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ABSTRACT 

A theoretical analysis of the effect of duration on the damage of 

structures subjected to earthquakes is presented. Earthquake excitation 

is modeled as a nonstationary random process. Estimates of the first

passage probability of a simple oscillator are employed to choose 

modulated Gaussian random processes consistent with a prescribed 

response spectrum. The response spectrum is assumed to be specified 

independent of the duration. Expressions for the mean damage of a 

structure are derived using an approach similar to the Miner-Palmgren 

rule for failure caused by cyclic loads. The expected damage expres

sions are then evaluated for a structure subjected to modulated Gaussian 

random processes of varying duration. 

Two types of structures are examined: a steel structure and a 

reinforced concrete structure. Results are presented for systems with 

constant linear stiffness and a particular form of softening behavior. 

The nonlinearity of the softening system is accounted for by statistical 

linearization. The level of expected damage is found to be a strong 

function of both the duration of the excitation and the ductility of the 

response. 
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CHAPTER I 

INTRODUCTION 

In many parts of the world, seismic considerations are the control

ling factor in the design of structures. Building codes contain seismic 

elements which have been adopted for the safety and welfare of the pub

lic. For most structures, the building code recommends an equivalent 

lateral force analysis. Seismically induced loads are accounted for by 

equivalent static lateral loads. Although easy to implement and compu

tationally efficient. such an approach may be inadequate for structures 

such as schools, hospitals, nuclear power plants. and other important 

structures where the integrity of the structure is of great importance. 

Most important structures and special facilities are designed using 

a more detailed dynamic analysis in order to ensure their safety during 

a seismic event. Such a detailed analysis requires a specification of 

the anticipated nature of the ground motion as well as a complete 

description of the structure. If one or more characteristic earthquake 

accelerograms are specified as input, the equations of motion may be 

numerically integrated to give a detailed representation of the system 

response. However, numerical integration may be costly and the statis

tical nature of the seismic input makes specification of the input time 

histories difficult. 

Due to the many uncertainties in predicting the precise nature of 

the time history of earthquake ground motion, the design response 

spectrum has received wide acceptance as a measure of the design input. 
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The design spectrum provides a direct measure of the anticipated peak 

response of a structure or system under consideration as a function of 

its natural frequency and damping. In some cases, it may be argued that 

the peak response is the predominant factor affecting the safety and 

reliability of the system. However, in most cases the performance of 

the system will depend upon more than just the peak response of various 

components. In particular, for system components which fail due to 

repeated cyclic loading, performance will be a function of the entire 

history of cyclic oscillations. 

The failure of structures subjected to strong earthquake excitation 

is often caused by a low-cycle material failure. In this case, the 

structural components experience high strains and relatively few 

response cycles. For some materials, this type of failure is often 

referred to as low-cycle fatigue. 

Using numerical integration of the equations of motion of a simple 

hysteretic steel structure, Kasiraj and Yao [35] showed that low-cycle 

failure is not predictable by considering only the maximum response. 

Using random vibration theory, Miles [34] derived an analytical expres

sion for the mean damage of a structure subjected to a stationary random 

process based upon the cumulative damage hypothesis of Miner [31] and 

Palmgren [32]. Roberts [33] and Lin [1] generalized the mean damage 

expression to the nonstationary case, but did not apply it to the low

cycle failure of structures subjected to earthquakes. In order to 

implement the expressions for expected damage to seismic structures, 

empirical constants are required for the assumed cumulative damage 
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hypothesis. · Bertero and Popov [27] and Yamada [28] have performed 

experimental tests on structural members to determine the necessary 

constants for structures experiencing a number of cycles of oscillation 

at large strains. 

Design spectra may be defined either deterministically or 

probabilistically. It is the objective of this thesis to examine the 

effects of the duration of excitation on the reliability of a system 

when the response spectrum is specified probabilistically. Three basic 

elements 'are combined to achieve this goal. First, the first-passage 

probability for a simple harmonic oscillator is used to define a nonsta

tionary random process which corresponds statistically to a desired 

response spectrum. Although the first-passage problem for the simple 

oscillator has not been solved exactly, reasonably accurate approxima

tions have been obtained by Vanmarcke [6] and Mason and Iwan [8]. 

Secondly, a model is postulated for the incremental damage of a system. 

Damage to the structure is based on the simple cumulative damage 

hypothesis proposed by Miner and Palmgren. Finally, random vibration 

theory is used to compute the accumulated damage of a simple structure 

and to determine the degree of total damage. 

In Chapter II, the relevant concepts from random vibration theory 

are reviewed. Analytical approaches to the first-passage problem and 

the method of statistical linearization are also discussed. 

In Chapter III, the accuracy of one approach to the first-passage 

problem is assessed through simulation and then applied to define a 

response spectrum consistent process. The probabilistic nonlinear 
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response spectrum of a softening nonlinear elastic system is also 

examined. 

In Chapter IV, an incremental damage model is assumed based on the 

Miner-Palmgren failure rule for damage due to repeated cyclic loads. 

Through the further application of random vibration theory, a measure of 

the damage to a system subjected to a deterministically modulated Gaus

sian random process is derived. 

Damage in a simple structure is calculated in Chapter V for the 

response spectrum consistent random process defined in Chapter III. The 

effects of variations in duration of the excitation and ductility ratio 

of the response are discussed. Damage in a softening nonlinear elastic 

system is also computed through the use of statistical linearization. 
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CHAPTER II 

RELEVANT CONCEPTS OF RANDOM VIBRATIONS, 
THE FIRST PASSAGE PROBLEM, AND STATISTICAL LINEARIZATION 

2.1 Random Response of a Linear System to a Class of Nonstationary 
Excitation 

The system to be considered is described by its equation of motion 

9(t)w(t) (2.1) 

where ~ is the fraction of critical damping, w0 is the undamped natural 

frequency in radians per second, and 9(t) is a deterministic modulating 

function for w(t), a stationary Gaussian white-noise process with mean 

zero. 

The initial conditions for the system may be posed in one of two 

ways. First, they can be specified deterministically. A special case 

of this is the zero start where the system is assumed to be at rest when 

the excitation is applied. Alternatively, a probability distribution 

may be specified for the initial conditions. For the system described 

by equation (2.1) with 9(t) set to a constant, the stationary response 

may be described by a stationary probability distribution. If this sta-

tionary probability distribution is used to specify initial conditions, 

this situation is known as a stationary start. In light of the fact 

that structural response to earthquake-like excitation is to be studied, 

a zero start will be assumed. 
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Equation (2.1) may be solved in 2n-space by first considering a 

system of n first-order ordinary differential equations written in 

matrix form as 

y(t) A(t)y(t) + Q(t)w(t) 

Y(O) = y _o 

(2.2) 

where A(t) is a time-varying n by n matrix, ~(t) is a time-varying vee-

tor of order n, and w(t) is a stationary Gaussian white-noise process 

with mean zero. The fundamental matrix solution for this system is a 

time-varying n by n matrix denoted by I<t) which satisfies 

X(t) A(t)X(t) 

(2.3) 

I<O> = I 

where I is an n by n identity matrix. The solution to equation (2.2) 

may be expressed in terms of the fundamental matrix solution as 

y(t) (2.4) 

The function w(t) is a stationary white-noise process with mean 

zero which implies 

E[w(t)] = 0 
(2.5) 

where s0 is a constant spectral density and 5(.) is the dirac delta 



- 7 -

function. Furthermore, since w(t) is Gaussian and y(t) is related to 

w(t) through a linear operation. y(t) is a Gaussian random vector 

process. It is assumed that the process is specified at a given time by 

its mean vector and its covariance matrix; however, the autocorrelation 

matrix E[y(t+~)yT(t)] is also needed to completely define the process. 

By taking expected values of both sides of equation (2.4) and using 

equation (2.5), the mean vector~ (t) may be written as y 

~y<t> = E[~<t>l = x<t>:0 

The covariance matrix Q(t) is defined as 

Q(t) - E{[y(t)-u <t>l[y(t)-u <t>lTJ 
- y - y 

(2.6) 

(2.7) 

Substituting equations (2.4) and (2.6) into equation (2.7) and taking 

expected values yields 

t t 

Q(t) X<t>{J J I-1 <~')~(~')E[w(~')w(~)]~T(~)[I-1 <~)]Td~'d~}IT(t). (2.8) 

0 0 

Using equation (2.5) and performing the integration on~· gives the 

covariance matrix as 

t 

Q(t) 2rrS
0
x<t>£f I-l(~)~(~)aT(~)[l-l(~)]Td~}IT(t) (2.9) 

0 

An alternative to equation (2.9) for computing the covariance 

matrix can be obtained [1] by first taking the expected value of equa-

tion (2.2) 
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Subtracting equation (2.10) from equation (2.2) and letting 

~(t) = y(t)-E[y(t)] gives 

d 
dt~(t) = A(t)z(t) + ~(t)w(t) 

T Post-multiplying equation (2.11) by ~ (t) leads to 

(2.10) 

(2.11) 

(2.12) 

Transposing equation (2.12) and adding the result to equation (2.12) 

yields 

(2.13) 

Taking expected values of both sides of equation (2.13) and noting that 

Q(t) = E[~(t)~T(t)], one finds 

d~Q(t) = A(t)Q(t) + [A(t)Q(t)JT 

(2.14) 

Using equations (2.4) and (2.5), the expected values in the third and 

fourth terms may be evaluated as 

E[w(t)z(t)J = ~s0~<t> 

E[kT(t)w(t)J = ~s0~T(t) 
(2.15) 
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Hence, equation (2.14) becomes 

(2.16) 

Since the initial conditions are specified deterministically, equation 

(2.16) has zero initial conditions. 

Note that using equation (2.9) requires solving n2 first-order 

differential equations for the fundamental matrix solution and n(~+1 ) 

integrals for the covariance matrix. On the other hand, using equation 

(2.16), the covariance matrix is directly computed by solving n(n+1) 
2 

first-order differential equations. Except in the simplest cases where 

one can express the covariance matrix explicitly through equation (2.9), 

the use of equation (2.16) is probably numerically more efficient. 

Having defined the mean vector ~ (t) and the covariance matrix y 

Q(t), the joint probability density for the Gaussian vector process y(t) 

may now be written as 

p(y(t)) 1 1 T -1 
"''(

2
7t)n exp{- 2[y(t)-J.b (t)] Q (t)[y(t)-~ (t)]}.(2.17) 

V' det Q(t) Y - Y 

The system described by equation (2.1) may be put in the form of 

equation (2.2) by letting 

y 
1 

] and ~(t) 
-2~w0 ' 

The fundamental matrix solution is given by 

(2.18) 
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X<t> (2.19) 

where wd = w0~1-~2 • Since a zero start is assumed, equation (2.6) 

implies that the mean vector ~y(t) is the zero vector. Using equation 

(2.9) and the fundamental matrix solution, the covariance matrix Q(t) 

may be calculated. 

Choosing the alternative method, equation (2.16) and the defini-

tions in equation (2.18) require the elements of the covariance matrix 

to satisfy 

qll = 2q12 

2 
+ 2 ~w0q12 1 (2.20) q12 q22 - [wOqll 

2 
+ 2 ~w0q22 1 + 

2 
q22 = - 2 [w0q12 2rrS09 ( t) 

Equation (2.20) is a simple set of first-order differential equations 

where q .. is the element of Q(t) in the ith row and the jth column. 
l.J 

With the zero mean vector and the specified covariance matrix, the 

joint probability density for x and x at a given time t may be derived 

from equation (2.17) as 

p(x,x,t) (2.21) 

where 
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-1 
Q 

Another important statistic of this system is the average number of 

times per unit time the random process x(t) crosses a given positive 

threshold level from below. Let the threshold level be x = b where b is 

a positive constant and denote this statistic by ~(b,t). The expected 

frequency of up-crossing of a level b is related to the joint probabil-

ity of x and x through [2] 

~(b,t) J x p(b,x,t) dx 

0 

(2.22) 

Substituting equation (2.21) into equation (2.22) and performing the 

integration yields 

~(b,t) 

• (2.23) 

Letting b = 0 in equation (2.23) one arrives at the expected frequency 

of zero crossings with positive slope as 

~(O,t) 
'Vdet Q.(t) 

27tq11 ( t) 
(2.24) 

The steady-state solution for the situation where 9(t) is unity may 

be found by setting the left side of equation (2.20) to zero. This 

specifies the covariance matrix as 
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0 

(2.25) 

0 

This reduces equations (2.23) and (2.24) to 

~(b) (2.26) 

~ ( 0) (2.27) 

2.2 The First-Passage Problem for a Lightly Damped Simple Oscillator 

The first-passage problem involves determining the probability that 

a random process exceeds a specified threshold level during a given time 

interval. Since first-passage probabilities are often associated with 

failure probabilities, it is appropriate to use the terms "safe" or 

"unsafe" to refer to the domain where the random process is respectively 

below or above the threshold. 

For a lightly damped simple oscillator subjected to stationary 

Gaussian white noise described by equation (2.1) with 9(t) set to unity, 

the displacement response is the random process of interest. Because of 

the relationship between the response spectrum and the response time 

history, a symmetric double barrier is considered. Figure 2.1 
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Figure 2.1 Phase Plane Representation of the First Passage Problem 
with Symmetric Double Barrier. 
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illustrates this configuration in the phase plane. The safe domain is 

characterized by the region between two barriers at x = b and x = -b. 

The first-passage problem consists of determining the probability 

distribution of the time when the trajectory of the response first 

leaves the safe region and enters the unsafe region. 

Let W(T) be the probability that the magnitude of x(t) does not 

exceed a level b throughout the interval [O,T]. Hence, 

W ( T) = Pr [ I x ( t ) I < b max 0 S. t S. T ] (2.28) 

where Pr[A] denotes the probability that the expression A is true. W(T) 

is called the reliability function and is related to the first-passage 

probability density through 

p(T) _ dW 
dT 

where p(T)dT is the probability that first passage occurs on the 

interval [T,T+dT]. 

(2.29) 

It has been observed [4] that for small values ofT, the reliabil-

ity function depends highly on its initial conditions. However, for 

large values ofT, W(T) tends to a decaying exponential regardless of 

the initial conditions. Mark [5] proposed a linear combination of n 

decaying exponentials of the form 

(2.30) 

as an approximation for W(T), but this requires a substantial amount of 
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numerical computation to use. When T is large, W(T) may be approximated 

by the dominant term of equation (2.30). Therefore, W(T) is assumed to 

be of the form 

W(T) (2.31) 

where a is the smallest ai in equation (2.30). The parameter a is known 

as the limiting decay rate of the first crossing density or the average 

crossing rate. A great deal of effort has been directed toward finding 

a good approximation for this decay rate. 

The assumption of independent level crossings leads to the simplest 

approximation for the limiting decay rate. The average rate of up

crossing of a level b is ~(b), and is equal to the average rate of down

crossing of the level -b. Hence, the average crossing rate is given by 

a = 2~(b) (2.32) 

where ~(b) is given by equation (2.26). The number of level crossings 

that occur constitute a Poisson process with average crossing rate a. 

The assumption of independent level crossings works well for high 

barrier levels. However, for low barrier levels, this approximation 

breaks down since the response is narrow-banded and the crossings are 

not independent. 

Other simple approximations for the limiting decay rate involve 

assuming independent peaks, independent envelope crossings, or 

independent envelope peaks. Each of these assumptions offers varied 

degrees of success in approximating the limiting decay rate. Those 
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assumptions involving the envelope statistics are better approximations 

since they take into account the narrow-handedness of the system. 

Reasonably good results have been obtained for the limiting decay 

rate by considering the response as a two-state Markov process. Because 

of the narrow-handedness of the response, the peaks above the threshold 

occur in clumps of duration T1 • The peaks are spaced at approximately 

2~~ 0 ); therefore, the expected value of the duration of a clump is given 

by 

E[N ] ____ c_ 
2~(0) 

(2.33) 

where N is the number of peaks in a clump. Between each clump there is c 

a period T0 where the peaks remain below the threshold that is taken to 

be an independent exponentially distributed random variable with parame-

ter a. Therefore, 

1 (2.34) 
a 

Since there are Nc level crossings during the period T0+T1 , the expected 

value of that period may be taken as 

(2.35) 

Vanmarcke [6] combines equations (2.33), (2.34), and (2.35) and 

arrives at 
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- .ru.hl [ 1ihl] -1 
a - E[N ] 1 - ~(0) 

c 

He then estimates the expected number of peaks in the clump as 

( 2 .36) 

where a is the standard deviation of the response. The parameter y is a 

measure of the bandwidth of the response and is defined by the spectral 

moments of the response as 

y (2.38) 

where 

CD 

and G(w) is the one-sided spectral density of the response. It has been 

shown [7] that y varies between 0 and 1 and is small for narrow-banded 

processes and relatively large for broad-banded processes. Substituting 

equation (2.37) into equation (2.36) yields 

a = (2.39) 

An alternate approach is chosen by Mason and Iwan [8]. Using equa-

tions (2.33), (2.34), and (2.35), the average crossing rate is written 
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as 

- 1 1ihl_ [ 1ihl_] -1 
a- E[T

1
] ~(0) 1 - ~(0) (2.40) 

Assuming a probability density for T1 as 

1 
PT (t) = C t exp(-~t) 

1 
(2.41) 

where C is a normalizing constant and ~ is a parameter of the density, 

the expected value of T
1 

is given by 

(2.42) 

The limiting value as n~~ of the conditional probability that a clump 

which already contains n crossings will continue for at least one more 

crossing is found from the probability density of T
1 

to be 

P* = exp(- ~) (2.43) 

where P* denotes that limiting value. By considering the response of 

the system for one-half cycle of oscillation after a peak greater than 

the threshold b, an integral equation for the stationary probability 

density for successive peaks greater than the threshold is obtained for 

which p~ is the eigenvalue. The eigenvalue is approximated and the 

limiting decay rate is given by 

a = -~(b) [1 - ~~~~]-1 ln(P*) (2.44) 

where 



P* 

for which 
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1 b {t[1 - !=IT~] [erf(y1) 
erfc<vra> ~ rr(1-c

2
) 

+ Q[exp(-y~) - exp(-yi)] + erfc(y1)) 
rr 1-c 

c = exp(- rre ) 
~1-~2 

y = 1 ( .~ + 1 ~1T ( 1-c 2) ) 1 c y2a 2 

y = max [ _lL 
2 ~a 

It has been observed that the Mason and !wan approach is somewhat less 

conservative than Vanmarcke's approach and corresponds well with numeri-

cal simulations . 

In the case of nonstationary excitations, the modulating function 

9(t) is allowed to vary in time . The approximations of the limiting 

decay rate found for stationary excitation along with the instantaneous 

response statistics are used to compute an instantaneous limiting decay 

rate, a(t). Equation (2.31) is then replaced by 

td 

W(td) = exp( - J a(t) dt) 

0 

where td is the duration of the excitation. The two-state Markov 

process may be extended in this fashion. 

(2.45) 
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Using Vanmarcke's approximation [9], the spectral density is 

allowed to vary in time. The moments may then be calculated based on 

this evolving spectral density and used to calculate an instantaneous 

y(t). The limiting decay rate is then given by 

a(t) 
2\) ( b, t) [ 1 

1 
\)(b.t) 
\)(O,t) 

(2.46) 

For modulated white noise, y(t) is a constant and the nonstationary 

behavior is accounted for by the time dependence of a(t), \)(b,t), and 

\)(O,t). 

Mason and !wan [8] propose the use of an alternate probability den-

sity for T1 when using their method for nonstationary excitation. That 

density is given by 

exp(-~t) (2.47) 

where a2(t) is the instantaneous variance of the response and a2(t) is s 

the stationary response variance associated with the instantaneous value 

~ The a
4 

term reflects the nonstationarity by 
a ( t) 

s 

of the excitation. 

accounting for the greater independence of barrier level crossings when 

the response is broad-banded. Note that for stationary response this 

term is equal to unity, thus reducing the density to that for the sta-

tionary case. Using a derivation analogous to that for stationary exci-

ta tion yields 
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a(t) -2~(b,t) ln[P*(t)J (2.48) 

[
1 + ~] [1 - ~ ( b, t)] 

cr4(t) ~(O,t) 
s 

where ~(O,t), ~(b,t), and P*(t) are implicitly time-varying, based on 

the instantaneous covariance values. 

2.3 Extension of the First-Passage Problem to a Nonlinear Simple 
Oscillator 

The foregoing analysis may be extended to a nonlinear simple oscil-

lator by using the method of statistical linearization to compute 

approximate response statistics from which estimates may be made of the 

first-passage probability. Independently introduced by Booton [11] and 

Caughey [12] at about the same time, the method of statistical lineari-

zation is an extension of the equivalent linearization technique of 

Kryloff and Bogoliuboff [13]. Since the simple oscillator is a special 

case of an n-degree of freedom system, the n-degree of freedom system 

will be discussed. 

Caughey used modal decomposition to uncouple the linear part of a 

nonlinear system of equations, and applied the linearization technique 

to each of the resulting single degree of freedom equations. Foster 

[14] generalized the method by developing an approximate closed form 

solution for the equivalent linear damping and stiffness matrices, but 

this required inversion of a 2n by 2n matrix for an n-degree of freedom 

system. Using a simple physical interpretation for the effective linear 
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parameters, Iwan and Yang [15] determined the terms of the equivalent 

linear damping and stiffness matrices as simple scalar equations. 

Using 2n-space notation a nonlinear n-degree of freedom system may 

be written as 

y h(y) + f(t) (2.49) 

where h(y) is a nonlinear vector function of y and f(t) is a random 

excitation vector. Consider an auxiliary system of linear differential 

equations of the form 

y = A[S(t)]y + t<t> (2.50) 

where A[S(t)] is an arbitrary matrix dependent on the time-varying 

response statistic S(t) chosen such that the solution to equation (2.50) 

approximates the solution to equation (2.49). The error in estimating 

the nonlinear system by a linear system may be defined by the difference 

between the equations involved. Hence from equations (2.49) and (2.50), 

~ h(y) - A[S(t)]y (2.51) 

where ~ is the vector of the equation differences. 

The appropriate choices for the elements of A[S(t)] will be those 

that minimize ~ in some sense. A criterion for minimizing ~ is to 

require the mean of the scalar product ~T~ to be a minimum, i.e., 

E[~T~] = minimum (2.52) 

It is noted that minimization of the equation difference does not imply 
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minimization of the solution difference. However, widespread usage of 

the method in conjunction with experiment or numerical simulation sug-

gest that the technique approximates the nonlinear response well. The 

necessary condition for equation (2.52) is 

a T 
-,-E[~ ~] 
uaij 

-2E[y.e.] 
J l. 

0 i,j=1,2, ... ,n 

It has been shown [16] that for £(t) Gaussian this will be a true 

(2.53) 

minimum (as opposed to a maximum). Applying the definition of~ leads 

to 

0 (2.54) 

Atalik and Utku [17] showed that if y is a jointly Gaussian random 

vector process with mean zero and h(y) is sufficiently smooth so that 

first partials with respect toy. for i=1,2, ... ,2n exist, the condition 
l. 

in equation (2.54) reduces to the elements of A[S(t)] being given by 

ai. = E[~h . (y)l 
J uyj l. -

i, j=1, 2, . •• , 2n (2.55) 

A[S(t)] is an implicitly time-varying matrix. If we assume A[S(t)] 

is actually continuous in time, a unique fundamental matrix solution 

exists and equation (2.9) defines the approximate covariance matrix. 

For Gaussian excitation the response statistic S(t) may be taken as the 

covariance matrix Q(t) and equation (2.16) becomes a system of nonlinear 

differential equations easily implemented numerically. 
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For a nonlinear simple oscillator, obtaining an approximation for 

the covariance matrix allows one to arrive at approximations for the 

response statistics necessary to compute a limiting decay rate and esti

mate the first-passage probability. 
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CHAPTER III 

RESPONSE SPECTRUM CONSISTENT RANDOM PROCESSES 

In the following applications of the first-passage problem for a 

simple oscillator, the Mason and Iwan two-state Markov process approach 

has been used to compute first-passage probabilities. Vanmarcke's two-

state Markov process approach or any other method of estimating first-

passage probabilities may have been chosen. The accuracy of any appli-

cation of the first-passage problem will depend upon the accuracy of the 

first-passage probability estimate. 

3.1 Probabilistic Determination of the Maximum Response of a Simple 
Oscillator Subjected to Modulated White Noise 

The solution for the first-passage problem for a simple oscillator 

may be used to give the probabilistic specification of the maximum 

response of the oscillator subjected to modulated white-noise excita-

tion. Recall from equation (2.1) that the equation of motion of the 

oscillator is given by 

9(t)w(t) (3.1) 

where ~ is the fraction of critical damping, w0 is the undamped natural 

frequency, and 9(t)w(t) is a modulated white noise. Zero initial condi-

tions will be assumed. 
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The probability, W(td), that the maximum response of the oscillator 

is less than or equal to a level b after a time td is the reliability 

function defined in equation (2.28). Hence, 

W(td) = Pr[ lx<t>l < b max (3.2) 

where td is the duration of the modulating envelope, 9(t). The relia

bility function is evaluated using the analytical approach of Mason and 

Iwan. 

To check the accuracy of the analytical approach used to determine 

the reliability function, a Monte Carlo simulation study of equation 

(3.1) was performed. An ensemble of sample functions was generated to 

represent stationary Gaussian white noise. Each sample function was 

constructed from a sequence of independent normally distributed numbers 

with zero mean and unit variance. The numbers were used as ordinates of 

the function at equally spaced time intervals, ~t. The function was 

assumed to vary linearly over each interval. The time scale was chosen 

such that the initial point was uniformly distributed on the interval 

[-~t,O]. The numerically generated unit variance sample functions were 

multiplied by [2::oJ~ to give a process with a power spectral density of 

[18] 

S(w) S 6 - 8cos(w~t) + 2cos(2w~t) 

0 (w~t)4 
(3.3) 

S(w) approaches a constant s0 as w~t approaches zero. The expression 

for S(w) remains within 5% of s0 for w~t < 0.57, and within 10% for 
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w~t < 0.76. Thus , the time interval may be chosen sufficiently small to 

approximate a white-noise process to within a given tolerance out to any 

desired frequency. T In this study, ~t was set equal to 20 where T is the 

undamped natural period of the oscillator. 

Since the applied excitation is assumed to be a straight line seg-

ment on each time interval, the solution to equation (3.1) may be solved 

by digital computer in a purely arithmetical way [19]. The exact 

analytical expression for the response of a damped single-degree-of-

freedom system with arbitrary initial conditions was written for a 

linearly varying excitation. The total response for a time interval was 

then obtained by analytically matching the initial conditions of the 

current interval to the final conditions of the previous interval. In 

this way, no numerical approximations were introduced other than the 

white-noise approximation and the round off due to the digital represen-

tation of the response. 

The simplest modulating envelope is a rectangular pulse of unit 

amplitude and duration, td (Figure 3.1a). In Figures 3.2-3 . 4, the prob

ability that the maximum response will be less than a given threshold 

level is plotted versus duration of excitation for several threshold 

levels and several values of damping based on analytical first-passage 

estimates. The results are displayed in a dimensionless form. The 

durations are expressed in multiples of the natural period. The thres-

hold levels are normalized by the stationary standard deviation of the 

system described by equation (3.1) with 9(t) = 1. The stationary 

standard deviation, a , may be written from equation (2.25) as 
s 
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Figure 3.1 Modulating Envelopes for the Stationary Gaussian Random 
Process 



0 
0 

..---!0 
-IJ) 

...o· 
do 

...0 
0 
L 

()_IJ) 

N . 
0 

0 
0 

----

\ 
\ 

\ 
\ 

---

\ 
\ 
(!)\ 

\ 
\ 

- 29 -

----------· -- .......... 
------ A -------- ... . 

--------- b = 3a 
----- b = 2a 

s 
s 

b = 1 a 
s 

\ 
\ 

[!] C) A s 1 mu lat I ·O(t_ 

'\ 
'\ 

'\ 

"tQ 

" ' ' ' ' 

~ 

' 'Ql 

= 21. 

10.00 20.00 30.00 
Durat Jon/PerJod 

40.00 

Figure 3.2 Probability of Not Exceeding the Threshold Level versus 
Normalized Duration for Rectangular Modulating Envelope, 
~ = 2%. 



0 
0 

. 
0 

.---.0 
-lf) 

..o· 
do 

..0 
0 
L 

(Llf) 

. 
0 

0 
0 

\ 
\ 
\ 
\ 

\ 
\ 

'G( 
\ 

\ 

' 

10.00 
Our at 

- 30 -

--------- b = 3 
- - - - - b = 2 

b = 1 
l2J (!)A sJmulatJon 

= 5% 

20.00 
on/Per 

-~--

30.00 
od 

40.00 

Figure 3.3 Probability of Not Exceeding the Threshold Level versus 
Normalized Duration for Rectangular Modulating Envelope, 
~ = 5%. 



0 
0 

Ln 
r--
c 

...--<0 
-Ln 
.D· 
do 

.D 
0 
L 

Q_Ln 
("\J 

0 

0 
0 

\ 
\ 
\ 
\ 

\ 
\ 

\ 

(!)" 

" ' ' ' 

- 31 -

----

b = 3a 
b = 2as 

s 
b = 1 a 

s 
s 1 mu 1 at 1 on 

~ = 1 0 I. 

.,_----------~----------~--------~~~~------~ 
0
0.00 10 . 00 20. 00 30. 00 40. 00 

D uro.t on/Per1od 

Figure 3.4 Probability of Not Exceeding the Threshold Level versus 
Normalized Duration for Rectangular Hodulating Envelope, 
~ = 10%. 



a s 

- 32 -

(3.4) 

where s0 is the constant power spectral density of the Gaussian white 

noise, w(t). Also shown in Figures 3.2-3.4 are the results of the simu-

lation study for the same threshold levels and damping values using an 

ensemble of 1000 sample functions. 

It is observed that the probability that the maximum response is 

less than a given threshold level decreases with increasing duration. 

Therefore, the probability distribution of the maximum response varies 

with duration. This suggests that duration is an important parameter 

when probabilistically determining the maximum response. The analytical 

method agrees reasonably well with simulation. 

From Figures 3.2-3.4, it may appear that the response of a system 

with more damping is more likely to surpass a given absolute level. 

However, this is not the case. The stationary standard deviation of the 

response is inversely proportional to the square root of the damping 

ratio. Therefore, the normalized threshold levels which are constant 

multiples of the stationary standard deviation of the response become 

smaller as the damping ratio increases. In Figure 3.5 the probability 

that the maximum response is less than a constant threshold level is 

plotted versus the duration of the excitation for several damping 

values. From this figure it is evident that the probability that the 

response of a system will not exceed a given threshold increases as the 

damping in the system increases. 
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To represent earthquake-like excitation, it is appropriate to 

choose a modulating envelope that models the nonstationary character of 

actual accelerograms. Specific forms for such envelopes have been sug-

gested by a number of authors (e.g., [20], [21]). Real accelerograms 

often consist of three phases: a phase where the excitation builds, a 

strong motion phase where the shaking remains fairly constant, and a 

phase where the motion dies out. Earthquakes of larger magnitude tend 

to have envelopes of longer duration. 

One form of modulating envelope which has been suggested [20] is 

shown in Figure 3.1b. This envelope may be expressed as 

56.25(tt >2 0 ~ t 2 
~ 15td 

d 

9(t) 2 < t ~ 
1 (3.5) = 1.0 lstd 2td 

exp[-2.976(tt- 1)] 1 < t ~ td 2td 
d 2 

where td is defined as the duration of the excitation. When td = 30 

seconds, the modulating envelope, 9(t), is similar to the Caltech B-type 

earthquake envelope given in Reference [20] which was designed to 

represent shaking close to the fault in a Richter Magnitude 7 or greater 

earthquake. 

Figures 3.6-3.8 show the probability that the maximum response of 

the simple oscillator is below a specified level for several threshold 

levels and several values of damping using the envelope of equation 

(3.5). Results from Monte Carlo simulation are also shown. The analyti-

cal approach agrees well with the simulation results. As in the case of 
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the rectangular modulating envelope, the apparent variation in the prob

ability distribution suggest that duration of excitation is an important 

parameter when probabilistically specifying the maximum response of a 

simple oscillator. 

In Figure 3.9, the probability that the peak response does not 

exceed a constant threshold level is plotted versus the duration of 

excitation for several values of damping using the earthquake-like 

envelope. Like the results for the rectangular envelope, the likelihood 

that the threshold level will not be exceeded increases as the damping 

in the system increases. 

3.2 Determination of Response Spectrum Consistent Random Processes 

The response spectrum has been widely accepted as a way of describ

ing some of the aspects of earthquake ground motion that are of interest 

to the engineer. The response spectrum is defined from the behavior of 

a single-degree-of-freedom system. The given ground acceleration is 

applied to the base of a simple oscillator and the maximum displacement 

is measured or calculated. The maximum displacement depends on the 

applied excitation, the value of damping in the system, and the natural 

frequency of the system. The family of curves, for various values of 

damping, of the maximum displacement plotted versus the natural 

frequency make up the response spectrum for the ground motion. 
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Studies of response spectra for actual accelerograms [22] have 

shown that important features of the response spectra can be represented 

by simplified smoothed curves for design purposes. These curves are 

derived by computing the response spectra for a number of earthquakes 

and then normalizing the spectra in such a way that the spectra may be 

compared. The mean and the standard deviation of the normalized 

response spectrum values are calculated over the entire frequency range 

and used to compute parameters of a probability distribution. Smooth 

curves are then chosen to describe the shape and normalized level of the 

response spectrum for a given confidence level. The curves make up the 

design response spectra. When scaled to reflect the maximum ground 

motion, they are used to specify seismic input for structural design. 

Design response spectra of the type discussed above have been 

adopted by the U.S. Nuclear Regulatory Commission (NRC) for the seismic 

design of nuclear power plants [23]. The NRC design response spectrum 

is made up of straight line segments when plotted on logarithmic 

tripartite graph paper. The vertices or control points of the straight 

line segments for each value of damping are specified by the frequency 

at which the points occur and the ratio of the response pseudo accelera

tion to the maximum ground acceleration. Based on the work reported in 

Reference [24], these design response spectra have a confidence level of 

84.1%. 

Analytically, it is convenient to model earthquake excitation as a 

Gaussian random process defined by its power spectral density and a 

deterministic modulating envelope. If the seismic input is specified in 



- 41 -

this way, it should correspond statistically to the design response 

spectrum. This may be achieved by performing a first-passage prob-

ability analysis for a simple oscillator in order to select power 

spectral density ordinates of the process from the design response 

spectrum. 

A linear oscillator subjected to the artificial earthquake process 

may be described by 

9(t)g(t) (3.6) 

where 9(t) is the deterministic modulating envelope and g(t) is a sta-

tionary Gaussian random process with spectral density S(w). Response 

spectra are usually constructed only for lightly damped systems where 

the response is narrow-banded about the natural frequency. Hence, for ~ 

sufficiently small, a good approximation for the response of the system 

described by equation (3.6) may be obtained by replacing g(t) with a 

stationary Gaussian white-noise process, w(t), with constant spectral 

density s0 = S(w0) for each w
0 . 

Since the analytical approach of Mason and !wan for calculating 

first-passage probabilities of a simple oscillator was directed toward 

modulated Gaussian white-noise processes, it may be used here to compute 

the power spectral density ordinates. The design response spectrum may 

be described by 

= (3.7) 

where SD(w0 ,~> is the target spectrum value for natural frequency w0 and 
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fraction of critical damping, ~~ and P is the confidence level of the s 

spectrum. The confidence level, P , corresponds to the reliability s 

function defined in equation (2.28), with the threshold level b replaced 

by the value of the target response spectrum, SD(w0 ,~). Hence, equation 

(2.45) may be written as 

(3.8) 

where td is the duration of the excitation, a is the limiting decay 

rate, and s0 is the constant power spectral density of the excitation. 

An increase in s0 causes a decrease in W(td) and vice versa. Using a 

simple iterative process, s0 may be varied in equation (3.8) until W(td) 

is within some predetermined tolerance, for example, 0.5%, of P • The s 

value of s0 is then assigned to S(w0). 

In Figure 3.10, the NRC design response spectra outlined in Regula-

tory Guide 1.60 are shown for a maximum ground acceleration of 50% g. 

Power spectra were derived for several durations and are shown in Fig-

ures 3.11 and 3.12 for damping values of 2% and 10% of critical damping. 

A confidence level of 84.1% was assumed. 

The overall shape of the power spectrum is somewhat similar as 

duration is varied. For a fixed response spectrum and fixed confidence 

level, the level of the power spectrum increases as the duration 

decreases. and vice versa. A shift in the distribution of the power 

toward the lower frequencies as duration decreases is evident from the 
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peak that occurs at 0.25 Hertz. 

Since the response spectra for different values of damping are 

derived from a single earthquake time history, one might expect that a 

single process may be derived from the design response spectrum for 

different values of damping. This is not the case for the power spectra 

derived above. The design response spectra for different values of damp-

ing produce slightly different power spectra. This may be expected 

since the design response spectra are constructed from a number of real 

accelerograms each with its own duration, frequency content, etc. In 

Figures 3.13-3.15, the power spectra are replotted for each duration to 

compare their agreement for different values of damping. Better agree-

ment is found at the high frequencies for shorter durations and at the 

low frequencies for longer durations. Figures 3.13-3.15 suggest a dura-

tion slightly longer than 20 seconds will give good agreement between 

the power spectrum derived using 2% damping and the power spectrum 

derived using 10% damping for the design spectra considered here. This 

may be expected since the earthquakes upon which the design response 

spectrum is based have durations primarily between 20 and 30 seconds. 

3.3 Maximum Response of a Nonlinear Simple Oscillator Subjected to 
Earthquake-like Excitation 

If a structure behaves nonlinearly, the customary linear response 

spectrum may not characterize the response of the structure. In Section 

3.2, a Gaussian random process was constructed to agree statistically 
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with a specified design response spectrum. Using that process, statis-

tical linearization, and the analytical approach to the first-passage 

problem for a simple oscillator, the maximum response of a nonlinear 

simple oscillator may be obtained statistically for excitation defined 

by a design response spectrum. 

As an example of a nonlinear simple oscillator, consider a soften-

ing elastic restoring force that has a force-deflection relationship 

described by 

f (3.9) 

where fu is the ultimate force and k0 is the small displacement stiff-

ness. The nature of this restoring force characteristic is shown in 

Figure 3.16. 

f 
Let the quantity _Q be denoted by x and the ratio of the maximum 

ko Y 

response, x , to x be denoted by ~· Then, the value of ~ is a max y 

measure of the nonlinearity of the system and may vary from 0 to oo with 

~ = 0 corresponding to a linear system. x represents the displacement 
y 

corresponding to a restoring force f for a linear system with stiffness u 

k
0

, and is similar to the elastic limit displacement of a yielding 

system (see Figure 3.16). Equation (3.9) may be expressed in terms of~ 

and xmax as 

-2 koxmax -1 (1T x ) f = tan -2~-x---1T ~ max 
(3.10) 
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The nonlinear force-deflection relationship described above is 

similar to the backbone curve of a yielding system in that the stiffness 

softens as the displacement increases. However, when a yielding system 

is loaded beyond some point, the unloading path differs from the loading 

path. This inelastic behavior is not modeled by the nonlinear relation-

ship described by equation (3.10). However, the nonlinear relationship 

is a better approximation to a yielding system than a linear relation-

ship and is useful to assess the effects of softening on system 

response. The response of the yielding system is often described by the 

ductility ratio; i.e., the ratio of the maximum response to the maximum 

elastic response. The nonlinearity parameter ~· defined herein, is 

similar to the ductility ratio of the yielding system. 

The equation of motion for a simple oscillator with the particular 

softening behavior discussed above may be written as 

(3.11) 

where ~ and w
0 

are the fraction of critical damping and undamped natural 

frequency, respectively, associated with small displacements. Writing 

the equation of motion in 2n-space notation yields 

y 4(y) + a<t)w(t) (3.12) 

where 



h(y) 

and 
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ytl 

l -2~w y -
0 2 

2< t) = J 
0 

} 
le<t> 

-1(1T yl )) 
tan 211xmax 

Assuming that Y is a jointly Gaussian random vector process with -
mean zero, equation (2.55) leads to the equivalent linear system given 

by 

where 

A[Q<t>J 

and 

Y A[Q(t)]y + ~(t)w(t) 

y 

0 

exp(y2 ) erfc(y) 

V2 xmax 
1T!l )'qll(t) 

(3.13) 

Hence, the instantaneous equivalent linear natural frequency w and e 

damping ratio ~ are e 



(1) 
e 

- 5 4 -

~r= 2 l/z w0 [,ny exp(y ) erfc(y)] . 

~e = ~ [vny exp(y2
) erfc(y)]-o/z 

(3.14) 

Substituting A[Q(t)] into equation (2.16), it is seen that the 

covariance matrix approximation for the nonlinear system satisfies 

(3 . 15) 

with ·zero initial conditions. 

Using the equivalent linear system and the analytical approach to 

the first-passage problem outlined in Section 2.2, a statistical design 

response spectrum may be calculated for the nonlinear system excited by 

a Gaussian random process defined by its power spectral density S(w) and 

modulating envelope G(t). An equation analogous to equation (3.8) may 

be written for the equivalent linear system as 

.J 
l 

td l 
-Ja<x ,S(w ),w .~ ,t) dt 

max e e e I 
0 J 

(3.16) 

where td is the duration of the excitation, a is the limiting decay 

rate, xmax is the unknown maximum response, and S(we) is the spectral 

density of the excitation evaluated at the equivalent natural frequency. 

An increase in x causes an increase in W(td). It is a simple matter max 
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to vary x in equation (3.16) until W(td) is within some tolerance of max 

the confidence level, P • s 

Statistical design response spectra have been calculated for 

softening nonlinear elastic systems with ~ equal to 0, 2, 5, and 10 for 

the Gaussian random process generated with the linear system from the 

NRC design response spectrum of Section 3.2 with a duration of 30 

seconds. In Figures 3.17 and 3.18, the statistical maximimum response 

of the softening nonlinear elastic system is plotted against the small 

displacement frequency. The curve for ~ = 0 is the NRC design response 

spectrum from which the excitation process was derived since ~ = 0 

corresponds to a linear system. 

The instantaneous equivalent linear natural frequency, w , of the 
e 

softening nonlinear elastic system described in equation (3.14) is 

always less than or equal to the small displacement natural frequency, 

w0 • A frequency shift occurs in the statistical maximum response 

spectrum for the softening nonlinear elastic oscillator due to the down-

ward shift in the natural frequency. This frequency shift is most 

noticeable in Figures 3.17 and 3.18 at the control points in the 

response spectrum. 

The maximum response of the nonlinear simple oscillator is affected 

by two factors. First, an overall increase in the maximum response 

occurs due to the assumed level of softening, ~. in the system. 

Secondly, the frequency shift can cause a variation in the maximum 

response by increasing or decreasing the value of the power spectral 

density of the excitation corresponding the instantaneous effective 
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natural frequency. This variation depends on the shape of the power 

spectral density of the excitation process. In Figures 3.17 and 3.18 , 

variation in the maximum response are most evident for frequencies less 

than 0.25 Hertz where the frequency shift causes a sharp decrease in the 

power spectral density and for frequencies greater than 9 Hertz where 

the frequency shift causes a sharp increase in the power spectral den

sity. An increase in the structural damping decreases the response for 

the nonlinear system in the same manner as for the linear system. 

The net effect of the softening nonlinear elastic restoring force 

is that the statistical maximum response spectrum resembles a linear 

response spectrum which has been translated along an axis of constant 

spectral displacement (a line with a slope of one on the log-log pseudo

velocity diagram). These results are similar to the inelastic response 

spectra for the hysteretic system described by Iwan and Gates [25] and 

Iwan [26]. 
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CHAPTER IV 

AN ANALYTICAL METHOD FOR COMPUTATION OF CUMULATIVE DAMAGE 

4.1 Failure of Structural Members under Cyclic Loading 

When a structure is subjected to strong earthquake ground motion, 

large displacements can occur. The displacements may be associated with 

large strains in the structural members. The repeated application of 

large strains may cause failure in the structural members. 

Experimental tests to determine the behavior of structural members 

under large cyclic strains have been performed by Bertero and Popov [27] 

and Yamada [28,29]. The structural members were subjected to cyclic 

bending deflections of constant amplitude until fracture occurred. The 

relationship between the number of cycles to failure, N, and the deflec

tion amplitude may be expressed as 

(4.1) 

where ~ is the ductility factor of the deformation, defined as the ratio 

of the maximum deflection to the maximum elastic deflection, and s and 

C~ are the empirical constants determined from the experimental tests. 

Yamada [29] defines the failure constants for steel structural 

members from tests on wide-flange steel columns. The columns were 

axially loaded in compression to t of the ultimate strength of the 

centrally loaded column and cycled in bending to failure . Failure was 

described as local flange buckling followed by local buckling of the web 

leading to torsion about the member axis and loss of axial resistance. 
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The damage law may be expressed approximately as 

Nb1 •85 = 81.93 (4.2) 

where b is the amplitude of the cycling in terms of the displacement of 

the actual test specimen. The yield displacement may be found using 

simple beam theory. Normalizing the displacement in equation (4.2) by 

the yield displacement, the damage law may be written in terms of the 

ductility factor as 

167.1 (4.3) 

The exponent in equations (4.2) and (4.3) is approximately equal to 2, a 

widely accepted value for steel. 

It has been observed that failure of reinforced concrete members 

may also be described by equation (4.1). Data from bending tests 

performed on rectangular reinforced concrete columns axially loaded in 

compression tot of the yield load are given in Reference [28]. Using 

the method of least squares to fit the data, the relationship between 

the constant deflection amplitude of the test specimen and the number of 

cycles to failure may be written as 

Nb 5 •88 = 239.1 (4.4) 

Here, failure was described as when the concrete fell down due to the 

buckling of the longitudinal reinforcement. By considering a reinforced 

concrete column as a beam of two materials, namely concrete and steel, 

the yield displacement in bending may be computed. Hence, in terms of 
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the ductility ratio, the damage law becomes 

N~ 5 • 88 = 416.3 (4.5) 

The damage laws discussed for steel and reinforced concrete are 

shown in Figure 4.1. Note that the steel requires more cycles to fail 

than the reinforced concrete for the same level of ductility. The value 

of the ductility for N = 1 provides an upper limit to the allowable 

ductility factor of the structure. The damage laws are similar to some 

of those that are used to describe low-cycle fatigue failure of 

materials. 

4.2 Damage Accumulation for Narrow-banded Random Response 

Cyclic failure in a material may be of two basic types. High-cycle 

failure occurs from repeated application of stresses below the yield 

stress of the material. The number of cycles to failure for high-cycle 

failure is of the order 104 . Low-cycle failure occurs when the material 

is strained repeatedly beyond the yield point. Less than 103 cycles are 

typically required for a low-cycle failure. When low-cycle failure is 

of concern, it is more meaningful to relate the number of cycles to 

failure to the strain amplitude rather than the stress amplitude. 

One approach, used to predict fatigue failure, is to model the 

relationship between the number of cycles to failure and the cyclic 

strain amplitude for a material under constant strain amplitude loading. 
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A widely accepted formula, proposed by Travernelli, Coffin and Manson 

[30] is given by 

(4.6) 

where N is the number of cycles to failure at the constant principal 

strain amplitude e, E is the modulus of elasticity, and the other vari-

ables are empirical constants determined from experimental test data. 

The first term on the right-hand side of equation (4.6) dominates when e 

is in the elastic range and reflects the classical S-N curve known as 

the Basquin equation for high-cycle fatigue. The second term is equal 

to the amount of strain beyond the elastic strain range at which the 

material must be cycled to fail in N cycles. The second term dominates 

for high-strain low-cycle fatigue. 

During an earthquake, a lightly damped structure may be subjected 

to severe random forces causing cyclic nonstationary response. High 

strains may develop within members of the structure such that the second 

term of equation (4.6) governs the failure. In such a situation, the 

first term of the right-hand side of equation (4.6) may be neglected, 

and the failure relationship may be written as 

c 
e 

where N is the number of cycles to failure at the constant strain 

amplitude e, and s and C
8 

are positive empirical constants. By 

(4.7) 

normalizing the strain by the elastic limit strain, equation (4.7) is 
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equivalent to equation (4.1). 

A cumulative damage hypothesis may be used to relate the failure of 

a system with varying response amplitude to a system with constant 

response amplitude. The simple rule proposed independently by Miner 

[31] and Palmgren [32] assumes damage accumulation to be a linear func-

tion of the number of cycles of constant strain amplitude cyclic 

loading. Hence, the incremental damage due to the application of n. 
l 

cycles at a strain level ei is 

D. 
l 

ni 
N (e.) 

l 

(4.8) 

Furthermore, it is assumed that the order of application of different 

strain levels has no effect on the total damage.* Thus, the total 

damage for varying strain levels is 

(4.9) 

Failure occurs when D reaches unity. Substituting equation (4.7) in 

equation (4.9) yields 

D c-1 [ s e n.e. 
l l l 

(4.10) 

The concept of total damage may easily be extended to random strain 

response by assuming the number of peaks occurring in the strain 

response is synonymous with the number of cycles in the strain response. 

* There is evidence that this assumption may not be valid for all 
systems. However, it is employed herein because it allows the 
Palmgren-Miner theory to be used in the case of random strains. 
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This assumption is reasonable for lightly damped structures where the 

response is a narrow-banded nonstationary cyclic process. 

Let m be the total number of peaks per unit time and p(e;tlm) be 

the conditional probability density for the strain amplitude of the 

response given the number of peaks per unit time. The quantity 

m p(e;tlm) represents the number of peaks at a level e given m peaks 

per unit time. Hence, the expected number of peaks per unit time at a 

level e is given by 

E[n
8
(t)] = J m p(e;tlm) p(m;t) dm 

0 

where p(m;t) is the time-varying probability density for the total 

number of peaks per unit time. 

(4.11) 

Based on equation (4.8) with equation (4.7) substituted and using 

equation (4.11) the expected rate of damage accumulation due to peaks of 

strain amplitude e may be written as 

c:o 

[ dD ] 
3 

E dt(e;t) = ~ J m p(e;tlm) p(m;t) dm 
e 0 

Integrating equation (4.12) over all levels of strain yields the 

expected rate of damage as 

c:o c:o 

c1 f es f m p(e;tlm) p(m;t) dm de 
8 

0 0 

(4.12) 

(4.13) 
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If the total number of peaks per unit time is assumed independent 

of the amplitude of the peaks, the following relationship holds 

CX> 

J m p(e;tlm) p(m;t) dm 

0 

CX> 

p(e;t) J m p(m;t) dm 

0 

p ( e ; t) E [M ( t ) ] ( 4 .14) 

where E[M(t)] is the expected number of peaks per unit time. Substi-

tuting equation (4.14) into equation (4.13) yields 

CX> 

E [~(t) l f es p(e;t) de (4.15) 
e 

0 

which may be integrated over the duration of the excitation to give the 

expected value of the total damage as 

E[!d ~~(t)dt] 
td CX> 

E[D(td)] = ..1... f E [M ( t)] f s p(e;t) de dt (4.16) c e 
e 

0 0 

4.3 Damage Accumulation Applied to a Simple Oscillator 

A lightly damped system is classified as a narrow-banded system. 

The predominant frequency components of the response are contained in a 

narrow band near the natural frequency of the system. The response 

appears to be a slightly distorted sine function with slowly varying 

amplitude and phase. The cumulative damage of a lightly damped system 
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may be computed by considering the cyclic nonstationary response of a 

simple oscillator. 

Assuming strain is proportional to displacement, equation (4.15) 

may be written in terms of displacement as 

Q) 

= E[M(t)] s 
cb 

0 

bs p(b;t) db 

The damage model may be expressed in terms of displacement as 

(4.17) 

(4.18) 

For the cyclic nonstationary response of a lightly damped simple oscil-

lator, the number of peaks per unit time is approximately equal to the 

number of zero crossings per unit time. Hence, 

E[M(t)] \)(O,t) (4.19) 

where \)(O,t) is the frequency of zero crossings defined by equation 

(2.24). 

The probability density p(b;t) may be found by considering the 

frequency of up-crossing of a simple oscillator at a level b at time t, 

\)(b,t), which is given by equation (2.23). Since the number of up-

crossings at a level b is approximately equal to the number of peaks 

above the level b, \)(b,t) is approximately equal to the expected number 

of peaks above b per unit time. The expected total number of peaks per 

unit time is equal to the frequency of zero crossings, \)(O,t). Hence, 

the expected fraction of peaks above the level b is approximately 
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~(b,t)/~(O,t), and the probability distribution of the peak magnitudes 

at time t may be approximated as 

Pr[peaks < b; t] 1 ~(b,t) 
- ~(O,t) (4.20) 

The average probability density of the peak magnitudes at time t may be 

obtained by differentiating equation (4.20) with respect to b. This 

yields 

p(b;t) 1 a~(b,t) 
~co,t> ab (4.21) 

Substituting equation (4.19) and (4.21) into equation (4.17), the 

expected rate of damage accumulation is given by 

= - JL f bs a~(b,t) db 
cb ab 

0 

a~(b,t) is found by differentiating equation (2.23) to be 
ab 

a~(b,t) 
ab 

Vdet Q.(t) 

2nq
11 

(t) 

J -b ( cJll (t)b2) 
\ qll ( t) exp - 2 

( 
b2 ) (cJ12(t)b)) exp - erfc 2q11<t> V2cJ <t> 

22 

(4.22) 

. (4.23) 
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4.4 A Closed Form Expression for a Special Case of the Damage Law 

The expected rate of damage accumulation given by equation (4.22) 

may be easily evaluated numerically for any appropriate value of s. For 

integer values of s, equation (4.22) may be evaluated in closed form. 

This was shown by Roberts [33] for odd integers and can be extended to 

even integers by the evaluation of a single integral. 

It is convenient to introduce the correlation coefficient p(t) 

defined as 

p(t) (4.24) 

where qij(t) are the elements of the covariance matrix Q(t). It is also 

helpful to normalize the displacement by the root mean square value of 

the response and denote this new dimensionless variable by ~ where 

(4.25) 

Substituting equation (4.23) into equation (4.22) then yields 

- 12 n 
( 

2 2 ) 

0 

(4.26) 

where the functional dependence of p and q .. on t has been omitted for 
l.J 
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brevity. 

Integrating equation (4.26) by parts gives 

E [~~ ( t)] 

where 

J(p,s) 

(X) 

J ~s exp (- nf-) 
0 

erf(v pn 2 ) d~ 
2(1 - p ) 

and the gamma function f(a) is defined as 

(X) 

f a-1 f(a) x exp(-x) dx 

0 

(4.27) 

(4.28) 

The function J(p,s) cannot easily be expressed in a simple manner as a 

function of p and s. However, it does satisfy a reduction formula 

obtained by integrating equation (4.28) by parts to give 

s-1 

J(p,s) = (s-1)J(p,s-2) + ~[2(1 - p2)] 2 r(i) (4.29) 

Hence, to define the expected damage rate for all integral values of s, 

one needs only to evaluate equation (4.28) for s = 0 and s = 1. 

Performing this operation yields 



J(p,O) 

and 

J(p,1) 
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00 

J exp (- ~) erff pn ) dTt 
0 2 \-\J2(1 - p2) 

[ In !2":. -1("1 - p
2 
)] sgn(p) ~2 -~;tan lpl 

00 

= J Tl exp (- n:_) err( pn 
2 ~(1 -

0 

p 

2 ) dTt 
p ) 

(4.30) 

(4.31) 

The expected rate of damage accumulation may now be expressed as 

lj, 
q

22 
( t) K ( p ( t) , s) (4.32) 

where 

K(p(t) ,s) + sp'Yri 
r(s;2) [ 

s+l 1 
r(s;l) + (t) 2 J(p,s) J • (4.33) 

K(p(t),s) is shown in Figure 4.2. K(p(t),s) is positive for all values 

of p. Hence, the expected damage rate is positive. Note that K(O,s) is 

equal to unity for all values of s. 

A characteristic of the stationary response of a simple oscillator 

is that the displacement response and the velocity response are 

uncorrelated (i.e., p = 0). Thus the expected damage rate for station-

ary response is given by 
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Figure 4.2 Damage Rate Multiplier versus Correlation Coefficient. 
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s 

22 r(T) 
2rrCb (4.34) 

which is consistent with the results given by Hiles [34]. 

4.5 Normalization of the Expected Total Damage for a Linear System 
Subjected to Hodulated White Noise 

Integrating equation (4.22) with respect to time, the expected 

total damage may be written as 

td CD 

E[D(td)J =- c1bf f bs ~(b,t) db dt 

0 0 

(4.35) 

Consider the special case where a simple linear oscillator with natural 

period T is subjected to modulated white-noise excitation. If the 

modulating envelope is a function of only the normalized time, ~ = ~· 

given the duration td of the excitation, a convenient normalization of 

the expected total damage problem exists. 

In the situation described above, the covariance matrix Q(~) may be 

expressed as 

where the f .. (~) 's are dimensionless functions and s0 is the power 
~J 

(4.36) 
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spectral density of the white-noise excitation. Using this form of the 

covariance matrix, the derivative of the frequency of up-crossings with 

respect to the crossing level may be written as 

(4.37) 

where 

b 

Performing a change of variables on equation (4.35) yields 

(4.38) 

It may be shown that the first-passage problem defining the power 

spectral density from the response spectrum given in equation (3.8) may 

be written as 

td 
T 

exp - J a(r, ~ ,·t') d't' 

0 

(4.39) 

where Ps is the confidence level of the response spectrum, a is the 

limiting decay rate, and r is the response spectrum normalized by the 

excitation level given by 
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r = SD 

\fs0T3 

The expected total damage may be expressed in terms of r as 

td 
T CD 

f f (4.40) 

Recall from equation (4.7) that for low-cycle failure the damage 

law is given by 

where e is a strain which is greater than the elastic limit strain e of y 

the material. If the strain is normalized by the elastic limit strain, 

the damage law may be written as 

c 
!1 

where 11 is known as the ductility factor given by 

and 

c 
!1 

....f... 
e y 

(4.41) 

Since strains are assumed proportional to displacements, it follows that 
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SDs SDs /Ss s 
Y. JL (4.42) 

cb c /ss c 
b y ll 

where Sy is the displacement corresponding to the elastic limit strain, 

ey. Using this relationship in equation (4.40) yields 

s 1 
.JL-
c s 

ll r 

td 
T oo 

f f 
0 0 

where r is implicitly defined by equation (4.39). 

(4.43) 

The expected total damage may be computed given the duration of the 

excitation in natural periods of the system, the ductility factor of the 

system, and the confidence level associated with the ductility and the 

damage model. Note that the overall shape of the response spectrum is 

not important. Only the value of the response spectrum at the natural 

frequency of the system matters in its relationship to the ductility 

factor, j.l, of the response. 

For the softening nonlinear elastic system of section 3.3, the 

power spectral density of the excitation is not a constant with respect 

to the time because of the time-varying frequency shift. The expected 

total damage of the nonlinear system depends on the shape of the power 

spectral density. In this case, it is better to use equation (4.35) 

directly to compute the expected total damage. 
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CHAPTER V 

ASSESSMENT OF THE EFFECTS OF DURATION 
ON THE DAMAGE OF A SIMPLE SYSTEM 

In order to assess the effects of various system parameters on the 

expected total damage of a structure, consider the simple frame shown in 

Figure 5.1. When the frame is subjected to strong earthquake ground 

motion, large displacements can occur. Large bending moments develop at 

the top and the bottom of the columns of the frame. The large bending 

moments cause large strains which may be associated with low-cycle 

failure. 

A simple analytical model for earthquake excitation is a modulated 

stationary Gaussian random process. The equation of motion for the 

simple frame subjected to such a process is that of a simple oscillator 

and given by 

(5.1) 

where ~ is the fraction of critical damping, w0 is the natural frequency 

of the system, 9(t) is the deterministic modulating envelope, and g(t) 

is a stationary Gaussian random process with spectral density S(w). 

Zero initial conditions are assumed. 

The modulating envelope will be taken to be the earthquake-like 

modulating envelope used in Section 3.2. The envelope may be written in 

terms of the dimensionless time, ~. as 
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56.25 

(td/T)2 
't'2 

1.0 

exp[-2.976(td't'/T - t>] 

't' = 1 
T 

and T is the natural period of the system. 

0 ~ 't' 
2td 

~ 15T 

2td 
< 't' 

td 
(5.2) 15T ~ 2T 

td 
< 't' 

td 
<-2T - T 

Response statistics of the system, in particular the covariance 

matrix, are needed to evaluate the expected total damage. If the system 

is lightly damped, the response will be narrow-banded about the natural 

frequency. Hence, the same approximation used in Section 3.2 for ~ 

sufficiently small may be used here. The process g(t) may be replaced 

with a stationary Gaussian white-noise process, w(t), with constant 

spectral density s0 = S(w0). 

The methods discussed in Section 2.1 may be used to compute the 

response statistics of the system. The response statistics may then be 

applied to equations (4.39) and (4.43) to compute the expected total 

damage. 
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5.2 Expected Total Damage- Linear Model 

Equation (4.22) may be evaluated numerically for any value of the 

damage law exponent, s. However, to study the effects of duration on 

the expected total damage, it is computationally more efficient to use 

integer values of s. In that case the closed form solution described in 

Section 4.4 may be applied to evaluate the expected rate of damage 

accumulation. Numerical integration in time may then be used to compute 

the total expected damage. For steel, the damage law exponent will be 

taken to be 2 and equation (4.3) becomes 

N~2 = 167.1 (5.3) 

For reinforced concrete, s is approximately 6 in equation (4.5) so the 

damage law will be taken as 

N~6 = 416.3 (5.4) 

The normalization discussed in Section 4.5 for the linear elastic 

system will be applied here . Time variables will be normalized by the 

natural period of the system. The earthquake-like modulating envelope 

described by equation (5.2) will be used. The duration of excitation 

td 
will be expressed a 1r natural periods; hence, varying the natural 

period is equivalent to varying the duration. 

The expected total damage is given in equation (4.43) as 
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td 
T (X) 

s 
~ .J,L.__!_ f f 13s dj3 d't c s Clj3 (j3 , 't) 

fl. r 
0 0 

(5.5) 

where r satisfies 

a(r,~,'t) d't (5.6) 

The integration over j3 is performed by applying equation (4.32) and the 

integration over 't is performed numerically. 

Since large amounts of yielding are assumed, the system will behave 

in a nonlinear manner. However, the effects of a system nonlinearity 

can often be accounted for approximately by a simple shift in the 

damping factor and natural frequency of a linear structure. Therefore, 

by studying a linear system, a fundamental understanding of the effects 

of duration and ductility ratio on damage may be obtained even for a 

nonlinear system. 

In Figures 5.2 and 5.3, the expected total damage is shown for a 

linearly elastic system. Curves are shown for several levels of 

ductility and two values of damping. Figure 5.2 represents a damage 

behavior close to that of a steel structure and Figure 5.3 approximates 

the behavior of a reinforced concrete structure. 

For a fixed ductility level, the expected total damage is primarily 

a function which initially increases rapidly with increasing duration, 
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Figure 5.3 Expected Total Damage versus Normalized Duration for a 
Linear Reinforced Concrete Structure. 
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then approaches a nearly constant positive slope corresponding to the 

stationary damage rate. For a steel structure the expected damage is a 

somewhat uniformly increasing function of duration. However, for a 

reinforced concrete structure, there is a region below 50 periods where 

the expected damage is rather insensitive to duration. 

As the ductility level increases, the material is cycled further 

into its plastic range, and the expected total damage increases. From 

equation (5.5), it is apparent that E[D] is proportional to ~s for a 

linear system. Therefore, the damage is a stronger function of the 

ductility ratio for the reinforced concrete structure than for the steel 

structure. The steel structure is capable of sustaining much greater 

levels of ductility than the reinforced concrete structure without 

failure. 

In Figures 5.2 and 5.3, structural damping is treated independently 

of the ductility factor. Realistically, however, an increase in damping 

reduces the system response, thereby also reducing the ductility factor. 

Hence, the net reduction in the damage due to an increase in damping is 

greater than the reduction implied in the figures. 

5.3 Expected Total Damage- Softening Nonlinear Model 

The effect of system softening may be included to better approxi

mate a yielding system by considering a simple oscillator with a soften

ing nonlinear elastic spring. Using the same system as in Section 3.3, 
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the equation of motion for such a simple oscillator is given by 

(5.7) 

where ~ and w0 are the fraction of critical damping and the undamped 

natural frequency, respectively, associated with small displacements, 

xmax is the maximum response of the system, and ~ is the nonlinearity 

parameter. 

Statistical linearization techniques may be used to define an 

equivalent linear system for which response statistics and expected 

total damage are computed. Equation (4.35) is used directly to compute 

the expected total damage due to the variation in the power spectral 

density caused by the time-varying frequency shift. 

In Figures 5.4-5.7, the expected total damage for the softening 

nonlinear elastic system subjected to the processes derived in Section 

3.2 from the NRC design response spectrum is shown for several values of 

the nonlinearity parameter ~· Recall that ~ may vary from 0 to any 

finite value with ~ = 0 corresponding to a linear system, and that ~ is 

similar to the ductility ratio of a yielding system for values greater 

than unity. 

Figures 5.4 and 5.5 represent damage behavior based on the damage 

law for steel [equation (5.3)], and Figures 5.6 and 5.7 represent damage 

behavior based on the damage law for reinforced concrete [equation 

(5.4)]. The results are shown for various combinations of duration, 

ductility ratio, and damping ratio and plotted against the undamped 
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natural frequency associated with small displacements. 

The expected total damage of the softening nonlinear elastic system 

is qualitatively the same as that of the linear system. The 

nonlinearity affects the expected total damage in three ways. First, an 

increase in the response amplitude occurs because of the assumed level 

of softening in the system resulting in an increase in the amount of 

damage per cycle of response. Secondly, the downward frequency shift 

reduces the number of response cycles executed for a fixed duration of 

excitation. Finally, the frequency shift also changes the effective 

power spectral density of the input excitation. The power input to the 

system may increase or decrease depending on the slope of the power 

spectrum near the small displacement natural frequency of the system. 

This, in turn, modifies the response amplitude accordingly. 

5.4 Expected Damage Contours 

A useful way to display expected damage information is shown in 

Figure 5.8. Based on the system which behaves linearly, contours for 

expected total damage equal to unity may be presented as a relationship 

between the ductility factor of the response and the duration of excita

tion. In this way, combinations of duration and ductility factor for 

which the expected total damage is greater than or less than unity may 

readily be identified. 

From Figure 5.8 it is evident that the range of the allowable 
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ductility factor is much smaller for the reinforced concrete structure 

than for the steel structure. The rapid increase in damage associated 

with short durations, along with the strong dependence upon the 

ductility ratio, leads to the existence of a sharp threshold for failure 

in the reinforced concrete structure. 

The expected total damage reflects a mean value of the damage of a 

structure. Hence, the allowable ductility factor for a given duration 

shown in Figure 5.8 may be taken to be an upper bound of the design 

ductility factor of the structure. The value of the damage is, of 

course, a function of the failure model employed in the analysis and may 

not be applicable to all structures. However, the functional dependence 

of the expected damage on the ductility factor and duration is thought 

to be representative. 

A considerable amount of computation is required to compute 

expected damage contours for a nonlinear system. Since the expected 

total damage of the softening nonlinear system is less than that for the 

linear system, the contours for the linear system may be conservatively 

used in place of the contours for the nonlinear system. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

In Chapter I, it was proposed that three basic elements be combined 

in order to study the effects of duration on the damage of structures. 

The first element was to define a nonstationary random process which 

models earthquake excitation and corresponds statistically to a desired 

response spectrum. The second element was to postulate a model for the 

incremental damage of a system. The last element was to compute a 

measure of the damage in a simple structure. 

In Chapter II the necessary tools to accomplish these tasks were 

reviewed. In the first section, random vibration theory was discussed 

including methods to compute the response statistics needed to implement 

the first-passage probability estimates and cumulative damage expres

sions. The second section dealt with analytical approaches to the first

passage probability of a simple oscillator and defined the equations 

which would later be used to synthesize the response spectrum consistent 

processes. The last section recalled the method of statistical lineari

zation in order that a nonlinear system could be considered by the first

passage probability and accumulated damage estimates. 

In Chapter III, modulated Gaussian random processes were assumed to 

model earthquake-like excitation. The modulating envelope was assumed 

fully defined by its duration. Analytical estimates of the first

passage probability of a simple oscillator were calculated for several 

threshold levels. The result were found to be reasonably accurate when 



- 94 -

compared to Monte Carlo simulation. Using the analytical first-passage 

probability estimates, power spectrum ordinates were chosen such that 

the maximum response exceeded the design spectrum with a predetermined 

probability. Actual random processes were computed consistent to the 

NRC design response spectrum. The magnitude of the power spectrum found 

in this manner varied significantly with duration. 

The maximum response of a nonlinear softening system to excitation 

specified by a response spectrum was discussed. The role of the first

passage problem was reversed to find the maximum response of a statisti

cally linearized nonlinear system. The maximum response of the soften

ing nonlinear system as function of frequency was found to be similar to 

a linear response spectrum which had been translated along an axis of 

constant displacement on a log-log pseudo-velocity diagram. 

In Chapter IV, the behavior of structural members under cyclic 

loads was discussed. A rule analogous to the Miner-Palmgren rule 

approach to fatigue was postulated. The rule was used to compute the 

mean damage of a system with narrow-banded random response. In particu

lar, it was applied to a simple harmonic oscillator subjected to a 

modulated Gaussian random process. For a special case of the damage 

law, a closed form expression was formulated for the expected damage 

rate. 

In Chapter V, the degree of damage in a simple structure subjected 

to excitation specified by a response spectrum was determined. Two 

types of structure were considered: a steel structure and a reinforced 

concrete structure. The damage law was defined from cyclic bending tests 
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performed on steel and reinforced concrete structural members. The 

response spectrum consistent random processes computed earlier were used 

as input to the system. 

It was observed that the damage of a linear structure initially 

increases rapidly with increasing duration, and then approaches a 

constant positive slope corresponding to the steady-state damage rate. 

A steel structure is capable of sustaining much greater levels of 

ductility without failure than a reinforced concrete structure. Damage 

for a reinforced concrete structure displays a much stronger dependence 

on the ductility level of the response than the damage for a steel 

structure. When system softening is accounted for through statistical 

linearization, results are found similar to the linear system, but with 

lesser degrees of damage. 

A relatively straightforward analytical procedure has been 

presented to estimate the effect of earthquake duration on the damage of 

a structure. Based on the results presented herein, it is found that 

the duration of excitation and the design ductility level of the 

response can have a strong effect on the expected damage of the 

structure. Use of the response spectrum alone to specify a design input 

ground motion accounts for the dependence of the damage on the ductility 

factor of the response, but ignores the effects of the duration of the 

excitation. Therefore, it is recommended that some measure of duration 

be provided more often in earthquake design specifications and utilized 

in the analysis of structural reliability. 
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