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Abstract

This thesis examines the response of stick-slip, or frictional, systems to har-
monic and random excitation. Two frictional models are considered: constant
slip force, or Coulomb, friction, and displacement dependent slip force, used
to model a caster, or pivoting wheel. The response to harmonic excitation of
systems exhibiting both frictional models is detérmined using the method of
slowly varying parameters. Changes in the response amplitude of both systems
caused by the addition of a linear centering mechanism are also examined. -

The response of the system with displacement dependent slip force is ex-
amined under Gaussian mean zero white noise excitation using the generalized
equivalent linearization method. It is shown that a lower bound is obtained
frqm the Coulomb friction system’s response.

For filtered random excitation, linearization methods are shown to pre-
dict erroneous displacement trends for the Coulomb system when the input
has no spectral content at zero frequency. When the excitation is modeled as a
Poisson pulse process, an approximate method exhibiting the proper displace-
ment trends can be constructed. The method is shown to be accurate over a
broad range of input parameters if overlaps in the input pulscs arc considered.
A set of excitation parameters consistent with seismic events is then used to

estimate final rms displacements as a function of coefficient of friction.



iv

Contents

Acknowledgements
Abstract

List of Figures
List of Tables

1 Introduction

2 Response of Stick-Slip Systems to Harmonic Excitation
2.1 Introduction. . . . . . . ... ... Lo
2.2 The Method of Slowly Varying Parameters . .. ... ... ..
2.3 Application of Slowly Varying Parameters to Stick-Slip Systems
2.3.1 Systems Without Centering Devices . . . ... ... ..
2.3.1.1 Constant Slip Force Systems . . ... .. ...
2.3.1.2 A System With Displacement Dependent Slip
Force—The Caster . . . . ... ... . .....
2.3.2 Systems With Centering Devices . . . . ... ... ...

2.3.2.1 Constant Slip Force Systems . . . .. .. ...

ii

viii

ix

10
10

10

14
23

23

2.3.2.2 Effect of Centering Mechanism on Caster System 26

2.4 Conclusions . . . . . . . . i e e e e e e e e e

29



v

3 Response of Stick-Slip Systems to White Noise Excitation

3.1
3.2

3.3

3.4

3.5

Introduction . . . . . . . ..

3.3.1 Determination of the Equivalent Linear Parameters
3.3.2 Transient Response of the Linearized System . ... ..

Application of Generalized Equivalent Linearization to the Cas-

- ter-Mounted System . . . . .. ...

3.4.1 Derivation of Covariance Equation for Caster System
3.4.2 Numerical Solution of Covariance Equations . . . . . . .
3.4.3 Discussionof Results . . . . .. ... ... ........

Conclusions . . . . . . . o o

Response of the ACoulomb System to Filtered Random Excita-

' tion — Equivalent Linearization Approach

4.1
4.2

4.3

I_ntroduction .............................

Previows Work . . . s o cvisvsmrcasmatso8ms.nnna

4.3.1 The Method of Stationary Equivalent Linearization for
Random Excitation . . ... ...............

4.3.1.1 Determination of the Stationary Linear Param-

4.3.1.2 Stationdry Response of the Linearized System
4.3.2 Application of Stationary Equivalent Linearization to the

Coulomb Element . . . . . . . ... ... ... .....

30
30
31
32
32

35

36
36
38
41

48

49
49
51
52

53

53

54

56



vi

4.3.3 ‘ Response‘ of a Coulomb Element to Band-Pass Filtered
Random Excitation . . ... ... ...........

4.4 Simulationstudies . .. ... ... ... ... .. ... .
4.5 Comparison of Stationary Equivalent Linearization and Simula-

tion Results for Ideal Band-Pass Filtered Input . . . . . . ..

5 Response of the Coulomb System to Filtered Random Excita-

tion — Poisson Process Approximate Approach

5.1 Introduction. . . .. .. ... ... .. ... .. ...
5.2 An Illustration of Differences in Response for Coulomb and Lin-

ear Systems . . . . . ... ... e e
5.3 A Poisson Process Approximate Method . . . . .. ... ...
5.4 Simulation Techniques . . . . ... ... ... .. S T e

5.5 Comparison of Poisson Pulse Process and Simulation Results

5.6 Response of Stick-Slip System to Earthquake-Like Motions
6 Summary and Conclusions
References

A Equations of Motion for a Caster

A.1 Resisting Force as a Functionof Angle . . . . ... ... ...

A.2 Kinematics of the Caster Motion . . ... ... .. ......

A.3 Force-Displacement Relation for Rectilinear Caster Motion

86

106

112

121

128



vii

List of Figures

2.1 Response amplitude as a function of frequency for a Coulomb

2.2 Response amplitudes for caster system with harmonic input. . 18
2.3 Caster response amplitude curves plotted to the parameters used
for Coulomb BIGEK: : « 5 5 2 « m v o e m ey s sy s 21
2.4 Stability boundaries for the caster as a function of a/3C. . ... 22
2.5 Response amplitude as a function of frequency for a Coulomb
block with a centering spring. . . . . . . ... ... ... ..... 25

2.6 Response amplitudes for caster system with a centering device

and harmonicinput. . . . . ... ... ... L. 28

3.1 Transient {felocity variance for caster-mounted system subjected
to white noise excitation. . .. .. ... ....... b ew wow s 42
3.2 Transient velocity-displacement covariance for caster-mounted
system subjected to white noise excitation. . . . ... ... ... 43
3.3 Transient displacement variance for caster-mounted system sub-

jected to white noise excitation. . . . . . . . ... ... ... ... 44

4.1 Stationary rms Coulomb block velocity as a function of low-pass

frequency and input bandwidth . . . . . ... ... ... ..... 64



4.2
4.3

4.4

4.5

4.6
4.7

4.8

5.1

5.2

5.3

5.4

viii

Stationary rms velocity of the caster as a function of low-pass
frequency . . . ... 66
Amplitude modulation of the input spectrum caused by linear
interpolation .............................. 72
Comparison of response velocity standard deviation for simula-

tions of Coulomb element and equivalent linear systems, along

with stationary equivalent linearization results. . . . ... .. .. 77
Stationary ‘velocit‘y spectral densities from simulations of Coulomb

and equivalent linear systems, and analytical stationary equiva-

lent linearization. . . . . . . ... ... .. ... ... ... ... 79
Comparison of displacement variance for simulations of Coulomb
element and equivalent linear systems. . . . . .. ... ...... 81
Comparison of rms velocities using equivalent linearization and
simulations for fixed AQ. . .. ... ... ... 83

Comparison of rms velocities using equivalent linearization and

simulations for fixed Q;. . . . . . ... ... ... ... ... ... 84

Input acceleration pulse used to illustrate differences in responses
of linear and Coulomb systems. . . . ... ... ... ....... 91
Fourier amplitude for the pulse used in the example. . . . . . . 92
Response relative velocity and relative displacement for Coulomb
and linear systems subjected to single input pulse. . . .. .. .. 93
Comparison of simulation and approximate method results for
the rms velocity and the displacement rate for Poisson pulse

input. Rms acceleration pulse amplitude to slip level ratio is 1:3. 108



5.5

5.6

5.0

Al

A.2

ix

Comparison of simulation and approximate method results for
the rms velocity and the displacement rate for Poisson pulse
input. Rms acceleration pulse amplitude to slip level ratio is 1:1. 110
Comparison of simulation and approximate method results for
the rms velocity and the displacement rate for Poisson pulse
input. Rms acceleration pulse amplitude to slip level ratio is 5:1. 111
Final rms displacement as a function of Coulomb element coef-

ficient of friction using the overlap series method. . . . . A b L ¢

Caster configuration used in the equations of motion.. . . . . . 131

Normalized lateral caster force as a function of caster geometry 134



List of Tables

5.1 Event parameters used in study of response of stick-slip systems

to seismic excitation. . . . . . . . . . .. e e e e e e



Chapter 1

Introduction

A problem that has been of interest for some time, but that is receiving in-
creased attention recently, is the response of freestanding objects to earthquake
motions. When the center of gravity of these objects is not high compared with
their width, the predominant mode of motion is sliding, with the forces restrict-
ing the motion being frictional. The size of the objects extends from the small,
such as merchandise on a market shelf, through the moderate, which includes
data-processing, hospital and industrial equipment, to the large, with build-
ings on base-isolation foundations or soft first stories as prime examples. The
damage or loss of these systems, in addition to endangering human life, can
have large economic consequences. It has been estimated that the loss of a ma-
jor banking institution’s computing facilities could adversely affect the world
economy. Additionally, lifeline systems in hospitals and some utilities could
be imperilled if proper precautions are not taken. Thus, it is important that
the behavior of these systems during seismic events be understood, and that
estimates of the magnitudes of the motions be obtained.

The advantages ol leaving objects [reestanding are twolold. First, in
applications such as computer or hospital equipment, mobility is important,

and anchoring these systems makes their use impractical. A second benefit,



due to the frictional interface between the object and the seismic excitation, is
that the largest acceleration to which the system is subjected is the frictional
slip level. It is this feature that is exploited in the base-isolation of some
structures in an attempt to minimize damage. If the seismic accelerations
are below the frictional threshold, the system “sticks” and there is no relative
motion between the system and the surface on which it rests. For higher forces,
the system slips, and the maximum force to which it is subjected is the frictional
one. This slippage produces relative displacement between the object and its
support, introducing a source of potential damage if provisions are not made
to account for the motion.

The damage can take on various forms, depending on the object involved.
In supermarkets and warehouses where the inventory is kept on shelves, sub-
stantial losses occur from breakage of containers sliding off the shelving. Del-
icate hospital equipment can injure patients or be damaged from rolling or
sliding into stationary objects, possibly compromising the effectiveness of the
medical facilities during a time of great need. Computer equipment may crush
operators or be destroyed if provisions are not made for seismically induced
motion. Even large machinery that is often anchored, such as machine tools,
respond principally by sliding when their restraints fail. If sufficient space is not
left between a base-isolated building and its abutment, the collision of these
during an earthquake could lead to structural damage and injury. Thus, to
minimize the risk from sliding objects, it is important to estimate their seismic
motions.

Previous work on sliding systems [1,2,3,4,5,6] has concentrated on sys-

tems restrained by Coulomb friction, where the frictional force is dependent



only on the sign of the system’s relative velocity. However, many freestanding
objects have a frictional force, which is dependent on the magnitude of the
relative motion. Specifically, a system mounted on casters, or swiveling wheels,
such as those on which hospital and computer equipment are routinely set,
exhibits such a behavior. To determine the seismic response of these systems,
a model for the frictional force-relative displacement relationship is developed
herein and examined under both deterministic and random excitation. This
response is compared to that obtained from the constant frictional force sys-
tem, and it is shown that the constant force system provides a lower bound to
the caster-mounted system’s response for various types of excitation.

In Chapter 2, both the constant force and the displacement-dependent
frictional systems’ response to deterministic, harmonic excitation is examined.
The effect of centering mechanisms, intended to reduce the amplitude of the
motions, is also studied in this chapter and is shown to actually increase the
displacements in many cases. Additionally, the constant frictional force, or
Coulomb, system’s behavior is a lower bound to the caster-mounted response
for configurations both with and without centering devices.

The response of the Coulomb and caster-mounted systems to random
excitation with a white-noise spectrum is examined in Chapter 3. Although the
white noise excitation is not representative of a typical earthquake, many of the
existing methods in the theory of random vibrations are most easily applied
when a white spectrum is used. Previous studies on the Coulomb system have
used this excitation [1,2,3,6], and in this thesis the work is extended to cover
systems with decreasing frictional force. The Coulomb system is again shown

to be a lower bound to the response of the caster-mounted system by means of



the generalized equivalent linearization.

A study of the response to more general excitation spectra is undertaken
in the fourth chapter, where filtered stationary excitation is taken as an input.
The equivalent linearization method is used and is shown by simulation to be
accurate in predicting velocity response for the majority of the cases considered,
but the displacement response trends computed by linearization are erroneous
when the input spectrum has no content at zero frequency. It is also shown
that the greatest sensitivity in the velocity response is to the spectral content
at low frequencies. Consequently, a model of the seismic spectrum should be
accurate in this range. Unfortunately, stationary seismic spectra with correct
large-time velocity and displacement behavior have negligible content at zero
frequency. Thus, the equivalent linearization method cannot be used to predict
displacements for realistic seismic spectra. Previous equivalent linearization
studies of the response of a Coulomb block to filtered excitation [4] used the
Kanai-Tajimi input spectrum [7,8], which has a non-zero component at zero
frequency, thus avoiding the an error in the displacement trend. However, for
the reasons outlined previously, this spectrum does not correctly characterize
the seismic input in the case of stick-slip systems.

To correctly predict the displacement response of the Coulomb system
excited by spectra with no zero frequency content, a different method is de-
veloped. In Chapter 5, a Poisson process model of the input is used, and
the overall mean-squared response is computed using a superposition of the re-
sponses to the individual pulses. This procedure is similar to the one developed
by Lin [5] to estimate the mean response for a block on an inclined plane. If the

overlapping of pulses in the input process is included in the analysis, then the



agreement between the Poisson process method and simulations is improved.
Final rms displacements are computed for parameters representative of seis-
mic events, and displayed as a function of the coefficient of friction. Lower
and upper response bounds for a caster-mounted system are obtained from the

Coulomb system and frictionless systems, respectively.



Chapter 2

Response of Stick-Slip Systems to Harmonic

Excitation

2.1 Introduction

To understand some features. of the stick-slip systems that play a role in their
response to random excitation, these systems are first studied under harmonic
excitation. Two types of stick-slip systems are considered: a constant slip
force system, also known as a Coulomb friction system, and a system whose
resisting force is dependent on its relative displacement. It is shown that the
Coulomb system, for which the analysis is algebraically more straightforward,
can be used, through a judicious choice of parameters, as both a lower and
an upper bound to the response of the latter system. The effect of centering
mechanisms such as springs or caster cups is investigated and shown in many
cases to increase, rather than decrease, the amplitude of the system response.

The technique used in this investigation is the method of slowly varying
parameters. In addition to predicting approximate values for the amplitude
and phase of the periodic response, the method presents information about
the stability of these solutions. A derivation of the method is presented in

Section 2.2, and is used in the following section to determine response estimates



for the various systems.

2.2 The Method of Slowly Varying Parameters

The method of slowly varying parameters, also known as the Krylov-Bogoliubov
method, is a widely used averaging method for determining approximate peri-
odic solutions to nonlinear equations with harmonic excitation [9, pp.165-168]
[10]. As the notation to be used in this chapter differs from that in the refer-
ences, a brief derivation of the method is presented.

The general second-order equation of motion with harmonic input is
given by

Z+ f(z,z) = Bcos wt, (2.1)

where dots denote derivatives with respect to time. The periodic solution of

interest is of the form
z(t) = A(t) cos 6(t) 0(t) = wt + &(t), (2.2)

where A(t) and 4(t) are the amplitude and phase, respectively. If f(z,z) is
linear and time invariant, then the solution is exact once the initial conditions
decay, and A(t) and ¢(t) are constants. For nonlinear f(z, <), an approximate
solution is obtained for A(t) and ¢(t) being slowly varying functions of time.

Differentiating z(t) with respect to time results in
i(t) = —wAsinf + Acosd — Adsin. (2.3)

At this point, an auxiliary equation is added, akin to that used in the method

of variation of parameters for linear differential equations. It is

Acosf — Adsind = 0. (2.4)



Thus,
& = —wAsind, (2.5)
i = —wAcosf —w[Asind + Adcosd). (2.6)

Substituting these expressions for z, &, and % into the equation of motion (2.1),

results in
—w?Acosf— w[A sin 0+ A cos 0]+ f(Acos8, —wAsind) = Bcos(d—¢). (2.7)
Multiplication of (2.7) by sin @, (2.4) by w cos 6, and subtraction yields
— w?Acosf sind —wA + f(-)sind = B cos(f — ¢) sin¥, (2.8)
while multiplying (2.7) by cosd, (2.4) by wsinf and adding results in
— w?Acos? 0 — wAP + f() cos8 = B cos( — ¢) cos . (2.9)

When the previous equations are integrated over one cycle of the input the
resulting formulae represent the average value and change in value for both the

amplitude and phase, if these vary slowly over a cycle. These are

—2wA+8(A) = —Bsind, (2.10)
—2wAd — w?A + C(A) = Bcosg, (2.11)
where

1 27
S(4) = ;/0 f(A cosf,—wA sin ) sin 6 db, (2.12)

1 27
Cc(A) = ;/ (A cost,—wA sind) cos 0§ db. (2.13)

0

S(A) is the average force out of phase with the response, while C(A) is the

average in-phase portion.



The approximate steady-state periodic solutions are obtained by setting
A and ¢ to zero. Letting the steady-state values be Ay and ¢y, respectively,

Equations (2.10) and (2.11) become

Il

S (Ao) — B sin ¢y, (2.14)
—w?Ao+ C(A) = B cosgo. (2.15)

By squaring and adding the previous equations the following expression in the

amplitude variable Ay is obtained:
S%(Ap) + [C(Ao) — w?4o)® = B~ (2.16)

An equation for the phase

—5(4o) ] (2.17)

= t
¢o = arctan [—uﬂAo T+ C(Ag)
is found by dividing Equation (2.14) by (2.15).

From a perturbation expansion on (2.10) it can be shown that there are

two conditions for the stability of the approximate solutions. These are

R

The equality in Equation (2.19) corresponds to the condition that dld(Aﬂ = 0,
the point of vertical tangency of the curve A(w). For this reason, this line is

known as the “locus of vertical tangencies.”



10

2.3 Application of Slowly Varying Parameters to Stick-

Slip Systems

Two stick-slip systems are examined in this section: a constant slip force sys-
tem, and a system whose slip force is dependent on its position. The former
is important because it is commonly used in models of nonlinear systems. The
latter is examined since many physical devices, such as a caster, or pivoting
wheel, can be shown to exhibit a displacement dependence in the slip force.
In fact, a model of a caster-mounted system is used in this analysis with the
expectation that many of the features illustrated by this particular model are
typical of systems with varying slip.

The use of centering devices has been proposed for systems mounted on
casters [11] in the expectation that the magnitude of the motions is reduced.
The effect of these devices is modeled, to first order, as a linear restoring force
and is examined in connection with the response of both the constant and

non-constant slip force systems.

2.3.1 Systems Without Centering Devices
2.3.1.1 Comnstant Slip Force Systemns

As was mentioned in the introduction, constant slip force systems, also known
as Coulomb systems or Coulomb elements because of the frictional resisting
force, are used in various models of physical systems. In some applications,
a rigid mass with a Coulomb friction interface has been used as a model for
studying the response of buildings with “soft first stories,” or base isolation

systems, to seismic forces [2,3,4]. It can be equally well employed to examine the
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behavior of freestanding rigid equipment such as computer cabinets or hospital
equipment during an earthquake. Elements exhibiting Coulomb friction are
also used as components in more complex systems such as bilinear systems [12],
generalized yielding systems [13], and even deteriorating systems [14]. It is felt
that the insights gained through this work are useful in both sets of applications.

When the relative velocity is non-zero, the resisting force of the Coulomb
element is dependent only on the sense of the relative velocity, with an ampli-
tude equal to the so-called “slip level.” For zero relative velocity, the force
equilibrates any applied force whose magnitude is less than the slip level; for
larger applied forces, the element slips and the first statement applies. In the
notation of Equation (2.1) in the previous subsection, the nonlinear system

function is given by
f(z) = asgn(z), (2.20)

where a = ug, u is the coefficient of friction, g is the gravitational acceleration,

and
1, #>0;
sgn(z) = -1, £<0; (2.21)
0, &=0.

The functions S(A) and C(A) are found by substituting the above ex-

pression for f(Z) into (2.12) and (2.13), resulting in

S(4) = —4?0’, (2.22)

C(4) = o. (2.23)

Since C(A) = 0, and S(A) is negative, the resisting forces lag the response

by 90°. The approximate amplitude for the periodic response is obtained by
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substituting S(A4) and C(A) into (2.16), yielding
4a)* 4 42 2
<_) + WAl = B, (2.24)
m

Solving this equation to find an explicit expression for frequency in terms of
the other system parameters results in

B2 B (Q_)Z 1/4

el B e I (2.25)

This function is plotted in Figure 2.1. A dimensionless form of the equation is
not used, as (2.25) is more useful for comparisons with the response of a caster-
mounted system. Although in this particular example it is possible to explicitly
determine A(w), for most problems it is difficult to obtain this functional form.
Note that (2.25) indicates that there is no response solution for |B/a| < 4/7.
For this range, the only solution admitted by the equations of motion is Ay = 0.
An exact solution to the equation of motion would show there is a non-zero
response for 1 < |B/a| < 4/, while slowly varying parameters admits only
the zero solution. This is because for sufficiently large input, the slip force is
a mean zero square wave with amplitude a. The first term in a Fourier series
expansion of this wave, equal to S(A), has amplitude 4a/mw. Thus, the input
harmonic excitation must exceed this level for the system to move.

The amplitude of the absolute ground displacement input to the system

is
B

A==
bt
w2

(2.26)

where A is the displacement corresponding to a sinusoidal acceleration with
amplitude B. This expression can be obtained from either of two methods.

The first is by direct calculation from the harmonic acceleration input. The
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Figure 2.1: Response amplitude as a function of frequency for a Coulomb block.
The different curves correspond to, from left to right, B/a equal to 1.3, 2, 4,
and 8.
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second method, which will prove useful for calculations in later chapters, is
by allowing the slip level of the Coulomb system to go to zero. When this is
done the mass remains fixed in the absolute coordinate frame, and its relative
displacement is equal in magnitude to the absolute displacement but opposite
in sign. As can be seen by the form of Equation (2.25), this displacement is an
upper bound to the system response. This contrasts with the Coulomb element
with a centering spring that is examined in a later subsection, for which the
relative displacements can exceed the magnitude of the input displacements.
The peak displacements of the system without a spring occur as the frequency
goes to zero, due to the input displacements becoming unbounded in this range.
For large B/a, the relative displacement amplitude of the system approaches
the ground displacement, and the absolute displacement of the system is small
compared to the other displacements. In other words, the system remains
practically stationary, while the ground slides beneath it. For smaller B/a, the

relative displacement is a fraction of the ground motion.

2.3.1.2 A System With Displacement Dependent Slip Force—The

Caster

To examine the response of systems with varying slip force, a particular system
with this characteristic is investigated in this subsection. The caster-mounted
system is an idealization of objects such as computer cabinets or hospital equip-
ment that are routinely mounted on these pivoting wheels. The model consists
of a rigid mass with a low center of gravity, with weight evenly distributed
among the wheels on which it rests. If a simple frictional law is assumed for

the casters, then, as shown in Appendix A, the system equation for motion
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along one dimension is given by

2+ asgnfi)esch <i> — _nlt), (2.27)

where the constants a and £ are determined from the caster properties discussed
in the appendix, and n(t) is the absolute ground acceleration. The problem of

interest in this chapter is the response to the harmonic excitation
—n(t) = Bcoswt. (2.28)
From (2.27), the system resisting force per unit mass is given by

f(z,Z) = asgn(z)sech (%) . (2.29)

The functions S(A) and C(A) used by the method of slowly varying parameters
are found by substitution of the resisting force function into (2.12) and (2.13).

This results in

12af . A
S(4) = - — arctan <s1nh (ﬂ))
12al . A
= — - arcsin (tanh (52>> , (2.30)

where the last substitution of trigonometric and hyperbolic functions has been

performed to avoid numerical overflow in computations. Additionally,
C(A) =0. (2.31)

As in the case of the Coulomb block, the system forces are 90° out of phase with
the response displacement. Replacing (2.30) and (2.31) into (2.16), and solving
to obtain frequency as an explicit function of the steady-state amplitude Ag,

results in

B? - [-IM arcsin (tanh (4‘1)”2

4 TA) 3¢
wh = e . (2.32)
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Ideally, one would prefer to obtain the amplitude as an explicit function of the
frequency, but in this case it appears impossible to do so analytically.
Bounds for the relative displacement are obtained from the previous

equation by observing that

. Ao Ag Ao
< — < — — > 0. 2.33
O_a,rcsm(tanh(ge))_ 30 for 32_0 (2.33)

Using these inequalities in (2.32) results in

B? — (4—“>2 - B% — [Q-“—e arcsin (tanh (4‘1))]2 .

T TAy 3¢
2 = 2
Ap Ap

k!

(2.34)

P

6
By comparing the left-hand side of this expression to Equation (2.25), it is
seen that the lower bound to w(Ag) for a caster is given by the response of a
Coulomb block with slip level a. The right-hand bound is the amplitude of the
absolute ground displacement. Since the function w(Ap) is bounded both above
and below by either single valued functions or constants, its inversion Ag(w) is
bounded by the inverses of bounding functions. Thus, the response amplitude
for the caster motion is bounded from below by the response of a Coulomb
system with a slip level a, and bounded above by the amplitude of the absolute
ground displacement. These same limits should apply for any system whose
resisting force is bounded, with velocity dependence of the form sgn(z). For
these systems, the Coulomb slip level should be set to the maximum resisting
force to obtain a lower bound for the response amplitude.

To further understand the function w(Ayp), a non-dimensionalization is
performed on (2.32) to obtain

3_2— %2
v (1,—- Ao

1/4

<§>2 — (;—124% arcsin (tanh <%)>)2} } 5 (2.35)
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where a frequency group wm is presented as a function of an input am-
plitude group B/a and a response amplitude group Ao/3¢. The results of
substituting numerical values for these groups can be observed in Figure 2.2.
In addition to the approximate solutions found in Equation (2.35), another
solution to the equation of motion for the caster is Ag = 0. Based on the re-
sponse of a Coulomb system, the zero solution is always stable for |B/a| < 4/7
énd unstable for larger input amplitudes. Immediately observable differences
in Figure 2.2 between the caster response and that of a Coulomb block are the
caster exhibiting non-zero response amplitude for B/a < 4/7, and the response
diagram containing an unstable region. The remainder of this subsection is de-
voted to exploring these two subjects.
For a solution to (2.32) to exist,

B _ 12 A
o = T As arcsin <tanh <3—z>> ' (2.36)

The minimum value of Aq/3¢ for which a solution exists is found by iterating

on Ag/3¢ in the equation

Aoy _da (R
(3£>n+1 = _garcsin (tanh (3£>n> ' (2.37)

This procedure converges to the correct limiting value independently of the
initial value chosen for Ay/3¢, with the convergence rate determined by the
closeness of B/a to 4/m. These minimum values for which the solution exists
appear in Figure 2.2 at the intersections of the amplitude curves with the 4,/3¢
axis.

Stability of the approximate solutions is determined by substituting the

appropriate functions into the stability boundary Equations (2.18) and (2.19).
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Figure 2.2: Response amplitudes for caster system with harmonic input. The
curves represent from left to right, B/a= 0.5, 1.0, 1.25, 1.30, 2, 4, and 8.
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From (2.30) and (2.31), the derivatives of S(A4) and C(A) are

0S(A)|  12aLy Ao A A
54 |, = i [arcsm (tanh <3£ >) 3£sech <3£>] ,  (2.38)
oC (A)
= 0. 2.3
04 |, 0 2:58)

Thus, the solution is stable if

4a Ao
0 < 2% h(——), 2.40
= 7 M\ (2.40)

4 2 2\ 2
Sie) > (47(3:%) arcsin (tanh (?—Z))

it (53)) - Sgmecn (5¢)]
X [arcsm (tanh (32 % sech a7/l (2.41)

The first of these inequalities is automatically satisfied for all realistic values of

€

parameters. The range over which the second holds is determined numerically
and displayed in Figure 2.2. The plot of the unstable region does not include
the value Ag/3¢ = 0, because the stability of this solution is dependent on the
input amplitude.

From an asymptotic expansion on the second stability condition for small

Ao /3¢ it is found that the stability boundary crosses the frequency axis at

w\/f‘g _ \/\[Z?) (2.42)

The minimum B/a for which the response amplitude curves cross into
the unstable region is found by isolating those curves intersecting the Aq/3¢
axis. Expanding (2.25) for small Aq/3¢, one obtains

2
2 4
LB - (7a>

W'z ——pt (2.43)

Substituting w = 0 into this relation shows that for B/a < 4/7, curves cross the

unstable region. The frequency at which the response curve crosses the stability
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boundary separates domains for which the system has different numbers of
solutions. Above this frequency the only stable periodic solution is the zero
solution, while below there are three amplitude solutions for a given frequency.
The stable solutions are the zero solution and the upper branch of the solution
to (2.35), while the intermediate solution given by the lower branch of (2.35)
is unstable. The choice of which stable solution is exhibited by the system
is determined by the initial conditions on the caster. For B/a > 4/7 the
amplitude curves do not cross the locus of vertical tangencies and are single
valued functions of frequency representing the stable periodic solution. The
zero amplitude solution is unstable for these larger inputs.

For comparison with the amplitude response curves of the Coulomb
block, the caster amplitude responses have been plotted as a function of the
parameters used for the former system’s response curves in Figure 2.3. The
difference between the sets of curves shown is the value chosen for a/3¢. Since
the Coulomb element response is a lower bound to the caster responses, all
curves lie above those for a Coulomb block with the same slip level. As a/3¢ is
decreased with all else held constant, the response amplitude decreases, making
the values closer to those of a Coulomb element. In addition, the stability
boundary shrinks horizontally and is elongated in the vertical direction. For
a/3¢ — 0, the caster behaves like a Coulomb block, and the stability boundary
disappears. In Figure 2.4, the stability boundaries are plotted for various values
of a/3¢, and the dependence of the shape on the caster parameters is more easily

discerned.
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Figure 2.3: Caster response amplitude curves plotted to the parameters used
for Coulomb block. Values of B/a used are, from left to right, 1.25, 1.3, 2, and
4. The shaded area of the plots are regions of unstable solutions.
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Figure 2.4: Stability boundaries for the caster as a function of a/3¢.




23

2.3.2 Systems With Centering Devices

The effect of a centering device, represented herein by a linear restoring force,
is studied in this section. It is shown that the addition of a centering device
causes a shift in the frequency squared parameter of the response curves by
an amount equal to the squared natural frequency system. The peak of the
response curve is unbounded for all possible parameters of both the Coulomb
and caster systems, and the centering system is more likely to result in an

increase rather than a decrease in the amplitude of the response.

2.3.2.1 Constant Slip Force Systems

The equation of motion for the relative displacement of the Coulomb system

with an attached spring is given by
i + asgn(f) + wlz = Bcoswt, (2.44)

with w? = k/m. The slowly varying parameter functions S(A) and C(A) are

given by
4
S(4) = -=2, (2.45)
m
C(A) = wlA. (2.46)

Note that the only the C(A) function is affected by the addition of the spring,
and the component of the resisting force in-phase with the response is now

non-zero. The response amplitude is found by substituting these functions

into (2.16) to obtain

4a\?
<_a> + A(z)(wrzt - w2)2 = BZ’ (2'47)



24

which, when solved for w? results in

m(s)

T

Y (2.48)
This function is plotted in Figure 2.5. When the preceding equation is com-
pared with (2.25), it can be seen that the addition of a spring shifts the fre-
quency squared axis by an amount w2, leaving the shape of the curves un-
changed. All solutions can easily be shown to be stable through the use of
Equations (2.18) and (2.19).

The response of the system with a centering device is no longer bounded
from above by the amplitude of the absolute ground displacement. In fact, if
the input frequency is above the system natural frequency, the response of the
centering system is larger than that of the system without the spring, thereby
defeating the purpose of the centering device. For frequencies between zero
and the wy,, the response may increase or decrease, depending on the precise
location of the input frequency.

Although this analysis has been performed for a single harmonic input,
the same type of behavior is to be expected for excitation with a moderate
bandwidth. Many forms of random excitation occurring in engineering appli-
cations have negligible components at zero frequenc‘y, with the majority of their
energy being in higher frequencies. Since the spring has shifted the unbounded
response from the zero frequency to the system natural frequency, the response
may well be larger than that without a centering device. Thus, although on
an intuitive level it might seem that a centering device would reduce the size
of the relative displacement, it appears that for some situations the effect may

be the opposite.
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Figure 2.5: Response amplitude as a function of frequency for a Coulomb block
with a centering spring. The spring-mass system’s squared natural frequency
has been set to 0.5 rad/sec. The different curves correspond to, from lowest to
highest, B/a equal to 1.3, 2, and 4.
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The steady-state displacement response becomes unbounded at the nat-
ural frequency of the spring-mass system, even though the input displacement
is bounded. This behavior is independent of the slip level of the frictional ele-
ment. For inputs at this frequency, the frictional element dissipates less energy
per cycle than that stored in the spring. Since the energy in the spring is
proportional to the square of its extension, the transient response grows as the

square root of time and has no upper bound.

2.3.2.2 Effect of Centering Mechanism on Caster System

A proposed mechanism meant to restrict the motion of a caster-mounted system
is a so-called “caster cup” [11]. It consists of a bowl-shaped piece of hard
material affixed to the ground, with a concave surface onto which the caster
is placed. This device is intended to decrease the amplitude of the motion
since the caster must move up the side of the cup as the system displaces.
Unfortunately, as is shown in this section, for many types of excitation the
motion’s amplitude actually increases.

If the shape of the caster cup is a conic section or hemispherical, then,

to first order, the natural frequency introduced by the cup is
wn = 4] =, (2.49)

where ¢ is the gravitational acceleration, and r, is the radius of curvature of
the cup. This frequency is the same as that of a pendulum of length r,.

The equation of motion for the overall system is

£ + asgn(z)sech (3%) + wlz = Bcoswt. (2.50)
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For this system,

_ 12af . @))
S(4) = - — aresin (tanh <3£ , (2.51)
C(4) = wlA. (2.52)

Using these relations in (2.16) and solving for w(A4y) one obtains

2 TAy 3¢
n 2
Ap

B? — [M arcsin (tanh (&))]2
. (2.53)
From a comparison with (2.32), it can be seen that, as in the Coulomb system,
the centering device introduces a shift of w? in the frequency squared axis. The
response curves are displayed in Figure 2.6, where a non-dimensionalization
has been performed to capture the overall nature of the response. The stability
boundaries are the same as those for the caster without a centering mechanism,
except for a shift of w2. It can be seen the peak response has been shifted to the
natural frequency of the centering system, as occurred in the Coulomb system.
For the most part, the nature of the solutions is the same as that of the caster
without a centering force, except for the shift. One major difference in the
response is that it is no longer bounded from above by the ground motion.
Recall that the Coulomb system without a centering device is a lower
bound for the caster system without caster cups. Since the addition of cen-
tering mechanisms causes the same shift in the frequency for both systems,
the Coulomb system attached to a spring is a lower bound for the correspond-
ing caster system. Thus, all comments made in the previous subsection about
the centering device’s tendency to increase rather than decrease the response
hold equally well for the caster-mounted system. Consequently, the caster cups

appear to perform the opposite function for which they were designed.
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1.25, 1.30, 2, and 4. The non-dimensional squared natural frequency has been

set to 0.5.
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2.4 Conclusions

The method of slowly varying parameters has been used to examine the re-
sponse to harmonic excitation of Coulomb and caster-mounted systems, both
with and without centering mechanisms. The Coulomb system has been shown
to be simpler to analyze than the caster system, as well as useful for determin-
ing both upper and lower bounds for the caster system response through the
proper choice of slip level. The addition of a centering mechanism has been
shown to shift the frequency axis of the amplitude vs frequency function. In
terms of system response, this shift is likely to cause an increase in amplitude,
the opposite effect from that sought. The response will also not be bounded
by the amplitude of the ground motion, which can be a distinct disadvantage

when the nature of the input is not known beforehand.
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Chapter 3

vResponse of Stick-Slip Systems to White Noise

Excitation

3.1 Introduction

In the previous chapter, the Coulomb system, whose resisting force is depend-
ent only on the sign of the velocity, and the caster-mounted system, with a
force dependent on the relative displacement and the sign of the velocity, were
examined under deterministic harmonic excitation. To examine the response
of these systems to random excitation, their behavior under white noise excita-
tion is determined in this chapter. The method used is the generalized equiv-
alent linearization method, an approximate technique useful for determining
the transient response of nonlinear systems subjected to random excitation.
It is shown that the response of a caster is non-stationary in both velocity
and displacement. When a limiting case of the caster parameters is vta,ken,
the response is that of a Coulomb system, which is stationary in velocity and
non-stationary in displacement. The Coulomb system is shown to be a lower
bound to the response of the caster-mounted system. An upper bound is found
in the frictionless system, for which exact solutions for the response statistics

are easily found.
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3.2 Previous Work

To the author’s knowledge, this is the first examination of the response of
a caster-mounted system to random excitation. However, a reasonable body
of work exists pertaining to the response of a Coulomb block to stochastic
excitation. As the Coulomb block’s response is shown to be a lower bound to
the caster system response when equivalent linearization is used, a short review
of earlier work on this system is included.

The problem of a Coulomb system under white noise excitation was first
examined by Caughey and Dienes [1]. Using the Fokker-Planck equation, they
obtained the exact stationary probability density function and stationary spec-
tral density of the velocity. In addition, they obtained equivalent linearization
estimates of the stationary velocity spectral density using both the Gaussian
and exact stationary probability density functions.

The problem was also investigated by Crandall, Lee, and Williams (2]
using the stationary equivalent linearization method to obtain the transient
velocity and displacement response to white noise. The probability density
function used for the velocity was the exact stationary one found by Caughey
and Dienes [1], instead of the Gaussian one commonly assumed in equivalent
linearization. Simulations were used to check the approximate analytical re-
sults.

Ahmadi [3] solved the same problem using the generalized equivalent
linearization method, explained in this chapter. He found that both stationary
and generalized linearization predict identical values for both short and long
time velocity and displacement standard deviation, but for moderate times,

discrepancies up to 15% occur.
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3.3 The Generalized Equivalent Linearization Method

As was mentioned in the introduction, the generalized equivalent linearization
method is useful for determining the non-stationary response of nonlinear sys-
tems with random inputs. For reasons of expediency, the version presented in
this chapter is restricted to stationary white noise input, although the general
method can account for non-whiteness and non-stationarity in the excitation.
The method presented here is based upon the work of Iwan and Mason [15],
who extended the stationary equivalent linearization method of Caughey [16]
and Booten [17] to cover the general non-stationary response of multi-degree-of-
freedom systems. The technique consists of two parts. First, the “equivalent”
linear system is determined and used as a replacement for the nonlinear system.
The linear parameters of this system are generally time-varying. The next step
is the determination of the transient mean-squared statistics of this linear sys-
tem. This consists of solving a Liapaunov-type matrix differential equation for
the covariance matrix. In this way, the nonlinear stochastic differential equa-
tion is approximated by a deterministic ordinary differential equation i1_1 terms

of the covariance of the response variables.

3.3.1 Determination of the Equivalent Linear Parameters

The general nonlinear system of interest stated in first-order form, is given by
& = h(z) + Dn(t), (3.1)

where z is an n-dimensional state vector, h(z) is the nonlinear system restoring
force, D is a diagonal matrix, and n(t) is a white noise process. It is not

strictly proper to write the equation in the above form because the white noise
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input causes  to exist almost nowhere. However, the notation is kept as it
is simpler than the more rigorous integral equation formulations. Using the
first-order form of the equation presents no loss of generality as higher-order
equations can always be written in this form. The above nonlinear system is

to be approximated by a linear system of the form
&= A(t)z + Dn(t), (3.2)

where the variation of the linear system is dependent on the response statis-
tics. An equation deficiency € can be defined by subtracting Equation (3.2)
from (3.1) to obtain

€= h(z) — A(t)=. (3.3)

A suitable criterion on the equation deficiency must then be imposed. The
usual approach is to minimize the expected value of the Euclidean, or mean-
squared, norm of this deficiency with respect to the linear parameter values.
Although different minimization criteria have been used in other studies [18],
none appears to have significant advantages over this approach. From [15],

minimization implies
OE[T (]
— 19

= (3.4)

Substitution of (3.3) into the above expression and manipulation results in

() — Elulz)z)] s)
H E[(B,‘(II]‘] '

To evaluate the expectation operators in the previous equation, a probability
density function must be assigned to the random variable . The most common

assumption is that the response process is described by an n-dimensional Gaus-

sian distribution. The reason for this is twofold. First, a linear operation of
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a Gaussian vector process results in another Gaussian process; thus, an equiv-
alent linear system acted upon by a Gaussian process has Gaussian response
statistics. Second, the Central Limit Theorem for random variables states that
the probability distribution for the sum of random variables approaches the
Gaussian distribution as the number of variables in the sum becomes large,
making the Gaussian distribution a good estimate when little is known about
the true distribution.

For some nonlinear systems, knowledge exists on the form of the response
variable’s distribution. In these cases, it is advantageous to use this information
when one is determining the equivalent parameters [1,2]. However, no such
knowledge exists for the caster system considered in this chapter.

Once the response is assumed to have a Gaussian distribution, a result
of Atalik and Utku [19] can be used to simplify Equation (3.5), the expression

for the equivalent linear parameters. This gives

ais(t) = E {a%h,-(x)l . (3.6)

To evaluate this expression, one must compute

a;;(t / /oo 8:1:] (z) dzy - - - dz,,. (3.7)

The probability density function for a mean zero Gaussian response is given by

1 T
P®) = [ der g P 902

(3.8)

where Q(t) = E[z(t)zT(t)] = QT(t) is the covariance matrix, and T denotes
transpose. As the response is Gaussian, evaluation of the expression (3.6) for
a éiven h(z) results in the linear coefficient matrix’s being a function of the

mean vector and covariance matrix of the response.
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3.3.2 Transient Response of the Linearized System

The previous subsection described a method for determining the equivalent
linear parameters. The transient response of this system is now found. Only
mean zero processes, and “non-rectifying” functions h(z) are considered in the
remainder of this study, so the response is taken to be mean zero.

An expression for the response covariance matrix for a linear system is

given by the Liapaunov equation [15]

Q) = A()Q() + (4(H)Q(t)" + 2rS,DDT, (3.9)
Q) = o, (3.10)
where
Q) = E[=(t)z"(t)] = Q7 (1), (3.11)
E[n(t)] = o, (3.12)
E[n(t)n(s)] = 2nSob(t — s), (3.13)

and A(t) is found from (3.6). The problem has been converted from solving
a stochastic differential equation to finding solutions to a deterministic ma-
trix differential equation. Equation (3.9) is usually solved numerically with

standard techniques.
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3.4 Application of Generalized Equivalent Linearization

to the Caster-Mounted System

3.4.1 Derivation of Covariance Equation for Caster System

The equation of motion for a caster-mounted system, as described in the pre-

vious chapter, is given by

£ + asgn(z)sech (%) = —n(t). (3.14)

To convert this equation to the first-order system notation use

2 = 1, (3.15)
Ty = i (3.16)
h(z) = {Zz,—f(thb’z)}T, (3.17)
f(z1,z2) = asgn(zz)sech (%), (3.18)
0 O
D = . (3.19)
0 -1

Substituting these expressions into (3.6), results in

a; = 0, (3.20)

ais = ]., (321)
_ il a2 1

ay = FE [%sgn(xz)sech (3£> tanh (32)] , (3.22)

ae = E [—2a5(z2)sech <—§—z>] : (3.23)

Note that the kernel of the expectation operator in (3.22) is odd in both =z,
and z;. Thus,

a9 = 0. (324)
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Computing as; by replacing Equation (3.23) in (3.7), yields

day = / / —2a 6(z2)sech <§—2) p(z1, z3) dz dzy

= —2a/ sech <%) p(z1,0) dz4, (3.25)

where, from (3.8),

_ 1 —(Izzxf
ple1,0) = g &P (2 detQ) : |8626)
det Q = (11922 — qf2. (327)

The integral in (3.25) is difficult to determine in closed form, so an approxima-
tion is performed to sech(-).. This is

: 1
sech(y) ~ T (3.28)

This approximation has the correct asymptotic behavior for both small and
large arguments, and integration of both functions from zero to infinity yields
the same value. Hence, for large displacement excursions, both the exact and
approximate relations account for equal expenditures of energy by the caster-

mounted system. Substituting (3.28) into (3.25), and integrating, results in

2
as(qi1, 12, g22) = —a q_ zexp(z2)erfc(z), (3.29)
V 22
where

3¢,/m (2.3}

‘= V2detQ’ e
erfc(z) = 1—erf(z) = % /oo et dt, (3.31)

The components of the covariance matrix are given by substituting the expres-

sions for a;; into the coupled differential equations

dguu = 2qu, (3.32)
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diz = a32(q11, q12,922) Q12 + G2, (3.33)
da2 = 2a22(q11, q12, 922) 22 + 27 S, (3.34)

where az(-) is found in (3.29) and initial conditions are ¢;;(0) = 0. These
equations are solved numerically, using the procedure described in the next
subsection.

From (3.29) it can be seen that as; is non-positive. Thus, the maximum
rate of growth of the covariance equations is achieved when as; — 0. In a later
subsection it is shown that this maximum growth rate is achieved when the

rms displacement becomes much larger than 3£.

3.4.2 Numerical Solution of Covariance Equations

Particular attention is paid to two topics in the numerical solution of the covari-
ance equations (3.32), (3.33), and (3.34). The first is the selection of proper
numerical values for the initial conditions, as the zero values introduce nu-
merical problems. The second is the numerical integration technique used for
efficiently solving the covariance equations.

The exact initial conditions for the covariance equations are ¢;; = O.
Unfortunately, substitution of these values into the covariance equations results
in numerical division by zero, although a carefully performed limiting process
indicates that the equations are not singular. There are two ways to deal with
this numerical anomaly. The first is to perform an expansion of the equations
that does not become unbounded at zero, commence the solution with these
equations, and later patch this solution with one to the complete equations.
The second approach, the one adopted in this study, is to initiate the solution

with small but non-zero values. The choice of these values is now examined.
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Conditions that must be satisfied by any solution, including the starting

values, are the following:

1. The covariance matrix must be positive semidefinite. Thus, detQ@ =

q11922 — Qfg > 0.
2: Qi — E[.’IJ?] Z 0.

3. Using the previous condition in Equation (3.32) implies that g;2 > 0 when

g11 is small.

These conditions provide constraints used in determining the initial conditions.

Note that Equations (3.33) and (3.34) are closely coupled nonlinear
equations, while (3.32) involves the integral of (3.33). Thus, the rate of change
of g1 is slower than that of ¢;2 and gs5. One of the methods for finding suitable
initial conditions is to first set ¢;; to an arbitrary, but small, ﬁxed value, and
to then obtain equilibrium solutions of (3.33) and (3.34). Although fixing the
value of ¢;; implies through the covariance equations that ¢;2 and ¢z, are both
zero, the interpretation used here is that q;; is slowly varying, and its value is
frozen at a particular instant. Letting the equilibrium values be denoted by

Qij(c), it is found that equilibrium solutions to (3.33) and (3.34) are

S
= st (3.35)

d12(e) = H
Qg2 <Q11(e), q12(e)s 1/ 7750‘]12(e))
\/WS()qlg(e). (336)

The conditions on the non-negative determinant of the covariance matrix and

q22(e)

positiveness of ¢js(,) require that

0 < qua(e) < /TS0q11(e)- (3.37)
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Equilibrium values are determined by first selecting an arbitrary g;,() satisfy-
ing (3.37), and using this value as a seed for iteration on (3.35). This value
is then used in (3.36) to find @22(c)- The triplet of g;;() values found in this
manner are suitable non-zero starting conditions for the covariance equations.
After the covariance equations are solved numerically, a check is performed to
determine whether the initial conditions are truly small in comparison with
the characteristic dimensions of the transient solutions. This ensures that the
character of the solutions has not been modified by the choice of non-zero initial
values. The particular initial conditions used in this solution are

0,6

S_gqll(o) = 0.01, (3.38)
at .

S—gqm(o) = 54 x107°, (3.39)
a? s

53(]22(0) = 1.3 x107°. (3.40)
0

The numerical solution of the covariance equations is obtained by means
of a fifth-order Runge-Kutta algorithm with variable step size. The algorithm
computes estimates of the local error, and these are used to automatically
adjust the step size. This algorithm is efficient for solving these covariance
equations as the time scales of the solutions are dependent on the system pa-
rameters, with little known in advance about the form of this dependence. The
maximum relative local error is set to 107°, and the solutions displayed in the
following subsection require from 60 to 500 time steps, depending on the caster

parameters.
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3.4.3 Discussion of Results

The results of the numerical solution of the covariance equations are presented
in Figures 3.1, 3.2, and 3.3. The non-dimensionalization chosen permits a study
of the effects of a variation in any one of the systems parameters, but the ensu-
ing discussion will concentrate on the dependence on the caster pivot radius £.
As can be seen in the figures, for small times (a*t/Sy < 1), the solution is only
weakly dependent on v = SZ/3£a®. In this range of times, the ground moves
beneath the system, which remains stationary in the absolute coordinate sys-
tem. For larger times, the form taken by the solution is dependent on -y, but it
is apparent that very large and small v define the two limiting response behav-
jors. For 4 — 0, the system reaches a steady-state value in both velocity and
velocity-displacement covariance while being non-stationary in displacement.
If v is very large, all three statistics grow without bound at constant rates. For
intermediate values of 7, the solution moves from the small to large ~ limiting
solutions, with the transition time depending on the value of 4. The remainder
of this subsection is devoted to showing that the lower limit is defined by the
Coulomb system, the upper bound by a frictionless system, and the switching
time is determined by the caster’s displacement variance crossing a threshold,
changing the nature of the response.

Due to the sech(z/3¢) form of the slip force function, the caster resisting
force is small for displacements much larger than 3£. For systems with small £,
or large ~, the rms displacement does not have to be large for the effective slip
level of the caster to become small. In terms of the covariance equations, £ — 0
implies through Equation (3.29) that ass — O from below. In this case, the

covariance equations achieve their highest growth rate. Substitution of azs =0
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white noise excitation.
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into the covariance Equations (3.32), (3.33), (3.34) and solution, results in

g22(t) = E[2*(t)] = 27 Sot, (3.41)
q12(t) = E[£()z(t)] = 7Sot?, (3.42)
mlt) = Bla(e) = o (3.43)

These solutions are exact as the approximations introduced by equivalent lin-
earization all appear in the ag; coefficient, which has gone to zero. An equiv-
alent approach is obtained by noting that for a frictionless system the relative
measures of the motion equal the negative of the absolute measures. Since the
input process is white noise, the absolute input and response statistics for a
frictionless system are integrals of the white noise process.

To this point it has been shown that the frictionless system is an upper
bound for the caster system response. Recall that this is not only the case
for white noise excitation, but also, as shown in Chapter 2, the situation for
harmonic input. The subsequent discussion shows that the Coulomb system is
a lower bound for the white noise response, as it was in the harmonic excitation.

Letting £ go to infinity, or  to zero, results in the caster resisting force
being independent of displacement; i.e. it behaves like a Coulomb block. An

asymptotic expansion of (3.29) for large £ reveals that

| 2
lim A9y = —ar\ | —. (344)
b0 Tq22

This is a lower bound to the value of a3, so the rate of growth of the covariance
matrix is minimized when this value is used, providing a lower bound to the
caster system response. The solution of the covariance equations using this

value of ay; correspond to the lower bound curves displayed in Figures 3.1, 3.2,
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and 3:3. It can be shown that the value of az; in (3.44) is that of the Coulomb
system. Solution of the covariance equations shows that both the velocity
variance and velocity-displacement covariance reach steady-state values, but
the displacement variance increases proportionally with time for large time.

These large time behaviors are given by

n® S} 55,

Q22 = —2—a—‘2’ for t>~523, (3.45)
7° 83 55

Gz = Ta—g for t>———a20, (3.46)
7® 83 55,

qi1 = ?;%t for t>'a—20. (347)

The value of g3 in (3.47) is half of that presented by Ahmadi [3], which appears
to be in error. For t < 55p/a?, the system has not reached stationarity in
velocity and the behavior is similar to that of a frictionless system.

The approximation inherent in equivalent linearization is contained in
the Coulomb system covariance equations, so they are only an approximate
lower bound to the true behavior of the caster systems. Caughey and Dienes [1]

have shown that the exact stationary mean-squared velocity is
52
go2 = 27r2—% for t — oo, (3.48)
a

indicating that the equivalent linearization expression given by (3.45) is low by
20%, which is equivalent to an 11% discrepancy in rms values. Using results
from [1], Crandall et al. [2] determined that the behavior of the exact large

time displacement variance is given by

S3
qi1 ~ 107r322~t for t — oo, (3.49)

showing that the rate of increase of q;; predicted by equivalent linearization

in Equation (3.47) is 49% of the exact rate. Since ¢i; = 2¢i2, the values of
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q12 also disagree by the same amount. Consequently, the exact lower bound
to the caster responses is somewhat higher than that obtained from equivalent
linearization.

As mentioned earlier, the response of the caster-mounted system moves
from the lower limit, the Coulomb system response, to that of a frictionless
system. An explanation for this transition follows. In Figure 3.3 it is seen that
the displacement variance increases with time for all ranges of parameters.
Thus, at some time the rms displacement approaches the effective caster pivot
radius 34. As this happens, the effective slip level of the caster system lowers,
causing the rms velocity to increase, in turn raising the rate at which the
displacement variance increases. This process continues until fhe displacement
variance reaches a level at which the system’s effective slip level approaches
zero. From this time onward, the system behaves like a frictionless system.
The time at which the transition occurs is important, as it determines which
of the limiting behaviors describes the caster system motion.

To find the transition time, it is useful to recall the form of as,:

2 3¢,/
az, = —ay/—zexp(z®)erfc(z), where z = 2 : (3.50)
ga22 \/2((111(122 —qi,)

For z > 1, the denominator of z dominates the function, indicating that £ >

v/@11- Thus, the system acts like a Coulomb block. Conversely, for small z the
system behaves as if it were frictionless. Arbitrarily setting the transition point
at z = 1 permits determination of the time ¢; at which this occurs. Substituting
Equations (3.45), (3.46), and (3.47) for the components of the covariance matrix

into z = 1 and solving for ¢; results in

So 1 7!'2 Sg
= o [’7%5 + Z] . where ~ = 20a5 (3.51)
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subject to the condition that ¢; > 55/a®, obtained from the requirement that
the caster velocity reach stationarity. For v > 5 x 1072, t, is less than 55;/a?,
and the system does not reach velocity stationarity before the transition oc-
curs. Thus, the system acts for all time like a frictionless system. For smaller
values of v, corresponding to larger caster length £, the system transition time
predicted by (3.51) agrees with the transition times apparent in the figures.
Note that (3.51) indicates that all caster systems with non-zero v will eventu-
ally undergo the transition and behave like a frictionless system, although the

transition time can be quite large if « is small.

3.5 Conclusions

The response of a caster-mounted system to white noise excitation has been
examined by means of the generalized equivalent linearization method. The
behavior of the elements of the covariance matrix are characterized by two
limiting responses: that of the Coulomb system from below, and that of a fric-
tionless system from above. Since the maximum relative response is that of the
frictionless system, the relative system motions are bounded from above by the
ground motions. For short times, the limiting responses define a narrow band,
but as the Coulomb system reaches stationarity in velocity, the range of re-
sponses becomes large. It has been demonstrated that the response of a caster
system is initially described by the Coulomb system’s covariance equations, but
as the rms displacement exceeds the caster dimension £, the system response
tends to that of the frictionless system. Consequently, all caster-mounted sys-
tems will have a non-stationary response in both velocity and displacement

when excited by white noise.
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Chapter 4

Response of the Coulomb System to Filtered
Random Excitation — Equivalent

Linearization Approach

4.1 Introduction

This chapter deals with the response to filtered random excitation of systems
exhibiting a Coulomb friction resisting force. As was mentioned in Chapter 2,
the Coulomb system has been used not only as a model for free-standing equip-
ment and base-isolated structures, but also as a component of more elaborate
models such as elasto-plastic and generalized yielding systems. Additionally, it
was shown in the previous two chapters that the Coulomb system response is a
lower bound to systems with a decaying slip force, such as the caster-mounted
system, when the excitation is either harmonic or white noise. Although diffi-
cult to prove, it is expected that this lower bound behavior carries over to the
more general case of filtered random excitation. Thus, based on the behavior
of the Coulomb system to filtered input, the nature of the response of more
complex systems can be examined.

In this chapter, the use of the stationary equivalent linearization method
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to predict the response to filtered inputs is investigated. This method is widely
used and has been used by other authors examining this same problem [4],
although with a different excitation spectrum than that preéented herein. It
was remarked in Chapter 3 that work by Ahmadi [3] shows that both stationary
and generalized linearization predict the same small and large time Coulomb
system response for white noise input. This agreement is true for both the
velocity and the displacement statistics, where the formeri are stationary while
the latter are not. This matching of results from the different linearization
methods should also hold for non-white excitation. As the stationary method
yields results in a more straightforward manner, this method is used.

In addition to equivalent linearization, simulations are used to obtain
estimates of the response statistics. Monte-Carlo simulations are a straightfor-
ward, but time-consuming, numerical procedure for determining the response
of nonlinear systems such as this one to random excitation. By means of these
simulations, it is shown that equivalent linearization correctly determines the
non-stationary trends in displacement only when the input has spectral con-
tent at zero frequency. For excitation without zero frequency components, it is
shown that equivalent linearization predicts stationarity in displacément, while
simulations show non-stationarity. An explanation is found in the spectrum
of the response velocity, from which it can be deduced that no linearization
technique is likely to show the correct trend. The formulation of a technique
that determines the correct trend is postponed until the next chapter.

Section 4.2 gives a brief description of previous work in the resbonse of a
Coulomb system to filtered excitation. In Section 4.3 the stationary equivalent

linearization method is developed and applied to the Coulomb element. The
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simulation technique is presented in Section 4.4, and the final section of the

chapter compares and discusses the results from the two methods.

4.2 Previous Work

The synopsis of prior work presented in this section is restricted to the response
of the Coulomb system with filtered random excitation. For a review of the
behavior of this system under white noise, the reader is referred to the second
section of the previous chapter.

An analysis of the response to filtered white noise excitation was per-
formed by Constantinou and Tadjbakhsh [4], using the stationary equivalent
linearization technique to predict the transient velocity and displacement re-
sponses. The spectrum used in their analysis was one proposed by Kanai [7]
and Tajimi [8], in which the spectral content of the acceleration is non-zero at
zero frequency, rises to a peak as frequency increases and then decays to zero at
high frequency. The principal difference between this spectrum and the band-
pass filter used in the present study is the spectral content at low frequencies.
While the parameters of the band-pass filter considered herein can be adjusted
to eliminate content in this range, the Kanai-Tajimi spectrum always has con-
tent at zero frequency. It is shown that when the zero frequency content is
removed from the input spectrum, the character of the displacement predicted
by equivalent linearization changes drasticalb.f, and the method is inaccurate
when used to determine the response.

A related problem that has received some attention is that of a block
on an inclined plane, also formulated as a Coulomb-friction system with non-

symmetric sliding force. First proposed by Newmark [20] as a model for failed
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portion of an earth dam, it has also been used in studies by Lin [5] and Con-
stantinou, Gazetas, and Tadjbakhsh [21]. The method used by Lin is similar
to that used in Chapter 5 of this study, and a discussion of his method is
postponed until then. Constantinou et al. used equivalent linearization with a
suitable decomposition of the non-zero mean non-stationary input process, to
obtain estimates for the mean and standard deviation of the system drift. It is
expected that the flaw in equivalent linearization presented in this chapter for
Coulomb systems with symmetric sliding forces carries over to the case with
unequal sliding force. Thus, their method should be valid only for spectra with

zero frequency content.

4.3 Stationary Equivalent Linearization Applied to a

Coulomb Element

The stationqry equivalent linearization technique is an approximate method
useful for predicting the stationary response of nonlinear systems under both
white and filtered random excitation. The method is very similar to the gener-
alized equivalent linearization method developed in the previous chapter, with
the principal difference being the determination of the response of the equiv-
alent linear system. Instead of permitting the linear parameters to vary with
time, as in the generalized equivalent linearization method, the linear param-
eters are set to constant values determined from the stationary response of
the linear system. It is shown in this section that this stationary response is

straightforward to calculate, even for an arbitrary input spectrum.
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4.3.1 The Method of Stationary Equivalent Linearization for Ran-

dom Excitation

There are two parts to the Stationary Equivalent Linearization technique.
First, the equivalent linear parameters are determined for the approximating
system. The method is identical to that in generalized linearization presented
in the previous chapter, but some steps are briefly included as the notation
is different. Next, the response of this equivalent linear time invariant system

system is determined.

4.3.1.1 Determination of the Stationary Linear Parameters

The nonlinear system of interest is of the form
£+ £(2) = —n(t), (4.1)

where dots denote derivatives with respect to time, z is the relative displace-
ment, f(z) is the resisting force per unit mass, and n(t) is the ground ac-
celeration, modeled as a Gaussian, mean-zero random process with arbitrary
spectral density. Note that this is a first-order equation in velocity, so the
only requirement on the use of stationary linearization is that the moments of
the velocity reach stationarity. There is no requirement on the displacement
response, so non-stationarity in the displacement does not violate assumptions
made in using the method.

The above nonlinear system is approximated by the linear viscously
damped system

&+ Gt = —nlt). (4.2)
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The methods of the previous chapter can be used to show that
d . .
Seg = E Ef(m) . (4.3)
4.3.1.2 Stationary Response of the Linearized System

In the previous section, the parameter of the equivalent linear system was
determined. The remaining step in the process is to compute the stationary
statistics of this auxiliary system.

A well-known result from linear time-invariant system theory [22,
p. 120], [23, p. 79] is that when both the excitation and the response are weakly
stationary, the response spectral density is the product of the excitation spec-
tral density and the squared magnitude of the system transfer function. Stated

mathematically, this becomes
Ss4(w) = |Hin(w)|* Sun (), (4.4)

where S;;(w) and Sy, (w) are the two-sided input and response velocity spectral
densities, respectively, and H;,(w) is the linear system transfer function.
For the linear system in Equation (4.2), the transfer function is com-

puted from the velocity impulse response
hin(t) = e *tu(t), (4.5)
where u(t) is the unit step function. The transfer function is then found as

Hin(w) = / " han(t)e " dt

1
= . 4.6
Ceq + tw ( )
Thus,
i .
[ A —— (1)

ke
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Substituting this into (4.4) results in

Snn(w)

" = 2V 4.8
Sulu) = 25 (48)

The stationary velocity variance is given by the stationary velocity auto-
correlation at zero time difference, which is defined through Parseval’s relation

as the following integral of the stationary velocity spectral density:

N

= /oo Siz(w)dw

—00

_ /_ ® Swm() 4, (4.9)

) §82q + w?

Equations (4.3) and (4.9) form a set of equations, usually implicit, that are
solved to obtain the stationary values of the root mean-square velocity o; and
equivalent damping ¢,.

The stationary displacement spectral density, when it exists, is given by
Szz(W) = ;‘Z'Szz(w) (410)

It is clear from the preceding equation that S;;(w) must be O(w?) as w tends

to zero, for S;z(w) to be well behaved. When this is the case,
o2 = R.(0)
= /_‘: S (w)duw. (4.11)
Substituting (4.10), (4.7), and (4.4) into (4.11) results in

® _ Swn(w)
= . .
=/ Pt +gg) (4.12)
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In the case where the velocity spectral density S;;(w) is non-zero as w

tends to zero, it has been shown that [2]

o2(t) ~ 27 S;:(0)t as t — oo, (4.13)

z

with S;:(0) obtained from (4.8). This result is useful for white noise and
spectra containing low-pass filtered white noise, as used in [4] for a Kanai-
Tajimi input spectrum. It has also been found through simulation that when
the zero frequency velocity spectral density is non-zero, this equation gives a
good estimate of the divergence of the displacement variance, independent of

the form of the input spectrum.

4.3.2 Application of Stationary Equivalent Linearization to the

Coulomb Element

The model for the resisting force per unit mass of a Coulomb system given in
Chapter 2 is

£(2) = asgn(s); (4.14)
where

a = ug. (4.15)

The equivalent linear parameter for the Coulomb element is found by substi-

tuting (4.14) into (4.3), resulting in

d
Gy = E{Easgn(i)]

= E[2a6(2)], (4.16)

where 6(z) is a delta function with unit area. In the previous subsection, it

was assumed that £ was Gaussian, with unknown mean and variance. As the
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input process is mean-zero and the resisting force is symmetric, the response

also has a zero mean. Thus, the velocity probability density function is

px (%) = \/%Ui exp [;:] . (4.17)

Using this in Equation (4.16) yields

G = 20 5(@)py(e)di (4.18)
= %0_1 (4.19)

Some comments about the above equation are in order. If o, increases
monotonically until reaching its stationary value, Equation (4.19) shows that
¢sq decreases monotonically. Thus, the equivalent viscous damping is lowest
when the system has reached stationarity. This value is precisely that used by
the stationary equivalent linearization method and gives conservative predic-
tions for transient velocity statistics when compared to those of the general-
ized equivalent linearization method, in which ¢, is permitted to vary in time.
Also, with the stationary velocity standard deviation and equivalent damping
inversely proportional to each other, large damping is an indicator of small
velocity response.

Another expression relating o; and ¢, is obtained from the stationary
response of the equivalent linear system. Substituting Equation (4.9) into (4.19)

yields

Geq = Ea[/_oo S""—(w)dw]—l/z. - (4.20)

T (o] (JJ2 o §e2q
The response of the Coulomb element to excitation with a given spectral den-
sity Spn(w) is determined by solving for the stationary equivalent damping ¢,

using this equation. Substituting this result into a suitably arranged form of
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Equation (4.19) gives the stationary velocity standard deviation o;. In the
subsequent subsections, this method is used to study the Coulomb element’s
response to white noise passed through an ideal band-pass filter.

Before continuing with the solution process, it is shown that Equa-
tion (4.20) indicates a limitation to the equivalent linearization method. Note

that

/_°° Sen(@) 4 ;Tq/w Spn(w)dw = (0—")2, (4.21)

oo W+ ¢Z —00 Cog
where o, is the excitation standard deviation. The expression on the right side
of the previous equation becomes a sharper upper bound as ¢, becomes large,
or, using Equation (4.19), o; becomes small. Substitution of (4.21) into (4.20)
leads to
On 2

=>4 /= 4.22
T\ (4.22)

Consequently, equivalent linearization predicts response velocities when the
ratio of the input root mean-squared acceleration to the slip level is greater than
\/2/_7r. Below this, the only physically reasonable solution to (4.20) and (4.19) is
infinite viscous damping, which implies zero velocity variance. This breakdown
in the equivalent linearization method was also observed by Constantinou and
Tadjbakhsh [4] at the same level of rms input to slip level, although they
attributed it to the “ground frequency” of the Kanai-Tajimi spectrum, rather
than to the low input variance.

A possible explanation for this abrupt cutoff in the equivalent lineariza-
tion solution is that when 0, /a < \/2/7, the majority of the acceleration process
is at a level below the slip level of the Coulomb element. Hence, the element
does not move for a considerable portion of the process. The assumed Gaussian

distribution for the response velocity cannot account for the infinitesimal prob-
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ability of being at a particular non-zero velocity as well as the finite probability
of zero velocity. Thus, at the critical input rms level the velocity distribution
changes from a smooth distribution, allowing non-zero response velocities, to a
delta function for which the zero velocity occurs with probability one. Although
the true response distribution is unknown, it is expected that an expansion of
the exact response in terms of Hermite polynomials, where the Gaussian distri-
bution is the zero-th order polynomial, would show that the “closest” Gaussian

distribution is one with zero variance.

4.3.3 Response of a Coulomb Element to Band-Pass Filtered Ran-

dom Excitation

The spectra of many excitation processes in engineering exhibit behavior that
is modeled by Gaussian band-pass filtered white noise. These inputs have
small spectral ordinates for both low and high frequencies, and the majority of
their energy is within a “band” of frequencies. The spectrum considered herein
is produced by the so-called “ideal” band-pass filter, in which the spectral
amplitude is a constant value within the pass-band, and zero elsewhere. With
this spectrum it is possible to perform a sensitivity analysis on the bandwidth
and low frequency content of the excitation. In addition, the sharp falloff in
the spectrum is helpful in illustrating reasons that equivalent linerarization fails
when used to predict the displacement statistics of the Coulomb element.

The equation of motion for a the Coulomb element is
Z + asgn(z) = —n(t). (4.23)

The assumed ground acceleration process n(t) is Gaussian with mean-zero,

standard deviation o,. For band-pass filtered excitation, the spectral density
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is given by

So, wy < |(4)| < we,
Sinlw) = (4.24)

0, elsewhere.

From Parseval’s relation, the variance of the excitation is given by the integral

of the spectral density. Thus,

ol = 2S5p(wy — w1). (4.25)
Letting
a® a? d a® d a?
X:_, :_t,.’:—-:——-:—-, 26
Equation (4.23) becomes
X" + sgn(X') = —N(r), (4.27)

where
1, 0 < |Ql < ﬂz;
Snn () = (4.28)
0, elsewhere;

So 1

ﬂ=;W%NV7=g"(gQ- (4.29)

The variance of this process is given by

2AN = 2(0y — ) = <%>2 (4.30)

Note that if this change of variables is performed, the number of independent
parameters is reduced from four (wy,ws,So,a), to the two groups {1; and (2,.

The equivalent linear equation corresponding to (4.23) is
X"+ Z,X' = —-N(r), (4.31)

where Z., = So¢.,/a® is the non-dimensional equivalent damping.
q q
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The stationary response velocity of the equivalent linear system is ob-
tained with the method of Section 3.3. It is

0 SNN(Q)
o0 O+ 72,

2/02 dfl
0, Q2+Z3q

O-'ZXI dn

2 Zeg(2 — )
= = i L 32
Z. arctan( 7t -0, ) (4.32)
where
a2
05 = E[lim X3(r)] = ?02' (4.33)
0

The non-dimensional equivalent damping in terms of non-dimensional rms ve-

2 1
Zog =] = —. 4.34
=\ om (4.34)

Substituting (4.34) into (4.32) results in

1 Zeq(Qy — Q4)
— = t s 4.35
7 7 arctan ( 7% + i, (4.35)

locity is

Since the argument of the arctan term in the previous equation is never nega-
tive, 0 < arctan(-) < 7/2, which implies 0 < 1/Z,, < 7?/2. Using this in (4.34)
yields

o

0<ox <45 | (4.36)

It is now shown that the lower limit corresponds to the non-dimensional input
variance, 2A(, being less than 2/m, while the upper limit occurs for white noise
input.

The first assertion to be proven is that for AQl < 1/7, the stationary
velocity variance is zero. For small arguments, arctan(z) ~ z. Thus, Equa—

tion (4.35) becomes
1 Zeg(Q2 — )
7rZeq Zezq + Qlﬂ2 ’

(4.37)
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provided the right hand side is small. Manipulating this equation to solve for

0.0,
Zog = 1| ——, 4.38
4 7Al —1 ( )

from which it is seen that real solutions for Z,, exist only if

Zeq, gives the result

1

Hence, it appears that the method can say nothing for variance levels below
this value. This is the same breakdown in the equivalent linearization solution
alluded to in Section 4.3, when the ratio of input standard deviation to slip level
falls below y/2/7. For the cases where the ratio is too small, the only physically
reasonable solution to (4.35), and its approximation (4.37), is that Z.,; — oo.
This implies, through Equation (4.34), that the stationary velocity standard
deviation oy is zero. When AQQ is greater than 1/m, but not too large, then
Equation (4.38) is used to determine Z,, provided the right-hand side of (4.37)
remains small. It was remarked earlier that the true response does not have
zero variance, although the closest Gaussian distribution to the real response
distribution is the one with zero standard deviation. In a later section it is
shown by means of simulation that the velocity variance is non-zero, but small,
indicating that this cutoff exhibited by equivalent linearization is spurious.
Another assertion made is that for white noise input, ox» = \/7r3—/2 To
model white noise with the band-pass filter, let 1; — 0 and 0, — oco. In this

case, Equation (4.35) becomes

1

4.40
T Zeq ’ ( )

IE)

which upon substitution into (4.34) yields the desired result for ox.
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To obtain the stationary velocity standard deviation ox: for general
and (,, Equation (4.35) is solved to obtain the equivalent damping Z.,, and
this value is substituted into (4.34) to obtain ox:. As the former equation is
transcendental, an exact solution is not available. A numerical value for Z,,
can be obtained by performing numerical iteration on the equation

Zn(ﬂz i Q1)
23 %—(21(22 ’

= 7 arctan ( (4.41)

Zn+1
where

lim 2, = Z,,,
n—oo

20 > ;3.

It has been found that practical values for n and 2z, are 50 and 10°, respec-
tively. The resulting values of Z,, are then substituted into (4.34) to obtain
the corresponding rms velocity ox:. In cases where (22 — ;) < 1/7, numerical
overflow can occur in iterating on z,, as the correct solution for this case is
Z. — 0. Thus, a check is performed in the iteration procedure, and, if an
overflow is apparent, z, is set to an arbitrarily large value.

This procedure has been carried out for values of {1; and A} ranging
from zero to two, and the results are displayed in Figure 4.1. In Section 3.4
a comparison is performed between these predictions and simulation results.
In the éraph it is seen that for AQl < 1/m, the predicted rms response ve-
locity is zero. For slightly larger non-dimensional input bandwidth, the rms
velocity increases abruptly, until AQ ~ 2/7. For bandwidths larger than this,
ox' is weakly dependent on Af) and is more strongly dependent on the non-

dimensional low frequency cutoff (0;. The peak value of o is reached for white

noise input ({2; — 0, AQ? — oo) and was shown earlier to be /m%/2.
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Figure 4.1: Stationary non-dimensional velocity standard deviation ox as a func-
tion of non-dimensional low-pass frequency {1; and non-dimensional bandwidth
AQ. The peak value of o' in the graph is 3.67, 93% of the equivalent linearization
prediction for white noise input.
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Since the value of the stationary rms velocity is only weakly dependent
on the input bandwidth for excitations with non-dimensional bandwidth A{}
greater than about 2/m, it is useful to find out the order of this dependence.

Asymptotic expansion of (4.35) for large (23 and €1; # O results in

1 Z,
— = 7 arctan —. 4.42
Zeq ﬂl ( )

This equation is also solved iteratively, and after substitution into (4.34), val-
ues of oy are obtained. The results of this procedure are displayed in Fig-
ure 3.2. An estimate of the rate of dependence of ox: on {1; is obtained from
asymptotic expansions of (4.42) for both large and small ratios of Z, to (1.
When Z,,/Q; > 1, this equation implies Z,, ~ 2/7?%, which through (4.34)
gives ox ~ \/m%/2, the white noise result derived earlier. For Z, /0 < 1,
arctan(Z.,/Q1) & Zeg /01, which upon substitution into (4.42) yields

9) 1
Zk ?‘ for 0, > —, (4.43)

2 1
moyf—, for > -, 4.44
ox g for > - (4.44)

where Equation (4.34) has been used in obtaining the second expression from
the first. Hence, for Af) large, the dependence of ox' on (1 is initially weak,
but as Q; increases, ox» becomes inversely proportional to the square root
of ;. Thus, equivalent linearization indicates that the velocity variance is
most strongly dependent on the low frequency content of the excitation for
inputs whose non-dimensional variance exceeds 4/m. For this reason, it is very
important that an input model chosen for use with the Coulomb element ac-
curately represent the low frequency content of the true physical excitation.
The high frequency cutoff of the model becomes important only when the non-

dimensional bandwidth of the signal is less than 2/.
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Figure 4.2: Stationary rms velocity ox as a function of low-pass frequency 1, for
{13 — oo using equivalent linearization. All quantities are non-dimensionalized.
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An expression for the stationary displacement variance is obtained from
Equation (4.12), which after non-dimensionalization and substitution of the

ideal band-pass spectrum becomes

Snn (0
?
°x = / 02 m+z2)‘m

o 2 0
= b, @23

11 ok
= o, [— .. ﬁ] : (4.45)

where Equations (4.32) and (4.34) have been used to simplify the results of
the integration. The values of Z,, needed in the above expression are obtained
from the solution of (4.35). This expression for ox is clearly not valid for the
case when 1, equals zero. In that case, suitably non-dimensionalized forms of
Equations (4.13) and (4.8) predict the long time behavior of the non-stationary

displacement variance as

o%(t) ~ 27rZT—2 =n?r0% as T — oo, for (; = 0. (4.46)

This equivalent linearization prediction that the displacement variance achieves

stationarity in all but the {1; = 0 case does not agree with simulations. The

discussion of this discrepancy is postponed until the last section of the chapter.

4.4 Simulation studies

The accuracy of the stationary equivalent linearization results is estimated
from a comparison with Monte-Carlo simulations of same process. A station-
ary Gaussian input process with arbitrary spectral density is generated using

an inverse fast Fourier transform. This process is then used as excitation to
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the system (4.23), which is solved numerically to obtain velocities and displace-
ments. As an interpolation function is used in the solution of the equation of
motion, the input spectrum is affected; a proposed correction compensates for
these changes. The procedure is repeated until an ensemble is generated, and
averages are taken to obtain estimates of the desired statistics. The spectral
density of the stationary response velocity is also calculated by means of an
FFT, using a Kaiser-Bessel window to improve the spectral resolution.

A stationary time series n(t) with arbitrary spectral density can be

generated from [24,25]

N
Z n (Wr) Awg] Y2 cos(wit + br), (4.47)

where ¢i(k = 1,2,...,N) are independent identically distributed random vari-
ables with a uniform density function on [0,27], and Spp(wk) = Snn(w)|w=w,>
with Sp,(w) being the two-sided spectral density of n(t). If Awy is a constant,
then wy = kAw and (4.47) simplifies to
N
= 2[Sun(kAw) Aw]*? cos(ktAw + ¢y). (4.48)
k=1
When the random process is sampled at discrete times mAt, with At =

7 /N Aw, the previous equation becomes

N
n(mAt) }: Spn(kAw Aw]l/2 cos (Tk + ¢k> (4.49)

which is in the form of a discrete Fourier transform. These series are very
efficiently computed using the Fast Fourier Transform (FFT) or inverse FFT
algorithms taking advantage of symmetries in the above expression. Yang [25]
has remarked that this method should yield variables with accurate Gaussian

distributions when N > 500. For the results presented in this discussion, Hall’s
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inverse FFT algorithm [26] is used with NV = 512, producing a time series with
1024 points. The advantages of this method are speed of computation for the
time series as well as accurate representation in the time domain of a signal
with arbitrary spectral density. Drawbacks to this technique are associated
with the discretization of both the time and frequency domains. When the
frequency domain is discretized, a periodicity of length 27/Aw is introduced
into the time domain signal. This can be overcome by gathering statistics from
only the central portion of records. Discretization of the time domain implies
that time series values are available only at evenly spaced time intervals. Fortu-
nately, most algorithms used for the numerical solution of ordinary differential
equations are perfectly suited for this type of data.

Once the random time series is generated using the previously described

method, the next step is to solve the equation of motion
i+ f(z) = —n(t), (4.50)

where

asgn(z), = #O0;
f(a_:):{ gn(z)

n(t), £ =0,|n(t)] < ug,
dots denote derivatives with respect to time, = is the relative displacement,

a is the slip level, and n(t) is the ground acceleration. Note that the above
formulation for f(%) is different mathematically from that of Coulomb friction
in (2.20), although physically the two are equivalent. The particular formula-
tion uscd here is more convenient for numerical applications. Equation (4.50)

can be rewritten as the three separate equations
£ = z(t) —a, >0 (4.51)

z = 0, z=0,|n(t)| < a; (4.52)
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i = n(t)+ae <0, (4.53)

each one corresponding to a different “state” of £. These equations are easily
solved by closed form integration to obtain Z(t) and z(t) provided the state of
z does not change. When the solution for £ indicates a change in state, the
solutions must be patched together to ensure continuity in both the relative
velocities and displacements.

As was mentioned earlier, the input process used in the simulations
provides n(t) at discrete, uniformly spaced times mAt,m =1,2,...,2N. Since
it is meaningful to obtain = and £ only at these times, and the system exhibits
no memory, the solution can be set up as a discrete process, with the values at
time (m + 1) At being determined by the conditions at mA¢ and the excitations
n(mAt) and n((m + 1)At). For the relative velocities and displacements, this

can be stated as
z((m + 1)At) = plz(mAt),z(mAt),n((m + 1)At),n(mAt)], (4.54)
z((m + 1)At) = q[z(mAt),n((m + 1)At),n(mAtL)], (4.55)

where the functions p and q are determined from the solution of (4.53). Note
that the expression for £((m + 1)At) is independent of the displacement.

A reasonable way to attempt to obtain expressions for p and ¢ would
be to use one of the standard numerical solution methods used for solving
ordinary differential equations. Unfortunately, the majority of these methods
fail when applied to (4.53) because of the abrupt changes in resisting force for
a small change in velocity when £ ~ 0 (sometimes referred to as being a “stiff
equation”) and because of the zero “tangent stiffness” when = # 0. However, a

closed form solution of these equations is possible for certain forms of forcing
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function n(t).

To solve (4.53) in closed form to obtain relative velocities and displace-
ments for t € [mAt, (m + 1)At], a continuous extension of n(t) is needed over
this range. An interpolation scheme must be chosen to supply this information.
Since points are being added to the signal, the spectrum of ‘the interpolated
excitation is different from that of the original. A balance must be struck be-
tween simplicity in the interpolation, resulting in poor spectral characteristics
but ease of solution of equations of motion, and higher-order interpolation for
which solution of (4.53) is difficult. For the simulations described herein, linear

interpolation is chosen. Thus,

t — mAt

n(t) = n(mAt) + AL

(n((m + 1)At) — n(mAt)), mAt <t < (m+1)At.
(4.56)
The solution of (4.53) with this excitation is straightforward, although many
special cases must be considered. Note that the velocity can change sign a
maximum of two times within an interval At.
It can be shown that the spectrum of a continuous, linearly interpolated
signal is given by

x ml
F.(l) = F(l cos? | —— |, .
0=FO I () (4.57)

where F(l) is the discrete, periodic spectrum of the discrete, periodic signal
n(mAt), and F,(l) is the discrete spectrum of the interpolated excitation n(t).
An illustration of the infinite product on the right-hand side of the previous
equation is seen in Figure 4.3. For |I/N| < .3, the spectral ordinates of F(l) are
reduced by less than 10%, but beyond this the distortion of the desired spectral
shape can become quite severe. Although not displayed, the aliased, or peri-

odic, portions of the spectrum of F(l) occurring above the Nyquist frequency
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Figure 4.3: Amplitude modulation of the input spectrum caused by linear
interpolation. The different curves represent truncated product approximations
with varying numbers of terms. The Nyquist frequency is at [/N = 1.0.
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(|{/N| = 1) are also modulated, but are of little concern as they do not affect
the system of interest. To correct for the reduction of the spectrum in the range
0 < |I/N| £ 1, F(l) can be multiplied by the reciprocal of the trigonometric
product in (4.57), causing the spectrum of the interpolated signal to match the

desired spectrum in this range. Thus,

F(l [1’[ cos (N;Ll)}_l : (4.58)

where —N < | < N, and F;(l) is the target spectrum. This process is the
“pre-correction” alluded to earlier. Since F(I) is periodic, each one of its pe-
riodic extensions is also affected, but the amplitude of these is reduced by the
modulation of (4.57) occurring during interpolation.

This pre-correction procedure is applied to the spectra used in the sim-
ulations. Although seemingly cumbersome, the input power spectrum is mul-
tiplied only once by the product in Equation (4.58). Also, the use of a 10-term
truncated product results in values accurate to five significant figures when
compared to a 100-term truncation, indicating that 10 is a sufficiently large
number of terms to represent the infinite product.

The methods described to this point are sufficient to obtain time series
for the response velocities and displacements. A brief overview of how these
data is used to generate ensemble statistics now follows. The statistics esti-
mated are the response velocity and displacement variances and covariance,

and the input acceleration variance, which are computed using

E [yi(t)y; (t) — Elw: ()| Ely;(8)]] = Elwi(t)y; (¢)] — Elw:(1)] Ely; (¢)],  (4.59)

where
1 Dz

E[f(y( N— Z (4.60)
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and y represents either acceleration, velocity or displacement, f,(y(t)) is a sam-
ple from a single simulation, and Ng is the number of records in an ensemble.

This estimator is unbiased, and it can be shown that [27]

1 Ne

Bl = 37, 2 5o )+ (4.61)
E
In the simulations, 1000 records are used in an ensemble, which can be seen by
the above equation to give a good estimate of the true values, provided oy(,) is
small. The sums are determined by keeping a running average, updated after
each simulation, and the times kept are the sampling times mA¢.

Stationary estimates of the input covariance, velocity variance, and co-
variance of velocity and displacement are obtained by taking timewise averages
of the ensemble statistics. As zero initial conditions are used for both velocity
and displacement, the response process is initially non-stationary. It is also
found that the final portion of the records are non-stationary due to the peri-
odicity inherent in using FFT’s to generate the input signal. For these reasons,
only the central 512 of the 1024 points in the velocity record are used in ob-
taining an estimate of the velocity variance; a check is also made to ensure
stationary of the velocity response process.

In addition to generating the response velocity and displacement, there
is also interest in determining the spectral content of the stationary portion of
the velocity response. The spectral resolution is improved if the central 512
points of the velocity record are multiplied by a Kaiser-Bessel window of the

form
I [8y/1 - (2n/N)?]
I(B) ’

where « is a numerically determined coefficient that normalizes the rms value

W(n) = o (4.62)

of the window to one, 3 is the time-bandwidth product, Iy is the modified
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Bessel function of order zero, and .n -512=-N/2,...,-1,0,1,...,N/2. The
parameter (3 is set to 8.0, since it has been shown that this lowers the first
Fourier amplitude side lobe below 70 dB., equivalent to 140 dB. or 107 in
the spectral density. The tradeoff for these low side lobes is an increase in the
width of the main lobe. The spectral density of the record is then found from
a forward FFT using Hall’s algorithm [26] on the windowed segment of the
record. The squared magnitude of the spectrum is then computed, and this
quantity is divided by 47 N At to obtain the spectral density for a single record.
An estimate of the stationary velocity spectral density is then found by taking

an average of the densities across the ensemble.

4.5 Comparison of Stationary Equivalent Linearization
and Simulation Results for Ideal Band-Pass Filtered

Input

In this section, the simulation methods described in the preceding subsection
are used to check the accuracy of the stationary equivalent linearization pre-
dictions. Three measures of the response are used in this comparison: the
stationary velocity standard deviation, the stationary velocity spectral densiﬁy,
and the displacement variance. It is shown that the agreement is reasonably
good for rms velocity, but differences in the low frequency content of the ve-
locity spectral density cause the displacement variance in the simulations to be
é,lways non-stationary. This is contrary to the equivalent linearization predic-
tion of stationarity for all excitations with {1; # 0. The discussion begins with

a detailed comparison of results from these two methods for a particular set of
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input parameters, followed by a comparison of the rms velocity results over a
broad range of input parameters.

A comparison is performed between the simulation statistics of the
Coulomb element response and those predicted by equiva)lent. linearization, as
well as simulations performed on a linear system using the viscous damping
value computed by stationary equivalent linearization. The equations of motion
for the linear system simulation are solved using the fourth order Runge-Kutta
method. This linear simulation is useful not only for determining the effects of
a finite ensemble size, but also in establishing the accuracy of the method used
to generate the band-limited excitation.

The case that is studied in detail has input parameters A} = (; =
20/7? =~ 2.02. This input is broadband, and, as can be seen in Figure 4.1,
has a value of AQ) well above the critical bandwidth of equivalent linearization.
Another important feature of this input is the lack of spectral content near
N =0. This will be useful during the discussion of differences between the
velocity spectral densities of the linear and Coulomb systems.

A comparison of the rms velocity for the Coulomb and linear system
simulation methods as well as the stationary equivalent linearization predictions
is found in Figure 4.4. Both of the equivalent linear systems are within 10% of
the Coulomb element simulation once stationarity is reached. The fluctuations
exhibited by the simulations are caused by two aspects of the random input.
The overshoot at the beginning of the record is caused by the periodicity of the
input records, while the oscillations occurring in the rest of the record are due
to the sharp low frequency cutoff of the band-pass filter. Stationarity is reached

within a short time compared with the length of the record, so the use of fixed



77

\
£ 0.8 -
1
0
c
i
‘ { e AR ...u, A s b R
0.6 MY : sl
S
t
3
n 4
d
5 _
S —— Simulation, Coulomb Element
A n ---- Simulation, Linear Damping
! — — Equivalent Linearization
D
e -
v -
i
3 0.2
b -
1 —
e
a 4
ox .
0 T T T T [ T T T T l T T T T [ T T T T 1 T T T T

0. 20 40 60 80 100
Nondimensional Time T

Figure 4.4: Comparison of response velocity standard deviation for simulations
of Coulomb clement and cquivalent lincar systems, along with stationary cquiv-
alent linearization results. For this case AQ = Q; = 20/7%, A7 = 0.1, and the
ensemble size is 1000.



78

linear parameters is acceptable. In fact, the fixed linear parameters used in the
linear simulation even do a good job of predicting the initial non-stationary
response.

Figure 4.5 presents the stationary velocity spectral densities for the
Coulomb and linear system simulations along with the equivalent lineariza-
tion prediction. The latter result is obtained from a non-dimensionalized form
of Equation (4.8). On a linear scale, all three responses appear limited to
the input frequency range. The linear and nonlinear simulation responses are
similar within this range, and it seems that the differences are du<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>