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ABSTRACT

The human genome is continuously evolving, hence the sequenced genome is a
snapshot in time of this evolving entity. Over time, the genome accumulates muta-
tions that can be associated with different phenotypes - like physical traits, diseases,
etc. Underlying mutation accumulation is an evolution channel (the term channel
is motivated by the notion of communication channel introduced by Shannon [1] in
1948 and started the area of Information Theory), which is controlled by hereditary,
environmental, and stochastic factors. The premise of this thesis is to understand
the human genome using information theory framework. In particular, it focuses
on: (i) the analysis and characterization of the evolution channel using measures of
capacity, expressiveness , evolution distance, and uniqueness of ancestry and uses
these insights for (ii) the design of error correcting codes for DNA storage, (iii)
inversion symmetry in the genome and (iv) cancer classification.

The mutational events characterizing this evolution channel can be divided into two
categories, namely point mutations and duplications. While evolution through point
mutations is unconstrained, giving rise to combinatoriallymany possibilities of what
could have happened in the past, evolution through duplications adds constraints
limiting the number of those possibilities. Further, more than 50% of the genome has
been observed to consist of repeated sequences. We focus on the much constrained
form of duplications known as tandem duplications in order to understand the limits
of evolution by duplication. Our sequence evolution model consists of a starting
sequence called seed and a set of tandem duplication rules. We find limits on the
diversity of sequences that can be generated by tandem duplications using measures
of capacity and expressiveness. Additionally, we calculate bounds on the duplication
distance which is used tomeasure the timing of generation by these duplications. We
also ask questions about the uniqueness of seed for a given sequence and completely
characterize the duplication length sets where the seed is unique or non-unique.
These insights also led us to design error correcting codes for any number of tandem
duplication errors that are useful for DNA-storage based applications. For uniform
duplication length and duplication length bounded by 2, our designed codes achieve
channel capacity. We also define and measure uncertainty in decoding when the
duplication channel is misinformed. Moreover, we add substitutions to our tandem
duplication model and calculate sequence generation diversity for a given budget of
substitutions.
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We also use our duplication model to explain the inversion symmetry observed in
the genome of many species. The inversion symmetry is popularly known as the 2nd
Chargaff Rule, according to which in a single strand DNA, the frequency of a k-mer
is almost the same as the frequency of its reverse complement. The insights gained
by these problems led us to investigate the tandem repeat regions in the genome.
Tandem repeat regions in the genome can be traced back in time algorithmically
to make inference about the effect of the hereditary, environmental and stochastic
factors on the mutation rate of the genome. By inferring the evolutionary history
of the tandem repeat regions, we show how this knowledge can be used to make
predictions about the risk of incurring a mutation based disease, specifically cancer.
More precisely, we introduce the concept of mutation profiles that are computed
without any comparative analysis, but instead by analyzing the short tandem repeat
regions in a single healthy genome and capturing information about the individual’s
evolution channel. Using gradient boosting on data from more than 5,000 TCGA
(The Cancer Genome Atlas) cancer patients, we demonstrate that these mutation
profiles can accurately distinguish between patients with various types of cancer.
For example, the pairwise validation accuracy of the classifier between PAAD
(pancreas) patients and GBM (brain) patients is 93%. Our results show that healthy
unaffected cells still contain a cancer-specific signal, which opens the possibility of
cancer prediction from a healthy genome.
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C h a p t e r 1

INTRODUCTION

The human genome is an incredibly rich source of information, but relevant insights
remain trapped within a puzzle of billions of base pairs. The genome has evolved
through a series of mutational events spanning generations, giving rise to tremen-
dous diversity between individuals. We believe that each individual’s genome is a
realization of a distinct evolution channel, which is a function of hereditary, envi-
ronmental, and stochastic factors. By observing an individual’s genome we only see
the effects of this underlying evolution channel.

Genomic studies such as Linkage and Genome Wide Association Studies (GWAS)
attempted to understand the genome by viewing it as a time-independent source and
finding variants or “spelling mistakes” by comparing genomes of individuals with
different phenotypes [2, 3]. This approach led to the discovery of several genes
and pathways, but could not explain many properties of the observed phenotypes
known as the issue of “missing heritability” [4]. A different approach would be to
use the genomic information to trace back in time to characterize how the genome is
mutating. This brings us to our first question:-Does an individual’s genome contain
markers which can retrace the evolutionary history of the genome? In other words,
can we use the genome to quantify a signature of mutation activity? A signature
indicating high mutation activity may, for example, suggest that the genome is prone
to developing high risk of a certain disease. Intuitively, the extracted signature
is a count of the accumulated mutations providing access to the time-dependent
traits in the genome. Our approach is to first capture and quantify this signature
independently, not associating DNA with any phenotype. This raises the second
question: Can we capture an individual’s evolution channel independently, without
relying on comparisonswith other genomes? In otherwords, canwe assign a persona
to each individual’s genome? Answering this question requires an understanding of
the evolution of diverse genomes through different mutations and then identifying
markers in the genome that encode a decodable evolutionary history.

The premise of this thesis is to understand the human genome using information
theory framework. In particular, it focuses on:
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Figure 1.1: Slipped Strand Mispairing Mutation. Here a tandem repeat with 12
CAG repeats is converted to a repeat with 24 CAG repeats due to slipped strand
mispairing that happens during DNA replication. Figure obtained from [5].

1. Analysis and characterization of the evolution channel using capacity, expres-
siveness, evolution distance and uniqueness of ancestry.

2. Use the insights gained above for

• the design of error correcting codes for DNA storage.

• understanding the inversion symmetry observed in the genome.

• classifying different cancer-types using blood-derived healthy DNA.

More than 50% of the human genome consists of repeated sequences [6]. It has
been conjectured that the repeat regions store many hidden evolution clues [6], and
decoding those clues might hold the key to cracking the accumulation of mutations
in a DNA. Two important types of common repeats are (i) interspersed repeats and
(ii) tandem repeats. Interspersed repeats are caused by transposons. A transposon,
also known as a jumping gene, is a segment of DNA that can copy or cut and paste
itself into new positions of the genome. Tandem repeats are caused by slipped-
strand mispairings [7]. Slipped-strand mispairings occur when one DNA strand in
the duplex becomes misaligned with the other (See Figure 1.1).
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1.1 Evolution by Duplications: Mathematical Limits
A simple model dictates that genome evolution is governed by point mutations, such
as substitutions, insertions, and deletions. Observationally, however, the genome is
found to also have undergone many duplications [8]; and it is questionable whether
point mutations are the dominant contributor to evolution. Mathematically, it
is simple to understand genetic and genomic dissimilarity—or diversity between
individuals—based on point mutations. However, it is non-trivial to determine how
duplications contribute to genomic diversity. Duplications in DNA are transposon
and replication slippage driven [6]. They are known as interspersed and tandem
duplications respectively. An example of interspersed and tandem duplication of
the substring TC of duplication length 2 would be Interspersed : AGTCGAT →

AGTCGATCT, Tandem : AGTCGAT → AGTCTCGAT . Mathematically, tan-
dem duplication is an interspersed duplication with an additional constraint of du-
plicating next to the original. Therefore, only analyzing the evolution of sequences
by tandem duplications will provide us insights into the evolutionary limits of the
duplication process.

We asked three questions concerning the diversity of new sequences, history of
evolution and the uniqueness of the ancestor given evolution by tandem duplica-
tions. These three questions are connected, while diversity measures the number of
sequences that can be generated from a given starting sequence called seed, timing
of evolution measures the minimum number of steps required to generate a given
sequence from a seed. Finding duplication processes for which a given sequence
has a unique seed is equivalent to solving if for any two seeds there is no intersection
in the set of sequences generated by them. In our sequence evolution model, a set
of tandem duplication operations, is applied successively on the seed to generate
new sequences. More formally, String Duplication Systems that consist of a starting
sequence called seed and a duplication rule were introduced in [9] to model these
operations. Example 1.1 below illustrates an instance that can be generated by a
tandem duplication string system.

Example 1.1. Seed = ACGT

Duplication Rule = any substring of length at most 2 can be tandemly duplicated.
Instance

ACGT → ACGTGT → ACGGTGT → ACCGGTGT → ACCGCGGTGT .

The underlined substring represents the part of the string that is duplicated at the
current step. Note, only substrings of length 1 or 2 are tandemly duplicated.
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Diversity
Generation by tandem duplications has been studied in the past in [10–12]. However
the main concern of these works is to determine the place of tandem duplication
rules in the Chomsky hierarchy of formal languages. One measure to evaluate
diversity is capacitywhich can be described as the limit on the number of sequences
that can be generated by successive tandem duplications. For tandem duplication
string systems, the authors in [13] show that for a fixed duplication length the
capacity is 0. Further, they find a lower bound on the capacity of these systems,
when duplications of all lengths are allowed. We evaluate exact capacity for tandem
duplication string systems, where we restrict the maximum size of the substring
being tandemly duplicated to a certain finite length. Using regular languages and
Perron-Frobenius theory [14, 15], in [16] we found exact capacity for tandem
duplication string systems for any seed and any alphabet where the duplication
length is bounded by 2 and 3 respectively. These results indicated that even by
restricting the duplication lengths to a set of constant values, exponential number of
sequences can be generated for any alphabet size, indicating that enough sequence
diversity is possible by successive tandem duplications. Though our capacity results
indicated exponential sequences can be generated by tandem duplications, there are
sequences that cannot be generated by tandem duplications. Hence, motivated by
the fact that small portions of genome called exomes are known to be responsible
for protein expression, we investigated if full exomic diversity is possible by tandem
duplications, meaning whether or not each possible sequence can be generated as
substring of some larger sequence. We were able to completely solve this question
for all seeds, all alphabet sizes and any finite bound on the duplication length. We
found that the binary and ternary systems are fully expressive even by restricting the
maximum duplication lengths to 2 and 4 respectively; however, from quaternary and
onwards, the systems are not, as long as all the duplication lengths are finite [16].
A major contributor to this striking contrast between these two alphabet classes is
the result by Axel Thue [17], according to which, for ternary and higher alphabets,
there exist repeat-free or squarefree sequences for every length. Hence, repeat-
free exomes are difficult to generate by tandem duplications. These findings are
described in detail in Chapter 2.

History of Evolution
Investigating this generative model of duplication made us ask a related question
that could give insights into the upper and lower bounds on the number of tandem
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duplication steps required to generate a given sequence from a seed. We defined
duplication distance to measure the number of tandem duplication steps. Duplica-
tion distance is the minimum number of tandem duplications needed to generate a
sequence from its seed. Example 1.2 below shows two different histories for the
generation of ACACCAAC from AC.

Example 1.2. Seed = AC, Duplication Rule = any substring can be tandemly
duplicated.
Below,we show twohistories that are possible for the generation of S = ACACCAAC

from AC.
History 1:

AC → ACAC → ACACCAC → ACACCAAC.

History 2:

AC → ACAC → ACAAC → ACCAAC → ACACCAAC.

History 1 requires 3 steps and history 2 requires 4 steps for generation. For sequence
S = ACACCAAC, it can be verified that history 1 indeed is the shortest and hence
the duplication distance of ACACCAAC from AC is 3.

Intuitively, the evolution of larger sequences from smaller sequences should bemuch
faster by duplications than the evolution by only point mutations. However, to our
surprise we found that it is not much faster and almost all length n binary sequences
(set of probability 1) required Θ(n) [18] tandem duplication steps to evolve, even if
unbounded duplication lengths were allowed. This result is very similar in nature
to Asymptotic Equipartition property (AEP) which is a well known property in
Information Theory literature. Roughly, this also means that short duplication
lengths play a major role in generating capacity. We also calculated the duplication
distance for a number of classes of binary sequences. For de-Bruijn sequences, we
show that the duplication distance is Ω( n

log n ). For binary sequences described by
Lindenmayer Systems [19], we found the duplication distance to be Θ(log n). We
also defined the approximate duplication distance that allows tandem duplications
with imperfect or approximate blocks, i.e. at most β fraction of symbols can differ
in the duplicated block from the original block. We found that for β < 1/2, the
approximate duplication distance is Θ(n), however for β > 1/2, the duplication
distance is Θ(log n). The case of β = 0.5 is still open. We describe these results in
detail in Chapter 3.
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Insight: In Chapter 2, we observe that full generation capacity can be achieved for
a binary tandem duplication string system when the duplication length is at most
2. For this system, the duplication distance is trivially Θ(n) for any binary string of
length n. It is surprising to observe in Theorem 3.1 in Chapter 3 that the duplication
distance is Θ(n) for almost all binary sequences even without any constraints on
duplication length. This means that in a binary system, small duplication lengths
are the major contributor to the diversity generated by tandem duplications. We
observe this phenomenon in higher alphabets as well, as shown in Chapter 2, where
a high generation capacity could be achieved even when the duplication lengths are
bounded by 3 (capacity for a ternary tandem duplication string system is ≈ 0.88).

Uniqueness of Seed
We also investigated the uniqueness of repeat-free seed for every sequence that can
be generated by tandem duplications. Example 1.3 below shows the generation of
ACGCACGCG from two different repeat-free seeds.

Example 1.3. Seed 1 = ACG

ACG→ ACGCG→ ACGCACGCG.

Seed 2 = ACGCACG

ACGCACG→ ACGCACGCG.

We found that if the duplication length is fixed or bounded by 3, the seed is unique,
however in all other scenarios, there can bemultiple seeds for the same sequence [20].
Algorithms for deciding the uniqueness of seed have been recently proposed in [21].
Our findings are described in detail in Chapter 4.

The theoretical findings and the insights developed from the aforementioned works
turned out to be useful in the applications described next

1.2 Applications
Live-DNA Storage
DNA can be used as a medium for storing large amounts of data in compact form for
a very long time. Due to the exponential drop in the synthesis and sequencing cost,
DNA storage is becoming feasible and important. DNA storage can be done outside
the organism as demonstrated in [22–24]. DNA storage outside living organism is
prone to synthesis and sequencing errors. Lately, there have been several works
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Figure 1.2: Shipman et al. Nature 2017, used CRISPR-Cas to store this gif inside a
bacterial DNA.

Figure 1.3: Information embedded in DNA can get corrupted by mutational errors
over generations due to DNA replication that occurs during cell division.

that find capacity and error correcting codes for channels that model synthesis and
sequencing errors [25–29]. Data storage can also be done inside the DNA of a
living organism. Church and his group [30] used CRISPR technology to store an
image and a gif inside theDNAof a bacterium recently. Data storage inside the living
organism (henceforth live-DNA) has a multitude of applications. It can enable in-
vivo synthetic-biology methods and algorithms that need “memory”. It also allows
watermarking genetically-modified organisms (GMOs) to verify authenticity and to
track unauthorized use [31–33]. It can also be used to identify ancestral relationships
between cells [34]. With information storage in live DNA, the information will
be passed and can be recovered from next generations. This information inside
living DNA is prone to errors depending on the physical medium and the processes
involved in the synthesis and sequencing of DNA. As a result, in live-DNA storage,
besides synthesis and sequencing errors, there will be errors which are governed
by evolution events which comprise duplications, substitutions and indel errors.
Figure 1.3 illustrates the setup for embedding information inside the DNA of a
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Figure 1.4: Tandem duplication error channel where any number of tandem dupli-
cation errors can occur corrupting the embedded information in the DNA.

living organism.

Using our generativemodel of string duplication systems in [16], in [20] we designed
error correcting codes that can deal with any number of tandem duplication errors
when the length of duplication was fixed and bounded respectively. Figure 1.4 shows
a tandem duplication error channel where the input information can get corrupted by
a number of tandem duplication errors. We found channels where doing decoding
by removing repeats was optimal by showing that a given sequence can only be
generated by a unique seed under those channels [20]. In fact for the uniform
duplication channel and the bounded duplication channel with duplication length
bounded by 2, our codes also achieved the full channel capacity. We extended these
results by accommodating substitution errors along with tandem duplications and
found lower and upper bounds on the sizes of spheres to be given possible codewords
[35]. Here, we also dealt with the scenario of channel misinformation and found
explicit sets of codeword intersection and defined uncertainty to measure the size of
those sets [35]. We have described these codes and methods in detail in Chapters 4
and 5.

These works have been followed up on recently. Channel capacity and error cor-
recting codes for uniform duplication channel with a finite number of duplication
errors were studied in [36, 37]. Further, efficient encoding and decoding methods
for squarefree words were proposed in [38]. Bounds on codes correcting tandem
and palindromic duplication errors were derived in [39].

Inversion Symmetry in Genome
We also focused on properties observed in genomic data. One such property that is
observed in most of the genomes is the 2nd Chargaff Rule, named after its discoverer
Erwin Chargaff [40]. This rule is also known as Inversion Symmetry (IS) of the
genome. The presence of IS means that in a single strand of DNA, the number of
occurences of a k-mer is almost equal to the number of occurrences of its reverse
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Figure 1.5: Erwin Chargaff, the scientist behind the discovery of the inversion
symmetry in a single strand DNA, known as the 2nd Chargaff Rule. [Source:
Wikipedia]

complement. For example, #A ≈ #T, #C ≈ #G, #AC ≈ #GT and so on. Inversion
symmetry is observed to hold upto a certain k known as K-Limit which depends on
the length of the genome [41]. For the human genome, the K-Limit is 10. There have
been several works in the past that have verified inversion symmetry for different
genomes [41–45]. Further, [41, 42, 46] showed that this symmetry only holds for
reverse complement pairs. [43] also argued that IS may be due to whole genome or
segmental inverse duplications.

The presence of IS makes it plausible that most of the species share common
dynamics of evolution. We investigated mathematical models based on reversed
tandem and interspersed duplications for sequence generation. Using probability
tools and string duplication system insights, we show that a string duplication
system with reverse complement tandem duplication as the operation provides a
good approximation for IS as observed in human DNA [47]. We also find the lower
bounds on the number of generations required to obtain the inversion symmetry
given this generative model. These findings are discussed in detail in Chapter 6.

TandemRepeatRegions: The insights gained above led us to investigate the tandem
repeat regions that cover about 3% of the human genome. These regions have evolved
by a sequence of tandem duplications due to replication slippage events [48, 49]
and point mutations (single changes like substitutions, insertions and deletions in
the DNA, e.g. ACTG → ACAG). Alone, neither of these metrics provide insight
into the genome’s rate of change. When viewed together, however, one can learn
the relative rates of these mutational events. For example, while point mutations
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Figure 1.6: A tandem repeat region in Chromosome 1: 136200-137288 in the
reference human genome. The highlighted columns show the locations in the
repeats with mismatches caused due to point mutations such as insertion, deletion
and substitution.

are impossible to detect without reference to an initial genome, their occurrence
in repeated regions is indicated by a change in the repeated sequence. Moreover,
because the point mutation error is propagated in further repeats, we know exactly
when the pointmutation occurred relative to the tandem duplications, giving insights
into the evolution history of the tandem repeat region. In a sense, tandem repeats are
a nature-given repetition error correcting codewhere point mutation errors in copies
store information about the history of the evolution of the region. Furthermore, the
duplication rate in tandem repeat regions is very high due to replication slippage
events [50], which allows point mutation errors to accumulate, strengthening the
evolutionary signal. Hence, tandem repeat regions belong to those markers where
we can detect and measure mutation activity.
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Figure 1.7: A normal cell becomes a tumor cell due to the accumulation of driver
mutations. [Source: [51]]

Cancer Classification from healthy DNA
Cancer is the second leading cause of death in the world [52]. It is a mutation based
disease caused by a mix of hereditary, environmental and stochastic factors [53]
affecting the DNA in a single lifetime. Cancer is caused by the accumulation of
driver mutations during cell division which make the cell cancerous (see Figure
1.7). Cancer studies in the past attempted to identify these driver mutations by
comparing the genome of a cancerous cell with a non-cancerous cell [54]. We had
a hypothesis that given an underlying evolution channel of the genome, if we can
capture information about the rate of generation of these mutations (or we may call
the intrinsic mutation rate) from a single DNA, it may lead us capture a signal about
the propensity of the genome to incur these driver mutations. The mutation rates
in tandem repeat regions are strong [50] and measurable [56]. We estimate the
evolutionary history of short tandem repeat regions or microsatellites and aggregate
it. We call this aggregated information the genome’smutation profile. The mutation
profile carries information about the number of duplications and point mutations
required in the evolution of each tandem repeat region in the DNA. Our hypothesis
was that the healthy genome of each individual carries information about their future
cancer risk, and capturing the signature of mutation activity can help us predict those
risks. However, to verify this hypothesis, we required DNA samples from cancer
patients before the onset of their cancer. Currently availing that data is not possible,
we instead used DNA derived from blood or healthy tissue of cancer patients from
TheCancerGenomeAtlas (TCGA) [57] (See Figure 1.8). We estimated themutation
profiles for more than 5000 DNA samples on TCGA covering 14 different cancers
including common cancers like lung, prostate, stomach, pancreas, skin, kidney,
brain, etc. If we could classify different cancer-types based on the mutation profiles
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Figure 1.8: The Cancer GenomeAtlas (TCGA) contains DNA andRNA information
about individuals from 33 different cancer types. [Source: [55]]

of the healthy genome, it means that these mutation profiles carry a cancer-type
signal. By dividing this data into a training and a test set, we built gradient
boosting [58] based pairwise and multi classifiers that used mutation profiles as
features to check if they carry any cancer-type signal [59, 60]. In fact, we found four
clusters based on healthy DNAmutation profiles. Further, based on these classifiers,
we also generated cancer classification profiles which measured the propensity of
an individual to each cancer type [59, 60]. As the cancer-type signal detection is
done by only using healthy genome, mutation profiles could be useful in predicting
future cancer risk and early cancer detection. We describe our results in Chapter 7.

1.3 Organization
The rest of the thesis is organized as follows. In Chapter 2, we describe string
duplication systems and the diversity that can be generated by bounded tandem
duplication string systems using the measures of capacity and expressiveness. In
Chapter 3, we analyze duplication distance to measure the number of evolutionary
steps by tandem duplications. In Chapter 4, we find systems with unique and non-
unique seeds and use these results to design duplication correcting codes applicable
in live-DNA storage. Moreover, we consider the effect of channel mismatch on
codeword decoding by defining uncertainty. In Chapter 5, we add substitution
operation alongwith tandem duplications to answer questions regarding bounds on
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code size under these errors. In Chapter 6, we use string duplication systems to
explain the inversion symmetry observed in the genome. In Chapter 7, we define
mutation profiles which aggregate the evolutionary history of tandem repeat regions
in human DNA. We use these mutation profiles to build classifiers that can classify
different types of cancer based on the healthy DNA. These findings may have
implications in early cancer detection and future cancer risk prediction. In Chapter
8, we conclude the thesis with the directions for future work.
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C h a p t e r 2

DIVERSITY OF TANDEM DUPLICATION STRING SYSTEMS

2.1 Introduction
Tandem Repeats are common in both prokaryote and eukaryote genomes. They
are present in both coding and non-coding regions and are believed to be the cause
of several genetic disorders. The effects of tandem repeats on several biological
processes are understood by these disorders. They can result in generation of toxic
or malfunctioning proteins, chromosome fragility, expansion diseases, silencing of
genes, modulation of transcription and translation [61] and rapid morphological
changes [62].

A process that leads to tandem repeats, e.g. through slipped-strand mispairing [7,
50], is called tandem duplication, which allows substrings to be duplicated next
to their original position. For example, from the sequence AGTCGTCGCT , a
tandem duplication of length 2 can give AGTCGTCGCGCT , which, if followed
by a duplication of length 3 may give AGTCGTCGTCGCGCT . The prevalence
of tandem repeats in the human genome [6] motivates us to study the capacity and
expressiveness of string systems with tandem duplication, as defined below.

The model of a string duplication system consists of a seed, i.e., a starting string
of finite length, a set of duplication rules that allows generating new strings from
existing ones, and the set of all sequences that can be obtained by applying the
duplication rules to the seed a finite number of times. The notion of capacity,
introduced in [13] represents the average number of m-ary symbols per sequence
symbol that are asymptotically required to encode a sequence in the string system,
where m is the alphabet size (for DNA sequences the alphabet size is 4). The
maximum value for capacity is 1. A duplication system is fully expressive if all
strings with the alphabet appear as a substring of some string in the system. As we
will show, if a system is not fully expressive, then its capacity is strictly less than 1.

Before presenting the notation, definitions, and the results more formally, in the
rest of this section, we present two simple examples to illustrate the notions of
expressiveness and capacity for tandem duplication string systems. Furthermore,
we outline some useful tools as well as some of the results.
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Example 2.1. Consider a string system on the binary alphabet Σ = {0, 1} with 01
as the seed that allows tandem duplications of length up to 2. It is easy to check
that the strings generated by this system start with 0 and end with 1. In fact, it can
be proven that all binary strings of length n which start with 0 and end with 1 can
be generated by this system. The proof is based on the fact that every such string
can be written as 0r11r2 · · · 0rv−11rv , where each ri > 1 and v is even. A natural way
to generate this string is to duplicate 01 v

2 times and then duplicate the 0s and 1s as
needed via duplications of length 1.

Expressiveness: From the preceding paragraph, every binary sequence s can be
generated as a substring in this system as 0s1. For example, although 11010 cannot
be generated by this system, it can be generated as a substring of 0110101 in the
following way:

01→ 0101→ 010101→ 0110101.

Hence this system is fully expressive.

Capacity: The number of length-n strings in this system is 2n−2. Thus, encoding
sequences of length n in this system requires n−2 bits. The capacity, or equivalently
the asymptotic average number of bits (since the alphabet Σ is of size 2) per symbol,
is thus equal to 1. This is not surprising as the system generates almost all binary
sequences. �

Observing these facts for an alphabet of size 2, one can ask related questions on ex-
pressiveness and capacity for other alphabet sizes and duplication lengths. However,
counting the number of length-n sequences for capacity calculation and characteriz-
ing fully expressive systems for larger alphabets are often not straightforward tasks.
In this chapter, we study these questions and develop methods to answer them.

A useful tool in this study is the theory of finite automata. As a simple example note
that the string system over the binary alphabet {0, 1} in the preceding example can
be represented by the finite automaton given in Figure 2.1. The regular expression
for the language defined by the finite automaton is

R01 = (0+1+)+, (2.1)

which represents all binary strings that start with 0 and end with 1. For definitions
of finite automata and regular expression, the reader can refer to Section 2.2.

One can use the Perron-Frobenius theory [14, 15] to count the number of sequences
which can be generated by a finite automaton. This enables us to use finite automata
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Start S1

S2

0

0

1

1

0

Figure 2.1: The finite automaton for the systems S = ({0, 1}, 01,T tan
6k ), where k > 2,

including the system of Example 2.1. Notation used here is described in detail in
Section 2.2.

as a tool to calculate capacity for some string duplication systems with tandem
repeats over larger alphabet.

In our results, we find that the exact capacity of the tandem duplication string system
over the ternary alphabet {0, 1, 2} with seed 012 and duplication length at most 3
equals log3

3+
√

5
2 ' 0.876036. Moreover, we generalize this result by characterizing

the capacity of tandem duplication string systems over an arbitrary alphabet and a
seed with maximum duplication length of 3. Namely, we show that if the maximum
duplication length is 3 and the seed contains abc as a substring, where a, b, and c

are distinct symbols, then the capacity ' 0.876036 log|Σ | 3. If such a substring does
not exist in the seed, then the capacity is given by log|Σ | 2, unless the seed is of the
form am, in which case the capacity is 0. Some of these results are highlighted in
Table 2.1.

Our next example presents a system that, unlike that of Example 2.1, is not fully
expressive.

Example 2.2. Consider a tandem duplication string system over the ternary alphabet
{0, 1, 2} with seed 012 and maximum duplication length 3. This system is not fully
expressive as it cannot generate 210, 102, or 021, even as a substring. We provide a
simple proof.

Proof. Let z = αγβ, where α, γ and β are strings over {0, 1, 2} with |α |, |β | > 0,
and 1 6 |γ | 6 3. Suppose z does not contain 210, 102 or 021 as a substring. We
will now show that z∗ = αγγβ does not contain 210, 102 or 021 as a substring
either. We have three cases:
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• For γ = a1, with a1 ∈ {0, 1, 2}, the only possible new substrings generated in
z∗ which may not occur in z are the ones with suffix a1a1 or prefix a1a1.

• For γ = a1a2, with a1, a2 ∈ {0, 1, 2}, the only possible new substrings of
length 3 generated in z∗ are a1a2a1 and a2a1a2.

• For γ = a1a2a3, with a1, a2, a3 ∈ {0, 1, 2}, there is no substring of length 3 in
z∗ which does not occur in z.

Hence, if z does not contain 210, 102 or 021 as a substring, neither will z∗. Since
the seed 012 does not contain 210, 102 or 021 as a substring, neither will any other
string in the system.

Therefore, this tandem duplication string system is not fully expressive. �

Based on the previous example, one may ask what happens if we start with a seed
that contains one of the strings 210, 102, or 021, e.g., if we let the seed be 01210?
Does the system become fully expressive? While this system can generate all strings
of length 3 as substrings, the answer is still no as shown in Theorem 2.5: Regardless
of the seed, a ternary system with maximum duplication length of 3 is not fully
expressive. We show in Theorem 2.8, that a maximum duplication length of at least
4 is needed to arrive at a fully expressive ternary system.

While for alphabets of size 2 or 3, increasing the maximum length on duplications
turns a system that is not fully expressive into one that is, for alphabets of size 4
or more, duplication systems are not fully expressive regardless of how large the
bound on duplication length is. The main tool in constructing quaternary strings
that do not appear independently or as substrings in these systems is Thue’s result
proving the existence of ternary squarefree sequences of any length. A string
is called squarefree if it does not have a tandem repeat of any length (Note that
unary and binary squarefree sequences of arbitrarily large length do not exist.). The
existence of such sequences underlies the significant shift in the behavior of tandem
duplication systems with regards to expressiveness as a function of alphabet size.
Some of our results on expressiveness are summarized in Table 2.2.

As part of this chapter, we also study regular languages for tandem duplication
string systems. In [63], it was shown that the tandem duplication string system is
not regular if the maximum duplication length is 4 or more when the seed contains
3 consecutive distinct symbols as a substring. However for maximum duplication
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Σ s k Capacity
{0, 1, 2} 012 3 ' 0.876036
arbitrary xabcy 3 ' 0.876036 log|Σ | 3

Table 2.1: Capacity values tandem duplication string systems (Σ, s,T tan
6k ). Here

x, y ∈ Σ∗, and a, b, c ∈ Σ are distinct.

Σ s k fully expressive
{0, 1, 2} arbitrary 6 3 No
{0, 1, 2} 012 > 4 Yes
Size > 4 arbitrary arbitrary No

Table 2.2: Expressiveness of tandem duplication string systems
(
Σ, s,T tan

6k

)
.

length 3, this question remained open. In this chapter, we show in Theorem 2.9
that if the maximum duplication length is 3, a tandem duplication string system is
regular irrespective of the seed and the alphabet size. Moreover, we characterize the
exact capacity for all these systems.

In this chapter, we consider tandem duplication string systems, where we restrict
the maximum size of the block being tandemly duplicated to a certain finite length.
In the rest of the chapter, the term tandem duplication string system refers to string
duplication systems with bounded duplication length.

The rest of the chapter is organized as follows. In Section 2.2, we present the prelim-
inary definitions and notation. In Section 2.3, we derive our main results on capacity
and expressiveness. In Section 2.4, we show that if the maximum duplication length
is 3, then the tandem duplication string system is regular irrespective of the seed and
alphabet size. Further, using the regularity of the systems, we extend our capacity
results. We present our concluding remarks in Section 2.5.

2.2 Preliminaries
Let Σ be some finite alphabet. An n-string x = x1x2 · · · xn ∈ Σ

n is a finite sequence
where xi ∈ Σ and |x | = n. The set of all finite strings over the alphabet Σ is denoted
by Σ∗. For two strings x ∈ Σn and y ∈ Σm, their concatenation is denoted by
xy ∈ Σn+m. For a positive integer m and a string s, sm denotes the concatenation
of m copies of s. A string v ∈ Σ∗ is a substring of x if x = uvw, where u,w ∈ Σ∗.

A string system S ⊆ Σ∗ is represented as a tuple S = (Σ, s,T), where s ∈ Σ∗ is a
finite string called seed, which is used to initiate the duplication process, and T is
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a set of rules that allow generating new strings from existing ones [13]. In other
words, the string system S = (Σ, s,T) contains all strings that can be generated from
s using rules from T a finite number of times.

A tandem duplication map Ti,k ,

Ti,k(x) =


uvvw, x = uvw, |u| = i, |v | = k,

x, else,

creates and inserts a copy of the substring of length k which starts at position i + 1.
We use T tan

k : Σ∗ → Σ∗ and T tan
6k to denote the set of tandem duplications of length

k, and tandem duplications of length at most k, respectively,

T tan
k =

{
Ti,k : i ∈ N ∪ {0}

}
,

T tan
6k =

{
Ti, j : i ∈ N ∪ {0}, j ∈ N, j 6 k

}
.

With this notation, the system of Example 2.1 can be written as ({0, 1}, 01,T tan
62 ).

The capacity of the string system S = (Σ, s,T) is defined as

cap(S) = lim sup
n→∞

log|Σ | |S ∩ Σn |

n
. (2.2)

Furthermore, it is fully expressive if for each y ∈ Σ∗, there exists a z ∈ S, such
that y is a substring of z.

A useful tool in calculating capacity of tandem duplication string systems is deter-
ministic finite automaton (DFA) which consists of:

• A finite set of states Z .

• Alphabet Σ.

• Transition Rule δ : Z × Σ→ Z .

• Start state zo ∈ Z .

• A set of accept states Y .

There also exist non-determnisitc finite automata. In this chapter however, all
the automata considered are deterministic. Henceforth, we will be using finite
automaton to refer to a DFA. An example of a finite automaton is given in Figure
2.1. For this finite automaton we have,



20

• Z = {Start, S1, S2}.

• Σ = {0, 1}.

• δ(Start, 0) = S1, δ(S1, 0) = S1, δ(S1, 1) = S2, δ(S2, 0) = S1, δ(S2, 1) = S2.

• zo = Start.

• Y = {S2}.

The set of all possible strings that can be generated by a given DFA represent the
language described by the finite automaton. This language LR can be represented
by a regular expression R. Formal definitions of regular expression can be found in
[64]. For the purpose of this chapter, we define:

• R = s∗: represents the language LR which consists of all strings with 0 or
more concatanated copies of s ∈ Σ∗, i.e., LR = {sm : m > 0}.

• R = s+: represents the set of all strings with 1 or more concatanated copies
of s ∈ Σ∗, i.e., LR = {sm : m > 1}.

• R = R1R2: represents the language LR formed by the concatenation of LR1

and LR2 , i.e. LR = {s1s2 : s1 ∈ LR1, s2 ∈ LR2}.

2.3 Capacity and Expressiveness
In this section, we present our results on the capacity and expressiveness of tandem
duplication system with bounded duplication length. The section is divided into
two parts; the first part focuses on capacity and the second on expressiveness.

Capacity
Our first result is on the capacity of a tandem duplication string system over ternary
alphabet.

Theorem 2.3. For the tandem duplication string system S =
(
{0, 1, 2}, 012,T tan

63

)
,

we have

cap(S) = log3
3 +
√

5
2
' 0.876036.

Proof. We prove this theorem by showing that the finite automaton given in Fig-
ure 2.2 accepts precisely the strings in S, and then finding the capacity using the
Perron-Frobenius theory [14, 15].



21

Start S1 S2

S3

S4

T2

T3

T4

0

0

1

2

1

0

2

0

1

1

21

0

2

1

0

2

0

Figure 2.2: Finite automaton for S = ({0, 1, 2}, 012,T tan
63 ).

The regular expression R for the language defined by this finite automaton is given
by (see [64] for details on how to find a regular expression given a finite automaton)

R = (0+1+)+2+(1+2+)∗[0+(2+0+)∗1+(0+1+)∗2+(1+2+)∗]∗. (2.3)

Let LR be the language defined by the regular expression R (and by the finite
automaton). We first show that LR ⊆ S. The direct way of doing so is to start
with 012 and generate all the sequences in LR via duplication. For simplicity of
presentation, however, we take the reverse route: We show that every sequence in
LR can be transformed to 012 by a sequence deduplications. A deduplication of
length k is an operation that replaces a substring αα by α if |α | = k. For two regular

expressions R1 and R2, we use R1
dd6k

−−−−→ R2 to denote that each sequence in LR1

can be transformed into some sequence in LR2 via a sequence of deduplications of
length at most k.

Note that R = B1B2
∗, where

B1 = (0+1+)+2+(1+2+)∗,

B2 = 0+(2+0+)∗1+(0+1+)∗2+(1+2+)∗.

We have B1
dd63
−−−−→ 012(12)∗

dd63
−−−−→ 012, since a+

dd63
−−−−→ a and (ab)+

dd63
−−−−→ ab for all

a, b ∈ Σ. Furthermore,
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B2
dd63
−−−−→ 0(20)∗1(01)∗2(12)∗

dd63
−−−−→ 0(20)∗1(01)∗2

dd63
−−−−→ 0(20)∗12

dd63
−−−−→ {02012, 012}.

(2.4)

Note for example that 1(01)∗2(12)∗
dd63
−−−−→ 1(01)∗2 as the underlined 2 is always

preceded by a 1.

We thus have R = B1B∗2
dd63
−−−−→ {01202012, 012012, 012}

dd63
−−−−→ 012, proving that

LR ⊆ S.

To complete the proof of LR = S, we now show that S ⊆ LR. In what follows, we
say a finite automaton generates a sequence s, if there is a path with label s from
Start to an accepting state. If an automaton generates uvw, with u, v,w ∈ Σ∗, we
may use v to refer both to the string v itself and to the part of the path that generates
v. The meaning will be clear from the context.

We show S ⊆ LR, by proving the following for the finite automaton in Figure 2.2:

i) It can generate 012.

ii) If the automaton can generate pqr , with p, q, r ∈ Σ∗ and |q | 6 3, it can also
generate pq2r .

Condition i) holds trivially (see the path Start − S1 − S2 − S3 in Figure 2.2). In order
to prove ii), we define:

• Path Label: Given a path a in a finite automaton, the path label la ∈ Σ∗ is
defined as the sequence obtained by concatenating the labels on the edges
forming the path.

• Path Length is the number of edges of the path.

• Duplicable Path: Let q be a path that ends at state C. The path q is said to be
duplicable if there exists path q′ that starts and ends at state C such that the
path labels of q and q′ are the same.

Suppose a finite automaton can generate pqr . If q is duplicable, then pq2r can also
be generated by the finite automaton. As a result, to prove ii), it suffices to show that
for each state C in Figure 2.2, all paths of length 1, 2 or 3 ending in C are duplicable.

Now, we show that all paths ending in {S1, S2, S3, S4,T2,T3,T4, } with length 6 3 are
duplicable. Note that there are no nontrivial paths ending in the Start state.
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Given a state C and j ∈ {1, 2, 3}, let PC
j be the set of all length- j paths ending in C

and let QC
j be the set of all length- j paths starting and ending in C. If⋃

a ∈ PC
j

la =
⋃

a ∈ QC
j

la, (2.5)

then all length- j paths ending in C are duplicable.

We prove that (2.5) holds for all states and all j ∈ {1, 2, 3}. This is done by
computingA,A2 andA3, whereA1 is the (labeled) adjacency matrix of the finite
automaton given in Figure 2.2. Here in computing the matrix products, symbols
do not commute, e.g. xy , yx. The adjacency matrix A and its square A2, where
x, y and z represent edges labeled by 0, 1, and 2, respectively, and where rows and
columns correspond in order to S1, S2, S3, S4,T2,T3,T4, are given by

A =


x y 0 0 0 0 0
0 y z 0 x 0 0
0 0 z x 0 y 0
0 y 0 x 0 0 z
0 y 0 0 x 0 0
0 0 z 0 0 y 0
0 0 0 x 0 0 z


,

A2 =



x2 y2+xy yz 0 yx 0 0
0 y2+xy z2+yz zx x2+yx zy 0
0 xy z2+yz x2+zx 0 y2+zy xz
0 y2+xy yz x2+zx yx 0 z2+xz
0 y2+xy yz 0 x2+yx 0 0
0 0 z2+yz zx 0 y2+zy 0
0 xy 0 x2+zx 0 0 z2+xz


.

Each entry in these matrices lists the paths of specific length from the state identified
by its row to the state identified by its column. For example, the entry (6, 3) of A2,
which equals z2 + yz, indicates that there are two paths of length 2 from T3 to S3

with labels z2 = 22 and yz = 12.

To check (2.5), we need to verify that the nonzero terms in the non-diagonal elements
of each column also appear in its diagonal element. For A and A2, this can be
easily done by observing the matrices. For example, the entry (3, 3) of A2 equals
z2+yz and contains all terms appearing in column 3 ofA2, which are yz and z2+yz.
We verified using a computer that A3 also satisfies the same condition. Hence, we
have shown that all paths of length at most 3 ending in {S1, S2, S3, S4,T2,T3,T4} are
duplicable.

This completes the proof of S ⊆ LR.

Now that we have shown S = LR, we use the Perron-Frobenius theory [14, 15] to
count the number of sequences which can be generated via the finite automaton
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in Figure 2.2. The accepting state S3 is reachable from every other state in
the finite automaton, therefore we can compute the capacity by calculating the
maximum absolute eigenvalue e∗ of the (unlabeled) adjacency matrix B of the
strongly connected component of the finite automaton (i.e. the subgraph induced by
S2, S3, S4,T2,T3,T4).

B =


1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 . (2.6)

The maximum absolute eigenvalue of B is e∗ = 3+
√

5
2 ' 2.618034. By the Perron-

Frobenius Theory, cap(S) = log3 e∗ ' 0.876036.

While the proof of the preceding theorem providing the exact capacity of the system
under study is somewhat involved, it is easy to see why the capacity is strictly less
than 1. One can observe from the regular expression for the finite automaton that it
cannot generate a string that has 210, 021 or 102 as a substring, implying that the
system is not fully expressive. As we will see in Lemma 2.6, such systems cannot
have capacity 1. It is worth noting that the set of strings that avoid 210, 021, and
102 can be shown to have capacity ' 0.914838, which is slightly larger than the
capacity of the system of the theorem.

Expressiveness
Wenow turn to study the expressiveness of tandemduplication systemswith bounded
duplication length. For completeness we start with binary systems, which is indeed
the simplest case.

Lemma 2.4. The system S =
(
{0, 1}, s,T tan

61

)
, for any s is not fully expressive.

Proof. The system cannot generate (01)m as a substring of any string in S for
2m > |s |.

As shown in Example 2.1, to obtain fully expressive binary systems, it suffices to
increase the maximum duplication length to 2.

The next theorem is concerned with the expressiveness of S = ({0, 1, 2}, s,T tan
63 ).

Larger alphabets and larger duplication lengths are considered inTheorems 2.7 and 2.8.

Theorem 2.5. Consider S = ({0, 1, 2}, s,T tan
63 ), where s is any arbitrary starting

string s ∈ {0, 1, 2}∗. Then, S is not fully expressive.
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Proof. A k-irreducible string is a string that does not have a tandem repeat αα, such
that |α | 6 k . For example, 01201, 01210, 02101, and 01210121 are 3-irreducible
strings, while 01212, 021021 and 01112 are not 3-irreducible. To prove the theorem,
we identify certain properties in new 3-irreducible strings that may appear after a
duplication and then construct a 3-irreducible string that is neither a substring of s,
nor it satisfies the properties that every new 3-irreducible substring must satisfy.

Consider a duplication event that transforms a sequence z = uvw to z∗ = uvvw,
where |v | 6 3. Let x be a 3-irreducible string of length at least 4 that is present in z∗

but not in z. The string x must intersect with both copies of v in z∗ or else it is also
present in z. Furthermore, it cannot contains vv, since otherwise it would not be
3-irreducible. To determine the properties of x, we consider three case: |v | = 1, 2, 3.
In what follows assume a1, a2, a3 ∈ Σ.

First, suppose |v | = 1, say v = a1. In this case, a string x with the aforementioned
properties does not exist as all new substrings contain the square a1a1.

Second, assume |v | = 2, say v = a1a2. Then z∗ = ua1a2a1a2w and x either ends
with a1a2a1 or starts with a2a1a2.

Third, suppose |v | = 3, say v = a1a2a3. So z∗ = ua1a2a3a1a2a3w. Recall that
|x | > 4. The string x either ends with a1a2a3a1 or a2a3a1a2, or starts with a2a3a1a2

or a3a1a2a3.

So for any new 3-irreducible substring x = x1 · · · x j , xi ∈ Σ, j > 4, we have x1 = x3,
x1 = x4, x j = x j−2, or x j = x j−3. Now consider the string (0121)`0, where ` > |s |.
This sequences is 3-irreducible but does not satisfy any of the 4 properties stated for
x. Since it is not a substring of s and it cannot be generated as a new substring, it is
not a substring of any y ∈ S.

Next we consider the system
(
Σ, s,T tan

6k

)
, |Σ | > 4 in Theorem 2.7. The proof of the

theorem, uses the following lemma, which states that the expressiveness of a system
also has a bearing on its capacity.

Lemma 2.6. If a string system S with alphabet Σ is not fully expressive, then
cap(S) < 1.

Proof. Since S is not fully expressive, there exists a z ∈ Σ∗ that does not appear as
a substring of any y ∈ S. Let |z | = m and µ = n − mb n

mc. We have

|S ∩ Σn | 6 (|Σ |m − 1)b
n
mc |Σ |µ.
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Since m is finite, cap(S) < 1.

Theorem 2.7. Consider S =
(
Σ, s,T tan

6k

)
, where |Σ | > 4, s is any arbitrary seed

∈ Σ∗ and k is some finite natural number. Then S is not fully expressive, which also
implies cap(S) < 1.

Proof. Suppose z = uvw ∈ S, where |v | 6 k, and let z∗ = uvvw be the result of a
duplication applied to z. Furthermore, suppose that x = x1 · · · x j , where xi ∈ Σ and
j > k, is a squarefree substring of z∗ but not z. Similar to the proof of Theorem 2.5,
x intersects both copies of v but does not contain both. As a result, either x1 = x1+i

or x j = x j−i, for some 2 6 i 6 k.

For definiteness assume Σ contains the symbols {0, 1, 2, 3}. The sequence 0t0, where
t is a squarefree sequence over the alphabet {1, 2, 3} and |t | > max{|s |, k}, is not a
substring of s and cannot be generated as a substring since it does not satisfy the
conditions stated for x above. Note that such a t exists since as shown by Thue [17],
for an alphabet size > 3, there exists a squarefree string of any length. Hence S is
not fully expressive. The second part of the theorem follows from Lemma 2.6.

Theorem 2.8. Consider S = ({0, 1, 2}, 012,T tan
64 ). Then S is a fully expressive string

system.

Proof. Let S′ =
(
{0, 1, 2}, 012,T tan

63

)
. Clearly, S′ ⊆ S. From the proof of Theo-

rem 2.3, we know that the automaton of Figure 2.2 gives the same language as S′.
By checking this automaton, we find that all strings of lengths 1, 2, and 3, except
021, 210, and 102, appear as a substring of some string in S′ and, as a result, some
string in S. To generate 021, 210, and 102 as substrings of some string in S, we
proceed as follows:

012→ 01212→ 012101212

012→ 012012→ 01202012→ 012021202012

012→ 012012→ 01202012→ 012020102012

where the repeats are underlined.

We have shown that all strings of length 3 appear in S as substrings. Now we show
the same for every string w = w1w2w3w4 of length 4. To do so, we study 3 cases
based on the structure of w:

I) First, suppose that w4 is the same as w1, w2, or w3. For generating such w as
a substring, we first generate w′ = w1w2w3 as a substring of some string and then
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do a tandem duplication of w3 if w4 = w3, of w2w3 if w4 = w2 and of w1w2w3 if
w4 = w1.

II) Suppose I) does not hold but w1 = w2 or w2 = w3. If the former holds, first
generate w1w3w4 and then duplicate w1, and if the latter hold, generate w1w2w4 and
duplicate w2.

III) If neither I) nor II) holds, then w = 1210, up to a relabling of the symbols. In
this case, we first generate w′ = 0121 and then do a tandem duplication of w′ to get
w. Note that w′ is of type considered in I).

Until now, we have shown that all strings w of length at most 4 appear as a substring
of some string in S. We use induction to complete the proof. Suppose all strings of
length at most m appear as a substring of some string in S, where m > 4. We show
that the same holds for strings of length m + 1.

Consider an arbitrary w = a1a2 · · · amam+1. We now consider two cases:

i) If all three letters in the alphabet occur at least once in am−3am−2am−1am, then
am+1 equals am−3, am−2, am−1, or am, and w can be generated as a substring by a
tandem duplication of some suffix of size 6 4 of w′ = a1a2 · · · am. Note that by the
induction hypothesis w′ can be generated as a substring of some string.

ii) If at least one letter in the alphabet does not occur in am−3am−2am−1am, then
am−3am−2am−1am is a sequence over binary alphabet and so it has a tandem repeat.
Therefore w can be generated as a substring by tandem duplication. Hence, we have
proved the Theorem.

Table 2.3 summarizes the result of this subsection. It can be observed from the table
that a change of behavior in expressiveness occurs when the size of the alphabet
increases to 4. If the size of the alphabet is 1, 2, or 3, for sufficiently large maximum
duplication length, the systems are fully expressive. However, if the size of the
alphabet is at least 4, then regardless of the maximum duplication length, the system
is not fully expressive. This change is related to the fact that for alphabets of size 1
and 2, all squarefree strings are of finite length, but for alphabets of size 3 and larger,
there are squarefree strings of any length. Specifically, in case ii) in the proof of
Theorem 2.8, we used the fact that the binary string am−3am−2am−1am has a tandem
repeat. To adapt this proof for |Σ | > 4, we would need to show that the (|Σ | − 1)-ary
string am−3am−2am−1am has a tandem repeat. But this is not in general true, since
there are squarefree strings over alphabets of size at least 3 per Thue’s result [17]
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Σ s k fully expressive Reason
{0} 0 > 1 Yes Trivial
{0, 1} arbitrary 1 No Lemma 2.4
{0, 1} 01 > 2 Yes Example 2.1
{0, 1, 2} arbitrary 6 3 No Theorem 2.5
{0, 1, 2} 012 > 4 Yes Theorem 2.8
|Σ | > 4 arbitrary arbitrary No Theorem 2.7

Table 2.3: Expressiveness of tandem duplication string systems (Σ, s,T tan
6k ).

and indeed we showed in Theorem 2.7, again using Thue’s result, that the system(
Σ, s,T tan

6k

)
is not fully expressive for |Σ | > 4 and any k.

2.4 Regular Languages for Tandem Duplication String Systems
Tandem duplication string systems that define regular languages are easier to study
due to the fact that one can use tools from the Perron-Frobenius theory [14, 15] to
calculate capacity. It was proved in [63] that for |Σ | > 3 and maximum duplication
length> 4, the language defined by tandem duplication string systems is not regular,
if the seed contains abc as a substring such that a, b and c are distinct. However,
if the maximum duplication length is 3, this question was left unanswered. In
Theorem 2.9, we show that the language resulting from a tandem duplication system
with the maximum duplication length of 3 is regular regardless of the alphabet size
and seed. Further, in Corollary 2.10 we characterize the exact capacity of such
tandem duplication string systems.

Theorem 2.9. Let S = (Σ, s,T tan
63 ), where Σ and s are arbitrary. The language

defined by S is regular.

Proof. We first assume that s = a1 · · · am, where ai are distinct. The case in which
ai are not distinct is handled later.

For 3 6 j 6 m, let

Ra1···aj = a+1 a+2
(
a+1 a+2

)∗a+3 (
a+2 a+3

)∗Ba1a2a3
∗

a+4
(
a+3 a+4

)∗Ba2a3a4
∗

· · ·

a+i
(
a+i−1a+i

)∗Bai−2ai−1ai
∗

· · ·

a+j
(
a+j−1a+j

)∗
Baj−2aj−1aj

∗,
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Σ s k Capacity Fully Expressive
{0} 0m for some m > 1 1 1 Yes
{0, 1} 01 1 0 No
{0, 1} arbitrary but not am for some a ∈ {0, 1} > 2 1 Yes
|Σ | > 3 arbitrary but not am for some a ∈ Σ 2 log|Σ | 2 No
|Σ | > 3 xabcy (x and y ∈ Σ∗, a, b and c ∈ Σ and a , b , c , a) 3 log|Σ |

3+
√

5
2 No

|Σ | > 3 No 3 consecutive symbols in the seed are all distinct and s , am for a ∈ Σ 3 log|Σ | 2 No
{0, 1, 2} 012 > 4 ? Yes
|Σ | > 4 arbitrary > 4 ? No

Table 2.4: Capacity and Expressiveness for different tandem duplication string
systems (Σ, s,T tan

6k ).

where, for a, b, c ∈ Σ,

Babc = a+(c+a+)∗b+(a+b+)∗c+(b+c+)∗.

We already know from Theorem 2.3 that S = (Σ, s,T tan
63 ) with s = a1 · · · am is a

regular language if m = 3. We show that for m > 4, S represents a regular language
whose regular expression is given by Ra1a2···am . Let LR be the language defined by
Ra1a2···am . It suffices to show LR = S.

We first show that LR ⊆ S by proving Ra1a2···am
dd63
−−−−→ s. To do so, we show by

induction that Ra1a2···ai
dd63
−−−−→ a1a2 · · · ai. First note that this holds for i = 3, from

the proof of Theorem 2.3. Assuming that it holds for i, to show that this also holds
for i + 1, where i > 3, we write

Ra1a2···ai+1=Ra1a2···aia
+
i+1

(
a+i a+i+1

)∗Bai−1aiai+1
∗

dd63
−−−−→ a1a2 · · · aiai+1(aiai+1)

∗Bai−1aiai+1
∗

dd63
−−−−→ a1a2 · · · aiai+1Bai−1aiai+1

∗

dd63
−−−−→ {a1a2 · · · aiai+1(ai−1aiai+1)

∗,

a1a2 · · · aiai+1(ai−1ai+1ai−1aiai+1)
∗}

dd63
−−−−→ a1a2 · · · aiai+1.

Here we have used the fact that cBabc
dd63
−−−−→ cabc which follows from (2.4). Hence,

LR ⊆ S.

We now show that S ⊆ LR. The finite automaton for LR is given in Figure 2.3.
Note that the seed s is in LR. It thus suffices to show that if x = pqr ∈ LR, then
y = pq2r ∈ LR, where p, q, r ∈ Σ∗ and |q | 6 3. We prove this by showing that
any length-1, 2 or 3 path ending in any state of the finite automaton in Figure 2.3 is
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Start S1 S2

S3

S4

T2

T3

T4

S5

S6

S7

T5

T6

T7

S3m−7

S3m−6

S3m−5

T3m−7

T3m−6

T3m−5

a1

a1

a2

a3
a2

a1

a1

a2

a4

a2

a3

a1

a2

a1

a3

a2

a1

a3

a4
a3

a2

a2

a3

a3

a4

a2

a3

a2

a4

a3

a2

a4

am

am−1

am−2

am−2

am−1

am−1

am

am−2

am−1

am−2

am

am−1

am−2

am

a3 a4
am

am

Figure 2.3: Finite automaton for S = (Σ, a1a2a3 · · · am,T
tan
63 ).

duplicable, or in other words (2.5) holds for all the states in Figure 2.3. The finite
automaton in Figure 2.3 is a generalization of the one in Figure 2.2. Note that in
Figure 2.3, the states {S1, S2, S3, S4,T2,T3,T4} are exactly the same as those in Figure
2.2. More precisely, there is no additional path ending in these states in Figure 2.3.
So, from the proof of Theorem 1, (2.5) holds for these states.

Now we show for the newly added states, i.e. {Si,Ti : i > 5}, (5) holds. Consider a
set Qk = {S3k−1, S3k, S3k+1,

T3k−1,T3k,T3k+1} for some k > 2. The labelled adjacencymatrixA for the subgraph
induced by these states is given by

A =


y z 0 x 0 0
0 z x 0 y 0
y 0 x 0 0 z
y 0 0 x 0 0
0 z 0 0 y 0
0 0 x 0 0 z

,
where x is used as a label for ak , y for ak+1 and z for ak+2. A2 is given by

A2 =


y2+xy z2+yz zx x2+yx zy 0

xy z2+yz x2+zx 0 y2+zy xz
y2+xy yz x2+zx yx 0 z2+xz
y2+xy yz 0 x2+yx 0 0

0 z2+yz zx 0 y2+zy 0
xy 0 x2+zx 0 0 z2+xz


,

The non-zero terms in the non diagonal entries of each column also appear in the
diagonal entry of that column for A and A2. This can also be verified for A3.
Hence, we have shown that any length-1, 2, 3 path starting in some state C ∈ Qk

and ending in some state D ∈ Qk is duplicable for all k > 2.
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We also need to show that any length-1, 2, 3 path that ends in Qk but starts in a state
that is not in Qk is duplicable. Note that the states in Qk are not reachable from
states ∈ Qk ′ with k′ > k, any possible path of length-1, 2 or 3 ending in some state
D ∈ Qk and starting in a state C ∈ Qk ′ with k′ < k, has to pass through state S3k−3.
Now, we enumerate the labels of all length-1, 2 and 3 paths ending in some state in
Qk but starting in some state ∈ Qk ′ with k′ < k.

• Label of a path of length 1: ak+2 (ends in S3k).

• Label of a path of length 2: i) ending in S3k : ak+1ak+2, ak+2ak+2, ii) ending
in S3k+1: ak+2ak , iii) ending in T3k : ak+2ak+1.

• Label of a path of length 3: i) ending in S3k−1: ak+2akak+1, ii) ending in
S3k : ak+1ak+1ak+2, akak+1ak+2, ak+1ak+2ak+2, ak+2ak+2ak+2, ak+2ak+1ak+2,
iii) ending in S3k+1:ak+1ak+2ak , ak+2akak , ak+2ak+2ak , iv) ending in T3k :
ak+1ak+2ak+1, ak+2ak+1ak+1, ak+2ak+2ak+1, v) ending in T3k+1: ak+2akak+2.

All the path labels enumerated above are duplicable which can be verified by in-
spectingA,A2,A3, for paths of length 1, 2 and 3 respectively. This completes the
proof of S ⊆ LR.

We have proved the statement of Theorem 2.9 assuming all ai’s in the seed s to be
distinct. Now assume the symbols of s are not distinct. We color the symbols of s

so that they become distinct and obtain the system S̃ =
(
Σ̃, s̃,T tan

63

)
. Applying the

preceding proof for distinct symbols to S̃, we find that S̃ is regular. Let h : Σ̃ → Σ
be a mapping that removes the colors. This mapping is called a morphism. By [65],
we have that S = h(S̃) is also regular.

An immediate corollary on the capacity of tandem duplication string system con-
sidered in Theorem 2.9 is stated next.

Corollary 2.10. If for S in Theorem 2.9, s contains abc as a substring such that a, b,

and c ∈ Σ are distinct, then cap(S) = log|Σ |
3+
√

5
2 ' 0.876036 log|Σ | 3. Otherwise,

except for the seed s of the form am, cap(S) = log|Σ | 2. If s = am, cap(S) = 0.

Proof. If abc occurs as a substring of the seed s such that a, b and c ∈ Σ are distinct,
then the adjacency matrix of the finite automaton for Babc (strongly connected
component of the finite automaton for Ra1a2···am) has the maximum eigenvalue.
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Therefore, the cap(S) = log|Σ |
3+
√

5
2 ' 0.876036 log|Σ | 3 (see (2.6) in the proof of

Theorem 2.3).

If no 3 consecutive symbols in the seed s are all distinct and s , am, then the
maximum capacity component is a finite automaton only over 2 distinct symbols as
in Figure 2.1. In other words, terms of the form (a+i a+i+1)

∗ determine the capacity.
Hence the capacity is log|Σ | 2.

When seed s = am, there is exactly one sequence of any given length in the system.
Hence cap(S) = 0.

The following examples illustrate the statement of Theorem 2.9 and an application
of its proof method.

Example 2.11. The string system S = ({0, 1, 2, 3}, 0123,T tan
63 ) is regular by Theo-

rem 2.9 and the regular expression is given by

R0123 = 0+1+(0+1+)∗2+(1+2+)∗B012
∗3+(2+3+)∗B123

∗.

By Corollary 2.10, the capacity of this system ' 0.876036 log4 3 ' 0.694242. �

Example 2.12. The string system S = ({0, 1, 2}, 0112,T tan
63 ) is regular by Theo-

rem 2.9, and the regular expression is given by

R0112 = 0+1+(0+1+)∗1+(1+1+)∗B011
∗2+(1+2+)∗B112

∗.

By Corollary 2.10, the capacity of this system is given by log3 2 ' 0.63093. �

When ai’s are assumed to be distinct it can be verified from the regular expression
Ra1···aj in the proof of Thereom 2.9 that the last occurence of ai is before the first
occurence of ai+3 for any i = 1, 2, · · · , j − 3 for all z ∈ S.

The following corollary follows for maximum duplication length 2 using the same
idea as in Theorem 2.9

Corollary 2.13. The capacity for S = (Σ, a1a2 · · · am,T
tan
62 ) is given by log|Σ | 2,

except for the case in which seed s = am for a ∈ Σ. In that case, the capacity is 0.

Proof. The string system S = (Σ, a1a2 · · · am,T
tan
62 ) is regular. This can be proved

using the same method as used in the proof of Theorem 2.9. The regular expression
Qa1a2···am for m > 2 is given by

Qa1a2···am = a+1 a+2 (a
+
1 a+2 )

∗a+3 (a
+
2 a+3 )

∗
· · · a+m(a

+
m−1a+m)

∗
.
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Start S1 S2 S3

T2 T3

0

0

1 2

1

0 1

2

1

0

2

1

Figure 2.4: Finite automaton for S = ({0, 1, 2}, 012,T tan
62 ). The regular expression

R = 0+1+(0+1+)∗2+(1+2+)∗.

As in Proof of Corollary 2.10, the capacity is determined by term(s) of the form
(a+i a+i+1)

∗, except for the casewhen seed s = am. Therefore, the capacity for language
represented by Qa1a2···am is log|Σ | 2, when s , am and 0 when s = am.

The finite automaton for a special case of Corollary 2.13 with |Σ | = 3 is given in
Figure 2.4.

Table 2.4 lists the capacity and expressiveness results presented in this chapter and
also the open question on capacity when k > 4. The expressiveness results follows
from Table 2.3.

2.5 Conclusion
In this chapter, we showed that for tandem duplication string systems with bounded
duplication length if the maximum duplication length is 3 or less, the language
described by the string system is regular. Further, we computed exact capacities
for these systems. Computing the capacities for bounded tandem duplication string
systems with maximum duplication length greater than 3 remains an open problem.

Using Thue’s result [17], we showed that a tandem duplication string system cannot
be fully expressive if the alphabet size is > 4. However, for an alphabet of size
3 or less such systems can be fully expressive. Therefore, we have completely
characterized fully expressive and non-fully expressive tandem duplication string
systems with bounded duplication lengths.
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We have studied questions related to the generation of a diverse set of sequences
from a seed given bounded tandem duplication. One can also study the minimum
number of steps required to generate a given sequence of length n from a squarefree
seed and therefore define the notion of distance between a sequence and its seed
given a tandem duplication rule. For the special case of binary sequences, we have
studied this distance in the next chapter.
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C h a p t e r 3

DUPLICATION DISTANCE

3.1 Introduction
We focus on tandem duplication mutations and tandem repeats, and study the
minimum number of tandem duplication events that can create a given sequence.
More specifically, we define distance measures between pairs of sequences based on
the number of exact or approximate tandem duplications that are needed to transform
one sequence to the other. We then study the distances between sequences of length
n ∈ N and their roots, i.e., the shortest sequences from which they can be obtained
via these operations.

Formally, a (tandem) repeat of length h in a sequence is two identical adjacent
blocks, each consisting of h consecutive elements. For example, the sequence
1213413451 contains the repeat 134134 of length 3. A repeat of length h may be

created through a (tandem) duplication of length h, e.g., 1213451
d
−→ 1213413451,

where
d
−→ denotes a duplication operation. On the other hand, a repeat may be

removed through a (tandem) deduplication of length h, i.e., by removing one of the
two adjacent identical blocks, e.g., 1213413451

dd
−−→ 1213451.

The duplication/deduplication distance between two sequences x and y is the
smallest number of duplications and deduplications that can turn x into y (to denote
sequences we use bold symbols). We set the distance to infinity if the task is not
possible, for example, if x = 1 and y = 0.

For two sequences x and y , if y can be obtained from x through duplications, we
say that x is an ancestor of y and that y is a descendant of x . An ancestor x of y is
a root of y , denoted x = root(y), if it is square-free, i.e., it does not contain a repeat.
We define the duplication distance between two sequences as the minimum number
of duplications required to convert the shorter sequence to the longer one.1 This
distance is finite if and only if one sequence is the ancestor of the other. This chapter
is focused on finding bounds on the duplication distance of sequences to their roots.
From an evolutionary point of view, the duplication distance between a sequence

1Note that using the term distance here is a slight abuse of notation as the duplication distance
does not satisfy the triangle inequality.
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and its root is of interest since it corresponds to a likely path through which a root
may have evolved into a sequence present in the genome of an organism.

Our attention here is limited to binary sequences for the sake of simplicity, since
for the binary alphabet, the root of every sequence is unique and belongs to the
set {0, 1, 01, 10, 010, 101}. Specifically, the roots of 0n and 1n, n ∈ N, are 0 and
1, respectively. For every other binary sequence s of length n, the root of s is the
sequence in the set {01, 10, 010, 101} that starts and ends with the same symbols as
s . For example, the root of s = 1001011 is 101 since

101
d
−→ 10101

d
−→ 101011

d
−→ 1001011 = s .

A run in a sequence is a maximal substring consisting of one or more copies of a
single symbol. Through duplication, we can generate every binary sequence from
its root by first creating the correct number of runs of appropriate symbols. For
example, since s = 1001011 has 5 runs, the first being a run of the symbol 1, we
first generate 10101 through duplication. It is not difficult to see that this is always
possible. The next step is then to extend each run so that it has the appropriate
length.

In the proofs in the chapter, it is often helpful to think of the distance to the root in
terms of converting a sequence to its root via a sequence of deduplications, e.g. the
sequence s above can be deduplicated to its root as

s = 1001011
dd
−−→ 101011

dd
−−→ 10101

dd
−−→ 101 = root(s).

We note that a celebrated result by Thue from 1906 [17] states that for alphabets of
size > 3, there is an infinite square-free sequence. Thus, in contrast to the binary
alphabet, the set of roots for such alphabets is infinite since each substring of Thue’s
sequence is square-free.

For a binary sequence s , let f (s) denote the duplication distance between s and
its root and let f (n) be the maximum of f (s) for all sequences s of length n.
Table 3.1, which was obtained through computer search, shows the values of f (n)

for 1 6 n 6 32.

In this chapter, we provide bounds on f (s) and on f (n). We also consider a
variation of the duplication distance, referred to as the approximate-duplication
distance, where the duplication process is imprecise and so the inserted block is
not necessarily an exact copy. Specifically, the β-approximate-duplication distance
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f (n) 0 1 2 2 3 4 4 5 6 6 7 7 8 8 9 9
n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

f (n) 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15

Table 3.1: f (n) for 1 6 n 6 32.

between two sequences x and y is the smallest number of duplications that can
turn the shorter sequence into the longer one, where each duplication may produce a
block that differs from the original in at most a β-fraction of positions. This distance
between s and any of its roots is denoted by fβ(s) and the maximum of fβ(s) over
all sequences s of length n is denoted by fβ(n). We provide bounds on fβ(n) and in
particular show that there is a sharp transition in the behavior of fβ at β = 1/2.

Since each binary sequence has a unique root in the set {0, 1, 01, 10, 010, 101},
the set of sequences can be partitioned based on their roots. In the chapter, we
also study the duplication distance to the root for sequences based on the part
they belong to, that is, we consider fσ (n) for σ ∈ {0, 1, 01, 10, 010, 101}, where
fσ (n) = max{ f (s) : root(s) = σ, |s | = n}. The rest of the chapter is structured

as follows. In the next two subsections, we summarize the results of the chapter
and describe the related work. Then, in Section 3.2, we prove the bounds on f (n)

and discuss some variants, as well as special classes of sequences. In Section 3.3,
we discuss duplication distance for special class of sequence generating systems
called Lindenmayer Systems. In Sections 3.4 and 3.5, we study the approximate-
duplication distance to the root and the duplication distance for different roots,
respectively. Finally, several open problems and possible future directions are
presented in Section 4.7.

Results
In this subsection, we present the main results of the chapter. The proofs, unless
they are very short, are postponed to later sections.

Suppose the root of s is σ ∈ {0, 1, 01, 10, 010, 101}. It is easy to see that

log
|s |

|σ |
6 f (s) 6 |s |.

While the above lower bound is tight in the sense that there exist σ and s that satisfy
it with equality, e.g., s = 02k and σ = 0, we show there is a positive constant c such
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that for most sequences of length n, the duplication distance to the root is bounded
below by cn. We also improve the upper bound.

Theorem 3.1. The limit limn→∞ f (n)/n exists and

0.045 6 lim
n→∞

f (n)
n
6

2
5
·

Furthermore, for sufficiently large n, f (s) > 0.045n for all but an exponentially
small fraction of sequences s of length n; and f (n) 6 2n/5 + 15.

Although the linear lower bound on the duplication distance to the root holds for
almost all sequences, finding a specific family of sequences that satisfy it appears
to be difficult. The next lemma and its corollary give the best known construction
for a family with large distance to the root, namely, this family achieves distance
Ω(n/log n).

Lemma 3.2. Consider a sequence s and a positive integer k > 4, and let K(s)

denote the number of distinct k-mers (sequences of length k) occurring in s . We
have

f (s) >
K(s)
k − 1

·

Proof. For two sequences x = t uuv and y = t uv , we have K(y) > K(x)− (k −1),
since the only case in which a k-mer occurs in x but not in y is when the only
instance of that k-mer intersects both copies of u in x . There are at most k − 1
k-substrings of x that intersect both copies of u . Finally, no root contains a k-mer
for k > 4.

A binary De Bruijn sequence [66] of order k is a binary sequence of length n = 2k

that when viewed cyclically contains every possible binary sequence of length k as
a substring exactly once. For example, 0011 and 00010111 are De Bruijn sequences
of order 2 and order 3, respectively. A binary De Bruijn sequence of order k and
length n = 2k has precisely n− k + 1 distinct k-mers. Hence, we have the following
corollary.

Corollary 3.3. For any binary De Bruijn sequence s of order k (which has length
n = 2k), we have

f (s) >
n − log2 n

log2 n
·
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It is worth noting that using the same technique as the proof of f (n) = Ω(n) in
Theorem 3.1, and the fact that there are at least 2n/2

n De Bruijn sequences of length
n when n is a power of two,2 one can show that the largest duplication distance for
De Bruijn sequences grows linearly in their length.

A question arising from observing that f (n) = Θ(n) is that how does allowing
mismatches in the duplication process affect the distance to the root. In particular,
for what values of β, is fβ(n) linear in n and for what values is it logarithmic? The
next theorem establishes that there is a sharp transition at β = 1/2.

Theorem 3.4. If β < 1/2, then there exists a constant c = c(β) > 0 such that

fβ(n) > cn.

Furthermore, if β > 1/2, for any constant C >
⌈

2β+1
2β−1

⌉2
and sufficiently large n,

fβ(n) 6 C ln n.

Finally, we establish that the limit of f (n)
n is the same if we consider only sequences

with root 10 or only sequences with root 101.

Theorem 3.5. The limits limn
f10(n)

n and limn
f101(n)

n exist and are equal to limn
f (n)
n .

Related Work
Tandem duplications and repeats in sequences have been studied from a variety of
points of view. One of the most relevant to this work is the study of estimating
the tandem duplication history of a given sequence, i.e., a sequence of duplication
events that may have generated the sequence, see e.g., [56, 67, 68]. While the
aforementioned works study the problem from an algorithmic point of view, here
we are focused on extremal distance values for binary sequences. Furthermore, [56,
68] have a more restrictive duplication model than that presented here. We also
mention that the stochastic behavior of certain duplication systems has been studied
in [69, 70].

3.2 Bounds on f (n)

Theorem 3.1. The limit limn→∞ f (n)/n exists and

0.045 6 lim
n→∞

f (n)
n
6

2
5
·

2If De Bruijn seqences are defined cyclically as opposed to linearly, there are exactly 2n/2

n De
Bruijn sequences of length n
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Furthermore, for sufficiently large n, f (s) > 0.045n for all but an exponentially
small fraction of sequences s of length n; and f (n) 6 2n/5 + 15.

The lower bound of Theorem 3.1 is proved with the help of Theorem 3.6, and its
upper bound uses Theorem 3.9. These theorems are stated next.

Theorem 3.6. For 0 < α < 1, consider the set of the b2nαc sequences of length
n with the smallest duplication distance to the root and let Fα be the maximum
duplication distance to the root for a sequence in this set. Then

6n
Fα∑
f=1

(
n + f

f

) (
2n + f

f

) (
2n + f + 2

f

)
2 f > 2nα − 1. (3.1)

Before stating the proof, we present some background, definitions, and a useful
claim, as well as a simpler but weaker result.

Recall that if the sequence s = s1s2 · · · sm contains a repeat, then omitting one of
the two blocks of this repeat to obtain a new sequence is called a deduplication. We
also refer to the resulting sequence s′ as a deduplication of s , and write s

dd
−−→ s′. A

deduplication process for a binary sequence s is a sequence of sequences s = s0
dd
−−→

s1
dd
−−→ s2

dd
−−→ · · ·

dd
−−→ s f = root(s), where each si+1 is a deduplication of si and the

final sequence s f is the (square-free) root of s . The length of the deduplication
process above is f , that is, the number of deduplications in it. A deduplication of s
is an (i, h)-step if i is the starting position of (the first block) of a repeat of length h

and one of the blocks of this repeat is omitted. For example, if s = 12313413451,
a (4, 3)-step produces s′ = 12313451. A deduplication process of length f of a
sequence s can be described by a sequence of pairs (it, ht)

f
t=1, where step number t

is an (it, ht)-step. It is not difficult to check that knowing the final sequence in the
process, and knowing all the pairs (it, ht) of deduplications in the process, in order,
we can reconstruct the original sequence s .

From the preceding discussion, each binary sequence s can be encoded as the pair(
σ, (it, ht)

f (s)
t=1

)
, where σ is the root of s and (it, ht)

f (s)
t=1 a deduplication process of s .

Since there are only 6 possibilities for σ , and less than n2 possibilities for each pair
(it, ht), if F = f (n), then

6
F∑

f=1

(
n2

) f
> 2n, (3.2)

which implies that F = f (n) = Ω(n/log n).
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In the aforementioned encoding, several deduplication processes may map to the
same sequence. We improve upon (3.2) by defining deduplication processes of a
special form that remove some of the redundancy, and by doing so, we obtain (3.1),
which will lead to the linear lower bound of Theorem 3.1.

Definition 3.7. Adeduplication process s = s0
dd
−−→ s1

dd
−−→ s2

dd
−−→ · · ·

dd
−−→ s f = root(s)

of a sequence s , in which the steps are (i1, h1), (i2, h2), . . . , (i f , h f ), is normal if the
following condition holds: For any 1 6 t < f , if it+1 < it then it+1 + 2ht+1 > it .

The following claim shows that if we limit ourselves to normal deduplication pro-
cesses, we can still encode every binary sequence with processes of the same length.

Claim 3.8. For any deduplication process s = s0
dd
−−→ s1

dd
−−→ s2

dd
−−→ · · ·

dd
−−→ s f =

root(s) of length f of a sequence s , there is a normal deduplication process s =

s0
dd
−−→ s′1

dd
−−→ s′2

dd
−−→ · · ·

dd
−−→ s′f = s f of the same length, with the same final sequence.

Proof. Among all deduplication processes of length f starting with s and ending
with s f , consider the one minimizing the number of pairs (it, ht), (iq, hq) with
1 6 t < q 6 f , and iq < it . We claim that this process is normal. Indeed, otherwise
there is some t, 1 6 t < f so that it+1 < it and it+1 + 2ht+1 < it . But in this case we
can switch the steps (it, ht) and (it+1, ht+1), performing the step (it+1, ht+1) just before
(it, ht). This will clearly leave all sequences s0, s1, . . . , s f , besides s t , the same, and
in particular s0 = s and s f = root(s) stay the same. This contradicts the minimality
in the choice of the process, establishing the claim.

We now turn to the proof of Theorem 3.6.

Proof of Theorem 3.6. LetUα denote the set of b2nαc sequences that have the small-
est duplication distances to their roots among binary sequences of length n and recall
that Fα = max{ f (s) : s ∈ Uα}. By Claim 3.8, for each of the sequences s of Uα,
there is a normal deduplication process s = s0

dd
−−→ s1

dd
−−→ s2

dd
−−→ · · ·

dd
−−→ s f of length

f 6 Fα. Let the steps of this process be (i1, h1), (i2, h2), . . . , (i f , h f ). As before, it is
clear that knowing the final sequence s f and all the pairs (it, ht), we can reconstruct
s . There are 6 possibilities for s f . As each step (it, ht) reduces the length of the
sequence by ht , it follows that

∑ f
i=1 ht < n and therefore there are at most

(n+ f
f

)
possibilities for the sequence (h1, h2, h3, . . . , h f ). In order to record the sequence
(i1, i2, . . . , i f ) it suffices to record i1 and all the differences it − it+1 for all 1 6 t < n.
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There are less than n possibilities for i1, and there are at most 2 f possibilities for
deciding about the set of all indices t for which the difference it − it+1 is posi-
tive. As the process is normal, for each such positive difference, we know that
it+1 + 2ht+1 > it , that is it − it+1 6 2ht+1. It follows that the sum of all positive
differences,

∑
t:it−it+1>0(it − it+1), is at most 2

∑
t ht < 2n, and hence the number of

choices for these differences is at most
(2n+ f

f

)
.

Since i f 6 3, we have i1 − i f > 1 − 3 = −2. So∑
t:it−it+160

(it − it+1) = (i1 − i f ) −
∑

t:it−it+1>0
(it − it+1) > −2 − 2n.

Therefore, the number of choices for all non-positive differences it − it+1 is at most(2n+ f+2
f

)
. Putting all of these together, and noting that |Uα | > 2nα − 1, implies the

assertion of Theorem 3.6.

Since
(p
q

)
6 2pH(q/p) for positive integers 0 < q < p [71, p. 309], Theorem 3.6

implies that

3
(
2 +

Fα
n

)
H

(
Fα/n

2 + Fα/n

)
+

Fα
n
> α + o(1),

where H is the binary entropy function, H(x) = −x log2 x − (1 − x) log2(1 − x).
The expression on the left side of the inequality is strictly increasing in Fα

n , and it is
less than 0.99 if we substitute Fα

n by 0.045. If we let α = 0.99, it follows that for
sufficiently large n, we have Fα

n > 0.045, thereby establishing the lower bound in
Theorem 3.1.

To prove the upper bound in Theorem 3.1, we prove the following theorem.

Theorem 3.9. The limit limn→∞ f (n)/n exists and for all n, f (n) 6 2
5n + 15.

Proof. Note that for any positive integers n and m, f (n + m) 6 f (n) + f (m) + 2.
Indeed, given a sequences of length n + m we can deduplicate separately its first
n bits and its last m bits, getting a concatenation of two square-free sequences (of
total length at most 6). It then suffices to check that each such concatenation can be
deduplicated to its root through at most 2 additional deduplication steps. Therefore,
the function g(n) = f (n) + 2 is subadditive:

g(n + m) = f (n + m) + 2 6 f (n) + f (m) + 4 = g(n) + g(m).

Now, by Fekete’s Lemma [72], g(n)/n tends to a limit (which is the infimum over n

of g(n)/n), and it is clear that the limit of f (n)/n is the same as that of g(n)/n. We
term this limit the binary duplicatoin constant.
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Figure 3.1: f (n,m)
n−m for 3 6 m < n 6 32.

This proof of the existence of limn→∞ f (n)/n provides a simple way to derive an
upper bound for the limit by computing f (n) precisely for some small n. In particular,
from Table 3.1, we find limn→∞ f (n)/n 6 ( f (32)+2)/32 = 17/32. We can improve
upon this result as follows.

For positive integers n,m, let f (n,m) be the smallest number k such that every
sequence of length n can be converted to a sequences of length at most m via k

deduplication steps. A sequence of length n can be converted to its root by first
repeatedly converting its a-substrings to substrings of length at most b via f (a, b)

deduplication steps. Thus for integers a > b > 0, we have

f (n) 6
f (a, b)
a − b

n +max
i<a

f (i) (3.3)

With the help of a computer we find the values of f (n,m) for 3 6 m < n 6 32.
An illustration is given in Figure 3.1. In particular we have f (32,12)

20 = 8
20 =

2
5 from

Figure 3.1 and maxi<32 f (i) = 15 from Table 3.1, implying f (n) 6 2
5n + 15.

Weaker upper bounds on f (n) can be obtained without resorting to computation
in the following ways. First, to deduplicate a sequence to its root, we first can
deduplicate each block of t consecutive identical bits to a single bit by dlog2 te

deduplications and then finish in less than log2 n additional steps. This shows that
for large n , f (n) 6 2

3n+o(n) (the extremal case for this argument is the one in which
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each block is of size 3). Second, it is known that every binary sequence of length at
least 19 contains a repeat of length at least 2 [73], implying that f (n) 6 1

2n + o(n).

Parallel duplication One can also define the parallel duplication distance to the
root by allowing non-overlapping duplications to occur simultanously, with f ′(n)

being the maxmimum parallel duplication distance to the root of a sequence of
length n. Similar to the normal duplication distance it is helpful to think in terms
of deduplications. Since each parallel deduplication step decreases the length of a
sequence by at most a factor of 2, f ′(n) > log2 n − 2 (and in fact f ′(s) > log2 n − 2
for every sequence of length n.) It is not difficult to see that f ′(n) < 2 log2 n by first
deduplicating, in parallel, all blocks of identical elements in the sequence to blocks
of size 1, and then by deduplicating the resulting alternating sequence to its root.

Partial deduplication The definition of f (n,m) gives rise to the following ques-
tion: For a fixed 0 < α 6 1, what is limn

f (n,bαnc)
1−α , if it exists? At first glance, one

may expect limn
f (n,bαnc)

1−α to be decreasing in α since if α is large, one may think it
is easier to find enough long repeats to reduce the length of the sequence quickly by
a factor of 1 − α. However, we show that limn

f (n,bαnc)
n(1−α) = limn

f (n)
n .

Let γ = limn
f (n)
n . For ε > 0, there exists k such that for all n > k, f (n) 6 (γ + ε)n.

Thus
f (n, bαnc) 6 f (n − bαnc + 3) 6 (γ + ε)((1 − α)n + 4). (3.4)

On the other hand, let δ = lim infn
f (n,bαnc)
(1−α)n . For ε > 0, there exists k such

f (k, bαkc) 6 (δ + ε)(1 − α)k. Hence,

f (n) 6
f (k, bαkc)
k − bαkc

n + k 6 (δ + ε)n + k . (3.5)

The result follows by dividing (3.4) by (1 − α)n and taking a lim supn and by
dividing (3.5) by n and taking a limn.

3.3 Duplication Distance for L-systems
L-systems, or Lindenmayer systems are sequence rewriting systems developed by
Lindemayer in 1968 [74]. He used them in the context of biology to model the
growth process of plant development. He introduced context-free as well as context-
sensitive L-systems. Here we will discuss distance to the root for sequences arising
in context-free L-systems, also known as 0L-systems. A 0L-system comprises three
components:
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• Alphabet (Σ): An alphabet of symbols used to construct sequences.

• Axiom sequence or initiator (ω): The starting sequence from which a 0L-
system is constructed.

• Production rule (h): A rule that constructs new sequences by expanding each
symbol in a given sequence into a sequence of symbols. The production rule
is represented by the function h : Σ∗ → Σ∗, which for any two sequences a
and b ∈ Σ∗ satisfies

h(ab) = h(a)h(b)

where h(a)h(b) represents the concatenation of h(a) and h(b). The pro-
duction rule h can be deterministic or stochastic. Here we consider only
deterministic rules. Such 0L-systems with deterministic h are denoted as
D0L-systems [75].

Example 3.10 (Fibonacci words). Consider Σ = {X,Y }, ω = X , and

h(X) = XY, h(Y ) = X .

For this D0L-system, the first 5 sequences are as follows:

h0(ω) = X

h1(ω) = XY

h2(ω) = XY X

h3(ω) = XY X XY

h4(ω) = XY X XY XY X

h5(ω) = XY X XY XY X XY X XY

This can also be represented by the following tree:

X

X

X

X

X Y

Y

X

Y

X

X Y

Y

X

X

X Y

Y

X
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These sequences are called Fibonacci words as they satisfy

hn(ω) = hn−1(ω)hn−2(ω) ∀ n > 2.

Example 3.11 (Thue-Morse Sequence). Let Σ = {0, 1}, ω = 0, and

h(0) = 01, h(1) = 10.

For this D0L-system the tree of sequence generation is given below:

0

0

0

0

0 1

1

1 0

1

1

1 0

0

0 1

1

1

1

1 0

0

0 1

0

0

0 1

1

1 0

The sequence generated by this D0L-system are called Thue-Morse sequences.
Alternatively, the Thue-Morse sequences can be defined recursively by starting with
t0 = 0 and forming ti+1 by concatenating ti and its complement ti.

We show that binaryD0L-systems, which have production rules of the form h(0) = u

and h(1) = v , with u, v ∈ {0, 1}∗ have a logarithmic distance to their roots.

Lemma 3.12. For any binary D0L-system with initiator ω and production rule h,
we have

f (hr(ω)) = Θ
(
log2 |h

r(ω)|
)
, as r →∞.

Proof. For any sequence t , since f (t ) > log2 | t |, we have f (hr(ω)) > log2 |h
r(ω)|.

It remains to show that f (hr(ω)) = O
(
log2 |h

r(ω)|
)
. We start by proving the

following claim.

Claim. For any binary D0L-system with initiator ω and production rule h, we have

f (hr(ω)) 6 f
(
hr−1(ω)

)
+ c 6 f (ω) + rc, (3.6)

where c = maxz∈{0,1,01,10,010,101} f (h(z)).
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To prove the claim, let x = hr−1(ω) and y = hr(ω) and consider the sequence
of deduplications that turns x into its root z ∈ {0, 1, 01, 10, 010, 101}. We can
deduplicate y in a similar manner to h(z): For each step in the deduplication process
of x that deduplicates a substring a1 · · · aka1 · · · ak to a1 · · · ak , we deduplicate
h(a1) · · · h(ak)h(a1) · · · h(ak) to h(a1) · · · h(ak) in the deduplication process of y ,
resulting eventually in h(z). This completes the proof of the claim.

We now turn to proving f (hr(ω)) = O
(
log2 |h

r(ω)|
)
. If |hr(ω)| = O(1), then

f (hr(ω)) = O(1) as well, and there is nothing to prove. If |hr(ω)| = 2Ω(r), then
r = O

(
log2 |h

r(ω)|
)
and the desired result follows from (3.6). The last case that

we need to consider is when |hr(ω)| → ∞ but |hr(ω)| = 2o(r). Without loss of
generality, assume |h(1)| > |h(0)|. Then the condition |hr(ω)| = 2o(r) can be shown
to occur only if the initiator ω contains at least one occurrence of 1, h(0) = 0, and
h(1) has exactly one occurrence of 1 and one or more 0s. In this case, the number
of 1s in hr(ω) is constant and again f (hr(ω)) = O

(
log2 |h

r(ω)|
)
.

The previous lemma shows that the duplication distances to the root for both of
Fibonacci words and Thue-Morse sequences are logarithmic in sequence length.
This is particularly interesting in the case of the Thue-Morse sequence. Despite
the fact that the Thue-Morse sequence grows by taking the complement, it contains
enough repeats to allow a logarithmic distance. Note also that the Thue-Morse
sequence is used to generate ternary square-free sequences.

In the next lemma, we give better bounds than those that can be obtained from
Lemma 3.12 or (3.6) for Thue-Morse and Fibonacci sequences.

Lemma 3.13. Let tr and ur denote the rth Thue-Morse and Fibonacci words,
respectively. For r > 2, we have

f (tr) 6 2r,

f (ur) 6 r .
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Proof. We first prove the upper bound for t r . For r > 3, we have

f (t r) = f
(
t r−1 t r−1

)
= f

(
t r−2 t r−2 t r−2 t r−2

)
6 1 + f

(
t r−2 t r−2 t r−2

)
= 1 + f

(
t r−3 t r−3 t r−3 t r−3 t r−3 t r−3

)
6 3 + f

(
t r−3 t r−3 t r−3 t r−3

)
6 4 + f

(
t r−3 t r−3

)
= 4 + f (t r−2).

If r > 3 is even, then f (t r) 6 4 r−2
2 + f (t 2) = 2(r − 2) + 1 = 2r − 3; and if r > 3

is odd, then f (t r) 6 4 r−1
2 + f (t 1) = 2(r − 1). This completes the proof of the first

claim.

We now turn to f (ur). The rth Fibonacci word can be obtained via the following
recursion: ur = ur−1ur−2 for r > 2 and u0 = 0, u1 = 01. If r > 5, then

ur = ur−1ur−2

= ur−2ur−3ur−3ur−4

= ur−2ur−3ur−4ur−5ur−4

= u2
r−2ur−5ur−4.

Hence, f (ur) 6 1+ f (ur−2ur−5ur−4). Noting that ur−2ur−5ur−4 = ur−3ur−4ur−5ur−4 =

u2
r−3ur−4, we write

f (ur) 6 1 + f (ur−2ur−5ur−4)

= 1 + f
(
u2

r−3ur−4

)
6 2 + f (ur−3ur−4)

= 2 + f (ur−2).

Now, if r > 5 is even, then f (ur) 6 (r − 4) + f (u4) 6 r − 2 since f (u4) =

f (01001010) 6 2; and if r > 5 is odd, then f (ur) 6 (r − 3) + f (u3) 6 r − 1 as
f (u3) = f (01001) 6 2.

3.4 Approximate-duplication distance
Recall that fβ(n) is the least k such that every sequence of length n can be converted
to a square-free sequence in k approxmiate deduplication steps, with at most a β
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fraction of mismatches in each step. In this section, we provide bounds on fβ(n) for
β < 1/2 and β > 1/2. We first however present some useful definitions.

For 0 6 β < 1, a β-repeat of length h in a binary sequence consists of two
consecutive blocks in the sequence, each of length h, such that the Hamming
distance between them is at most βh. If uvv′w is a binary sequence, and vv′ is a
β-repeat, then a β-deduplication produces uvw or uv′w . Note that in this case the
set of roots of s is not necessarily unique, but the length of any root is at most 3,
even if β = 0.

The next theorem establishes a sharp phase transition in the behavior of fβ(n) at
β = 1/2. Its proof relies on Theorem 3.14, which guarantees the existence of
β-repeats under certain conditions. In what follows, for an integer m, we use [m] to
denote {1, . . . ,m}.

Theorem 3.4. If β < 1/2, then there exists a constant c = c(β) > 0 such that

fβ(n) > cn.

Furthermore, if β > 1/2, for any constant C >
⌈

2β+1
2β−1

⌉2
and sufficiently large n,

fβ(n) 6 C ln n.

Proof. The proof for β < 1/2 is similar to the proof of the lower bound in The-
orem 3.1. In this case however, to make the deduplication process reversible, for
every deduplication we need to record whether it is of the form uvv′w

dd
−−→ uvw or

of the form uv′vw
dd
−−→ uvw , and we must also encode the sequence v′. In the tth

deduplication step, we have |v | = |v′| = ht . Since v′ is in the Hamming sphere of
radius βht around v , there are at most 2htH(β) options for v′ [76, Lemma 4.7]. Thus

6n
Fβ∑
f=1

(
n + f

f

) (
2n + f

f

) (
2n + f + 2

f

)
2nH(β)22 f > 2n,

where Fβ = fβ(n) and we have used
∑

t ht 6 n. The desired result then follows since
H(β) < 1.

Suppose β > 1/2. Let K =
⌈

2β+1
2β−1

⌉2
and ε = C − K . Note that ε > 0. By

appropriately choosing C1, we can have fβ(i) 6
(
K + ε

2
)

ln i + C1 for all i < M ,
where M is sufficiently large and in particular M > K . Assuming that this holds also
for all i < n, where n > M , we show that it holds for i = n. From Theorem 3.14,
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every binary sequence s of length n has a β-repeat of length `bn/Kc for some
` ∈

[√
K

]
, implying

fβ(s) 6 fβ
(
n − `

⌊ n
K

⌋ )
+ 1

6
(
K +

ε

2

)
ln

(
n −

⌊ n
K

⌋ )
+ 1 + C1

6
(
K +

ε

2

)
ln n −

(
K + ε

2
)
(n − K)

Kn
+ 1 + C1

6
(
K +

ε

2

)
ln n + C1

6 C ln n,

where the last two steps hold for sufficiently large n. Hence, fβ(n) 6 C ln n.

Theorem 3.14. If β > 1
2 , then for any integer k > 2β+1

2β−1 , any binary sequence of
length n contains a β-repeat of length `bn/k2c for some ` ∈ [k].

Proof. Let k be a positive integer to be determined later and put K = k2. Further-
more, let s′ = s1 · · · sK be a partition of the first KB symbols of s into blocks of
length B =

⌊ n
K

⌋
. We now consider as a code [71] the k + 1 binary vectors

t i = s i · · · s i+K−k−1, (1 6 i 6 k + 1),

each of length m = (K − k)B. By Plotkin’s bound [71, p. 41], the minimum
Hamming distance of this code is at most

(
1
2 +

1
2k

)
m. Thus there exist t i and t j with

i < j with Hamming distance at most
(

1
2 +

1
2k

)
m.

Put h = ( j − i)B and let m′ = hbm/hc be the largest integer which is at most m and
is divisible by h. Let t ′i and t ′j consist of the first m′ bits of t i and t j , respectively.

The Hamming distance between t ′i and t ′j is clearly still at most
(

1
2 +

1
2k

)
m. But(

1
2 +

1
2k

)
m 6

(
1
2 +

1
k−1

)
m′ since(

1
2
+

1
2k

)
m =

(
1
2
+

1
2k

)
m
m′

m′
(∗)

6

(
1
2
+

1
2k

)
k

k − 1
m′ =

(
1
2
+

1
k − 1

)
m′,

where (∗) can be proved as follows. By the definition of m′, we have m − m′ < h.
Additionally, h 6 kB since 1 6 i < j 6 k + 1. So,

m − m′

B
< k,

which since B divides m,m′, implies m−m′
B 6 k−1 and, in turn, m′ > m−(k − 1)B =

(k − 1)2B. Hence m
m′ 6

k(k−1)B
(k−1)2B =

k
k−1 .
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Split t ′i and t ′j into blocks of length h each: t ′i = z1z2 · · · z p, t ′j = z2z3 · · · z pz p+1,
where p = m′/h. The Hamming distance between t ′i and t ′j is the sum of the
Hamming distances between zq and zq+1 as q ranges from 1 to p. Thus, by
averaging, there exists an index r so that the Hamming distance between zr and zr+1

is at most
(

1
2 +

1
k−1

)
h. Putting k > 2β+1

2β−1 so that 1
2 +

1
k−1 6 β ensures that zr zr+1 is

β-repeat of length h = ( j − i)B = ( j − i)bn/Kc.

Let a βh-repeat be a repeat of length h with at most hβh mismatches, i.e., the two
blocks are at Hamming distance at most hβh. In the preceding theorems and their
proofs, in principal, we do not need the maximum number of permitted mismatches
to be a linear function of the length of the repeat, sowe can apply the same techniques
to βh-repeats with nonlinear relationships:

Theorem 3.15. Let βa
h =

1
2 +

1
ha , where 0 < a < 1 is a constant, and let fa(n) be the

smallest number f such that any binary sequence of length n can be deduplicated to
a root in f steps by deduplicating βa

h-repeats. There exist positive constants c2, c3

such that
fa(n) 6 c2n2a/(1+a) + c3. (3.7)

Proof. By making appropriate changes to the proof of Theorem 3.14, one can show
that for k =

⌈
2na/(1+a)

⌉
, every binary sequence of sufficiently long length n contains

a βa
h-repeat of length h = `bn/k2c, for some ` ∈ [k]. To do so, we need to prove(

1
2 +

1
k−1

)
h 6 βa

hh for all h of the form h = `bn/k2c, ` ∈ [k]. This holds since with
the aforementioned value of k,

βa
`bn/k2c

=
1
2
+

1(
`bn/k2c

)a >
1
2
+

1(
k bn/k2c

)a >
1
2
+

1
k − 1

,

for all ` ∈ [k] and sufficiently large n.

We can now prove (3.7) by induction. Clearly, for any M , there exist constants c2, c3

such that fa(i) 6 c2i2a/(1+a) + c3 for all i 6 M . Choose M to be sufficiently large
as to satisfy the requirements of the rest of the proof. Fix n > M and assume that
fa(i) 6 c2i2a/(1+a)+ c3 for all i < n. Since in every sequence of length n, there exists



52

● ●

●

●

●

● ●

● ●

● ●

● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

●

▲ ▲ ▲

▲

▲

▲

▲

▲

▲ ▲

▲ ▲

▲ ▲

▲ ▲

▲ ▲

▲ ▲ ▲

▲ ▲ ▲

▲ ▲ ▲

▲ ▲ ▲

▲ ▲

● f10

▲ f101

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
n

2

4

6

8

10

12

14

f

Figure 3.2: f10(n) and f101(n) for 1 6 n 6 32.

a βa
h-repeat with h = `bn/k2c, for some ` ∈ [k] and k =

⌈
2na/(1+a)

⌉
, it holds that

fa(n) 6 1 + c2

(
n − `bn/k2c

)2a/(1+a)
+ c3

6 1 + c2

(
n −

1
5

n
1−a
1+a

)2a/(1+a)

+ c3

= 1 + c2n2a/(1+a)
(
1 −

1
5

n−
2a

1+a

)2a/(1+a)

+ c3

6 1 + c2n2a/(1+a)
(
1 −

2a
5(1 + a)

n−
2a

1+a

)
+ c3

= c2n2a/(1+a) +

(
1 −

2ac2

5(1 + a)

)
+ c3

6 c2n2a/(1+a) + c3,

where the inequalities hold for sufficiently large n. The third inequality follows from
Bernoulli’s inequality and the the last one follows from the fact that we can choose
c2 to be arbitrarily large.

3.5 Duplication distances for different roots
In this section, we study fσ for σ ∈ {0, 1, 01, 10, 010, 101}. It is easy to see that
f0(n) = f1(n) =

⌈
log2 n

⌉
. Clearly f10 = f01 and f101 = f010. So we limit our

attention to roots σ = 10 and σ = 101. Plots for f10(n) and f101(n), obtained
through computer search, are given in Figure 3.2.

Theorem 3.5. The limits limn
f10(n)

n and limn
f101(n)

n exist and are equal to limn
f (n)
n .

Proof. The general approach in this proof is similar to that of the proof of Fekete’s
lemma in [72]. We prove the theorem for limn

f10(n)
n . The proof for f101(n)

n is similar.
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Let γ = lim infn
f10(n)

n and let k > 3 be such that f10(k) + 5 + 2 log2 k 6 k(γ + ε)

for ε > 0. Let s be a sequence of length n. Starting from the beginning of s ,
partition it into substrings that are the shortest possible while having length at least
k and different symbols at the beginning and the end (so that their root is either
10 or 01). Name these substrings s1, . . . , sm+1, where |s i | > k for i 6 m and
1 6 |sm+1 | 6 k. Let si, j denote the jth element of s i. We deduplicate s to its root
by first deduplicating its substrings s i to their roots.

For each substring s i of the partition, except the last one, we consider the following
cases and deduplicate s i as indicated, where without loss of generality we assume
s i starts with 1 and ends with 0:

• |s i | = k: Deduplicate this substring to 10 in f10(k) steps.

• |s i | > k and si,k−1 = 1: In this case, s i = 1x11,1∗0, where x ∈ {0, 1}k−3, for
clarity a comma is placed after the kth element of s i, and a∗ denotes that the
symbol a appears 0 or more times. We reduce the length of the last run of
1s in s i by |s i | − k in

⌈
log2(|s i | − k + 1)

⌉
deduplication steps to obtain 1x10.

Then deduplicate the result to 10 in f10(k) steps.

• |s i | > k and si,k−1 = 0: In this case, s i = 1x01,1∗0, where x ∈ {0, 1}k−3 and
where a comma is placed after the kth element of s i. We reduce the length of
the last run of 1s in s i by |s i | − k − 1 in

⌈
log2(|s i | − k)

⌉
deduplication steps

to obtain ŝ i = 1x01, 0 and note that ŝ i has length k + 1 and ends with 010.
Now either ŝ i has a run of length at least 2 or not. If it does, we reduce the
length of this run by 1 to obtain a sequence of length k, which we then convert
to 10 in f10(k) deduplication steps. If not, then ŝ i is an alternating sequence
of the form 101010 · · · 10 which can be deduplicated to 10 in no more than⌈
log2

k+1
2

⌉
steps.

The resulting sequences has length at most 2m + k and can be deduplicated to its
root in at most as many steps. We thus have

f (n) 6 m f10(k) +
m∑

i=1

⌈
log2(|s i | − k + 1)

⌉
+ m

⌈
log2

k + 1
2

⌉
+ 3m + k

6 m f10(k) +
m∑

i=1
log2 |s i | + m log2 k + 5m + k

6
n
k

f10(k) +
2n
k

log2 k + 5
n
k
+ k,
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where for the last step we have used the fact that

m∑
i=1

log2 |s i | 6 m log2(n/m) 6
n
k

log2 k

which holds since
∑m

i=1 |s i | 6 n, d
dm m log2

n
m > 0 and m 6 n

k . It follows that

f (n)
n
6

f10(k)
k
+

2 log2 k
k

+
5
k
+

k
n
6 γ + ε +

k
n
.

Taking lim of both sides and noting that ε > 0 is arbitrary proves that limn
f (n)
n 6

lim infn
f10(n)

n . On the other hand, it is clear that lim supn
f10(n)

n 6 limn
f (n)
n . Hence,

limn
f (n)
n = limn

f10(n)
n . Similar arguments hold for f101(n).

3.6 Open Problems
Wenowdescribe some of the open problems related to extremal values of duplication
distance to the root. First, the binary duplication constant, limn

f (n)
n is unknown. It

is also interesting to find bounds tighter than the one given in Theorem 3.1, namely
0.045 6 lim f (n)

n 6 0.4. Furthermore, although the lower bound f (s) > 0.045n

is valid for all but an exponentially small fraction of sequences of length n, we
have not been able to find an explicit family of sequences whose distance is linear
in n. A related problem to identifying sequences with large duplication distance
is improving bounds on f (s) that depend on the structure of s , such as the bound
given in Lemma 3.2, relating f (s) to the number of distinct k-mers of s .

While we showed in our study of approximate duplication that at β = 1/2, fβ(n)

transitions from a linear dependence on n to a logarithmic one, the behavior at β =
1/2 is not known. Furthermore, we can alter the setting by decoupling duplications
and substitutions, i.e., we generate the sequence through exact duplications and
substitutions, possibly with limitations on the number of substitutions. We can
then study the same problems as the ones we have in this chapter as well as new
problems, e.g., the minimum number substitutions required to generate the sequence
via a logarithmic number of duplication steps.
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C h a p t e r 4

UNIQUENESS OF SEED AND ERROR CORRECTION

4.1 Introduction
Data storage in the DNA of living organisms (henceforth live DNA) has a mul-
titude of applications. It can enable in-vivo synthetic-biology methods and al-
gorithms that need “memory,” e.g., to store information about their state or record
changes in the environment. Embedding data in live DNA also allows watermarking
genetically-modified organisms (GMOs) to verify authenticity and to track unau-
thorized use [77–79], as well as labeling organisms in biological studies [80]. DNA
watermarking can also be used to tag infectious agents used in research laboratories
to identify sources of potential malicious use or accidental release [81]. Further-
more, live DNA can serve as a protected medium for storing large amounts of data
in a compact format for long periods of time [80, 82]. An additional advantage
of using DNA as a medium is that data can be disguised as part of the organisms’
original DNA, thus providing a layer of secrecy [83].

While the host organism provides a level of protection to the data-carrying DNA
molecules as well as a method for replication, the integrity of the stored information
suffers frommutations such as tandem duplications, point mutations, insertions, and
deletions. Furthermore, since each DNA replication may introduce new mutations,
the number of such deleterious events increases with the number of generations.
As a result, to ensure decodability of the stored information, the coding/decoding
scheme must be capable of a level of error correction. Motivated by this problem,
we study designing codes that can correct errors arising from tandem duplications.
In addition to improving the reliability of data storage in live DNA, studying such
codes may help to acquire a better understanding of how DNA stores and protects
biological information in nature.

Different approaches to the problem of error-control for data stored in live DNA have
been proposed in the literature. In the work of Arita and Ohashi [77], each group of
five bits of information is followed by one parity bit for error detection. Heider and
Barnekow [78] use the extended [8, 4, 4] binary Hamming code or repetition coding
to protect the data. Yachie et al. [84] propose to enhance reliability by inserting
multiple copies of the data into multiple regions of the genome of the host organism.
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Finally, Haughton and Balado [85] present an encoding method satisfying certain
biological constraints, which is studied in a substitution-mutation model. None of
the aforementioned encodings, with the possible exception of repetition coding, are
designed to combat tandem duplications, which is the focus of this chapter. While
repetition coding can correct duplication errors, it is not an efficient method because
of its high redundancy.

It should also be noted that error control for storage in live DNA is inherently
different from that in DNA that is stored outside of a living organism (see [86] for
an overview), since the latter is not concerned with errors arising during organic
DNA replication.

We also note that tandem duplication, as well as other duplication mechanisms, were
studied in the context of information theory [13, 16, 87]. However, these works
used duplications as a generative process, and attempted to measure its capacity
and diversity. In contrast, we consider duplications as a noise source, and design
error-correcting codes to combat it.

We will first consider the tandem-duplication channel with duplications of a fixed
length k. For example with k = 3, after a tandem duplication, the sequence ACAGT

may become ACAGCAGT , which may then become ACAACAGCAGT where
the copy is underlined. In our analysis, we provide a mapping in which tandem
duplications of length k are equivalent to insertion of k zeros. Using this mapping,
we demonstrate the strong connection between codes that correct duplications of
a fixed length and Run-Length Limited (RLL) systems. We present constructions
for codes that can correct an unbounded number of tandem duplications of a fixed
length and show that our construction is optimal, i.e., of the largest size. A similar
idea was used in [88], where codes were constructed for duplication-error correction
with the number of tandem duplications restricted to a given size r and a duplication
length of 1 only. In this chapter, we generalize their result by constructing optimal
(i.e., maximum size) error-correcting codes for arbitrary duplication length k and
with no restriction on the number of tandem duplications.

We then turn our attention to codes that correct t tandem duplications (as opposed
to an unbounded number of duplications), and show that these codes are closely
related to constant-weight codes in the `1 metric.

We also consider codes for correcting duplications of bounded length. Here, our
focus will be on duplication errors of length at most 2 or 3, for which we will
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present a construction that corrects any number of such errors. In the case of
duplication length at most 2 the codes we present are optimal. Another problem we
also study here is the mismatch between code design and channel characteristics for
tandem-duplication channels with respect to the maximum length of the duplication
errors. In this case, we quantify the uncertainty resulting from this mismatch, i.e.,
the maximum number of possible inputs for one output, for channels in which the
maximum duplication length is bounded by 3.

Finally, when a sequence has been corrupted by a tandem-duplication channel, the
challenge arises in finding the root sequences from which the corrupted sequence
could be generated. A root sequence does not contain any tandem-duplicated
subsequences. For example, for the sequence ACGTGT , with GTGT as a tandem-
duplication error, a root sequence would be ACGT since ACGTGT can be generated
from ACGT via a tandem duplication of length 2 on GT . But there can be sequences
that have more than one root. For example, the sequence ACGCACGCG can be
generated from ACG through a tandem duplication ofCG first, followed by a tandem
duplication of ACGC. Alternatively, it can also be generated from ACGCACG by
doing a tandem duplication of the suffix CG. Hence, ACGCACGCG has two roots.
However, if we restrict the length of duplication to 2 in the previous example, then
ACGCACGCG has only one root i.e., ACGCACG. This means that the number
of roots that a sequence can have depends on the set of duplication lengths that
are allowed, and the size of the alphabet. We provide in Section 4.6 a complete
classification of the parameters required for the unique-root property. This unique-
root property of the fixed length, 2-bounded and 3-bounded tandem-duplication
channels allows us to construct error-correcting codes for them.

The chapter is organized as follows. The preliminaries and notation are described in
Section 4.2. In Sections 4.3 and 4.4 we present the results concerning duplications
of a fixed length k and duplications of length at most k, respectively. Our results
concerning the uncertainty resulting from the mismatch between the code and the
channel are given in Section 4.5. In Section 4.6, we fully characterize tandem-
duplication channels which have a unique root. We conclude with some open
questions in Section 4.7.

4.2 Preliminaries
We letΣ denote some finite alphabet, andΣ∗ denote the set of all finite strings (words)
over Σ. The unique empty word is denoted by ε . The set of finite non-empty words
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is denoted by Σ+ = Σ∗ \ {ε}. Given two words x, y ∈ Σ∗, their concatenation is
denoted by xy, and xt denotes the concatenation of t copies of x, where t is some
positive integer. By convention, x0 = ε . The length of a string x ∈ Σ∗ is denoted
by |x |. We normally index the letters of a word starting with 1, i.e., x = x1x2 . . . xn,
with xi ∈ Σ. With this notation, the t-prefix and t-suffix of x are defined by

Preft(x) = x1x2 . . . xt,

Sufft(x) = xn−t+1xn−t+2 . . . xn.

Given a string x ∈ Σ∗, a tandem duplication of length k is a process by which a
contiguous substring of x of length k is copied next to itself. More precisely, we
define the tandem-duplication rules, Ti,k : Σ∗ → Σ∗, as

Ti,k(x) =


uvvw if x = uvw, |u| = i, |v | = k

x otherwise.

We note that the “otherwise” case describes a degenerate case when |x | < k + i,
and therefore x cannot be decomposed into a prefix u of length i, an inner part v of
length k, and some suffix w. Two specific sets of duplication rules are of interest to
us throughout the chapter.

Tk =
{

Ti,k
�� i > 0

}
,

T6k =
{

Ti,k ′
�� i > 0, 1 6 k′ 6 k

}
.

Given x, y ∈ Σ∗, if there exist i and k such that

y = Ti,k(x),

non-degenerately1,then we say y is a direct descendant of x, and denote it by

x =⇒
k

y.

If a sequence of t non-degenerate tandem duplications of length k is employed to
reach y from x we say y is a t-descendant of x and denote it by

x
t
=⇒

k
y.

1Here, and throughout the chapter, non-degenerately refers to tandem duplications that avoid the
“otherwise” case in the definition of Ti,k .
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More precisely, we require the existence of t non-negative integers i1, i2, . . . , it , with
0 6 i j 6 |x | + k( j − 2), such that

y = Tit,k(Tit−1,k(. . .Ti1,k(x) . . . )).

Finally, if there exists a finite sequence of tandem duplications of length k trans-
forming x into y, we say y is a descendant of x and denote it by

x
∗
=⇒

k
y.

We note that x is its own descendant via an empty sequence of tandem duplications.

Example 4.1. Let Σ = {0, 1, 2, 3} and x = 02123. Since, T1,2(x) = 0212123 and
T0,2(0212123) = 020212123, the following hold

02123=⇒
2

0212123, 02123
2
=⇒

2
020212123,

where in both expressions, the relation could be replaced with
∗
=⇒

2
.

We define the descendant cone of x as

D∗k(x) =
{
y ∈ Σ∗

���� x
∗
=⇒

k
y

}
.

In a similar fashion we define the t-descendant cone Dt
k(x) by replacing

∗
=⇒

k
with

t
=⇒

k
in the definition of D∗k(x).

The set of definitions given thus far was focused on tandem-duplication rules of
substrings of length exactly k, i.e., for rules from Tk . These definitions as well as
others in this section are extended in the natural way for tandem-duplication rules
of length up to k, i.e., T6k . We denote these extensions by replacing the k subscript
with the 6 k subscript. Thus, we also have D∗6k(x) and Dt

6k(x).

Example 4.2. Consider Σ = {0, 1} and x = 01. It is not difficult to see that

D2
1(x) = {0001, 0011, 0111},

D∗1(x) =
{

0i1 j
�� i, j ∈ N

}
,

D∗2(x) =
{
(01)i

�� i ∈ N
}
,

D∗62(x) = {0s1 | s ∈ Σ∗}.
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Using the notation D∗k , we restate the definition of the tandem string-duplication
system given in [13]. Given a finite alphabet Σ, a seed string s ∈ Σ∗, the tandem
string-duplication system is given by

Sk = S(Σ, s,Tk) = D∗k(s),

i.e., it is the set of all the descendants of s under tandem duplication of length k.

The process of tandem duplication can be naturally reversed. Given a string y ∈ Σ∗,
for any positive integer, t > 0, we define the t-ancestor cone as

D−t
k (y) =

{
x ∈ Σ∗

���� x
t
=⇒

k
y

}
,

or in other words, the set of all words for which y is a t-descendant.

Yet anotherway of viewing the t-ancestor cone is by defining the tandem-deduplication
rules, T−1

i,k : Σ∗ → Σ∗, as

T−1
i,k (y) =


uvw if y = uvvw, |u| = i, |v | = k

ε otherwise,

where we recall ε denotes the empty word. This operation takes an adjacently-
repeated substring of length k, and removes one of its copies. Thus, a string x is in
the t-ancestor cone of y (where we assume x, y , ε to avoid trivialities) iff there is
a sequence of t non-degenerate deduplication operations transforming y into x, i.e.,
there exist t non-negative integers i1, i2, . . . , it , such that, non-degenerately,

x = T−1
it,k(T

−1
it−1,k(. . .T

−1
i1,k(y) . . . )).

In a similar fashion we define the ancestor cone of y as

D−∗k (y) =

{
x ∈ Σ∗

���� x
∗
=⇒

k
y

}
.

By flipping the direction of the derivation arrow, we let⇐= denote deduplication.
Thus, if y may be deduplicated to obtain x in a single step, we write

y⇐=
k

x.

For multiple steps we add ∗ in superscript.

Example 4.3. We have

0212123⇐=
2

02123, 020212123
2
⇐=

2
02123,

and
D−∗2 (020212123) = {020212123, 0212123, 0202123, 02123}.
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A word y ∈ Σ∗ is said to be irreducible (with respect to duplications of length k) if
there is nothing to deduplicate in it, i.e., y is its only ancestor, meaning

D−∗k (y) = {y}.

The set of irreducible words is denoted by Irrk . We will find it useful to denote the
set of irreducible words of length n by

Irrk(n) = Irrk ∩Σ
n.

The ancestors of y ∈ Σ∗ that cannot be further deduplicated, are called the roots of
y, and are denoted by

Rk(y) = D−∗k (y) ∩ Irrk .

Note that since the aforementioned definitions extend to tandem-duplication rules
of length up to k, we also have S6k , D−t

6k(y), D−∗6k(y), Irr6k , Irr6k(n), and R6k(y).
In some previous works (e.g., [89]), Sk is called the uniform-bounded-duplication
system, whereas S6k is called the bounded-duplication system.

Example 4.4. For the binary alphabet Σ = {0, 1},

Irr62 = {0, 1, 01, 10, 010, 101},

and for any alphabet that contains {0, 1, 2, 3},

R2(020212123) = {02123},

R64(012101212) = {012, 0121012}.

Inspired by the DNA-storage scenario, we now define error-correcting codes for
tandem string-duplication systems.

Definition 4.5. An (n, M; t)k code C for the k-tandem-duplication channel is a
subset C ⊆ Σn of size |C | = M , such that for each x, y ∈ C, x , y,

Dt
k(x) ∩ Dt

k(y) = ∅.

Here t stands for either a non-negative integer, or ∗. In the former case we say the
code can correct t errors, whereas in the latter case we say the code can correct all
errors. In a similar fashion, we define an (n, M; t)6k by replacing all “k” subscripts
by “6 k”.
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Assume the size of the finite alphabet is |Σ | = q. We then denote the size of the
largest (n, M; t)k code over Σ by Aq(n; t)k . The capacity of the channel is then
defined as

capq(t)k = lim sup
n→∞

1
n

logq Aq(n; t)k .

Analogous definitions are obtained by replacing k with 6 k or by replacing t with
∗.

In certain places we shall point out connections between string-duplication systems
and formal languages. These connections have not gone unnoticed, and appear in
chapters such as [89], which we describe in the appropriate context. A language,
L, is nothing but a set of words, L ⊆ Σ∗, where Σ is some finite alphabet. A type of
languagewe shall encounter frequently is a regular language, which is exactly a set of
words that may be recognized by a finite automaton. Intuitively, such an automaton
is defined by a finite set of states, and a finite set of transitions between states, each
transition labeled by a symbol from Σ. Additionally, a single state is assigned the
role of a starting state, and a subset of the states is assigned the role of accepting
states. A word is recognized, if it is the result of concatenating the symbols of
transitions describing a path from the starting state to some accepting state. Regular
languages may also be described by regular expressions. The interested reader is
referred to [90].

4.3 k-Tandem-Duplication Codes
In this section we consider tandem string-duplication systems where the substring
being duplicated is of a constant length k. Such systems were studied in the context
of formal languages [89] (also called uniform-bounded-duplication systems), and
also in the context of coding and information theory [13].

In [89] it was shown that for any finite alphabet Σ and any word x ∈ Σ∗, under
k-tandem duplication, x has a unique root, i.e.,

|Rk(x)| = 1.

Additionally, finding the unique root may be done efficiently, even by a greedy
algorithm which searches for occurrences of ww as substrings of x, with |w | = k,
removing one copy of w, and repeating the process. This was later extended in [91],
where it was shown that the roots of a regular language also form a regular language.
In what follows we give an alternative elementary proof to the uniqueness of the
root. This proof will enable us to easily construct codes for k-tandem-duplication
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systems, as well as to state bounds on their parameters. The proof technique may
be seen as an extension of the string-derivative technique used in [88], which was
applied only for k = 1 over a binary alphabet.

The system Sk was also studied in [13] from a coding and information-theoretic
perspective. In particular, it was proved in [13] that the capacity of Sk is 0. This
fact will turn out to be extremely beneficial when devising error-correcting codes
for k-tandem-duplication systems.

Throughout this section, without loss of generality, we assume Σ = Zq. We also use
Z∗q to denote the set of all finite strings of Zq (not to be confused with the non-zero
elements of Zq), and Z>k

q to denote the set of all finite strings over Zq of length k or
more.

We shall require the following mapping, φk : Z>k
q → Zk

q × Z
∗
q. The mapping is

defined by,
φk(x) = (Prefk(x), Suff |x |−k(x) − Pref |x |−k(x)),

where subtraction is performed entry-wise over Zq. We easily observe that φk is a
bijection between Zn

q and Zk
q×Z

n−k
q by noting that we can recover x from φk(x) in the

following manner: first set xi = φk(x)i, for all 1 6 i 6 k, and for i = k+1, k+2, . . . ,
set xi = xi−k + φk(x)i, where φk(x)i denotes the ith symbol of φk(x). Thus, φ−1

k is
well defined.

Another mapping we define is one that injects k consecutive zeros into a string.
More precisely, we define ζi,k : Zk

q × Z
∗
q → Z

k
q × Z

∗
q, where

ζi,k(x, y) =

(x, u0kw) if y = uw, |u| = i

(x, y) otherwise.

The following lemma will form the basis for the proofs to follow.

Lemma 4.6. The following diagram commutes:

Z>k
q

Ti,k
−−−−→ Z>k

qyφk yφk
Zk

q × Z
∗
q

ζi,k
−−−−→ Zk

q × Z
∗
q

i.e., for every string x ∈ Z>k
q ,

φk(Ti,k(x)) = ζi,k(φk(x)).
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Before presenting the proof, we provide an example for the diagram of the lemma.

Example 4.7. Assume Σ = Z4. Starting with 02123 and letting i = 1 and k = 2
leads to

02123
T1,2
−−−−→ 0212123yφ2

yφ2

(02, 102)
ζ1,2
−−−−→ (02, 10002)

where the inserted elements are underlined.

Proof. Let x ∈ Z>k
q be some string, x = x1x2 . . . xn. Additionally, let φk(x) = (y, z)

with y = y1 . . . yk , and z = z1 . . . zn−k . We first consider the degenerate case, where
i > n− k + 1. In that case, Ti,k(x) = x, and then by definition ζi,k(y, z) = (y, z) since
z does not have a prefix of length at least n − k + 1. Thus, for i > n − k + 1 we
indeed have

φk(Ti,k(x)) = φk(x) = (y, z) = ζi,k(y, z) = ζi,k(φk(x)).

We are left with the case of 0 6 i 6 n − k. We now write

Ti,k(x) = x1x2 . . . xi+k xi+1xi+2 . . . xn.

Thus, if we denote φk(Ti,k(x)) = (y, z), then

y = x1 . . . xk = Prefk(x),

z = xk+1 − x1, . . . , xk+i − xi, 0k,

xk+i+1 − xi+1, . . . , xn − xn−k .

This is exactly an insertion of 0k after i symbols in the second part of φk(x). It
therefore follows that

φk(Ti,k(x)) = (y, z) = ζi,k(φk(x)),

as claimed.

Recalling that φk is a bijection between Zn
q and Zk

q ×Z
n−k
q , together with Lemma 5.1

gives us the following corollary.

Corollary 4.8. For any x ∈ Z>k
q , and for any sequence of non-negative integers

i1, . . . , it ,
Tit,k(. . .Ti1,k(x) . . . ) = φ

−1
k (ζit,k(. . . ζi1,k(φk(x)) . . . )).
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Example 4.9. Continuing Example 4.7 and using the notation of Corollary 4.8, let
x = 02123, k = t = 2, i1 = 1, and i2 = 0. Then

T0,2(T1,2(02123))

= T0,2(0212123)

= 020212123

= φ−1
k ((02, 0010002))

= φ−1
k (ζ0,2((02, 10002)))

= φ−1
k (ζ0,2(ζ1,2((02, 102))))

= φ−1
k (ζ0,2(ζ1,2(φk(02123)))).

Corollary 4.8 paves the way to working in the φk-transform domain. In this domain,
a tandem-duplication operation of length k translates into an insertion of a block
of k consecutive zeros. Conversely, a tandem-deduplication operation of length k

becomes a removal of a block of k consecutive zeros.

The uniqueness of the root, proved in [89], now comes for free. In the φk-transform
domain, given (x, y) ∈ Zk

q × Z
∗
q, as long as y contains a substring of k consecutive

zeros, we may perform another deduplication. The process stops at the unique
outcome in which the length of every run of zeros in y is reduced modulo k.

This last observation motivates us to define the following operation on a string in
Z∗q. We define µk : Z∗q → Z∗q which reduces the lengths of runs of zeros modulo k

in the following way. Consider a string x ∈ Z∗q, where

x = 0m0w10m1w2 . . .wt0mt,

where mi are non-negative integers, and w1, . . . ,wt ∈ Zq \ {0}, i.e., w1, . . . ,wt are
single non-zero symbols. We then define

µk(x) = 0m0 mod kw10m1 mod kw2 . . .wt0mt mod k .

For example, for z = 0010002,

µ2(z) = 102.

Additionally, we define

σk(x) =
( ⌊m0

k

⌋
,
⌊m1

k

⌋
, . . . ,

⌊mt

k

⌋ )
∈ (N ∪ {0})∗
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and call σ(x) the zero signature of x. For z given above,

σ2(z) = (1, 1, 0).

We note that µk(x) and σ(x) together uniquely determine x.

We also observe some simple properties. First, the Hamming weight of a vector,
denoted wtH , counts the number of non-zero elements in a vector. By definition we
have for every x ∈ Zn

q,
wtH(x) = wtH(µk(x)).

Additionally, the length of the vector σk(x), denoted |σk(x)|, is given by

|σk(x)| = wtH(x) + 1 = wtH(µk(x)) + 1. (4.1)

Note that for z = 0010002 as above, we have

|σ2(z)| = 3 = wtH(z) + 1 = wtH(102) + 1.

Thus, our previous discussion implies the following corollary.

Corollary 4.10. For any string x ∈ Z>k
q ,

Rk(x) =
{
φ−1

k (y, µk(z))
�� φk(x) = (y, z)

}
.

We recall the definition of the (0, k − 1)-RLL system over Zq (for example, see [92,
93]). It is defined as the set of all finite strings over Zq that do not contain k

consecutive zeros. We denote this set as CRLLq(0,k−1). In our notation,

CRLLq(0,k−1) =
{

x ∈ Z∗q
�� σk(x) ∈ 0∗

}
.

By convention, CRLLq(0,k−1) ∩ Z
0
q = {ε}. The following is another immediate

corollary.

Corollary 4.11. For all n > k,

Irrk(n) =
{
φ−1

k (y, z)
�� y ∈ Zk

q, z ∈ CRLLq(0,k−1) ∩ Z
n−k
q

}
.

Proof. The proof is immediate since x is irreducible iff no deduplication action may
be applied to it. This happens iff for φk(x) = (y, z), z does not contain k consecutive
zeros, i.e., z ∈ CRLLq(0,k−1) ∩ Z

n−k
q .
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Given two strings, x, x′ ∈ Z>k
q , we say x and x′ are k-congruent, denoted x ∼k x′,

if Rk(x) = Rk(x′). It is easily seen that ∼k is an equivalence relation.

Corollary 4.12. Let x, x′ ∈ Z∗q be two strings, and denote φk(x) = (y, z) and
φk(x′) = (y′, z′). Then x ∼k x′ iff y = y′ and µk(z) = µk(z′).

Proof. This is immediate when using Corollary 4.10 to express the roots of x and
x′.

Example 4.13. For instance, 02123, 0212323, 0212123, and 020212123 are all
2-congruent, since they have the unique root 02123. In the φ2-transform domain,
for each sequence x in the preceding list, if we let φ2(x) = (y, z), then y = 02 and
µ2(z) = 102.

The following lemma appeared in [89, Proposition 2]. We restate it and give an
alternative proof.

Lemma 4.14. For all x, x′ ∈ Z>k
q , we have

D∗k(x) ∩ D∗k(x
′) , ∅

if and only if x ∼k x′.

Proof. In the first direction, assume x �k x′. By the uniqueness of the root,
let us denote Rk(x) = {u} and Rk(x′) = {u′}, with u , u′. If there exists w ∈

D∗k(x) ∩ D∗k(x
′), then w is a descendant of both u and u′, therefore u, u′ ∈ Rk(w),

which is a contradiction. Hence, no such w exists, i.e., D∗k(x) ∩ D∗k(x
′) = ∅.

In the other direction, assume x ∼k x′. We construct a word w ∈ D∗k(x) ∩ D∗k(x
′).

Denote φk(x) = (y, z) and φk(x′) = (y′, z′). By Corollary 4.12 we have

y = y′,

µk(z) = µk(z′).

Let us then denote

z = 0m0v10m1v2 . . . vt0mt,

z′ = 0m′0v10m′1v2 . . . vt0m′t,

with vi a non-zero symbol, and

mi ≡ m′i (mod k),
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for all i. We now define

z′′ = 0max(m0,m′0)v10max(m1,m′1)v2 . . . vt0max(mt,m′t ).

Since z′′ differs from z and z′ by insertion of blocks of k consecutive zeros, it follows
that

w = φ−1
k (y, z

′′) ∈ D∗k(x) ∩ D∗k(x
′),

which completes the proof.

We now turn to constructing error-correcting codes. The first construction is for a
code capable of correcting any number of tandem duplications of length k.

Construction 4.15. Fix Σ = Zq and k > 1. For any n > k we construct

C =
bn/kc−1⋃

i=0

{
φ−1

k (y, z0ki)
�� φ−1

k (y, z) ∈ Irrk(n − ik)
}
.

Theorem 4.16. The code C from Construction 4.15 is an (n, M; ∗)k code, with

M =
bn/kc−1∑

i=0
qk MRLLq(0,k−1)(n − (i + 1)k).

Here MRLLq(0,k−1)(m) denotes the number of strings of length m which are (0, k −1)-
RLL over Zq, i.e.,

MRLLq(0,k−1)(m) =
��CRLLq(0,k−1) ∩ Z

m
q

��.
Proof. The size of the code is immediate, by Corollary 4.11. Additionally, the
roots of distinct codewords are distinct as well, since we constructed the code from
irreducible words with blocks of k consecutive zeros appended to their end. Thus,
by Lemma 4.14, the descendant cones of distinct codewords are disjoint.

We can say more about the size of the code we constructed.

Theorem 4.17. The codeC from Construction 4.15 is optimal, i.e., it has the largest
cardinality of any (n; ∗)k code.

Proof. By Lemma 4.14, any two distinct codewords of an (n; ∗)k code must belong
to different equivalence classes of ∼k . The code C of Construction 4.15 contains
exactly one codeword from each equivalence class of ∼k , and thus, it is optimal.
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The codeC from Construction 4.15 also allows a simple decoding procedure, whose
correctness follows from Corollary 4.10. Assume a word x′ ∈ Z>k

q is received, and
let φk(x′) = (y′, z′). The decoded word is simply

x̃ = φ−1
k (y

′, µk(z′)0n−k−|µk (z′)|), (4.2)

where n is the length of the code C. In other words, the decoding procedure
recovers the unique root of the received x′, and in the φk-transform domain, pads it
with enough zeros.

Example 4.18. Let n = 4, q = 2, and k = 1. By inspection, the code C of
Construction 4.15 can be shown to equal

C =
{
0000, 0111, 0100, 0101, 1111, 1000, 1011, 1010

}
,

where in each codeword the k-irreducible part is underlined. As an example of
decoding, both 01100 and 01000 decode to 0100. Specifically for the former case,
x′ = 01100, we have φk(x′) = (y′, z′) = (0, 1010). So µk(z′) = 11 and

x̃ = φ−1
k (0, 110) = 0100.

Encoding may be done using any of the many various ways for encoding RLL-
constrained systems. The reader is referred to [92, 93] for further reading. After
encoding the RLL-constrained string z, a string y ∈ Zk

q is added, and φ−1
k employed,

to obtain a codeword.

Finally, the asymptotic rate of the code family may also be obtained, thus, giving
the capacity of the channel.

Corollary 4.19. For all q > 2 and k > 1,

capq(∗)k = cap(RLLq(0, k − 1)),

where cap(RLLq(0, k − 1)) is the capacity of the q-ary (0, k − 1)-RLL constrained
system.

Proof. We use Cn to denote the code from Construction 4.15, where the subscript n

is used to denote the length of the code. It is easy to see that for n > k,

qk MRLLq(0,k−1)(n − k) 6 |Cn | 6 nqk MRLLq(0,k−1)(n − k).
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Then by standard techniques [92] for constrained coding,

lim
n→∞

1
n

log2 |Cn | = cap(RLLq(0, k − 1)).

It is well known (see e.g. [92]) that

cap(RLLq(0, k − 1)) = log2 λ(Aq(k − 1)),

where λ(Aq(k − 1)) is the largest eigenvalue of the k × k matrix Aq(k − 1) defined as

Aq(k − 1) =

©«

q − 1 1
q − 1 1
...

. . .

q − 1 1
q − 1

ª®®®®®®®®¬
. (4.3)

As a side note, we comment that an asymptotic (in k) expression for the capacity
may be given by

cap(RLLq(0, k)) = log2 q −
(q − 1) log2 e

qk+2 (1 + o(1)). (4.4)

This expression agrees with the expression for the binary case q = 2 mentioned
in [94] without proof or reference. For completeness, we give a short proof of this
claim below:

Proof. We need to estimate the largest eigenvalue of Aq(k) from (4.3), i.e., to
estimate the largest root λ of its characteristic polynomial

χAq(k)(x) =
xk+2 − qxk+1 + q − 1

x − 1
.

Since this largest root is strictly greater than 1, we can alternatively find the largest
root of the polynomial

f (x) = xk+2 − qxk+1 + q − 1.

We shall require the following simple bounds. Taking the first term in the Taylor
expansion of ex , and the error term, we have for all x > 0,

ex = 1 + xex′,
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for some x′ ∈ [0, x]. Since x > 0 and ex is increasing, we have

ex = 1 + xex′ 6 1 + xex,

or alternatively,
1 − ex > −xex . (4.5)

Similarly, taking the first two terms of the Taylor expansion, for all x > 0, we get
the well-known bound

ex > 1 + x. (4.6)

We return to the main proof. In the first direction, let us first examine what happens
when we set

x = qe
−

q−1
qk+2 .

Then

f (x) = qk+2e
−

q−1
qk+2 (k+2)

− qk+2e
−

q−1
qk+2 (k+1)

+ q − 1

= qk+2e
−

q−1
qk+2 (k+2)

(
1 − e

q−1
qk+2

)
+ q − 1

(a)
> (q − 1)

(
1 − e

−
q−1
qk+2 (k+1)

)
> 0,

where (a) follows by an application of (4.5).

In the other direction, we examine the value of f (x) when we set

x = qe
−

q−1
qk+2 α,

where α is a constant depending on q and k. To specify α we recall W(z), z > −1
e ,

denotes the Lambert W-function, defined by

W(z)eW(z) = z.

We define

α =
W

(
−

q−1
qk+2 (k + 2)

)
−

q−1
qk+2 (k + 2)

= e
−W

(
−

q−1
qk+2 (k+2)

)
.

Except for k = 1 and q = 2, for all other values of the parameters we have

−
q − 1
qk+2 (k + 2) > −

1
e
,
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rendering the use of the W function valid. We also note that for these parameters
we have α > 1.

Let us calculate f (x),

f (x) = qk+2e
−

q−1
qk+2 (k+2)α

− qk+2e
−

q−1
qk+2 (k+1)α

+ q − 1

= qk+2e
−

q−1
qk+2 (k+2)α

(
1 − e

q−1
qk+2 α

)
+ q − 1

(a)
< (q − 1)

(
1 − αe

−
q−1
qk+2 (k+2)α

)
(b)
= (q − 1)(1 − 1) = 0,

where (a) follows by an application of (4.6), and (b) follows by substituting the value
of α.

In summary, f (x) is easily seen to be decreasing in the range [1, (k + 1)q/(k + 2)],
and increasing in the range [(k + 1)q/(k + 2),∞), and therefore, its unique largest
root λ is in the range

qe
−

q−1
qk+2 α 6 λ 6 qe

−
q−1
qk+2 .

It is easy to verify that α = 1+ o(1), where o(1) denotes a function decaying to 0 as
k →∞. Hence,

λ = qe
−

q−1
qk+2 (1+o(1))

,

and therefore

cap(RLLq(0, k)) = log2 λ

= log2 q −
(q − 1) log2 e

qk+2 (1 + o(1)).

Having considered (n, M; ∗)k codes, we now turn to study (n, M; t)k codes for
t ∈ N ∪ {0}. We note that Zn

q is an optimal (n, qn; 0)k code. Additionally, any
(n, M; ∗)k code is trivially also an (n, M; t)k code, though not necessarily optimal.

We know by Lemma 4.14 that the descendant cones of two words overlap if and
only if they are k-congruent. Thus, the strategy for constructing (n, M; ∗)k codes
was to pick single representatives of the equivalence classes of ∼k as codewords.
However, the overlap that is guaranteed by Lemma 4.14 may require a large number
of duplication operations. If we are interested in a small enough value of t, then
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an (n, M; t)k code may contain several codewords from the same equivalence class.
This observation will be formalized in the following, by introducing a metric on
k-congruent words, and applying this metric to pick k-congruent codewords.

Fix a length n > 1, and let x, x′ ∈ Zn
q, x ∼k x′, be two k-congruent words of length

n. We define the distance between x and x′ as

dk(x, x′) = min
{
t > 0

�� Dt
k(x) ∩ Dt

k(x
′) , ∅

}
.

Since x and x′ are k-congruent, Lemma 4.14 ensures that dk is well defined.

Lemma 4.20. Let x, x′ ∈ Zn
q, x ∼k x′, be two k-congruent strings. Denote φk(x) =

(y, z) and φk(x′) = (y, z′). Additionally, let

σk(z) = (s0, s1, . . . , sr),

σk(z′) = (s′0, s
′
1, . . . , s

′
r).

Then

dk(x, x′) =
1
2

r∑
i=0

��si − s′i
�� = 1

2
d`1(σk(z), σk(z′)),

where d`1 stands for the `1-distance function.

Proof. Let x and x′ be two strings as required. By Corollary 4.12 we indeed have
y = y′, and µk(z) = µk(z′). In particular, the length of the vectors of the zero
signatures of z and z′ are the same,

|σk(z)| = |σk(z′)| = r + 1.

We now observe that the action of a k-tandem duplication on x corresponds to the
addition of a standard unit vector ei (an all-zero vector except for the ith coordinate
which equals 1) to σk(z).

Let x̃ denote a vector that is a descendant both of x and x′, and that requires the least
number of k-tandem duplications to reach from x and x′. If we denote φk(x̃) = (ỹ, z̃),
then we have

ỹ = y = y′,

µk(z̃) = µk(z) = µk(z′),

σk(z̃) = (max(s0, s′0), . . . ,max(sr, s′r)).
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Thus,

dk(x, x′) =
r∑

i=0
(max(si, s′i) − si)

=

r∑
i=0
(max(si, s′i) − s′i)

=
1
2

r∑
i=0

��si − s′i
�� = 1

2
d`1(σk(z), σk(z′)).

From Lemma 4.20 we also deduce that dk is a metric over any set of k-congruent
words of length n.

The following theorem shows that a code is (n; t)k if and only if the zero signatures of
the z-part of k-congruent codewords in the φk-transform domain, form a constant-
weight code in the `1-metric with distance at least 2(t + 1). We recall that the
`1-metric weight of a vector s = s1s2 . . . sn ∈ Z

n is defined as the `1-distance to the
zero vector, i.e.,

wt`1(s) =
n∑

i=1
|si |.

Theorem 4.21. Let C ⊆ Zn
q, n > k, be a subset of size M . Then C is an (n, M; t)k

code if and only if for each y ∈ Zk
q, z ∈ Zn−k

q , the following sets

C(y, z) =
{
σk(z′)

��� z′ ∈ Zn−k
q , µk(z) = µk(z′),

φ−1
k (y, z

′) ∈ C
}

are constant-weight (n(y, z), M(y, z), 2(t + 1)) codes in the `1-metric, with constant
weight

wt`1(σ(z)) =
n − k − |µk(z)|

k
,

and length
n(y, z) = wtH(z) + 1 = wtH(µk(z)) + 1,

where wtH denotes the Hamming weight.

Proof. In the first direction, letC be an (n, M; t)k code. Fix y and z, and consider the
set C(y, z). Assume to the contrary that there exist distinct σk(z′), σk(z′′) ∈ C(y, z),
z′, z′′ ∈ Zn−k

q , such that d`1(σk(z′), σk(z′′)) 6 2t (note that d`1 between two vectors
of the same weight is even).
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The length of the code, n(y, z), is obvious given (4.1). We note that σk(z′) , σk(z′′)

implies z′ , z′′. By definition, we have

µk(z) = µk(z′) = µk(z′′).

Thus,

wt`1(σ(z)) = wt`1(σ(z
′)) = wt`1(σ(z

′′))

=
n − k − |µk(z)|

k
,

where |µk(z)| denotes the length of the vector µk(z). Additionally, the two codewords

c′ = φ−1
k (y, z

′) ∈ C and c′′ = φ−1
k (y, z

′′) ∈ C

are k-congruent and distinct. By Lemma 4.20,

dk(c′, c′′) =
1
2

d`1(σk(z′), σk(z′′)) 6 t. (4.7)

However, that contradicts the code parameters since we have (4.7) imply Dt
k(c
′) ∩

Dt
k(c
′′) , ∅, whereas in an (n, M; t)k code, the t-descendant cones of distinct

codewords have an empty intersection.

In the other direction, assume that for every choice of y and z, the corresponding
C(y, z) is a constant-weight code with minimum `1-distance of 2(t + 1). Assume
to the contrary C is not an (n, M; t)k code. Therefore, there exist two distinct
codewords, c′, c′′ ∈ C such that dk(c′, c′′) 6 t.

By Lemma 4.14 we conclude that c′ and c′′ are k-congruent. Thus, there exist
y ∈ Zk

q and z ∈ Zn−k
q (z is not necessarily unique) such that,

φk(c′) = (y, z′)

φk(c′′) = (y, z′′)

µk(z) = µk(z′) = µk(z′′).

We can now use Lemma 4.20 and obtain

d`1(σk(z′), σk(z′′)) = 2dk(c′, c′′) 6 2t,

which contradicts the minimal distance of C(y, z).

With the insight given by Theorem 4.21 we now give a construction for (n, M; t)k
codes.
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Construction 4.22. Fix Σ = Zq, k > 1, n > k, and t > 0. Furthermore, for all

1 6 m 6 n − k + 1,

0 6 w 6

⌊
n − k

k

⌋
,

fix `1-metric codes over Zq, denoted C1(m,w), which are of length m, constant
`1-weight w, and minimum `1-distance 2(t + 1). We construct

C =
{
φ−1

k (y, z)
���� y ∈ Zk

q, z ∈ Z
n−k
q ,

σk(z) ∈ C1

(
wtH(µk(z)) + 1,

n − k − |µk(z)|
k

)}
.

Corollary 4.23. The code C from Construction 4.22 is an (n, M; t)k code.

Proof. Let c, c′ ∈ C be two k-congruent codewords, i.e., φk(c) = (y, z), φk(c′) =

(y, z′), and µk(z) = µk(z′). It follows, by construction, that σk(z) and σk(z′)

belong to the same `1-metric code with minimum `1-distance at least 2(t + 1). By
Theorem 4.21, C is an (n, M; t)k code.

Due to Theorem 4.21, a choice of optimal `1-metric codes in Construction 4.22 will
result in optimal (n, M; t)k codes. We are unfortunately unaware of explicit con-
struction for such codes. However, we may deduce such a construction from codes
for the similar Lee metric (e.g., [95]), while applying a standard averaging argument
for inferring the existence of a constant-weight code. We leave the construction of
such codes for a future work.

4.4 6 k-Tandem-Duplication Codes
In this section, we consider error-correcting codes that correct duplications of length
at most k, which correspond to S6k . In particular, we present constructions for codes
that can correct any number of duplications of length 6 3 as well as a lower bound
on the capacity of the corresponding channel. In the case of duplications of length
6 2 we give optimal codes, and obtain the exact capacity of the channel.

It is worth noting that the systems S6k were studied in the context of formal lan-
guages [89] and also in the context of coding and information theory [16]. In [89], it
was shown that S6k , with k > 4, is not a regular language for alphabet size |Σ | > 3.
However, it was proved in [16] that S63 is indeed a regular language irrespective of
the seed string and the alphabet size.
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In this chapter, we will show that strings that can be generated by bounded tandem
string-duplication systems with maximum duplication length 3 have a unique du-
plication root, a fact that will be useful for our code construction. Theorem 4.26
formalizes this statement. To simplify our description, we use the term square to
denote a sequence of the form α2 = αα, where α ∈ Σ∗. We begin with the following
definition.

Definition 4.24. Let two squares y1 = αα ∈ Σ+ and y2 = ββ ∈ Σ+ appear as
substrings of some string u ∈ Σ∗, i.e.,

u = x1y1z1 = x2y2z2,

with |x1 | = i, |x2 | = j. We say y1 and y2 are overlapping squares in u if the following
conditions both hold:

1. i 6 j 6 i + 2|α | − 1 or j 6 i 6 j + 2|β| − 1.

2. If i = j, then α , β.

Example 4.25. Consider the sequence u,

u = 0 1

αα︷                                  ︸︸                                  ︷
2 3 2 3︸︷︷︸
β1β1

4 5 2 4 5 2︸     ︷︷     ︸
β2β2

3 2 3 4 5 2 4 5 6 2 4 5 6︸          ︷︷          ︸
β3β3

7,

where αα and βiβi for each i ∈ {1, 2, 3} are overlapping squares.

The following theorem shows that every word has a unique root under tandem
deduplication of length up to 3.

Theorem 4.26. For any z ∈ Σ∗ we have
��R63(z)

�� = 1.

Proof. Fix some z ∈ Σ∗, and assume z has exactly m distinct roots, R63(z) =

{y1, y2, . . . , ym}. Let us assume to the contrary that m > 2.

Let us follow a deduplication sequence starting at x0 = z. At each step, we
deduplicate xi⇐=

63
xi+1, and we must have

��R63(xi)
�� > ��R63(xi+1)

��. At each step,
out of the possible immediate ancestors of xi, we choose xi+1 to be one with��R63(xi+1)

�� > 2 if possible. Since the end-point of a deduplication process is an
irreducible sequence, we must reach a sequence x in the deduplication process with
the following properties:
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1. z
∗
⇐=
63

x

2.
��R63(x)

�� > 2

3. For each x′ ∈ Σ∗ such that x⇐=
63

x′,
��R63(x′)

�� = 1.

4. There exist v,w ∈ Σ∗ such that x⇐=
63

v and x⇐=
63

wwith
��R63(v)

�� = ��R63(w)
�� =

1.

5. R63(v) = {yi} ,
{
y j

}
= R63(w).

Intuitively, in the deduplication process starting from z, we reach a sequence x with
more than one root, but any following single deduplication moves us into a single
descendant cone of one of the roots of z. We note that all ancestors of v must have
a single root yi, and all ancestors of w must have a single root y j .

Thus, x must contain a square uvuv whose deduplication results in v, and a square
uwuw whose deduplication results in w. We contend that the squares uvuv and uwuw
overlap. Otherwise, if uvuv and uwuw do not overlap in x, we may deduplicate them
in any order to obtain the same result. Hence, there exists t ∈ Σ∗ such that v⇐=

63
t

and w⇐=
63

t. But then, since t is an ancestor both of v and w,

{yi} = R63(v) = R63(t) = R63(w) =
{
y j

}
,

a contradiction.

We now know that uvuv and uwuw must overlap. We also note |uv |, |uw | 6 3. Let
a, b, c ∈ Σ be three distinct symbols. If the alphabet is smaller, then some of the
cases below may be ignored, and the proof remains the same. We use brute force to
enumerate all the overlapping squares, and the results are given in Table 4.1. In the
table, each string describes the shortest subsequence that contains the overlapping
squares. The enumeration is complete, up to a permutation of the alphabet symbols.
For example, if uv = abc and uw = cbc, the corresponding string appears in the
table as abcabcbccbc since we have,

uv︷︸︸︷
a b c

uv︷︸︸︷
a b ︸︷︷︸

uw

c b c ︸︷︷︸
uw

c b c
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|uv | |uw | Overlapping squares uv and uw

1 1 aaa
1 2 aaaa, aaaaa, aabab, ababb
1 3 aaaaaa, aaaaaaa, aaabaab, aabaab, aabaaba, aabaabb, aabbabb, aabcabc, abaaba, abaabaa, abbabb, abbabbb, abcabcc
2 2 aaaaa, aaaaaa, aaaaaaa, aaaabab, ababa, ababab, abababa, ababbbb, ababcbc

aaaaaa, aaaaaaa, aaaaaaaa, aaaaaaaaa, aaaaaabab, aaaaabaab, aaaabaab, aaaabaaba, aaaabbabb, aaaabcabc
aabaabab, aabaababa, aabaabbbb, aabaabcbc, abaabaaaa, abaabab, abaababa, abaababab, abaabacac, ababaaba

2 3 ababaabaa, abababbab, ababacbac, ababbab, ababbabb, ababbabba, ababbbbbb, ababbcbbc, ababcabc, ababcabca
ababcbbcb, ababccbcc, ababcdbcd, abbabbaba, abbabbbb, abbabbbbb, abbabbcbc, abcabcaca, abcabcbc, abcabcbcb

abcabcccc, abcabcdcd
aaaaaaa, aaaaaaaa, aaaaaaaaa, aaaaaaaaaa, aaaaaaaaaaa, aaaaaaabaab, aaaaaabaab, aaaaaabaaba, aaaaaabbabb, aaaaaabcabc
aabaaba, aabaabaa, aabaabaab, aabaabaaba, aabaabaabaa, aabaababbab, aabaabacbac, aabaabbabb, aabaabbabba, aabaabbbbbb
aabaabbcbbc, aabaabcabc, aabaabcabca, aabaabcbbcb, aabaabccbcc, aabaabcdbcd, abaabaa, abaabaaaaaa, abaabaab, abaabaaba

abaabaabaa, abaabaabaab, abaabaacaac, abaababaaba, abaababbab, abaababbabb, abaababcabc, abaabacaaca, abaabacbac, abaabacbacb
3 3 abaabaccacc, abaabacdacd, abbabba, abbabbaabaa, abbabbab, abbabbabb, abbabbabba, abbabbabbab, abbabbacbac, abbabbbabba

abbabbbbbb, abbabbbbbbb, abbabbbcbbc, abbabbcabca, abbabbcbbc, abbabbcbbcb, abbabbccbcc, abbabbcdbcd, abcabca, abcabcaacaa
abcabcab, abcabcabc, abcabcabca, abcabcabcab, abcabcaccac, abcabcadcad, abcabcbacba, abcabcbbcb, abcabcbbcbb, abcabcbccbc

abcabcbdcbd, abcabccacca, abcabccbcc, abcabccbccb, abcabcccccc, abcabccdccd, abcabcdacda, abcabcdbcd, abcabcdbcdb, abcabcdccdc
abcabcddcdd, abcabcdecde

Table 4.1: A list of all overlapping squares of length at most 3 (up to a permutation
of the alphabet symbols)

It is tedious, yet easy, to check that each of the cases in Table 4.1 has a unique root
if deduplication of maximum length 3 is allowed2. In the above example, indeed,
the only possible root is abc,

abcabcbccbc⇐=
63

abcbccbc
∗
⇐=
63

abc,

abcabcbccbc⇐=
63

abcabcbc
∗
⇐=
63

abc.

Let x = αβγ ∈ Σ∗, where β covers exactly the overlapping squares, and is one of
the above listed cases. Then, by deduplication of uvuv from β in x, we get v, and by
deduplication of uwuw from β in x, we get w. However, since β has a unique root,
we may deduplicate v and w to the same word t = αβ′γ ∈ Σ∗, where R(β) = {β′},
i.e., β′ is the unique root of β. Thus, t is an ancestor of both v and w. Again,

{yi} = R63(v) = R63(t) = R63(w) =
{
y j

}
,

which is a contradiction.

Corollary 4.27. For any z ∈ Σ∗ we have
��R6k(z)

�� = 1 for k = 1, 2.

In a similar fashion to the previous section, we define the following relation. We
say x, x′ ∈ Σ∗ are 6 3-congruent, denoted x ∼63 x′, if R63(x) = R63(x′). Clearly
∼63 is an equivalence relation. Having shown any sequence has a unique root when
duplicating up to length 3, we obtain the following corollary.

Corollary 4.28. For any two words x, x′ ∈ Σ∗, if

D∗63(x) ∩ D∗63(x
′) , ∅

then x ∼63 x′.
2We used a computer to verify the list of overlapping squares and the fact that they each have a

unique root.
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We note that unlike Lemma 4.14, we do not have x ∼63 x′ necessarily imply that
their descendant cones intersect. Here is a simple example illustrating this case. Fix
q = 3, and let x = 012012 and x′ = 001122. We note that x ∼63 x′, since

R63(x) = R63(x′) = {012}.

However, D∗63(x) ∩ D∗63(x
′) = ∅ since all the descendants of x have a 0 to the right

of a 2, whereas none of the descendants of x′ do.

We are missing a simple operator which is required to define an error-correcting
code. For any sequence x ∈ Σ+, we define its k-suffix-extension to be

ξk(x) = x(Suff1(x))k,

i.e., the sequence x with its last symbol repeated an extra k times.

Construction 4.29. Let Σ be some finite alphabet. We construct the code

C =
n⋃

i=1

{
ξn−i(x) | x ∈ Irr63(i)

}
.

Theorem 4.30. The code C from Construction 4.29 is an (n, M; ∗)63 code, where

M =
n∑

i=1

��Irr63(i)
��.

Proof. The parameters of the code are obvious. Since the last letter duplication
induced by the suffix extension may be deduplicated, we clearly have exactly one
codeword from each equivalence class of ∼63. By Corollary 4.28, the descendant
cones of the codewords do not intersect and the code can indeed correct all errors.

Example 4.31. Let n = 4 and Σ = {0, 1, 2}. The codeC63 obtained by Construction
4.29 is given by

C63 =
⋃

{a,b,c}=Σ

{
aaaa, abbb, abaa, abcc, abac, abca, abcb

}
,

where in each codeword, the irreducible part is underlined, and the union is taken
over all possible assignments of a, b, and c, to distinct symbols of Σ. Thus��C63

�� = 7 · 3! = 42.
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For the remainder of the section we denote by Irrq;63 the set of irreducible words
with respect to⇐=

63
over Zq, in order to make explicit the dependence on the size of

the alphabet. We also assume q > 3, since q = 2 is a trivial case with

Irr2;63 = {0, 1, 01, 10, 010, 101}. (4.8)

We observe that Irrq;63 is a regular language. Indeed, it is defined by a finite set of
subsequences we would like to avoid. This set is exactly

Fq =
{

uu ∈ Z∗q
�� 1 6 |u| 6 3

}
.

We can easily construct a finite directed graph with labeled edges such that paths
in the graph generate exactly Irrq;63. This graph is obtained by taking the De
Bruijn graph Gq = (Vq, Eq) of order 5 over Zq, i.e., Vq = Z

5
q, and edges of the

form (a1, a2, a3, a4, a5) → (a2, a3, a4, a5, a6), for all ai ∈ Zq (for more on De Bruijn
graphs the reader is referred to [96, Chapter 8]). Thus, each edge is labeled with a
word w = (a1, a2, a3, a4, a5, a6) ∈ Z

6
q. We then remove all edges labeled by words

αβγ ∈ Z6
q such that β ∈ Fq. We call the resulting graph G′q. It is easy to verify that

each path in G′q generates a sequence of sliding windows of length 6. Reducing each
window to its first letter we get exactly Irrq;63. An example showing G′3 is given in
Figure 4.1. Finally, using known techniques [92], we can calculate cap(Irrq;63).

Corollary 4.32. For all q > 3,

capq(∗)63 > cap(Irrq;63).

Proof. Let Mn denote the size of the length n code over Zq from Construction 4.29.
By definition, Aq(n; ∗)63 > Mn. We note that trivially

Mn =

n∑
i=1

��Irrq;63(i)
�� > ��Irrq;63(n)

��.
Plugging this into the definition of the capacity gives us the desired claim.

Example 4.33. Using the constrained system presented in Figure 4.1 that generates
Irr3;63, we can calculate

cap3(∗)63 > 0.347934.

Stronger statements may be given when the duplication length is upper bounded by
2 instead of 3.
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Figure 4.1: The graph G′3 producing the set of ternary irreducible words Irr3;63.
Vertices without edges were removed as well.

Lemma 4.34. For all x, x′ ∈ Σ∗, we have

D∗62(x) ∩ D∗62(x
′) , ∅

if and only if x ∼62 x′.

Proof. In the first direction, assume x �62 x′. By the uniqueness of the root from
Corollary 4.27, let us denote R62(x) = {u} and R62(x′) = {u′}, with u , u′.

If there exists w ∈ D∗62(x) ∩ D∗62(x
′), then w is a descendant of both u and u′,

therefore u and u′ ∈ R62(w), which is a contradiction. Hence, no such w exists, i.e.,
D∗62(x) ∩ D∗62(x

′) = ∅.

In the other direction, assume x ∼62 x′. We construct a wordw ∈ D∗62(x)∩D∗62(x
′).

Let R62(x) = R62(x′) = {v}, and denote v = a1a2 . . . am, where ai ∈ Σ. Consider
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the tandem-duplication string system S62 = (Σ, v,T62). Using [16], the regular
expression for the language generated by S62 is given by

a+1 a+2 (a
+
1 a+2 )

∗a+3 (a
+
2 a+3 )

∗
. . . a+m(a

+
m−1a+m)

∗
.

Since x, x′ ∈ S, we have

x =
α1∏
i=1
(ap1i

1 aq1i
2 ) aq21

3

α2∏
i=2
(ap2i

2 aq2i
3 )

. . . aq(m−1)1
m

αm−1∏
i=2
(ap(m−1)i

m−1 aq(m−1)i
m ),

and

x′ =
β1∏

i=1
(ae1i

1 a f1i
2 ) a f21

3

β2∏
i=2
(ae2i

2 a f2i
3 )

. . . a f(m−1)1
m

βm−1∏
i=2
(ae(m−1)i

m−1 a f(m−1)i
m ),

where
∏

represents concatenation and p ji, q ji, e ji, f ji, α j, β j > 1. Now, it is easy to
observe that we can obtain

w =

γ1∏
i=1
(ag1

1 ah1
2 ) ah2

3

γ2∏
i=2
(ag2

2 ah2
3 ) . . . a

hm−1
m

γm−1∏
i=2
(agm−1

m−1 ahm−1
m )

by doing tandem duplication of length up to 2 on x and x′, and choosing γ j =

max
{
α j, β j

}
, g j = maxi

{
p ji, e ji

}
, and h j = maxi

{
q ji, f ji

}
. Note, p ji and q ji are

assumed to be 0 for i > α j and e ji and f ji are assumed to be 0 for i > β j . Thus,
w ∈ D62(x) ∩ D62(x′).

Construction 4.35. Let Σ be some finite alphabet. The constructed code is

C =
n⋃

i=1

{
ξn−i(x) | x ∈ Irr62(i)

}
.

Theorem 4.36. The code C from Construction 4.35 is an optimal (n, M; ∗)62 code,
where

M =
n∑

i=1

��Irr62(i)
��.

Proof. The correctness of the parameters follows the same reasoning as the proof of
Theorem 4.30. By Lemma 4.34, any two distinct codewords of an (n; ∗)62 codemust
belong to different equivalence classes of ∼62. The code C of Construction 4.35
contains exactly one codeword from each equivalence class of ∼62, and thus, it is
optimal.
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Corollary 4.37. For all q > 3,

capq(∗)62 = cap(Irrq;62).

Proof. Let Mn denote the size of the length n code over Zq from Construction 4.35.
By definition, Aq(n; ∗)62 > Mn. We note that trivially

Mn =

n∑
i=1

��Irrq;62(i)
�� > ��Irrq;62(n)

��.
Additionally,

��Irrq;62
��(n) is monotone increasing in n since any irreducible length-n

word x may be extended to an irreducible word of length n + 1 by adding a letter
that is not one of the last two letters appearing in x. Thus,

Mn =

n∑
i=1

��Irrq;62(i)
�� 6 n

��Irrq;62(n)
��.

Plugging this into the definition of the capacity gives us the desired claim.

4.5 Uncertainty in Coding for S6k

Suppose we have an error-correcting code designed specifically to correct tandem
duplications from T6k . However, if we incorrectly estimate the value of k, we
may end up transmitting our codewords over a channel that tandem-duplicates using
rules from T6k ′, k′ , k. This mismatch between the design parameter and the actual
channel parameter may cause mis-decoding. We quantify the number of possible
mis-decodings as the channel-code uncertainty, which we study in this section.

In particular, the following code was constructed for correcting any number of
tandem-duplication errors of length 6 k, for k = 2 and k = 3,

C6k(n) ,
n⋃

i=1

{
ξn−i(x) | x ∈ Irr6k(i)

}
.

where for any sequence x = x0 . . . xn−1 ∈ Σ
+, xi ∈ Σ, its `-suffix-extension

ξ`(x) , xx`n−1,

i.e., the sequence x with its last symbol repeated an extra ` times.

Motivated by the error-correcting code defined above, in this section we consider
the problem of sending codewords of the form

CU(n) ,
n⋃

i=1
{ξn−i(x) | x ∈ IrrU(i)} (4.9)
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through a T63 channel. Here U ⊆ N is a finite set of positive integers, and IrrU

denotes the set of strings not containing a tandem repeat of length appearing in U.
We quantify this problem by defining uncertainty, which measures the size of the
maximum subset MU(n) ⊆ CU(n), such that D∗63(c) = y for every c ∈ MU(n) and
some y ∈ Σ∗. Mathematically,

UncU(n) , max
y∈Σ∗

��{x ∈ CU(n) | y ∈ D∗63(x)
}��. (4.10)

We first recall some results from the previous section which we summarize in the
following lemma.

Lemma 4.38. For any y ∈ Σ∗ there exists a unique x ∈ Irr63 such that y ∈ D∗63(x).
Additionally, for y1, y2 ∈ Σ

∗, we have D∗63(y1) ∩ D∗63(y2) , ∅ if and only if there
exists x ∈ Irr63 such that y1, y2 ∈ D∗63(x).

We also make the following trivial observation. For all k, k′ ∈ N, k 6 k′, we have
Irr6k ′ ⊆ Irr6k , and therefore C6k ′(n) ⊆ C6k(n).

The next lemma provides a characterization of the uncertain codewords, and gives
an expression for the uncertainty.

Lemma 4.39. For all n ∈ N, and finite U ⊆ N,

UncU(n) = max
s∈Irr63

��D∗63(s) ∩ CU(n)
��.

Proof. By (4.10) we are looking for elements of CU(n) that share some descendant
when using T63. By Lemma 4.38 they must also share a unique irreducible ancestor
(under T63).

Before proceeding we need another simple lemma.

Lemma 4.40. Let U ⊆ N be finite, with {1, 2, 3} ∩ U ∈ {∅, {1}, {1, 2}, {1, 2, 3}}.
Then for any s ∈ Σ∗,

D∗63(s) ∩ IrrU = D∗
{1,2,3}\U(s) ∩ IrrU .

Proof. The right-hand side of the equation is trivially contained in the left-hand
side. Thus, we only need to prove any x ∈ D∗63(s) ∩ IrrU may be derived from s

using tandem-duplication operations with lengths from {1, 2, 3} \U. This, again, is
trivial when {1, 2, 3} ∩U ∈ {∅, {1, 2, 3}}.
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We now observe that once a tandem duplication of length 1 is employed, all future
descendants contain a substring aa, a ∈ Σ. Thus, if {1, 2, 3} ∩ U = {1}, and
x ∈ D∗63(s) ∩ IrrU , i.e., x does not contain a substring aa, a ∈ Σ, then deriving x

from s using T63 does not require a tandem duplication of length 1. Similarly, if a
tandem duplication of length 2 is employed, a substring of the form abab, a, b ∈ Σ is
created. The only way to eliminate it is by tandem duplication of length 1, which in
itself cannot be later eliminated. Thus, the case of {1, 2, 3} ∩U = {1, 2} is handled
as well.

This brings us to the following corollary, which provides an upper bound on the
uncertainty.

Corollary 4.41. Let U ⊆ N be finite, with {1, 2, 3} ∩U ∈ {∅, {1}, {1, 2}, {1, 2, 3}}.
Then for any s ∈ Σ∗,

UncU(n) 6 max
s∈Irr63

���D∗{1,2,3}\U(s) ∩ Σ6n
���. (4.11)

Proof. We have,

UncU(n)
(a)
= max

s∈Irr63

��D∗63(s) ∩ CU(n)
��

(b)
6 max

s∈Irr63

n∑
i=1

��D∗63(s) ∩ IrrU(i)
��

(c)
= max

s∈Irr63

n∑
i=1

���D∗{1,2,3}\U(s) ∩ IrrU(i)
���

6 max
s∈Irr63

���D∗{1,2,3}\U(s) ∩ Σ6n
���,

where (a) is by Lemma 4.39, (b) is by (4.9), and (c) is by Lemma 4.40.

We note that for large values of n, the right-hand side of (4.11) is dominated by a
term of the form |Σ |cn, where c = cap(S0

{1,2,3}\U(s)), which by [13, 16], is known in
some cases.

We now turn to another issue of importance. A mismatch between a code designed
for the T6k-channel and an actual T6k ′-channel, k < k′, may be avoided if we can
determine the value of k′. As a first step, we set out to find substrings that may
never occur in D∗6k(s), but may appear as substrings of D∗6k+1(s). An occurrence
of such substrings in a channel’s output can be used as a marker indicating it is a
T6k ′-channel, with k′ > k + 1.
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A closely related work is [16], where the expressiveness of bounded tandem dupli-
cation string systems was characterized. The relevant results of [16] are summarized
in Table 2.2.

From Table 2.2, we observe the following:

• For |Σ | = 2, S6k is fully expressive for any k > 1 and was shown to generate
any binary string from some seed with k > 1 in [16]. Hence there exists no
binary stringwhich cannot be generated by S6k(s) system but can be generated
by S6k+1(s) system for k > 1.

• For |Σ | = 3, S6k is fully expressive for k > 3, but it is not known whether
an S6k+1 system can generate anything new over S6k for k > 3. Since, the
system is fully expressive this problem is intuitively harder compared to higher
alphabets.

• For |Σ | > 3, since we do not have full expressiveness for any k, finding
examples which can be generated by S6k+1(s) but not by S6k(s) is intuitively
easier.

To summarize, for |Σ | > 3, we should gain in expressiveness by increasing k. The
next two lemmas prove this statement. We recall that a string is called squarefree if
it does not contain a substring of the form ww, with w ∈ Σ+.

Lemma 4.42. Let Σ = Zq, q > 4, and k > 0. If z ∈ (Zq \ {0})k is squarefree, and
s ∈ Z∗q does not contain w , 0z0 as a substring, then there is no y ∈ D∗6k(s) which
contains w as a substring.

Proof. Let x ∈ D∗6k(s) and assume v = v1v2 . . . v` is a substring of x, where ` > k.
If v ∈ Irr6k , then by [16], either v1 = v1+i for some 2 6 i 6 k, or v` = v`− j for some
2 6 j 6 k. We note that w , 0z0 does not satisfy these requirements. On the other
hand, w ∈ Irr6k , and the claim follows.

Lemma 4.43. Let Σ = Zq, q > 4, and k > 0. If z ∈ (Zq \ {0})k is squarefree,
and s ∈ Z∗q contains w′ , 0z as a substring, then there exists y ∈ D∗6k+1(s) which
contains w , 0z0 as a substring.

Proof. Simply duplicate the w′ part (of length k + 1) to obtain a string with w as a
substring.
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4.6 Duplication Roots
In Section 4.3, we stated that if the duplication length is uniform (i.e., a constant
k ), then every sequence has a unique root. Further in Section 4.4, we proved in
Theorem 4.26 that if the duplication length is bounded by 3 (i.e. 6 3), then again
every sequence will have a unique root. The full characterization of all cases that
have a unique root is stated in Theorem 4.50. Before moving to Theorem 4.50, we
present an example and some lemmas required to prove the theorem.

Example 4.44. Let U = {2, 3, 4} be a set of duplication lengths and Σ = {1, 2, 3}.
Consider

z =

αα︷          ︸︸          ︷
1 2 3 2 1 2 3 2 3︸ ︷︷ ︸

ββ

.

The sequence z has two tandem repeats αα and ββ with |α | = 4 and |β | = 2. If we
deduplicate αα first from z , we get

123212323⇐=
4

12323⇐=
2

123.

However, if we deduplicate ββ first from z we get

123212323⇐=
2

1232123.

Both 123 and 1232123 are irreducible and thus roots of z.

Theorem 4.50 generalizes the statement presented in the example above to any set of
duplication lengths. We naturally extend all previous notation to allow duplication
and deduplication of several lengths by replacing the usual k subscript with a set U,
where U ⊆ N. For example, RU(z) denotes the set of roots obtained via a sequence
of deduplications with lengths from U, starting with the string z. The property we
would like to study is formally defined next.

Definition 4.45. Let Σ , ∅ be an alphabet, and U ⊆ N, U , ∅, a set of tandem-
duplication lengths. We say (Σ,U) is a unique-root pair, iff for all z ∈ Σ∗ we have
|RU(z)| = 1. Otherwise, we call (Σ,U) a non-unique-root pair.

We observe that the actual identity of the letters in the alphabet is immaterial, and
only the size of Σ matters. Additionally, simple monotonicity is evident: If (Σ,U)
is a unique-root pair, then so is (Σ′,U), for all Σ′ ⊆ Σ. Similarly, if (Σ,U) is a
non-unique-root pair, then so is (Σ′,U), for all Σ ⊆ Σ′.
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The following sequence of lemmas will provide the basis for a full classification of
unique-root pairs.

Lemma 4.46. Let Σ = {a} be an alphabet with only a single letter. Let U ⊆ N,
and denote k = min(U). Then (Σ,U) is a unique-root pair if and only if k |m for all
m ∈ U.

Proof. If k |m for all m ∈ U, then any sequence an, n ∈ N has a unique root

an ∗
⇐=

U
ak+(n mod k),

where in the expression above n mod k denotes the unique integer from {1, 2, . . . , k}

with the same residue modulo k as n.

In the other direction, if there exists m ∈ U such that k - m, let us consider the
sequence ak+2m. By first deduplicating a length m sequence, and then via as many
deduplications of length k as needed, we obtain

ak+2m⇐=
U

ak+m ∗
⇐=

U
ak+(m mod k) = x.

However, by only deduplicating length k sequences, we also get

ak+2m ∗
⇐=

U
ak+(2m mod k) = y.

Both x and y are irreducible since 1 6 |x |, |y | 6 k. However, since m . 0 (mod k),
we have

m . 2m (mod k),

and therefore x , y, and ak+2m has two distinct roots.

Lemma 4.47. Let Σ be an alphabet, |Σ | > 2, km > 1, and U = {k, k + m} ∪ V ,
where V ⊆ N \ {1, 2, . . . , k + m}. Then (Σ,U) is a non-unique-root pair.

Proof. By Lemma 4.46 and monotonicity, if k - m, then (Σ,U) is already a non-
unique-root pair, and we are done. Thus, for the rest of the proof we assume m = `k,
for some ` ∈ N.

Let a, b ∈ Σ be two distinct letters, and let v1v2 . . . vk+m ∈ Σ
k+m be a sequence

defined as follows:

vi =


a i < k + m and di/ke is odd,

b i < k + m and di/ke is even,

vm i = k + m.
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Consider now the sequence

z = v1v2 . . . vk+mv1v2 . . . vk+mvm+1 . . . vk+m−1.

We can write z as

z = (v1v2 . . . vk+m−1vm)
2vm+1 . . . vk+m−1

= v1v2 . . . vk+m−1vmv1v2 . . . vm−1(vmvm+1 . . . vk+m−1)
2.

As is evident, there are two squares in z, one of which is of length 2k + 2m and the
other is of length 2k. Deduplicating the square of length 2k + 2m in z first gives

z⇐=
U

v1v2 . . . vk+m−1vmvm+1 . . . vk+m−1

⇐=
U

v1v2 . . . vk+m−1 = y.

Deduplicating the square of length 2k first gives

z⇐=
U

v1v2 . . . vk+m−1vmv1v2 . . . vk+m−1 = x.

We note that |x | = 2k + 2m − 1 and |y | = k +m − 1. Thus, if further deduplications
are possible, they must be deduplications of length k, since both x and y are too
short to allow deduplications of other allowed lengths from U. We observe that y
is certainly irreducible, since it is made up of alternating blocks of a’s and b’s of
length k. However, it is conceivable that x may be further deduplicated to obtain y.

We recall m = `k. Depending on the parity of `, we have two cases. If ` is even, we
can write explicitly

y = (ak bk)`/2ak−1,

x = (ak bk)`/2ak−1b(ak bk)`/2ak−1.

The sequence x may be further deduplicated, by noting the square bak−1bak−1, to
obtain

x⇐=
U
(ak bk)`ak−1 = x′.

We easily observe that x′ is irreducible, and x′ , y since their lengths differ,
|y | = (` + 1)k − 1, |x | = (2` + 1)k − 1, and ` > 1.

If ` is odd, we explicitly write

y = (ak bk)(`−1)/2ak bk−1,

x = (ak bk)(`−1)/2ak bk−1a(ak bk)(`−1)/2ak bk−1.
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We recall our requirement that km > 1, which translates to k > 1, ` > 1 and odd,
but not k = ` = 1. If k , 1 and ` , 1, we easily see that x is irreducible, x , y.
If ` = 1 and k , 1, we have x = ak bk−1ak+1bk−1 which is again irreducible, and
x , y. The final case is k = 1 and ` , 1, in which

x = (ab)(`−1)/2a2(ab)(`−1)/2a
∗
⇐=

U
(ab)`−1a = x′

by twice deduplicating the square a2. However, y = (ab)(`−1)/2a, and y , x since
|y | = 1 + (` − 1)/2 and |x | = `, while ` > 3.

Lemma 4.48. For any alphabet Σ, |Σ | > 3, and for any V ⊆ N \ {1, 2, 3}, V , ∅, if
U = {1, 2} ∪ V , then (Σ,U) is a non-unique-root pair.

Proof. Let a, b, c ∈ Σ be distinct symbols, and let m = min(V). Consider the
sequence

z = abm−3caabm−3ca.

We now have the following two distinct roots,

z⇐=
U

abm−3ca
∗
⇐=

U
abca,

z⇐=
U

abm−3cabm−3ca
∗
⇐=

U
abcabca.

Lemma 4.49. For any alphabet Σ, |Σ | > 3, and for any V ⊆ N \ {1, 2, 3}, V , ∅, if
U = {1, 2, 3} ∪ V , then (Σ,U) is a non-unique-root pair.

Proof. Let a, b, c ∈ Σ be 3 distinct symbols. Consider the sequence

z = abm−3cbabm−3cbc,

where m = min(V). We now have the following two distinct roots,

z⇐=
U

abm−3cbc
∗
⇐=

U
abcbc⇐=

U
abc,

z⇐=
U

abm−3cbabm−3c
∗
⇐=

U
abcbabc.

We are now in a position to provide a full classification of unique-root pairs.
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Theorem 4.50. Let Σ , ∅ be an alphabet, and U ⊆ N, U , ∅, a set of tandem-
duplication lengths. Denote k = min(U). Then (Σ,U) is a unique-root pair if and
only if it matches one of the following cases:

|Σ | = 1 U ⊆ kN

2*|Σ | = 2 U = {k}

U ⊇ {1, 2}
3*|Σ | > 3 U = {k}

U = {1, 2}
U = {1, 2, 3}

Proof. The case of |Σ | = 1 is given by Lemma 4.46. The case of |U | = 1 was
proved in [89], and with an alternative proof, in Section 4.3. The case of |Σ | = 2
and {1, 2} * U, was proved in Lemma 4.47. It is also folklore that having |Σ | = 2
and {1, 2} ⊆ U gives a unique-root pair, since we can always deduplicate runs
of symbols to single letters, and then deduplicate pairs, to obtain one of only six
possible roots: a, b, ab, ba, aba, bab. The choice of root depends only on the
first letter of the word, its last letter, and when they’re the same, on the existence
of a different letter inside. No deduplication actions change those, regardless of the
length of the deduplication.

When |Σ | > 3, the unique-root property for U = {1, 2} and U = {1, 2, 3} was
established in Corollary 4.27 and Theorem 4.26, respectively. The non-unique-root
property for the other cases was proved in Lemma 4.47, Lemma 4.48, and Lemma
4.49.

4.7 Conclusion
We provided error-correcting codes, and in some cases, exact information-theoretic
capacity, for the tandem-duplication channel. These codes mostly rely on unique-
root pairs of alphabets and duplication lengths, which we also investigated.

An additional source of errors we considered in this chapter is due to a mismatch
between the channel parameters and the error-correcting code we employ. We
focused on the the bounded tandem-duplication system S6k(s), and studied the
effects of sending codewords from a code designed for S6k(s) through a channel
that uses S6k+1(s).

Several interesting questions remain open. In particular, we do not know yet how
to construct general (n, M; ∗)U over Σ, especially when we do not necessarily have
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unique roots. We also mention the interesting combinatorial problem of counting
the number of distinct roots of a string, and finding strings of a given length with as
many roots as possible.
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C h a p t e r 5

STRING DUPLICATION SYSTEMS WITH SUBSTITUTIONS

5.1 Introduction
Error-correcting codes for errors caused by tandem duplications were studied in the
previous chapter. In particular, an optimal family of codes for correcting errors due
to tandem duplications of a fixed length and any number of errors was presented.
We also studied codes for correcting tandem duplications of length up to a given
constant k, where we primarily focused on the cases of k = 2, 3.

While the capacity and expressiveness of tandem-duplication systems have been
studied in [13] and Chapter 2, these mutations do not occur in isolation and other
types of mutations, such as point mutations, are typically also present. In this
chapter, we study the capacity of noisy tandem duplication where both tandem
duplications and point mutations occur. We show in particular that if the number of
point mutations is small compared to the number of duplications with a fixed length,
the capacity is 0. However, a linear number of point mutations results in a nonzero
capacity.

The rest of the chapter is organized as follows. Section 5.2 presents the required
definitions and notations. In Section 5.3, we study the capacity of noisy tandem-
duplication systems and related problems. We present conclusions and open prob-
lems in Section 5.4.

5.2 Preliminaries
Given a string x ∈ Σ∗, a tandem duplication of length k is a process by which a
contiguous substring of x of length k is copied next to itself. More precisely, we
define the tandem-duplication rules, Ti,k : Σ∗ → Σ∗, for all k ∈ N, i ∈ N0, as

Ti,k(x) ,


uvvw if x = uvw, |u| = i, |v | = k

x otherwise.

We note that the “otherwise” case applies exactly when |x | < k + i, and therefore x

cannot be decomposed into a prefix u of length i, an inner part v of length k, and
some suffix w. A specific set of duplication rules that would be of interest to us
throughout the chapter is

Tk ,
{

Ti,k
�� i > 0

}
.
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Another operation of interest is that of point mutation. This operation overwrites a
symbol in a string with another symbol (perhaps the same, in which case, no change
happens). More precisely, we define the point-mutation rules, Pi,a : Σ∗ → Σ∗, for
all i ∈ N0, a ∈ Σ, as

Pi,a(x) ,


uaw if x = ubw, |u| = i, b ∈ Σ,

x otherwise,

and then define
P ,

{
Pi,a | i > 0, a ∈ Σ

}
.

Given x, y ∈ Σ∗, if there exist f ∈ Tk∪P such that y = f (x), then we say y is a direct
descendant of x. If a sequence of t + p operations f1, . . . , ft+p ∈ Tk ∪P, exactly p of
which are point mutations from P and the rest are t k-tandem duplications from Tk ,
such that y = ft+p(. . . ( f1(x)) . . . ), then we say y is an (t + p)-descendant of x and

denote it by x
t,p
=⇒

k
y. Finally, if there exists a finite sequence of transformations from

Tk ∪P, transforming x into y, we say y is a descendant of x and denote it by x
∗,∗
=⇒

k
y.

We note that x is its own descendant via an empty sequence of transformations.

We define the descendant cone of x ∈ Σ∗ as

D∗,∗k (x) ,
{
y ∈ Σ∗

���� x
∗,∗
=⇒

k
y

}
.

In a similar fashion we define the (t, p)-descendant cone Dt,p
k (x) by replacing

∗,∗
=⇒

k

with
t,p
=⇒

k
in the definition of D∗,∗k (x). Additionally, whenever p = 0, i.e., no point

mutations are involved, we use the simpler notation of
∗
=⇒

k
,

t
=⇒

k
, D∗k , and Dt

k .

We are now ready to define the noisy tandem-duplication system, denoted Sp
k (s) over

the alphabet Σ, for all tandem-duplication length k ∈ N, amount of point-mutation
p : N→ N0, and initial seed string s ∈ Σ∗,

Sp
k (s) ,

⋃
t>0

Dt,p(t)
k (s),

i.e., it is the set of all the descendants of s obtained by using t transformations, of
which p(t) are point mutations. Using this notation, the tandem-duplication system
studied in [13, 20] is simply S0

k .

An important figure of merit associated with any string system S ⊆ Σ∗ is its capacity,
which intuitively measures the average information content in a symbol from a string
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in S. Assuming |Σ | = q, the capacity of S ⊆ Σ∗ is defined by

cap(S) , lim sup
n→∞

1
n

logq |S ∩ Σ
n |.

Another property of interest to us is expressiveness. We say a string-duplication
system with a fixed seed s ∈ Σ∗ is fully expressive if for every v ∈ Σ∗ there exist
u,w ∈ Σ∗ such that

s
∗,∗
=⇒

k
uvw.

Namely, every given sequences v appears as a subsequence of some sequence derived
from s.

Some strings cannot be derived from other strings. Formally, a string s ∈ Σ∗ is
said to be irreducible with respect to Tk if there is no s′ ∈ Σ∗, s′ , s, such that
s′
∗
=⇒

k
s. We emphasize the fact that no pointmutations are consideredwhen defining

irreducible strings. The set of all irreducible strings is denoted by Irrk , and the set
of all irreducible strings of length n is denoted by Irrk(n).

Finally, we also consider the set of tandem-duplication rules,

T6k ,
{

Ti,k ′
�� i > 0, k > k′

}
.

Replacing Tk by T6k in all the definitions above gives us another string-duplication
system of interest. All notation remains the same except k is replaced by 6 k

whenever appropriate.

5.3 Capacity and Expressiveness in Sp
k

The study of k-tandem duplication as a source of noise, using only duplication rules
from Tk , was described in [13, 20]. In this section we consider a mix of k-tandem
duplication together with point mutation, as a model for channel noise. In particular,
we are interested in the capacity of error patterns, and the expressiveness of such a
system.

Let us assume throughout this section that Σ = Zq. This does not constrain us
in any way, and provides a structure we can use. An important tool in analyzing
k-tandem-duplication systems is the transform domain defined by φk , which was
described in [20]. We define the mapping in a slightly different form, which keeps
its essence but simplifies notation. Define φk : Z>k

q → Z
>k
q by,

φk(x) , x0k − 0k x,
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where subtraction is performed entry-wise over Zq. We comment that to obtain
the original definition of φk of [20] we delete the last k symbols and separate the
sequence into its k-prefix and |x | − k suffix.

Another mapping defined in [20] injects k consecutive zeros into a string. We adjust
the definition of ζi,k to match the change in φk . We therefore define ζi,k : Z>k

q → Z
>k
q

by
ζi,k(uv) , u0kv,

where u ∈ Σi, v ∈ Σ∗.

The following lemma was proved in [20].

Lemma 5.1. For every string x ∈ Z>k
q , 0 6 i 6 |x |,

φk(Ti,k(x)) = ζi,k(φk(x)).

Intuitively, tandem-duplication operations of length k in the original domain appear
as injections of 0k in the transform domain. Thus, during many of the proofs it will
be easier for us to consider strings in the transform domain, and only at the end use
the reverse transform to obtain the result in the original domain.

One easily observes that the φk transform is linear, i.e., for all x, x′ ∈ Z>k
q , |x | = |x′|,

φk(x + x′) = φk(x) + φk(x′).

The same also holds for ζi,k .

It was shown in [13] that cap(S0
k ) = 0, regardless of the size of the alphabet Σ, and

the starting string s ∈ Σ∗. We now show this changes when noisy duplication is
present.

Theorem 5.2. For any finite alphabet Σ = Zq, a seed string s ∈ Σ>k , a tandem-
duplication length k ∈ N, and amount of point mutations p : N→ N0, if p(t) = o(t),
then

cap(Sp
k (s)) = 0.

Proof. Let ei denote a vector of all zeros except for the ith position which is 1, and
whose length is implicit and understood from the context. The basis for the proof
is the observation that in the transform domain, is a sequence with two non-zero
elements: a 1 in the ith position, and a −1 in the (k + i)th position. Additionally, the
elements of φk(ei) sum to 0 over Zq.
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Linearity of the transform φk guarantees that a single symbol change in the ith
position of a sequence x, becomes

φk(x + a · ei) = φk(x) + a · φk(ei),

for any a ∈ Zq.

Assume s
t,p(t)
=⇒

k
x, where we have

n , |x | = |s | + tk .

Further assume that in the derivation of x from s, the jth k-tandem duplication used
is Tij,k . Additionally, the jth point mutation affects the ` j coordinate by increasing it
by a j . Moreover, the jth point mutation occurs before the m j th tandem duplications
occurred. It now follows that

φk(x) = ζit,k(ζit−1,k(. . . ζi1,k(φk(s)) . . . ))

+

p(t)∑
j=1

a j · ζit,k(ζit−1,k(. . . ζmj,k(φk(e`j )) . . . )).

Hence, each derivation may be decomposed as a sum of a “noiseless” k-tandem-
duplication process

ζit,k(ζit−1,k(. . . ζi1,k(φk(s)) . . . ))

and a “noise” component due to point mutations

p(t)∑
j=1

a j · ζit,k(ζit−1,k(. . . ζmj,k(φk(e`j )) . . . )).

The latter is a vector in the transform domain of length n + k that has at most 2p(t)

non-zero entries. The number of such noise vectors is upper bounded by

Φ
n+k
2p(t) ,

2p(t)∑
j=0

(
n + k

j

)
(q − 1) j .

which is the size of a ball in the Hamming metric over Zn+k
q and radius 2p(t).

We now have ��Dt,p
k (s) ∩ Z

n
q

�� 6 ���Dt,0
k (s) ∩ Z

n
q

��� · Φn+k
2p(t). (5.1)

By [13, Th. 12], ���Dt,0
k (s) ∩ Z

n
q

��� 6 (
|s | − k + t
|s | − 1

)
= qn·o(1).
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Additionally, when p(t) = o(t) we have (see [71])

Φ
n+k
2p(t) = qn·o(1).

Combining these together we obtain

cap(Sp
k (s)) = 0.

Theorem 5.3. For any finite alphabet Σ = Zq, a seed string s ∈ Σ>k , a tandem-
duplication length k ∈ N, and amount of point mutations p : N→ N0, if p(t) = αtk,
α > 0, then

cap(Sp
k (s)) 6


Hq(2α) 0 6 α 6 1

2

(
1 − 1

q

)
,

1 α > 1
2

(
1 − 1

q

)
,

and

cap(Sp
k (s)) >


Hq(α) 0 6 α 6 1 − 1

q,

1 α > 1 − 1
q,

where Hq(α) denotes the q-ary entropy function,

Hq(α) , α logq(q − 1) − α logq α − (1 − α) logq(1 − α).

Proof. For the upper bound we use (5.1) again. Let s
t,p(t)
=⇒

k
x, and n , |x | = |s | + tk.

However now, when p(t) = αtk, we have (see [71])

Φ
n+k
2p(t) =


qnHq(2α)(1+o(1)) 0 6 α 6 1

2

(
1 − 1

q

)
,

qn(1+o(1)) α > 1
2

(
1 − 1

q

)
.

For the lower bound, fix a single noiseless derivation, s
t,0
=⇒

k
x, denoting n , |x | =

|s | + tk. In the original domain, the number of (distinct) sequences obtainable from
x by changing at most p(t) positions is exactly Φn

p(t). Thus,���Dt,p(t)
k (s)

��� > Φn
p(t) =


qnHq(α)(1+o(1)) 0 6 α 6 1 − 1

q,

qn(1+o(1)) α > 1 − 1
q .

The lower bound of Theorem 5.3 may be improved by carefully constructing more
strings. This is shown in the following.
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Lemma 5.4. For any finite alphabet Σ = Zq, a seed string s ∈ Z>k
q , a tandem-

duplication length k ∈ N, amount of point mutations p :∈ N → N0, and any real
constant β ∈ [1, k], if p(t) = αtk, α ∈ [0, β

2k ], then

cap(Sp
k (s)) >

1
k

H2

(
2αk
β

)
logq 2 +

2α
β

logq 2

+
α

β
H2(β − bβc) logq 2

+
α

β
logq

((
k
bβc

)
(q − 1)bβc − 1

)
+
α

β
(β − bβc) logq

( k
bβc+1

)
(q − 1)bβc+1 − 1( k

bβc

)
(q − 1)bβc − 1

.

Proof. Our proof strategy relies on our ability to generate many distinct strings from
the seed string s. We shall only use the last k symbols of s, and therefore we may
assume w.l.o.g. that |s | = k. The choice of symbols of s will be immaterial. We
shall additionally apply only tandem duplication operations Ti,k where k |i. Thus, we
may think of the seed string, as well as any intermediary string as a string comprised
of a concatenation of blocks of length k, where each tandem-duplication operates
on these blocks only. After t tandem-duplication operations we shall obtain a string
of length (t + 1)k, i.e., a string of t + 1 blocks.

In addition, we have a budget of αtk point mutations. Whenever we use point
mutations, we shall do so immediately after a block is tandem duplicated, mutating
only symbols in the newly created block.

We encode each derivation sequence using a string made up of block identifiers of
the form Xi, and delimiters from the set {(, ), .} (a left and right parentheses and a
dot), with exactly one delimiter between adjacent block identifiers. Thus,

X1.X2(X3(X4)X5.X6)X7 (5.2)

is such a possible string. The string should have balanced parentheses, i.e., in every
prefix of the string the number of left parentheses is at least the number of right
parentheses. The encoding matches the derivation sequence using the following
rules:

1. Xi .Xi+1 means the block Xi+1 was tandem duplicated from Xi without any
point mutations.
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Figure 5.1: The derivation process of (5.2). Solid arrows represent tandem duplica-
tion. Dashed arrows represent tandem duplication with at least one point mutation.
The process proceeds from top to bottom, and left to right.

2. Xi(Xi+1 means the block Xi+1 was tandem duplicated from Xi with at least one
point mutation in Xi+1.

3. Xi1(ξ)Xi2 , where ξ is a balanced string, means that Xi2 was tandem duplicated
from Xi1 without any point mutations.

4. Whenever we have Xi1(ξXi2(Xi3 , where ξ is a balanced string, then Xi1 , Xi3 .

The derivation proceeds from the outer parentheses nesting level to the innermost,
and within each nesting level, from left to right. Thus, the string of (5.2) uniquely
describes a derivation depicted in Figure 5.1. The requirements also imply X1 =

X2 = X7, X3 , X2, X4 , X3, X4 , X2, and X3 = X5 = X6.

We first note that two derivations with the same encoding string but different point
mutations obviously create distinct final sequences. Moreover, we contend that two
derivations with distinct encoding strings result in distinct final sequences. To show
the latter we prove by simple induction that given the values of the blocks Xi, we can
uniquely find the missing delimiters. The induction is on the index i. The base case
is obvious. Assume we correctly found the missing delimiters given X1 . . . Xi and
we are now given Xi+1. If Xi+1 = Xi, then necessarily we have Xi .Xi+1. Otherwise
Xi+1 , Xi and we distinguish between two cases depending on the largest j < i

such that X j(ξXi where ξ is a balanced string. If no such j exists, i.e., Xi is at the
outermost nesting level of parentheses, then we must have Xi(Xi+1. If Xi+1 = X j ,
then by the third and fourth requirements we must have Xi)Xi+1. Otherwise, we have
Xi(Xi+1.

At this point we introduce the parameter β. We shall consider only derivations
whose encoding strings contain exactly αtk

β pairs of parentheses. Since each left
parenthesis implies at least one point mutation, we shall distribute our budget of
αtk point mutations as evenly as possible between the left parentheses. Thus, in
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αtk
β (1 − β + bβc) of the left parentheses we shall use bβc point mutations, and in
the remaining αtk

β (β − bβc) left parentheses we shall use bβc + 1 point mutations.
Indeed, the two sum to the total budget,

αtk
β
(1 − β + bβc)bβc +

αtk
β
(β − bβc)(bβc + 1) = αtk .

We are now ready to count the number of sequences resulting from the process
that was described above. We have an encoding string with tk delimiters, of which
2αtk/β positions hold αtk/β pairs of parentheses. We have(

t
2αtk
β

)
= 2tH2(2αk/β)(1+o(1))

ways of choosing these positions. These 2αtk/β positions are to be filled with a
balanced sequence of parentheses, which may be done in

Cαtk/β ,
1

αtk
β + 1

( 2αtk
β

αtk
β

)
= 2

2αtk
β (1+o(1)),

where Ci denotes the ith Catalan number. Next, of the αtk/β left parentheses we
need to choose αtk/β · (β − bβc) positions to have bβc + 1 point mutations each.
This may be done in ( αtk

β

αtk
β (β − bβc)

)
= 2

αtk
β H2(β−bβc)(1+o(1))

distinct ways. Now, given a single tandem duplication with bβc point mutations, we
have (

k
bβc

)
(q − 1)bβc − 1

ways to choose the point mutations (choosing bβc positions from the k positions
in the block, and choosing for each point mutation a mutated value different from
the current one). We note that we subtract one since we would like to eliminate an
option that contradicts the fourth requirement. A similar expression is derived for
blocks with bβc + 1 point mutations.

Combining all of the expressions above and substituting them in the expression for
the capacity we get the desired lower bound.

An example showing the improved lower bounds is given in Figure 5.2.
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Figure 5.2: Bounds on cap(Sp
k (s)) with Σ = Z4, k = 2, and p(t) = αkt. The

improved lower bound of Lemma 5.4 with (a) β = 1, (b) β = 1.25, (c) β = 1.5, as
well as (d) the lower bound of Theorem 5.3 and (e) the upper bound of Theorem
5.3.

Theorem 5.5. For any finite alphabet Σ = Zq, a seed string s ∈ Σ∗, a tandem-
duplication length k ∈ N, and amount of point mutations p : N → N0, the system
Sp

k (s) is fully expressive if and only if p(t) = ω(1).

Proof. We are given that p(t) = ω(1), i.e., we have an unbounded budget of point
mutations. Then, for any v ∈ Z∗q, there exists t ∈ N such thatmin(p(t), |s |+tk) > |v |.
Consider now the following derivation: first employ t tandem duplications T0,k

starting from s, resulting in a string x whose length satisfies |x | > |v |. Now apply
|v | 6 p(t) point mutations to the first |v | positions of x, so that they are mutated into

v. Thus, s
t,p(t)
=⇒

k
vw, for some w ∈ Z∗q, and the system is fully expressive.

In the other direction, suppose p(t) = O(1). Then for any s
t,p(t)
=⇒

k
v we have that φk(v)

contains at most 2(|s |+ p(t)) < M non-zero elements, where M is some constant. In
particular, we have no descendant of s whose φk-transform has at least M non-zero
elements.

We point out some interesting observations. First we note that Sp
k (s) is the first

natural string-duplication system that is fully expressive, yet without full capacity
(cf. [13, 16]). Second, note that as long as p(t) = o(t) and p(t) = ω(1), we have a
natural fully expressive system with capacity 0.
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5.4 Discussion
The capacity of the tandem-duplication system without point mutations, cap(S0

k (s)),
was proven to be 0 in [13]. This capacity determines the exponential growth rate of
descendant cones, when using only tandem-duplication operations. When building
an error-correcting code to protect against tandem duplications, these descendant
cones take on the role of error spheres, and an error-correcting code is therefore a
packing of these spheres. Even though their capacity (without point mutations) is
0, the channel capacity (determined by the size of the optimal code) is not full, as
was shown in Chapter 4, Section 4.3.

As shown in this chapter, in the presence of point mutations, the growth rate of the
tandem-duplication descendant cones is positive, cap(Sp

k (s)), as long as the fraction
of point mutations does not vanish. Thus, we may expect the channel capacity in the
model with point mutations and tandem duplications, to drop, and perhaps vanish.
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C h a p t e r 6

INVERSION SYMMETRY BY TANDEM DUPLICATIONS

Erwin Chargaff in 1950 made an experimental observation that the count of A is
equal to the count of T and the count of C is equal to the count of G in DNA [97,
98]. This observation played a crucial role in realizing the base pair grouping in
DNA as discovered by Watson and Crick [99] in their double helix structure.

A similar symmetry was observed when in a long enough single DNA strand [40],
the count of A is almost equal to the count to the count of T and the count of C

is almost equal to the count of G. This symmetry was termed as 2nd Chargaff
rule. This rule was verified globally for all eukaryotic chromosomes [100] as well
as archael and bacterial chromosomes. However it does not hold in mitochondria,
plasmids, single stranded DNA and RNA viruses.

Not only does the 2nd Chargaff rule hold for mononucleotides, but it also holds for
k-mers (substrings of length k) upto length 7-8 for bacterial genomes and length 10
in human genome. There have been several chapters in the past that verified this
symmetry for different values of k for more than 700 different species [42, 43, 45,
101, 102]. Given a genome of length n, the k-limit or the value of k upto which
the 2nd Chargaff rule holds was empirically observed to be about 0.7 ln n [41]. For
human genome, the k-limit value that results from this approximation is 10. The
2nd Chargaff rule is termed as inversion symmetry (IS) in [41].

However, not being derived from any compelling principle, the existence of 2nd
Chargaff rule (henceforth inversion symmetry (IS)) still remains a mystery. The
presence of IS makes it plausible that most of the species share common dynamics
of evolution. In [41, 43], the authors also showed that this symmetry only holds
for reverse complement pairs and not for complement or any random pair of k-
mers. [43] also argued that IS may be due to whole genome or segmental inverse
duplications. Duplication based sequence generating models have been analysed in
the past from a combinatorial [9–12, 16, 63] and probabilistic [69, 103] perspective.
However, none of these duplication models analysed reversed complement tandem
duplications. In this chapter, we investigate a mathematical model for sequence
generation that is based on reverse complement tandem duplications. We show that
the sequences generated by this model satisfy IS after sufficiently many generations
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and find estimates for the number of generations required to achieve IS for different
duplication lengths.

The reverse complement of a sequence s = s1s2 · · · sm is given by s∗ = sc
msc

m−1 · · · s
c
2sc

1,
where sc

i denotes the complement of symbol si. DNA consists of 4 nucleotides or
symbols A,C,G and T , where Ac = T , T c = A, Gc = C and Cc = G.

Example 6.1. The reverse complement of s = GTCCAGGT is given by s∗ =

ACCTGGAC.

In our model, we start from a seed string v and iteratively perform reverse com-
plement tandem duplications at random positions inside v. The following example
illustrates reverse complement tandem duplications:

Example 6.2. Consider a seed v = AGTTGGCA, an instance of generating new
strings by reverse complement tandem duplication process on v is

Generation 1 : v = AGTTGGCA → v′ = AGTTGCAAGCA.

Generation 2 : v′ = AGTTGCAAGCA → v′′ = AGCTTTGCAAGCA.

In generation 1, we choose a 3-length substring of v highlighted in bold and replicate
its reverse complement in tandem highlighted by an underline to give v′. In genera-
tion 2, we choose a 2-length substring of v′ and replicate its reverse complement to
give v′′. In generation 1 and generation 2 the replication or duplication length is 3
and 2 respectively.

In this chapter, we show that the reverse complement tandem duplication string
system, described above in Example 6.2, generates strings that satisfy the 2nd
Chargaff Rule or Inversion symmetry (IS) after a certain number of generations. The
number of generations that are needed to attain inversion symmetry are dependent
on the length of substrings that are replicated in reverse complement manner. For
example, a single generation with a reverse complement tandem duplication of the
entire seed is enough to satisfy the 2nd Chargaff rule (see Lemma 6.4). A quantity
Rk

X to measure IS is defined in [46], which is based on averaging the absolute
difference between the frequency of a k-mer and its reverse complement, and has
been used extensively in the literature in the past to experimentally verify the 2nd
Chargaff rule for different genomes. In Figure 6, we show that the value of Rk

X

computed on sequences generated by our reverse complement tandem duplication
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model for a suitable choice of duplication length is in consistence with the value
observed in ChrX, Chr14, Chr17, Chr21 in human genome.

In Section 6.1, we provide insights as to why IS arises as a result of reverse com-
plement tandem duplications. In Section 6.2, we formally describe our model and
explain the boundary/edge effects that arise in the reverse complement tandem du-
plication model. We further derive upper bounds on IS disruption that is caused
by the boundary effects. In Section 6.3, we analyse our model and calculate the
number of generations needed to create IS for some choices of duplication lengths.
In Section 6.4, we show consistence in the Rk

X values for the sequences obtained by
our model to those that are observed in different chromosomes in human genome for
k-mer lengths 6 10. In Section 6.5 we conclude the chapter, providing directions
for future work.

6.1 Motivation for the Model
For any sequence Y , appending its reverse complement Y ∗ to itself can easily be
shown to attain IS for all k-mers upto length 2|YY ∗ | (see Lemma 6.4).

Definition 6.3. The complement of a ∈ {A,C,G,T} is denoted by ac, where Ac =

T,Gc = C,Cc = G,T c = A. The reverse complement of Z ∈ {A,C,G,T}m is
denoted by Z∗, i.e., if

Z = Z1Z2 · · · Zm, then

Z∗ = Zc
mZc

m−1 · · · Z
c
2 Zc

1 .

Let u be any k-mer in Z . Let NZ (u) be the number of occurrences of u in Z , and
note that

NZ (u) = NZ∗(u∗). (6.1)

In the following lemma, let Z , YY ∗ for some Y ∈ {A,C,G,T}n.

Lemma 6.4. For any k-mer u with |u| 6 2n in Z , NZ (u) = NZ (u∗).

Proof. For any k-mer u in Z ,

NZ (u) = NY (u) + NY ∗(u) + B(u),

NZ (u∗) = NY (u∗) + NY ∗(u∗) + B(u∗),

B(u) and B(u∗) denote the number of times u and u∗ occur at the boundary ofY andY ∗

in Z , respectively. Note that from Eq. (6.1), NY (u) = NY ∗(u∗) and NY ∗(u) = NY (u∗),
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therefore in order to show NZ (u) = NZ (u∗), we need to show

B(u) = B(u∗). (6.2)

In order to show (6.2), we show for every occurrence of u on the boundary, there
also exists an occurrence of u∗. Let

u = Ymax{n−l+1,1} · · ·YnYn
c · · ·Y c

max{1,n−m+1}

where l > 0, m > 0 and min{l, n} +min{m, n} = k, then

u∗ = Ymax{1,n−m+1} · · ·YnYn
c · · ·Y c

max{1,n−l+1} .

It is easy to check that inversion symmetry is not guaranteed in the same way as
described in Lemma 6.4, if Z = YY c or Z = YY .

Lemma 6.4 readily implies that the special case of a reverse complement tandem
duplication of length n induces IS within 1 generation. Hence, this hints that IS,
which is prevalent in many genomes, might be the result of such duplications. Since
a reverse complement tandem duplication of length n is unlikely, a natural question
to study in this regard is how short can reverse complement tandem duplications be
in order to attain IS within a reasonable number of generations. Various aspects of
this question are studied in the remainder of this chapter.
6.2 Boundary effect
For a sequence X and an integer k, the quantity

Rk
X =

1
2
∑

s∈{A,C,G,T}k |NX(s) − NX(s∗)|

|X | − k + 1
(6.3)

was defined in [46] as a means to estimate IS in X . It was also shown in [46] that
Rk

X is monotone w.r.t k, i.e. Rk
X 6 Rk+1

X .

Now consider our reverse complement tandem duplication model. Let v = xyz,

where |y | = d and |x |, |z | > 0. Replicating y in a reversed complement tandem
fashion results in vnew = xyy∗z. Let y = y1y2 · · · yd , and u = yl yl+1 · · · yl+k−1

be a k- length substring of y. In Lemma 6.4, we found that for every u in yy∗,
Nyy∗(u) = Nyy∗(u∗). In addition to that, due to the presence of z in v and vnew, we
observe the following boundary effects:
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1. Boundary Effect 1: Any k-mer that appears on the boundary of y and z in v

can get lost in the creation of vnew, i.e., k-mers of the form yd−i+1 · · · z j , where
i + j = k and i, j > 1 may not exist in vnew. For example,
Example 6.5. Let v = AGACAwith y = GAand z = CA, vnew = AGATCCA,
the 2-mer AC exists at the boundary of y and z in v but is lost in vnew.

2. Boundary Effect 2: At the boundary of y∗ and z in vnew, new k-mers are
created which may not occur in v and are also not locally balanced in yy∗,
i.e. k-mers of the form yc

i y
c
i−1 · · · z1 · · · z j , where i + j = k, and i, j > 1. For

instance in Example 6.5, CC is a new 2-mer that is created at the boundary of
y∗ and z in vnew. Note that TC and AT are the other newly created 2-mers in
vnew but they lie entirely in yy∗ = GATC. They are locally balanced in yy∗

by their reverse complements GA and AT respectively.

Definition 6.6. We define a recursive process of generating strings by reverse com-
plement tandem duplication as follows:

• Seed: v0 = x0y0z0

• Replication operation (TRc ) : TRc (vi) = vi+1 = xiyiy
∗
i zi, |xi |, |zi | > 0 and

|yi | = di, di > 0, ∀i > 0.

• Tm
Rc
(v j) = T

m−1
Rc
(v j+1) ∀m > 0 and T 0

Rc
(v j) = v j .

Note that yi is chosen uniformly at random, and let X = T g
Rc
(v0), where g is the

number of generations that we wish to study. Let X = T g
Rc
(v0).

In order to do a cleaner analysis of Rk
X for X generated by reverse complement

tandem duplication system TRc above, we wish to upper bound the Boundary effect
1 and Boundary effect 2. We do so by computing ∆(k,g), which measures the worst
case impact of Boundary effect 1 and Boundary effect 2 on Rk

X after g generations.

In each operation TRc , we lose k − 1 k-mers due to Boundary Effect 1 and gain k − 1
k-mers due to Boundary Effect 2. Therefore, in each generation the numerator of
Rk

X has a worst case change of 2(k − 1). Hence, after g operations the worst case
effect on the numerator of Rk

X due to boundary effects is 2(k − 1)g. Also note that
|X | = |v0 | +

∑g−1
i=0 di, and hence ∆(k,g) is given by

∆(k,g) =
2(k − 1)g

|v0 | +
∑g−1

i=0 di − k + 1
. (6.4)
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Therefore after g generations, Rk
X is given by |Rk

X − Qk
X | 6 ∆(k,g), where Qk

X is the
approximation of Rk

X by ignoring the boundary effects 1 and 2 after g generations.

It is notable here that in TRc (Definition 6.6), if any string yi of length di is duplicated
to create yiy

∗
i , then by Lemma 6.4, it balances the occurence of any k-mer for all

k 6 2di in yiy
∗
i . If every symbol in v0 is chosen at some stage in the generation

process as a substring of yi, then once all the symbols in v0 have been chosen, Qk
X

will be 0 for all k 6 2 min {di}
g
i=1. In the next section, we find for a given ε > 0,

number of generations g that are needed to obtain Qk
X 6 ε for different choices

of duplication lengths; and consequently, the number of generations g which is
required to obtain Rk

X 6 ∆(k,g) + ε for a given k. Intuitively one can expect lesser
number of generations for a higher value of duplication length. We define these
ideas more formally in the following section.

6.3 Results and Discussions
Balanced and Unbalanced Segments

Definition 6.7. Consider the string replication system TRc given in Definition 6.6.
A symbol a ∈ vi is called balanced if it belonged to some y j or y∗j for j < i, and
otherwise it is unbalanced.

Note that all symbols in Z = YY ∗ given in Lemma 6.4 are balanced.

Definition 6.8. Let u be a substring of vi. Let a and b be the symbols preceeding
and succeeding u in vi respectively. u is called a balanced segment of vi if all the
symbols in u are balanced and a, b are unbalanced.

Let u be a substring of vi. Let a and b be the symbols preceeding and succeeding u

in vi respectively. u is called an unbalanced segment of vi if all the symbols in u are
unbalanced and a, b are balanced.

Note that in the case where u is a prefix or suffix of vi, we ignore symbol a and b

in Definition 6.8 accordingly. Also note that all the symbols in v0 are unbalanced,
hence v0 is an unbalanced segment. We will now investigate the generation of
balanced segments in vi for i > 1 for the string replication system TRc described in
Definition 6.6.

Generation of Balanced segments
In every operation TRc (vi) for i > 0, either a new balanced segment is added or
some previously existing balanced segment(s) is modified. The operation TRc (vi)
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Figure 6.1: Red and green segments represent unbalanced and balanced segments in
vi respectively. Each a jni(1 6 j 6 qi + 1) represents a unbalanced segment. Each
µ jni(1 6 j 6 qi) represents a balanced segment. Note qi 6 i.

uniformly and randomly chooses a substring yi of length di in vi and replicates it
to give vi+1 = xiyiy

∗
i zi. The addition and modification of balanced segments is

described below.

1. Addition: If all the symbols in yi are unbalanced and the symbols before
and after yi are both unbalanced in vi, then yiy

∗
i is added as a new balanced

segment in vi+1, thereby increasing the number of balanced segments in vi+1

by 1.

2. Modification: If some of the symbols in yi are balanced or yi is pre-
ceeded/succeeded by a balanced symbol in vi, then yiy

∗
i modifies previously

created balanced segment(s), thereby not increasing the count of balanced
segments in vi+1.

Addition and modification operations are described in Figure 2 and Figure 3 respec-
tively. It is clear from the description of addition andmodification above, that vi has
at most i balanced segments.

Figure 1 shows balanced (green) and unbalanced (red) segments in vi. Here µ j and
a j represent the fraction of vi covered by the j-th balanced and unbalanced segments
respectively. Therefore,

ni =

qi∑
j=1

µ jni +

qi+1∑
j=1

a jni (6.5)

where qi is the number of balanced segments in vi. Let Ni denote the total length of
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Figure 6.2: Addition Operation: All the symbols of yi are unbalanced in vi and the
symbol before and after yi are also unbalanced in vi. yiy

∗
i is added as a new balanced

segment in vi+1. Note that the count of balanced segments is 1 more than the count
of balanced segments in vi.

balanced segments in vi, i.e. Ni =
∑qi

j=1 µ jni .We also note that

ni − Ni =

qi+1∑
j=1

a jni . (6.6)

Let Xi and Yi denote the total length of unbalanced and balanced segments in yi,
respectively, and note that Ni, Xi and Yi are random variables that satisfy

Xi + Yi = |yi | = di

Ni+1 = Ni + 2Xi + Yi

= Ni + Xi + di .

In turn, this readily implies that

E[Ni+1 |Ni, a1, a2, · · · , aqi+1] = Ni + di + E[Xi |Ni, a1, a2, · · · aqi+1]. (6.7)

We compute E[Xi |Ni, a1, a2, · · · aqi+1] for di = d for all i and some d > 0.
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Figure 6.3: Modification Operation: Some symbols of yi are balanced in vi. Hence
yiy
∗
i in vi+1 is a modification of the previously created balanced segments in vi. Note

that the count of balanced segments in vi+1 has not increased from vi. In fact in this
particular instance, it has decreased.

Lemma 6.9. Let di = d. Then ∀ i > 0, the length of each balanced segment in vi is
at least 2d.

Proof. Observe that for any i, any newly added balanced segment in vi, i.e., one that
was generated by the most recent application of TRc , is of length at least 2d.

We derive E[Xi |Ni, a1, a2, · · · aqi+1] by using

E[Xi |Ni, a1, a2, · · · aqi+1] = Σ
d
l=1P(Xi > l |Ni, a1, a2, · · · aqi+1). (6.8)

Lemma 6.10. For di = d ∀i, yi can overlap with at most 2 balanced segments in vi.

Proof. From Lemma 6.9, the length of each balanced segment in vi is at least 2d.
We have the following 4 cases:

• Case 1: yi does not overlap with any balanced segment in vi.

• Case 2: either some prefix of yi overlaps with a suffix of a balanced segment
j for some j in vi or some suffix of yi overlaps with a prefix of a balanced
segment j for some j in vi but not both.
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• Case 3: yi is a substring of some balanced segment j.

• Case 4: some prefix of yi overlaps with a suffix of a balanced segment j and
some suffix of yi overlaps with a prefix of next balanced segment after j in vi

for some j.

In case 2 and 3 above, yi overlaps with 1 balanced segment and in case 4 yi overlaps
with 2 balanced segments.

We derive E[Xi |Ni, a1, a2, · · · aqi+1] by using

E[Xi |Ni, a1, a2, · · · aqi+1] = Σ
d
l=1P(Xi > l |Ni, a1, a2, · · · aqi+1). (6.9)

Using Lemma 6.10,

P(Xi > l |Ni, a1, a2, · · · , aqi+1) =

qi∑
j=2

I(a jni > l)
a jni + d − 2l + 1

ni − d + 1
+I(a1ni > l)

a1ni − l + 1
ni − d + 1

+ I(aqi+1ni > l)
aqi+1ni − l + 1

ni − d + 1
(6.10)

I(.) represents the indicator function.
Solving (6.9) and (6.10) and using (6.6) gives

E[Xi |Ni, a1, a2, · · · , aqi+1] =
(ni − Ni − a1ni − aqi+1ni)d

ni − d + 1
+

min (a1ni,d)∑
l=1

a1ni − l + 1
ni − d + 1

+

min (aqi+1ni,d)∑
l=1

aqi+1ni − l + 1
ni − d + 1

.

To do numerical simulations for the recursive Eq. (6.7), we can omit a1 and aqi+1

by approximating E[Xi |Ni, a1, a2, · · · , aqi+1]. We do this by stitching the end of vi

with its start, thereby making vi circular. Let X′i denote the number of unbalanced
symbols chosen in this circular version of vi. In turn, P(X′i > l |Ni, a1, a2, · · · , aqi+1)

is given by

P(X′i > l |Ni, a1, a2, · · · , aqi+1) =

qi∑
j=2

I(a jni > l)
a jni + d − 2l + 1

ni
+

I((a1 + aqi+1)ni > l)
(a1 + aqi+1)ni + d − 2l + 1

ni
(6.11)
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Figure 6.4: Number of generations (g) needed such that Ng

ng
= (1−ε) for ε = 0.00005,

|v0 | = 10000 and di = d ∀i > 0.

Solving (6.9) and (6.11) and using (6.6) gives

E[X′i |Ni, a1, a2, · · · , aqi+1] =
(ni − Ni)d

ni
= E[X′i |Ni]

WecannowuseE[X′i |Ni, a1, a2, · · · , aqi+1] as an approximation forE[Xi |Ni, a1, a2, · · · , aqi+1].

Using (6.7) we get,

E[Ni+1 |Ni] ≈ Ni + d +
(ni − Ni)d

ni
. (6.12)

Figure 4 is obtained by using E[Ni |Ni−1] as approximation for Ni and N0 = 0 in
Eq. (6.12). It shows the number of generations g needed such that Ng

ng
= 1 − ε for

ε = 0.00005, |v0 | = 10000 for different values of d.

When di = d ∀i, ∆(k,g) using Eq. (6.4) is given by

∆(k,g) =
2(k − 1)g

|v | + gd − k + 1

We also see that
lim
g→∞
∆(k,g) =

2(k − 1)
d

. (6.13)

Further since ∆(k,g) is an increasing function in g for |v | > k − 1, we have for a
given k and d that ∆(k,g) 6

2(k−1)
d , when |v | > k − 1. Figure 5 shows the variation

of ∆(10,g) with g for different values of d at |v | = 10000. We see from Figure 5 that
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450, 500. and |v | = 10000. We can see that a larger value of d diminishes the
boundary effects.

∆(10,g) ≈ 0.09 for d = 200 for g > 1000 generations. Therefore |R10
X −Q10

X | 6 0.09
for d = 200 after 1000 generations. For d = 200, Figure 4 implies that after approx-
imately 7000 generations we have that at least (1−0.00005) fraction of the sequence
is balanced. Further, since R10

X 6 Q10
X +∆(10,g), Figure 5 implies that R10

X 6 0.09005.
Similar bounds on R10

X can be derived for other values of d using Figures 2 and 3.
Note that the choice of ε = 0.00005 for generating the plot in Figure 4 is arbitrary
here and similar plots can be obtained for other values of ε by using (6.12). More-
over, similar bounds can be obtained for other values of k by calculating ∆(k,g).

Unbalanced Shorter Sequences
Inversion symmetry however is not observed in the shorter segments of the genome
[41]. For example, if a segment of length 5000 is selected from our genome, it
will not possess inversion symmetry upto k = 10. Our generative model based on
reverse complement tandem duplication is also in consensus with this experimental
observation. More precisely, as more and more duplication happens, the k-mers
that became balanced in the creation of yy∗ will pull apart in future generations if
duplication happens somewhere inside yy∗. This distance between a k-mer and its
reverse complement arises due to extra duplications that happen in the segments
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that lie in between them. As a result, the whole sequence remains balanced however
the shorter segments inside it become unbalanced. This is illustrated using the
following example:

Example 6.11. Consider

v = GTCCGAGCACTGAAGTCA.

Let y denote the underlined substring of v. u is obtained by duplicating y in v in
reversed complement tandem. Therefore

u = GTCCGAGCACTGATCAGTGCTAGTCA.

y∗ is denoted by the bold portion in u. Let us now focus on the 2-mer CA and its
reverse complement TG in y and y∗ respectively. We note that |y | = 8. Below we
highlight this 2-mer and its reverse complement in yy∗ in u.

u = GTCCGAGCACTGATCAGTGCT AGTCA.

Now if we further duplicate the underlined portion in

u = GTCCGAGCACTGATCAGTGCT AGTCA

to get

u′ = GTCCGAGCACTGATCAGCTGATCAGTGCT AGTCA

We observe that in u CA and TG were apart by 8 symbols in u and by 16 symbols
in u′. More such duplications in between CA and TG in the future generations will
pull them further apart. Note that the duplication length chosen here cannot be more
than 8 as the distance between CA and TG is 8.

We analyze the phenomenon explained in Example 6.11 above by defining ∆0 as the
initial distance between a k-mer and its reverse complement when they are created,
and ∆i as their distance after i generations. The expected behavior of ∆i can be
modeled by the equation below:

E[∆i+1 |∆i] = ∆i(1 +
d

ni − d + 1
). (6.14)

For ni � d, E[∆i+1 |∆i] ≈ ∆i(1+ d
ni
).Note ni+1 = ni+d. Therefore by approximating

∆i with E[∆i |∆i−1], we have

E[∆m |∆0] ≈ ∆0(1 +
md
n0
). (6.15)

Note here d 6 ∆0 6 2d − k − 1.
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Example 6.12. For k = 10, n0 = 10000 and d = 200. Using (6.15) above,
we have E[∆m |∆0] ≈ ∆0(1 + 0.02m). Now using 200 6 ∆0 6 389, we have
200+4m 6 E[∆m |∆0] 6 389+7.78m.We see that 200+4m = 5000, for m = 1200,
which implies that after 1200 generations E[∆1200 |∆0] > 5000. In Figure 4, we see
that for d = 200, Ng

ng
> 0.99995 only after about 7000 generations which implies that

the balanced k-mers would have been pulled further apart and will not be localized
in smaller blocks of length 5000 inside the sequence.

6.4 Experimental Findings
In Figure 6, we compare the experimentally observed value of Rk

X for differ-
ent sequences X and 1 6 k 6 10. The sequences chosen are chromosomes
X, 14, 17, 21 (shown by solid lines) in the human genome (Hg38), sequences gener-
ated by tandem reverse complement duplication system discussed in the chapter for
d = 20, 50, 200, 500 (shown by dashed lines). We observe that tandem at d = 200 is
well in consistence with ChrX and Chr14. We also observe that d = 50 tandem is
in consistence with Chr17 and Chr21 for k = 9, 10. We have further added 2 more
plots (shown by dotted lines) that model reverse complement duplications done
in an interspersed manner. In interspersed duplication, unlike tandem the chosen
substring is replicated at any location and not necessarily next to the original string.
An example illustrating interspersed duplication is given below

Example 6.13. Consider a seed v = AGTTGGCA, an instance of generating new
strings by reverse complement interspersed duplication process on v is

Generation 1 : v = AGTTGGCA → v′ = AGTTGGCCAAA.

Generation 2 : v′ = AGTTGGCCAAA → v′′ = AGTTGCTGCCAAA.

In generation 1, we choose a 3-length substring of v highlighted in bold and replicate
its reverse complement in an interspersed manner highlighted by an underline to
give v′. In generation 2, we choose a 2-length substring of v′ and replicate its
reverse complement to give v′′. In generation 1 and generation 2 the replication or
duplication length is 3 and 2 respectively.

In the plot in Figure 6, we have included two plots where the sequences are generated
by interspersed duplication and the duplication length is 50 and 500. The site where
the reverse complement duplicate is placed is chosen uniformly and randomly in
the interspersed model. We see that at d = 500, interspersed duplication is in
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Figure 6.6: Comparison of Rk
X value calculated experimentally in chromsomes X,

14, 17 and 21 (solid lines) with those obtained by reverse complement tandem
(dashed lines) and interspersed (dotted lines) duplications for different duplication
lengths d.

consistence with values observed in ChrX and Chr14 for k 6 7, whereas at d = 50
there seem to be no consistence with any of the suggested chromosomes.

These plots suggest that reverse complement duplications can potentially be playing
a key role in the evolution of genome. We believe that the inconsistencies with
chromosome data that are seen for some k′s can be attributed to point mutations
which was not taken into account.

6.5 Conclusion
We showed that the reverse complement tandem duplication model generates se-
quences satisfying the 2nd Chargaff Rule. Moreover, even when the length of
duplication is chosen to be a constant d which is very small as compared to the
sequence length, this symmetry can be obtained using our model. Further, we pro-
vided estimates on the number of generations needed to create this symmetry given
a choice of duplication length(s). In our analysis, we found an upper bound given
in (6.4) on the disruption caused by boundary effects.

We see that the error due to boundary effect given in Eq. 6.13 for d = 50 and k = 10
is 0.36. However, we note from Figure 6, the R10

X value obtained experimentally
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when we generate sequences from our model for d = 50 is 0.11. This means that
the theoretical bound on Rk

X given by Rk
X 6 Qk

X + ∆(k,g) obtained in this chapter is
loose for lower values of duplication length d (d < 150). For such lower values of
d, a finer boundary effect analysis is needed and is deferred to future work. Another
interesting question is how does the value of d affect the probability distribution of
k-mers observed using this model of sequence generation and comparing it with the
k-mer distribution observed in real DNA.
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C h a p t e r 7

CANCER CLASSIFICATION FROM HEALTHY DNA

7.1 Introduction
The human genome has evolved over time by an interplay of mutational events. An
enhanced understanding of the genome’s evolution has numerous direct and prac-
tical applications in improving healthcare, discerning ancestry, materializing DNA
storage and designing synthetic biology devices for computation. Traditionally, the
genome has been viewed as a time-independent source of information, and hence
much of the genomic research has been focused on discovering variants that cause
a certain phenotype. Linkage studies have discovered genes forMendelian diseases
such as Cystic Fibrosis [104], Huntington disease [105], Fragile-X syndrome [106]
and many others [2] by investigating genetic variants across families. For more
complex diseases, GenomeWide Association Studies (GWAS) [107] can be used to
discover large amounts of risk factors working in conjunction. The broader scope
of GWAS has led to the discovery of several new genes and pathways [3], but many
diseases still remain unexplained. Instead of searching for disease-causing variants,
we view the genome as a time-dependent signal, searching for indicators for how
the genome is mutating over time. This gives rise to the following question - What
are the possible ways to measure the evolution of mutations? Put differently, how
can we quantify the accumulation of mutations in the genome of an individual?

Our approach for extracting time-dependent information about a person’s mutation
history is to focus on the tandem repeat regions of this person’s healthy genome. We
have studied two types of mutations in the genome: tandem duplications and point
mutations. Tandem duplications involve the consecutive repetition of a subsequence
(e.g. TCATG → TCATCATG). Point mutations, which include substitutions,
insertions, and deletions, are single changes in the DNA (e.g. ACTG → ACAG).
When these two processes occur in the same location, point mutations can propagate
through tandem duplications, leaving a change in the repeated sequence (see Figure
7.1a and Methods section). This allows us to construct a likely history of tandem
duplications and point mutations. Slippage events can cause regions with many
tandemduplications [50], which are a convenient locations to observe this interaction
between mutation processes. In a sense, these tandem repeats regions are a nature
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given repetition error-detecting code [108], where the point mutation errors in the
copies store information about the history of the evolution of these regions. These
repeat regions effectively characterize an evolution channel, which can shed light
on the accumulation of mutations in the genome.

7.2 Cancer Genomics
Cancer is currently the second leading cause of death worldwide [52]. Cancer
is caused by an intricate mixture of complex factors whose inter-relations are not
well understood. While the roles of environmental and hereditary factors are well
accepted, recent studies suggest that two-thirds of the mutations in human cancers
are caused by replication errors [53].

Most GWAS studies on cancer risk have focused on differences between healthy
(i.e., normal) and tumor DNA samples, namely in Single Nucleotide Polymorphisms
(SNPs) and Copy Number Variations (CNVs). These studies have discovered tumor
suppressor genes like BRCA1, BRCA2, TP53 and oncogenes like HER2 and RAs
family [54]. Previous work has also shown that tumor genomes have significantly
more genes with repeat instabilities, linking microsatellite instability to colorec-
tal [109] and other cancers [109–114]. Another recent approach identified 21
signatures for mutational processes in human cancer using healthy genome based on
96 substitution classifications that were defined by 6 single base substitution classes
and the sequence context left and right of the mutated base [115].

Unlike previous works, we aim to study cancer risk factors while using a healthy
genome, without using the genome of the tumor itself, which opens the door to
cancer prediction and risk assessment. To do this, we analyzed tandem repeat
region data in different cancer types from The Cancer Genome Atlas (TCGA) [57].
We estimated the number of point mutations (m) and tandem duplications (d) in each
tandem repeat region by predicting the evolutionary history of those regions [56,
116] (see Figure 7.1a). We used the aggregate of this evolution information to
form what we call the mutation profile of the genome. We then used a gradient
boosting algorithm to learn the association between these mutation profiles and
the probability of developing specific cancers [58]. The association between the
mutation profile and the cancer-type signifies the presence of a cancer-type “signal”
in the mutation profiles of the healthy genome, which could be useful for future
cancer prediction and early cancer detection.
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7.3 Results
We hypothesized that different genetic mutation processes accounted for varying
risks of developing cancer, and that these processes would leave detectable signals
in an individual’s profile. Rigorous verification of this hypothesis would require
DNA samples from cancer patients before the onset of their cancer. Such a dataset is
not currently available, but blood derived DNA is accessible on The Cancer Genome
Atlas (TCGA) [57], and closely resembles the DNA of cancer patients before they
developed the disease. From TCGA, we gathered 3874 unamplified blood derived
WXS samples which spanned 12 cancers: TCGA-GBM, LUAD, LUSC, PRAD,
PAAD, STAD, HNSC, BLCA, KIRC, LGG, SKCM, THCA (Table 7.1A (Column
2), Supplementary Files 1-12). We usedmicrosatellites (tandem repeats with pattern
lengths6 10 bp) with at most 100 repeats to obtain mutation profiles (see Methods,
Figure 7.1).

Pairwise Cancer Classifiers - Using only Blood Derived Normal Samples
Here we use 3843 unamplified blood-derived normal samples spanning 11 cancers
for our analysis (see Table 7.1A, Supplementary Files 1-12). We did not use the
blood derived samples from TCGA-KIRC in this analysis as we only had 31 samples
for KIRC which was not enough to construct a reliable classifier. We verified the
existence of cancer-type signalswithin themutation profiles of blood-derived normal
samples by training cancer classifiers using xgboost [58] and testing their accuracy
on separate validation-set data (see Methods, Code/Software, Figure 7.2).

As can be seen in Figure 7.2, mutation profiles of blood-derived normal DNA of
GBM patients shows strongly distinctive signals from the rest of the tested cancers
with classification accuracies ranging in between 75% for HNSC to as high as
93% for SKCM and PAAD. A similar observation is made for both SKCM and
PAAD as they are distinguishable from all of the other cancers with more than
71% accuracy. For other cancers - STAD, BLCA, LGG, PRAD, LUAD, THCA,
LUSC, HNSC, the distinguishing signal is much weaker for many cancers. For
example, LGGwhen compared against PRAD, BLCA, LUAD, LUSC gives pairwise
accuracies of 59%, 64%, 59% and 58% respectively. Cancers with risk factors that
emit different mutation profiles are easier to distinguish, resulting in more accurate
classifiers. Hence, accuracy gives a notion of distance on the scale of 50% (close,
indistinguishable) to 100% (far, different). The order of the cancers in the display
minimizes the distances between neighboring cancers using the travelling salesman
problem (TSP) [117], giving a likely low dimensional projection of the features
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being learned by the classifiers. The observed accuracies and specificity/sensitivity
observed in Figure 7.2 confirm the presence of cancer-type signal in the blood-
derived normal DNA.

The clustering of cancers in Figure 7.2 led us to define four cancer classes: Class 1 =
[GBM], Class 2 = [SKCM], Class 3 = [PAAD] and Class 4 = [LUAD, LUSC, PRAD,
STAD, HNSC, BLCA, LGG, THCA]. The seriation matrices in Figure 7.3 represent
the binary classifier accuracies and sensitivity/specificity for these different classes.

Cancer Classification Profiles
To assess a patient’s propensity of developing a class of cancers, we trained a
multiclassifier for the four cancer classes using gradient boosting. This classifier
uses a mutation profile to predict the relative probability of each class of cancer.
Figure 7.4 shows the mean and standard deviation of these probabilities when tested
on patients from each cancer class. Class 1, 2, and 3 all give large probabilities for
their respective classes. Classes 2 and 3 give weaker signals because they are closer
to Class 4 than Class 1 is (see Figure 7.3). Individuals in Class 4 in the test set
have similar scores for Classes 2, 3 and 4, showing that Class 4’s signal is not very
distinct from Classes 2 and 3. This can again be attributed to the closeness of Class
4 to both Class 2 and Class 3 in the seriation diagram in Figure 7.3. Figure 7.9 gives
the classification profile for Class 4 individuals when training only on Classes 1, 2
and 3 individuals. Again, Class 4 seems to imitate Classes 2 and 3, but the high
standard deviation in Class 1 probability suggests Class 4 cancer patients can also
have a high probability for Class 1 cancers.

Effect of Adding NAT samples on classifiers
Recent studies have shown positive associations of Solid Tissue Normal (Normal
Adjacent to Tumor (NAT)) samples on TCGA with the tumor DNA of cancer
patients [118, 119]. We added 687 unamplified NAT samples as mentioned in Table
7.1A (Column 3) in our analysis to check if their presence is useful in discovering a
stronger cancer-type signal. More precisely, we combined the 3874 blood-derived
and 687 NAT samples to construct the pairwise classifiers. Here, we also covered
TCGA-KIRC as nowwe had 210 (179 NAT and 31 blood-derived) samples that were
enough to build reliable classifiers. We didn’t observe any significant improvement
in cancer signal detection by adding NAT samples over only using blood-derived
normal samples and found the same cancer classes that we discovered previously
(see Figure 7.5). Further, we found that TCGA-KIRC belonged to the same class
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as TCGA-GBM showing strongly distinctive signal from the other 10 cancers (see
Figure 7.5, Figure 7.10, Figure 7.11).

Analysis of Amplified Samples
Amplification techniques have been shown to bias tandem repeat information [120],
especially in TCGA data [121]. To control for this, we separately analyzed am-
plified samples. Figure 7.6 shows the seriation diagrams for accuracy and sensi-
tivity/specificity of pairwise classifiers built using 525 samples amplified by MDA
technology. Because of the limited data, this test only covered TCGA-GBM (brain),
TCGA-OV (ovary) and TCGA-LAML (leukemia) and both the normal DNA types,
i.e. blood-derived and solid tissue normal (NAT) were used (Table 7.1B, Supple-
mentary Files 13-15). The high accuracy and sensitivity/specificity values in these
diagrams suggest a strong cancer-type signal in the mutation profiles of the healthy
DNA. Further, we also generated the classification profiles using these amplified
samples for individuals with brain, ovary and leukemia cancer. Figure 7.7 shows
the mean and standard deviation of the predicted cancer probabilities for these three
populations. The highest probability cancers correspond with the cancers that the
patients were diagnosed with, affirming that healthy DNA contains a cancer-type
signal.

Genome analysis for the results presented in Figures 7.2-7.8 and Figures 7.9-7.18
was done using samtools [122] (see Methods, Code/Software) and the pipeline
presented in Figure 7.1b. We also verified these results for unamplified samples by
using another genome analysis tool for short tandem repeats (STR)- hipSTR [123]
that only detects tandem repeats with pattern lengths at most 6 (see Figure 7.19).

Driver Genes
Studies in the past have identified driver genes like TP53, BRCA-1, BRCA-2, etc.
We considered 723 such genes that are listed in Supplementary File 16 obtained
from Cancer gene census - COSMIC [124, 125].

To test whether these regions provided special information, we filtered our mutation
profiles to only use tandem repeats that overlapped with driver gene regions. We
conducted this experiment for the 4561 unamplified samples and 525 amplified
samples separately. Figure 7.8 shows a comparison the classifiers trained on these
filtered mutation profiles and mutation profiles which contain all the features except
those in the filtered profiles. Darker cells in this figure correspond to large differences
in the accuracy of the classifiers, indicating that these signals exist outside of driver
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gene regions. We notice these darker cells especially for TCGA-PAAD (pancreas)
and TCGA-SKCM (skin). We also see noticeable differences when TCGA-OV
(ovary) is compared against TCGA-GBM (brain) and TCGA-LKCM (leukemia).
The driver-gene classifiers always performed worse than the classifiers trained on
the rest of the genome, indicating that the signal exists both inside and outside driver
gene regions.

7.4 Discussion
Early Cancer prediction
We have shown that the mutation profiles of the blood-derived normal genomes of
cancer patients contain a cancer-type signal (Figures 7.2 - 7.4). It is reasonable
to assume that the mutation profiles of cancer-free patients may also contain these
signals, and we can use our classifier to quantify their presence. The cancer classi-
fication profiles given by this classifier could be used to screen individuals for those
who may benefit from more comprehensive and expensive cancer detection tests.

Accumulation of Mutations
Searching for information-containing features within 3 billion nucleotides is a
formidable task. This has traditionally been simplified by comparing individu-
als to extract variants, which compresses the genome into a smaller set of features
to analyze. These differences, known as SNPs and CNVs, are central to both
Mendelian studies [2] and GWAS [3, 54, 107].

This form of genome compression loses crucial information about how the genome
is changing by only considering differences in the genome’s current state. Every
individual’s genome passes through a distinct evolution channel that is controlled
by hereditary, environmental and stochastic factors. These evolution channels differ
among the population and can give rise to different risks of disease, but we cannot
easily identify these differences from the single-generation SNP and CNV analy-
sis used in GWAS. Mendelian studies may provide insight into inter-generational
processes, but do so at the cost of requiring inter-generational data, which severely
limits the scope of a feature search. Even with additional data, Mendelian studies
still lack the ability to detect differences in mutation processes that occur throughout
one’s lifetime.

Mutation profiles are generated without any comparative analysis, reducing the data-
demand. Instead, the tandem repeat regions in a single genome provide a window
into its history, capturing information about the individual’s evolution channel. This
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ability to reconstruct a genome’s history from repeat regions is lost when studies
only view differences between individuals. The use of mutation profiles expands our
access to time-dependent traits which may be essential to understanding developed
diseases like cancer.

Sequencing Technology Limitations
TCGA samples are obtained from Illumina platforms with a coverage depth 30-40X.
The read lengths used are short ranging between 100-500 bp. This poses a problem
in the detection of longer tandem repeats [126–128]. In our analysis, we only used
repeats with pattern lengths 6 10 bp and number of copies not greater than 100.

7.5 Methods
WXS data
Weused exome data from “blood derived normal” and “solid tissue normal” samples
in the TCGA [57] database, details about which are provided in the Supplementary
Files 1-15. The BAM file for each sample was aligned against hg38. All the
autosomes from each sample were recovered using samtools [122].

Algorithms
Our algorithms are partitioned to Part A and Part B (see Fig. 7.1b). Part A is only
performed once, where Part B is performed whenever cancer prediction is required.
In Part A, a dataset of healthy DNA is first processed by the Benson [116] and
Tang et al. [56] algorithms to deduce the mutation profiles. Then, these vectors are
aligned by a dynamic programming algorithm to resolve missing regions. Finally,
the aligned vectors are fed into a training algorithm to produce a classifier. In
Part B, this classifier is applied over any individual’s genome, to assess the overall
probability to contract any of the cancer in question.

Tandem Repeat Detection and Duplication History Estimation
Tandem duplications are consecutively repeated patterns caused by replication slip-
page events [48, 49], in which a pattern is duplicated next to the original. For
example, the following shows two tandem duplications of length 4, where the du-
plicated part is highlighted in bold. The underlined segment is the microsatellite or
repeat region.

ATGACGTGAGT⇒ ATGACGTGAGTGAGT⇒ ATGACGTGAGTGAGTGAGT. (7.1)
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The pattern of a region is the short strand which repeats itself. The copy number d

of a repeat region indicates the number of times that the pattern is repeated. For
example, the pattern of the underlined repeat region in the right hand side of (7.1)
is GTGA, and its copy number is 3.

Microsatellites are usually accompanied by various types of errors: substitutions
(replacement of one nucleotide by another), deletions (omission of a nucleotide), and
insertions (addition of a nucleotide). The total number of substitutions, deletions,
and insertions in a repeat region is called the error number m. For example,
the following shows the contamination of (7.1) by 1 substitution, 1 deletion, and
1 insertion.

ATGACGTGAGTGAGTGAGT⇒ ATGACGTTAGTGAGTGAGT

⇒ ATGACGTTAGGAGTGAGT

⇒ ATGACGTTAGGAGTGAGGT. (7.2)

Clearly, the copy number of (7.2) is 3 and its error number is 3, and hence its
mutation index is (m, d) = (3, 3). In the first step of Part A we use the Benson
Tandem Repeat Finder to detect repeats with consensus pattern size at most 10 and
copy number at most 100. These size limitations mean we only consider regions
smaller than 1000 nucleotides. The single block version of the duplication history
estimation algorithm given in Tang et al. [56] was then applied to each tandem
repeat region to obtain the respective mutation index = (m, d). The aggregation of
these (m, d) values gives a vector twice the size of the number of repeat regions,
which we call an individual’s mutation profile. Since, TCGA data is WXS, we only
calculated a unique mutation profile of an individual’s exome.

Alignment
Following the completion of theBenson andTang et al. algorithms, it was sometimes
the case that certain repeat regions appeared in some patients and did not appear
in others. In addition, minor differences were observed in the patterns of identical
repeat regions in different individuals. As a result, a technical difficulty arose in
handling the input to the learning algorithm. Consider the following two patients,
in which the repeat regions are underlined.
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Patient 1: AAAAAAACGATCGAGTTCAGTATTGCCGCGAGCG
Benson

Tang et al.
=⇒ (A : (0, 7), CG : (1, 4))

Patient 2: AAAAAAAACGACGTACGTACGTATTGCCGCGCG
Benson

Tang et al.
=⇒ (A : (0, 8), CGTA : (0, 3), CG : (0, 3))

The success of machine learning depend on the detection of patterns in specific
positions of feature vector, so entries which correspond to the same repeat region
must also be placed in the same position for all inputs. This is clearly not the case in
the above example, in which the second entries of the vectors correspond to different
repeat regions.

This issue is resolved by using a dynamic programming alignment algorithm. In this
algorithm, a similarity score is computed recursively for each possible alignment,
and the alignment which leads to the best possible score is chosen. Each possible
alignment is defined as the sum of normalized edit-distances1 between the patterns
of all respective pairs. Further, the distance between any pattern and a “missing
pattern”, denoted by ‘–’ below, is defined as 0.4. Namely, two patterns whose
respective normalized edit distance is less than 0.4 were considered to be equal
for the sake of the alignment. For example, the vectors above are aligned in the
following way.

(A : (0, 7), CG : (1, 4))
Alignment
=⇒ (A : (0, 7), – , CG : (1, 4))

(A : (0, 8), CGTA : (0, 3), CG : (1, 3))
Alignment
=⇒ (A : (0, 8), CGTA : (0, 3), CG : (1, 3))

(7.3)

The score for the alignment (7.3) is de(A, A)+de(–, CGTA)+de(CG, CG) = 0+0.4+0 =
0.4, where de denotes edit distance. For comparison, the alternative alignment

(A : (0, 7), CG : (1, 4))
Alignment
=⇒ (A : (0, 7), CG : (1, 4) , – )

(A : (0, 8), CGTA : (0, 3), CG : (1, 3))
Alignment
=⇒ (A : (0, 8), CGTA : (0, 3), CG : (1, 3))

(7.4)

1That is, the minimal number of insertions, deletions, and substitutions that are required to
transform one pattern to the other, divided by the average length of the sequences.
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has score of de(A, A)+de(CG, CGTA)+de(–, CG) = 0+2/3+0.4 ≈ 1.06, and hence (7.3)
is preferred over (7.4).

The mutation profile of each individual was aligned against the mutation profile of
the reference genome (hg38) by using the method that is mentioned above. The
repeat regions that were missing in the reference genome were omitted from these
aligned mutation profiles. Further, given the aligned mutation profiles, every ‘–’ is
replaced by (0, 0). This gave aligned mutation profiles of the same size that can now
be used as features for the learning part described next.

Machine Learning
The aligned mutation profiles were used as features for the learning algorithm.
Machine learning classifiers for distinguishing cancers were obtained using two
approaches:

Pairwise Classifiers

We trained a binary classifier for every pair of types of cancer, generating
(12

2
)
= 66

pairwise classifiers for unamplified samples and
(3
2
)
= 3 pairwise classifiers for

amplified samples. The accuracy in either of those classifiers is used as a measure
for the “uniqueness” of the mutation profiles that cause a certain type of cancer, and
can additionally be seen as a distance measure between different types of cancer.
We used xgboost [58] algorithm at default parameters with max-depth = 2, and
performed 4-fold validation to build each of these pairwise classifiers.

Multiclassifier

This was built using xgboost ‘multi:softprob’ parameter with max-depth = 2 and
predicted the probability of all the cancers simultaneously. Again 4-fold cross
validation was performed to avoid over-fitting.

Code/Software
The code and necessary documentation for the pipeline used is available at http:
//paradise.caltech.edu/~sidjain/Codes.tar.gz.

Data Availability
The BAM files for WXS samples of cancer patients used in the study were obtain
from The Cancer Genome Atlas (TCGA) [57]. These files have controlled access

http://paradise.caltech.edu/~sidjain/Codes.tar.gz
http://paradise.caltech.edu/~sidjain/Codes.tar.gz
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and cannot be availed publicly. However, request to access TCGA controlled data
can be made via dbGap [129] (accession code: phs000178.v1.p1). The file names
for the analyzed samples are given in Supplementary Files 1-15.
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Figure 7.1: (a) Two different evolution histories for the tandem repeat region
ACGT ACGT ACAT AGAT with pattern length 4 and repeat region length 16. In
History 1, only 2 point mutations were needed (marked with green and red respec-
tively). In History 2, 3 point mutations were needed: 1 marked with green and
2 marked with red. In our approach, we would consider History 1 to be more
likely as it involves lesser number of point mutations. Therefore, for this tandem
repeat region we have that m = 2 and d = 4. (b) The workflow of our algorithm.
In Part A a classifier is trained based on the mutation profiles generated from the
healthy DNA of cancerous individuals. This part in only performed once per train-
ing set. In Part B, the resulting classifier is applied over a given genome to assess
an individual’s inclination of developing different cancers.
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Figure 7.2: The matrix on the left contains the pairwise validation accuracies of
classifiers built by using 3843 blood-derived normal DNA samples covering 11 dif-
ferent cancer types. These cancer types are TCGA-SKCM (skin), PAAD (pancreas),
STAD (stomach), BLCA (bladder), PRAD (prostate), LGG (brain_lgg), LUAD
(lung), THCA (thyroid), LUSC (lung_sq), HNSC (head_neck), GBM (brain). Each
cell in the accuracy seriationmatrix represents the average validation accuracy of the
binary pairwise classifiers. Each pairwise classifier between cancer X and cancer
Y (X,Y) was constructed using 4-fold cross-validation with patients of each cancer
type. These accuracies can be interpreted as distances. The darker the cell, farther
are the cancers being compared. The darker rows corresponding to brain, skin and
pancreas are indicative of the presence of cancer-type signal in the blood-derived
normal (healthy) DNA of cancer patients. The diagonal entries in the seriation
matrix represent the accuracies when half of the patients of cancer X were labeled
0 and half of the patients of the same cancer X were labeled 1. As one can expect,
the average test accuracy for such classifier should be around 50%. The value in the
cell corresponding to the row “pancreas” and the column “prostate” signifies that
an average of 74% of the people were correctly classified in each validation pass.
The matrix on the right, contains the sensitivity/specificity values. Each cell in the
sensitivity/specificity seriation matrix represents the sensitivity value when the row
cancer is considered positive and the column cancer is considered negative. It can
also be regarded as specificity when the row cancer is considered negative and the
column cancer is considered positive. Sensitivity is defined as TP/(TP + FN) and
specificity is defined as T N/(T N + FP), where TP = True Positive, FP = False
Positive, T N = True Negative, FN = False Negative. A value of .77 in the row
“prostate” and the column “pancreas” means that 77% of the prostate patients in the
test set were truly classified as prostate type (sensitivity when prostate is considered
positive). A value of .73 in the row “pancreas” and the column “prostate” means
that 73% of the pancreas patients in the test set were truly classified as pancreas type
(specificity when prostate is considered positive). The seriation ordering is obtained
by solving TSP (i.e., the Travelling Salesman Problem) exhaustively [117].
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Figure 7.3: These seriation matrices show 4-fold validation accuracy and sensitiv-
ity/specificity for the four main clusters of cancers in Figure 7.2 generated using
3843 blood-derived normal samples. Class 1 = (brain), Class 2 = (skin), Class 3 =
(pancreas), Class 4 = (stomach, bladder, prostate, brain_lgg, lung, thyroid, lung_sq,
head_neck).

Figure 7.4: Mean and standard deviations for the cancer classification profiles of
individuals inClass 1, Class 2, Class 3 andClass 4 (viewing left to right). To generate
these profiles, we a trainedmulticlassifier on all four classes of cancers using gradient
boosting. We then used this multiclassifier to obtain cancer classification profiles
for a different set of individuals reported the average results for each cancer class.
Class 1 individuals show a high probability for Class 1 cancers. Class 2 and Class
3 individuals also show a higher probability for their respective classes, but with a
slightly weaker signal. Class 4 individuals show similar probabilities for Class 2,
Class 3 and Class 4.
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Figure 7.5: The matrix on the left contains the pairwise validation accuracies of
classifiers built by using 4561 unamplified samples covering both blood-derived
and solid tissue normal DNA of 12 different cancer types. These cancer types are
TCGA-SKCM (skin), PAAD (pancreas), STAD (stomach), BLCA (bladder), PRAD
(prostate), LGG (brain_lgg), LUAD (lung), THCA (thyroid), LUSC (lung_sq),
HNSC (head_neck), GBM (brain), KIRC (kidney).

Figure 7.6: Classifier accuracies and sensitivity/specificity when training and testing
is done using amplified samples only. The cancers covered here are TCGA-GBM
(brain), TCGA-OV (ovary) and TCGA-LAML (leukemia). There is a strong signal
distinguishing all these cancer types. We speculate that TCGA-KIRC would behave
similarly to TCGA-GBM, since these cancers are similar in Figure 7.5.
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Figure 7.7: Mean and standard deviation for the cancer classification profiles of in-
dividuals belonging to TCGA-GBM (brain), TCGA-OV (ovary) and TCGA-LAML
(leukemia). These classification profiles are obtained by building a multiclassifier
using gradient boosting. Themulticlassifier is obtained by training only on amplified
healthy samples of brain, ovary and leukemia cancers on TCGA. The testing is done
on a separate set of amplified samples for these cancers. It can be seen that brain,
ovary and leukemia cancer patients in the test set are showing a higher probability
for the respective cancer using their healthy DNA mutation profile.

Figure 7.8: A comparison of classifiers trained on mutation profiles restricted to
known driver-gene regions and those restricted to non-driver-gene regions. Darker
cells represent a larger difference in the testing accuracies of the classifier, indicated
by the scale. This experiment was performed on unamplified (left) and amplified
(right) samples separately. The uneven coloring suggests that some cancer-type
signals exist more primarily in driver-gene regions than others.
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A: Unamplified Samples
Cancer Blood Derived Normal Solid Tissue Normal
SKCM 344 0
PAAD 153 31
STAD 396 49
BLCA 393 20
PRAD 440 56
LGG 513 0
LUAD 411 102
THCA 432 68
LUSC 316 180
HNSC 190 0
GBM 255 2
KIRC 31 179

B: Amplified Samples
Cancer Blood Derived Normal Solid Tissue Normal
GBM 171 0
LAML 0 135
OV 160 59

Table 7.1: (A) Number of unamplified healthy samples used for each cancer type
in the study showing the number of blood derived normal and solid tissue normal
samples. In total, the number of blood derived healthy samples are 3874 and the
tissue derived healthy samples are 687. The sample information is provided in
Supplementary Files 1-12. (B) Number of amplified healthy samples used for each
cancer type in the study showing the number of blood derived normal and solid
tissue normal samples. In total, the number of blood derived healthy samples are
331 and the tissue derived healthy samples are 194. The sample information is
provided in Supplementary Files 13-15.

Supplementary Information
We replicated our experiments with only error number m and only copy number
d values in the mutation profiles. These experiments gave results similar to the
complete profiles, suggesting that both m and d contain cancer-type signals. Fig-
ure 7.13 shows the associated pairwise accuracies and sensitivity/specificity for
cancers with 3843 blood-derived normal unamplified samples when only d was
used in the mutation profile and Figure 7.14 shows the associated pairwise accura-
cies and sensitivity/specificity when only m was used. Figures 7.15 and 7.16 show
the plots using all the 4561 unamplified samples. Figures 7.17 and 7.18 show the
plots for the 525 amplified samples.



138

Figure 7.9: Cancer classification profile for Class 4 individuals when the multiclas-
sifier was trained only using Class 1, Class 2 and Class 3 samples mentioned in
Figure 7.3. This shows a stronger association of Class 4 with Class 2 and Class
3 than Class 1. However the high standard deviation for Class 1 also means that
some individuals in Class 4 have a stronger association with Class 1 than Class 2
and Class 3.

Figure 7.10: These seriation matrices show 4-fold validation accuracy and sensi-
tivity/specificity for the four main clusters of cancers in Figure 7.5 where all the
4561 unamplified samples were used. Class 1 = (brain, kidney), Class 2 = (skin),
Class 3 = (pancreas), Class 4 = (stomach, bladder, prostate, brain_lgg, lung, thyroid,
lung_sq, head_neck).
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Figure 7.11: Mean and standard deviations for the cancer classification profiles of
individuals inClass 1, Class 2, Class 3 andClass 4 (viewing left to right). To generate
these profiles, we a trained multi-classifier on all four classes of cancers using
gradient boosting. We then used this multi-classifier to obtain cancer classification
profiles for a different set of individuals reported the average results for each cancer
class. Class 1 individuals show a high probability for Class 1 cancers. Class 2
and Class 3 individuals also show a higher probability for their respective classes,
but with a slightly weaker signal. Class 4 individuals show similar probabilities for
Class 2, Class 3 and Class 4.
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Figure 7.12: Cancer classification profile for Class 4 individuals when the multi-
classifier was trained only using Class 1, Class 2 and Class 3 samples shown in
Figure 7.10. This shows a stronger association of Class 4 with Class 2 and Class
3 than Class 1. However the high standard deviation for Class 1 also means that
some individuals in Class 4 have a stronger association with Class 1 than Class 2
and Class 3.

Figure 7.13: Accuracies and sensitivity/specificity for the pairwise classifiers when
only the copy number (d) information was used in the mutation profile for the 3843
WXS blood-derived unamplified samples mentioned in Table 7.1A. Notice that like
Figure 7.2, we again find strong distinguishing signals for brain, pancreas and skin
cancers as can be seen by the darker rows corresponding to these cancers.
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Figure 7.14: Accuracies and sensitivity/specificity for the pairwise classifiers when
only the error number (m) information was used in the mutation profile for the 3843
WXS blood-derived unamplified samples mentioned in Table 7.1A. Notice that like
Figure 7.2, we again find strong distinguishing signals for brain and skin cancers
as can be seen by the darker rows corresponding to these cancers. However unlike
Figure 7.2, the signal for pancreas cancer is not as strong.

Figure 7.15: Accuracies and sensitivity/specificity for the pairwise classifiers when
only the copy number (d) information was used in the mutation profile for the
4561 WXS unamplified samples that comprised both blood-derived and solid tissue
normal type DNA as mentioned in Table 7.1A. Notice that like Figure 7.5, we again
find strong distinguishing signals for (brain,kidney), pancreas and skin cancers as
can be seen by the darker rows corresponding to these cancers.



142

Figure 7.16: Accuracies and sensitivity/specificity for the pairwise classifiers when
only the error number (m) information was used in the mutation profile for the
4561 WXS unamplified samples that comprised both blood-derived and solid tissue
normal type DNA as mentioned in Table 7.1A. Notice that like Figure 7.5, we again
find strong distinguishing signals for (brain,kidney) and skin cancers as can be seen
by the darker rows corresponding to these cancers. However, unlike Figure 7.5, the
signal for pancreas cancer is not as strong.

Figure 7.17: Accuracies and sensitivity/specificity for the pairwise classifiers when
only the copy number(d) information was used in the mutation profile for the 525
WXS amplified samples mentioned in Table 7.1B. Notice that like Figure 7.6, we
again find strong distinguishing signals for all the three cancers.
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Figure 7.18: Accuracies and sensitivity/specificity for the pairwise classifiers when
only the error number (m) information was used in the mutation profile for the 525
WXS amplified samples mentioned in Table 7.1B. Notice that like Figure 7.6, we
again find strong distinguishing signals for all the three cancers.
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Figure 7.19: Accuracies for the pairwise classifiers when hipSTR was used for STR
detection. hipSTR detects short tandem repeats with pattern lengths 6 or less.
We used –min-reads 1 –def-stutter-model setting. Even though hipSTR requires
further trimming of mutation profiles to tandem repeats with pattern lengths 6 6,
we were still able to detect cancer-specific signals. The differences from Figure
7.5 in Figure 7.19 (for example: prostate and brain, prostate and kidney, skin and
pancreas) can be attributed to the fact that there are tandem repeat regions with
pattern lengths greater than 6 that contained critical cancer-specific information.
Further, we only used STRs that were commonly detected by hipSTR in all the
samples being analyzed. Therefore, the STRs that were not detected in some
samples were not used in this analysis.
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C h a p t e r 8

FUTURE WORK

We are proposing a new microscope to view the genome. This microscope looks
for regions in the genome where mutation history can be inferred directly and uses
that information to measure the accumulation of mutations in the genome over its
evolutionary history. Within the context of machine learning, our approach is akin
to feature extraction for each genome independently. We had some initial success
by using tandem repeat regions in detecting the cancer signal from the healthy cell.
Moving forward, the following directions can be taken:

8.1 Repeat regions and disease prediction

• Biological Significance: We found association of cancer with tandem repeat
regions of the healthy genome. Though correlation doesn’t mean causation,
we can investigate if the important tandem repeat regions or features picked by
the classifiers built using mutation profiles are of any biological significance.
More precisely, i) Is there a correspondence between the already known driver
genes and those regions? ii) Are there some new driver mutations to which
these important features correspond? One possible way for accomplishing i)
would be to investigate the driver gene information published in [124, 130,
131]. For ii) collaboration with cancer experts to investigate the role of those
regions in understanding the cause of a specific cancer. This may lead to
developing potential therapies if new cancer pathways are discovered.

• Other mutation based diseases: Our approach intuitively is measuring the
accumulation of mutations. Therefore, it can potentially be applied to pre-
dict risks for any mutation based disease, such as Alzheimer’s and utoim-
mune diseases [132, 133]. Recently, National Institute on Aging Genetics of
Alzheimer’s Disease Data Storage Site (NIAGADS) [134] released a dataset
availing 4789 whole genome sequences for Alzheimer’s patients.

• Strength of the signal in different tissues/cells: Another avenue we can
take here is to investigate the intensity of this accumulation of mutations in
DNA derived from different cells/tissues of an individual, to see how far in the
disease trajectory DNA derived from each of those cells/tissues has reached.
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A stronger signal in a certain tissue/cell compared to others might indicate the
locations of the origins of the disease of interest. This would require DNA
from different tissues/cells of an individual.

Nonetheless, this microscope is still far from being perfect and it can be improved
by finding other markers of decodable evolution history in the genome. Other such
markers could be interspersed repeats which we describe next.

8.2 Interspersed Repeats
Interspersed or transposon driven repeats cover about 48% of the human genome
[6]. The method adopted would be to first detect these repeats and then design
algorithms for history estimation. There are a few software tools available for
interspersed repeat detection [135]. The ideas in phylogeny literature [136] and
stochastic approximation [137] can be used to come up with generation models to
estimate history of these regions.

Interspersed repeats like LINE, LTR, and DNA transposon that cover about 70%
of interspersed elements in the DNA are long enough to pose several challenges in
their accurate detection [126].
Challenges in detection of long tandem and interspersed repeats include: read
lengths and coverage depth of the sequencers are the two determining factors
that govern accurate detection of tandem and interspersed repeats in the human
genome [126–128]. Long tandem repeats and most of the interspersed elements
in the DNA are much longer than the Illumina read length (100-500 bp) [126] and
this poses a problem in accurate detection as the same read can align to multiple
locations [126, 127, 138]. There is a new tool [139] that was released recently
which promises to solve this problem for longer tandem repeats. Further, there
have been recent advances in the 3rd generation sequencing platforms like pacbio,
oxford nanopore [140] that have much larger read lengths (of the order of 10,000’s
or more) and hybrid sequencers like 10Xgenomics [140]. It is hopeful that with
these 3rd generation sequencers, the problem of accurately detecting long repeats
will be resolved in the near future.

At the same time, one can also develop theoretical insights about different mutations
to search for more ways to infer the evolutionary signal and for this mathematical
modeling of evolutionary mutations can be studied which we describe next.
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8.3 Mathematical Models of Evolution
Live DNA Storage: Live DNA storage was recently realized using CRISPR [30].
In live-DNA storage, information is embedded in the DNA of a cell and this cell
replicates over time creating several copies of the same information. Due to substitu-
tion, indel and duplication mutations, these copies are not the same. One immediate
application here is to design error correcting schemes so that the stored informa-
tion can be uniquely recovered. This can be related to the reconstruction problem
introduced by Levenshtein [141] and models used in phylogeny estimation [136].
Another application would be to use these erroneous copies and the initial infor-
mation to characterize or infer the evolution channel. Both these applications are
also related, as a better characterization of the evolution channel will also result in
a more realistic error correction scheme. These days CRISPR technology can be
used to design experiments to characterize the DNA storage channel. The data col-
lected from these experiments can be used to make an inference about the evolution
channel, which can then be incorporated into the channel model for the design of
error correcting codes for live DNA storage. There are several questions that can be
of interest here:

• Given a finite number of outputs but an unknown number of cell divisions or
generations, what are the possible channels for which there are error correcting
codes with high rate. In [20], we constructed high rate codes for bounded
and uniform tandem duplication channels with one channel output and an
unknown number of generations.

• How does partial information about the number of generations affect the code
rate and construction for the above scenario? By partial information, it is
meant that for some outputs, the number of generations is known, and for
some, it is unknown.

• How robust is the code rate and construction to channel mismatch? We
touched upon the question of channel mismatch in [35] for bounded tandem
duplication string systems and characterized it by the measure of uncertainty.

Use Properties of Genome to understand evolution: The idea here is to use
some mathematical properties of a genome sequence to come up with a sequence
generationmodel that explains those properties to get insights about evolution limits.
As an example, single strand DNA follows the 2nd Chargaff Rule [41], according to
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which upto a certain k, the frequency of a k-mer is almost the same as its reverse
complement. The evolutionary reason for this property is still unknown. Further,
this property is observed in many species which makes a case for them sharing a
similar evolution dynamics [41]. We came up with a reverse complement tandem
duplication model that could generate sequences which satisfied the 2nd Chargaff
rule in a similar way as the real DNA [47]. There are several theoretical questions
here which can be pursued: How does the seed and duplication length affect the
timing of achieving this property and the frequency of k-mers observed? What is
the effect of point mutations on the evolution process and how does it affect the
timing? In a similar way, we can also look for other peculiar sequence properties of
DNA and design mathematical models to simulate them.
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