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"The operations of logic will have to be 

treated by procedures which allow exceptions with low 

but non-zero probabilities This new system of formal 

logic will move closer to another discipline which has 

been little linked in the past with logic. This is 

thermodynamics . . . " 

John Von Neumann 

(Hixon Symposium, Caltech September 1948) 

To Ezio and Jose. 
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Introduction 

This thesis comprises three apparently very inde­

pendent parts. However, there is a unity behind I would 

like to sketch very briefly. 

Formally graphs are in the background of most chapters 

and so is the duality local versus global. The first section is 

concerned with globally coloring graphs under some local 

assumptions. Algorithmically it is an intrinsically difficult 

task and neural networks, the topic of the second part can be 

used to approach intractable problems. Simple local 

interactions with emergent collective behavior are one of the 

essential features of these networks. Their current models 

are similar to some of those encountered in statistical 

mechanics, like spin glasses. In the third part, we study 

ultrametricity, a concept recently rediscovered by theoretical 

physicists in the analysis of spin-glasses. Ultrametricity can 

be expressed as a local constraint on the shape of each 

triangle of the given metric space. 

Unless otherwise stated, results in the first and second 

part are essentially original. Since the third part represents 

a joint work with Michael Aschbacher, Eric Baum and Richard 

Wilson, I should perhaps try to outline my contribution 

though paternity of collective results is somewhat fuzzy. 

While working on neural networks and spin glasses Eric and I 

got interested in ultrametricity. Several of us had found an 

initial polynomial upper bound, but the final results of "n + 

1" was first reached independently by Michael and Richard. I 

think I obtained the theorems: 4.5, 6.1, 6.3 (using an idea of 

Eric), 6.4, 6.5, 6.6, 6.7 (with Richard and helpful references 

from Bruce Rothschild and Olga Taussky) and participated in 

some other results. 
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ON A FAMILY OF GENERALIZED COLORINGS 

Abstract--Motivated bV a question in eel lular telecom­

munication technologv, we investigate a family of graph 

coloring problems where several colors can be assigned 

to each vertex and no two colors are the same within any 

ball of radius R. We find bounds and coloring algorithms 

for several kinds of graphs. We introduce possible con­

jectures with implications for the jour color theorem 

and show some partial results. 

I. INTRODUCTION 

The following problem was suggested to me by E. C. 

Posner and has its origins in cellular telecommunication 

technology. The two basic concepts of cellular radio are: cell 

splitting and frequency reuse. Very schematically: in order to 

provide a flexible, large scale, low cost mobile telephone 

service to a given area using a limited band in the radio 

spectrum, the strategy that has been adopted consists in 

dividing the area into "cells". When a call is originated in a 

cell, a radio frequency is allocated to the call. The same 

frequency can be used at the same time in another cell, 

provided the distance between the two cells is greater than a 

certain value to avoid possible interferences. The cells are 

therefore grouped into clusters. At any time, all the 

frequencies being used within one cluster need to be distinct. 

For reasons of economy, scaling and systematization, 

designers have generally adopted a tiling of the service area 

using hexagonal cells. The following formalization can be 

made. 

Let G = (V,E) be a graph (the vertices V correspond to 
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the cells and the edges E connect neighboring cells) with the 

metric induced by the shortest path between points. Let 

f: V ~ IN be the call function, i.e. f(x) is the total number of 

calls in cell x . Let R be a fixed positive radius. The call 

coloring problem on G consists in assigning f(x) colors 

(frequencies) to each vertex x in V with the constraint that 

within any ball B(x,R) of radius R, all colors be different. The 

corresponding call chromatic number will be denoted by: 

C~(G) . Often, to be more specific, we shall need some 

assumptions on f . Two cases are of particula:r; interest: 

1st case: When f(n) = k = est. We shall write: 

c~=k(G) or C~(G) for the constant call chromatic number 

2nd case: When 2: f(x) ~ K for a fixed constant 
xe:B(y,R) 

K and any ball B(y,R) . Such an f will be said to be K 

admissible with radius R and :rR,K(G) is the class of all such 

functions on G . Without loss of generality we shall always 

assume that the bound K is attained in at least one ball. The 
f 

bounded call coloring number will be denoted: CR, K(G) . We 

shall be particularly interested in: 

f = max CR, K(G) 
:fR,K 

How does cR,K(G) behave as a function of R,K and G ? 

Trivially cR,K(G) ~ K and if R = 0 or R = oo then cR,K(G) = K . 

Are these limit cases significative? 

It should be noticed that both c~=k(G) and C~(G) can be 

written as C~, K(G) for the appropriate choice of K . Also, in 



view of possible applications to cellular radio we are 

interested in finding CR,K(T.L.) where T.L. denotes the 

triangular lattice corresponding to the dual of the hexagonal 

tiling. From now on, without loss of generality, we shall 

assume that G is simple (no loops, no multiple edges) and 

connected. We shall use the notations d(x) for the degree of 

any x in V, t::. (G) for the maximum degree and Kn for the 

complete graph on n vertices. Two vertices x and y will be 

said to "interact" iff they are contained in a same ball of 

radius R i.e. iff d(x, y) :s: 2R 
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II. RELATION TO CHROMATIC NUMBER 

SIMPLE BOUNDS AND FIRST PROPERTIES 

Let us briefly explore the relations between the usual 

chromatic number C(G) of a graph G and the call chromatic 

number. 

Proposition 2.1: 

For any graph G and any integer radius R we can con­

struct a graph SR(G) and a call function f in ~R, 2 such that: 

C(G) = C~ (SR(G)) . 

Proof: Define SR(G) and f by inserting 2R - 1 vertices on each 

original edge of G and by setting f to 1 on the original 

vertices of G and to 0 on the newly created vertices. Call 

colorings of SR(G) are then in one to one correspondence with 

traditional colorings of G . 

Call coloring appears as a generalization of usual 

coloring and therefore it is at least as difficult. In 

particular it is NP complete. Yet the reduction is also 

possible in the other direction. 

Proposition 2.2: 

For any graph G, any integer radius R and any call 

function f, we can construct a graph Y,~(G) such that: 

f Proof: Description of the operation .PR: 

( 1) Replace each vertex x of G for which f(x) ;t 0 by a 
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complete graph Kf(x) on f{x) points 

{2) If a is in the clique Kf(x) and b is in the clique 

Kf(y) then draw an edge (a,b) iff x and y interact in G i.e. iff 
d(x,y) s: 2R . 

(3) Delete all vertices and incident edges corresponding 

to original vertices x in G for which f(x) = 0 . It is essential 

to delete these points only at the end of the process since 

they may still play a role in (2) by being on a path of length 

less or equal to 2R connecting two vertices of G . We leave as 

an easy exercise to check that .p~(G) has the required 

properties. 

As in the case of the usual chromatic number C(G), we can, by 

using a weaker version of Zorn's lemma (like the compactness 

theorem in logic or the prime ideal theorem on boolean 

algebras) restrict ourselves to the case where G is finite. 

Indeed if cR,K(G ;) s: C for any finite subgraph G ; of G then: 

CR,K(G) s: C . 

Using a well known property of C(G) we get: 

Proposition 2.3: 

More generally, all known bounds on the chromatic 

number can be applied to .p~(G) in order to get a bound on the 

call chromatic number. For instance, we could use the map 

color theorem of Heawood. Yet for this purpose the genus of 

.pR(G) should be known, and this is in general very delicate. If 
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.p~(G) is planar, then 4 colors suffice. Yet if G contains a 

vertex x with f(x) ~ 5 then .p ~(G) will contain a K
5 

and 

therefore will not be planar. We can also restate Proposition 

2.3 in terms of the graph G only: 

Proposition 2.4: 

C~(G) ~ max 
x0 t:V(G) [ 

I f(x)] 
Xt:B(x0 ,2R) 

f(x0 )~0 

This is because, by construction on .p~, we have: 

max 
x0 t:V(G) 

f(x0 );eO 

[ 
I f(x)J 

XE:B(x0 ,2R) 

So, if the total number of calls in a ball of radius 2R 

is bounded by a constant L, then L colors suffice for the call 

coloring problem. If G has a regular structure and is 

embedded in an euclidean space of dimensions d, then we get 

an inequality of the type: 

where n(d) is the minimum number of balls of radius R needed 

to cover entirely a ball of radius 2R . Therefore for general 

regular structures we can already expect a linear upper 

bound in K . 

We shall attempt now a careful study of the call coloring 

problem for several particular graphs. In many instances we 

shall use an inductive coloring procedure. Assume that G = 
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(V,E), R, K, and f in :JR,K(G) are given. Let A be a subset of V 

and x 0 a vertex of V - A . Assume that A has already been 

call colored using m colors. We want to extend the coloring to 

x 0 Let A(x0 ) = AnB(x0,2R) . As far as extending the coloring, 

x 0 interacts only with points in A(x0 ) 

Therefore if m ~ f(x0) + I f(x) 
xe:A(x 0 ) 

we can call color A U {x0} with m colors. In particular we 

have the basic extension lemma: 

Lemma 2.5: 

Let G, R, K and f in 3='R,K be given. 

Let A c V(G) and Xo e: V - A 

Let A(x0) = An B(x0,2R) 

Let m ~ K and assume A has been call colored with m colors. 

Then if we can find a vertex y 0 e: V(G) such that: 

the m call coloring of A can be extended to A U {x0} 

Proof: Since A(x0 ) u {x0} is in B(y0,R) we have, by K 

admissibility of f: 

I f(x) + f(x0 ) ~ K ~ m 
xe:A(x0 ) 
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Successive applications of the extension lemma can y ield a 

coloring algorithm at least for certain subsets of V(G) 

As a function of f, R, K and G, C~, K(G) has many simple 

trivial properties. Some of them appear in the next lemma. 

Lemma 2.6: 

(1) c~f (G) ~ m C~(G) for m ~ 0 

(2) cf1+f2 (G) ~ cfl (G) + cf2 (G) 
R R R 

(3) cf (G) ~ f (G) for R ~ R~ 
R C R ~ 

We now estimate cR,K(G) for several basic graphs G . 
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III. LINEAR PATHS, TREES AND N-GONES: 

ill Linear Path P: 

By linear path we refer to the graph 

... ____ ..__ ____ ...__..,.._ ... 

Proposition 3.1: 

For any K, R, linear path P and f in :TK,R (P): 
f 

CR, K(P) = K 

Proof: By induction and using the extension lemma at each 

step or as a special case of the next theorem. It should be 

noticed that the coloring algorithm is very simple: start from 

one end and use the colors 1, 2, ... , K cyclically in sequence. 

Theorem 3.2: 

For any K, R, tree T and f in :TK,R (T): 

Proof: Root the tree T at a vertex a and color B(a,R) with K 

colors. Now partition the remaining vertices into classes L1, 

L2, ... where Li = {x e: V(T): d(x,a)=R+i} . Define g(i) = I Li I · 

We are going to color the levels Li in succession using the 

extension lemma. Assume that Li+l = {x1, ... ,xg(i+l)} and that 
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L1, L2, ... , Li and {x1, ... ,xj} have already been call colored. To 

color xj+ 1 notice there is a unique path joining xj+ 1 to a 

and it has length R + i + 1. Let y 0 be the unique point on 

this path such that d(y0,xj+1) = R . We then apply the lemma 

with: 

A = B(a,R) u L1 u ... u Li u {x1, ... ,xj}' y 0 and x 0 = xj+i . It is 

easy to check that: 

(3) N-gone §.N 

By N-gone we mean the graph of length N: 

We obviously have: K 2K since we can 

subdivide GN into two linear paths P1 and P 2 and use two sets 

of K colors, one for each path by Proposition 3.1 . Remark 

also that if f = k = est then K = (2R+1)k (at least as soon as 

N ~ 2R+1). If we look at the case: N = 4 R = 1 f = 1 we have 

K = 3 and it is easy to see that cf~~(G4 ) = 4 > 3 . This is 

the first example we encounter where the lower bound can be 

violated. 

f = 1 

cf=1 = 4 R = 1 1,3 
N = 1 

K = 3 
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A complete study of the case f = k seems to be necessary. 

Given any two vertices x and y of GN, K colors can be used to 

color one of the linear paths from x to y. Conflicts could 

arise only if d(x,y) :": 2R along the other path. This suggests 

the idea of using K colors for the main path and a set of n 

additional colors for the vertices on the other path. We can 

even try to use the n colors in some "evenly" distributed 

regions of the N-gone and the other K colors cyclically in 

sequence between these regions, as in the fig:ure. 

Along any path between two points the colors 1, ... , K are used 

cyclically with perhaps some insertions of colors belonging 

to the n additional colors. Therefore as in Proposition 3.1 no 

conflict can arise along such a path. The problem is therefore 

to find how to minimize n . It is important to notice that if 

v 0, v 1, ... , vs is a maximal sequence of consecutive vertices 

where the n-colors are used then not all the calls 

corresponding to v 0 and vs need to be colored using some of 

the n-colors. Colors in {1, ... ,K} can be used, provided they 

agree with the global cyclical use of these colors on GN . 

More formally: 

Proposition 3.3: Let R, K, N be fixed and f in 3R,K(GN) . Fix 
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an orientation for GN and assume that a set S = {x0, ... ,x2m_1} 

of 2m distinct vertices of GN has been selected. Let I i be the 

set of vertices strictly in between xi and xi+l (for any i and 

mod. 2m) . Let a and b be two integer functions on s such that: 

a(xi) + b(xi) = f(xi) i = 0, ... , 2m-l . Assume that: 

(i) the calls corresponding to: r2 j j = 0, ... , m - 1 and 

a(xi) i = 0, ... , 2m have been colored using a set of n colors. 

(ii) 
2m-1 

2: 
i=O 

m-1 
b(xi) + 2: 

j=O 
f(x) = 0 mod K 

Then cR,K(GN) ~ K + n and the colors {l, ... ,K} can be used 

cyclically to complete the partial coloring of (i). 

Proof: Use the colors {l, ... ,K} in order and cyclically on the 

calls corresponding to b(xi) and to the r2j+l . By assumption 

(i) conflicts could arise only between two such calls. But this 

is in contradiction with Proposition 3.1 and our previous 

remarks. We have the easy corollaries: 

Corollary 3.4: 

If 2: f(x) _ 0 (mod K) then: 
XEV(GN) 

Corollary 3.5: 

If f(x) = k = est. then the following are equivalent: 

b) 2: f(x) _ 0 (mod K) 
XEV(GN) 

c) N _ 0 (mod 2R+l) 
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Therefore if N ~ 0 (mod 2R+l) 

We can now completely solve the regular case. 

Theorem 3.6 

For any k and R I if N = a + b (2R+l) with 0 :s: a :s: 2R and 

0 :s: b then: 

C~(GN) = {

kN forb= 0,1 

(2R+l)k + f4l for b ~ 2 . 

( rt1 = max {u e: 2. 1 t ~ u}) 

Proof: Use Proposition 3.3 with K = (2R+l)k I n = r ~ l 
and m = b . Notice that we have: 

:L f(x) = K j = 01 ··•I b - 1 
xe:I2j+l 

If x e: r 2i and y e: r2i+21 the number of calls between x and y 

is at least K and therefore d{x, y) > 2R and there is no 

problem in coloring x and y using the n additional colors 

because: 

:L f(x) = kN = ka + kb(2R+l) 
xe:V(GN) 

~ bn + bk . 

Therefore C~(GN) :s: (2R+1)k + r ¥ 1 

If a is zero, then we know by Corollary 3.5 that C~(GN) = k . 

Also if a ;x: 0 and b > ka, then K < C~(GN) :s: K + 1 and again 

the formula is exact. If 1 :s: N :s: 4R + 1 then any two vertices 

interact and all colors need to be different. Therefore 
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k 
CR(GN) = kN for 1 ~ N ~ 4R + 1 

Finally the only open cases left are : 

N = a + b (2R+1) with 0 < a ~ 2R 

Assume for contradiction that: 

and 

C~(GN) :-::; k(2R+1) + r ~ 1 - 1 Then: 

1 < b :-::; ka . 

b(K + r ~ l - 1) < kN :-::; (b+1)(k + r ~ 1·- 1) . 

So, at least one of the colors must have been used at least b 

+ 1 times. The distance between any two reuses must be at 

least 2R + 1 to avoid interference. Therefore we must have: 

(b+1)(2R+l) ~ N . But by assumption, N ~ 2R + b(2R+l) which 

yields a contradiction. 

Next we have two tables with several values of C~ (GN) 
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R = 1 

~ 1 2 3 4 5 

1 1 2 3 4 5 

2 2 4 6 8 10 

3 3 6 9 12 15 

4 4 8 12 16 20 

5 4 10 15 20 25 

6 3 6 9 12 15 

7 4 7 11 14 18 a = 1 b = 2 

8 4 8 12 16 20 a = 2 

9 3 6 9 12 15 

10 4 7 10 14 17 a = 1 b = 3 

11 4 8 12 15 19 a = 2 

12 3 6 9 12 15 

13 4 7 10 13 17 a = 1 b = 4 

14 4 7 11 14 18 a = 2 

15 3 6 9 12 15 

16 4 7 10 13 16 a = 1 b = 5 

17 4 7 11 14 17 a = 2 

18 3 6 9 12 15 

19 4 7 10 13 16 a = 1 b = 6 

20 4 7 10 14 17 a = 2 

21 3 6 9 12 15 

22 4 7 10 13 16 a = 1 b = 7 

23 4 7 10 14 17 a = 2 

24 3 6 9 12 15 

25 4 7 10 13 16 
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R = 2 

~ 1 2 3 

1 1 2 3 

2 2 4 6 

3 3 6 9 

4 4 8 12 

5 5 10 15 

6 6 12 18 

7 7 14 21 

8 8 16 24 

9 9 18 27 

10 5 10 15 

11 6 11 17 a = 1 b = 2 

12 6 12 18 a = 2 II 

13 7 13 20 a = 3 II 

14 7 14 21 a = 4 II 

15 5 10 15 

16 6 11 17 a = 1 b = 3 

17 6 12 17 a = 2 II 

18 6 12 18 a = 2 II 

19 7 13 19 a = 4 II 

20 5 10 15 

21 6 11 16 a = 1 b = 4 

22 6 11 17 a = 2 II 

23 6 12 18 a = 3 II 

24 6 12 18 a = 4 II 

25 5 10 15 
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The interesting behavior of 

following graph. 

2K 

can be summarized in the 

~+I 

K 

~!'--~ . . ~ .---___._- ____ ___._-_-__ -_ --. 

2R+I 41\tl .ZRKtlR+\ N 

The case where f is periodic can also be treated in detail. 

However for a general f precise values of C~, K will depend 

on f . We only know that K :S: C~, K(GN) :S: 2K . Yet the natural 

question to ask is: for N large enough do we have : 

K :S: C~, K(GN) :S: K + 1 ? This is indeed the case. 

Theorem 3. 7: 

Let K,R be fixed. For N ;::: (4R+1)(K-1) and for any f in 

3R,K(GN) we have: 

Proof: Let 2: f(x) = c [mod K] . If c = 0 we have seen 
X£V(GN) 

that K colors are enough. Otherwise the largest possible 

value for c is K - 1. Therefore, to use K + 1 colors at most 1 

we must be able to select in the worst case K - 1 single calls 

of GN' separated by a distance of at least 2R + 1, and use a 

unique color for these calls. The remaining calls are a 
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multiple of K and can therefore be colored using the colors 

{1, ... ,K} cyclically. If f is zero on 2R + 1 consecutive vertices 

we can use K colors in sequence on the remaining vertices. 

Therefore we can assume that f is never zero on 2R + 1 

consecutive vertices. So, the distance between any two 

consecutive calls where the additional color is used is at 

most 2R + 2R + 1 = 4R + 1 . There are at most K - 1 such 
f calls. Therefore if N ~ (4R+1)(K-1} CR, K(GN) ~ K + 1 . This 

bound on N is very crude and can be improved. In the regular 

case, as soon as N ~ 2R(K+1) K + 1 colors always suffice. Our 

complete knowledge of C~(GN) will be useful in the study of 

other graphs. Interesting lower bounds can be obtained using 

the "abnormal" behavior of C~{GN) for cycles of small length. 

As an example, if a graph G contains a G32 and if K = 33 and 

R = 5, then since C~(G32 ) = 33 + 15 = 48 we have: c5,33 (G) ~ 
48 which is a better lower bound than 33. 

We shall now study the case of lattices. 
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IV. LATTICES: QUADRATIC, TRIANGULAR, HYPERCUBIC 

[U QUADRATIC LATTICE ~ 

We first examine t!:.e regular case f = k e st. It is e asy 

t o check that any ball of radius R on Q.L. contains 2R2 
J.. 2R + 

1 vertices, therefore: K = k(2R 2+2R+1) . Results on this case 

can be summarized in : 

Theorem 4.1: 

For any k and R, f=k CR (Q.L.) = = K and 

shifted colorings can be used. The minimal shift s is 2 if 

R = 1 and s = 2R + 1 otherwise. 

Proof: By "shifted colorings" we mean that a first vertical 

line is selected and colored using K colors cyclically as in 

Proposition 3.1 . Then for each successive vertical line we 

use the same pattern of colors but shifted by a constant 

vertical distance equal to s . Obviously such a coloring is 

essentially invariant under horizontal and vertical trans­

lations. Since K ~ c~=k ( Q . L.) ~ k c~=l (Q.L.), it is enough to 

show our result for k = 1 . If we represent the Q.L. using 

integer coordinates (~ x ~) and if we number the colors by 

{0,1, ... ,2R2+2R} then a coloring with vertical shift s is defined 

by assigning one color to the origin. If we assign the color 0 

to the origin then color c should be assigned to any vertex 

of coordinates: 

(u, - us + v(2R2+2R+1) - c) u and v 
in ~ 

To satisfy the call coloring requirement we must have : 

2R ~ s and for symmetry reasons we can assume s ~ R2 + R 

Because of the invariance of the properties of such a 

coloring under translations, we need only to find what are 
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the possible values of s (if t hey exist) such that no conflict 

can occur for the color 0 when reused. The two closest 

vertices for the Manhattan metric to the origin where c = o 

correspond to: 

u = l ~ J , v = 1 and 

u = L ~ J + 1 , v = 1 with here K = 2R 2 + 2R + 1 

No interference will occur if: 

(1) l ~ J + K - L ~ j > 2R and 

(2) l ~ J + 1 - K + [ l ~ J + 1] s > 2R . 

These conditions can easily be summarized by the relation: 

[ l ~ j + 1 J (1+s) - 4R > 2R
2 

+ 1 > L ~ J (s-1) . 

For any value of R, this relation has several solutions. If we 

restrict ourselves to 2R ~ s ~ R2 + R then the minimal 

solution occurs for s = 2 if R = 1 and s = 2R + 1 

otherwise. Among other possible solutions we also have : 

s = R2 + 1, s = R2 - d for any integer d ~ v and as soon 

as 3d < inf 2 2 (R -4R+2,R -2R-1) For R = 1, 2, 3, 4 we have 

checked that these yield all the possible values for s with 

2R ~ s ~ R2 +R. 

R = 1 s = 2 

R = 2 s = 5 

R = 3 s = 7, 10 

R = 4 s = 9, 16, 17 

Using the symmetry if s satisfies (1) and (2) then also 

(2R 2+2R+2-s) satisfies (1) and (2) 
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Example o f colori~g with P. = 1, s = 2 

~~ 

<) 3 I ~ 

I At 2 0 

T s 
l. 0 l I l 
3 I 4 2. 

4 l 0 3 

' 0 1 I 4 
, 

I It 2. 0 

1 0 3 I 

J I ~ 2. 

Since N-gones can easily be embedded in Q.L. in the case of a 

general f a lower bound on C~, K(Q.L.) greater than K should 

be expected. Various arguments based on previous results 

lead to a linear upper bound in K . We have: 

Theorem 4.2: 

For any K: 

if R = 2m: 

if R = 2m + 1: 

L ~J ~ K + "i _ CR,K(Q.L.) ~ 2K 

K + C (Q.L.) ~ 2K . 
R,K 

Proof: Let us first consider the lower bounds. 

If R = 2m + 1: consider the subgraph 

'/.., 

--------------~· 
)C.2. 

R. 

R 
--~----~------~ X~ 

Set f = 0 e v erywhere except at the corners xi i = 1, 2, 3, 4 . 
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to check that ar.y 

the o ddness 

all the v. 
"" l' i 

f(x 1) = n + d 

f( x i) = n 

of R, 

= 1 , 2, 

for 

p air of corners i ntera ct, but 

there is no ball of radius R 

3 , 4 If !<:: = 3n + d d = 0, 1, 

i = 2, 3, 4 . 

Then f is in :FR,K and since all vertices interact: we need at 

least 3n + n + d = K + L ~ J colors. 

If R = 2m: similar argument with a slightly more complicated 

subgraph. 

111-1 

x. I 

X~ 

Again, any two points interact but they are not all contained 

in a same ball of radius R . If K = 4n + d d = 0, 1, 2 or 3 

set: 

f(x 1) = n + d 

f(xi) = n i = 2, 3, 4, 5 

f(x) = 0 everywhere else. 

Then f is in :FR,K and we need at least: 

4n + n + d = K + L ~ J colors. 

To prove the upper bound 2K we are going to use the 

following coloring algorithm. We subdivide the lattice into 

contiguous identical strips. We use alternatively two sets of 

K colors, one for each strip. Experience shows that for the 

Q.L. diagonal strips (at a 45 o angle) must be taken. 
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Let t be the constant thickness of a strip S measured by the 

number of lattice points belonging to S on a fixed vertical 

line. Then we need: 

(a} t to be large enough so that no interference can 

occur between two points located on opposite sides of the 

stri p. 

(b) t to be small enough so that we can color S with 

only K colors. 

Let t be equal to 2R . It is easy to check (a}, i.e ., the 

distance between two points on each side of the strip .:.s at 

least 2R + 1 . To prove (b), we assume that S is described in 

coordinates by the set of points (u, v) where u and v are in 

~ and -u - (2R-1) ~ v ~ -u . In order to use the extension 

lemma, assume all points of S have been colored with K colors 

up to a diagonal line of equation y = x - e (e ;:: 0} 
It\ V 

0 n..'' " 
u 

5 
v / v l/' /l~~V - 1~\r-~ / VI/ ' 

, 

/ / v v /~ ~xt 1 /~/ v~ i 
·-

~ v / / /_~~ rt-...,~ -_p!t1/ I 
/ ' 

v / / / ./ ~. +A+/ / / 1/ i 

/ / '/ y-- -· *-
/v //. / ~~~-; / 

/ 
/ / 

-r/v / v / / v ' / 
// / // /I ' / 

' -
/T/ / .// ·' / v / // •/ / , , -v , I 

// ·' / ' ' 

/1/ / ' / 
/) v /. ' 

,• / / l/ 
__ ,. 

I 
-- ·-.//1 'I /. y .,.. / · / / 

/ / // / ! /I ·' ' ' I / / 

' 

/' /_// / / 
___ ,... i/ I/ / } 

We want to extend the coloring to the points x of s located 
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on the line v = u - e - 1 . I..et A = S ,., {v ? u-e} . 
o I 

Let A(x) = Sf"\ {u-e ~ v ~ u-e-1+ 2R} . 

Let Yo be any point in Sn {v=u-e-1 + R} . 

Then d (y 0,x) = R and for any z in A(x) : d(y0,z ) :::; R . 

The conditions for the e x tension s lemma are satisfied and 

therefore we can extend at once the call coloring to all the 

points x in Sf"\ {v=u-e-1 } using only K colors. Iterating this 

procedure yields a call coloring of S with K c olors. 

(2) TRIANGULAR LATTICE fi:..hl 

As usual, we first examine the regular case. Any ball of 

radius R of T.L. contains 3R 2 + 3R + 1 points. Therefore K = 

(3R 2+3R+l)k. We are going to use the same shifted colorings. 

Theorem 4.3: 

For any k and R 

c~=k (Q.L.) = (3R2+3R+1)k = K 

and shifted colorings can be used. If R = 1 the minimal 

possible shift is s = 2 . For R > 1 a shift s = 3R2 will 

always work. 

Proof: Very similar to the Q.L. case. We can restrict ourselv es 

to the case k = 1 . Assume the coloring is given by: 

(u,-us+v(3R2+3R+l)-c) 

where u, v are integers and c belongs to {0, ... ,3R2+3R} . Th is 

time, since the symmetry is broken we can only assume: 

2R ~ s ~ (3R2+3R+l) - (2R+l) = 3R2 + R 

The properties of the coloring are still .invariant under 

vertical and horizontal translations and therefore we can 

restrict ourselves to the color c = 0, the origin and the 

points with positiv e abscissa. The two closest vertices to the 

origin correspond to: 
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u = L 1~s J v 1 
K u = L rts J + 1 v 1 

There will be no interference if their distance on the T.L. to 

the origin is greater than 2R . 

This yields: 

(1) K - l1~s J s > 2R 

(2) L 1 ~s J + 1 > 2R if K ?: ( l1 ~s J :- 1 ] s or 

(2 ') ( L l~s J + 1 ) (s+1) - K > 2R otherwise . 

The combination (1) and (2) has a solution only in the case R 

= 1 which yields s = 2 . With R = 1, (1} and (2 ') yield another 

possible shift s = 4 . In reneral (1) and (2 ') reduce 

inf ( L A J s + 1 - 2R s > K - L .L.. J s > 2R i+S ' l+s 
If R > 1 this reduces further to: 

l1~s J + s + 1 - 2R > K - L i~s J s > 2R . 

to: 

It is easy to see that s = 3R2 always satisfies this relation 

for R > 1 . It is by no means the unique solution. For 

instance 3R 2 - 1 is also a solution as soon as R ;:: 4 and 3R2 

+ f (0 :<:: f :<:: R) is a solution as soon as R ;:: 3 . (For R = 2, 

s = 14 is also a possible shift) 

The next theorem provides bounds for the general case. 

Theorem 4.4: 

For any K: 

K + l ~ J s Cl,K (T.L.) s 2K 

K + l ~ j s CR,K (T.L.) s 3K (for R > 1 ) . 
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Proof: For the lower bound consider the subgraph: 

If K = 2n + d d = 0 or 1 , 

f(x 1) = n + d 

f(x 2) = f(x 3) = n 

f(x) = 0 elsewhere 

let: 

Then it is easy to check that f is in :rR,K . Moreover d(xi,xj) 

~ 2R therefore the three points interact (and are not in a 

same ball of radius R) . Therefore we need at least 2n + d + n 

colors. 

In order to obtain the upperbound most related to 

cellular radio, we again use a decomposition into strips. 

Experimentation leads to the use of horizontal (or vertical) 

strips, assuming that the vertices of T.L. correspond to 

points with integer coordinates in a system of rectangular 

coordinates. If t is the thickness of the strip S, i.e. the 

number of lattice points of S on any vertical line, then as 

for Q.L. there is a tradeoff on the value of t . Examples can 

be constructed showing that if t > R + 1 then K colors are 

not sufficient to cover S . By iterative application of the 

extension lemma along successive diagonal lines (as in the 

figure) 
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s 

one can show that if t = R + 1 t~en S is K colorable. The 

smallest distance betwee!'"l two points on each side of the 

strip is R + 2 . Consequently if R + 2 > 2R ·i.e. if R = 1 two 

sets of K colors in alternation on successiv e strips will 

suffice and c 1 ,K(T.L.) s; 2K . On the other hand, if R > 1 the 

minimal distance between two points on each side of an 

adjacent pair of strips is 2R + 3 which is sufficient. 

Therefore in general: CR,K s; 3K . 

ill N-HYPERCUBIC LATTICE: lin 

We consider Hn as represented by ~ x ... x ~ = ~n . We 

hav e the : 

Theorem 4.5: 

For any n ;:: 2, K, and R : 

Proof: The lower bound i s t rivial since Q.L. is a subgraph of 

Hn for n ;:: 2 . For the u pperbound we shall use Proposition 

2.4 . Let B(0,2R) = {(x 1, ... ,xn) e: ~n: 2: 1 xi I s; 2R} There are 

2n balls of radius R centered at points of the form 

(O, ... ,O,:R,O, ... ,O). Let x = (x 1, ... ,xn) be a point in B(0,2R) and 

assume without loss of generality that xk = 1 x k I = max 
i 

1 xi 1 and let xk = R + yk . Then: 

2: I x ·I = 2: 1 x i I + I R+yk I !> 2R 
J. i;:k 
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If yk ? 0 then: 2: 1 xi ! y k ~ R 
i;:k 

T~ yk < 0 then: 2: 1 zi l - y k 5 ~ ...... 
i~k 

So x belongs to the ball centered at (O, ... ,O,R,O, ... ,O) (with an "R" 

in position k) with radius R . Therefore the 2n balls cover 

entirely B(0,2R) 

upperbound 2nK 

We can apply Proposition 2.4 and get the 

The upperbound can certainly be improved. 

For n = 2 we have already found 2K (instead of 4K) . =.et us 

show, without attempting full generality, an e xample of 

improvement. 

Theorem 4.6: 

For any K and f in :r1,K(H3 ) we have: 

C l,K(H3) ~ 4K 

Proof: Let K1, K2, K3, K4 be four sets of K colors. The idea is 

to use K1 and K2 on alternating diagonal strips in the plane 

z = 0 Then, K3 and K4 similarly, in z = 1 . Then K1 and K2 in 

z = 2 as for z = 0 but interchanging the role of K1 and K2 . 

More formally on points of the form (n,4m-n,z) or (n,4m-n+l,z) 

we use colors: 

Kl if z - 0 (mod 4) 

K3 if z - 1 (mod 4) 

K2 if z - 2 (mod 4) 

K4 if z - 3 (mod 4) 

For points of the form (n,4m-n+2z) or (n,4m-n+3, z) we use 

colors: 

K2 if z - 0 (mod 4) 

K4 if z - 1 (mod 4) 

Kl if z - 2 (mod 4) 

Kl if z - 2 (mod 4) 
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K3 if z = 3 (mod 4) 

We leave as an exercise to check that this yields a call 

coloring. 
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V. GENERALIZATIONS 

The call coloring problem on a graph G = (V,E) can be 

extended as follows. Introduce a distance parameter d and 

require that calls at vertices x and y with d(x,y) ~ d be 

assigned different colors. Denote by C~(G) the corresponding 

call chromatic number. In particular we have C~(G) = C~= 2 R(G) 
and C~~i(G) = C(G) . A subset X of V is a d-cluster if for any 

x and y in X then d(x,y) ~ d . We can then say that f is in 

1'd,K or K admissible with distance d if max X <x~X f(x)) ~ K , 

the maximum being taken over all possible d-clusters. Define 

cd,K(G) as usual. It should be noticed that d clusters do not 

always correspond to balls, even when d is even. We leave as 

an exercise to show that all the previous results can be 

extended. In particular we have: 

for any tree T 

(2) For any N-gone (GN) with N = b(d+1) + a 0 ~ a~ d 

f-k { ka if b=O 
c - (G , = r , 

d N (d+l)k + ~ 

Moreover, for N large enough: 

Cd,K(GN) = K or K + 1 

(3) Cd,K(Q.L.) ~ 2K 

(4) Cd,K(T.L.) ~ 2K for d = 1, d = 2 

Cd,K(T.L.) ~ 3K for d > 2 

otherwise 

A striking feature of the previous analysis is that at least 

in the case R = 1 or d ~ 2 we always have: cd,K ~ 2K and 

cR,K ~ 2K for trees, N-gones and planar lattices. It is 

therefore natural to conjecture whether this could be a 

characteristic property of all planar graphs. In fact even 

more generality can be attempted if we try to extend the 

Heawood theorem as follows. Let Sg denote an (orientable) 
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surface of genus g . Then the chromatic number C(Sg) is the 

maximal chromatic number among all the graphs G that can be 

embedded in S g . Heawood theorem states that: 

l 7+/ 21+48g J 
C(Sg) = 

The planar case g = 0 is of particular interest and will be 

referred to as 4CT (four color theorem). In a similar fashion 

we can define the quantities cd,K(Sg) and cR,K(Sg) and the 

problem is to study these functions of three variables g,K 

and d (or R). In particular, say for fixed g and R , is it 

possible to find an upperbound which is polynomial in K, or 

even linear as in the previous examples? We shall describe 

some partial results in these directions. 

If G = (V,E) let Gn be the graph (V,En) where (x,y) £ En 

iff d(x,y) ~ n in G • We then trivially have: 

Cd,k(G) ~ cfd=lK ~ C(Gd)K and CR,K(G) ~ C(G2R)K . 

l 7+/ l2+48g J . Let c(g) = The next theorem describes a lower 

bound on cK,R(Sg) and a precise relation to the Heawood 

theorem. 

Theorem 5.1: 

(1) For any K, R and g: 

cR,K(Sg) ~ c(g) L ~ j + i where i = 0 or 1 and 

K :! i [mod2] 

(2) C(Sg) = c(g) (Heawood theorem) is equivalent to the 

statement: 

Proof: (1) Consider the following construction. Take the graph 

Kn(n>2) . Let Fn be the graph obtained by inserting 2R - 1 
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vertices along each edge of 

f: V(F) -+ N by f(x) = 0 if d(x) = 
2 . (In the case where K is odd 

Kn Define a function 

2 and f(x) = l ~ j if d(x) > 

we set f(x) = L ~ J on all 

vertices with d(x) > 2 except for one of them, say y, for which 

f(y) = L ~ J + 1 ) . A trivial check shows that f is in :rR,K . 

In addition: c~,K(Fn) = n L ~ J + i where i = 0 or 1 and 

K = i [mod 2] . Notice for later that C(F n) = 2 if R is odd, 3 

otherwise and that F n is homeomorphic to Kn . Therefore if n ~ 

c(g), Fn can be drawn on Sg , proving our first assertion. 
f (2) Assume first that: C R, K= 2 (Sg) = · c(g) . Let G be 

any graph embeddable in Sg . Then we have seen (Proposition 

2.1) that we can construct a graph SR(G) and a call function f 

in 1'R,2 such that: C(G) = C~(SR(G)) . The construction shows 

that SR(G) and G have exactly the same genus. Therefore: 

C(G) ~ c(g) . On the other hand the bound is attained by 

taking G equal to a complete graph. 

For the converse we assume the Heawood theorem. Let g be 

embeddable in Sg and let f be in 1'R,2 . We know (Proposition 

2.2) that we can construct a graph 1/t~(G) such that: C~(G) = 

C(l/t~(G)). We need to verify that in this case the genus of G 

is not increased by the operation 1/t~(G) . If for some vertex 

f(x) = 2, then for any y such that d(x,y) ~ 2R we have 

f(y) = 0. It is easy to see that 1/f~ will transform x into a 

complete graph on 2 points completely disconnected from the 

rest, and this cannot increase the genus of G . Consider now 

vertices x, for which f(x) = 1 1/f~ creates a new edge only 

between two points x and y such that: f(x) = f(y) = 1 and 1 < 

d(x,y) ~ 2R. Then we necessarily have the picture: 
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f=l f=O f=O f=O f=l 

• • • • • 
X y 

We can assume that the new edge from x to y in .p~G) goes 

along the shortest path joining x to y in G . Suppose now for 

contradiction that two such newly created edges cross. Then, 

in G, we would have the situation: 

X y 

with f(x) = f(y) = f(z) = f(t) = 1 and f = 0 for the vertices on 

the path x to y and z to t . Also d(x,y) s; 2R and d(z,t) s: 2R. 

But then there would exist a point v on the paths such that 

f E: 1'R,2(G) is violated by the ball B(v,R) . So .p~ does not 
f increase the genus of G • Therefore CR, K= 2 (G) s: c(g) and 

again equality can be achieved by using complete graphs. 

Let us consider the case of planar graphs more 

carefully. We just saw that cR, 2 (s0 ) = 4 . We are going to 

prove: 

Theorem 5.2 

(1) For any radius R ~ 1 and any K ~ 2R + 1 
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(2) For any K 

Proof (1) This of course shows that 2K colors are not enough 

for certain planar graphs even with radius R = 1 . The lower 

bound is attained by the following special wheel graph. Start 

with an N-gone with N = 4R + 1 and f(x) = l~J 
everywhere (in particular f(x)~O) By our previous result on 

N-gones (4R+1) l~J colors are already necessary to cover 

the N-gone. Now add a new vertex x 0 with f(x0 ) = K -

l~J . Finally connect x 0 to all the previous 4R + 1 

vertices of the N-gone via 4R + 1 edges. Along each one of 

these 4R + 1 edges insert 2R - 1 additional vertices for 

which f is equal to zero. 

The graph obtained is planar, f is in :f'R,K and any two 

points interact. Therefore: 

(2) Assume for contradiction that G = (V,E) is the smallest 
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planar graph with a given call function f in 1' l,K(G) which is 

not 5K call colorable. Classically, using Euler's formula, it is 

easy to see that G must have at least one vertex x
0 

of 

degree at most 5 • By assumption if H is the graph obtained 

from G by removing x 0 , then H is 5K call colorable for the 

restriction of f to V - {x0} . The restriction of f is trivially 

in 1' l,K(H) . We then have: 

L: f(x) ~ 5K - 4f(x0 ) . 
B(x0 ,2) 

Therefore if we have 5K colors, we can consistently extend 

the call coloring of H to x 0 and hence to G • 

As a conclusion, we see that in the planar case with 

radius R = 1 and K ~ 3 the following inequality holds: 

Additional results have been obtained in this area for 

instance by looking at small values of K , arboricity or 

special classes of graphs (regular,outerplanar, ... ) The 

situation being still unclear we reserve them for a later 

publication. We end up with an example. 

Proposition 5.3: 

For planar cubic graph (P.C.) : 
f•l 6 ~ CR=l (P.C.) ~ 9 

If all the faces have length even or equal to three, then: 

6 ~ ci:~ (P.C.) ~ 8 

Proof: Notice that here K = 4 . For the lower bound, just 

consider the graph: 
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An upperbound of 10 is immediate by considering the degrees 

(or using Proposition 2.4) . By the Brook theorem we also know 

the case of equality: if G is planar cubic then G2 must be a 

complete graph on 10 points. By a result of Hoffman and 

Singleton [IBM Journal Nov. 1960] on Moore graphs, this can 

occur iff g is the Petersen graph which is non planar. 

Therefore, C~~i(P.C.) :s: 9 . In the construction of G2 , new 

edges are added within each non triangular face. If a face 

has even length 2n the corresponding additional edges can be 

partitioned into two N-gones. The face and one of the n-gones 

is still planar. Therefore G2 can be decomposed into two 

planar graphs and so is 8 colorable using 4CT if every face 

is triangular or of even length. 
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VI. CONCLUSION: OPEN QUESTIONS 

We have shown several results where the classical 

notion of chromatic number has been extended in two 

directions: by assigning several colors to each vertex via 

the function f and by the introduction of the radius R . 

Sharper bounds, other classes of graphs and possible 

connections to the Heawood and the 4CT, both in the 

orientable and non orientable case, require additional 

exploration. Other notions of Graph Theo!'y and Extremal 

Graph Theory could be reexamined along the same lines. 

In view of applications, the problem treated seems to be 

slightly more general than cellular radio. It is possible to 

imagine other situations where resources or computations 

need to be distributed over a network with some 

"interference" condition. As far as cellular radio is 

concerned, our upperbounds are probably still too large for 

current technology. One question to be investigated seems to 

be whether, by disregarding a small fraction of the calls, the 

upperbound can be lowered significantly to a value close to 

K. If so, what are the corresponding good coloring algorithms? 
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SOME CONTRIBUTIONS TO THE THEORY OF NEURAL NETWORKS 

Abstract: We investigate some generalizations of neural 

networks using acyclic orientations and algebraic 

threshold Junctions. We estimate the number of acyclic 

orientations of the hypercube corresponding to energy 

Junctions of degree d and analyze stable states 

especially in terms of invariances under the action of a 

group of isometries. Combinatorial comple~ity results on 

the optimization of algebraic forms over the hypercube 

and a reduction algorithm are introduced. 

I. INTRODUCTION 

In 1982, J. J. Hopfield, in an attempt to understand the 

emergence of collective computational abilities in physical 

systems and networks of neurons, presented a model that has 

been since the source of a great deal of work. The original 

simple idea and several of its derivations have already been 

applied to a variety of contexts ranging, among others, from 

content addressable memories and circuits architectures to 

learning algorithms and combinatorial optimization. We refer 

the interested reader to the short bibliography at the end. 

In the original Hopfield discrete model, a neural 

network consists of n pairwise interconnected devices or 

neurons, each one being in one of two possible states, + 1 or 

-1. The state of the system is therefore represented by a 

vector X = (xl' ... ,xn) belonging to the hypercube Hn. 
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The synaptic connections are described by a real 

symmetric matrix a = (a .. ) 
lJ with the additional property: 

a .. = 0 
ll for any i. Moreover, to each neuron i is associated 

a real threshold t~ Randomly and asynchronously each neuron 

changes its state according to the following rule. If X r and 

xi are respectively the state of neuron i before and after 

the corresponding updating step then: 

x . = sgn L a . . x . + [ n 
l j = 1 lJ J 

n 
If L aiJ' xJ. - ti = 0 

j=1 
then 

This system possesses a fundamental emergent property 

namely that no matter what the starting state is and no 

matter in which fashion the neurons "decide" to update 

themselves it will always converge to a stable state. The 

reason behind this key fact is the existence for the network 

of an energy function which is decreasing when the previous 

algorithm is applied. If we consider the quadratic form: 

E(x) = -r~ a n 
xixj + L t.x. 

i=1 l l 

E+ - [xt - x 
- ] [j 

n 
-til E = - i L a .. xj 

= 1 lJ 

Therefore E+ - E ~ 0 and since there are only 2n possible 

states the system must reach a stable state. There exists a 

wealth of interesting questions concerning the properties of 

this model and of its possible uses. 
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II. FIRST GENERALIZATION: ACYCLIC ORIENTATIONS 

The algorithm above consists of a sequence of nonlinear 

operations describing the evolution of the neural network 

from the point of view of the neurons, or of the circuit which 

simulates them. Yet, a different but totally equivalent 

description can be given in the space of states, i.e. on the 

hypercube Hn of n-tuples of (1,-1) coordinates. 

Starting from one state X with energy E(X) : 

(1) choose a new neighbor Y 

(2) compute E(Y) 

(3) if E(Y) < E(X) move to Y 

if not go to step (1) . 

It is essential to notice for our point that the discrete 

dynamical behavior does not depend at all on the actual value 

of the energies but only on the partial ordering they induce 

on the vertices of the hypercube. Moreover different rules 

can be applied for the choice of Y. For instance we can select 

the neighbor Y with lowest energy (Optimal Adjacency 

Algorithm) or choose among all the better neighbors with 

equal probability (Better Adjacency Algorithm). Also in the 

case where: E(X) = E(Y) additional rules could be adopted. For 

instance, a fixed orientation X --+ y or Y --+ X can be 

chosen a priori. The description of the original Hopfield 

model is equivalent in this case to the removal of the edge 

(X,Y). 

We can introduce the following generalization: 

Let G(V,E) be a graph with the metric induced by the 

length of the shortest path between points and R be a radius. 
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Let us assume that a partial ordering has been defined on 

the vertices V of G which is compatible with R, i.e. such that: 

if d(X, Y) :<;; R then X < Y or Y < X. 

Define then the local algorithm: 

Starting from a state X 

(1) choose a n-ew vertex Y such that d(X,Y) :<;; R 

(2) if Y < X move to Y otherwise go to step (1). 

In optimization problems, it might be useful to 

progressively reduce the value of R. This point needs to be 

investigated and from now on we shall assume as usually that 

R = 1. 

If R = 1, it only means that we have directed the edges 

of G. There are of course 2 1 E 1 possible orientations. In the 

general case this local algorithm is not guaranteed to 

converge. But it is easy to show that on any finite graph G 

the local algorithm will converge iff we have an acyclic 

orientation (A.O.) i.e. iff the orientation of the edges in E is 

not constant along any cycle of G. This is the case of the 

hypercube Hn under the energy function E. There is therefore 

a one to one correspondence between acyclic orientations of 

G and dynamical behaviors on G induced by the local algorithm 

(of course for a fixed probability distribution for the choice 

of the neighbors). 

Any injective function f:V ~ 0 where 0 is a totally 

ordered set will automatically induce a linear ordering of the 

vertices V and also an A.O. of the edges of G by the relation: 
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Since every partial order can be extended to a linear 

order, the converse is also true: for any acyclic orientation 

we can find a function: f:V --> {1,2, ... , IV I}, i.e. a total 

ordering of the vertices via the usual order on the integers, 

such that the original A.O. is identical to the one induced by 

f. Later it will be useful to think of the integers 

{1,2, ... , IV I} as being "thrown" randomly on G. There exists 

therefore a basic many to one map from the set L(G) of linear 

orderings on the vertices of G into A(G}, the set of A.O. of G 

or dynamical behaviors on G. We shall define the capacity C(G) 

of G in bits to be the logarithm base 2 of I A(G) 1. 

In the case of the Hopfield model, G = Hn and the 

function f is the quadratic form corresponding to the energy 

E. Two discrete neural networks with different energy 

function but with the same A.O. on the hypercube Hn are 

statistically indistinguishable on the basis of their behavior. 

Notice that I L(G) I = IV I! and theoretically there exists 

a way of counting I A(G) I. If PG('A) is the chromatic polynomial 

of G (i.e. PG('A) is the number of different colorings of G using 

A. colors) then by a theorem of Stanley [Stanley,1973] we have: 

I A(G) I = I PG(-1) I = the sum of the absolute value of the 

coefficients of PG('A). 

Notice also that there exists a subset of A(G) for which 

local and global minima coincide. (i.e. with a unique 

local-global minima). Let G(G) be this subset. 

From now on we shall confine ourselves to the case of 

the hypercube Hn. In a later section we shall treat the 

problem of enumerating all the acyclic orientations on the 

hypercube and compare it to those induced by quadratic 



43 

energies. The more fundamental 

understand is whether there 

question we would like to 

exi sts differences between 

random landscapes on the hypercube and landscapes created 

by quadratic energies. If so, can we take advantage of these 

differences for example in optimization problems. 
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III. SECOND GENERALIZATION: ALGEBRAIC THRESHOLD FUNCTIONS 

The original Hopfield model is based on a quadratic 

energy function, yet we have seen that almost any function 

f:Hn 4 0 where D is a totally ordered set defines uniquely a 

dynamical behavior. We are going to introduce and study a 

class of functions f which leads to non quadratic energies. 

For this we need some additional notation. 

Let N = {1,2, ... ,n}. Let xi (i=1,2, ... ,n) denote the coordinates of a 

vertex X of the hypercube (xi = ±1). 

If c N let xi = i~ I xi (notice that on Hn x 2t = 1 , 

therefore only 0 and 1 powers of the variables need to be 

considered). 

If I c P(N) then an algebraic form in n variables based on I 

with coefficients in A is a polynomial expression of the type: 

Pn(X) = L: aixi and ai E A . 
IEI 

An algebraic form in n variables P~(X) is said to be of 

degree d if it is the form: 

= L a xi 
I I I sd I 

It is said to be homogeneous of degree d if it is of the form: 

= L: a xi 
I I I =d I 

Let F~(A), F~(A), F~(A) be the set of all algebraic forms 

in n variables, with coefficients in A respectively: based on 

I, of degree d, homogeneous of degree d. Interesting 

possibilities for A are: A = ([, A = rR, A = ~' A = ~. A = 
{-1,0,1}, A = GF(q) • • • These forms can be defined on any 

graph where a "system of coordinates" for the vertices has 

been defined. 
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A homogeneous form of degree d on Hn depends on (a) 
coefficients. A general form of degree d depends on: 

d 
r(n,d) = ~ (~) coefficients. 

If A is a field, F ~(A) can be trivially seen as the vector 

space A 1 1 1 • Notice also that for forms P~ in F~ we have: 

-d and this symmetry is reflected in the dynamical behavior Pn 

induces on Hn. 

A switching function f(x 1, ... ,xn) of n binary variables is 

a function f:Hn ~ {0,1}. f is separable by a form of degree d if 

we can find P~ E: F~(A) such that the algebraic curve pd = 0 

in rRn separates the "on" set f- 1 (1) from the "off" set f- 1 (0). 

In other words: 

f(X) 

f(X) = 1 ~ Pd (X) > 0. n 

A switching function which is separable by a form of degree d 

is called an algebraic threshold function of degree d. Let 

T~(A) (resp. T~(A)) denote the set of all algebraic (resp. 

homogeneous) threshold functions of degree d in n variables 

with coefficients in A. 

So far, in practice, quadratic form energies are the most 

widely used. In a context of optimization problems we shall 

see that the complexity covered by F~(A) is already 

staggering enough for our current possibilities and in some 
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sense energies functions in F~(A) can be reduced to forms in 

F~(A) but at a high cost (m> >n). 

Yet, for instance, the problem of the capacity (as 

defined in [Abu Mostafa,1985]) of neural networks with higher­

degree energy functions is of interest and not of a purely 

academic nature. Indeed hard wired circuits simulating such 

energy functions could be implemented. (For instance using a 

combination of fast and slow operational amplifiers 

[Baum,l985]). Moreover, there exists a wide class of problems 

with constraints that cannot be converted into the 

optimization of a quadratic form in a simple fashion. Several 

problems of combinatorial designs and coding theory amount to 

the construction of a binary m X 1 matrix M = (m .. ) with m .. = 
~J ~J 

:t:l and some additional restrictions on the rows and columns. 

Typical constraints are of the form: "the Hamming distance 

between row a and row b is cab". 

This can be expressed as: 

This kind of equation cannot be converted directly into 

the optimization of a quadratic form. Yet this is easy with a 

form in F 4 in the variables mij: 

p4 = L [ 1 mak mbk - 1 + 2cab]2 
a,b k=l 
a<b 

Trivially P4 ~ 0 and the minimum 0 of P4 occurs iff {1) 

holds for every a and b. 

It is not completely impossible that progress in these 
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directions might shed some light on combinatorial problems, 

the most famous one being the existence of a projective plane 

of order 10. (i.e. a certain 111 X 111 matrix). Incidentally, 

according to [Wilson,Hall,1986] the smallest interesting binary 

matrix the existence of which is unknown has dimension 22 x 
33. Neural networks of this size have already been designed 

though based on quadratic energy functions. These circuits 

are known to converge towards states of low energy though 

they are not guaranteed to reach the optimum. Yet the speed 

of convergence of hard wired networks is '!ery high and a 

large number of trials with various starting states becomes 

possible. Information contained in partially optimal solutions 

might be useful in restricting the size of a systematic 

computer search for the optimum. 

Let us assume that a given neural network and the 

corresponding A.O. of Hn is defined by an energy function P~ 
in F~ (A). If we look at what happens when we are updating 

"neuron i" we can write: 

Pd(X) = x. pd-1 + Q d 
n 1 n-1 n-1 

in the variables where P~=i is a form of degree d-1 
d (x1, ... ,xi_1,xi+1, ... ,xn) and Qn_ 1 is a form of degree d in the 

same variables. The energy difference between the two states: 

(x1, ... ,xi_1,1,xi+l' ... ,xn) and (x1, ... ,xi_1,-1,xi+1, ... ,xn) depends only 

on the form P~= i. In other words each neuron needs only to 

compute locally the sign of an algebraic form of degree d -1 

in n 1 variables. Moreover, each neuron simulates an 

algebraic threshold function in T~= i. The quadratic case is 

of course particularly nice since only linear forms in n - 1 

variables are computed. Whereas in the case d = 2 the 

connection between neurons form a simple graph, for d > 2 

we have a hypergraph (i.e. edges are clusters of neurons 

rather than simple pairs). 
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IV. PRELIMINARIES AND EXAMPLE 

As we have seen, we want to study some p roperties 

related to the three maps: 

'f
1

: L (Hn ) --> A(Hn) 

>¥ 2: Fn(fR) --> A(Hn) 

'f3: Fn(fR) --> L(Hn) 

'f 2 and 'f3 are not defined everywhere on Fn(fR) since a form 

P can take the same value on two vertices X and Y. If P(X) = 

P(Y) we cannot order the vertices of Hn linearly. In addition, 

if (X,Y) is an edge of Hn there is a difficulty in the 

definition of the corresponding A.O. The domain of 'f3 is a 

proper subset of the domain of 'f 2 which is a proper subset 

of F n (fR) . In a later section on NP completeness we will 

require also that P e: Fn(~). These are all technical 

difficulties that can be easily overcome as shown in the 

following proposition. 

Proposition 4.1: 

(1) Let P e: F~ (IR). Then we can construct an algebraic 

form Q e: F~(IR) such that Q(X) ~ Q(Y) for any two vertices 

X and Y. Also if P(X) < P(Y) then Q(X) < Q(Y). 

(2) Let Q e: F~(IR) such that Q(X) ~ Q(Y) for any two 

vertices X and Y. Then we can construct R e: Fd (~) such n 

that: 

Q(X) < Q(Y) iff R(X) < R(Y) . 
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(3) Let R e: Fd 
n ( 10) such that R(X) ;t R(Y) for any two 

vertices X and Y. Then we can construct s e: Fd 
n (;~) such 

that R(X) < R(Y) iff S(X) < S(Y). 

Proof: (1) Assume X = (x 1, ... ,xn) Y = (y 1, ... ,yn) are two 

vertices such that P(X) = P(Y). Let c = min I P(Z) - P(T) 1 the 

minimum being taken over all vertices Z, T such that: P(Z) ;::: 

P(T). Then if P(X) = :L aixi we can construct a new form 
IIIsd 

,. , 
hi)XI c h XI Q(X) :L (ai + with: I hi I < 2r(n

1
d) and :L ;t I I I 

:L hiyi (for instance if X and Y differ in position i let h{i} = 
I 

3 r (~,d) and hi = 0 for I ;e {i} ). 

Then obviously Q(X) - Q(Y) = t hix1 - t h 1yi ;e 0. In addition 

if T and Z are two vertices such that: P(T) < P(Z) then: 

Q(Z) - Q(T) = P(Z) - P(T) + t hizi - t hi ti. Now P(Z) - P(T) ~ 
c by assumption and: 

I :L hizi - :L hi ti I s 2 :L I hi I < c. 
I 

1".1 1" · ..1 

Therefore Q(Z) - Q(T) > 0 and Q preserves the partial ordering 

induced by P. Iterating this procedure a finite number of 

times yields the desired form Q. 

(2) Essentially the procedure. If Q(X) = :L I same IIIsd ai x . 

Let hi be such that: a I + hi is a rational and I hi I < 

c Then R(X) :L I belongs to Fd ( 10) and = (ai+hi)x 2r(n,d}' I n 
preserves the ordering induced by Q. 

(3) This is trivial since for any P e: F~ (fR) the form A P + 

J.l (A > 0) induces exactly the same A.O. and total ordering as 

P. Therefore one need only multiply the given rational form 

by the absolute value of the common denominator of all the 

coefficients. 
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In real circuits the parameters ai are only known as 

rationals. Because of the theorem above, it does not really 

matter for this point whether the coefficients are in fR, ~' 

or ::l. From now on we shall 

ljl 2 and ljl 3 to their domains. 
d -d 

1j1 2 (Fn(fR) (resp. ljl 2 Fn(fR)) i.e. 

only consider the restriction of 

We shall write: A~(resp. A~) for 

for the A.O. generated by forms 

L~ (resp. L~) for ljl 3 (F~(fR)) of degree d and similarly: 
-d (resp. >¥ 3 Fn (fR)) i.e. for the linear ordering of the vertices 

n -d of H generated by forms of degree d. For d even, Ln is 

undefined. 

It should be noticed that the two equivalence relations on 

F(fR): 

P " Q iff 1j1 2 (P) = 1j1 2 (Q) and 

P ,, Q iff ~jt 3 (P) = ~jt 3 (Q) 

are not compatible with the vector space operations defined 

on F(fR). 

Our purpose will be to obtain some information about 

the increasing sequences A~ (and L~) when d varies from one 

to n. 

Example: n = 2 

Quantity: Type of A.O. Number of linear 

tlo 
orderings: 

4 X 1 X 4 = 4 

4 X 1 X 4 = 4 

4 X oo 2 X 4 = 8 

2 X 4 X 2 = 8 

Total: 14 24 = 4! 

We have 1 L(H2) 1 = 4! = 24 1 A(H 2) I = 14. There are o~ two 

cyclic orderings. It is easy to see that only the t~_Wcan 
be described with a linear form and only the type:~can be 
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described by a homogeneous quadratic form. On the o ther hand 

all possible A.O. can be described u sing a quadratic form. 

Therefore: 

L2 
2 

However, this 

computation 

extend the 

Jacques,1985]. 

A2 14 = 2 
-2 
A2 = 2 A1 

2 = 4 = 
-1 
A2 

24 
-2 

undefined ... 1 8 -1 
= L2 = LJ2 = = L2 

situation is not typical and even for 

is difficult. To compute bounds on 

n = 3 the 

i A~ I we 

[Abu-Mostafa and St. technique found in 
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V. BOUNDS AND CAPACITY 

Proof: 

Proposition 5 .1: 

For every I c P(N) and for n ~ d ~ 1 we have: 

( 1) I T~ (IR) I ~ I TT I I _ 1 (IR) I 

(2) I ~n(IR) I ~ I T1 (IR) I and 

<a' -1 

(3) I~(IR)I ~ 1Ti:{n,d)- 1 (1R)I 

We shall use the same notation fo;r the 

function and the associated algebraic 

then Q can be 

in fR 1 I 1 defines 

seen as an element of 

threshold 

e: T~ (r~?) form. If Q 

fR I I I. This element 

an algebraic linear form P in I I I 1 

variables. If P takes the value 0 for some vertex of 

H 1 I l-1 we can slightly perturb P as in Proposition 4.1, so 
1 that P can be seen as an element of T 1 I 1 _ 1 (fR). Therefore we 

I 1 can define a map f:Tn(fR) --> T 1 I 1 _ 1 (fR). 

Let us show that f is injective. If S,T are in T~ (fR), S ~ T, 

then there exists a vertex X = (x 1, ... xn) of Hn such that S(X) > 

0 and T(X) < 0. Let Y be the vector on H 1 I 1 - 1 which 

components are (x1)Ie: I" Then necessarily: f(S)(Y) > 0 and 

f(T)(Y) < 0. Therefore f(S) ~ f(T) and f is injective. 

There exists a well known bound on I T A I : 

This combined with Proposition 5.1 yields an upper bound for 
d -d I Tn I and I Tn I. Yet this can be strengthened using the 

following extension of a result of Cameron and Winder. 

Theorem 5.2: 

Let m,f,n be three positive integers such that f~ n. Let 
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B~ 
1 

n be the maximum number of regions that m hyperplanes 

corresponding to m linear equations in the same f variables 

determine in fRn. Then: 

(1) B~~n = 

(2) if we write B~ for B~ 
1 

f then: B~ = 2 
f-1 

2: 
i=O 

Proof: (1) The projection: (x 11 ... 1xflxf+11 ... 1xn) ---. (x 11 . .. 1xf) of fRn 

into fRf establishes a one to one correspondence between 

regions of the two spaces. 

(2) is obtained by solving the simple recurrence relation: 
Bm _ 8 m-1 + 8 m-1 

f - f f-1' 
We remark now that to every vertex X of Hn we can attach a 

linear form .e x:F n (fR) ---. fR with .ex(P) = P(X) . 

In particular if I I 1 = f 1 assimilating T ~ (fR) to a subset of 

fRf 1 every point X of Hn yields a linear form .ex:fRf --> fR. 

Each hyperplane .ex = 0 separates fRf and hence T ~ (fR) into 

two regions. There are 2n such hyperplanes. Therefore: 

Proposition 5.3: 
I 2n 

I Tn I ~ B I I I = 2 

We have the simple estimates: 

I ( 2n-1) I Tn I < 2 I I I I I I _ 1 
and then: 

I I 1-1 
I TI I < (2n-1) 

n if in addition 2 I I I 
I I I -1 s; 1 

i.e. if I I I ~ 5 . Several bounds can be obtained using these 

estimates. In particular we have : 
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Theorem 5.4: 

(1) I~ I < 2 as soon as (~) ~ 5 

nd+l 
(a 1 >! 

(2) I~ I < 2 as soon as r(n,d) ~ 5 . 
and d !> [ n] 

2 

Proof: Apply Proposition 5.3 and the corresponding simple 

estimates with 1 I 1 = [a) for (1} and I I I = r(n,d) for (2} 

These bounds are tight for small values of d and deteriorate 

when d increases. Using the symmetry of homogeneous forms 

(i.e. 2n-l hyperplanes instead of 2n} does not improve the 
d+l 

bound 2n . Notice also that there exists essentially a one 

to one correspondence between homogeneous forms of degree d 

and n - d: 

if pd = 
n 2: 

III=d 
define 

Therefore we expect: 

lTd! = ITn-d I lAd! =lAn-d I··· 
n n ' n n 

We now prove the following: 

Theorem 5.5: 

(1) I~ I 

For 1 !> d !> n: 

= IA1 1 = 2n . n 

nd+l 

n-d = On 

t a 1 > ! 
(2) I~ I < 2 [ n-1) for d-l ~ 5 . 

nd+l 

2: a xN-I 
I I 

t a 2 > ! 
(3) 1 ~ 1 < 2 for r(n-l,d-1) ~ 5 and d !> [~] • 
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Proof: (1) This is clear since the orientatio n of any edge 

parallel to the i-th coordinate a x is depends only on the sign 

of a{ i }' Notice that this enumeratio n is for linear forms such 

t hat a {i} ;:: 0 for any i. These are the only linear forms which 

define properly an A.O. o f Hn which in addition belongs to 

G(Hn) since the minimum is also global. If one allows 0 

coefficients in the form then some ambiguities arise in the 

orientations of corresponding edges and we then have a more 

general bound of 3n. 

(2) i s similar to (3). 

(3) Given a neural network with energy in F~, recall that 

every neuron simulated an algebraic threshold function in 
d-1 T n _ 1 . Therefore: 

Using theorem 5.4: 

[ 

nd 
( d-2) ! 

< 2 

n 

l = 2 

nd+1 
(d-2) 

(4) The total number of orientations (including cyclic ones) is 
n-1 

2 1 E 1 = 2n2 . This bound can be microscopically improved, 

for instance, by deducting the number of cyclic orientations 

where a given fixed face receives a cyclic orientation. 

Because of (4) the bounds in (2) for instance is interesting 

iff: 
nd+ 1 n-1 d n-1 

(d-1)! ~ n2 or n ~ (d-1)!2 

We turn now to lower bounds. The threshold functions 

corresponding to the different neurons are obviously 

dependent. Yet, as iYl [Abu Mostafa, St.Jacques,1985] for d ::;; 

(gJ we can study the collection of networks where the first 
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[~] neurons simulate independent threshold functions of 

degree d - 1 in the remaining [~] variables. Since here we 

are mainly interested in asymptotic values, we shall not 

distinguish the cases: n even or odd. Such a distinction leads 

only to Lilliputian improvements. We know that in some sense: 

T~ C Tt I 1_ 1 and in [Muroga,Toda,1966] a construction shows 

that: 

n(n-3) +B 
IT~ I > 2 2 for (n ~ 9) 

Yet, we cannot use it here for d > 2 , because the inclusion 

above is strict. For the special important case of d = 2 we 

get: 

hence the capacity C~ is exactly of the order of n 3 bits. 

However, the following is true: 

Theorem 5.6: 

Proof: Consider the square matrix M with 

-2n rows indexed by the vertices X = (x 1, ... ,xn) of Hn 

-2n columns indexed by the subsets I of N = {1,2, ... ,n} 

and such that: M(X,I) = XI = H X· (x0 =1) . 
iE I ~ 

It can be shown that M is a Hadamard matrix and therefore 

det M ;e 0. In particular for any set I c P(N) we can find 

I I I vectors on Hn such that the corresponding I I I X I I I 

submatrix has full rank. Let M 1 be such a matrix, 

corresponding to vectors Y 1, Y 2, ... , Y 
1 1 1 

of Hn. If a: = 

( ai) is the column vector representing the coefficients of an 

element in F~, the system: MI a = 13 has a unique solution 

for any vector 13. In particular for any subset A of 
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{1,2, ... , I I I} we can find 2r:. element T in T~ such that: 

0 if i E: A and T(Y i) < 0 if i E: {1,2, ... , i I I} - A . 

Therefore, 2 1 I 1 < : T;I 

As a straightforward application: 
(~) 

! Td I > 2 and n 

[n] 
! T~ I > 2r(n,d) . Because of I Ad I > I Td- 1 1 2 , and of 

n [~] 

- [n] 
I A-d I > I Td-1 I 2 h 

n I we ave: 
[ ~] 

Theorem 5.7: 

For d ~ [~] 
[ [ ¥1 l [~] 
d-1 

> 2 and 

d r([D2],d-l)[D2] . 
'Ah > 2 

Using simple bounds in these exponents yields: 

1 [n]([n] d 2)d-1 
1 
Ad 

1 
> 2 ( d 1 ) ! 2 2 - + and also 

n 

Let C~ be the capacity of the algebraic forms of degree d on 

Hn 1 and C the total capacity of Hn. Then we can sum part of 

our results in: 

Theorem 5.8: 
n For d ~ [2 ] : 

1 n n 2 )d-1 < cd < nd+ 1 
{d-1)! [~]([~] - d + n (d-2)! and 

[n] 
[~](2 ~ - 1) < C < n2n-1 . 
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VI. STABLE STATES 

The discrete neural network presented in the 

introduction can be used as a model of associative 

content-addressable memory capable of storing and processing 

information; the storage is made in a certain subset of the 

local minima of the energy function E on Hn and the 

processing occurs during the evolution of the network as 

error correction and nearest neighbor search. 

We shall now: 

(1) introduce a general formula for the storage of stable 

states in a network with E in F~, show its invariance under 

the action of a group of isometries and a new explanation for 

the appearance of additional stable states in many situations. 

(2) derive a general bound, independent of the storage 

rule adopted, for the maximal number of arbitrarily chosen 

points that can be made stable. 

(3) study possible alternatives in the case d = 2. 

(4) analyze in some details the properties of networks 

in which orthogonal states have been stored. 

Throughout this chapter we shall assume, for simplicity, that 

all thresholds are set to 0. 

(1) Outerproduct formula of degree d - Action of isometries. 

In order to store k vectors "or memories" M1, ... , Mk of 

Hn as stable states of a form of degree d we introduce the 

homogeneous energy function: 
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-1 k ; XI E(X) = err I I M-'- where I III=d i=l 

Mi II M~ and Mi ( i i = = Ml, .. ,Mn) I jEI J 

This is a generalization of the classical outerproduct scheme 

or Hebb's rule where d = 2 , and we shall call it: outerproduct 

scheme of degree d. 

The appropriateness of such a construction can be seen 

using the same simple statistical considerations as in 

[Hopfield,1982]. Insight can also be obtained from the special 

case where the vectors M1, ... , Mk are orthogonal. We present 

here an additional point of view in favor of this formula 

which is helpful also in other considerations. 

A one to one map a: Hn 4 Hn will be called an isometry 

iff it preserves the Hamming distance between points. The set 

of all such isometries is a group In which is a subgroup of 

the group of isometries of rRn with the euclidean distance, and 

which is generated by two kinds of isometries: 

-a ij which permutes the i and j coordinates 

-the inversion r(X) = 7(-X) . 

It is also the set of all n X n matrices with n - 1 zeros in 

each row and column, the non zero entry in each line being -1 

or +1 and as such is called the monomial group. Alternatively 

it can be seen as the wreath product: 

I I I = 2n X n! . n Two orientations 

~2 ®w Sn. In any case 

of Hn will be said 

isometric iff there exists an isometry of Hn sending one 

orientation into the other. The following theorem shows that 

the outerproduct scheme behaves very nicely with respect to 

isometries. 
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Theorem 6.1: 

Let M1, ... , Mk be in Hn. Let a be any isometry in In. Let 

E (resp. E0
) be the form in F~(IR) obtained by the 

outerproduct scheme of degree d applied to the vectors M1 

(resp: o(M1 )) .2 = 1, ... , k. Then, for any vertex X of Hn , 

E(X) = E 0 {a(X)) . 

Proof: (We shall omit a few simple algebraic steps.) 

It is enough to show it for the generators of In. 

1st case: a = ; . Then: 

2nd case: a = oab' Then: 

1 k =-ar L L 
III=d i=l 

aab(I) 
X = E(X). 

Since the values assumed by the energy function entirely 

define an A.O. of Hn, Theorem 6.1 shows that the outerproduct 

scheme is invariant under the action of the group In. But 

there is a deeper consequence to theorem 6.1. If H denotes 
1 k the subgroup of In that leaves the set {M , ... ,M } globally 

invariant then for any h in H and any X in Hn we have: 

E(X) = Eh(h(X)) = E(h(X)) 

Moreover, any isometry h preserves the neighborhood 

relations. Therefore, if X is a stable point, so is the entire 
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orbit H(X). The action of H partitions the hypercube Hn into 

orbits of equal energy, each one being characterized by a 

common dynamical behavior of its points. This property, as we 

shall see, can be used in counting stable states and accounts 

for their great number. 

[In the case where d is even it is easy to see that the 

inversion r should be included in H.] 

(2) General bound on storage: 

It is known, that in order to use the outerproduct 

scheme effectively, k should not be "too large~< and the 

vectors M1, ... , Mk should not be "too correlated". When d = 2, 

Hopfield predicted experimentally a maximal storage capacity 

of the order: k ~ 0.15n , and in [McEliece, Posner, Rodemich, 

Venkatesh, 1986) a statistical bound of 2 1gg n can be found. 

Similar results can be obtained for d > 2 

[Ba1di,Venkatesh,1986]. Nevertheless these estimates are 

restricted to the outerproduct construction. The following 

natural question arises: for any fixed d, what is the maximum 

k such that any k vectors of Hn can be made stable in a 

generalized neural network with energy function in F~(I"R)? 
We have the theorem: 

Theorem 6.2: 

Suppose 1 k n that for any k vectors M , ••• , M of H we can 

find a form Q in 

Q on Hn . Then: 

d 1 k Fn(IR) such that M , .•• , M are local minima of 

k ::s; r(n-1,d-1) 

Proof: We generalize the proof of the case 

d = 2 in [Abu-Mostafa and St. Jacques,l985]. 

Consider k vectors M1, ... , Mk. Fix their n-1 last coordinates 
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such that they are all different (k < 2n- 1). Consider the 

threshold function corresponding to the first generalized 

neuron i .e. to the first coordinate. For any of the 2k possible 

choices for Mi, ... , M~ we must find an algebraic form Q in 
d-1 F n _ 1 such that: 

i = 1, ... , k. 

For any i the coefficients M~, ... , M~ define an hyperplane in 

the space F~::: i. There are k such hyperplanes and we have 

seen 
k . 

they determine at most B r ( n- 1 , d- 1 ) regions. 

Therefore: 

If k > r(n-l,d-1) then we should have: 

k-1 
2k < 2 L (~-1) = 2k 

i=O 
a contradiction. 

So: 

k ~ r(n-1,d-1) . 

(3) Other formulas for d = 2: 

The outerproduct rule is by no means the only possible 

one. For several applications it is reasonable to require for 

any sensible formula to be: 

(i) invariant under the action of In 

(ii) local in the sense that deletion or addition of a 

new memory M1 should be possible via simple independent 

computations on subsets of components of M1 of size at most d 

if a form in Fd is to be used. If d = 2 and if we let M be the n 
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1 k n X k matrix which columns are the vectors M , ... , M then the 

outerproduct rule leads to the energy function: E(X) = -~ 

XTAX where: A = MMT - ki is the symmetric, a-diagonal matrix 

of synaptic 

written as: 

situations 

interconnections between neurons. A can also be 

A = ~ MiMiT ki There exist many 
i=l 

where different importance is attached to the 

different states one wants to recall. This leads to the 

following possible generalization: attach a positive weight 

A. i to each Mi and define the connection matrix to be: 

k 

k 
A = I 

i=l 

where I\ = I \i . In matrix notation A can also be written: 
i=l 

A = (MD)(MD) T - /\I where D is a diagonal k X k matrix, with 

elements Jri on the diagonal. In the next section we shall 

study the effect of the introduction of the weights \i on the 

A.O. of Hn . This weighted outerproduct formula can easily be 
d extended to networks with energy function in F n' d > 2, and 

satisfies the two requirements (i) and (ii). 

When the 

describes the 

vectors Mi are orthogonal the matrix 1MMT n 
orthogonal projection onto the space 

<Mi,i=l, ... k>. Based on this remark, Personnaz, Guyon and 

Dreyfus have introduced another alternative to the Hebbian 

rule for d = 2, called the "projection rule". They use a neural 

network with a synchronous updating scheme, i.e. all the 

neurons are updated at the same time and in parallel at each 

step. The synchronous scheme is deterministic and always 

converges to a stable state or to a cycle. If the matrix of 

interconnections is symmetric it can be shown that all cycles 

have length at most 2. In the general case, longer cycles can 

be obtained. 

To define the "projection rule" let MI be the Moore-Penrose 
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I 1 T pseudoinverse of M. Let A = MM and E(X) = - 2x AX . Then A is 

the matrix of the orthogonal projection onto the space 

<Mi,i=l , .. . k> and it can be shown that in this special case the 

network, if updated synchronously, always converges to a 

stable state. Indeed, given a point X on Hn , the system first 

projects X orthogonally onto <Mi,i=l, ... ,k> and then by the 

thresholding operation, selects the point of Hn closest to 

A(X). A vector X is stable iff it is the closest vector of Hn to 

its projection. Because of this geometric interpretation, the 

"projection rule" is also invariant under the action of In. In 

the analysis of stable states, even a larger group H can be 

taken, for if X is stable and a is an isometry leaving 

<Mi,i=l, ... k> globally invariant, then A and A a are the same 

operator and therefore a(X) must be also stable. 

(4) Orthogonal case: 

We restrict now ourselves to the case where M1 , ... ,Mk are 

orthogonal, d = 2, and the matrix A is given by the weighted 

outerproduct formula: 

Special attention will be given to the usual case: A.i = 1 . It 

is easy to see that we have: 

A(Mi) = (nA.i-A)Mi and E(Mi) = -~ n(nA.i-A) 

for i = 1, .. . , k . Also for any Mj in Hn orthogonal to 

<Mi,i=l, ... ,k> (it it exists) we have: 

A(Mj) = A Mj and E(Mj) = ~ n A 

If n A. i - A ~ 0 then Mi and -Mi are stable states of the 

corresponding network. Moreover the energy of Mi is 

proportional to nA.i A Because of the elementary 

properties of real symmetric matrices and associated 

quadratic forms the memory with the highest weight A.i will 
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yield a minima of the energy on the sphere of radius j n 

and therefore also on Hn . Any Mj orthogonal to <Mi,i=l, ... ,k> 

corresponds to a maxima of the energy and therefore to a 

highly unstable point. The weights Ai deform the depth of 

the "valleys". 

"landscape" with A. = 1 i = 1, ... , k . 
~ 

We turn now to the size of the basins of attraction. If X 

is a vector of Hn and if di is the Hamming distance from X to 

Mi then: 

k 
A(X) = L: A i (n-2di)Mi - 11. X 

i=1 
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1 T 1 k T . 
= 2 X ,\ X - 2 I \.i(n-2d ; )X M1 

i=1 -
E(X) 

Because of the orthogonality of the memories, the triangle 

inequality on the Hamming distance and the invariance under 

the action of In we have the following properties for the 

distances di i = 1, ... , k : 

dk 

(i) without loss of generality we can assume 

(otherwise replace Mi by -Mi) 

(ii) for any i and f. di + d f. ~ 
n and the inequality 2 

is strict for X ~ Mi, X ~ Mf. 

(iii) if we reorder M1, ... , Mk so that d1 $ d2 $ 

then: 

di ~ N 
- d1 2 ~ i ~ k 2 

(iv) di ~ 
n 2 ~ i ~ k 4 

(v) d1 ~ 
N 

- di ~ 
N 

- dk 2 2 

(vi) if d1 d. = dk then di ~ 
N 1 ~ i ~ k = 4 1 

$ 

Assume now that X is our starting state and we ask 

under which condition on d 1 can we be certain that the system 

will converge to M1? By using again the invariance of the 

dynamical behavior under the action of 

without loss of generality that: M1 = 
T (-1,-1, ... ,-1,1, ... 1) . Since: 

In we can assume 

(1,1, ... ,1) T and X = 

k 
A(X) = \. 1 (N-2d1) + I \.i (N-2di)Mi - A X 

i=2 

we see that if X is to converge M1 we must have: 
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k 
A. 1(n-2d1) + 2: A. ~ (n- 2d; )M~ + .1\ > o 1 :;: J :> d! 

i=2 ..!. • J -

In both inequalities, the worst case occuYs when 
k 
2: A.i(n-2di)MJ~ is minimal. Because of inequality (iii) above 

i=2 
we have: 

> -/ 

Substituting in both inequalities we finally get: 

It is easy to construct examples of small size where this 

bound is attained; as a general bound it is best possible. 

Therefore the radius of the basin of attraction (as well as 

their depth) is affected by the weights A. i . We have: 

Theorem 6.3: 

In a neural network corresponding 

outerproduct on k orthogonal vectors 1 M I ... , 

to a weighted 

Mk with weights 

>.. 1, ... , >..k if n>..i - A ~ 0 then Mi is a stable state and its 

radius of attraction Ri satisfies: 

l n>.. 1 -A J 
2 A 

In the usual case >..i = 1, we have: 

l Ri2k J ~ Ri 
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In the previous drawings o f t~e landscape of the energy 

on Hn we did not include an essential fact: in the general 

case there exist additional stable states in the systems 

which are not ::n the set { ~M{ i=1, ... ,k}. We shall brief.::.y study 

these states using the action of In In the weighted 

outerproduct formula, the interesting subgroup H is the 

subgroup o:= In leaving {:=Mii=1, ... ,k} globally invariant. For 

simplicity we shall assume for the rest of this chapter that 

"-i = 1 i=1, ... ,k . In this case AMMT is the matrix of the 

orthogonal projection onto <Mi,i=1, ... ,k>. Therefore, we can take 

for H the subgroup of In leaving the linear space <Mi,i=1, ... ,k> 

globally invariant. 

Let X be a state such that di = d(X1 Mi) ~ ~ . Then, since the 

vectors Mi have the lowest energy levels we must have: n 2 ~ 
k 
2: (n-2di) 2 

i=1 
In particular if 

i = 2 + 1, ... , k then: 

d. = d 
]. 

i = 1, ... ,2 

n or 2 
li"-1 < d 

jT 

and 

2 
For such an X we have: A(X) = 2: (n-2d)Mi - kX and X is 

i=1 
stable iff: 

2 
(n-2d) 2: M~ X; ~ k 

i=l J .) 

Therefore, if X is to be stable 

i Mj). In particular 

the case for R 

R 
M~ 2: must 

i=1 J 

2 
odd. If 2: 

i=1 

j = 1, ... , n . 

R 
we must have: x. = sgn( 2: 

J i=1 

be nonzero which is always 

~ 0 for any j then the 

condition n;k ~ d is sufficient to ensure stability of X 

Notice also that X is not in the basin of attraction of any 

Mi , therefore we also have: d > ¥ . In summary: 
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Proposition 6.4: 

Consider a neural network corresponding to an 

outerproduct formula on k orthogonal vectors M1, ... , Mk of Hn. 

Let S be a non empty subset of {1, ... ,k} such that: . IS M~ ;: 0 
l e: J 

for any j = 1, ... , n . Let X be such that xJ. = sgn . Is M~ . If 
. . l e: J 

d(X,Ml) = d for i in S, and d(X,Ml) = ~ for i not in S , then a 

sufficient condition for the stability of X is: d ~ n2k 

Under these assumptions d shall also satisfy: 

[
n-k 

max--, 
2k 

n(fiSI- 1)] 
< d 

2 /lSI 

As a simple application we can state: 

Theorem 6.5: 

In a neural network corresponding to an outerproduct 

formula on k orthogonal vectors of Hn , the number of stable 

states is: 2 for k = 1, 4 for k = 2, and 14 for k = 3 . 

Proof: Case k = 1,2: left as an exercise. Case k = 3: notice 

that n must be a multiple of 4. By using the invariance of the 

dynamical behavior under the action of In we can assume 

without loss of generality that: 

._ _______ ....,._------ ---- -· 
~---... - ----- --- ---t 

The majority vector X 

X = 
._ ______________ ,._---- -~ 

satisfies the condition of Proposition 6.4. Therefore 

{:Mi,:X} are all stable states. By writing up the conditions 

for stability it is easy to see that the coordinates of any 

stable vector must have a constant sign in each one of the 
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four "quarters". ':'here are at most 24 = 16 stable states. The 

group H which leaves <M1,M 2,M3> globally invariant contains 

* * the isometries 7 , a 1, a 1 , a 2, a 2 where : 

-1 is the multiplication by -1 : 

- a 1 is the cyclic shift of length ~ 

""'-------- - - ------------
* -a 1 (X) is the symmetry with respect to the central axis: 

* a
1

(X) = , ______ ......, ___ ...,. ____ .._ ___ _ 

-a 2 is the cyclic shift of length ~ on the first and last 

~ bits separately 

----------------.------~------* -a 2 is the symmetry with respect to the quarter axis on 

the first and last R bits separately 

* a 2 (X) = -----------------
Therefore we have 14 stable states: 

1 2 3 * {±M ,±M ,±M ,±X,±a1 (X),±a 1 (X),±a 2 (X)} . 

In this case, the orbit of X under H yields all the additional 

stable states, for it is easy to check that the remaining 

candidate Y : 

y = .._ ___ .,._ ________ ---- _.,_ ___ _ 
and its opposite are unstable since they are orthogonal to 

M1, M2 and M3 . 

To finish this chapter let us mention an interesting, 

partially open problem. It is a well known fact that in 

diverse occasions the output of biological systems seems to 

be invariant under the action of a certain group. It is the 

case in perception, in vision for instance, where objects can 

be recognized in spite of several types of deformations. This 

motivates the following question: given a group G acting on 
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Hn can we find an ene:c-gy funct.:.on (and hence a r..eu :c-al 

network) "corresponding" to G . ?o::- instance, is there a form 

.:.n F~ which takes a constant diffe:c-ent v alue on each orbit of 

G or one such that if X is stable so is G(X) at least for a 

carefully chosen subset of vectors X? In particular, which 

groups can be represented in such a fashion using only 

quadratic forms? 
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VII. SOME STATISTICAL PROPERTIES 

It is of interest to introduce probability distributions 

on the previously studied sets. The easiest case corresponds 

to the introduction of uniform distributions Un(S) on the 
d various sets: L(G), An(G) ... 

Some simple computations can be done at least in the 

case of Un(L(Hn) where any linear ordering of the vertices is 

equiprobable with probability - 1-
2n!. 

As in [Harary,1972] define the indegree (resp. outdegree) 

of a point to be the number of vertices adjacent to (resp. 

from) it. A point basis is a minimal collection of points from 

which all vertices are reachable. It is known that every 

acyclic digraph has a unique point basis consisting of all 

vertices of indegree 0. Vertices of outdegree 0 are the stable 

points. Point basis correspond to "valleys": 

Theorem 7.1: 

With the distribution Un(L(Hn)): 

average number of stable points 

point basis. 

2n = n+l = average size of a 

Proof: There exists an obvious symmetry between points of 

indegree 0 and points with outdegree 0. The average is given 

by: 

In [Tovey,1985] a proof is given of: 
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Theorem 7.2: 

With the distribution Un(l(Hn)), the expected number of 
3 iterations of the local algorithm is less than ~ en. 
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VIII. COMPLEXITY AND REDUCTION ALGORITHM 

The theory of neural networks has an obvious origin in 

neurobiology and natural applications to circuit archi­

tectures. Conceptually, one way they have been considered is 

from the standpoint of error corrections and content­

addressable memory (CAM). However, we have seen that the 

basic operation performed even by the generalized neural 

networks is the search for the local minima of an algebraic 

energy function. Therefore a second approach becomes 

possible in a context of optimization problems, which leads us 

to the following question: how difficult and how fundamental 

is it to find the minimum of an algebraic form over the 

hypercube Hn? 

This approach is not new and several results are 

already known (for instance [Hopfield,Tank,1985]). A few of 

them arose first in statistical mechanics in the theory of 

spin glasses. This is no wonder since neural networks can be 

interpreted as a certain limiting form of spin glasses and 

important relations between statistical mechanics and 

combinatorial optimization problems have been discovered in 

the past years [Kirkpatrick,Gelatt,Vecchi,1983]. As a result 

new ways of dealing with traditionally intractable problems 

have appeared (for example: simulated annealing). 

We shall now try to organize a few complexity results in 

terms of neural networks including some extensions and 

simplifications. Denote by Min Q, Q in F~(A) the general 

problem of minimizing a form Q in F~(A) over the hypercube 

Hn. Recall that if the decision problem "Is there a point X 

such that Q(X) < K ?" is NP complete the corresponding 

optimization problem is NP hard. Also, in order to have 

problems with finite input, we shall require A to be a subset 
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of the integers. We have the followi:cg: 

Theorem 8.1: 

Min Q, Q in F~(~) or F~(~) is NP hard for d > 1 and is in p 

for d = 1. 

n 
Proof: (1} If d = 1 let Q(X) = x 0 + t ai xi . ~hen the minimum 

of Q is attained for X = (-sgn a 1, ... ,-sgnan} 

(2) We shall first show that: if Min Q, Q in F~' (~} or F~' (~) 
is in P then Min Q, Q in F~(~) or F~(~) is also in P for 

d < d '. The proof is by induction. 

If Qe:F~(~)(resp F~(~)} then if y is an additional variable the 

form Q' = yQ is in F~:i (2)(resp. F~:f(~)). Assume that we 

have a polynomial time algorithm for forms in Fd~ 1 (~) and 

hence for forms in F~:f(~). Apply this algorithm to Q '. m' = 

Min Q' = Min(Min Q,Min -Q) = Min(Min Q, -Max Q). 

1st case: m' is attained for y = +1. Then m' = min Q. 

2nd case: m' is attained for y = -1. Then m' = -max Q. 
d+1 Consider Q" = y(Q+m '). Then Q" is in Fn+l (~) and: 

m " = Min Q" = Min(Min Q+m ',-Max Q-m '} = Min(Min Q+m ',0) = 
Min Q + m' and so Min Q = m" - m '. 

Therefore we can restrict ourselves to quadratic forms. 

It is not difficult to see that a large variety of NP complete 

problems can be encoded very easily into quadratic form 

optimization. _1\n example using a reduction from TSP (Traveling 

Salesman Problem) can be found in [Hopfield,Tank,1985]. It is 

in fact the easiness of such an encoding in many instances, 

rather than its existence in one of them, that is important to 

us. We shall give here a slightly different proof that yields 

some additional information. First of all, notice that we can 
-2 

restrict ourselves to the problem Min Q, Q in Fn(~). Indeed, 
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if Q = L a iJ"X x.x. +)a . x. + ao 
i,j l J I l l 

cons i der t he fo rm 

Q' = . L . aij xi xj + ~ aixiy i !l. Fnil (;z ), where y is some 
l,l l 

additional variable. Because of i t s symmetry, Q' reaches i ts 

minimum for a point on Hn+l where y = +1. This point yields a 

minimum for Q. The algebraic operation of introducing the 

v ariable y has an interesting interpretation from the point o f 

view of the neurons. Given a neural network with energy 

function: E(X} = -1 L a .. x.x . + 
2 i I j lJ l J 

equivalent to a network with n + 1 

n 
.L t.x. it is completely 

i=l l l 
neurons with 0 thresholds, 

the new additional neuron y being connected to each neuron 

x i with an edge of weight -ti . In addition, y must be held to 

the value + 1. 

Thresholds can therefore be suppressed by increasing the 

complexity of the graph G of interconnections. Now Min Q, Q in 

F~(Z) is trivially equivalent to the NP hard problem "Matrix 

Cover" [Garey,Johnson,1979] and stays so even if the symmetric 

matrix ( aij) is required to be positive definite. 

Biological hardware seem to perform operations that are 

more of a "matching" type rather than boolean or arithmetic. 

It is therefore interesting also to investigate further the 

relation between our discrete optimization problem and 

questions of the matching type. For this purpose consider the 
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restricted problem Min Q, Q in F~, (2+). Write Q as an er!ergy 

function: 

If we let 

Q(X) = where a .. ~ 0. 
lJ 

k = 2: aij with the obvious notations we have: 
i' j 

Q(X) = l(k- 22: a .. ) = 
2 i, j lJ 

k + 2: a ij . 
2 i,j 

X· ;tX · 
1 J Xi;t:Xj 

Therefore minimizing Q(X) is equivalent to minJmizing 

aij . This simply means we want to partition the 

vertices of the graph G of interconnections into two sets 

(spins up and down or neurons on and off) in order to 

minimize the total weight 2: aij of the edges joining the two 

subsets corresponding to the partition. This proves that the 

problem Min Cut [Garey,Johnson,l979] on a simple graph with 

weights aij e: ~ is exactly equivalent to the problem of 

finding the ground state of the corresponding neural network 

with only inhibitory connections. The problem is known to 

remain NP hard if aij = -1 [Garey,Johnson,and Stockmeyer,l976] 

for any i and j (SIMPLE MIN CUT) and if in addition no vertex 

has degree exceeding 3. It can be solved in polynomial time if 

G is planar [Garey,Johnson,l979]. 

It should be noticed that the complexity of the opti­

mization of a homogeneous quadratic form over Hn contrasts 

with the simplicity of its optimization over the n dimensional 

ball of radius R where the optimum is obtained on the surface 

of the sphere in the direction of an eigenvector corre­

sponding to an extremal eigenvalue. 

We shall now attempt to summarize several results 

relating the complexity of the optimization problem to the 



78 

structure o f the graph G of i n terconnections and the ~ature 

of the thresholds and synaptic weights. When necessary we 

shall think to the form Q as an energy function: 

Q(X) = - 1 L ai ...~~ xixi + L t.x .. 
2i,j - i ~~ 

We have the theorem: 

Theorem 8.2: 

(1) Min Q, Q in F~(2-) is in P . 

(2) Min Q, Q in 2 + 2) is in Fn(aij e: 2 ,ti e: 

(3) Min Q, Q in :F~(2l where G is a tree 

(4) Min Q, Q in F~(Z) where G is a tree 

(5) Min Q, Q in :F~(2l where G is planar 

(6) Min Q, Q in F~(Z) where G is the 2-D 

or the plane or the torus is in P . 

Proof: (1) is trivial. 

(2) see [Barahona,1985]. 

(3) left as an exercise. 

P . 

is in P. 

is in P. 

is in P. 

quadratic lattice 

(4) We have seen that the introduction in Q of a linear part 

or equivalently of non zero thresholds in the network can be 

seen as the addition of a new neuron interconnected to all 

the previous ones. This topological operation in general 

greatly increases the genus of G and as we shall see, is 

responsible for the transition P ~ NP for general planar 

graphs. Yet in the case of a tree it can be seen that this 

operation leaves the genus unchanged and equal to zero. 

Therefore (4) is a consequence of (5). 

(5) see our discussion on MIN CUT above. 
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(6) see [Barahona,1982]. 

On the other hand, we have: 

Theorem 8.3 

(1) Min Q, Q in F 2 (a .. =-1,t.=1) and G is cubic planar is NP n l.J J. 

hard. 
-2 (2) Min Q, Q in Fn({-1,0,1}) where G is a 2 levels grid is NP 

hard. 

(3) Min F~({-1}) and every vertex of G has degree at most 3 is 

NP hard 

(4) Min F~({-1,1}) where G is the hypercubic lattice and one 

dimension can be kept fixed (say to 4) is NP hard. 

Proof: (1) see [Barahona,1982]. This point in particular shows 

the possible computational power of thresholds. In appli­

cations they can be stored locally and can introduce 

simplifications in the layout of the neural circuits. Real 

neurons are known to have non zero thresholds of the order 

of -70mv though there are additional reasons for this. 

(2) see [Barahona,1982]. By 2 level grid we mean the graph: 

(3) see our discussion on MIN CUT above. 

(4) see [Bachas,1984]. 

Notice that in general the "clipping" of the synaptic 

strengths (i.e. 

complexity. 

a . . =-1, 0 or 1) does not really affect the 
l.J 

In dealing with NP complete problems planar circuits 

with a-thresholds are not very well suited. Yet their ground 
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states and other properties can be computed in polynomial 

times. The ground state yields an optimal matching between 

frustrated faces [Barahona,1982]. Whether we could take 

advantage in real circuits of these computable 

characteristics, say for information storage, remains to be 

seen. 

Reduction Algorithm 

The results in the previous section indicate that any 

NP complete problem can be reduced to the optimization of a 

quadratic form even homogeneous with 0 and 1 coefficients 

over Hn. This encoding is particularly easy for some matching 

type situations. It is more difficult for boolean logic and 

moreover we have seen there exist problems that lead 

naturally to quartic energy networks. Logic gates cannot be 

represented directly by a-threshold neurons with a quadratic 

energy function E. For these networks have a basic symmetry 

E(-X) = E(X) which is violated by boolean functions. (If f is a 

boolean function in general it is not true that: f(x 1, ... ,xn) = 
f(x 1, ... ,xn)). Notice also that for applications, neural circuits 

where the synaptic connections strength are allowed to 

assume only two values, 0 or 1, are sometimes easier to 

implement. We shall therefore now investigate two types of 

questions: 

-reduction of boolean logic to neural networks and vice 

versa. 

-reduction of general networks to "clipped" networks 

with 0-1 connections. 

We solve these problems here only for the most inter­

esting case of quadratic energy functions, although the same 

type of techniques apply for d > 2. The results are obtained 

in a context of optimization, though there exist experimental 
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evidence [Hopfield,1 982] also for the CAM applications. We 

shall use the notations o f [Garey and Johnson,1979]. 

The k ey element in answering both questions i s the 

introduction of an additional NP complete problem: MAX 2SAT. 

Given a set U of variables and a collection C of clauses over 

U, the satisfiability (SAT) problem consist in determining 

whether there is a satisfying truth assignment for C. If each 

c in C has I c I = 3 then the problem is called 3-satisfiability 

or 3SAT and both are NP complete. If for any c in C, I c I = 2 

then the problem becomes solvable in polynomial time. Yet if 

we fix a positive integer K and ask if there exists a truth 

assignment for U that simultaneously satisfies at least K of 

the clauses in U (K ~ C), the task becomes NP complete and is 

called MAX 2SAT. MAX 2SAT enables the transformation of 

satisfiability problems into optimization problems. We shall 

explore the following table of reductions: 

Min Q, Q in 

Min 

F2(Z)/ 
n 

\ 
(1) Min Q, Q in 

-2 
Fn({O,l}) 

( 0 ) ( 2 ) 

PI 
SAT 3SAT MAX 2SAT SIMPLE MAXCUT --- MAXCUT 
t - I ( 4) 

T 

T = trivial p = refer to previous section (0) = see [Garey 

and Johnson,1979] 
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(1) Reduction of MAX 2SAT to Min Q, Q in F~(Z). 

Keeping the same notation for litterals in MAX 2SAT and 

variables of Q we can use the following encoding: 

MAX 

xi 

x.vx.­
l J 

2SAT can 

1 - x~ 
.l. 

xi + xj - xixj 

(xi are 0-1 variables) 

then be converted into Max P, where P is 

obtained by adding all the quadratic forms corresponding to 

each clause in MAX 2SAT. Then P(x1, ... ,xn) = K iff K clauses are 

satisfied by the corresponding assignment.· Therefore MAX 

2SAT is transformed into Min(-P) over the 0,1 hypercube. There 

exists a trivial one to one affine (and therefore polynomial) 

transformation from say the hypercube of a,b coordinates to 

the (1,-1) hypercube Hn. Therefore, the nature of the 

hypercube is irrelevant here. In conclusion MAX 2SAT can be 

simulated on a neural network with quadratic energy where 

the number of neurons is exactly equal to the number of 

litterals in MAX 2SAT. 

(2) Reduction of 3SAT to MAX 2SAT. 

This is done in [Garey,Johnson,Stockmeyer,1976]. If 3SAT has 

I C I clauses of 3 litterals on m variables the corresponding 

MAX 2SAT has 7 I C 1 clause on m + I C I variables. Therefore, 

combining (1) and (2), 3SAT can be simulated on a neural 

network with n = m + ICI neurons. 

(3) Reduction of Min Q, Q in F~(Z+) to MAX 2SAT. 

Let Q = 2: aij xi xj with aij ~ 0, xi = ±1 . To each term of 

the form a . . x. x . attach 2 al. J. clauses: lJ l J 

aij times 
yiVyj 

yiVyj 
where yi i = 1, ... , n . 

Consider the corresponding MAX 2SAT on n boolean variables 
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with 2 X I a
1
.; clauses. Notice that if X; ;::: X.; then the 2 a ; . 

..) ~ ..) ~J 

associated clauses are true, otherwise if x. = x. only a .. of 
1 J 1] 

these clauses are true. For a given assignment of the xi and 

therefore y. variables the number of clauses which are 
1 

satisfied is given by: 

3 1 3 1 
I (2 air2 aijxixj) = 2 I aij - 2 Q(X). 

Therefore, minimizing Q is equivalent to maximizing the 

number of satisfied clauses. 

These results partially solve the question of mapping 

SAT into neural networks and vice versa. We shall investigate 

now the reduction to "clipped" neural networks. By the 

general equivalence of NP complete problems, we know that 

such a reduction is possible. Since the capacity of quadratic 

forms on Hn is of the order of n 3, and the capacity of clipped 

forms is at most of the order of n 2 we see that in order to 

be able to reduce any forms in F~(~) to a form in F~(0,1), p 

must be at least of the order of n 312 . But this is a lower 

bound and an explicit algorithm will yield an upperbound. 

(4) Reduction of MAX 2SAT to SIMPLE MAX CUT. 

This is done in [Garey,Johnson and Stockmeyer,1976]. In 

particular it is shown that if MAX 2SAT has I C I clauses 

on m variables one can construct a corresponding SIMPLE MAX 

CUT on a graph with 2(3 I C I +1) + 2m + 2m(3 I C I +1) vertices. 

In the same reference a careful description of the edges is 

of course also given. The equivalence of SIMPLE MAX CUT on a 

graph with n nodes and Min Q, Q in F~(l,O) has already been 

seen. Hence, combining (3) and (4) we get: 
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Theorem 8.4: 

Let Q = I a .. x. x. be a form in Fn2 (~+). Let d = I a.;J· 
~J ~ J ... 

and m = max aij" Then the problem Min Q can be reduced to the 

problem Min P where P is in F~(O,l) and p = (6d + 1)(2n + 2) + 

2n. 

In particular we have: 

Proof: Min Q can be transformed into MAX 2SAT with n litterals 

and 2d clauses. MAX 2SAT can be reduced to .a SIMPLE MAXCUT 

on a graph with p vertices, with: 

p = 2(6d + 1) + 2n + 2n(6d + 1). So: p = (6d + 1)(2n + 2) + 2n , 

and this last problem can be directly mapped into a clipped 

neural network containing p neurons. Since we have 

d ~ ((~) - n)m < (~) m , we get p ~ O(mn3 ). 

It would be interesting to have more knowledge about 

the properties of neural networks where m has a known fixed 

or variable upperbound. In [Minsky,Papert,l969] some "learning 

algorithms" where m grows exponentially are described. This 

is in contrast with the case for instance of the outerproduct 

formula with d = 2 on k vectors where a bound m ~ k holds 

and k is certainly less than O(n) in a context of CAM 

applications. 
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Embeddlngs of Ultrametric Spaces in Finite Dimensional Structures 

Abstract: Motivated by recent advances in theoretical physics and combina­

torial optimization, we study the problem of embedding ultrametric spaces into 

finite dimensional structures: finite sets, euclidean spaces lR", euclidean sphere 

S", and n-dimensional hypercube with Hamming distance. We give conditions 

and constructions of embeddings and show a general upper bound of n + 1 on 

the cardinal of the ultrametric set. We also give an upper bound on the cardinal 

of quasi-ultrametric sets. 

§1 Introduction 

Definition 1.1: Let (X,d) be a metric space; that is X is a set and d:X x X -+ 

)R+ is a distance function . The distance d is said to be ultrametric or non­

archimedean if it satisfies: 

d(x,z) ~ max(d(x,y),d(y,z)) (1) 

Equivalently: every triangle is isoceles with the third side shorter or equal 

to the other two. The condition (1) implies immediately that for any two balls 

of radius R: 

B(x, R) n B(y, R) =/; 0 implies B(x, R) = B(y, R) (2) 

An important class of ultrametric spaces is obtained from non-archimedean 

valuations over fields.For instance the p-adic valuation I IP over the p-adic field 

Qp satisfies: lx +Yip ~ max(lxlp, !Yip) and the corresponding distance: d(x, y) = 

lx- Yip is ultrametric. 

Discrete ultrametric spaces are known to have a hierarchical tree-like orga­

nization and have been used for instance in taxonomy[4]. Recent advances in 

theoretical physics and combinatorial optimization seem to be based on the dis­

covery of some underlying non-archimedean structure. In the replica symmetry 

breaking model for the Sherrington-Kirkpatrick spin glass the geometry of the 
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space of equilibrium states has been characterized by a hierarchic ultra.metric 

structure [6]. A model for ultra.metric information storage has been proposed in 

[8]. In [5] computer evidence is presented of an ultra.metric organization of the 

2-opt tours and the 3-opt tours in the travelling salesman problem. Similar ultra­

metric organization has been discussed in relation to graph coloring problems[3]. 

In all these cases bounds on the size of ultra.metric structures can yield valuable 

information. In the case of the spin glass, a polynomial bound will have impor­

tant consequences for the physical entropy. In the information storage models, 

capacity is crucial to practical applications and to biological modelling. In the 

optimization context, a polynomial bound on the number of .-\-optima would be 

very surprising and might lead to algorithms yielding the shortest tour in poly­

nomial time with probability 1. These applications are discussed in greater detail 

in [1]. 

We have thus been motivated to ask the following two questions: Let (E,de) 

and (X,d:z:) be two metric spaces. Assume (X,d:z:)is ultrametric. Then: 

(1)Can we embed X in E: ie can we find a subset Y of E isometric to (X,d:z:) for 

the distance induced by de on Y, (Y,deiY) """' (X, d:z:). 

(2)For a given E what is the maximal size of X for which such an embedding is 

possible? 

We have studied these problems for the following metric spaces: 

a)Subsets of ann-elements set with the distance 

d(X, Y) = max(IXI, IYI) - IX n Yl (3) 

b)Hypercube of dimension n, ie n-dimensiona.l vectors of coordinates (0,1) or 

(1,-1) with the Hamming distance d1a 

c)E=~" with the euclidian distance. 

In section 2 we prove. preliminary results concerning a class of matrices. In 

sections 3 and 4 we prove the following basic theorem. 

Theorem 1: For cases (a), (b), and (c), lXI ~ n+ 1, and this bound is attained. 

In section 5 we introduce trees. In section 6 we examine the general embed­

ding problem. In section 7 we extend Theorem 1 to the case when almost every 

triangle satisfies equation 1. This extension is crucial to practical applications. 
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§2 A Class of Matrices 

Given a -finite family 1 of real square matrices and >. E !R with >. =/= Aai 
for all A E 1, define B = B(1, >.) to be the square matrix with blocks A E 1 
on the main diagonal of B and each entry of B not in such a block equal to >.. 
The blocks A E 1 will be termed the maximal blocks of B(1, >.). Evidently 

if 111 > 1 < 11'1 and B(1,>.) = B(1',>.'), then>.=>.' and 1 = 1'. That is 

the maximal blocks of B(1,>.) are uniquely determined, as is the parameter>.. 

Write 1(B) and >.(B) for these invariants. 

Let B be the intersection of all sets A of square real matrices such that: 

(B1) Each 1 by 1 real matrix is in A. 

(B2) If 1 ~ A and >. E !R with >. =!= A,,. for all A E 1 and all entries A,i of A, 

then B(1, >.) EA. 

The matrices in B will be termed hierarchic. 

Define the depth of a 1 by 1 matrix to be 0, and, proceeding recursively, if 

BE B with I1(B)I > 1, define the depth d(B) of B to be 

d(B) = 1 + max{d(A) :A E 1(B)}. 

Given B E B, define the set Blk(B) of blocks of B as follows: 

If B is 1 by 1 then Blk(B)={B}. If d(B)> 0 define 

Blk(B) = {B} U ( U Blk(A)). 
AET(B) 

Partially order Blk(B) by A~ C if A EBlk(C). 

Define a matrix B to be ultrametric if B is hierarchic and >.(A) < >.(C) 
for all A,CE Blk{B) with A < C. Define B to be dual ultrametric if - B is 

ul trametric. 

Lemma 2.1: Let B be a nonzero dual ultra.metric matrix with all B,,. ~ 0. Then 

det(B)=/=0. 

Proof: Recall that a real symmetric square matrix A is semidefinite positive if all 

eigenvalues of A are nonnegative reals and A is definite positive if all eigenvalues 

of A are positive reals. We use the following well known elementary fact: 
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(2.1.1) Let A,C be semidefinite positive and D definite positive. Then A+C 

is semidefinite positive and A+D is definite positive. 

Let ..\ =).(B) and n the size of B. Let J be the n by n matrix all of whose 

entries are 1. Then B = ..\J + A, where A is a dual ultrametric matrix with 

..\(A)=O and 0# A 2: 0. Observe ..\J is semidefinite positive. Moreover if B is of 

depth 0, then as B# 0, B= ..\J = ..\ is definite positive. Hence, proceeding by 

induction on the depth of B, B is the sum of semidefinite positive matrices with 

a definite positive diagonal matrix. We conclude from (2.1.1) that B is definite 

positive. In particular det(B)# 0. 

Lemma 2.2: Let B be a nonzero hierarchic matrix of size N. Then 

(1) The rank of B is at least ~. 

{2) If N 2: 4 and ..\(B) # 0, then B has rank at least ~ + 1. 

Proof: We perform certain row and column operations on B. Let 

1(B) = (B(1), ... , B(n)) and let N1c be the size of B(k). Set m = N1. Let 
1 B be the matrix obtained by subtracting the first row of B from all other rows. 

Observe 1 B(k) remains heirarchic and ..\(1 B(k)) # 0 fork> 1. Hence by induc­

tion on N, 

(2.2.1) rank( 1 B(k)) 2:: ~ + 1 if N1c 2: 4. 

It is easy to see that 

(2.2.2) rank( 1 B(k) 2:: 1, 1, 2 for N1c = 1, 2, 3, respectively. In particular in this 

case rank(! B(k)) 2: ~· 

Similarly 2.2.1 and 2.2.2 hold if k=l. Next subtract the first row of 1 B(k) 

from the remaining rows of 1 B(k), for each k> 1. Denote the resulting matrix 

by 'lB. Define m to be the size of the block B(1) and write 'l Di for the row 

vector ('l Bi 1 , ••• , 'l Bim) of 'lB. Let v = B(1h be the first row of B(1) and ..\(m) 

the row vector of length m all of whose entries are ..\. Observe that 'l Di = 0 if 

i>m and i is not the first row of some block, while 'l Di = ..\(m) - v whenever 

i is the first row of a block 'l B(k) with k > 1. Observe also that the entry in 

the upper right hand corner of 'l B(k) is ..\(B(k)) - ..\ = CTic :f; 0. Thus if N~c = 1, 
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§3 Ultrametricity 

Recall tnat an ultrametrlc space is a pair (S,d) where S is a nonempty set 

and d is a non-archimedian distance function on S. Define a function d:S x S ---+ lR 

to be dual-ultrametric if and only if for all r, s, t E S, 

d(s,s) > d(s,r) ~ min{d(s,t),d(r,t)} ~ 0. Finally define d:S x S---+ lR to be 

trimetric if d-diag(d) is ultrametric and d(x,x)#d(x,y) for all distinct x, yES, 

where diag(d)=d(x,y) if y=x and 0 otherwise. 

Let (S,d) be an ultrametric or trimetric space and define 

.\(S) = max{d(a,b) : a,b E Sand a# b}. 

For a E S define 

~(a) = {s E S : d(a, s) < .\(S) or s =a}. 

Call ~(a) the neighborhood of a. 

Lemma 3.1: The set {~(a) :a E S} of neighborhoods is a partition of S such 

that ~(a) = ~(b) for all bE ~(a). 

Proof: Let a E Sand suppose bE S- ~(a). Let c E ~(a). Claim ~(a) =~(c). 

We may suppose c # a. Then d(a, b) = ,\ > d(a, c), so as S is ultrametric, 

d(b,c) = ,\, Hence S- ~(a)~ S- ~(c). By symmetry, S- ~(a) = S- ~(c), 

so indeed ~(a) = ~(c). 

Next if s E S then either s E ~(a) or s E S - ~(a). In the first case 

S- ~(s) = S- ~(a) is nonempty by paragraph one. In the second, a E S -~(s), 

which is then nonempty. So in any event S # ~(s). Hence by paragraph one, 

~(s) = ~(t) for each t E ~(s). Thus the lemma is established. 

Define the depth dep(S) of (S,d) recursively as follows: If lSI = 1 let 

dep(S)=O. Otherwise dep(S) = 1 + max{dep(~(a)) :a E S}. 

Let (Si :1 ~ i ~ m) be the set of neighborhoods ~(a), a E S, as in (3.1). 

Order S so that the members of S, proceed those of S; for i < j, and proceeding 

recursively, so that each s, and its subneighborhoods are ordered subject to the 

same constraint. The distance matrix of (S,d) is the square matrix B=B(S) 
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whose rows and columns are indexed by S and with B 6 t = d ( s, t) for each s, t E S. 

Observe 

Lemma 3.2f If (S,d) is trimetric or ultrametric then its distance matrix B(S) is 

a hierarchic matrix with ..\(S) = ..\(B(S)). If (S,d) is dual ultrametric then B(S) 

is a dual ultrametric matrix. 

Proof: This is immediate from (3.1) and the ordering of S. 

Lemma 3.3: Let V be the space of n-tuples with 0,1 entries, and d the standard 

inner product on V; that is d(u,v) is the number of comm~n nonzero entries in 

u, v E V. Let n > 1 and S ~ V. 

(1) If (S,d) is trimetric then lSI ~ 2(n- 1). 

(2) If (S,d) is dual ultrametric then lSI ~ n. 

Proof: Let N = lSI and A theN by n matrix whose row vectors are the vectors 

inS. Observe that if AT denotes the transpose of A, then AAT = B(S). 

Embed V in n-dimensiona.l Euclidean space !R" and regard AT as a. linear 

map from !R" into l'RN. Then the subspace U of !R" generated by S has dimension 

at least dim(UAT)=ra.nk(B(S)). So n2:ra.nk(B(S)). Hence lemmas 2.1 and 2.2 

complete the proof. 

Lemma 3.4: Let S be a. set of nonempty subsets of a. finite set X of order n > 1. 

For s,t ES,let d(s,t)=ls n tl. Then 

(1) If (S,d) is trimetric then lSI ~ 2(n- 1). 

(2) If (S,d) is dual ultra.metric then lSI ~ n. 

Proof: This is equivalent to 3.3 since V is isometric with the set of all subsets 

of X via. the map which takes a. vector in V to its support. 

Notice that the upper bounds in 3.3 and 3.4 are attained. In 3.4.2 take S to 

be the set of subsets of X of order 1. In 3.4.1 let X be the set of vectors in an 

m-dimensional vector space W over the field of order 2 and let S be the set of 

cosets of all hyperplanes of W. Then n = 2m and lSI = 2(2m - 1). In this latter 

exampleS is of depth 2 with distances 2m-l, 2m-l, and 0. 

Lemma. 3.4.2 follows from a. result of Ryser[9] when the depth of S is 1. 
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we can add suitable multiples of column i through :l B(k) to the first m columns 

of :l B to insure that 3 Di = 0, where 3 B is the image of :l B under these column 

operations. 

In particular suppose that 3 Bi, i E I is a set of row vectors of 3 B and 

LiE I ai (3 Bi) = 0 is a linear dependence. Let I(k) consist of those indices in I 

indexing rows in B(k). Assume for each k with N~c > 1, the first row r~c of B(k) 

is not in I. Then from the structure of 3 B, LiEI(k) ai(3 Bi) = 0 for each k. Order 

the rows of B(k) so that the last N~c- 1 rows contain a basis of the row space of 
1 B(k) if 1 B(k) is singular. Thus 

(2.2.3) rank(B)~ (l::~crank(l B(k))) - f, where f is the number of k such that 

N~c > 1 and 1 B(k) is nonsingular. 

Assume N ~ 4. We conclude from 2.2.1 through 2.2.3 that rank(B)~ ~ and 

either rank(B)~ ~ + 1 or N~c = 2 and rank(3 B(k)) = 1 for all but at most one 

ko for which N~c0 = 1 or 3. Of course we may assume the latter and choose 

our ordering so that R = (3 Bi : i E I) is linearly independent of order M with 

M ~ ~, Nj = 2 for some 1 < j, and with 1 not in I. To complete the proof, 

we may assume .\(B) = .\ f. 0, and it remains to show 3 B 1 is independent of 

R. Let 1r be the projection of the row space on its last N -m coordinates. Then 
3 B 1 has all entries.\ and is in the space spanned by 11r. This is not the case as 

the projection of 3 B(j) on the two columns through Bu) does not contain (.\, .\) 

since rank(3 B(j)) = 1. 
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Indeed our proof was suggested by Ryser's. 

Lemma 3.5: Let V be the space of n-tuples with 0,1 entries and d the Hamming 

metric on V;- that is d(u,v) is the number of nonzero entries in u and v not 

common to u and v. Then JSJ ~ n + 1 for each ultrametric subset (S,d) of V. 

Proof: This is a special case of 4.1 in the next section, but the proof in this 

special case is a little easier, and thus perhaps worth giving. 

Let N = JSJ and let A be theN by n matrix whose rows are indexed by Sand 

with A.,.= 1 or -1 when s E S has 1 or 0 as itsjth entry. Observe AAT=2D-nJ, 

where J is the N by N matrix with all its entries 1 and D=nJ-B(S). Moreover D 

is dual ultrametric with D ~ 0. Now arguing as in 3.3, the subspace U of lRn 

generated by S has dimension at least rank(D)-1, as its image in lRN is spanned 

by the translates of the row vectors of 2D by the vector (n, ... ,n). Hence Lemma 

2.1 completes the proof. 

§4 Euclidean Space 

In this section V is n-dimensional Euclidean space over lR. For u,vEV let 

(u, v) = ju- vj. We prove: 

Lemma 4.1: Let S be an ultrametric subspace of V. Then JSJ ~ n + 1. Indeed 

translating to get 0 E S, S- {0} is linearly independent. 

AssumeS is an ultrametric subset of V of order N. Let A= A(S). For s E S, 
define S(s)=S-~(s). Thus S(s) is the set of points inS on the sphere of distance 

A from s, and ~(s) is the set of points of S in the interior of that sphere. 

As translation preserves the collection of ultrametric subsets of V, we may 

indeed ta.ke 0 E S. We first prove: 

Lemma 4.2: S(O) is linearly independent. 

Proof: Let A be the matrix of row vectors of S(O). Then AAT = AJ- B(S}o)). 

Notice AAT is dual ultrametric. This is because B(S(O)) is ultrametric and 
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each entry on the main diagonal of AAT is greater than each entry off the main 

diagonal. Indeed each entry on the main diagonal is ,\ while entries off the main 

diagonal are of the form (s, t) < ,\ as s i= t and lsi = It I = A. 

As AAT-is dual ultrametric, rank(AAT)=N by 2.1. Thus AT is a surjective 

map from the subspace of V spanned by S(O) onto )RN so as that space is of 

dimension d~N, it follows that d=N and S(O) is linearly independent. So Lemma 

4.2 is established. 

Lemma 4.3: ~(0) - {0} is linearly independent. 

Proof: Let a ES(O). Then ~(0) ~S(a), so {s-a s E ~(0)} is linearly 

independent by 4.2. Hence ~(a) has a linearly independent subset of order 

l~(a)l- 1, so as 0 E ~(0) the lemma follows. 

Let ~(0) = {xo, ... ,xm} with XJc = (xlcl, ... ,x~cn) and xo = 0. Appealing to 

4.3 and replacing S by an image under some suitable orthogonal transformation 

of !R", we may assume XJcj = 0 for j > k and XJcJc = e1c # 0. Let 1r1c be the 

projection of V onto the subspace V1c of V consisting of those vectors with 0 in 

the first k coordinates. 

Lemma 4.4: (1) There exist r, E ~' 1 ~ i < m, such that for all 

s = (s1, ... , sn) E S(O), Si = r,. 

(2) S(0)7rm is a linearly independent subset of Vm. 

Proof: We prove the analagous statements for k~m by induction on k. For 

k=O this is 4.1. Assume the result for k-1. Then for s E S(O), ,\ = lsi = 

L s~ = is- x~cl = l:(sa - XJci)l. So 0 = l:(x~, - 2XJciSi) = D- 2e~cs~c, where 

D = e~ + La<A:(x~i- 2x~cara)· Thus (1) holds for k with r1c = 2~ •• Moreover 

ls1r1cl = A- Li5 1c r~ = .\~c, and for s i= t E S(O), ls7rA: - t1r~cl = is- ti, so S(0)1r1c 

is on the sphere of distance A1c from 0 in V1c and S(0)1r1c is ultrametric in V~c. 

Therefore (2) holds by 4.1. 

Notice that 4.4 completes the proof of Lemma 4.1 and that Lemmas 3.4, 3.5, 

and 4.1 complete the proof of Theorem 1 in cases a,b, and c respectively. Also 

as a simple consequence we have the following: 
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Theorem 4.5: The maximal ultrametric set that can be embedded in the eu­

clidian sphere sn has cardinal n+2. 

Proof: The sphere sn is trivially embedded in the euclidian space !Rn+ 1 . There­

fore an upper bound of n + 2 holds. On the other hand the n+1-dimensional 

hypercube can be embedded in sn with the euclidian distance via some trivial 

scaling. Ultrametric sets on the hypercube with Hamming distance are still ul­

trametric in !Rn with Euclidean distance. Therefore the value n+2 is attained. 

§5 Trees 

We shall first consider the tree representation for ultrametric spaces. Let 

T=(V,E) be a rooted tree with vertices V, edges E, and root a, a EV. We will 

define the leaves ofT to be the monovalent vertices other than the root. Let 

X = {x1, ... , Xk} be the set of leaves ofT. Let w:E- !Jl+ be a weight function 

defining the length of each edge. Let dT be the corresponding metric on the tree. 

Assume that: 

There exists h > 0 such that dT(a,x,.) = h for allj, 1 ~ i ~ k. (5.1) 

h is called the height of the tree. More generally for every vertex v define the 

height h(v) of v to be the length of a minimal path which connects v to a leaf. 

Because of 5.1, h(v) is well defined. 

Define a metric space (X,dx) by letting the distance between two leaves be 

the height of their first predecessor. Again 5.1 renders dx well defined. It is easy 

to check that (X,dx) is an ultrametric space. Moreover it can easily be shown 

by arguments like those of section 2 that every finite ultrametric space can be 

represented by such a tree. 

The leaves can be partitioned into l sets: B 1 •••• B, of nearest neighbours. We 

shall denote by bi the cardinal of Bi and di the common distance of the leaves 

in Bi to their first predecessor. From now on any finite ultrametric space (X,dz) 
will be an ultrametric tree with the previous conventions and with an ultrametric 

positive ~diagonal distance matrix D. 
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We need to derive a few general matrix equations.Cases (a) and (b) with 

the (1,-1) co~ventions yield the most simple expressions and this will suffice. 

CASE (a): Let Y1 ...... Yk be subsets of ann-elements set with distance: 

Let A be the kx n incidence matrix and M be the kx k matrix defined by: 

mi; = max(jYij, IYil) 
Then: 

AAt =M-D (5.2) 

In the special case where all the subsets have the same cardinality v, (5.2) 
yields 

AAt = vJ- D (5.3) 

CASE (b): Let X 1 , •.. ,X~c be k n-dimensional vectors of coordinates (1,-

1) with the Hamming distance d~a. Let B be the matrix having Xi as its i-th 

row.Then: 

BBt = nJ- 2D (5.4) 

In these cases our two initial questions become: If D is a positive 0-diagonal 

ultrametric matrix under which conditions can we solve equations (5.2) and (5.4)? 
What is the maximal value fork if n is fixed? Notice that the tree for which the 

upper bound n+l of section 3 is attained has a very poor structure.One might 

wonder if much tighter upper bounds could be obtained for classes of trees with a 

richer branching structure. We shall prove now that this not the case and examine 

the general embedding problem: given a fixed ultrmetric tree T can we embed it 

in one of the metric spaces of type (a) (b) or (c) ? 

§6 General Embeddlngs 

We first discuss case (a). 

Theorem 6.1: Let T be an ultrametric tree with k leaves and D be the corre­

sponding k by k matrix of distances.Assume D has integer entries. Then we can 
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always embed T in an n-set for n large enough.More precisely: we can find an n­

set and k of its subsets with fixed cardinal v such that the equation: vJ -D = AAt 

is satisfied.Moreover if h denotes the height of the tree, then v = h and 

l l-1 

n = h + I)bi- l)di + 2: dii+1, 
i=1 i=1 

Proof: Trivially it is necessary for the distance matrix D of T to have integer 

coefficients and since the weights are differences of distances they too are integers. 

Suppose now we are given a tree of height h such that all ~he weights w(e) are 

integers. We shall construct recursively the n-set and its k h-element subsets by 

assigning to each vertex v ofT a certain subset f(v). 

Let (an) be a list of variables. Let P1 ... Pk be any ordering of the k unique 

directed paths joining the root a to the leaves Xi, 1 ~ i ~ k .Order the vertices 

of T lexicographically considering first the ordering of the paths and then the 

order within each path. 

step 1:/( vt) = f( a) = 0 
step m: Assume that /(vi) has been defined fori~ m so that /(vi) ~ f(vi) if 

i ~ j and Vi and Vj are on a common path. Let u::~ 1 !(vi)= {ao,a1, ... ag(m)}· 

There exists a unique p < m with Vp joined to Vm. Let w denote the weight of 

the corresponding edge. Then we set: 

f(vm) = f(vp) U ag(m)+1, ... , ag(m)+w· 

For any leave Xi we have: !f(xi)l = h since we start with f(a) = 0 and we add 

w (e) new elements for any edge e belonging to the directed path between a and 

Xi. Let Yi = f(xi) i = 1, ... , k. Then by construction: 

which is the height of the common predecessor of Xi and Xj. Therefore Y1, ... , Yk 

are k h-elements subsets of ann-set: U~=l !(xi) = Uvev f(v) representing the 

given ultrametric tree T. Moreover by construction:! UzeB, f(x) I = h+ (bi -l)di. 

Therefore deleting all but one leaf from each block and proceeding by induction 

on k,we get: 
l l-1 

n = h+ L(bi -l)di + 2:dii+1 
i=1 i=1 
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We next consider case (b). 

We are given an ultrametric tree T and we are looking for an embedding 

into some n-dimensional hypercube.As in case (a) it is easy to see that all the 

weights need to be integers. The same holds for h. But additional conditions are 

necessary as shown by the following simple lemma: 

Lemma 6.2: Every triangle on the hypercube with Hamming distance dh has 

an even perimeter. 

As a consequence, for every ultrametric isoceles triangle on the hypercube 

the third side cannot have odd length. It is easy to show by induction that a 

necessary condition for the existence of an embedding is that the tree T has one 

of the following two exclusive properties: 

(i)All the weights are even integers. 

(ii)The root a has only two adjacent vertices v1 and v~, w(a,vl) and w(a,v2) 

are odd, and all the other edges have even weights. 

Such a tree will be called hypercublc. We can now state the following: 

Theorem 6.3: Let T be an ultrametric hypercubic tree with k leaves and dis­

tance matrix D. Then we can always embed T in an n-dimensional hypercube 

for n sufficiently large. More precisely: we can find k n-dimensional vectors 

X 11 ••• ,X1c of coordinates (1,-1) such that the equation BBT = nJ- 2D is satis­

fied. Moreover 

if all edges have even length we can choose the k vectors in one of the hyperplanes: 

n 

L x; = c = ±( n - h) 
i=l 

if the first two edges e 1 and e~ have odd lengths 2a + 1 and 2b + 1 then we can 

choose the vectors corresponding to e1 to be in one of the hyperplanes: 

n 

LX• = ±(n- 2ct) 
i=l 
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and those corresponding to e2 in one of the hyperplanes: 

n 

L Xi = ±(n- 2c2) 
i=l 

with the same sign in both equations, where c1, c2 are two integers satisfying: 

and 
c 

1 
> ...:...( h_-_2_a_-_1....:...) 
- 2 

and 
(h- 2b- 1) 

C2 ~ ..:.._ ___ ....:... 

2 

Proof: For convenience we shall use (0,1) coordinates rather than (1,-1). 

The weight of a vector will be the cardinal of its non zero coordinates. If all row 

vectors in a matrix M have same weight w, we shall write w(M) = w: the weight 

of the matrix M. Proceeding recursively by height we shall now construct our 

embedding by attaching progressively to each vertex v of the tree a matrix M(v) 

of weight h~u) .(except for the leaves Xi where w(M(xi)) = 1). Notice that we 

assume that all edges except perhaps the last two have even length. The matrix 

M(a) will provide the final embedding. The number of rows of M(v) will be 

equal to the number of leaves attached to v. 

We start by defining M(xi) = 1 for every leaf Xi. Obviously w(M(xi)) = 1. 

Suppose we a.re looking now at a vertex v to which no matrix has been assigned. 

If { u1, ... , u1} = {u E V : h(u) ::; h(v) and (u, v) E E} and if M(ui) has been 

defined for 1 ::; i::; l then we shall define a matrix M(v) for the vertex v through 

a process called amalgamation. We shall denote: M(v) = [M(ut), ... ,M(u,)]. We 

then iterate amalgamation as many times as necessary until M( a) is obtained. 

The rows of M(a) will represent the final vectors on the hypercube. 

Definition of amalgamation: Assume we have the following situation: 



U 1 IAt 

Assume that Mi is ni x mi and w(Mi) = ¥ i = 1, ... , l and that ni is the 

number of leaves attached to Ui. Since hi ~ h(v) we can define an integer Ai by: 

¥ + ,\i = h~u) fori= 1, ... ,l. Then define M = [M1, ... ,M,] by: 

(

Jl 

M= 0 
0 
0 0 J, 0 0 

...... lJ 
where Ji is the ni x Ai matrix all of whose entries are 1. M has the following 

properties: 

(1) w(M) = w(Mi) + Ai = ¥ + h~u) - ¥ = h~u) 

(2) M is n x m where n = L~ ni and m = L~ (mi+Ai) and n is the number of 

leaves attached to v. 

(3) the Hamming distance between any two rows i and j of M belonging to two 

different blocks is given by: 

dii = w(Mi) + Ai + w(M;) +.X;= h(v) 

which is exactly the ultrametric distance between the corresponding two leaves. 

If the last two edges have odd length we define the amalgamation for the 

corresponding two matrices in a similar way: C).-t~ + I 
~ 

J. 0 M, 0 

0 J~ 0 M~ 
\._..J \..o-..r-1 

A. "l. 
..\1 + ..\1 =a+ b + 1 and h 1 + 2a + 1 = h1 + 2b + 1. If all edges are even we 

have from (1): w(M(a)) = ~· Therefore if we are using a (1,-1) representation 
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the vectors lie in the hyperplane: 

n h h L Xi= -- (n--) = h- n 
. 2 2 
•=I 

or its mirror image. If the last two edges e I, e:l have odd lengths then the vectors 

are separated into two groups of constant weight: WI = ~+AI and w:l = ~ + >. 2 
Since AI + A:l =a+ b + 1 we have WI + w:l = h and: 

h - 2a - 1 h - 2b - 1 
W1 2: 

2 
, W:l 2: 

2 

Finally using (1),(2) and (3) it is easy to show that the matrix M(a) yields the 

required embeddings. 

Let us now consider regular trees and compute the corresponding dimension 

n of the hypercube. 

Theorem 6.4:: Let T be a tree such that every vertex with the exceptions of the 

leaves has a fixed number of successors u. Assume that all edges have a constant 

even length 21. Let h=2ml. Then T can be embedded in an n-dimensional 

hypercube with: 
um -1 

n = ul( u _ 
1 

) 

Proof: Consider the amalgamation step: 

M'·' 
I 

M~-' 
"" '11~ •• x mi., 11~., x mi-• 

We have ni ' uni-I + ul and ni = ul Therefore solving this recurrence relation, 

we get: 
m . um -1 

n = ~ l u • = ul ( ) 
~ u-1 
i=I 

Corollary 6.5: Let n be fixed. Then we can embed in the hypercube H n an 

ultrametric tree with constant even valence u (with the exception of the leaves) 
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and edges of constant even length 21 corresponding to an ultrametric set of size 

at least k: 
k (n+1)(u-1) 1 

2: 'Jl + -
t£ t£ 

Proof: If n = ul u;;_~ 1 then the size is k = u m. Therefore the worst case 

corresponds to: n = ul( k:~~-l) -1 for which the size is still k = um. Solving for 

k we get the bound of the theorem. Asymptotically this indicates that hypercubic 

trees with a rich branching structure can be embedded into the hypercube , the 

bound on the size being still of the form O(n). 

Finally we consider case (c) 

We are now given a tree T and want to embed it in !R". Surprisingly enough 

it is not true that every finite metric space can be embedded in !R" for n large 

enough and with the euclidian distance. 

One obvious reason for that is that for any three points not on a same line the 

triangle inequality need to be strict. Yet this does not yield a sufficient condition 

of embeddability since counterexamples can be found by slightly perturbing cases 

where the triangle inequality is not strict. 

If the finite metric space is ultrametric then the triangle inequality is obvi­

ously strict for any three distinct points. 

We can now prove the following: 

Theorem 6.6: Every finite ultrametric space with rational matrix distance D 

can be embedded into the euclidian space ~n, for n large enough. Moreover the 

points can be choosen in one of the hyperplanes of equation 

n 

LXi = ±(n- h) 
i-1 

Proof: The idea is to use scaling on the given distances, obtain a new set that 

can be embedded into an hypercube and then go back to ~n. Since D is assumed 

to have rational entries we can find a constant c such that the matrix cD has 

integers entries which are also multiples of 4. Construct a new matrix D' with 

entries d~,; defined by: 

'Jd'J 
I _ C i,j 
d··---•.1 4 
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Notice that by construction d~.i is even. Moreover it is easy to check that the 

matrix D' defines an ultrametric space. Therefore using Theorem 6.2 the corre­

sponding set can be embedded into ann-dimensional hypercube with Hamming 

distance for n large enough. For points on the hypercube with 1,-1 coordinates 

the Hamming distance and the euclidian distance are related by: de = 2../dh 

. Therefore the previous construction yields in fact an embedding in !R" with dis­

tance matrix cD. To obtain the final embedding we now only need to rescale by 

a factor of ~. Because of theorem 6.3 the points can be chosen in one of the 

hyperplanes: 
n 

L Xi = ± ( n - h) 
i=l 

We can now extend this to show that every ultrametric space with n + 1 or 

fewer points can be embedded in !R". 

Theorem 6. 'T: Let X be a finite ultra.metric space of cardinal m with real 

distance matrix D. Then X can be embedded into !Rm-l. 

Proof: Let us denote by D(x1, ... , x~e) the bordered symmetric determinant of 

order k+1: 
1 

(dlk)~ 
(d~~e)~ 

0 

The following theorem by Menger can be found in [ 2]: 

A necessary and sufficient condition that a semimetric space X may be con­

gruently embedded in the euclidean n-dimensionalspace !R" is: 

(1)For each positive integer k, 2 ~ k ~ n + 1, and each set of k points x1, ... , Xk 

of X, sgn D(x1, ... ,x~e) = (-1)k or 0. 

(2)Each set of n+2 points of X haa a vanishing bordered symmetric determinant. 

Recall that if dis ultra.metric so is d~. Also note that if n = m -1, condition 

(2) is trivially satisfied. 

Assume now for contradiction that we can find k points x1, ... , x~e of X vio­

lating condition (1). The corresponding bordered determinant therefore has sign 
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( -l)k+l. Yet we can slightly perturb the ultrametric matrix of distances be­

tween the points x 1 , ... , Xk so that the newly obtained matrix is still ultrametric 

and has rational entries. Therefore, by Theorem 6.6 and Menger's result the 

corresponding bordered determinant can not have sign ( -1) k+ 1 . Since the ra­

tional approximation of the dij and hence of the d~i can be made with arbitrary 

precision, a contradiction arises by continuity. 

§7 Quasl-Ultrametric Structures 

For practical applications one must study structures that are quasi ultra­

metric in some sense. There are two natural cases: first where every triangle 

violates the ultrametric constraint by only a small amount; and second where 

almost every triangle satisfies the constraint exactly, but a small subset is allowed 

to violate ultrametricity. We introduce two definitions and state corresponding 

results. 

Definition 7.1: Let (E,d) be a metric space and X a subset with the induced 

metric. (X,d) is E-ultrametric if and only if there exists an ultrametric subspace 

(Y,d) of (E,d) such that: for all x 1 ,x~,x3 E X,there exists Y1,y~,y3 E Y with 

Yi E B(x,, e). 

In reference[S], y'n-ultrametric structures on the hypercube are considered. 

Using Stirling's formula it is easy to see that jB(x, y'n)j is exponential and there­

fore y'n-ultrametric structures may be exponential in size. The same should hold 

for any f(n)-ultrametric structure on the hypercube where f(n) is an increasing 

unbounded function of n. 

In many of the applications, one considers a sequence ((X,., d), Y,.), where 

the (X,., d) are metric spaces and the Y,. are finite subspaces which have the 

property that in the limit as n -+ oo, almost every triangle in Y,. satisfies the 

ultrametric condition 1.1 under the induced metric. For example, in the case of 

infinite range spin glasses, (X,.,d) is 1R~'~ under the euclidean metric and Y,. is a 

set of n-vectors, the "thermodynamic equilibrium states". Describing the set Y,. 

is fundamental to understanding the physics of the model. It has been shown, 

in the " R.S.B." model ( a model believed to accurately reflect the physics), 
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that in the limit of large n, the probability that any triangle among the Yn will 

satisfy the ultrametric constraint is one [6]. An important question is whether 

one can bound kn = IYn I by some polynomial in n. Such a bound will follow 

from Theorexn. 1 (for the cases (a),(b), and (c)) if we can find a constant m and 

subspaces U n C Yn such that ( U n, d) are ultrametric and I U n I m ~ kn, for then 

( n + 1) m ~ I U n I m ~ kn. This motivates the following discussion. 

Let (A, d) be a finite metric space of cardinality k. Let T(A) be the set of 

triangles in A and T'(A) be the subset of those triangle violating condition 1. 

IT(A)I = (~). Similarly consider (Ak,d), a sequence of finite metric spaces of 

cardinality k, for arbitrarily large integers k. 

Definition 7.2: (Ak, d) is almost ultrametric iff limk-+(X) ll;:(<~:N = 0 

(A, d) is q-almost ultrametric if IT'(A)I ~ (~)k-q for q ~ 0. 

We will assume in the following Theorem that (A, d) is taken from one of cases 

(a),(b), or (c), with An-dimensional. 

Theorem 7.3: If (A,d) is q-almost ultrametric, then IAI ~ ( 3'fn)~. 

Proof: This is a corollary of a Theorem of J. Spencer[lO] which states that the 

smallest set of triangles on k vertices such that there is no independent set of 

size l contains at least (~) 3 ( 1~ 1 )-l triangles. (An independent set is defined 

as a set of vertices containing no triangles.) ThWI A contains an independent set 

S of size r, so long u (~)k-q < l~ (,.~:)!I which will be true for r < 3}s-kf + 1. 

Thus there is an independent set of size 
3
}akf + 1, and Theorem 1 establishes 

the bound on k. 

Acknowledgement: We would like to thank L. E. Baum for a critical reading 

of the manuscript. 
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