to use 

the ratio of harmonics to compare the linearity. This is 

the reason why we chose THD to compare the linearities. 

First. as a reference point. we calculated the THD of an 

EO modulator, which gives the ratio first 

harmonic/third harmonic ) 1 "· Then. for various biases 

we calculated THD's for different ranges of the 
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modulation voltage. Finally, we chose the bias and 

voltage range, which gives the maximum MD for the 

previously fixed THD. The result of the computer 

calculation shows that the MD for the EO modulator is 48 

~. and the MD for AEO modulator is 44 ~ with bias 1.38. 

This shows that AEO and EO modulators have almost the 

same linearity. 

4.5. AEO deflector 

An optical deflector is a device which can change 

the direction of light propagation. Among many 

deflectors AO and EO deflectors are used widely. We can 

control the deflection angle electrically for both 

deflectors. In this section we concentrate on the AO 

deflector. In the AO deflector we change the acoustic 

frequency to change the deflection angle. But as we have 

seen. if the acoustic frequency deviates from the center 

frequency, the deflected light intensity drops. Thus. 

the total deflected angle depends on the bandwidth of 

the AO device. One of the important figures of merit of 

the deflector is the number of resolvable spots. This 

quantity NR is defined as : 

NR = A.p I 0.. I nW) , (4.5.1) 

where AP is the total deflected angle inside the 
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crystal, n is the index of refraction, A is the optical 

wavelength in vacuum. and W is the beam width of the 

optical wave. In (4.5.1} we assumed a collimated 

optical beam with width w. The diffraction-limited angle 

of this optical beam is A/nW . Let's first derive a 

relation between A~ and the bandwidth Af. The general 

wave vector diagram for an AO deflector is shown in Fig. 

4.5.1(a}. From the figure we have the following equation 

which contains A~/2 

(K + AK} 2 = (2nn 1 /A} 2 + (2nn 2 /A} 2 

- 2(2nn 1 /A}(2nn 2 /A}COS(~+A~/2}, (4.5.2} 

where AK = 2nAf/Va(Af is the one-sided bandwidth of 

the device}, n 1 and n 2 are indices of refraction for 

the two polarizations. 

From Bragg condition, we have 

K2 = (2nn 1 /A} 2 +(2nn2 /A} 2 - 2(2nn1 /A}(2nn2 /A}cos(J)}. 

(4.5.3} 

Here we assume A~/2 to be small, so that the index of 

refraction does not change within the angle A~. Also 

we assume AK/K << 1. Then from (4.5.2} and (4.5.3}, we 

have : 

(4.5.4} 
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(a) 

(b) 

FIG LJ. 5 I J 
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Fig 4.5.1: Wave vector diagram illustrating the 

phasemismatch compensating AEO deflector. 

(a) Ordinary acousto-optic deflector. 

(b) Phasemismatch compensated AEO deflector. 
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If we use ln 1 -n 2 1 /n 1 or n 2 < < 1, (4.5.4) becomes 

NR = [W/(Vacos(Ji/2))](2Af), (4.5.5) 

where 2Af is the full bandwidth of the device. (4.5.5) 

shows that the number of resolvable spots is the product 

of the bandwidth and the transit time of the acoustic 

wave across the optical beam. 

One method of increasing the number of resolvable 

spots is to increase the bandwidth of the device. As we 

have seen in the AEO modulator, there is a trade-off 

between the bandwidth and diffraction efficiency. Thus 

it is difficult to increase the bandwidth by decreasing 

the interaction length. The full bandwidth of the device 

is determined by the transducer bandwidth and the 

phasemismatch introduced by the deviation of the 

scanning acoustic wave frequency from the center 

frequency. The transducer bandwidth is determined by the 

electrical matching network of the transducer. But the 

bandwidth limited by the phasemismatch can be corrected 

ifwe change the index of refraction, using the external 

voltage. This is just the homogeneous AEO interaction. 

Thus, the AEOdeflector isbased on the phasemismatch 

compensation which manifests in the homogeneous AEO 

interaction. 

Let's consider the AEO deflector in detail. For 
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each scanning frequency f. the phasemismatch 4kAo<f-fc> 

is introduced as shown in Fig. 4.5.1(b). fc is the 

center frequency. The phasemismatch 4kAo is given by : 

(4.5.6) 

where 

The center frequency satisfies 

(4.5.7) 

From (4.5.6) and (4.5.7), we have : 

A k AO = ( 2 n A. f c I ( n 1 V a 2 ) - 2 n n 2 cos a I ( n 1 V a) )( f- f c) 

+ nA.(f-fc> 2!n1va2. (4.5.8) 

From (4.5.8) we see that for small deviation of 

frequencies, 4kAo is proportional to (f-fc>· The total 

phasemismatch of the constant AEO interaction follows 

from (4.2.11) 

(4.5.9) 

If we use (4.5.8) to first order in (f-fc>• we obtain : 

4kT = (2nA.fcl<n1va2 > - 2nn2cosal<n1va>><f-fc> 

+ (2niA.)((112)n1-1aliamjel (0,1)rijkem(0,1)ek 

I -1 (1,2) (1,2) h - (1 2)n2 a1 iamjel rijkem ek)VI . 

(4.5.10) 
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Now for each frequency we want AkT = o. Then we get no 

phasemismatch. and get the maximum diffracted light 

intensity. From (4.5.10) the relation between the 

compensating voltage V and the frequency deviation is 

given by : 

(4.5.11) 

where a = -(2nAfcl<n1va2 > - 2nn2cos /Cn 1Va))(A/2n)2h 

x (n - 1 8 ·8 ·e <0 • 1 >r .. e (O,l)e 1 11 mJ 1 lJ k m k 
- n - 1 8 ·8 ·e (1. 2>r .. e Cl. 2>e >-1 

2 11 mJ 1 lJ k m k • 

To verify the relation (4.5.11). we did an 

experiment with the same device as discussed in Section 

4.3. The experimental result is shown in Fig. 4.5.2. The 

normalized intensity of the diffracted light obtained 

with and without the compensating voltage is plotted as 

a function of the acoustic frequency. The compensating 

voltage. as a function of the acoustic frequency. is 

plotted in the same figure. From Fig. 4.5.2. we can see 

that the bandwidth of the AEO deflector is about 2.5 

times larger than that of the AO deflector and was 

limited by the electrical bandwidth of the transducer. 

Next let's derive the formula of NR of the AEO 

deflector.neglecting the influence of the transducer 

bandwidth. The total number NR' is given by : 

N ' = a(Af + V F/VAEO) R max • (4.5.12) 
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Fig 4.5.2 : Experimental results of a phasemismatch 

compensated AEO deflector. 
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where aAf = NR • Af is the one-sided bandwidth. F is 

the whole range of the frequency which compensates the 

phasemismatch introduced by the voltage vAEO • From 

(4.5.12) we have : 

(4.5.13) 

The ratio F/Af is given by 

(4.5.14) 

we get the value 2.25 for the above ratio. This finally 

gives the number of resolvable spots with compensating 

voltage Vmax neglecting transducer bandwidth as : 

N ' = N ( 1 + 2 2 5V /vAEO) 
R R • max (4.5.15) 

4.6. Novel way of measuring the acoustic transducer 

bandwidth 

The transducer bandwidth we discussed in Section 

4.5 comes from the impedance mismatch of the electrical 

network of the transducer. Thus. we can measure this 

bandwidth. analyzing the transducer network 

electrically. But from the discussion of the AEO 

deflector. we can measure . this bandwidth optically. In 

Fig.4.5.2, even if we compensate the phasemismatch. the 

output light intensity is not uniform. This is because 
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the acoustic power for scanning frequencies drops due to 

the impedance mismatch of the transducer network. Also, 

the diffracted light intensity is proportional to the 

acoustic power. Thus, if we measure the diffracted light 

intensity with the electric field compensation, we 

obtain the transducer bandwidth of the device. As an 

example, we see the transducer bandwidth in Fig.4.5.2. 
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5. PBO'l'OREFRACTIVE AEO INTERACTION 

5.1. Spatial ABO interaction 

In Chapter 4. we considered homogeneous AEO 

interactions that allows a clear physical interpretation 

in terms of the change of index of refraction. ~>~lso. it 

is the simplest type of AEO interaction. But to explore 

the full potentiality of the AEO interaction. we need to 

consider spatially varying electric fields as well. The 

mathematical tool useful in treating this spatial AEO 

interaction is the two-grating coupled mode equation 

developed in Section 3.4. In general. we cannot obtain 

an analytic solution for the two-grating coupled mode 

equation, if there is a phasemismatch between coupled 

modes. This is compared with the case of a homogeneous 

AEO interaction. For the homogeneous AEO interaction, we 

derive a general solution in the case of Bragg 

diffraction. For the analysis we choose a specific case 

of three mode coupling in the next section, and 

demonstrate the inhomogeneous AEO interaction in Section 

5 .4. 

We need spatially varying electric fields (i.e .• 

gratings ) for the inhomogeneous AEO interaction . The 

photorefracti ve effect 9 is a promising method of 

obtaining spatial electro-optic gratings. If we 
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illuminate a light intensity pattern on a 

photorefractive crystal. we can generate a corresponding 

charge pattern inside the crystal. This charge pattern 

gives an electric field pattern and EO gratings result 

from this field pattern via linear electro-optic effect. 

we can also erase this pattern easily. Thus. we can 

implement the real time optical signal processing 

system. using the photorefractive AEO interaction. 

In the inhomogeneous AEO interaction we have the 

freedom to choose arbitrary gratings from different 

sources. In this case we may use the nonlinearity of the 

interaction of many gratings. This is contrary to the 

conventional AO device. We show a way of using the 

intermodulation term in devising a correlator. 

5.2. Three-mode photorefractive AEO interaction 

The simplest coupling of eigenmodes through two 

gratings is three modes coupling. If we assume perfect 

Bragg matching. we can obtain a simple. general. 

analytical solution. This is interesting in itself. and 

furthermore. we can use this analysis to devise a 

correlator. In this section. we choose a specific 

configuration of three modes and two gratings, and 

derive formulae of diffracted light intensities. using 



87 

the general two-grating coupled equation given in 

Section 3.4. 

Let's consider the wavevector diagram shown in Fig. 

5.2.1. One grating is in the near y-direction, and the 

other grating is in the x-direction. Thus, the two 

gratings are almost perpendicular to each other. We have 

three optical modes. Mode 1 is the incident 1 ight wave 

with polarization 1. This mode 1 interacts with the 

photorefractive grating isotropically to give the 

diffracted mode 2. Next. mode 2 interacts with the 

acoustic grating anisotropically as well as with 

photorefractive grating to give the diffracted 

intermodulation light wave(mode 3). We assume that the 

phasemismatch between mode 1 and the acoustic grating is 

large so that we have only three mode coupling as shown 

in the diagram. The coupled mode equation can be written 

down from Section 3.4 : 

(5.2.1) 

where F 1 • F 2 and F 3 are amplitudes of optical beams 

and J.l 12 and J.t 23 are coupling coefficients; d is a 

differential operator with respect to r. As we see in 

(5.2.1), we have no direct coupling between mode 1 and 
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z 

y 

FIG 5.2.1 
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Fig 5.2.1 : wave vector diagram of a specific example 

of photorefractive AEO interaction. 

P.G.: photorefractive grating. 

A.G. : acoustic grating. 

P.G. grating is in y-direction. 

p<LL 2>: amplitude of the intermodulation term. 
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mode 3. This is the consequence of the combined 

interaction of the two gratings. The initial condition 

is given by 

F 1 (0) = 1, F 2 (0) = 0 and F 3 (0) = O. (5.2.2) 

The solution of (5.2.1) with initial conditions (5.2.2) 

is easy to obtain and given by 

F1 = 1 + £1~121 2 1<1~121 2 + 1~2 3 1 2 >1 

x [cos<l~ 12 1 2 + 1~23 1 2 > 1 ' 2 r - 11 

F2 = [j~12!(1~1212 + ~~2312>1/21 

x [sin<l~ 12 1 2 + 1~ 23 1 2 > 1 ' 2 r 1 

F3 = £~12~23•!(1~121 2 + 1~231 2 >1 

x [cos<l~ 12 1 2 + 1~23 1 2 > 1 ' 2 r- 11. (5.2.3) 

Let's define diffraction efficiencies ~ 12 and ~ 23 as 

~12 = <1~121L)2 

~23 = <1~231L)2. 

Then intensities of light waves at x = L are 

11 = {1 + ~12/(~12 + ~23) 

x [cos(~12 + ~23)1/2 - 1])2 

1 2= [~12 1 <~12 + ~23)] [sin(~12 +~23> 112 12 

(5.2.4) 

1 3 = [~12~23/(~12 + ~23> 2 1 [cos(~12 + 1'123> 112 -11 2 • 

(5.2.5) 
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From (5.2.5) if ~ 23 = o. we have 

(5.2.6) 

This is the well-known formula of the two modes Bragg 

diffraction. If we have ~ 12 = ~ 23 and <~ 12 +~ 23 > 1 1 2 = n; 

i.e •• 

(5.2.7) 

the only nonzero 1 ight wave is mode 3. and the intensity 

is 1. This shows that we can transfer all the incident 

light energy into mode 3. Also. if we look at the 

intensity formula of mode 3, it is the product of ~ 12 
and ~ 23 • Thus. we call mode 3 as the intermodulation of 

two gratings. For small efficiencies: 

~12'~23 << 1 • 

Then we have approximate light intensities 

I 1 = 1 

1 2 = ~12 

(5.2.8) 

I 3 = 1/4~ 12 ~ 23 • (5.2.9) 

This is the usual approximation of the undepleted 

incident light. As we see in (5.2.9), the 

intermodulation mode is the product of two diffraction 

efficiencies. when those efficiencies are small. The 
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ratio r 3/r 2 is 

(5.2.10} 

5.3. Experiment on photorefractive AEO interaction 

To verify the analysis in Section 5.2, we performed 

experiments using the device described in Section 4.3. 

Fortunately. the crystal used for the homogeneous AEO 

device was LiNb0 3• and LiNb0 3 is a photorefractive 

material. 

The interaction geometry of photorefractive and 

acoustic gratings with three optical modes is as shown 

in Fig. 5.2.1. The interaction geometry of the acoustic 

wave and optical modes 2 and 3 are the same as that of 

the experiment of the constant AEO interaction. The 

experimental setup is drawn in Fig. 5.3.1(a}. We used 20 

MHz shear acoustic wave. Then we rotated the Bragg cell 

to obtain the maximum diffracted light intensity. Next 

we used an Ar laser with blue line ( 488 nm > to make 

photorefracti ve gratings by interfering two collimated 

blue light beams without the acoustic wave. The power of 

the laser was 0.7 watt, and the exposure time was 20 

minutes. The angle between the interfering beams was 2.6 

degrees. Thus we realized the interaction geometry shown 

in Fig. 5.2.1. After writing the photorefractive 
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Fig 5.3.1 

interaction. 

Experiment of the photorefractive AEO 

(a) Writing of the P.G.with two interfering 

beams without A.G. 

AEO interaction given by acoustic wave and 

the photorefractive grating. 

(b) Three spots of the incident, first diffracted 

and intermodulation lights on the focal plane. 
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grating, we used one of the blue lights of two 

interfering beams to obtain the first diffracted light 

mode 2. Next, we launched the acoustic wave to obtain 

intermodulation mode 3. After the Bragg cell we used a 

spherical lens with local length 60 em. At the focal 

plane we observed three spots corresponding to the three 

optical modes 1, 2 and 3, as illustrated in Fig. 

5.3.1(b). Because the acoustic grating is perpendicular 

to the photorefractive grating, the intermodulation mode 

3 is off the line joining the two modes 1, 2. For our 

experiment the diffraction efficiency 11 12 is the 

photorefractive diffraction efficiency and it is 

constant. But we can change the acoustic power and thus 

can change the diffraction efficiency 11 23 • The 

dependence of 11 23 on the acoustic power is linear.Thus, 

the ratio given by (5.2.10) is linear in the acoustic 

power. We measure the ratio (5.2.10) as we increase the 

acoustic power. The result is shown in Fig. 5.3.2. In 

this Figure two scales are arbitrary. For small 

acoustic power we have a linear relation. For the large 

acoustic power, however, the relation is not linear. 

This comes from the saturation of the r.f. amplifier. We 

also measured two diffraction efficiencies to check the 

condition (5.2.8). The measured photorefractive 

diffraction efficiency was 0.6 ~. and the maximum 
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Fig 5.3.2 Experimental verification of the 

photorefractive AEO effect. Pa is the input acoustic 

power. • Ex per irnent • 
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acousto-optic diffraction efficiency was 0.2. 

Let's calculate the change of index of refraction 

induced by the photorefractive grating. LiNbo 3 • which 

we used, was not Fe-doped. The diffraction efficiency is 

given from the paper by F. s. Chen, et al. 9 as: 

1112 = [sin(n.dnL/(2A.cos(a/2)))] 2, (5.3.1) 

where a is the Bragg angle. 

For the small diffraction efficiency. we obtain 

.dn = (2A.(cos(a/2))11 1 12 )/(nL). (5.3.2) 

In our experiment. A. = 488 nm. a= 2.6 degrees and 11 12 

= 0.55%. If we plug these numbers in (5.3.2). we obtain 

.An= 2xlo- 6. This value is in good agreement with the 

result of F.S.Chen, et al.. Also. this is the saturated 

value.Next. we calculate the wave number of the 

photorefractive grating. This is an isotropic grating. 

Thus we have : 

K 2ksin(a/2) 

..., k a, (5.3.3) 

where the approximation is for small a. 

If we use a = 2.6 degrees. we obtain K = 6x10 3 (cm- 1 >. 

The electric field induced by the photorefractive 

grating can be calculated, using the following equation : 
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An = n3 r 12 E/2. (5.3.4) 

Now r 12 = 3.4xlo- 12 m/V. we have E = 10 3 V/cm. 

5.4.Correlator using the intermodulation mode 

The mathematical definition of one-dimensional 

correlation is : 

f f(x)h(x-y>*dx = C(y). (5.4.1) 

wecan do this correlation, using the intermodulation 

mode of the photorefractive AEO interaction. If the 

holographic pattern written in the photorefractive 

crystal is S(x,y), and the acoustic signal delayed in 

the same crystal is a(t+x/Va>· then the amplitude of the 

intermodulation mode after the crystal is given by : 

S(x,y) a(t+x/V a>· (5.4.2) 

We assumed small diffraction efficiencies and used 

(5.3.9). After the crystal we can put a cylindrical 

lens with focal length f. Then on the focal plane the 

amplitude of the intermodulation mode becomes 

f S(x,y)a(t+x/Va> exp[j(xxf/Af)]dx. (5.4.3) 

Thus, the intensity distribution on the focal plane is : 
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I(xf.t.y) 

= I f S(x.y)a(t+x/Va>exp[jxxf/Af]dxl 2• (5.4.4) 

If we use a pinhole detector at xf = o. we obtain the 

correlation between S(x.y) and a(t+x/Va> : 

I(xf = o.t.y) = I /S(x.y)a(t + x/Va>dx 12• (5.4.5) 

If we collect all the intensity. we obtain the 

incoherent correlation 

C(t.y) = f I(xf.t.y)dxf 

= f ls<x.y>l 2 1a<t+x/Va>1 2 dx. (5.4.6) 

To demonstrate the correlation by the above method. 

we did an auto correlation experiment using the same 

device as described in Section 4.3. The bandwidth of the 

device is 10 MHz. Thus. we used the simplest pattern 

shown in Fig. S.4.1(a). First. we used a pattern shown 

in Fig. S.4.1(a) and two collimated Ar laser beams ( 488 

nrn to write the pattern over the high-frequency 

interference grating inside the crystal. Of course. the 

AO device was set before to give the maximum AO 

diffraction efficiency at the center frequency 20 MHz. 

Next. we generated an electrical signal which exactly 

matched the pattern written inside the crystal. when the 

signal was delayed by the acoustic wave. The electrical 
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Fig 5.4.1 : Experiment of the photorefractive AEO 

cor relator. 

(a) Input photorefractive pattern. The intensity of 

the left window is twice that of the right 

window. 

(b) Electrical signal into the acoustic transducer 

which matches the pattern (a). 

Oscilloscope trace of the electrical signal. 
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signal was modulated by the center frequency 20 MHz and 

shown in Fig. S.4.1(b) and (c). We used a spherical lens 

with local length 60 em and collected all the lights of 

the intermodulation mode on the focal plane. The 

oscilloscope trace of the light intensity is shown in 

Fig.S.4.2. This is the incoherent auto correlation of 

the pattern shown in Fig. S.4.1(a). 
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Fig 5.4.2 : Oscilloscope trace of the auto-correlation 

of the pattern Fig 5.4.1 (a). 
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6. FUTURE RESEARCH 

In previous chapters. the general concept of 

multiple perturbations applied to the optical signal 

processing and optical devices has been developed and 

demonstrated using the AEO interaction. The main idea of 

this work was that multiple perturbations might give 

more flexibilities to play with. This has been 

demonstrated successfully in Chapters 4 and s. using 

the simplest AEO interaction. Thus, if we consider more 

complicated mutiple perturbations. we may find very 

interesting phenomena and can apply these phenomena to 

the optical signal processing and devices. 

Small effects of the optical interaction between 

multiple perturbations is a problem. As we want more 

flexibility. this problem becomes more severe. There are 

some ways of overcoming this problem in general. First. 

we may develop special materials that have large 

susceptibilities of the interaction of multiple 

perturbations. People are working on 

materials. liquid crystals or 

synthetic organic 

superlattice of 

semiconductors to obtain large susceptibilities. Another 

possibility is to investigate the physical mechanism of 

the interaction of multiple perturbations. As an 

example. let's consider AIOHG introduced briefly in 

Section 2.1 . As we discussed in Section 2.1. there are 
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two types of interactions. One is the direct 

interaction. The susceptibility of this type of 

interaction is very small, and we have no way to 

increase the effect except by developing a special 

material with a large susceptibility. The second type of 

interaction is called induced effect. In this case. we 

have two separate phasematching conditions. One is for 

the AO interaction. and the other is for the optical 

second harmonic generation. Thus. if we satisfy two 

phasematching conditions simultaneously, we obtain a 

large effect. This has been demonstrated by Nelson and 

Lax 2 • They increased the effect by order of 1000. This 

example shows that if we know the physical mechanism of 

interactions, we may enhance the strength of the 

interaction. A third way of overcoming difficulties is 

to control the size of the device, so that for the given 

value of the susceptibility we can increase amplitudes 

of multiple perturbations. This gives an overall 

increased strength of the interaction. Surface acoustic 

wave device is a good example. In this case. we can 

increase the amplitude of the strain. Integrated optics 

is another example. In this case we may have a large 

electric field. using a small amount of voltage. These 

are very interesting areas in which to apply the general 

concept of the interaction of multiple perturbations. 
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