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ABSTRACT

Instability-induced patterns are ubiquitous in nature, from phase transformations and ferroelectric
switching to spinodal decomposition and cellular organization. While the mathematical basis for
pattern formation has been well-established, autonomous numerical prediction of complex pattern
formation has remained an open challenge. This work aims to simulate realistic pattern evolution in
material systems exhibiting non-(quasi)convex energy landscapes. These simulations are performed
using fast Fourier spectral techniques, developed for high-resolution numerical homogenization.
In a departure from previous efforts, compositions of standard FFT-based spectral techniques
with finite-difference schemes are used to overcome ringing artifacts while adding grid-dependent
implicit regularization.

The resulting spectral homogenization strategies are first validated using benchmark energy
minimization examples involving non-convex energy landscapes. The first investigation involves
the St. Venant-Kirchhoff model, and is followed by a novel phase transformation model and finally
a finite-strain single-slip crystal plasticity model. In all these examples, numerical approximations
of energy envelopes, computed through homogenization, are compared to laminate constructions
and, where available, analytical quasiconvex hulls.

Subsequently, as an extension of single-slip plasticity, a finite-strain viscoplastic formulation
for hexagonal-closed-packed magnesium is presented. Microscale intragranular inelastic behavior
is captured through high-fidelity simulations, providing insight into the micromechanical deforma-
tion and failure mechanisms in magnesium. Studies of numerical homogenization in polycrystals,
with varying numbers of grains and textures, are also performed to quantify convergence statistics
for the macroscopic viscoplastic response.

In order to simulate the kinetics of pattern evolution, stabilized spectral techniques are uti-
lized to solve phase-field equations. As an example of conservative gradient-flow kinetics, phase
separation by anisotropic spinodal decomposition is shown to result in cellular structures with
tunable elastic properties and promise for metamaterial design. Finally, as an example of non-
conservative kinetics, the study of domain wall motion in polycrystalline ferroelectric ceramics
predicts electromechanical hysteresis behavior under large bias fields. A first-principles approach
using DFT-informed model constants is outlined for lead zirconate titanate, producing results
showing convincing qualitative agreement with in-house experiments. Overall, these examples
demonstrate the promise of the stabilized spectral scheme in predicting pattern evolution as well as
effective homogenized response in systems with non-quasiconvex energy landscapes.
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C h a p t e r 1

INTRODUCTION

1.1 Patterns Across Scales In Nature
Patterns are characterized by periodicity and order, and pattern formation is a recurrent theme

throughout nature. The autonomous formation and evolution of patterns can be experimentally
observed in a variety of physical, chemical, and biological systems. Often, such patterns cascade
and interact across spatial and temporal scales, and are closely associated with instabilities in the
systems where they manifest.

wing (cm) scales (100 μm) ridges (μm) ridge cross section (100 nm)

Figure 1.1: Multi-scale nature of patterns in a butterfly wing that lead to structural iridescence
(Thomé et al., 2014). Reproduced with permission.

The visually appealing patterns that form in biological systems demonstrate the influence
of structures, at lower spatial scale, on macroscopic properties. Spiral microstructures in Mantis
shrimp shells and lamellar microstructures in butterfly wings both illustrate structure across scales,
and arise from spinodal phase separation (Dufresne et al., 2009) and differential growth-induced
instabilities (Javili et al., 2015; Kinoshita, 2013). The helicoidal biocomposite structure present in
the claw of the Mantis shrimp enhances toughness required for high-velocity strikes when hunting
for prey (Yaraghi et al., 2016). In Figure 1.1, various patterns in aMorpho Rhetenor butterfly wing
are shown at different scales, forming a hierarchy which results in structural coloration (Thomé
et al., 2014; Giraldo and Stavenga, 2016). Recent efforts have aimed to mimic this behavior in
micro-architectured systems (Huang et al., 2006; Zhang et al., 2013; Sellers et al., 2017).

Examples of natural pattern formation, of interest in mechanics, include nanoscale lamellar
patterns during deformation twinning (Christian and Mahajan, 1995; Abeyaratne et al., 1996),
dislocation-walls in crystal plasticity (Ortiz and Repetto, 1999; Kochmann and Hackl, 2010),
martensitic phase transformations (Chu and James, 1995; Bhattacharya, 2003), dendritic hexagonal
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(a) (b)

(c) (d)

Figure 1.2: A series of natural patterns in mechanics that form from disordered initial states: (a)
cross-hatched dislocation patterns in an Al bicrystal at the interface (Kuo et al., 2003), (b) twinning
laminate structures in Cu-Ni (Abeyaratne et al., 1996), (c) labyrinth-type patterns in a fatigued
Cu single crystal (Jin and Winter, 1984), (d) martensitic phase transformation domain patterns
(Bhattacharya and James, 2005). Reproduced with permission.

structures in snowflake formation (Demange et al., 2017), and cellular structures through spinodal
decomposition (Stanich et al., 2013). Such patterns also form in engineered systems such as
periodic metamaterials which exploit multi-stability (Overvelde et al., 2012; Goncu et al., 2011;
Frazier and Kochmann, 2017).

Figure 1.2 provides an illustrative overview of examples where ordered heterogeneous mi-
crostructures form from either homogeneous or disordered initial states. The patterns are not
unique, exhibit great geometric intricacy, and are all attributed to inherent instabilities (Ball, 1976;
Ball and James, 1987; Bhattacharya et al., 1999) which arise as a result of non-convexity in the
potential energy landscapes of their respective systems.

Phenomena as different as wrinkling in thin nematic elastomer sheets (Plucinsky and Bhat-
tacharya, 2017) and domain pattern formation in martensite (Bhattacharya, 2003) share common
underlying principles. They result in energy relaxation and stabilize their respective systems. Re-
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laxation in this instance refers to the spontaneous collapse of homogeneous non-convex systems as a
means of reducing the potential energy – by modifying microstructural character using fluctuations
and oscillations (Ball, 1976; Ball and James, 1987; Fonseca and Leoni, 2001). In systems that
span several spatial scales, lower-scale patterns and microstructures stabilize microscopic energy
landscapes – strongly influencing the macroscopic homogenized response.

Figure 1.3: Micrograph of striped domain patterns forming within grains of ferroelectric PZT
polycrystal during fatigue cycling. Courtesy of Wei-Lin Tan, Caltech.

Experimentally, pattern formation has been investigated through application of external me-
chanical, thermal, or electric fields to non-convex material systems. Examples of particular signifi-
cance to this thesis include domain pattern evolution in ferroelectrics (Merz, 1956; Gao et al., 2013;
Chaplya and Carman, 2002b; Wojnar et al., 2014), martensitic phase transformation (Bhattacharya,
2003), spinodal decomposition during dealloying (Erlebacher et al., 2001; Geslin et al., 2015),
and dislocation-induced microstructure formation (Jin and Winter, 1984; Kuo et al., 2003). For
polycrystalline materials undergoing mechanical loading, texture, anisotropy, and inhomogeneity
resulting from microstructure formation influence yield strength, toughness, Young’s modulus, and
mechanical damping coefficient. These mechanical fields are often strongly coupled to electric
potentials and temperature. For example, in ferroelectrics, applied electric fields induce strains
and applied stresses induce potential differences (Wojnar et al., 2014). Experiments show lamellar
polarization domain formation in polycrystals, and resulting macroscale electric field-induced me-
chanical strains (Merz, 1956). Figure 1.3 illustrates unidirectional patterns within grains, exhibiting
correlation with damage initiation sites. Engineering resilient and tunable ferroelectric composites
requires a deeper understanding of underlying damagemechanisms during cyclic electromechanical
loading.

The interplay between the laws of thermodynamics and non-equilibrium kinetics provides
a path to autonomously predict the pattern formation process. In the following section, the
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origin of instabilities and non-convexity will be explained in detail together with the mathematical
preliminaries required for further investigation. Subsequently, an overview of previous numerical
approaches taken towards predictive modeling will be provided.

1.2 Energy Relaxation and Microstructures
Fine-scale oscillations which develop into complex geometric patterns have their origin in non-

(quasi)convex energetic potentials (Ericksen, 1975; Ball and James, 1987; Chipot and Kinderlehrer,
1988;Bhattacharya et al., 1999;Govindjee et al., 2003). These arise as energy-infimizing sequences,
allowing for energy relaxation by way of effective quasiconvexification of the potential energy
landscape (Dacorogna, 1989; Ball and James, 1987) .

The classical variational framework developed by Truesdell and Noll (1965), describing the
quasi-static boundary value problem in finite strains, is of primary importance to this discussion. A
deformation map ϕ relates the deformed configuration x = ϕ(X), as a function of the undeformed
positions X within a volume Ω, such that it minimizes the overall total potential energy functional,

I[ϕ] =

∫
Ω

W(∇ϕ)dV − `(ϕ), (1.1)

where W(∇ϕ) denotes the stored energy density and `(ϕ) the potential of externally applied fields.
In the case of linearized kinematics, the functional depends on the displacement field u and the
infinitesimal strain tensor ε = sym(∇u),

I[u] =

∫
Ω

W(ε)dV − `(u), (1.2)

where
W(ε) =

1
2
ε : C : ε =

1
2
εi,jCi,j,k,lεk,l (1.3)

Given a strongly elliptic stiffness tensor, and with appropriate boundary conditions, the energy
functional is convex – and there exists a unique minimum and solution field to the convex optimiza-
tion problem (Koiter, 1965). An analogous hyperelastic model, however, does not share the same
characteristics. Using the Green-Lagrange strain tensor

E(∇ϕ) =
1
2
( ∇ϕT ∇ϕ − I ), (1.4)

consider the energy landscape described by

W(∇ϕ) =
1
2
E : C : E =

1
8
(∇ϕT ∇ϕ − I ) : C : (∇ϕT ∇ϕ − I ). (1.5)

This yields the classic St. Venant-Kirchhoff hyperelastic model, which unfortunately lacks (quasi)
convexity (Le Dret and Raoult, 1995) – this is clearly illustrated using a one-dimensional projection.
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The stiffness tensor of an isotropic St. Venant-Kirchhoff solid depends only on the two Lamé
parameters:

CI JKL = λ δI JδKL + µ (δIKδJL + δILδJK), λ, µ > 0. (1.6)

Through application of a deformation gradient of uniaxial compression and shear,

∇ϕ =
©­­«
1 − γ −2γ 0

0 1 0
0 0 1

ª®®®¬ , γ < 1, (1.7)

the non-convex energy in Eq. (1.5) can be projected along the loading parameter γ,

W(∇ϕ) =
1
8
γ2

(
2
(
25γ2 − 20γ + 12

)
µ + (2 − 5γ)2λ

)
. (1.8)

This is shown in Figure 1.4, revealing a loss of convexity as the shear modulus µ is decreased.
The second derivative of this projected potential changes sign within the loading regime and
indicates instability. The problem becomes ill-posed in the sense of Hadamard (1923) and the
solution loses uniqueness. Eventually, as shear parameter µ approaches the zero-limit, a symmetric,
bi-stable double-well potential energy landscape is attained. Symmetric bi-stable energies of this
form, condensed to functions of specific loading parameters, will be encountered frequently in this
thesis. As will be analyzed later in Chapter 3, unphysical patterns form when material models
of this type are used. While this is simply a sub-optimal choice for material modeling, the same
behavior manifests in physical systems exhibiting non-convexity and pattern formation. Several of
these are shown in Figure 1.5. As mathematical preliminaries, definitions of the various notions of
convexity and existence of minimizers are required for further analysis.

The generalized form of the variational boundary value problem for finite-strain elasto-
plasticity deals with both internal variables and dissipation, as will be elaborated in Chapter 4,
but for illustrative purposes, the finite-strain example in Eq. (1.1) is deemed sufficient. The prin-
ciple of minimum potential energy dictates that the deformation gradient field F = ∇ϕ (in the
absence of external potentials) can be found through the minimum principle given a volume Ω,

ϕ = arg inf{I[ϕ] | ϕ = ϕ0 on ∂Ω}. (1.9)

Often, this leads to a minimization problem which can be handled numerically. However, for the
existence of a minimizer to the functional I, it has to satisfy the three important conditions of
boundedness, coercivity, and weakly lower semi-continuity, which are defined as follows:

(a) boundedness:

∃ α, β ∈ R : | I[F] | ≤ α (1 + ‖ F ‖β), ∀F, α > 0, β ≥ 1 (1.10)
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Figure 1.4: Loss of convexity of the condensed energy W(γ) with decreasing µ, for λ = 1.
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deformation twins

Figure 1.5: Examples of loss of convexity in systems exhibiting pattern formation.

(b) coercivity:

∃ α, β, γ ∈ R : | I[F] | ≥ (γ + α ‖ F ‖β), ∀F, α > 0, β ≥ 1 (1.11)

(c) weakly lower semi-continuity for weakly convergent sequences ϕ ⇀ ϕn:

lim
n→∞

inf I[∇ϕn] ≥ I[∇ϕ]. (1.12)
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As shown by Ball (1977), the conditions can be recast into constraints on the energy density W(F)

of boundedness, coercivity and quasiconvexity. Before specifically examining the quasiconvexity
condition, a discussion of the different notions of convexity, all of which converge for a one-
dimensional functional, is imperative. The following defines these different notions for a function
W(F) (Morrey, 1952; Rockafellar, 1970; Ball, 1977; Šverák, 1992):

(a) convexity:

∀ λ ∈ [0,1] : W(λF1+ (1−λ)F2) ≤ λW(F1)+ (1−λ)W(F2), ∀ F1, F2 ∈ GL+(d) (1.13)

(b) polyconvexity (in simplified matrix notation):

W(F) = W(F, det F, cof F) (1.14)

(c) quasiconvexity:

W(F) ≤
1
ω

∫
ω

W(F + ∇φ) dV, φ = 0 on ∂ω, ∀ ω ∈ Rn (1.15)

(d) rank-one convexity:

∀ λ ∈ [0,1] : W(λF1 + (1 − λ)F2) ≤ λW(F1) + (1 − λ)W(F2), (1.16)

with the additional constraint that

rank(F1 − F2) ≤ 1, F1, F2 ∈ GL(d). (1.17)

The following implication is crucial for both analysis and numerical computation:

Wconvex ⇒ Wpolyconvex ⇒ Wquasiconvex ⇒ Wrank-one convex, (1.18)

but the inverse is not true. Energy hulls or envelopes can be defined for any arbitrary non-convex
function, each of which satisfies the corresponding degree of convexity – namely the convex
envelope (CW), polyconvex envelope (PW), quasiconvex envelope (QW), and rank-one convex
envelope (RW):

CW(F) = inf

{
n∑

i=1
λiW(Fi)

��� λi,Fi;
n∑

i=1
λi = 1, λi ∈ [0,1],

n∑
i=1

λiFi = F

}
(1.19)

PW(F) = inf

{
n∑

i=1
λiW(Fi)

��� λi,Fi;
n∑

i=1
λi = 1, λi ∈ [0,1],

n∑
i=1

λiFi = F,

n∑
i=1

λi det(Fi) = det(F),
n∑

i=1
λi cof(Fi) = cof(F)

} (1.20)
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Figure 1.6: QW(F) for phase transitions with W(F) = min(W1(F),W2(F)). Spontaneous break-
down of the homogeneous blue and red phases at a deformation gradient state corresponding to the
quasiconvex envelope results in (non-unique) pattern formation.

QW(F) = inf
{

1
|ω|

∫
ω

W(F + ∇φ) dV
���� φ : φ = 0 on ∂ω

}
. (1.21)

Of particular interest here is the quasiconvex envelope, which, in the most general case, requires a
non-local computation within a representative volume of all possible perturbation fields (represent-
ing non-unique patterns). A visual representation of the patterns corresponding to the quasiconvex
envelope is shown in Fig. 1.6 for a phase transformation example.

In the absence of regularization, the energy infimization problem is formulated as an infinite-
dimensional non-convex optimization problem and has traditionally been regarded as intractable
except for a few specific examples. Classical approaches tend to find the significantly more tractable
rank-one convex hull instead. In special cases, it is possible to prove that the polyconvex hull (lower
bound) coincides with the rank-one convex hull (upper bound) – with both converging to the
quasiconvex hull (Ball, 1976; Conti et al., 2009, 2015).

The rank-one convex hull (RW) is defined in a recursive manner, providing a method of
constructing approximations. A first-order construction with two phases yields an approximation
of the rank-one convex envelope (Ortiz and Repetto, 1999; Hackl et al., 2014; Dmitrieva et al.,
2015):

R1W(F) = inf

{
λ1W(F1) + λ2W(F2)

���� λi,Fi :
n∑

i=1
λi = 1, λi ∈ [0,1],

n∑
i=1

λiFi = F, rank(F1 − F2) ≤ 1

}
, F1,F2 ∈ GL+(d).

(1.22)

This corresponds to a laminate-type microstructural pattern associated with the relaxed energy
state. Recursive application of this procedure physically represents higher-order laminates (i.e.,



9

sequential lamination) (Ortiz and Repetto, 1999; Aubry et al., 2003). For example, a construction
of order k is defined by

Rk+1 W(F) = inf

{
λ1RkW(F1) + λ2RkW(F2)

���� λi,Fi :
n∑

i=1
λi = 1, λi ∈ [0,1],

n∑
i=1

λiFi = F, rank(F1 − F2) ≤ 1

}
.

(1.23)

The k →∞ limit of sequential lamination provides the rank-one convex hull:

R W(F) = lim
k→∞

RkW(F). (1.24)

Laminate constructions are important tools for approximating relaxed energies in a variety of
material systems including single-slip single-crystal plasticity (Ortiz and Repetto, 1999; Conti et al.,
2015). However, precise geometric arrangement cannot be interpreted from the results, particularly
for higher-order laminates. Realistic pattern formation in physical systems with multi-stable energy
potentials, such as phase transformations (Chu and James, 1995; Bhattacharya, 2003), exhibits
complexity and autonomous prediction of these patterns requires a different numerical approach.

Laminate constructions face another limitation when dealingwithmicro-scale heterogeneities,
such as polycrystals, or multi-component volumes, where each grain or material has different
energetic potentials. Compatibility, enforced at internal grain or phase boundaries, is non-trivial
to incorporate into this approach. In such cases, patterns across internal interfaces, such as
laminates extending across grain boundaries are strongly affected by the crystallography and grain
boundary mismatch (Vidyasagar et al., 2018). Additionally, the minimizing sequence of a non-
convex functional collapses into finer and finer oscillations (Kinderlehrer and Pedregal, 1991),
highlighting the need for regularization and introduction of a length-scale.

In nature, patterns form at specific length scales because interfaces are associated with inter-
facial energy. Sharp gradients result in a significant increase in the energy of the system; therefore,
at equilibrium, interfaces exhibit smoothness and a finite width. This determines the overall length
scale of pattern formation (Giorgi, 2009).

Gurtin (1987) and subsequently Modica (1987) introduced the term interfacial energy as a
gradient contribution in the energy functional to be minimized – based on the role of physical
interface energies in nature. This results in an additional contribution to the infimization problem
in Eq. (1.9), for Dirichlet boundary conditions,

ϕ = arg inf
{∫
Ω

W(∇ϕ) +W h(∇m+1ϕ) dV − `(ϕ) | ϕ = ϕ0 on ∂Ω

}
, (1.25)

for an order of regularity m.
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While the unregularized minimization solution could lead to sharp interfaces and strong
jumps in the local properties (e.g., deformation gradient or plastic slips), regularization smears
out sharp contrast over a small but finite interface. Importantly, regularization does not make the
minimization convex – instead, it ensures that the solution is smooth to the order of regularity
(Clarke and Vinter, 1985). Regularization, through penalization of higher gradients, also increases
the strength of local minima, which correspond to patterns and may affect the ability to find global
minima.

Therefore, regularized, full-field numerical treatment of representative volume elements
(RVEs, discussed in detail in Sec. 2.1) becomes inevitable in predicting autonomousmicrostructural
pattern formation in complex systemswhile capturing interfaces. Previouswork on numerical quasi-
convexification has relied on the finite elementmethod (Bartels et al., 2004; Bartels and Prohl, 2004;
Carstensen and Plecháč, 1997; Bartels et al., 2006). However, direct numerical methods introduce
an implicit regularization which results in mesh- and interpolation-dependent solutions. Particu-
larly, the low-order local FE interpolation results in coarse microstructural patterns (Carstensen,
2005). Extensions to high resolution and polynomial-order, for simultaneously capturing complex
patterns and achieving close quasiconvex hull approximations, are prohibitively expensive. This
has restricted previous efforts to two-dimensional toy models such as the single-crystal single-slip
problem (Klusemann and Kochmann, 2014).

The aim of this dissertation is to predict realistic and autonomous patterns while simulta-
neously comparing the associated relaxed energies to the quasiconvex envelopes for benchmark
problems to ensure viability. The numerical method of choice is a Fourier spectral formulation
(Moulinec and Suquet, 1998, 2003; Lebensohn et al., 2012) with implicit regularization, as detailed
by Vidyasagar et al. (2017, 2018). Calculations are performed on representative volume elements
following the principles of periodic homogenization (Miehe et al., 2002), which naturally admit
the spectral interpolation. It is hence important to understand that, when computing numerical
approximations, the Dirichlet boundary conditions in the classical definition of the quasiconvex
hull, Eq. (1.21), may be replaced by the periodic representation,

QW(F) = inf
{

1
|ω|

∫
ω

W(F + ∇φ) dV
���� φ periodic

}
, (1.26)

when the functional is non-negative, continuous and the energy density has bounded growth
which is at most quadratic (Ball and Murat, 1984; Allaire and Francfort, 1998). Consequently,
the perturbation fields representing patterns will be periodic rather than vanishing at the RVE
boundaries ∂ω.

Recently developed finite-difference-based spectral corrections inspired byWillot et al. (2014),
Berbenni et al. (2014) and Lebensohn and Needleman (2016) and explained by Vidyasagar et al.
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(2017, 2018) introduce an implicit regularization to the non-convex minimization problem. This
is shown to vanish in the limit of mesh refinement, ensuring a consistent numerical scheme.
This class of methods allow for reasonable approximations of the quasiconvex hull and reproduce
autonomous patterns from homogeneous or chaotic RVE initial conditions, as shown through
numerical examples in Chapter 3.

The mathematical preliminaries thus far have avoided discussions of inelasticity and internal
variables but the energy-infimization strategies broadly extend to these cases. Detailed derivations
will be provided inChapters 3, 4, 5, and 6. However, understandingmicrostrutural pattern formation
through pure energy infimization strategies ignores two critical (and related) aspects of dissipation
and kinetics.

1.3 Dissipation and Kinetic Models
Dissipation prevents microstructures from rapidly fluctuating in time, and is therefore crucial

for modeling the time evolution of microstructures. The various prevalent kinetic models found
in material modeling are briefly reviewed in this section. Previous numerical approaches to
modeling dissipative systems, in particular metal visco-plasticity, include variationally consistent
time-incremental formulations (Ortiz and Repetto, 1999; Miehe et al., 2002; Kochmann, 2009).
Complications arise when multiple deformation-accommodating mechanisms, such as twinning
and dislocation-induced plasticity, interact in complex polycrystals (Vidyasagar et al., 2018). In
such situations, multiple sources of non-covexity result in highly complex microstructral features
defying analytical treatment. These finemicrostructural features influencemacroscopic mechanical
response – such as in the case of magnesium with hexagonal close-packed crystallography (see
Figure 1.7). Magnesium is an ideal candidate for investigation because of experimental and
atomistic evidence of strongly anisotropic inelasticity (Pollock, 2010; Dixit et al., 2015; Sun et al.,
2018).

In the class of thermodynamically admissible evolution laws (satisfying the Clausius–Duhem
inequality), gradient-flow kinetics are of particular interest because of their inherent simplicity,
simulating processes which are driven by the first variation of the energy functional. There has
been a plethora of efforts to study phase separations and transitions using gradient-flow kinetics
and second-order regularization (see Chen (2002) and references therein). These phase-field
models share a non-convex multi-well energetic potential, often termed the Ginzburg-Landau-
type free energy. For kinetic models, regularization, as aforementioned, increases the strength
of local minima and tends to overpredict hysteresis – therefore an appropriate length scale has
to be chosen for fine scale patterns with thin interfaces to accurately reproduce the underlying
physics. Phase separations require conservative evolution laws, and hence use the Cahn-Hilliard
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Figure 1.7: An overview of the variety of dislocation slip and twinning modes in magnesium.

(Cahn and Hilliard, 1958) approach (or equivalently H−1-gradient flow), while phase transitions
are non-conservative with an Allen-Cahn (Allen and Cahn, 1979) approach (or L2-gradient flow).

The Cahn-Hilliard model has classically been used to study the phenomenon of spinodal
decomposition. Phase separation through spinodal decomposition occurs during dealloying (Er-
lebacher et al., 2001; Lu et al., 2007), thin film growth (Bergamaschini et al., 2016) and intercellular
lipid-fluid demixing (Stanich et al., 2013). While previous works have focused on isotropic demix-
ing (Chen, 2002; Fultz, 2014), understanding the influence of anisotropic free energy functionals
on the kinetics of microstructural pattern formation necessitates further investigation. In addition
to the fundamental insight gained from simulations, computational architectures obtained by tuning
anisotropic spinodal decomposition have a variety of practical applications including the design of
metamaterials.

In contrast to the role of dissipation in preventing microstructural fluctuations, kinetics drive
spontaneous jumps across different (stable) equilibrium configurations in ferroelectric materials
(von Schwerin and Szepessy, 2010). Allen-Cahn equations have gained traction for modeling phase
transitions and ferroelectrics are of particular appeal because free energies can be adopted from
ab initio quantum mechanical approximations through Density Functional Theory (DFT) (Völker
et al., 2011; Vidyasagar et al., 2017). Additionally, there is a wealth of experimental data for the
propagation of domain walls as transitions waves (or topological solitons) in ferroelectric crystals
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starting with the seminal work of Merz (1956). Theoretical and numerical understanding regarding
the relationship between the kinetic model and domain wall behavior is critical for engineering
novel electromechanical devices using ferroelecrrics.

1.4 Outline
Following this introduction, Chapter 2 begins with a brief discussion of homogenization, and

derivations of FFT-based spectral methods. Recently introduced spectral corrections based on
finite-difference schemes are then detailed, and their influence on mitigating oscillatory artifacts is
demonstrated.

Chapter 3 details how the numerical methods are used to solve quasistatic energy-minimization
problems and predict autonomous pattern formation from homogeneous initial conditions. Starting
with the hyperelastic St. Venant-Kirchhoff solid as a benchmark example, with available analytic
quasiconvex envelopes, a generalized constitutive model is developed for phase transitions with
arbitrary transformation strains for studying pattern formation. A third example of mathematical
relevance to lamination theory, the single-slip single-crystal model, concludes this chapter.

Chapter 4 extends the single-slip model to full crystal plasticity in hexagonal close-packed
magnesium, introducing dissipation and plastic flow. Numerical results showing additional com-
plexity due to multiple deformation modes and slip-twinning interactions are illustrated. Periodic
homogenization of polycrystals and the influence of microstructure are discussed with examples.

Chapter 5 introduces gradient flow kinetics (Cahn-Hilliard), which are then used to model
scalar anisotropic spinodal decomposition. Novel numerical results in understanding elastic sur-
faces and microstructural morphologies during the relaxation processes are discussed. This chapter
concludes with applications including the design of metamaterials.

Chapter 6 discusses the kinetics (Allen-Cahn) of phase transitions in ferroelectrics. Particular
focus is on numerical and physical implications of scale-bridging using DFT-informed model
constants for the non-convex energy landscape. Experimental validation is also performed for
predictions of domain pattern formation, strain and polarization hystereses, and the motion of
domain walls.

Chapter 7 concludes this thesis with a summary of the original results and contributions.
Suggestions for improved numerical strategies and physical models are provided together with
future research directions and applications of the presented work.
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C h a p t e r 2

DEVELOPMENT OF SPECTRAL HOMOGENIZATION SCHEMES

Research presented in this chapter has been adapted from the following publications:

Vidyasagar, A., Tan, W. L., Kochmann, D. M. 2017. Predicting the effective response of bulk
polycrystalline ferroelectric ceramics via improved spectral phase field methods. Journal of the
Mechanics and Physics of Solids 106, 113-151.
URL: https://doi.org/10.1016/j.jmps.2017.05.017

Vidyasagar, A., Tutcuoglu, A., Kochmann, D.M. 2018. Deformation patterning in finite-strain
crystal plasticity by spectral homogenization with application to magnesium. Computer Methods
in Applied Mechanics and Engineering, 335, pp.584-609.
URL: https://doi.org/10.1016/j.cma.2018.03.003

2.1 Introduction to Computational Homogenization
Homogenization procedures elucidate the dependence of the macroscale response of a system

on the microscale features (Suquet, 1987; Miehe and Koch, 2002; Stolz, 2010). In the case of
systems exhibiting pattern formation due to non-(quasi)convexity of the energy landscape, patterns
tend to form on the microscale in the short-wavelength limit, and the relaxed energy landscape
manifests at the macroscale. It is important to note that the termsmicro andmacro do not pertain to
specific length measures – but the two different scales in a system where scale-separation occurs.

In the process of homogenization of a two-scale problem, a key assumption involves statistical
homogeneity at themacro-scale in spite of lower-scale patterns and inhomogeneousmicrostructures.
Consequently, volume averages (with respect to the undeformed configurations) at the lower scale,

〈·〉Ω =
1
V

∫
Ω

(·) dV, (2.1)

of a statistically representative volume element (RVE) Ω, with V = |Ω|, are used to obtain the
homogenized macroscale response. The averaging theorems for finite-deformation kinematics
(Miehe, 2003) state that, given continuous displacement (ϕ) and traction (T ) fields, in the absense
of body forces, the average deformation gradient F and first Piola-Kirchhoff stress tensor P become

〈F〉 =
1
V

∫
∂Ω
ϕ ⊗ NdS and 〈P〉 =

1
V

∫
∂Ω

T ⊗ XdS. (2.2)

https://doi.org/10.1016/j.jmps.2017.05.017
https://doi.org/10.1016/j.cma.2018.03.003
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Identification of statistical RVEs for homogenization requires either very high-resolution simula-
tions (large RVEs) within volumes Ω of length L, where the characteristic length scale is denoted
as l, using the limit

lim
L/l→∞

〈·〉Ω(L) = 〈·〉
S
∞ (2.3)

or by ensemble averaging over many realizations of different RVEs with different microstructures
and using the central limit theorem,

lim
N→∞

1
N

N∑
i+1
〈·〉 = 〈·〉E∞. (2.4)

Fast spectral methods, discussed in the following Section 2.2, are well suited for both high-
resolution computations, and producing many realizations of RVEs, but are limited to periodic
boundary conditions. For a cubic RVE, in a finite-deformation framework, these periodic boundary
conditions are given as

ϕ+ − ϕ− = 〈F〉
(
X+ − X−

)
and T+ = −T− (2.5)

for opposite surfaces and regions on the (+) and (−) (i.e. faces, edges and corners). Periodic homog-
enization yields a mechanical response that lies between homogenization by affine displacements
(upper bound) and through uniform tractions (lower bound).

The equivalence of the effective homogenized variation of energy densityW on themacroscale,

δW∗ = P∗ : δF∗, (2.6)

and the volume average on the microscale,
1
V

∫
δWdV =

1
V

∫
∂W
∂F

: δFdV =
1
V

∫
P(X) : δFdV = 〈P(X) : δF(X)〉, (2.7)

is an important postulate in homogenization theory, resulting in the Hill-Mandel condition (Mandel,
1966; Hill, 1972; Mandel, 1983) for effective stresses and deformation gradients,

P∗ : δF∗ = 〈P(X) : δF(X)〉. (2.8)

This condition is satisfied by applying periodic boundary conditions:

〈P : F〉 =
1
V

∫
∂Ω

T : ϕ dS

=
1
V

∫
∂Ω+

T+ : ϕ+dS +
1
V

∫
∂Ω−

T− : ϕ−dS

=
1
V

∫
∂Ω

T : 〈F〉XdS

= 〈F〉 :
(

1
V

∫
∂Ω

T ⊗ XdS
)

= 〈F〉 : 〈P〉.

(2.9)
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Enforcing averages for periodic homogenization is especially suited for Fourier spectral techniques
because the averages correspond to amplitude at the origin in Fourier space. In the chosen periodic
homogenization scheme for the following chapters, average deformation gradients and primary
external fields are imposed, and when using iterative methods in Fourier space only the higher
wavelengths (K , 0) require computation.

2.2 Fast Fourier Spectral Methods
Fast Fourier transform (FFT) algorithms began informally with the work of Carl Friedrich

Gauss (Gauss, 1866), popularized with the widely used Cooley-Tukeymethod by Cooley and Tukey
(1965) and expanded by Rader (1968), Bluestein (1970), Winograd (1978) and numerous others.
Conveniently, these algorithms have been implemented as part of the highly optimized FFTW
software package (Frigo and Johnson, 1998), which has revolutionized scientific computing in
recent decades. Particularly, this has resulted in a resurgence of interest in FFT–based spectral
methods. Spectral methods typically perform a diagonalization of the differential operator, resulting
in quasi-linear scaling, matrix-free numerical algorithms. While Fourier spectral methods have
been in use since Fourier (1822), various iterative methods of solving non-linear partial differential
equations have attracted attention in recent decades. Such spectral methods naturally suit periodic
boundary conditions due to global interpolation using (periodic) trigonometric shape functions.
The problem of numerically evaluating quasiconvex envelopes through periodic homogenization,
with regular cubic representative volumes, is hence ideal for this approach.

In the context of mechanics, Moulinec and Suquet (1998, 2003) developed an FFT-based
iterative spectral method for periodic homogenization of composites. The original technique is a
Richardson iteration scheme which avoids the expensive convolution operation, due to non-linear
nature of the Lippmann-Schwinger equation in homogenization theory (Pruchnicki, 1998; Brisard
and Legoll, 2014; Brisard, 2017). The key advantage of this iterative approach is the quasi-linear
scaling of computational cost with grid size, due to the matrix-free nature of the solution technique
(Vidyasagar et al., 2017). Simultaneously, for problems with smooth solutions, the error of spectral
methods converges exponentially with grid size, making this class of solution techniques very
attractive for regularized non-convex minimization problems.

There has been significant progress in using the original Moulinec-Suquet scheme for a va-
riety of problems in mechanics including finite-strain crystal visco-plasticity (Lebensohn et al.,
2012; Eisenlohr et al., 2013; Lebensohn and Needleman, 2016; Vidyasagar et al., 2018) and multi-
physical systems including electro-mechanical coupling (Brenner, 2009; Vidyasagar et al., 2017).
Additionally, various works have aimed at accelerating and improving the convergence behavior.
A comprehensive review of Newton-Raphson and Krylov subspace methods has been presented by
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Kabel et al. (2014). The work of Mishra et al. (2015) details low-memory iterative techniques for
solving the Lippmann-Schwinger homogenization problem. Shanthraj et al. (2015) list a compari-
son of the general computational costs of non-linear extensions of the Moulinec-Suquet scheme up
to generalized minimal residual method (GMRES) accelerated methods. Finally, Kochmann et al.
(2016, 2017) have implemented hierarchical multi-scale FE-FFT coupled frameworks for dealing
with elasto-plasticity in polycrystals.

Spectral methods have inherent drawbacks preventing their widespread use, particularly in
mechanics. In the presence of interfaces or boundaries in heterogeneous domains, high contrasts
in properties result in strong discontinuities. These pose numerical challenges (Michel et al., 2001;
Moulinec and Silva, 2014) for the original Moulinec-Suquet method. The convergence properties
of the original method depended on the spectral radius of the Green’s operator in the Lippmann-
Schwinger equation, which is a function of the initial guess for the homogenized/reference stiffness
tensor. Since it is not trivial to bound this set of tensors using their spectral radius, the original
method has no guarantee of convergence. When using an average elasticity tensor as the initial
guess, higher contrasts have been observed to render the original method impractical because of
the large number of iterations required for convergence (Willot et al., 2014).

The second major issue is fundamental to interpolations which use smooth functions to
approximate discontinuities. Here ringing artifacts related to Gibbs instabilities (Gibbs, 1898,
1899; Hewitt and Hewitt, 1979) corrupt the approximation and render numerical methods unsta-
ble. Recently, filtering techniques based on composing finite-difference templates onto spectral
schemes have gained interest for mitigating oscillatory phenomena. These involve using modi-
fied Green’s operators derived from wave vectors which are analytically computed a priori using
finite-difference approximations. To first-order, these approximations recover the Lanczos σ-
correction (Lanczos, 1956; Hamming, 1986) for Fourier series. Starting with the work of Mueller
(1998), first-order finite-difference approximations have been adopted by (Berbenni et al., 2014;
Brisard and Dormieux, 2010; Lebensohn and Needleman, 2016) in homogenization using iterative
spectral methods to avoid these ringing artifacts. Similarly, Willot et al. (2014) extended these to
rotated schemes which markedly improved quality of approximations.

As will be detailed in Sec. 2.5 arbitrary higher-order schemes can be derived using analytical
transforms of various difference stencils and these are both consistent and h-convergent with
refinement (Vidyasagar et al., 2017). In the work of Vidyasagar et al. (2017), it was shown that
these methods were applicable to pattern formation in the context of non-convexity in ferroelectrics
– this will be discussed in further detail in Chapter 6. In addition to reducing the ringing artifacts,
the augmented schemes add artificial regularization to the energy minimization problem as detailed
in Vidyasagar et al. (2018); these will be described in Sec. 2.6.
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2.3 Iterative Spectral Methods
In this section, the basic iterative scheme established in the original work by Moulinec and

Suquet (1998), and improvements thereof, are applied to a finite-deformation elasticity problem.
This scheme solves the non-linear Lippmann-Schwinger equation, and with modifications can be
applied to linearized kinematics, multi-field coupling and visco-plasticity. A simplified derivation
begins with linear momentum balance, in the absence of body forces and inertial effects, using
Einstein’s summation convention,

PiJ,J(X) = 0, (2.10)

where P denotes the first Piola-Kirchhoff stress tensor. Periodic boundary conditions are applied
such that the average deformation gradient F0 satisfies

ϕ+ − ϕ− = 〈F〉(X+ − X−), 〈F〉 =
1
|Ω|

∫
Ω

F(X) dV, (2.11)

Subsequently, a linearization is performed using a reference elasticity tensor C0
iJkL and a correction

denoted as τ,
τiJ = PiJ − C

0
iJkL FkL, (2.12)

also known as the perturbation stress tensor. A common (yet admittedly sub-optimal) choice for
the reference tensor is the volume average

C0
iJkL =

1
V

∫
V
CiJkL(X) dV, CiJkL(X) =

∂2W
∂FiJ ∂FkL

. (2.13)

By substitution of Eq. (2.10) into Eq. (2.12), with F = ∇ϕ,

τiJ,J + C
0
iJkLϕk,LJ = 0. (2.14)

The discrete (inverse) Fourier transform applied to the quasistatic deformation mapping ϕ(X) gives

ϕ(X) =
∑
K∈T

ϕ̂(K ) exp (−ihK · X) , and i =
√
−1, (2.15)

where T = {K1, . . . ,Kn} denotes the reciprocal lattice in K -space (also known as Fourier space)
which is chosen to ensure periodicity. In standard FFT-implementations, h = 2π

n and K = [0 :
n/2;−n/2 + 1 : −1]. By defining a wave vector ω = −ihK , the Fourier transform applied to
Eq. (2.14) yields

τ̂iJωJ + C
0
iJkL ϕ̂kωLωJ = 0. (2.16)

Rearranging and introducing the reference acoustic tensor A0 results in

ϕ̂k = − (A
0
ki)
−1τ̂iJωJ, where A0

ik = C
0
iJkLωLωJ . (2.17)
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Repeating the differentiation operation once more, and introducing the Green’s operator Γ̂0,

F̂kN = − (A
0
ki)
−1τ̂iJωJωN

= − (A0
ki)
−1(P̂iJ − C

0
iJqRF̂qR) ωJωN where Γ̂

0
kNiJ = (A

0
ki)
−1ωJωN .

= Γ̂0
kNiJC

0
iJqRF̂qR − Γ̂

0
kNiJ P̂iJ,

(2.18)

Transforming back to real space,

FkL(X) = F
−1{F̂kL(K )} and F̂n+1

kL (K ) =


A−1

ik (K )τ̂iJ(K )KJKL for K , 0

〈FkL〉 for K = 0.
(2.19)

Data: Current average deformation gradient, initial guess, stress field, material
model container, spatial information

Initialization of spatial distribution, declaration of data types, initial guess F,C0;

while ‖ Fi+1(X) − Fi(X) ‖L2> tol do
τ(X)=ComputeStress(Fi(X)) - C0 : Fi(X);

τ̂(K )=FFT(τ(X));

if K == 0 then
F̂i+1 = 〈F〉;

else
Cycle through K−space:

F̂i+1
kN (K ) = −(A

0
ki(K ))

−1τ̂iJ(K )ωJωN = −Γ̂
0
kNiJ(K )τ̂iJ(K );

end

Fi+1(X)=iFFT(F̂i+1(K )) and increment i;

end
Algorithm 1: Moulinec-Suquet Implementation

The algorithm described thus far is shown as pseudo-code in Alg. 2.3, and can be considered
as a non-linear Richardson iteration scheme performed to solve the Lippmann-Schwinger equation.
The convergence and stability of this method can be tuned to a limited extent by selective weighting
along the march direction using a damping factor α (Kabel et al., 2014),

F̂i+1 = (1 − α) F̂i + α F̂i+1. (2.20)
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For a convex optimization problem, when the spectral radius of the Green’s operator is within
range for convergence, the method can be accelerated by marching further along the descent
direction. Similarly, if the choice of reference stiffness results in ill-conditioning, the method can
be damped through appropriately choosing the parameter α. This is shown in Alg. 2.3.

Data: Current average deformation gradient, initial guess, stress field, material
model container, spatial information

Initialization of spatial distribution, declaration of data types, initial guess F,C0;

while ‖ Fi+1(X) − Fi(X) ‖L2>tol do
τ(X)=ComputeStress(Fi(X))-C0 : Fi(X);

τ̂(K )=FFT(τ(X));

if K == 0 then
F̂i+1 = 〈F〉;

else
Cycle through K−space:

F̂i+1
kN (K ) = −(A

0
ki(K ))

−1τ̂iJ(K )ωJωN = −Γ̂
0
kNiJ(K )τ̂iJ(K );

end

Fi+1(X)= (1 − α) Fi(K ) + (α) iFFT(F̂i+1(K )) and increment i;

end
Algorithm 2: Damped Moulinec-Suquet Implementation

The non linear Lippmann-Schwinger equation can be recast as a root-finding problem, which
allows for the use of quasi-Newton schemes,(

δkqδNR − Γ̂
0
kNiJ(k) C

0
iJqR

)
F̂qR(k) + Γ̂

0
kNiJ(k)P̂iJ(k) = 0. (2.21)

The derivative can be evaluated knowing the material model, and assuming that the reference
stiffness stays constant during the Newton-Raphson iteration (dropping indices for conciseness),

4Fi+1 =

(
I + Γ0 :

(
∂P

∂F
− C0

))−1
:
(
〈F〉 − 〈Fi〉 − Γ0 : P

)
. (2.22)

It is possible to use a fixed point iteration once again to obtain the increment at every iteration
– with the scheme representing a linearized iterative version of the original algorithm, which is
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depicted in Alg. 2.3,

�4Fi+1
n+1 = −Γ̂

0 : FFT
[((

∂P

∂F
− C0

)
: 4Fi+1

n + P

)]
.

Data: Current average deformation gradient, initial guess, stress field, material
model container, spatial information

Initialization of spatial distribution, declaration of data types, initial guess F,C0;

Perform one iteration of Moulinec-Suquet iterations to start;

while ‖ 4Fi(X) ‖L2>tol do
while ‖ 4Fi

n+1(X) − 4F
i
n(X) ‖L2>tol do

β(X)=ComputeTangentMatrix(Fi(X))-C0) : 4Fi
n(X)+

ComputeStress(Fi(X));

β̂(K )=FFT(β(X);

if K == 0 then
4F̂i

n+1 = 〈F
loadstep〉 − 〈Fi〉;

else
Cycle through K−space:
4F̂i,n+1

kN (K ) = −(A
0
ki(K ))

−1 β̂iJ(K )ωJωN = −Γ̂
0
kNiJ(K )β̂iJ(K );

end

4Fi
n+1= iFFT(4F̂i

n+1(K ));

end

Fi+1(X)=Fi(X)+4t iFFT(4F̂i+1(K )) and increment i;

end
Algorithm 3: Newton-Raphson Implementation

2.4 Ringing Artifacts
The aforementioned ringing artifacts present in spectral interpolations can be illustrated using

basic examples. Starting with a rectangular step function, the evaluation of the (n to n) discrete
Fourier transform (DFT) at nodes and the continuous expression of the mathematical definition of
the DFT by a truncated Fourier series yields the graph shown in Fig. 2.1 (a) for a 1D interpolation.
The Gibbs phenomenon manifests in the continuous expression because of the non-uniform con-
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vergence of the truncated Fourier approximation when performing the (n to n) transform (Gibbs,
1898, 1899; Hewitt and Hewitt, 1979).
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Figure 2.1: An FFT-based interpolation of a rectangular function f (x) = rect(13,
2
3 ) (a) results in

oscillatory approximations with the Gibbs phenomenon. Here, the slopes are shown in black at the
grid points, and this directly results in the oscillations of the derivative f ′(x), shown in (b), which
is computed using the wave vector multiplied by the Fourier transform of f (x).

Also included in this graph is the slope at grid points (see the black lines), which become
spurious oscillations when computing the derivative by taking the product of the DFT by its
frequency, as shown in Fig. 2.1 (b). FFT-differentiation (or product of frequency and DFT) utilizes
slopes at the grid points (of the interpolated function) in order to compute the derivative, explaining
the presence of oscillations. Note that the grid point values themselves may be free of artifacts,
but linear momentum balance requires calculating the divergence of the stress (i.e., derivatives of
strains), so the black slopes in Fig. 2.1 (a) enter the calculation and affect results. This is not present
when using a smooth periodic function whereby exponential convergence is reached with increasing
grid points, and hence minimal Gibbs phenomena, and consequently mitigated oscillations upon
differentiation.

From an analytical point of view, the Gibbs phenomenon is explained by the non-uniform
convergence of a truncated Fourier series

f̂N =
∑
k∈T

f̂ (k) exp(−ihk · x), (2.23)

of a function f (x), where T denotes the finite set of points in spectral space used for the numerical
approximation while T∞ is the countably infinite set of the corresponding exact Fourier represen-
tation, and T ∗ = T∞ \ T . Fourier coefficients have pointwise convergence; however, the error
of a truncated Fourier series, due to the high-frequency terms, depends on the smoothness of the
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function. The error bound can be derived by analytical Fourier expansion through�� f̂N − f̂
�� = ����� ∑

k∈T ∗
f̂ (k) exp(−ihk · x)

�����
=

����� ∑
k∈T ∗

â(k) sin(hk · x) + b̂(k) cos(hk · x)

�����
≤

∑
k∈T ∗

��â(k) + b̂(k)
��

≤
∑

k∈T ∗
|â(k)| +

��b̂(k)�� .
(2.24)

Applying Poincaré’s inequality to the transform and using Parseval’s identity,∑
k∈T ∗
|â(k)| + |b̂(k)| ≤

∑
k∈T ∗

1
|k |

(
|â′(k)| + |b̂′(k)|

)
≤
√

2

[ ∑
k∈T ∗
|â′(k)|2 + |b̂′(k)|2

]1/2

≤

√
2
πN
‖ f ′‖1/2L2

.

(2.25)

The error bound reads

sup
x∈Ω

�� f̂N − f
�� ≤ √

2
πN
‖ f ′‖1/2L2

. (2.26)

Therefore, the error depends on the smoothness of the function, and the decay rate of the Fourier
coefficients results in non-uniform convergence. The work of Gelb and Gottlieb (2007) and
the references therein include further discussion on the origin of oscillatory artifacts in spectral
methods.

2.5 Finite-Difference Corrections for Spectral Differentiation
In order to overcome these oscillatory artifacts, finite-difference stencils are used to derive

differential operators in Fourier space. This bounds the operator near discontinuities and weights
the higher frequencies depending on mesh resolution. The drawback of this technique is that the
exponential convergence character of the spectral method with h-refinement reduces to the order
of the finite-difference stencil. Consequently, this motivates the use of higher-order and compact
schemes.

Applying an inverse Fourier transform (2.15) to the derivative of a function f ∈ Rd yields

F −1
(
∂ f
∂xi

)
= −ihki F

−1 ( f ) . (2.27)
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However, if a central-difference approximation is first applied to the derivative, such that for grid
spacing |∆xi | � 1 in the coordinate direction xi with unit vector ei (no summations over i)

∂ f
∂xi
(x) =

f (x + ∆xiei) − f (x − ∆xiei)

2∆xi
+O

(
∆x2

i
)
. (2.28)

Neglecting higher-order terms in the equation, the first order term can be transformed analytically
into Fourier space, leaving

∂ f
∂xi
(x) ≈

∑
k∈T

f̂ (k)
exp [−ihk · (x + ∆xiei)] − exp [−ihk · (x − ∆xiei)]

2∆xi

= −
∑
k∈T

f̂ (k) exp (−ihk · x)
i sin(hki∆xi)

∆xi
,

(2.29)

where summation is not performed over i. In the presence of a uniform grid (i.e., with equal
spacing), ∆xi = ∆x. In such a case it is easy to see that difference scheme approximates the exact
derivative when

F −1
(
∂ f
∂xi

)
= −ihki F

−1( f ) is replaced by F −1
(
∂ f
∂xi

)
≈ −

i sin(hki∆x)
∆x

F −1( f ). (2.30)

The fractional term in this equation closely relates to a sinc filter in signal processing or the
Lanczos σ-factor (Lanczos, 1956; Hamming, 1986) in Fourier series as a means of avoiding
ringing. Additionally, in the limit ∆x → 0,

lim
∆x→0

i sin(hki∆x)
∆x

= hki . (2.31)

This can be extended to arbitrary finite-difference stencils in higher dimensions. As examples,
consider the simple central-difference schemes from fourth to twelfth-order. The fourth-order-
accurate central difference approximation becomes

∂ f
∂xi
(x) =

− f (x + 2∆x ei) + 8 f (x + ∆x ei) − 8 f (x − ∆x ei) + f (x − 2∆x ei)

12∆x
+O(∆x4). (2.32)

Similar to the previous scheme,

F

(
∂ f
∂xi

)
≈ −i

[
8 sin(hki∆x)

6∆x
−

sin(2hki∆x)
6∆x

]
F ( f ). (2.33)

The exact solution is once again obtained in the limit, except convergence is achieved at O(∆x4)

lim
∆x→0

[
8 sin(hki∆x)

6∆x
−

sin(2hki∆x)
6∆x

]
= hki . (2.34)

For sixth-order,
∂ f
∂xi
(x) =

f (x + 3∆x ei) − 9 f (x + 2∆x ei) + 45 f (x + ∆x ei) − 45 f (x − ∆x ei)

60∆x

+
9 f (x − 2∆x ei) − f (x − 3∆x ei)

60∆x
+O(∆x6).

(2.35)
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The transform relation becomes

F

(
∂ f
∂xi

)
≈ −i

[
9 sin(hki∆x)

6∆x
− 3

sin(2hki∆x)
10∆x

+
sin(3hki∆x)

30∆x

]
F ( f ). (2.36)

The limit as ∆x → 0 again shows that

lim
∆x→0

[
9 sin(hki∆x)

6∆x
− 3

sin(2hki∆x)
10∆x

+
sin(3hki∆x)

30∆x

]
= hki . (2.37)

Analogously, the eighth-order accurate approximation leads to (Vidyasagar et al., 2017)

F

(
∂ f
∂xi

)
≈ −i

[
8 sin(hki∆x)

5∆x
− 2

sin(2hki∆x)
5∆x

+ 8
sin(3hki∆x)

105∆x
−

sin(4hki∆x)
140∆x

]
F ( f ). (2.38)

As before, convergence with decreasing grid spacing, comes from

lim
∆x→0

[
8 sin(hki∆x)

5∆x
− 2

sin(2hki∆x)
5∆x

+ 8
sin(3hki∆x)

105∆x
−

sin(4hki∆x)
140∆x

]
= hki . (2.39)

Finally, a central-difference scheme of 12th order with constant spacing ∆x is

d f
dx
(x) ≈

1
27720∆x

[
5 f (x − 6∆x) − 72 f (x − 5∆x) + 495 f (x − 4∆x) − 2200 f (x − 3∆x)

+ 7425 f (x − 2∆x) − 23760 f (x − ∆x) + 23760 f (x + ∆x) − 7425 f (x + 2∆x)

+ 2200 f (x + 3∆x) − 495 f (x + 4∆x) + 72 f (x + 5∆x) − 5 f (x + 6∆x)
]
.

(2.40)

Application of the discrete Fourier transform and simplification yields the approximation

F

{
d f
dx
(x)

}
≈

(
−

12 i sin (∆x h k)
7∆x

+
15 i sin (2∆x h k)

28∆x
−

10 i sin (3∆x h k)
63∆x

+
i sin (4∆x h k)

28∆x
−

2 i sin (5∆x h k)
385∆x

+
i sin (6∆x h k)

2772∆x

)
F { f (x)}

= ω̃ F { f (x)}.

(2.41)

The above approximation maintains also consistency with the exact Fourier transform in the limit
of vanishing grid spacing, as can be verified through a Taylor expansion:

lim
∆x→0

ω̃ = lim
∆x→0

ω ·

(
1 −
∆x12(hk)12

12012
+
∆x14(hk)14

27720
+O

(
∆x16

))
= ω. (2.42)

It is possible to tune the balance between convergence order and spurious artifacts by choosing
different finite-difference stencils. The same procedure can be applied to finite-difference ap-
proximations of arbitrary order (Vidyasagar et al., 2018), to result in controllable accuracy and
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efficiency. Similar works by Willot (2015) and Schneider et al. (2017) have used weighted dif-
ference schemes to compute the higher-dimensional derivatives, involving compact stencils using
nodes on the off-diagonals. This results in more local approximations, with possibly improved
numerical stability.

The effectiveness of these approximations in mitigating oscillatory artifacts can be visualized
through numerical examples. Beginning with the double-step function,

f (x) = δ(x −
1
4
+ 2−10) + δ(x −

3
4
− 2−10), with period x ∈ [0,1), (2.43)

the derivatives obtained from the classical Fourier spectral method, the modified Fourier transform
(first-order and fourth-order correction), and the exact analytical solution are compared in Fig. 2.2.
Similarly, for the case of a smooth but discontinuous half-sine function, defined by

f (x) = π cos(πx), with period x ∈ [0,1), (2.44)

the derivative is plotted in Fig. 2.3. It is clear that there is still limited oscillatory phenomena in
the higher-order corrections which can be directly attributed to the less severe weighting of higher
frequencies compared to the first-order scheme. However, there is marked reduction of oscillations
when both finite-difference schemes are used. The main motivation behind higher order schemes
becomes clear when considering smoother functions. The first-order correction results in critical
damping of the oscillations at reduced accuracy in smooth regions, while higher-order corrections
give sub-critical damping but better overall accuracy away from discontinuities.
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Figure 2.2: Spectral derivative of the double step function using first- and fourth-order finite-
difference correction, compared with classical FFT, and analytical solution (Vidyasagar et al.,
2017).

In order to quantify the error of approximation, the mesh convergence order of Euclidean
error-norm

E = | |uh − u| |L2 (2.45)
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Figure 2.3: Spectral derivative of the half-sine function using first- and fourth-order finite-difference
correction, compared with classical FFT, and analytical solution (Vidyasagar et al., 2017).

serves as a convenient measure. The smooth function,

f (x) =
n=9∑
n=1

sin(2nπx), (2.46)

is used to present the effectiveness of the various corrections, and the results are shown in Fig. 2.4.
Unsurprisingly, since the function exhibits smooth properties, spectral accuracy reduces to the
finite-difference order. The log2-convergence order exponentially reaches the order of the finite-
difference approximation. As expected, the spectral convergence reaches machine precision with
an equal number of grid-points as sinusoidal terms in f (x). Therefore, the correction order has to
be carefully chosen in order to minimize the competing error mechanisms arising from both the
ringing artifacts and finite-difference approximations.

The next benchmark test of interest is the influence of finite-difference corrections for an elastic
homogenization problem. Here, a representative volume element in 2D, with two constituents, is
subjected to a biaxial tensile test. The linear elastic composite RVE consists of a matrix (normalized
Lamé moduli λmat = 0.6, µmat = 0.6, outer side length L) with a circular inclusion (radius 0.25L;
normalized Lamé moduli λ = 1, µ = 1). A grid of size 256 × 256 is used and Fig. 2.5 shows the
resulting stress distribution. In this case the first-order correction 2.5 (c) over-smooths the solution
as seen through the green coloration at the interface, while the fourth-order correction 2.5 (b) still
produces mild oscillations as compared to the heavy oscillations in the uncorrected scheme 2.5 (a).

Interestingly, several previous approaches have aimed to mitigate this oscillatory behavior by
terminating the iterative solver prematurely. In such cases, the accuracy of the numerical method
is compromised, particularly in time evolution problems. For explicit time-stepping routines, the
propagation of error through time would not converge with refinement. Additionally, depending
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(a) the standard iterative spectral method (b) fourth-order
finite-difference corrections and (c) first-order corrections (Vidyasagar et al., 2017).

on the descent direction, this could lead to divergent results due to numerical instabilities. Finally,
such techniques would not converge with h-refinement unlike the method presented thus far.

2.6 Special Considerations for Non-Convex Problems
Unfortunately, the spectral formulation presented thus far is based on the strong form of the

governing differential equations. Unlike in convex problems, in non-convex minimization, there
are meta-stable high-energy states that satisfy linear momentum balance.

As a means to circumvent this, the addition of an insignificant amount of stochastic white
noise perturbs the system away from the meta-stable equilibrium state. For non-convex energies,
the local loss of strong ellipticity introduces further problems. When the acoustic tensor Aik ,
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computed using the reference tangent stiffness tensor,

C0
iJkL =

1
V

∫
V
CiJkL(X) dV, CiJkL(X) =

∂2W(F)
∂FiJ ∂FkL

. (2.47)

becomes close to loss of positive definiteness, the matrix inversion becomes ill-conditioned. In
order to prevent this, the local tangent stiffness tensor used to compute the reference stiffness is
derived from a convex approximation of the non-convex energy. While this affects the descent
direction, it does not change the nature of the root-finding iterative approach and the final solution.

Finally, these finite-difference approximations introduce numerical regularization to the non-
convex optimization problem (Vidyasagar et al., 2018). Specifically, any finite-difference stencil
leads to an approximation of the deformation gradient. For a stencil that is mth-order accurate in
each spatial dimension, the approximation becomes

Fh
iJ = ϕ

h
i,J = ϕi,J +

(∆X)m

(m + 1)!
∂(m+1)ϕi

∂Xm+1
J

+O
(
(∆X)m+2

)
. (2.48)

Assuming an energy density W(∇ϕ), the contribution of additional energy can be quantified.
Performing a Taylor expansion of W(∇ϕ),

W(∇ϕh) ≈ W(∇ϕ) +
(∆X)m

(m + 1)!
∂W
∂ϕi,J

(∇ϕ)
∂(m+1)ϕi

∂Xm+1
J

= W(∇ϕ) +W h(∇m+1ϕ), (2.49)

the additional contribution can be quantified. It is clear that the additional non-local contribution
W h(∇m+1ϕ) ∼ (∆X)m, introduced by the finite-difference scheme, asymptotically converges to 0
with decreasing grid spacing∆X . This implies consistency with grid or h-refinement. Additionally,
the length scale which is introduced as a consequence is relative to the absolute size of RVE. For
example, for a cubic RVE of length L and n grid points, the grid spacing ∆X = L/(n1/3 − 1).
Therefore, ∆X is relative to the RVE size, hence microstructural patterns will be independent of
the absolute size of RVE, and converge with grid resolution. It will be shown that it is possible
to expand the given form in some cases, such as finite-strain single-slip single-crystal plasticity in
Sec. 3.4.

These higher-order gradients in the energy density penalize strong discontinuities and therefore
result in a finite width of interfaces. This has qualitatively the same effect of smearing out
interfaces. For example, in phase-transforming solids interfaces exist between the different variants,
in ferroelectrics between different domains, or in finite-strain crystal plasticity between regions of
different (but approximately constant) plastic slip (Ortiz and Repetto, 1999). The grid-based
smearing of interfaces would be anisotropic, as evidenced by the form of Eq. (2.49), but the
influence this has on pattern formation is considerably reduced with grid refinement depending
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on the order of stencil used, and only interface thickness is penalized and not pattern orientation.
However, grid-orientation has an influence on laminte orientation and hence the minima found
by the spectral homogenization scheme. These patterns with interfaces have been observed also
experimentally (Dmitrieva et al., 2009).
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C h a p t e r 3

NUMERICAL SOLUTIONS TO NON-CONVEX PROBLEMS

Research presented in this chapter has been adapted from the following publication:

Vidyasagar, A., Tutcuoglu, A., Kochmann, D.M. 2018. Deformation patterning in finite-strain
crystal plasticity by spectral homogenization with application to magnesium. Computer Methods
in Applied Mechanics and Engineering, 335, pp.584-609.
URL: https://doi.org/10.1016/j.cma.2018.03.003

3.1 Introduction
The numerical homogenization techniques developed in Chapter 2 are used to solve specific

problems involving non-quasiconvex energy landscapes in this chapter. The discussion begins
with the St. Venant-Kirchoff model (Sec. 3.2), which is still widely used in commercial and
academic codes, where unphysical patterns are shown to form even for admissible choices of elastic
constants. Following this, a generalized model for phase transformation is derived (Sec. 3.3)
and demonstrates intricate pattern formation when mathematical toy examples of transformation
strains are used. Finally, numerical homogenization is performed to find relaxed energies and
predict pattern formation in the single-slip single crystal model in Sec. 3.4. In all three cases, pure
energy minimization is performed (ignoring dissipative effects), for symmetric and asymmetric
bi-stable energies (upon projection along a specific loading parameter), together with an evaluation
of associated patterns.

3.2 The St. Venant-Kirchoff Model
An excellent first benchmark test for finding energy-minimizing microstructures without the

complications of viscoplasticity or coupled fields is the elastic energy density named after St. Venant
and Kirchhoff, defined as

W(F) =
1
2
(FTF − I ) · C (FTF − I ). (3.1)

As introduced in Chapter 1, consider a solid with isotropic elastic modulus tensor CI JKL =

λδI JδKL + µ(δIKδJL + δILδJK) and moduli λ, µ > 0. This solid is subjected to a uniaxial tension-

https://doi.org/10.1016/j.cma.2018.03.003
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compression with simple shear test described by the applied deformation gradient

Fex =
©­­«
1 − γ −2γ 0

0 1 0
0 0 1

ª®®®¬ , γ < 1. (3.2)

Insertion into (3.1) yields

W(Fex) =
1
2
γ2

(
2
(
25γ2 − 20γ + 12

)
µ + (2 − 5γ)2λ

)
, (3.3)

which has two minima and one local maximum, respectively, at

γ1 = 0, γ2 =

√
λ2 − 28λµ − 60µ2 + 3λ + 6µ

10(λ + 2µ)
(3.4)

and

γ3 =
−
√
λ2 − 28λµ − 60µ2 + 3λ + 6µ

10(λ + 2µ)
(3.5)

given that (
λ

µ

)2
− 28

(
λ

µ

)
− 60 > 0 ⇒ 0 <

µ

λ
<

1
30

(3.6)

and is strictly convex if and only if

∂2W
∂γ2 > 0 ⇒

µ

λ
>

1
6
. (3.7)

This is illustrated in Fig. 3.1, where decreasing the ratio of µ
λ increases the non-convexity of the

condensed energy landscape. Therefore, a compression-shear test with γ > 0 is expected to form
microstructural patterns as energy minimizers. As shown by Le Dret and Raoult (1995), the
quasiconvex envelope of a St. Venant-Kirchhoff solid with isotropic moduli E and ν is given by

QW(F) =
E
2

[
v2

3 − 1
]2
+
+

E
2(1 − ν2)

[
v2

2 + νv
2
3 − (1 + ν)

]2
+

+
E

2(1 − ν2)(1 − 2ν)
[
(1 − ν)v2

1 + ν(v
2
2 + v

2
3) − (1 + ν)

]2
+
,

(3.8)

where (v1, v2, v3) are the singular values of F and

E =
µ(3λ + 2µ)
λ + µ

, ν =
λ

2(λ + µ)
. (3.9)

For the chosen example of (3.2), vi are the singular values of Fex, and in the limit µ → 0 the
analytical quasiconvex hull evaluates as

QW(Fex) =


0 if γ ∈ [γ1, γ2],

W(Fex) else.
(3.10)
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Figure 3.1: Loss of convexity of the condensed energy W(γ) as the shear modulus µ decreases, for
λ = 1.

This is a particularly appealing test case, as recursive lamination can produce the rank-one-convex
hull by numerically evaluating (1.24) for γ < 0. Results show that RW1(Fex) ≈ QW(Fex) for γ < 0,
i.e., a first-order laminate construction is sufficiently close to the quasiconvex hull.

In order to compute the patterns which form during loading, the spectral technique, outlined
in Section. 2 is used to perform numerical quasiconvexification for this benchmark test for which
both the analytical and rank one lamination results are known. In this regard, a representative
volume element (RVE) is subjected to periodic boundary conditions and the macroscopic (volume
average) deformation gradient given in Eq. (3.2). The spectral solution scheme then solves for
the evolution of the internal deformation gradient field F(X), together with the associated volume
average energy of the RVE.

For this computation, the parameters of λ = 1 and µ = 1.0 · 10−5 are used. In order to ensure
that the acoustic tensor A0 is invertible, µ = 1

6 is used to compute the reference stiffness tensor
C0. One cycle of loading and unloading is performed, using the fourth-order central difference
approximation technique, to obtain the numerically computed average energy. Fig. 3.2 summarizes
the results, whereby the formation of a checkerboarding and laminate patterns are observed. As
seen in the energy plot, after an initial homogeneous phase whereby the spectral solution follows
the non-convex energy, the RVE breaks down into domains, allowing the numerically computed
average energy to march towards the quasiconvex envelope. The computed quasiconvex hull is very
close to the analytical solution.
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A B C D E F G

numerical solution

Figure 3.2: The calculated numerical hull shown in (a) shown near the origin in (b). Corresponding
microstructural patterns are shown in sequence in (c) during the loading process through the
deformation gradient component F11.

It is possible to approximate the quasiconvex hull of non-symmetric potentials with different
magnitudes of non-convexity by varying the shear modulus µ. The results of the computed energy
lanscape are shown in Fig.3.3. It is interesting to note that both the lamination approach and the
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numerical approach deviate from the analytical quasiconvex hull as the degree of non-convexity is
decreased. This is due to increased energy of finite-width interfaces that exist when numerical (or
otherwise) regularization is added to the non-convex optimization as aforementioned.

The autonomous patterns obtained using this approach, shown in Fig. 3.4, indicate a higher
level of complexity thanwith simple lamination theory. In the limit of first-order difference schemes,
ellipsoidal patterns are found. In all cases, the patterns found are different for each component of
deformation gradient, indicating that the system does not break down into simple heterogeneous
domains.

(a) (b)

numerical solution

Figure 3.3: The numerically calculated hulls at γ = −0.25 shown for different degrees of non-
convexity with given parameters λ = 1 from (a) µ = 0.001 and (b) µ = 0.01.

Figure 3.4: The largest patterns formed using first-order central difference approximation demon-
strate complexity of pattern formation, with each component of deformation showing different
patterns that are compatible.

3.3 Generalized Finite-Strain Phase Transition Model
Multi-well energetic landscapes are often associated with phase transformations, and originate

from a competition between multiple stable crystallographic phases. Depending on the specific
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nature of transformation these could represent different physically distinct forms (e.g., high- vs.
low-temperature phases in martensitic transformations) or of variants of the same form (such as all
symmetries of a tetragonal low-temperature phase). For the purposes of this work, this definition
is kept general in applicability to (but not limited by) either of those scenarios. In the context of
mechanics, n phases are described by transformation strains Uα (α = 1, . . . ,n), such that the total
deformation gradient at X is

F(X) = ∇ϕ(X) = Fe(X) Uα(X), Fe ∈ GL+(d) (3.11)

if the material point is in phase α. Here, Fe represents the elastic deformation gradient assuming
multiplicative decomposition. The definition here is kept general and the classic assumption of
Fe ∈ SO(d) is not made, as is often the case in the mathematics literature. Here, both rotations
and elastic deformation are considered. The elastic strain energy density is denoted by We and the
chemical energy density of phase α is denoted by Ψα. The energy density of each phase is denoted
by Wα and consequently the effective Helmholtz free energy density W at a material point (Ball
and James, 1987; Govindjee et al., 2003) becomes

Wα(F) = We(FU
−1
α ) + Ψα ⇒ W(F) = min

α=1,...,n

{
Wα(F)

}
. (3.12)

SinceW(F) is not quasiconvex, insertion into (1.1) yields a functional that lacks weakly lower semi-
continuity and thus formsmicrostructural patterns. While this framework ismathematically elegant,
it is numerically problematic due to discontinuities in the energy upon phase transformations and
associated non-uniqueness and jumps in the stresses P = ∂W/∂F. Therefore, the following
physically motivated approximate theory of phase transformations is presented, building upon the
linearized-kinematics model for ferroelectrics introduced by Tan and Kochmann (2017).

The framework presented thus far is ‘relaxed’ by allowing multiple phases to co-exist at any
given material point. The volume fractions of these phases are denoted by λ = {λ1, . . . , λn}. The
Voigt’s (upper) bound for Helmholtz free energy is then obtained from a Taylor model (where
compatibility is not enforced between phases), as

W(F,λ) =
n∑

α=1
λαWα(F) =

n∑
α=1

λα
[
We(FU

−1
α ) + Ψα

]
. (3.13)

Ignoring dissipative effects, the energy-minimizing volume fractions are obtained for a given F as

λ = arg min

{
W(F,λ)

���� 0 ≤ λα ∀ α = 1, . . . ,n,
n∑

α=1
λα = 1

}
. (3.14)

In order to observe and simulate phase patterning similar to the original model, (3.12), the phase
mixtures require penalization, here performed using a concept of configurational entropy (with a
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constant kT > 0),
S(λ) = kTλα log λα, (3.15)

such that the above energy density becomes the free energy density A(F,λ)

A(F,λ) = W(F,λ) − S(λ) =
n∑

α=1
λα [Wα(F) + kT log λα] . (3.16)

Without dissipation, the volume fractions can be obtained by minimization of (3.16) for a given F,

λ∗α = arg min
0≤λα,

∑n
α=1 λα=1

A(F,λ) =

exp ©­«−
Wα(F)

kT

ª®¬
n∑
β=1

exp ©­«−
Wβ(F)

kT

ª®¬
. (3.17)

Insertion into the free energy yields the condensed energy A∗(F),

A∗(F) = A(F,λ∗) = −kT log


n∑
α=1

exp ©­«−
Wα(F)

kT

ª®¬
 . (3.18)

Similar to physical (statistical mechanical) configurational entropy, kT here becomes a numerical
tuning parameter that determines the penalization of phase mixtures. As kT is increased, in the
limit kT →∞, λα → 1/n for α = 1, . . . ,n. By contrast, as kT is decreased in the limit kT → 0,

λ∗α =

exp ©­«−
Wα(F)

kT

ª®¬
n∑
β=1

exp ©­«−
Wβ(F)

kT

ª®¬
=

1

1 +
∑
β,α

exp ©­«−
Wβ(F) −Wα(F)

kT

ª®¬
, (3.19)

such that

lim
kT→0

λ∗α =


1 if Wα(F) < Wβ(F) ∀ β , α,

0 if ∃ β s.t. Wβ(F) < Wα(F),

1/m if there are m phases with equal Wα(F) < Wβ(F) for all other phases β.
(3.20)

In other words, in the limit kT → 0 the solution becomes ‘sharp’, reproducing the effect of Eq. (3.12)
and the free energy approaches

lim
kT→0

F∗(F) = min
α=1,...,n

{
Wα(F)

}
. (3.21)
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As long as kT > 0, the energy (3.12) is only approximated and allows some lower-scale microstruc-
tural pattern formation. However, for kT , 0 this approximate formulation is advantageous because
it uniquely defines continuously differentiable stresses and tangent stiffness tensors. For example,
the first Piola-Kirchhoff stress tensor becomes

P =
dF∗

dF
=

n∑
α=1

λ∗α
∂Wα

∂F
(F) =

n∑
α=1

λ∗αP(FU
−1
α )U

−T
α , (3.22)

where the fact that λ∗ is a minimizer of F∗ is exploited such that ∂F∗/∂λα(λ∗) = 0. Likewise,
the components of the incremental elasticity tensor (using the summation convention and writing
Uα,I J for the I J-component of tensor Uα) can be derived. This is unfortunately more involved as
the aforementioned partial derivative does not vanish:

CiJkL =
dPiJ

dFkL
=
∂PiJ

∂FkL
+

∑
α

∂PiJ

∂λα

∂λα
∂FkL

=
∑
α

λαCiMkN (FU
−1
α )U

−1
JMU−1

LN +
∑
α

PiM (FU
−1
α ) U

−1
α,JM

∂λα
∂FkL

,

(3.23)

with
∂λα
∂FkL

=
∂

∂FkL

exp (−Wα/kT )∑
β exp (−Wβ/kT )

= −
exp(−Wα/kT )∑
β exp(−Wβ/kT )

1
kT

∂Wα

∂FkL

−
exp(−Wα/kT )[∑
β exp(−Wβ/kT )

]2

∑
γ

(
−

1
kT

)
exp(−Wβ/kT )

∂Wβ

∂FkL
.

(3.24)

This can be further simplified into

∂λα
∂FkL

= −λα
1
kT

∂Wα

∂FkL
+

1
kT

∑
γ

exp(−Wγ/kT ) exp(−Wα/kT )[∑
β exp(−Wβ/kT )

]2
∂Wγ

∂FkL

= −λα
1
kT

∂Wα

∂FkL
+

1
kT

∑
γ

λαλγ
∂Wγ

∂FkL

=
λα
kT

(∑
γ

λγ
∂Wγ

∂FkL
−
∂Wα

∂FkL

)
=
λα
kT

∑
γ,α

λγ
∂Wγ

∂FkL

=
λα
kT

∑
γ,α

λγPkN (FU
−1
γ )U

−1
γ,LN .

(3.25)

Overall, the elasticity tensor takes the form

CiJkL =
∑
α

λαCiMkN (FU
−1
α )U

−1
JMU−1

LN

+
1
kT

∑
α

∑
γ,α

λαλγPiM(FU
−1
α )U

−1
α,JM PkN (FU

−1
γ )U

−1
γ,LN .

(3.26)
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Note that

lim
kT→0

λαλγ

kT
=


0, if Wα , Wγ,

∞, else.
(3.27)

Therefore, as long as there are no two (or more) energetically-equivalent variants, the limit kT → 0
is well behaved and produces the expected result, viz. that the stress and incremental stiffness
tensors are those of the dominant, lowest-energy variant.

As explained thus far, the energy density F∗(∇ϕ) is used in the following as a numerically
convenient approximation of the energy density in (3.12). kT is chosen small but non-zero so as
to provide smooth stress and tangent matrices while approximating (3.12) sufficiently. Fig. 3.5
illustrates the influence of the choice of kT for a two-well potential energy as a starting example,
defined by

U1 = I, U2 =
©­­«
5/4 0 0
0 4/5 0
0 0 1

ª®®®¬ , Ψ1 = 0, Ψ2 = 0.02, (3.28)

with a compressible Neo-Hookean energy density

We(F) =
µ

2

(
tr(FTF)

J2/3 − 3
)
+
κ

2
(J − 1)2, J = det F, (3.29)

with shear and bulk moduli µ and κ, respectively. The same elastic energy density is also used in
the subsequent finite-strain examples. The loading is parameterized by

F =
©­­«
1 + ε 0 0

0 1
1+ε 0

0 0 1

ª®®®¬ . (3.30)

Fig. 3.5 shows the two energy wells W1 and W2 as functions of the loading parameter ε as well as
the approximated effective energy F∗ for various values of kT , with kT → 0 showing convergence
to (3.12).

While the energy-minimizing examples in this chapter do not deal with dissipation, the above
framework can be extended to materials systems in which volume fraction changes dissipate energy.
In such cases, λ is no longer obtained by energy minimization but through the introduction of a
(dual) dissipation potential ψ∗( Ûλ). Therefore, the variational principle can be treated by approaches
including the implicit methods of variational constitutive updates (Ortiz and Stainier, 1999). A
detailed discussion (within the analogous setting of linearized kinematics) is included in Tan and
Kochmann (2017).



40

-0.1 0.1 0.2 0.3 0.4

0.02

0.04

0.06

0.08

0.10

W1W2

* F 

0.001
0.01
0.02
0.03
0.04
0.05

kT

e

Figure 3.5: Plot of F∗ from (3.18) for the biaxial loading defined by (3.30) with µ = 1 and κ = 3
for various values of kT from 0.001 to 0.05.

Double-Well Energy
As a first example, a double-well energy density is considered; this is defined by the transfor-

mation strains and chemical energies, respectively,

U1 =
©­­«
1 0 0
0 1 0
0 0 1

ª®®®¬ , U2 =
©­­«
1.2 0 0
0 1/1.2 0
0 0 1

ª®®®¬ , Ψ1 = 0, Ψ2 = 4.5 · 10−5. (3.31)

For the free energy, a Neo-Hookean energy density (3.29) with µ = 1, κ = 3 is used and an RVE
(of grid resolution 1283) is subject to the applied average deformation gradient (3.30) for ε > 0.

For these and subsequent simulations using the phase-transformation model, the 8th-order
central difference stencil will be used to perform regularization as numerical experiments show its
optimality. In order to draw a comparison, a first-order lamination model is also presented in the
results. The results indicate that the RVE initially deforms homogeneously up to strains ε = 0.03,
whereupon needle-like second phase domains begin to nucleate. The growth of these interfaces
induces the RVE to transition into a homogeneous second phase by ε = 0.18.

The computed numerical quasiconvex hull lies above the first-order lamination result, and this
is postulated to be due to the contributions of interfacial energy between the two phases because of
the existence of a strain gradient and stress concentration at the tips of the needle-shaped domains.
The plot of deformation gradient component F12, shown in Fig. 3.6, indicates complex hierarchical
microstructural patterns in terms of strain and phase distribution that cannot easily be captured by
simple first- or second-order lamination theory.
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Figure 3.6: The calculated numerical hull is shown in (a). The corresponding microstructural
patterns are shown in the volume fractions (b) & deformation gradient component F12 (c) during
the loading process.

Three-Well Energies
In order to understand the influence of having multiple subsequent wells in the energetic

landscape, a third well is added to the previous example in order to explore two scenarios. First,
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consider the transformation strains and chemical energies given by

U1 =
©­­«
1 0 0
0 1 0
0 0 1

ª®®®¬ , U2 =
©­­«
1.2 0 0
0 1

1.2 0
0 0 1

ª®®®¬ , U3 =
©­­«
1.4 0 0
0 1

1.4 0
0 0 1

ª®®®¬ ,
Ψ1 = 0, Ψ2 = 3.5 · 10−5, Ψ3 = 8 · 10−5.

(3.32)

In this case, the simulation results, depicted in Fig. 3.7, indicate that the RVE undergoes
sequential phase transformations. Starting from a homogeneous RVE with the phase one (cor-
responding to U1 or identity), identical to the two-well example, needle-like domains emerge to
induce a transformation to a homogeneous RVE of phase two (corresponding to U2).

In this regime direct nucleation of phase corresponding to U3 does not occur. Once the RVE
transforms to a homogeneous second phase, it undergoes a second simple transformation from
phase two to phase three, and within this regime domains of phase one do not emerge.

In contrast, when the third-well is lowered significantly, the phase transformation exhibits all
three phases during the loading process. This is clear from the microstructure plots in Fig. 3.8. The
material constants, transformation strains and loading path is identical to the three-well example
above but chemical potentials used for this example are shown in Eq. (3.33).

Ψ1 = 0, Ψ2 = 4.5 · 10−5, Ψ3 = 0. (3.33)

An immediate consequence of this choice is that the RVE does not undergo the same manner
of phase transformation as the two-well example, but immediately nucleates domains of the third
phase from the first phase. From the plot of energy, included in Fig. 3.8, the numerically computed
result does not touch, and goes below, the second well, which is also indicated by the RVE not
exhibiting a homogeneous second phase microstructure during the loading path.

3.4 Single-Slip in Single- and Bi-Crystals
Hyperelasticity with the St. Venant-Kirchhoff model was an example of how an inappropriate

choice of material model leads to unphysical patterns, and the phase transformation model showed
the applicability of this approach to real physical phase transforming systems. To complement
these, the single-slip model, which has attracted the attention of mathematicians (Carstensen et al.,
2002; Conti and Theil, 2005; Conti and Ortiz, 2005; Albin et al., 2009; Anguige and Dondl, 2014;
Kochmann and Hackl, 2011) in recent decades, is studied as a canonical benchmark problem. The
finite-strain crystal plasticity model employed later in Chapter 4 also displays non-convexity along
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Figure 3.7: The calculated numerical hull is shown in (a) for the three-well case. The corresponding
microstructural patterns are shown in the volume fractions (b) & deformation gradient component
F21 (c) during the loading process.

certain loading paths, and hence it is imperative to study the numerical viability and patterning in
a simplified single-slip system using the spectral scheme.

In the case of just a single active slip system, internal variables reduce to γ (slip activity) and
ε (accumulated slip accounting for history). The accumulated slip activity is computed using the
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Figure 3.8: The calculated numerical hull is shown in (a) for the three-well case where the extremal
wells lie below the middle-well. The corresponding microstructural patterns are shown in the
volume fractions (b) & deformation gradient component F21 (c) during the loading process.

sum of absolute value of the incremental slip. Consequently, the inelastic deformation gradient Fp

becomes
Fp = I + γ s ⊗ m, (3.34)
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where s,m denote slip plane and normal vectors. The total deformation gradient is then assumed
to undergo the multiplicative decomposition

F = FeFp ⇒ Fe = FF−1
p (3.35)

Substituting this into the energy density given by the sum of a compressible Neo-Hookean and
quadratic plastic hardening energy,

A(F, ε) =
µ

2

(
Ĩe,1 − 3

)
+
κ

2
(J − 1)2 +

H
2
ε2, (3.36)

where µ represents the shear modulus, κ represents the bulk modulus and H represents a hardening
parameter, and compressibility condition results in the modified invariant

Ĩe,1 =
1

J2/3
e

(
tr(FT

e Fe)
)

=
1

J2/3

(
tr C − 2γm · Cs + γ2s · Cs

)
.

(3.37)

When a simple-shear test is performed, the deformation gradient is described by a macroscopic
applied shear λ such that

F = I + λ b ⊗ c, b · c = 0, |b | = |c | = 1. (3.38)

The slip angle ϕ describes the slip plane and slip normal (in-plane), while applied shear angle θ
determines the angle at which shear is applied. Consequently, the definition of vectors s, m, b, and
c are

s =
©­­«

cos ϕ
sin ϕ

0

ª®®®¬ , m =
©­­«
− sin ϕ
cos ϕ

0

ª®®®¬ , b =
©­­«

cos θ
sin θ

0

ª®®®¬ , c =
©­­«
− sin θ
cos θ

0

ª®®®¬ . (3.39)

Upon expansion, the free energy density, A(γ, ε, λ) becomes

A(γ, ε, λ) =
1
4

[
µ

(
γ2(λ2 + 2) + 2λ2

)
+ γλµ[2(λ − γ) sin (2(θ − ϕ))

−(γλ + 4) cos (2(θ − ϕ))] + 2Hε2] . (3.40)

Assuming monotonous loading, ε = |γ | along each increment. For any choice of slip and shear
angles satisfying ϕ = θ,

A(γ,λ) =
1
2

[
µ(γ − λ)2 + Hγ2] . (3.41)

Minimizing with respect to the internal variable γ = γ(λ), the condensed energy A∗(λ) becomes

A∗(λ) = A (λ, γ(λ)) =
Hλ2µ

2(H + µ)
∀ H , −µ. (3.42)
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For any physically reasonable range of shear modulus µ and hardening parameter H, the condensed
energy density is quadratic and therefore convex. As seen thus far, if an RVE with slip angle ϕ is
subject to shear such that ϕ = θ, it will deform homogeneously throughout the applied loading.

However, this is not true when considering the space of all possible orientations (ϕ, θ) such
that ϕ , θ. For instance, taking the case of slip and shear angles ϕ = −π/3 and θ = π/12 and, and
only considering monotonous loading as before, the energy reduces to

A(γ,λ) =
1
8

[
2γλ

(
λ + 2

√
3
)
µ + γ2

(
4H +

[
λ

((√
3 + 2

)
λ − 2

)
+ 4

]
µ
)
+ 4λ2µ

]
. (3.43)

The condensed energy density now becomes

A∗(λ) =
16Hλ2µ + 7λ4µ2 + 4

√
3λ4µ2 − 4

√
3λ3µ2 − 8λ3µ2 + 4λ2µ2

8
(
4H + 2λ2µ +

√
3λ2µ − 2λµ + 4µ

) (3.44)

which holds for all
λ > 0 ∧ H >

1
4

[
−

(
3
√

3 + 6
)
λ2 + 6λ − 12

]
. (3.45)

It can be shown that the condensed energy (3.44) is non-convex in λ for a particular range of values
in (H, λ)-space. For example, Fig. 3.9 plots the condensed energy (3.44) as a function of the loading
parameter λ for various different hardening parameters H at fixed µ = 3.

Figure 3.9: Loss of convexity of the condensed energy A∗(λ) as the hardening parameter H
decreases (Vidyasagar et al., 2018).

In the theme of previousmodels, as the hardening parameter H decreases, the energy landscape
becomes increasingly non-convex, which in turn implies that the energy can be lowered by breaking
up the homogeneous deformation into heterogeneous domains (Klusemann and Kochmann, 2014).
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Previous analytical studies have used laminate constructions to approximate the rank-one-
convex (and thus the quasiconvex) hull (Ortiz and Repetto, 1999; Miehe et al., 2004; Kochmann and
Hackl, 2011). Here, energy-minimizing patterns are calculated by applying the spectral technique
to a single-crystal RVE. For fair comparisons between analytical solutions and numerical results,
energy-minimizing microstructures are sought irrespective of loading history (i.e., dissipation-free
kinetic model) with the same parameters as the analytical model (H = 2.0 · 10−4, µ = 3, κ = 3,
ϕ = −π/3, and θ = π/12; note that the magnitude of the moduli does not affect the microstructure,
so they are given in arbitrary units). While subsequent polycrystal Mg simulations in Chapter 4
will account for all dissipative effects of (visco)plasticity (and realistic material parameters); in
the theme of this chapter, a dissipation-free example is used to illustrate a clean benchmark for
energy-minimizing microstructural pattern formation.

The relationship between the finite-difference schemes and microstructural length scales and
interface energies has not been quantified thus far, but single-crystal single-slip finite plasticity
gives the opportunity to do so. Considering the standard spectral method without finite-difference
smoothing, a plot of the relevant energies and slip activity in the reference configuration is show in
Fig. 3.10.

While the analytical solution of the quasiconvex hull corresponds to a laminate having zero
strain energy between the two energy wells (Kochmann and Hackl, 2011), the numerical approx-
imation is non-zero and experiences a series of jumps along the loading path, corresponding to
sudden changes in microstructure. The initial state equilibrates into checkerboard-like patterns,
followed by the gradual formation of transient laminate patterns that evolve with increasing load.
Macro-laminates emerge at larger loads, displaying characteristics of first-, second- and higher-
order laminates. However, due to the lack of a length scale, the observation of clean laminate
patterns is rare and the numerical approximation of the quasiconvex hull produces complex, gener-
ally non-laminate patterns.

Like analytical lamination schemes (Ortiz and Repetto, 1999; Miehe et al., 2004; Kochmann
and Hackl, 2011), the model whose results are shown in Fig. 3.10 neglects interface energies
and therefore does not have an intrinsic length scale (as explained in Chapter 1 this results in
infinitely fine infimizing sequences). In our numerical setting, interfaces between laminate do-
mains contribute energy only when the finite-difference smoothing described in Section 2.5 is
applied. Therefore, the simulation of Fig. 3.10 is repeated with the modified Fourier transform
of Section 2.5, which introduces an artificial, regularizing contribution to the stored energy (see
Eq. (2.49)). The analogous results are presented in Fig. 3.11. Both first- and second-order laminate
patterns are observed, and the patterns are considerably cleaner than those without finite-difference
regularization. The finite-difference regularization results in thicker interfaces with a characteristic



48

A B C D

E F

(b)(a)

condensed energy
numerical solution

A    B    C    D    E    F    G

(c)

G

Figure 3.10: Approximation of the quasiconvex envelope obtained by spectral homogenization
without finite-different approximation: the average energy of the RVE is compared to the non-
convex condensed energy with (a) showing a magnification of (b); (c) shows the microstructural
slip activity within the RVE at stages A through G along the loading path as indicated in (b)
(Vidyasagar et al., 2018).
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Figure 3.11: Approximation of the quasiconvex envelope obtained by spectral homogenization
with the twelfth-order finite-difference approximation: the average energy of the RVE is compared
to the non-convex condensed energy with (a) showing a magnification of (b); (c) shows the
microstructural slip activity within the RVE at stages A through G along the loading path as
indicated in (b) (Vidyasagar et al., 2018).
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relative length scale; these regions, in turn, produce a diffuse interface-type contribution to the
energy. Consequently, the path followed by the approximated quasiconvex hull is farther from the
theoretical (zero-energy) envelope.

Quantification of Numerical Regularization
The special case of a single-slip model with Neo-Hookean elastic energy makes it possible

to quantify the exact form of numerical regularization. The following approximation holds for a
second-order central difference scheme:

Fh
m,N (X0) = ϕ

h
m,N (X0) = ϕm,N (X0) +

(∆X)2

6
∂3ϕm

∂X3
N

(X0) +O(∆X4). (3.46)

Substituting the approximation of the total deformation gradient given by (3.46) leads to

We(Fe) =
µ

2

(
tr Ce − 3

)
+
κ

2
(J − 1)2

≈
µ

2

[
tr

(
(FhF−1

in )
T (FhF−1

in )(
det Fh

)2/3

)
− 3

]
+
κ

2

(
det Fh − 1

)2

=
µ

2

[(
det Fh

)−2/3
tr

(
(FhF−1

in )
T (FhF−1

in )
)
− 3

]
+
κ

2

(
det Fh − 1

)2
.

(3.47)

If the determinant and the first invariant of the elastic deformation gradient are expanded via a
matrix Taylor series, one arrives at

Fh
m,N (X0) = Fm,N (X0) +

(∆X)n

(n + 1)!
∂n+1ϕm

∂Xn+1
N

(X0) +O(∆Xn+2). (3.48)

Upon defining the error coefficient and using the chain rule of differentiation,

h(n) =
(∆X)n

(n + 1)!
, and G(n)iJ =

∑
ν

∂n+1ϕi

∂Xn+1
ν

(X0)
(
F−1
in (X0)

)
νJ
, (3.49)

one obtains that

det Fh = det Fh
e = det F

(
1 + h(n) tr(F−1G(n)))

)
+O(∆Xn+2) (3.50)

and

tr
(
(FhF−1

in )
T (FhF−1

in )
)
= tr

(
(FF−1

in )
T (FF−1

in )
)
+ 2h(n) tr(FTG(n)) +O(∆Xn+2). (3.51)

By substituting into the Neo-Hookean energy density and performing a matrix series expansion,
the lowest-order error is obtained as

W̃e = We +W h +O(∆Xn+2) (3.52)

W h =
(∆X)n

2(n + 1)!

(
2κ(J − 1)J tr

(
F−1
e G(n)

)
−

µ

J2/3

[
tr Ce tr

(
F−1
e G(n)

)
− 3 tr

(
(G(n))TFe

)] )
.

(3.53)
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Figure 3.12: Laminate patterns for the simple shear test case at λ = 0.208 obtained from (a)
numerical simulations using the above spectral homogenization framework and (b) the equivalent
sharp-interface description. (c) shows the local energy density distribution of the numerical solution
in (a), which shows concentrated energy within interfaces (Vidyasagar et al., 2018).

Interface Energy and Equivalent Laminate Microstructure
Unlike in the case of hyperelasticity or phase transformations where computationally predicted

patterns did not generally conform to laminate definitions, in single slip the patterns (in the
regularized case) visually correspond to laminates.

As such, it is reasonable to find out if the rank-one convex hull (Ortiz and Repetto, 1999;
Aubry et al., 2003; Miehe et al., 2004; Kochmann and Hackl, 2011) obtained analytically matches
the numerical result. These models assume sharp interfaces (as opposed to the diffuse interfaces
from numerics) and construct laminates by enforcing kinematic compatibility. For convenience,
the first-order laminate approximation of the rank-one convex hull (repeated from Eq. (1.22)) of
A(F) is given by

R1 A(F) = inf { ν1 A(F1, γ1) + ν2 A(F2, γ2) | νi,Fi : 0 ≤ νi ≤ 1,
n∑
i

νi = 1,
n∑
i

νiFi = F, rank(F1 − F2) ≤ 1

}
, F1,F2 ∈ GL+(d),

(3.54)

where νi denotes the volume fraction of laminate phases i = 1,2. In order to satisfy the Hadamard
compatibility constraint, it is required that F2 − F1 = a ⊗ N , where N is normal to the laminate
interfaces and a being the projected amplitude of jump in deformation gradient across the interface.
As discussed above, in the non-convex region of the above example in the absence of hardening
one obtains that R1 A(F) = 0.

As an example, results obtained from the numerically regularized diffuse-interface calculation
and an equivalent sharp-interface laminate for the same simple shear test of Fig. 3.11 at an applied
shear of λ = 0.208 are compared in Fig. 3.12 (a) and (b). From the simulated RVE solution, the
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average quantities for each of the two laminate phases are determined, evaluating to

Fe,1 ≈
©­­«

0.956 −0.291 0
0.291 0.956 0

0 0 1

ª®®®¬ , Fe,2 ≈
©­­«

0.933 0.358 0
−0.358 0.933 0

0 0 1

ª®®®¬ , γ1 ≈ 0.312, γ2 ≈ −0.357,

a ≈
©­­«

0.581
0.308

0

ª®®®¬ , N ≈
©­­«

0.480
−0.877

0

ª®®®¬ , θ ≈ 28.7◦, and ν1 ≈ 0.0993,

(3.55)

where θ denotes the laminate orientation with N = (sin θ,− cos θ,0)T; see Fig. 3.12(b). The
corresponding sharp-interface energy is

Alaminate = ν1 A1 + (1 − ν1)A2 = 1.61 · 10−5, (3.56)

which is not (but very close to) zero (as in the ideal case of a sharp-interface laminate) but
significantly less than the condensed energy for homogeneous deformation at the same applied
shear (λ = 0.208), which is A∗ = 6.49 · 10−3 with

γ = −
3
(
λ2 + 2

√
3λ

)
4H + 3

√
3λ2 + 6λ2 − 6λ + 12

= −0.204 and Fe =
©­­«

1.00 0.225 0
−0.176 0.958 0

0 0 1

ª®®®¬ .
(3.57)

Note that the above value of Alaminate is also considerably lower than the energy reported at point C

in Fig. 3.11(b). This is because, due to the spectral regularization, the diffuse interfaces contribute
additional energy, which raises the energy of the system as seen in the numerical simulation with
ARVE = 5.66 · 10−4 (point C in Fig. 3.11). Therefore, interface energy is significant and clearly the
reason for the higher energy path followed by the numerical solution with spectral regularization.
This is confirmed by a plot of the local energy density in Fig. 3.12(c), showing an increased energy
localized within diffuse interfaces.

Extension to Bi-Crystals
The above laminate microstructures are expected to emerge in infinite, periodic crystals,

neglecting the abundance of defects at the mesoscale of metals. As a first step towards a polycrystal,
consider a bi-crystal made of two perfectly-bonded grains separated by a sharp interface, each grain
undergoing single-slip on their respective slip system. The effect on the energy of changing the
misorientation while keeping the other parameters fixed is shown in Fig. 3.13 (using H = 2.0 ·10−4,
µ = 3, and θ = π/12). Assigning two different slip system orientations to the two grains of the
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Figure 3.13: Influence of the slip system orientation ϕ on the non-convex, condensed energy
landscape of a single-crystal, with all shown energies exhibiting non-convexity at different range
of values for the shear parameter λ (Vidyasagar et al., 2018).

bicrystal and applying a macroscopic simple shear deformation (using the same finite-difference
correction outlined in Section 2.5, which provides a relative length scale as discussed above), the
results are shown in Fig. 3.14.

While each crystal would produce periodic laminate patterns as shown in the previous section,
the bi-crystal shows more interesting features. If loaded separately, each grain would reduce its
energy by forming independent laminates whose orientations depend on the slip system orientation.
When fused together in a bi-crystal, compatibility across the interface imposes constraints that
affect the emerging microstructural patterns, as shown in Fig. 3.14. As the misorientation between
the two grains increases (here, varying ϕ2 from −π/4 to −π/12 while keeping ϕ1 constant),
first-order laminates are suppressed in the central grain, with some indication of higher order
microstructure. As can be expected, low misorientation results in laminate patterns spreading
across grain boundaries and into adjacent grains. However, increasing the misorientation leads to
the suppression of such patterns. The conclusion is that the presence of compatibility constraints
significantly restricts the formation of energy-minimizing patterns within grains and results in
a more complex picture, dependent on the misorientation and shape of grain boundaries. The
expectation is that this effect is dramatically more pronounced in polycrystals with abundant
grain boundaries (GBs), such as those discussed in the next chapter. Therefore, polycrystals are
anticipated to form more general patterns (not necessarily clean laminates) but such patterns may
emerge due to the non-(quasi)convexity of the energy.

3.5 Conclusion
In this chapter, energy minimizing strategies discussed in Chapter 1 using the numerical

methods of Chapter 2 have been applied to three problems: hyperelasticity with the St. Venant-
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Figure 3.14: Laminate pattern formation in bicrystals at an applied shear strain of λ = 0.03: (a)
the geometric arrangement of the two grains within the bicrystal RVE along with the definition of
angles ϕ1 and ϕ2 in the blue and red grains, respectively. Results are shown for (b) ϕ1 = −π/3 and
ϕ2 = −π/4, (c) ϕ1 = −π/3 and ϕ2 = −π/6, and (d) ϕ1 = −π/3 and ϕ2 = −π/12 (Vidyasagar et al.,
2018).

Kirchhoff solid, a generalized phase transformation model, and finally single-(and bi-)crystal
plasticity.

From Sec. 3.2 it is clear that the St. Venant-Kirchhoffmodel, while still popular in commercial
finite element codes, predicts unphysical ‘patterns’ for a wide range of elastic constants. Addi-
tionally, these patterns cannot easily be geometrically encompassed by lamination theory, showing
interesting ellipsoidal geometries that differ in each component. It is also of note that the finite-
difference corrections do not influence the numerical solver’s ability to find the quasiconvex hull,
but change the size (and relative grid-based length scale) of patterns. Finally, contrary to initial
expectations, the numerical solver is able to better predict the quasiconvex hull of a double-well
potential as opposed to one where the second well is lifted. The reason for this is postulated to be
due to increased contribution from interfaces and indirectly from numerical regularization.
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From the generalized phase transformation model in Section 3.3, it is clear that the method can
be used to model systems with arbitrary transformation strains without simplifying mathematical
assumptions such as elastic rigidity. An additional parameter is introduced, as a representation
of configurational entropy, which tunes the interface thickness. The interplay between this factor
and numerical regularization is shown to result in very complex pattern formation, including some
second order laminate-like structures. As a novelty, themodel is extended to the three-well problem,
and it has been proven (and shown in Fig. 3.8) that the numerical method is able to find patterns
corresponding to an energetic path which autonomously avoids local minima if extremal wells are
suitably lower.

As a mathematically relevant final example, the single-slip crystal plasticity model has been
shown numerically to produce very similar (qualitatively and quantitatively) patterns to analyti-
cal and experimental results. Additionally, the influence of numerical regularization have been
analytically quantified. Extensions have also been shown for bi-crystals.

These have not dealt with dissipation or time evolution except for a nominal contribution
arising from numerics of explicit updates. The following chapters will aim to address dissipation
and kinetics, starting with an extension of the bi-crystal study in Section 3.4 to polycrystalline
magnesium in Chapter 4.
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C h a p t e r 4

DEFORMATION PATTERNS AND CRYSTAL VISCO-PLASTICITY IN
MAGNESIUM POLYCRYSTALS

Research presented in this chapter has been adapted from the following publication:

Vidyasagar, A., Tutcuoglu, A., Kochmann, D.M. 2018. Deformation patterning in finite-strain
crystal plasticity by spectral homogenization with application to magnesium. Computer Methods
in Applied Mechanics and Engineering, 335, pp.584-609.
URL: https://doi.org/10.1016/j.cma.2018.03.003

4.1 Introduction
Magnesium (Mg) and magnesium alloys of various compositions have drawn interest for

structural applications, primarily due to their high specific strength and low density (Pollock,
2010; Dixit et al., 2015). However, predicting the macroscopic mechanical response of bulk
polycrystalline magnesium presents an open challenge. The hexagonal closed-packed (hcp) crystal
structure ofMg results in anisotropic inelastic deformation mechanisms (Graff et al., 2007; Stanford
et al., 2011), remarkably low ductility and an asymmetric tension-compression behavior (Máthis
et al., 2011; Park et al., 2014; Zachariah et al., 2013; Kurukuri et al., 2014). Dislocation slip
and deformation twinning occur as competing mechanisms, and their mechanistic influences drive
complex microstructure evolution paths observed in magnesium polycrystals (Agnew and Duygulu,
2005; Chang et al., 2017). It is hence important to understand and enable the prediction ofmesoscale
microstructure evolution by high-fidelity methods, to gain insight into the link between processing
conditions, resulting microstructure and, ultimately, effective material properties. Simulations,
in principle, must span a wide range of length and time scales to accurately capture interactions
between twinning and dislocation slip, both of which are affected by the polycrystalline texture
and grain size distribution. To this end, a combination of numerically efficient solvers and reliable
constitutive models is required.

Previous work in modeling Mg has involved atomistic investigations (Tomé et al., 2011; Wang
et al., 2012), phase field models (Steinbach et al., 1996; Levitas et al., 2009; Clayton and Knap,
2011), relaxation-based techniques (Simo, 1988), and various phenomenological continuum the-
ories (Oppedal et al., 2013; Becker and Lloyd, 2016; Kalidindi, 2001; Izadbakhsh et al., 2011;
Cheng and Ghosh, 2017; Zhang and Joshi, 2012). Chang and Kochmann (2015) recently devel-

https://doi.org/10.1016/j.cma.2018.03.003


57

oped a continuum constitutive model for Mg which combines conventional hcp crystal plasticity,
accounting for the full set of hcp slip systems, with an effective description of the twin systems
based on effective volume fractions; i.e., instead of resolving individual twin lamellae as in phase
field approaches (Clayton and Knap, 2011), the mesoscopic description only considers the effective
volume fractions of twinned and untwinned phases at a given point on the continuum scale. The
reorientation of slip systems arising from deformation twinning is considered in a similar manner to
previous work by Homayonifar and Mosler (2011, 2012) and Zhang and Joshi (2012). Chang et al.
(2017) compared the performance of the model with reduced-order kinematic models and showed
that lattice reorientation is critical for capturing experimentally observed behavior at large strains.
However, the numerical inefficiencies of implementing the detailed constitutive model as compared
to the reduced-order model within a conventional a finite element (FE) framework discourages its
use in modeling the micro-to-macro transition. Therefore, this work reports methods and results
of periodic homogenization using spectral techniques of Chapter 2 along with a modified version
of the constitutive model of Chang and Kochmann (2015) at the mesoscale of polycrystalline,
pure Mg. Such periodic homogenization enables the prediction of microstructural evolution paths
arising from various loading conditions and the extraction of the effective macroscopic stress-strain
performance for comparisons to experimental observations. A key question in this context is
the level of microstructural details required in order to reliably predict the effective macroscopic
performance through a compromise of accuracy vs. efficiency.

Finite-deformation crystal plasticity models (especially those accounting for latent hardening
and slip-twinning interactions) introduce particular numerical challenges. Certain loading paths
result in a loss of quasiconvexity in regions of the energetic landscape, as seen in the previous
Section 3.4 . As is the theme of this thesis, energy relaxation in those regions is accomplished
by breaking up the homogeneous deformation state into complex microstructural patterns (Ball,
1977) which result in energy-infimizing sequences (Carstensen et al., 2002; Conti and Theil, 2005;
Conti et al., 2009; Hackl and Kochmann, 2008; Kochmann and Hackl, 2011). Since those patterns
are generally non-unique and the energy landscape offers numerous local minima, the prediction
of minimizing microstructures (and the resulting stress-strain response as the volume average) is
demanding.

Here, a beneficial combination is applied of several of the above approaches to study the
microstructure formation and evolution in finite-strain crystal plasticity applied to polycrystalline
Mg. The remainder of the chapter is hence structured as follows. In Section 4.2, the constitutive
model is briefly summarized for finite-strain plasticity in pureMg. Next, in Section 4.4 the extension
of the Fourier spectral setup of Chapter 2 and Section 3.4 is extended to multiple-slip for use in
high-resolution crystal plasticity simulations. Section 4.5 summarizes results of microstructure
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evolution and effective properties of polycrystalline Mg with varying grain size and texture, before
concluding the present study in Section 4.6.

4.2 Constitutive Model: Finite-Strain Crystal Plasticity in Magnesium
The constitutive model is reviewed here to the extent necessary for subsequent discussions;

more details can be found in Chang and Kochmann (2015) and Vidyasagar et al. (2018). The
deformation at a point x ⊂ Ω of a body Ω at time t ≥ 0 is described by the deformation mapping

ϕ(X, t) : Ω × t → Rn. (4.1)

Under the assumption of isochoric plasticity, the deformation gradient

F(X, t) = Grad(ϕ(X, t)) (4.2)

is multiplicatively decomposed into its elastic and inelastic parts, i.e.,

F = FeFin. (4.3)

The hcp crystallography of Mg includes ns slip systems, described by slip directions sα and normal
vectors mα. Similarly, the nt twin systems are described by twin normals nβ and twinning shears
aβ. Dislocation slip is described by slips γα and twinning through effective twin volume fractions
λβ subject to the constraints

0 ≤ λβ ≤ 1, 0 ≤
nt∑
β=1

λβ ≤ 1. (4.4)

The plastic velocity gradient tensor incorporates an additive decomposition into slip and twinning
contributions, assuming these mechanisms occur simultaneously (with dots denoting material time
derivatives):

l = ÛFF−1 = le + lin = ÛFeF
−1
e + Fe l̃inF

−1
e , l̃in = ÛFinF

−1
in = l̃p + l̃tw. (4.5)

Following earlier works of Kalidindi (2001) and Zhang and Joshi (2012), the modified kinetic flow
rule accounts for slip on both parent and twin systems. The crystallographic reorientation due to
twinning is described by reflection tensors Qβ = I − 2nβ ⊗ nβ such that

l̃tw =
∑
β

Ûλβaβ ⊗ nβ, l̃p =

[
1 −

∑
β

λβ

] ∑
α

Ûγα sα ⊗ mα +
∑
β

λβ
∑
α

Ûγα Qβ sα ⊗ Qβmα. (4.6)

The hardening behavior is captured by introducing the accumulated plastic slips εα, evolving
according to Ûεα = | Ûγα |. The thermodynamic description is based on the Helmholtz free energy
density

A(Fe, ε,λ) = We(Fe) +Wp(ε ) +Wtw(λ), (4.7)
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containing, respectively, elastic, slip and twin contributions and depending on the internal variables
λ = {λ1, . . . , λnt }, γ = {γ1, . . . , γns } and ε = {ε1, . . . , εns }. For simplicity, the elastic energy density
is assumed approximately isotropic and taken as that of a compressible Neo-Hookean solid (µ and
κ are, respectively, the shear and bulk moduli)1:

We(Fe) =
µ

2

(
tr Ce − 3

)
+
κ

2
(J − 1)2 , Ce = F

T
eFe, Fe =

Fe

J1/3 , J = det F . (4.8)

The stored plastic energy density accounts for latent and self-hardening for each slip system,
formulated as

Wp(ε ) =
1
2
ε · Hε +


h0
2 ε

2
α for basal systems,

σ∞

[
εα +

σ∞
h exp

(
−

h0 εα
σ∞

)]
for prismatic and pyramidal systems,

(4.9)

where the parameters are specific to each slip system and given in 4.3. Similarly, the stored twin
energy is assumed of the form

Wtw(λ) =
1
2
λ · Kλ +

hβ
2
λ2
β. (4.10)

As discussed in Chang and Kochmann (2015), simultaneous multiple twin systems at a single point
are avoided by high latent twin hardening (i.e., high values of the off-diagonal components of the
twin hardening matrix K).

The rate-dependent evolution laws for slip and twinning are defined by dual dissipation
potentials Ψ∗p( Ûγ) and Ψ∗tw( Ûλ), respectively, akin to previous approaches in crystal plasticity; see,
e.g., Ortiz and Stainier (1999)

Ψ
∗
p( Ûγ) =

∑
α

τ0 Ûγ0
m + 1

(
Ûγα
Ûγ0

)m+1
, Ψ

∗
tw(
Ûλ) =

∑
β

ηβ

2
Ûλ2
β (4.11)

with reference slip rate Ûγ0, hardening exponent m, back-stress τ0, and twin resistance (inverse
mobility) η for each system. Note that in contrast to the rate-independent formulation of Chang and
Kochmann (2015), here the rate-dependent formulation for twinning is adopted from (Chang et al.,
2017) with the above quadratic dissipation potential to facilitate a simple explicit update scheme
for slip and twinning (to be discussed in Section 4.4).

The principle of minimum dissipation potential (Ortiz and Repetto, 1999; Carstensen et al.,
2002; Conti and Ortiz, 2008; Hackl and Fischer, 2008) is invoked to derive the evolution laws for
the internal variables γ and λ, viz.

0 ∈
∂

∂ Ûγ

(
ÛA + Ψ∗p

)
, 0 ∈

∂

∂ Ûλ

(
ÛA + Ψ∗tw

)
. (4.12)

1The elastic anisotropy is relatively mild and was shown to have little effect on the effective material response
(Chang and Kochmann, 2015).



60

For the rate-dependent model considered here, the differential inclusions can be replaced by equal-
ities. Minimizing the total stress power using (4.12) results in the kinetic update rules

Ûγα =

(
|τ

p
α | − τ

h
α

τ0

) 1
m

with τh
α =

∑
ζ

hαζ εζ + σ∞

[
1 + exp

(
−

h0 εα
σ∞

)]
,

Ûλβ =
τtwβ − τ

h
β

ηβ
with τh

β =
∑
ζ

kβζλζ + h0λβ,

(4.13)

where τα and τβ are the resolved shear stresses on the respective slip and twin systems.

4.3 Material Constants for the Mg Constitutive Model
The material constants used for the simulations are summarized in Table 4.1. The slip and

twin systems in Mg are visualized in Fig 4.1.

material and numerical parameters used in simulations of pure Mg
description parameter value units description parameter value units
elastic κ 36.7 GPa hardening & hα 30 GPa

constants µ 34.0 GPa dissipation σ∞ 150 MPa
hardening & hα 7.1 GPa (pyramidal 〈c + a〉) hi j 25 MPa
dissipation σ∞ 0.7 MPa τ0 17.5 MPa
(basal) hi j 0.0 MPa m 0.05 -

τ0 17.5 MPa Ûγ0 1.0 s−1

m 0.05 - extension h0 1.7 MPa
Ûγ0 1.0 s−1 twins ki j 40 GPa

hardening & hα 9 GPa simulation ∆t 0.01 s
dissipation σ∞ 85 MPa parameters ndomain,T 1283 -
(prismatic) hi j 20 MPa

τ0 17.5 MPa
m 0.05 -
Ûγ0 1.0 s−1

Table 4.1: Material parameters are adopted from Chang and Kochmann (2015) who obtained their
constants by fitting to experimental results of Kelley and Hosford (1968) for individually activated
slip and twin systems, together with simulation parameters.

4.4 Numerical Solution Strategy – Explicit Updates
The above equations, using the spectral methods discussed in Chapter 2, are solved in an

incremental, staggered fashion for the unknown fields F(X), λ(X), and γ(X) at the RVE grid
points, using an explicit scheme. First, at each load step n + 1, with a known (F0)n+1 the elastic
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Figure 4.1: An overview of the variety of dislocation slip and twinning modes in magnesium
(Vidyasagar et al., 2018).

problem is solved assuming constant internal variables,

Fn+1
kL (X) = F

−1{F̂n+1
kL (K )} and F̂n+1

kL (K ) =


A−1

ik (K )τ̂
n+1
iJ (K )KJKL for K , 0

(F0
kL)

n+1 for K = 0.
(4.14)

The nonlinear equations are solved using a fixed-point iteration scheme. Due to the non-linearity
of the elastic problem, the deformation-dependent acoustic tensor A is re-evaluated periodically
during the iterations. Next, the internal variables are updated in real space at each material point,
with the update for slip activity given by

γn+1
α = γn

α + ∆γ
n
α = γ

n
α + Ûγ

0
α∆t

(
|τ

p
α | − τ

cr
α

τ0
α

) 1
m

(4.15)

with

τ
p
α =

(
FT
e
∂We
∂F

FT
in

)
·

((
1 −

∑
β

λn
β

)
sα ⊗ mα +

∑
β

λn
β Qβ sα ⊗ Qβmα

)
(4.16)

and
τcrα =

∂Wp(γ)

∂γα
, (4.17)
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both to be evaluated at the previous load step n. The update for the twin volume fractions follows
analogously as

λn+1
β = λn

β + ∆λ
n
β = λ

n
β +
Ûλ0
β∆t

(
τtwβ − τ

cr
β

τ0
β

)
(4.18)

with
τtwβ = γ̄

tw
β

(
FT
e
∂We
∂F

FT
in

)
·
(
aβ ⊗ nβ

)
and τcrβ =

∂Wtw(λ)

∂λβ
, (4.19)

again to be evaluated at step n. Finally, the inelastic deformation gradient is evaluated by a linearized
forward-Euler step, using the slip and twin updates. In order to suppress numerical errors and to
ensure that the inelastic deformation gradient is volume-preserving, only the deviatoric part of the
update s used, resulting in

Fn+1
in = dev

(
Fn
in + ∆t l̃inFn

in

)
= dev

[
I +

ns∑
α=1
∆γn

α(1 −
∑
β

λn
β) sα ⊗ mα

+
∑
β

λn
β Qβ sα ⊗ Qβmα +

nt∑
β=1
∆λn

βγ̄
tw
β (aβ ⊗ nβ)

 Fn
in.

(4.20)

4.5 Plasticity in Polycrystalline Magnesium
The same techniques used for single- and bi-crystals in Section 3.4 and then used to model

polycrystals of pure Mg described by the constitutive model of Section 4.2. The material and
numerical parameters used in this section are listed in 4.3. Polycrystalline representative volume
elements (RVEs), whose effective response is obtained from homogenization with periodic bound-
ary conditions, using the spectral scheme of Chapter 2. Periodic polycrystals with a specified
number of grains are generated using the open-source package Neper as described by Quey et al.
(2011). Grain orientations are assigned with random permutations such that the overall texture
matches the shown (inverse) pole figures. The spectral scheme admits sufficient grid resolution to
capture large numbers of grains, which is why this setup is used to investigate the relation between
microstructural details and the effective response. In Section 4.5, RVEs are subjected to simple
shear loading, and effective stress-strain responses together with spatial distributions of inelastic
activity are shown. Additionally, the influence of increasing grain misorientation (i.e., increasing
the spread of the texture pole) on the effective macro- and meso-scale behavior is analyzed. Sub-
sequently, in Section 4.5 polycrystals undergo combined compressive/shear loading to mimic the
effects of cold rolling. Here, the focus is on the influence of the number of grains per RVE (for
approximately constant texture) on the effective macroscale stress-strain response.
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Simple Shear and the Influence of Misorientation
Polycrystalline RVEs containing 100 grains are subjected to simple shear loading with an

average deformation gradient

F0 =
©­­«

1 λ 0
0 1 0
0 0 1

ª®®®¬ , (4.21)

where λ is raised from 0 to 10% at a rate of Ûλ = 0.02 s−1. The chosen texture, representative
of extruded Mg (Chang et al., 2017), is shown in the pole figure in Fig. 4.2(b). The resulting
effective stress-strain relation is illustrated in Fig. 4.2(a) and exhibits a plateau near P12 = 0.1 GPa
at λ ≈ 0.05, caused by stress relaxation due to slip and twinning mechanisms across grains. The
emergence of heterogeneous stresses and inelastic activity within grains and stress concentrations
at grain boundaries, even at low misorientation, is observed. In particular, twinning is initiated
primarily at triple junctions as seen in the total twin activity shown in Fig. 4.2(c), which also
visualizes how the texture distribution results in only a subset of all grains exhibiting deformation
twinning by extension twins. The total volume fraction of the 〈1̄012〉 extension twins increases
to a maximum of 0.183 and the activity on 〈112̄0〉 prismatic slip systems to 0.0974 during the
deformation at λ = 0.09.

To gain quantitative insight into how increasing the grain misorientation affects the effective
material response, the RVE is endowed with increasingly greater degrees of misorientation and
subjected to the same shear loading parametrized by (4.21). In Fig. 4.3(a) the resulting effective
stress-strain responses for different textures indicate an increasingly softer response with increasing
misorientations, even at low strains of around λ = 0.01, which is indicative of the anisotropy
of slip-twin interactions. The spreading of the texture pole leads to the activation of more slip
and twin systems across a wider range of grains, leading to a softer response but also stronger
stress gradients and concentrations particularly near grain boundaries, see Fig. 4.3(c). The stress-
strain curves indicate that decreasing the misorientation leads to a slightly lower yield stress but a
significantly higher hardening: at higher strains of, e.g., λ = 0.01, there is a deviation in the shear
stress of ∆P12 ≈ 36% between the extremal cases of misorientation cases (A) and (E) in Fig. 4.3.
The increased number of inelastic-strain-accommodating slip planes and twin systems in highly
misoriented polycrystals such as case (E) induces stress relaxation, which in turn results in the
observed changes in hardening. For instance, at λ = 0.01, for case (A) the peak total twin activity
is 0.105, whereas for case (E) it is 0.252. Similarly, the maximal basal slip activity for case (A)
is 0.0177, while that of case (E) is 0.0797. Notice how several of the grains display pattern-like
stress and slip/twin distributions; the effect is much less pronounced than in the single-crystal
case discussed before due to the abundance of available twin/slip mechanisms. However, there
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Figure 4.2: (a) Effective stress-strain response of a simple shear test of an RVE containing 100
grains whose orientations are shown in the pole figure (b). (c) State of the RVE at an applied
average shear strain of F0

12 = λ = 0.09. RVEs are shown in the deformed configuration, whereas
the bounding box indicates the undeformed shape. Plots illustrate the grain shapes and components
of the first Piola-Kirchhoff stress tensor P as well as the distribution of prismatic slip and of the
total volume fraction of all extension-twinned regions. The shown stress distributions are in units
of GPa (Vidyasagar et al., 2018).

are still individual grains demonstrating energy-minimizing microstructural pattern formation, as
highlighted in Fig 4.4.



65

D

E

A

B

C
A

B

C

D

A

(c)

B

C D

[100] [001] [100] [001]

loading parameter l

sh
ea

r 
st

re
ss

 P
/G

P
a

12

E

E

(a) (b)

Figure 4.3: Using the same grain geometry as in Fig. 4.2(a), an investigation is performed on how
the effective stress-strain response in (a) changes with increasing grain misorientation, as shown
by the pole figures in (b). Increasing the spread of the texture allows more easy-slip and -twin
systems to become active across a larger number of grains, resulting in significant softening even
at low strains. (c) The resulting shear stress distribution illustrates stronger stress differences and
concentrations with increasing misorientation. The shown stress distributions are in units of GPa
(Vidyasagar et al., 2018).
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Figure 4.4: Polycrystalline case (E) of the simple shear experiment (see the pole figure in Fig. 4.3):
shown is the shear stress distribution (in GPa) with all displacements magnified by a factor of 10
for better visibility. Several of the grains display laminate-like patterns, as may be expected due
to the non-quasiconvexity in finite-strain crystal plasticity, as discussed above (Vidyasagar et al.,
2018).

Cold Rolling and the Influence of the Number of Grains
Having a computational model and toolset at hand to simulate the RVE response with high

resolution, the question arises as to what level of microstructural detail is required to predict the
effective, macroscopic stress-strain response. As an example test case, the cold rolling process is
chosen which is classically modeled as a combination of shear and compression; see, e.g., (Lee and
Duggan, 1991; Ahzi et al., 1993). For ease of implementation, a deformation history described by
the effective isochoric deformation gradient

F0 =
©­­«

1 + λ
3 0 λ

0 1 0
0 0 3

3+λ

ª®®®¬ (4.22)

with loading parameter λ ≥ 0 is chosen. The effective responses of four different RVEs are
simulated, containing 20, 50, 100, and 1000 grains. All grain orientations were generated randomly
from the same pole figure, viz. case C from Fig. 4.3(b). Since this does not produce a unique
assignment of orientations to grains, the statistics are considered and an ensemble of ten RVE
realizations are simulated for each number of grains (i.e., the ten realizations for a given grain
geometry differ by the permutation of grain orientations while keeping the same set of orientations
from the pole figure). This yields an envelope of stress-strain responses summarized in Fig. 4.5,
showing the mean and standard deviation for each of the four different RVEs studied. As expected,
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Figure 4.5: Influence of permuting the grain orientations within an RVE with fixed grain geometry:
stress-strain behavior shown in terms of mean and standard deviation of ten RVE realizations with
different permutations of grain-orientation assignments for RVEs containing 20, 50, 100, and 1000
grains. Grain orientations are taken from the pole shown in (b); the given components of the first
Piola-Kirchhoff stress tensor include (a) tensile, (c) shear, and (d) compressive stresses. Mean
stresses are shown as thick lines and standard deviations as shaded color regions (Vidyasagar et al.,
2018).

the envelope of possible stress-strain responses (shown as the shaded region) is largewhen using only
20 grains, but converges towards a narrow stress-strain envelope as the number of grains within
the RVE increases. Interestingly, but not entirely unexpectedly, there is also (non-monotonic)
convergence of the mean stress-strain response shown by the solid lines in Fig. 4.5, where the
curves vary only little between 20 and 1000 grains. In other words, while the envelope of possible
stress-strain responses is large for an RVE with a relatively small number of grains (e.g., 20), the
mean response over many possible geometric permutations and sampling sequences reproduces
approximately the same effective material response as an RVE with many more grains (e.g., 1000).
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Fig. 4.6 demonstrates representative stress states within the four different polycrystals at λ = 0.01,
visualizing the effect of homogenizing the effective material response across increasing numbers
of grains.

(a) (b) (c) (d)

Figure 4.6: Polycrystalline RVEs with (a) 20, (b) 50, (c) 100, and (d) 1000 grains. The left
half of each graphic illustrates the grain size and arrangement, whereas the right half shows the
tensile/compressive stress distribution at a representative load of λ = 0.01 (Vidyasagar et al., 2018).

Overall, these results demonstrate that, although the high-resolution spectral scheme admits
high-fidelity simulations ofmesoscale slip and twinmechanisms, the effective stress-strain response
as obtained from homogenization does not require highest levels of mesoscale resolution but
may be approximated sufficiently well with small numbers of grains inside an RVE. Obtaining
the mean response over a large number of RVE realizations, together with periodic boundary
conditions, converges to an effective constitutive behavior. Of course, the converged response and
the convergence behavior depend on the chosen material model and the geometric complexity,
but the above examples with the chosen finite-strain crystal plasticity model, including slip and
twinning as well as diffuse interfaces due to non-convex pattern formation in geometrically complex
polycrystals, confirm this observation.

Finally, it is important to understand the influence of the order of the finite-difference approx-
imation on the obtained polycrstyalline results. To this end, Fig. 4.7 summarizes the stress–strain
response for a simple-shear test of an RVE containing 100 grains. As expected, deviations are
moderate and the effective response converges quickly towards the solution obtained from the
uncorrected, standard Fourier spectral method when increasing the order of the finite-difference
stencil. Fig. 4.8 illustrates the corresponding local fields (shown are two representative stress
components as well as the total basal slip activity and the total twin activity). Again as ex-
pected, the standard scheme reveals oscillations in the local fields (corrupting convergence with
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h-refinement), which are removed by the finite-difference-approximated schemes, where increasing
the finite-difference order again leads to convergence towards the standard scheme.

Figure 4.7: Illustration of the stress–strain response for simple shear loading (F0
12 = α) showing

convergence with increasing order of the finite-difference approximation to the standard Fourier
spectral scheme (Vidyasagar et al., 2018).
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Figure 4.8: Illustration of the local stress fields and inelastic activity within the same RVE, obtained
with different orders of the finite-difference approximation, shown at the maximum shear strain
shown in Fig. 4.7 (Vidyasagar et al., 2018).

4.6 Conclusions
In this chapter, a finite-difference-corrected spectral homogenization scheme along with an ex-

tended crystal plasticity model is used describe the effective, macroscale response of polycrystalline
pure Mg. There is a strong influence of the initial texture on the effective stress-strain response, and
the convergence of the effective material behavior with an increasing number of grains within the
RVE (enabled by the high-resolution spectral formulation employed here) has been demonstrated.
Although high resolution is achieved by the presented scheme, lower fidelity may be sufficient to
capture the effective response through averaging over different RVE realizations.
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C h a p t e r 5

PATTERNS AND ELASTIC SURFACE EVOLUTION DURING
ANISOTROPIC SPINODAL DECOMPOSTION

Research presented in this chapter has been adapted from the following publication:

Vidyasagar, A., Krödel, S., Kochmann, D. M. 2018. Microstructural patterns with tunable
mechanical anistropy obtained by simulating anisotropic spinodal decomposition. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 474, 20180535.

Dissipative effects have been discussed in Chapter 4, but full crystal plasticity serves as a very
complicated model when striving to understand the kinetics of generalized pattern formation pro-
cesses. Taking a very different perspective on naturally occuring microstrucutral pattern formation,
the kinetics of the spinodal decomposition, driven by mass-conservative gradient flow theories, is
presented in this chapter. Additionally, the manipulation of the interface energy induced by physical
regularization is also studied in detail in what follows.

5.1 Introduction
Phase separation is a ubiquitous phenomenon in both natural and artificial systems. One

of the prevalent underlying physical processes is spinodal decomposition, a mean-conservative
process that separates a mixture into its two constituent phases. The driving force behind spinodal
decomposition is the minimization of the overall interface energy between the phases (Cahn and
Hilliard, 1958). Prior studies on spinodal decomposition have primarily focused on physical phase-
separation processes such as the degradation of mechanical properties during corrosion of metals
(Sun et al., 2015) or dealloying to produce nanoporous foams (Biener et al., 2005; Volkert et al.,
2006; Erlebacher et al., 2001; Lu et al., 2007; Lang et al., 2011; Li et al., 2013; Geslin et al., 2015).

This contribution provides an alternative perspective by utilizing spinodal decomposition
with anisotropic interface energies to tailor the effective elasticity of the resulting microstructured
medium. That is, the computational simulation of spinodal decomposition is exploited to produce
media with target elastic properties. By choosing one of the two phases in the spinodal decom-
position process as void, porous microstructures are obtained with controllable relative density,
which are simple to fabricate by modern means of additive manufacturing (Schaedler and Carter,
2016). For the special case of isotropic surface energy, functional decomposition yields isotropic
domain interfaces which are similar to surface-minimal gyroids (Nishikawa et al., 1998) due to
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their almost constant curvature. However, if the surface energy is anisotropic (Eggleston et al.,
2001; Torabi et al., 2009; Salvalaglio et al., 2015), energetically favorable directions exist, resulting
in strong faceting of the interfaces and, consequently, microstructural patterns along the preferred
orientations. This mechanism is commonly observed in the growth of thin films (Bergamaschini
et al., 2016) and quantum dots (Salvalaglio et al., 2015). In the following, numerical predictions
show the formation of bi-continuous phase networks through anisotropic spinodal decomposition,
and analysis is performed on the resulting structures in terms of their morphology and topology
(Ziehmer et al., 2016; Park et al., 2017; Kwon et al., 2010; Geslin et al., 2015).

By exploiting the faceting phenomenon and the associated directional evolution of microstruc-
tural patterns, the effective anisotropic mechanical response of the resulting medium can be manip-
ulated. For example, the formation of elongated structures increases stress-bearing capacity along
particular directions or planes, leading to an anisotropic elastic surface akin to the anisotropic elas-
ticity and strength of atomic lattices arising from the underlying crystallographic packing (Chung
and Buessem, 1967). While the latter is restricted by crystallography and typically results in, e.g.,
elastic cubic symmetry (like in face-centered cubic or body-centered cubic metals) or transverse
isotropy (like in hexagonal close-packed metals), utilizing anisotropic spinodal decomposition al-
lows to generate elastically anisotropic microstructures with, in principle, arbitrary and controllable
symmetries (or lack thereof) by choosing specific surface energies when simulating spinodal de-
composition. Energetically favorable directions for microstructural growth can be realized by the
construction of appropriate penalizations in the surface free energy functional. As will be shown,
a non-trivial relationship exists between the chosen favorable surface directions and the resulting
elastic surfaces arises due to the presence of flat-faceted interfaces.

When it comes to micro- and nano-architected (meta-)materials with tunable properties, most
recent advances have focused on truss- or plate-based architectures on macro- and microscopic
scales (Deshpande et al., 2001; Schaedler and Carter, 2016; Bauer et al., 2017; Berger et al., 2017),
and their mechanical properties are commonly evaluated under uniaxial loading, see for instance
Zheng et al. (2014). Simulating spinodal decomposition to generate microstructures expands the
mechanical property space by considering the entire elastic surface as well as by sampling across a
much wider space of microstructural architectures not limited to traditional truss architectures. The
chosen simulation methodology on a periodic representative volume element (RVE) also trivially
ensures domain connectivity and compatibility acrossRVEs, which is a strong topological constraint
when it comes to periodic unit cells. By using the presented computational tools, (meta-)materials
with target properties can be designed, which offers a pathway towards scalability in manufacturing
nano-architected materials. For instance, naturally occurring anisotropic spinodal decomposition
such as during the dealloying of gold-silver solutions (Erlebacher et al., 2001; Lu et al., 2007; Lang
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et al., 2011; Li et al., 2013; Geslin et al., 2015), demixing of polymer blends (Bruder and Brenn,
1992; Higgins and Jones, 2000), or coarsening of intercellular lipid fluid mixtures (Stanich et al.,
2013) can potentially be utilized for this purpose. At larger scales, as-designed architectures can be
realized by 3D printing. When compared to topology optimization, the present approach aims to
tailor the entire three-dimensional (3D) elastic surface by suitably selecting the anisotropic surface
free energy as opposed to optimizing for specific load cases.

Spinodal decomposition is modeled computationally using the Cahn-Hilliard-type phase-field
equations (Elliott, 1989; Bates and Fife, 1990; Zhu et al., 1999; Badalassi et al., 2003). Incorporating
anisotropic surface energywithin a Cahn-Hilliard framework is challenging (Torabi et al., 2009) due
to the ill-posed nature of the equations at large anisotropies, which in turn stem from non-convex
surface energy and negative diffusive processes (Torabi et al., 2009; Salvalaglio et al., 2015). In
this work, a classic phase field model previously used to predict faceting in individual domains
(Torabi et al., 2009; Salvalaglio et al., 2015) is employed. The solution is found on an RVE
with random initial conditions by using a robust spectral formulation. The spectral regularization
techniques introduced in Chapter 2 are used to avoid oscillatory artifacts at phase interfaces and
to prevent short-wavelength instabilities, which avoids the need for further regularization of the
non-convex problem. The resulting numerical scheme describes the evolution of the two continuous
phases (viz., material and void) under periodic boundary conditions. After phase separation the
homogenized elastic stiffness tensor of the RVE is computed using finite elements under periodic
boundary conditions so as to identify the elastic properties of a homogeneous comparison medium.

The remainder of this chapter is structured as follows. Section 5.2 details the constitutive
phase field model and the kinetics solved subsequently by using the numerical spectral techniques
presented in Chapter 2 (expanded in Section 5.3). Section 5.5 describes the pattern formation
during phase separation as well as the influence of the target relative density and strength of
surface anisotropy on the resulting porous structures. The kinetics of decomposition are further
analyzed togetherwith the detailedmorphology of simulatedmicrostructures and its correlationwith
surface anisotropy. Parametric studies of relative density and strength of anisotropy demonstrate the
effective mechanical property space of the resulting microstructures. Finally, Section 5.6 concludes
the investigation in this chapter.

5.2 Constitutive Model and Kinetics
Consider an RVE Ω ⊂ Rd in d-dimensional space, which is endowed with a scalar field

ϕ(X, t) : Ω × R→ R, (5.1)

where X ∈ Ω denotes position and t ≥ 0 time. ϕ(X, t) = 1 implies that point X at time t is
filled with solid material, whereas ϕ(X, t) = 0 implies a void. The kinetic evolution of ϕ(X, t)
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across Ω is governed by the Cahn-Hilliard phase field model (Torabi et al., 2009; Salvalaglio et al.,
2015) which describes mean-conservative phase separation. Specifically, the phase field variable
ϕ is locally driven to one of the two stable phases (solid or void) through the introduction of a
Ginzburg-Landau double-well potential B(ϕ), defined as (Torabi et al., 2009)

B(ϕ) =
1
4
ϕ2(1 − ϕ)2. (5.2)

The surfaces within the RVE (i.e., the interfaces between solid and void) are tracked by the inward
normal

n(X, t) =
∇ϕ(X, t)
|∇ϕ(X, t)|

, (5.3)

which is defined for all X ∈ Ω and t ≥ 0 unless |∇ϕ(X, t)| = 0. In order to account for anisotropic
surface energy, a set of unit vectors, M = {m1,m2, ...,mα}, are introduced, which represent the
normals to the desired interface facet planes with examples shown in Fig. 5.1. Note that for
versatility of the method, each mi is endowed with a unique direction, i.e., the ± m directions
can be chosen independently to tune internal facet orientations. Based on the set M , the interface
energy density per unit volume, γ(n), is assumed of the form (Salvalaglio et al., 2015)

γ(n) = γ0

[
1 −

α∑
i=1

ai(n · mi)
wi H(n · mi)

]
, (5.4)

where H denotes the Heaviside step function. Coefficients ai ≥ 0 represent the degree of surface
anisotropy, and ai = 0 results in isotropic surface energy. For simplicity, the exponents wi = 4
(kept constant), and reference value γ0 = 1, are chosen the remainder of this chapter.

Assuming diffuse interfaces, the total free energy functional, including bulk and surface
energy, is written as

E[ϕ] =
∫
Ω

γ(n)

ε

[
B (ϕ(X, t)) +

ε2

2
|∇ϕ(X, t)|2

]
dV, (5.5)

where ε > 0 characterises an intrinsic length scale. Note that, following Torabi et al. (2009),
both the Ginzburg-Landau energy and the gradient term are scaled by the anisotropic interface
energy density γ(n) to ensure that the interface thickness is isotropic (while having no impact
within homogeneous phases).

Using the approach previously presented in Torabi et al. (2009); Salvalaglio et al. (2015), the
local chemical potential µ(X, t) is approximated by

µ(X, t) =
γ(n)

ε

∂B(ϕ)
∂ϕ

− ε ∇ ·
[
γ(n)∇ϕ + |∇ϕ|(I − n ⊗ n)∇nγ(n)

]
, (5.6)
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Figure 5.1: Depiction of a possible choice of the mα unit vectors to obtain facets on the associated
normal planes.

where the dependence of ϕ and n on (X, t) is dropped for convenience, and ∇n(·) represents the
gradient with respect to the surface normal. Note that Equation (5.6) is an approximation of the
exact variational derivative, which exploits the limit Torabi et al. (2009); Salvalaglio et al. (2015)

lim
ε→0

[
1
ε

B(ϕ) −
ε

2
|∇ϕ|2

]
= 0. (5.7)

The evolution of the phase field ϕ(X, t) follows asWise et al. (2007); Torabi et al. (2009); Salvalaglio
et al. (2015)

η
∂ϕ

∂t
(X, t) = ∇ ·

[√
B(ϕ(X, t)) ∇µ(X, t)

]
(5.8)

with an inverse mobility η > 0. This evolution law deviates from the classical Cahn-Hilliard form,
in which

√
B(ϕ(X, t)) would be replaced by a constant. The present choice of the kinetic law leads

to an increased relative mobility of the phase field parameter ϕ(X, t) at and near interface regions
as opposed to in homogeneous bulk regions (where ϕ ≈ 0 or 1). This results in increased relative
interface motion (as compared to bulk rearrangement within homogeneous phases) but an overall
deceleration of the energy relaxation process.

The kinetic evolution equation (5.8) is solved on an RVE Ω = [0, L]d with periodic boundary
conditions on the boundary ∂Ω, i.e.,

ϕ(X+, t) = ϕ(X−, t) and 〈ϕ(t)〉 =
1
|Ω|

∫
Ω

ϕ(X, t)dV, (5.9)

where X± denote periodically matching points on opposite faces of ∂Ω, and 〈ϕ(t)〉 is the RVE-
average of ϕ at time t ≥ 0. For mass conservation in the RVE 〈ϕ(t)〉 = 〈ϕ〉 = const.

5.3 Numerical Solution Strategy
The RVE is discretized into a regular grid of n points, χ = {X1,X2, . . . ,Xn}, whose reciprocal

points in Fourier space, T = {K1,K2...Kn}, lie on a Bravais lattice; here an equal number of points
are chosen in K -space for convenience when using Fast Fourier Transforms (FFTs).
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The application of a discrete (inverse) Fourier transform to the phase field yields

ϕ(X) = F −1 (ϕ̂) = ∑
K∈T

ϕ̂(K ) exp(−ihK · X), h =
2π
n
, i =

√
−1. (5.10)

For added stability of the Fourier spectral scheme in the presence of strong gradients such as across
phase boundaries, a fourth-order finite-difference approximation from 2.5 on the RVE grid. The
time evolution of the phase field is simulated by applying the aforementioned modified inverse
Fourier transform at every time step t to compute the components of the gradient as

ϕ,i(X, t) = F −1(ϕ̂(K, t)ω̃i) (5.11)

for the calculation of the inward normal n(Xi, t) and the interface energy γ(n(Xi, t)) at every grid
point Xi ∈ χ in real space. Having individually computed each term in real space, the approximate
chemical potential is evaluated in Fourier space as (with summation over index i) as

µ̂(K, t) = F
(
γ(n)

ε

∂B(ϕ)
∂ϕ

)
− ε

[
F (γ(n)∇ϕ) + F (|∇ϕ|(I − n ⊗ n)∇nγ(n))

]
i ω̃i(K ). (5.12)

The gradient of the chemical potential is next evaluated in real space, viz.

µ,i(X, t) = F −1 ( µ̂(K, t)ω̃i(K )
)
. (5.13)

Finally, the time evolution in real space is evaluated using an explicit, forward-Euler finite-difference
scheme in time for all X j ∈ χ (again, with summation over index i):

ϕ(X j, t + ∆t) = ϕ(X j, t) +
∆t
η
F −1

( [
F

(√
B(ϕ(X, t)) ∇µ(X, t)

) ]
i
ω̃i

)
. (5.14)

The explicit updates are computationally fast but require the choice of a sufficiently small time step
∆t for stability. Subsequent simulations are performed on a cubic RVE of side length L = 6.4 (in
arbitrary units due to scale invariance) discretized by a regular grid consisting of 128 × 128 × 128
points. The interface width is set to ε = 0.03. To ensure smooth initial conditions, the system is
seeded randomly by perturbing the average relative density 〈ϕ〉 using a set of p Gaussian functions
in 3D-space such that

ϕ(X,0) = 〈ϕ〉 ±
p∑

l=1
exp

(
(X − µl) · (X − µl)√

2p s2

)
. (5.15)

The mean positions µl(X) are chosen randomly for each of the p = 2500 functions with a standard
deviation of s = 0.2. The sign of the Gaussian perturbation is chosen at random. Specific choices
of γ(n) and resulting microstructures are summarized in Section 5.5.
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5.4 Elastic Surface Calculation
During the iterative energy relaxation process, the system quickly converges towards the stable

equilibrium phases. The evolution process is stopped once an approximately stable end distribution
ϕ(X, tend) has emerged. For each thus-obtained architecture, the effective elastic properties of the
RVE are obtained by computational homogenization (Kouznetsova et al., 2001; Miehe and Koch,
2002). The field ϕ(X, t) is interpreted as a distribution of solid and void inside the RVE, and the
governing equations of linear elastic equilibrium in linearized kinematics to extract the effective
elastic moduli.

The primary mechanical unknown here is the displacement field u(X, t) : Ω× t → Rd , which
satisfies the periodic boundary conditions (Kouznetsova et al., 2001; Miehe and Koch, 2002)

u(X+) − u(X−) = 〈ε〉(X+ − X−) ∀ X± ∈ ∂Ω, (5.16)

where 〈ε〉 is the average of the infinitesimal strain tensor ε = sym(∇u). The base material is
assumed to be homogeneous, and linear elasticwith a spatially constant fourth-order elasticity tensor
CM , such that (using Einstein’s summation convention) the infinitesimal stress tensor components
σi j are given by

σi j(X) = C
M
i j klεkl(X). (5.17)

In all subsequent case studies, we assume an isotropic base material for the solid phase with a
Poisson’s ratio of νM = 0.33 (Young’s modulus is irrelevant as all results will be normalized with
respect to the base material’s Young’s modulus EM).

The commercial code COMSOL® is used to solve the balance equations of linear momentum,
divσ(X, t) = 0, inside Ω with periodic boundary conditions (5.16) and in the absence of body
forces or inertial effects. To this end, the cubic RVE is discretized into 100× 100× 100 hexahedral
elements with quadratic interpolation. The distribution ϕ(X, tend) is interpolated over the domain
of the RVE and results in a location-dependent Young’s modulus of the base material, assigning to
each point X ∈ Ω a modulus E(X) = ϕ(X, tend)EM. To avoid numerical instability, a lower-bound
ϕ ≥ 10−6 is enforced (this was verified to have a vanishing effect on the obtained homogenized
moduli). The equations of linear elasticity are solved over the entire RVE. Once the equilibrium
solution has been found, the average stress tensor 〈σ〉 is derived by volume averaging. The effective
fourth-order modulus tensor Ceff is defined via the relation

〈σ〉 = Ceff〈ε〉 (5.18)

and can be computed in one of twoways: either directly from the stiffnessmatrices of theRVEMiehe
and Koch (2002) or by applying a sequence of d(d+1)/2 average (random but linearly independent)
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strain tensors 〈ε〉, computing the corresponding average stress tensor 〈σ〉 and solving (5.18) for
the effective stiffness tensor Ceff and the associated effective compliance tensor Seff = C−1

eff .

For visualization purposes, it is convenient to compute stiffness surfaces illustrating Young’s
modulus E(d) in any direction d ∈ S(d) on the unit ball. Using Einstein’s summation convention,
the directional modulus is obtained as Böhlke and Brüggemann (2001)

E−1(d) = Si j kl did j dk dl . (5.19)

Analogously, the effective Poisson’s ratio ν(d, n), which characterises the inverse, negative ratio
between the strain in the direction of applied stretch d and in the perpendicular direction n becomes
Böhlke and Brüggemann (2001):

ν(d, n) = −E(d)Si j kl did jnknl . (5.20)

The above procedure can be applied both to the resulting final microstructures as well as to
the evolving phase distribution inside the RVE. Hence the homogenized elastic properties of the
periodic medium during and after the process of spinodal decomposition can be obtained.

5.5 Pattern Formation Process
Anisotropic Spinodal Decomposition

Spinodal decomposition is simulated in two-phase RVEs by solving the Cahn-Hilliard phase
field model for a fixed volume fraction of the solid phase in a time-incremental fashion as outlined
in Section 5.2. Fig. 5.2 illustrates a representative overview of resulting microstructures obtained
from different choices of the surface energy γ(n) in (5.4) (for all examples in Fig. 5.2, γ0 = 1,
wi = 4 and ai = 0.3 for all i = 1, . . . , α).

Without any preferred orientations (i.e., γ(n) = γ0 = const.) the resulting microstructure is
isotropic, as shown in Fig. 5.2(a). By contrast, assigning preferred directions along the coordinate
axes {e1, e2, e3} (i.e., m1 = e1, m2 = −e1, m3 = e2, etc.) results in more ordered microstructures,
in which surfaces align with the coordinate axes, as shown in Fig. 5.2(b). Even more pronounced
directional phase growth is observed when choosing fewer preferred orientations such as for the
columnar structures in in Fig. 5.2(c) with elongated ligaments in the e3-direction, which are
obtained from m1 = e1, m2 = −e1, m3 = e2, m4 = −e2. Similarly, the lamellar microstructure
in Fig. 5.2(d) grows in the e1-e2-plane as the result of m1 = e3, m2 = −e3. In all four cases,
the chosen anisotropic surface energy leads to strong faceting along the preferred directions. It is
interesting to note that for the shown choice of 〈ϕ〉 = 0.5 and random initialization, all resulting
geometries are (probabilistically) bi-continuous, i.e., both phases are fully interconnected, which
ensures stress-bearing capacity.
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The resulting microstructures with an anisotropic surface strength of ai = a = 0.3 (see
Eq. (5.4)) show sharp corners, as the result of unattainable surface orientations. Interestingly,
although the energy surface is non-convex for a > 1/15 (Torabi et al., 2009), the evolution process
is stable with a monotonously decreasing energy. Therefore, the chosen spectral scheme is able
to describe the microstructure evolution without higher-order Willmore regularization as, e.g., in
Torabi et al. (2009) and Salvalaglio et al. (2015). The reason for this is two-fold.

The phase field is initiated using a smooth perturbation of small magnitude around the mean.
This ensures that new domains can formwith sharp corners without having to remove certain present
orientations, since the process is driven not only by the anisotropic energy contribution (whichwould
be encountered during morphing of previously equilibrated phases Torabi et al. (2009)) but also
by the phase separation. Admittedly, the smoothness condition cannot be guaranteed throughout
the simulation because of physical short- and long-wavelength instabilities, caused by the presence
of non-convex interface energies γ(n), which cause faceting phenomena. Here, the stabilized
spectral scheme avoids surface wrinkling artifacts (short-wavelength oscillations) by a weighted
smoothing of high frequencies in Fourier spaceand numerical regularization as shown in Sec. 2.5.
Note that this method is not a complete replacement of the Wilmore-type regularization in Torabi
et al. (2009); Salvalaglio et al. (2015), as the latter may still be important to avoid large-wavelength
faceting at corners. However, due to the (relative) short-wavelength nature of domains formed in
simulations, this method is sufficient for stability.

Influence of Porosity and Degree of Anisotropy
Next, the investigation moves to the influence of varying relative densities 〈ϕ〉 and degrees of

anisotropy ai for the example of cubic symmetry as shown in Fig. 5.2(b). For high relative densities
of, e.g., 〈ϕ〉 = 0.7, the resulting structure resembles a solid RVE with cubic holes, see Fig. 5.3(b).
By contrast, decreasing the relative density below 0.3 leads to the formation of disconnected
domains and thus to the loss of the bi-continuity of the equilibrated microstructure, as shown in
Fig. 5.3(a). Therefore, only relative densities of 〈ϕ〉 > 0.3 are considered in the remainder of this
chapter to ensure stable systems with strongly-elliptic elastic moduli (implying non-zero Young’s
moduli in all directions).

Additionally, the choice of the anisotropy strength a strongly influences the resulting periodic
structures. For low anisotropy (e.g., a = 0.15) the impact on the microstructure is minimal, as
shown in Fig. 5.3(c), with structures that are close to the isotropic case. With increasing anisotropy,
interface corners inside the RVE become sharper (compare Fig. 5.3(c) for a = 0.15 to Fig. 5.3(d)
for a = 0.4). These parameters hence admit tuning of the microstructural features.
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Figure 5.2: Periodic structures obtained from the anisotropic spinodal decomposition process for
(a) an isotropic medium (no preferred orientations), (b) cubic symmetry with six energetically
favorable directions along the coordinate axes, (c) a columnar structure with four energetically
favorable in-plane directions, and (d) a lamellar structure with a single energetically favorable
orientation. Results are shown at two different times t1 and t2, where t2 indicates the final,
equilibrated state, whereas t1 is the state of fastest energy decrease, which occurs at approximately
half of the energy relaxation time. For all anisotropic structures ai = 0.3 with an average relative
density of 〈ϕ〉 = 0.5.

Kinetics of Spinodal Decomposition
The model parameters influence not only the resulting microstructures but also the kinetics

of phase separation. While this model does not aim to describe the kinetics in a specific mate-
rial system, it is essential to inspect the kinetic evolution for the identification of approximately
equilibrated patterns as well as to understand the influence of model parameters on the simulation
efficiency. The gradual relaxation of the energy functional (5.5) is quantified by the total mobility
measure (cf. Eq. (5.8))

Λ(t) =
∫
Ω

����η∂ϕ∂t
(X, t)

���� dV =
∫
Ω

����∇ · [√B
(
ϕ(X, t)

)
∇(µ(X, t))

] ���� dV . (5.21)

Results in Fig. 5.4 contrast the total energy and the total mobility of the RVE for different
values of 〈ϕ〉 and different anisotropies ai. As expected, the highest mobilities are at those times
where changes in the energy are maximal (see Figs. 5.4(a,c) and (b,d)). In the isotropic case,
decreasing the relative density decelerates the decomposition process (see Figs. 5.4(a) and (c))
as a consequence of the diffusion process that condenses the material towards the stable phases.
The decrease in the reaction speed is non-linear, resulting in a 55% speed increase when the
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Figure 5.3: Periodic structures with cubic symmetry (case (b) in Fig. 5.2) shown for varying
degrees of anisotropy a and relative density 〈ϕ〉: (a) 〈ϕ〉 = 0.2, a = 0.3, (b) 〈ϕ〉 = 0.7, a = 0.3,
(c) 〈ϕ〉 = 0.5, a = 0.15, (d) 〈ϕ〉 = 0.5, a = 0.4.

relative density is increased from 〈ϕ〉 = 0.3 to 0.5. Fig. 5.4(e) also captures the different stages of
microstructure evolution during an example decomposition process. The small initial perturbations
(of e.g. 〈ϕ〉 ± 0.05 in Fig. 5.4(e)) evolve into equilibrated domains.

Besides the relative density, the choice of the degree of anisotropy a also influences the kinetics
of the process. Stronger anisotropy results in constraints on the decomposition and therefore slows
down the process significantly, as seen in Fig. 5.4(b). For instance, at 〈ϕ〉 = 0.5 a strong anisotropy
of a = 0.4 increases the relaxation time by approximately 120% (compare the solid blue lines in
Figs. 5.4(a) and (b)). In general, the mobility during anisotropic decomposition is at least an order
of magnitude higher then the mobility that is associated with isotropic surface energies (compare
Figs. 5.4(c) and (d)).

Interface Morphology
As a quantitative measure of the morphology of microstructures resulting from anisotropic

spinodal decomposition, the interfacial shape distribution (ISD) is derived using contours of con-
stant ϕ = 0.5 within the RVE. The ISD is used to investigate self-similarity of bi-continuous
structures and is related to the genus or the topology of microstructures (Kwon et al., 2010; Park
et al., 2017; Ziehmer et al., 2016). Representative interface contours are visualized in Fig. 5.5(a)-
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Figure 5.4: Kinetics of the spinodal decomposition process measured by the evolution of the total
energy E and of the total mobility Λ. Isotropic surface energy leads to the interfacial energy (a)
and mobility (c), whereas cubic symmetry with a = 0.15 generates the interfacial energy (b) and
mobility (d). In all plots the shown curves are for 〈ϕ〉 = 0.3 (green, dotted), 〈ϕ〉 = 0.4 (red,
dashed), and 〈ϕ〉 = 0.5 (blue, solid). The interfacial energies, mobility and time scales have been
normalized by their respective maximum. For (c) and (d) the maximum of the isotropic mobility
function is used. An exemplary microstructure evolution is shown in (e) for the three times labeled
A through C in (a).

(d). Each discrete segment of the interface with an area Ai has an associated normal vector n which
is related to the mean and Gaussian curvatures, H and K , respectively defined as

H =
1
2
∇ · n, K =

1
2

[
(∇ · n)2 − ‖∇n‖2

]
, (5.22)
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where ‖∇n‖ denotes the Hilbert-Schmid norm of the gradient tensor. To derive the ISD the
principal curvatures κ1 and κ2 are calculated as functions of the mean and Gaussian curvatures:

κ1 = H −
√

H2 − K, κ2 = H +
√

H2 − K . (5.23)

The probability of finding a patch with a set of principal curvatures κ1, κ2 is described by

PISD(κ1, κ2) =
AISD(κ1, κ2)

Atot
, (5.24)

where AISD(κ1, κ2) =
∑

i Ai(κ1, κ2) is the total area of all area segments with principal curvatures
κ1, κ2, and Atot is the total area of all interfaces within the RVE.

For bi-continuous structures the principal curvatures are spread within the upper left quadrant
(κ1 < 0 and κ2 > 0). As shown in Fig. 5.5(a), in the isotropic case the principal curvatures are
dispersed largely along the line of zero-mean curvature (κ1 = −κ2). In the case of anisotropy
the overall average curvatures are remarkably diminished and converge towards planar interfaces
(κ1 = κ2 = 0), see Fig. 5.5(b)-(d). In particular, for the anisotropic cases there is a reduced
probability of interfaces having a saddle-like morphology. This results in an increased likelihood
of non-zero mean curvature, while the contrary is true for the Gaussian curvature.

Manipulating the Elastic Property Space
For the calculation of the effective elastic properties, the generated microstructures are sub-

jected to periodic homogenization. Although structures are inherently random, the redistribution
of mass within the RVE during spinodal decomposition results in mechanically stiff and com-
pliant directions. It is therefore expected that the different microstructures – from isotropic to
columnar to lamellar – respond differently to applied loads. This is demonstrated by subjecting
example RVEs to uniaxial extension. The resulting spatial distribution of the von Mises stress
σm =

√
[(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2]/2 with principal stresses σ1, σ2, σ3 is illustrated in

Fig. 5.6, where cases (a)-(c) are loaded in the e3-direction and (d)-(f) in the e1-direction.

Unlike typical truss- or plate-based architectures, the generated microstructures avoid acute
corners and edges, as shown by the morphological analysis above, so that the emergence of strong
stress concentrations is prevented. As expected, the isotropic microstructure shows no significant
difference in stress magnitude for the two load cases. On the contrary, the columnar structure in
Fig. 5.6(b),(e) shows noticeably higher stresses when loaded in the e3-direction, since the columns
align with the direction of loading. The opposite is observed for the lammellar structure, where
material is elongated in the e1-e2-plane. The resulting behavior is close to that of the classical
Reuss and Voigt bounds, with largest stresses occurring when the load is aligned with the lamellae
orientation (Fig. 5.6(c),(f)).
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Figure 5.5: Contour plots of the solid-void interfaces (visualized at constant ϕ = 0.5) and the
interfacial shape distribution as a function of the principal curvatures (κ1,κ2) of (a) isotropic,
(b) cubic, (c) columnar, and (d) lamellar microstructures.

These observations are quantified by calculating the associated elastic surfaces, which illustrate
Young’s modulus in all directions in 3D (and reduce to a sphere in case of isotropy). For cubic,
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(a) (b) (c)

(d) (e) (f)

0

1

σm

Figure 5.6: Distribution of the von Mises stress σm for an applied average strain ε0 in the e3-
direction (i.e., 〈ε33〉 = ε0 and 〈εi j〉 = 0 else) for (a) isotropic, (b) columnar and (c) lamellar
microstructures. Analogously, the von Mises stress distribution is shown for an applied average
strain in the e1-direction (i.e., 〈ε11〉 = ε0 and 〈εi j〉 = 0 else) for (d) isotropic, (e) columnar and
(f) lamellar microstructures. Stresses are normalised by the peak stress among (a)-(f).

columnar and lamellar structures, Fig. 5.7 contrasts the obtained elastic surfaces and the directional
surface energy density γ(n), showing a clear and logical correlation: largest stiffness generally
appears in those directions perpendicular to the lowest surface energies (because structures are
prone to emerge in those directions). Therefore, the lamellar structure of Fig. 5.7(c),(f) shows
pronounced transverse isotropy, whereas the columnar case in Fig. 5.7(b),(e) displays two-fold
symmetry in the e1-e2-plane and significantly higher stiffness out-of-plane. Finally, the cubic
microstructure in Fig. 5.7(a),(d) is closer to isotropy while showing the expected cubic symmetry
of the elastic stiffness due to alignment of material with the three coordinate axes.

In addition, the directional Poisson’s ratio is computed for the analyzed structures in the e1-
e2-plane and the e1-e3-plane, see Fig. 5.8 (due to inherent symmetries on might expect statistically
similar properties in the e2-e3-plane). The directions are chosen such that n is perpendicular to
the stretch direction d and lies in the plane of interest. In the e1-e2-plane all given structures
show a large degree of isotropy with Poisson’s ratios slightly below the value of the base material
(νb = 0.3). In contrast, for the perpendicular planes the columnar and lamellar structures show a
highly direction-dependent Poisson’s ratio, varying between 0.15− 0.45. This strong variation has
potential for generating auxetic materials with directional dilatational properties.
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Emin
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γmin

γmin

(a) (b) (c)

Figure 5.7: Surface plots of the directional surface energy density γ(n) from Eq. (5.4) and the
corresponding homogenised directional normalized Young’s modulus E(d) from Eq. (5.19) for
(a,d) cubic (b,e) columnar and (c,f) lamellar microstructures, as seen in Fig. 5.2.

By systematically calculating the elastic properties for varying relative densities 〈ϕ〉 and de-
grees of anisotropy a, the reachable elastic property space of microstructures created by anisotropic
spinodal decomposition can be mapped as seen in Fig. 5.9. The large size of the chosen RVE
makes the computed elastic properties consistent across different geometric realizations (for twelve
different microstructure realizations generated with the same parameters but different initial per-
turbations a standard deviation of less than 2.5% exists for all components of the effective stiffness
tensor). Therefore, only the properties obtained from one realization are shown for every choice of
〈ϕ〉 and a without loss of generality.

To highlight the directional property space, the average as well as the minimum and maximum
directional values of the elastic Young’s modulus across all possible directions are plotted as
functions of the average relative density 〈ϕ〉, resulting in Fig. 5.9. For isotropic structures, the
relative Young’s modulus varies as shown in Fig. 5.9(a); the directional variation (indicated by
the grey region highlighting minimum/maximum values of E(d)) is negligible and stems from
randomness in the decomposition process and the finite size of the RVE. The cubic structure
(Fig. 5.9(b)) reveals a similar scaling as the isotropic case and shows only a small spread, implying
low levels of directionality. At large anisotropy, corresponding to higher a-values, the relative
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Young’s modulus is increased, and a stronger difference between the maximum and minimum
directional E/ES is visible (cf. cases a = 0.15 and a = 0.4 in Figs. 5.9(b)). Interestingly, the cubic
anisotropy tends to increase the average stiffness as well as the difference between minimum and
maximum directional stiffness values.
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Figure 5.8: Directional Poisson’s ratio for isotropic (green, solid), cubic (red, small dashed),
columnar (black, dotted), and lamellar structures (blue, dashed). (a) shows Poisson’s ratio in the
e1-e2-plane, and (b) shows Poisson’s ratio in the e1-e3-plane. The direction n in the definition of
Poisson’s ratio, cf. Eq. (5.20), lies in the plane and is always perpendicular to the stretch direction
d (see the inset schematic).

The columnar and the lamellar microstructures show a more pronounced variation of their
global stiffness properties with anisotropy and relative density, see Fig. 5.9(c),(d). In particular, the
ratio between the maximum and the minimum directional Young’s modulus is large, approximately
1.45 for the columnar and 2.20 for the lamellar structure at the 〈ϕ〉 of widest variation. The maxi-
mum anisotropy is reached at intermediate densities around 〈ϕ〉 ≈ 0.5. Indeed, when approaching
high relative densities, the impact of microstructural details is expected to vanish (the analogous
holds true for low relative densities). There is also a strong relative density-dependence of the
elastic moduli of the columnar and lamellar structures.

For completeness, Fig. 5.9 includes the Voigt upper bound on the effective stiffness of general,
anisotropic two-phase media (Hill, 1952; Paul, 1960) (the Reuss lower bound vanishes identically
due to the void phase), which naturally forms an upper attainability limit for the average Young’s
modulus. As can be expected, the maximum directional Young’s modulus for both the columnar
and lamellar structures approaches the Voigt bound for high anisotropy (a = 0.4), because the
microstructure in the directions of the lamellae (e1-e2 plane) and in the e3-direction of the columns
resembles the Voigt iso-strain construction.



88

Microstructures with Reduced Symmetry and Orthogonality
The outlined computational procedure is sufficiently general to function not only with orthog-

onal symmetries (characterized by a set of orthogonal vectors, M); non-orthogonal, asymmetric
microstructures can be produced in an analogous fashion with less intuitive effective elastic prop-
erties. Two examples of such systems are shown in Fig. 5.10. First, two proximate, non-orthogonal
directions were chosen in Fig. 5.10(a) (effectively splitting the single direction form the case of
lamellar microstructures into two nearby orientations). The resulting overall symmetry of the
elastic surface is reduced, as shown in Fig. 5.10(c). Moreover, the corresponding Poisson’s ratios
are no longer identical in the e1-e3- and e2-e3-planes but show a stronger degree of anisotropy in
the plane with the larger variation of Young’s modulus (Fig. 5.10(g)). Second, a trigonal system
with the six different mi directions is investigated and shown in Fig. 5.10(b),(d). The resulting
elastic surface displays stiff directions of trigonal symmetry, as opposed to the classical, orthogonal
symmetries of the systems studied above (see Fig. 5.7), highlighting the flexibility of the presented
approach in tailoring the directional stiffness. While such elastic anisotropies are usually not found
in natural materials or crystalline systems, they can readily be produced, for example, by additively
manufacturing the shown periodic porous media.

5.6 Conclusion
In this chapter, a numerical technique has been presented to simulate the process of anisotropic

spinodal decomposition in the presence of anisotropic surface energies. The resulting microstruc-
tures and their effective elastic properties have been analyzed in detail. It has been shown that by
introducing energetically favorable orientations during phase separation, the resulting geometric
distribution of solid and void in a representative volume element can be tuned. This includes sim-
ple bi-continuous microstructures such as lamellar, columnar, and cubic as well as more complex
microstructures with reduced symmetries (the numerical tools shown here are sufficiently general
for their application to arbitrary anisotropies).

Using periodic homogenization, the effective elastic properties of the resulting porous media
have been computed, including their directional elastic surfaces and Poisson’s ratios, thus establish-
ing a link between surface anisotropy, resulting microstructure and effective mechanical properties.
Finally, these methods can be used to generate porous (meta-)materials with tunable mechanical
properties, opening a new perspective for architected materials with controllable effective perfor-
mance. Work in progress includes attempts to fabricate these at both the macroscale (see Figs. 5.11
and 5.13) and the the nanoscale (see Fig. 5.12).
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Figure 5.9: Relative Young’s modulus of four different microstructures vs. relative densities 〈ϕ〉,
where solid lines indicate themeanmodulus and shaded envelopes show themaximum/minimumdi-
rectional variations of Young’s modulus across all 3D directions. Shown are results for (a) isotropic
microstructures, (b) cubic microstructures, (c) columnar microstructures, and (d) lamellar mi-
crostructures. In (b)-(d) solid black lines represent a low degree of anisotropy (a = 0.15) and red
dashed lines high degree of anisotropy (a = 0,4). Also included is the Voigt upper bound.
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Figure 5.11: Spinodal microstructures printed at the macroscale with 5mm thickness and RVE
width 120 mm. Original work.

Figure 5.12: Spinodal microstructures printed at the nanoscale with 10nm thickness and RVEwidth
120 µm. Original joint work, courtesy of Carlos Portela, Greer Group, Caltech.
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Figure 5.13: Spinodal microstructures from Fig. 5.11 after heat treatment, colored by oxide layers.
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C h a p t e r 6

KINETICS OF DOMAIN PATTERNS IN FERROELECTRICS

Research presented in this chapter has been adapted from the following publication:

Vidyasagar, A., Tan, W. L., Kochmann, D. M. 2017. Predicting the effective response of bulk
polycrystalline ferroelectric ceramics via improved spectral phase field methods. Journal of the
Mechanics and Physics of Solids 106, 113-151.
URL: https://doi.org/10.1016/j.jmps.2017.05.017

Chapter 5 focused on scalar conservative gradient flow driven regularized potentials, which
led to the conservative, scalar Cahn-Hilliard equations for phase separation. Phase transitions,
however, are not conservative and often involve vector quantities in multiple dimensions. Ferro-
electrics are a case in point, with a wealth of experimental data, analytical results, and numerical
interest. Here, non-conservative gradient flow leads to Allen-Cahn kinetics for the evolution of
the polarization vector within an electromechanically coupled ferroelectric sample. The exposition
that follows extends the current narrative to understand kinetics in this highly complex system,
and an example for bridging scales all the way from density functional theory (DFT, approximate
quantum mechanical calculations) to predicting and matching experiments.

6.1 Introduction
Ferroelectric ceramics exhibit electro-mechanical coupling below their Curie temperature,

which makes this class of materials prime candidates, e.g., for actuators and sensors. Conventional
use of ferroelectric ceramics lies in the piezoelectric regime with approximately linear coupling
between electrical and mechanical fields (Taylor, 1985; Yang, 2006). Under sufficiently large
applied electric fields or mechanical loads, the atomic-level dipole structure can be permanently
altered (Chaplya and Carman, 2001; Bhattacharya and Ravichandran, 2003), accommodated by
ferroelectric switching and the associated irreversible changes in the electro-mechanical fields.
Although the quasistatic material behavior and energy-derived properties (such as stiffness, piezo-
electric or dielectric constants) are well understood, current understanding of the kinetics and hys-
teresis associated with the rate-dependent ferroelectric switching process is still incomplete (Merz,
1956; Arlt and Dederichs, 1980; Zhou et al., 2001; Wojnar et al., 2014; le Graverend et al., 2015),
especially in complex polycrystalline materials with abundant defects and grain boundaries (GBs)
acting as both nucleation sites for switching and obstacles for domain wall motion (Lambeck and

https://doi.org/10.1016/j.jmps.2017.05.017
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Jonker, 1986; Rodriguez et al., 2008; Marincel et al., 2015). This lack of understanding stems
primarily from the large range of length and time scales involved (from atomic-scale interactions to
macroscopic samples, from fast switching events to the experimentally-observed hysteresis). This
makes the underlying phenomena difficult to model computationally and hard to access experimen-
tally. Much prior work has focused on thin films (see, e.g., Chen (2008) and references therein),
where both experimental TEM imaging of ferroelastic switching and atomistic simulations have
helped understand the relation between domain wall motion and the collective switching behavior
under electrical and mechanical loads (Gao et al., 2013, 2014). Domain wall kinetics have also
been investigated experimentally, e.g., by Merz (1956); Miller and Savage (1958); Savage and
Miller (1960); Arlt and Dederichs (1980); Chaplya and Carman (2002a). At larger scales, Wojnar
et al. (2014) recently performed experiments using Broadband Electromechanical Spectroscopy to
quantify the dissipation in bulk polycrystalline samples during domain switching. Our focus here
is on the mesoscale of polycrystalline ferroelectric ceramics, above atomistic resolution but below
macroscopic sample extensions so as to enable the extraction of homogenized material behavior.

At the continuum scale, ferroelectric models typically make use of one of three approaches:
(i) phenomenological models use an effectivematerial description and do not resolve themicrostruc-
ture (see e.g. Bassiouny et al. (1988); Cocks and McMeeking (1999); Landis (2002); Arockiarajan
et al. (2006); Miehe and Rosato (2011); Idiart (2014)); (ii) sharp-interface models account for
domain mixtures in an efficient manner (e.g., Huber et al. (1999); Huber and Fleck (2004); Xiao
and Bhattacharya (2008)); and (iii) phase field models fully resolve the domain structure in a
diffuse-interface fashion at the mesoscale – this is the approach of choice here. Previously, Zhang
and Bhattacharya (2005a,b) used a phase field approach to model ferroelectric domains; they cal-
ibrated the phenomenological constants associated with the Landau-Devonshire equations, and
solved the associated boundary value problems. Similarly, Su and Landis (2007a) thermodynami-
cally developed a more complex phase field model and demonstrated domain switching. These two
approaches will form the basis for the barium titanate (BaTiO3) examples studied in this chapter.
More recently, Völker et al. (2011) obtained phase field constants through adjusted first principles
DFT computations, which will be adopted here for the modeling of lead zirconate titanate (PZT).

Using Landau-Devonshire theory, Chen (2008) provided a comprehensive review onmodeling
phase transitions and domain structures in ferroelectric thin films. Dayal and Bhattacharya (2007)
developed a non-local model of ferroelectric domain patterns in complex geometries and used the
boundary element method to resolve the electrostatic fields. Li et al. (2002) studied the effects
of different types of boundary conditions on the switching behavior in thin film ferroelectric
ceramics and analyzed the stability of domain structures. Chu et al. (2014) used a phase field
approach of Landau-type to study switching behavior upon electrical loading, and the demonstrated
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a relationship between the kinetics of 90◦-domain wall motion, mesoscopic frequency dielectric
response, and elastic energy. Schrade et al. (2007) provide an alternative phase field model
whose order parameter is taken as the spontaneous polarization as opposed to the total material
polarization. More recently, the same authors presented an invariant formulation of their phase
field model for transversely-isotropic material behavior (Schrade et al., 2014).

The phase field formulation in all those studies is ideally suited to be treated by spectral
methods analogous to the formulation in Chapter 2. Choudhury et al. (2005) have previously
studied polarization switching and domain evolution in ferroelectric polycrystals using a linear semi-
implicit Fourier spectral method for isotropic linear elastic solids, but the study was limited to 2D
simulations for computational complexity and had a simplified energetic potential without electro-
mechanical coupling. They also analyzed the effect of grain orientations and boundaries on the
switching behavior of simplified bicrystals (Choudhury et al., 2007). Kalinin et al. (2007) performed
experiments to investigate intrinsic single-domain switching in ferroelectrics, and showed good
agreement of their findings with the phase field model with semi-implicit linear Fourier spectral
method developed by Chen and Shen (1998).

Here, the numerical models developed in Chapter 2 are applied to phase field models of
polycrystalline ferroelectrics, and comparisons are made with between the predicted effective
material performance of PZT and new experimental data. To this end, Section 6.2 summarizes the
constitutivemodel (which unites several previous approaches)whose governing equations are solved
at the RVE-level, as described in Section 6.4 along with convergence benchmark tests. Section 6.5
presents simulation results of ferroelectric switching in BaTiO3 and PZT, and Section 6.6 concludes
the analysis.

6.2 Ferroelectric Constitutive Model
Consider a body Ω ⊂ Rd in d-dimensional space, whose deformation at position x ∈ Ω and

time t ≥ 0 is described by the displacement field u : Ω × t → Rd . In contrast with preceding
models in previous chapters, the small strains typical for ferroelectric ceramics admit linearized
kinematics with the infinitesimal strain tensor

ε = sym(∇u). (6.1)

Conservation of linear momentum in the absence of body forces requires

divσ = ρ Üu (6.2)

with infinitesimal stress tensor σ and mass density ρ, and dots denoting time derivatives. Essential
boundary conditions u = u0 are imposed on ∂Ωu ⊂ ∂Ω, whereas natural boundary conditions
σn = t0 with outward unit normal n and traction vector t0 are applied on ∂Ωt ⊂ ∂Ω.
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The electric description is based on the voltage potential φ : Rd × t → R; the resulting electric
vector field

e = −∇φ (6.3)

produces electric displacements d. Gauss’ law requires

div d = q (6.4)

with volume charge density q. No free charges q are assumed to exist withinΩ. Essential boundary
conditions are φ = φ0 on ∂Ωϕ ⊂ ∂Ω, and natural boundary conditions apply surface charges q̂ on
∂Ωd ⊂ ∂Ω such that d · n = q̂. In addition to the elastic fields u and φ, the state of the ferroelectric
ceramic is described by the polarization field p : Ω×R→ Rd . While the former two are governed
by the balance of linear momentum and Gauss’ law, the latter field is dissipative and requires a
kinetic law to define the time-continuous evolution. The resulting system of equations must be
closed by appropriate constitutive laws.

To this end, the Helmholtz free energy density Ψ becomes (using index notation)

σi j =
∂Ψ

∂εi j
ei =

∂Ψ

∂di
. (6.5)

Following Zhang and Bhattacharya (2005a) and Su and Landis (2007a), an additive structure
is assumed for the internal energy density, viz.

Ψ(ε, d, p,∇p) = Ψmech(ε) + Ψel(d, p) + Ψcoupl(ε, p) + Ψpol(p) + Ψinter(∇p) (6.6)

with the following individual components. The mechanical strain energy density with fourth-
order elastic modulus tensor C and the electric energy density with isotropic permittivity κ0 are,
respectively,

Ψmech(ε) =
1
2
εi jCi j klεkl, (6.7)

Ψel(d, p) =
1

2κ0
(di − pi)(di − pi). (6.8)

Here and in the following, Einstein’s summation convention is used unless explicitly stated other-
wise. The electro-mechanical coupling energy density is assumed as

Ψcoupl(ε, p) = εi jBi j kl pk pl + εi jFi j klmnεkl pmpn + εi jGi j klmnpk pl pmpn, (6.9)

where only the first term with fourth-order tensor B was used by Zhang and Bhattacharya (2005a),
whereas the other two terms with sixth-order tensors F and G were introduced by Su and Landis
(2007a) to allow for reproducing all elastic, electric, and piezoelastic material parameters.



97

Ferroelectric ceramics of the perovskite family below the Curie temperature possess six
tetragonal variants whose ground state polarization vectors correspond to the local minima of
a multistable energy landscape. The generic multi-stable Landau-Devonshire energy needed to
enforce the symmetric equilibrium states of tetragonal perovskites has the form

Ψpol(p) =
1
2

p̃iA
1
i j p̃ j +

1
4

p̃i p̃ jA
2
i j kl p̃k p̃l +

1
6

p̃i p̃ j p̃kA
3
i j klmn p̃l p̃m p̃n

+
1
8

p̃i p̃ j p̃k p̃lA
4
i j klmnop p̃m p̃n p̃o p̃p.

(6.10)

Two particular examples of BaTiO3 and PZT are investigated in this chapter. For BaTiO3 the
phenomenological model of Su and Landis (2007a) is adopted with the specific form (in 3D)

Ψpol,BTO(p) =
a1
2
(p2

1 + p2
2 + p2

3) +
a2
4
(p4

1 + p4
2 + p4

3) +
a3
2
(p2

1p2
2 + p2

2p2
3 + p2

1p2
3)

+
a4
6
(p6

1 + p6
2 + p6

3) +
a5
4
(p4

1p4
2 + p4

2p4
3 + p4

1p4
3)

+ a6
[
p4

1(p
2
2 + p2

3) + p4
2(p

2
1 + p2

3) + p4
3(p

2
1 + p2

2)
]
,

(6.11)

where ai arematerial constants. For tetragonal PZT, the first principles-informed potential of Völker
et al. (2011) is used with non-convex energy density

Ψpol,PZT(p) =
a1
2
(p2

1 + p2
2 + p2

3) +
a2
4
(p4

1 + p4
2 + p4

3) +
a3
2
(p2

1p2
2 + p2

2p2
3 + p2

1p2
3)

+
a4
6
(p6

1 + p6
2 + p6

3) +
a5
4

p2
1p2

2p2
3

+ a6
[
p4

1(p
2
2 + p2

3) + p4
2(p

2
1 + p2

3) + p4
3(p

2
1 + p2

2)
]
.

(6.12)

Figure 6.1 illustrates the nature of these energy landscape in 2D, with four wells, at temperatures
below the Curie point.

Finally, the energy stored in ferroelectric domain walls is captured by the regularizing interface
energy density

Ψinter(∇p) =
1
2

pi,jKi j kl pk,l, (6.13)

where an isotropic interface energy is assumed for simplicity such that

Ki j kl = a δi jδkl, (6.14)

using Kronecker’s delta, and
Ψinter(∇p) =

a
2
|∇p |2. (6.15)

In a polycrystal, the local crystallographic orientation is described by a rotation tensor R ∈
SO(d) whose components are Ri j = ai · e j , where {e1, . . . , ed} is the coordinate basis in Rd and
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Figure 6.1: Visualization of the non-convex energy potential (in 2D) for both ferroelectrics.

{a1, . . . , ad} are unitary vectors that define the local Bravais lattice. Thus, all of the above energy
densities are transformed according to the respective coordinate rotation in each grain. Note that
in this section, isothermal room-temperature conditions are assumed so that all material constants
can be assumed constant.

For convenience, the electric enthalpy density W , which is obtained via a Legendre transform,
is assumed to be

W = sup
d

{
Ψ − e · d

}
so that σi j =

∂W
∂εi j

, di = −
∂W
∂ei

, (6.16)

which results in

W(ε, e, p,∇p) = Ψmech(ε) + Ψcoupl(ε, p) + Ψpol(p) −
κ0
2
e · e − e · p + Ψinter(∇p). (6.17)

The constitutive relations now follow from the traditional Coleman-Noll approach. Specifi-
cally, the components of the infinitesimal stress tensor are

σi j =
∂W
∂εi j

=
(
Ci j kl + 2Fi j klmnpmpn

)
εkl+Bi j kl pk pl+Gi j klmnpk pl pmpn = C̃i j kl

(
εkl − ε

r
kl
)
, (6.18)
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where the effective elasticity tensor C̃ = Ci j kl + 2Fi j klmnpmpn and the remnant strain tensor εr
i j =

−C̃−1
i j kl(Bklmnpmpn + Gi j klmnpk pl pmpn). The electric displacement vector follows as

di = −
∂W
∂ei
= pi + κ0ei . (6.19)

Under quasistatic conditions and in the absence of free charges, the elastic (mechanical and electric)
fields are now governed by linear momentum balance, σi j,j = 0, and Gauss’ law, di,i = 0.

The polarization p evolves in a dissipative fashion, which is assumed to be governed by the
Allen-Cahn equation of linear L2 gradient flow (Zhang and Bhattacharya, 2005a; Su and Landis,
2007a),

η Ûp = y (6.20)

with a drag coefficient η > 0 and the thermodynamic-conjugate driving force

yi = −
δW
δpi
= −

∂W
∂pi
+

(
∂W
∂pi,j

)
,j
= ei −

∂Ψcoupl

∂pi
−
∂Ψpol

∂pi
+ Ki j kl pk,l j . (6.21)

It has been shown in the ferroelectrics literature (see, e.g., the experimental-theoretical findings
ofWojnar et al. (2014)), that linear gradient flow, although simple, does not capture well the intricate
switching kinetics, which may motivates refinements of the kinetic rule.

This can also be cast into a variational structure by introducing the dual kinetic potential

φ∗( Ûp) =
η

2
| Ûp |2, (6.22)

so that (6.20) is equivalent to

δW
δp
+
∂φ∗

∂ Ûp
= 0 or Ûp = arg min

[
ÛW + φ∗

]
. (6.23)

In summary, the unknown fields u(x, t), φ(x, t) and p(x, t) are determined from the coupled
system of equations consisting of linear momentum balance, Gauss’ law, and the kinetic evolution
law: [ (

Ci j kl + 2Fi j klmnpmpn
)

uk,l + Bi j kl pk pl + Gi j klmnpk pl pmpn
]
,j = 0, (6.24a)

pi,i − κ0φ,ii = 0, (6.24b)

ei −
∂Ψcoupl

∂pi
−
∂Ψpol

∂pi
+ Ki j kl pk,l j = η Ûpi . (6.24c)

The specific material parameters chosen here for BaTiO3 and PZT are summarized in 6.3.
Following Zhang and Bhattacharya (2005a), Fi j klmn = 0 and Gi j klmn = 0 for both PZT and
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BaTiO3, which satisfies average stress-free conditions exactly. This may incur inaccuracies in the
linear piezoelectric properties which are, however, of minor importance in the investigation of
full nonlinear ferroelectric hysteresis. It is important to note that the mean stress-free condition
does not necessitate these specific constitutive parameters (further discussed in Section 6.4), but
otherwise would require an iterative numerical scheme to impose mean stresses. Alternatively, the
dual stress reformulation of Bhattacharya and Suquet (2005) could be used but complicates the
explicit implementation of the coupled electromechanical problem.

To the same end, isotropic elasticity is assumed with Lamé moduli λ and µ so that Ci j kl =

λδi jδkl + µ(δikδ jl + δilδ j k). The moduli were obtained from an isotropic adjustment of the cubic
elastic moduli of Zhang and Bhattacharya (2005a) and Völker et al. (2011) for, respectively, BaTiO3

and PZT (specifically, Voigt stiffness moduli C11 and C12 and

C44 = (C11 − C12)/2). (6.25)

Tetragonal variants are not isotropic, but the level of anisotropy is moderate and the mean
stress-free condition is expected to let the elastic anisotropy have an insignificant effect on the
switching behavior in the following examples. The electro-mechanical coupling tensor Bi j kl is
expressed in terms of coefficients b1 through b3 through

Bi j kl =
1
2



b1 if i = j = k = l,

b2 if i = j , k = l

b3 if i = k , j = l

0 else

(6.26)

For convenience,a normalization constant e0 is introduced for the electric field (specified in 6.3).

6.3 Material Constants for BaTiO3 and PZT
The material constants used for the simulations of BaTiO3 and PZT are summarized in

Tables 6.1 and 6.2, respectively.

6.4 Boundary Value Problem at the RVE Level
Effective Material Response

The effective material behavior of an RVE is simulated at the mesoscale of a polycrystalline
ferroelectric ceramic. As in conventional micro-to-macro transition theories (Miehe et al., 2002;
Schröder, 2009), the effective fields are obtained from volume averaging over the periodic RVE. In
order to compare the simulated response with experimental data, an average (total) electric field is
imposed where

e = 〈e〉 where 〈·〉 =
1
|Ω|

∫
Ω

(·) dV (6.27)
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material and numerical parameters used in simulations of BaTiO3
parameter value units parameter value units
a0 10−10 Vm3/C µ 37 GPa
a1 -1.0355 · 108 Vm/C λ 111 GPa
a2 - 1.96947 · 109 Vm5/C3 ps 0.26 C/m2

a3 3.93894 · 109 Vm5/C3 κ̄ 1.771 · 10−8 F/m
a4 8.4489 · 1010 Vm9/C5 φ0 0.3162277 V
a5 2.39433 · 1014 Vm13/C7 e0 3.84615 · 106 V/m
a6 2.38795 · 109 Vm9/C5 η 2.95858 · 108 kg m3 / C2 s
b1 -2.11272 · 1010 Vm/C Lx 8.222 · 10−8 m
b2 2.73669 · 109 Vm/C Ly 8.222 · 10−8 m
b3 -1.1932 · 1010 Vm/C Lz 8.222 · 10−8 m

Table 6.1: Material parameters for BaTiO3, adopted from Zhang and Bhattacharya (2005a), as well
as simulation parameters used in numerical examples.

material and numerical parameters used in simulations of tetragonal PZT
parameter value units parameter value units
a0 9.0 · 10−11 Vm3/C µ 123 GPa
a1 -1.6998 · 109 Vm/C λ 115 GPa
a2 7.8 · 108 Vm5/C3 ps 0.58 C/m2

a3 -1.95 · 109 Vm5/C3 κ̄ 8.8556 · 10−9 F/m
a4 1.2702 · 1010 Vm9/C5 φ0 0.178511 V
a5 1.9292 · 1010 Vm13/C7 e0 1.72414 · 105 V/m
a6 1.687· 1010 Vm9/C5 η 1.0 · 1011 kg m3 / C2 s
b1 -2.3386· 1010 Vm/C Lx 5.0 · 10−8 m
b2 -3.1528· 109 Vm/C Ly 5.0 · 10−8 m
b3 -1.892 · 1010 Vm/C Lz 5.0 · 10−8 m

Table 6.2: Material parameters for PZT, adopted in modified form from Völker et al. (2011), as
well as simulation parameters used in numerical examples.

denotes the volume average with |Ω| the volume of the RVE. Consider a parallel arrangement of
surface electrodes, so that a unidirectional voltage differential is applied across the thickness h of
a sample through surface electrodes, as in experiments (Wojnar et al., 2014; le Graverend et al.,
2015). By assuming a separation of scales between the macroscale (where the field e is applied)
and the polycrystalline grain scale, the uniform electric field

e = (φ+ − φ−)/h (6.28)

in the homogeneous macro-reference medium can indeed be identified as the RVE average 〈e〉.

Experiments measure total charges Q on the two opposite, parallel surface electrodes (with
electrode surface area A, specimen volume V = Ah, and z being the unit vector pointing across
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the specimen thickness). The measured electric displacement d = Q/A is related to the volume
average via

Q
A
z =

Q
V

hz =
1
V

∫
∂Ω

qsx ds =
1
V

∫
Ω

div(x ⊗ d) dv

=
1
V

∫
Ω

(x div d + d) dv =
1
V

∫
Ω

d dv = 〈d〉.
(6.29)

Therefore, the RVE-averaged electric displacement is interpreted as the experimentally measurable
quantity d = 〈d〉. The average polarization can be related to the average electric displacements by
averaging the constitutive relation, viz.

〈p〉 = κ0〈e〉 + 〈d〉, (6.30)

which is used for a comparison between numerical simulations and experimental results in Sec-
tion 6.5.

Finally, to mimic experiments using approximately free-standing samples, the examples will
prescribe average stress-free conditions, i.e., enforcing 〈σ〉 = 0.

Spectral Solution Scheme
In order to numerically solve equations (6.24), the numerical strategy of Chapter 2 is used.

Objectively, the linearity of Gauss’ law encourages its solution in Fourier space. Applying the
discrete inverse Fourier transform to electric and polarization fields transforms Gauss’ law into

− ihk j p̂ j(k) − h2 |k |2κ0φ̂(k) = 0, (6.31)

so that for all k , 0, using e = −∇φ,

φ̂(k) = −i
k j p̂ j(k)

hκ0 |k |2
⇒ êi(k) = −ihki φ̂(k) =


−

k j p̂ j(k)

κ0 |k |2
ki if k , 0,

ei if k = 0,
(6.32)

and the discrete inverse Fourier transform leads to φ(x) and e(x) in real space.

The second equation of (6.32) can be solved directly for the electric field e without computing
the electric potential φ, which increases computational efficiency. Since, however, the problem is
formulated in terms of the electric potential, it is easy to verify that the form of (6.32)2 ensures a
curl-free electric field,

ei,l = −ihkl êi = ihkl
k j p̂ j(k)

κ0 |k |2
ki (6.33)

such that
(curl e)k = ei,lεlik = ih

k j p̂ j(k)

κ0 |k |2
ki klεlik = 0 (6.34)
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with the Levi-Civita permutation symbol εi j k .

Analogously, the mechanical governing equation of linear momentum balance is transformed
into Fourier space. Due to the spatial heterogeneity stemming from the non-linearity of the coupled
mechanical problem in the general polycrystalline case, this requires an iterative solution strategy.
Analogous to the finite-strain setting of Section 2.3, a perturbation stress tensor τ(x) is introduced
such that here

σi j(x) = C̃
0
i j kl ε

e
kl(x) − τi j(x), εe

kl(x) = εkl(x) − ε
r
kl(x), (6.35)

where C̃0 is a reference effective elasticity tensor (e.g., the volume average C̃0 = 〈C̃〉). As has been
emphasized thus far, the particular choice of C̃0 does not affect the accuracy of the result but it does
influence the convergence of the iterative solution scheme.

Transforming linear momentum balance into Fourier space gives

C̃0
i j kl

[
hk j kl ûk(k) + ik j ε̂

r
kl(k)

]
+ ik j τ̂i j(k) = 0, (6.36)

ûk(k) = −
i
h

A−1
ik (k)

[
τ̂i j(k) + C̃

0
i j kl ε̂

r
kl(k)

]
k j (6.37)

where Aik(k) = C̃
0
i j kl k j kl are the components of the acoustic tensor (which is invertible for k , 0

if C0 is positive-definite). Insertion of (6.37) into the strain–displacement relation, ε = sym(∇u)
or ε̂i j(k) = −ih[ûi(k)k j + û j(k)ki]/2,

ε̂i j(k) =


−

1
2

[
A−1

ni (k)kmk j + A−1
nj (k)kmki

] [
τ̂nm(k) + C̃

0
nmkl ε̂

r
kl(k)

]
if k , 0,

〈εi j〉 if k = 0.
(6.38)

This equation has to be solved for ε̂ iteratively since the perturbation stress τ̂ depends on strains.
Therefore, ε̂ is computed from (6.38) and ε = F −1(ε̂) is used in real space to update τ(x) via (6.35).
Next, the updated τ̂ = F (τ) can be inserted into (6.38) for a complete iteration step. Although there
is no guarantee for convergence, this fixed-point iteration scheme performs well from numerical
experience. Note that 〈εi j〉 is not known a-priori if average stresses are to be enforced.

For the special case of isotropy (i.e., C(x) = const) and vanishing higher-order coupling
(F = 0, G = 0), the above problem reduces considerably and the mechanical constitutive law
reduces to

σi j(x) = Ci j klεkl(x) + σ
r
i j(x) (6.39)

σr
i j(x) = Bi j kl(x)pk(x)pl(x). (6.40)

Despite the spatial heterogeneity of σr(x), it is possible solve in Fourier space analytically for

ûk = −
i
h

A−1
ik (k)σ̂

r
i j(k)k j (6.41)
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and

ε̂kl(k) =


−

1
2
[
A−1

ik (k)kl + A−1
il (k)kk

]
σ̂r

i j(k)k j, if k , 0,

〈εkl〉 if k = 0.
(6.42)

In this case, no iterative solution scheme is required.

Note that, although the above (iterative and direct) schemes determine ε without the necessity
of computing u explicitly, kinematic compatibility is guaranteed – analogous to the curl-free
condition of the electric field. Here, compatibility requires curl(curl ε) = 0 or εikmε jlnεkl,mn = 0.
This is verified by inserting e.g. (6.38), which yields

εikmε jlnkmkn
[
A−1

ok (k)kl + A−1
ol (k)kk

]
τ̂op(k) kp = 0, (6.43)

and both terms can be shown to vanish since

εikmε jlnkmknkl A−1
ok (k)τ̂op(k) kp = εikmε jnl kmkl kn A−1

ok (k)τ̂op(k) kp

= −εikmε jlnkmknkl A−1
ok (k)τ̂op(k) kp.

(6.44)

Ferroelectric Problem
The polarization field evolves in a dissipative fashion, following the kinetic law

η Ûp = gi(ε, e, p) + Ki j kl pk,jl, (6.45)

where g = −∂W/∂ p is the thermodynamic driving force.

Employing a forward-Euler finite difference approximation in time to discretize the above
kinetic law in an explicit manner,

η
pα+1 − pα

∆t
= gi(ε

α+1, eα+1, pα) + Ki j kl pαk,jl, (6.46)

where pα = p(x, tα) denotes the polarization field at time tα = α∆t with constant time increments
∆t = tα+1 − tα. A staggered solution scheme is used which solves the mechanical and electrical
problems first, so εα+1 and eα+1 are known when the above nonlinear equation is solved for the
new polarization field pα+1. This explicit solution strategy is, admittedly, numerically inefficient.
In particular for linear kinetics, the linear semi-implicit scheme of Chen and Shen (1998) provides
improved efficiency. However, the explicit scheme, despite numerical disadvantages, allows for a
straight-forward implementation and for a simple extension to nonlinear kinetic laws.

Rather than applying the Fourier transform to (6.46), only the non-local driving force is
computed in Fourier space, i.e.,

Ki j kl pαk,jl(x) = F
(
−h2Ki j kl k j kl p̂αk

)
. (6.47)
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The fixed-point iteration for pα+1 is computed in real space. This entails the following two
advantages. First, unlike for the linear Allen-Cahn equation, any nonlinear kinetic relation would
result in a convolution on the left-hand side of (6.46) when applying the Fourier transform; even
though p(x, tα) is known, this adds significant complexity. Second, time stepping in Fourier space
produces unpleasant numerical instabilities by allowing short-wavelength noise to amplify since
updates are performed in k-space. Finally, the new polarization is obtained from

pα+1
i = pαi + ∆t f −1

i

[
gm(ε

α+1, eα+1, pα) + F
(
−h2Kmjkl k j kl p̂αk

)]
. (6.48)

Solution Strategy
The governing equations (6.24) are solved in a time-incremental staggered fashion to determine

the unknown fields ε(x), e(x) and p(x) for known eα+1 at time tα+1. First, strains εα+1 are obtained
from (6.41):

{εα+1} = F −1
(
{ε̂α+1}

)
(6.49)

and

ε̂α+1
kl (k) =


−

1
2
[
A−1

ik (k)kl + A−1
il (k)kk

]
σ̂r,α

i j (k)k j, if k , 0,

εα+1
i j if k = 0,

(6.50)

with all other fields held constant and σr,α
i j (x) = Bi j kl(x)pαk (x)p

α
l (x) in real space. Next, with all

other fields held constant, the electric field is obtained explicitly from

{eα+1} = F −1
(
{ êα+1}

)
and êα+1

i (k) =


−

k j p̂αj (k)

κ0 |k |2
ki if k , 0,

eα+1 if k = 0.
(6.51)

Finally, the polarization field is updated via

{pα+1
i } = {pαi } + ∆t f −1

i

[
gm({ε

α+1}, {eα+1}, {pα}) + F
(
−h2Kmjkl k j kl{ p̂

α
k }

)]
. (6.52)

Although (6.49) and (6.51) are solved exactly, the explicit nature of (6.52) as well as the staggered
scheme require a sufficiently small time step ∆t for numerical stability. This is also where spectral
ringing artifacts become essential (to be discussed in Section 2.5) since the explicit time integration
scheme leads to the propagation and escalation of small numerical errors.

To complywith experiments having stress-free boundary conditions, it is possible to determine
εα+1

= 〈εα+1〉 from the condition 〈σα+1〉 = 0. The average stress tensor components in the RVE
are obtained from (6.18) as

〈σi j〉 = 〈Ci j klεkl〉 + 〈Bi j kl pk pl〉 + 〈Gi j klmnpk pl pmpn〉 + 2〈Fi j klmnεkl pmpn〉. (6.53)
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Using the above staggered solution algorithm, the polarization field is known and held fixed when
computing the strain tensor. Since the polarization energies chosen here use Fi j klmn = 0 (Zhang
and Bhattacharya, 2005a; Völker et al., 2011), it is possible to solve (6.53) for

εα+1
ab = −C

−1
abkl

(
〈Bi j kl pαk pαl 〉 + 〈Gi j klmnpαk pαl pαmpαn 〉

)
, (6.54)

where the assumption holds that the elastic constants are approximately isotropic (due to stress-free
conditions, the influence of elasticity is relatively small in subsequent examples). Otherwise, as
mentioned previously, an iterative solution scheme (or dual formulation) would be required to
impose zero mean stresses.

As an alternative (expected to produce a lower bound), one could assume that the stresses
vanish pointwise, i.e., ε(x) = εr(x). and thus

εi j =
1
|Ω|

∫
Ω

εr
i j dV

= −
1
|Ω|

∫
Ω

(
Ci j kl + 2Fi j klmnpmpn

)−1 (
Bkloppopp + Gklmnoppmpnpopp

)
dV,

(6.55)

which can be computed in real space when the polarization field is known. However, this assump-
tion is physically questionable as it removes all stress concentrations, e.g., near grain or domain
boundaries. Finally, one could also keep the simulation volume fixed, i.e., suppress spontaneous
straining, which has been applied to the simulation of ferroelectric switching (see e.g. Wang et al.
(2004)), but results in a considerably stiffened material response.

6.5 Simulations of Domain Patterns Evolution and Experimental Validation
Microstructure Initialization

For subsequent simulations of ferroelectric switching, electric cycling is performed using a
triangle-wave profile for the bias field at a quasistatic frequency of 0.04 Hz. Initial conditions
are obtained by sample equilibration from a random polarization distribution in the absence of an
applied average electric field. Complex domain patterns form which show the commonly observed
90◦ and 180◦-domain walls as well as (anti-)vortices, see Fig. 6.2 for example results for BaTiO3.
While enforcing that average stresses vanish across the RVE, local stress concentrations appear near
domain walls, especially shear stresses; the latter are thus ideal to visualize the network of domain
walls (see Fig. 6.2(b)). This equilibration process is used to generate (approximately stable) initial
polarization patterns. The resulting domain wall width is approximately 2.6 nm, in agreement with
experimental observations (Zhang and Goddard, 2006). Note that this also dictates the required
grid resolution (to ensure that the domain wall is represented by several grid points).

Analogous simulation results are shown in Fig. 6.3 for a BaTiO3 polycrystal whose grain
orientations are chosen randomly around a mean orientation aligned with the applied electric field
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(b)(a) (c)

x1

x2

Figure 6.2: Domain formation in a 3D BaTiO3 single-crystal with domain walls visualized by
color-coding the shear stress σ12 (starting from initial random polarizations, the system is relaxed
(Vidyasagar et al., 2017).

e = e2 e2 in the x2-direction. In the spectral formulation,a special treatment of grain boundaries is
circumvented by simply assigning each grid point to a unique grain. The mismatch in elastic and
electro-mechanical material parameters results in sharp contrasts across grain boundaries, which is
where the Fourier correction of Section 2.5 becomes essential and convergence with h-refinement
could not be guaranteed without.

-1.0     -0.5       0       0.5      1.0 -0.2  -0.1025    0   0.1025   0.2
p /p2 s s /m12

(c)(a) (b)

x1

x2

grain structure

(d)

Figure 6.3: The formation of domain structures from an initially random polarization distribution
in a BaTiO3 polycrystal: (a) polarization component p2 (normalized by the saturated polarization
ps), (b) grain distribution, (c) shear stresses, and (d) magnification of the shear stress distribution
with polarizations highlighted by the vector field. (Vidyasagar et al., 2017)
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Ferroelectric switching in Barium Titanate
With the above initialization protocol, ferroelectric switching is simulated in BaTiO3 by

applying a cyclic average bias field e(t) = e2(t)e2 of triangular-wave type. It is important to note
that grain orientations in real ferroelectric polycrystals often align with a pre-purposed polarization
direction due to electric fields during fabrication. The effects of grainmisorientation is demonstrated
by computing the electric hysteresis (specifically, the average polarization in the x2-direction vs.
applied electric field) as well as the butterfly curve (i.e., the evolution of the average RVE strain ε22

as a function of the applied electric field). Fig. 6.4 shows both curves for different levels of grain
misorientation, where the orientations of 50 grains have been randomly selected with the specified
maximum c-axis deviations from the poling direction. Simulations show that the chosen number (of
50 grains) is sufficient to ensure statistical representation, while maintaining sufficient resolution
and grain area to encourage domain pattern formation. For simplicity and ease of visualization
(and following prior work (Zhang and Bhattacharya, 2005a,b; Su and Landis, 2007b)) these results
are for 2D crystals.

The single-crystal (aligned with the applied electric field) displays the widest hysteresis, i.e.,
the largest spontaneous polarization (viz., |p2 | = ps = 0.26 C/m2) and the largest coercive field
(ec = 0.011268e0 = 0.433 kV/cm). With increasing misorientation, the average spontaneous
polarization, the coercive field, and also the remnant strain decrease monotonously. The average
polarization decreases since less and less grains alignwith the poling direction, whereas the coercive
field decreases due to stronger contrasts at GBs acting as stress/electric field concentrations that
promote the initiation of local switching (while also counteracting domain walls by pinning).
The effect of misorientation and impedance to domain wall motion in case of highly-misoriented
adjacent grains promotes lamellar domain patterns. Domain patterning is more pronounced with
misorientations rising up to 90◦ (note that 90◦ implies random orientations without preference).
Fig. 6.5 illustrates the polarization distribution across the RVE for different levels of misorientation;
each plot shows the (normalized) polarization component p2/ps at a vanishing average applied field
(e2 = 0) on the increasing-electric-field branch of the hysteresis. Higher misorientation results in
a larger number of observable domains, owing to (i) high stress and electric field concentrations
as nucleation sites and (ii) domain wall pinning at GBs. The average polarization behavior
consequently changes with misorientation and, consequently, the average strains indicate a less
steep profile at the point of switching, which agrees with butterfly curves seen in the literature (see,
e.g., Burcsu et al. (2000)).

Ferroelectric Switching in Lead Zirconate Titanate
For polycrystalline PZT, the DFT-based potential energy of Völker et al. (2011) is adopted.

The DFT-based potentials overpredict the coercive electric field (as can be expected from the
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Figure 6.4: Electrical hysteresis and butterfly curve for BaTiO3 polycrystals with increasing levels
of grain misorientation for a total of 50 grains with random orientations deviating by the shown
maximum degrees from the electric loading axis (50 grains were chosen ensure a sufficiently large
representation while being able to capture domain patterns) (Vidyasagar et al., 2017).

absence of point defects as local nucleation sites), while the qualitative behavior is reasonable and
the effective normalized hystereses show excellent agreement with our experimental data.

Fig. 6.6 illustrates the simulated microstructural evolution in a 3D PZT polycrystal during the
electric hysteresis, as before starting from random initial polarizations. Note that the electric field
in the hysteresis is normalized by the coercive field eDFTc obtained from the DFT potential. Also
shown are the local distributions of the polarization as well as the von Mises stress (as an effective
stress measure indicating stress concentrations and possible sites for damage initiation). The RVE
contains 50 grains whose orientation is randomly assigned using a Gaussian profile with mean 0◦

and a standard deviation of 18.9◦ (the grain structure is schematically shown in Fig. 6.6). As seen
for BaTiO3, GBs serve as nucleation and pinning sites and influence the hysteresis behavior of the
effective response.
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Figure 6.5: Illustration of laminate patterns arising in BaTiO3 polycrystals of high crystal misori-
entation; shown is the (normalized) vertical polarization component p2/ps (50 grains with random
orientation deviating by the shown maximum degrees from the electric loading axis) (Vidyasagar
et al., 2017).

Comparison to Experiments
The 3D homogenized polarization and strain response are compared to experimental data

obtained for polycrystalline lead zirconate titanate (PZT-5A from Piezo Systems Inc., USA). Polar-
ization and strain hysteresis measurements were performed on cantilevered beam specimens using
the setup of Fig. 6.7. Specimens had an average grain size of 2 µmandmeasured 38.1×3.1×1.0mm,
poled through-thickness, with vacuum-sputtered Ni electrodes. A triangular wave of amplitude
±2.0 MVm−1 was applied through-thickness at a frequency of 0.1 Hz using a high-voltage ampli-
fier and waveform generator (10/10B-HS from Trek, USA; RM 3100/AFG 3022B from Tektronix,
USA). Average electric displacements were measured using the circuit of Sawyer and Tower (1930)
with a reference capacitor of 100µF (le Graverend et al., 2015). In-plane strain measurements
were taken using 3D digital image correlation (DIC) (using two IL4 high-speed cameras from
Fastec Imaging Corporation, USA; processed using VIC-3D from Correlated Solutions, USA). All
measurements were carried out at room temperature (20 − 24◦C).

Fig. 6.8 compares the simulated electric and strain hystereses to the experimentally measured
data in a normalized fashion. The basis for the normalization of simulation results comes from
the nature of the single-crystal electric enthalpy density, which intrinsically defines a characteristic
coercive field (viz., the maximum peak of the derivative of the non-convex Landau potential) and a
characteristic switching polarization (viz., the polarization which minimizes the Landau potential).
Further, through the coupling coefficients the enthalpy density also defines the critical strain compo-
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polycrystalline PZT throughout the electric hysteresis (Vidyasagar et al., 2017).
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Figure 6.7: Sketch of the experimental setup used to measure the average electric displacement and
the (surface) strain hystereses in polycrystalline PZT samples (Vidyasagar et al., 2017).

nents at switching. Linearly renormalizing the energetic potential using these intrinsic properties
to account for a polycrystal is tantamount to energetic superposition in the absence of complex
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domain patterns; this is demonstrated by Figure 6.4 where – at sufficiently low misorientation
(approximately below 20◦) – there is a degree of renormalized self similarity (viz., rescaling the
coercive electric field and switching polarization yields qualitatively similar results). Accordingly,
the simulated response is normalized with respect to eDFTc = 5.025 · 108 V/m, whereas the experi-
ments are normalized by eexpc = 1.6 · 106V/m, in order to enable a fair comparison. Similarly, the
mechanical strain is normalized using critical strain εcrit = Qp2

s , where

QDFT =
(b1 − b2)λ − 2b2µ

12µ(λ + 2
3 µ)

(6.56)

is obtained from the energetic coefficients (see 4.3), which results in QDFT = −5.335 · 10−3 C−2m4

and pDFTs = 0.58 Cm−2. Best agreement with simulations is achieved for Qexp = −7.00 · 10−3

C−2m4 and pexps = 0.31 Cm−2, whose results are shown in Fig. 6.8. The DFT-based potential
energy, as expected, significantly overpredicts the coercive field and the coupled critical strain, so
that the un-normalized data show a considerably broader hysteresis. However, the normalization
leads to the periodically homogenized, randomly generated polycrystal response and experiments
displaying a convincingly similar behavior; this hints at the possibility of rescaling the electric and
coupling enthalpy densities to quantitatively match experiments.

There are several key assumptions that may explain the strong differences in absolute values
observed in simulations and experiments – despite the observed excellent agreement of the rescaled
data in Fig. 6.8. In simulations, an ideal, average-stress-free RVE is assumed. Additionally, as
customary in phase field modeling, the polarization kinetics are described by an Allen-Cahn type
gradient-flow law, which may not adequately describe the complex kinetics behind the switch-
ing process. In experiments, surface stresses are assumed representative of the bulk response,
and boundary conditions, microstructure and texture in simulations only capture effective, aver-
age features of experimental samples. Also, computations assume tetragonal variants, whereas
experimentally-tested PZT shows both tetragonal and rhombohedral phases. More importantly, the
DFT-based potential was derived for zero-temperature conditions, which is expected to slow down
microstructural kinetics considerably (the strong difference is still remarkable). The significant
difference between eexpc and eDFTc is still remarkable, especially when considering the abundance of
defects in simulations (in the form of GBs).

6.6 Conclusions
The work in this chapter has shown how the electromechanical responses of tetragonal per-

ovskite ferroelectric ceramics, such as barium titanate and lead zirconate titanate, are governed by
the micromechanics of electrical domain formation and motion in bulk polycrystals. The energet-
ics of ferroelectric ceramics at the polycrystalline mesoscale is shown to favor domain formation
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respect to their own values of ec, ps, and εcrit, as explained in Section 6.5 (Vidyasagar et al., 2017).

from initial random polarization, while the application of bias electric fields leads to the typical
hysteretic behavior. Grain size and texture are shown to influence domain patterns and the elec-
trical hysteresis, and the micromechanical stress distribution during an electrical cycling process
indicates strong stress concentrations at grain junctions. All examples deliberately target bulk
polycrystals rather than thin films. For validation, the simulated response has been compared to
in-house experimental results (viz., electrical hysteresis and butterfly curves) of PZT polycrys-
tals. Although the DFT-based electric enthalpy – as may be expected – results in a simulated
coercive field that is significantly too high, a renormalization of results (considering the nature of
the electric-field-dependent non-convex enthalpy density) results in agreement of experiments and
simulations. Overall, this work shows promise for bridging the scales from zero-temperature DFT
calculations at the quantum scale to predicting macroscale response of ferroelectrics.
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C h a p t e r 7

CONCLUSIONS

7.1 Summary
As explained in Chapter 1, patterns and microstructures share underlying causal principles; in

particular, they manifest in systems with non-(quasi)convex energy landscapes. These systems are
also associated with instabilities and the equations driving their evolution are ill-posed with non-
smooth and non-unique solutions. While a large class of problems in physics share this character
– arguably the primary mechanism for nature to form order out of chaotic initial conditions –
these have been relatively unexplored from a numerical perspective until recent years. This work
has provided insight in this regard, and a path to solving non-(quasi)convex energy minimization
problems and predicting pattern formation autonomously.

The stabilized spectral homogenizationmethodology outlined in this thesis is robust at tackling
this class of problems. In Chapter 2, three algorithms have been presented for homogenization in
finite-strains, building upon existing FFT-based spectral techniques enhanced by high-order finite-
difference compositions. A discussion of how implicit regularization for non-convex problems is
introduced through these compositions has been included.

Benchmark problems, where numerical approximations to quasi-convex envelopes demon-
strate the efficiency and accuracy of the numerical method, have been solved in Chapter 3. Demon-
strating unphysical pattern formation for the commonly used St. Venant-Kirchoff energy model,
difficulties faced by the solver in approximating the quasiconvex hull with increasing asymmetry
in energy, primarily owing to higher interface energy, have been discussed. Subsequently, a novel
finite-strain phase transformationmodel has been presented, producing needle-like and higher-order
laminate patterns. Three-well problems have also been solved, hinting that the mechanisms of au-
tonomous pattern formation might lead to energies below local minima in multi-stable landscapes.
The subsequent example of finite-strain single-slip plasticity has predicted laminate patterns which
have been compared to analytical lamination theory. Additionally, by studying bi-crystals of vary-
ing misorientation, the influence of compatibility constraints, through grain boundaries, on pattern
formation has been demonstrated.

As a further extension of this discussion, in Chapter 4, multiple slip systems, twinning, and
dissipative kinetics have been introduced to the model – capturing slip-twinning interactions in
magnesium polycrystals. Dissipation has been shown to influence pattern formation within and
across grains. Homogenization ofRVEswithmultiple realizations has been used to derive envelopes
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of responses depending on grain size misorientation and texture. Through these simulations, it
has been demonstrated that the effective material response obtained through homogenization of
high-resolution RVEs with a large number of grains can be approximated well by averaging through
multiple realizations of RVEs with lower mesoscale simulation and fewer grains. The key novelties
here are the unprecedented high-fidelity models that account for intricate slip-twinning interactions,
the numerical methods capable of handling non-(quasi)convex energetic loading paths, and the
understanding they bring regarding the homogenized inelastic response and micro-mechanical
stress patterns in magnesium polycrystals.

Chapter 5 discussed a very different non-convex problem – anisotropic spinodal decomposi-
tion, modeled using a conservative phase field model with gradient-flow kinetics. It has been shown
that the kinetics of this process, as well as tunable anisotropic paramaters, have a strong influence
on the patterns that form. In addition to the insight that has been gained into naturally occurring
anisotropic phase separation, as discussed at the end of this chapter, producing bi-continuous net-
works has implications on the design of scalable metamaterials. Preliminary experimental and
theoretical results show that the smooth topology of resulting metamaterials reduces stress concen-
trations and hence exceptional toughness and strength are achieved relative to traditional truss- and
plate-based architected metamaterials.

In Chapter 6, the kinetics of phase transitions in ferroelectrics have been studied using a
non-conservative phase-field model. As a novelty, numerical homogenization of high-resolution
poycrystalline RVEs has produced strain and polarization hysteresis curves which, when renor-
malized, have shown convincing qualitative agreement with in-house experiments. Polycrystalline
simulations have predicted striped domain pattern formation within grains, again reproducing in-
house experiments. This approach has demonstrated promise in predicting the electromechanical
response in realistic polycrystalline ferroelectrics. Additionally, these models have been shown to
bridge the gap between numerical results obtained using first-principles-informed material models
and experiments. Overall, as compared to previous approaches, the spectral homogenization tech-
niques presented have expanded the range of time-scales and numerical fidelity for modeling the
domain pattern formation process and electromechanical coupling.

7.2 Outlook & Future Directions
This thesis has presented a number of original contributions; however, a series of unanswered

questions still remain, pointing towards potential research directions.

The numerical methods presented in Chapter 2 leave room for improvement in several aspects.
The Richardson (fixed-point iteration) scheme does not have guaranteed convergence, and even
the Newton-Raphson techniques outlined in Sec. 2.3 require fixed-point iterations to compute the
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increments (Kabel et al., 2014). Developing or adopting convergent, contrast-independent schemes,
such as outlined by Zeman et al. (2017) could be beneficial for solving non-convex minimization
problems – albeit at increased computational cost. Additionally, several scientific libraries such as
TAO (Munson et al., 2015) have implemented advanced numerical optimization procedures and
line search algorithms, which could be incorporated into the present approach.

In the discussion of crystal plasticity, moving beyond pure magnesium to understand alloying
through inclusions and multi-phase mixtures would be of physical relevance (Lun Sin et al., 2013).
As opposed to using polycrystals with predetermined grain distributions, solving the non-convex
problem of dynamic recrystallization could add a greater level of fidelity to the simulations.
Additionally, non-constant hardening laws and improved flow rules would better reproduce the
kinetics of deformation patterns, such as propagation of twin boundaries, which are observed in
experiments (Kannan et al., 2018). Deriving the constants used in the phenomenological model
using lower scale approaches (Sun et al., 2018) instead of fitting to arbitrary experiments would also
be ideal. Additionally, understanding how the slip pattern formation process is influenced through
non-monotonic loading paths due to cross-hardening and dissipationmerits numerical investigation.
Finally, incorporating and modeling inertial effects and wave propagation in polycrystalline RVEs
would yield deeper insight into mechanical response during high-rate loading for magnesium and
other hcp metals.

In terms of anisotropic spinodal decomposition, experimental validation of the energy land-
scapes and kinetic laws, particularly for crystal growth, polymer blend demixing and dealloying,
would be beneficial. The addition of thermal transport, elasticity, and flow through the solution
of auxiliary governing equations would give deeper insight of into influencing natural patterns to
achieve desired properties. These numerical methods provide smooth architectures at the micro-
and nano-scale scale which compete with current lattice-based metamaterials, and a performance
comparison would be of interest. Utilizing natural anisotropic phase separation to create architected
materials would revolutionize metamaterial fabrication by introducing scalability and tunability.

In the study of ferroelectrics, developing and validating improved kinetic laws would allow
for a better match between experimentally observed domain wall velocity scaling and numerical
results. Stochastic temperature-based approaches would improve the model calibrated with first-
principles-informed constants since the DFT calculations have been performed at 0 K and gaussian
noise would introduce an effective thermalization. Furthermore, modeling fatigue in ferroelectrics,
by including failure and void growth, together with surface charge collection, would be of great
interest since many applications involve cyclic loading over large time scales (Wojnar et al., 2014).
In reality, commercially available ferroelectric samples consist of multiple phases and including
these into the modeling strategies could be fruitful. Additionally, composites with ferroelectric
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inclusions have shown extreme dynamic stiffness behavior (Jaglinski et al., 2007), and numerical
predictions of the electromechanical response of such composites using presented methods would
guide future experiments.

Overall, the methods of spectral homogenization presented are fast and accurate at predicting
effective microscale response of a multitude of systems exhibiting instabilities. This would be cru-
cial in the framework of multi-scale models; recent efforts on this front include FE-FFT coupling
for polycrystal plasticity (Kochmann et al., 2016). Additionally, using fast spectral homoge-
nization strategies to produce envelopes of homogenized responses for ensembles with different
micromechanical geometries result in large data output. Dimension reduction and big data analysis
performed on these results, using machine learning tools, could yield valuable insight into the
underlying physics of various phenomena. This would also support recent efforts at data-driven
computational models in mechanics (Kirchdoerfer and Ortiz, 2016).

As concluding remarks, the methods and findings presented in this thesis on predicting
autonomous pattern formation and solving non-convex problems have broad applications in other
fields of science. They serve to guide both analytical theory development and explain experimental
observations. From an engineering perspective, being able to predict phenomena associated
with non-(quasi)convex energy landscapes paves the way forward for designing novel tunable
metamaterials which take advantage of these phenomena.
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