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ABSTRACT 

We discuss a two-loop calculation showing that the S matrix of 

Einstein's theory of gravity contains nonrenormalizable ultraviolet 

divergences in four dimension. We discuss the calculation in both 

background field and normal field theory. We describe a new 

method for dealing with ghost fields in gauge theories by combining 

them with suitable extensions of the gauge fields in higher dimen­

sions. We show how using subtracted integrals in the calculation of 

higher loop graphs simplifies the calculation in the background 

field method by eliminating the need for "mixed" counterterms. 

Finally, we make some remarks about the implications of our result 

for supergravity theories. 
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Figure Captions 

1. a) A two-loop propagator graph. 

b) A k channel counterterm insertion graph. 

b) An l channel coun terterm insertion graph. 

b) A k -l channel counterterm insertion graph. 

2. a) A two-loop propagator subtraction graph. Shaded region denotes k chan­

nel subdivergence. 

b) A two-loop propagator subtraction graph. Shaded region denotes l channel 

subdivergence. 

c) A two-loop propagator subtraction graph. Shaded region denotes k -l 

channel subdivergence. 

3. A two-loop graph with combinatoric factor ~ x ~ x ~. 

4. A one-loop graph with an arbitrary number of external gravitons. 

5. A one-loop propagator graph. Dashed lines represent external graviton fields 

and solid lines represent the combined quantum graviton and ghosts. 

6. a) A one-loop vertex graph with only single external gravitons at any vertex. 

b) A one-loop vertex graph with 2 external gravitons at a single vertex. 

7. A two-loop graviton graph with an arbitrary number of external legs. 

8. Two-loop vertex graphs with 2 external gravitons at a single vertex. 

9. Two-loop vertex graphs with only single external gravitons at any vertex. 
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1. Introduction 

Quantum field theory has proven to be spectacularly successful in describ­

ing the interactions between elementary particles at the limits of present day 

experiments . The first relativistic quantum field theory, quantum electro­

dynamics , has been verified to high accuracy through many different experi­

mental tests. Nevertheless, there are many shortcomings in our present day 

understanding of fundamental interactions. 

It was dis c overed very early on in the development of quantum field theory 

that divergences arose in perturbation theory when loops were calculated . These 

divergences would render quantum field theory useless without some prescrip­

tion for dealing with them. The solution to these infinites is renormalization 

theory . This provides us with a prescription for eliminating divergences in any 

physically meaningful quantity. In the case of quantum electrodynamics, renor­

malization can be heuristically understood by saying the electron has a "bare" 

mass and charge and is shielded by quantum fluctuations of the surrounding 

vacuum. At high energies, we start to penetrate this shielding and we see the bare 

charge and mass. However, at low energies, we measure a charge and mass which 

are the renormalized quantities. 

Renormalization is implemented by isolating the divergent pieces of loop 

diagrams and then realizing that these divergent parts can be absorbed by a 

redefinition of charge and mass. The renormalized quantities are then what we 

measure at low energies. This approach only works because the divergences are 

of the right form to be absorbed into a redefinition of a limited number of 

parameters, the values of which can be derived from experiments. Such theories 

are called renormalizable. The commonly accepted SU (2 ) x U( 1) electro-weak 

theory and SU (3) QCD are renormalizable Yang-Mills theories. 
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For all the success of renormalizable theories, there has been one long 

standing failure. Although Einstein's General Theory of Relativity is widely 

accepted as being the correct classical theory of gravity, all of the many attempts 

to form a quantum field theory which reduces to classical Einstein gravity in the 

low energy limit have so far been incomplete [ 1 ]. 

It may seem somewhat puzzling at first why so much effort has been 

expended on attempting to quantize gravity. After all, the effects of quantum 

gravity would presumably only come into play around the Planck mass of 10 19 

GeV. Such energies may be present in some very exotic cosmological situations, 

but certainly they are far removed from present and probably future particle 

experiments. Nevertheless, the study of quantum gravity has led to at least two 

major formal developments. The first originated from the work of Feynman [2]. 

In the early sixties, while studying the one-loop behavior of Einstein gravity 

quantized in a covariant gauge, he noticed that diagrams would satisfy the 

proper unitarity conditions only at the price of having, besides the graviton, 

additional anticommuting bosonic particles circulating in the loop. This work 

was elaborated upon in the late sixties by DeWitt and others [3], and finally Fad­

deev and Popov [ 4] gave an elegant prescription for quantizing gauge theories in 

general gauges. The extra fictitious particles are now commonly referred to as 

Faddeev-Popov ghosts. 

The second formal development was stimulated by the exceeding complexity 

of the Einstein-Hilbert action, and is originally due to DeWitt [3,5]. It is the 

background field method , an elegant alternative approach to quantum field 

theory. In the background field method, the fields are expanded with respect to 

background values, according to 

( 1.1) 
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and only the quantum fields ¢qu are integrated over in the path integral. The 

background fields ¢B are effectively external sources. A proper choice of the 

gauge-fixing term then leads to an effective action that maintains the gauge 

invariance of the classical action even off-shell, insofar as transformations of 

the ¢B are concerned. 

Aside from purely formal developments, there is another reason one might 

wish to attempt to quantize gravity. Although it is certainly true that we cannot 

reach the Plank energy in the conceivable future, it may well be that a consistent 

theory of quantum gravity is unique. If this is true, then it may be possible to 

calculate the consequences at low energies and thus shed new light on modern 

day particle physics, possibly eliminating the plethora of arbitrary dimensionless 

parameters which plague particle theory* . 

There are many different ways of looking at the difficulties involved in 

quantum gravity. The point of view most in keeping with the rest of quantum 

field theory, is to view gravity as a theory of a spin-2 field in Minkowski space. 

This spin-2 field is represented by a symmetric tensor , hf-Lv• which is the devia-

lion of the spacetime metric from flat Minkowski space. In this point of view, the 

difficulties of quantum gravity are due to the dimensionality of the coupling 

constant, /C. The space-time metric g f-LI/ is given by 

The classical action is just the ordinary Einstein-Hilbert action, 

* A similar example is Grand Unified Theori es, which predict 8 w, while their predictions at the 
unification scale are still untestable. 

( 1.2) 

( 1.3) 
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Appendix A contains a list of our conventions. The coupling constant K is pro­

portional to the square root of Newton's constant, G, and thus has negative mass 

dimension. This implies that the S-matrix may contain nonrenormalizable 

divergences. It is just this question, whether nonrenormalizable divergences 

occur at two loops for pure gravity, which is settled in this work. 

The negative dimensionality of K is not by itself enough to prove that a naive 

approach to quantum gravity is hopelessly diseased. It only means that there is 

no available proof that physically meaningful divergences do not exist in the S­

matrix. In order to decide whether such divergences are present, one must per­

form loop calculations with the theory. If this approach to quantizing General 

Relativity is to succeed, all such divergences must be absent. It is encouraging 

that such cancellations do occur at the one-loop order for pure gravity, i .e., 

gravity not coupled to matter. This fact was first demonstrated by explicit cal­

culation in 1974 [6]. However, as will be shown later, this result can be derived by 

general coordinate invariance and the Gauss-Bonnet theorem, without resorting 

to a calculation. Shortly afterwards, it was found that coupling arbitrary matter 

to gravity spoiled the one-loop cancellations and introduced divergences [7]. For 

a time, it was thought that all matter couplings would spoil the one-loop finite­

ness of pure gravity. 

However, there are special couplings of matter fields which maintain the 

one-loop finiteness. These theories are the pure supergravity theories, in which 

all the fields reside in a super-multiplet with the graviton [8]. Thus, the criteria 

of finiteness of a theory including gravity at one loop highly constrains the avail­

able couplings. This is a very encouraging feature in the search for a theory of 

quantum gravity. 
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I 

The question still remains, however, whether higher loops will diverge. For 

supergravity theories, the requirement that the effective action be supersym-

metric postpones the onset of possible divergences to three loops for the maxi-

mally extended N=B theory. However, there are no known symmetry arguments 

to decide the question of pure gravity at two loops. Although a theory of quantum 

gravity alone, with no matter fields, cannot be regarded as physically relevant by 

itself, it can help shed light on the possible problems with supergravity theories. 

Possible cancellations of divergences in supergravity theories are expected 

to come from two possible sources. First is the requirement that the on-shell 

effective action be supersymmetric (this is only true if we assume there are no 

anomalies in the supersymmetry currents). The second possible mechanism is 

cancellations in the pure gravity sector, which by virtue of the fields lying in 

supermultiplets, will be carried over to the entire theory. 

The strongest constraints on possible divergences of supergravity theories 

so far derived are the superspace arguments of ref. [9]. These arguments are 

based upon certain assumptions about the structure of extended superfields. If 

these assumptions are correct, then divergences in the N=B theory are excluded 

up to and including six loops. However, these extended superfields have yet to be 

constructed and certain other implications of the assumptions of ref. [9] have 

been explicitly tested and found to be wrong [10]. Thus, it appears that the 

assumptions about the structure of extended superfields in ref. [9] are incorrect, 

and therefore N=B may diverge at three loops. It seems that the only hope would 

be for some "miraculous" cancellation in the pure gravity sector at higher loops . 

Thus, the lack of two-loop divergences of pure gravity would be encouraging for 

supergravity theories, and such a calculation is far easier than the three-loop 

calculation necessary to directly test the N=B theory. As will be shown in this 
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thesis, a direct calculation of pure gravity at two loops displays the presence of 

nonrenormalizable divergences in the on-shell effective action, and therefore in 

the S-matrix of pure gravity, of the form, 

( 1.4) 

where E = ( 4-d) is the familiar parameter of dimensional regularization. We 

take this to be a discouraging indication for supergravity theories. 

Although we have said the calculation of two-loop pure gravity is easier than 

three-loop supergravity, it should be said that it is far from trivial. Since the 

one-loop calculation of 't Hooft and Veltman in 1974, there have been numerous 

attempts to perform the two-loop calc ulation [11]. Nevertheless, the problem 

had r e main e d unsolved until this work in 1985 [12]. 

The exceeding complexity of a perturbative expansion of the Einstein-

Hilbert action requires that huge numb e rs of terms must be manipulated . It is 

this fa c t whic h has been the major obsta cle to performing the two-loop calcula-

tion. In order to overcome this difficulty, we had to develop our own algebraic 

manipulation programs so that the calculation could be performed with the aid 

of available computers . Although we will describe many techniques which were 

extrem ely helpful during the course of this work, it is nevertheless true that 

without the use of c ompute rs to d ea l with the huge numbers of terms which 

arise, this calc ulation would have bee n impossible . 

Anoth e r important issue tha t a ris e s in a calculation of such complexity is 

the correc tness of the result. We have, of course, taken all steps we could to 

assure ourselves that we have the correct result. Past experience with computer 

aided calculations has shown that the most likely cause of error is human inter-

vention in the steps of the calculation. In this calculation, all steps were 
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performed by computer after thoroughly checking the programs. Another 

important feature was that all programs were kept as small as possible and were 

very limited in their functions. This meant that programs were easily debugged 

and optimized for their task. This also meant the number of programs was rather 

large (about 50). 

The most convincing checks on the final result, however , are that the two­

loop calculation was performed in three different ways, all of which yielded the 

same answer. The calculation was performed in background field method on­

shell and then off-shell. The on-shell part of the off-shell calculation agreed 

with the on-shell calculation. Furthermore, the fact that the answer must be 

general coordinate invariant in background field, even off-shell, provides a good 

check. In our case, we had 5 possible counterterms in the off-shell case after 

dropping the diverge nce and trace of th e graviton fi e ld, and more than 30 equa­

tions determining the coeffic ie nts of these 5 terms. This highly over-determined 

system was consistently solved and the coefficient of the on-shell invariant 

could, in fact, be determined from a subsystem of 5 equations, all of which van­

ish on-shell. 

Finally, the third method of performing the calculation was to use normal 

field theory and calculate on-shell. This changes th e vertic es used in the calcu­

lation. As shown in Table 1, each graph gives a diffe rent on-she ll result from the 

on-shell background fi e ld c a lc ulation, yet the sum of all graphs gives the same 

result. This is an explicit che ck of the gauge-independ e nce of the result. 

The r e m a inde r of this th esis is divid e d into 6 different s e ctions. In section 2, 

we give a brief review of regularization and renormalization, as well as some for­

malism of the background field method of quantum field theory. Section 3 shows 

the method we used for determining the pole parts of dimensionally regularized 
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integrals. In section 4, we give the lagrangian for gravity, including gauge fixing 

and ghost terms, and we describe a new technique for dealing with ghost fields. 

This technique allows us to combine ghost and gauge fields into a single field in 

higher dimensions, thus eliminating the need for calculating separate ghost 

diagrams. Section 5 reviews some results of one-loop gravity, while section 6 

gives the results for the two-loop calculation. Finally, section 7 contains some 

conclusions. 
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2. Regularization and Renormalization 

As we have said before, loop calculations in quantum field theory invariably 

give rise to divergences. The process of renormalization is used to give a physi-

cally meaningful result from a divergent theory. However, in dealing with infini-

ties in a calculation, it is first necessary to carefully isolate the divergent pieces 

in a consistent manner. This is the process of regularization. A theory may have 

a finite S-matrix, i.e ., one not requiring renormalization, and yet it is still 

necessary to regularize during the steps of a calculation so that all cancellations 

may be properly seen. 

The first method of regularization was introduced long ago and is simply to 

insert a cutoff parameter in loop momentum integrals [13]. The ultraviolet 

divergences of a theory are those that come from the large momentum portions 

of loop integrals. A cutoff simply puts an upp e r limit on the integration 

momenta. Any final physical result must be independent of the cutoff parame-

ter. This method has the advantage of conceptual simplicity, but it ruins the 

manifest symmetries of the original integral and it is very difficult to actually 

perform the resulting integrals. 

Another old, but popular method of regularization is to introduce extra 

massive fields with special couplings. This is Pauli-Villars regularization and it 

also has the disadvantage of being very difficult to actually calculate with. There 

are many other regularization schemes one can use, but the most convenient 

method for our purposes is that of dimensional regularization [14]. 

Dimensional regularization is based on analytically continuing the number 

of space-time dimensions, n, to d = n-E; dimensions, and then examining the 

limit as E;-->0. The infinite parts of integrals are then poles in l__, The primary 
E; 

advantages of this m e thod are that it manifestly preserves all symmetries which 
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are independent of the dimensionality of space-time, and that the pole parts of 

integrals are fairly easy to calculate. As general coordinate invariance is 

independent of the dimensionality of space-time, general coordinate invariance 

will not be broken by this regul a rization scheme. Thus, we could work in a back­

ground field gauge and maintain explicit general coordinate invariance. 

In a theory with fermions, however, one must be very cautious about using 

dimensional regularization, as -y-matrix algebras cannot be analytically contin­

ued to noninteger dimensions. The presence of anomalies in these theories can 

be thought of as a failure of the regularization scheme. This is a source of con­

fusion with reg a rd to regularizing supergravity theories [15], but can be ignored 

in the present context, as gravity is a purely bosonic theory (with a slight caveat, 

which will appear later). 

Once the pole parts of the effective action have been calculated, the diver­

gences can be removed by adding coun terterms to cancel only the poles in E. This 

is the process of minimal subtraction and was used throughout the course of this 

work [14]. If the counterterms that must be added to render a theory finite are of 

the right form, they can be absorbed into redefinitions of the basic parameters of 

the theory, such as mass and charge, or into a redefinition of the basic fields . 

The renormalization of coupling constants is physically meaningful, while the 

renormalization of fields via local field redefinitions can be shown not to affect 

the S-matrix of the theory. If a theory is not renormalizable and not finite, then 

the diverge nces cannot be removed by redefining a finite number of parameters 

or by redefining the basic fields, and the theory is void of any meaningful predic­

tive powe r. 

To s e e th a t local field redefinitions of the form, 

<t>'(x) = <t>(x) + O(h) =j[<t>(x)], (2.1) 
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are not physically meaningful, one simply notices that the effect of this local 

field redefinition in the path integral is (apart from source terms) merely to 

introduce a Jacobian factor of the form, 

det(l +X)= J de de ec(l +X)c, (2.2) 

where c and c are anticommuting ghost fields. Since X is a local operator the 

ghosts have local interactions. Furthermore, the ghost propagator is one in 

momentum space, so all ghost loop diagrams are integrals of local polynomials 

and therefore vanish in dimensional regularization. Thus, the Jacobian in eq. 

(2.2) is one in dimensional regularization. 

The field redefinition also changes the source terms according to, 

Jcl>(x) =Jj- 1[1>'(x)]. (2.3) 

The effect of eq. (2.3) is to introduce additional source couplings of J to several 

fields 1>' at the same point in spacetime. However, it is well known that such 

additional couplings do not affect the S-matrix [16]. Hence, local field redefini-

tions are seen not to affect the S-matrix of the theory. 

The question still remains of how to recognize counterterms which are field 

redefinitions in perturbation theory. The answer is that these counterterms 

vanish when the classical field equations are applied. To see this, we note that 

the classical field equations are given by 

os = 0 o¢ . (2.4) 

A term which vanishes when the field equations are used is proportional to the 

field equations. Therefore, we have to first order in h, 
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S'[ci>] = S[ci>] + nt.S[ci>] = S[ci>] + n ~; t.ci> . (2.5) 

This can then be expressed as, 

S'[ci>] = S[ci> + nt.ci>], (2.6) 

and so is seen to be a field redefinition. The same arguments hold true for higher 

orders of n' though one then needs to expand eq. (2.6) to higher order in n as 

well. 

As an example of a renormalizable theory, let us briefly consider the case of 

pure Yang-Mills theory. We start with a vector gauge field, A~ and form the 

Maxwell tensor, 

F i -a Ji -a Ai+CiAiJk 
J..l.ll - J.lf" II vr:' J..L ]k J.lf" II • 

(2.7) 

where the C/K. are the structure constants of the gauge group. We then form the 

Yang-Mills action, 

(2.8) 

To this action, one would need to add a gauge fixing term and Faddeev-Popov 

ghost terms. However, we will ignore those terms for the moment. A simple proof 

of the renormalizability of this theory then follows if we assume that the diver-

gences in loop calculations will be lo ca l, gauge invariant functions. Making these 

assumptions, it is a simple matter to see that the only possible divergences of the 

proper dimensionality go as F ·F, or as the topological term F ·F, where F is the 

dual ofF. This second term is a total divergence, and so can be ignored in simple 

discussions of perturbation theory. Therefore, the divergences of the quantum 

theory can be absorbed by a redefinition of the dimensionless coupling constant 
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g. 

Unfortunately, this simple proof of renormalizability is flawed. In order to 

quantize a theory via perturbation theory, it is necessary to break the gauge 

invariance in order to define a propagator. Thus, the assumption that the diver­

gences are gauge invariant is called into question. There are two solutions to this 

dilemma. First, one can concern oneself with only the on -shell effective action. 

This means that external legs are assumed to obey their classical equations of 

motion. This is all that is required to calculate S-matrix elements. Since an S­

matrix element is a physically measurable quantity, it must be gauge invariant. 

Therefore the on-shell divergences of the effective action are also gauge invari­

ant. The only remaining question is then whether the divergences are guaranteed 

to be local objects. 

The second method for dealing with the problem of gauge fixing is to use the 

background field method of DeWitt, as mentioned in the previous section. In 

order to be somewhat self-contained, we now briefly review some of the more 

notable features of the background field method. 

For a general theory the method proceeds via an expansion of the fields with 

respect to background values, which in effect act like sources, according to 

(2.9) 

Only the "quantum" field ¢qu is integrated over in the path integral. The gen­

erating functional of the Green functions in the background field method for a 

general gauge theory is then, schematically, 

In eq. (2.10) it is implicit that one is using a gauge-fixing term that is invariant 



- 14-

under the gauge transformations of the background fields, which at the same 

time fixes the gauge invariance associated with the quantum fields. The relation 

with normal field theory then follows upon a change of variable in the integral, 

whereby the integration variable is redefined by undoing the shift in eq. (2.10). 

The result is 

W[J,¢B] -J d 4xJ¢B + W'[J,¢8 ]. (2.11) 

Eq. (2.11) yields the relation between the classical fields ¢cl and ¢' cl, which are 

arguments of the background field effective action and of the ordinary field 

theory effective action, respectively. Then, performing the usual Legendre 

transform gives 

(2.12) 

Thus, the effective action in the background field method is equivalent to the 

effective action in ordinary field theory, computed with a "shifted" argument 

and in a peculiar gauge that depends on the background field [17] . In fact, the 

gauge fixing term in eq. (2.10) depends on the background fields and on the 

quantum fields individually, and not only on their sum. Therefore, the inverse 

redefinition produces a gauge fixing term which still depends on the background 

fields. 

As a result, in general the effective action depends on two kinds of fields, the 

background fields ¢8 and the classical fields ¢cl, obtained by averaging over the 

quantum fields ¢qu· This corresponds to the possibility of defining 1PI Green 

functions with the two kinds of external fields. If one sets the fields ¢cl to zero, 

i.e ., if one considers Green functions for background fields only, it is clear from 

\ 

the construction that these exhibit the same gauge invariance as the classical 
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theory, even off-shell, since the coupling to the background in eq. (2.10) is man­

ifestly covariant. The corresponding Ward identities for the effective action are 

just the statement of its background gauge invariance . However, it should be 

emphasized that, off-shell, the effective action depends on the choice of 

gauge-fixing function made in defining the functional integral in eq. (2.10). A 

prescription for defining a "unique" effective action in the off-shell case has 

actually been advocated in ref. [18]. However, the quantities of physical 

relevance are the on-shell amplitudes which are independent of the gauge choice 

anyway. The familiar normal field theory expansion is recovered in the case of 

vanishing background, where, of course, one computes Green functions with 

external ¢qu fields. 

The other assumption used in our simple "proof" of renormalizability of 

Yang-Mills theory is that divergences are local. This is a rather tricky issue and 

no completely rigorous proof of locality has been put forth. Nevertheless, there 

do exist somewhat less than rigorous proofs, and we shall assume they are 

correct [19]. 

If we assume the validity of the proofs of locality of divergences, we can use 

this fact to develop a very simple method for evaluating the pole parts of 

integrals. We shall return to this point in the next section. 
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3. Method of Integration 

In this section we outline the procedure for calculating the pole parts of 

Euclidean loop integrals in dimensional regularization and minimal subtraction 

[20]. Because of the importance of this technique for this calculation, we will 

proceed in some detail. This method is based upon the observation that the pure 

n-loop divergence of a loop integral in dimensional regularization is a local 

function of external momenta and masses. Any non-local contributions to the 

pole part of ann-loop integral are due to the well known phenomena of overlap­

ping subdivergences. If an n-loop diagram is calculated using the lower loop 

counterterms, the resulting function is just a polynomial in momenta and 

masses. This provides a simple method to determine the pole parts. 

A little thought shows that the effect of the lower loop counterterms is sim­

ply to subtract out subdivergent parts of individual integrals. This is because the 

lower loop counterterms are, by definition , the divergent parts of lower loop 

Green functions, which is precisely what the subdivergent integrals are. The point 

can be made more transparent by considering a two-loop Feynman graph, such 

as figure 1. In the standard methods, one calculates the two-loop graph, figure 

1a and subtracts the 3 one-loop counterterm insertion graphs shown in figures 

1 b, 1 c, and 1 d. However, the one-loop counterterms are just the infinite parts of 

the corresponding one-loop subgraphs, which are just the infinite parts of the 

one-loop subdivergent parts of figure 1a. Figure 1 b would correspond to taking 

the infinite part the k loop integral of la, with l being held constant, as 

represented in figure 2a. Similarly, figure 1c is the infinite part of the l loop 

integral with k held fixed, as represented in figure 2b. And finally, figure 1d 

corresponds to letting k -"k +l, l-'>-l, and then taking the infinite part of the 

resulting l loop integral, as shown in figure 2c. We can therefore incorporate the 
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effects of the lower loop counterterms by subtracting from the two-loop graph 

the three possible subdivergent subgraphs, which we will refer to as the k, l and 

k -l subdivergent parts. Although we have illustrated the effects of subdiver-

gences with a two-loop graph, it can be readily seen that the same arguments 

apply to any number of loops. 

In practice, one subtracts the subdivergent parts of individual integrals 

without any need for explicitly calculating lower loop counterterms. The major 

advantage of following this procedure is that the resulting integrals minus their 

subdivergent parts, are local functions and are thus simple to calculate. 

We must stress that a higher loop diagram is only local after the lower loop 

subdivergent diagrams have been removed. This can be seen to correspond to 

saying that the pole parts of individual higher loop Feynman integrals are local, 
t 

provided one subtracts out the lower loop subdivergences. These lower loop sub-

divergent parts precisely correspond to the lower loop counterterms used to 

remove lower loop divergences. This can be seen by noting that these lower loop 

counterterms are just the infinite parts of lower loop graphs and that the sub-

divergent integrals also correspond to the lower loop graphs. 

Once we only need to calculate local functions, a simple trick can be used to 

calculate the divergent part of all the needed integrals. Given a particular sub-

tracted integral, I, divergent of order N, and dependent on momenta and masses 

qi, it is evident from the homogeneity condition, 

( 3.1) 

that 
8

81 is at most divergent of order (N -1). Therefore, by repeated differen­
qiJL 

tiation with respect to their parameters, all subtracted integrals can be reduced 
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to simple subtracted logarithmic integrals, though the process of differentiation 

can create a large number of terms. The divergent parts of these logarithmic 

integrals cannot depend on masses or external momenta, which can then effec-

tively be set to zero. This allows one to avoid the need for many Feynman param-

eter integrals to combine denominators. The resulting integrals should be 

regarded as limits of corresponding ones with, say, massive propagators, and can 

be computed very simply. At two loops, the problem is reduced to evaluating 

integrals of the form 

k k ... l l ... 
/.1. v p a 

(k -l )Zak Zb l2c 
(3.2) 

where all masses and external momenta have been set to zero. There is, however, 

one subtlety left. To illustrate matters, consider for instance 

(3.3) 

This integral is not a tadpole, and must not be set to zero, as it comes from dif-

ferentiating an integral which originally contained external momenta and 

masses. One would write the pole part as, 

I A B t . t ' . d 
/.J.vpa = 4 TJ!.i.vTJpa + 4 TJ/.J.pTJva + symme nza Ions In f..L van p a . (3.4) 

The symmetrizations are left out in eq. (3.4) to illustrate the procedure one 

would follow in practice. There is no need to produce a large number of terms via 

symmetrizations from the beginning. The terms can be symmetrized in stages 

when the integrals are substituted in the graphs and indices are then contracted 

as soon as possible to avoid generating excess terms. 
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Eq. (3.4) is not quite correct, as the subtractions require special care. The 

integral in eq. (3.3) receives contributions both from the subtractions and from 

the two-loop part. Let us consider first the two-loop contribution. This is done 

by treating the two-loop part as local, which is actually incorrect. However, the 

sum of the two-loop part and the subtractions is local. Therefore, although the 

individual parts will not be correct, the sum including subtractions is. There are 

two independent ways of contracting indices in the integral, resulting in two 

equations that determine A and B in terms of scalar integrals. We stress that the 

general two-loop contribution to the pole part can always be reduced to the case 

of scalar integrals. This takes care of the spurious infrared divergences that are 

introduced by the elimination of masses and external momenta. Contracting 

f.L--'>l! and P--'><J, eq. (3.3) becomes, 

(3.5) 

The other independent contraction is f.L--'>P and l/--'><J. Then eq. (3.3) becomes, 

(3.6) 

Letting l--'>k -l in eq. (3.5) gives 

(3.7) 

ignoring terms with Euler's constant, 'JE, which cancel in subtracted integrals. 

Again, this integral is not a tadpole, as it originated from differentiating a diver-

gent integral which originally contained external momenta. One could imagine 

introducing in eq. (3 .7) a mass in the denominator and then taking the limit as 

the mass goes to zero. This gives the correct result. Similarly, the other integral 
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in eq. (3.6) (and any other scalar logarithmic integral) can be reduced to 

integrals of the form (3.7) and 

(3.8) 

Thus, the right hand side of eq. (3 .3) can be easily evaluated for the two indepen-

dent sets of contractions. The resulting equations for A and B can then be solved 

to give, 

A 1 ( 5 1 31 1 ) 
( 47T )4 24 -;;2 + 288 E" · (3.9) 

B (3.10) 

One must now calculate the subdivergent pieces. Simple power counting reveals 

that the integral in eq . (3.3) is logarithmically divergent in the l subintegral and 

the (k -l) subintegral, while the k subintegral is convergent. The (k -l) subin-

tegral is defined by letting k -"(k +l) and then l-'>-l, and by examining the 

resulting l subintegral. To perform the subtraction integrals, one first combines 

the two (or one) denominators containing the subdivergent momenta using 

Feynman parameters, and then the pole part of the integral follows from the 

standard formula 

1 f(a+d / 2) f(b-a-d/2)( 2)d / 2+a-b ( 311 ) 
(47T)d f(d / 2) f(b) p . . 

This is a straightforward exercise. The only subtlety has to do with Lorentz 

indices. The method is tailored for minimal subtraction, and makes implicit use 

of the gauge-invariance of the regulator. Minimal subtraction requires that only 

the pole parts of the divergent amplitudes be subtracted. In working with 
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subtracted integrals, this implies that one must be careful, when expressing the 

uncontracted integral in terms of metric tensors, to distinguish indices coming 

from a subdivergent channel. In order to enforce minimal subtraction, the trace 

of metric tensors originating from subdivergent loops is to be set to 4, not to 

( 4-t: ). This is what one would obtain from calculating separate counterterm 

graphs. This can be implemented by using "barred" indices to distinguish 7]'s 

coming from a subdivergent loop, and then defining 

1Jpv = 1J ).LV (3.12) 

(3.13) 

1] 1] ).LV = 1]-1]J.LV = 1J 1JJ.LV = 4 - [' ).LV ).LV ).LV ' (3.14) 

For an N -loop integral, minimal subtraction implies that contracting 7]'s 

while calculating an M -loop subdivergence can only be allowed to produce E'(M-l). 

In this way, we will always be assured that we are subtracting only the pole part of 

the subdivergent loop, as theM -loop subdivergence can produce a ~ . With this 
[' 

in mind, the final result for (3.3), including subtractions, is, 

+ symmetrizations in f-L v and p a) . (3.15) 

The techniques used in this example can be readily extended to the case of 

an arbitrary number of indices, as well as to arbitrary loop order. Although they 
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are rather cumbersome by hand, they are well suited to being implemented on 

computers. 

There is another major advantage of using the technique of subtracting out 

subdivergent parts of integrals . As mentioned previously, there are two types of 

fields present when working with the background field method. There is the 

background field, ¢B, and the classical field ¢cl, which is the average over the 

quantum field ¢qu· The presence of two types of field poses some difficulties at 

higher loops [21]. The S-matrix for a theory is given by calculating Green func­

tions with only the fields ¢B on the external legs. These Green functions then 

have the advantage of being gauge invariant off-shell. However, in order to cal­

culate higher loop diagrams in the standard background field method, it is 

necessary to calculate counterterms for use in subtraction graphs which contain 

¢qu fields on external legs as well. As we can see from figure 3b, we require 

one-loop counterterms with, for example, one ¢B and two ¢qu's. Such Green 

functions do not have the advantage of being gauge invariant off-shell, and con­

siderably increase the number of different Green functions one needs to calcu­

late. In the case of Yang-Mills, one can do without actually calculating these 

"mixed" Green functions , as they are related to the Green functions with only ¢B 

in a simple way [17]. This is essentially due to the fact that the difference 

between the "pure" and "mixed" counterterms is just a multiplicative factor, as 

wave function renorm a lizations are just multiplicative factors in this case. 

Unfortunately, this is not true for the case of gravitation. However, if we calcu­

late graphs by using subtracted integrals, we never need to explicitly mention 

lower loop counterterms. Thus, using this procedure, we circumvent the problem 

of calculating the mixed Green functions altogether. 
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4. The Lagrangian and Ghost Terms 

In this section, we give the gauge fixing terms and ghost terms used in the 

calculation of graviton graphs in the background field method. We also describe 

in some detail a new technique for treating ghost fields which allows a substan-

tial reduction in the number of diagrams one needs to C8:_lculate. 

We start with the Einstein-Hilbert action (in natural units), 

( 4.1) 

which is written here in convenient natural units, such that the propagator has 

the standard normalization (see Appendix A for our conventions). The metric is 

shifted according to 

( 4.2) 

where hJ-Lv is the variable of integration in the path integral. Correspondingly, in 

the shifted action g J-LV will denote the background gravitational field. The exceed-

ing complexity of the Einstein action (see Appendix A for more details) makes it 

convenient to choose a gauge leading to the simplest possible propagator. This is 

the De Donder gauge, the gravitational analogue of the familiar Feynman gauge 

for quantum electrodynamics. One adds to the action the (background) general 

coordinate invariant gauge-fixing term 

L g.f. -V-g ( hi-Lv - _!_h v;J-L)( hf - _!_hf ) 
;v 2 v J.,L;p 2 p;J-L ' ( 4.3) 

where semicolons denote covariant derivatives with respect to the background 

metric, g J-LV" In terms of the classical equations of motion, this gauge-fixing 

term implies, 
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( 4.4) 

Then, with the familiar Faddeev-Popov prescription, the ghost action is 

( 4.5) 

The resulting Lagrangian to be used in deriving the Feynman rules is simply 

the sum of the terms in eqs. ( 4.1 ), ( 4 .3) and ( 4.5 ). To derive the Feynman rules for 

the normal field theory approach, one simply takes the background metric to be 

the Minkowski metric. Thus, covariant derivatives become ordinary derivatives, 

and we would calculate diagrams with external hJ.Lv· Thus, one needs to deal with 

the real metric field and the complex vector anticommuting ghost (and the 

corresponding antighost). Moreover, ghost loops are endowed with the "minus" 

sign characteristic of anticommuting fields. As we will show, it is possible to 

conveniently combine the ghosts with the gauge fields. This has the advantage of 

only requiring one type of line inside loop diagrams, thus reducing the number of 

distinct diagrams. For simplicity, we illustrate the details of the procedure in the 

simpler case of Yang-Mills theory, and at the end of the section we give the 

corresponding results for background-field Einstein gravity. 

The quantum action for the pure Yang-Mills theory in the Feynman gauge is 

L ( 4.6) 

In eq. ( 4.6) D J.L denotes the gauge-covariant derivative, A aJ.L denotes the quantum 

gauge field, and c a denotes the ghost, which in this case is a complex scalar. To 

simplify eq. (4.6) further, one proceeds as follows. We write the complex ghosts in 
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terms of real ghosts, which are to be treated as commuting, according to 

( 4.7) 

and similarly for the antighost. Then, for example, 

-a b _ 1 ( 1 ) a b c c - 2 - (J 2 ij c i c j ' ( 4.8) 

where u 2 is the familiar Pauli matrix. Clearly, the matrix in eq. ( 4.8) is a projec-

tion operator, is orthogonal to its transpose and has trace equal to one. One can 

now define the projection operators r, -y, IT and t as follows. Let fu be a matrix 

obtained by adjoining to the ( 4-£ )-dimensional background metric g J-LV a 2x2 

matrix of zeros, i.e ., 

l
g J-LV 0) 

ru = 0 0 ' (4.9) 

and similarly for ru in terms of the inverse metric gJ-LV. One can also define the 

Minkowski space analog of fu. 

I
TJ J-LV 0) 

'YJJ = 0 0 ' (4.10) 

and extend the projection operator in eq. ( 4.8) to 

0 0 
( 4.11) 

Finally, tis the analog of the metric tensor in the two extra dimensions: 

(4.12) 
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It is defined as a separate matrix for convenience, even though it is actually the 

sum of IT and its transpose. Raising and lowering indices is irrelevant as far as IT 

and Y are concerned. In all these cases, it is understood that the indices I and J 

run over ( 6-£) values. These matrices commute with one another and satisfy 

the following algebra: 

r· r = r • r· IT = o , r·Y = o , (4.13a) 

IT·f = 0 , IT·IT =IT, IT·Y =IT, (4 .13b) 

Y·f = 0 , Y·IT =IT, Y·Y = Y, (4.13c) 

together with 

IT·ITT = 0 . (4.13d) 

Moreover, 

tr(r) = 4-£, ( 4.14) 

tr(IT) = 1 and tr(Y) = 2. ( 4.15) 

In eqs. ( 4 .13) - ( 4.15) all operations involving f are implicitly done with the 

proper raising and lowering of indices needed to ensure covariance. Clearly, the 

Minkowski space projector/' satisfies relations similar to those satisfied by f. 

One can then rewrite the quantum action for Yang-Mills theory in terms of a 

single field, the six-dimensional vector A1a, where the 2 extra components 

correspond to the two real commuting ghost fields . The result is, 

(4.16) 
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where indices are contracted with ')' matrices, unless otherwise specified. The 

only problem left is that the ghosts, being anticommuting fields, need a "minus" 

sign for every closed loop. But even this is simply taken care of, to all orders of 

perturbation theory, by redefining the trace relations for ITJJ and YJJ. so that 

tr (IT) = -1 and tr ( Y) = -2 , (4.15') 

while maintaining all the other relations in eqs. (4.13) and (4.14). Every ghost 

loop is associated with the trace of a ITJJ or YIJ matrix, and the "minus" sign rule 

is automatically enforced in this way. Formally, one is replacing a positive 

number of anticommuting fields with a negative number of commuting fields. 

The action now contains only one field, and the number of distinct diagrams to 

be considered is correspondingly reduced. Strictly speaking, with the modified 

definition for the trace, the matrices ITJJ and YJJ could not be built out of ordi­

nary numbers . This is the remnant of the anticommuting nature of the ghosts. 

However, the algebra of the matrices is well defined, and the compact description 

in terms of a single field is clearly more convenient than the usual one obtained 

by considering separately the Faddeev-Popov ghosts in the complex representa­

tion. The simplification is particularly effective when use is made of computers, 

as the algebra in eqs. (4.13), (4.14) and (4.15 ' ) is quite e asy to implement. 

We wish to emphasize that all the fields have been recast into a single six­

dimensional vector. In this notation, the ghost fields are reminiscent of the 

scalar modes arising in a reduction a la Kaluza-Klein of the vector potential. 

This suggests the way to proceed in general. For example, in the case of direct 

interest to us, the metric tensor g J.Lll will combine with the two real vector ghosts 

coming from fixing the general-coordinate gauge freedom into a six­

dimensional metric tensor. Of course, the scalar modes that would originate in a 
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corresponding reduction must be decoupled. Thus, the kinetic term for graviton 

and ghosts in this combined notation takes the following form: 

(4.17) 

where hJJ denotes all the quantum fields, assembled in a symmetric matrix as 

said above . Correspondingly, the Euclidean propagator is 

( 4.18) 

The ghost terms in the lagrangian can all be recast in the form 

(4.19) 

These terms can then be combined with the remaining ones in Appendix A, 

rewritten in the six-dimensional notation, and where all g f..tll should be replaced 

with fJJ · Clearly, with minor modifications, the discussion above applies to 

space-time dimensions other than four, as well as to other gauge theories. 

Since this method of dealing with ghosts is quite different from the standard 

methods, it is perhaps worth emphasizing that they do indeed give identical 
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results. In the standard methods of dealing with complex, anti-commuting 

ghosts, one has oriented closed loops. When going to real ghosts, the two projec­

tion operators, IT and fiT replace the oriented loops. Effectively, all loops with IT 

correspond to one orientation, while those with fiT correspond to the opposite 

orientation. Finally, the anticommuting nature of the standard ghosts has as its 

only real effect, the introduction of a minus sign for closed loops. As we have 

seen, this can be accounted for by redefining the traces of projection operators 

as in eq. (4.15'). The other effect of the anticommuting standard ghosts is to 

introduce a sign change in every vertex and propagator when the orientation of 

the loop is changed. However, as all ghost loops are closed, there are always an 

even number of vertices plus propagators. Thus, the sign change is irrelevant 

and we see our method of dealing with real commuting ghosts will give the ident­

ical answer, but with the advantage of being able to combine ghosts and gauge 

fields such that there are no separate ghost diagrams to calculate. 

We should now clarify some details about the actual calculation of graphs. 

We are interested in calculating the effective action for gravity. From this, one 

could apply reduction formulas and obtain the S-matrix. In order to calculate 

vertices, we expand the lagrangian to the required order in fields and then dif­

ferentiate with respect to quantum fields. The resulting quantity is then sym­

metrized with respect to interchange of the quantum fields in order to obtain a 

vertex. This step shows another small advantage of using the background field 

method. We only need to symmetrize vertices with respect to interchange of 

quantum lines, whereas in normal field theory, we would symmetrize with 

respect to all lines. Thus, the background field vertices may be smaller due to 

fewer symmetrizations . 
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Finally, vertices and propagators are combined to form graphs. The usual 

procedure is to include separately all graphs which differ by interchange of 

external lines. However, this is unnecessary. The reason for symmetrizing over 

external lines is that we normally calculate in momentum space. However, if we 

perform all loop integrals in momentum space and then transform back to x­

space, we see there is no need for explicit symmetrization of the external lines. 

One needs to be somewhat careful about combinatoric factors, but it is actually 

very simple in this approach. One associates with each graph a combinatoric fac­

tor which is one over the product of the number of symmetries of internal legs 

and the number of symmetries of external legs. So for example, the graph in fig­

ure 3 has a factor of ~ for the internal symmetries of swapping the upper and 

lower lines and a factor of ~ x ~ for the symmetries of the two pairs of external 

legs. Thus, the overall factor to be associated with this graph is ~ and one just 

calculates the single graph of figure 3 and can symmetrize in external lines later. 

This procedure eliminates calculating different graphs which are just symmetri­

zations of one another. 
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5. One-Loop Gravity 

The first step in discussing the ultraviolet behavior of a theory involves pro-

ducing a list of all possible on-shell divergences that are compatible with the 

symmetries of the classical action. If there are no such possible on -shell diver-

gences, the theory is recognized to be finite, without the need for any explicit 

calculation . This applies both to background field quantization, and to quantiza-

tion in ordinary field theory. In the case of Einstein gravity at one loop, this is 

actually all one needs to do. If one works in the background field method, one 

can readily discuss matters starting from the off-shell case, i .e ., considering all 

invariants. 

First, we must determine the required dimensionality of the counterterms 

needed for any given loop order. We do this by noting that the Einstein-Hilbert 

action for gravity is quadratic in derivatives. Thus, when we perform the expan-

sion of the metric in powers of the graviton field, hJ..Lv• we find that all orders of 

expansion contain 2 momenta. This means that all vertices in diagrams have 2 

momenta asso c iated with them. The propagator goes as the usual~­
P 

If we now look at any one-loop graph such as figure 4, we see that there are 

N vertices and N propagators and one integral over d4 p. Therefore, the superfi-

cial degree of divergence of any one-loop graviton graph is 4. Thus, the possible 

counterterms must be of dimension 4 and in a background field gauge they must 

also be general coordinate invariant off-shell. The only such structures are 

easily se e n to b e various quadratic combinations of Riemann tensors. We can 

therefore express the possible diverge nces at one loop as, 

( 5.1) 
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The first two terms in eq.(5.1) clearly vanish when the classical field equations, 

R f.LV = 0 are used. Therefore, as was pointed out previously, they are proportional 

to a variation of the action and can be considered as nonlinear field redefini-

lions. Specifically, for the case at hand, 

where, 

(5.3) 

As has been previously stated, such field redefinitions do not affect the S-matrix 

of the theory and are thus "harmless". However, the last term in eq. (5 .1) does 

not vanish when the fi e ld equations are applied and thus does not correspond to 

a field redefinition. This term, therefore, seems to be a possible physical diver-

gence at one loop. However , in four dimensions, th e r e is a topological relation-

ship involving the three terms on the right-hand side of eq. (5.1 ), known as the 

Gauss-Bonnet theorem. The quantity, 

(5.4) 

defines the topological Euler number in four dimensions and, to each order in 

perturbation theory, the integrand appears to be a total divergence (modulo 

some subtleties to be discussed later). If we now apply the relationship, 

afJ-ro _ ~ [afJ-roJ 
E f.L VpaE - u [f.Lvpa • (5.5) 

where square brackets represent antisymmetrization with strength one, we see 

that the third term in eq. (5 .1) is linearly dependent on the first two, modulo a 

harmless renormalization of the Euler number . The final conclusion is that pure 
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Einstein gravity has a finite S-matrix at the one-loop level. Notice that we have 

derived this result without any explicit calculations. The finiteness of one-loop 

gravity was first shown by explicit calculation [6] and only later was it realized 

that it could be derived on the basis of gauge invariance of the effective action. 

There is a somewhat subtle point that has been already mentioned. The 

quantity in eq. (5.4), is only a topological invariant in four spacetime dimensions. 

One then may ask how will this manifest itself in a perturbation expansion? The 

answer, is that the higher orders in a perturbation expansion of the integrand of 

eq. (5.4) are not total divergences until one requires that the antisymmetrization 

over 5 or more indices is identically zero. However, the lowest order of expansion 

is a total divergence. That can be seen by simply counting the number of vector 

indices. To lowest order, eq. (5.4) contains two hf.Lv fields and four derivatives. 

Since all indices are contracted, this gives only four uncontracted vector indices 

to lowest order; not enough to apply the vanishing of 5 or more indices. At the 

next order in expansion, there are three hw fields and four derivatives, for a 

total of five indices; this is enough to apply such identities. 

This simple counting argument can also be applied to other dimensions. In 

2n dimensions, the analogous topological invariant is, 

(5.6) 

To lowest order, this has n hf.Lv fields and 2n derivatives, for a total of 2n uncon-

tracted indices. Again, this is not enough to apply the identity that greater 

antisymmetrization of greater than 2n indices is zero. Therefore, the lowest 

order expansion of the topological relation in 2n dimensions is always a mani-

fest total divergence. This result has also been derived using topological argu-

ments and may have important implications for superstring theories [22]. 
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Returning to 4- dimensions, this means that any one-loop propagator 

diagram will not be able to determine the topological term, as it is the lowest 

order expansion. However , if one were to calculate a one-loop vertex correction 

and not apply these Fierz-like antisymmetric identities, the renormalization of 

the topological density can be determined. We now describe the calculation of 

one-loop divergences in the De Donder gauge, including the renormalization of 

the topological invariant. 

The one-loop divergences of Einstein gravity can be expressed as, 

(5.7) 

where the last term is just the expansion of eq. (5.4 ). Thus, modulo a renormali-

zation of the topological term, all one-loop divergences cancel in the S-matrix 

of Einstein gravity. 

The next question is how to compute the coefficients in eq. (5.7). Actually, 

only the coefficient of the Euler number density is physically meaningful , 

whereas the other two are gauge dependent, and disappear altogether after a 

suitable gauge choice [23]. One can compute c 1 1 and Cz' in eq. (5.7) by consider-

ing the propagator diagram in figure 5, where the internal line denotes the grav-

iton and the ghost, combined in a 6 x6 symmetric matrix as explained in Section 

4-. One can also extract the coefficient of the topological term in eq. (5. 7) from 

the two vertex diagrams of figure 6, provided one does not apply Fierz-like iden-

tities as explained previously. 

If we expand the background metric, g f.LV with respect to flat space according 

to, 
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(5 .8) 

then, at the cubic level in H J.w and fully on-shell (see the discussion below for 

the proper definition of "fully on-shell"), one finds the residual term, arising 

from the Riemann-squared term in eq. (5.7), 

(5.9) 

ignoring the trace and divergence of H J.J-V' This structure is easily seen to vanish 

if one demands that antisymmetrizations of five indices in it vanish identically, 

as is proper for four dimensions. Resorting to such identities in the context of a 

dimensionally regularized theory can cause some concern. However, in this case 

of a purely bosonic model, the continuation in the number of spacetime dimen-

sions can be achieved by thinking of the tensors as having some ( ~) vanishing 

components, and then the antisymmetric identities can be formally applied in an 

integer number of dimensions. No inconsistent manipulations result from this 

prescription, and actually one never needs to enforce antisymmetric identities in 

the course of the calculation, but can reserve them for the final answer. Alter-

natively, one can note that all the inconsistent manipulations associated with 

such identities in dimensional regularization require the presences of OJ.J-v- This 

can be supplied by ')'-matrix algebras in the presence of fermions, but in the case 

of a purely bosonic theory, everything is contracted into fields and there are no 

OJ.J-v with which to form inconsistent relationships. 

Computing the divergent part of the propagator diagram in figure 5 repro-

duces the result of ref. [6], 

(5.10) 



-36-

The vertex diagrams in figure 6, computed fully on-shell, then suffice to deter-

mine the coefficient c 3' in eq. (5.8). 

We wish to stress that, both here and in the subsequent discussion of the 

two-loop divergences in the next section, a fully on-shell vertex diagram is 

defined with momenta that satisfy 

p·p = q·q = p·q = 0' (5.11) 

but are not collinear. This corresponds to effectively continuing the momenta to 

complex values. 

Only diagram 6a contributes on-shell, because the vertex for emission of 

two graviton lines from the same point is not capable of giving rise to a tensor 

with the right structure to survive the conditions (5 .11 ). This is analogous to 

what happens for the vertex correction at two loops which will be discussed in the 

next section, and can be simply recognized by looking at the form of the vertex. 

Of course, one could skip the calculation of the propagator correction altogether, 

and determine the coefficients of the three terms from the vertex correction 

off-shell. The final result for the one-loop case in the gauge ( 4.3) is then: 

r (l) 1 Jd4 ~ 53 a.{3-y6 Rf-LV RPa "" = X -g - 180 G. G.f-Lvpa a.{J -yo 
(47T)2G. 

7 Rf-LVR + 1 R2 
+ 20 f-LV 120 ' (5.12) 

where the topological term has been separated out. The coefficient of the topo-

logical term in eq. (5.12) agrees with a previous result [24], obtained by comput-

ing the one-loop functional determinant of the background field method in (-

function regularization. Clearly, the conceptual simplicity of the approach 
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discussed in this section is achieved at the price of some algebraic complications. 

However, these can be simply dealt with, once the suitable computer software has 

been developed. 

Previous work on one-loop gravity made extensive use of an algorithm 

introduced by 't Hooft [25]. This allows one to derive a general one-loop coun-

terterm formula for a theory that, in the background field expansion, can be 

written at quadratic level in the quantum fields as 

with W and M symmetric, and N antisymmetric. This encompasses the case of 

gravity, provided one identifies the "internal" indices i and j in eq. (5.13) with a 

symmetric pair of space-time indices on the quantum field of eq. ( 4.2). The 

one-loop calculation is then reduced to a substitution into the general counter-

term formula which can be derived for the lagrangian in eq. (5.13). The lagran-

gian in eq. (5.13) has an SO (N) gauge in variance associated with rotations of the 

fields ¢i· This allows one to determine the one-loop counterterm formula for 

this lagrangian by considering a few simple graphs. Substituting for the func-

tions W, M, and N allows one to determine the one-loop divergences of gravity 

with minimal effort. The extension of this method to two loops has been con-

sidered for the case of renormalizable theories [26]. The result is a general 

counterterm formula in terms of some fifty independent structures. However, 

the method becomes quite impractical in the general case of a theory in curved 

space-time with nonrenormalizable couplings, which is needed in its entirety to 

encompass the case of gravity at two loops. The number of invariants grows 

enormously, and the determination of the coefficients of some of them requires 

rather complicated calculations. Moreover, the problem of two-loop gravity is 
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quite specific, and can be treated conveniently using the approach discussed in 

this section. As an exercise, we have in fact calculated the two-loop counterterm 

formula for a nonrenormalizable theory in flat space-time. There are thousands 

of independent invariants in this case, but nevertheless, they can all be deter­

mined with the appropriate computer software. 
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6. Two-Loop Gravity 

We now proceed to examine the possible counterterms for the two-loop case. 

As in the one-loop case, each vertex is dimension 2. However, anN point diagram 

now has N, N + 1, or N +2 vertices, N + 1, N +2, or N +3 propagators and 2 loop 

integrations over d 4 p (figure 7). Therefore, all two-loop diagrams have a super-

ficial degree of divergence of 6. We must therefore list all possible gauge invariant 

quantities of degree 6. The answer has been given in ref. [27]. A bit of work (done 

in our case by computer) shows that there are 10 possible counterterms which 

are linearly independent when the Bianchi identities have been accounted for. 

The 10 structures are 

(6.1a) 

R a.f3-yo R R ..,t a.{3-yt u (6.1b) 

R R a.-rRf3tot; a.f3-ro t t; . (6.1c) 

Clearly, the 8 structures in eqs. (6.1a) and (6.1b) all vanish when the classical 

equations of motion are applied. Thus, in complete analogy with the one-loop 

case, they represent field redefinitions and do not contribute to the S-matrix. 

The remaining 2 structures in eq.(6.1c) do not vanish, however, and represent 

possible physical divergences. However, these 2 structures are not independent. 

This is not a consequence of the symmetries of the Riemann tensor, nor of the 

Bianchi identities, but can be seen from examining the topological invariant in 6 

dimensions. In 6 dimensions, the topological Euler number is given by, 

fd6x v-g c; R .., 8 c;I-LvpaTt; R a.f3R yoR >-tB 
O.tJJ'Vf: /-LZ/ pa T\ · 

(6.2) 

Expanding the product of epsilon tensors in eq. (6.2), we obtain a relation 
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between the two terms in eq . (6.1c), modulo terms in eqs. (6.1a) and (6.1b). 

Although this is a topological invariant only in 6 dimensions, one can easily see 

that this relationship becomes a local identity in less than 6 dimensions. Since 

antisymmetrization over 6 indices is identically zero in less than 6 dimensions, 

the integrand in eq. (6 .2) vanishes identically in less than 6 dimensions . This 

implies that in 4 dimensions, 

R a.f3 -yoR -yo ct;R ct; a.f3 = 2 R a.{3-yoR a. c 'Y t;R f3cot; , (6.3) 

modulo terms in eqs (6.1a) and (6.1b), when Fierz-like identities are applied. 

However, as we previously argued, the lowest order expansion contains this rela­

tionship without the use of the Fierz-like identities, as there are not enough 

indices to allow such identities to be applied in 6 dimensions. This can be expli­

citly verified by expanding the two terms in eq. (6.1c) to cubic order in H 1.w fields. 

One then finds the relationship in eq. (6.3 ). Hence, if we restrict ourselves to cal­

culating vertex corrections at two loops, we do not need to actually implement 

any Fierz-like identities. 

We can therefore conclude that the nonrenormalizable divergences of grav­

ity at two loops can be parameterized as, 

J d 4 x -Y-g c R a.f3-yo R 7 la R paa.f3 . ( 6.4) 

The question then becomes what is the simplest Green function one can find 

which will determine the coefficient of this structure? Clearly this structure 

starts at the cubic level in H fJ.V' and it can be shown by direct expansion of the 

other 7 terms in (6.1a) and (6.1b) that all 9 structures are independent at the 

cubic level. Thus, we need only calculate a two-loop vertex correction. 
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The discussion of the one-loop case presented suggests how to proceed in 

the two-loop case. If we examine the invariants at cubic order and fully on-shell 

(as previously defined), we see that there is one structure which can determine 

the coefficient of eq. (6.3) by itself. The structure is, 

(6 .5) 

where, as in eq. (5.8), H J.Lll denotes the difference between the background metric 

and the flat Minkowski metric. Clearly, the term in eq . (6 .5) is a very convenient 

one to track, as it does not contain the trace of H or its divergence. Therefore, 

both the trace and the divergence of H can be ignored altogether. As in the 

one-loop case, the fully on-shell amplitude is computed for momenta which are 

not collinear (and are thus effectively continued to comple x values), otherwise 

the term in eq. (6.5) is pure gauge. Moreover, the two-lo o p propagator diagrams 

cannot contribute to the stru c ture in eq. (6.5 ), even a ft e r the nonlinear field 

equations are used in them. At the cubic level, the rel a ti o n in e q . (6 .3) is mani­

fest. At the higher levels, one would need a Fierz -like id entity to relate the 

expansions of the two invariants . 

Resorting to the combined notation for graviton and ghosts introduced in 

Section 4 one needs, in principle, to compute the 14 di a grams in figures 8 and 9 . 

However, it can be seen that the diagrams in figure 8 c a nnot contribute to the 

structure in eq. (6.5). The reason is that the two-graviton e mission vertex ori­

ginates from a second-derivative interaction, and the c orresponding Feynman 

rule contribute s to the graph terms with two H J.Lll fi e lds and two, one or zero 

external mom e nta . Correspondingly, the number of fr ee indices coming from the 

vertex is four , five or six. These terms would contrac t, in the pole part of the 

graph, with another H J.Lll field and with four, five or six powers of its momentum, 
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which is the only one circulating in the graph. It is then a matter of simple index 

counting to see that, as a consequence, the structure in eq. (6.5) cannot be gen-

erated. Thus, one needs only the diagrams in figure 9 to decide about the on-

shell divergences of Einstein gravity at two loops, and actually, with a bit more 

effort, one can see that the last two diagrams in figure 9 are also irrelevant, as 

the first one only contributes to the double pole, whereas the second one van-

ishes identically. It should be clear from figures 8 and 9 that no counterterm 

diagrams are explicitly calculated, as explained in section 3. 

We must now look to see what the effect of the one-loop field redefinition is 

at the two-loop level. We may rewrite the one-loop field redefinition to order 

(ll¢)2 as, 

( 6 .6) 

Thus, the one-loop redefinition results, in general, in the introduction of a 

spurious term in the double-pole part at two loops, which must be properly 

identified in order to interpret the result correctly. On the other hand, the dou-

ble pole is completely determined from the one-loop subtractions and, if prop-

erly calculated, vanishes identically for a theory which is one-loop finite. For the 

case of pure gravity in background field this was originally pointed out in ref. 

[28]. As pointed out in ref. [29], this can be seen by noting that if a theory is fin-

ite at N -1 loops, then one can calculate at N loops without the need of counter-

terms, after making the needed field redefinitions. In this case, the N -loop 

divergence will have the form, 

(6. 7) 
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where f.L is the regularization mass needed to maintain the proper dimensionality 

of integrals in 4-E dimensions. However, one may also calculate with counter-

terms. In that case, locality assures us that there will be no factors of f.L£: in the 

answer. The answer for that case would take the form, 

C 1' C z' --+--+ 
E E2 

(6.8) 

However, both ways of calculating must provide the same answer on-shell. Thus, 

eqs. (6.7) and (6.8) must be identical. If we expand f.LN£: in eq. (6.7) and equate it 

with (6.8), we find, 

cl 
( 1 + N do gf.L + · · · ) - + 

E 
(6.9) 

Equating powers of E in eq. (6.9), we find that only the _!_pole does not vanish at 
E 

N loops, on-shell, since CA' is a local function and cannot contain logf.L. For the 

case of gravity at two loops, thi.s means the~ pole must vanish on-shell. In this 
E 

case actually the last term in eq. (6.6) is absent, as the field redefinitions vanish 

on-shell. For the case of gravity, one can therefore ignore the last term in eq. 

(6.6), and conclude that the subtracted diagrams do not contribute to the double 

pole. The vanishing of the double pole is a reassuring check on a calculation of 

such complexity. However, only the _!_ - part is sensitive to the subtleties of the 
E 

subtraction, and these require special care. The advantage of the background 

field method is evident in this case . If one computes the vertex correction fully 

off-shell, the result is guaranteed to be general coordinate invariant. 

Calculating the vertex diagrams of figures 8 and 9 fully on -shell, we find the 

two-loop divergences of the effective action for pure gravity to be, 
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ri2) = 209 1 fd4xv-g Ra.f3 6R-y6 RP(j {3 
2880( 47T )4 E: -y pa a. 

(6.10) 

Given the approach discussed previously of subtracting subdivergences from 

integrals, there is very little difference between computing in background field 

and in the normal field theory approach. Thus, with minor additional effort we 

actually repeated the calculation of the vertex correction on-shell in the normal 

field theory approach. 

The results for the pole parts of the individual on-shell graphs are given in 

Table 1. The entries are the contributions to the invariant in eq. (6.4). As 

reviewed in Section 2, the background field effective action, computed restricting 

one's attention to Green functions for external background fields only, is the 

normal field theory effective action in a peculiar gauge [17]. Therefore, the iden-

tity of the corresponding results in the table is an explicit verification of the 

gauge independence of the effective action on-shell, and is thus a very good 

check on the calculation. 

We have also computed the vertex correction off-shell in the background 

field method, while still dropping the trace of H and its divergence. This still 

determines five of the nine invariants, and the result in the gauge ( 4.3) is: 

r(2) = 1 fd4xv-g 209 1 Ra.f3 6R-y6 RP(j {3 
"" (47T)4 2880 E: -y pa a. 

+ ( 1255 1 _ 703049 : )R a.pR 
76

R a.-yf36 
54 [;2 64800 '-' 

_ ( 5 51 _1_ _ 8 3 3 1 )R a.pR f3 R 7 
27 [;2 16200 [; -y a. 
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+ ( 1 0 3 3 1 _ 4 7 41 7 1 )R R af3-ya R o 
1 0 8 E2 81 0 0 E a{3-yo a 

+ terms involving the scalar curvature (6.11) 

The first term in eq. (6.11) is the only one surviving on -shell, and agrees with the 

on-shell results in the Table 1. The system of equations determining eq. (6.11) 

consists of over 30 equations for the 5 unknowns. It is gratifying to see that this 

overdetermined system does admit a consistent solution, and that it is possible 

to choose a particular subsystem of equations, all of which vanish on-shell, 

which determines eq. (6.11). 
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7. Conclusions 

The problem of the divergences of Einstein gravity has long aroused the 

interest of physicists, especially after 't Hooft and Veltman discovered that the 

theory is one-loop finite more than ten years ago. This result has motivated the 

hope of arriving at a finite theory of gravity in the context of rather conventional 

generalizations of Einstein's theory, the extended supergravities. We have shown 

that Einstein's theory of gravity does not display any unexpected cancellation 

mechanism beyond the long-recognized one responsible for its one-loop finite­

ness. Cancellations of divergences in supergravity theories are expected to derive 

from two sources, the properties of the pure gravity theory and supersymmetry. 

Supersymmetry alone can postpone divergences to the third order of perturba­

tion theory in four dimensions, while going to higher dimensions almost cer­

tainly makes things worse. At three loops and beyond we have no reasons to 

expect further cancellations, since we know that the superspace arguments of 

ref. [9] are in explicit contradiction with the ultraviolet behavior of N=4 Yang­

Mills in more than four dimensions [10] . Thus, with gravity diverging at the 

two-loop order, it seems very unlikely that the divergence problems of gravity 

can be solved within extended supergravity. It is tempting then to look for a 

more radical approach to quantizing gravity. Superstring theories seem to be the 

most promising departure from the conventional approach [30]. We should also 

point out that the introduction of a cosmological constant in the classical theory 

would not change matters, as far as the divergence in eq. ( 1.4) is concerned. 

However, in that case additional terms of lower dimensionality would appear in 

the divergent part and, by virtue of the modified fi e ld equations, all previously 

"harmless" terms would turn, on-shell, into renormalizations of the cosmologi­

cal constant. 
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We have shown that the procedure of working with subtracted integrals is 

very convenient, especially when working in the background field method. The 

distinction between Green functions with external background or quantum fields 

becomes immaterial, as no counterterm diagrams are computed explicitly. 

Moreover, it is very simple to extract pole parts from dimensionally regularized 

Feynman integrals, since the overlapping divergences are removed term by term. 

With this approach, there is very little difference between calculating in the 

background field method and in normal field theory. We have also shown that 

considering the Faddeev-Popov ghosts as separate fields is an unnecessary com­

plication. They can be conveniently embedded into extensions of the gauge fields 

a la Kaluza-Klein. The only remnant of the ghosts is the need to consider, in 

addition to the extended metric tensor, a few projection operators that satisfy a 

very simple commutative algebra. 

Although these techniques are clearly very effective, they do not by them­

selves, make the problem of the divergences of quantum gravity tractible by 

hand. The large number of indices and momenta present in a perturbative 

expansion of gravity make it impractical to apply the methods so far described 

without extensive use of computers. Moreover, it has long been recognized that 

the problem of quantum gravity at two loops lies beyond the power of existing 

standard algebraic manipulators (see ref. [31] for a recent attempt following a 

more conventional approach). The limitations have to do both with speed and 

memory requirements. 

In this calculation, nearly every step was done by computer using a number 

of relatively small programs (typically not exceeding 1,000 lines of code) written 

by us in the C language. The C language is convenient for manipulations of char­

acters, and the relatively small size of the programs makes them relatively 
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simple to write and debug. By limiting the applicability of the programs, one can 

easily gain a factor of about 1,000 in speed with respect to the general purpose 

programs. This is the main difference between our approach and previous ones. 

Of course, there are a number of techniques one needs to master, some of which 

are familiar to computer scientists [32]. For instance, one of the most difficult 

steps in the calculation is the construction of the graphs, especially in the off­

shell case. A large number of terms is generated at intermediate stages, and it is 

essential to be very efficient with the memory allocation. This was done by work­

ing with encoded representations for the terms. This corresponds to finding the 

minimal set of bits that describe a typical structure, thus gaining a nontrivial 

factor in the amount of memory required. The programs made it possible to 

perform the entire on-shell calculation in less than three days on a single VAX 

11/780. Resorting to computers for specific algebraic problems may well become 

common practice in Theoretical Physics in the years to come. 
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Appendix A 

Our conventions are as follows. We use the space-time signature ( -+++ ), 

and we define the Riemann tensor in terms of the Christoffel symbols as 

(A.l) 

Then, the Ricci tensor is 

R o.f3 = o~ R -r o.f3c , (A .2) 

and we write the Einstein-Hilbert action as 

L = -2-.J-g gf.LvRf.Lv. (A.3) 

For completeness, we give b elow the expansion of the gravity lagrangian up to 

quartic order in quantum fie lds, including the gauge fixing term in eq. (4.3). The 

quantum field is denoted by hf.Lv• and it is implicitly assumed that all other 

quantities are constructed out of the background m etric, g f.LV" Indices are raised 

and lowe red using the background metric . The terms quadratic in the quantum 

field are: 

(A.4) 

The terms cubic in the quantum field are: 

L - v=-n [ - 1 ho.f3 h 'Y 6 h + 2 ho.f3 h 'Y 6 h - ho.f3 h'Y h 6 
3 - g 2 ;o. -y6; {3 ;o. {3-y;6 -y;o. {3;6 

- 1 ho. hf3-r; 6 h + 1 hO. hf3-r; 6 h - ho.f3h'Y h 6 + 1 ho.f3h'Y h 6 2 (). {36;-y 4 (). {3-y;6 -y;6 o.;{3 2 -y;o. 6;{3 
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h cxf3h h"~0 + 1 hex hf3 h"~0 + hcxf3h h o;-y + 1 hex hf3 h o;-y - cx{3;-y ;o 2 (X {3;-y ;o cxf3;-y 0 4 (X {3;-y 0 

(A.5) 

Finally, the terms quartic in the quantum field are: 

_ 1 h"~ h a;o) + hex hf3-r( _ 1 h hoa + 1 h h a;o _ 1 ho ha 16 -y;o a (X 2 {3-y;o ;a 2 {3-y;o a 2 6;{3 a;-y 

+ 1 ho ha + ho ha _ 1 hoa h _ 1 ho h ;a _ 1 ho ha 4 6;{3 a;-y {3;a o;-y 4 ;{3 oa;-y 2 {3;a o-y 2 o;a {3;-y 

+ 1 h h a;o) + hex hf3-r( ho ha - h h a;o + 1 hoa h 2 {3o;a -y {3 o;a cx;-y cx-y;o a 2 ;a oa;-y 
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+ ! h"P hp7 h>6 hoa - / 6 h"P h 0 ph>6 1>-,o - ~ h" .hP'l h-,oh6 p) I (A.6) 

These terms are sufficient for the background field calculation. For the calcula­

tion in normal field theory one needs, in addition, quintic terms. 
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Figure 1 
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(2c) 

Figure 2 
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(9g) (9h) 

Figure 9 
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Table 1 

Results for the On-Shell Graphs 

On-Shell Graphs* ( 41T )4 

Graph Background Field Non-Background Field 

8 0 0 

9a 7 1 21307 1 7 1 59167 1 ----- -----
120 €2 302400 € 150 €2 756000 € 

9b 25 1 5471 1 761 1 178781 1 ------ ----
18 €2 5600 € 600 €2 216000 € 

9c 68 1 38299 1 3119 1 4222229 1 -------- -----
45 €2 20160 € 3600 €2 3024000 € 

9d - 12'__!_ + 294199 1 
36 €2 302400 € 

- 49 _!_ + 10511 _!_ 
40 €2 10800 € 

9e .!1__!_ + 23293 _!_ 
6 €2 8400 € 

2447 _!_ + 6162691 1 
1200 €2 3024000 € 

9f 1 1 1307 1 -~_!_- 192449 1 -------
8 €2 1800 € 180 €2 302400 € 

9g 3 1 25 1 ---
2 €2 24 €2 

9h 0 0 

Total 209 1 209 1 --- ---
2880 € 2880 € 


