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ABSTRACT 

We will attempt to understand the Delta I Equals One Half pat

tern of the nonleptonic weak decays of the Kaons. The calculation 

scheme employed is the Strong Coupling Expansion of lattice QCD. 

Kogut-Susskind fermions are used in the Hamiltonian formalism. 

We will describe in detail the methods used to expedite this calcula

tion, almost all of which was done by computer algebra. 

The final result is very encouraging. Even though an exact 

interpretation is clouded by the presence of irrelevant operators, a 

distinct signal of the Delta I Equals One Half Rule is observed. With 

an appropriate choice of the one free parameter, enhancements as 

great as those observed experimentally can be obtained along with 

a qualitative prediction for the relative magnitudes of the CP 

violating phases. 

We also point out a number of surprising results which we turn 

up in the course of the calculation. The computer methods 

employed are briefly described. 
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1 : Introduction 

In the time since it was introduced, Quantum Chromodynamics, or QCD, has 

become widely accepted as the best available theory of the strong interactions. 

This has happened despite the paucity of good quantitative support for the 

theory, although there is a significant qualitative agreement between theory and 

experiment. 

In this thesis we present a calculation of the weak matrix elements relevant 

to the empirical (j.J = 1 / 2 rule observed to hold for the nonleptonic weak decays 

of Kaons. The calculation will be carried out in the Strong Coupling limit and to 

second order in perturbation theory beyond this limit. This calculation is meant 

to be a first attempt at a first principles calculation. As a result, a number of 

severe assumptions will be made in the hope that as we gain experience we will be 

able to relax these assumptions. We should not expect too much from such a cal

culation; agreement to within a factor of two will be considered to be satisfactory. 

First, we will review the K data and the theoretical techniques of strong 

coupling. Then we will describe, in overview, how the Strong Coupling expansion 

could be, and has in part been, implemented as a specialized symbolic manipu

lation system. Then we plunge headfirst into setting up, and finally, executing 

the desired calculation. Finally, we will make a few remarks about the results. 

The calculations will be performed using Kogut-Susskind fermions in the 

Hamiltonian formalism. Using this method has many virtues, but also some 

annoying detractions. These will be described as we come to them. 
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2 : The Kaon Data 

Of the multitude of hadrons that have been observed in nature to date, the 

Kaons K±, K° K 0 (or Ks KL ) have provided us with arguably the most interesting 

systems in which to study the physics of both the strong and weak interactions. 

These particles contain a single s, or s, quark; the lightest quark that we do not 

normally encounter in nature, and yet we can produce them in copious amounts 

so enabling detailed and accurate experimental study. Of course, the most spec

tacular feature of the K° K 0 system is that it is the only example in nature for 

which we have been ab le to observe CP violation. However, the motivation for 

turning our attention to the Kaons is not CP violation but another prominent 

feature of the weak interactions of Kaons, the empirical !:J.l = 1/2 rule. In the 

following two tables we present some experimental data about the Kaons[l]. To 

keep these results in perspective, we have also presented the decays adjacent in 

rate to those we will be concerned with. 

Mass: 493.667±0.015 MeV 

Lifetime: (1.2371±0.0026) x 10-8 s 

Decay Products Branching Ratio 

f-L+VJ.L 0.6351 ± 0.0016 

rr+ rr0 0.2117 ± 0.0015 

rr+rr+rr- 0.0559 ± 0.0003 

p 11 ,MeV/c 

236 

205 

125 
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Mass: 497.67 ± 0.13 MeV 

Lifetime: ( 0.8923 ± 0.0022) x 10-10 s 

Decay Products Branching Ratio Prr, MeV /c 

7T+7T- 0.6861± 0.0024 206 

71o 71o 0.3139±0.0024 209 

1T+1T-1 (1.85±0.10) x 1o-5 206 

The decays we wish to focus upon are the nonleptonic decays into two pions. 

There is just enough phase space to allow three pion decays but these are 

strongly suppressed by the kinematics relative to the two pion decay modes and 

we shall therefore not consider them further. Because the Kaons are o- particles 

they decay in the S-wave channel; hence, the decay rate can be immediately cal-

culated to be: 

(2 .1) 

where Prr is the momentum of the outgoing pions and fa is the invariant ampli-

tude for the channel a. The combination of decay rates that we are interested in 

is: 

1 
655 

(2.2) 

This is an amazing experimental result, for if we simply guessed this ratio we 

probably would have suggested a value of order unity. 
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Let us probe a little more deeply. The pion has isospin I = 1; hence, the pos-

sible final state wave functions of the two pions are the isospin states: 

(2.3a) 

(2.3b) 

(2.3c) 

Because the Kaons have I = 1/2 we immediately see that the K+ decay is pure 

M = 3/2 whereas the K 0 decay channels derive from an admixture of 6.I = 1/2 

and 6.I = 3/2 amplitudes. With (2.3), the definitions: 

f ios;2 
3/2 e 

f io,/2 
1/2 e 

(2.4a) 

(2.4b) 

and the excellent approximation ( to within 2%) that the decay momentum is the 

same for all channels, the ratio (2.2) takes the form: 

1 
982 

(2.5) 

This result engenders the suspicion that the 6.I = 1/2 channel is strongly 

enhanced relative to the 6.I = 3/2 modes. To say that the 6.I = 1/2 channel 

dominates is equivalent to assuming that the pions would prefer to be in a final 

state which has I = 0. If we assumed that I = 0 were the only possible final state, 

then we would find that: 

(2.6) 
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which is in good agreement with the experimental ratio 0.46 ±0.01 . 

It has long been believed, but not demonstrated, that the 11! = 1/ 2 

enhancement is somehow due to QCD effects. Because the effect is so big, there is 

a reasonable hope that we could attempt to calculate the ratio from first princi

ples. We should not expect to get the correct answer to within a few percent; how

ever, we could expect to see the enhancement qualitatively at perhaps the 50% 

level. 

Many attempts have been made to calculate the ratio (2.2); however, all such 

attempts have foundered upon the calculation of the hadronic matrix elements. 

At best, partially successful attempts have been made within the context of per

turbative QCD [2]. More recently, the problem has been attacked using numerical 

lattice techniques in conjunction with chiral perturbation theory [3]. The final 

results for these calculations are not yet available. The hopping parameter 

expansion is also being considered by one group [ 4]. 

The Feynman diagrams involved in calculating the K -+ TITI amplitudes are 

laid out in Fig . l. The gluon exchanges have been omitted because there are no 

particular gluon exchanges that we expect to be dominant; instead, all gluon 

interactions must be considered. 

We presume that 11! = 1/ 2 is a general rule which will find application 

beyond K decays. Indeed, similar enhancements and suppressions are seen in the 

decays of the charmed mesons D and F, and in the d e cays of some strange 

baryons [5]. All these phenomena are good candidates for calculation by the 

methods we will employ here; especially those cases for which most of the quarks 

involved are heavy in which case the Strong Coupling Expansion should be more 

r~liable. However, we will continue to work with the Kaon system because it is the 

best known, and cleanest case. 
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3 : The Strong Coupling Expansion 

As Quantum Chromodynamics (QCD) became widely accepted as the best 

theory for describing the strong interactions, it was realized that the perturba

tive techniques of Feynman diagrams would be of no use for calculating the low 

energy and static properties of the theory. Hence, the following curious situation 

has arisen. There is a vast wealth of experimental results detailing the low energy 

regime of QCD, i.e., masses, magnetic moments, cross sections, and decay rates; 

however, owing to the mathematical complexity of the theory, we have only been 

able to calculate anything in the region of very high energies and momentum 

transfers. Although such results from "Perturbative QCD" have been of great 

utility, in any real experiment the low energy properties of QCD always manifest 

themselves so making a direct comparison of theory and experiment extremely 

difficult, if not impossible. To make any progress many phenomenological 

assumptions have had to be introduced but, despite heroic efforts, such features 

as the mass spectrum and hadronic matrix elements in the low energy regime 

have remained out of reach. As one of several attempts to solve this problem the 

Strong Coupling Ex.pansion was introduced [6-8]. Here, we present a lightning 

review of the Strong Coupling Expansion as applied to QCD. 

3.1. Introduction to Strong Coupling 

The essential observation is that at infinite coupling lattice QCD is a fr e e 

field theory and is exactly solvable. With the lattice providing all needed regula

tion of potential ultraviolet divergences we can perturb away from the infinite 

coupling limit using some form of perturbation theory. Two possible approaches 

to the Strong Coupling Expansion method have been advocated: 



-7-

1) Euclidean Lattice QCD : Both time and space coordinates are discrete. 

Recently, for most calculations, this has been the preferred formalism. Its 

main advantage is the existence of a continuous chiral symmetry when 

Kogut-Susskind fermions are used. This formalism is also more easily 

adapted to numerical calculations with Monte Carlo methods. 

2) Hamiltonian Lattice QCD : The space coordinates are discrete; however, time 

is now continuous. In this formulation the physical interpretation of calcu

lated results is usually more direct than for the Euclidean theory. However, 

there is no continuous chiral symmetry so the details of the the promotion 

of discrete to continuous chiral symmetry are major issues of concern. 

Roughening tends to be less of a problem in this formalism; however, it will 

still appear in some contexts[9]. 

The Strong Coupling Expansion has been used in many contexts in statistical 

mechanics as a high temperature expansion; however, for QCD application has 

been sparse mainly because of the difficulty, and sometimes necessity, of calcu

lating to high orders in perturbations from the infinite coupling limit. In Chap.4. 

we will describe how the Strong Coupling Expansion can be, and was, imple

mented on a computer as a specialized computer algebra system. 

3.2. The Hamiltonian Formulation 

The lattice theory of QCD that we are going to use is a Hamiltonian formula

tion with Kogut-Susskind fermions[8][10] which we shall describe shortly. The 

Hamiltonian for this system, with SU(N) local gauge symmetry, is: 
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H (3.2.1a) 

Ho I; £2 + I;mf I; :xtfa(r)XJa(r):(-l)x+y+z (3.2.1b) 
links f r,n 

+ l::At I; [p1(r)p1(r+n) +N2] 
f r,n 

---\I; Tr[UUUU] 
g plaq 

(3.2.1c) 

uab(r,n) is the link variable, on the link (r,r+n), representing the gauge fields 

and the E 2 are the quadratic Casimir operators on the links. The x1a( r) are the 

fermion variables belonging to the generation labeled by f. They satisfy the 

anticommutation relations: 

0 (3.2.2a) 

(3 .2 .2b) 

The operator Pt is defined by: 

(3.2.3) 

The phases 7Jn( r) are defined below in (3.3.12). The significance of the arbitrary 

constants A f will be discussed in Sec. 3.5. Notice that the mass term in (3.2.1 b) 

has been normal ordered. We will have more to say about this both in Sec.3.5 ., 

and in Chap .6. There is no necessity to normal order any of the other operators. 
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3.3. Kogut Susskind Fermions 

In this section we construct the Hamiltonian for the fermions so that we can 

see how it relates to the continuum Hamiltonian. We also need to establish the 

sign conventions that we will use in all subsequent calculations. 

The continuum Dirac equation, with the definition ai = 'iO'ii· is: 

0 (3.3.1) 

The gamma matrices have the following usual definitions: 

[ ~ -~ l . [ 0 ail 'i'l. = -ai 0 'is (3 .3.2) 

The ai are the standard Pauli spin matrices. 

Our main task is to get around the "doubling" problem in some way. Follow-

ing the method of Susskind [10], we place a single fermion 1f; at each site on the 

lattice. We then subdivide the lattice into four sublattices as in Fig .2., identify the 

fermion field at, e.g., a "two" site to be the second component of a four com-

ponent "spinor", and then simply postulate the equation of motion for the fer-

mion field to be: 

8t1f! + ai fli1/J 

or, in expanded form: 

8t1f! 1 + flx1/!4 

8t1f!z + flx'1f!3 + 

8t'1f!3 + flx 1/Jz 

8t1f! 4 + flx1/!1 + 

0 

i fly 1f; 4 + flz1/J3 

i fly 1/!3 flz1/J4 

i fly 1/!2 + flz1/!1 

i fly 1f; 1 flz 1/Jz 

0 

= 0 

= 0 

= 0 

(3.3.3) 

(3.3.4a) 

(3.3.4b) 

(3.3.4c) 

(3.3.4d) 
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With lattice spacing a, the finite difference operators are defined by: 

(3.3.5) 

While four degrees of freedom are visible in this equation, in momentum space 

we will find eight independent fields at long wavelengths; hence, we will further 

subdivide the lattice. For even y coordinate, we denote the spinor 1/J by f, and for 

odd y , 1/J becomes g now giving us a total of eight fields. These have the equa

tions of motion : 

8tf + [ ax6x + 0: 2 6 2 ]J + cxY 6y g 

8tg + [cxX6x + CX 2 6z]g + cxY6yj 

0 

0 

We now define two new spinors, u and d, by 

u (J +g)' d 

In component form, the u, d fields are related to the f, g fields by: 

i = 1. . .4, 

fz - gz, 

With the two definitions of (3.3.7), the equations (3.3.6) become: 

0 

0 

(3.3.6a) 

(3.3.6b) 

(3 .3.7) 

(3.3.Ba) 

(3 .3.Bb) 

(3.3.9a) 

(3.3.9b) 

Hence, we see that the postulated equations of motion (3.3.2) turn out to be 
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equivalent to those of two independent spinors which have been suggestively 

named u and d. Indeed, in the long wavelength continuum limit we identify these 

fields as the two quarks of the same names. 

Now that we have come this far, we move in the opposite direction from the 

original postulated field equations (3.3.3) to reach the convenient form of the 

Hamiltonian that was presented in (3.2.1 b). Writing the equations in terms of the 

single fermion field at each site, denoted by 1j; , the equations of motion (3.3.3) 

collapse to: 

_i__[ 1f;(r + n ) -1j;(r- n )] ( -l)x+y 
2a Y Y 

Before proceeding, we need to make the definitions: 

D(a,b) 

A(a) 

_!_[1 + ( -l)a + ( -1)b + ( -1)a+b+1J 
2 

(3.3.10) 

0 

(3.3 .11 a) 

(3.3.11b) 

These constructs will be used very frequently and have the useful properties: 

D (a, b )2 = 1, 

A (a )2 = 1, 

D (a, b) D (a + 1, b) = ( -1 )b 

A (a )A (a + 1) = ( -l)a 

We now make the field redefinition to define x(r): 

1f;(r) = (-i)x+zA(y)D(x,z)x(r) 

(3.3.12a) 

(3.3.12b) 

(3.3.13) 
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With this definition, the equation of motion we obtain is: 

(3.3.14) 

0 

And so finally, the Hamiltonian which we can derive from (3.3.14) comes into 

view: 

H (3.3.15) 

The phases TJn(r) of (3.2.1c) can be read off immediately. 

The symmetries of (3.3.15) are detailed in Appendix A: Table A.l. The main 

caveat is to be very careful about signs. 

3.4. SU(4) Flavor Symmetry 

Because we have incorporated two generations of fermions we might wonder 

if some remnant of the SU(4) flavor symmetry survives on the lattice. It does, and 

later on this will turn out to have great utility. Some details of this remnant 

symmetry are presented in Appendix A. The only symmetry operation that we will 

explicitly need is that of interchange of the fields of the two generations, denoted 

by T 1. We should keep in mind that this extended flavor symmetry is broken by 

both the mass terms and the four-fermion operators quadratic in PJ· 

We must also point out that the SU(2) transformations within the two gen-

erations are not independent. A transformation that translates a fermion field by 
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one link, for example, must also carry the link gauge field with it. By this 

mechanism, the transformations for each individual generation are kept in 

lockstep. This has the unpleasant consequence that there is no such symmetry 

as "nuclear" isospin, henceforth denoted by IN, for which only the u and d 

quarks have nontrivial transformation properties . There is however a "weak" 

isospin I w under which all flavors transform simultaneously. 

3.5. The Vacuum 

For a single generation the vacuum state of the theory is defined by: 

0, (3.5.1a) 

xl(r) I <I>glue• Ojerm) = 0, x+y+z even, (3.5.1b) 

(3 .5.1c) 

There are several points that need to be made regarding the way the vacuum 

state is defined for fermions. If the mass term for a particular generation is 

absent in (3.2.1b), then the theory has a discrete chiral symmetry. However, this 

symmetry is broken by the fermion vacuum which we choose to be: 

(3.5.2) 

Now we can understand the reason for including the term A :z= p( r) p( r +n) in 

(3.2.1b). In the absence of a mass term, the vacuum for the fermion fields is 

totally degenerate. Much of this degeneracy is accidental and is not related to any 

symmetry of the Hamiltonian. In second order the interactions generate terms, 

of exactly this form, that lift almost all this degeneracy so that only two possible 
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vacuum states per generation remain; the state defined in (3.5.2), and another 

which is shifted by one lattice spacing relative to it. Another reason for including 

the final operator in (3.2.1 b) is to ensure that, at least in the strong coupling 

limit, meson states constructed from baryon-antibaryon pairs have higher 

energies than the corresponding meson which spans a single link [B]. Because 

this operator is irrelevant, it will not affect any results in the continuum limit; 

however, in the strong coupling regime the presence of this term is a real nui-

sance. 

If we have a fermion mass term for any given generation then we will con

tinue to define the vacuum as in (3.5.1) and (3.5.2). From the definition (3.2.1b), 

we obtain the commutation relations: 

[Ho.xa(r)] = -m(-l)x+y+z xa(r) 

[Ho, Xta(r)] = m(-l)x+y+zXta(r) 

The normal ordering is defined by: 

: x( r ) x t ( r ) : = - x t ( r ) x( r ) x +y +z even 

: x t ( r ) x( r ) : = - x( r ) x t ( r ) , x+y+z odd 

(3.5.3a) 

(3.5.3b) 

(3.5.4a) 

(3.5.4b) 

otherwise, the ordering of the operators is unaffected. These definitions may 

seem counterintuitive; however, they are exactly what is required to ensure that 

the vacuum expectation of H 0 vanishes. 

With two generations of fermions, there is another issue to address[11]. For 

the second generation, the definition of the vacuum in (3.5.2) could be as in 

(3.5.2) or there could be an additional minus sign, so the definition of the 

vacuum becomes: 
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(3.5.5a) 

-(-1)5 "(-l)x+y+zN I <f>glue• Oferm ) (3.5.5b) 

were s 1 , s 2 equal zero or unity. If s 1 ;.: s 2 , then we can immediately show that 

the discrete SU( 4) symmetry is broken by the vacuum. If s 1 = s 2 , then this sym

metry survives. Our problem is to decide which vacuum to use . For reasons of 

simplicity, and no other good reason, we choose the vacuum with the unbroken 

SU( 4) flavor symmetry. 

3.6. Rayleigh-Schroedinger Perturbation Theory 

In the Hamiltonian formalism, the theory we have looks like what we are 

familiar with from standard quantum mechanics; hence, we will use Rayleigh

Schroedinger perturbation theory which we briefly summarize here [12]. For 

simplicity, we shall assume that there are no troublesome degeneracies. All of 

our calculations will be based on the expressions: 

11/') = 11/'o) + E!! Ho V 11/') (3.6 .1a) 

Hol1fo) = Eol1fo) (3.6.1b) 

H 11/') (3.6.1c) 

11/'o) is the unperturbed state and is normalized to unity, 11/') is the correspond

ing unnormalized eigenstate of the full Hamiltonian, and Q is the operator that 

projects out the subspace orthogonal to the state 11/'o ) . The energy of a given 

perturbed state, with the vacuum energy not subtracted, is given by: 
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E- Eo= <1/tol V 11/t) (3.6.2) 

For weak interaction matrix elements we will need to evaluate: 

(3.6 .3) 

11/t(l)), 11f(2)) are both eigenstates of the full Hamiltonian (up to some order in 

strong coupling). Notice that here we have to worry about normalizing the wave 

function. This normalization performs the important task of removing all terms 

in the numerator which are derived from vacuum bubbles and have coefficients 

that depend on the size of the lattice. 

We then proceed to iterate these expressions so that all matrix elements are 

expressed entirely in terms of the unperturbed wave functions. The first few 

terms in these expansions are: 

E -E 0 (3.6.4a) 

(3 .6.4b) 

1 + 2<1/toiV( Q )2 VI1fo) + ... 
E -H 0 

(3.6.4c) 

In a real calculation there is a remaining complication; the energy denomi-

nators are expressed in terms of the exact energy rather than the unperturbed 

energy, so making the equations very difficult to deal with. Expanding E, and the 

energy denominators, we get: 
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E (3.6 .5a) 

1 1 
(3.6.5b) (E - H 0 ) (Eo-Ho) 

Although this is messy to do by hand, it is trivial for a computer. It is important 

to remember that E contains a contribution from the vacuum energy and so the 

E:p contain pieces which are proportional to the size of the lattice. These terms 

are removed when we subtract, order by order, the vacuum energy from (3 .6.2), 

or when we divide by the wave function normalization as in (3.6.3). 

One point we need to make is that whenever the unperturbed state appears 

as an intermediate state in (3.6.5) the energy denominator vanishes, therefore 

these terms must be neglected from the sum. An important advantage of the 

computer algebra approach to this problem is that the energy denominators are 

evaluated exactly; hence, we may easily identify the terms that must be ignored. 

3. 7. Generalizations 

Some final comments that should be made are that the Hamiltonian we have 

chosen (3.2.1) to use here is the simplest we can escape with. We could have 

included additional magnetic terms using SU(N) matrices with indices which 

transform as higher representations of the gauge group, and terms based on six, 

or more, link operators [13]. At present, such additions would appear to be 

increasing complication without obviously improving the results that we will get, 

therefore we will take heed of "Ocam's Razor" and proceed with (3.2.1 ). Such gen-

eralizations might come in useful if we had to maneuver around a singularity as 
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we extrapolate to the continuum limit. Also, we have chosen the quarks within 

any generation to be degenerate. We could split these states, but it is an 

unpleasant procedure and involves operators which span two links on the lattice 

(see the form of 1j;T31j; in Appendix A). How to construct perturbation theory for 

this particular case is unclear. 

3.8. Monte Carlo Methods 

Over the last decade, most attempts to understand the low energy 

phenomenology of QCD from first principles have focused on the use of Monte 

Carlo techniques to directly evaluate the path integral. While such methods have 

enjoyed some success, one is left with the feeling that the computer knows more 

about what physics was included than you do. An analytic technique would be 

preferable if it would provide us with some insight to the relevant physics. It is in 

this regard that the use of computer algebra has great promise. Also, strong cou

pling has two major advantages over the use of numerical methods; we are able 

to use infinite lattices, so boundary effects are not a concern, and we are not at 

the mercy of round off errors and statistical fluctuations. The main drawback 

with the method is the need to use pade approximants or some other scheme of 

extrapolating to the continuum limit. This extrapolation is, of course a severe 

problem for Monte Carlo methods as well. In fact, that the continuum limit really 

exists for these cases is something of an article of faith. Finally, the fear of any 

type of phase transition between the weak and strong coupling regimes must be 

considered in either scheme. 

A useful discussion of many of the methods that have been used in the con

text of lattice gauge theories is presented in [14]. 
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4 : Strong Coupling and Computer Algebra 

As was mentioned in the previous section, a major reason why the Strong 

Coupling expansion has not been used extensively for practical calculations is 

the complexity of higher orders. This suggests the possibility of writing a special

ized computer algebra package to aid in doing calculations. The ultimate com

puter program designed to do strong coupling calculations would simply accept 

as input the initial and final states, and perhaps the form of a weak interaction 

Hamiltonian, and then would grind away until (perhaps in near infinite time!) it 

had constructed all relevant graphs and then evaluated them. 

The design and implementation of this program are the subject of this sec

tion. In Fig.3. an overview of a Strong Coupling computer system is given. The 

subsections of this chapter essentially follow the elements of Fig.3. For simpli

city, much of our discussion will be confined to the pure gauge situation. 

4.1. Graph Construction 

4.1.1. Graph Construction and Computational Equivalence 

The hardest aspect of building such a program is the construction of the 

graphs. The computer needs to be able to recognize when two configurations, 

which it has constructed via different routes, are identical up to translations 

and/or rotations. For our purposes, a simplified and yet complete system was 

written. At a given order P in perturbation theory the number of distinct graphs, 

before time ordering and complex conjugation (see next section) are imple

mented, is of the order of: 
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#Graphs ~ 3P / 2 IT ( 4 + 3 i ) 
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(4.1.1) 

The salient point to remember from (4.1.1) is the exponential factors. The 

second, and technically more difficult, feature we require is the ability to recog-

nize when two distinct configurations are computationally equivalent, i.e., they 

evaluate to the same number. This is important because the calculation of an 

individual graph can be an expensive thing to do for SU(N) and there are many 

calculationally equivalent graphs. As a comparison, for a Z 2 gauge theory (in the 

Euclidean formulation) we would not have to worry as much because the evalua-

tion of graphs is so much easier. 

4.1.2. Time Ordering and Complex Conjugation 

To obtain all of the graphs, the remaining steps we have to execute are to 

time order all of the perturbations, and then construct all possible orientations 

(defining whether we have taken the perturbation, or its complex conjugate) of 

the plaquette/fermion-Hamiltonian perturbations within a graph. These steps 

are easy to implement and it is mainly these steps which are responsible for the 

very large number of graphs which we must consider even for quite simple situa-

lions. For any given graph of even order P, time ordering will contribute distinct 

configurations enumerated by: 

# ~ Time Orders (4.1.2) 

The dividing factor appears because, ignoring all possible orientations, we usu-

ally need identical pairs of perturbations to ensure a nonvanishing graph. (4.1.2) 

is worst case behavior; of course, some diagrams have only a single time order-

ing. For each individual time ordering, the various possible orientations of the 
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perturbations will contribute of the order of: 

#Orientations 
~ 1 (P+2)! 

21][(~+1)!]2 (4.1.3) 

graphs. c labels the independent sets of links within a graph . The overall factor 

of one half arises because we can fix the orientation of the initial or final state if 

one so wishes. For SU(N), with N odd, ( 4.1.2) is a slight underestimate. 

For SU(2) we do not need to construct distinct graphs for the orientations of 

plaquettes; however, for the reasons of ease of programming it is advantageous 

to have assigned orientations. This is because the computer algebra program is 

very specific about indices being correctly placed up or down, which is equivalent 

to having an assigned orientation. 

4.1.3. Disconnected Graphs and Splicing 

From a purely theoretical point of view, Rayleigh-Schroedinger perturbation 

theory is an extremely inefficient procedure. There are many disconnected 

graphs and it would therefore seem that we would calculate many graphs more 

than once. Unfortunately, "linked cluster" expansions are only known to exist 

for special cases [15]. However, it turns out that the situation is not as grim as it 

might appear; in principle, we need only compute the connected graphs and then 

we may form the disconnected graphs by splicing them together . Most of the work 

involved in splicing two graphs together comes from constructing the time ord-

erings and evaluating the energy denominators. This procedure is recursive and 

fits naturally into the process of working from lower to higher order. 

The calculation of the excluded volume coefficients, while straightforward 

in simple cases, gets to be very difficult in higher order. This calculation is also 
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recursive in the number of disconnected pieces. Development of an efficient 

algorithm and computer code which can calculate these coefficients quickly will 

be necessary if very high order calculations are ever to be attempted. Such algo

rithms will be of the same level of complexity as those employed for the con

struction of the basic graphs. A program was developed for this purpose; however, 

except for the simplest cases it proved to be cumbersome to use. At present, the 

excluded volumes are simply tabulated and called when needed. 

4.2. The Group Theory 

4.2.1. Gauge Field Expectation Values 

Having constructed the graphs at a particular order in perturbation theory 

we must now write down the corresponding mathematical expressions and then 

evaluate them. Most of the labor lies in the evaluation of the expectation values 

of SU(N) link variables. Generically we have: 

(4.2.1) 

The unprimed indices correspond to the coordinate r, the primed indices to the 

r +n end of the link. Evaluation of this integral is, in principle, straightforward 

via the Clebsch-Gordon coefficients. Two tricks enable us to do these calcula

tions easily on a computer and in such a way that we can easily modify our pro

grams to use a group other than SU(3), to which we now specialize. The modifi

cation to SU(2) has been implemented but will not be employed here. 
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The first thing to do is to keep all indices in the fundamental representation 

3, and its conjugate 3; hence, a 6 will be represented as ¢(ab) with the a, b indices 

symmetrized. Whenever two indices are antisymmetric, we use the antisym-

metric symbol to reduce the two indices to one, i.e., 

¢ _ 1 ¢[be] 
a- Y2 Cabc · (4.2.2) 

This method is general enough that inclusion of news terms in the Hamiltonian, 

such as characters of higher representations, could be incorporated without too 

much difficulty. 

We also notice that any given term in the expectation value factorizes into a 

tensor which exhibits only unprimed indices, and a primed index tensor which 

has the identical structure except that the complex conjugate has been taken. An 

example is provided in ( 4.2.4 ). The reason for this factorization is that our gauge 

transformations are local, so we cannot have indices corresponding to different 

space points in the same tensor. Hence, it is enough for us to construct one of 

these tensors, and then the other may be immediately written down. 

We proceed by simply working along the SU(3) matrices in ( 4.2.1) from left to 

right. At each step we take the current representation, construct its group pro

duct with a 3 (or 3 if we have a ut) and then decompose to the irreducible 

representations using the tensor method, e.g., 

3®3 8E91 (4.2.3a) 

(4.2.3b) 

pan 
b m (4.2.3c) 
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The tensors pabnm and oab give us the Clebsch-Gordon coefficients up to a nor-

malization which we must determine. This is the only hard part of the calcula-

tion. The easiest method to use is to recall that Clebsch -Gordon coefficients are 

unitary; hence, we find that the coefficients for this example are 1 and 1/v'3. 

Therefore, an example of an expectation value is : 

( 4.2.4) 

1 I I 1 I I 
_pam pb In 1 + -oa om ob 1 on I 8 bn am 9 b n am 

The Clebsch-Gordon coefficients that would be required to handle an arbitrary 

calculation involving up to six coincident links are tabulated in Appendix C. To 

date, the system can accommodate up to eight links. 

Currently, evaluating the Clebsch-Gordan coefficients is done by hand but 

in the future it will be computerized. There is one technical point which one 

needs to be aware of, namely that two representations may have the same 

dimension and yet not be equivalent. The only example we encounter is: 

10 ® 3 = 151 ffi 152 . (4.2.5) 

These inequivalent 15 representations have different symmetry properties and 

different quadratic Casimir operators. The magnitudes of the different Casimir 

operators are given in Appendix C: Table (C.3). 

Finally, it is much more efficient to compute all of these coefficients ahead 

of time and then call the results when needed in any particular calculation of a 

graph. This requires a method of uniquely identifying any particular configura

tion of U and ut matrices. This is almost trivial; by assigning 1 to U and -1 to a 

ut, we use the hashcoding H defined by: 
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H t (±1 )3P (4.2.6) 
p=l 

where the sum is over the Q SU(3) matrices that are present. The number of 

possible expectation values increases very rapidly, for large Q being bounded 

above by (Q / 2)! Above six matrices is impossible by hand, with six matrices 

being just tolerable. 

4.3. Evaluation of the Graphs 

4.3.1. Computer Algebra 

This short program is the heart of the entire system. While the basic algo-

rithm used is very general, for speed and economy of memory usage, the code 

has been specialized to handle just three mathematical constructs; they are the 

invariant tensors of SU(3); oab, ~a, .. . a11
, and Ea ... a . A very similar program is 

1 }I 

also used for the calculation of the Clebsch -Gordon coefficients. 

4.3.2. Fermion Expectation Values 

The evaluation of the expectation values of a group of fermionic operators at 

a single site is almost trivial. We simply use the anticommutation relations 

(3.2.2) repeatedly. 

Wilson fermions could be implemented; however, in that case we would have 

four Dirac fields per site (plus color indices). This makes the algorithms signifi-

cantly more complicated. Also, the gamma matrices have to be accommodated. 

In part, the decision to use Kogut-Susskind fermions was based upon these rea-

sons. The price we pay for this choice is the phases of the now distributed gamma 

matrices, and the absence of a nuclear isospin symmetry. Of these two the latter 
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is by far the more damaging. 

4.4. Processing the Amplitudes 

This can be easy, or very difficult, to do depending on the calculation under 

consideration and what kind of answer is required. If an answer with all arbitrary 

parameters left explicit is desired then this job can be very difficult; however, 

purely numerical answers do not provide a problem. In either case, a minimal 

amount of computing time is expended here. 

4.5. Testing 

With any computer program, there is the vexing question of how to test it. 

Here we very briefly indicate how the programs were tested. 

It turns out that there are various consistency checks which can be made 

within any particular calculation. Most of the disconnected graphs derive from 

the vacuum bubbles. These terms have coefficients which have the form 

aPNP + ap _ 1NP- 1 · · · ao. The a 0 is the only term that will contribute to the 

final answer. The other terms, which are powers of N, have to cancel in the final 

analysis, order by order in strong coupling perturbation theory. These can cella

tions give a useful check on the results. If a string tension calculation is used as 

a check, then all terms of the form NP L q must have vanishing coefficients when 

p>O and q > 1 . Note that subdominant terms e.g., terms proportional to L - 1 , 

need not vanish. 

To check that the group theory has been done correctly, we evaluate the 

amplitude (ignoring the energy denominators for the moment) of a diagram for 

which the plaquettes coincide on the lattice. Due to the orthonormality of the 

Clebsch-Gordon coefficients these amplitudes must evaluate to unity. Although 
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this check is not foolproof, it gives us some confidence in our calculations. If one 

has a lot of nerve, then we can use this method to fix the normalizations of the 

Cle bsch -Gordon coefficients. 

A final, rather unreliable test was to check against the few published results 

available. The results were rather saddening with most of the calculations in the 

literature appearing to have errors. The pioneering glueball mass calculations of 

[7] are completely in error; despite which, the final results appear to be quite 

reasonable. The meson and baryon mass calculations of [8] also appear to have 

some minor errors. However, the string tension calculations [16] are the best, we 

tested up to fifth order in 3 + 1 dimensions. 
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5 : Initial/Final State Wave Functions 

Before attempting to construct the operators for the weak Hamiltonian, we 

will construct the wave functions for the initial and final states. This exercise 

will illustrate the methods that we will use. First, for pedagogical purposes we 

will construct the single pion state, then the Kaons, and finally, the two pion wave 

function. 

5.1. Lattice Bilinears in General 

To construct the fermion bilinear operators, and the quartic operators in 

Chap.6., we use the following method. In many cases we encounter we use lattice 

operators which are summed over all lattice sites; hence, we make the 

correspondence: 

Jd3 x1f;f1/f ~ L:;_cxr(i)xt(r)x(r+a<i)) + 17c H.C. (5.1.1) 
T,"l-

The a<i) are linear combinations of the unit lattice vectors. r runs over all lat-

tice sites and i runs over the distinct a(i) which emanate from a given site r . 17c 

is positive or negative depending on whether 1f;f1/f is hermitian or antihermitian. 

For simplicity, we have assumed that there is no explicit factor of i present in 

(5.1.1). Such a factor is not a problem in practice, except for the sign confusion 

that it can cause. We now require that this lattice operator have the same 

transformation properties under lattice symmetry operations as has the contin-

uum operator under the equivalent continuum transformations. Operators do 

not always look as symmetric as one might expect owing to the arbitrary choice 

of whether X or Xt is located at r. For the purposes of constructing the four-

fermion operators, we exploit this ambiguity so as to construct operators for 

which the transformation law under space inversion is manifest. We write the 
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lattice operator (5.1.1) as: 

~ ~. cxr(i)xt(r)[x(r+a<i)) + 1JpX(r-a(i))] + 1Jc H.C. (5.1.2) 
r,t 

where 1]p = ± 1 depending on the parity. The advantage of this format is that the 

local operator 

B(r) ~ ~ ar(i)xt(r)[x(r+a(i)) + 1Jpx(r-a<i))] + 1Jc H.C. (5.1.3) 
t 

has definite parity and hermiticity properties . When we need to use the bilinear 

operator outside of a sum over the lattice, then (5.1.3) is the form that we must 

use; however, in many other circumstances, we will be able to use the simpler 

form (5.1.1). To find the a(i), write the continuum bilinear in terms of the u, d 

fields, then in terms off, g spinors as was described in Sec. 3.3. Concentrating 

on those operators that involve ft , one will obtain the overall phase and the a(i) . 

To pin down the cxr(i), we do not have to utilize all of the lattice operations. The 

chiral flavor symmetries will be sufficient to determine an ar(i) corresponding to 

a particular a(i) by relating it to the coefficients residing on adjacent sites. If 

necessary, to fix the phases between different CXr i , employ the combined rota-

lions and isorotations on the lattice. With these prescriptions, a compendium of 

the fermion bilinears that we will need is presented in Appendix A. 

There are rare, but important, situations for which we need to be a little 

more careful than we were above. If the offset a is zero then we can take the 

correspondence between lattice and continuum currents to be either of: 

J d 3 X [ ~ , f'lf ] ~ ~ CXr p( r ) (5.1.4a) 
r 

f d 3 X : ~ f'lf : ~ ~ CXr : X t ( r ) X( r ) : (5.1.4b) 
r 
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In the continuum limit (5.1.4a) and (5.1.4b) are equivalent[17]; however, this 

equivalence fails for our lattice constructions. Using either form ensures that if 

a current's vacuum expectation value should vanish in the continuum limit, 

then it will do so when averaged over a unit cube. Note; however, for (5.1.4a) the 

expectation value will not vanish at an individual lattice site, but only when 

averaged over a unit cube. For the prescription of (5.1.4b) the vacuum expecta-

tion vanishes identically at every site. When we constructed H o in Chap.3. we 

found that only the prescription of (5.1.4b) was satisfactory in ensuring that the 

energy of the vacuum was zero. From now on we will use the prescription of 

(5.1.4b) . Both prescriptions are trivially satisfied for the general case of a non-

vanishing a(i). 

While the above prescription is perfectly adequate for constructing bilinears 

within a single generation, it needs some modification for operators which con-

tain fields from different generations. In this case we choose to extend from the 

form (5.1.2): 

J d3x1f;1f1/12 ~ ~I:. ar(i)~x\(r)[x2(r+a(i)) + 7JPX2(r-a(i))] (5.1.5) 
T,'L 

The difference between this bilinear and those above is that there is no hermitian 

conjugate piece to the operator; instead, we find something similar. What we 

require is a way to fix 7]cs . The trick is to remember that all bilinears of this 

form belong to the adjoint representation of SU(4). This means that the complex 

conjugate operator to that in (5.1.2) can also be reached from (5.1.2) by an SU(4) 

transformation. Using this observation, we may fix the 7]cs easily. We observe 

that, with the SU( 4) transformation T 1 (see Appendix A) that interchanges the 
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generations, and with the definition ')' 0ft ')'0 = TJc r : 

(5.1.6a) 

(5.1.6b) 

and therefore TJcs = TJc which was derived while working with only one generation 

of fermions. 

5.2. An Example : A Single Pion 

The continuum limit guess for the 7T0 wave function is, in the usual notation 

and up to a normalization factor : 

(5.2.1) 

The prescription that we employ is to construct the appropriate fermion bilinear 

operator by the method described in Sec.5.1., and then to use this operator as an 

interpolating field to the state that we want to reach. With this prescription , we 

obtain for the 7T0 wave function, in its simplest form: 

-J:r 2:: (-l)Y+z [ Xta(r)xa(r+nz) + Xta(r+nz)Xa(r)] I 0) (5.2 .2) 

r 

We can immediately obtain the wave functions, 1T 1 and 1Tz (corresponding to the 

flavor generators T1 and Tz) by cyclic permutations and then construct the 

charged pions as 

(5.2.3) 

These wave functions were chosen because they are eigenstates of the 



-32-

Hamiltonia,n in the strong coupling limit, and they have the same quantum 

numbers as the pions. As one proceeds to the continuum limit, contributions 

from operators spanning more than one link, along with baryon-antibaryon 

pairs (which we have explicitly suppressed by using the irrelevant operators) will 

be mixed into the true wave function. The irrelevant operators serve the very 

convenient purpose of suppressing the effect of baryon-antibaryon pairs . If 

A 1 < 1/84 then the baryon-antibaryon pairs would be lighter than the meson 

wave function (5.2.2) and so we would be unable to use (5.2.2) [8]. We assume 

that the assumptions underpinning (5.2.2) are not too drastic. 

5.3. The Initial State : The Kaons 

The Kaons present us with some new problems which originate because we 

are now incorporating quarks from different Kogut-Susskind fields. However, we 

can still apply the logic that was used to construct the pions. 

In the continuum language, consider the wave function cu- s d which is 

the direct analog of the 7T0 wave function in (5.2.1) and can be written as: 

1 o -:;/; [ T 1 o T2 Ja ~J,b 1 0) 2'/,'Ya/5 3-?, 3 b'Y (5.3.1a) 

(5.3 .1b) 

Where the index a ranges over the two generations and the T matrices are those 

defined in Appendix A. Using (5.3.1 b) this new wave function can be written as: 

(5.3.2) 
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By rearranging the terms in the sum, and removing all terms that vanish, we are 

able to collapse (5.3.2) to: 

.J:rL:; (-1)y+zxtza(r)[xla(r+nz) - Xla(r-nz)] I 0) 
r 

(5.3.3) 

We notice that the field Xz only resides on even lattice sites and the Xl field on odd 

sites . Hence, the phase of ( -1 )y+z could effectively be replaced by ( -1 )x. An 

important point to now notice is that we can no longer make any use of the chiral 

symmetries because they are broken by the vacuum. Similarly, we can construct 

wave functions using the T matrices to form the charged mesons; however, we 

will not need any of these wave functions. 

If we are going to use (5.3.3) to represent the K 0 there is an important phy-

sical issue which must be addressed. The wave function that we wrote down in 

(5.3.3), i.e., cu- sd, represents a superposition of the K 0 and 15°. To get rid of 

the unwanted uc part, we might be inclined to construct the operator c u + s d, 

or 1f!a151/la, and then take the difference of the two operators to eliminate the cu 

component. However, in the strong coupling limit, these two states have dif-

ferent energies because the point split operators traverse one and three links 

respectively. We shall choose (5.3.3), instead of1f;a-y51f;a, to be our representation 

of the K 0 because in the limit of m 5 ~ 0 , this wave function and the pions 

become degenerate. We could expect that cu components would cause us plenty 

of trouble; however, in the matrix elements which we shall compute, the cu part 

will not contribute and we can simply ignore it. 

The other major concern is that the wave function (5.3.2) does not have 

IN = 1/2 because there are no nuclear isospin symmetries in this model. The 

closest we come is the weak isospin for which the state (5.3.2) has fw = 1 . It is 

not immediately obvious just how much trouble this will be. It will turn out to be 
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very annoying. 

5.4. The Final State : Two Pions 

The final state of the K decays we are interested in have two pions ; hence, we 

need to construct a two pion wave function on the lattice. An important physical 

issue we need to address is that of final state interactions. This will be discussed 

shortly. 

The obvious choice for the two pion state, at rest in the center of mass and 

ignoring isospin factors and normalizations, is: 

"\' ikr 1 0 ( ) -ikr 2 0 ( ) LJ e 7T r 1 e 7T r 2 (5.4.1) 

For our calculation, we will force rnK = Tnmr , at least to lowest order, so we set k 

to be zero. 1r0 (r) represents the operator that we use to represent a single pion 

straddling one link . Unfortunately, as it stands (5.4.1) is not an eigenstate of the 

zeroth-order Hamiltonian. We can isolate several distinct components from 

(5.4.1), each of which is an eigenfunction with a distinct energy. The configura-

tions for which the pions do not coincide completely (this state has energy 

~ + 128A 1 ) are depicted schematically in Fig.4. along with their energies. 

The only possible wave function that reproduces the large scale form of the 

two pion wave function is: 

(5.4.2) 

where the sum over r 1,r 2 is restricted so that the pions never get closer than two 

links to each other . The other states appear to represent primarily qqqq exotic 

states. As we progress to the continuum limit, presumably the true pion wave 
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function becomes a mixture of all of these possibilities. In a more elaborate cal

culation than we entertain here, one IJ?.ight attempt to mix these states together 

in the strong coupling limit using the methods of [18]. Happily, for all of these 

states, IN and Iw coincide. 

Which of these wave functions we choose to calculate with should be arbi

trary; after all, the 6.IN = 1/2 rule is presumed to be a general feature of non

leptonic weak decays. (5.4.2) best reproduces the way the wave function of the 

two pions spreads over space; however, it does not do as good a job of dealing with 

final state interactions, at least at low order in strong coupling perturbations. 

For the convenience of calculation, we choose to use the wave functions of 

Fig.4(b). This choice will mean that we over-include the final state interactions. 

The wave function we use , omitting the gauge fields, is: 

(5.4.3) 

x\(r+ny+n,)x'(r+ny)] + H.C.) I o> 

This wave function has positive parity, and is real. The 7T 1 7T 1 and 7T2 7T2 states are 

formed trivially from (5.4.3) by using the cyclic permutation symmetry. The 

"direction" of these states on the lattice is defined by the axis along which the 

contractions over color indices is taken. The I = 0 and I = 2 states are obtained 

by forming the linear combinations of (2 .3). 
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5.5. The Strange Quark Mass 

It would be preferable if we were able to calculate the matrix elements of 

interest on shell. Unfortunately, due to the splitting of the two isospin states, 

this is not possible except at lowest order. We do not believe that this problem is 

critical. The best that we can hope to achieve is to fix one of the matrix elements 

to be on shell. To do this, we will have to finetune the mass of the s -quark mass 

so that mK = mmr . While for this calculation this is an expedient, that relieves 

us of having to use wave functions carrying nonzero momentum, it probably is 

not that poor an approximation given mK ~ 490MeV and m7T ~ 140MeV. 

For the mass term representing the c, s generation, we define: 

(5.5.1) 

This term treats the c and s quarks as degenerate. In the strong coupling limit, 

the mass of the 7T7T state that we have chosen to use, and the K, are: 

m7T7T 
8 
3 

+ 4mu + 128A 1 

= 
4 + m 5 ( 

0 ) + m u + 3 6 A 1 + 3 6 A 2 
3 

We see that to fix mK = m7T7T to zeroth order, set 

m (o) 
s 

4 
3 + mu 

= 23 A 1 
9 

(5.5.2a) 

(5.5.2b) 

(5.5.3a) 

(5.5.3b) 

We are permitted to relate the irrelevant parameters in any way that we choose 

because, as long as we keep them finite, they in principle do not affect the 
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continuum limit although they will affect the final answer that we obtain. 

This is as much as we will have to ·say about the energies of the states as the 

zeroth order results are all that is needed. For the record, the splitting between 

the two isospin states is given by: 

= +-1-
4g4 

5.6. Wave Function Normalizations 

(5.5.4) 

We would expect that for a second order calculation, we would need to com-

pute the masses and wave function normalizations to second order. However; 

because of some remarkable cancellations that will occur, we will only need the 

zeroth order results. In particular, we only need the zeroth order normalization 

for the initial and final state wave functions. Because these will divide out of any 

ratio, we will drop these extraneous factors forthwith. 
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6 : The Weak Interaction Hamiltonian 

The purpose of this section is to construct, on the lattice, the effective weak 

interaction Hamiltonian. If we were very ambitious, we might attempt to place 

the full Weinberg-Salam theory on the lattice and then calculate; however, this 

would be unnecessarily complicated. Instead, we will derive an effective theory in 

the continuum limit and then transfer to the lattice. 

6.2. The Continuum Hamiltonian 

In general, the hadronic matrix elements that we wish to calculate have the 

form [3]: 

(6.1.1) 

I ex) and I f3) are hadronic states. Because the W mass is large relative to the 

scales which we are interested in, we can obtain an effective Hamiltonian by util-

izing the Operator Product Expansion. At (or just below) the scale of the weak 

interactions, which we take to be Mw. the W -exchange term in this Hamiltonian 

takes the form [19]: 

(6.1.2) 

This operator has the required 6.5 = 1 structure. Because we will only compute 

the ratio of matrix elements, from now on we will ignore the overall factor in 

(6.1.2). Also we have made the assumption that there are only two generations of 

quarks. We shall make some more comments about this shortly. We note that 

ambiguities could arise because the two currents that constitute (6.1.2) do not 
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commute. If we were to commute these two operators, then we get an additional 

operator of the form: 

(6.1.3) 

In fact, (6.1.2) is not the leading term in the O.P.E. but rather we could have 

included terms of the form: 

(6.1.4) 

The actual combination of these operators, and their coefficients will not con

cern us. Using the equations of motion (we are as close to on shell as we can get) 

we can collapse the operators of (6.1.4) to terms like that of (6.1.3). We will 

ignore these terms on the grounds that the operators (6.1.3) and (6.1.4) only 

contribute to an offdiagonal wave function renormalization [20] and therefore do 

not affect the physical quantities we are calculating. To ensure that we have 

eliminated all unphysical offdiagonal wave function renormalizations, we take 

the four-fermion operator of (6.1.2) to be normal ordered. The procedure of 

normal ordering transfers from the continuum to the lattice formulation 

without any complications as was pointed out in Chap.5. 

So far we have left QCD completely intact; however, when we shift to the lat

tice theory, we will be neglecting the high frequency modes of QCD because of the 

lattice cutoff. We should include these modes now by integrating them out. 

Because the high frequency modes are weakly coupled (asymptotic freedom), a 

perturbative calculation to one loop and then summing leading logarithms 

should perform a satisfactory job. The ingoing and outgoing legs of the operator 

in (6.1.2) are not in definite color states, so we do not expect (6.1.2) to be multi

plicatively renormalized. Instead, consider the operators: 
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(u~c) (6.1.5a) 

(6.1.5b) 

The second step is achieved by a Fierz rearrangement. Now 0 + transforms as a 6 

under color SU(3) and 0 _ as a 3. The anomalous dimensions of these operators 

have been calculated previously [2][19] to be: 

I'+ 

!'-

1 2 
47T2 g 

1 ---g2 
27T2 

(6 .1.6a) 

(6.1.6b) 

Now we can run the effective weak Hamiltonian down to the scale of the c (and s 

for this calculation) quark mass. The result is: , 

Hw 

as (J-L) 112/25 

as(mw) 

(6.1.7a) 

(6.1.7b) 

(6.1.7c) 

The matching conditions being h±(Mw) = 1. We immediately notice that h_ > h+ 

and so 0 _ is probably enhanced over 0 +· J-L which will equal the inverse lattice 

spacing, should be chosen to satisfy AQcD << J-L << Mw. J-L ~me would be 

appropriate. At this juncture it is instructive to consider the isospin violating 

properties of these operators. 0 + consists of both 6./N = 1/ 2 and 6./N = 3/2 

pieces. 0 _is pure 6./N = 1/ 2 so we might suspect that the perturbative enhance-

ment of 0 _ is the origin of the effect we wish to explain; however, the above 

mechanism is too feeble. Since the enhancement we see here is so small, we shall 
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not consider it further. For our calculation, keep in mind that both of these 

operators contain both !:lf w = 1 and !1! w = 2 pieces. 

The form of the Hamiltonian quoted in (6.1.2) assumes that there are only 

four quark flavors. If we had instead chosen to work with six or more quarks then 

(6.1.2) would have to be modified appropriately. By the time that we had 

integrated down to the scale of the c quark we would have, in addition to the 

operators 0 ± , operators such as: 

I; S/'1L(1+!'5)d 7f/'IL(1-/'5)q 
q 

2:; Sf'IL( 1 +/'5) AA d qf' IL ( 1-/'5) 1\A q 
q 

(6.1.8a) 

(6.1.8b) 

(6.1.8c) 

These operators have been considered by previous authors [21][22], but no 

suggestion of any real gain over the four quark model was revealed. For our cal-

culation we have kept the c quark in preference to integrating it out, so we still 

have the GIM mechanism. To remove the c quark would require us to split it in 

mass from the s quark, which as we have already pointed out, is very difficult in 

our context. Hence, the Penguin operators are included dynamically in our cal-

culation and therefore their contributions will appear as the result of inexact 

GIM cancellations. 

Using the generation representation for the fermions the four operators are: 

(6.1.9a) 

(6.1.9b) 

(6.1.9c) 



-42-

(6.1.9d) 

Eventually, we will have to break these operators into their constituent pieces 

and construct the lattice operators individually. We will postpone this step until 

the next chapter; however, we can describe how the construction will be carried 

out in general. 

6.3. The Lattice Hamiltonian 

The methods used for this construction are identical to those used to con-

struct the bilinears tabulated in Appendix A. Given those results we may easily 

obtain the four-fermion operators as follows. Note that we use the forms of the 

operators that are manifestly eigenstates of parity. 

J d 3 xqfiq -4 I; B i(r) (6.2.1a) 
r 

J d 3 x qf 1 q qr 2 q -4 I: B 1 ( r ) B 2 ( r ) (6.2.1b) 
r 

It can be easily checked that that the four-fermion operator (6.2.1b) has the 

appropriate transformation properties under any lattice operation if the consti-

tuent bilinears (6.2.1a) have the appropriate properties. The transformation law 

under parity is manifest by the construction of B 1 and B 2 in section (5.1). Nor-

mal ordering is taken to be implicit in (6.2.1). 

There is another minor complication that we must consider. With the color 

indices included, these operators are only globally gauge invariant. When we 

modify the operators to enforce local SU(3) color invariance there will be an 

ambiguity for operators that span more than on link, e.g., 

X t ( r ) x( r + nx + ny ) (6.2.2) 
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could generalize to either of: 

xt(r) U(r ,nx) U(r +nx,ny) x(r +nx+ny) 

X t ( r ) U ( r , ny ) U ( r + ny, nx) x( r + nx + ny ) 

(6.2.3a) 

(6.2.3b) 

This problem is easy to fix; we just weight each possibility with (n !)-l where n is 

the number of links which are spanned . There is no real principle invoked here ; 

rather, "If in doubt, Symmetrize". Obviously, this causes a terrible proliferation 

in the number of operators which must be considered. 

There is a final delicate problem that we must worry about. We have to be 

able to fix the relative normalizations between the constituent pieces of the lat

tice weak Hamiltonian. There are no points of physics involved, rather, one must 

just be careful. 
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7: The Matrix Elements 

Finally, we come to the actual calculation of the matrix elements we are 

interested in. Before we plunge into the explicit construction, and evaluation, of 

the strong coupling graphs we will take a moment to look at the symmetries 

within the matrix elements we are computing. There are very many graphs to 

deal with and therefore any simplification will be a considerable gain, even if only 

in computer time . The following arguments are independent of the explicit forms 

of the wave functions and operators. 

7 .1. Symmetries 

The first point to notice is that by the Wigner-Eckart theorem: 

(7.1.1) 

Hence, the only final state wave functions we have to consider are (2.3b) and 

(2.3c) for the 6./N =:::: 3 / 2 and 6./N = 1/ 2 amplitudes respectively. Following the 

definition (5.2.3), and recognizing the minus sign, we write: 

(7.1.2) 

For convenience, we will now refer to the 7T0 often as n 3 • So up to an overall phase, 

the wave functions now take the form: 

(7.1.2a) 

(7 .1.2b) 
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The matrix elements that we need to compute all have the form: 

(7.1.3) 

where i ranges from one to three and Ow is the lattice version of any of the 

operators detailed in (6.1.9). We now use the known transformation properties of 

both the wave functions and the operators to reduce these matrix elements to a 

minimal set. Because the matrix elements as originally written do not couple the 

l5° component of the initial state to the 7T7T final state, the following manipula

tions will preserve this state of affairs. 

The first gain we can make is to notice that the operator Ow and the initial 

state, now denoted by K 0 , are invariant under a lattice (iso)rotation about the z 

axis. Hence, we see that: 

(7.1.4a) 

(7.1.4b) 

This reduces our calculation by a third. The components of the 7T37T3 wave func

tion refer to the two parts of (5.4.3). Next, we have to break Ow down into its 

components stepwise. We write Ow so that its chiral structure is manifest to get: 

Ow (7.1.5) 

The Jli- , J 511- are flavor currents and have nontrivial transformations under 

(chiral) flavor rotations. Under parity, the 7T7T state is even and the K 0 state is 

odd, so only the cross terms in (7.1.5) will contribute. Now one can see why we 

took some pains to ensure that space reflection symmetry was manifest in our 

operators. 
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To make progress beyond this point, we must now specialize attention to 

specific flavor structures within the currents. From (6.1.9) the currents come in 

two types: 

1f;r( T1-iTz)1/l 1f;r'( T1 +iTz)1/J 

1f; r ( 1 - T3 )1/J 1f; r' ( 1 + T3 )1/! 

(7.1.6a) 

(7.1.6b) 

The 1/J and rare generic. Now, consider a flavor rotation 1/J--+ T11j;. The 7Ti7Ti com

ponents of the pion wave function are invariant while the K 0 reverses sign. So, 

again only the cross terms in both (7.1.6a) and (7.1.6b) will contribute. Note that 

we are unable to make any use of the now broken chiral symmetries to reduce 

the matrix elements. 

We can go even further, if we look at specific final state components and 

spatial components of the currents. Independently of the chiral or flavor struc

ture of the currents we can easily show, using a rotation about the z axis, that: 

(7.1.7a) 

(7.1.7b) 

For simplicity, we have used the continuum language. These results are indepen

dent of the form of the operators and will hold on the lattice . We can also make 

the following simplifications: 

(7.1.8a) 

(7.1.8b) 
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(7 .1.8c) 

(7.1.8d) 

It is not always convenient to implement all of these symmetries; rather, we 

prefer to use some of them for the actual calculation and the remainder as 

checks on partial results. We are now poised and ready to calculate. 

7.2. A Sample Calculation 

The full calculation is too extensive for us to provide all the details, so 

instead, we will illustrate some of the features by examining select operators in 

detail. One of the operators is taken from 0 1(1) and the other from 0 1(2 ). The 

balance of the calculation is identical in substance. 

7 .2.1. Zeroth Order 

The matrix element that we evaluate is, with 1j;0(1) representing the Kaon 

wave function (5.3.2) and 1fo(2) the appropriate two pion state: 

(7.2.1) 

The operators that we choose as examples are : 

Aw (7.2.2a) 

Bw (7.2.2b) 

Explicit forms for Aw and Bw can be read off Table B.l. Notice that Bw is the "GIM 

conjugate" operator of Aw and will appear with a relative minus sign. 



-48-

There is an important simplification at this level as all of the graphs derived 

from the operators 0 1 (
2 ) and 0 2( 2 ) obviously vanish. This is an interesting obser

vation because these are all graphs that would become the "Penguins" if we were 

to integrate out the c quark. Hence, we only have to evaluate Aw . Allowing for 

the various configurations of the SU(3) matrices, there are two nonvanishing 

graphs corresponding to the operator Aw where one of these is a mirror reflec

tion of the other. The unique distinct graph is presented in Fig.5(a). This graph 

evaluates simply to "3" , the answer being independent of all other parameters 

such as quark masses, etc. 

When we complete the calculation we discover a remarkable, and certainly 

unexpected, result; the entire contribution for zeroth order vanishes identically. 

In essence , the reason for this cancellation is luck. If one expands the expres

sions for the operators JtJt and JZJz , the cancellation can be seen to be an 

accident that will not persist at second order. A similar phenomenon occurs for 

the JXJx and JY JY constituent operators of 0 2 . 

7.2.2. First Order 

The contributions to the matrix element are: 

(7.2.3) 

These matrix elements will vanish if V represents the kinetic Hamiltonian for the 

fermions. However , if V is taken to be the magnetic part of the gauge fields, then 

this matrix element need not vanish. Fig.5(b) depicts the two possible nonvan

ishing graphs (they are time orderings) that one derives from the zeroth order 

configuration. The first evaluates to - 1 / 12 ; the second graph will not appear 

due to the vanishing of the energy denominator. 
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For exactly the same reasons as the previous order, when all diagrams are 

summed, these contributions will cancel. Hence, it is left to second order to pick 

up a nonvanishing matrix element. 

7 .2.3. Second Order 

These matrix elements also go as g-4 if the perturbing Hamiltonian is taken 

to be the fermion kinetic Hamiltonian. The matrix element takes the form: 

< 1/lo(z) IV ( (Z)Q ) V ( (Z)Q ) Hw l1/lo( 1
)) + CYCLIC 

E 0 -H 0 E 0 -H 0 

(7.2.4) 

At this stage, we first begin to see disconnected graphs. We will divide our discus-

sion into the disconnected and then the connected pieces. 

7 .2.3.1. Disconnected Amplitudes 

Because the zeroth order matrix elements vanished , there will be no graphs 

that are derived from vacuum bubbles. The only contribution that we will get 

comes from the graphs in which the weak Hamiltonian annihilates the Kaon and 

the strong interaction creates the pair of pions. With the requirement that Hw be 

normal ordered, these graphs are trivially zero; however, it is interesting to note 

that in any other ordering scheme, the graphs would have evaluated to: 

[ ~ + 60A 1 + 2mu]- 1 [ ~ + 128A 1 + 4mu]- 1 (7.2.5) 

- [~ +68A 1 +2mu]- 1 [~ +128A1+4mu]-ll 
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Expanding, we observe that (7.2.5) vanishes identically due to a cancellation 

among the energy denominators. It is reassuring that the disconnected graphs 

vanish because this amplitude has an overall factor of the volume of the lattice. 

7 .2.3.2. Connected Amplitudes 

With the disconnected graphs behind us we now attack the connected parts 

and proceed to the final result. 

Within this portion of the calculation there are two contributions that we 

wish to isolate; the "Penguin" graphs, and the remainder. We might think that it 

would be straightforward to construct all of the "Penguins" because the opera

tors 0 i 2) are purely "Penguin" contributions. From these we could then work 

back to construct those graphs which are derived from u-quark loops. Unfor

tunately, this approach fails. Heuristically, the reason can be illustrated with 

the following example. Fig.6(b). presents a graph derived from Bw and Fig.6(a). 

what we would expect the corresponding u-quark loop graph to be. That Fig.6(b). 

is a "Penguin" is correct; the claim that Fig.6(a). only contributes to the 

"Penguin" graphs is not. Rather, the time orderings of this graph individually 

contribute both to "Penguin" and to non-"Penguin" amplitudes. Although these 

particular graphs will not appear for the same reason that zeroth and first order 

amplitudes vanish, the problem they demonstrate is generic. The important 

point is that there is not a one to one correspondence between Strong Coupling 

graphs and the Feynman diagrams of weak coupling perturbation theory. As a 

result, it is extremely difficult to isolate the purely "Penguin" parts of the opera

tors. If the c -quark loops as indicative of the magnitudes of the u-quark loops, 

then the "Penguin" graphs are irrelevant. 
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The remaining calculation entails the construction of just over 2000 graphs, 

which swells to about 12000 graphs when the time orderings are counted. The 

final computations produce roughly 6300 nonzero amplitudes. Because this cal

culation has been fully automated, we will only present the results. 

It is not possible to choose a priori a particular value for A 1 therefore we 

have plotted the results against this parameter of our calculation. The graph is 

presented in Fig.7. Below, we present the expectation values of the operators 

using three representative values for the coefficient of the irrelevant operators; 

A 1 = 0.02, 0.10, and 1.00. The reader should recall thatA 1 is bounded below by 

1/ 84. The common u ,d quark mass is taken to be zero. A pesky overall factor of 

i has been dropped to give the quoted results. 

<Iw =IN= 0 I Ow I Iw = 1) 

Ow A 1 = 0.02 A 1 = 0.1 A 1 = 1 

0 1 (1) 10.9566 2.1495 0.1690 

0 1 (2) -0.0012 -0.0003 -0.0000 

0 2(1) 9.0137 2.1200 0.1685 

0 2(2) -0.0088 -0.0003 -0.0000 

0+ 19.9803 4.2701 0.3376 

0_ 1.9353 0.0295 0.0005 
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( Iw =IN= 2 I Ow I Iw = 1) 

Ow A 1 = 0.02 A 1 = 0.1 A 1 = 1 

0 1 (1) 6.2159 0.0553 -0.0483 

0 1 (2) -0.0195 -0.0007 -0.0000 

0 2(1) 4.9785 0.0464 -0.0485 

02(2) 0.0026 -0.0005 -0.0000 

0+ 11.2112 0.1028 -0.0968 

0_ 1.2595 0.0091 0.0002 

7.3. Discussion 

The most outstanding feature of these results is the very strong suppression 

of the operators 0 i 2) for both decay channels. The origin of this result appears to 

be a cancellation among the contributing graphs; the values of individual graphs 

from any of the four constituent operators tend to be of the same order of mag

nitude although some will diverge as A 1 ~ 0. Contrary to what one might expect 

this suppression is not entirely due to the c -quark mass; the phenomenon per

sists even for m 5 (O) = 0 and for A 2 ~A 1· 

Another feature that sets these results apart from what we might expect in a 

continuum calculation is the nonvanishing matrix element of 0 _that we observe 

in the I = 2 final state channel. In the continuum we would expect that this 

matrix element would vanish due to the now near exact "nuclear" isospin sym

metry. Presumably, if we were able to extend these calculations to the 
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continuum, then we would be able to see the restoration of "nuclear" isospin 

symmetry. The size of this matrix element can serve to give us a vague indication 

of how close we are to the continuum limit. 

Because there is no "nuclear" isospin, the best way to search for a 

11IN = 1/2 effect is to recall from Chap.!. that this rule is equivalent to saying 

that the I = 0 final state is greatly preferred. Looking at our results, it turns out 

that in the I = 2 channel the amplitude vanishes within 0.10 <A 1 < 0.12. The 

amplitude for decay to the I = 0 state never vanishes. The exact location of this 

zero does not concern us, e.g., it would be shifted slightly if we included the effect 

of perturbative QCD as discussed in Chap.6. but this is not important for our 

qualitative discussion. In the vicinity of this zero, the I = 0 final state amplitude 

is strongly enhanced relative to the I = 2 amplitude. Elsewhere, there is a always 

a mild enhancement of a factor of two to four. 

Decomposing the operators into representations of "weak" isospin may shed 

some light on what is happening. The linear combination of operators that medi

ate the decay to the isospin singlet final state have to be I w = 1 whereas the other 

operators are a combination of Iw = 1 and 2. This statement of the enhance

ment that we are seeing is similar, but not entirely equivalent, to the traditional 

explanation of the 11IN = 1/2 rule as "Octet Dominance". 

Is this enhancement the 11IN = 1/2 rule, or is it just a quirk caused by the 

irrelevant operators? In the region 0.06 <A 1 < 0.20 the contribution of these 

operators is similar in magnitude to other terms in the energy denominators. At 

0.02 the absence of baryon-antibaryon pairs will hurt, and at 1.00 the irrelevant 

operators dominate the result which is unsatisfactory. This notion of prescribing 

values for the coefficients of the irrelevant operators is due to Banks. et al. [8]. 

The range over which we would get a ratio of greater than ten is 0.06 <A 1 < 0.20 
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which we think is a very satisfactory result. 

A related calculation the we could execute is to find the value of the ratio 

c' /c relevant to CP violation. A sketch of this calculation is given in Appendix D 

and the results are presented in Fig.8. The interesting point to notice is that this 

ratio also vanishes somewhere in the interval 0.10 <A 1 < 0.12. That this result 

agrees qualitatively with the experimental observations in the range 

0.10 <A 1 < 0.12, and with the qualitative features of the decay amplitudes, is 

very encouraging. 

The downside of this calculation has been that we have had to interpret the 

results in the strong coupling limit. Because of the vanishing of the first two 

orders of perturbation theory we were unable to use a pade type extrapolation to 

the weak coupling regime. The interpretation is further confused because of the 

strong dependence of the computed results on the parameter A 1 . To what degree 

these complaints invalidate the results is unknown. Given that we do see a 

!1IN = 1/2 enhancement, we suspect that the details of how we approach the 

continuum limit may not be that important. This would be the case if it were the 

strongly coupled modes of QCD that are primarily responsible for the !1IN = 1/2 

rule and the very small value of c '/c. 



-55-

6 : Conclusion 

6.1. The LliN = 1 / 2 Rule 

The final conclusion is very straightforward and direct. We do see evidence 

for the MN = 1 / 2 Rule in the Strong Coupling Limit of the Hamiltonian Lattice 

Theory with Kogut-Susskind fermions. In the interval 0.10 < A 1 < 0.12 the 

matrix element corresponding to Ll!N = 3/2 vanishes. As corroborating evidence, 

we find that in the same interval the ratio £
1 / t:: also vanishes . This is much more 

than we need to explain the experimental result; indeed, there is a range of 

0.06 <A 1 < 0.20 for which the ratio of the decay amplitudes is greater than ten. 

This calculation also produced a number of surprises. 

[1] The result that we found most surprising was the vanishing of the weak 

matrix elements for the first two orders of strong coupling perturbation 

theory. One expects QCD to modify matrix elements, but not to make them 

vanish. This result appears to be a quirk of Kogut-Susskind fermions there

fore it would be interesting to see if this kind of behavior should exist for 

other weak processes that are calculated by the methods used here. 

[2] The dominance of the 0 + operators which is the exact opposite of what the 

folklore from weak coupling perturbation theory expects. 

[3] The suppression of the c -quark loops which appears to be the consequence 

of some kind of cancellation among the graphs; rather than the signature of 

a large c mass . 
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8.2. Computer Algebra : A Few Comments 

Irrespective of the results that we obtained above, we think that it is worth 

making a few comments about the use of computer algebra as applied to this 

kind of problem. 

The primary advantage of this technique is that you know exactly what phy

sics has been included in a calculation, and what has been left out. Any kind of 

averaging was done explicitly before the calculations were undertaken. There are 

also technical advantages; e .g, there is never a problem with roundoff error 

although if one is not using arbitrary precision arithmetic, integer overflow can 

be a problem . 

The major disadvantage of these methods is that the final answer often 

turns out to be a huge mess of terms which provide very little insight. In this 

situation, which is the one that pertains here, one has little choice but to 

numerically evaluate the result. This is not as bad as it might appear though, for 

evaluating the result is easy to do, and if desired, very fine resolution graphs can 

be produced. 

As a final comment, we believe that computer algebra approaches have a 

great application in physics, especially when used in conjunction with other 

methods. 
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Appendix A : Kogut-Susskind Fermions 

Table A.l : Symmetries of the Hamiltonian 

Lattice Formulation Continuum Equivalent 

x(r) ~ xt(r) G -Parity 

x(r) ~ ( -1 )Y X( T + nx) 1/J ~ -i-y5T11/J 

x(r) ~ (-l)zx(r +ny) 1/J ~ i-y5T21/J 

x(r) ~ ( -l)x x( r + nz) 1/J ~ i"j5T31/J 

x(r) ~ ( -l)x+z x(r + ny + nz) 1/J ~ -i T11/J 

x(r) ~ (-l)y+xx(r +nz+nx) 1/J ~ i T21j; 

x(r) ~ ( -l)Z +y x( T + nx + ny) 1/J ~ iT31/J 

x(r) ~ ( -l)x+y+z x(r + nx+ ny + nz) 1/J ~ "/51/J 

x(r) ~ x(r + 2nJ Translations 

x(r) ~ D(x,y)D(y,z)D(z,x)x'(r') (Iso)Rotations of 7T/ 2 

x( r) ~ x' ( -r) Parity, Reflections 

x(r) ~ x(Rr) Rotations of 7T 

X ~ y ~ z Cyclic Permutations 

-Tl ~ T2 ~ T3 
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SU( 4) Discrete Flavor Symmetry 

With two generations of fermions, the flavor symmetry becomes SU(2)g0 SU(2)d, 

where the SU(2)9 is a continuous symmetry that transforms fields between gen-

erations. The other group is the discrete subgroup of SU(2) that acts within each 

Kogut-Susskind field simultaneously. We have ignored the complications that 

chirality introduces to the group structure. 

Within this symmetry group, we can find a discrete subgroup of the SU(4) 

flavor symmetry. The basic elements of this symmetry are related to the SU( 4) 

generators by: 

The transformations are: 

[ ~ I 
0 

iT 
i.!!...T 

e 2 

-if 
0 

(A . l) 
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Table A.2 : Bilinears; Flavor Singlets 

Continuum Lattice Bilinear 17P 17c 

- xt(r) x( r )( -l)x+y+z "/!"/! 0 0 

1[;-yt'if; xt(r)x(r) 0 0 

-
- i ( -1 )zxt(r) x(r +nx) 'if;-yx'if; -1 -1 

-
- i ( -l)xxt(r) x(r +ny) 'if;-yY'if; -1 -1 

-
- i ( -1 )Yxt(r) x(r +nz) "/J-yz"/J -1 -1 

- ~ 17abcXt(r)x(r+anx+bny+cnz) "/115"/1 -1 -1 
abc 

77+++ = 77+-- = 77-+- = 77--+ = 1 

1f;-yt-y5'if! ~ 17abc ( -l)x+y+z xt(r )x(r + anx+ bny +c nz) -1 +1 
abc 

77+++ = 77+-- = 77-+- = 77--+ = 1 

-
- i ( -l)x +y X t ( r )[ x( r + ny + nz) - x( r + ny-nz) ] 'ifi'Yx'Y5"/J +1 -1 

-
- i ( - 1 )Y + z X t ( r )[ x( r + nz + nx) - x( r + nz-nx)] 'if;-yY-y5"/J +1 -1 

-
- i ( -l)x+z xt(r) [x(r +nx+ny)- x(r +nx-ny) J "/J-yz-y5"/J +1 -1 

The phase convention that we follow for 17c is that if the bilinear is hermitian; 

then 17c = 1 if there is no overall factor of i, and 17c = - 1 if there is the ima-

ginary factor. 
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Table A.3 : Bilinears; Vector Flavor Triplets 

Continuum Lattice Bilinear TIP Tic 

1[;-·/T(r/J i ( -l)z +x xt(r )[x(r +ny +nz) - x(r +ny -nz)] +1 -1 

-
- ~ T!abc(-l)xxt(r)x(r+anx+bny+Cnz) 1/J-yxT(r/J -1 +1 

abc 

Tl+++ = Tl+-- = Tl-+- = Tl--+ = 1 

-
-( -1 )zxt(r )x(r +nz) 1/J-yY T 11j; -1 +1 

-
( -1 )X +y + z X t ( r ) x( r + ny) 1/J-y z T 11/J -1 +1 

1{;-y tT z1/J -i ( -l)x+y xt(r )[ x( r +nz+nx) - x(r +nz-nx)] +1 -1 

-
-( -l)x+y+z xt(r )x(r+nz) 1/J-yxT z1/J -1 +1 

- ~ T/abc ( ~ 1 )Y Xt(r )x(r + anx+ bny +c nz) 1/J-yY T z1/J -1 +1 
abc 

Tl+++ = Tl+-- = Tl-+- = Tl--+ = 1 

-
( -1 )xxt(r )x(r +nx) 1/J-yzT z1/J -1 +1 

1{;-y tT 31/J -i(-1)y+zxt(r)[x(r+nx+ny)- x(r+nx-ny)] +1 -1 

-
( -1 )Y Xt(r )x(r +ny) 1/Jf'XT 31/J -1 +1 

- - ( - 1 )X +y + z X t ( r ) x( r + nx) 1/J-yY T 31j; -1 1 

- ~ Tlabc ( -1 )z xt( r )x( r + anx+ bny +c nz) 1/Jf'ZT31/J -1 +1 
abc 

Tl+++ = Tl+-- = Tl-+- = Tl--+ = 1 
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Table A.4 : Bilinears; Pseudoscalar and Axial Vector Flavor Triplets 

Continuum Lattice Bilinear TJp TJc 

-
i ( -1 )Y+Z xt(r) x(r +nz) 1/J"/ 5 T 31/J -1 -1 

1{;-y t"/ 5 T 11/J i ( -1 )Y Xt(r )x(r +nx) -1 -1 

- -( -1 )y+zxt(r )x(r) 1/J-yx-y 5 T 11/J 0 0 

-
-( -1 )y+x xt(r) [x(r +ny+ nx)- x(r +ny -nx)] 1j;-yY "/ 5 T 11/J +1 +1 

-
xt( r) [ x( r +nz+nx) - x( r +nz-nx) J 1/J-yz-y 5 T 11/J +1 +1 

1{;-yt-y 5 T 21/J -i ( -1 )zxt(r )x(r +ny) -1 -1 

-
-xt(r)[x(r+nx+ny)- x(r+nx-ny)] 1/J-yx-y 5 T 21/1 +1 +1 

-
( -l)z+xxt(r )x(r) 1/J-yY "/ 5 T 21/J 0 0 

-
(-l)z+yxt(r)[x(r+nz+ny)- x(r+nz-ny)] 1/1"1 2 "/ 5 T 21/1 +1 +1 

1{;-y t"/ 5 T 31/J -i ( -1 )xxt(r )x(r +nz) -1 -1 

-
( - 1 )X + z X t ( r ) [ x( r + nx + nz) - x( r + nx-nz) J 1/J-yx-y 5 T 31/J +1 +1 

-
-xt(r)[x(r+ny+nz)- x(r+ny-nz)] 1/J-yY "/ 5 T 31/J +1 +1 

- ( -1 )x+yxt(r )x(r) 1/J-yz-y 5 T 31/J 0 0 

Looking back over the tables just presented, a word of caution is in order. 

Beware of the minus sign associated with the flavor generator T 1 . 
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Appendix B: Four-Fermion Operators 

In the following two tables we detail, in the continuum language, all of the 

four-fermion operators that we need for this calculation. They are divided into 

two groups as constituents of 0 1 and 0 2 defined in (6.1.10). For convenience, 

these definitions have been repeated below. 

0 1 (1) = ~ aJL( 1 + /'5 )( T 1- i T2)1fl 1 ~a JL( 1 +/'5)( T 1 +iT 2)1/12 (B.1 a) 

0 1(2) ~ aJL( 1 + /'5 )( T 1- i T2 )1/12 ~2/' JL( 1 +/'5)( T 1 +iT 2 )1/12 (B .1b) 

0 2(1) = ~ aJL( 1 +!'5)( 1-T3)1f;2 ~a JL( 1 +!'5 )( 1 +T 3)1f; 1 (B.1c) 

0 2(2) ~ aJL( 1 +/'5 )( 1-T3 )1/12 ~2/' JL( 1 +/'5 )( 1 +T3 )1/12 (B.1d) 

In total, there are 64 operators that we must construct and then take the expec

tations values of. Account has not been taken of a few minor symmetries which 

would reduce the number of operators needed by a small number. Operators 

which are GIM conjugates are placed in the same row. These operators always 

have an additional minus sign associated with them. 



Table B.l :Operators for 0 1 

- t - t 
1/117 T11f11f17 {'5T21f2 

1[;(YtT21f11{;17tf'5T11f2 

1{;1f'xT11f11{;1f'xf'5T21f2 

1f;lf'xT21f11{;1f'xf'5T11f2 

1{;1'lxf'5T11j;11{;1f'xT21f2 

1{;1'lxf'5T21j;11{;1f'xT11f2 

1{;1f'YT11f11{;1f'yf'5T21f2 

1{;1f'YT21f11{;1f'yf'5T11f2 

1f;lf'yf'5T11f11{;1f'YT21f2 

1f;lf'yf'5T21f11{;1f'YT11f2 

1f;lf'2 T11f11{;1f' 2 f'5T21f2 

1f;lf'2 T21f11{;1f' 2 f'5Tl1f2 

1f;lf'2 f'5Tl1fl1f;lf' 2 T21f2 

1f;lf'2 f'5T21f11{;1f' 2 T11f2 
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0 1(2) 

1f1f'XT11f21f2f'xf'5T21f2 

1f;lf'xT21f21{;2f'xf'5T11f2 

1f1f'2 T11f21f2f' 2 f'5T21f2 

1f;lf'2 T21f21{;2f' 2 f'5T11j;2 

1{;1f'2 f'5T11f21{;2f' 2 T21f2 

1f;lf'2 f'5T21f21{;2f' 2 T11f2 

Phase 

+i 

- i 

+i 

- i 

+i 

+i 

+i 

+i 

-i 

+i 

-i 

+i 

-i 



Table B.2 : Operators for 02 

1j; lf't"/51/111/; lf'tT 31/12 

1f1"/t"/5T31/J11f17t1/J2 

1faz1/111fll'z"/sT31/12 

1f1f'ZT31/J11flf'z"/51/J2 

1faz7s1/111flf'zT31/12 

1faz"/sT31/111fO'z1/l2 
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- t - t 1/10' 751/121/12"1 T31/12 

1f O't"/5 T31/121f2"!t1/12 

1f O'x1/121f2'Yx"/5 T31/12 

1f17xT31/121f27x751/12 

1f17Y1/J21f2"/y"/5T31/J2 

1f1"/YT31/J21f2"/y"/51/J2 

1f17Y751/121f27YT31/12 

1f17Y75T31/121f27Y1/J2 

1f O'z"/s1/121f27zT 31/12 

1f17z75T31/121f27z1/12 

Phase 

+1 

-1 

+1 

-1 

+1 

-1 

+ 1 

-1 

+1 

-1 

+1 

-1 

+1 

-1 

+1 

-1 
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Appendix C : The Group Theory 

C.l. SU(3) Clebsch-Gordon Coefficients. 

We summarize those Clebsch-Gordon coefficients that are needed to execute 

a Strong Coupling calculation to fourth order. The form of these coefficients is 

given, for the representation equation, by: 

( C.l) 

Product Components Clebsch -Gordon Coefficient 

3 0 3 6 sa,a. 
mn 

- 1 3 -/2 E:amn 

303 8 p a, n 
8 a 2 m 

1 1 on Y3 m 

603 10 sa,a.a. 
m 1m 2n 

8 2 sa,>-. I r, 3 m 1m 2 E::>o.a2n 

- ala2 6 03 15 p 15 n 
asmlm2 

3 _1_5 a,n 
-/2 m,m 2 
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Produc t Component Clebsch-Gordon Coefficient 

8 0 3 15 

3 ~ p a, m. 2 

I 1

1/ 2 

8 8 n m. , 

10 0 3 

24 

6 

152 0 3 24 

6 

152 0 3 27 

10 

8 
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The Clebsch-Gordon coefficients that we need for N 0 3 or N 0 3 can be 

immediately obtained from those above simply by interchanging up and down 

indices. Hence, because the 8 and 27 representations are self conjugate, 8 0 3 

and 27 0 3 can be likewise obtained. Also notice that there are two types of 15 

representation. The 15 1 is fully symmetric on its four indices, the 152 has a 

mixed symmetry. The various projection operators used above are defined, with 

N = 3 obviously, as follows 

(C.2a) 

(C.2b) 

(C.2c) 

(C.2d) 
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C.2. SU(3) Quadratic Casimir Invariants 

Representation Quadratic Casimir 

1 0 

3 4/3 

6 10/3 

8 3 

10 6 

151 16/3 

152 28/3 

24 25/3 

27 8 

C.3. SU(2) Clebsch-Gordan Coefficients 

For SU(2) the Clebsch-Gordon coefficients can be written as two simple for-

mula e. The Casimir operator for a representation N is fN (N + 1) . 

Product Component CG Coefficient 

N ®2 N + 1 Sa, . .. aN+I 
m 1···mNn 

r N- 1 N;;1 5 a,·· . aN_,"A 
.. mN G"J,.n m. 

I 
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Appendix D : CP Violation 

This calculation was done as an afterthought to the main body of this work. 

We will just review the important formulae, and then present the results. 

D.l. The CP Violating Hamiltonian 

CP Violation cannot exist within the context of the standard model until we 

have six quarks. From the results that we obtained in Chap.7.; in particular, the 

relative unimportance of the c -quark loops, it is obvious that the addition of an 

additional generation of quarks, the t and b quarks, would not alter the results 

or conclusions significantly. Hence, for the CP conserving amplitudes we will use 

the results obtained for the four quark model. 

The CP violating piece of the Hamiltonian is given by [ 1 ]: 

(D . l) 

The values of the KM angles 81, 8z, 83, and the phase o will not concern us because 

they will cancel out in the final result. We also ignore any corrections that might 

come from perturbative QCD renormalizations of the derived 0 ± operators. 

We now form the ratios [19]: 

77+- = 
~ 1T+1T- I H w I KL 2 
< n+n-IHw I Ks ) 

(D.2a) 

77oo = 
~ n°n° I H w I KL 2 
< n°n° IHw I Ks ) 

(D.2b) 

The phases 77+- and 77oo are now written in terms of the phases E: and E:
1

, viz: 
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(D.3a) 

(D.3b) 

The ratio c;' jc; is what we will calculate. The current experimental bound is given 

by [5]: 

I c; 
c; 

D.2. Results 

1 
I < 5o (D.4) 

The calculation that we carry out simply reused the raw results that were 

computed earlier. We take the t quark mass to be forty times that of the c quark. 

A graph of the results is given in Fig.B. The important point to note is that the 

ratio changes sign, passing through zero between 0 . 10 <A 1 < 0.12. This feature 

of the result has been commented upon in Chap.7. 
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Figure 1 
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