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Abstract 

Charged n* mesons produced in e+ e- annihilation at a center-of-mass energy 

of 29 Ge V have been studied with the DELCO detector at the PEP storage ring. 

The selection criteria of n* candidates exploit the 1r I K separation capability in 

the momentum range from 2.6 Ge VIc to 9.2 Ge VIc provided by the gas Cerenkov 

counter. The data correspond to an integrated luminosity of 147 pb-1 . 

We have measured the total production cross section of n*± to be 

[0.16±0.02(statistical)±0.02(systematic)] nb [x PD*I(E~eam- M}r) 112 > 0.35], 

and (0.18 ± 0.02 ± 0.03) nb (x > 0) if the contribution from bottom quarks is 

subtracted. The branching fractions used are Br(n*+ ----+ n°1r+) = 64% and 

Br(n° ----+ K-1r+) = 3%. The systematic errors due to the branching ratios 

are not included in the errors. With Br(n° ----+ K-1r+) = 4.9%, which is a 

recent measurement by the MARK III group, the above two cross sections become 

0.10±0.02±0.02 nb (x > 0.35) and 0.11±0.02±0.02 nb (x > 0 and after the 

subtraction of the contribution from b quarks). 

The charm fragmentation function is harder than that for light quarks, and 

the shape is found to be consistent with the prediction of the string model with a 

uniform string-breaking probability. Assuming the string model, the string-breaking 

probability is determined to be (0.019 ± 0.05 ± 0.09) Ge V2 . 

We have also determined the lifetime of n° meson which is detected in the 

n* decay, with the result rDo = (5.3 ± 1.7~8:~) x 10-13 sec. Together with the 

semileptonic branching fraction of n° measured elsewhere, the semileptonic decay 

rate of n° is estimated to be (1.4 ± 0.5) x 1011 sec-1 , which corresponds to an 

effective charm quark mass of (1.54 ± 0.12) GeVIc2 • 

Using part of the n* candidates, we have set an upper limit on n°-V mixing: 

r _ P(no ----+ IfJ)I P(n° ----+ n° or V) < 8.3% (90% c.l.), leading to a stringent 

limit on charm-changing neutral currents. 
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Chapter 1. 

1 

Introduction 

When one looks back . . . everything progresses neatly from 
a few ideas of the past to the orderly situation that we find 
now. Well, as we know, it just was not like that . 

-J.D. Bjorken 

In 1960's, the fog slowly started to fade away when the key ideas of the so-called 

standard model appeared among diverse alternatives. The success of the extension 

of the SU(2) isospin symmetry [a symmetry between u(up) and d(down) quarks] 

of the strong interaction to the SU(3) flavor symmetry1 [a symmetry between u, 

d, and s(strange) quarks] and the lack of lepton-hadron symmetry in the weak 

interaction had motivated various authors to introduce a fourth quark- now called 

c(charm).2 A few years later, Weinberg and Salam successfully unified the weak and 

electromagnetic interactions of leptons using the SU(2) x U(l) gauge symmetry.3 

Then, in 1970, Glashow, Iliopoulos and Maiani showed4 that the introduction of a 

forth quark can lead not only to symmetry between leptons and hadrons but also to 

the suppression of strangeness changing neutral currents when the Weinberg-Salam 

model is extended to include hadrons. This explained the small mass splitting of the 

K 0 system and the suppression of decays such as K1 --+ J-l+ J-l-, K+ --+ 1r+ e+ e-, etc. 

Thus, the standard model of weak and electromagnetic interaction that includes two 

complete generations of fermions was constructed. Each generation contained two 

leptons and two quarks: 
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The Jj'!f; particle, which was dramatically discovered in 1974,5•6 was soon identified 

as a bound state of a c quark and its anti-particle c, strongly supporting the 

hypotheses of the standard model. 

Later, the discovery of the heavy lepton r 7 and the Y particle8 [a bound state 

of a b(bottom) quark and its anti-particle b] has led to the addition of one more 

generation to the model. This necessitated the introduction of two new particles

the r neutrino (v7 ) and the t(top) quark- in order to keep the symmetry between 

the generations intact. Other particles in the standard model are the gauge bosons 

that mediate electromagnetic, weak, and strong interactions- photon (1), weak 

gauge bosons (w±, Z 0 ), and gluons (g), respectively- and the Higgs particle (H0 ) 

whose vacuum expectation value partially breaks the original gauge symmetries and 

gives masses to particles in the model. The weak gauge bosons have been observed 

at CERN in p-p interactions,9 and the t quark may have been observed by the same 

group. 10 Even though r neutrinos have not been seen directly, decays ofT leptons are 

consistent with the emission of a massless r neutrino through the universal V-A 

interaction. This leaves the Higgs as the only mystery particle in the standard 

model. Table 1.1 lists all the fundamental physical particles of the standard model, 

where 'physical' means mass-eigenstate. For detailed descriptions of the standard 

model and its impressive list of successes, the reader is referred to many excellent 

textbooks. 11 

Despite the successes of the model, there are still many questions to be 

answered, among which we will address the following questions in this thesis: 1) 

How are charm quarks generated in e+ e- annihilations? Are there any signs of the 

unification of the weak and electromagnetic interactions? 2) No free quarks have 

been observed so far. Then, how do quarks materialize themselves into the real 

world? 3) How do quarks decay inside hadrons? Do they decay by themselves, 

or do they interact with the other quark(s) present in a hadron? 4) In the 

standard model, flavor changing neutral currents are suppressed. The suppression 

of strangeness changing neutral currents is an experimental fact that originally led 
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Table 1.1. Fundamental particles in the standard model of weak
electromagnetic and strong interactions. Charge Q and the third 
component of weak isospin J3 are also shown. Masses in Ge V / c2 are given 
in parentheses, where the quark masses refer to current mass.l2 For the 
leptons and quarks, anti-particles are implicit. For each quark listed, there 
are three degenerate quarks associated with each type of color quantum 
number, and the gluon is a color octet. 

generation# 
Q I* 3 

1 2 3 

Ve(O) vJ.L(O) Vr(O) 0 +1 
leptons 2 

e(O.OOOS) tt(O.l06) r(1.786) -1 1 
-2 

fermions 
u(O.OOS) c(1.3) t(,....,40) +~ +1 

quarks 3 2 

d(O.OlO) s(0.2) b(4.0) 1 1 -3 -2 

w+(s1) +1 +1 

vector bosons i(O) z 0 (9s) g(O) 0 0 

w-(81) -1 -1 

scalars (Higgs) H(?) +more? 0 -

* For fermions, Is refers to their left-handed component. Their right-handed 
components are weak isospin singlets (except for neutrinos which do not have a 
right-handed component in the standard model) . 

to the introduction of the c quark by Glashow, Iliopoulos, and Maiani. Are flavor 

changing neutral currents absent for heavier quarks, also? 

One can study heavy flavors by detecting heavy hadrons; but, there are 

additional reasons why heavy hadrons are suited to the study of problems which are 

not directly related to heavy quarks themselves. First, their masses are substantially 

larger than the energy scale of the strong interaction: thus, the effective coupling 

constant of the strong interaction is small enough to be manageable by perturbative 

quantum chromodynamics (QCD). Second, it is easy to trace the origin of a heavy 

hadron because heavy quarks are not abundantly produced in decays of other 

particles or from the sea. In this thesis, I will investigate these questions using 
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n*+ meson, which consists of a c quark and ad quark, (and its charge conjugation 

n*-) produced in e+e- annihilations at a CM energy of 29 GeV. 

The organization is as follows: In chapter 2, the relevant theoretical background 

for the subjects are reviewed. Then, in chapter 3, the instrumentation and the data 

reduction are described. This includes the PEP storage ring, the DELCO detector, 

the data collection system, the event triggers, and the selection criteria used to 

obtain the multi-hadron events. Chapters 4 through 6 detail the main part of 

the analysis, in which then* production cross sections, the lifetime of n°, and the 

upper limit on the n° -lf mixing are presented. The conclusion is given in chapter 

6, and some detailed formulae and derivations are provided in the appendix. 
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Theoretical Background 

Whatever may be one's opinion as to the simplicity of 
either the laws or the material structure of nature, there 
can be no question that the possessors of some such 
conviction have a real advantage in the race for physical 
discovery. 

- P. W. Bridgeman 

In this chapter, we will review the theoretical backgrounds for the following 

subjects in some detail. Unless stated, the standard model is used as the basis of 

discussion throughout the chapter. 

1. How are charmed quarks produced m e+e- annihilation? Is there any 

signature of the unification of the weak and electromagnetic interactions? 

2. How does a charmed quark turn into a charmed meson? What do we expect 

for the momentum distribution of charmed mesons? 

3. How do the charmed mesons decay? What decay rates and decay modes are 

expected? 

4. Can a meson generated as a n° turn into a lf meson before it decays, 

namely, do we expect n° -If mixing? How does a limit on the mixing 

translate to that on charm-changing neutral currents? 

Unless stated otherwise, the system of units used in this chapter is such that 

c=n=l. 
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2.1 PRODUCTION OF CHARM QUARKS 

In e+ e- annihilation, there is a class of events in which hadrons carry a 

substantial fraction of the CM energy of the incoming electron and positron. These 

events, called simply 'hadron events' or 'multi-hadron events', are thought to be 

final states of quark-antiquark pairs followed by their hadronizations. A quark

antiquark pair is generated primarily through a decay of a time-like photon as 

shown in Figure 2.1. Final-state hadrons will approximately follow the direction of 

the quark and antiquark, so the events will topologically consist of two 'jets. ' 13 

In this section, we will discuss how charmed quarks (and any fermions m 

general) are produced in e+ e- annihilations. As we will see, charmed quarks are 

expected to be produced copiously though the creation of cc pair at the vertex 

of e+ e- annihilation. Various corrections to the lowest-order total cross section 

turn out to be small. However, some of the corrections change the features of 

events significantly such as the 3-jet events caused by hard gluon emissions. We 

will also see that the forward-backward asymmetry of charm production, caused by 

the interference of zO and photon, is significant. 

2.1.1 Lowest-Order QED Cross Sections 

The process of Fig. 2.1 is calculated usmg the quantum electrodynamics 

(QED), and the differential cross section, da0 , is given by 

d o a2 
_!7_ = Q2 -/3(2- ,82 sin2 0) 
dO q 4s 

where, 

a is the electromagnetic coupling constant e2 / 47rnc ( =1/137.036), 

s is the invariant mass (squared) of the e+ e- system, 

Qq is the quark charge, 

(2.1) 

0 is the angle between the incoming electron and the outgoing quark (Fig. 2.1), 

and 
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e q 

q 

e e~ 
Ebeam q Ebeam 

Figure 2.1. The process e+e- --t qq through single time-like photon. The top figure 
shows the Feynman diagram and the configuration in the lab system is shown at 
the bottom. 
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{3 is the velocity of the outgoing quark divided by the velocity of light. 

For energies well above the quark pair threshold ({3 -+ 1), the angular 

distribution reduces to 1 + cos2 (), which arises because the spin of the photon 

is parallel to the beam axis while the spins of the quark and antiquark are aligned 

along the axis of flight. The total cross section is obtained by integrating (2.1): 

-+ (2.2) 

where 
_ 47ra2 21.7(nb) 

aJJ, = ~ = E~eam(GeV) (2.3) 

is the lowest-order QED cross section for muon pair production at high energy. For 

Ebeam = 14.5 GeV, the value of aJJ, is 0.103 nb. The formulae above are valid for the 

production of any point-like fermion-antifermion pair bye+ e- annihilation through 

a timelike photon. 

At our beam energy of 14.5 GeV, the quarks produced are u, d, s, c, and b. The 

suppression of the cross section due to the threshold effect in (2.2) is much less than 

1% even for b-quark pairs. Each quark flavor consists of 3 quarks with identical 

mass but different color quantum numbers; the degeneracy is due to the exact color 

symmetry. The total cross section for the hadronic events is, then, 

(2.4) 

Thus, about 4/ll's of the hadronic events originate from the production of cc pairs. 

2.1.2 QED Corrections 

There are various next-to-lowest-order corrections to the reaction e+ e- -+ qq, 

which are listed in Figure 2.2. They can be divided into 3 groups; QED corrections 

to order a 3 [Fig. 2.2(a) through (i)], first-order quantum chromodynamics (QCD) 

corrections [Fig. 2.2(j) through (1)], and the electro-weak effect [Fig. 2.2(m)]. All 
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the diagrams with four vertices are not included by themselves; what is considered 

is the interference of the lowest-order QED diagram with them. All of these can be 

calculated reliably in the standard model. 

The photon-emission diagrams [Fig. 2.2 (a) and (b)] diverge for soft photons, 

but it is cancelled by the infinity that occurs in the interference of the vertex 

correction diagram of Fig. 2.2 (c) and the lowest-order graph (Fig. 2.1). Similarly, 

the infrared (soft) divergences in Fig. 2.2 (d) and (e) cancel with that of the 

interference between Fig. 2.2(f) and Fig. 2.1. 

The photons accompanying a relativistic charged particle are approximately 

on-shell and the spectrum is given by 

dn(k) = {3
1 + (~k- k)

2 
dk, 

z2a s { ,..._ 0.1 
{3 = Q -(In - - 1) 

7r m ,..._ 0.01 

fore; (2.5) 

for c quark, 

with k E-r/ Ebeam (equivalent photon approximation). These photons can be 

reinterpreted as the initial or final state radiations. The direction of the radiated 

photons is peaked along the charged particle from which they are emitted. When 

the photon energy is small compared to the beam energy (i.e., k ~ 1), the 

differential cross section for photon emission from the initial (final) state, dai(f), is 

approximately given by14 

(2.6) 

where f3i(f) is the corresponding value of {3 as defined in (2.5). In general, the 

radiation from quarks is smaller than that from electrons due to the smaller absolute 

charges and the larger masses. At our energy, the change in the total cross section 

due to the final state radiation is less than 1%. 

When k -+ 0, the differential cross section (2.6) diverges. Also, the initial 

state radiation changes the center of mass energy of the e+ e- system at the time of 

annihilation, which changes the photon-emission cross section itself. A more careful 



(g) 

(j) 

10 

(c) 

(i) 

>o~ 

electron or quark 

photon 

~ gluon 

Figure 2.2. Feynman diagrams relevant to the next lowest-order corrections to the 
process e+ e- --+ qq. The z0 exchange diagram (m) is treated as the same order as 
the box diagrams of (g) and (h). Also, the first-order QCD corrections are included 
[(j), (k), and (1)]. 
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treatment is as follows. The cross section is well approximated by15 the emission 

probability times the cross section of the process e+ e- ----+ qq after the emission 

at a reduced CM energy s1• With a proper connection of soft and hard radiation 

(the exponentiation of leading logarithm), the total cross section for k < k0 can be 

written as (for mf ~ Ebeam), 16 

(2.7) 

where, 
a 3 s 1r2 

bv = - (- ln - - 2 + -) ~ 0.08 
1r 2 m~ 3 

is the finite offset left-over after the cancellation of infinities of the graphs Fig. 

2.2(a), (b), and (c). The radiation spectrum peaks at small k and varies as 1/k, 

which is consistent with (2.6). Since u(s') varies as '""" 1/s' '""" 1/(1- k), it also 

peaks as k----+ 1, i.e., when the photon carries away most of the beam energy. The 

total cross section depends on the effective cut-off on k. In fact, the peak for k ----+ 1 

does not contribute to our hadronic event sample because we require a minimum 

amount of detected charged energy in the central detector corresponding to an 

effective k-cutoff at around 2/3. 

The interference of the box diagrams [Fig. 2.2(g) and (h)] and the lowest

order QED diagram also has divergences, but they are cancelled by soft photon 

divergences that occur in the interference between the initial and final state 

radiation. The result is to generate a forward-backward asymmetry, where 'forward' 

is defined by Pe- · Pq > 0. This is because the final state is not an eigenstate of 

charge conjugation C; it is a mixture of a one-photon state ( C = -) and a two

photon state ( C = +). If the final state is an eigenstate of C, then applying C to the 

final state, i.e., interchanging the quark and antiquark, does not change the cross 

section, and there will be no forward-backward asymmetry. Although the amount 

of asymmetry depends on the cuts used to select events such as acceptance in cos 0 

and total visible energy, a typical value is 1 to 2 %. This effect is often important 
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when one studies the asymmetry caused by the interference of the Z 0 diagram and 

the lowest-order QED diagram. 

The same argument of the charge conjugation as above applies to the 

interference of the initial and final hard photon emission diagrams. When the 

photon is detected, it gives a large forward-backward asymmetry.l7 However, when 

the photon parameters are integrated, the asymmetry is generally small compared 

to the one caused by the box diagrams. 18 

In the vacuum polarization diagram of Fig. 2.2(i), the loop includes 

contributions from electron, muon, tau, and quarks. The effect of w± is small. 

The correction is multiplicative and is given by, 19 

2 2a 1 8 5 
with 81 = Q1-(-ln-- -), 

1r 3 m} 9 
(2.8) 

where, f = e, p,, r and quarks with different colors. The correction is larger for 

lighter fermions, and the total correction due to the vacuum polarization at our 

beam energy is +10%. 

2.1.3 QCD Corrections 

The first-order gluon emission diagrams Fig. 2.2(j) and (k) diverge as in the 

case of the photon emission diagrams Fig. 2.2(d) and (e). And, just as in the case 

of QED, the divergence is canceled by the corresponding vertex correction diagram 

Fig. 2.2(1) when the finite resolution of quark momenta is taken into account.20 

The total cross section including hard gluon emission is given by, 

(2.9) 

where 
471" 

(2.10) 

is the running coupling constant of strong interactions with n f being the number 

of flavors. For Q2 = 8 and A= 150 MeV,21 the value of a 8 is about 0.16, leading 
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to an +5% correction for the total hadronic cross section. To first order in QCD, 

the differential cross section of gluon emission is given by,22 

(2.11) 

where, Xq = Eqj Ebeam and Xq = Eq/ Ebeam· This determines the configuration of 

q, q, and g relative to each other, apart from the angular orientation with respect 

to the beam axis. The cross section is divergent when the gluon is soft or parallel 

to the quark or antiquark, in which case the gluon cannot be observed as a separate 

jet anyway. This is the region where the vertex correction diagram of Fig. 2.2(1) 

cancels the divergence. When the gluon energy is substantial and its direction is 

away from the quark or antiquark, the event will topologically appears as a 3-jet 

event. 

2.1.4 Electro- Weak Effects 

At our energy, the Z0 diagram (m) is suppressed by ixi 2 ""' (s/M}) 2 ""' 0.01 

compared to the lowest-order QED cross section, where x is the reduced Z0 

propagator 

s 
x(s) = 

2 
. . 

s- Mz + zMzfz 
(2.12) 

On the other hand, the interference of (m) and the lowest-order QED diagram is 

of order Re(x) ""' s j M~ ""' 0.1 times the lowest order QED cross section. The 

contribution of this interference to the total hadronic cross section is 23 

VeVq 0 VeVq O { ""' 0.010"
0 

2-Re(x) (] ""' -0.2-0" 
Qq Qq ,....,_ 0.020"0 

where Ebeam = 14.5 Ge V is used. The parameters 

I{- 2Qf sin2 Ow 
v = ~----~------

! sin21Jw 
and 

If 
a = 3 

f sin21Jw 

for u, c quarks 

for d, s, b quarks, 

(! = fermion) 

(2.13) 

(2.14) 
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are the vector and axial couplings of fermions to the Z 0 defined by the Lagrangian 

term 

where e is the electron charge (positive), I{ is the third component of the weak 

isospin (see Table 1.1), and Ow is the weak mixing angle (sin2 Ow '""' 0.22 or 

Ow '""' 28°).24 The formula (2.13) gives values smaller than the crude estimate of 

0.1cr0 ; this is because the electron-Z0 coupling happens to be almost purely axial, 

i.e., Ve '""' 0. However, this interference introduces a substantial forward-backward 

asymmetry. For s ~ M~, the asymmetry is given by, 

(2.15) 

where, 

fo
e dcr 

F = d 
0

dcos0, 
0 cos !o dcr 

B = d 
0

dcos0, 
-c cos 

and 

4c 
g(c) = 

1 
+ 

3
c2 (--t 1 as c --t 1). 

The parameter c defines the acceptance in polar angle. For c=0.6, the asymmetry 

is -5.5% for charge 2/3 quarks and -11% for charge -1/3 quarks. When one takes 

e, Mz, and sin2 Ow to be the basic parameters, and not G p, as is done in our case, 

the asymmetry is sensitive to the weak mixing angle through (2.14). 

To summarize, in the standard model, the charmed quarks are produced in 

e+ e- annihilation at CM energy of 29 Ge V primarily by e+ e- --t 1 --t cc. About 

4/11 of all hadronic events are such cc events. The radiative correction is larger for 

the initial state radiation than for the final state radiation, and the exact amount 

of the correction depends on how much energy is allowed for the emitted photon. 

A typical radiative correction to the total cross section is a few percent, and it also 

reduces the momentum of heavy hadrons by a few percent. The box diagrams cause 

the forward-backward asymmetry which has to be considered in the analysis of the 
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weak-electromagnetic interference effects. The vacuum polarization of the timelike 

photon increases the total cross section by 10%. The first-order QCD correction 

increases the total cross section by about 5%, and hard gluon emissions are expected 

to result in 3-jet events. At our energy, the effect of e+ e- annihilation through z0 

is small in the total cross section due to the small value of Ve, but it generates a 

substantial forward-backward asymmetry, which may be measurable. Charm quarks 

are also produced by decays of bottom quarks, which will be discussed in a later 

chapter. 

2.2 HADRONIZATION OF CHARM QUARKS - STRING OR QCD CASCADE? 

2.2.1 Quark Hadronization 

The force responsible for the hadronization of quark is the strong interaction, 

and it is believed to be described (in principle) by the quantum chromodynamics 

(QCD). QCD is a non-abelian gauge theory based on the unbroken SU(3) color 

symmetry with quarks and gluons as its basic constituents, and carries the strong 

interaction part of the standard model. 

At a short distance, namely for a large value of Q2 , the equation (2.10) shows 

that the effective coupling constant a 8 becomes small (asymptotically free),25 and 

the perturbation theory can be used to calculate various quantities. However, at a 

large distance, or for a small value of Q2 , the effective coupling becomes too large 

for the perturbation theory to be reliable. It is commonly believed that when two 

quarks are placed more than a few fm (10- 15 m) apart, the self-coupling of gluons, 

which arises from the non-abelian nature of QCD, pushes together the gluon flux 

lines to form a flux tube. This leads to a potential that increases linearly with 

the distance, preventing the quarks to escape ('confinement'). Rigorous proof of 

the above picture is yet to come, but suggestive clues abound: the interquark 

potentials of '1/;'s and T's seem to increase linearly when the distance between the 

quarks becomes large; in the dual resonance model, the string picture explains 
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many aspects of the strong interaction including resonances; the lattice QCD 

calculations26 support the linearly rising potential; and some analytical studies 

of QCD also indicate the existence of strings.27 

As we understand at present, the time development of hadronization in e+ e

annihilation is as follows: 

1. Creation of qq ( + hard gluons) at the e+ e- vertex. 

2. In a few fm/ c("' w-23) sec of proper time, the strong interaction finishes its 

job, turning the original quarks and the gluon field into stable hadrons. 

3. Much later, some hadrons decay electromagnetically or weakly. 

The first stage is calculable and has already been discussed. The time scale of 

the last stage is well separated from the second by many orders of magnitude, 

and we will not discuss it further here. The second stage includes decays of 

strong resonances such as p and K*. This classification is more natural than 

combining strong decays with weak and electromagnetic decays: the time-scale 

of hadronization is about the same as the lifetimes of these particles (the cr of p is 

"'1 fm). 

The lattice QCD and powerful computers may soon make it possible to calculate 

various aspects of hadronization. Currently, however, QCD cannot give a precise 

description of hadronization, and it has led to various phenomenological models. 

These models are roughly divided into two groups: flux tube models (string models) 

and QCD cascade models. 

2.2.2 Flux Tube Based Models -Early Models 

Flux tube models28 are the natural outcome of the confinement picture 

discussed above. As a quark separates from an antiquark, a flux tube will stretch 

between the two, which soon breaks up creating a qq pair somewhere along the 

tube [Figure 2.3(a)]. The stretching and breaking process will continue until all 

the energy turns into hadrons. This leads to the following observations: 1) the 

creation of qq pair is independent of the flavor of the original qq pair; and 2) the 
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central part of rapidity distribution becomes flat due to the Lorentz invariance of 

flux tube, that is, apart from edges, a flux tube looks exactly the same when it is 

boosted longitudinally. 29 

A pioneering work was done by Field and Feynman.30 In their model, a jet 

of hadrons is generated from an original quark q with momentum P (in the +z 

direction) as follows [Fig. 2.3 (b)]: 1) a new pair q1q1 is generated according to a 

fixed ratio for various flavors, and q1 is combined with q to form a meson. The 

momentum and energy of the meson E1 and P1z are given by the fragmentation 

function f(z)dz, where 

(2.16) 

2) The q1 is assumed to carry the left-over energy-momentum (1- z)(Eo + P0 ). 

Then, another pair q11q11 is generated, and the process is repeated treating q1 as if 

it is the original quark. 

The value of z becomes smaller and smaller as one repeats the process, 

corresponding to a more and more negative Pz. In fact, this procedure describes 

a fragmentation of a qq pair where q has Pz = P and q has an infinitely negative 

Pz. The parameter z defined by (2.16) is invariant under longitudinal boosts, and 

it assures that, deep into the cascade, the hadron distribution is flat in rapidity. 

In order to generate a jet of finite energy, this recursive process has to be 

artificially terminated, typically when the energy of the original quark is used up. 

(The process is no longer Lorentz invariant.) Two such jets, one from a quark and 

the other from an antiquark, can be combined back-to-hack to form an e+e- event. 

In this scheme, however, it is difficult to conserve charge, energy, and momentum 

in a natural way. The Monte Carlo programs by Ali et al.31 and Hoyer32 belong to 

this category. 

In these e+ e- models, a hard gluon is treated similarly to a quark, making a 

jet of its own. This results in another problem when qqg 3-jet events are generated 

according to the first-order QCD cross section (2.11), which diverges when the gluon 
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(a) 
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q ~p1 

~q·--v' 

~~ .. ==>p' 
. q" 

Figure 2.3. (a) Flux tube model of hadronization. As a flux tube stretches between 
the original quark and antiquark, a new qq pair is formed breaking the flux tube. 
Eventually all the energy is transformed into hadrons. (b) The fragmentation 
scheme of Field and Feynman is inspired by the flux tube model, and describes 
the hadronization of a semi-infinite flux tube. 
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is parallel to the quark or antiquark. The final distributions should be insensitive 

to the exact value of the cutoff needed to avoid the divergence. Thus, a qqg event 

should result in an event similar to a qq event when the angle between the gluon 

and quark (or antiquark) is small. However, in these models, an event differs 

substantially (for example in multiplicity) depending on whether it is generated 

as a qq event or as a qqg event. This problem can be avoided, at least in principle, 

if a gluon is treated as a kink of a string, as we will discuss later. 

2.2.3 Flux Tube Based Models - String Models 

The models by the LUND group33 , by Artru and Mennessier34, and by 

Gottschalk.35 take the string-like features of hadronization more seriously. We will 

start by briefly reviewing the basics of string models. 

A string is, at best, an approximation of reality. A flux tube can be thought 

of as a stretched meson bag,36 thus the actual width would be of order fm; the 

uncertainty principle tells us that the transverse fermi motion of a particle confined 

within a tube is a few hundred MeV/ c; there might be constant disturbances by 

soft gluon emissions or transverse vibrations ('roughening') ;37 in addition, there are 

spin-spin interactions and other quantum mechanical effects which become stronger 

when the quark and antiquark get closer. Bearing these limitations in mind, we 

approximate a flux tube by a classical massless string with no width. 

It is possible to formulate string motion in a relativistically consistent way.38 

We will not cover the details of the formalism here; but some of the key features 

are listed below: 

1. A quark or antiquark is attached at each end of a string, which carries energy 

and mom en tum. 

2. In any Lorentz frame, the string tension is a global constant 1c 

dP = ±K and 
dt 

dE 
dx = K, (2.17) 

where t, x, P and E are those of the quark (or antiquark), and the sign in the 
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first equation depends on whether or not the string is on the positive side of 

the quark. The quark is always pulled by the force K., and when a length dx 

of string is 'eaten' by the quark, the quark gains energy by K.dx. 

3. Because of its longitudinal Lorentz invariance, a string does not carry a 

momentum in the longitudinal direction. When a string has a transverse 

velocity {3t, the energy density becomes /tK. bt - (1- !3[)-112], and a string 

now has a transverse momentum f3t/tK. per unit length. 

The string tension K. can be estimated as follows: One type of string excitation 

is the rotating rod [Figure 2.4(c)]. This mode maximizes the angular momentum for 

a fixed energy, and is identified with the leading Regge slope a'. The mass M and 

angular momentum J the rod are given by (assuming that the edges are moving at 

the speed of light, i.e., for massless quarks) 

7r 
M = -K.l 

2 ' 

where l is the length of the rod. The leading Regge slope is then 

,_ J 1 2 I a - - = - => K. ~ 0.2GeV ~ 1GeV fm. 
- M2 27rK. 

(2.18) 

(2.19) 

The linear slope is verified up to spin 7 for the p family,39 which corresponds to a 

length of about 3 fm. This strongly supports the string picture without 'roughening' 

or blowing up of the tube radius at the center. 

Integrating (2.17), one gets P = K.(t- t 0 ) and E = K.(x- x0 ), where t 0 and x0 

are the integration constants. This and E 2 - P 2 = m 2 gives 

(2.20) 

where m is the mass of the quark. Thus, the trajectory in x-t space is a hyperbola. 

A massless quark moves always at the speed of light, and the trajectory becomes 

a straight line that switches back at (t0 , x0 ) where it loses all of its energy to the 

string. 
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X 

Figure 2.4. (a) Yoyo mode of string motion in space-time. The hatched area is the 
space-time region of string. (b) String-model picture of hadronization. A pair of qq 
is generated at the origin at t = 0. Compare with Fig. 2.3(a). The arrow indicates 
a string breakup occurring after the first crossing of qq. (c) Rotating rod mode of 
string motion, corresponding to the leading Regge trajectories. This can be used to 
determine the string tension K. 
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A quark-antiquark pair stretched by a string, which we call a 'stringlet', has 

a yoyo-like motion shown in Fig. 2.4(a). The invariant mass of a stringlet is 

proportional to the area spanned by the string per period of oscillation. A stringlet 

can be a simple model of meson when its mass is a typical meson mass of order 1 

GeVjc2 ; when the mass is the CM energy of an e+e- annihilation, it can represent 

a hadronic event as shown in Fig. 2.4 (b). 

There are options on prescribing the way a string breaks: 

1. Allow a string to breakup after a quark and antiquark has crossed once? [as 

indicated by the arrow in Fig. 2.4(b)]. 

2. Take the breakup probability to be uniform in space-time? Namely, 

dP 
dtdx = b (const). (2.21) 

In the LUND model, breakup is not allowed after the first crossing of qq, and 

is not uniform in space-time. Instead, the breakup point is determined by the mass 

of resulting meson and the fragmentation function. Thus, in a sense, the string 

'knows' what discrete values of masses are allowed when it breaks, and all the first 

crossings of qq turn into hadrons. Since the time-scale of hadronization is the same 

as that of the formation and decay of resonances, this is not as strange as it may 

seem: the quantum dynamics that result in the actual mass spectrum is already 

in action when a string breaks to create a low-mass stringlet. However, when the 

mass of the stringlet is substantially more than ~ 1 Ge V j c2 , it seems reasonable to 

allow breakups to occur also after the first crossing of qq. 

When one assumes the uniform breaking of string, then the mass M of a 

stringlet produced by the first crossing has a continuous distribution 

f(M)dM = 2bE1(bM2 )MdM, (2.22) 

where E1 is the exponential integral. This distribution extends down to 0 even 

though there is no singularity. Thus, in order to generate real hadrons, some 
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cutoff has to be made. One way is to restrict the breaking point to the region 

where the resulting stringlets have masses greater than a certain cut value, and let 

these stringlets (clusters) decay to ordinary hadrons. This approach was taken by 

Gottschalk35 . It has an advantage of naturally conserving energy-momentum. 

In string models, a hard gluon can be represented by a kink of the string which 

carries a local energy-momentum as shown in Figure 2.5(a).40 When the angle 

between the quark and gluon is small, the system looks similar to a simple straight qq 

string. Thus, in this scheme, the problem of infrared divergences of gluon emission 

is not as serious as the models in which gluons hadronize independently. This can 

be seen more clearly by tracing the motion of string. We choose a coordinate system 

where q and q are back-to-hack and g is perpendicular to them, and compare a qqg 

systemof(Pq,Pq,Pg) = (2,6,2) GeV/cwithaqqsystemof(Pq,Pq) = (3,7) GeVjc. 

The total energy is the same for both systems. As can be seen in Fig. 2.5(b), the 

difference becomes small when the invariant mass of qg or qg, tends to zero, and 

one can expect that, when uniform string breaking is turned on, they will result in 

similar events. It is interesting to note that the oscillation period is the same for 

systems of the same energy. 

2.2.4 QCD Cascade Models 

We now turn to another class of hadronization models which are based on the 

perturbative QCD calculations for the branching process of quarks and gluons. By 

generalizing the equivalent photon approximation by Weizsacker and Williams41 to 

QCD, Altarelli and Parisi showed42 that, in the leading-log approximation and in 

the axial gauge, it is possible to define a classical branching probability (namely 

without interferences) of partons. It was then extended to more general rules of the 

'jet calculus' by Konishi, Ukawa, and Veneziano.43 

Just like an electromagnetic shower, a high energy parton is expected to result 

m a shower of partons as shown in Figure 2.6(a). The probability distribution 

Pi-+jk(x), where the parton J. carries a fraction x of the initial longitudinal 
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t g (2 GeV) 
q (2 GeV) E > q (6 GeV) q (3 GeV) q (7 GeV) 

Figure 2.5. (a) Configuration of string in the lab system for a qqg event. All three 
particles are traveling with the speed of light. When the angle between q and g is 
small, it practically becomes a single straight string. (b) Motion of string is traced 
for a qqg system and a qq system. The two dimensional shape of the string is shown 
for every time interval of 1/ K. String breaking is turned off. It can be seen that, as 
the gluon energy becomes small, the string motion of a qqg system approaches that 
of a qq system with the same energy. 
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momentum of the parton i, is given by,42 

41 + x2 
Pq-+qg =----

3 1- X 

Pg-+qq =~ [x2 + (1- x) 2
] 

[
1- X X ] 

Pg-+gg =3 -- + -- + x(1- x) . 
X 1- X 

(2.23) 

An off-shell parton starts with a large invariant mass and undergoes a series of 

branchings reducing the invariant masses at each stage. This is different from the 

string picture where partons are treated as on-shell. In practice, one faces several 

choices and problems: 

1. The leading-log approximation is expected to be good only if 

or (2.24) 

Thus, the branching process has to be stopped before the parton invariant 

masses become of order 1 GeV. The right cutoff value, however, is not well-

defined. 

2. Except for Pg-+qtjl the distributions (2.23) have infrared divergences . Again, 

one can avoid the problem by applying a minimum invariant-mass cutoff 

for the daughter partons. However, the cutoff value is more like an free 

parameter. 

3. The final partons have to be turned into ordinary hadrons. This has to be 

done in such a way that the final distributions are insensitive to the above 

cutoff value. We will discuss it in some more detail. 

One easy way is to use the Field-Feynman scheme for each of the final partons 

as done by Odorico44 or by Paige and Protopopescu (ISAJET).45 However, this 

method is not Lorentz invariant and the result depends on the frame in which the 

Field-Feynman scheme is applied. Also, it suffers the same problem of the infrared 

cutoff dependence as for the simulation of e+ e- --+ qqg events. 
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(b) 

Figure 2.6. (a) In the QCD cascade model, a parton branches to form a parton 
shower. Note that a gluon can split to two gluons. The invariant masses are 
constantly decreasing throughout the branching process and it is stopped when a 
minimum mass is reached. (b) The concept of 'pre-confinement' arises when one 
traces the color flow in (a). Final partons are naturally organized to form colorless 
clusters, which then decay to ordinary hadrons. 
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An alternative is to form a set of color singlets. It was pointed out by Amati 

and Veneziano46 that the branching process of partons naturally results in clusters 

of color singlets ('pre-confinement') as shown in Fig. 2.6(b). These clusters can then 

decay to ordinary hadrons. Monte Carlo models based on this idea include one by 

Field and Wolfram,47 its variation by Gottschalk (his earlier model) ,48 and one by 

Webber ,49 the last with soft gluon interference effects that strongly order emission 

angles in the cascade process.50 There still remains choices on how to decay the 

colorless clusters: 

1. Treat a cluster as a resonance that decays to two daughters uniformly in 

phase space (Ref. 4 7, 48). 

2. Treat a high-mass cluster as a string (Ref. 49). 

When clusters decay spherically by 2-body decays, the transverse momentum 

distribution of a jet depends on the cluster mass at which the parton shower is 

terminated. This is not a problem when the clusters are treated as a string, 

where transverse momentum is limited regardless of the length of string. Also, 

the same argument can be made as in the case of qqg events that the string scheme 

is insensitive to the cutoff value of the infrared divergence. Thus, the string scheme 

is favored over the resonance scheme at least for large mass clusters. 

One last comment on the QCD cascade models is that the branching scheme is 

necessarily an approximation. For example, the azimuthal angle of a branch is taken 

uniformly in 27r, which is not correct in reality: it does not give the correct first-order 

QCD cross section for a gluon emission (2.11), where the azimuthal angle of g with 

respect to q depends on the direction of q. Usually the 'correct' differential cross 

section is used for the first gluon emission in the QCD cascade models mentioned 

above. 

This section on hadronization models can be summarized as follows. The 

inability of QCD to reliably calculate the hadronization process has led to two types 
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of hadronization models: string (flux tube) models and QCD cascade models. In 

string models, a fl.uxtube stretches and breaks resulting in hadrons. Two questions 

are: 1) does a string break uniformly in space-time? 2) does a string break after 

a stringlet is formed? It seems reasonable to assume that both are expected to 

be true for a large-mass stringlet, where the string breaking does not overlap with 

resonance formations. The QCD cascade models push the perturbative QCD to 

its limit (and beyond?). The basic picture is a parton shower which result from a 

classical branching process, which in turn has to be turned into hadrons by other 

hadronization mechanisms. One important criterion here is that the hadronization 

scheme should be employed in such a way that within a reasonable range of cutoff 

values the final distributions of hadrons should not depend on the cutoffs. On this 

account, the string scheme with 'pre-confinement' is favored. At our energy of 29 

GeV, the 'exact' 3 or 4 parton cross sections plus the string scheme seems to be 

a reasonable model. As the energy of accelerators becomes higher, the number of 

clearly resolvable parton emissions will become larger, making the exact calculation 

of cross sections more difficult. Thus, the QCD cascade model terminated at a 

relatively high invariant mass (5 to 10 Ge V) combined with the string hadronization 

scheme seems to be the most promissing path to take. 

2. 3 HEAVY QUARK FRAGMENTATION FUNCTION 

How much of the quark momentum is carried by the hadron containing the 

original quark can provide valuable information on the hadronization mechanism. 

Heavy mesons are particularly suited for this study since it is easy to identify 

the meson that contains the original quark and the effect of resonance decays on 

the momentum distribution is small (e.g., the decay D* ---+ D hardly changes the 

momentum). 
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2.3.1 Plausibility Arguments 

There are several plausibility arguments that point to a harder fragmentation 

function for a heavier quark. When a qq pair is generated by a e+ e- annihilation, q 

or q is assumed to be in a excited state surrounded by a gluon cloud. This excited 

state would carry most of the beam energy and decay to a meson of mass '"" mQ 

plus light hadrons, where mQ is the heavy quark mass. When the energy of the 

gluon cloud is mo, then the average fraction of momentum carried by the heavy 

meson, < x >, will be 

mQ 
< X >'"" ---=--

mQ+mo 

If we assume the distribution of mo to be the Boltzman factor exp( -j3E) 51 times 

the Lorentz invariant phase space d3 PI (2E) and assume that the heavy meson have 

the same velocity as the excited state, then a simple calculation gives 

(2.25) 

where X= Pmesonl Pbeam and 

Figure 2.7(a) shows the functional shape for mQ = 2 and 5 GeV lc2 with< m 0 >= 1 

Ge VI c2 • A similar argument was given by Suzuki for his 'fire ball' model. 52 In Q CD 

cascade models with cluster decays, a similar mechanism gives harder fragmentation 

functions for heavier quarks,53 but the shape of the function strongly depends on 

the mass cutoff (the smaller the cutoff, the softer the shape). Bjorken was led to the 

same conclusion by noting that the heavier the leading quark, the shorter becomes 

the length of the normal rapidity plateau (excluding the heavy hadron), thus more 

momentum has to be carried by the heavy hadron itself.54 
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Figure 2.7. (a) Heavy quark fragmentation curves predicted by the model described 
in the text [Formula {2.25)]. (b) The shape suggested by Peterson et al. from a 
general quantum mechanical argument. In both figures, the curve labeled c (b) is 
for mQ = 2{5) GeVjc2 . For both< m 0 >and mq, we used 1 GeVjc2 . 



31 

A simple quantum mechanical argument also leads to a functional shape which 

becomes peaked at high x for heavy quarks,55 

A 
f(x) = x(1- 1- _s_)2' 

x 1-x 

(2.26) 

where A is a normalization constant. This parametrization 1s obtained by 

considering the transition 

Q -t (Qq) + q, 

where the meson ( Qq) carries a fraction x of the momentum of the heavy quark 

Q and the light quark q carries the rest. The ansatz, (transition rate)cx(phase 

space) X (Efinal - Einitial)-2 , leads to the above formula with € = m~/m~. A 

reasonable value for the light quark mass would be the typical hadronic scale of 

......., 1 GeV. The shape is shown in Fig. 2.7(b) for mQ = 2 and 5 GeVjc2 . This 

function has a maximum at Xmax, which is given by 

1 
€ = Xmax + -- - 2. 

X max 

Thus, Xmax......., 1- mq/mQ for mq ~ mQ. 

It is worth noting that not all kinematical arguments lead to a harder 

fragmentation function for a heavier quark. For example, when a quark with 

momentum P inelastically picks up a light quark at rest to form a meson, then 

the momentum of the meson is always P and independent of the quark mass. 

2.3.2 Heavy-Quark Fragmentation Functions in The String Model 

In the string model with a uniform string breaking probability, a harder 

fragmentation for a heavy quark arises because of the way the mass of the heavy 

quark restricts the point of string breaking. 56 Figure 2.8(a) shows the trajectories of 

a heavy QQ pair, which are hyperbolas [see (2.20)]. The string is assumed to break 

uniformly according to (2.21). The heavy quark combines with the light antiquark 
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produced at the vertex which has the smallest value oft - x, where (t, x) are the 

coordinates of the vertex. Because of the curvature of the heavy quark trajectory, 

this vertex tends to occur at an early time. And the earlier the breakup, the faster 

becomes the outgoing heavy meson h: in fact 

- Eh +ph b 
z = = -, 

Eq + Pq a 

where a and bare shown in the figure. The resulting z distribution can be expressed 

by the incomplete gamma function 

(2.27) 

with a= im~b/ K-2 . Thus, the hardness of the fragmentation function is determined 

by the string tension K-, the heavy quark mass mQ, and the string breakup 

probability b. Since mQ and "' are reasonably well known, the measurement of 

heavy quark fragmentation function gives b. Also, note that the function is scale 

invariant:57 no Eq appears in (2.27). 

The solid lines in Fig. 2.8(b) shows (2.27) for mQ = 2 (labeled c) and 5 Ge V / c2 

(labeled b) for"'= 1 GeV/fm and b = 1/fm2 . The function (2.27) does not go to 0 

at z = 1. However, if we allow string breakups after the first crossing of Q and 'ij, 

the function comes down to 0 at z = 1. A Monte Carlo calculation was performed 

to find the limiting shape where the string keeps breaking until the meson mass is 

close to the heavy quark mass. In this case also, the shape is scale invariant and 

determined by the parameter a= im~b/ K-2. The shape is similar even if one stops 

breaking the string when the meson mass is about a pion mass above the heavy 

quark mass. The result is shown as histograms for the same set of parameters. The 

average z value is found to be.-...- 1- mo/mQ with mo.-...- 1 GeV/c2 , thus consistent 

with the plausibility arguments. 

The LUND group does not use the uniform breakup probability. Instead, 

they derive the allowed form of fragmentation function as below.58 The two

point distribution of two neighboring vertices that result in a meson of mass m 
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Figure 2.8. (a) Hyperbolic trajectories of a heavy quark pair QQ are shown together 
with a string breakup that forms a leading heavy meson. The asymptotes of the 
hyperbola are also shown. The missing string section at the corner due to the 
curvature of heavy quark trajectory leads to a harder fragmentation function. (b) 
The solid curves are the fragmentation functions for mQ = 2 GeVjc2 (labeled c) 

and mQ = 5 Ge V j c2 (labeled b) with K, = 1 Ge V /fm and b = 1/fm2 . These 
curves transform to the shapes shown by histogram when string breakings inside 
the leading stringlet are allowed. 
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is determined by the distribution of one of the vertices plus the fragmentation 

function; and it should be independent of whether one start from the vertex on the 

right or that on the left. This leads to the following fragmentation function when a 

quark of type a picks up an antiquark of type f3 to form a meson: 

(2.28) 

where a01. and a13 are constants that depend only on the quark flavor, and b is 

a constant independent of the quark flavor. This is a very strong restriction on 

the form of fragmentation function. However, since the function depends on the 

quark mass through a01. which is not determined by the argument of the left-right 

symmetry, the mass dependence prediction of (2.28) is not well defined. 

To summanze, the quark fragmentation function is expected to be harder 

for a heavier quark. This can be derived from various arguments ranging from 

the relativistic kinematics to the quantum mechanics of general transition. They 

consistently predict < x >'"" 1- mo/mQ, where mo is the typical strong interaction 

scale ('"" 1 Ge V). Especially interesting is the string model, which predicts the same 

behavior of the fragmentation function from its well-defined dynamics, where the 

hardness of the function depends on the string breaking probability b. This can be 

used to derive b from the measured D* momentum distribution. 

2.4 DECAYS OF CHARMED MESONS 

In this section, we will examine the status of the standard model in explaining 

the decays of charmed mesons. First, we will review the general structure of 

the weak charged current, then the semileptonic decays of heavy mesons which 

is relatively well understood, followed by the more uncertain nonleptonic decays. 
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2.4.1 Weak Charged Current- Kobayashi-MaskawaMatrix 

In the standard model, weak decays of fermions in general proceed through 

their coupling to the charged weak vector bosons w±. The relevant part of the 

Lagrangian is (the hermitian conjugate is implied), 

(2.29) 

where 

g / y'2 is the coupling constant, and the subscript L indicates left-handed component: 

VeL - -i(l - ls)ve, etc. The 3 by 3 unitary matrix U mixes generations. This is 

because the eigenstates of weak isospin are in general not the same as those of mass 

(i.e., flavor). There is no corresponding mixing for leptons [the first term in (2.29)] 

since all neutrinos are assumed massless in the standard model: for example, we 

can always redefine the neutrino state that forms a weak isospin doublet with e L to 

be Ve. A 3 by 3 unitary matrix has 9 degrees of freedom, of which 5 can be removed 

by adjusting the relative phases among 6 flavors, leaving 4 free parameters. Since 

a real 3 by 3 orthogonal matrix has three rotation angles, there is one non-trivial 

complex phase left. Thus, U may be parametrized as 

:, ) (:: :: 
cz 0 0 

(s::2 c1czc3s~c:2s3ei5 c1czs3
8

~
8

:zc3ei5 ) 
'5 '5 s1sz -c1s2c3- czs3e2 -c1s2s3 + czc3e2 

(2.30) 

where ci and si stand for cos (Ji and sin fJi, respectively, fori= 1, 2, 3. The complex 

phase 8 can lead to C P violation. In fact, this 6-quark model was proposed by 
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Kobayashi and Maskawa as a candidate model of CP violation.59 The matrix U is 

called the 'generalized Cabibbo matrix' or 'KM mixing matrix.' 

Present knowledge of the absolute values of the mixing matrix elements comes 

from the following measurements: 

1. Nuclear {3 decays60 (IUudl). 

2. Hyperon and Ke3 decays61 (IUusl). 

3. Charm productions in neutrino-nucleon interactions62 (IUcdl). 

4. Lepton spectrum in the semileptonic decays of D mesons63 (IUcdi/IUcsl). 

5. Lepton spectrum in the semileptonic decays of B mesons64 (IUbui/IUbcl). 

6. Average b-hadron lifetime65 •66 (IUbcl). 

Here, we quote the result of the combined fit by Kleinknecht (with the unitarity 

constraint):67 

IUusl 
lUes I 
IUtsl 

( 

0.9730 ± 0.0007 0.231 ± 0.003 

0.231 ± 0.003 0.9719 ± 0.0008 

0.010 ± 0.005 0.044 ± 0.006 

< 0.004(1a) ) 

0.045 ± 0.06 . 

0.9990 ± 0.0003 

It is interesting to note that this can be closely approximated by 

(}, with A '"" 0.23. 

(2.31) 

Namely, the transition amplitude between the first and second generation is 

suppressed by s, that between the second and third by A2, and that between the 

first and third by A · A 2 = A 3 . This strongly suggests an existence of some structure 

beyond the standard model. There have been many attempts to derive the mixing 

angles within the framework of grand unified theory or by introducing a symmetry 

among generations (horizontal symmetry).68 Even though substantial progress has 

been made, we are still far from a satisfactory theory. 
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Based on the above observation, Wolfenstein has proposed a parametrization 

of the KM matrix as an expansion in powers of >.. 69 To order >. 3 , it reads 

(2.32) 

where >., A, p, and 1J are all real. Note that the phase convention has been changed 

from the one in (2.30) so that the CP violating phase is now associated with the 

two smallest elements. In terms of these parameters, the values in (2.31) translate 

to >. = 0.231 ± 0.003, A= 0.82 ± 0.13, and p2 + 1'] 2 < 0.2(1a). 

The allowed range for the complex phase is derived from the measured C P

violation parameter EK of the K 0-R0 system:70,71 

(2.33) 

The standard model prediction for E is given by 72 

(2.34) 

where B K is the parameter that characterizes the making of K 0 out of d and s 

quarks (a non-perturbative effect) and is in the range 1/3~IBKI~L73 Using the 

upper limits for A, BK, and p2 + 7'] 2 , the formula (2.34) gives IEKI < 1.8 X 10-3 . 

The maximum corresponds top"' 0, namely an almost purely imaginary Uub· Thus, 

the measured value of IEKI is around the upper limit of the theoretical prediction, 

and Uub is likely to have a large imaginary component.74 

2.4.2 Semileptonic Decays of Charmed Mesons 

An old technique to estimate the semileptonic decay rate of a charmed meson 

is to calculate each exclusive channel independently,75 in analogy to the case of the 

kaon semileptonic decays. In fact, it is known that the semileptonic decay rate of D 
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meson is saturated by D -t K eve and D -t K* eve. 76 However, the main difficulty of 

this technique is that the calculation requires knowledge of the form factors. Even 

though one can guess the values using flavor SU(4) symmetry, current algebra etc., 

the uncertainty is large. Since, for charmed mesons the typical wave length of the 

emitted strange quark is smaller than the confinement scale of ,...., 1 fm, it seems 

more natural to discuss the decay at the quark level.77 Even then, as we will see 

below, non-perturbative effects give rise to some uncertainties. 

In the quark model, semileptonic decays of the charmed meson are caused by 

the decay of the charmed quark inside the meson to a lighter quark plus a neutrino

lepton pair. This is a special case of 3-body weak decay of fermion. The fermion 

decay, fo -t hfzf3, proceeds through an 'emission' and subsequent 'decay' of a W 

boson as shown in Figure 2.9(a). The corresponding amplitude is given by 

(2.35) 

where Mw is theW boson mass (81 GeVjc2), and q = Pfo- Pfi· The charged 

currents (J3LIJ.LfzL) and UILivfoL) are parts of (2.29), and Uhh and Uhfo 

are corresponding elements of the Kobayashi-Maskawa matrix or their complex 

conjugate (Uff' = Uj,1). For leptons, Uu, = 8ij' where i and J. are the generation 

number of l and l 1 respectively. 

When the 4-momentum transfer q is much less than Mw, the value inside the 

square bracket in (2.35) is well approximated by a constant 2yZG F [Fig. 2.9(b)]: 

(2.36) 

where 

GF- g
2 

= 1.16637 ± 0.00002 X 10-5GeV-2 

- 4yZMa, 

is the Fermi coupling constant. In other words, the distance of the weak interaction 

(,...., 1 j Mw) is much smaller than the wavelength of fermions involved so that the 

interaction can be approximated by a point interaction. 
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Figure 2.9. (a) The decay fo -+ hhf3 through the W boson propagator with 
coupling constant g / ..;2. If q2 ~ Mw, it can be approximated by the Fermi 4-
point coupling (b) with the coupling constant 2yi2G F. All fermions are taken to be 
left-handed. (c) The phase space correction function g(x) and the QCD correction 
function f(x) are shown, where x = m 8 /mc, or in general, x = m11/mt

0 
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For muon, the only allowed channel is J.L- ---+ vf.-Le- De. The decay rate r f.-L is 

proportional to G} _..__ Ge v-4 , while the dimension of r J-L is energy ( Ge V). Since 

the only mass scale available (ignoring the electron mass) is mf.-L, r f.-L should have 

the form (constant)xG}m~. The actual calculation yields 

For ! 0 = c (charmed quark decay), h is s or d, and the pair (73 , h) can 

be (e+,ve), (J.L+,vf.-L), (d,u), or (s,u). We define the semileptonic decay rate fsL 

to be the rate of decay that contains the pair (e+, ve) where the electron mass 

can be ignored. Thus, the charmed quark decays relevant to f SL are c ---+ dvee+ 

and c ---+ svee+. The ratio of the two is of order JUcd/Ucs j2 _..__ 5%, and we will 

assume that c ---+ s 100% of the time. This will not change the estimated decay rate 

significantly. Without neglecting the strange quark mass, and with the first order 

QCD radiative correction, the semileptonic decay rate r~fD is given by 78 

(2.37) 

where 

and 

with x = m 8 /mc. The function g(x) is the phase space correction factor, and 

the quantity inside the square bracket in (2.37) is the first order QCD radiative 

correction. Fig. 2.9(c) shows the functions g(x) and f(x). Note that the suppression 

due to the phase space factor can be quite large (----1/2 at m 8 /mc = 1/3), and the 

QCD correction also reduces the semileptonic decay rate. 

There is an uncertainty in the formula (2.37) because the charmed quark in 

the initial state and the strange quark in the final state are not free but confined. 
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We know that the final state strange quark appears almost always as a K or K* 

meson. Can we still assume that the quarks are free? The answer is a conditional 

'yes.' The justification for (2.37) is that the wavelength of the strange quark is in 

general sufficiently small compared to the size of mesons that the charmed quark 

decay decouples from the formation of final state resonances. In other words, the 

quark model is expected to reproduce the effect of strong resonances in the sense 

of duality.79 However, it is difficult to quantify the accuracy of the above claim. 

In addition, we still do not know exactly what values to use for the quark 

masses. Fermi motion can also shift the effective quark masses.80 Instead of guessing 

the value of the charmed quark mass, we will derive it from the measurement of the 

semileptonic decay rate of n° meson. The resulting value can be interpreted as the 

average invariant mass of the charmed quark inside a n° meson. 

2.4.3 Nonleptonic Decays of Charmed Mesons 

For nonleptonic decays, the four relevant fermions in the Hamiltonian (2.36) 

[see also Fig. 2.9(b)] are all quarks, and they interact strongly by exchanging gluons. 

Also, the role of the light valence quark in the parent meson (the spectator quark) is 

more active than for semileptonic decays. These effects increase the uncertainties in 

the calculation of nonleptonic decays. In general, only the Cabibbo favored decays 

are considered below. 

2.4.3.1 Nonleptonic Effective Hamiltonian 

First, we assume the charmed quark decays independently of the spectator 

quark, ignore the masses of final-state fermions, and disregard QCD corrections. 

The Hamiltonian responsible for nonleptonic decays is then 

(2.38) 

In the above, we have introduced an abbreviation for the left-handed current 
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summed over three colors: 

3 

(l !')L = LULIJJ-frJ 
i=l 

where i is the color index, and the summation forms a color-singlet current. The 

possible decay channels of a charmed quark with color i are ci ---+ sivee+, siVJJ-J.L+, 

and siuiljU = 1, 2, 3). The decay rates of these channels are the same, and the 

nonleptonic decay rate and the semileptonic branching ratio are simply 

B~i = 20%. (2.39) 

Under the assumptions made above, this holds for all charmed hadrons. The 

experimental data on the semileptonic branching ratios by the MARK III 

collaboration81 are 

BsL(D0 ) =7.5 ± 1.1 ± 0.4% 

BsL(D+) =17.0 ± 1.9 ± 0.7%. 
(2.40) 

The first error in each branching fraction is statistical and the second systematic. 

One notices two discrepancies between the prediction and the measurements: (1) 

the average of the two measured semileptonic branching fractions is smaller than the 

expected value of 20%, and (2) the semileptonic branching fraction of n+ is larger 

than that of D0 by a factor "" 2. The first is partially explained by QCD corrections 

to the lowest order diagram [Fig. 2.9(b)]. The second discrepancy suggests that the 

spectator quark also participates in the decay process because the only difference 

between D 0 and n+ seems to be the type of spectator quark. 

2.4.3.2 QCD Correction to the Nonleptonic Hamiltonian 

The QCD correction changes the color flows of the 4-quark interaction (2.38) 

through the exchange of gluons. Two quarks flow into the interaction point and two 

flow out. Thus, there are two ways to combine these quarks to make color-singlet 

currents: (a) (sc)L(ud)L, and (b) (uc)L(sd)L. These are shown in Figure 2.10(a) 
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and (b). The original Hamiltonian [Eq. (2.38)] is of type (a), while QCD corrections 

generate an effective neutral-current interaction of type (b). The QCD corrected 

nonleptonic Hamiltonian can be written as 

where 
1 

0± = -[(sc)L(ud)L ± (uc)L(sd)L]. 
2 

(2.41) 

The operator 0+ is symmetric under interchange of s and u; thus, its V -spin is 

1. On the other hand, 0- is antisymmetric under the interchange; thus, its V

spin is 0. More generally, 0+ ( 0-) transforms as a 15-plet (sextet) under the flavor 

SU(3) and as a 84-plet (20-plet) under SU(4). The leading-logarithm approximation 

(LLA) gives82 

c = [ as(Q2) l d±/(2b) 

± as(Mar) ' 
(2.42) 

where a8 and b are defined by (2.10), and d- = -2d+ = 8. Thus, c+ and C- are 

related by c~c- = 1. If QCD corrections are ignored, c+ = C- = 1, which recovers 

(2.38). The formula (2.41) leads to the following nonleptonic decay rate and the 

semileptonic branching ratio:83 

r~~ = (2c~ + c~)ro 
B11l = (2 + 2c~ + c~)- 1 . 

(2.43) 

For Q = 1.5, A= 150 MeV, and nf = 4, C+ is 0.78 and c_ is 1.7; the QCD correction 

enhances the SU(3) sextet (or V = 0) part of the interaction. The corresponding 

nonleptonic decay rate r~~ is enhanced by a factor of 1.3 over the non-corrected 

decay rater~~ leading to B11l = 17%. 

2.4.3.3 QCD Radiative Correction and NLLA 

In order to compare the nonleptonic rate with the semileptonic decay rate of 

(2.37), the phase space correction and the QCD radiative correction have to be taken 
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Figure 2.10. (a) and (b) show the two ways to form color-singlet currents for the 
4-quark interaction c ----+ sud. The original Hamiltonian before the QCD correction 
has the color flows as shown in (a). The effective neutral currents shown in (b) are 
generated by gluon exchanges. The coefficients c± are plotted in (c) as functions of 
Q. The values are calculated by the leading-logarithm approximation (LLA). The 
A parameter is defined by (2.10). 
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into account. The QCD correction (2.10) includes gluon exchanges but not gluon 

radiation. The consistent treatment of both effects requires the next-to-leading

logarithm approximations (NLLA) including two-loop diagrams,84 and the result is 

given by85 

(2.44) 

where I(xl, x2, x3) is the phase-space correction factor given in Appendix. The 

parameter h is a function of as ( Q2) 86 and its typical value is 2.2. The strong 

coupling constant in {2.44) is given by a formula that includes two-loop effects:87 

(2.45) 

The parameters c± are still defined by (2.42), but with the improved formula above 

for as. Apart from the phase-space factor J(x1, x2, x3), the masses of final-state 

fermions are ignored. The semileptonic branching fraction from (2.37) and (2.44) 

is then 

(2.46) 

When the current masses are used for u and d quarks (several MeV), the phase space 

is practically the same for the semileptonic decay and for the nonleptonic decay, and 

does not change the semileptonic branching fraction. When the constituent masses 

are used, however, the nonleptonic decay is considerably suppressed with respect 

to the semileptonic decay.88 The relative suppression factor due to the mass effect 

varies from 0.9 for mud= 100 MeV to 0.6 for mud= 250 MeV (see Appendix). 
' ' 

Figure 2.11(a) shows the nonleptonic enhancement factors relative to the 

semileptonic rate. They are shown for no-correction, for the LLA correction, and 

for the NLLA plus QCD radiative correction. The last is shown for two values of 
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mud: 0 and 250 MeV. The corresponding branching ratios for Q = 1.5 Ge V are 

plotted as functions of A in Fig. 2.11(b). The value A is defined by the improved 

formula for the effective strong coupling constant (2.45); at Q = 1.5 GeV, A= 280 

MeV for (2.45) gives the same a 8 as A= 150 MeV for (2.10).89 For A= 200 to 400 

MeV and mud = 0 to 250 MeV, the expected semileptonic branching ratio from the 

spectator model is thus 10 to 19%. The mass effect cannot be ignored: if constituent 

masses are used, it almost cancels the effect of QCD corrections. For mud= 0, the 

suppression of the semileptonic rate accounts for about 40%, the enhancement of 

the nonleptonic rate for about 60% of the relative nonleptonic enhancement. 

As can be seen in Fig. 2.11, the LLA correction alone is not adequate. This, 

however, does not mean that the perturbation calculation is not valid. In fact, the 

NLLA calculation of the coefficients corresponding to c± in (2.41) changes the LLA 

values by only "'"'10% (toward the direction that reinforces the LLA correction). The 

large difference is mainly due to the QCD radiative correction including real-gluon 

emission, and the NLLA calculation is needed to treat it in a consistent way. 

2.4.3.4 Enhancement of The n° Nonleptonic Decays 

We now turn to the difference between BsL(n°) and BsL(n+). As mentioned 

earlier, the difference implies the effect of the spectator quark. The comparison 

of the expected semileptonic branching ratio, 10 to 19%, with the experimental 

values (2.40) suggests that the spectator quark enhances the nonleptonic decay in 

n° and/ or suppresses it in n+. We will start from a candidate model for the 

enhancement of n° nonleptonic decay. 

Figure 2.12 shows possible processes for charmed-meson decays. In the diagram 

(a), the emitted W decays by itself (W-emission), in (b) and (c), the W boson 

annihilates the valence quarks in the meson (annihilation), and in (d), the emitted 

W boson is absorbed by the same quark line from which it is emitted (penguin). The 

annihilation diagram for n+, (c), is Cabibbo-suppressed, while that for n°, (b), is 

not. Thus the enhanced n° nonleptonic rate may be explained if the annihilation 
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Figure 2.11. (a) The relative nonleptonic enhancement factors are shown for 

no-correction (r~~j3r0 ), for the LLA correction (r~~j3ro), and for the NLLA 

correction plus QCD radiative correction (r~~D jr~fD). The last is shown for the 
two values of mud· (b) The corresponding expected semileptonic branching ratios 
are shown as functions of A for Q =me = 1.5 GeV. The A parameter is defined by 
the improved formula for the strong coupling constant (2.45). 
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process is important. Table 2.1 shows the Cabibbo factors for each mode and each 

meson of interest. 

Even though it was noted that the annihilation process may contribute to some 

exclusive modes,90 until recently, the effect was generally thought to be negligible 

because of the helicity suppression;91 just as the decay 1r+ --+ e+ve is suppressed 

by the V-A nature of the interaction and the conservation of angular momentum, 

any J = 0 state cannot decay to a massless fermion-antifermion pair through the 

V -A interaction. 

In direct analogy to the 1r+ decay, the decay rate of nO,+ --+ quark+antiquark 

is given by 

{ 
ao = 1/3 

a+= 3>.2 

for n° 
for n+ ' (2.47) 

where mq,q ~me is assumed, the constants ao,+ consist of the color factor and the 

KM mixing factor ( >.) and f D characterizes the overlap of the two valence quarks in 

the meson. The color factor 1/3 for n° arises because the contribution comes only 

from the part of the Hamiltonian (2.38) that combines cu in a color singlet state, 

while the color factor 3 for n+ is simply the number of possible colors in the final 

state. 

With me = 1.5 GeV, fD =0.15 MeV,92 and usmg the constituent masses 

(mud =0.25 GeV and m 8 =0.5 GeV) for the final quarks, (2.47) gives fann = 0.14fo 

for n° and 0.03fo for n+. If the current masses are used for the final quarks, r ann 

will be even smaller, especially for n+. With the QCD corrected Hamiltonian 

(2.41), a0 is replaced by (2c+- c-)2 /3 and a+ by >. 2 (2c+ + C- )
2 /3. For c+ = 0.78 

and C- = 1.7, a0 becomes nearly zero: the annihilation mode for n° is highly 

suppressed. The QCD correction makes the cu pair in the Hamiltonian almost 

purely color-octet, leaving the Hamiltonian unable to annihilate the cu pair in 

the meson. Since the total decay rate is "" 5f o, the naive estimation gives the 

annihilation contribution of at most a few percent. 
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Figure 2.12. Charm decay diagrams without the QCD correction. With QCD 
correction, there is another set of diagrams in which each W vertex is replaced by 
the effective neutral current. 
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Table 2.1. Cabibbo factors of various meson decays are shown for theW
emission mode, the annihilation mode, and the penguin mode. The value 
of>. is ......, 0.23. See the equation (2.32). 

mode K+ Ko no n+ F+ B+ B~ Eo s 

W-ex. >. >. 1 1 1 >.2 >.2 >.2 

Ann. >. >. 1 >. 1 >.3 >.2 >.2 

Pen. >. >. >. 5* >. 5* >. 5* >.2 >.2 >.2 

*The GIM cancellation between the d loop and the s loop is assumed to be 
complete. 

The estimate (2.4 7) assumes that the valence quarks cq are m the color 

singlet state with the total angular momentum J = 0. However, the gluons 

may act as spectators allowing the pair cq to be in J = 1 state, thus lifting the 

helicity suppression,93 or may be emitted from the initial-state quarks to the same 

effect.94 ,95 In either case, single gluon leaves the cq pair in a color-octet state, which 

can be annihilated by the cq-color-octet part of the Hamiltonian. Without the QCD 

correction, the annihilation rate of D 0 is given by93 

(2.48) 

where p is the probability that the cu pair is in a vector or axial-vector state. The 

value off D' which describes the overlap of c and u when they are in a vector or axial

vector state, is not known from other measurements. If we take f D ......, f D ......, 0.15 

GeV, then, 

corresponding to about 40% of the total decay rate for p = 1, which is about the 

right amount to explain the difference between BsL(D0 ) and BsL(D+). More 

recently, other estimates of r ann (D0 ) have been made using the Regge model,96 

QCD multipole expansion,97 the relativistic quark model,98 and lattice QCD 

theory.99 Their results, however, ranges from small effects98,99 to the annihilation 
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dominance.96•97 The difficulty is due to the non-perturbative nature of the problem. 

Thus, at present, the size of r ann needs to be determined from experiments. 

Clean signals for the annihilation process are n° --+ KoitJwo and JtJ 4>,101,102 

which do not contain u quarks in the final state. 103 The K 0ItJ mode is Cabibbo

suppressed; in addition, there are two contributing amplitudes with opposite sign: 

c s 
-----~~------ Ko 

----.;:>...~--c-~K' 
A 

c 

+ 
u 

If the ss pair is created from the vacuum with the same probability and phase as 

dd pair [the SU(3) limit], the cancellation is exact. This mode, so far, has not 

been observed. On the other hand, the -gO</> mode is not Cabibbo-suppressed, even 

though it may be suppressed to the extent that the ss creation from the vacuum 

is less likely than the uu or dd creation. If the annihilation channel dominates D0 

decays, the -gO 4> branching fraction is expected to be 0.2 to 1%.104 Recently, the 

ARGUS collaboration has observed a preliminary signal from the -gO 4> mode with a 

branching fraction of ,....,_ 1%.105 It is important that the measurement be confirmed. 

Since the isospin of the final state is 1/2 for the Cabibbo-favored annihilation 

mode of n° (one u), another signal of annihilation dominance would be 

1 

2' 
(2.49) 

where an experimental value is r = 0.45 ± 0.08 ± 0.05. 106 From the W -emission 

diagram [Fig. 2.12(a)], the expected value is91•107 r = ~(2c+-c-) 2 /(2c++c-) 2 "'0 

with c+ = 0.78 and C- = 1.7. This is similar to the suppression of the annihilation 

mode of n° in the absence of gluon effects: in the effective Hamiltonian (2.41), 

the pair sd is in a state almost purely color-octet; thus, it cannot form a JtJ. 
However, this argument, which simply assumes that the color-singlet part of a free 

quark pair turns into a meson ('factorization'), has been questioned by several 

authors.96•95•108 - 111 The exchange of soft gluons in the final state may lift the 



52 

color suppression, 110 and final state interactions can change ItJ 1r0 to K-1r+, 

especially if there is a resonance near the n° mass that can couple to both of these 

modes.109 Also, factorization seems to fail in evaluating r(n+---+ ItJ7r+)jr(n+---+ 

ItJe+v). 111 If the color factor is ignored, then r for theW-emission becomes 1/2, 

which comes simply from the uu content of 1r0 • Thus, the experimental value of r 

does not necessarily imply a large contribution from the annihilation mode. 

2.4.3.5 Suppression of The n± Nonleptonic Decays 

We now discuss candidate models that suppress the nonleptonic rate of n+, in 

which interference effects together with the enhancement of the sextet part of the 

Hamiltonian play important roles. The W -emission mode of n+ decay amplitude 

by the sextet part of (2.41), 0-, can be graphically rewritten as 

c c 

(2.50) 

where ')' implies a color singlet. Since the two amplitudes with opposite signs have 

the same color singlets in the final state, it was argued 112• 113 that if these color 

singlets act as point-like particles (strong 'color clustering'), then the cancellation 

would suppress the nonleptonic rate of n+ . For n°, the two corresponding diagrams 

do not result in the same final state; thus, no interference is expected for n°. 

The cancellation in (2.50) is exact for n+ ---+ K 1r+ in the SU(3) limit. 

Including the contribution from 0+ and assuming factorization to be valid, we 

estimate the decay amplitude to be 

A(n+ -;c;:()K +) _ 2c+ + C- 2c+ - C----+ 7r - as + au, 
3 3 

(2.51) 

where as (au) is the reduced amplitude when the s (u) quark combines with the 

spectator d quark, and corresponds to the first (second) diagram in (2.50). If 
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m 8 = mu, s and u have the same wave function (just like e- and vJl- in the J..L

decay), thus a8 =au =a, which leads to A(D+ ---t Jtl7r+) = ~c+a. It vanishes if 

c+ = 0 (sextet dominance). This is true even without assuming factorization. 114 

Since n+ is v -spin singlet (no s or u)' and so is o_' the final state is also v
spin singlet if c+ = 0. Thus, the V -spins of JCl and 7r+, which are both V -spin 

doublets, have to be combined antisymmetrically, but this is forbidden by the Bose 

statistics because the final state is an S-wave state. The essential assumptions 

for the suppression of n+ ---t Jtl7r+ are, therefore, sextet dominance and V -spin 

symmetry, i.e., m 8 = mu. 

A sizable cancellation m (2.50) for general cases, however, is not plausible: 

the color singlets (strings?) would have a large number of energy, rotational, 

and vibrational states. Also, the same V -spin argument given above leads to 

an enhancement, not a suppression, when one of the final-state pseudo-scalars is 

replaced by the corresponding vector.l 14 

On the other hand, the two d's in the final state can interfere at the quark 

level, 112• 115 namely before the final-state meosns are formed. With the non

relativistic approximation for the quark motion inside the meson, the n+ decay 

rate is given by115• 116 

(2.52) 

where the second term is the interference term, while the first term is identical to 

(2.43). Since c~ > 2c~ by the QCD correction, the interference term is negative 

and results in a suppression of the nonleptonic rate of n+. For c+ = C- = 1, 

namely without the QCD correction, the interference enhances then+ nonleptonic 

rate. 

The two d's interfere only insofar as their colors, spins and momenta match. 

Since the state of d in the meson is essentially a non-perturbative problem, it is 

difficult to predict reliably the size of the interference effect. With c+ = 0.78, 

c_ = 1.7, me= 1.5 GeVjc2 , and fD = 0.15 GeV in (2.52), the nonleptonic rate 
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reduces to about 1/3 of the original value. Predictions by more careful analyses 

range from a small effect98•117 to 40% reduction118 of then+ nonleptonic rate. 

Before leaving the subject of the interference effect, a few comments are in 

order. 1) The typical momentum of the d from the weak decay is much higher 

than that of the Fermi motion (""" 150 MeV), and the interference depends on the 

overlap in momentum space. Thus, the more rapid the Fermi motion is, the larger 

the interference effect becomes. Consequently, the interference effect is expected 

to be much smaller for Ed meson, where the momentum of d from the weak decay 

is much higher and does not overlap significantly with that of the Fermi motion. 

2) In n+ decays, the interference discussed above is relevant only to the Cabibbo

favored modes. Therefore, the suppression of nonleptonic rate by the interference 

effect implies a relative enhancement of Cabibbo suppressed decays of n+. The 

inclusive measurements 70 

Br(D+ ----* K+ +X) 
Br(D+ ----* K- +X) = 0.38 ± 0.22, 

Br(D0 ----* K+ +X) 
( 0 ) 

= 0.18 ± 0.08 
Br D ----* K- + X 

indicate the interference effect, but the errors are not small enough to be conclusive. 

The new exclusive measurement119 

on the other hand, indicates a significant suppression of the n+ ----* K 1r+ decay 

mode: the ratio is much larger than the naive expectation .A2 """0.05. However, no 

similar suppression in the 3-body decays has been observed.119 

2.4.3.6 The Penguin Diagrams 

The penguin diagram [Fig. 2.12(d)], which is always Cabibbo-suppressed, 

contributes to both D 0 and n+ in the same way; thus, it does not cause 

the difference in the semileptonic branching fractions. However, it was pointed 

out120•121 that the observed ratio119 f(D0 ----* 7r-7r+)jf(D0 ----* K- K+) = 0.27 ± 
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0.09, which is expected to be unity, can be explained by the penguin interaction: 

since the Cabibbo-suppressed W-emission (or annihilation) mode gives opposite 

signs for the 71"-71"- and K- K+ amplitudes (with Cabibbo factors A and -A 

respectively), any diagram that contributes with a same sign, such as the penguin 

diagram, interferes differently to the above amplitudes resulting in different rates 

for the two decay modes.122 

There is no helicity suppression for the penguin diagram because the coupling 

of the light valence quark to the gluon is V and not V-A. On the other hand, the 

d-loop and s-loop in Fig. 2.12(d) cancel in the SU(3) limit (GIM suppression), and 

the b-loop is highly suppressed by the Cabibbo factor A 5. In the literature, there 

are conflicting conclusions on the importance of the penguin diagram in charm 

decays. 122- 124 The rate difference between the 71"-71"+ and K- K+ can be due to 

SU(3) breaking125 or to final state interactions. 126 Thus, there are no compelling 

data that require the penguin diagram, even though moderate effects in Cabibbo

suppressed decays are not ruled out. 

To summarize: in the spectator model, the next-to-leading-logarithm QCD 

correction together with the gluon radiative correction gives 10"'""19 % for the 

semileptonic branching fraction of all charmed hadrons . The observed difference 

between BsL(n°) and BsL(n+) suggests a participation of the spectator quark. 

Two candidate models are: the enhancement of n° nonleptonic rate by the 

annihilation mechanism, and the suppression of n+ nonleptonic rate by the 

interference effect. Both models have a possibility of explaining the difference 

between BsL(n°) and BsL(n+). Due to the non-perturbative nature of the 

problems, the theoretical predictions are not precise enough to estimate the relative 

importance of the two models. More experimental input is needed. Particularly, it 

is important to measure the total decay rates of n° and n+. This would make it 

possible to check the absolute partial decay rates, not just the branching fractions. 
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Two decay modes from n+ and D 0 can then be compared, and the semileptonic 

decay rate, which is theoretically more certain than the nonleptonic decay rate, can 

be used to derive the effective charmed quark mass. 

2.5 D0 - If MIXING 

So far' we have ignored the transition D 0 
f-+ If. In the K 0 - K system, 

however, such a transition occurs at a rate comparable to the average decay rate 

of neutral K. In this section, we examine D 0 -If mixing in the framework of 

the standard model. First, the phenomenological formulae are reviewed. Then, 

it is shown that when only the short distance effects are considered, the expected 

D 0 - If mixing is very small (~1o-7 ), and that D 0 -If mixing probes charm

changing neutral currents with good sensitivity. Lastly, we discuss the long-distance 

effects in D0 -If mixing, which turn out to be significant. 

2.5.1 Phenomenological Framework 

The scheme is similar to that of the K 0 - K system.127 Let !D0) and !F) 
be eigenstates of the Hamiltonian responsible for the strong and electromagnetic 

interactions with charm quantum number + 1 and -1 respectively. The phase 

convention is such that 

(2.53) 

We take a space G spanned by !D0) and !F). The transitions between the two 

states and those out of G- i.e., decays- are described by the Schrodinger equation 

(2.54) 

where H is the effective Hamiltonian defined in G, and 

or 'ljJ = ( a(t)) . 
a(t) 
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The probability is not conserved inside G due to decays. Thus, the 2 by 2 matrix 

His not hermitian, but can be divided into a hermitian part and an anti-hermitian 

part as can any other 2 by 2 matrix: 

H = M- ir 
2' 

where M and r are 2 by 2 hermitian matrices. CPT in variance leads to 128 

and the two eigenstates of H are obtained by diagonalizing H: 

ID1) =A [(1 + E)ID0
) + (1- E)ID

0
)] 

ID2) =A [(1 + E)ID0)- (1- E)llf)J' 

where E is given by 

1- E 12- Z 12 2 
( )

2 M* ·r* I 
1 + E - M12 - ir 12 /2. 

The eigenvalue equations are 

where the eigenvalues are given by 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

The numbers mi, li ( i = 1, 2) are real; each of the two eigenstates has a definite 

mass and a decay rate. When CP is conserved, IDi) (i = 1,2) are simultaneous 

eigenstates of C P, M and r, with eigen values (-)i+ 1 , mi, and /i, respectively; 

and they are orthogonal to each other. In addition, our phase convention (2.53) and 
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CP invariance lead to M21 = M12 and f12 = f21; together with (2.55), it follows 

that M 12 and r 12 are both real. Thus, (2.58) becomes 

li = ru ± r12 (CP). (2.59) 

When C P is not conserved, however, 1n1) and 1n2) are in general not eigenstates 

of M and r separately and not orthogonal to each other: 

(2.60) 

All the parameters needed for describing the mixing rates are now ready. We 

define f CJ) to be a final state, or a collection of final states, that only n° (lfl) 

can decay to at a given time. Then the mixing rate p is defined to be the ratio of 

the probability for a particle generated as n° decaying to l to that for a particle 

generated as n° decaying to f. The parameter p is defined by the charge conjugation 

of the above. Namely, 

_ Br(n° ---+ l) 
p = Br(DO ---+ f)' 

-0 __ Br(D ---+ f) 
P= -o -' 

Br(D ---+ f) 
(2.61) 

where Br(n° ---+ f) represents the time-integrated probability that a state that is 

n° at t = 0 decays to f, etc. As shown in the appendix, the mixing parameters p 

and p are given by129 

where 

1-e 1-a 
p=1+e.1+a 1- y2 

_ 1+e 1-a 
with a=---=-

1 + x 2 ' 
p=--·--

1-e 1+a 

f_ 
y -, r+ 

r ± _ 11 ± 12 
2 

(2.62) 

In deriving (2.62), it is assumed that, at a given time, the decay rate of the pure 

Do state to f is the same as that of the pure D
0 

state to f even in when C P is 
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violated. It can be seen that the mixing rate of D 0 and that of lf are different 

to the extent that the two eigenstates of mass and decay rate are not orthogonal. 

When CP is conserved, then E = ~ = 0 and p = p. The product pp, however, is 

independent of the CP violation parameter ~. 

Alternatively, one can define the mixing rate r to be 

Br(n° -f) 
r ----~----~--

Br(n0 - f or f) 
(CP), (2.63) 

where C P invariance is assumed. The maximum mixing 130 corresponds to r = 1/2 

or to p = 1. When the mixing is small, r and p are similar and given by 

From (2.62) or (2.63), one can see that there are two situations which result in 

large mixing. 1) 8m;<:.r += the mass difference is comparable to or larger than the 

average decay rate. 2) If -I ......., r += one of the decay rates is much larger than the 

other. In the first case, the mixing is genuinely caused by the n° -If transition, 

while in the second, the fast decaying component quickly disappears leaving the 

slow decaying component which is a mixture of n° and If. 
For the K 0 - Jtl system, the two mass eigenstates are Ks and KL, and the 

relevant parameters are70 

fs = (7.377 ± 0.018) X 10-15 GeV (......., 580fL) 

f L = (1.270 ± 0.010) x 10-17 GeV 

8m = (3.521 ± 0.014) x 10-15 GeV (......., f +.......,f-) 

~ = (3.24 ± 0.18) X 10-3 • 

Thus, in the K 0 - Jtl system, p and p differ by ......., 4~ ......., 1.3%. The mixing is 

almost complete; it comes about by the decay rate difference, even though the mass 

difference also contributes. 
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When D0 can also decay to J (and --rf to f), as in D0 
----7 K+7r-, (2.62) has to be 

modified because there is an interference between the mixing and the direct decay. 

Here, we take f to be an exclusive channel consisting of two spin-0 particles.131 We 

also assume CP invariance, and define the phases off and J such that CPI!) = ll). 

Then the apparent mixing rate defined by (2.61) is (see Appendix): 

1 - o:.1 

p = p = 1 + o:.' ' 

, 1 - l~el 2 - 2l~elx sin¢ 1 - y 2 
0:. - • --""7" 

- 1 + l~e 12 + 2l~e I y cos ¢ 1 + x2 ' 

(CP) (2.64) 

where x = Sm/f + and y = r -/f + as before, and ~e is the ratio of the two decay 

amplitudes: 

A ( D 0 
----7 l) 

A(D0 
----7 l) 

(CP). (2.65) 

When ~e = 0, (2.64) reduces to (2.62) with E = 0; when there is no mixing, namely 

x = y = 0, then p = p = l~el 2 as expected. When there are both effects, the result 

depends on the phase of ~e and the signs of x and y. 

2.5.2 Standard Model Predictions of D 0 - D0 Mixing 

As shown in Figure 2.13(a), D0 - --rf mixing can occur when there is a flavor

changing neutral current of a type c +--+ u. It is a non-spectator process; as such, 

it involves the uncertainties inherent in such processes, e.g., those of the overlap 

of c and u in the meson, their color state (singlet or octet?), etc. Thus, we are 

interested only in a rough estimate. The color factor and the QCD corrections are 

ignored. The current is assumed to be left-handed. 132 We also limit ourselves to 

two generations; because of the small mixing angles between the third generation 

and the rest, the effect of including the b quark can be ignored. C P in variance is 

also assumed. 
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c u c u 

H,Z .. >~c~·~-< 
u c u c 

(a) Trees 

c d,s,b u c w u 

:w~ : I: 
u cr;s,o c u w c 

(b) Boxes 

K- + K-K+ 1T , ••• 

==~c ) c ))=== 

(c) Long Distance 

Figure 2.13. Various mechanisms that can introduce D 0 -lf mixing. (a) Direct 
charm-changing neutral currents at the tree level. A neutral vector boson or a 
Higgs is exchanged. This type of interactions are absent in the standard model. (b) 
Effective charm-changing neutral currents through box diagrams. When the bottom 
contribution is ignored, b'm(box) is proportional to m; - m~. (c) Long-distance or 
dispersive effect through hadronic intermediate states. 
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Fig. 2.13(a) corresponds to an effective four-fermion interaction 

(2.66) 

where Geff is a coupling constant (taken to be real). Here, the exchanged particle 

is assumed to be a vector. From (2.59), the mass difference is given by 

Thus, 

-0 0 
8m = 2M12 = 2(D IHeffiD ). 

8m = 2Geff(lfi(uLIJLcL)(uLIILcL)ID0
) 

= GeffBf'JJmn, 

(2.67) 

where the parameter B contains all the uncertainties in how the D 0 is made out of 

c, u, and gluons: 

(2.68) 

The definition above is such that if the vacuum insertion approximation is used, 

then B = 1. When color is taken into account, B /2 should be replaced by B /3. 

Hereafter, we take B = 1 assuming the vacuum insertion approximation. If the 

neutral particle exchanged is a Higgs, then all needed is a substitution 

For a heavy meson, these two values are expected to be similar. The coupling 

constant Geff for Higgs, however, is expected133 to be of order (mqfmH) 2GF, where 

mH is the Higgs mass and mq is the typical quark mass (,..._, 1 GeV). 

With Geff = 2y'2G F' namely with a full strength coupling for the flavor

changing neutral current and a vector boson, 8m is,..._, 1 x 10-6 GeV, which is,..._, 106 

times the expected r + ,..._, sr0 ,..._, 10-12 GeV; the mixing would certainly be complete 
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[see (2.63)]. For a Higgs exchange, the coupling is smaller. However, the mixing 

is still likely to be complete unless the Higgs is super-heavy (;<;TeV). On the other 

hand, an upper limit of, say, 5% on r corresponds to a strong limit on Geff of less 

than "" 10-6 Geff· 

In the standard model, however, direct flavor-changing neutral currents are 

missing, and two W's need to be exchanged to generate an effective flavor-changing 

neutral current [Fig. 2.13(b)]. The corresponding effective coupling constant in 

(2.66) has been evaluated first by Gaillard and Lee134 and given by 

(2.69) 

With fn = 0.15 GeV, me= 1.5 GeV, m 8 = 0.15 GeV, and md ~ m 8 , this leads to 

With f + ,...., w- 12 GeV and f _ ,...., 0, this means a mixing rater of less than 10-7. 

In deriving (2.69), the momenta and masses of external legs are ignored. When 

the mass effect of external fermions is included, 135 8m(box) is further suppressed by 

m!/m~. Thus, the expected D0 - If mixing from the box diagrams is negligible. 

It is instructive to recall the case of the K 0 - ftJ system. The 8 m given by 

(2.67) with Geff = 2-./2G F is 7 to 8 orders of magnitude larger than the experimental 

value. Thus, direct strangeness changing neutral currents seem to be missing in the 

nature. The box diagrams give 

(2.70) 

which is consistent with the experimental value within the error. In fact, Gaillard 

and Lee correctly predicted the mass of charmed quark to be "" 1.5 GeV using 

(2.70). However, if one calculates without a c quark, the mass difference estimate 
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(2.70) becomes,...,_ (mw/mc) 2 times larger; namely, it becomes of order Gpa (note 

that Gp ""' afmfv), which is incompatible with experimental data. This is the 

observation that originally led Glashow, Iliopoulos and Maiani to introduce the 

charmed quark. 

In general, the missing flavor-changing neutral currents at the tree level and 

the suppression of the effective flavor-changing neutral current of order G pa impose 

strong conditions on theoretical models. If we restrict ourselves to SU(2) xU(1) 

gauge theory and require that the conservation of flavor obeyed by neutral currents 

is a natural result of the structure of theory rather than of adjustment of parameters, 

the model has to satisfy the following conditions (obtained by Glashow and 

Weinberg133): all quarks with the same charge and helicity 

1. have the same !3 of the weak SU(2), 

2. have the same 12 of the weak SU(2), and 

3. receive the quark mass from a single source (Higgs). 

The first condition is from the absence of tree-level neutral currents generated by 

gauge bosons, the second from the suppression at the level of Gpa, and the third 

from the Riggs-induced neutral current. If we take 2/3 and -1/3 to be only quark 

charges, then it follows from the conditions (1) and (2) that the only acceptable way 

to arrange the quarks is to put all left-handed quarks in weak doublets and all right 

handed quarks in singlets, or all quarks of each helicity in doublets. The condition 

(3) disfavors the latter possibility. The Higgs sector is not well established; thus, 

the condition (3) is accordingly less conclusive. 

The conditions above apply separately to quarks of fixed charge, and the K 0 -

Jtl system probes strangeness-changil}.g neutral currents, namely the transitions 

between quarks with charge -1/3. It is possible that the flavor-changing neutral 

currents are suppressed among charge -1/3 quarks and not among charge 2/3 

quarks. Thus, it is important to see if charm-changing neutral currents are also 

suppressed. 
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2.5.3 Long-Distance Effects on D0 - D 0 Mixing 

In the K 0 - I(J system, the success of the box diagrams has led people to 

downplay the importance of long-distance or dispersive effects, which was actually 

the original method of estimating the K 0 +--+ I(J transition.136 It was then pointed 

out by Wolfenstein 74 that the long-distance effects are indeed not negligible nor can 

they be absorbed into the correction factor B of (2.68). Since the box interaction 

is local and takes place within a scale smaller than the size of a meson, hadronic 

intermediate states such as 1r0 , 77, 21r, etc ... are not included and have to be added 

to the box diagram contribution. More recently, new attempts have been made to 

estimate the long-distance effects. 137 The results, however, are not conclusive. At 

present, the range of uncertainty for the long-distance effects in the Ks- KL mass 

difference is of the same order as the experimental mass difference, but even the 

sign is not definitive due largely to the cancellation between 77 and 1r0 intermediate 

states. 

In the case of the D0 - lf system, the situation is even worse because there 

are many possible intermediate states, and a reliable estimate of the mass difference 

due to long-distance effects is extremely difficult. It was recently pointed out, 138 

however, that the long-distance effects are likely to be dominant component of 

D 0 - V mixing. In the limit of SU(3) symmetry, 139 the two body intermediate 

states, K- ?T+, K- K+, ?T- 7r+, and K+ ?T-, cancel between themselves in a manner 

similar to the GIM mechanism, that is, due to the way the Cabibbo suppression 

factor ±sin Be enters the amplitudes. As we have seen in the previous section, 

however, the actual decay rates to K- K+ and ?T- 7r+ channels are far from the naive 

expectation based on the Cabibbo factors [Br(K- K-)/Br(?T-?T+) ......., 4 instead of 

1]. A crude estimate for the mass difference using two-body intermediate states is 

om(long) ......., Br(D0 -+ K K, 1r1r)f + x (GIM suppression factor) 

= (1o-3 ......., 10-2)r + = (10- 15 ......., 10-14)GeV. 
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More-than-two-body decays also are likely to contribute significantly and can in 

principle cancel the two-body effect, but this is considered unlikely. Wolfenstein138 

sets an over-all upper limit of Sm(long)~o.osr +· The resulting upper limit on the 

mixing rate r is '"""' w-3 ; much larger than estimated from the box diagrams, but 

still below the current experimental sensitivity. 

It is worth noting that the same long-distance effects [or SU(3) breaking] can 

lead to the difference in decay rate, which also contributes to the mixing. The D2 

state has CP = - (CP invariance is assumed), and thus cannot decay to K- K+ 

or 7r-7r+ final state. Assuming factorization and SU(3) symmetry, the amplitude 

of D1 --)- K- K+, 7r-7r+ is given by 

where the reduced amplitude Ao is defined by 

On the other hand, there is a difference in the amplitudes of D 1 -l- K-1r+, K+7r

and D2 --)- K-1r+, K+1r-: 

1 
A(D1--)- K-1r+) = -A(Dl--)- K+1r-) = y'2(cos2 Oc- sin2 Oc)Ao 

1 
A(D2 --)- K-1r+) = -A(D2--)- K+1r-) = y'2Ao. 

Namely, the rate D1 --)- K±1r=t= is cos2 20c '"""'0.8 times the rate D2 --)- K±1r=t=, which 

cancels out the missing K- K+, 7r-7r+ modes of D2, giving the same total two-body 

decay rate for D1 and D2. In reality, SU(3) is broken; thus, the cancellation is not 

exact. This leads to a non-vanishing r _ of the same order as Sm(long). Again, 

there are effects from more-than-two-body decays; nevertheless, it seems unlikely 

that they precisely cancel the SU(3) breaking effects in the two-body decays. 
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To summarize, the phenomenological analysis of D 0 -lf mixing can be done 

similarly to that of the K 0 - K system. The mixing can be caused either by the 

mass difference or decay rate difference of the two mass eigenstates of the D 0 - If 
system. The mass difference is generated by direct or effective flavor-changing 

neutral currents, and an upper limit on the mixing can put a strong limit on the 

size of such couplings. This, in turn, restricts allowed theoretical models. In the 

standard model, the mass difference is often calculated by the box diagrams which 

gives a value consistent with the measurement for the K 0 - K system. For the 

D0 - lf system, the mass difference calculated using the box diagrams is much 

smaller than for the K 0 - K system, and the resulting mixing is of order w-7 

or less. The main reason why the mixing is much smaller for the D 0 -lf system 

is that the mass difference for D0 -lf system is proportional to '"" m; while for 

K 0 - K system it is proportional to '"" m~ and also that the average decay rate is 

much larger for the D 0 - If system. The long-distance effects, however, are likely 

to be dominant in the mixing of D 0 and lf. They cause both the mass difference 

and the decay rate difference to be non-zero by the same order of magnitude, but a 

quantitative estimate is not possible at present. A conservative upper limit on the 

mixing is '"" 2 X 10-3 • 
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Chapter 3. 

Instrumentation and Data Reduction 

Whether it is becoming politicians or becoming laboratory 
directors or becoming plumbers, God knows that one does 
what must be done to get at good physics. 

- Robert R. Wilson 

3.1 THE PEP STORAGE RING 

In this section, the PEP storage ring is described. The emphasis is on the 

expected beam size, which is relevant to the measurement of the D 0 lifetime. 

PEP is a e+e- colliding-beam storage ring at the Stanford Linear Accelerator 

Center. Figure 3.1(a) shows the geometry of the ring, and Table 3.1lists140 some of 

the parameters. Three bunches each of electrons and positrons are accumulated in 

the ring through the injection from the 2-mile-long linear accelerator (Linac). The 

electron bunches counter-rotate against the positron bunches, and collisions occur 

at six locations (interaction points). Under optimum conditions, the injection takes 

about 10 minutes and the collisions take place for a few hours until the beam 

currents reduce to about one half of the initial value. The bunch-crossing frequency 

at a given interaction point, 408.81 kHz or one crossing every 2.446 J.LSec, is three 

times the orbital frequency. 

The injection energy is 14.5 GeV and the beam energy is not increased by the 

storage ring itself. The circulating particles, however, lose their energy through 

the synchrotron radiation. The average energy loss per turn per particle is (for 
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Figure 3.1. (a) The PEP storage ring. There are bending sections and straight 
sections. RF cavities, final-focusing quadrupoles, and detectors occupy the 
straight sections. (b) Betatron functions for the two configurations.140 The first 
configuration (PEP2b) corresponds to the 1982 data, and the second (PEP3a) to 
the 1983 and 1984 data. Note that the second quadrupole Q2 was moved toward 
the interaction point after 1982. 
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Table 3.1. The PEP storage ring parameters (as operated for experiments). 

Beam energy 14.50 GeV 

Circumference 2200.00 m 

Number of interaction regions 6 

Number of bunches 3(e-),3(e+) 

Frequency of bunch crossings (f) 408.81 kHz 

Magnet bending radius (p) 165.52 m 

Length of straight section/IR 117.09 m 

E )142 
beam>> me 

E 4 (GeV4) 
~E(MeV) = 8.846 X 10-2 beam = 23.6MeV, 

p(m) 

where p is the magnetic bending radius (165.52 m). An additional few MeV is lost 

due to the excitation of parasitic modes at various places around the ring. These 

energy losses are replenished by the RF cavities clustered at three locations. 

The above energy losses are average energy losses; in reality, there are quantum 

fluctuations which broaden the energy distribution. Radiation damping, on the 

other hand, reduces the width of the energy distribution. The energy spread at. is 

given by the equilibrium between these two effects: 143 

(3.1) 

where Cq = 3.84 x 10-13 m, Jt. = 2.0 (for the PEP ring), and 1- Ebeam/me. Since 

the orbital radius depends on the energy of particle, this energy spread generates a 

spatial spread of the particles in a bunch. The horizontal (x) displacement of the 

orbit relative to the design orbit is given by the relative energy displacement times 

the value of the rJ (the off-energy function) at the point. Thus, the horizontal beam 

width due to this effect, axe, is 

* at. 
axe= rJ E , 

beam 
(3.2) 
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where 'YJ* is the value of rJ at the interaction point. 

Another source of the horizontal beam width is betatron oscillation. For a 

given particle, the horizontal displacement with respect to the design orbit at a 

given location, x(s), is (for a particle with the nominal energy) 

(3.3) 

where s is the distance along the design orbit from an arbitrary origin on the ring, 

.Bx(s) is the horizontal betatron function which is determined by the configuration 

of the magnets around the ring, and a and () are the constants determined by the 

initial conditions of the particle. One of the characteristics of the function ,8 ( s) is 

that it is proportional to the square of the beam size at point s; thus, it describes 

how the beam bunch shrinks and broadens as it moves along the orbit. As shown 

below, the formula (3.3) gives the relation between the emittance of the beam and 

the beam width. 

At an interaction point, the root-mean-squares of x and x dx / ds are, from 

(3.3), 
· 2 1 < a2 > 

<X >= 2 .s; ' 

where the bracket indicates the average over all the particles in a bunch, ,s; is the 

value of .Bx ( s) at the interaction point , and we used the fact that iJx = 0 at an 

interaction point. The horizontal emittance Ex is then 

and thus the horizontal beam width due to betatron oscillation, uxfh is related to 

the emittance by 

2 2 a* uxf3 =<X >= ExJJx· (3.4) 

Thus, if the emittance is known, the beam width due to the betatron oscillation can 

be obtained for a given value of ,s;. The emittance can be calculated from the ring 
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configuration based on the balance between the radiation damping and quantum 

fiuctuation: 143 

1 2 < )I. I P3 > s 
Ex = Cq ----'---

Jx < 1/ p2 >s' 
(3.5) 

where <>s indicates the average around the ring, Jx = 1.0 (for the PEP ring), 

and )I. is the characteristic function of the ring configuration. 

The total horizontal beam width is then 

(3.6) 

where ad Ebeam is given by (3.1) and Ex by (3.5). It should be noted that this 

result assumes that there is no non-linear effects such as beam-beam effects and the 

coupling of the vertical and horizontal motions. 

The vertical beam size ay is more difficult to evaluate. First of all, generally 

the largest source is the coupling between the horizontal and vertical motions; and 

the amount of the coupling changes depending on the beam conditions. Also, often 

the vertical shape is not a gaussian due to non-linear effects such as the beam-beam 

interaction and the head-tail instability due to the wake field in the RF cavities. 

If one assumes that the coupling is maximum, namely that the original horizontal 

emittance is equally shared by the horizontal and vertical motions, then the vertical 

beam width is given by 

(maximum coupling), 

where /3; is the value of the vertical betatron function at the interaction point. 

The geometrical length of the bunch can be calculated from the RF voltage 

(as a function of time) and the energy spread, and is estimated to be az = 2.3 em 

for the PEP ring. On the other hand, it can also be measured using the Bhabha 

scattering events. The distribution of the event origins is related to the density 

distribution of electrons inside the bunch, and is found to have a width of 1.5 em. 
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The width of the beam itself is J2 times this value, namely Oz = 2.1 em, which is 

consistent with the expected size. 

Two lattice configurations were used during the data taking: PEP2b and 

PEP3a. The corresponding beta functions near the interaction point are shown 

in Fig. 3.1(b). The configuration PEP2b was used during the data taking in 1982, 

and the configuration PEP3a during the 1983 and 1984 data takings. The main 

difference is the location of Q2 (the second quadrupole from the interaction region). 

Table 3.2 shows141 the typical parameters for the two configurations. The actual 

value of ry* is "' 10 em for both configurations, 144 even though the calculated value 

is zero. However, this leads to aXE of "' 0.10 mm, which increases ax by only 2%, 

and thus the effect of the non-zero ry* is small. In sum, a typical beam bunch is 

4 em long, 1 mm wide, and 0.1 mm high, where the dimensions refer to twice the 

corresponding standard deviations. The integrated luminosity accumulated for this 

analysis is 22 pb-1 with PEP2b and 125 pb-1 with PEP3a, giving a total of 147 

pb-1. 

The luminosities gtven m the table are the measured ones. One can also 

estimate the luminosity from the calculated beam sizes, the beam currents, and 

the bunch crossing frequency. If the electron density in the bunch has a gaussian 

distribution, then the luminosity is given by 

L = _1_I+I-
4e2 f Aeff 

3.10 X 1036 I+ (A)I- (A) 

f(Hz) ax(cm)ay(cm) 

where e is the electron charge, Aeff = 7raxay is the effective interaction area, f is 

the bunch crossing frequency, and I± are the currents of the electron beam and the 

positron beam which we assume to be the same. If one uses the no-coupling value 

for ax and the maximum-coupling value foray, this formula gives Lmax = 1.0 x 1031 

cm-2sec-1 for the PEP3a configuration, which is about factor of 3 smaller than 

the observed value. As we will see later, the value of ax is consistent with our 
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Table 3.2. Typical ring parameters for the two configurations. 

PEP2b (1982) PEP3a (1983,1984) 

1/x 25.275 21.25 

Vy 20.175 18.19 

/3~ (m) 2.95 3.0 

!3; (m) 0.11 0.11 

fJ* (m) o.ot o.ot 
El (mm - mrad) 0.099 0.117 

Imax (rnA/beam) 16.7 24.8 

Lmax (1031cm-2sec-1) 1.0 3.23 

!::..vx max 0.30 0.50 

!::..vy max 0.22 0.46 

ax (mm) (no coupling) 0.540 0.592 

ay (mm) (max. coupling) 0.074 0.080 

t Theoretical value. The actual value is ~ 0.10 m. 
* Calculated from the ring configuration using the formula (3.5) . 

measurement; thus, the discrepancy is probably due to the overestimation of ay. 

3.2 THE DELCO DETECTOR 

The D* analysis presented in this thesis uses data taken with the DELCO 

detector, which is an upgraded version of the first DELCO detector which operated 

at the SPEAR storage ring. Figure 3.2 shows its end and side views. One of its 

unique features is the good particle identification provided by the gas threshold 

Cerenkov counter. An open-coil magnet design minimizes the amount of material 

in front of the Cerenkov counter. The parts of the detector that are relevant to this 

analysis are the charged-particle tracking system and the Cerenkov counter. These 

are also the parts significantly upgraded over the old version. 
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Figure 3.2. The side and end views of the DELCO detector. In order to reduce the 
gamma-converting materials in front of the Cerenkov counter, the magnet is of an 
open-geometry type. 
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3.2.1 Tracking System 

3.2.1.1 Geometry and Constructions 

Charged particles are tracked by three drift-chamber systems: the inner drift 

chamber (IDC), the central drift chamber (CDC), and the planar drift chamber 

(PDC). The PDC consists of six sets of planner drift chambers forming a hexagon, 

and mounted outside the Cerenkov counter. The CDC and the PDC sandwich the 

Cerenkov counter; thus the trajectories of particles through the Cerenkov counter 

are well determined by interpolation. 

Figure 3.3 shows the cell structures for the IDC and PDC. The cell structure 

of the CDC is similar to that of the IDC. There are six sense-wire layers in the IDC, 

ten in the CDC, and six in the PDC; a charged particle within the geometrical 

acceptance, 65% of 47r, is measured at 22 points along its path. One half of the IDC 

and CDC layers and one third of the PDC layers are stereo layers, whose wires are 

tilted with respect to the beam axis in order to obtain the z-coordinate information. 

The stereo angle is 2° to 3° for the IDC and CDC, and 30° for the PDC. Except 

for the uv layers of the PDC, all the drift-chamber layers are paired. In each pair, 

the two layers are staggered by a half cell in order to help resolve the left-right 

ambiguity. 

Each wire in the IDC and CDC is attached to the endplate by a feedthrough 

equipped with a spring which kept the wire tension constant during the wire

stringing process. After all the wires were strung, the ends of the wires were glued 

to the feedthroughs. Because of this procedure, we had little problem of breaking 

wires. The tension of a field or guard wire (gold-plated tungsten wire) is about 160 

g and that for a sense wire (gold-plated Beryllium-Copper wire) is about 80 g. This 

amounts to a total tension of 0.3 ton for the IDC and 0. 7 ton for the CDC. This 

tension is supported by the inner honeycomb wall for the IDC, and both the inner 

and outer honeycomb walls for the CDC. 

The IDC is mounted on the beam pipe and cannot be removed without breaking 
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Figure 3.3. (a) The IDC wire pattern at an endplate is shown for a 1/32 sector. 
The field and guard wires shape the electric field and the sense wires collect the 
electrons from the ionizations caused by passing charged particles. (b) The cell 
structure of the PDC. The sense wire is held at high voltage in order to allow the 
outer aluminium plates to be grounded. 
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the vacuum of the storage ring. However, the CDC is made in two halves, and can 

be easily removed for the access to the IDC. The rest of the detector surrounding 

the CDC is split at the center, and can be separated by a electric motor in a matter 

of a few minutes. 

3.2.1.2 Principle of Operation and Resolutions 

Figure 3.4 shows the equipotential contours of the IDC cells and the trajectories 

of electrons ionized by a charged particle. The electrons drift toward the sense 

wire, and the first electron to reach the wire initiates an avalanche giving a signal 

pulse. Thus, the distance of closest approach of the track to the sense-wire can be 

calculated from the electron drift velocity and the time between the passage of the 

track and the generated signal. The drift velocity is a function of the electric field 

and depends on the type of gas used. 

The same gas was used for all three drift-chamber systems. Originally a mixture 

of Ar-CzH6 (55%-45%) was used (for the 1982 data). Near the end of the 1982 

data taking, however, several high-voltage wires started to discharge uncontrollably. 

When the chamber was opened later, carbon whiskers were found on those wires, 

which were effectively cleaned by a toy water gun. The rest of the data were taken 

with a mixture that contain less organic gas: Ar-C02-CH4 (89%-10%-1%), which 

turned out to be satisfactory. 

The drift velocity as a function of electric field is determined by the cross 

sections for collision of an electron and the molecules in the gas mixture. These 

cross sections generally are complicated functions of the electron energy, and the 

functional shape depends on the molecule type. As a result, the drift velocity 

strongly depends on the composition of the gas mixture. The two mixtures we used 

have similar electron drift-velocity curves, which rise smoothly from 0 emf J.LSec at 

0 k V /em to around 5 emf J.LSec at 0. 7 k V /em and then flatten out. This plateau 

shape makes the operation of the chamber insensitive to slight fluctuations of the 

high voltages; for, in actual operation, the electric field in most of the drift region 
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Figure 3.4. The equipotential contours of the IDC cells and the electron trajectories 
for a typical track. It can be seen that about one half of the track length is in active 
regions, which means that the ionized electrons drift toward one of the sense wires 
instead of the guard wires. 
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is above 0.7 kV /em. 

When the magnetic field is present, the electron drift velocity acqUires a 

component proportional to E X B. For a magnetic field perpendicular to the 

electric field, the angle between the electric field and the drift direction, a H, is 

well approximated by145 

Bw 0.01 B(kG) w(cmj Jlm) 
tanaH = kE = k E(kV) ' (3.7) 

where k = 0. 75, w is the electron drift velocity in the absence of magnetic field, 

and the first expression is in MKSA units. The approximation is good when B-;;.5 

kG and E~1 kV /em. For larger E and/or B, k should be slightly smaller (k,......, 2/3 

at E =1.5 kV /em and B =10 kG). If B is not perpendicular toE, then B in (3.7) 

should be replaced by IE X Bl/ E. In our case, a typical angle is ,......, 10° in the IDC 

and CDC, and very small in the PDC. The angle aH, however, hardly changes the 

shape of isochronal contours, which are all that are needed to convert a drift time 

to a distance of closest approach. For the IDC and CDC, they are approximately 

concentric around the sense wire and almost equally spaced. The magnetic field, 

however, shortens the spacing between the isochronal contours. In practice, the 

time-to-distance relations are derived for each layer of the drift chambers using the 

actual tracks in Bhabha events. 

The resolution of the distance of closest approach depends on the electronics 

used to process the signal as well as on the type of gas mixture. The signals are 

processed by the discriminator-preamplifiers attached to the drift chambers and 

then sent over twisted-pair cables to the multihit drift time digitizers (DTD 's) 146 

located in the control room. The least significant bit of the digitizer is 4 nsec, which 

corresponds to a spatial resolution of 60 Jlm. This resolution can be improved by 

using a gas mixture with a slower drift velocity. This, however, is not a limiting 

factor in our case. 

Table 3.3 summarizes the parameters of the drift chambers, where the single 

hit resolutions are obtained from the residuals of fits of measured Bhabha tracks. 
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The resolutions for the 1983 data are worse than those for the 1982 and 1984 data. 

This is mainly due to the slow risetime of the preamplifiers installed after the 1982 

runs and fixed for the 1984 runs. 

Table 3.3. The parameters for the IDC, CDC, and PDC. 

IDC CDC PDC 

#of layers 6 10 6 

configuration* vvzzuu zzuuzzvvzz zzuvzz 

stereo angle( 0
) 2.18-3.71 1.56-1.88 30.0 

# of sense wires 384 830 960 

sense wire diameter (,urn) 30,38 38 40 
If material (Au-plated) Be-Cu Be-Cu tungsten 

1/2 cell width (mm) 5.9-9.8 11.6-15.3 40.0 

r(innermost layer) (em) 12.01 27.30 144.7t 

r(outermost layer) (em) 20.52 48.90 158.9t 

length in z (em) 62.2 94.0 284.5 

acceptancet (% of 47r) 83.5 69.3 64.9 

resolution (,urn) (1982) 142 168 482 
If (1983) 207 228 555 
If (1984) 160 197 485 

* z: with sense wires parallel to z-axis. uv: with stereo wires. 
t The distance of closest approach from the interaction point to the PDC plane. 
* The acceptance for a straight track going through all the layers. 

3.2.1.3 The Magnetic Field and The Momentum Resolution 

The curvature of a charged particle in a magnetic field gives a measure of its 

momentum. Figure 3.5 shows the magnetic field lines calculated by the computer 

program POISSON,147 which reproduces the measured field. The magnet coils are 

wound on the pole tips of the return yoke. A solenoid would generate an intolerable 

amount of gamma conversion in front of the Cerenkov counter. The highest field 

strength in the z = 0 plane is 3.16 kG at r = 0. The total JBdl for a almost straight 

track perpendicular to the beam axis is 1. 79 kG·m. The significance of JBdl is that 
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it gives the total angular deflection l::l.cf> for a track with momentum P: 

0.03 J ( ) 
l::l.cf> = P(GeV jc) Bdl kG· m . 

For a Bhabha track (P = 14.5 GeV /c) the angular deflection is 3.7 mrad. The 

corresponding displacement at the center of the PDC is 4.0 mm. 

The non-uniformity of the magnetic field necessitates a sophisticated pattern 

recognition program, and the final fitting of the measured track was done with 

respect to the expected shape given by the simulation using the actual magnetic 

field shape. The inverse-momentum distribution for the Bhabha events is shown in 

Fig. 3.5(b). The non-gaussian tails are due to the initial and final state radiations 

which makes the momentum of the electron or positron smaller. The momentum 

resolution for a stand-alone track averaged over all runs is given by 

a; = j[2P(GeV jc)]2 + 62 (%). 

The part proportional to P is due to measurement error and the constant part 

is due to multiple Coulomb scattering. For a track with P less than 3 Ge V j c, 

the momentum measurement error is dominated by the latter. For the maximum 

momentum of 14.5 GeV jc, the resolution is 30%. This is larger than the value 

expected from the displacement at the PDC of 4 mm and the position resolution of 

0.5 mm for each PDC hit. The reason is that the exact point of the track origin is 

not known. 

When a track is in the middle of a congested jet, the resolutions are worse due 

to the overlapping of tracks. This problem, however, can be substantially alleviated 

by applying quality cuts on the tracks. 

3.2.2 The Cerenkov Counter 

Just as an object moving faster than the speed of sound generates a shock wave 

in air, a charged particle moving faster than the phase velocity of light in a medium 
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Figure 3.5. (a) Magnetic Field calculated by the computer program POISSON, 
which was found to be within the measurement error of the result of a field mapping 
using a Hall probe. (b) The inverse-momentum distribution for the Bhabha tracks. 
The solid curve is the result of a two-gaussian fit. The non-gaussian tails are due 
to the radiative corrections to the Bhabha scattering process. 
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radiates Cerenkov light. Whether or not a particle of a known momentum radiates 

Cerenkov light depends on the mass of the particle; thus, it gives information on the 

type of the particle. Our purpose is to separate pions from kaons in the momentum 

range above a few Ge VI c. We start from a review of the basic formulae of Cerenkov 

radiation. 

3.2.2.1 Cerenkov Radiation 

As a charged particle passes through a medium (radiator) it generates time

varying polarizations, and they in turn radiate electromagnetic waves. When the 

particle is moving faster than the phase velocity of the electromagnetic wave, a 

shock wave front is formed. This phenomenon was analyzed by Tamm and Frank 

in 193 7,148 three years after the effect was first observed by Cerenkov. The energy 

spectrum and the angular distribution of the radiated photon are given by149 

2 sin2(1rlx) d 
dN = ~ T sin2 () ____:_ d cos () 

~n x2 E ' 

1 
x =--cosO, 

(Jn 

(3.8) 

where a is the fine structure constant, () is the angle between the direction of the 

photon emission and that of the particle, A is the wave length of the photon in 

the radiator, E is the energy of the photon, l is the length of the radiator, (3 is the 

velocity of the particle divided by the speed of light, and n = n( E) is the index of 

refraction of the radiator. 

The angular distribution has the sin2xlx2 shape which often appears in studies 

of diffraction phenomena, and peaks at Oo where cos Oo = 1l(f3n). The width of the 

central peak is of order Al(lOo), and the angular spectrum tends to a delta function 

as l I A becomes large. Using 

1 sin2 (ax) 
--'-::-------'---* 8(x) (a--* oo), 

~ ax2 

the formula (3.8) reduces to the familiar Tamm-Frank formula for l ~ A when the 
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angle is integrated over: 

dN a . 2 
dldf. = he sm e 

= 370 sin20 

where the Cerenkov angle e is given by 

1 
cos e = {3n. 

(3.9) 

In this limit, there is no radiation when {3 is smaller than 1/n. Thus, the momentum 

threshold for a particle of mass m is 

Po= mflo, 

1 1 (3.10) 
flo= ~ --

vn2 -1 y!U' 

where b n-1, and the approximation is good when n ~ 1. In (3.10), n is assumed 

to be a constant. Under the same assumption, the photon energy spectrum becomes 

flat. For {3 = 1, namely at well above the threshold, the Cerenkov angle 00 is 

1 
Oo ~- (n ~ 1). 

flo 
(3.11) 

The width of the angular distribution in (3.8) is generally very small. For 

isobutane gas at atmospheric pressure and for a particle with {3 close to 1, the 

angular spread is of order 0.01 mrad. However, when n is very close to 1, e.g., for 

light gas radiators, and/or lis small (as in the counters used for the measurement of 

particle fractions in some beam lines150) the difference between the exact formula 

and the Tamm-Frank formula becomes significant especially around threshold. The 

formula (3.8) also shows that there is a finite amount of radiation even below 

threshold. This can be interpreted as transition radiation at the entrance and the 

exit of the Cerenkov radiator. For our counter, transition radiation is negligible. 
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3.2.2.2 Choice of Cerenkov Radiator 

From (3.10), the pion Cerenkov threshold is at rJom1r and the kaon threshold is 

at rJomK; thus, if a particle has a momenta between these two values and if there is 

no Cerenkov radiation, then the particle is not a pion, namely it should be a kaon 

or heavier. The type of radiator gas has to be chosen such that this momentum 

range of 1r I K separation covers the optimum region for the analysis, namely above 

a few Ge VI c. Thus, rJo should be 15'"""20, which corresponds to n of 1.00125'""" 1.002. 

Without pressurization, it requires one of the densest gases available. 

The other requirement is that the transmission cutoff of UV light be at as short 

wavelength as possible; for generally the limiting factor of a Cerenkov counter is 

the intensity of the usable Cerenkov light, namely the number of the photoelectrons 

generated at the photon detector (the photomultiplier in our case). Also, the 

amount of scintillation should be modest so that the background level will be low. 

We chose isobutane at atmospheric-pressure which has n = 1.00144 and a UV cutoff 

at 182 nm. 151 The scintillation of isobutane caused by a charged track has been 

measured152 to be 6.4x1o-4 photons per em within the typical spectrum range of 

photomultipliers, which has a negligible effect on our background. 

In reality, the index of refraction depends on the photon energy (dispersion). 

The functional shape is well approximated by the formula indicated by the single

oscillator model: 
2 EdEo n(E)-1= 2 2

, (3.12) 
E0 - E 

where we used Ed = 0.0336 e V and Eo = 13.5 e V as obtained by Wemple.153 The 

number of photoelectron ne detected at the photomultiplier per em of radiator is 

then given by [from (3.9)] 

(3.13) 

where c(E) contains all the efficiencies that a emitted Cerenkov photon generates a 
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photoelectron at the photomultiplier. The effective index of refraction n = 1.00144 

was obtained by requiring that it gives the correct mean number of photoelectrons 

as a function of the particle momentum. The corresponding rJo is 18.6, and the 

maximum Cerenkov angle Oo is 3.1° from (3.11). Table 3.4 shows the threshold 

momenta for various particles. The momentum region of ?T I K separation is thus 

from 2.6 Ge VIc to 9.2 Ge VI c. Since there are very few hadrons above 9.2 Ge VIc, 

the region of ?T I K separation is practically the whole region above 2.6 Ge VI c. 

Table 3.4. The Cerenkov thresholds of various particles for isobutane gas 
at atmospheric pressure. (n = 1.00144 and 'f/0 = 18.6). 

e K p 

Po(GeV I c) 0.0095 1.97 2.60 9.20 17.5 

We also used nitrogen as the radiator in order to obtain electron identification 

up to 5.5 Ge VI c. Those data are not used in this analysis. 

3.2.2.3 Cerenkov Light Collection 

There are 36 Cerenkov cells as shown in Fig. 3.2. The acceptance of a single 

cell is 20° in </> and 0 < cos() < 0.62 or -0.62 < cos() < 0, where () is the polar 

angle with respect to the beam axis. The total acceptance is 62% of 4?T. The whole 

counter is split along the vertical plane containing the beam axis, and the surfaces 

are sealed by 0.075 mm membranes of aluminized mylar reinforced by nylon. The 18 

cells within each half are not optically separated by buffers. The entrance window 

is 5 mil mylar, and mechanically supported by a layer of honeycomb wall. 

Figure 3.6 shows the geometry of a single Cerenkov cell. The simulated 

Cerenkov light trajectories are also shown for a straight track. The usable Cerenkov 

light is emitted along the track from the window to the ellipsoidal mirror, which 

focuses the light on to the photomultiplier (PMT). One of the foci is at the 

interaction point (F1) and the other (F2') is just in front of the photomultiplier 
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when reflected by the flat mirror. 

The ellipsoidal and flat mirrors are made of 1/ 4-in-thick glass. The ellipsoidal 

mirrors were shaped by heat-slumping on to graphite molds. The mirror surfaces 

are fabricated by vacuum-deposition of a 75 nm layer of aluminium immediately 

followed by a 25 nm layer of MgF 2. The MgF 2 coating protects the surface 

from oxidization. Glass was chosen as the substrate rather than plastic because 

with glass, it is possible to achieve better vacuum during the vacuum deposition 

process, which results in better reflectivities especially at shorter wave lengths. The 

reflectivity of the mirror was measured to be 85% down to >. = 175 nm: shorter 

than the cutoff wave length of isobutane (182 nm). 

Each photomultiplier is equipped with a light-collecting cone made of epoxy. 

The inner surface of the cone is aluminized. The shape is a rotated parabola 

where the axis of the parabola is tilted 30° with respect to the axis of rotation. 

It effectively collects photons entering the cone if the incident angles are less than 

30°, while almost all photons are bounced back out of the entrance if the angles 

are larger than 30°. This type of light-collecting cone is called a Winston cone. 154 

Figure 3. 7 (a) shows the photomultiplier assembly including the light-collecting cone. 

We chose RCA8854 (Quantacon) as the photomultiplier for the Cerenkov 

counter because of its large aperture (5 in diameter) and its ability to see the 

single photoelectron peak. The latter is due to the high-gain first dynode (X 25), 

and is used to calibrate the photomultipliers so that the single photoelectron peak 

appears at the same channel number. 

The photomultiplier is housed inside two layers of J.L-metal to reduce the 

magnetic field in the first dynode region. In addition, a bucking coil is placed 

around the same region to cancel the axial component of the left-over magnetic 

field. The current on each coil is independently adjusted by a computer controlled 

program to maximize the gain. 

RCA8854 is equipped with a 1.9 mm UV glass window (Corning 9741) and an 

efficient bialkali (K2CsSb) photocathode. The window absorbs photons for >.;:;300 
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Figure 3.6. The geometry of a single Cerenkov cell. The ellipsoidal m irror focuses 
the Cerenkov light onto the photomultiplier. One of the foci is at the interaction 
point and the other is just in front of the photomultiplier (PMT) when reflected 
by the flat mirror. Simulated photon trajectories are shown for a high-momentum 
charged track. 
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Figure 3.7. (a) The Cerenkov counter photomultiplier assembly. (b) The gain 
factor obtained by the p-terphenyl coating, and the quantum efficiency of the 
photomultiplier with and without the coating. 
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nm. In order to improve the quantum efficiency in the UV region, the surface of 

the window is coated with p-terphenyl (1,4 diphenylbenzol: C1sH14). It absorbs 

UV photons of .A = 200 ,....._ 300 nm and re-emits (decay time ,....._ 1ns) photons of 

.A around 350 nm, which can then cross the window and for which the bialkali 

photocathode has a good efficiency. The wave shifter (p-terphenyl) was applied by 

the dip coating method developed by Eigen and Lorenz.155 The dipping solution 

was 0.5 g p-terphenyl in 300 cc methylene chloride with 2 g B66 Acryloid as the 

binder. 

We have used a monochrometer to measure the gain factor obtained by the 

wave-shifter coating. Fig. 3. 7 (b) shows the gain factor as a function of the 

incident photon energy. The conversion between the wave length and the energy is 

conveniently given by 

AE = 1240 (nm · eV). 

It is difficult to know how many photons from the monochrometer are incident on 

the photomultiplier window for a given photon energy. Thus, we have taken the 

efficiency curve supplied by the manufacturer and multiplied it by the measured 

gain factor to estimate the final quantum efficiency. The result is overplotted in 

Fig. 3. 7(b). The final shape of the quantum efficiency is consistent with the result 

of Ref. 155. Roughly speaking, the band width is from 3 eV to 6 eV, and the 

quantum efficiency is 30% in the region. The index of refraction n(E) changes from 

1.00131 to 1.00155 in the range, but for our purposes, it is adequate to assume that 

n is constant. 

3.2.2.4 The Cerenkov Response for Electrons 

Figure 3.8 shows the distribution of ne for Bhabha tracks. Bhabha events are 

selected without applying any cuts on the Cerenkov-counter response. Each track 

is required to hit well inside the cell by at least the maximum Cerenkov angle of 

3.1° from the edges. The average number of photoelectrons is 18.8, and out of 2340 

tracks there is no track that generates less than 2 photoelectrons. The inefficiency 



92 

of the counter is negligible. 

The photoelectron yield (3.13) is often written as (for a constant index of 

refraction) 
dne . 2 dt = Nosm (), 

with 

No(cm-1) = 370 J c{E)dE (E in eV). 

The efficiency c:( E) includes the reflectivities of the mirrors, the transmissivity of the 

radiator gas, the light-collection efficiency of the Winston cone, and the quantum 

efficiency of the photomultiplier. Thus, the parameter No is a measure of the over

all light collection efficiency. Using < ne >= 18.8, < l >=83 em (for the Bhabha 

tracks), and sin20 = 0.00287, No is found to be 79 cm-1. The value of No differs 

slightly from cell to cell; the width of the distribution is"' 10 cm-1. 

A rough estimation of No can be made from our knowledge of the individual 

efficiencies. The c:(E) is approximately a step function which is nonzero from 3 eV 

to 6 e V, and the efficiency in that region is 

0.852 (mirror) x 0.80(transmission) x 0.70(cone) x 0.30(PMT) = 0.12. 

Thus, the expected No is 370 x (6- 3) x 0.12 = 135 cm-1. Admittedly, the 

above estimate is crude. However, the expected No is not far from the measured 

value especially if one takes into account that the quantum efficiencies supplied by 

manufacturers are often overestimated 156 by up to a factor of 2. 

At lower momenta, the curvature of the track reduces the light-collection 

efficiency even at well above the electron threshold of 9.5 MeV/ c. To study this, 

we used the two-photon interaction e+ e- ---+ e+ e- e+ e- where the electromagnetic 

field accompanied by the initial e- and that from the initial e+ collide and generate 

a low-energy e+e- pair. Most of the time, the initial e+e- pair goes down the 

beam pipe and is not detected, while the low-energy e+ e- pair is detected in the 

central detector. We take two-prong events and require that one of the pair to be an 
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Figure 3.8. (a) The number of photoelectrons for the Bhabha tracks. The tracks are 
required to hit well inside the cell. (b) The average photoelectron yield for electrons 
as a function of the electron momentum. At low momentum, the light collection 
is inefficient due to curvature of the track. The solid curve is the prediction of the 
ray-tracing Monte Carlo program. 
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electron by the Cerenkov response. 157 Then, the other track in each event is highly 

likely to be an electron. The contamination from other processes is negligible. Fig. 

3.8(b) shows the average number of photoelectrons vs P for the tracks that are not 

required to be electrons by the Cerenkov response. Each track is associated with 

the cell whose ellipsoidal mirror is crossed by the track, and no requirement is made 

that the crossing point be far from the edges. The solid curve is the estimation by 

the ray-tracing Monte Carlo program, which includes the effects of the curvature, 

the small gaps between the mirrors, and the geometry of the light collecting cone. 

The curve is normalized to the data in the region above 0. 7 Ge VI c. The agreement 

is good. 

3.2.2.5 The Cerenkov Response in Hadronic Events 

Figure 3.9 shows the Cerenkov pulse height vs the momentum of track. The 

pulse height is normalized to an No of 100 cm-1 and a path length of 100 em so 

that the average yield becomes the same for a given particle of a given momentum 

independent of the cell and the path length. The expected average pulse heights are 

overplotted for e, J1, 1r and K. A clear band of 1r rising at 2.6 Ge VIc is seen. The 

kaon band is not clearly seen because of the low statistics in the high momentum 

region as well as the momentum smearing and the statistical fluctuations of ne. 

Most of the tracks that have substantial response below the pion threshold are 

electrons. The tracks with no Cerenkov response above the kaon threshold, i.e., 

in the region labeled 'P', are contaminated by the kaons whose true momenta are 

below the kaon threshold. 

The horizontal band at around 1.5 photoelectrons in the low momentum region 

P~3 Ge VIc is a noise signal that corresponds to a single photoelectron before the 

normalization is done. The probability that a cell has this noise is measured to be 

about 1% when averaged over all cells. It is slightly greater in the center of a jet 

and smaller in regions away from jets . This noise is almost non-existent in Bhabha 

events. Therefore, it cannot be due to the synchrotron radiation, stray beam 
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particles, nor any other beam related sources. Dark currents in photomultipliers 

are also excluded for the same reason. A study using the Cerenkov ray-tracing 

simulation program has shown that it is mostly due to low energy electrons (below 

~100 MeV/ c) whose curvature is large enough so that the Cerenkov photons are 

scattered in various directions. An example of Cerenkov photon trajectories for a 50 

MeV electron is shown in Figure 3.10. A small contribution from Cerenkov radiation 

at the entrance window is not excluded. Because of its low rate and randomness, 

the single electron level noise is harmless in our analysis. 

Figure 3.11 shows ne vs the time in nsec of all the cells in the multi-hadron 

events that have enough pulse height for the time measurement. The offset of the 

time is defined such that the responses to Bhabha electrons have a mean of 0 ns . 

One can see a vertical band at around -3ns. This is due to particles that point 

directly toward the photomultipliers. Some are direct hits on the face of the photo 

cathode by charged particles. Such hits generate about 30 photoelectrons per hit , 

which is consistent with the number of Cerenkov photons (,...., 120) generated at 

the 1.9 mm thick photomultiplier window. Others are due to particles above their 

Cerenkov threshold whose light is directly collected by the light collecting cone 

and the photomultiplier, producing about 10 photoelectrons per track. These early 

direct hits could be effectively eliminated by a timing cut. The time of these hits 

expected from the geometry is -3.1 ns, which is consistent with the observation. 

Approximately 10% of the hits with ne > 2 are the early hits . On the other hand, 

the probability that a given cell has an early hit is less than 1%. 

3. 3 DATA ACQUISITION 

The purpose of the data-acquisition system is to log efficiently the events of 

interest to the tapes and to monitor the state of the experiment. Figure 3.12 shows 

the block diagram of the data-acquisition system. One important feature is that 

there are four separate systems that transfer data in parallel. The four systems 
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Figure 3.10. Cerenkov photon trajectories for a 50 MeV electron. The end view 
and the top view are shown. The dotted line is the trajectory of the electron. The 
ellipsoidal mirrors are not shown explicitly. The randomly scattered photons are 
considered to be the primary source of the single photoelectron level noise. 
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are the IDC, the CDC, the PDC, and the rest- namely the ADC's, TDC's, and 

latches. In addition, each of the four systems is monitored by a dedicated LSI-11 

minicomputer, which was also used to debug the corresponding part of the detector 

before the main data-acquisition system became ready. The main data-acquisition 

computer is the PDP-11/40 which runs a multi-task program (MULTI) based on 

the RT11 operating system. The events are actually written to tape by the VAX-

11/780. The data transmission from the front-end electronics up to the PDP-11/40 

is controlled by the Buffer Controller. The data logging of a single event is described 

step-by-step below. 

When the trigger logic decides that the event is to be accepted, it sends a 

trigger signal TRIG to the Buffer Controller. Upon receipt of the trigger signal, 

the Buffer Controller sets the experiment deadtime level (Exp.DT) which prohibits 

the trigger logic from sending another trigger. After a wait of 120 J.lSec, the Buffer 

Controller sends the first interrupt (IO) to the PDP-11/ 40, provided that all four 

Buffer Memories are empty (BE), to which PDP-11/40 responds by raising the 

computer deadtime level (Comp.DT; takes about 350 J.lSec). The Comp.DT level 

prohibits the Buffer Controller from sending the first interrupt IO. At the same 

time as the Buffer Controller sends out the IO to the PDP-11/40, it signals the four 

scanners to start transferring the data from the front-end electronics to the Buffer 

Memories (SCAN signals). While the Buffer Memories are being loaded, the PDP-

11 prepares for the data transfer from the Buffer Memories to its own memory: it 

allocates one of the eight event buffers (if no event buffer is empty, it waits until one 

becomes available), calculates the absolute addresses in the event buffer for each of 

the four Buffer Memories, sets up the control blocks for the CAMAC branch driver 

(Jorway 411), and prepares the event header containing, among others, the run and 

event numbers, the date, and the status of the PEP ring. 

When a Buffer Memory is loaded by the scanner, it sends a buffer-full signal 

(BF) to the Buffer Controller. When all the four Buffer Memories become full, 

the Buffer Controller sends the second interrupt (II) to the PDP-11/40 and resets 
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Figure 3.12. The block diagram of the data-acquisition system. There are four 
parallel data flows (systems) up to the Buffer Memories, and the Buffer Controller 
controls the timing of the data transfers from the front-end electronics up to 
the PDP-11/40. Each of the four systems can be independently monitored by a 
dedicated LSI-11 minicomputer. 
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the experiment dead time level (Exp.DT). Normally, i.e., if the PDP-11/40 can 

allocate an event buffer without waiting, it takes about 2 to 3 msec from the event 

trigger up to this point, and this is when the experiment comes back alive again 

even before any of the event data are sent to the PDP-11/40. The PDP-11/40 then 

starts loading the contents of the Buffer Memories to the event buffer, and upon its 

completion, it turns off the computer deadtime level (Comp.DT), which completes 

the cycle. 

The aim of the first interrupt (10) is to notify the PDP-11/40 to prepare for 

a new event while the Buffer Memories are being loaded. The second interrupt 

signals the actual data transfer from the Buffer Memories to the event buffer in the 

PDP-11 memory. The use of two interrupts allows parallel processing. 

Now the event is in one of the eight event buffers of the PDP-11/40. It is then 

queued for spooling to the tape drive that in fact is the VAX-11/780, which actually 

writes the event to a tape. Namely, the VAX-11/780 looks like a tape drive to the 

PDP-11/40. When an event is written to a tape, the event buffer is released for a 

new event. The time required for writing a single event to the tape depends on the 

length of the event record which is determined by the number of drift chamber hits; 

usually it is about 0.1 sec. However, as long as the event buffer is allocated without 

waiting, namely if the rate of the TRIG signal is much less than 10 Hz, then the 

tape-writing time does not contribute to the dead time. The purpose of the multiple 

event buffers is to average out the random arrivals of events and minimize the dead 

time. 

The program MULTI consists of a data-acquisition part and an analysis 

part. The analysis part accepts commands from the console terminal, displays 

the events currently taken, processes histograms, and monitors the experiment. 

The histograms are dynamically defined and accumulated. It also has a built-in 

expression evaluator that allows conditioned accumulations of histograms. The 

analysis part does not directly communicate with the data-acquisition part except 

when a run is begun, ended, paused, or resumed. The analysis program accesses 
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the events through the shared disk file to which the data-acquisition program writes 

the events at the same time as it writes them to tape. 

Calibration events are taken every 30 seconds (cycle). They are LED events, 

in which the photomultipliers are tested by the LED's (light-emitting diodes) for 

gain and timing calibrations, and pedestal events which are essentially LED events 

in which the LED's are not fired. The pedestals are updated constantly and used in 

the analysis programs. Also included in the calibration events is a HV-scaler event 

which is taken once every cycle. This event record monitors the high voltages of the 

photomultipliers, the drift chambers, etc., and counts the rates of various signals 

such as trigger rates, noise level of the beam, and the luminosity. 

The internal consistency of the data is checked whenever is possible. For 

example, if the timing information is present for a counter and the corresponding 

latch is not on, then the latch information is lost somewhere along the line; if the 

latches shows that a certain trigger criteria is satisfied and yet the corresponding 

trigger bit is not on, then it is likely that one of the modules that generate the trigger 

signal is malfunctioning. These data are summarized in a one page run summary 

and printed out at the end of each run. In addition, the operator is notified during 

the run when the malfunction can be detected quickly enough. The hardware errors 

detected by the data-acquisition programs are logged to the teletypewriter. 

The VAX-11/780 also has access to the events as they pass through its CPU 

on the way to the tape. It runs the large part of the offi.ine program which is able 

to find and fit tracks, as well as a copy of the MULTI program that runs in the 

PDP-11/40. The single-track events, which are dominantly from the two-photon 

interaction e+ e- --+ e+ e- e+ e- where only one prong is detected in the central 

detector, are used to check the efficiencies of drift-chamber wires and counters. 

This requires high statistics, and the result is printed out approximately three 

times a day. Thus, the monitoring of the experiment is done in three stages: for the 

problems that can be found immediately, the operator is notified during the run; 

the ones that require more statistics but do not require tracking are printed out at 
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each end of run; and the ones that require tracking are checked every eight hours 

or so. 

3.4 TRIGGER SYSTEM 

The beam-crossing signal is picked up by a button located 20 m from the 

interaction point, and arrives in the control room on a fast cable. The beam crossing 

occurs every 2.446 J.-LSec; thus, if one takes more than 2.446 J.-LSec to decide whether or 

not there is an interesting event in the crossing, at least 50% of the luminosity is lost. 

The input to the trigger systems are the pulses from the counters (photomultipliers) 

and the track information given by the hardware tracker. While the time required 

for the processing of the counter information is well below 1 J.-LSec, that for the 

tracker is about 6 J.-l sec. There is not enough time for the tracker information to be 

used for each beam crossing. The problem is solved by a two-stage trigger system. 

The first-stage decision must be made before the next beam crossing. If an 

event is not accepted then the track-finding process is aborted. If accepted, then 

further beam crossings are rejected until the second-stage decision is completed. 

This deadtime is set to 20 J.-LSec to allow an ample time for the track information 

to be processed. If the second-stage trigger condition is met, the whole front-end 

memories that contain the event information are frozen and the final trigger (TRIG) 

is sent to the data-acquisition system, namely to the Buffer Controller. Meanwhile, 

the beam-crossing signals are vetoed until the data are transferred to the Buffer 

Memories, i.e., the 20 J.-LSec deadtime is extended to 2 to 3 msec, or longer if the 

PDP-11/40 cannot find an empty event buffer. Figure 3.13 shows the block diagram 

for the trigger system. We will discuss the components of the trigger system below. 

The latches record one bit per counter. Since they can be processed quickly, 

they are strobed for each beam crossing (X signal) and the bit is reset before the 

next X unless the event is accepted by the first trigger. 

The ADC's (analog to digital converters) record the pulse heights of counters, 
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Figure 3.13. Block diagram of the trigger logic. The trigger is processed in two 
stages. The first-stage trigger uses the counter information and takes about 0.5 
J.LSec, while the second-stage trigger requires the charged track information and 
takes about 6 J.LSec. 
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and the TDC's (time to digital converters) record their times. They are strobed 

or started by the first-trigger signal and reset if the second-trigger condition is not 

met. 

The digitization of the drift times is done in about 1 J.lSec, and the process can 

be repeated for each beam crossing without causing any deadtime. The X signal 

starts the drift-time digitizers (DTD 's), and they are cleared before the next X 

unless the first-trigger condition is met. 

The tracker158 finds tracks in the IDC and CDC and matches them with the hits 

in the barrel shower counters. The information on whether a given drift-chamber 

wire is hit or not is stored in a register in the DTD. The registers that belong to 

one layer are daisy-chained and, as soon as the drifts are complete, the wire-hit 

information is shifted into the tracker by a 20 MHz clock. The information on all 

16 layers is separately shifted into the tracker. As mentioned earlier, the layers in 

the IDC and CDC are half-cell-staggered pairs: 3 pairs in the IDC and 5 pairs in the 

CDC. First, the tracker finds the paired hits in the paired layers, then it searches for 

coincidences between the paired hits that are consistent with a track of momentum 

greater than 200 MeV/ c. At the same time, the hits in the barrel shower counters 

are searched for a matching with the tracks. The conditions actually used are: 2 

IDC pairs, 3 CDC pairs, and at least one barrel shower counter hit associated with 

it. When there is at least one track that satisfies the conditions, a signal is sent to 

the second-stage trigger logic. 

There are nine types of first triggers employed, and when the tracker signal is 

also on, the final trigger is asserted. Six of the first triggers can directly result in 

the final trigger regardless of the tracker output, and are called neutral triggers. 

These are listed below. 

X·2S At least two sextants of the barrel shower counter are hit. 

X·PS At least one sextant of the barrel shower counter is hit, and there is enough 

energy deposited in at least one of the 36 pole-tip shower counters. 

X·LS At least one sextant of the barrel shower counter is hit, and there is an enough 



106 

energy deposited in at least one of the 12 luminosity-monitor modules. 

X·KS (Neutral) At least one sextant of the barrel shower counter is hit, and there is 

at least one hit in the Cerenkov counter in the same sextant. When used as a 

neutral trigger, it is prescaled by 1/128. 

X·2S')' (Neutral) At least two sextants of the barrel shower counter are hit, and there 

is enough energy deposited in the whole barrel shower counter. 

X·4S (Neutral) At least four sextants of the barrel shower counter are hit. 

X·PBB (neutral) The Bhabha events that hit the pole-tip shower counters. 

X·LBB (Neutral) The Bhabha events that hit the luminosity monitor (prescaled by 

1/128). 

X (Neutral) Limited to 0.1 Hz. This is to check the background. 

A typical hadronic event passes X·2S, X·KS, X·2S')', and X·4S. As we will 

discuss later, the final hadronic dataset is defined by the offline cuts and not 

restricted by the triggers. 

The deadtime of the experiment is given by 

where fi Hz (di sec) is the frequency (deadtime) of the i-th trigger. Thus, d1 = 20 

J.tSec and d2 = 2 to 3 msec. The typical trigger frequencies are h =100Hz and fz =2 

Hz; thus the deadtime is 0.6 to 0.8 %. The actual deadtime is a little higher, and 

is about 1 %. This is because the PDP-11/40 cannot allocate an event buffer from 

time to time, such as when there is an burst of beam noise. Here, the advantage of 

the double interrupts (10 and II) and the multiple event buffers is clear. Even if the 

events are being written at a close-to-the-maximum rate ( ....... 10 Hz), the deadtime 

will be at an acceptable level ( ....... 10 %) . 

3. 5 SELECTION OF HADRONIC EVENTS 

The events are written to the tapes by the VAX-11/780 in a condensed format, 
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which are read by the offline computer (the IBM 3081/3033), unpacked, rearranged 

in a more convenient form, and sent through a pattern-recognition or track-finding 

process. At this stage, a crude classification is made to select candidates for the 

final hadronic events, and those events that pass the selection criteria are then 

fitted, namely the momenta and directions of the found tracks are determined 

using the correct values for the non-uniform magnetic field. Then the final hadron 

classification is applied as below. 

1. The number of 'good' tracks ~ 5. The good track is defined to be a 

successfully fitted track with b < 2 em, where b is the distance of closest 

approach to the beam axis. 

2. Each event hemisphere contains at least 2 good tracks that have at least 12 

drift-chamber hits. The hemispheres are defined by the plane perpendicular 

to the jet axis. 

3. The sum of the absolute momenta of the successfully fitted tracks ~ 6 Ge V /c. 
The above cuts are the main cuts that defines the hadronic dataset. There are other 

cuts159 that eliminate background events. 

4. The total electromagnetic energy into the pole-tip counters :S 20 GeV. The 

events rejected by this cut are the hadronic events whose jet axes are pointing 

to the pole-tips . These events often have many soft tracks generated by the 

showering process, and they are useless for physics. 

5. The number of drift-chamber hits in the CDC that are not associated with 

tracks :S 150 in each half cylinder. This rejects the events with large number 

of drift chamber hits due to the beam bursts or electronic noise. 

The number of events that are rejected by the last two cuts is less than 0.1 % of 

the final hadronic dataset. Figure 3.14 shows a typical hadronic event. 

The crude selection criteria applied after track finding and before track fitting 

is found not to reject a significant number of events that pass the final criteria. 

This was checked by processing a block of events through the final filter without 

applying the crude filter. In addition, the hardware triggers are redundant enough 
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D*+ ---+ D01r+ ---+ (K-1r+)1r+ 
(IT) (7r) 

Figure 3.14. The end view of a typical hadronic event. It is typical except that a 
D* candidate was found in this event. The decay products of the D* are labeled 
on the corresponding tracks. 
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so that the effect on the final hadronic dataset is negligible. Thus, the final hadron 

filter described above defines the hadronic dataset. 

Figure 3.15(a) shows the distribution of the total visible charged energy. 

The corresponding distribution for the Monte Carlo dataset is overplotted. The 

dominant background comes from hadronic two-photon events, where the photon 

accompanying the incoming electron collides with another photon accompanying the 

incoming positron [Fig. 3.15(b)]. The spectrum of the photons is given by (2.5), 

and the cross section for 11 --+ qq varies as 1/W2 as in the case of e+ e- --+ qq, 

where W is the CM energy of the 11 system. These lead to a cross section for the 

hadronic two-photon events that varies approximately as 1jW3 . The excess of the 

data over the Monte Carlo below the cut at 6 Ge V / c is due to this source, and the 

background in the hadronic dataset is estimated to be (5 ± 3)%. 

The effective efficiency of the hadronic filter is defined as the number of hadronic 

events that pass the filter divided by the number of events that would have been 

generated if there were no radiative effect. Figure 3.16 shows the spectrum of the 

initial state radiation (Monte Carlo) before and after the hadronic filter . In the 

Monte Carlo generation, there is an artificial cutoff on k at the high end. However, 

the efficiency defined as above is independent of the cutoff as long as the curve 

b in Fig. 3.16 vanishes below the cutoff, which is indeed the case. The Monte 

Carlo generates 1.308 times the number of events that would have been generated 

without the radiative correction, and 60.0% of them pass the hadronic filter. Thus, 

the effective efficiency of the hadronic filter estimated by the Monte Carlo simulation 

is thus 60 x 1.308=78.5%. 

3.6 MONTE CARLO SIMULATION 

For a detector as complicated as DELCO, a detailed Monte Carlo simulation of 

the detector responses is necessary to estimate various efficiencies. We have already 

encountered an example in the previous section when the efficiency of the hadron 
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the charged energy cut is shown for the data and the Monte Carlo dataset. The 
position of the cut is indicated by the arrow. (b) The diagram for the two-photon 
hadron production which is the primary source of the background. 
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Figure 3.16. The energy distribution of the initial-state photon before and after the 
hadronic filter. When the energy of the radiation is large, the event is unlikely to 
pass the filter mostly due to the visible charged energy cut. 
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filter was estimated. In this section, the Monte Carlo simulation of hadronic events 

is described. 

The hadronic event generator is the LUND Monte Carlo program, and its main 

features have already been described earlier. However, a few modifications have 

been made. First, initial-state radiation has been added according to the formula 

(2. 7). Second, the heavy quark fragmentation functions have been adjusted to give 

momentum distributions consistent with existing data. In addition, the branching 

fractions of charmed and bottom hadrons have been updated. 

The event origin is distributed according to the known beam shape, and each 

of the final particles of the event is swum through the detector. The photons are 

traced until they convert to e+ e- pairs or hit one of the shower counters or exit the 

detector. The charged particles are traced through the detector using the Runge

Kutta integration of the equation of motion in the non-uniform field. Multiple 

Coulomb scattering and energy loss due to the ionization are also simulated. The 

tracing is stopped when the charged particle exits the detector or loses all of its 

energy in the detector. The decays in flight for the strange, charmed, and bottom 

hadrons are included except for K±'s and KL's. The charged pions are assumed 

stable. 

The drift-chamber hits are generated by calculating the distances of closest 

approach to the sense wires. The time-to-distance relations are nearly linear, but 

there are small deviations. The drift cells in the PDC are fiat, and the drift distance 

is not simply the distance of closest approach from the sense wire to the track. These 

effects are also simulated. The wire-hit resolutions and inefficiencies as well as noise 

hits are also included in accordance with observation. 

The simulation of the Cerenkov counter involves the curvature effect (Fig. 3.8), 

the crosstalk between cells, and the effect of the small gaps between the mirrors. 

It does not employ ray-tracing simulation for each event, but the result of the 

ray-tracing simulation is parametrized and incorporated. 

The result of these simulations is stored in the same common blocks used for 
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the regular events, and the same subsequent analysis is performed on the simulated 

data. 

Figure 3.17 and Figure 3.18 show the comparison between the hadronic dataset 

and the Monte Carlo simulated dataset after the hadron filter. The thrust 

parameter, T, is defined by 

"'·JP · · nJ T- max 02 2 
, 

n Li JPiJ 

where the maximum is taken by varying the direction of the unit vector n. When 

an event is spherical, the value of T is close to its minimum 0.5, and when it is 

pencil-like, the value of T is close to its maximum 1. When the number of tracks 

becomes large, the conventional calculation ofT becomes prohibitive. We have used 

an efficient algorithm160 that is about 106 times faster for Ntrk ""' 30. The greater 

the number of charged tracks and the higher the thrust, the more will tracks tend 

to overlap in the detector elements. The distributions of the track momenta and 

the transverse momenta with respect to the jet axis are shown in Fig. 3.18. The 

agreement between the data and the Monte Carlo simulation is reasonable. 
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Figure 3.17. Comparison of the data and the Monte Carlo simulation after the 
hadron filter. (a) The number of observed charged tracks. (b) The thrust parameter. 
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charged tracks with respect to the jet axis. 
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Chapter 4. 

D* Production Cross Sections 

4. 1 INTRODUCTION 

In this chapter, I will describe the selection of n* candidates and the 

determination of the production cross section as a function of the n* momentum. 

The physics we wish to obtain is the total n* production cross section, the charm 

fragmentation function, and the forward-backward asymmetry of the cc production. 

We will start from an overview of the strategy. 

4.2 STRATEGY 

The low Q value, 5.8 MeV/ c2 , of the charged n* decay mode, 

has been exploited extensively as a signature to identify it in vanous 

experiments.l61- 167 (The subscript 'n*' attached to the pion is to distinguish it 

from the pion(s) in the n° decay. Also, charge conjugate states are implied in the 

following unless stated otherwise.) When the mass difference MD* - M Do is plotted 

for the n* candidates, the small Q value suppresses the combinatorial background 

in the signal region. Equivalently, the velocity vectors of the n° and 7rb* are similar 

both in magnitude and direction; thus, for a given n° candidate, there is a limited 

phase space to search for the true 7rb* track. 
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We will study D0 's in the decay mode 

where X is nothing or typically a 1r0 which we do not detect. The Cerenkov counter 

is used to select the candidates for either the kaon or the pion from the D0 decay. 

These tracks are called 'leading' tracks since their momenta are required to be 

greater than the pion Cerenkov threshold and are usually the fastest track coming 

from each D* candidate. A leading track is combined with another track of opposite 

sign ('nonleading' track) to form a D0 candidate which is then combined with a 7rD* 

candidate to form a D* candidate. 

When the charge sign of the 1r D* candidate is opposite to the charge sign of the 

kaon candidate, the combination is called 'right-sign', and 'wrong-sign' if not. The 

D* signal will appear as an enhancement of the right-sign sample over the wrong

sign sample. By comparing the two, the amount of background can be estimated in 

a self calibrating way. Thus, the Kj1r separation by the Cerenkov detector not only 

reduces the random combinatorial background, but also is crucial in estimating the 

amount of the background. 

4.3 SELECTION OF D* CANDIDATES 

AD* candidate consists of three charged tracks: a leading track, a nonleading 

track, and a ?r D* candidate track. First, we will select the leading track sample 

using the Cerenkov information, then each of them is combined with two more 

tracks to form a D* candidate. 

4.3.1 Selection of Leading Track Candidates 

The leading tracks are the tracks that are selected by the Cerenkov 

identification criteria, and they are either kaon candidates or pion candidates. The 

idea for selecting kaon candidates is as follows. If the momentum of a track is well 
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above the pion threshold (2.6 GeV jc), the number of photoelectrons expected for 

a pion is 13 to 23 depending on the path length. Therefore, the probability of a 

pion giving no photoelectrons is very small, and the lack of the response can be 

used to identify heavy particles. This is even true for multiple hit cells, since any 

particle that emits Cerenkov light contributes to the detection inefficiency but not 

to the contamination in the kaon sample. On the other hand, pion candidates are 

selected by requiring Cerenkov response for the tracks with momenta between the 

pion threshold and the kaon threshold. 

First, each candidate for a leading track is required to meet the following 

criteria in order to ensure good momentum resolution and to reject trivial 

background tracks: 

1. The number of hits in the central tracking chambers (IDC and CDC) must 

be at least 9 out of 16 total, and the number of hits in the outer tracking 

chambers (PDC) must be greater than or equal to 2 out of 6 total. 

2. The x2 per degree of freedom (nd) of the track fit is required to be less than 

3.0. 

3. The distance of closest approach to the beam axis measured by the beam 

position monitor (b) must be less than 3 mm, and the z coordinate of the 

corresponding point on the track (z0 ) must be within ±4 em of the center of 

the expected interaction point distribution. 

The first two cuts are loose and designed to reject tracks that are mistracked. The 

third cut is not stringent, either. Figure 4.1 shows the distribution of the track 

origin, b and z0 , right before the cuts are made. The impact parameter has a long 

tail that contains mostly the decay products of strange particles and other unwanted 

tracks such as the result of nuclear interactions at the beam pipe region. Also, the 

tracks that are mistracked tend not to point back to the beam axis. The lifetime of 

Do is, as we will see later, small enough so that the inefficiency caused by this cut 

is negligible. 

We define a kaon candidate to be a track that satisfies the following criteria in 
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Figure 4.1. Distribution of the track origin, b and z0 , for general tracks in hadronic 
events. The impact parameter to the beam axis, b, is shown in (a), and z coordinate 
of the track origin, z0 , in (b). The arrows indicate the location of the cuts. These 
are a part of the track quality cuts used for all the tracks that form a D * candidate. 
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addition to the track quality cuts above; 

1. The momentum of the track must be greater than 3.2 Ge VIc ( ~ 3u above 

the pion threshold in order to minimize misidentifications due to momentum 

smearing). 

2. The number of photoelectron (normalized to the quality factor of 100 and 

the path length of 100 em) recorded in the Cerenkov cell traversed by the 

track must be less than 0.5. This causes a cell with the single photoelectron 

noise to be rejected. As we have seen, however, this noise occurs only 1% 

of the time, and it is random; thus, it does not impair the kaon detection 

efficiency. 

The Monte Carlo is used to estimate the fractions of particles in the kaon 

sample, and the results are given in Table 4.1. I note that about 30% of the kaon 

sample are actually protons;168 however, this misidentification only increases the 

amount of random combinatorial background, and does not affect the right-sign 

wrong-sign analysis. The pion contamination is due to momentum errors which 

occasionally result in pions below Cerenkov threshold being wrongly included in 

the sample. 

Table 4.1. Monte Carlo estimation of the particle fractions in the kaon 
sample. 

fraction(%) I ~.0 I :.1 
K p 

0.1 63.3 30.5 

A leading p10n candidate is defined to be a track that satisfies following 

requirements in addition to the track quality cuts; 

1. The momentum of the track greater than 2.6 Ge VIc and less than 9.2 Ge VI c. 

2. The number of photoelectrons (normalized to the quality factor of 100 and 

the path length of 100 em) greater than 3.0. 

3. The timing of hits is required to be within ±1.5 ns. 
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4. There is no other track with a momentum greater than 2.6 Ge VIc entering 

the same cell. 

5. There is no track that is one of the pair of a gamma conversion candidate 

entering the same cell. 

The minimum momentum cut of 2.6 Ge VIc is lower than the 3.2 Ge VIc cut 

used for the selection of kaon candidates. This is because the requirement of positive 

Cerenkov response ensures that kaons do not significantly contaminate the pion 

sample. The maximum momentum cut corresponds to the kaon threshold above 

which kaons emit Cerenkov light and thus not separable from pions. The cut value 

for the number of photoelectron is chosen to be above the single photoelectron noise 

in order to avoid the cells with the noise imitating pion signals. Finally, the last 

two cuts require that there are no other particles within a cell that are likely to 

emit Cerenkov light. 

Table 4.2 shows the fraction of particles in the pion sample estimated by the 

Monte Carlo. The kaon contamination is only 2% and is mostly due to the high 

momentum kaons that are above the kaon threshold but are mismeasured to be 

below 9.2 Ge VI c. There are leptons in the sample at 7% level; however, as in 

the case of protons in the kaon sample, their effect is only to increase the random 

background. 

Table 4.2. Monte Carlo estimation of the particle fractions in the p10n 
sample. 

e J1, 7r K p 

fraction(%) 3.5 3.2 90.7 2.1 0.5 

4.3.2 Construction of D*± Combinations 

No Cerenkov information is used to select the nonleading and 7rD* candidate 

tracks. Table 4.3 summarizes the cuts applied to individual tracks and the average 

number of tracks per event that pass each set of cuts. The cuts are tighter for 
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the leading tracks and the 1r D* candidates, which define whether a D* candidate is 

right-sign or wrong-sign, than for the nonleading tracks. 

Table 4.3. Cuts made to individual tracks of D * candidates. Average 
number of tracks per event that pass the cuts are listed at the bottom. 

track type leading K leading 1r* nonleading 1rD* 

quality cuts 

# IDC,CDC hits 2:9 2:9 >9 2:12 

# PDC hits 2:2 2:2 - -

x2 fnd <3.0 <3.0 <3.0 <3.0 

b(cm) <0.3 <0.3 <0.3 <0.3 

izoi(cm) <4.0 <4.0 <4.0 <4.0 

Cerenkov 

momentum(GeV /c) p > 3.2 2.6 < p < 9.2 - -

# photoelectron < 0.5 > 3.0 - -

time (ns) - -1.5 < t < 1.5 - -

<#/event> 0.19 0.33 7.9 6.6 

* In addition, it is required that the cell contains no other tracks with P > 2.6 Ge V / c and 
no track that is identified as one of a pair of a gamma conversion. 

Each of the leading track candidates is combined with a nonleading track 

candidate of opposite charge sign that satisfies the following cuts to form a D0 

candidate; 

1. The cosine of the angle between the leading and nonleading tracks, cos OK1r ' 

is greater than 0.4. 

2. The invariant mass of the pair, MK1r' is greater than 1.45 GeVjc2 and less 

than 2.2 GeVjc2 . 

The first cut effectively limits the combinations to be within a jet, and the cut 

value was chosen using the Monte Carlo so that the inefficiency caused by this cut 

is negligible. When the leading track is a kaon candidate (we call it K-mode), the 

invariant mass is calculated by assigning the kaon mass to the leading track and 
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the pion mass to the nonleading track. When the leading track is a pion candidate 

(1r-mode), the mass assignments are inverted accordingly. Figure 4.2 shows the 

invariant mass distributions for the K-mode and 1r-mode combinations right before 

the invariant mass cuts (indicated by the arrows). The nominal D 0 mass70 is 1.865 

Ge VI c2 . At this stage, the distributions are dominated by random backgrounds. 

Each of the D 0 candidates is then combined with any of 1r D* candidates in 

the same event, and a combination is defined to be right-sign when the charge 

sign of the kaon candidate is opposite to that of the 7r D* candidate, and wrong

sign if not. Figure 4.3 shows the mass difference ~M - MK1r1rv• - MK1r vs 

the sine of the opening angle between the D0 candidate and the 1r D"' candidate 

(sin 0 D1r). An alternative is to constrain the K 1r mass to the nominal D 0 mass, 

but the improvement is found to be negligible. The plots are shown separately for 

the K-mode and 1r-mode candidates, as well as for the right-sign and wrong-sign 

combinations. Because of the low Q value of D*± decay, the signal region is the 

region of small sin 0 D1r and small ~M. The nominal value of the mass difference is 

0.1454 Ge VI c2 ,70 and sin 0 D1r is found to be less than 0.13 by the Monte Carlo. One 

can see an enhancement in the signal region for the right-signs over the wrong-signs 

in each mode. 

The ~M distributions after the cut sin 0 D1r < 0.13 are shown in Figure 4.4. 

The ~M resolution is consistent with what is expected from the Monte Carlo. We 

define the D*± candidates to be the ones with ~M less than 0.1625 Ge VI c2• To 

summarize, the cuts applied to the combinations of D0 and 7fD• candidates are; 

1. The sine of the angle between the D 0 and 7rD• candidates, sinOD1r' be less 

than 0.13. 

2. The mass difference, ~M, be less than 0.1625 GeVIc2 • 

Before the numbers of final candidates are quoted, multiple solutions have to be 

resolved when more than one D*± candidate is found in a jet. We group together 

the D*± candidates in a event whose 7rD• candidate track belong to a same jet, 

where the jets are defined by dividing the tracks of an event into two groups by a 
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Figure 4.2. Invariant mass distribution of K-1r pairs for K-mode (a), and 1r-mode 
combinations (b). The arrows indicate the accepted range for the D 0 candidates. 
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Figure 4.3. !:lM vs sin 0 D1l" for the K-mode right-signs (a), K-mode wrong-signs 
(b), the 1r-mode right-signs (c), and 7r-mode wrong-signs. For each mode, there is a 
clear enhancement for the right-sign sample in the region of small sin 0 D1l" and small 
!:lM. The arrows show the position of sin 0 D1l" cut. 
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Figure 4.4. ,6.M distributions after the cut sinOn1r < 0.13 for K-mode (a) and 
?T-mode candidates. The distributions for the wrong-sign combinations (histogram) 
are plotted over those for the right-signs (points with error bars). The arrows show 
the position of ,0.M cut which defines the D* signal region. 
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plane that is perpendicular to the thrust axis. When a group has more than one 

candidate, it is found that they typically share the 1r D* track or the leading track, 

in which case they do not correspond to genuinely multiple D* 's. Thus, when the 

number of D*± candidates in a group is more than one, the one with 6.M closest 

to the nominal value is selected. After the multiple solutions are resolved, there 

are 14 events that belong to both the K-mode and 1r-mode. All of these are in the 

right-sign samples and they are counted in both modes. Table 4.4 summarizes the 

numbers of D*± candidates before and after the multiple solutions are resolved. 

Table 4.4. Numbers of D*± candidates in the K-mode and 1r-mode samples 
(data) before and after the multiple solutions are resolved. 

with multiples multiples resolved 

K-mode 1r-mode K-mode 1r-mode 

right-sign 103 161 97 139 

wrong-sign 18 62 15 51 

In order to check if there is any other effects that may create the enhancement 

of the right-sign sample over the wrong-sign sample, the standard hadronic Monte 

Carlo events which contained no D*± are analyzed with the same set of cuts as 

the real data. Table 4.5 shows the resulting numbers of D*± candidates. There is 

no indication of enhancement of the right-sign sample over the wrong-sign sample 

either in the K-mode nor in the 1r-mode. Thus, we do not expect any source other 

than D*± which can produce the observed right-sign enhancement. 169 

Table 4.5. Numbers of D*± candidates for the Monte Carlo dataset 
that contains no D*±. Multiple solutions are resolved. No significant 
enhancement of the right-sign samples are seen. 

K-mode 1r-mode 

right-sign 89 237 

wrong-sign 97 222 
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4.4 ESTIMATION OF n*± PRODUCTION CROSS SECTIONS 

Since the background is expected to contribute similarly to the right-sign 

sample and the wrong-sign sample, we are interested only in the difference between 

the two samples. Accordingly, the detection efficiency is defined by how much of the 

true n* 's contribute to the difference. It should be noted that the amount of the 

wrong-sign sample does not directly indicate the amount of the non-n* background; 

for the n° decay modes such asK- K+(X) and ?T-?T+(X) will contribute to both 

the right-sign and wrong-sign samples by the same amount. Here, we are not 

concerned about how much of the candidates are really n* 's. We will address this 

question in the next chapter when we measure the n° lifetime. 

The detection efficiency is estimated by the Monte Carlo simulation. However, 

then* signal obtained in the previous section contains n° decay modes other than 

the K-1r+ mode. Thus, the n° branching fractions in the Monte Carlo should 

be consistent with reality in order to obtain the correct detection efficiency. Also, 

the performance of the Monte Carlo needs to be checked against the data, and an 

adjustment must be made if there is a significant difference, 

4.4.1 n° Branching Fractions in the Monte Carlo 

The n° branching fractions are adjusted to match the present knowledge as 

close as possible. Table 4.6 shows the branching fractions used compared with the 

measurements by the SLAC-LBL Magnetic Detector collaboration (referred to as 

MARK-1),170 by the MARK-II collaboration,171 the MARK-III collaboration,172 

and the values quoted by the Particle Data Group.70 The Monte Carlo values 

listed in the table are obtained by actually generating n° decays and counting the 

occurrences of each decay mode. This was necessary because the LUND generator 

generates charm decays by a jet-like generation scheme rather than by a long list 

of explicit decay modes. The branching fractions used in the Monte Carlo are 
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consistent with the measurement values, but uncertainties in the measurements are 

quite large. 

Table 4.6. Comparison of the n° decay branching fractions used in the 
Monte Carlo and the measurements. The value of uDo used is also listed 
for each experiment. 

decay mode MC(%) MK-I(%) MK-II (%) MK-III (%) PDG (%) 

K-7r+ 3.0 2.2 ± 0.6 3.0 ± 0.6 3.7 ± 0.6 ± 0.7 2.4 ± 0.4 

K-7r+1r0 9.7 12 ±6 8.5 ± 3.2 7.1 ± 1.2 ± 1.7 9.3 ± 2.8 

K- +anything 42.7 35 ± 10 55± 11 - 44 ± 10 

K-K+ 0.27 - 0.34 ± 0.11 * 0.46 ± 0.10 ± 0.09* 0.27 ± 0.08 

UDO (nb) - 11.5 ± 2.5 8.0 ± 1.0 ± 1.2 7.5 ± 1.1 ± 1.2 -

* Calculated from Br( K- K+) /Br( K-1!"+) quoted in the paper and their own value of Br( K- 1r+). 

Only the decay modes that contain a charged K are included in the table. As 

we will see later, other decay modes do not contribute to the difference between the 

right-sign sample and the wrong-sign sample. The K- K+ mode does not contribute 

to the difference, either, and is included here for a later reference. 

It is worth noting that the measured values for the branching fractions m 

the table were obtained from data collected in the reaction e+ e- -+ 'lj;11 -+ n°IfJ 

[except for Br(K- K+)jBr(K-7r+) by MARK-II]. Since the actual measurement 

is done on the quantity uDo·Br(n° -+ X), the branching ratios are inversely 

proportional to the n° production cross section uDo used in the calculation. The 

values used are 11.5 nb, 8.0 nb, and 7.5 nb for MARK-I, MARK-II, and MARK-III, 

respectively. It can be seen from the table that the discrepancies of the branching 

ratios are largely due to the differences in the n° production cross sections. The 

MARK-III collaboration also has tried a different method that does not depend 

on the n° production cross section,172 which is to compare the number of doubly 

tagged events [e.g., 'lj; 11 -+ (K-1r+)Do(K+1r-)]f] to that of singly tagged events 

[e.g., 'lj;11 -+ (K-1r+)Do + anything, and its charge conjugate]. They report a 
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substantially larger branching fraction, 4.9 ± 0.9 ± 0.5%, for the K-1r+ decay 

mode. This corresponds to the D0 production cross section of 5.7 ± 1.1 ± 0.9 nb, 

which is not consistent with the value used by MARK-I, and substantially smaller 

than the values used by MARK-II and MARK-III. Therefore, if the value 5.7 nb 

turns out be the correct value, all the experimental values in the table have to be 

increased accordingly. However, the ratios between the different decay modes are 

more reliable. 

4.4.2 Contributions from Various D0 Decay Modes 

The contributions from four types of decay modes, K-1r+, K-1r+1r0 , K- X 

(excluding the first two, and X does not contain any K+) and modes with no 

charged kaons, are estimated using the Monte Carlo simulation, and the results are 

shown in Figure 4.5 and Figure 4.6 as functions of the pair mass MK1r· As can be 

seen in the figures, when there is no charged kaons among D 0 decay products the 

difference between the right-sign and wrong-sign samples is consistent with zero for 

both the K-mode and the 1r-mode. Also, the pair mass peaks at the nominal D0 

mass of 1.865 Ge V / c2 for the K-1r+ mode, while they populate lower mass regions 

for other modes. 

The D 0 -If m1xmg can dilute the right-sign enhancement. However, the 

mixing rate is expected to be very small in the standard model of Weak and 

Electromagnetic interactions (~lo-3 ), and the mixing effect is assumed to be 

negligible in this chapter. An upper limit on D0 - If mixing will be set in a 

subsequent chapter using our data. 

The only decays modes that are not included in the table are those that contain 

a K+ ,i.e., a wrong-sign kaon. The contribution from these decay modes is found to 

be dominated by the K- K+ decay mode, which gives an equal number of right-sign 

and wrong-sign candidates. Therefore, one can conclude that the difference of the 

right and wrong-sign samples is due to the D 0 decays that contain a K- and no 

other charged kaons . 
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Figure 4.5. Contributions to the K-mode sample from various n° decay modes 
(Monte Carlo) plotted against MK1r· The distributions are taken after all then* 
cuts. In each plot, the wrong-sign distribution (histogram) is plotted over the 
right-sign distribution (points with error bars). The distribution for the K-1r+ 
mode peaks at the nominal n° mass (1.865 Ge V / c2), while for K-1r+1r0 and K- X 
it peaks at lower values. 
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Figure 4.6. Contributions to the 1r-mode sample from various D0 decay modes 
(Monte Carlo). In each plot, the distribution for the wrong-sign combinations 
(histogram) is plotted over that for the right-sign combinations (points with error 
bars). Decay modes with no charged K do not contribute to the difference between 
the right-sign sample and the wrong-sign sample. 
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There is an effect by which a K-1r+1r0 can fake a K-1r+ mode when only 

charged tracks are detected. The decay mode K- 1r+ 1r0 is known to be dominated by 

decays with a pseudoscalar meson plus a vector meson as an intermediate state,171 

of which K- p+ is the major component. In such cases the vector meson is in a pure 

helicity 0 state in the n° rest frame due to angular momentum conservation. As a 

result, the angle between the 1r+ and the n° in the rest frame of the p+ (helicity 

angle) is strongly peaked forward and backward. When the 7r+ is emitted in the 

forward direction it carries a large fraction of the p+ momentum thus imitating a 

K-1r+ decay. This angular distribution has been implemented in the Monte Carlo, 

and Figure 4. 7 shows the K-1r+ invariant mass distribution for the decay chain 

where momenta are not smeared. Without the cuts on sin 0 D1r and !:l.M -

MK1r1rD* - MK1r (Fig. 4.7 histogram a), there are two peaks, one at 1.6 GeVjc2 

and the other at around 0. 75 Ge V / c2 . The dip between the peaks is a reflection 

of the dip at 90° in the helicity angle distribution, and absent when the p is not 

polarized. With the cuts on sin 0 D1r and !:l.M (Fig. 4. 7 histogram b), the lower peak, 

which corresponds to the cases where 1r+ is emitted backward, almost disappears, 

and with the MK1r cut at 1.45 GeVjc2 , only the cases where the 1r+ is emitted 

strongly forward survives. For these events, the loss of the 1r0 does not hurt the 

P D* resolution significantly. The n*± detection efficiency for this mode is found 

to increase by 65% when the p is polarized compared to the case when the p is not 

polarized. 

In the Monte Carlo, the D*± 's are generated in jets according to 

a fragmentation function adjusted to match the measured n*± momentum 

distributions. Nonetheless, the results shown above are found to be insensitive 

to the shape of the fragmentation function. 

Figure 4.8. shows the MK1r distribution of our n*± samples. The distribution 

for the wrong-sign sample has been subtracted from that for the right-sign sample 
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Figure 4.7. MK-1r+ distributions for n°--+ K-p+, p+--+ 1r+1r0 where the n° is 
from an*+ decay. No momentum smearing is applied. (a) without any cuts and 
(b) with !:l.M and sin 0 D1r cuts. The higher of the two peaks of the histogram a 
corresponds to the cases where the 7r+ from the p+ is emitted forward carrying 
most of the p+ energy; for them, the loss of the 1r0 does not significantly worsen 
the P D * resolution. The arrow indicates the pair mass cut used in the analysis. 
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and what is plotted is the difference. The shape expected from the Monte Carlo 

(solid curve) is overplotted. They are statistically consistent. From Fig. 4.5 and 4.6, 

one obtains the estimation of the contribution of each decay modes to the difference 

between the right-sign and wrong-sign samples which is summarized in Table 4.7. 

4.4.3 D* Momentum Correction 

Except for the K-1r+ decay mode, not all of the decay products of D 0 are 

detected. When there is a missing track(s), the sum of the measured momenta 

of the leading, nonleading, and 1r D* tracks are on the average smaller than the 

true D* momentum. The fraction of the candidates for which there is a missing 

track(s) is, as can be seen in Fig. 4.5 and 4.6, a function of MK1r· Thus, we correct 

the measured D* momentum, which is a sum of the three measured momenta, by 

multiplying a correction factor which is a function of MK1r· The correction curve 

is obtained from the Monte Carlo separately for the K and 1r-mode. The ratio 

Pn* (true)/ Pn* (measured) is fitted to a second order polynomial(Figure 4.9). The 

curves for the two modes are similar. 

This correction has a side benefit of giving a better D* momentum resolution 

for the K-1r+ decay mode where all the decay products of a n*± are detected. The 

effect of momentum smearing of each track is such that when MK1r is higher (lower) 

than the nominal n° mass, then the measured Pn* is likely to be overestimated 

(underestimated). Thus, by making a MK1r dependent momentum correction, a 

better PD* resolution can be obtained. In fact, the average Pn* resolution for this 

mode improves from 10% to 3% with the correction. The curve crosses 1.0 level 

at around the nominal n° mass for the both modes as expected. In the M K 7r 

region where the K-1r+ and other decay modes overlap, one correction factor is 

applied to the two different kinds of effects that can distort the n* momenta, one 

by the missing particles and the other by the momentum smearings. However, the 

correction factors for these two effects are found to be the same within the statistical 

error in the region of significant overlap. 
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Figure 4.8. The MK1r distribution in the final D*± samples for the K-mode and the 
1r-mode. Each point is the difference between the number of right-sign combinations 
and that of wrong-sign combinations . The solid curves shows the expected shape 
from the Monte Carlo. 
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Table 4. 7. Monte Carlo estimation of the contribution of various n° decay 
modes to the difference of the right-sign and wrong-sign samples. 

decay mode K-7r+ K-7r+7r0 K-x* other modes 

K-mode(%) 52 27 21 ~o 

7r-mode(%) 59 28 13 ~o 

* Excludes K-11"+, K-11"+ 11"0 , and decay modes with a K+. 

Figure 4.10 shows the resulting over-all n* momentum resolution. It can be 

seen that there are two components, a narrow peak at the center that has a width of 

3% and a wide distribution with a width of 12%. The narrow component is due to 

the K-7r+ decay mode and the wider component is due to the other decay modes 

of n° for which there is an missing momentum. 

4.4.4 Detection Efficiency Corrections 

The detection efficiency for the decay n*+ ---t n°7r"Jj* in each n* momentum 

bin is defined to be, 

E _ #(Right sign)i -#(Wrong sign)i 

#(n*+ ---t no'Jrb* )i 

where the subscript i refers to the i-th momentum bin and there is no restriction 

on the decay channels of n°. The number of the decays n*+ ---t n°7r1J* is counted 

over the 47r solid angle for hadronic events that pass the hadron cuts. 

The detection efficiency defined above contains the branching fractions of D0 

to final particles. This is because each n° decay mode cannot be separated clearly 

even though the dominant mode is K-7r+ as shown in Table ( 4. 7). Therefore, the 

detection efficiency is a linear function of the branching ratios used in the Monte 

Carlo. 

If the Monte Carlo is a good enough representation of reality (besides the D0 

branching fractions), then the efficiency obtained from it can be directly applied to 

the measured difference between the right-sign and wrong-sign samples to estimate 
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function of the measured M K 7r for the K and 7r mode separately. The points are 
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the number of D*'s that decayed to D 0 1r"Jj*. However, there are slight residual 

differences between the data and the Monte Carlo that are difficult to be completely 

removed. And a small difference in the single track efficiency can become significant 

when many tracks are combined to form a candidate. Therefore, critical components 

of the D* detection efficiency need to be checked both in the data and the Monte 

Carlo, and corrections have to be made when necessary. 

The detection efficiency can be divided into two parts; one is the efficiency for 

the individual tracks to be found and to pass the cuts, and the other is due to the 

cuts involving multiple tracks such as the opening angle and invariant mass cuts. 

The latter is checked by changing the momentum resolution and angular resolution 

of tracks in the Monte Carlo over the range of uncertainty. The resulting change in 

the detection efficiency is found to be negligible. On the other hand, the differences 

in the individual track efficiencies have significant effects. The efficiency correction 

for the individual tracks can be divided into two parts; the efficiency that a track 

is found and the effect of decays in flight and nuclear interactions. 

4.4.5 Track Finding Efficiency 

The track finding efficiency can be roughly estimated by how close two tracks 

can come and both be found. By scanning the lost tracks in single event displays 

of Monte Carlo events, it is found that the inefficiencies are almost all due to 

overlapping tracks. If a track is isolated, then the finding efficiency is similar to 

that for the tracks in the low multiplicity events such as e+ e- --+ e+ e- e+ e- where 

the efficiency is found to be greater than 99%. 

The closeness of tracks, or the badness of overlapping, may be measured by 

the azimuthal angle of tracks at a radius of 25 em which is about the first layer of 

the CDC. For each track, the angle L:l¢min is defined to be the ¢> angle at r = 25 

em to the closest track, where all tracks are required to be within the geometrical 

acceptance. Figure 4.11 shows the distribution of L:l¢min for the Monte Carlo and 

the data. The momentum of the track to be plotted is required to be greater than 1.0 
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Ge V / c, while no momentum cut was made to the second track that forms fl</>min 

with the first track. The histogram (solid line) in (a) is the fl</>min distribution 

when the track finding efficiency is assumed to be 100 %, and the case when only 

the found tracks are used is shown by points with error bars. 

The dip at small fl</>min of the latter is due to the inefficiency caused by 

overlapping tracks. In fact, 75% of the tracks that are not found is in the region 

fl</>min < 0.05 radian in the histogram plot. 173 The corresponding plots for the data, 

(b), show that the area of the dip is bigger than for the Monte Carlo by a factor 1.8. 

The histogram plot in (b) is the same as the histogram plot in (a) except that it is 

scaled to fit the data in the region 0.06 < fl</>min < 0.16 radian. The track finding 

efficiency is roughly the square root of the ratio of the two distributions because 

each entry to the plot is associated with a pair of tracks that forms fl</>min. Even 

though the reality is slightly more complicated, this ansatz is found to reproduce 

the true track finding efficiency in the Monte Carlo, which is also shown in the 

figure. Assuming that the track finding inefficiency scales with the size of the dip, 

the inefficiency in the data is 1.8 ± 0.4 times the inefficiency in the Monte Carlo. 

The error reflects, among others, the lack of knowledge on the fraction of lost tracks 

that are in the region of the dip in the data, which was assumed to be the same 75% 

as for the Monte Carlo. The over-all track finding efficiency in the Monte Carlo is 

95.1 %, which leads to an estimated efficiency of 91.2 ± 2.0% in the data. 

Thus, the D* finding efficiency evaluated by the Monte Carlo will be multiplied 

by [(91.2 ± 2.0)/95.1] 3 = 0.88 ± 0.07 to take into account the difference in the track 

finding efficiency between the data and the Monte Carlo. One possible explanation 

for this discrepancy is that the performance of the multiple hit recording in the 

drift chambers is not as good as the design. 

4.4.6 Decays in Flight and Nuclear Interactions 

The decays in flight and nuclear interactions of charged pions and kaons are not 

simulated in the Monte Carlo. A nuclear interaction at the beam pipe region or the 
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Figure 4.11. The track finding efficiency can be estimated by looking at how closely 
two tracks can be found. The ¢ angle from a given track to the closest track, !l¢min 
(measured at r = 25 em), is plotted for (a) the Monte Carlo and (b) the data. The 
histogram in (a) is the distribution when a 100% track finding efficiency is assumed. 
In (b), the same histogram is scaled to fit the data in the region 0.06 < !l¢min < 0.16 
radian. The true track finding efficiency in the Monte Carlo is also shown in (a). 
The dip near !l¢min = 0 is larger for the data. 
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walls between the IDC and the CDC will almost always result in the loss of the track. 

The material is mostly aluminium which has a collision length of174 71 gr·cm-2. 

The amount of material averaged over all runs (two types of beam pipe have been 

used) is 0.75 gr·cm-2 which leads to 1.1 % loss per track. Thus, the correction 

factor due to nuclear interactions is (1 - 0.011) 3=0.97. In addition, the nuclear 

interactions between the inner chambers and the outer chambers affect the leading 

track since the leading particle is required to have hits also in outer drift chambers. 

The corresponding amount of material is 3.9 gr·cm-2 of mostly aluminium which 

results in additional 5 % loss of leading tracks. Thus, the inefficiency due to nuclear 

interactions is 0.97x (1-0.05) = 0.92±0.02, where the error reflects the uncertainty 

in the cross sections and the type and amount of materials. 

The loss due to the decays in flight of pions or kaons is a function of their 

momentum, so the correction to the D* detection efficiency also depends on the D* 

momentum. Figure 4.12 shows the fraction of D*'s lost by decays in flight of pions 

and kaons for the K-mode and 1r-mode separately. The Monte Carlo events are used 

to estimate the loss assuming that a candidate is lost when any of the three tracks 

decay inside a fiducial volume, which is defined to be insider= 35 em for the 7rD• 

track and the nonleading track, and inside r = 140 em for the leading track. The 

former is about 15 em inside of the outermost CDC layer which corresponds to the 

9th layer from inside, and the latter is right inside the outer chambers. Most of the 

decays appear as kinks that distort the momentum or simply cause the track to be 

lost or fail the cuts, and there is uncertainty in how many of D*'s with a decaying 

track actually fail to be included in the final sample. The systematic error is taken 

to be 1/2 of the correction to reflect this uncertainty. The data points are fit to 

second order polynomials to be used in the calculation of the cross sections. 

In summary, the corrections applied to the detection efficiencies directly 

obtained from the Monte Carlo are, 



144 

.15 

K-mode 

.10 
U2 
U2 
0 

..--I 

~ ro .05 () 
Q) 

'"d 

.00 
4 6 8 10 12 14 16 

Pn. (GeV /c) 

.15 

7T-mode 

.10 
U2 
U2 
0 

..--I 

~ ro .05 () 
Q) 

'"d 

.00 
4 6 8 10 12 14 16 

Pn. (GeV/c) 
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1) The difference in tracking efficiency (0.88 ± 0.07), 

2) Nuclear interactions (0.92 ± 0.02), and 

3) Decays in flight, as shown in Fig. 4.12. 

We take the product of the three to obtain the final correction factor for the 

detection efficiency and denote it as Ecorr· 

4.4. 7 da I dx: Separately for the K -mode and The 1r-mode 

Figure 4.13(a) shows the x distribution for the K-mode candidates and the 

corrected detection efficiency is plotted in (b). The parameter x is defined to be 

where P - (E2 M2 )1/2 max = beam - D* (4.1) 

where MD* is the nominal D* mass of 2.010 Ge VI c2 . The momentum PD* has 

been corrected by the correction factor shown in Fig. 4.9, and is measured in the 

laboratory frame. The range of x is (0,1) for any beam energy except for some 

pathological cases . An alternative definition of x could be En* I Ebeam which has a 

threshold at x =MD* I Ebeam· We choose to use the definition (4.1) because it makes 

the comparison with measurements at different energies easier. The corresponding 

plots for the 1r-mode is shown in Figure 4.14. 

We restrict ourselves to the region x > 0.35 in order to avoid the region of small 

detection efficiency. To get the cross section in each x bin, the following formula is 

used: 
da 2 nr-waoRhad 

s- =4E 
dx beam EBr( D *+ ---+ D 01r b*) Nhad .6.x 

(4.2) 

= 0.114 X 10-4 nr;w (J.Lb · GeV2), 
Eu.X 

where 

s is the invariant mass squared of the e+ e- system. 

Ebeam is the beam energy (14.5 GeV), 

nr-w is the count in the bin [#(right sign)-#(wrong sign)], 

E is the corrected detection efficiency for the decay D *+ ---+ D 0 1r1)*, 
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Figure 4.13. The raw x Pn* / Pmax of the K-mode D * candidates, where 
Pmax (E~eam -M'jy* )112 . The corrected K-mode detection efficiency as a function 
of X is shown in the bottom plot. The detection efficiency contains the D 0 branching 
fractions [but not Br(D+--+ D 0 ?T1J*)]. 
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ao is the 1st order QED cross section for e+ e- --+ J.t+ J.t- (0.103 nb), 

Rhad is the hadronic cross section via single photon in unit of ao including the 

radiative correction (3.9±0.2), 

Nhad is the number of events in the multihadron dataset (46549), and 

~x is the bin width. 

The value used for the Br(D*+ --+ D0 1r"Jj*) is 0.64±0.11 by the Particle 

Data Group 70 . The most recent value is by the MARK II collaboration 175 and 

is 0.44±0.10, which was, unlike above, measured without assuming the 1sospm 

symmetry in D*+ decays. We choose to use the former because the 1sospm 

symmetry is expected to be a good symmetry in this case. 

Table 4.8 summarizes the observed number of events, efficiencies, and the 

D*± production cross section in each x bin for both the K-mode and 1r-mode 

samples. The final efficiency E is the product of the raw efficiency Eraw, which is 

directly obtained from the Monte Carlo, and the correction factor Ecorr described 

in the previous subsection. The resulting differential cross sections are shown in 

Figure 4.15. The errors are statistical only and do not include the uncertainties in 

the decay branching ratios. However, the branching ratios do not affect the shape 

of the x distribution significantly. The MK1r-dependent correction to the measured 

D* momentum makes the final shape insensitive to the uncertainty in the relative 

sizes of the various decay branching fractions. 

4.4.8 da / dx: Two Modes Combined 

The results from the two samples are consistent with each other, and can be 

combined bin by bin statistically. The result is shown in Table 4.9. 

Also listed in Table 4.9 are the estimated contributions from b quark decays 

and the cross sections after they are subtracted. Figure 4.16 shows the momentum 

distribution of D*± 's coming from b quarks and c quarks, separately and combined. 

The combined distribution is consistent with our measurement. The relevant 

assumptions used in the Monte Carlo are, 
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Table 4.8. Observed number of events ( nr-w), Monte Carlo raw efficiency 
( Eraw), efficiency correction factor ( Ecorr), final efficiency (E), and the D*± 
production cross section ( s · du / dx) for several x bins. The detection 
efficiencies include the D 0 branching fractions used in the Monte Carlo 
(see Table 4.6). 

(a) K-mode 

X low b..x nr-w Eraw Ecorr E s · dujdx (Jlb · GeV2) 

0.35 0.15 23 ± 5.2 0.0082 0.753 0.0062 0.28 ± 0.07 

0.50 0.15 33 ± 6.2 0.0098 0.764 0.0075 0.33 ± 0.07 

0.65 0.15 18 ± 5.1 0.0116 0.773 0.0089 0.15 ± 0.05 

0.80 0.20 6± 3.2 0.0129 0.780 0.0101 0.03 ± 0.02 

(b) 1r-mode 

X low b..x nr-w Eraw Ecorr E s · dujdx (Jlb · GeV2) 

0.35 0.15 15 ± 7.7 0.0053 0.744 0.0039 0.29 ± 0.16 

0.50 0.15 32 ± 7.2 0.0084 0.760 0.0063 0.38 ± 0.10 

0.65 0.15 25 ± 6.1 0.0079 0.771 0.0061 0.31 ± 0.09 

0.80 0.20 5 ± 2.7 0.0079 0.780 0.0062 0.05 ± 0.03 

1. b ---+ c 100% of the time.l76 

2. The b quark fragmentation function is sharply peaked toward x=1. 177 

3. f(c---+ D*+)jf(c---+ all) is the same for the charm quarks generated at e+e-

vertex as those from b quark decays. 

The first two are well established experimentally. The fraction of charms accounted 

for by D* 's is not accurately measured either in bottom hadron decays or in charm 

quark fragmentations at high energy.178 Theoretically, the third assumption seems 

reasonable. The estimated fraction of D*± 's from b decays for x > 0.35 is estimated 

to be 8%. The corresponding plots with and without the bottom contribution are 

shown in Figure 4.17(a). 

The solid curves in Fig. 4.15 and 4.17 are the results of the fits to the 

parametrization suggested by Peterson et al.[Equation (2.26)] for the heavy quark 
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Figure 4.15. The differential cross sections obtained from the K-mode and 7f

mode samples are shown separately. The solid curves are the result of fit to the 
parametrization described in the text. 
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Table 4.9. The differential cross section obtained by combining the results 
for the K-mode and 1r-mode of Table 4.8. The fraction of D*±'s from b 
quarks and the cross section after it is subtracted are also shown for each 
x bin. 

s · dajdx (J.Lb · GeV2) fraction of s · dajdx (J.Lb · GeV2) 
X low 

all D*±'s D*±'s from b without D*± 's from b 

0.35 0.28 ± 0.06 0.16 0.24 ± 0.05 

0.50 0.35 ± 0.06 0.05 0.33 ± 0.05 

0.65 0.19 ± 0.04 0.02 0.18 ± 0.04 

0.80 0.04 ± 0.02 0.01 0.04 ± 0.02 

fragmentation function at high energy. For the fit parameter, we used x 0 which 

is the value of x where the function f(x) has its maximum, instead of c in (2.26). 

It is related to c by the simple relation c = x0 + 1/ x0 - 2. This variable has the 

trivial geometrical interpretation and also makes the fit better behaved than c in the 

sense that it gives more symmetrical errors. The results of the fit for the combined 

data are x0 = 0.53 ± 0.04 (or c = 0.42~8J6) for the data with the bottom quark 

contribution, and x0 = 0.55 ± 0.04 (or c = 0.37~8:M) for the data without the 

bottom quark contribution. 

The total D*± production cross section for x > 0.35 can be obtained by adding 

up the cross sections in all x bins. The results are aDd (x > 0.35) = 0.16±0.02±0.02 

nb and 0.14±0.02±0.02 nb for the data with and without the bottom contribution, 

respectively. The first error is statistical and the second is systematic. The 

systematic error accounts for the uncertainty in detection efficiencies for particular 

decay chains of D*±, but does not include uncertainties in the branching fractions 

used for D*± and D0 . Two of the most important branching fractions are 

Br(D*+ ---+ D0 1r+) and Br(D0 ---+ K-1r+), for which we used 64% and 3.0%, 

respectively. As mentioned earlier, the most recent measurement with a new method 

gives 4.9±0.9±0.5% for the latter, and if this number turns out to be correct, then 

all the cross sections above need be scaled down by a factor of about 0.6. Thus, 
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Figure 4.17. The differential cross sections obtained by combining the results from 
the K-mode and 1r-mode samples, (a) without and (b) with the bottom contribution 
subtracted. The solid curves are the result of fit to the function described in the 
text. 
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at the moment, the largest uncertainty in the total cross section arises from the 

branching ratios. 

Assuming the shape given by (2.26), one can estimate the fraction of D* in 

the region x > 0.35 to calculate the total production cross section for the whole 

range. For the bottom subtracted combined data the fraction is 0.78 ± 0.10 where 

the error is mostly due to the uncertainty of the shape of the fragmentation function 

below x = 0.35. This gives a total production cross section of 0.18 ± 0.02 ± 0.03 nb. 

Table 4.10 summarizes the results of fit and the total cross sections for the various 

datasets. 

Table 4.10. Results of fit to the curve (2.26) and total D*± production 
cross sections for the various datasets. The branching fractions used are 
Br(D*+ ~ D01r+) = 64% and Br(D0 ~ K-1r+) = 3%. The systematic 
errors do not include the errors in the branching fractions. 

€ xo aDd (x > 0.35) 
(nb) 

O"Dd(X > 0) 
(nb) 

K-mode 0 52+0.21 . -0.16 0.49 ± 0.06 0.15 ± 0.02 ± 0.02 0.20 ± 0.03 ± 0.03 

1r-mode 0 30+0.13 
. -0.10 0.58 ± 0.06 0.19 ± 0.04 ± 0.02 0.23 ± 0.05 ± 0.03 

combined 0 43+0.12 
. -0.10 0.53 ± 0.04 0.16 ± 0.02 ± 0.02 0.21 ± 0.02 ± 0.03 

combined 0 37+0·11 0.55 ± 0.04 0.14 ± 0.02 ± 0.02 0.18 ± 0.02 ± 0.03 b-subtracted . -0.09 

4.5 SUMMARY AND DISCUSSION 

4.5.1 Total Cross Section 

The total cross section with the bottom contribution subtracted is measured to 

be 0.18 ± 0.02(stat) ± 0.03(sys) nb (0< x <1). The systematic error includes the 

uncertainties in the detection efficiency, the shape of the fragmentation function 

below x < 0.35, the luminosity, but not the branching ratios. Since the neutral 

partner of D*± is expected (from isospin symmetry) to be produced in the same 
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amount, the total D* production inferred from our measurement is 0.360 ± 0.04 

± 0.06 nb. The total cross section includes the radiative correction for the initial 

state radiation through the value of Rhad used in the formula (4.2). 

The QCD corrected cross section for the cor c production [Formula (2.9) with 

o:8 = 0.16] is 0.145x2 = 0.29 nb. This indicates that the D* production dominates 

the charm source. This is in agreement with the more direct measurements of the 

D* I D production ratio by the HRS 167 and the CLE0 162 experiments. Simple spin 

statistics predicts the ratio D* I D to be 311. 

If we use the recent measurement, Br(D0 - K-1r+) = 4.9 ± 0.9 ± 0.5, and 

assume that the relative ratios between the relevant D 0 branching fractions as used 

in the Monte Carlo are correct, then our D*± cross sections become 0.10±0.02±0.02 

nb (x > 0.35) before the bottom contribution is subtracted and 0.11 ± 0.02 ± 0.02 

nb (x > 0) after the bottom contribution is subtracted. With these values, our 

measurement is still consistent with the pseudoscalar D mesons being produced 

as frequently as their vector partners, and there is a room left for other charmed 

particles such as F mesons and charmed baryons. Although these charmed particles 

have been observed in e+ e- annihilations, 179• 180 their production cross sections 

have not been determined. 

4.5.2 Charm Fragmentation Function 

Figure 4.18 shows the comparison of our measurement with other experiments. 

The x distribution without the bottom subtraction is compared with experiments 

at similar energies as ours, and the one with the subtraction is compared with the 

results from lower energies where the bottom contribution is not present or can be 

ignored. All points are normalized to Br(D*+ - D0 1r+) = 64%, Br(D0 - K-1r+) 

= 3.0%, and the same definition of x. The MARK I points are averages of D 0 and 

n± cross sections where the latter is normalized to Br(D+ - K-1r+1r+) of 4.6%. 

The measurements at lower energies are more consistent between themselves 

than those at higher energies. This is because the statistics are higher and the 
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Figure 4.18. Our measurements of the x distribution of D* (a) without and (b) 
with the bottom contribution subtracted are compared with other experiments. All 
points are normalized to Br(D*+ -t D01r+) = 64% and Br(D0 

-t K-1r+) = 3.0%. 
The MARK I points are averages of D 0 and n± cross sections where the latter is 
normalized to Br(D+ -t K-1r+1r+) of 4.6%. (Ref. 162 through 167). 
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multiplicity per event is lower (thus, less background) at lower energies. 

The charm fragmentation functions at various energies are consistent with each 

other and harder than the light quark fragmentation functions which are peaked at 

small x. Thus, this supports the plausibility argument discussed in Chapter 2: the 

heavier the quark is, the harder the fragmentation function becomes. The effect 

of gluon radiation is expected to be larger at higher energy which results in softer 

fragmentations. 181 The distribution near x = 1 in Fig. 4.18( a) seems to be slightly 

suppressed relative to Fig. 4.18(b). This may be an indication of the hard gluon 

effect. For a definite answer, a better measurement is needed at our energy or at 

even higher energy. 

Using the measured fragmentation function, we can now estimate the string 

breakup probability b assuming the string model with a uniform string breaking 

probability. In order to compare with the experimental measurement, the initial 

state radiation is added to the Monte Carlo of Fig. 2.8(not the LUND Monte Carlo). 

The effect of the initial state radiation is to generate a small tail at small x and to 

reduce < x > by about 4.5 %. The hard gluon emission is not included. 

Figure 4.19(a) shows the result of the fit. A large number of events are 

generated for different values of band the data are fit to the resulting fragmentation 

functions. For me = 1. 7 Ge V and "' = 0.2 Ge V2 , the string breaking probability is 

b = 0.019 ± 0.005 Ge V2 . There is an ambiguity in what value to use for the charm 

quark mass and the string tension"'· As discussed in Chapter 2, the fragmentation 

function in the string model is determined by the parameter 

This is precisely true in the limit Ebeam --+ oo, and is a good approximation even 

at the SPEAR energy of EcM =7 GeV [as long as we use the definition (4.1)]. 

Thus, the uncertainties in me and "' are easily translated into an error in b. Using 
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me = 1. 7 ± 0.3 Ge V and K = 0.2 ± 0.03, the string breakup probability is then 

b = 0.019 ± 0.005 ± 0.009 Ge V 2 . 

The hard-gluon effect is ignored in the fit above. The effect is expected to 

be smaller at lower energies: the string is uniform and straight. Thus, the result 

of the ARGUS group is fit similarly in Fig. 4.19(b). The expected shape fits the 

measurement well, and gives b = 0.033 ± 0.004 Ge V2 . 

The yoyo model of meson combined with the string breaking probability gives 

the decay rate of a meson as a function of its mass. A simple calculation gives 

r = mb '"" m( GeV) ( GeV), 
2K 20 

where K = 0.2 Ge V2 and b = 0.02 Ge V2 are used. This estimation ignores quantum 

selection rules and admittedly is a crude one. However, a quick look through the 

particle data table can show that this is a reasonable estimate. 

4.6 FORWARD-BACKWARD ASYMMETRY 

The detection efficiency as a function of cos 0 is fiat up to I cos 01 = 0.6 and 

then drops sharply. Table 4.11 shows the numbers of D* candidates generated 

in the forward direction and in the backward direction. The candidates outside 

I cos 01 = 0.6 are rejected. If a D*+ (D*-) is generated in the same z direction as 

the incoming electrons (positrons) it is defined to be in the forward direction. 

The measured asymmetry is thus (57- 103)/(57 + 103) = -0.29 ± 0.11. The 

error is statistical only. The expected asymmetry from the interference of the 

single photon exchange diagram and the Z 0 exchange diagram is given by the 

formula (2.15) and the value is -5.5 %. The QED diagrams and D*'s from bottom 

quarks also contribute to the asymmetry, but the effect is much smaller than our 

measurement error. The sign of the asymmetry is as expected, but the measured 
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Figure 4.19. (a) The prediction of the string model is fit to the measurement. 
The parameters used are "' =0.2 Ge V2 , me = 1. 7 Ge V, and the result of the fit is 
b = 0.019 ± 0.005 Ge V2 . (b) A measurement at a lower energy (by the ARGUS 
group) is fit in the same way. The shape is well represented by the string model. 
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Table 4.11. The forward-backward asymmetry of the D * production. The 
numbers of D* candidates generated in the forward direction and in the 
backward direction are shown for the two modes separately and for the 
combined sample. If the charm number of D* is negative, the direction is 
inverted. All candidates are required to satisfy I cos 01 < 0.6. 

R w R-W 

Forward 38 9 29 
K-mode 

Backward 56 6 50 

Forward 53 25 28 
1r-mode 

Backward 77 24 53 

K-mode Forward 91 34 57 
+ 

1r-mode Backward 133 30 103 

value is about two standard deviations from the expected value. At this stage, it is 

regarded as a statistical fluctuation. 

Several other experiments have also measured the forward-backward 

asymmetry of cc production using D* 's. The values are A = -0.28 ± 0.13 by 

TASS0 165 ( -0.14 expected), A= -0.14 ± 0.09 by JADE164 ( -0.14 expected) , and 

A = -0.15 ± 0.09 by HRS 182 (- 0.095 expected). The error bars are still large; 

clearly a higher statistics are needed. 



161 

Chapter 5. 

Measurement Of The D 0 Lifetime 

The lifetime of n° has been measured in various environments183 including 

the e+ e- annihilation, 184 where the crossing point of the two tracks from each D0 

decay is measured with respect to the center of e+ e- beams. In this chapter I 

will describe a measurement of the n° lifetime obtained by a maximum likelihood 

method using the impact parameters of individual tracks of n° decays. 

5.1 STRATEGY 

The n° candidates are selected in the decays of charged n* 's, and the criteria 

for the n* candidates have been described in the previous chapter. For each of 

the two charged tracks from the n° decay, the impact parameter b is defined in 

the plane perpendicular to the beam axis (xy plane) and with respect to the beam 

center measured by the beam position monitor (Figure 5.1). The sign of b is positive 

if the inner product of the n° momentum in xy plane, P l_DO, and the vector from 

the beam center to the point of closest approach on the track, b, is positive, and the 

sign is negative if the inner product is negative. The two cases are shown in Fig. 

5.1. 

If a n° is created at the beam center given by the beam position monitor, 

and if the track is measured without errors, then the impact parameter b is always 

positive and given by dj_ sinO, where dj_ is the decay distance of n° projected onto 

the xy plane, and 0 is the angle between P l_DO and the track direction in the xy 

plane. 
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Figure 5.1. The definition of the impact parameter and its sign. All parameters 
are defined in the plane perpendicular to the beam axis. The point 0 is the beam 
center given by the beam position monitor. The impact parameter b is defined as 
JbJ with the sign of b· PJ..DD· The cases for positive and negative bare shown in (a) 
and (b) respectively. 
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The true impact parameter distribution is smeared because of the measurement 

errors and because the true primary vertex is only approximated by the beam center 

given by the beam position monitor. As shown in detail in later sections, these errors 

can be well approximated by a gaussian plus a flat background, where the width 

of the gaussian depends on the configuration of each track. The probability that a 

track is not from a n° decay also varies from track to track. 

In order to extract the n° lifetime from the impact parameters, we have chosen 

to employ a maximum likelihood method which allows us to make the most out of 

the information available. In the following sections, we will discuss the components 

of the analysis. 

5. 2 COMPONENTS OF ANALYSIS 

5.2.1 Beam Position Monitor 

The beam position monitors are located ±3. 7 4m from the interaction point. 

Each consists of four electrodes (buttons) placed inside the vacuum pipe which pick 

up pulses generated by the passing beam bunches. A total of eight pulse heights 

from the buttons are recorded for the bunch corresponding to each event and from 

these the beam centroid position at the interaction region is calculated event by 

event. 

In Figure 5.2, the interaction points of Bhabha events are compared with the 

beam center measured by the beam position monitor. For a Bhabha track emitted 

almost vertically (within ±0.25 radian in ¢J), the x coordinate of the vertex is well 

approximated by the x coordinate of the origin of the track. The y coordinate 

is obtained similarly using the tracks emitted almost horizontally (within ±0.20 

radian). Fig. 5.2(a) and (c) show the x coordinate values in the laboratory frame 

and relative to the beam position monitor value, respectively. Fig. 5.2(b) and 

(d) show the same for they coordinate. Even though the fluctuation of the beam 

position is as large as 3 mm, it can be seen that the beam position monitor is 
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tracking the true beam center reasonably well. 

5.2.2 Beam Sizes 

There are three data blocks with different configurations which correspond to 

the three operational years, 1982, '83, and '84. The tracking qualities are roughly 

the same for the three. 

The beam cross section is approximated by a 2-dimensional gaussian with 

widths ax and ay. Then the error in the impact parameter due to the beam size at 

an azimuthal angle </> is given by 

( "') 2 2 2 "' 2 . 2 "' abeam If/ =ax cos If/+ ay sm 'P · (5.1) 

The beam size IS obtained by measuring the width of the impact parameter 

distribution of Bhabha tracks and then subtracting the measurement error in 

quadrature. The measurement error is estimated by the width of the distribution 

of the track separation near the beam. A typical measurement error is 240 ~tm for 

Bhabha tracks. Figure 5.3 shows the measured a~eam as a function of </> for the 

'83 data. The smooth curve is a fit to the expected shape (5.1) with ax and ay as 

parameters. The results are summarized in Table 5.1 for the three datasets. The 

values calculated from the machine parameters of the storage ring [Formula (3.6)] 

are also listed. The calculation ignores non-linear and incoherent effects such as 

beam-beam interactions, which probably is the source of the discrepancy between 

the measured and expected values; however, the agreement is reasonable. 

It is worth noting that the measured beam sizes are the true beam sizes 

convoluted with the resolution of the beam position monitor, which are what we 

need for the fit of n° lifetime, since the n° tracks are also measured with respect 

to the beam position given by the beam position monitor. In passing, we also note 

that the resolution of the beam position monitor is at least better than the quoted 

beam sizes: it is better than 100 J-tm in the y direction, and probably similar in the 

x direction. 
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Figure 5.2. The x coordinate of the interaction points of Bhabha events , in the 
detector frame (a), and relative to the beam position given by the beam position 
monitor (c). The horizontal axis is the time in an arbitrary unit. The same set 
of figures for the y coordinate is given in (b) and (d). The time range shown 
corresponds to the '83 data, which accounts for about one half of the whole data. 
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Figure 5.3. The beam variance vs ¢ ('83 data). The measurement errors have 
been already subtracted. The solid curve is the result of the fit to the shape 
ai cos2 ¢+a~ sin2 ¢. 
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Table 5.1. Beam sizes obtained from Bhabha tracks and those expected 
from the machine parameters of the storage ring [Formula (3.6)]. Values 
are shown separately for the three datasets. 

(JLm) 82 83 84 

measured ax 462±6 369±6 342 ± 4 

ay 113 ± 10 75 ± 17 83 ± 12 

expected ax 380 420 420 

ay ;S;100 ;S;100 ;S;100 

5.2.3 Measurement Error in Hadronic Events 

There are three contributions to the impact parameter error a 

2 2 2 2 
a = abeam + am.s. + atrk' 

where 

abeam is given by (5.1), 

(5.2) 

am.s. is due to the multiple scattering at the beam pipe and the inner wall of the 

IDC, and 

Utrk is due to the tracking errors inside the drift chambers. 

We use the following formula 70 for am.s. 

Teff 0.0141{!;( 1 1 X ) am s = -- -- 1 + - og -- , 
0 

• cos ~ p f3 cos ~ 9 10 cos ~ 
(5.3) 

where 

r eff is the effective average radius of the materials before the tracking volume, which 

is 9.1 em and 9.0 em for the '82/3 datasets and the '84 dataset respectively. 

The difference is due to the new thin beam pipe installed for the '84 dataset. 

~ is the angle of the track away from the plane perpendicular to the beam axis, 

P, f3 are the momentum (in Ge V /c) and the velocity of the particle, and 

X is the total amount of material in the direction perpendicular to the beam axis 
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(in radiation length), which is 2.25% and 1.28% for the '82/3 datasets and the 

'84 dataset respectively. 

This formula is good to a few percent in the cases of interest. There are, 

however, non-gaussian components due to plural and single scatterings. They will 

be treated as part of the flat background. 

The error atrk includes the measurement error of each drift chamber hit, the 

effect of taking wrong hits (i.e., the partial confusion in tracking), and the effect 

of multiple scattering inside the tracking volume due to the gas, wires, and other 

materials along a track. The track fitting program returns an estimated error for 

the impact parameter, afit, assuming that all the points associated with the track 

are correct and the measurement error of each point is properly estimated. Even 

though it is a useful indication of the quality of the measured impact parameter, a 

correction has to be made to obtain a realistic atrk in actual hadronic events. 

In order to obtain the functional form of the correction, general hadronic tracks 

are divided into a fit bins. In each bin the impact parameter distribution 185 is fitted 

with a gaussian plus a flat background. The flat background is expected from 

strange particle decays, nuclear interactions, etc. In principle, the decay products 

of heavy hadrons can broaden the distribution. However, a Monte Carlo study has 

shown that the effect is negligible in estimating atrk .186 

Also, the root-mean-squares of am.s. and abeam are calculated for the tracks in 

each a fit bin and are quadratically subtracted from the measured width to get atrk. 

Figure 5.4 shows the resulting atrk as a function of a fit. The broken lines show the 

root-mean-squares of am.s. and abeam' which have been subtracted in each bin. The 

curve is a fit to the correction function. 

In Figure 5.5, the impact parameter distribution is shown for each a bin, where 

a is obtained by (5.2). The curve in each plot is the result of fit with a gaussian plus 

a flat background, where the width of gaussian is fixed to the expected value. The 

functional shape gives a good fit in all a bins. Also, even though atrk is inferred in 

each afit bin and not in each a bin, the final expected resolution well matches the 
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Figure 5.4. The error due to the tracking atrk is plotted against the error given 
by the track fitting program, afit· The solid curve is a function fitted to the data 
points. The broken lines show the root-mean-squares of am.s. and abeam in each 
bin. 
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real resolution in each a bin. 

5.2.4 D 0 Track Selection 

There are 14 candidates overlapping the K-mode and the 1r-mode which we 

will classify as K-mode. The tracks of the wrong-sign candidates are not used 

in the lifetime fit except in the estimation of the non-D0 background. There are 

97 + 139- 14 = 222 right sign candidates or 444 tracks in total (Table 4.4). 

Then, the following cuts are made to the candidate tracks: 

1. P greater than 250 MeV/ c. This is to reject tracks with a large error in 

impact parameter; it rejects 5 out of the 444 tracks. 

2. 77sinO > 0.4, where 7J- Pj_no/Mno and 0 is defined in Fig. 5.1. This is 

the ratio of the impact parameter to the decay distance of n° when errors 

are ignored. The larger this value is, the more weight the track has in the 

lifetime determination. And if it is zero, the track does not contribute to the 

lifetime measurement. Thus, even though this cut eliminates 174 out of 439 

tracks, it does not degrade the statistical error of the fit while making the 

average impact parameter less sensitive to the background. Figure 5.6 shows 

the 7J sin 0 distributions for all the n° candidate tracks in the data. It can 

be seen that most of the tracks rejected are the leading tracks. 

3. \b\ <2.5 mm. This defines the window of impact parameter; it removes 4 

more tracks, leaving 261. Note that the n* selection already requires that 

\b\ < 3.0 mm. The only reason why we do not use 3 mm as the cut is that 

we want to move the window up and down by 0.5 mm to check the effect of 

the window on the final result. 

Figure 5. 7 shows the impact parameter distribution after the cuts. The 

distribution 1s clearly shifted in the positive direction, and the mean of the 

distribution 1s 174.5±44.5 J.Lm. The curve overplotted is the result of the fit 

described later. 

Two different control samples are checked: 
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Figure 5.5. The impact parameter distributions in hadronic events for each bin of 
the overall expected error, a. In each plot, the center value of a is indicated in 
unit of em, and the curve is the result of fit with the expected gaussian plus a flat 
background. 
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Figure 5.6. The distribution of rJ sinO, which is a measure of the sensitivity of each 
track to the n° lifetime, is shown for each track category in the n° sample. The 
leading tracks (K-mode K tracks, and n-mode 1r tracks) are less sensitive than the 
non-leading tracks. 
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(a) General hadronic tracks with P > 250 MeV jc and lbl < 2.5 mm, where the 

thrust axis is used as the D0 direction. The positive direction on the axis 

is defined such that the angle between the track and the axis is less than 90 

degrees in xy plane. 

(b) The sample of tracks kinematically similar to the D 0 tracks. It is formed by 

taking all the D 0 candidates selected just as before but without the information 

of the Cerenkov counter and without combining them with 1r D* candidates. 

The impact parameter distributions for the two control samples are shown in 

Figure 5.8, and the results are summarized in Table 5.2. The corresponding shapes 

for the Monte Carlo187 are overplotted in Fig. 5.8 as dashed curves, and their mean 

values are also included in Table 5.2. Positive mean values are expected because 

of strange and heavy particle decays, and the discrepancies between the data and 

the Monte Carlo can be comfortably accommodated within the uncertainties in the 

production rates and the lifetimes of these particles (in particular bottom hadrons). 

The mean value of the impact parameter is not shifted by nuclear interactions, 

gamma conversiOns, Coulomb scattering at the beam pipe region, or small 

misalignments of the drift chambers. Although they do contribute to the error, 

the changes in the measured impact parameter due to these sources are expected 

to be symmetric and do not alter the mean value. 

5.2.5 Estimation of Background 

5.2.5.1 Non-D0 Tracks 

To study non-D0 background, we compare the right-sign and wrong-srgn 

samples. The background in the D* sample has the same amount of right-sign and 

wrong-sign combinations. Therefore, the number of right signs minus the number 

of wrong signs indicates the number of true D*'s for which both the leading track 

and the 7rD* track are found correctly. However, the non-leading tracks populate 

the same momentum region as the average hadronic tracks and are more easily 

contaminated than the leading tracks are. Also, the Cabibbo-suppressed decays of 
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Figure 5.8. The impact parameter distributions for: (a) the general tracks in 
hadronic events and (b) the tracks kinematically similar to the D 0 tracks. The 
corresponding distributions for the Monte Carlo are overplotted (dashed curves). 
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Table 5.2. The means of the impact parameter for the D 0 sample and the 
two control samples: (a) for the general hadronic tracks and (b) for the 
tracks kinematically similar to the D 0 candidate tracks. 

< b > (J.Lm) data MC 

D0 candidates 174.5±44.5 -

(a) general tracks 40.7±1.5 34.9±1.6 

(b) selected tracks 54.6±12.0 43.4±11.7 

D 0 that generate a wrong-sign kaon contribute to the wrong-sign K-mode sample. 

In addition, when a D 0 decay contains multiple charged pions, a wrong-sign pion 

can become the leading pion candidate thus contributing to the wrong-sign 7r-mode 

sample even if the tracks are genuinely from a D*. Therefore, the number of right 

signs minus wrong signs has to be multiplied by a correction factor to get the 

number of candidates for which the track of interest is correctly found. We assume 

the D 0 - yfJ mixing to be negligible in this chapter. 

The correction factor rcorr is obtained by the Monte Carlo according to 

( # of correct tracks in the right-sign sample) 
Tcorr = ( # of right signs) - ( # of wrong signs) 

Table 5.3 summarizes the result. The purity is defined to be the probability that 

the track is truly from a D0 decay. The first errors in the purities are statistical 

and the second errors systematic. The systematic errors are due to the uncertainty 

in the correction factors. For the leading tracks, the uncertainty comes mostly from 

our imperfect knowledge on the decay branching fractions of D0 . The non-leading 

tracks have larger systematic errors corresponding to the added contamination. 

5.2.5.2 D* 's from b-quarks 

Since a decay of b-quark almost always creates a c-quark,176 we expect some 

of the D* 's in our dataset to come from the decays of b-flavored particles. The 

average cr of the b-hadrons is relatively long and of the order of several hundred 
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Table 5.3. The fraction of the tracks from n° decays (purity) in each track 
category. The definition of the correction factor rcorr is given in the text. 

rcorr Purity 

K 1.09 0.94 ± 0.03 ± 0.02 
K-mode 

7r 0.93 0.80 ± 0.03 ± 0.04 

K 1.16 0.67 ± 0.07 ± 0.07 
1r-mode 

7r 1.48 0.85 ± 0.09 ± 0.05 

microns,65•66 which substantially changes the impact parameters of the n° tracks 

originating from b-fl.avored hadrons. 

The fraction of n* 's coming from b-quarks has been estimated in the previous 

chapter as a function of then* momentum. The amount of contamination is similar 

for K tracks and 7r tracks, and the mean of the impact parameter for these tracks, 

1\,b, is found to be flat in 17 sin 0. With the average b lifetime of 350 J.lm, 66 and the 

n° lifetime of 136 J.lm, 1\,b is estimated to be 210 J.lm. It does not depend strongly 

on the n° lifetime. 

5. 3 LIKELIHOOD FIT OF n° LIFETIME 

5.3.1 n° Lifetime Likelihood Function 

For N measurements of impact parameter, bt (i = 1,N), in which each event 

is characterized by a set of parameters at, the likelihood function for l cT is given 

by 

N 

L(l) = IT f(bi, l, ai), 
i=l 

(5.4) 

where f and f 0 are the single event likelihood function with and without the effect 

of the impact parameter window, respectively, and (b1, bz) defines the window. The 
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actual function to be minimized, £, is defined by 

N 

.C(l) -2logL(l) = -2 L:)ogf(bi,z,ai). (5.5) 
i=l 

The function ! 0 is a convolution of an exponential with decay constant K, = lrJ sin() 

and a gaussian with width a, and can be written using the complementary error 

function 188 
' 

o _ o 1 ( a
2 

b ) [ 1 ( a b ) ] f (b,l,a) = f (b,K,,a) = -exp - 2 -- erfc . l<l --- , 
2/'i, 2/'i, /'i, v2 /'i, a 

(5.6) 

where ! 0 is a function of l only through K,, and both K, and a are functions of a. The 

shape of f 0 as a function of b is shown in Figure 5.9 for a = 500 J.Lm and several 

different K,'s. The integration of J0 needed in (5.4) is given by 

where 

1b2 
Q 1 [ 2 2 ] X2 f (b, K,,a)db =- e a:x-a: erfc(x) + erf(x- a) , 

b1 2 Xl 

a 
a= yi2K,' (k = 1,2). 

(5.7) 

(5.8) 

The non-D0 background is handled by adding a term which represents the 

distribution of the general background shape. We take it to be f3f0 (b, K,B,a), where 

f3 is the background fraction (1-purity) (see Table 5.3), a is the expected impact 

parameter resolution for the track, and K, B is a global constant that arises because 

the background does include genuinely positive impact parameters. We use a value 

K,B = 54.6 J.Lm from Fig. 5.8(b). Even though the true distribution is not exactly a 

convolution of an exponential and a gaussian, this approximation is good enough, 

and the result is insensitive to the exact shape. The b-quark contamination is 

handled in the same way by adding 8f0 (b,K,b,a) to the likelihood function, where 

8 is the fraction of the tracks originating from b-quarks and K,b is the mean impact 

parameter for those tracks. 
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Figure 5.9. The shape of f 0 (b,x:,a) [formula (5.6)] is shown for a= 500 J.Lm (fixed) 
and x:=lOO (a), 400 (b), and 700 J.LID (c). 
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The fiat background of the impact parameter distribution cannot be reliably 

estimated a priori for the n° tracks from the general hadronic tracks because the 

sources of fiat background are different for the two samples. Instead, we take the 

level of fiat background,'"'/, to be the second parameter of the fit. 

Putting everything together, our final properly normalized single event 

likelihood function is 

with 

where, 

j 0 is a function given by (5.6), and its integration is given by (5.7), 

K = lry sinO, with rJ = Pl_no/Mno, 

a is the overall error in the impact parameter, and given by (5.2), 

fJ is the background fraction and given by Table 5.3, 

KB is a constant (54.6 p,m) that represent the positive mean impact parameter of 

the background, 

b is the fraction of tracks that come from b-quarks (Table 4.9), 

1\,b is the mean impact parameter of the n° tracks originating from hadrons 

containing b-quarks (210 p,m), 

'"'/ is a constant that represents the fiat background, which is the second parameter 

of the fit. 

The one-sigma contour of the fit is shown in Figure 5.10, and the results for the 

individual parameters are cr = 160 ±50 p,m and '"'f = 0.080~8 :8~! cm-1 . The value 
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of 1 corresponds to a flat background of about 4% of the total area. The effect of 

the flat background is not large. 

5.3.2 Goodness of Fit and Bias Check 

One way to check the goodness of fit is to bin the impact parameters into a 

histogram and compare it to the expected shape from the result of the fit. The 

expected shape is given by 

where f is given by the formula (5.9), !:ib is the bin width of the histogram, and 

the lifetime l 0 is the result of the fit. The curve is overplotted in the Fig. 5.7. The 

x2 of the fit is 10.3 for 10 degrees of freedom. 189 

Another way to check the fit, which is independent of the binning, makes use of 

the similarity between£ and x2 . The function£ is equivalent to x2 up to a constant 

offset when the function f's are all gaussian with each measurement representing a 

single data point of the x2 estimation. In the case of x2 , the expected distribution 

of the minimum is a function of the number of degree of freedom and is well known. 

For .Cmin' the expected distribution is not known a priori, but can be estimated 

by a simulation as follows. Using the result of the fit l0 , one impact parameter is 

generated for each track of the data according to the formula (5.9) using the same 

CJ, ""'s etc. as used in the likelihood fit. Then, taking these impact parameters as 

input data, the likelihood analysis is repeated and £min is calculated. The process 

is repeated from the beginning many times to generate the distribution of £min. If 

the fit is good, the measured £min should be inside the central distribution. The 

result is shown in Figure 5.11. The arrow indicates the observed value of .Cmin· The 

goodness of the fit is reasonable with a 70% chance of getting a better £min than 

the one observed. 

As a byproduct, the bias of the fit is checked by the distribution of cr that 
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Figure 5.11. (a) The simulated ..Cmin using the measured cr of 160 J.Lm and the 
actual configuration of each of the 261 tracks. The arrow indicates the ..Cmin for the 
actual data. The distribution of cr obtained at the same time is shown in (b). 
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corresponds to each of the simulated ..Cmin· It is shown in Fig. 5.11(b). The mean 

of the reconstructed cr's agrees well with the input, namely the method is bias-free 

within the statistical error. Also, the width of the distribution (47 J.lm) is in good 

agreement with the range of one sigma estimated by ..C - ..Cmin < 1, which is ±50 

j.lm. 

5.3.3 Systematic Errors 

1) Non D 0 Background (fJ, 1\, B) 

The systematic errors of the estimation of non-D0 background in Table 5.3 are 

likely to have positive correlations, and have been added linearly. The statistical 

errors in Table 5.3, on the other hand, are added quadratically. The combined error 

in cr is found to be symmetric and ±4 J.lm. The other parameter related to the 

non-D0 background is the mean of the impact parameters, ~<:,B, for those tracks. 

We used a value of 54.6 J.lm as determined from tracks kinematically similar to the 

D 0 candidates [Fig. 5.8(b) ]. We estimate the error of 1\,B to be ±15 J.lm which 

corresponds to ±3 J.lm in cr. The overall error from the non-D0 background is then 

±5 j.lm. 

2) Bottom Contribution ( 8, ~<:,b) 

The relative contribution from b-quarks depends on the ratio of the two ratios 

Br(b ---+ c ---+ D*±)j Br(b ---+ c ---+ X) and Br(c ---+ D*±)j Br(c ---+ X). The first 

ratio refers to the charm quarks created in b decays, and the second to the charm 

quarks created by e+ e- annihilations. In the Monte Carlo, the two ratios were 

assumed to be the same. When the ratio of the ratios is varied between 4 and 

1/4, the resulting cr changes at most ±3 J.lm. The value of the average b-hadron 

lifetime, ~<:,b, also affects the result; we change the average b-lifetime between 0. 7 and 

2.3 x 10-12 sec65•66 to get corresponding cr errors of ~~ J.lm. Since the above two 

systematics are not correlated, they are added in quadrature to give ~~ J.lm. 

3) Mass Assignments 

The mass assignment affects the lifetime through the multiple scattering error 
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am.s.· The leading tracks are selected by the Cerenkov counter and the effect of the 

misidentification is negligible. Also, the non-leading tracks in the K-mode can be 

safely assumed to be pions. However, the non-leading 'K' tracks in the 1r-mode are 

not all kaons. Even if we assume them to be all pions the resulting cr increases by 

only 3 p,m. 

4) Track Momentum Cut 

Removing the cut changes the result by less than 1 p,m. Setting the cut at 750 

MeV I c instead of 250 MeV I c removes 49 tracks, giving a lifetime of 157~~~ p,m. 

Thus, there is no indication of bias from the track momentum cut. 

5) Impact Parameter Window 

Our fit is relatively insensitive to the window because of the inclusion of the 

flat tail in the likelihood function. Changing the cut value in the range ±0.5mm 

around the standard value of 2.5 mm, the variation in cr is found to be ~~ p,m. 

6) Expected Impact Parameter Error (a) 

There are several factors that contribute to the expected error in the impact 

parameter as shown in (5.2). However, they are highly correlated in the sense that 

the result has to fit the impact parameter distribution in the final data. The x2 of 

the expected impact parameter distribution to the binned data increase at least one 

unit when the a's are scaled by 0.9 and 1.1, which in turn translates to the error in 

cr of ~i4 p,m. The smaller the a, the larger the lifetime. 

7) 11 sin fJ Cut 

This cut removes the tracks that have little significance in the fit. Removing 

the cut brings in 174 tracks and the lifetime becomes 150 ±59 p,m. No significant 

improvement in the error is observed. We take the systematic error due to this cut 

to be ~~0 p,m. 

8) Errors In 17 And sin fJ 

The direction and the momentum of the D 0 are well determined. The 

resolutions of 17 and sin f) are found to have negligible effects on the result. 

The above items are expected to be independent of each other; thus, they are 
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added quadratically. The items that have to be treated linearly have been already 

done so inside each category. The final overall systematic error in cr is !i~ f.-liD. 

5.4 SUMMARY AND DISCUSSION 

We have measured the lifetime of n° meson using the impact parameters of n° 
tracks with respect to the beam center given by the beam position monitor. The 

maximum likelihood method used has been found to be bias-free and insensitive to 

nuclear interactions and gamma conversions at the beam pipe, small misalignments 

of drift chambers, uncertainties in backgrounds, and the specific choice of cuts 

used. The resulting cr is 160 ± 50!i~ f.-liD which corresponds to the lifetime 

of (5.3 ± 1.7:!:8:~) x 1o-13sec. This is consistent with the world average183 

(3.9 ± 0.4) x 10-13sec. 

If the semileptonic decays do not depend on the flavor of the spectator quark, 

the semileptonic decay rate of n° should be the same as that of n+. However, 

the semileptonic decay rate of n+ may be larger than that of n° by "" 10% if 

the annihilation channel, cd ---+ e+v + gluons, which is Cabibbo suppressed, is not 

helicity suppressed. 88 This may be checked by comparing the ratio of the lifetimes 

with the ratio of the semileptonic branching fractions. If the semileptonic decay rate 

is the same for the two mesons, the two ratios should be equal. Using the world 

average of then± lifetime183 (8.2:!:6:~) x 10-13sec, we obtain Tn+ /rno = 1.6 ± 0.6, 

which is compared with the recent measurement172 Br(n+ ---+ eX)/Br(n°---+ eX)= 

2.3~8:l~8J. Thus, the data are consistent with the same semileptonic decay rates 

for n° and n+. However, the non-helicity-suppression of the annihilation channel 

of n+ in semileptonic mode is not ruled out. 

The standard theory can predict the n° semileptonic decay rate as a function 

of the effective charm quark mass [Formula (2.37)]. The large exponent, 5, of the 

charm quark mass indicates that small variations in me result in large changes in 

r~fD. Thus, a measurement of the semileptonic decay rate can determine the 



187 

effective quark mass precisely. As discussed in Chapter 2, the effective quark mass 

is a measure of the phase space available to the decay, and expected to be larger 

than the current quark mass, which is estimated to be12 around 1.2 Ge VI c2 , and 

smaller than the D 0 mass. Our D0 lifetime, together with the D 0 semileptonic 

branching fraction172 of 7.5±1.1±0.4%, gives a D0 semileptonic decay rate r~fD of 

(1.4±0.5) X 1011sec-1. Using m 8 lmc = 0.28±0.05 and A= 150±100 MeV [with the 

formula (2.10)], the effective charm quark mass in a D 0 meson is me = 1.54 ± 0.12 

Ge VI c2 , which is consistent with the typical constituent mass of charm quark, 

MJ/1/!12, but substantially larger than the current mass. The charm quark mass 

obtained also coincides with the theoretical prejudice on what mass to use in the 

formula (2.37), which is typically from 1.5 to 1.6 GeVIc2 . 

The ratio rD+ lrDo = 1.6 ± 0.6 is consistent with unity, but it suggests a 

shorter lifetime for D0 . Other experiments have also measured the D0 lifetime with 

similar sizes of error bars, and a brute-force world average without including our 

measurement is (3.9 ± 0.4) X 10-13 sec183 . If we include our data, the average 

becomes (4.0±0.4) x 10-13 sec and the ratio rD+IrDo is then 2.1±0.3, which is the 

same as Br(D+ ~ eX)IBr(D0 ~ eX) = 2.3~8:t~8J within the errors. However, 

the averaging of different experiments is always dangerous, and in order to check 

further the consistency of the semileptonic branching ratios and the lifetimes of 

D 0 and n+ and specifically the annihilation contribution to the n+ semileptonic 

decays, we need an experiment with a better resolution and a higher statistics with 

a capability to observe both D0 's and n+'s. 
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Chapter 6. 

Upper Limit on D 0 - D
0 

Mixing 

In the previous analyses, it has been assumed that there is no n°- lf mixing. 

The n° - lf mixing would change the relative sign of 7f D• and the leading track 

resulting in wrong-sign combinations. In this chapter, we will use our data to set 

an upper limit on n°---& mixing. 

6.1 THE SIGNAL AND BACKGROUNDS 

We will use only the K-mode sample because of its relative cleanliness. There 

are 97 right signs and 15 wrong signs (Table 4.4). In order to estimate the amount 

of n° - lf mixing in the data, the number of wrong-sign combinations expected 

in the absence of mixing has to be determined. The probability that a kaon 

misidentification results in a wrong-sign candidate is found to be less than 1 %, and 

its contribution to the wrong-sign sample is dominated by other backgrounds. This 

is because the misidentifications are due to gross momentum mismeasurements, 

which tend to push the events outside the signal region. The inefficiency of the 

Cerenkov counter itself for a pion well above pion threshold is less than 10-3 with 

90 % confidence level. There are two major sources of the background: the random 

combinatorial background and the Cabibbo-suppressed decays of n°. 
The combinatorial background is estimated from a large sample of events 

generated by the standard Monte Carlo, which is put through the same n* selection 

criteria as the data, where genuine n* combinations are eliminated. By normalizing 

the background shape for !:l.M > 0.2 GeVjc2 in Figure 6.1{a), the combinatorial 
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background in each of the right and wrong samples is estimated to be 16.8 events. 

This leads to (16.8 X 2)/(97 + 15) =30.0 % of the whole sample (the right-sign 

and wrong-sign samples) being the combinatorial background. The estimated 

background shape is shown in Fig.6.1(a) as a dashed line. 

Among the Cabibbo-suppressed decay modes of n°, only the K- K+ mode 

makes a significant contribution. The detection efficiencies for other Cabibbo

suppressed modes are found to be small due to a mass misassignment and/or 

higher multiplicity decay modes. The ratio of the K- K+ channel to the K-1r+ 

channel is measured to be 11.3 ± 3.0% by the MARK II171 and 12.5 ± 1.8 ± 1.0% 

by MARK III. 172 The average is 12.1 ± 1.7%. The Monte Carlo simulation is used 

to estimate the fraction of genuine n* candidates that result in the wrong-sign 

sample (feedthrough probability), and the result is 2.6 %. In the above, the genuine 

n* candidates are defined to be the ones with both the leading track and the 

1r D* track correctly found, and the result has been adjusted to be consistent with 

Br(K- K+) / Br(K-1r+) = 12.1 % (in the Monte Carlo, the ratio is 8. 7 % as seen 

in the table 4.6). 

6. 2 LIKELIHOOD FUNCTION AND RESULT 

In order to construct the likelihood function for n° - IfJ mixing, we need the 

probability that a given candidate in the sample is wrong-sign for a given mixing 

parameter r. Let b be the background fraction and d the feedthrough probability. 

One half of the background is wrong-sign; thus, it gives a term b/2. The fraction 

1- b of the sample consists of true n* 's, of which the fraction r undergoes n°-If 
mixing, of which the fraction 1 - d ends up as wrong-sign. For the true n* 's that 

do not undergo n° - IfJ mixing, the fraction d becomes wrong-sign because of the 

feedthrough effect. Thus, the probability that a given candidate is wrong-sign is 

b b - + ( 1 - b)[ r ( 1 - d) + ( 1 - r) d] = ( 1 - b) ( 1 - 2d) r + ( 1 - b) d + -. 
2 2 
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Figure 6.1. (a) The expected background shape obtained by the Monte Carlo is 
overplotted on the mass difference distributions for the K-mode samples. (b) The 

likelihood function for the D 0 - If mixing parameter r. The 90 % confidence level 
limit is 6.9 %, and indicated by the arrow. The inclusion of the systematic error 
raises the upper limit to 8.3 %. 
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Using a binomial distribution, the likelihood function for the mixing parameter 

r defined by (2.63) is 

where 

P(r) = fw(r)nw [1- fw(r)]nr, 

b 
fw(r) = (1- b)(1- 2d)r + (1- b)d + -, 

2 

is the probability that a candidate is wrong-sign given the mixing parameter r, with 

nr is the number of right signs observed (97), 

nw is the number of wrong signs observed (15), 

b is the fraction of background in the whole sample (30.0 %) , and 

d is the feed through probability (2.6%). 

The likelihood function is shown in Fig. 6.1(b). The 90% confidence level 

upper limit ro is given by, 

J;o P(r)dr 
1 = 0.9, 

J0
2 P(r)dr 

which gives ro = 6.9% . 

If the background level is overestimated, the upper limit on n°-If mixing will 

be underestimated. In our case the background estimate is 16.8 events. Together 

with the feedthrough due to the Cabibbo-suppressed decays, the expected number 

of wrong-sign events when there is no mixing is 18.8. The systematic error in the 

estimated wrong-sign background due to the uncertainties in the background shape 

and the contribution from Cabibbo-suppressed n° decay modes is estimated to be 

within ±4 events. We move the background estimation by 4 in the direction that 

increases the upper limit (namely reduce the expected background). This raises the 

upper limit on r from 6.9% to 8.3%. 

In the presence of CP violation, the mixing parameter is not the same for n° 
and ]'fJ. In such a case our experimental limit refers to a certain average of the two 

mixing rates. 
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6. 3 SUMMARY AND DISCUSSION 

We have set an upper limit on the n° -lf mixing using the ?T / K separation 

capability of the Cerenkov counter. Including the systematics, the limit is r <8.3 

%, where r is defined by (2.63). The likelihood function includes the effect of the 

combinatorial background and the Cabibbo-suppressed decays of n°. 
The current best upper limit on n° -lf mixing is 4.4%190 and comes from a 

measurement of wrong-sign double muon production in pion and proton interactions 

with iron. However, the inclusive nature of the experiment requires a set of 

assumptions on the mechanism191 of n° production. In contrast, n*+ decays 

provide a model independent method of studying n° -lf mixing. The previous 

upper limits using n* are 16 % by MARKII,192 23% by TASS0 ,193 and 11 % by 

ARGUS.l66 For the experiments with other methods, see Ref. 194. 

As discussed in Chapter 2, the mixing rate can be expressed in terms of the 

masses and decay widths of the two mass eigenstates of the n° - lf system 

(assuming CP invariance). Using the formula (2.63), our limit of 8.3% on r gives 

the limits on the X and y parameters: X Dmjf + < 0.45 and y f- /f + < 0.41. 

The n° lifetime measured in the previous chapter is considered as the inverse of 

the average lifetime r:t1 . Thus, with r + = (5.3 X w- 13sec)-1 = 1.2 X w-12 GeV, 

the limits on bm and r _ are, 

bm < 5.4 X w- 13 GeV, r- < 5.0 X 10-13 GeV. 

Since the mixing can be caused either by the mass difference or by the decay rate 

difference of the two mass eigenstates, the limit on the mixing results in the limits 

on these quantities. 

Also, the upper limit on the mass difference leads to a stringent limit on charm

changing neutral currents. From the formula (2.67), the limit on the effective 

coupling constant Geff is 1.3 x 1o-11 Gev-2 , where we used B = 1, fD = 0.15 
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GeV, and mn = 1.865 GeV. Equivalently, the result can be written as 

Strictly speaking, this is for vector boson couplings which are purely right-handed 

or purely left-handed. Generally, however, the result is of the same order for scalar 

couplings (e.g., Higgs) or for mixtures of right-handed and left-handed couplings. 

Suppose there is a c ---+ u neutral current that couples to Z0 : 

where g ej(sinOwcosOw), and the coupling coefficients gLand gR define the 

strengths of the left-handed and right-handed currents respectively. To be clear 

about the normalization, the corresponding Lagrangian term for a neutrino in the 

standard model is 

The resulting mass difference is given by195 

In deriving the above formula, the B parameter is set to 1, and factorization is 

assumed with the color factors properly taken into account. Taking m D = me+ mu 

and fD = 0.15 GeV, our upper limit on the mass difference translates to the 

following limit on the coupling coefficients: 

or gL, gR < 1.1 X 10-3. 

g'i, + g~- gLgR < 1.2 X 10-6 
2 

These limits are much smaller than the ones obtained by the production and 

decay of charmed quarks by a charm-changing neutral current. The upper limits 



194 

on gL and gR by processes such as vp,N ~ Vp,C and c ~ e+ e-X are typically 0.1 to 

0.3,195 and thus about two orders of magnitude larger than the upper limit set by 

n° - v mixing. 

QCD corrections similar to the ones used for the non-leptonic decays in Chapter 

2 may be applied to the formula (6.1). For certain combinations of a 8 and the ratio 

gLfgR, however, the mass difference is highly suppressed leading to larger upper 

limits on a charm-changing neutral current. 195 This is reminiscent of the suppression 

of the decay n° ~ .K0 1r0 where the QCD-corrected Hamiltonian combines the initial 

quark pairs in a almost purely color-octet state. As discussed earlier, however, this 

is true only if factorization is valid, and there are many reasons to believe that it 

may not be valid. Thus, the limit quoted above is probably insensitive to QCD 

corrections when non-perturbative effects such as valence gluons are also taken into 

account. 

The doubly Cabibbo-suppressed decay n° ~ K+1r- can directly contribute to 

the wrong-sign signal. This corresponds to f = K-1r+ in the formula (2.64). The 

absolute value of the amplitude ratio K, - A(n° ~ K+7r-)/A(n° ~ K-1r+) is 

expected from the naive quark model to be of order sin2 Be ,...._ 0.05, where Be is the 

Cabibbo angle. As can be seen from (2.64), the effect of K, is small for the values of 

x andy we are concerned about here (namely,...._ 0.4). 

Within the framework of the standard model, the n° -V mixing is likely to be 

dominated by long distance effects, and the theoretical upper limit is ,...._ 0.002 (see 

Chapter 2). Our upper limit is still well above this value. In the future experiment 

that probes below 1 % level, the doubly Cabibbo-suppressed decay can become a 

limiting factor. One possible solution is to measure the decay 

The n°v pair is generated in the state n°V -V n° because the orbital angular 

momentum of the pair is one (or C = -). The resulting interference effect cancels 

the effect of the doubly Cabibbo-suppressed decay leaving only the mixing effect. 



195 

The wrong-sign right-sign ratio 

N[(K-7r+)(K-1r+)] + N[(K+7r-)(K+7r-)] 
N[ (K-1r+) (K+1r-)] 

directly gives the mixing parameter p defined by (2.62) with E = 0 (i.e., C P is 

assumed). 
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Chapter 7. 

Conclusion 

While there is no doubt about the excitement and possibility of unexpected 

discoveries at newly opened high energy frontiers, many important experiments can 

be done only at certain energies. The charmonium states continue to be essentially 

the only place for the detailed study of the charmed mesons, and the neutral kaon 

system is so far the only place we can study C P violation, to name only two. 

The energy at PEP is optimum for the D 0 lifetime study. At the '1/;11
, the D0 

lifetime experiment cannot be done because the velocity of the D 0 's is almost zero 

leading to small impact parameters. At the z0 energy, on the other hand, the 

increasing multiplicity of event makes the combinatorial background more difficult 

to handle. 

There is another important reason why the D* analyses presented here are 

possible at our energy. As emphasized many times, the crucial component of the 

analyses is the 1r I K separation provided by the Cerenkov counter with the range of 

separation between 2.6 Ge VIc to 9.2 Ge VI c. At center-of-mass energies of 3 to 5 

GeV, it is impossible to use the gas threshold Cerenkov counter for the separation 

of K and 1r. And at higher energy than ours, a lighter gas would be needed to cover 

the higher momentum region, which would reduce the light yield. In either case, 

one cannot effectively utilize the Cerenkov counter without complicated techniques 

such as pressurization or ring imaging. The 1r I K separation thus provided by the 

Cerenkov counter made it possible for us to reduce and control the background of 

D* sample and to set an upper limit on D 0 - IfJ mixing. 

The D* physics in general can be divided into three categories: 
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1. It can serve to tag charm events. For example, one can study the cross section 

and the forward-backward asymmetry of cc production. One can also study 

event shapes, charged multiplicity, etc., and compare them with those of 

general events. 

2. One can study the hadronization of quarks by the momentum distribution 

of the D*. Namely, the fragmentation function of the charmed quark can 

provide useful information on hadronization in general. 

3. It provides a clean D0 factory. The low Q value of the decay D*+ --)- D01r+ 

makes it possible to find D 0 's in environments where it is difficult otherwise. 

Using the D 0 's thus obtained, one can study its lifetime and D 0 -lf mixing. 

Similarly, if the decay D*+ --)- n+ 1r0 is detected, it can be used as a n+ 

factory. 

We have investigated at least one subject in each of the three categories, and 

the measurement was found consistent with the standard model in each subject. 

The D* 's were found to be produced abundantly as expected. The D0 lifetime 

measurement led to an estimate of the D 0 semileptonic decay rate, which was found 

consistent with the theoretical prediction. The D 0 lifetime and the upper limit on 

D0 - V mixing together gave a limit on the charm-changing neutral current, which 

is highly suppressed in the standard model. 

In some cases, the information obtained was more than just a verification of the 

standard model. The difference of the lifetimes of D0 and n+ indicated a certain 

mechanism to suppress the nonleptonic decay rate of n+ or to enhance that of D0 ' 

while the charm fragmentation function provided a strong case for the string picture 

of hadronization. 

The standard model, however, is far from complete. The hadronization process 

is still poorly understood, the nonleptonic decays are just beginning to be sorted 

out, and there are fundamental questions left to be answered such as the number 

of generations, the still unobserved Higgs boson(s), and the possible extention to a 

larger symmetry group. 
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These problems can be attacked at various energy ranges. Often low-energy 

experiments such as the rare kaon decays and C P violation probe the interaction 

of much heavier quarks. On the other hand, the information obtained for D0 -lf 
mixing or B 0 - If mixing stimulates further studies on K 0 - R 0 mixing, and the 

hadronization model developed for heavy quarks sheds light on the physics of strong 

resonances. Through interactions between different kinds of physics, different points 

of view, or different techniques, we can attain a better understanding of nature, 

which, I believe, is one. 
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Appendix A. 

The V -A 3-body Phase-Space Factor 

For the V-A decay fo -------t hfzf3, the phase space correction factor [see (2.44)] 

is given by88 

where 

[ ] 
1/2 

W(a,b,c) = (a- b- c) 2 - 4bc 

and xi = mi/mo. In the massless limit, where mi -------t O(i = 1, 2, 3), h and fz have 

the same energy spectrum peaking at the high energy end, while the spectrum of 

f3 peaks in the middle. This is reflected in (A.l) as the symmetry between x1 and 

x2. If only one of the three final fermions is massive, (A.l) simplifies to 

g(x) I(x, 0, 0) =1(0, x, 0) = I(O, 0, x) 

Figure A.l shows I(x1,x2,x3) for x2 = 0 (a) and for x2 = x3 (b). The case (a) 

applies to c -------t sus, b -------t esc, etc., when current masses are used. The case (b) 

applies to c -------t usd when constituent masses are used. Since the current masses of 

u and dare small (a few MeV), the nonleptonic decay is suppressed with respect to 

the semileptonic decay by the mass effect only when the constituent masses, which 

are about 200 to 300 MeV for u and d, are used. 
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(a) 1.0 
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(b) 1.0 
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Figure A.l. The V-A phase space correction factor I(xl,xz,x3) is shown for 
xz = 0 (a) and for xz = x3 {b). 
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Appendix B. 

D 0 - D
0 

Mixing Formulae 

Here, we will derive the formulas for the mixing rates, (2.62) and (2.64). From 

(2.57) and (2.54), the time evolutions of ID1) and IDz) are given by 

Solving (2.56) for ID0 ) and 11f\ we obtain 

(B.2) 

The ID1) and IDz) components in (B.2) evolve according to (B.l). Thus, a state 

that is purely IDo) (llf)) at t = 0 will evolve to ID0 (t)) (llf(t))) at timet, where 

(B.3) 

First, we assume lf -/-+ f and D 0 -/-+ f; thus, for a state that is ID0 ) at t = 0, the 

decay probability to the final state f (l) in the time interval (t, t+dt) is proportional 

to I(D0 1D0 (t))l2 (l(lfiD0 (t))l 2). We define the 'intensities' to be 

ID(t) I(DOIDO(t))l2, 

ID(t) = I(D0 1lf(t))l2, 

ID(t) l(lfiD0 (t))l 2, 

1D(t) l(lfllf(t))l 2, 
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and, from (B.3), they are given by 

ID(t) = 1D(t) = ~(e-''llt + e-''f2t + 2e-r +t cos 8mt), 

I-(t) = ! 1 - e (e-'Ht + e-12t- 2e-r +t cos 8mt) 
D 41+e , 

- 11+e t t r t ID(t) = 4 
1 

_ e (e-''11 + e-12 - 2e- + cos 8mt), 

(B.4) 

where r ± = -ib1 ± lz), om = mz- mb and e is defined by (2.60). We assume 

that r(D0 
-t f) = r(lfl -t l), or more precisely, I (flHw ID0 ) I = I \llHw iff) J, 

where Hw is the Hamiltonian responsible for the decays. Then, the mixing rate p 

is simply given by the ratio of the corresponding intensities integrated over time: 

where 

Similarly, 

1-e 1-a 
1+e.1+a' 

- - Br(ff -t f) I~ JD(t)dt 1 + e 1- a 
p- = =--·--

- Br(ff -t l) fo00 ID(t)dt 1- e 1 +a. 

Thus, (2.62) has been derived. 

(B.5) 

(B.6) 

Next, we will consider the case when ff can also decay to f and D 0 to J. For 

simplicity, we take f to be a state consisting of two spin-0 particles, assume C P 

invariance, and choose the phase convention for f and f such that CPJ!) = Jl). 

Then, 

UIHwlD0 ) =Ul(CP)t(cP)Hw(CP)t(cP)ID0
) = \llHwllf), 

(!JHwJff) =(!J(CP)t(CP)Hw(CP)t(cP)Jff) = (lJHwJD0
), 



203 

which leads to the corresponding relations between amplitudes: 

a= A(D0 ---+ f) = A(V---+ ]), 

b A(D0 ---+ f) = A(D0 ---+ ]). 

(B.7) 

We define At(t) (Ar(t)) to be the amplitude that a state that is purely D0 at t = 0 

decays to f (f) at time t. Similarly, A f (f) and A f are defined for a state that is 

purely V initially. From (B. 7), they are given by 

At(t) = a(D0 1D0 (t)) + b(VID0 (t)), 

A1(t) = a(VID0 (t)) + b(D0 1D0 (t)), 

At(t) = a(D0 1V(t)) + b(VIV(t)), 

A1(t) = a(VIV(t)) + b(D0 1V(t)). 

Using (B.3) with E = 0 (CP is conserved), we have 

The mixing rates are still defined by (2.61). Thus, 

where 

fooo 1Ar(t)l2dt 

p = fooo 1At(t)l2dt 

_f000 l(el- e2)a + (el + e2)bl2dt 
- f0

00 l(el + e2)a + (el- e2)bl2dt 

1- ci 
-1 + cx1 ' 

1 1- 1~1 2 - 2l~lxsin¢ 1- y 2 
(X - • 

- 1 + 1 ~ \2 + 21 ~ 1 y cos ¢ 1 + x2 ' 

om f_ 
x=r+' y=r+' 

(B .8) 

(B .9) 

(B.10) 
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and 

Because of (B.8), p = p. 

In the SU(3) limit, the quark model and factorization gives K. = tan2 Be (real), 

where Oc is the Cabibbo angle. Together with the assumption that x, y and K. are 

small and of the same order, (B.9) reduces to 

which was first derived by Kingsley et al.l96 

At first glance, it may seem that the phase </> in (B.lO) can be rotated away 

by redefining the relative phase of ID0) and I':Zf). In fact, if one adopts the 

phase convention IV) _ e-i¢>CPID0 ) instead of IV) CPID0), the parameter 

K. = A(V--+ f)/A(D0 --+ f) becomes real and positive. The definition of ID1) and 

ID2), however, is such that they are CP eigenstates when CP is a good symmetry. 

Namely, the definition of IDi) is now (assuming CP) 

IDi) ~(ID0 ) ± CPID0
)) 

=~(IDo) ± eiif>JV)). 
J2 

Also, the equations (B. 7) change to 

a= A(D0 --+f) = ei<P A(D
0

--+ l), 

b- A(D0 --+ f) = e-ic/> A(D0 --+ l). 

With these required changes, one recovers (B.9) and (B.lO) even though K. is now 

real and positive. Thus,</> is a physical parameter. 
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