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ABSTRACT

Instability-induced patterns are ubiquitous in nature, from phase transformations and ferroelectric
switching to spinodal decomposition and cellular organization. While the mathematical basis for
pattern formation has been well-established, autonomous numerical prediction of complex pattern
formation has remained an open challenge. This work aims to simulate realistic pattern evolution in
material systems exhibiting non-(quasi)convex energy landscapes. These simulations are performed
using fast Fourier spectral techniques, developed for high-resolution numerical homogenization.
In a departure from previous efforts, compositions of standard FFT-based spectral techniques
with finite-difference schemes are used to overcome ringing artifacts while adding grid-dependent

implicit regularization.

The resulting spectral homogenization strategies are first validated using benchmark energy
minimization examples involving non-convex energy landscapes. The first investigation involves
the St. Venant-Kirchhoff model, and is followed by a novel phase transformation model and finally
a finite-strain single-slip crystal plasticity model. In all these examples, numerical approximations
of energy envelopes, computed through homogenization, are compared to laminate constructions

and, where available, analytical quasiconvex hulls.

Subsequently, as an extension of single-slip plasticity, a finite-strain viscoplastic formulation
for hexagonal-closed-packed magnesium is presented. Microscale intragranular inelastic behavior
is captured through high-fidelity simulations, providing insight into the micromechanical deforma-
tion and failure mechanisms in magnesium. Studies of numerical homogenization in polycrystals,
with varying numbers of grains and textures, are also performed to quantify convergence statistics

for the macroscopic viscoplastic response.

In order to simulate the kinetics of pattern evolution, stabilized spectral techniques are uti-
lized to solve phase-field equations. As an example of conservative gradient-flow kinetics, phase
separation by anisotropic spinodal decomposition is shown to result in cellular structures with
tunable elastic properties and promise for metamaterial design. Finally, as an example of non-
conservative kinetics, the study of domain wall motion in polycrystalline ferroelectric ceramics
predicts electromechanical hysteresis behavior under large bias fields. A first-principles approach
using DFT-informed model constants is outlined for lead zirconate titanate, producing results
showing convincing qualitative agreement with in-house experiments. Overall, these examples
demonstrate the promise of the stabilized spectral scheme in predicting pattern evolution as well as

effective homogenized response in systems with non-quasiconvex energy landscapes.
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Chapter 1

INTRODUCTION

1.1 Patterns Across Scales In Nature

Patterns are characterized by periodicity and order, and pattern formation is a recurrent theme
throughout nature. The autonomous formation and evolution of patterns can be experimentally
observed in a variety of physical, chemical, and biological systems. Often, such patterns cascade
and interact across spatial and temporal scales, and are closely associated with instabilities in the

systems where they manifest.

wing (cm) scales (100 pm) ridges (um) ridge cross section (100 nm)

Figure 1.1: Multi-scale nature of patterns in a butterfly wing that lead to structural iridescence
(Thomé et al., 2014). Reproduced with permission.

The visually appealing patterns that form in biological systems demonstrate the influence
of structures, at lower spatial scale, on macroscopic properties. Spiral microstructures in Mantis
shrimp shells and lamellar microstructures in butterfly wings both illustrate structure across scales,
and arise from spinodal phase separation (Dufresne et al., 2009) and differential growth-induced
instabilities (Javili et al., 2015; Kinoshita, 2013). The helicoidal biocomposite structure present in
the claw of the Mantis shrimp enhances toughness required for high-velocity strikes when hunting
for prey (Yaraghi et al., 2016). In Figure 1.1, various patterns in a Morpho Rhetenor butterfly wing
are shown at different scales, forming a hierarchy which results in structural coloration (Thomé
et al., 2014; Giraldo and Stavenga, 2016). Recent efforts have aimed to mimic this behavior in

micro-architectured systems (Huang et al., 2006; Zhang et al., 2013; Sellers et al., 2017).

Examples of natural pattern formation, of interest in mechanics, include nanoscale lamellar
patterns during deformation twinning (Christian and Mahajan, 1995; Abeyaratne et al., 1996),
dislocation-walls in crystal plasticity (Ortiz and Repetto, 1999; Kochmann and Hackl, 2010),

martensitic phase transformations (Chu and James, 1995; Bhattacharya, 2003), dendritic hexagonal



() (d)

Figure 1.2: A series of natural patterns in mechanics that form from disordered initial states: (a)
cross-hatched dislocation patterns in an Al bicrystal at the interface (Kuo et al., 2003), (b) twinning
laminate structures in Cu-Ni (Abeyaratne et al., 1996), (c) labyrinth-type patterns in a fatigued
Cu single crystal (Jin and Winter, 1984), (d) martensitic phase transformation domain patterns
(Bhattacharya and James, 2005). Reproduced with permission.

structures in snowflake formation (Demange et al., 2017), and cellular structures through spinodal
decomposition (Stanich et al., 2013). Such patterns also form in engineered systems such as
periodic metamaterials which exploit multi-stability (Overvelde et al., 2012; Goncu et al., 2011;

Frazier and Kochmann, 2017).

Figure 1.2 provides an illustrative overview of examples where ordered heterogeneous mi-
crostructures form from either homogeneous or disordered initial states. The patterns are not
unique, exhibit great geometric intricacy, and are all attributed to inherent instabilities (Ball, 1976;
Ball and James, 1987; Bhattacharya et al., 1999) which arise as a result of non-convexity in the

potential energy landscapes of their respective systems.

Phenomena as different as wrinkling in thin nematic elastomer sheets (Plucinsky and Bhat-
tacharya, 2017) and domain pattern formation in martensite (Bhattacharya, 2003) share common

underlying principles. They result in energy relaxation and stabilize their respective systems. Re-
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laxation in this instance refers to the spontaneous collapse of homogeneous non-convex systems as a
means of reducing the potential energy — by modifying microstructural character using fluctuations
and oscillations (Ball, 1976; Ball and James, 1987; Fonseca and Leoni, 2001). In systems that
span several spatial scales, lower-scale patterns and microstructures stabilize microscopic energy

landscapes — strongly influencing the macroscopic homogenized response.

Figure 1.3: Micrograph of striped domain patterns forming within grains of ferroelectric PZT
polycrystal during fatigue cycling. Courtesy of Wei-Lin Tan, Caltech.

Experimentally, pattern formation has been investigated through application of external me-
chanical, thermal, or electric fields to non-convex material systems. Examples of particular signifi-
cance to this thesis include domain pattern evolution in ferroelectrics (Merz, 1956; Gao et al., 2013;
Chaplya and Carman, 2002b; Wojnar et al., 2014), martensitic phase transformation (Bhattacharya,
2003), spinodal decomposition during dealloying (Erlebacher et al., 2001; Geslin et al., 2015),
and dislocation-induced microstructure formation (Jin and Winter, 1984; Kuo et al., 2003). For
polycrystalline materials undergoing mechanical loading, texture, anisotropy, and inhomogeneity
resulting from microstructure formation influence yield strength, toughness, Young’s modulus, and
mechanical damping coefficient. These mechanical fields are often strongly coupled to electric
potentials and temperature. For example, in ferroelectrics, applied electric fields induce strains
and applied stresses induce potential differences (Wojnar et al., 2014). Experiments show lamellar
polarization domain formation in polycrystals, and resulting macroscale electric field-induced me-
chanical strains (Merz, 1956). Figure 1.3 illustrates unidirectional patterns within grains, exhibiting
correlation with damage initiation sites. Engineering resilient and tunable ferroelectric composites
requires a deeper understanding of underlying damage mechanisms during cyclic electromechanical

loading.

The interplay between the laws of thermodynamics and non-equilibrium kinetics provides

a path to autonomously predict the pattern formation process. In the following section, the
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origin of instabilities and non-convexity will be explained in detail together with the mathematical
preliminaries required for further investigation. Subsequently, an overview of previous numerical

approaches taken towards predictive modeling will be provided.

1.2 Energy Relaxation and Microstructures

Fine-scale oscillations which develop into complex geometric patterns have their origin in non-
(quasi)convex energetic potentials (Ericksen, 1975; Ball and James, 1987; Chipot and Kinderlehrer,
1988; Bhattacharyaetal., 1999; Govindjee et al., 2003). These arise as energy-infimizing sequences,
allowing for energy relaxation by way of effective quasiconvexification of the potential energy
landscape (Dacorogna, 1989; Ball and James, 1987) .

The classical variational framework developed by Truesdell and Noll (1965), describing the
quasi-static boundary value problem in finite strains, is of primary importance to this discussion. A
deformation map ¢ relates the deformed configuration x = ¢(X), as a function of the undeformed

positions X within a volume €, such that it minimizes the overall total potential energy functional,

Ilp] = /Q W(Ve)dV - €(p) (L1)

where W(Vg) denotes the stored energy density and €(¢) the potential of externally applied fields.
In the case of linearized kinematics, the functional depends on the displacement field # and the

infinitesimal strain tensor &€ = sym(Vu),

Tu] = / W(e)dV — {(u), (1.2)
Q
where . .
W(e) = > e:C:e= > & ;Cijri€k) (1.3)

Given a strongly elliptic stiffness tensor, and with appropriate boundary conditions, the energy
functional is convex — and there exists a unique minimum and solution field to the convex optimiza-
tion problem (Koiter, 1965). An analogous hyperelastic model, however, does not share the same

characteristics. Using the Green-Lagrange strain tensor
E(Ve) = 3 (V4" Vo 1) (14)
consider the energy landscape described by
W(V(p):%E:C:E:é(VgoTVgo—I):C:(VgoTVgp—I). (1.5)

This yields the classic St. Venant-Kirchhoff hyperelastic model, which unfortunately lacks (quasi)

convexity (Le Dret and Raoult, 1995) — this is clearly illustrated using a one-dimensional projection.
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The stiffness tensor of an isotropic St. Venant-Kirchhoff solid depends only on the two Lamé

parameters:
CrikL = A1 6150kL + 1 (01x0yL + 61L.0K), A, u>0. (1.6)

Through application of a deformation gradient of uniaxial compression and shear,

-y -2y O
Vo= 0 1 0}, y <1, (1.7)
0 0 1

the non-convex energy in Eq. (1.5) can be projected along the loading parameter vy,
1
W(Ve) = 27’ (2 (25y2 _ 20y + 12) G2 57/)2/1) . (1.8)

This is shown in Figure 1.4, revealing a loss of convexity as the shear modulus y is decreased.
The second derivative of this projected potential changes sign within the loading regime and
indicates instability. The problem becomes ill-posed in the sense of Hadamard (1923) and the
solution loses uniqueness. Eventually, as shear parameter u approaches the zero-limit, a symmetric,
bi-stable double-well potential energy landscape is attained. Symmetric bi-stable energies of this
form, condensed to functions of specific loading parameters, will be encountered frequently in this
thesis. As will be analyzed later in Chapter 3, unphysical patterns form when material models
of this type are used. While this is simply a sub-optimal choice for material modeling, the same
behavior manifests in physical systems exhibiting non-convexity and pattern formation. Several of
these are shown in Figure 1.5. As mathematical preliminaries, definitions of the various notions of

convexity and existence of minimizers are required for further analysis.

The generalized form of the variational boundary value problem for finite-strain elasto-
plasticity deals with both internal variables and dissipation, as will be elaborated in Chapter 4,
but for illustrative purposes, the finite-strain example in Eq. (1.1) is deemed sufficient. The prin-
ciple of minimum potential energy dictates that the deformation gradient field F = V¢ (in the

absence of external potentials) can be found through the minimum principle given a volume Q,
¢ =arginf{Z[p] | ¢ = ¢° on 9Q}. (1.9)

Often, this leads to a minimization problem which can be handled numerically. However, for the
existence of a minimizer to the functional 7, it has to satisfy the three important conditions of
boundedness, coercivity, and weakly lower semi-continuity, which are defined as follows:

(a) boundedness:

Ja,BeR:|I[F]|<a(l+ | F|P),VF,a>0 8>1 (1.10)
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Figure 1.4: Loss of convexity of the condensed energy W(y) with decreasing y, for A = 1.
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Figure 1.5: Examples of loss of convexity in systems exhibiting pattern formation.

(b) coercivity:

Ja,ByeR : |I[F]]| > (y +a||F ||P),VF,a>0, 5> 1 (1.11)

(c) weakly lower semi-continuity for weakly convergent sequences ¢ — @,:

lim inf 7[Ve,] > I[Ve]. (1.12)

n—oo
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As shown by Ball (1977), the conditions can be recast into constraints on the energy density W(F')
of boundedness, coercivity and quasiconvexity. Before specifically examining the quasiconvexity
condition, a discussion of the different notions of convexity, all of which converge for a one-
dimensional functional, is imperative. The following defines these different notions for a function
W(F) (Morrey, 1952; Rockafellar, 1970; Ball, 1977; Sverdk, 1992):

(a) convexity:

VAe[0,1] : WAF'+(1-D)F?) < AWFEHY+(1-D)W(F?),VF', F? € GL*(d) (1.13)

(b) polyconvexity (in simplified matrix notation):

W(F) = W(F, detF, cofF) (1.14)
(c) quasiconvexity:
W(F) < é/W(F+V¢) dv, ¢ =0 on Jw, VweR" (1.15)
(d) rank-one convexity:
VAe[0,1] : WAF '+ (1 = )F? < AWFHY+ (1 - DW(F?), (1.16)

with the additional constraint that

rank(F! - F?) < 1, F!, F? € GL(d). (1.17)

The following implication is crucial for both analysis and numerical computation:

Weonvex = Wpolyconvex = unasiconvex = Whrank-one convexs (1.18)

but the inverse is not true. Energy hulls or envelopes can be defined for any arbitrary non-convex
function, each of which satisfies the corresponding degree of convexity — namely the convex
envelope (CW), polyconvex envelope (PW), quasiconvex envelope (QW), and rank-one convex
envelope (RW):

CW(F) = inf {Z LW(F)) ‘ Py Z =1, 24¢l01], Z AF; = F} (1.19)
i=1 i=1 i=1
n n n
PW(F) = inf {Z AWE) |4 Fs ) 4 =1, 4 € 0,1}, ) 4F; = F,
i=1 i=1 i=1

) ) (1.20)
Z A; det(F;) = det(F), Z A cof(F;) = cof(F)}
i=1 i=1
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Figure 1.6: QW(F) for phase transitions with W(F) = min(W'(F), W(F)). Spontaneous break-
down of the homogeneous blue and red phases at a deformation gradient state corresponding to the
quasiconvex envelope results in (non-unique) pattern formation.

OW(F) = inf{i/W(F+v¢) dv
lw| Jo,

Of particular interest here is the quasiconvex envelope, which, in the most general case, requires a

¢ :¢d=0o0n 8w}. (1.21)

non-local computation within a representative volume of all possible perturbation fields (represent-
ing non-unique patterns). A visual representation of the patterns corresponding to the quasiconvex

envelope is shown in Fig. 1.6 for a phase transformation example.

In the absence of regularization, the energy infimization problem is formulated as an infinite-
dimensional non-convex optimization problem and has traditionally been regarded as intractable
except for a few specific examples. Classical approaches tend to find the significantly more tractable
rank-one convex hull instead. In special cases, it is possible to prove that the polyconvex hull (lower
bound) coincides with the rank-one convex hull (upper bound) — with both converging to the
quasiconvex hull (Ball, 1976; Conti et al., 2009, 2015).

The rank-one convex hull (RW) is defined in a recursive manner, providing a method of
constructing approximations. A first-order construction with two phases yields an approximation
of the rank-one convex envelope (Ortiz and Repetto, 1999; Hackl et al., 2014; Dmitrieva et al.,
2015):

A Fi: Y Ai=1, 4 €[0,1],
) =l (1.22)
Z/ll'Fi =F, rank(F| — F») < 1}, F\,F, € GL.(d).

RIW(F) = inf {/11W(F1) + /le(Fz)

i=1

This corresponds to a laminate-type microstructural pattern associated with the relaxed energy

state. Recursive application of this procedure physically represents higher-order laminates (i.e.,
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sequential lamination) (Ortiz and Repetto, 1999; Aubry et al., 2003). For example, a construction
of order k is defined by

n
A Fp s ) =14 €00,1],

Riy1 W(F) = inf {/thW(Fl) + LR W(F>)
i=1

. (1.23)
> AiF; = F, rank(Fy - F) < 1} .
i=1
The k — oo limit of sequential lamination provides the rank-one convex hull:
RW(F) = klim R W(F). (1.24)

Laminate constructions are important tools for approximating relaxed energies in a variety of
material systems including single-slip single-crystal plasticity (Ortiz and Repetto, 1999; Conti et al.,
2015). However, precise geometric arrangement cannot be interpreted from the results, particularly
for higher-order laminates. Realistic pattern formation in physical systems with multi-stable energy
potentials, such as phase transformations (Chu and James, 1995; Bhattacharya, 2003), exhibits

complexity and autonomous prediction of these patterns requires a different numerical approach.

Laminate constructions face another limitation when dealing with micro-scale heterogeneities,
such as polycrystals, or multi-component volumes, where each grain or material has different
energetic potentials. Compatibility, enforced at internal grain or phase boundaries, is non-trivial
to incorporate into this approach. In such cases, patterns across internal interfaces, such as
laminates extending across grain boundaries are strongly affected by the crystallography and grain
boundary mismatch (Vidyasagar et al., 2018). Additionally, the minimizing sequence of a non-
convex functional collapses into finer and finer oscillations (Kinderlehrer and Pedregal, 1991),

highlighting the need for regularization and introduction of a length-scale.

In nature, patterns form at specific length scales because interfaces are associated with inter-
facial energy. Sharp gradients result in a significant increase in the energy of the system; therefore,
at equilibrium, interfaces exhibit smoothness and a finite width. This determines the overall length

scale of pattern formation (Giorgi, 2009).

Gurtin (1987) and subsequently Modica (1987) introduced the term interfacial energy as a
gradient contribution in the energy functional to be minimized — based on the role of physical
interface energies in nature. This results in an additional contribution to the infimization problem

in Eq. (1.9), for Dirichlet boundary conditions,

¢ = arginf {/ W(Ve) + WV o) dV —€(p) | ¢ = ¢° on 69}, (1.25)
Q

for an order of regularity m.
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While the unregularized minimization solution could lead to sharp interfaces and strong
jumps in the local properties (e.g., deformation gradient or plastic slips), regularization smears
out sharp contrast over a small but finite interface. Importantly, regularization does not make the
minimization convex — instead, it ensures that the solution is smooth to the order of regularity
(Clarke and Vinter, 1985). Regularization, through penalization of higher gradients, also increases
the strength of local minima, which correspond to patterns and may affect the ability to find global

minima.

Therefore, regularized, full-field numerical treatment of representative volume elements
(RVEs, discussed in detail in Sec. 2.1) becomes inevitable in predicting autonomous microstructural
pattern formation in complex systems while capturing interfaces. Previous work on numerical quasi-
convexification has relied on the finite element method (Bartels et al., 2004; Bartels and Prohl, 2004;
Carstensen and Plechac, 1997; Bartels et al., 2006). However, direct numerical methods introduce
an implicit regularization which results in mesh- and interpolation-dependent solutions. Particu-
larly, the low-order local FE interpolation results in coarse microstructural patterns (Carstensen,
2005). Extensions to high resolution and polynomial-order, for simultaneously capturing complex
patterns and achieving close quasiconvex hull approximations, are prohibitively expensive. This
has restricted previous efforts to two-dimensional toy models such as the single-crystal single-slip

problem (Klusemann and Kochmann, 2014).

The aim of this dissertation is to predict realistic and autonomous patterns while simulta-
neously comparing the associated relaxed energies to the quasiconvex envelopes for benchmark
problems to ensure viability. The numerical method of choice is a Fourier spectral formulation
(Moulinec and Suquet, 1998, 2003; Lebensohn et al., 2012) with implicit regularization, as detailed
by Vidyasagar et al. (2017, 2018). Calculations are performed on representative volume elements
following the principles of periodic homogenization (Miehe et al., 2002), which naturally admit
the spectral interpolation. It is hence important to understand that, when computing numerical
approximations, the Dirichlet boundary conditions in the classical definition of the quasiconvex

hull, Eq. (1.21), may be replaced by the periodic representation,

|w]

when the functional is non-negative, continuous and the energy density has bounded growth

QW(F) = inf {L / W(F + V¢) dV ‘ ¢ periodic} , (1.26)

which is at most quadratic (Ball and Murat, 1984; Allaire and Francfort, 1998). Consequently,
the perturbation fields representing patterns will be periodic rather than vanishing at the RVE

boundaries dw.

Recently developed finite-difference-based spectral corrections inspired by Willotet al. (2014),
Berbenni et al. (2014) and Lebensohn and Needleman (2016) and explained by Vidyasagar et al.
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(2017, 2018) introduce an implicit regularization to the non-convex minimization problem. This
is shown to vanish in the limit of mesh refinement, ensuring a consistent numerical scheme.
This class of methods allow for reasonable approximations of the quasiconvex hull and reproduce
autonomous patterns from homogeneous or chaotic RVE initial conditions, as shown through

numerical examples in Chapter 3.

The mathematical preliminaries thus far have avoided discussions of inelasticity and internal
variables but the energy-infimization strategies broadly extend to these cases. Detailed derivations
will be provided in Chapters 3, 4, 5, and 6. However, understanding microstrutural pattern formation
through pure energy infimization strategies ignores two critical (and related) aspects of dissipation

and Kkinetics.

1.3 Dissipation and Kinetic Models

Dissipation prevents microstructures from rapidly fluctuating in time, and is therefore crucial
for modeling the time evolution of microstructures. The various prevalent kinetic models found
in material modeling are briefly reviewed in this section. Previous numerical approaches to
modeling dissipative systems, in particular metal visco-plasticity, include variationally consistent
time-incremental formulations (Ortiz and Repetto, 1999; Miehe et al., 2002; Kochmann, 2009).
Complications arise when multiple deformation-accommodating mechanisms, such as twinning
and dislocation-induced plasticity, interact in complex polycrystals (Vidyasagar et al., 2018). In
such situations, multiple sources of non-covexity result in highly complex microstructral features
defying analytical treatment. These fine microstructural features influence macroscopic mechanical
response — such as in the case of magnesium with hexagonal close-packed crystallography (see
Figure 1.7). Magnesium is an ideal candidate for investigation because of experimental and
atomistic evidence of strongly anisotropic inelasticity (Pollock, 2010; Dixit et al., 2015; Sun et al.,
2018).

In the class of thermodynamically admissible evolution laws (satisfying the Clausius—Duhem
inequality), gradient-flow kinetics are of particular interest because of their inherent simplicity,
simulating processes which are driven by the first variation of the energy functional. There has
been a plethora of efforts to study phase separations and transitions using gradient-flow kinetics
and second-order regularization (see Chen (2002) and references therein). These phase-field
models share a non-convex multi-well energetic potential, often termed the Ginzburg-Landau-
type free energy. For kinetic models, regularization, as aforementioned, increases the strength
of local minima and tends to overpredict hysteresis — therefore an appropriate length scale has
to be chosen for fine scale patterns with thin interfaces to accurately reproduce the underlying

physics. Phase separations require conservative evolution laws, and hence use the Cahn-Hilliard
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Figure 1.7: An overview of the variety of dislocation slip and twinning modes in magnesium.

(Cahn and Hilliard, 1958) approach (or equivalently H~!'-gradient flow), while phase transitions

are non-conservative with an Allen-Cahn (Allen and Cahn, 1979) approach (or Lz—gradient flow).

The Cahn-Hilliard model has classically been used to study the phenomenon of spinodal
decomposition. Phase separation through spinodal decomposition occurs during dealloying (Er-
lebacher et al., 2001; Lu et al., 2007), thin film growth (Bergamaschini et al., 2016) and intercellular
lipid-fluid demixing (Stanich et al., 2013). While previous works have focused on isotropic demix-
ing (Chen, 2002; Fultz, 2014), understanding the influence of anisotropic free energy functionals
on the kinetics of microstructural pattern formation necessitates further investigation. In addition
to the fundamental insight gained from simulations, computational architectures obtained by tuning
anisotropic spinodal decomposition have a variety of practical applications including the design of

metamaterials.

In contrast to the role of dissipation in preventing microstructural fluctuations, kinetics drive
spontaneous jumps across different (stable) equilibrium configurations in ferroelectric materials
(von Schwerin and Szepessy, 2010). Allen-Cahn equations have gained traction for modeling phase
transitions and ferroelectrics are of particular appeal because free energies can be adopted from
ab initio quantum mechanical approximations through Density Functional Theory (DFT) (Volker
et al., 2011; Vidyasagar et al., 2017). Additionally, there is a wealth of experimental data for the
propagation of domain walls as transitions waves (or topological solitons) in ferroelectric crystals
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starting with the seminal work of Merz (1956). Theoretical and numerical understanding regarding
the relationship between the kinetic model and domain wall behavior is critical for engineering

novel electromechanical devices using ferroelecrrics.

1.4 Outline

Following this introduction, Chapter 2 begins with a brief discussion of homogenization, and
derivations of FFT-based spectral methods. Recently introduced spectral corrections based on
finite-difference schemes are then detailed, and their influence on mitigating oscillatory artifacts is

demonstrated.

Chapter 3 details how the numerical methods are used to solve quasistatic energy-minimization
problems and predict autonomous pattern formation from homogeneous initial conditions. Starting
with the hyperelastic St. Venant-Kirchhoft solid as a benchmark example, with available analytic
quasiconvex envelopes, a generalized constitutive model is developed for phase transitions with
arbitrary transformation strains for studying pattern formation. A third example of mathematical

relevance to lamination theory, the single-slip single-crystal model, concludes this chapter.

Chapter 4 extends the single-slip model to full crystal plasticity in hexagonal close-packed
magnesium, introducing dissipation and plastic flow. Numerical results showing additional com-
plexity due to multiple deformation modes and slip-twinning interactions are illustrated. Periodic

homogenization of polycrystals and the influence of microstructure are discussed with examples.

Chapter 5 introduces gradient flow kinetics (Cahn-Hilliard), which are then used to model
scalar anisotropic spinodal decomposition. Novel numerical results in understanding elastic sur-
faces and microstructural morphologies during the relaxation processes are discussed. This chapter

concludes with applications including the design of metamaterials.

Chapter 6 discusses the kinetics (Allen-Cahn) of phase transitions in ferroelectrics. Particular
focus is on numerical and physical implications of scale-bridging using DFT-informed model
constants for the non-convex energy landscape. Experimental validation is also performed for
predictions of domain pattern formation, strain and polarization hystereses, and the motion of

domain walls.

Chapter 7 concludes this thesis with a summary of the original results and contributions.
Suggestions for improved numerical strategies and physical models are provided together with

future research directions and applications of the presented work.
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Chapter 2

DEVELOPMENT OF SPECTRAL HOMOGENIZATION SCHEMES

Research presented in this chapter has been adapted from the following publications:

Vidyasagar, A., Tan, W. L., Kochmann, D. M. 2017. Predicting the effective response of bulk
polycrystalline ferroelectric ceramics via improved spectral phase field methods. Journal of the
Mechanics and Physics of Solids 106, 113-151.

URL: https://doi.org/10.1016/j.jmps.2017.05.017

Vidyasagar, A., Tutcuoglu, A., Kochmann, D. M. 2018. Deformation patterning in finite-strain
crystal plasticity by spectral homogenization with application to magnesium. Computer Methods
in Applied Mechanics and Engineering, 335, pp.584-609.

URL: https://doi.org/10.1016/j.cma.2018.03.003

2.1 Introduction to Computational Homogenization

Homogenization procedures elucidate the dependence of the macroscale response of a system
on the microscale features (Suquet, 1987; Miehe and Koch, 2002; Stolz, 2010). In the case of
systems exhibiting pattern formation due to non-(quasi)convexity of the energy landscape, patterns
tend to form on the microscale in the short-wavelength limit, and the relaxed energy landscape
manifests at the macroscale. It is important to note that the terms micro and macro do not pertain to

specific length measures — but the two different scales in a system where scale-separation occurs.

In the process of homogenization of a two-scale problem, a key assumption involves statistical
homogeneity at the macro-scale in spite of lower-scale patterns and inhomogeneous microstructures.

Consequently, volume averages (with respect to the undeformed configurations) at the lower scale,

1
(Do = v /Q(-) dv, (2.1)

of a statistically representative volume element (RVE) Q, with V = |Q|, are used to obtain the
homogenized macroscale response. The averaging theorems for finite-deformation kinematics
(Miehe, 2003) state that, given continuous displacement (¢) and traction (7") fields, in the absense

of body forces, the average deformation gradient F' and first Piola-Kirchhoff stress tensor P become

1

1
(F) = — / e®NdS and  (P)=— / T ® XdS. 2.2)
V Joa V Joa
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Identification of statistical RVEs for homogenization requires either very high-resolution simula-
tions (large RVEs) within volumes Q of length L, where the characteristic length scale is denoted
as /, using the limit

im Oaw) = (O (2.3)

or by ensemble averaging over many realizations of different RVEs with different microstructures

and using the central limit theorem,
1 &
1 JR— . frd . E
Aim E () = (oo 24)

Fast spectral methods, discussed in the following Section 2.2, are well suited for both high-
resolution computations, and producing many realizations of RVEs, but are limited to periodic
boundary conditions. For a cubic RVE, in a finite-deformation framework, these periodic boundary

conditions are given as
p -9 =(F)(X*- X‘) and TH=-T" (2.5)

for opposite surfaces and regions on the (+) and (—) (i.e. faces, edges and corners). Periodic homog-
enization yields a mechanical response that lies between homogenization by affine displacements

(upper bound) and through uniform tractions (lower bound).

The equivalence of the effective homogenized variation of energy density W on the macroscale,

SW* = P* : 6F", (2.6)
and the volume average on the microscale,
! /(5WdV— ! aW'(SFdV— ! /P(X)'(SFdV—(P(X)'éF(X)) (2.7)
v V) oF v ' - ' ’ '

is an important postulate in homogenization theory, resulting in the Hill-Mandel condition (Mandel,
1966; Hill, 1972; Mandel, 1983) for effective stresses and deformation gradients,

P*: 6F* = (P(X) : 6F(X)). (2.8)

This condition is satisfied by applying periodic boundary conditions:

1
<P:F):—/ T:pdS
V Joa

1 1
= — T : +dS+—/ T :¢p dS
VL+ ¢ VS o ¥

-1 / T : (F)XdS (2.9)
V Jaa

1
:wva[;T®XM)

= (F) : (P).
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Enforcing averages for periodic homogenization is especially suited for Fourier spectral techniques
because the averages correspond to amplitude at the origin in Fourier space. In the chosen periodic
homogenization scheme for the following chapters, average deformation gradients and primary
external fields are imposed, and when using iterative methods in Fourier space only the higher

wavelengths (K # 0) require computation.

2.2 Fast Fourier Spectral Methods

Fast Fourier transform (FFT) algorithms began informally with the work of Carl Friedrich
Gauss (Gauss, 1866), popularized with the widely used Cooley-Tukey method by Cooley and Tukey
(1965) and expanded by Rader (1968), Bluestein (1970), Winograd (1978) and numerous others.
Conveniently, these algorithms have been implemented as part of the highly optimized FFTW
software package (Frigo and Johnson, 1998), which has revolutionized scientific computing in
recent decades. Particularly, this has resulted in a resurgence of interest in FFT-based spectral
methods. Spectral methods typically perform a diagonalization of the differential operator, resulting
in quasi-linear scaling, matrix-free numerical algorithms. While Fourier spectral methods have
been in use since Fourier (1822), various iterative methods of solving non-linear partial differential
equations have attracted attention in recent decades. Such spectral methods naturally suit periodic
boundary conditions due to global interpolation using (periodic) trigonometric shape functions.
The problem of numerically evaluating quasiconvex envelopes through periodic homogenization,

with regular cubic representative volumes, is hence ideal for this approach.

In the context of mechanics, Moulinec and Suquet (1998, 2003) developed an FFT-based
iterative spectral method for periodic homogenization of composites. The original technique is a
Richardson iteration scheme which avoids the expensive convolution operation, due to non-linear
nature of the Lippmann-Schwinger equation in homogenization theory (Pruchnicki, 1998; Brisard
and Legoll, 2014; Brisard, 2017). The key advantage of this iterative approach is the quasi-linear
scaling of computational cost with grid size, due to the matrix-free nature of the solution technique
(Vidyasagar et al., 2017). Simultaneously, for problems with smooth solutions, the error of spectral
methods converges exponentially with grid size, making this class of solution techniques very

attractive for regularized non-convex minimization problems.

There has been significant progress in using the original Moulinec-Suquet scheme for a va-
riety of problems in mechanics including finite-strain crystal visco-plasticity (Lebensohn et al.,
2012; Eisenlohr et al., 2013; Lebensohn and Needleman, 2016; Vidyasagar et al., 2018) and multi-
physical systems including electro-mechanical coupling (Brenner, 2009; Vidyasagar et al., 2017).
Additionally, various works have aimed at accelerating and improving the convergence behavior.

A comprehensive review of Newton-Raphson and Krylov subspace methods has been presented by
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Kabel et al. (2014). The work of Mishra et al. (2015) details low-memory iterative techniques for
solving the Lippmann-Schwinger homogenization problem. Shanthraj et al. (2015) list a compari-
son of the general computational costs of non-linear extensions of the Moulinec-Suquet scheme up
to generalized minimal residual method (GMRES) accelerated methods. Finally, Kochmann et al.
(2016, 2017) have implemented hierarchical multi-scale FE-FFT coupled frameworks for dealing
with elasto-plasticity in polycrystals.

Spectral methods have inherent drawbacks preventing their widespread use, particularly in
mechanics. In the presence of interfaces or boundaries in heterogeneous domains, high contrasts
in properties result in strong discontinuities. These pose numerical challenges (Michel et al., 2001;
Moulinec and Silva, 2014) for the original Moulinec-Suquet method. The convergence properties
of the original method depended on the spectral radius of the Green’s operator in the Lippmann-
Schwinger equation, which is a function of the initial guess for the homogenized/reference stiffness
tensor. Since it is not trivial to bound this set of tensors using their spectral radius, the original
method has no guarantee of convergence. When using an average elasticity tensor as the initial
guess, higher contrasts have been observed to render the original method impractical because of

the large number of iterations required for convergence (Willot et al., 2014).

The second major issue is fundamental to interpolations which use smooth functions to
approximate discontinuities. Here ringing artifacts related to Gibbs instabilities (Gibbs, 1898,
1899; Hewitt and Hewitt, 1979) corrupt the approximation and render numerical methods unsta-
ble. Recently, filtering techniques based on composing finite-difference templates onto spectral
schemes have gained interest for mitigating oscillatory phenomena. These involve using modi-
fied Green’s operators derived from wave vectors which are analytically computed a priori using
finite-difference approximations. To first-order, these approximations recover the Lanczos o -
correction (Lanczos, 1956; Hamming, 1986) for Fourier series. Starting with the work of Mueller
(1998), first-order finite-difference approximations have been adopted by (Berbenni et al., 2014;
Brisard and Dormieux, 2010; Lebensohn and Needleman, 2016) in homogenization using iterative
spectral methods to avoid these ringing artifacts. Similarly, Willot et al. (2014) extended these to

rotated schemes which markedly improved quality of approximations.

As will be detailed in Sec. 2.5 arbitrary higher-order schemes can be derived using analytical
transforms of various difference stencils and these are both consistent and h-convergent with
refinement (Vidyasagar et al., 2017). In the work of Vidyasagar et al. (2017), it was shown that
these methods were applicable to pattern formation in the context of non-convexity in ferroelectrics
— this will be discussed in further detail in Chapter 6. In addition to reducing the ringing artifacts,
the augmented schemes add artificial regularization to the energy minimization problem as detailed
in Vidyasagar et al. (2018); these will be described in Sec. 2.6.
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2.3 Iterative Spectral Methods

In this section, the basic iterative scheme established in the original work by Moulinec and
Suquet (1998), and improvements thereof, are applied to a finite-deformation elasticity problem.
This scheme solves the non-linear Lippmann-Schwinger equation, and with modifications can be
applied to linearized kinematics, multi-field coupling and visco-plasticity. A simplified derivation
begins with linear momentum balance, in the absence of body forces and inertial effects, using

Einstein’s summation convention,
Pij(X) =0, (2.10)

where P denotes the first Piola-Kirchhoff stress tensor. Periodic boundary conditions are applied

such that the average deformation gradient F° satisfies
_ _ 1
S =P =X W)= [ Fa. @1
Q

Subsequently, a linearization is performed using a reference elasticity tensor (C?J .1, and a correction
denoted as T,
0
Ty = Piy = Cp Frrs (2.12)

also known as the perturbation stress tensor. A common (yet admittedly sub-optimal) choice for

the reference tensor is the volume average

eV = l/c- (X) dv Cikn(X) = _ow (2.13)
iJkL — % v iJkL s iJkL = 8Fﬂ aFkL. .
By substitution of Eq. (2.10) into Eq. (2.12), with F = Ve,
770 +Cy oLy = 0. (2.14)

The discrete (inverse) Fourier transform applied to the quasistatic deformation mapping ¢(X) gives

@(X) = Z @(K) exp (—ihK - X), and i= V-1, (2.15)
KeT
where 7 = {Ki,...,K,} denotes the reciprocal lattice in K-space (also known as Fourier space)

which is chosen to ensure periodicity. In standard FFT-implementations, & = 27” and K = [0 :

n/2;-n/2 + 1 : —1]. By defining a wave vector @ = —ihK, the Fourier transform applied to
Eq. (2.14) yields
fywy +CY,, grwrwy = 0. (2.16)

Rearranging and introducing the reference acoustic tensor A results in

Pk = — (A%)_lﬁjwj, where A?k = C?JkLwij. (2.17)
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Repeating the differentiation operation once more, and introducing the Green’s operator I,
Fiy = = (A)) " #yw50y
= — (A (P = C) pFyp) wgwy  where Ty, = (AY) wjwy. (2.18)
0 0 7 r0 B
- FszJCquR gk = UinigPiss
Transforming back to real space,
ALK (K)K KL for K # 0

Fo(X) = F YEL(K)} and  FTN(K) = (2.19)
(Frr) for K = 0.

Data: Current average deformation gradient, initial guess, stress field, material

model container, spatial information
Initialization of spatial distribution, declaration of data types, initial guess F,CY;

while | F*1(X) — Fi(X) ||,> tol do
7(X)=ComputeStress(F(X)) - C° : F(X);

7(K)=FFT(t(X));

if K == 0 then
F* = (F);
else

Cycle through K —space:
FIK) = —(AY(K)) i (K)wjwy = =19, ,(K)fi,(K);

end

F™*Y(X)=iFFT(¥™*'(K)) and increment /;

end
Algorithm 1: Moulinec-Suquet Implementation

The algorithm described thus far is shown as pseudo-code in Alg. 2.3, and can be considered
as a non-linear Richardson iteration scheme performed to solve the Lippmann-Schwinger equation.
The convergence and stability of this method can be tuned to a limited extent by selective weighting

along the march direction using a damping factor a (Kabel et al., 2014),

Frl=(-a) Fi + o F'*. (2.20)
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For a convex optimization problem, when the spectral radius of the Green’s operator is within
range for convergence, the method can be accelerated by marching further along the descent
direction. Similarly, if the choice of reference stiffness results in ill-conditioning, the method can

be damped through appropriately choosing the parameter . This is shown in Alg. 2.3.

Data: Current average deformation gradient, initial guess, stress field, material

model container, spatial information
Initialization of spatial distribution, declaration of data types, initial guess F, Co;

while || Fi*1(X) - F/(X) ||z, >tol do
7(X)=ComputeStress(F (X))-C° : F{(X);

7(K)=FFT(7(X));

if K == 0 then
F™' = (F);
else

Cycle through K —space:
FIK) = —(AY(K)) ™' 41y (K)wjwy =

kN J(K)TZJ(K)

end

F*(X)=(1 — @) F/(K) + (a) iFFT(F"*'(K)) and increment i;

end
Algorithm 2: Damped Moulinec-Suquet Implementation

The non linear Lippmann-Schwinger equation can be recast as a root-finding problem, which

allows for the use of quasi-Newton schemes,

(5kq<sNR 10 (k) CquR) Eyr(k) + 10, (k) Py (k) = 0. 2.21)

The derivative can be evaluated knowing the material model, and assuming that the reference

stiffness stays constant during the Newton-Raphson iteration (dropping indices for conciseness),

AFH! = (]1+r0 (ap CO))_1 : ((F) —(Fy-T": P). (2.22)
oF

It is possible to use a fixed point iteration once again to obtain the increment at every iteration

— with the scheme representing a linearized iterative version of the original algorithm, which is
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depicted in Alg. 2.3,

i+1 _ 0. opP o| . i+1
AFi*l = T .FFT[((@—F—C) : AF}Y +P) .

Data: Current average deformation gradient, initial guess, stress field, material

model container, spatial information
Initialization of spatial distribution, declaration of data types, initial guess F,C";
Perform one iteration of Moulinec-Suquet iterations to start;

while | AF{(X) ||, >tol do

while || AF!  (X) — aAF}(X) ||z,>tol do

B(X)=ComputeTangentMatrix(F'(X))-C%) : aAFL(X)+
ComputeStress(F'(X));

B(K)=FFT(B(X);

if K == 0 then

AﬁriHl — <F10adstep> _ <Fi>;
else

Cycle through K —space:

AFPH(K) = (A (K)) ™ By (K)wswy = T2, (K)Biy(K);

end

AF!  =iFFT(sF!  (K));

end

FH*(X)=F!(X)+at iFFT(AF™'(K)) and increment i;

end
Algorithm 3: Newton-Raphson Implementation

2.4 Ringing Artifacts

The aforementioned ringing artifacts present in spectral interpolations can be illustrated using
basic examples. Starting with a rectangular step function, the evaluation of the (n to n) discrete
Fourier transform (DFT) at nodes and the continuous expression of the mathematical definition of
the DFT by a truncated Fourier series yields the graph shown in Fig. 2.1 (a) for a 1D interpolation.

The Gibbs phenomenon manifests in the continuous expression because of the non-uniform con-
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vergence of the truncated Fourier approximation when performing the (n to n) transform (Gibbs,
1898, 1899; Hewitt and Hewitt, 1979).

121 50

f'(t)

0 “v"v"vAVA ! IW———

0.2 L L L L ) -50 L L L L )
0 0.2 0.4 ¢ 0.6 0.8 1 0 0.2 0.4 ¢ 0.6 0.8 1

(a) (b)

Figure 2.1: An FFT-based interpolation of a rectangular function f(x) = rect(%, %) (a) results in
oscillatory approximations with the Gibbs phenomenon. Here, the slopes are shown in black at the
grid points, and this directly results in the oscillations of the derivative f’(x), shown in (b), which
is computed using the wave vector multiplied by the Fourier transform of f(x).

Also included in this graph is the slope at grid points (see the black lines), which become
spurious oscillations when computing the derivative by taking the product of the DFT by its
frequency, as shown in Fig. 2.1 (b). FFT-differentiation (or product of frequency and DFT) utilizes
slopes at the grid points (of the interpolated function) in order to compute the derivative, explaining
the presence of oscillations. Note that the grid point values themselves may be free of artifacts,
but linear momentum balance requires calculating the divergence of the stress (i.e., derivatives of
strains), so the black slopes in Fig. 2.1 (a) enter the calculation and affect results. This is not present
when using a smooth periodic function whereby exponential convergence is reached with increasing
grid points, and hence minimal Gibbs phenomena, and consequently mitigated oscillations upon

differentiation.

From an analytical point of view, the Gibbs phenomenon is explained by the non-uniform

convergence of a truncated Fourier series

fu= ) flkyexp(~ihk - x). (2.23)

keT
of a function f(x), where 7 denotes the finite set of points in spectral space used for the numerical
approximation while 75 is the countably infinite set of the corresponding exact Fourier represen-
tation, and 7* = 95 \ 7. Fourier coefficients have pointwise convergence; however, the error

of a truncated Fourier series, due to the high-frequency terms, depends on the smoothness of the
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function. The error bound can be derived by analytical Fourier expansion through

v = Fl =1 Fe)exp(=ink - x)

keT*

= Z a(k)sin(hk - x) + l;(k) cos(hk - x)
keT*

> lati) + b))

keT*

< " lato)] + [bik) .

keT™*

(2.24)

IA

Applying Poincaré’s inequality to the transform and using Parseval’s identity,

atol+ 16 < S = (1)) + 1B W)
> >

keT™ keT™ |k|
< V2| D7 @)l + |b (k)
keT™

2 2
<oy I

~ 2 2
—fl <= . 2.26
i‘;gVN f] < — 1, (2.26)

Therefore, the error depends on the smoothness of the function, and the decay rate of the Fourier

1/2
(2.25)

The error bound reads

coeflicients results in non-uniform convergence. The work of Gelb and Gottlieb (2007) and
the references therein include further discussion on the origin of oscillatory artifacts in spectral

methods.

2.5 Finite-Difference Corrections for Spectral Differentiation

In order to overcome these oscillatory artifacts, finite-difference stencils are used to derive
differential operators in Fourier space. This bounds the operator near discontinuities and weights
the higher frequencies depending on mesh resolution. The drawback of this technique is that the
exponential convergence character of the spectral method with A-refinement reduces to the order
of the finite-difference stencil. Consequently, this motivates the use of higher-order and compact

schemes.

Applying an inverse Fourier transform (2.15) to the derivative of a function f € R¢ yields

7! (g—f) = —ihk; T (f). (2.27)
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However, if a central-difference approximation is first applied to the derivative, such that for grid
spacing |Ax;| < 1 in the coordinate direction x; with unit vector e; (no summations over i)
ﬂ(x) _ S+ Axie) - flx — Axiei)
6xl- 2Ax,~

Neglecting higher-order terms in the equation, the first order term can be transformed analytically

0(Ax?). (2.28)

1

into Fourier space, leaving

%(x) N Z f(k)exp [—ihk - (x + Ax;e;)] —exp [—ihk - (x — Ax;e;)]

ZAXI’
keT
- (2.29)
A . i sin(hk;Ax;)
=- k) exp(-ihk - x) ———,
l;rf( ) exp( ) ax

where summation is not performed over i. In the presence of a uniform grid (i.e., with equal
spacing), Ax; = Ax. In such a case it is easy to see that difference scheme approximates the exact

derivative when

¥ (g) = —ihk; FU(f) is replaced by F ! (B_f) ~ —MT_I(]”). (2.30)

0x; 0x; Ax

The fractional term in this equation closely relates to a sinc filter in signal processing or the

Lanczos o-factor (Lanczos, 1956; Hamming, 1986) in Fourier series as a means of avoiding
ringing. Additionally, in the limit Ax — 0,

Jim % = hk;. 2.31)

This can be extended to arbitrary finite-difference stencils in higher dimensions. As examples,

consider the simple central-difference schemes from fourth to twelfth-order. The fourth-order-

accurate central difference approximation becomes

c’)_f(x) _ —f(x +2Axe;)+8f(x + Axe;)) —8f(x —Axe;)+ f(x —2Ax e;) LAY, (232)
0x; 12Ax
Similar to the previous scheme,
of .| 8sin(hk;Ax)  sin(2hk;Ax)
—|=- - . 2.33
4 (axi) |7 6Ax onx | ) (233)
The exact solution is once again obtained in the limit, except convergence is achieved at O(Ax?)
. 8sin(hk;Ax) sin(2hk;Ax)
1 - = hk;. 2.34
A¥30 [ 6Ax 6Ax ki (2.34)

For sixth-order,
of f(x +3Axe;))—9f(x +2Axe;)) +45f(x + Axe;) —45f(x — Ax e;)
)=
0x; 60Ax

+9f(x —2Axe;))— f(x —3Axe;)
60AXx

(2.35)
+ O(AXY).
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The transform relation becomes

F af\ _ . |9sin(hkiAx) 3sin(2hkiAx)+sin(3hkiAx)
ox) " 6Ax 10Ax 30Ax

] F(f). (2.36)
The limit as Ax — 0 again shows that

lim
Ax—0

[9 sin(hkiAx) _sin(2hkiAx) | sinGhkAx)| _ (2.37)
= hk;. .

6Ax 10Ax 30Ax

Analogously, the eighth-order accurate approximation leads to (Vidyasagar et al., 2017)

F (G_f) . [8 sin(hkiAx) 2sm(2hk,~Ax) N 8s1n(3hk,-Ax) _ sin(4hk;Ax)

dx; 5Ax 5Ax 105Ax 140Ax ] F(f)-  (238)

As before, convergence with decreasing grid spacing, comes from

lim 8 sin(hk;Ax) B 2sin(th,-Ax) N 8sin(3hk,~Ax) _ sin(4hk;Ax) . (2.39)
Ax—0 5Ax 5Ax 105Ax 140Ax
Finally, a central-difference scheme of 12th order with constant spacing Ax is
df( ) & ! S5f(x —6Ax) — 72 f(x — 5Ax) + 495 f(x — 4Ax) — 2200 f(x — 3Ax)
dx T 277208k | T T o oA

+ 7425 f(x — 2Ax) — 23760 f (x — Ax) + 23760 f(x + Ax) — 7425 f (x + 2Ax)

+ 2200 f(x +3Ax) —495f(x + 4Ax) + 72f(x + 5Ax) = 5f(x + 6Ax)|.
(2.40)

Application of the discrete Fourier transform and simplification yields the approximation

dx TAx 28 Ax 63 Ax
i sin(4Axhk) 2isin(5Axhk)+isin(6Axhk)
28 Ax 385 Ax 2772 Ax

=0 F{f(x)}.

The above approximation maintains also consistency with the exact Fourier transform in the limit

df 12isin(Axhk) 15isin(2Axhk) 10isin(3Axhk)
7 (x)p = |- -

) Fify G4

of vanishing grid spacing, as can be verified through a Taylor expansion:

(2.42)

Ale(hk)IZ Ax14(hk)14
lim & = lim w-[1- + +0 (Ax"%)) = w.

a0 @ T xS 12012 27720 g “
It is possible to tune the balance between convergence order and spurious artifacts by choosing
different finite-difference stencils. The same procedure can be applied to finite-difference ap-

proximations of arbitrary order (Vidyasagar et al., 2018), to result in controllable accuracy and



26
efficiency. Similar works by Willot (2015) and Schneider et al. (2017) have used weighted dif-

ference schemes to compute the higher-dimensional derivatives, involving compact stencils using
nodes on the off-diagonals. This results in more local approximations, with possibly improved

numerical stability.

The effectiveness of these approximations in mitigating oscillatory artifacts can be visualized

through numerical examples. Beginning with the double-step function,
1 3
f)=6(x=7+ 2710 4 5(x — i 2719, withperiod  x €[0,1), (2.43)

the derivatives obtained from the classical Fourier spectral method, the modified Fourier transform
(first-order and fourth-order correction), and the exact analytical solution are compared in Fig. 2.2.

Similarly, for the case of a smooth but discontinuous half-sine function, defined by
f(x) = mcos(mx), with period x €[0,1), (2.44)

the derivative is plotted in Fig. 2.3. It is clear that there is still limited oscillatory phenomena in
the higher-order corrections which can be directly attributed to the less severe weighting of higher
frequencies compared to the first-order scheme. However, there is marked reduction of oscillations
when both finite-difference schemes are used. The main motivation behind higher order schemes
becomes clear when considering smoother functions. The first-order correction results in critical
damping of the oscillations at reduced accuracy in smooth regions, while higher-order corrections
give sub-critical damping but better overall accuracy away from discontinuities.
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Figure 2.2: Spectral derivative of the double step function using first- and fourth-order finite-
difference correction, compared with classical FFT, and analytical solution (Vidyasagar et al.,
2017).

In order to quantify the error of approximation, the mesh convergence order of Euclidean
error-norm
E = |luy - ull, (2.45)
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Figure 2.3: Spectral derivative of the half-sine function using first- and fourth-order finite-difference
correction, compared with classical FFT, and analytical solution (Vidyasagar et al., 2017).

serves as a convenient measure. The smooth function,

n=9
f(x) = Z sin(2nmx), (2.46)
n=1
is used to present the effectiveness of the various corrections, and the results are shown in Fig. 2.4.
Unsurprisingly, since the function exhibits smooth properties, spectral accuracy reduces to the
finite-difference order. The log,-convergence order exponentially reaches the order of the finite-
difference approximation. As expected, the spectral convergence reaches machine precision with
an equal number of grid-points as sinusoidal terms in f(x). Therefore, the correction order has to
be carefully chosen in order to minimize the competing error mechanisms arising from both the

ringing artifacts and finite-difference approximations.

The next benchmark test of interest is the influence of finite-difference corrections for an elastic
homogenization problem. Here, a representative volume element in 2D, with two constituents, is
subjected to a biaxial tensile test. The linear elastic composite RVE consists of a matrix (normalized
Lamé moduli Ay = 0.6, pmae = 0.6, outer side length L) with a circular inclusion (radius 0.25L;
normalized Lamé moduli 4 = 1, g = 1). A grid of size 256 X 256 is used and Fig. 2.5 shows the
resulting stress distribution. In this case the first-order correction 2.5 (c) over-smooths the solution
as seen through the green coloration at the interface, while the fourth-order correction 2.5 (b) still

produces mild oscillations as compared to the heavy oscillations in the uncorrected scheme 2.5 (a).

Interestingly, several previous approaches have aimed to mitigate this oscillatory behavior by
terminating the iterative solver prematurely. In such cases, the accuracy of the numerical method
is compromised, particularly in time evolution problems. For explicit time-stepping routines, the

propagation of error through time would not converge with refinement. Additionally, depending
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Figure 2.4: (a) Finite-difference approximation indicates loss of accuracy when the mesh conver-
gence is computed. The plot shows error-norm against number of grid-points n. (Vidyasagar et al.,
2017) (b) The convergence orders plotted against the number of grid-points (Vidyasagar et al.,
2017).
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Figure 2.5: Stress distribution ﬂ—‘:n (a) the standard iterative spectral method (b) fourth-order

finite-difference corrections and (an first-order corrections (Vidyasagar et al., 2017).

on the descent direction, this could lead to divergent results due to numerical instabilities. Finally,

such techniques would not converge with h-refinement unlike the method presented thus far.

2.6 Special Considerations for Non-Convex Problems
Unfortunately, the spectral formulation presented thus far is based on the strong form of the
governing differential equations. Unlike in convex problems, in non-convex minimization, there

are meta-stable high-energy states that satisfy linear momentum balance.

As a means to circumvent this, the addition of an insignificant amount of stochastic white
noise perturbs the system away from the meta-stable equilibrium state. For non-convex energies,

the local loss of strong ellipticity introduces further problems. When the acoustic tensor Az,
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computed using the reference tangent stiffness tensor,

O*W(F)

_— 2.47
0F;;0FyL (247)

1
C?JkL = V /V‘CijkL(X) dV, CiJkL(X) =

becomes close to loss of positive definiteness, the matrix inversion becomes ill-conditioned. In
order to prevent this, the local tangent stiffness tensor used to compute the reference stiffness is
derived from a convex approximation of the non-convex energy. While this affects the descent

direction, it does not change the nature of the root-finding iterative approach and the final solution.

Finally, these finite-difference approximations introduce numerical regularization to the non-
convex optimization problem (Vidyasagar et al., 2018). Specifically, any finite-difference stencil
leads to an approximation of the deformation gradient. For a stencil that is mth-order accurate in

each spatial dimension, the approximation becomes

(AX)m a(m+1)(pi
(m+1)! ax}nﬂ

Fli= o) = g+ +0 ((AX)'"+2) . (2.48)

Assuming an energy density W(V¢), the contribution of additional energy can be quantified.
Performing a Taylor expansion of W(V),

(AX)Y" OW
(m + 1)! (9(/7,"J

a(m+l)90i

W(Ve") ~ W(Ve) +
aX}rHl

= W(Ve) + Wh(v™ly), (2.49)

(Vo)

the additional contribution can be quantified. It is clear that the additional non-local contribution
Wh(v™tlp) ~ (AX)™, introduced by the finite-difference scheme, asymptotically converges to 0
with decreasing grid spacing AX. This implies consistency with grid or A-refinement. Additionally,
the length scale which is introduced as a consequence is relative to the absolute size of RVE. For
example, for a cubic RVE of length L and n grid points, the grid spacing AX = L/(n'/? - 1).
Therefore, AX is relative to the RVE size, hence microstructural patterns will be independent of
the absolute size of RVE, and converge with grid resolution. It will be shown that it is possible
to expand the given form in some cases, such as finite-strain single-slip single-crystal plasticity in
Sec. 3.4.

These higher-order gradients in the energy density penalize strong discontinuities and therefore
result in a finite width of interfaces. This has qualitatively the same effect of smearing out
interfaces. For example, in phase-transforming solids interfaces exist between the different variants,
in ferroelectrics between different domains, or in finite-strain crystal plasticity between regions of
different (but approximately constant) plastic slip (Ortiz and Repetto, 1999). The grid-based
smearing of interfaces would be anisotropic, as evidenced by the form of Eq. (2.49), but the

influence this has on pattern formation is considerably reduced with grid refinement depending
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on the order of stencil used, and only interface thickness is penalized and not pattern orientation.
However, grid-orientation has an influence on laminte orientation and hence the minima found
by the spectral homogenization scheme. These patterns with interfaces have been observed also

experimentally (Dmitrieva et al., 2009).
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Chapter 3

NUMERICAL SOLUTIONS TO NON-CONVEX PROBLEMS

Research presented in this chapter has been adapted from the following publication:

Vidyasagar, A., Tutcuoglu, A., Kochmann, D. M. 2018. Deformation patterning in finite-strain
crystal plasticity by spectral homogenization with application to magnesium. Computer Methods
in Applied Mechanics and Engineering, 335, pp.584-609.

URL: https://doi.org/10.1016/j.cma.2018.03.003

3.1 Introduction

The numerical homogenization techniques developed in Chapter 2 are used to solve specific
problems involving non-quasiconvex energy landscapes in this chapter. The discussion begins
with the St. Venant-Kirchoff model (Sec. 3.2), which is still widely used in commercial and
academic codes, where unphysical patterns are shown to form even for admissible choices of elastic
constants. Following this, a generalized model for phase transformation is derived (Sec. 3.3)
and demonstrates intricate pattern formation when mathematical toy examples of transformation
strains are used. Finally, numerical homogenization is performed to find relaxed energies and
predict pattern formation in the single-slip single crystal model in Sec. 3.4. In all three cases, pure
energy minimization is performed (ignoring dissipative effects), for symmetric and asymmetric
bi-stable energies (upon projection along a specific loading parameter), together with an evaluation

of associated patterns.

3.2 The St. Venant-Kirchoff Model
An excellent first benchmark test for finding energy-minimizing microstructures without the
complications of viscoplasticity or coupled fields is the elastic energy density named after St. Venant
and Kirchhoff, defined as
W(F) = %(FTF ~-I)-C(F'F -1). 3.1)

As introduced in Chapter 1, consider a solid with isotropic elastic modulus tensor Cjjx; =

Ad170kr + u(d1xd L + 811.07%) and moduli A, u > 0. This solid is subjected to a uniaxial tension-
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compression with simple shear test described by the applied deformation gradient

-y 2y O
Fx=| O 1 0} y < 1. (3.2)
0 0 1
Insertion into (3.1) yields
1
W(Fo) = 57 (2 (25y2 _ 20y + 12) g+ (2 57)21) , (3.3)

which has two minima and one local maximum, respectively, at

VA2 =282 — 60u2 + 31 + 61

=0, = 34
Y1 72 1001+ 22 (3.4)
and
—JA%2 = 28Au—60u% + 31 +6
. v 1 — 60y 1 (3.5)
10(A + 2u)
given that
2
1
A s -s0>0 = o0<EL (3.6)
u u A 30
and is strictly convex if and only if
9*w 1
250 = EsC 3.7)
0y? A6

This is illustrated in Fig. 3.1, where decreasing the ratio of % increases the non-convexity of the
condensed energy landscape. Therefore, a compression-shear test with y > 0 is expected to form
microstructural patterns as energy minimizers. As shown by Le Dret and Raoult (1995), the

quasiconvex envelope of a St. Venant-Kirchhoft solid with isotropic moduli £ and v is given by

QW(F):g[vg—l]2 ) [v%+vv§—(1+v)]i

+—
o 2(l-v

E , . ) (3.8)
+ 20 )1 -2 [(L=vvi+v(vs+v) - (1+ V)]+ ,
where (v, vy, v3) are the singular values of F and
31+2 A
E = u’ v = . (3.9)
A+ u 2(A + p)

For the chosen example of (3.2), v; are the singular values of Fe, and in the limit u — 0 the
analytical quasiconvex hull evaluates as

0 if »v2)s
OW(Fe) = el (3.10)

W(Fe) else.
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Figure 3.1: Loss of convexity of the condensed energy W(y) as the shear modulus i decreases, for
A=1.

This is a particularly appealing test case, as recursive lamination can produce the rank-one-convex
hull by numerically evaluating (1.24) for y < 0. Results show that RW|(Fex) * QW (Fe) fory < 0,

i.e., a first-order laminate construction is sufficiently close to the quasiconvex hull.

In order to compute the patterns which form during loading, the spectral technique, outlined
in Section. 2 is used to perform numerical quasiconvexification for this benchmark test for which
both the analytical and rank one lamination results are known. In this regard, a representative
volume element (RVE) is subjected to periodic boundary conditions and the macroscopic (volume
average) deformation gradient given in Eq. (3.2). The spectral solution scheme then solves for
the evolution of the internal deformation gradient field F (X)), together with the associated volume
average energy of the RVE.

For this computation, the parameters of 1 = 1 and ¢ = 1.0 - 107> are used. In order to ensure
that the acoustic tensor A° is invertible, u = % is used to compute the reference stiffness tensor
C%. One cycle of loading and unloading is performed, using the fourth-order central difference
approximation technique, to obtain the numerically computed average energy. Fig. 3.2 summarizes
the results, whereby the formation of a checkerboarding and laminate patterns are observed. As
seen in the energy plot, after an initial homogeneous phase whereby the spectral solution follows
the non-convex energy, the RVE breaks down into domains, allowing the numerically computed
average energy to march towards the quasiconvex envelope. The computed quasiconvex hull is very
close to the analytical solution.



0.035 et e e e e L L T

non-convex energy
0315 + ; .

0.0315¢ L numerical solution

0.028 - + first order lamination '

= = -analytical quasiconvex hull|f 7

0.0245 | )

0.021 -
0.0175 !

energy W(7)
energy W(7)

0.0105 -
0.007 -
0.0035 |-

A B C D E F GNI A
OAA -

0 005 01 015 02 025 03 0.35 I'0.7l_10.4i 0.5
loading parameter ~y s

()

|
|
|
|
I
I
]
I
|
|
|
|
0.014 :
I
]
I
|
|
|
|
|
I
I
]

NS e — a1

(c)

Figure 3.2: The calculated numerical hull shown in (a) shown near the origin in (b). Corresponding
microstructural patterns are shown in sequence in (c) during the loading process through the
deformation gradient component Fi.

It is possible to approximate the quasiconvex hull of non-symmetric potentials with different
magnitudes of non-convexity by varying the shear modulus . The results of the computed energy

lanscape are shown in Fig.3.3. It is interesting to note that both the lamination approach and the
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numerical approach deviate from the analytical quasiconvex hull as the degree of non-convexity is
decreased. This is due to increased energy of finite-width interfaces that exist when numerical (or

otherwise) regularization is added to the non-convex optimization as aforementioned.

The autonomous patterns obtained using this approach, shown in Fig. 3.4, indicate a higher
level of complexity than with simple lamination theory. In the limit of first-order difference schemes,
ellipsoidal patterns are found. In all cases, the patterns found are different for each component of
deformation gradient, indicating that the system does not break down into simple heterogeneous
domains.
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Figure 3.3: The numerically calculated hulls at y = —0.25 shown for different degrees of non-

convexity with given parameters A = 1 from (a) 4 = 0.001 and (b) u = 0.01.

Figure 3.4: The largest patterns formed using first-order central difference approximation demon-
strate complexity of pattern formation, with each component of deformation showing different
patterns that are compatible.

3.3 Generalized Finite-Strain Phase Transition Model

Multi-well energetic landscapes are often associated with phase transformations, and originate

from a competition between multiple stable crystallographic phases. Depending on the specific
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nature of transformation these could represent different physically distinct forms (e.g., high- vs.
low-temperature phases in martensitic transformations) or of variants of the same form (such as all
symmetries of a tetragonal low-temperature phase). For the purposes of this work, this definition
is kept general in applicability to (but not limited by) either of those scenarios. In the context of
mechanics, n phases are described by transformation strains U, (@ = 1,...,n), such that the total

deformation gradient at X is
F(X)=Vp(X) = Fe(X) Uy(X),  F.€GL(d) (3.1

if the material point is in phase @. Here, F, represents the elastic deformation gradient assuming
multiplicative decomposition. The definition here is kept general and the classic assumption of
F. € SO(d) is not made, as is often the case in the mathematics literature. Here, both rotations
and elastic deformation are considered. The elastic strain energy density is denoted by W, and the
chemical energy density of phase « is denoted by ¥,,. The energy density of each phase is denoted
by W, and consequently the effective Helmholtz free energy density W at a material point (Ball
and James, 1987; Govindjee et al., 2003) becomes

WolF) = We(FU; )+, = W(F)= min {WQ(F)}. 3.12)

Since W(F) is not quasiconvex, insertion into (1.1) yields a functional that lacks weakly lower semi-
continuity and thus forms microstructural patterns. While this framework is mathematically elegant,
it is numerically problematic due to discontinuities in the energy upon phase transformations and
associated non-uniqueness and jumps in the stresses P = dW/JF. Therefore, the following
physically motivated approximate theory of phase transformations is presented, building upon the

linearized-kinematics model for ferroelectrics introduced by Tan and Kochmann (2017).

The framework presented thus far is ‘relaxed’” by allowing multiple phases to co-exist at any
given material point. The volume fractions of these phases are denoted by A = {4;,...,4,}. The
Voigt’s (upper) bound for Helmholtz free energy is then obtained from a Taylor model (where

compatibility is not enforced between phases), as

W(F,A) = > aWalF) = Y Ao [We(FU;") + ] . (3.13)

a=1 a=1

Ignoring dissipative effects, the energy-minimizing volume fractions are obtained for a given F as

A = argmin {W(F,/l) ‘ 0<Va=1,...,n Zaa - 1}. (3.14)
a=1

In order to observe and simulate phase patterning similar to the original model, (3.12), the phase

mixtures require penalization, here performed using a concept of configurational entropy (with a
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constant k7 > 0),
S(A) = kpd, log A, (3.15)

such that the above energy density becomes the free energy density A(F,A)

A(F, ) = W(F,2) = SQ) = > Ao [Wa(F) + kr log o] (3.16)

a=1

Without dissipation, the volume fractions can be obtained by minimization of (3.16) for a given F,

Weo(F)
exp|— .
A, = argmin A(F,Q) = . (3.17)
0<2q, ZZZI Aa=1 i Wﬂ(F)
exp|—
p=1 kr

Insertion into the free energy yields the condensed energy A*(F),

n W, (F)
A*(F) = A(F,2") = —kr log ZGXP B pli
T

a=1

(3.18)

Similar to physical (statistical mechanical) configurational entropy, k7 here becomes a numerical

tuning parameter that determines the penalization of phase mixtures. As k7 is increased, in the

limit k7 — o0, 4, = 1/nfora = 1,...,n. By contrast, as k7 is decreased in the limit k7 — O,
Wo(F)
exp|— = |
A, = = (3.19)
" Ws(F)\ W(F) ~ Wo(F))
Z exp|— e 1+ Z exp|— e

B*a

such that

1 if Wo(F) < W(F)V B # «,
leiTo A, =10 if 3 B s.t. Wa(F) < W,(F),
1/m  if there are m phases with equal W, (F) < Wg(F) for all other phases £.
(3.20)
In other words, in the limit k7 — 0O the solution becomes ‘sharp’, reproducing the effect of Eq. (3.12)
and the free energy approaches

Jim F*(F)= min {WQ(F)}. 3.21)
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Aslong as k7 > 0, the energy (3.12) is only approximated and allows some lower-scale microstruc-
tural pattern formation. However, for k7 # 0 this approximate formulation is advantageous because
it uniquely defines continuously differentiable stresses and tangent stiffness tensors. For example,
the first Piola-Kirchhoff stress tensor becomes
dF* <

aF L & aF

where the fact that 4™ is a minimizer of F* is exploited such that 0F*/d4,(1*) = 0. Likewise,

P =

Za P(FU; MU, (3.22)

the components of the incremental elasticity tensor (using the summation convention and writing
U, 1, for the IJ-component of tensor U, ) can be derived. This is unfortunately more involved as

the aforementioned partial derivative does not vanish:
dP;y _ 0P;; 0Py 04,

Cijpp = —2 =
KL= QFg  9FL i 91, OFiL
o1 (3.23)
= ; ﬂaCiMkN(FUC;I) UJ_]%/[UZIIV + ; Piy (FU 1) U_JM 5Fa
with
0oy 0 exp (—Wy/kr)
aFkL (?FkL Zﬁ eXp (—ng/kT)
_ CXP(—Wa/kT) i aWa
% exp(~Wg/kr) kr dFiL (3:24)
exp(—W, /kr) 1 ow
— DU Wa /7 > Z (—k—) exp(—Wﬁ/kT)aFﬂ
[Zpexp(-Wgs/kr)]™ 5 T
This can be further simplified into
a/la _ i aWa + i Z exp(_W)’/kT) exp(_Wa/kT) aW)’
OFL “kr OF  kr [Z,g exp(—Wﬁ/kT)]z OFyL
1 oW,
—Ag— A
wkT aFkL kTZ yaFkL
(3.25)

Ao w,
=221\
kr (Z YOF, 3FkL

- —Z/l Pev(FU YUy

79&&

" kr Z 3FkL

Overall, the elasticity tensor takes the form

Ciskr = Z 2eCimin(FULY Usy Ur
a

) i i (3.26)
+ k—TZZa A Py (FULUL Y Pin(FU YU

a y*a
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Note that

Aoy 0, ifW,#W,,
lim = (3.27)
kr—0 kT oo, else.

9

Therefore, as long as there are no two (or more) energetically-equivalent variants, the limit k7 — 0
is well behaved and produces the expected result, viz. that the stress and incremental stiffness

tensors are those of the dominant, lowest-energy variant.

As explained thus far, the energy density F*(V¢) is used in the following as a numerically
convenient approximation of the energy density in (3.12). k7 is chosen small but non-zero so as
to provide smooth stress and tangent matrices while approximating (3.12) sufficiently. Fig. 3.5
illustrates the influence of the choice of k7 for a two-well potential energy as a starting example,
defined by

5/4 0 0
U=I U=|0 4/5 0|, ¥ =0 ¥,=002 (3.28)
0o 0 1

with a compressible Neo-Hookean energy density

u(F'F)

K
We(F) = § ( J2/3 3) + 5(J ~-1)%, J =detF, (3.29)

with shear and bulk moduli u and «, respectively. The same elastic energy density is also used in

the subsequent finite-strain examples. The loading is parameterized by

I+ 0 0
F=[ 0 = 0| (3.30)
0 0 1

Fig. 3.5 shows the two energy wells W; and W, as functions of the loading parameter & as well as
the approximated effective energy F* for various values of k7, with k7 — 0 showing convergence
to (3.12).

While the energy-minimizing examples in this chapter do not deal with dissipation, the above
framework can be extended to materials systems in which volume fraction changes dissipate energy.
In such cases, 4 is no longer obtained by energy minimization but through the introduction of a
(dual) dissipation potential y*(1). Therefore, the variational principle can be treated by approaches
including the implicit methods of variational constitutive updates (Ortiz and Stainier, 1999). A
detailed discussion (within the analogous setting of linearized kinematics) is included in Tan and
Kochmann (2017).
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Figure 3.5: Plot of F* from (3.18) for the biaxial loading defined by (3.30) with u = 1 and xk = 3
for various values of k7 from 0.001 to 0.05.

Double-Well Energy
As a first example, a double-well energy density is considered; this is defined by the transfor-

mation strains and chemical energies, respectively,

1 00 12 0 O
U ={0 1 0|, U=[{0 1/1.2 0, ¥ =0, ¥,=45-107. (3.31)
0 01 0 0 1

For the free energy, a Neo-Hookean energy density (3.29) with u = 1, k = 3 is used and an RVE
(of grid resolution 128%) is subject to the applied average deformation gradient (3.30) for £ > 0.

For these and subsequent simulations using the phase-transformation model, the 8th-order
central difference stencil will be used to perform regularization as numerical experiments show its
optimality. In order to draw a comparison, a first-order lamination model is also presented in the
results. The results indicate that the RVE initially deforms homogeneously up to strains € = 0.03,
whereupon needle-like second phase domains begin to nucleate. The growth of these interfaces

induces the RVE to transition into a homogeneous second phase by € = 0.18.

The computed numerical quasiconvex hull lies above the first-order lamination result, and this
is postulated to be due to the contributions of interfacial energy between the two phases because of
the existence of a strain gradient and stress concentration at the tips of the needle-shaped domains.
The plot of deformation gradient component F1,, shown in Fig. 3.6, indicates complex hierarchical
microstructural patterns in terms of strain and phase distribution that cannot easily be captured by

simple first- or second-order lamination theory.
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Figure 3.6: The calculated numerical hull is shown in (a). The corresponding microstructural
patterns are shown in the volume fractions (b) & deformation gradient component F}, (c) during

the loading process.

Three-Well Energies
In order to understand the influence of having multiple subsequent wells in the energetic

landscape, a third well is added to the previous example in order to explore two scenarios. First,
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consider the transformation strains and chemical energies given by

1 00 12 0 0 14 0 0
U=|0 10 U=[0 & 0, Us=[0 & 0,
: : (3.32)
00 1 0 0 1 0 0 1
¥, =0, ¥ =3.5-107, Yy =8-107°.

In this case, the simulation results, depicted in Fig. 3.7, indicate that the RVE undergoes
sequential phase transformations. Starting from a homogeneous RVE with the phase one (cor-
responding to U; or identity), identical to the two-well example, needle-like domains emerge to

induce a transformation to a homogeneous RVE of phase two (corresponding to Uy).

In this regime direct nucleation of phase corresponding to Uz does not occur. Once the RVE
transforms to a homogeneous second phase, it undergoes a second simple transformation from

phase two to phase three, and within this regime domains of phase one do not emerge.

In contrast, when the third-well is lowered significantly, the phase transformation exhibits all
three phases during the loading process. This is clear from the microstructure plots in Fig. 3.8. The
material constants, transformation strains and loading path is identical to the three-well example

above but chemical potentials used for this example are shown in Eq. (3.33).

Y =0, ¥, =45-107, Y3 =0. (3.33)

An immediate consequence of this choice is that the RVE does not undergo the same manner
of phase transformation as the two-well example, but immediately nucleates domains of the third
phase from the first phase. From the plot of energy, included in Fig. 3.8, the numerically computed
result does not touch, and goes below, the second well, which is also indicated by the RVE not

exhibiting a homogeneous second phase microstructure during the loading path.

3.4 Single-Slip in Single- and Bi-Crystals

Hyperelasticity with the St. Venant-Kirchhoff model was an example of how an inappropriate
choice of material model leads to unphysical patterns, and the phase transformation model showed
the applicability of this approach to real physical phase transforming systems. To complement
these, the single-slip model, which has attracted the attention of mathematicians (Carstensen et al.,
2002; Conti and Theil, 2005; Conti and Ortiz, 2005; Albin et al., 2009; Anguige and Dondl, 2014;
Kochmann and Hackl, 2011) in recent decades, is studied as a canonical benchmark problem. The

finite-strain crystal plasticity model employed later in Chapter 4 also displays non-convexity along
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Figure 3.7: The calculated numerical hull is shown in (a) for the three-well case. The corresponding
microstructural patterns are shown in the volume fractions (b) & deformation gradient component
F>1 (c) during the loading process.

certain loading paths, and hence it is imperative to study the numerical viability and patterning in

a simplified single-slip system using the spectral scheme.

In the case of just a single active slip system, internal variables reduce to y (slip activity) and

€ (accumulated slip accounting for history). The accumulated slip activity is computed using the
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Figure 3.8: The calculated numerical hull is shown in (a) for the three-well case where the extremal
wells lie below the middle-well. The corresponding microstructural patterns are shown in the
volume fractions (b) & deformation gradient component F,; (c) during the loading process.

sum of absolute value of the incremental slip. Consequently, the inelastic deformation gradient F,

becomes
Fy=I+ys®m, (3.34)
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where s, m denote slip plane and normal vectors. The total deformation gradient is then assumed

to undergo the multiplicative decomposition
F =F.F, = F.=FF;' (3.35)

Substituting this into the energy density given by the sum of a compressible Neo-Hookean and
quadratic plastic hardening energy,

- H
A(F,€) = g (Ie,l - 3) + g(J -1+ o€ (3.36)

where u represents the shear modulus, « represents the bulk modulus and H represents a hardening

parameter, and compressibility condition results in the modified invariant

~ 1
61 (3.37)
= m(trC—Zym-Cs+yzs~Cs).
When a simple-shear test is performed, the deformation gradient is described by a macroscopic
applied shear A such that
F=I+Ab®c, b-c=0, |bl=|c|=1. (3.38)

The slip angle ¢ describes the slip plane and slip normal (in-plane), while applied shear angle 6

determines the angle at which shear is applied. Consequently, the definition of vectors s, m, b, and

c are
CoS ¢ —sing cosf —sinf
s=| sing [, m=| cos¢ |, b=| sing [, c=| cosf |. (3.39)
0 0 0 0

Upon expansion, the free energy density, A(y, €, 1) becomes

Aed) = 7 [ (202 +2)+ 222) + yaul200 - ) sin (206 - )

~(yd +4)cos (2(0 — )] + 2He?] .

(3.40)

Assuming monotonous loading, € = |y| along each increment. For any choice of slip and shear
angles satisfying ¢ = 6,
1
Ay ) = 5 [ty = % + Hy?]. (3.41)

Minimizing with respect to the internal variable y = (1), the condensed energy A*(1) becomes

HA%u

A*(A) = A(A4,y(A) = NH+ )

H+#—p. (3.42)
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For any physically reasonable range of shear modulus ¢ and hardening parameter H, the condensed
energy density is quadratic and therefore convex. As seen thus far, if an RVE with slip angle ¢ is

subject to shear such that ¢ = 6, it will deform homogeneously throughout the applied loading.

However, this is not true when considering the space of all possible orientations (¢, 8) such
that ¢ # 6. For instance, taking the case of slip and shear angles ¢ = —7/3 and 8 = 7/12 and, and

only considering monotonous loading as before, the energy reduces to
1
A = 3 [2y/l (/l + 2\/5) 1+ oy (4H + [/l ((\/5 + 2) 1- 2) + 4] u) + 442;1] . (343)
The condensed energy density now becomes
16HA 2 1+ TA% 2 + 4VBA* 2 — 4B 12 — 83 1% + 44212

A*(A) =
8 (4H 2020+ VB = 20+ 4ﬂ)

(3.44)

which holds for all :
1>0 A H>Z[—(3\/§+6)/12+6/1—12]. (3.45)

It can be shown that the condensed energy (3.44) is non-convex in A for a particular range of values
in (H, 1)-space. For example, Fig. 3.9 plots the condensed energy (3.44) as a function of the loading

parameter A for various different hardening parameters H at fixed u = 3.
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Figure 3.9: Loss of convexity of the condensed energy A*(1) as the hardening parameter H
decreases (Vidyasagar et al., 2018).

In the theme of previous models, as the hardening parameter H decreases, the energy landscape
becomes increasingly non-convex, which in turn implies that the energy can be lowered by breaking

up the homogeneous deformation into heterogeneous domains (Klusemann and Kochmann, 2014).
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Previous analytical studies have used laminate constructions to approximate the rank-one-
convex (and thus the quasiconvex) hull (Ortiz and Repetto, 1999; Miehe et al., 2004; Kochmann and
Hackl, 2011). Here, energy-minimizing patterns are calculated by applying the spectral technique
to a single-crystal RVE. For fair comparisons between analytical solutions and numerical results,
energy-minimizing microstructures are sought irrespective of loading history (i.e., dissipation-free
kinetic model) with the same parameters as the analytical model (H = 2.0- 107, u = 3, « = 3,
¢ = —nr/3, and 8 = 7 /12; note that the magnitude of the moduli does not affect the microstructure,
so they are given in arbitrary units). While subsequent polycrystal Mg simulations in Chapter 4
will account for all dissipative effects of (visco)plasticity (and realistic material parameters); in
the theme of this chapter, a dissipation-free example is used to illustrate a clean benchmark for

energy-minimizing microstructural pattern formation.

The relationship between the finite-difference schemes and microstructural length scales and
interface energies has not been quantified thus far, but single-crystal single-slip finite plasticity
gives the opportunity to do so. Considering the standard spectral method without finite-difference
smoothing, a plot of the relevant energies and slip activity in the reference configuration is show in
Fig. 3.10.

While the analytical solution of the quasiconvex hull corresponds to a laminate having zero
strain energy between the two energy wells (Kochmann and Hackl, 2011), the numerical approx-
imation is non-zero and experiences a series of jumps along the loading path, corresponding to
sudden changes in microstructure. The initial state equilibrates into checkerboard-like patterns,
followed by the gradual formation of transient laminate patterns that evolve with increasing load.
Macro-laminates emerge at larger loads, displaying characteristics of first-, second- and higher-
order laminates. However, due to the lack of a length scale, the observation of clean laminate
patterns is rare and the numerical approximation of the quasiconvex hull produces complex, gener-

ally non-laminate patterns.

Like analytical lamination schemes (Ortiz and Repetto, 1999; Miehe et al., 2004; Kochmann
and Hackl, 2011), the model whose results are shown in Fig. 3.10 neglects interface energies
and therefore does not have an intrinsic length scale (as explained in Chapter 1 this results in
infinitely fine infimizing sequences). In our numerical setting, interfaces between laminate do-
mains contribute energy only when the finite-difference smoothing described in Section 2.5 is
applied. Therefore, the simulation of Fig. 3.10 is repeated with the modified Fourier transform
of Section 2.5, which introduces an artificial, regularizing contribution to the stored energy (see
Eq. (2.49)). The analogous results are presented in Fig. 3.11. Both first- and second-order laminate
patterns are observed, and the patterns are considerably cleaner than those without finite-difference

regularization. The finite-difference regularization results in thicker interfaces with a characteristic
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(©)

Figure 3.10: Approximation of the quasiconvex envelope obtained by spectral homogenization
without finite-different approximation: the average energy of the RVE is compared to the non-
convex condensed energy with (a) showing a magnification of (b); (c) shows the microstructural
slip activity within the RVE at stages A through G along the loading path as indicated in (b)
(Vidyasagar et al., 2018).
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Figure 3.11: Approximation of the quasiconvex envelope obtained by spectral homogenization
with the twelfth-order finite-difference approximation: the average energy of the RVE is compared
to the non-convex condensed energy with (a) showing a magnification of (b); (c) shows the
microstructural slip activity within the RVE at stages A through G along the loading path as
indicated in (b) (Vidyasagar et al., 2018).
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relative length scale; these regions, in turn, produce a diffuse interface-type contribution to the
energy. Consequently, the path followed by the approximated quasiconvex hull is farther from the

theoretical (zero-energy) envelope.

Quantification of Numerical Regularization

The special case of a single-slip model with Neo-Hookean elastic energy makes it possible
to quantify the exact form of numerical regularization. The following approximation holds for a
second-order central difference scheme:

(AX)? 33 pom

4
6 ox (Xo) + O(AX™). (3.46)

F! v(Xo0) = ¢ v(X0) = @mn(Xo) +

Substituting the approximation of the total deformation gradient given by (3.46) leads to
W,(F.) = (trC - 3) Kr-1?

(FhFi;ll)T(FhFi;l)

-3
(det F7)*?

+ g (dech - 1)2 (3.47)

~H
2
iy

—2/3 2
- (dech) tr((FhFi;I)T(FhFi;I))—3 +g(dech—1) .

2

If the determinant and the first invariant of the elastic deformation gradient are expanded via a

matrix Taylor series, one arrives at

(AX)” an+1 Om

Ft y(Xo) = Frun(Xo) + Dl gxr (Xo) + O(AX"™2). (3.48)
N
Upon defining the error coefficient and using the chain rule of differentiation,
(AX)” an+l 0
) — o M G = Z pra o)( ml(XO)) (3.49)

one obtains that
det F" = det F" = det F (1 + K™ tr(F—lc;(")))) + O(AX"?) (3.50)
and
r ((FhF ) (Fthl)) _ ((FF I)T(FFi;‘)) + 20 w(FTG™) + 0(AX"™?).  (3.51)

By substituting into the Neo-Hookean energy density and performing a matrix series expansion,

the lowest-order error is obtained as

We = We + W' + O(AX™?) (3.52)
n_ _(AX)" B dpam) M 1am) (W\T
oot D (2K(J l)Jtr(Fe G ) 7 [trCetr(Fe G ) 3tr((G )Fe)]

(3.53)
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(a) ©

Figure 3.12: Laminate patterns for the simple shear test case at 4 = 0.208 obtained from (a)
numerical simulations using the above spectral homogenization framework and (b) the equivalent
sharp-interface description. (c) shows the local energy density distribution of the numerical solution
in (a), which shows concentrated energy within interfaces (Vidyasagar et al., 2018).

Interface Energy and Equivalent Laminate Microstructure
Unlike in the case of hyperelasticity or phase transformations where computationally predicted
patterns did not generally conform to laminate definitions, in single slip the patterns (in the

regularized case) visually correspond to laminates.

As such, it is reasonable to find out if the rank-one convex hull (Ortiz and Repetto, 1999;
Aubry et al., 2003; Miehe et al., 2004; Kochmann and Hackl, 2011) obtained analytically matches
the numerical result. These models assume sharp interfaces (as opposed to the diffuse interfaces
from numerics) and construct laminates by enforcing kinematic compatibility. For convenience,
the first-order laminate approximation of the rank-one convex hull (repeated from Eq. (1.22)) of
A(F) is given by

RIA(F) =inf { viA(F1,y1) + 2A(F2,v2) | vi, Fi : 0 < v; < 1,
n

n
ZV,': 1, ZViFi:Fa rank(F| — F») < 1}, Fl,erGL+(d),
i

i

(3.54)

where v; denotes the volume fraction of laminate phases i = 1,2. In order to satisfy the Hadamard
compatibility constraint, it is required that F, — F; = a ® N, where N is normal to the laminate
interfaces and a being the projected amplitude of jump in deformation gradient across the interface.
As discussed above, in the non-convex region of the above example in the absence of hardening
one obtains that R;A(F) = 0.

As an example, results obtained from the numerically regularized diffuse-interface calculation
and an equivalent sharp-interface laminate for the same simple shear test of Fig. 3.11 at an applied
shear of 4 = 0.208 are compared in Fig. 3.12 (a) and (b). From the simulated RVE solution, the
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average quantities for each of the two laminate phases are determined, evaluating to

0.956 -0.291 0O 0.933 0.358 0O
Fei~| 0291 0956 0 [, Fer ~| —0.358 0.933 0 |, v1 = 0.312, v2 = —0.357,
0 0 1 0 0 1
0.581 0.480
a=~| 0308 [, N ~| -0.877 [, 0 ~ 28.7°, and v1 = 0.0993,
0 0

(3.55)

where 6 denotes the laminate orientation with N = (sin6,—cos 6,0)T; see Fig. 3.12(b). The

corresponding sharp-interface energy is
Alaminae = VIA1 + (1 = v))Ay = 1.61-107, (3.56)

which is not (but very close to) zero (as in the ideal case of a sharp-interface laminate) but
significantly less than the condensed energy for homogeneous deformation at the same applied
shear (1 = 0.208), which is A* = 6.49 - 1073 with

3 (/12 N 2\@1) 1.00  0.225 0

y = =-0204 and F.=| -0.176 0.958 0

AH +3V312 + 612 — 61 + 12 0 0 1
(3.57)

Note that the above value of Ajaminate is also considerably lower than the energy reported at point C
in Fig. 3.11(b). This is because, due to the spectral regularization, the diffuse interfaces contribute
additional energy, which raises the energy of the system as seen in the numerical simulation with
ARvE = 5.66 - 107 (point C in Fig. 3.11). Therefore, interface energy is significant and clearly the
reason for the higher energy path followed by the numerical solution with spectral regularization.
This is confirmed by a plot of the local energy density in Fig. 3.12(c), showing an increased energy
localized within diffuse interfaces.

Extension to Bi-Crystals

The above laminate microstructures are expected to emerge in infinite, periodic crystals,
neglecting the abundance of defects at the mesoscale of metals. As a first step towards a polycrystal,
consider a bi-crystal made of two perfectly-bonded grains separated by a sharp interface, each grain
undergoing single-slip on their respective slip system. The effect on the energy of changing the
misorientation while keeping the other parameters fixed is shown in Fig. 3.13 (using H = 2.0- 1074,

u=3,and 6 = n/12). Assigning two different slip system orientations to the two grains of the
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Figure 3.13: Influence of the slip system orientation ¢ on the non-convex, condensed energy
landscape of a single-crystal, with all shown energies exhibiting non-convexity at different range
of values for the shear parameter A (Vidyasagar et al., 2018).

bicrystal and applying a macroscopic simple shear deformation (using the same finite-difference
correction outlined in Section 2.5, which provides a relative length scale as discussed above), the

results are shown in Fig. 3.14.

While each crystal would produce periodic laminate patterns as shown in the previous section,
the bi-crystal shows more interesting features. If loaded separately, each grain would reduce its
energy by forming independent laminates whose orientations depend on the slip system orientation.
When fused together in a bi-crystal, compatibility across the interface imposes constraints that
affect the emerging microstructural patterns, as shown in Fig. 3.14. As the misorientation between
the two grains increases (here, varying ¢, from —n/4 to —n/12 while keeping ¢; constant),
first-order laminates are suppressed in the central grain, with some indication of higher order
microstructure. As can be expected, low misorientation results in laminate patterns spreading
across grain boundaries and into adjacent grains. However, increasing the misorientation leads to
the suppression of such patterns. The conclusion is that the presence of compatibility constraints
significantly restricts the formation of energy-minimizing patterns within grains and results in
a more complex picture, dependent on the misorientation and shape of grain boundaries. The
expectation is that this effect is dramatically more pronounced in polycrystals with abundant
grain boundaries (GBs), such as those discussed in the next chapter. Therefore, polycrystals are
anticipated to form more general patterns (not necessarily clean laminates) but such patterns may

emerge due to the non-(quasi)convexity of the energy.

3.5 Conclusion
In this chapter, energy minimizing strategies discussed in Chapter 1 using the numerical
methods of Chapter 2 have been applied to three problems: hyperelasticity with the St. Venant-
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(@) (b)

(c) (d)

Figure 3.14: Laminate pattern formation in bicrystals at an applied shear strain of 1 = 0.03: (a)
the geometric arrangement of the two grains within the bicrystal RVE along with the definition of
angles ¢ and ¢, in the blue and red grains, respectively. Results are shown for (b) ¢; = —7/3 and
o =-n/4,(c) 1 = —n/3 and ¢y = -1 /6, and (d) ¢ = —x/3 and ¢, = —n/12 (Vidyasagar et al.,
2018).

Kirchhoff solid, a generalized phase transformation model, and finally single-(and bi-)crystal

plasticity.

From Sec. 3.2 it is clear that the St. Venant-Kirchhoff model, while still popular in commercial
finite element codes, predicts unphysical ‘patterns’ for a wide range of elastic constants. Addi-
tionally, these patterns cannot easily be geometrically encompassed by lamination theory, showing
interesting ellipsoidal geometries that differ in each component. It is also of note that the finite-
difference corrections do not influence the numerical solver’s ability to find the quasiconvex hull,
but change the size (and relative grid-based length scale) of patterns. Finally, contrary to initial
expectations, the numerical solver is able to better predict the quasiconvex hull of a double-well
potential as opposed to one where the second well is lifted. The reason for this is postulated to be

due to increased contribution from interfaces and indirectly from numerical regularization.
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From the generalized phase transformation model in Section 3.3, it is clear that the method can
be used to model systems with arbitrary transformation strains without simplifying mathematical
assumptions such as elastic rigidity. An additional parameter is introduced, as a representation
of configurational entropy, which tunes the interface thickness. The interplay between this factor
and numerical regularization is shown to result in very complex pattern formation, including some
second order laminate-like structures. As a novelty, the model is extended to the three-well problem,
and it has been proven (and shown in Fig. 3.8) that the numerical method is able to find patterns
corresponding to an energetic path which autonomously avoids local minima if extremal wells are

suitably lower.

As a mathematically relevant final example, the single-slip crystal plasticity model has been
shown numerically to produce very similar (qualitatively and quantitatively) patterns to analyti-
cal and experimental results. Additionally, the influence of numerical regularization have been

analytically quantified. Extensions have also been shown for bi-crystals.

These have not dealt with dissipation or time evolution except for a nominal contribution
arising from numerics of explicit updates. The following chapters will aim to address dissipation
and kinetics, starting with an extension of the bi-crystal study in Section 3.4 to polycrystalline

magnesium in Chapter 4.
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Chapter 4

DEFORMATION PATTERNS AND CRYSTAL VISCO-PLASTICITY IN
MAGNESIUM POLYCRYSTALS

Research presented in this chapter has been adapted from the following publication:

Vidyasagar, A., Tutcuoglu, A., Kochmann, D. M. 2018. Deformation patterning in finite-strain
crystal plasticity by spectral homogenization with application to magnesium. Computer Methods
in Applied Mechanics and Engineering, 335, pp.584-609.

URL: https://doi.org/10.1016/j.cma.2018.03.003

4.1 Introduction

Magnesium (Mg) and magnesium alloys of various compositions have drawn interest for
structural applications, primarily due to their high specific strength and low density (Pollock,
2010; Dixit et al., 2015). However, predicting the macroscopic mechanical response of bulk
polycrystalline magnesium presents an open challenge. The hexagonal closed-packed (hcp) crystal
structure of Mg results in anisotropic inelastic deformation mechanisms (Graff et al., 2007; Stanford
et al., 2011), remarkably low ductility and an asymmetric tension-compression behavior (Mdthis
et al., 2011; Park et al., 2014; Zachariah et al., 2013; Kurukuri et al., 2014). Dislocation slip
and deformation twinning occur as competing mechanisms, and their mechanistic influences drive
complex microstructure evolution paths observed in magnesium polycrystals (Agnew and Duygulu,
2005; Changetal.,2017). Itis hence important to understand and enable the prediction of mesoscale
microstructure evolution by high-fidelity methods, to gain insight into the link between processing
conditions, resulting microstructure and, ultimately, effective material properties. Simulations,
in principle, must span a wide range of length and time scales to accurately capture interactions
between twinning and dislocation slip, both of which are affected by the polycrystalline texture
and grain size distribution. To this end, a combination of numerically efficient solvers and reliable

constitutive models is required.

Previous work in modeling Mg has involved atomistic investigations (Tomé et al., 2011; Wang
et al., 2012), phase field models (Steinbach et al., 1996; Levitas et al., 2009; Clayton and Knap,
2011), relaxation-based techniques (Simo, 1988), and various phenomenological continuum the-
ories (Oppedal et al., 2013; Becker and Lloyd, 2016; Kalidindi, 2001; Izadbakhsh et al., 2011;
Cheng and Ghosh, 2017; Zhang and Joshi, 2012). Chang and Kochmann (2015) recently devel-
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oped a continuum constitutive model for Mg which combines conventional hcp crystal plasticity,
accounting for the full set of hcp slip systems, with an effective description of the twin systems
based on effective volume fractions; i.e., instead of resolving individual twin lamellae as in phase
field approaches (Clayton and Knap, 2011), the mesoscopic description only considers the effective
volume fractions of twinned and untwinned phases at a given point on the continuum scale. The
reorientation of slip systems arising from deformation twinning is considered in a similar manner to
previous work by Homayonifar and Mosler (2011, 2012) and Zhang and Joshi (2012). Chang et al.
(2017) compared the performance of the model with reduced-order kinematic models and showed
that lattice reorientation is critical for capturing experimentally observed behavior at large strains.
However, the numerical inefficiencies of implementing the detailed constitutive model as compared
to the reduced-order model within a conventional a finite element (FE) framework discourages its
use in modeling the micro-to-macro transition. Therefore, this work reports methods and results
of periodic homogenization using spectral techniques of Chapter 2 along with a modified version
of the constitutive model of Chang and Kochmann (2015) at the mesoscale of polycrystalline,
pure Mg. Such periodic homogenization enables the prediction of microstructural evolution paths
arising from various loading conditions and the extraction of the effective macroscopic stress-strain
performance for comparisons to experimental observations. A key question in this context is
the level of microstructural details required in order to reliably predict the effective macroscopic

performance through a compromise of accuracy vs. efficiency.

Finite-deformation crystal plasticity models (especially those accounting for latent hardening
and slip-twinning interactions) introduce particular numerical challenges. Certain loading paths
result in a loss of quasiconvexity in regions of the energetic landscape, as seen in the previous
Section 3.4 . As is the theme of this thesis, energy relaxation in those regions is accomplished
by breaking up the homogeneous deformation state into complex microstructural patterns (Ball,
1977) which result in energy-infimizing sequences (Carstensen et al., 2002; Conti and Theil, 2005;
Conti et al., 2009; Hackl and Kochmann, 2008; Kochmann and Hackl, 2011). Since those patterns
are generally non-unique and the energy landscape offers numerous local minima, the prediction
of minimizing microstructures (and the resulting stress-strain response as the volume average) is

demanding.

Here, a beneficial combination is applied of several of the above approaches to study the
microstructure formation and evolution in finite-strain crystal plasticity applied to polycrystalline
Mg. The remainder of the chapter is hence structured as follows. In Section 4.2, the constitutive
model is briefly summarized for finite-strain plasticity in pure Mg. Next, in Section 4.4 the extension
of the Fourier spectral setup of Chapter 2 and Section 3.4 is extended to multiple-slip for use in

high-resolution crystal plasticity simulations. Section 4.5 summarizes results of microstructure
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evolution and effective properties of polycrystalline Mg with varying grain size and texture, before

concluding the present study in Section 4.6.

4.2 Constitutive Model: Finite-Strain Crystal Plasticity in Magnesium
The constitutive model is reviewed here to the extent necessary for subsequent discussions;
more details can be found in Chang and Kochmann (2015) and Vidyasagar et al. (2018). The

deformation at a point x C € of a body € at time # > 0 is described by the deformation mapping
o(X,t): Qxt—R". 4.1
Under the assumption of isochoric plasticity, the deformation gradient
F(X,t) = Grad(¢(X,1)) 4.2)
is multiplicatively decomposed into its elastic and inelastic parts, i.e.,
F = F.Fy,. (4.3)

The hep crystallography of Mg includes g slip systems, described by slip directions s, and normal
vectors m,,. Similarly, the n; twin systems are described by twin normals ng and twinning shears
ag. Dislocation slip is described by slips y, and twinning through effective twin volume fractions

Ag subject to the constraints
0< A<, Osz/lﬁsl. (4.4)
B=1

The plastic velocity gradient tensor incorporates an additive decomposition into slip and twinning
contributions, assuming these mechanisms occur simultaneously (with dots denoting material time

derivatives):

Following earlier works of Kalidindi (2001) and Zhang and Joshi (2012), the modified kinetic flow
rule accounts for slip on both parent and twin systems. The crystallographic reorientation due to

twinning is described by reflection tensors Q3 = I — 2ng ® ng such that

itW:Z/lﬁaﬂ®nﬁ, iP:[l_Z/lﬂ
B B

The hardening behavior is captured by introducing the accumulated plastic slips €,, evolving

Z Ya Sa ® My + Z /1,8 Z Ya Qﬁsa ® Q,Bmw- (4.6)
7 B 07

according to €, = |y,|. The thermodynamic description is based on the Helmholtz free energy
density
A(Fe,€,) = We(Fe) + Wy(€) + Wiw(2), 4.7
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containing, respectively, elastic, slip and twin contributions and depending on the internal variables
A={A,.... 4, }, vy ={y1,....yn,yand € = {el,. . ., €, }. For simplicity, the elastic energy density
is assumed approximately isotropic and taken as that of a compressible Neo-Hookean solid (¢ and
Kk are, respectively, the shear and bulk moduli)!:

— F,
Fe= Ju3’

W,(F,) = g (tr?e - 3) + g(J ~1?, C.=F.F., J=detF. (48

The stored plastic energy density accounts for latent and self-hardening for each slip system,

formulated as

W) 1 o %6(% for basal systems, @)
b(€) = -€-He+ )
2 Ooo [ea + ‘TT” exp (—}3—:’)] for prismatic and pyramidal systems,

where the parameters are specific to each slip system and given in 4.3. Similarly, the stored twin

energy is assumed of the form

1 hg
Wiw(d) = E/l - KA+ E/IB. (4.10)

As discussed in Chang and Kochmann (2015), simultaneous multiple twin systems at a single point
are avoided by high latent twin hardening (i.e., high values of the oftf-diagonal components of the

twin hardening matrix %K).

The rate-dependent evolution laws for slip and twinning are defined by dual dissipation
potentials W;(y) and P (d), respectively, akin to previous approaches in crystal plasticity; see,
e.g., Ortiz and Stainier (1999)

. . m+1
. 7070 [Ya . 3 g s
\PP(Y) ) Z (_) ’ Yw() = — A (4.11)
B

; B
am+l Y0 2

with reference slip rate yy, hardening exponent m, back-stress 79, and twin resistance (inverse
mobility) n for each system. Note that in contrast to the rate-independent formulation of Chang and
Kochmann (2015), here the rate-dependent formulation for twinning is adopted from (Chang et al.,
2017) with the above quadratic dissipation potential to facilitate a simple explicit update scheme

for slip and twinning (to be discussed in Section 4.4).

The principle of minimum dissipation potential (Ortiz and Repetto, 1999; Carstensen et al.,
2002; Conti and Ortiz, 2008; Hackl and Fischer, 2008) is invoked to derive the evolution laws for

the internal variables y and A, viz.

o (. 0 , .
e (A+¥), 0 (d+¥,). (4.12)
9y dA
I'The elastic anisotropy is relatively mild and was shown to have little effect on the effective material response
(Chang and Kochmann, 2015).
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For the rate-dependent model considered here, the differential inclusions can be replaced by equal-

ities. Minimizing the total stress power using (4.12) results in the kinetic update rules

L
A ) ho €,
0 = (% with h = z;‘ har€;r + 0o |1 +exp |- 0_: ,
w N ‘ 4.13)
= £ P h o 7h = kged + hod
Ap = wit Tg = + hoAg,
B 15 B - BL¢ B

where 7, and 75 are the resolved shear stresses on the respective slip and twin systems.

4.3 Material Constants for the Mg Constitutive Model
The material constants used for the simulations are summarized in Table 4.1. The slip and

twin systems in Mg are visualized in Fig 4.1.

material and numerical parameters used in simulations of pure Mg

description | parameter | value | units description parameter | value | units
elastic K 36.7 | GPa hardening & he 30 GPa
constants u 34.0 | GPa dissipation Ooo 150 | MPa
hardening & hy 7.1 | GPa (pyramidal {c + a)) hi; 25 | MPa
dissipation Ooo 0.7 | MPa To 17.5 | MPa
(basal) h;; 0.0 | MPa m 0.05 -
70 17.5 | MPa Yo 1.0 | s7!
m 0.05 - extension ho 1.7 | MPa
Yo 1.0 | s71 twins kij 40 | GPa
hardening & hq 9 GPa simulation At 0.01 S
dissipation Ooo 85 | MPa parameters Ndomaing | 128° -
(prismatic) h;; 20 | MPa
70 17.5 | MPa
m 0.05 -
Y0 1.0 s

Table 4.1: Material parameters are adopted from Chang and Kochmann (2015) who obtained their
constants by fitting to experimental results of Kelley and Hosford (1968) for individually activated
slip and twin systems, together with simulation parameters.

4.4 Numerical Solution Strategy — Explicit Updates
The above equations, using the spectral methods discussed in Chapter 2, are solved in an
incremental, staggered fashion for the unknown fields F(X), A(X), and y(X) at the RVE grid

points, using an explicit scheme. First, at each load step n + 1, with a known (F°)"*! the elastic
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Figure 4.1: An overview of the variety of dislocation slip and twinning modes in magnesium
(Vidyasagar et al., 2018).

problem is solved assuming constant internal variables,

X X AN KKK K, forK #0
FPX)=FYEH (K  and  ELNK) =
(F,?L)thl for K = 0.
(4.14)
The nonlinear equations are solved using a fixed-point iteration scheme. Due to the non-linearity
of the elastic problem, the deformation-dependent acoustic tensor A is re-evaluated periodically
during the iterations. Next, the internal variables are updated in real space at each material point,

with the update for slip activity given by

1

n+1 n n n . 0 |T£| — T((l:'r "
Yo =YatTAYy =Y+ VoAl T 4.15)
a
with
p Taw@ T n n
= RIS Fa - 1= | sa@my+ > A5 Qpsa ® Qpmy (4.16)
B B

and

Lor _ 8Wp('}’)

4.17
¢ Ve 17)
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both to be evaluated at the previous load step n. The update for the twin volume fractions follows

analogously as

n+1 n n n 30 T,éw B Tg
/lﬁ = /lﬁ + A/lﬁ = /lﬂ + /lﬁAt 0 (4.18)
B
with
_ O0W OWiw(A)
=75 (F;f “F FeFiﬁ) -(ap®np) and 7f = —6;; : (4.19)

again to be evaluated at step n. Finally, the inelastic deformation gradient is evaluated by a linearized
forward-Euler step, using the slip and twin updates. In order to suppress numerical errors and to
ensure that the inelastic deformation gradient is volume-preserving, only the deviatoric part of the

update s used, resulting in

FI*! = dey (F;;1 + At l]nFi';)

Ny
1+ M= s, @m
(,Z{ ; pra = me (4.20)

= dev

ny
+ > A 0psa ® Qpmo + Y ANSTY (ap @ ng)| Fi.
B B=1

4.5 Plasticity in Polycrystalline Magnesium

The same techniques used for single- and bi-crystals in Section 3.4 and then used to model
polycrystals of pure Mg described by the constitutive model of Section 4.2. The material and
numerical parameters used in this section are listed in 4.3. Polycrystalline representative volume
elements (RVEs), whose effective response is obtained from homogenization with periodic bound-
ary conditions, using the spectral scheme of Chapter 2. Periodic polycrystals with a specified
number of grains are generated using the open-source package Neper as described by Quey et al.
(2011). Grain orientations are assigned with random permutations such that the overall texture
matches the shown (inverse) pole figures. The spectral scheme admits sufficient grid resolution to
capture large numbers of grains, which is why this setup is used to investigate the relation between
microstructural details and the effective response. In Section 4.5, RVEs are subjected to simple
shear loading, and effective stress-strain responses together with spatial distributions of inelastic
activity are shown. Additionally, the influence of increasing grain misorientation (i.e., increasing
the spread of the texture pole) on the effective macro- and meso-scale behavior is analyzed. Sub-
sequently, in Section 4.5 polycrystals undergo combined compressive/shear loading to mimic the
effects of cold rolling. Here, the focus is on the influence of the number of grains per RVE (for

approximately constant texture) on the effective macroscale stress-strain response.
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Simple Shear and the Influence of Misorientation
Polycrystalline RVEs containing 100 grains are subjected to simple shear loading with an

average deformation gradient

FO = 4.21)

o O =
S = o~
- O O

where A is raised from 0 to 10% at a rate of A = 0.02 s~!. The chosen texture, representative
of extruded Mg (Chang et al., 2017), is shown in the pole figure in Fig. 4.2(b). The resulting
effective stress-strain relation is illustrated in Fig. 4.2(a) and exhibits a plateau near P, = 0.1 GPa
at A = 0.05, caused by stress relaxation due to slip and twinning mechanisms across grains. The
emergence of heterogeneous stresses and inelastic activity within grains and stress concentrations
at grain boundaries, even at low misorientation, is observed. In particular, twinning is initiated
primarily at triple junctions as seen in the total twin activity shown in Fig. 4.2(c), which also
visualizes how the texture distribution results in only a subset of all grains exhibiting deformation
twinning by extension twins. The total volume fraction of the (1012) extension twins increases
to a maximum of 0.183 and the activity on (1120) prismatic slip systems to 0.0974 during the
deformation at 4 = 0.09.

To gain quantitative insight into how increasing the grain misorientation affects the effective
material response, the RVE is endowed with increasingly greater degrees of misorientation and
subjected to the same shear loading parametrized by (4.21). In Fig. 4.3(a) the resulting effective
stress-strain responses for different textures indicate an increasingly softer response with increasing
misorientations, even at low strains of around 4 = 0.01, which is indicative of the anisotropy
of slip-twin interactions. The spreading of the texture pole leads to the activation of more slip
and twin systems across a wider range of grains, leading to a softer response but also stronger
stress gradients and concentrations particularly near grain boundaries, see Fig. 4.3(c). The stress-
strain curves indicate that decreasing the misorientation leads to a slightly lower yield stress but a
significantly higher hardening: at higher strains of, e.g., 4 = 0.01, there is a deviation in the shear
stress of APj» ~ 36% between the extremal cases of misorientation cases (A) and (E) in Fig. 4.3.
The increased number of inelastic-strain-accommodating slip planes and twin systems in highly
misoriented polycrystals such as case (E) induces stress relaxation, which in turn results in the
observed changes in hardening. For instance, at 4 = 0.01, for case (A) the peak total twin activity
is 0.105, whereas for case (E) it is 0.252. Similarly, the maximal basal slip activity for case (A)
is 0.0177, while that of case (E) is 0.0797. Notice how several of the grains display pattern-like
stress and slip/twin distributions; the effect is much less pronounced than in the single-crystal

case discussed before due to the abundance of available twin/slip mechanisms. However, there
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Figure 4.2: (a) Effective stress-strain response of a simple shear test of an RVE containing 100
grains whose orientations are shown in the pole figure (b). (c) State of the RVE at an applied
average shear strain of FIO2 = A = 0.09. RVEs are shown in the deformed configuration, whereas
the bounding box indicates the undeformed shape. Plots illustrate the grain shapes and components
of the first Piola-Kirchhoft stress tensor P as well as the distribution of prismatic slip and of the
total volume fraction of all extension-twinned regions. The shown stress distributions are in units
of GPa (Vidyasagar et al., 2018).

are still individual grains demonstrating energy-minimizing microstructural pattern formation, as
highlighted in Fig 4.4.
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Figure 4.3: Using the same grain geometry as in Fig. 4.2(a), an investigation is performed on how
the effective stress-strain response in (a) changes with increasing grain misorientation, as shown
by the pole figures in (b). Increasing the spread of the texture allows more easy-slip and -twin
systems to become active across a larger number of grains, resulting in significant softening even
at low strains. (c) The resulting shear stress distribution illustrates stronger stress differences and
concentrations with increasing misorientation. The shown stress distributions are in units of GPa
(Vidyasagar et al., 2018).
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Figure 4.4: Polycrystalline case (E) of the simple shear experiment (see the pole figure in Fig. 4.3):
shown is the shear stress distribution (in GPa) with all displacements magnified by a factor of 10
for better visibility. Several of the grains display laminate-like patterns, as may be expected due
to the non-quasiconvexity in finite-strain crystal plasticity, as discussed above (Vidyasagar et al.,
2018).

Cold Rolling and the Influence of the Number of Grains

Having a computational model and toolset at hand to simulate the RVE response with high
resolution, the question arises as to what level of microstructural detail is required to predict the
effective, macroscopic stress-strain response. As an example test case, the cold rolling process is
chosen which is classically modeled as a combination of shear and compression; see, e.g., (Lee and
Duggan, 1991; Ahzi et al., 1993). For ease of implementation, a deformation history described by

the effective isochoric deformation gradient
1+
F'=| o0
0

140 2

1 0 (4.22)
0 35

with loading parameter 4 > 0 is chosen. The effective responses of four different RVEs are
simulated, containing 20, 50, 100, and 1000 grains. All grain orientations were generated randomly
from the same pole figure, viz. case C from Fig. 4.3(b). Since this does not produce a unique
assignment of orientations to grains, the statistics are considered and an ensemble of ten RVE
realizations are simulated for each number of grains (i.e., the ten realizations for a given grain
geometry differ by the permutation of grain orientations while keeping the same set of orientations
from the pole figure). This yields an envelope of stress-strain responses summarized in Fig. 4.5,

showing the mean and standard deviation for each of the four different RVEs studied. As expected,
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Figure 4.5: Influence of permuting the grain orientations within an RVE with fixed grain geometry:
stress-strain behavior shown in terms of mean and standard deviation of ten RVE realizations with
different permutations of grain-orientation assignments for RVEs containing 20, 50, 100, and 1000
grains. Grain orientations are taken from the pole shown in (b); the given components of the first
Piola-Kirchhoft stress tensor include (a) tensile, (c) shear, and (d) compressive stresses. Mean

stresses are shown as thick lines and standard deviations as shaded color regions (Vidyasagar et al.,
2018).

the envelope of possible stress-strain responses (shown as the shaded region) is large when using only
20 grains, but converges towards a narrow stress-strain envelope as the number of grains within
the RVE increases. Interestingly, but not entirely unexpectedly, there is also (non-monotonic)
convergence of the mean stress-strain response shown by the solid lines in Fig. 4.5, where the
curves vary only little between 20 and 1000 grains. In other words, while the envelope of possible
stress-strain responses is large for an RVE with a relatively small number of grains (e.g., 20), the
mean response over many possible geometric permutations and sampling sequences reproduces

approximately the same effective material response as an RVE with many more grains (e.g., 1000).
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Fig. 4.6 demonstrates representative stress states within the four different polycrystals at 4 = 0.01,
visualizing the effect of homogenizing the effective material response across increasing numbers

of grains.

(€] (b) © (d

Figure 4.6: Polycrystalline RVEs with (a) 20, (b) 50, (c) 100, and (d) 1000 grains. The left
half of each graphic illustrates the grain size and arrangement, whereas the right half shows the
tensile/compressive stress distribution at a representative load of 4 = 0.01 (Vidyasagar et al., 2018).

Overall, these results demonstrate that, although the high-resolution spectral scheme admits
high-fidelity simulations of mesoscale slip and twin mechanisms, the effective stress-strain response
as obtained from homogenization does not require highest levels of mesoscale resolution but
may be approximated sufficiently well with small numbers of grains inside an RVE. Obtaining
the mean response over a large number of RVE realizations, together with periodic boundary
conditions, converges to an effective constitutive behavior. Of course, the converged response and
the convergence behavior depend on the chosen material model and the geometric complexity,
but the above examples with the chosen finite-strain crystal plasticity model, including slip and
twinning as well as diffuse interfaces due to non-convex pattern formation in geometrically complex

polycrystals, confirm this observation.

Finally, it is important to understand the influence of the order of the finite-difference approx-
imation on the obtained polycrstyalline results. To this end, Fig. 4.7 summarizes the stress—strain
response for a simple-shear test of an RVE containing 100 grains. As expected, deviations are
moderate and the effective response converges quickly towards the solution obtained from the
uncorrected, standard Fourier spectral method when increasing the order of the finite-difference
stencil. Fig. 4.8 illustrates the corresponding local fields (shown are two representative stress
components as well as the total basal slip activity and the total twin activity). Again as ex-

pected, the standard scheme reveals oscillations in the local fields (corrupting convergence with
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h-refinement), which are removed by the finite-difference-approximated schemes, where increasing

the finite-difference order again leads to convergence towards the standard scheme.
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Figure 4.7: Illustration of the stress—strain response for simple shear loading (Flo2 = «a) showing
convergence with increasing order of the finite-difference approximation to the standard Fourier
spectral scheme (Vidyasagar et al., 2018).
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Figure 4.8: Illustration of the local stress fields and inelastic activity within the same RVE, obtained
with different orders of the finite-difference approximation, shown at the maximum shear strain
shown in Fig. 4.7 (Vidyasagar et al., 2018).

4.6 Conclusions

In this chapter, a finite-difference-corrected spectral homogenization scheme along with an ex-
tended crystal plasticity model is used describe the effective, macroscale response of polycrystalline
pure Mg. There is a strong influence of the initial texture on the effective stress-strain response, and
the convergence of the effective material behavior with an increasing number of grains within the
RVE (enabled by the high-resolution spectral formulation employed here) has been demonstrated.
Although high resolution is achieved by the presented scheme, lower fidelity may be sufficient to

capture the effective response through averaging over different RVE realizations.
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Chapter 5

PATTERNS AND ELASTIC SURFACE EVOLUTION DURING
ANISOTROPIC SPINODAL DECOMPOSTION

Research presented in this chapter has been adapted from the following publication:

Vidyasagar, A., Krodel, S., Kochmann, D. M. 2018. Microstructural patterns with tunable
mechanical anistropy obtained by simulating anisotropic spinodal decomposition. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 474, 20180535.

Dissipative effects have been discussed in Chapter 4, but full crystal plasticity serves as a very
complicated model when striving to understand the kinetics of generalized pattern formation pro-
cesses. Taking a very different perspective on naturally occuring microstrucutral pattern formation,
the kinetics of the spinodal decomposition, driven by mass-conservative gradient flow theories, is
presented in this chapter. Additionally, the manipulation of the interface energy induced by physical

regularization is also studied in detail in what follows.

5.1 Introduction

Phase separation is a ubiquitous phenomenon in both natural and artificial systems. One
of the prevalent underlying physical processes is spinodal decomposition, a mean-conservative
process that separates a mixture into its two constituent phases. The driving force behind spinodal
decomposition is the minimization of the overall interface energy between the phases (Cahn and
Hilliard, 1958). Prior studies on spinodal decomposition have primarily focused on physical phase-
separation processes such as the degradation of mechanical properties during corrosion of metals
(Sun et al., 2015) or dealloying to produce nanoporous foams (Biener et al., 2005; Volkert et al.,
2006; Erlebacher et al., 2001; Lu et al., 2007; Lang et al., 2011; Li et al., 2013; Geslin et al., 2015).

This contribution provides an alternative perspective by utilizing spinodal decomposition
with anisotropic interface energies to tailor the effective elasticity of the resulting microstructured
medium. That is, the computational simulation of spinodal decomposition is exploited to produce
media with target elastic properties. By choosing one of the two phases in the spinodal decom-
position process as void, porous microstructures are obtained with controllable relative density,
which are simple to fabricate by modern means of additive manufacturing (Schaedler and Carter,
2016). For the special case of isotropic surface energy, functional decomposition yields isotropic

domain interfaces which are similar to surface-minimal gyroids (Nishikawa et al., 1998) due to
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their almost constant curvature. However, if the surface energy is anisotropic (Eggleston et al.,
2001; Torabi et al., 2009; Salvalaglio et al., 2015), energetically favorable directions exist, resulting
in strong faceting of the interfaces and, consequently, microstructural patterns along the preferred
orientations. This mechanism is commonly observed in the growth of thin films (Bergamaschini
et al., 2016) and quantum dots (Salvalaglio et al., 2015). In the following, numerical predictions
show the formation of bi-continuous phase networks through anisotropic spinodal decomposition,
and analysis is performed on the resulting structures in terms of their morphology and topology
(Ziehmer et al., 2016; Park et al., 2017; Kwon et al., 2010; Geslin et al., 2015).

By exploiting the faceting phenomenon and the associated directional evolution of microstruc-
tural patterns, the effective anisotropic mechanical response of the resulting medium can be manip-
ulated. For example, the formation of elongated structures increases stress-bearing capacity along
particular directions or planes, leading to an anisotropic elastic surface akin to the anisotropic elas-
ticity and strength of atomic lattices arising from the underlying crystallographic packing (Chung
and Buessem, 1967). While the latter is restricted by crystallography and typically results in, e.g.,
elastic cubic symmetry (like in face-centered cubic or body-centered cubic metals) or transverse
isotropy (like in hexagonal close-packed metals), utilizing anisotropic spinodal decomposition al-
lows to generate elastically anisotropic microstructures with, in principle, arbitrary and controllable
symmetries (or lack thereof) by choosing specific surface energies when simulating spinodal de-
composition. Energetically favorable directions for microstructural growth can be realized by the
construction of appropriate penalizations in the surface free energy functional. As will be shown,
a non-trivial relationship exists between the chosen favorable surface directions and the resulting

elastic surfaces arises due to the presence of flat-faceted interfaces.

When it comes to micro- and nano-architected (meta-)materials with tunable properties, most
recent advances have focused on truss- or plate-based architectures on macro- and microscopic
scales (Deshpande et al., 2001; Schaedler and Carter, 2016; Bauer et al., 2017; Berger et al., 2017),
and their mechanical properties are commonly evaluated under uniaxial loading, see for instance
Zheng et al. (2014). Simulating spinodal decomposition to generate microstructures expands the
mechanical property space by considering the entire elastic surface as well as by sampling across a
much wider space of microstructural architectures not limited to traditional truss architectures. The
chosen simulation methodology on a periodic representative volume element (RVE) also trivially
ensures domain connectivity and compatibility across RVEs, which is a strong topological constraint
when it comes to periodic unit cells. By using the presented computational tools, (meta-)materials
with target properties can be designed, which offers a pathway towards scalability in manufacturing
nano-architected materials. For instance, naturally occurring anisotropic spinodal decomposition

such as during the dealloying of gold-silver solutions (Erlebacher et al., 2001; Lu et al., 2007; Lang
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et al., 2011; Li et al., 2013; Geslin et al., 2015), demixing of polymer blends (Bruder and Brenn,

1992; Higgins and Jones, 2000), or coarsening of intercellular lipid fluid mixtures (Stanich et al.,
2013) can potentially be utilized for this purpose. At larger scales, as-designed architectures can be
realized by 3D printing. When compared to topology optimization, the present approach aims to
tailor the entire three-dimensional (3D) elastic surface by suitably selecting the anisotropic surface

free energy as opposed to optimizing for specific load cases.

Spinodal decomposition is modeled computationally using the Cahn-Hilliard-type phase-field
equations (Elliott, 1989; Bates and Fife, 1990; Zhu et al., 1999; Badalassi et al., 2003). Incorporating
anisotropic surface energy within a Cahn-Hilliard framework is challenging (Torabi et al., 2009) due
to the ill-posed nature of the equations at large anisotropies, which in turn stem from non-convex
surface energy and negative diffusive processes (Torabi et al., 2009; Salvalaglio et al., 2015). In
this work, a classic phase field model previously used to predict faceting in individual domains
(Torabi et al., 2009; Salvalaglio et al., 2015) is employed. The solution is found on an RVE
with random initial conditions by using a robust spectral formulation. The spectral regularization
techniques introduced in Chapter 2 are used to avoid oscillatory artifacts at phase interfaces and
to prevent short-wavelength instabilities, which avoids the need for further regularization of the
non-convex problem. The resulting numerical scheme describes the evolution of the two continuous
phases (viz., material and void) under periodic boundary conditions. After phase separation the
homogenized elastic stiffness tensor of the RVE is computed using finite elements under periodic

boundary conditions so as to identify the elastic properties of a homogeneous comparison medium.

The remainder of this chapter is structured as follows. Section 5.2 details the constitutive
phase field model and the kinetics solved subsequently by using the numerical spectral techniques
presented in Chapter 2 (expanded in Section 5.3). Section 5.5 describes the pattern formation
during phase separation as well as the influence of the target relative density and strength of
surface anisotropy on the resulting porous structures. The kinetics of decomposition are further
analyzed together with the detailed morphology of simulated microstructures and its correlation with
surface anisotropy. Parametric studies of relative density and strength of anisotropy demonstrate the
effective mechanical property space of the resulting microstructures. Finally, Section 5.6 concludes

the investigation in this chapter.
5.2 Constitutive Model and Kinetics
Consider an RVE Q c R? in d-dimensional space, which is endowed with a scalar field
o(X,1): QXR > R, (5.1

where X € Q denotes position and r > 0 time. ¢(X,7) = 1 implies that point X at time ¢ is
filled with solid material, whereas ¢(X,7) = 0 implies a void. The kinetic evolution of ¢(X,1)
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across € is governed by the Cahn-Hilliard phase field model (Torabi et al., 2009; Salvalaglio et al.,
2015) which describes mean-conservative phase separation. Specifically, the phase field variable
¢ is locally driven to one of the two stable phases (solid or void) through the introduction of a
Ginzburg-Landau double-well potential B(y), defined as (Torabi et al., 2009)

1
B(g) = 7¢°(1 - )", (5.2)
The surfaces within the RVE (i.e., the interfaces between solid and void) are tracked by the inward
normal Vo(X.)
P, 1
nX,t) = ————, (5.3)
V(X 1)]

which is defined for all X € Q and ¢ > 0 u