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ABSTRACT 

One of the most severe challenges in this decade is assuring more secure, more efficient, 

cleaner, and more sustainable energy to power our world. This work takes a catalytic 

approach to help overcome this challenge.   

The Haber Bosch process is one of the towering achievements of industrial chemistry. It 

consumes a huge amount of energy due to the high temperature and high pressure reaction 

condition, and in turn, has enabled us to produce enough nitrogen fertilizer to feed the current 

world population. An essential goal of present research is therefore to dramatically reduce 

Haber Bosch energy cost by improving the catalytic performance of the presently used Fe-

based heterogeneous catalysts. We use quantum mechanics (QM) and kinetic Monte Carlo 

(kMC) to predict reaction mechanisms and kinetics for NH3 synthesis on Fe(111) – the best 

Fe single crystal surface for NH3 synthesis. We find excellent agreement with a predicted 

turnover frequency (TOF) of 17.7 sec-1 per 2x2 site (5.3 x 10-9 moles/cm2/sec) compared to 

TOF=10 sec-1 per site from experiment, and we further predict that top-layer Co doping leads 

to an acceleration by a factor of 2.3 in reaction rates of ammonia synthesis. 

Compared to the industrialized Haber Bosch reaction, renewable energy technologies are 

still in their infancy with a great deal of questions unanswered, as well as a lot of barriers to 

overcome. Here we report our atomistic understanding of how CO2 and H2O molecules 

adsorb on the catalyst surface and interact to initiate CO2 dissociation and subsequent product 

formation. Using synergistic experimental and theoretical analyses, we show that Cu and Ag 

operate entirely differently for the first step of activating CO2. We develop a method of 

predicting the ambient pressure XPS spectrum in an ab-initio multiscale fashion: from 

electronic structure, to atomic picture, to chemical reaction network (CRN), and eventually 

to the experimental observable. We bridge both the qualitative and quantitative gap from 

quantum mechanics to XPS, and demonstrate our approach by decoding the initial H2O 

adsorption and complex formation on Ag(111) surface, which we encourage to be the new 

standard protocol in this field.  
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1 
C h a p t e r  1  

Introduction 

 

1. 1 Statement of Problem 

World population growth speed topped around the 1960s, and is projected to rise by nearly 

2.5 billion. It is predicted to increase from 7.3 billion to an estimated 9.8 billion between 

2015 and 2050. Despite the notable improvements in decreasing hunger and poverty on a 

global scale, progress has been slow in countries with high fertility rates of in recent decades. 

Unfortunately, nations with the fastest growing populations tend to suffer more from poverty, 

hunger, pollution, environmental degradation, and fragility.  Moreover, many of these 

countries face enormous obstacles to economic development in the form of climate change, 

regional or ethnic conflict, or water scarcity. [1-2] Further understanding and optimization 

of current industrialized technologies are needed to overcome these obstacles. Such 

technologies include, but are not limited to the Haber Bosch reaction of producing ammonia 

that feeds the growing population. Thus, the first half of the current work (Chapter 2 to 3) is 

dedicated to Haber Bosch process.   

Although abundant in food and resources, the world’s leading countries are facing a different 

kind of challenge: the transition from conventional energy to renewable energy. According 

to reference [3], renewable energy technologies can meet much of the growing demand at 

prices lower than those usually forecast for conventional energy, if adequate support is 

provided from policies and scientific advancement. By the year of 2050, renewable sources 

of energy are predicted to account for three-fifths of the world's electricity market, as well as 

two-fifths of the market for fuels used directly. In addition, the transition from a conventional 

energy economy to a renewables-intensive one could provide environmental and other 

benefits, which are not measured in standard economic accounts. These benefits include but 

are not limited to: social and economic development, land restoration, reduced air pollution, 



 

 

2 
abatement of global warming, fuel supply diversity, and reduction of the risks of nuclear 

weapons proliferation. Given all these benefits, renewable clean energy is necessarily 

required. Therefore, the second half (Chapters 4 and 5) is dedicated to renewable energy.   

1.2 The Catalytic Approach 

We take a catalytic approach to attempt to solve these energy-related challenges. A good 

catalyst can provide an active site that optimizes the residence time of the adsorbate, as well 

as helping its conversion into desirable products. [4] In general, there are three big classes of 

catalysis: homogeneous catalysis, biological catalysis, and heterogeneous catalysis. 

Homogeneous catalysis refers to a catalytic reaction where the catalyst and the reactants are 

in the same phase. Molecular catalysts and single-site catalysts are representatives of this 

class. [5] As for biological catalysis, enzymes are arguably the most famous representatives. 

[6] Heterogeneous catalysis, by definition, represent systems where the catalyst is in a 

different phase from that of the reactants. [7] Solids can catalyze reactions of molecules in 

either the gas or solution phase, and the reactions at the interfaces are of special complexity 

and interest. These systems can be far from thermodynamic equilibrium, and a wide range 

of phenomena, such as rate oscillations, spatiotemporal patterns and chaos has been observed 

and reported. [8-10]  

Heterogeneous catalysis has been of special interest throughout history. Our knowledge 

about heterogeneous catalysis has been continuously expanding, and the timeline is 

summarized and sketched in the bottom half of Figure 1-1 in black. The information in Figure 

1-1 is adopted from reference [11] and reference [12]. Ever since Davy discovered in the 

early 1800s that the mixture of coal gas and air makes platinum wire white hot, the field 

paused for several decades. It started booming thanks to a series of inventions of 

experimental methods such as Infrared Spectroscopy, UHV (ultra high vacuum), TPD 

(temperature programed desorption), LEED (low energy electron diffraction), XPS (X-ray 

photoelectron spectroscopy), XAS (X-ray adsorption spectroscopy), etc. 
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Figure 1-1. Intertwine of computational chemistry and heterogeneous catalysis on parallel 

timeline. The field of heterogeneous catalysis advanced rapidly twice in the history: once in 

the 1950s, and once since 2000s; thanks to the inventions characterization techniques and 

later the wide adaption of computational chemistry in research labs.   

1.3 Computational Method 

The goal of molecular electronic structure theory is prediction of molecular structure and 

properties by solving the equations of quantum mechanics from first principles—or “ab 

initio”. [13] As summarized in Figure 1-1, quantum mechanics revolutionized people’s 

understanding of physics and chemistry. The proposition of Schrödinger equation opened a 

new chapter in human history, but it was not until the Hatree-Fock theory that the solution 

of many-body electron systems could be approximated. The detailed derivation from the 

simple hydrogen atom to many body systems can be found in reference [14] but it is not 

within the scope of current thesis.  

The Density Functional Theory (DFT) is the current area of interest, as the calculations of a 

series of desired properties such as geometries, electronic energies, zero point energies, and 
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vibrational frequencies are possible. [15] The flavor of DFT, including the choice of 

functional, is of special importance, as it describes the quality of exchanged energy 

approximation. [16] A good balance between computational expense and accuracy must be 

achieved. Most of the calculations within this work are carried using VASP [17] software 

package, at GGA (general gradient approximation) level in order to solve problems in 

heterogeneous catalysis. The following sections are brief discussions of energy-related 

applications in catalysis using the method of DFT.    

1.4 Optimize the Industrialized Technology: Haber Bosch 

The first half of the current work (Chapters 2 and 3) is dedicated to the Haber Bosch process, 

which consumes a huge amount of energy due to the high temperature and high pressure 

reaction condition, and in turn, has enabled us to produce enough nitrogen fertilizer to feed 

the current world population.  

Several transition metals, such as iron, ruthenium, osmium, uranium and cobalt-

molybdenum, catalyze the Haber-Bosch process, but iron is still the most common and 

attractive choice because of its hardness and low cost. An essential goal of modern-day 

research is therefore to dramatically reduce Haber Bosch energy cost by improving the 

catalytic performance of the presently used Fe-based catalysts. In order to do so, we need to 

first understand the mechanism, and then look at possible improvements. In our full 

mechanism study (Chapter 2), we combined Quantum Mechanics and Kinetic Monte Carlo 

to predict the turn over frequency (TOF) for Fe(111) surface, the most reactive surface 

reported, and found an excellent agreement with the TOF from experiment. Large change in 

spin and magnetic moment was found during critical reaction steps. This observation 

motivated us to further investigate the effect of modified spin, such as by using Co dopant.  

In Chapter 3, we build up on the findings from Chapter 2 and conclude that at typical target 

condition T = 673 K, P(H2) = 15 atm, P(N2) = 5 atm, and P(NH3) = 1 atm, top-layer Co 

doping leads to an acceleration by a factor of 2.3 in reaction rates of ammonia synthesis, and 

therefore an expected corresponding decrease in production costs. We also purpose a 
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nomenclature guideline that carefully takes into consideration the extra degree of freedom 

due to the symmetry breaking introduced by surface Co dopant. This guideline can be 

generalized and applied to any dopant system. We study the full mechanism with surface Co 

dopant using QM, and then feed the QM data into kinetic Monte Carlo to get the final TOF 

of ammonia. The work in Chapter 2 and 3 could be interesting to theorists and 

experimentalists alike in the field of catalysis. Theorists would benefit from a detailed 

guideline for doping in general, as well as the complete reaction mechanism for producing 

ammonia. Experimentalists could be interested in conducting experiments comparing pure 

Fe catalyst and Co-doped catalyst under a realistic Haber Bosch process condition.   

1.5 Explore the Renewable Energy Option: CO2 reduction  

After we address the challenges in industrialized catalytic process, the second half of this 

current work (Chapter 4 and 5) is dedicated to state-of-art renewable energy applications.  

A national priority is to reduce CO2 to produce energy, liquid fuels, and hydrocarbon 

feedstocks. Current electrocatalysts are not adequate, and enormous experiment and quantum 

mechanics (QM) theoretical efforts are underway to discover new catalysts that are energy 

efficient, selective in producing specific hydrocarbon or oxygenated products (HCOx 

hereafter), and comprised of earth abundant materials. A great deal of progress has been 

made with empirically inspired approaches but faster progress is needed. High throughput 

experimental and computational screening methods have been employed to discover new 

alloys or compounds but are based on preconceived notions or the reaction scheme. To 

expedite this research, we describe in Chapter 4 the development of a complete atomistic 

understanding of how CO2 interacts with catalyst surfaces is required to empower guided 

catalyst design to selectively tune the mechanisms for adsorption and activation.  

Along the line with this research, we find H2O adsorption on the same catalytic surface of 

specific interest. From the catalytic point of view, it is important to understand because it is 

directly related to the next hydrogenations steps of CO2 reduction. It is crucial from a 

fundamental point of view in science as well because it is a good toy model for the 
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experimental test of our theory. XPS experiments allow us to probe the oxygen containing 

species, who leave a “fingerprint” due to their different chemical environments. In the 

meantime, DFT calculations allow us to predict the electronic structure, and thus the 

corelevel shift of such species. Furthermore, kinetic theory allows us to build up a network 

of reactions with different rates, and eventually determine the equilibrium populations of 

oxygen containing species on the surface. We demonstrate in Chapter 5 a creative protocol 

of understanding the XPS data, which we urge to become the new standard in this field.    
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C h a p t e r  2  

Reaction Mechanism and Kinetics 
for Ammonia Synthesis On the Fe (111) surface 

 
Jin Qian, Qi An, Alessandro Fortunelli, Robert J. Nielsen, and William A. Goddard III*. 
"Reaction mechanism and kinetics for ammonia synthesis on the Fe (111) Surface." Journal 
of the American Chemical Society 140, no. 20 (2018): 6288-6297. doi: 
10.1021/jacs.7b13409. 
 
Abstract 
The Haber Bosch industrial process for synthesis of ammonia (NH3) from hydrogen (H2) and 

nitrogen (N2), produces the millions of tons of ammonia gas annually needed to produce 

nitrates for fertilizers required to feed the earth’s growing populations. This process has been 

optimized extensively, but it still uses enormous amounts of energy (2% of the world’s 

supply), making it essential to dramatically improve its efficiency. To provide guidelines to 

accelerate this improvement, we used quantum mechanics (QM) to predict reaction 

mechanisms and kinetics for NH3 synthesis on Fe(111) – the best Fe single crystal surface 

for NH3 synthesis. We predicted the free energies of all reaction barriers for all steps in the 

mechanism and built these results into a kinetic Monte Carlo model for predicting steady 

state catalytic rates to compare with single-crystal experiments at 673 °K and 20 atm.  We 

find excellent agreement with a predicted turnover frequency (TOF) of 17.7 sec-1 per 2x2 

site (5.3 x 10-9 moles/cm2/sec) compared to TOF=10 sec-1 per site from experiment.   

 

2. 1. Introduction 
The invention of the Haber-Bosch process for converting nitrogen gas (N2) and hydrogen gas 

(H2) into the ammonia (NH3) needed to generate the nitrates for the fertilizers underlying the 

agricultural revolution that feeds the world, is one of the greatest advances from scientific 

research. Millions of tons of NH3 are produced each year [1] for agricultural and industrial 

purposes. Efficiency of up to 70% [2] has been achieved with commercially available iron 

based catalysts [3] and with ruthenium-based catalysts under lab settings [4]. Ruthenium-

based catalysts are more active than iron-based ones [5-6], and have been recently further 
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developed. [7-8] However, ruthenium-based catalysts suffer from environmental problems 

due to ruthenium’s scarce abundance in Earth’s crust, high cost, together with its toxicity 

when in the form of compounds [9], so that the industrial Haber-Bosch process is still based 

on iron catalysts. The industrial Haber-Bosch process requires drastic conditions of 

temperature (700°K-850°K) and pressure (50-200atm), consuming 2% of the world’s power, 

[3, 5, 10-12] which has motivated repeated attempts to improve the efficiency of Fe catalyst. 

[5]  

In order to provide a basis for making more rapid progress in such improvements, we want 

to use QM to determine the reaction mechanism and rates to help guide the search for 

improvements.  In order to validate the QM predictions, we need to compare to experiments 

on well characterized surfaces. Fortunately, Somorjai et al [13] reported comprehensive 

investigations of the rates for NH3 synthesis on Fe single crystals to which we can compare 

directly. Somorjai et al considered a pressure of 20 atm and temperatures in the range of 638 

to 723°K, to determine the rates of ammonia formation. For 673°K they found relative rates 

of 418: 25: 1 for Fe(111), Fe(100), and Fe(110) surfaces, respectively. In another study [14], 

they concluded that C7 sites (Fe atoms with seven nearest neighbors) are the most active in 

iron ammonia synthesis catalysts. Such sites involve the top three layers of Fe(111) exposed 

to the reactant gases, rationalizing the reactivity of Fe(111) > Fe(100) > Fe(110). Somorjai 

showed that small amounts of K promote the catalysis increasing the rates by a factor of 2. 

However the location of the K in the catalyst is not known, so we will compare to Somorjai 

results for the most active Fe(111) bare surface without K or other promoters.  

We report here QM calculations on the 26 surface adsorbate configurations important in the 

full reaction mechanism including the free energy barriers that determine the rates for 

the 17 steps that we find to play an important role in the catalysis under Somorjai conditions. 

Then we use these predicted rates in a self-consistent kinetic Monte Carlo (kMC) model to 

predict the steady state rates of all the reaction steps to obtain the turn over frequency (TOF) 

for the Somorjai single crystal conditions. At 673K and 20 atm pressure, we predict 

TOF=17.7 sec-1 per 2x2 site (5.3 x 10-9 moles/sec-cm2), which is in excellent agreement 
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with the experimental TOF=9.7 sec-1. This validates our modeling results, providing the 

basis for using theory to help design improved catalytic systems. 

 

2. 2 Methods 

For these QM studies we use the Perdew-Burke-Ernzerhof (PBE) flavor of Density 

Functional theory (DFT). including the D3 (Becke Johnson) [15] empirical corrections for 

long range London dispersion (van der Waals attraction). [16] The reason is that this level of 

QM has been validated recently for several systems. Thus reference[17] carried out 

systematic studies for the oxygen reduction reaction (ORR, O2 + protons  H2O) on Pt(111) 

using the same PBE-D3 level as in this paper. Including 5 layers of explicit solvent in QM 

metadynamics on all reaction steps, comparisons could be made to experimental activation 

barriers for two values of the external potential. In both cases the calculated activation 

barriers were within 0.05 eV of the experiment. 

For the CO reduction reaction on Cu(100) the same level of theory obtains an activation 

energy within 0.05 eV of experiment. [18-21] This same level of theory has also led to similar 

accuracy for the oxygen evolution reaction on IrO2 [22] and for onset potentials on Cu(111). 

[23-25]  

This is not a guarantee that PBE-D3 will work as well for Fe, where the presence of unpaired 

spins could cause problems, but it provides a reasonable starting point. Indeed, the accuracy 

compared to experiment seems to be comparable to these other cases. 

Indeed, we carried out exactly the same set of calculations at the PBE level without D3 

(results in the SI) and find TOF=89.3 compared to 17.7 for PBE-D3 and 9.7 experiment. This 

indicates that for this system PBE-D3 provides better accuracy than pure PBE.  

All calculations were carried out with the VASP [26] software package. We established that 

an energy cutoff of 400eV leads to converged forces. The K-point sampling was chosen to 

be 4 x 4 x 1.  All calculations include spin-polarization.  

 

2.2.a Small Gas Molecules 
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Calculations for the gas phase molecules used the PBE functional (as implemented in 

Jaguar) with the D3 empirical correction for London dispersion. [15, 27-29] Free energy 

corrections including enthalpy (H), entropy (S), and zero-point energy (ZPE) from Jaguar 

calculations are included in Supplemental Information (SI).  

To obtain the total free energy, G=H-TS, for the gas molecules at temperature T, we add to 

the DFT electronic energy (E), the zero-point energy (ZPE) from the vibrational levels 

(described as simple harmonic oscillators), and the specific heat corrections in the enthalpy 

from 0 to T. The entropy (S), as a sum of vibrational, rotational and translational 

contributions, are evaluated from the same levels. To correct the free energy for pressure, we 

assume an ideal gas and add RT*ln(P2/P1) with a reference pressure of P= 1 atm. 

The Free energy changes (δG) for the overall Haber Bosch reaction N2+3H2 => 2NH3 under 

various conditions are calculated as 

δG=2*E(NH3)+2*ZPE(NH3)+2*H(NH3)-2T*S(NH3)-

[E(N2)+3*E(H2)+ZPE(N2)+3*ZPE(H2)+H(N2)+3*H(H2)-T*S(N2)-3T*S(H2)] 

The pressure dependence is added using RT*ln(P2/P1), 5atm and 15atm for N2 and H2 

respectively. We calculate δG is -0.52 eV for the reaction under 673°K, and 20atm total 

pressure, which can be compared with δG =-0.02eV at 700°K and 5:15:1 atm N2, H2 and 

NH3, respectively, from experiment. [30] We calculate δG is –1.22 eV for the reaction under 

673°K, 5atm: 15atm: 1.5 torr for N2, H2, and NH3 respectively. 

2.2.b Surface Optimization 

The PBE-D3(BJ) level of DFT leads to a calculated lattice parameter of a = 2.807 Å for the 

bulk Fe bcc structure at 0°K, slightly smaller than the experimental value 2.866 Å at 298°K. 

[31] This level of DFT predicts a magnetic moment for bulk Fe of 2.23 µB in excellent 

agreement with the experimental value, 2.22 µB. [31]  

For calculating the surface chemistry, we selected the (111) surface which Somorjai showed 

to be the most active catalytically. For these DFT calculations we use a two-dimensional 

periodic slab with six layers of Fe atoms each of which consists of a (2 x 2) (6.912 Å x 8.276 

Å) unit cell (4 surface Fe per cell). We include 15 Å of vacuum in the z direction to minimize 
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possible interactions between the replicated cells. The top five layers are relaxed while the 

bottom layer is kept fixed at the optimum geometry calculated for bulk Fe.  

The vibrational frequencies for free energy calculations are calculated by allowing the 

adsorbed molecules and the top 3 layers of Fe to relax, with the bottom two layers fixed. For 

these phonon calculations we used 10-6 eV energy convergence threshold to obtain reliable 

phonon frequencies (no negative eigenvalues.) To obtain the Free energy, G=H-TS, for the 

various equilibrium configurations, we used density functional perturbation theory (DFPT) 

to calculate the phonon density of states, which was used to calculate the ZPE, the 

temperature correction to the enthalpy, and the vibrational contributions to the entropy. An 

identical procedure was used for the transition states. We note that some of the frequencies 

correspond to hindered translational or rotational modes, for which the harmonic oscillator 

description is less accurate.  In these cases, namely NH3 and N2 desorption calculations, we 

use ZPE corrections only. [32-34] 

2.2.c Transition States 

Transition state searches used the climbing image NEB method in the VASP-VTST code. 

[35] Here the initial and final states geometries were minimized first. Then three intermediate 

images were optimized, excluding initial and final images. An additional NEB climbing-

image calculation was performed to obtain the final value of the barrier. The climbing NEB 

method generates a true transition state, as we confirmed by performing vibrational 

frequency calculations showing a single negative curvature in the Hessian. Dimer 

calculations [36-37] were performed whenever extra imaginary frequencies were found in 

the NEB transition state image. 

2.2.d Surface sites 

The adsorption sites for the various species H, N, NH, NH2, NH3 calculated here are 

consistent with previous experimental [38] and DFT results [39-41]. The Fe(111) surface has 

four types of adsorption sites: top (T), bridge (B), 3-fold-shallow (S), and 3-fold-deep (D), 

with top/shallow (TS), and top-Shallow-deep (TSD) intermediate sites, as shown in Figure 

2-1. 
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Figure 2-1. Structure of the Fe(111) surface with various surface adsorption sites noted. 

Bronze spheres represent the top layer, dark grey spheres represent the second layer, while 

white spheres are third layer Fe atoms. Multiple adsorption sites are labeled from both top 

and side views, including B, T, S, D, TS, and TSD sites. This figure shows only 3 of the 6 

layers used in the calculations. 

We find generally that  

• H prefers the TS site between a top Fe and a 2nd layer Fe or the TSD site between Fe 

on all 3 layers 

• N prefers the B site,  

• NH prefers the BD site, with N sitting on the bridge(B) site, but NH pointing sideways 

toward the D site 

• NH2 prefers the TS site between a top Fe and a 2nd layer Fe. 

• NH3 prefers the T site.  

but as shown below in Figure 2-3 occupation of other sites sometimes shifts the minima. 

 

2. 3. Energy landscape. The most favorable pathways for converting 3H2 + N2 to 2NH3, 

with illustrations for T=673°K and p=20atm 

We carried out DFT calculations including various numbers of H, N, NH, NH2, NH3 

molecules bound to the various stable sites for a 2x2 supercell of the (111) surface. For each 

combination of sites, we calculated the vibrational frequencies to obtain the free energy at 
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the operational temperature. Then we calculated the reaction barriers for the various 

reaction pathways. We then used these values to find reaction sequences with lowest overall 

free energy barrier for the full process of converting one N2 and three H2 to form two NH3.  

For a total pressure P=20 atm under stoichiometric conditions and T=673°K, we find that the 

lowest free energy for an equilibrium in which no reactions are allowed is the 3N_NH2 

configuration shown in Figure 2-2. Thus, prior to allowing reactions to proceed, the 

equilibrium condition on the Fe(111) surface in our 2x2 model would be predominantly the 

3N_NH2 configuration. We take the free energy of this state as our reference point, with G=0. 

However, as discussed in section 4, the steady state kinetic process producing NH3 leads to 

different distributions of states that depend on the NH3 pressure assumed for the steady state. 

We examined the barriers between all the states connecting though reactions of N2 and H2 at 

various sites, leading finally to the energy landscape in Figure 2-2, involving 26 

intermediates and leading to the lowest maximum barriers. We include in Figure 2-2 the 

states that we found to be important for the steady state kinetics as described in section 5. 

We confined our calculations to the 2x2 supercell.  

The favorable path selected in Figure 2-2 includes the following transitions (all energies in 

eV) 

1. 3N_NH2 + 3H2gas+N2gas; G=0 at T=673°K and p=20atm 

2. =>3N_NH2_2H (H2gas H* + H*) G=0.57, where we expect a barrier of 0.57 eV. 

3. =>3N_NH3_H (H* + NH2* NH3*) G=0.30 and G†= 1.47 

4. => 3N_H (NH3*to NH3gas) G= -0.26 and G†= 1.12  

5. =>2N_NH (H*+N*NH*) G= 0.22 and G†= 0.66 

6. =>2N_NH_2H (H2gas H* + H*) G=0.30, we calculate a barrier of 0.57 eV.  

7. =>2N_NH2_H (NH*+H*NH2*) G= -0.39 and G†= 0.56, described in detail in 

transition state section. 

8. =>2N_NH3 (NH2*+H*NH3*) G=0.39  and G†= 1.36, however, there is an 

alternative path from 2N_NH2_2H to 2N_NH3_H, with a lower barrier of G†= 1.13, 
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this will be further discussed in the kMC section. The resting state of this step is 

indeed 2N_NH2_H, with G = -0.39, together making this barrier 1.13+0.39 = 1.52 in 

kMC. 

9. =>2N (NH3*to NH3gas) G=0.11 and G†= 1.40 Similar with the previous step, there is 

an alternative path from 2N_NH3_H => 2N_H, with a lower barrier of G†= 1.03. 

Similarly, the resting state is 2N_NH2_H, with G = -0.39, together making this barrier 

0.39+1.03 = 1.42 in kMC. These alternative paths are shown in Figure 2-2 using green 

color.  

10. => 2N_N2(N2gasN2*triple bonded, top layer) G= 0.20. This step involves N2 

adsorption (G†= 0.94) and its resting state is 2N_2H (edge configuration, see the SI) 

with G = -0.63, together making this barrier 0.94+0.63 = 1.57 in kMC. 

11. => 4N(N2*N*+N*) G= -1.10 and G†= 0.64 is the highest barrier along N2 

dissociation, see Figure S2-4. 

12. => 3N_NH_H (H*+ N* NH*)  G= -0.65 and G†= -0.07 

13. =>3N_NH2 (NH*+H*NH2* to complete the cycle).  

The above states are described by a simple linear energy landscape in Figure 2-2, 

confined in a 2x2 cell. However, we have also included the most populated states 

involved in the steady state kMC calculations, such as 2N_H and 2N_2H. 

14. 3N_NH3 => 3N (NH3*to NH3gas), G from 0.30 => 0.41, and G†= 1.34 

15. 2N_NH2_2H =>2N_NH3_H (NH2*+ H* NH3*), G from -0.27 => 0.01, and G†= 

1.13   

16. 2N_NH3_H => 2N_H (NH3*to NH3gas), G from 0.01 => -0.22, and G†= 1.03 

17. 2N_H => 2N, G from -0.22 => 0.11 

18. 2N => 2N_2H, G from 0.11 => -0.63 

In this simplified scheme we considered dissociative chemisorption of H2gas to H* + H* 

explicitly only for the step 2N + H2gas to 2N_2H. This step is closest to the dissociative 
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chemisorption of N2gas to N* + N* that in Section 5 we single out as the RDS in our 

kinetic model. We find that NH3 production rate changes from 17.7 sec-1 per 2x2 site to TOF 

17.5 sec-1 if we use the calculated barrier of 0.57 eV instead of setting the barrier to zero.  For 

other steps we assume H2 dissociative chemisorption to have barrier that’s small enough to 

not affect kinetics. And we form successive NHx species by the Langmuir-Hinshelwood 

(LH) mechanisms: NHx*+H* NHx+1* (for PBE_D3, step 12 LH is small enough, and not 

rate determining. Thus, we don’t consider ER further). 

The highest-energy transition states in the free energy landscape are, in decreasing order: 

• TS3: step 3 with G†=1.47 eV involves H* + NH2* => NH3*, an LH mechanism. The 

detailed transition state structure is shown in Figure S2-3(b) of the SI.  

• TS 8: step 8 with G†=1.13 eV involves H* + NH2* => NH3*, an LH mechanism. The 

detailed transition state structure is shown in Figure S2-3(a) of the SI.  

• TS4: step 4 with G†=1.12 eV involves NH3* => NH3 gas, just as in step 9. We used 

electronic adsorption energy of NH3 with ZPE correction as the desorption barrier. 

• TS9: step 9 with G†=1.03 eV involves NH3* => NH3 gas, shown in the green path of 

Figure 2-2. Here, we considered the alternative pathway of desorption NH3 from 

2N_NH3_H. We used electronic adsorption energy of NH3 with ZPE correction as the 

desorption barrier.  

• TS10: step 10 with G†=0.94 eV, we included N2 adsorption into consideration, and 

used the electronic adsorption energy together with ZPE as the desorption barrier, and 

this leads to G†=0.94 eV.  

• TS5: step 5 with G†=0.66 eV involves H* + N* => NH*, an LH mechanism. The 

NEB energy and structures are shown in Figure S2-2(a) of the SI. This is the lowest 

energy barrier for adding an H to NHx. We also examined 3N_H + H2(gas) => 

2N_NH_2H in which gas phase H2 adds to N* to form NH* + H*, This involves a 

high energy intermediate state with G= 1.78eV, so we will not consider this step 

further. 

• TS 11: step 11 with G†= 0.64 eV. We took consideration of N2 dissociation.  
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a)  the initial bonding of N2 retains the triple-bond while making a sigma bond to 

an on-top site on the first layer (denoted σN≡N-T phase, where ≡ in the middle 

represents the bond order, and T represents adsorption on top layer, or Nørskov γ)  

b) there is a barrier to moving to a sigma bond to an on-top site on the second layer 

(denoted σN≡N-S, where S represents adsorption on second layer, or Nørskov δ) 

c) There is a barrier for one π bond of N2 to bind to two surface Fe atoms (denoted as 

πN=N-η2 or Nørskov α)  

d) There is a barrier for the 2nd π bond of N2 to 4N, with the N-N bonding to three 

surface Fe atoms (denoted as 2πN-Nη3 or Nørskov α’)  

e) Finally, there is a barrier for the remaining N-N bond to dissociate with each N 

bonding to 4 surface atoms (denoted as Nørskov β phase), leading to the 4N state. 

The NEB energy and structures for N2 dissociation are shown in Figure S2-4 of the 

SI. 

• TS7: step 7 with G†=0.56 eV involves H* + NH* NH2*, an LH mechanism. The 

NEB energy and structures are shown in Figure S2-2(b) of the SI.  

• TS12: step 12 with G†=-0.07 eV is an LH mechanism in which H*+N*=> NH*  

• State 13. This is the same as the state 1 but the G=-1.22 eV because we have produced 

two NH3 from 3H2 +N2. Similarly, state 11 has G=-1.10 because we already have 

produced two NH3 along the pathway.  

The energy landscape is plotted in Figure 2-2 for the Somorjai experimental conditions of  

673°K and 20 atm of total pressure (H2 and N2 in stoichiometric ratio and NH3 pressure = 

1.5 torr)13. The lowest free energy state 3N_NH2 is taken as reference, setting G=0.  
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Figure 2-2.  Energy landscape for NH3 synthesis reactions under Somorjai condition, 673°K, 

20atm. The lowest energy state 3N_NH2 is taken as reference, with a free energy of zero. We 

considered the linear pathway in black and proposed alternative pathway in green, in order 

to obtain the optimum barriers. 

NH3 production rate is dominated by 3 steps:  

1). N2 dissociation and desorption,  

2). hydrogenation of NH2, and  

3). NH3 desorption.  

This diagram considers the reaction of 3 H2 plus 1 N2 to form 2 NH3, so that the total free 

energy decreases by 1.22 eV as we go from 3N_NH2 on the left to 3N_NH2 on the right. The 

free energy diagram with same states calculated at PBE level can be found in Figure S2-1. 

The simplified reaction pathway described above is illustrated pictorially in Figure 2-3 

showing the surface structure step by step, to clarify the nature of each adsorption site and 

the interactions between these adsorbed species.  
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Figure 2-3. Surface structure for selected reaction steps in Figure 2-2. Bronze spheres 

represent first layer Fe atoms, Dark gray represents second layer Fe atoms, and white 

represents third layer Fe atoms. Nitrogen atoms are shown using navy blue spheres, and 

hydrogen atoms are shown using red spheres. Every intermediate structure is geometrically 

optimized with the results summarized in Figure 2-3 to illustrate the adsorption sites for 

various species, and interaction between these adsorbed species. Note that in cases where 

species are at the edges, we show all images that map onto the 2x2 cell. In cases where a 

circle is used to highlight the reactive species at an edge we show the other equivalent circles.  

Transition state geometries are shown in Figure S2-2 through S2-4. We considered five 

reactions:  

A. 3N_H =>2N_NH, migration of hydrogen and addition to N on the surface (LH);  

B. 2N_NH_2H => 2N_NH2_H, hydrogen migration and addition to NH on the surface 

(LH);  
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C. 3N_NH2_2H => 3N_NH3_H, hydrogen migration and addition to NH2 on the surface 

(LH);  

D. 2N_NH2_2H => 2N_NH3_H, hydrogen migration and addition to NH2 on the surface 

(LH);  

E. 2N_N2 => 4N. This involves a complex pathway from triple-bonded N2 adsorbed on 

first layer (σN≡N-T or γ) => triple-bonded N2 adsorbed on second layer (σN≡N-S or δ) 

=> double-bonded N2 to a bridge site (πN=Nη2 or α) => single-bonded N2 at a 3-fold 

site (2πN-Nη3 or α’) => the dissociated state 4N(β). 

2.4. Discussion of the wavefunctions 

Since Fe is ferromagnetic, we analyzed the magnetic moments of the various atoms and the 

changes in the key steps of ammonia synthesis. Total magnetic moments for all the states 

along the pathway can be found in Table 2-1.  

Name Total 

Mag(uB) 

dMAG Covalent 

bond to Fe 

Ratio #Comment #Comment 

111_surface_24Fe 64.76 0.00 0   2.70 per Fe 

3N.NH2 57.10 -7.66 10 77% 3*3+1  

3N.NH2.2H 56.49 -8.26 12 69% 3*3+1+2 0.3 per H 

TS_3N.NH2.2H 55.94 -8.82     

3N.NH3.H 56.33 -8.43 10 84% 3*3+1  

3N.H+NH3(g) 57.00 -7.75 10 78% 3*3+1  

TS_3N.H+NH3(g) 57.54 -7.22     

2N.NH+NH3(g) 58.17 -6.59 8 82% 3*2+2  

2N.NH.2H+NH3(g) 57.27 -7.48 10 75% 3*2+2+2  

TS_2N.2H.NH+NH3(g) 58.80 -5.96     

2N.NH2.H+NH3(g) 59.35 -5.40 8 68% 3*2+1+1  

TS_2N.H.NH2+NH3(g) 59.08 -5.67     

2N.NH3+NH3(g) 59.45 -5.30 6 88% 3*2  

2N_diagonal.NH2.2H 58.32 -6.44 9 72% 2*3+1+2  

TS_2N_diagonal.NH2.2H 58.64 -6.12     

2N_diagonal.NH3.H 59.08 -5.68 7 81% 2*3+1 2.84 per N 
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2N+2NH3(g) 59.83 -4.93 6 82% 3*2  

2N.N2(σN≡N-T)+2NH3(g) 58.83 -5.92 6 99% 3*2 No N2 to 

Fe 

TS(σN≡N-T => σN≡N-S) 59.21 -5.54     

2N.N2(σN≡N-S)+2NH3(g) 58.51 -5.54 6 92% 3*2 No N2 to 

Fe 

TS(σN≡N-S => πN=N) 58.37 -6.38     

2N.N2(πN=N)+2NH3(g) 58.65 -6.11 8 76% 3*2+2 2 new N-Fe 

TS(πN=N=>2πN-N) 58.53 -6.23     

2N_N2(2πN-N)+2NH3(g) 58.17 -6.59 10 66% 3*2+4 4 new N-Fe 

TS(2πN-N =>N+N) 57.36 -7.39   8  

4N+2NH3(g) 54.77 -9.98 12 83% 3*4 2.50 per N 

4N.2H+2NH3(g) 54.32 -10.44 14 75% 3*4+2  

TS_4N.H2 55.40 -9.35     

3N.NH.H+2NH3(g) 55.92 -8.84 12 74% 3*3+2+1  

3N.NH2+2NH3(g) 57.10 -7.66 10 77% 3*3+1  

Average in covalent 

character 

   77%   

Table 2-1. Analysis of change in spin along the pathway. Total magnetic moment for each 

state and the change with respect to pure Fe are reported. Covalent bond calculated using 

simple VB theory is presented in covalent bond column, and we assume each adsorbed N, 

NH, NH2, NH3, H to decrease spin moment 3, 2, 1, 0, 1 respectively.  

We observe non-negligible changes in these moments along the reaction pathways.  

In earlier studies of hydrocarbon intermediates on the metals Ru, Rh, Pd, Os, Ir, Pt, Kua and 

Goddard proposed a Valence Bond (VB) model in which alkyl, alkylidene, and alkylidyne 

intermediates to a metal surface are considered to make 1, 2, or 3 valence bonds to the metal 

surface and showed that this correlates well with bond energies and other properties.42-45 We 

propose a similar valence bond (VB) model to understand the spin changes in spin for Figure 

2-4(a) and SI table 2-2. We assume that each of the unpaired spins of N atom makes a 

covalent bond to an unpaired spin on the neighboring Fe atoms, reducing the spin by 3 units.  

Indeed, for the 4N state the spin of the cluster is reduced by 10.51 or 2.63 spins per N. We 

will also assume that the two unpaired spins of NH can make two bonds, which should reduce 
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the Fe spin by 2 units and NH2 can make one bond, which should reduce it by 1 unit as 

should H.  

From table 2-1, we see that the net spin changes observed in the 14 states that are not TS, 

average 77% of the expected value for this model, supporting this simple Valence Bond view 

of bonding. Of course a more complete analysis should consider the ligand field splitting to 

these unpaired spins and the orbital requirements to form a covalent bond from the Fe d-

orbitals to the N p-orbitals, but we think that the simple VB view accounts for the major spin 

coupling effects. 

These changes in magnetic moment suggests an important role for spin in the reactions, 

which suggests that engineering the spin of surface atom may provide a new way to 

increase Haber Bosch reaction efficiency. This suggests designing new catalysts that have 

different spin character, e.g., Co, Ni, Mn, or Cr all of which can exhibit localized spins, or 

Ru or Os which should not have large spins. Also the changes in the oxidation state of the 

atoms reported in Figure 2-4(b) are noteworthy and analogously suggest an important 

concomitant effect of charge transfer effects. 

 

2.5. Kinetic modelling results with illustrations for T=673°K and p=20atm 

2.5.a. Kinetic Monte Carlo Simulations 

The free energies in Figure 2-2 provide a crude estimate for the rate. Here we might estimate 

the rate from transition state theory (TST) as k=(kBT/h)exp[-1.57/kBT] = 24 sec-1, leading 

(after multiplication by a factor of 2 due to the presence of 2 reaction sites in the unit cell) to 

a TOF of 48 NH3 molecules per second per (2x2) unit cell. 

However, for such a complex mechanism, it is necessary to go beyond this rough estimate 

with simulations that include all distributions of the states involved and the rates between 

them in a full kMC model, allowing the system to achieve steady state. We evaluated each 

rate using transition state theory as (kBT/h)exp(-∆G†/kBT), where ∆G† is the difference in 

free energy between the starting state and the saddle point. In the case of ER reactions 

involving gas-phase species turning into adsorbates, we again use transition state theory, but 
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for the reverse LH process, and then we invoke microscopic reversibility principle to 

calculate the rate of the direct process.  

This system is not in equilibrium. To consider the kinetics of the system in steady state, we 

carried out kMC calculations as discussed below.  In this case we find that the state 2N_2H 

has the lowest ∆G under steady-state conditions at P(H2)=15 atm, P(N2)=5 atm, P(NH3)= 1.5 

torr, T = 673 °K, and the free-energy difference between this state and the highest point ∆G† 

along the reaction path is 1.57 eV. Taking into consideration the states important in the kMC 

calculations and varying NH3 pressure leads to the diagram in Figure 2-4.  
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Figure 2-4. Illustration of how the equilibrium energy landscape from Figure 2-2 becomes 

modified for steady state kinetics of forming NH3 at different pressures from 15 atm of H2 

and 5 atm of N2 at 673°K (Somorjai conditions). We show the results for three pressures of 

NH3 product: 1.5 torr, 20 torr, and 1 atm. Barriers in green are assumed to be fast and assigned 

rates of 1011 s-1. The populations are shown in Table 2-2. We see here that NH3 acts as a 

poison, decreasing the TOF from 17.7 at 1.5 torr, to 16.5 at 20 torr, to 2.8 at 1 atm. 
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In the Somorjai et al13 papers, the measured ammonia production at 673 °K and 15 atm 

H2, 5 atm N2, extrapolated to zero ammonia pressure is 2.8 x 109 NH3 moles/cm2/sec which 

corresponds to 9.7 NH3 molecules produced per second on a (2x2) unit cell.  

We conducted kMC simulations at T = 673 °K and pressures: pH2=15atm, pN2=5atm and 

pNH3= 1.5 torr. We used 20 independent replicas and 2 x 109 kMC steps each (checking that 

the results converged within 5% with respect to a test case using 100 replicas and 2 x 1010 

kMC steps) for a total simulated time of 2733 sec. This leads to production of 48482 NH3 

molecules produced by our (2x2) unit cell, corresponding to a predicted TOF= 17.7 NH3 

molecules per second per (2x2) site, in good agreement with the experimentally 

measured TOF of 9.7 (our predicted rate should be higher than experiment since our surface 

is perfect). We should caution here that the final TOF is very sensitive to the key barriers at 

the RDS. Thus to change the 17.7 to 9.7 we need only increase the free energy of the 

transition state for the 10th step from 0.94 eV to 0.98 eV. 

As shown in the SI, exactly the same set of calculations at the PBE level without D3 find 

TOF=89.3 compared to 17.7 for PBE-D3 and 9.7 experiment. This indicates that for this 

system PBE-D3 provides better accuracy than pure PBE. However, the rate for the PBE level 

would match experiment by changing the barrier for the 3rd step from 1.47 eV to 1.64 eV. 

Of course the real accuracy depends on that for quite a number of individual steps. 

The steady-state apparent ∆G (i.e., the logarithm of the relative populations) for the most 

important states are reported in Table 2-2, which shows that the processes before and after 

the ammonia desorption are not far from equilibrium. That is, the populations are not far 

from those expected on the basis of their equilibrium ∆G according to the Boltzmann 

distribution (the percent of residence times is also shown), except for the irreversible 

ammonia desorption steps.  

If instead of NH3= 1.5 torr, we use NH3=1 atm, shown in Figure 2-5, the total rate from the 

kMC is 2.8 NH3 molecules per second per (2x2) site. Thus NH3 is a poison. Somorjai et al 

does not report the dependence of TOF on NH3 pressure for the (111), but they do report it 

for Fe(100)14: 
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• for 20 torr pressure of NH3, TOF=0.21 NH3-molecules/sec/(2x2) 

• for 1.5 torr pressure of NH3, TOF=1.1 NH3-molecules/sec/(2x2) 

• extrapolating to zero NH3 pressure, leads to TOF= 1.5 NH3-molecules/sec/(2x2).  

Thus the experimental poisoning effect of NH3 on (100) is similar to what we predict for 

(111). 

Analogous kMC simulations at T = 730 °K and pressures: pH2=15atm, pN2=5atm and pNH3= 

1.5 torr give a TOF = 83.3 NH3 molecules per second per (2x2) site which is still in 

reasonable agreement with the experimentally measured TOF of 22.8 from Figure 13 of 

Ref.13 In conclusion, we find that hydrogenation of NH2, NH3 desorption, H2 poisoning, and 

N2 desorption can be rate determining depending on the reaction conditions, while previous 

work on Fe-catalysts emphasized on N2 dissociation being the sole rate determining step.12 

2.5.b. Rates for typical Haber Bosch conditions: T=723°K and p=200atm 

The Haber-Bosch (HB) industrial process is conducted under a range of temperatures and 

pressures, with typical temperatures in the range 450-550 °C and total pressure around ∼200 

atm with a stoichiometric ratio of N2 and H2. To compare our predictions with industrial 

conditions, we choose T = 730 °K and two sets of pressures: (pH2=150 atm, pN2=50 atm, 

pNH3= 1 atm), and (pH2=120 atm, pN2=40 atm, pNH3= 20 atm), corresponding 

approximately to conditions holding at the beginning and the end of the HB process. For 

comparison, we also add that at pNH3= 1.5 torr Figure 2-2 becomes Figure S2-6 of the SI 

leading to a naïve TOF= 258 (or 516 after multiplying by a factor of 2), which is about 5 

times what we predict for Somorjai conditions using the same rough formula.  

Running kMC simulations under these two conditions leads to NH3 production rates of 93.7 

NH3-molecules/sec/(2x2) at pNH3= 1 atm, and 18.5 NH3-molecules/sec/(2x2) at pNH3= 20 

atm, respectively. Free energy differences due to populations and thermodynamic free energy 

differences for various states are shown in Table 2-2. 
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T=673, pH2=15, pN2=5, 

pNH3=1.5/760 

 

T=730, pH2=150, pN2=50, 

pNH3= 1 

T=730, pH2=120, pN2=40, 

pNH3=20 

configuration ti (%) -ln(Pi/P0) ΔG ti (%) -ln(Pi/P0) ΔG ti (%) -ln(Pi/P0) ΔG 

3N_NH2 6.5 0.00 0.00 1.4 0.00 0.00 7.2 0.00 0.00 

3N_NH2_2H 3E-4 0.57 0.57 5E-4 0.50 0.49 2E-3 0.51 0.51 

3N_NH3_H 6E-4 0.54 0.30 0.003 0.38 0.21 0.19 0.23 0.23 

3N_H 1.1 0.10 -0.26 0.32 0.09 -0.08 1.2 0.11 0.11 

2N_NH 6E-4 0.54 0.22 3E-4 0.52 0.39 1E-3 0.54 0.59 

2N_NH_2H 1E-4 0.63 0.30 3E-4 0.53 0.36 8E-4 0.57 0.61 

2N_NH2_H 20. -0.07 -0.39 21.7 -0.17 -0.31 64.5 -0.14 -0.09 

2N_NH3 5E-5 0.69 0.39 8E-5 0.61 0.47 4E-4 0.61 0.68 

2N 2E-4 0.61 0.11 1E-3 0.62 0.47 2E-5 0.82 0.88 

4N 0.22 0.20 -1.10   2E-2 0.28 -0.80 0.092 0.27 -0.80 

3N_NH_H 4E-3 0.57 -0.65 1E-4 0.57 -0.43 8E-4 0.57 -0.41 

2N_2H_lin 53.6 -0.12 -0.63 61.1 -0.24 -0.41 11.4 -0.03 0.02 

2N_2H 16.9 -0.06 -0.56 10.4 -0.13 -0.24 1.96 0.08 0.19 

2N_NH3_H 3E-3 0.45 0.24 5E-2 0.21 0.05 0.19 0.23 0.26 

2N_H 5E-2 0.29 -0.22 2E-2 0.25 0.10 5E-3 0.46 0.52 

2N_NH2_2H 1.6 0.08 -0.30 5.0 -0.08 -0.22 13.2 -0.04 0.03 

kMC theory 

NH3 

mol/s/(2x2) 

17.7 93.7 18.6 

Experiment 
13 NH3 

mol/s/(2x2) 

9.7 N/A N/A 

total  

NH3mol 
48482 33764 2529 

3N_NH3_H 

↔ 3N_H 
24262 16801 1284 

2N_NH3_H

↔ 2N_H 
24220 16963 1245 

Table 2-2. kMC result. Top rows – Per cent of populations (i.e., residence times) = ti(%), 

apparent free energy differences [evaluated as minus the logarithm of ratio of populations = 
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Pi/P0, where P0 = P3N_NH2], and thermodynamic free energy differences (ΔG) for selected 

configurations in a Fe(111)-(2x2) unit cell under steady-state of ammonia synthesis as 

predicted by kMC simulations at different temperatures (673 and 730 K), and different H2, 

N2, NH3 pressures using data from DFT/PBE-D3. All configurations are assumed in the zig-

zag arrangement, except for “2N_2H_lin” which is linear (see SI for details). Temperature 

in Kelvin, pressure in atmospheres, free energy differences in eV. Bottom rows – NH3 

molecules produced per second per (2x2) unit cell under the given conditions 

[NH3mol/s/(2x2) : the conversion factor to moles per second per cm2 in ref13 is 3 x 10-10], 

total number of NH3 molecules produced in the kMC runs (total NH3mol), further partitioned 

into the 2 main steps involving NH3 adsorption/desorption: 3N_NH3_H ↔ 3N_H; 

2N_NH3_H ↔ 2N_H.  

 

2.6. Comparison with previous literature 

2.6.a Comparison with experiment   

In the above discussions we compared our predicted TOF with the single crystal 

experimental values (Somorjai), finding excellent agreement.  

Another comparison in with experiment is to Temperature Programmed Desorption (TPD) 

in which a monolayer (ML) of NH3 at low temperature is heated at a uniform rate dT/dt and 

the products measured with a mass spectrometer. Here the temperature for the peak 

desorption rate, TPD peak, combined with dT/dt in the Redhead equation gives a crude 

estimate of the binding energy. Our predicted binding energies are consistent with available 

experimental literature. Thus, Figure 9 of Strongin et al 13 reports TPD experiments on 

Fe(111) with a very broad desorption peak centered at about 300 °K  for a heating rate of 8 

°K/sec, which corresponds to an activation barrier for desorption of 0.82 eV. This compares 

well with the values of 0.89 to 1.00 eV we calculate for the NH3 desorption barrier. 

Our results are also consistent with experiments conducted on polycrystalline Fe wires by 

Ertl and Huber46-47 At T = 673 °K our barriers for NHx dehydrogenation mechanisms (NHx 

→NHx-1 + H) range from 0.53 to 0.63 eV which are lower than the barrier for NH3 
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desorption (0.76 to 0.87 eV) which in turn are lower than the barrier for both N2 

dissociation (1.27 eV) and for N-adatom recombination (2.04 eV). Our predicted NH3 

sticking coefficient at 673 °K and a NH3 pressure of 5 x 10-6 torr is about 5 times larger than 

the N-adatom recombination rate (the kinetic constant corresponding to our 2.04 eV barrier 

is 0.03 sec-1), which should be contrasted with a near equality at T > 640 °K in previous 

study. However, the Ertl experiments were on Fe polycrystalline wires in which the presence 

of (100) and (110) facets may increase the ratio of N-adatom recombination over the NH3 

dissociative sticking rate. Indeed the experimentally derived value of 45±5 kcal/mol for the 

activation free energy of N-adatom recombination in literature is only slightly lower than our 

predicted value of 47 kcal/mol (2.04 eV). Our value is also slightly lower than the 

experimental value of 51 kcal/mol reported on Fe(111) by Bozso et al. [48] (At 1 torr NH3 

we predict an adsorption kinetic constant of 3 x 104 on the 2N site.) 

Another TPD experiment on industrial catalysts [49] observed a N2 desorption peak at 644 

°K, with an estimated N-adatom recombination rate of 1-2 x 109 x exp(- 146 kJ/mol/RT). 

This rate corresponds to an apparent free energy barrier at 644 °K of ΔG = 2.00 to 2.04 eV, 

which is very close to our predicted barrier of 2.04 eV at T = 673 °K, especially considering 

that the industrial catalyst is K-promoted and hence is expected to exhibit a smaller barrier. 

In the same work, the N-adatom coverage under Haber-Bosch reaction conditions was 

estimated to be 0.4 of the maximum N-adatom coverage under N2+3H2 conditions, a value 

close to our predicted value of 0.5 for the 2N.xH configurations predominant on the (2x2) 

unit cell. 

2.6.b Comparison with theory 

The pioneering QM study for Haber Bosch chemistry on Fe(111) was reported in 1999 by 

Nørskov et al50.They investigated in detail several states with N2 molecularly adsorbed 

and/or dissociated and considered simplified pathways for dissociation. Their qualitative 

picture considers N2 dissociation as the RDS, which we have shown to be correct with our 

detailed reaction kinetics based on QM free energies and reaction barriers.  However, there 

are significant quantitative differences because we calculated reaction barriers, whereas they 

examined only stable species. Instead they made estimates using the Ulitsky-Elber 
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approximation to find minimum energy paths. In contrast we used fully relaxed NEB 

techniques. In addition Nørskov et.al [50] used the rev-PBE xc-functional without dispersion 

corrections (dispersion corrections increase adsorption energies by ~ 10 %). They used a slab 

with 7 layers apparently relaxed without constraints (compared to 6 in ours), but with a very 

small (1x1) unit cell or sometimes sqrt(3) x sqrt(3), rather than the 2x2 used in our studies. 

Also entropic corrections to free energies were not included in their calculations.  

Nørskov et al.50 considered dissociatively chemisorbed binding energies for N2 and described 

several states labeled as α, α’, δ, β, γ. We used PBE-D3 to calculate the binding energies for 

these states with the results in table S2-1 of the SI.  We found much stronger binding for both 

horizontally and vertically chemisorbed N2 states α, α’, δ, β, due to a better description of 

dispersion correction. We also found that N2 adsorption states have a very sensitive 

adsorption energy dependence with respect to the surface’s N atom coverage. State α is better 

in electronic energy of ~0.2 eV than α’ on bare surface, however, with 2N present on the 

surface, the result is reversed and state α’ is better in energy than α by ~0.2 eV. We arrived 

at similar result for dissociated N atom. 

However, despite some differences in the specific numbers, we confirmed the Nørskov 

overall pathway for dissociate chemisorption of N2.  Triple-bonded N2 adsorbed on first layer 

(γ) => triple-bonded N2 adsorbed on second layer (δ) => double-bonded N2 bonded to a 

bridging site (α) => single-bonded N2 bonded to a three-fold site (α’) => dissociated N atoms 

(β). The biggest difference is that our calculations have two other N already bonded to 4-fold 

sites, which changes the overall energetics and barriers. 

A more recent QM study on adsorption and dissociation of NH3 molecule on Fe(111) by Lin 

et.al [41] provided comprehensive adsorption energy data for several species, including N, 

H, NH, NH2, and NH3. They used a revised Perdew-Burke-Ernzerhof (GGA-rPBE) exchange 

correlation functional, without dispersion corrections. They used a (3x3) unit cell, compared 

to our (2x2) cell. They calculated QM barriers but did not calculate the activation free 

energies for reactions.  The influence of coverage on adsorption energy was not considered, 

nor were entropic corrections to free energies calculated. Their results in kcal/mol, are 

converted to eV in table S2-2 of the SI. This study by Lin et.al [41] leads to better agreement 
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for binding of N, NH, NH2 (after correcting for the difference in surface coverage). It is 

expected that their adsorption energies would be ~ 30 % too weak due to the lack of D3 

dispersion corrections. 

 

2.7. Summary and conclusions 

We report here the first comprehensive study of the mechanisms underlying NH3 synthesis 

by Fe based catalysts including the reaction barriers for all 17 steps involved and considering 

both Langmuir-Hinshelwood (surface species reacting with surface species) and Eley-Rideal 

(gas phase species reacting with surface species) processes.  

The QM was at the level of PBE including D3 London dispersion (van der Waals attraction) 

corrections that was previously applied successfully to the oxygen reduction reaction (O2 + 

protons  H2O) on Pt and the CO2 and CO reduction reactions on Cu surfaces.17–21,23–25  

Correcting the DFT for phonons to get free energies at experimental reaction conditions, and 

carrying out extensive kinetic Monte Carlo calculations to obtain the steady state populations 

at the conditions of the single crystal experiments (673°K , 15 atm H2, 5 atm N2, and 1.5 torr 

NH3) leads to a predicted TOF=17.7 sec-1 per 2x2 Fe(111) surface site, in excellent 

agreement with the single crystal experimental rate of TOF= 9.7 sec-1 per site. This 

suggests that the accuracy of PBE-D3 for the critical barriers may be of the order of 0.04 eV.  

This overall agreement in the predicted TOF with experiment indicates that the QM 

combined with kMC provides a new detailed understanding of the reaction mechanism 

underlying NH3 synthesis. This should provide a basis for considering how to modify the 

catalyst to improved performance. In particular, the changes in the spins and charges in the 

TS provides hints, as discussed above of considering alloying with metals having localized 

spins, such as Cr, Mn, Co, or Ni, or with metals not expected to have localized spins such as 

Ru or Os. 

Despite the excellent agreement, we should caution that the experiments might have been 

affected by impurities such as O that might affect the rates. Also the QM calculations using 

the phonons to predict free energies at reaction conditions might miss dynamical and 
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anharmonic effects that would require quantum based reaction dynamics. Moreover, the 

limitation to a 2x2 unit cell may eliminate some reactions that could require larger unit cells.  

In addition, replacing the PBE level of DFT might be important for a system such as this 

with localized spins and the origin of the D3 corrections for London dispersion is suspect. 

Associated content 

Supporting Information. Energy landscape and kinetic Monte Carlo results for Haber Bosch 

reaction at PBE level; transition state geometry and potential energy curves for key 

processes; pictorial illustration of “linear” and “zig-zag” configurations; comparison with 

previous theory results; detailed instructions on the use of the excel file with full numerical 

data (PDF). Numerical data of electronic energies and free energies for surface 

configurations using PBE-D3 and PBE xc-functionals at 673 °K and 730 °K, thermodynamic 

data for gas-phase molecules, and reaction energy barriers for key processes, reported in a 4-

sheet excel file (XLSX) in Appendix A. 
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Abstract 
With the aim of improving the efficiency of the Haber-Bosch industrial process for the 

synthesis of ammonia, here we explore doping the traditional Fe-based Haber-Bosch 

catalyst with an impurity element. Starting from a previous experimentally-validated 

theoretical investigation of the reaction mechanism for Haber-Bosch synthesis of ammonia 

on the Fe bcc(111) surface, we focus on changes in mechanism and kinetics brought about 

by substitutional doping of 25% top layer iron with cobalt. The choice of Co is justified by 

the analysis of the wave functions of the critical reaction steps on the Fe(111) surface which 

showed that large changes in the net spin (magnetization) of the Fe atoms are thereby 

involved, and suggested that dopants with modified spins might accelerate rates. Quantum 

Mechanics values of free energies and reaction barriers are calculated for the Co-doped 

system for a set of 20 important surface configurations of adsorbates, and used as input to 

kinetic Monte Carlo (kMC) simulations to obtain final ammonia production. We find that 

at T = 673 K, P(H2) = 15 atm, P(N2) = 5 atm, and P(NH3) = 1 atm, target conditions to 

drastically reduce the extreme energy cost of industrial ammonia synthesis process, top-

layer Co doping leads to an acceleration by a factor of 2.3 in reaction rates of ammonia 

synthesis, and therefore an expected corresponding decrease in production costs. 

 

3.1. Introduction 

The Haber Bosch (HB) industrial process for the synthesis of ammonia (NH3) from 

hydrogen (H2) and nitrogen (N2) is probably the most important reaction in heterogeneous 

catalysis. More than 140 millions of tons of ammonia gas are produced annually under 
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extreme conditions, typically at 773-823 °K and total pressure of 150-250 atm, entailing 

enormous expenditure of energy (2% of the world’s supply).[1]  [2] [3] [4] [5] [6] Several 

transition metals catalyze the Haber-Bosch process, such as iron, ruthenium, osmium, 

uranium and cobalt-molybdenum, but iron is still the most common and attractive choice 

because of its hardiness and low cost. [2]  [6] [7]  An essential goal of present research is 

therefore to dramatically reduce HB energy cost by improving the catalytic performance 

of the presently used Fe-based catalysts (so-called “ammonia iron” catalyst). [8] Given that 

the HB process has been investigated extensively at the experimental and industrial levels, 

with only marginal improvements in the last few decades, knowledge of the mechanistic 

steps as provided by first-principles-based theory and simulations may offer an alternative 

path to achieve the needed breakthrough. In this context, our line of investigation is to 

employ quantum-mechanics (QM)-based extensive sampling of the free-energy diagram 

of model but realistic systems coupled with kinetic modeling (in the form of kinetic Monte 

Carlo, kMC) so as to arrive at an in-depth understanding thus eventually leading to rational 

design. As the first step in this direction, we previously used QM/kMC to predict the 

reaction mechanism and kinetics for Haber-Bosch synthesis of ammonia on the Fe bcc(111) 

surface, which is the most active single-crystal Fe surfaces[9]. For 400 ºC and 20 atm total 

pressure of reactants in stoichiometric ratio at low NH3 pressure, we predicted a turnover 

frequency (TOF) of 17.7 sec-1 per 2x2 site (5.3 x 10-9 moles/cm2/sec) in excellent 

agreement with the TOF=9.7 sec-1 per site from single crystal experiments [9].[QianJACS2018] 

The QM calculations found 26 different surface configurations of adsorbates to play an 

important role and calculated the rates between these configurations that were used in kMC 

simulations to obtain the final rates. In analyzing the wave functions, we noticed that the 

critical reaction steps often involved large changes in the net spin (magnetization) of the 

Fe atoms involved, which suggested that using dopants with modified spins might improve 

some of the barriers.  Preliminary calculations found that replacing Fe surface atoms with 

Co could lower some of the reaction barriers, making Co a reasonable candidate. Following 

these indications, we present here a thorough study which reports QM predictions for the 

free energies and reaction barriers assuming 25% Co doping of the top layer, followed by 

kMC to predict the overall TOF for various conditions. We provide a framework to 
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quantitatively investigate minority doping effects on bcc(111) surfaces, define a 

nomenclature for unambiguously single out Co-doped configurations, and analyze the 

changes in wave function and kinetics brought about by Co substitutional doping. We find 

that, under stoichiometric target conditions of T = 673 K, P(H2) = 15 atm, P(N2) = 5 atm, 

and P(NH3) = 1 atm, 25% Co-top-layer-doping leads to an acceleration in reaction rates by 

a factor of 2.3 in the reaction rate of ammonia synthesis, therefore potentially entailing a 

corresponding decrease in production costs – seemingly, a promising result for further 

studies. 

 

3.2. Methods 

QM calculations were performed within Density Functional theory (DFT) and using the 

Perdew-Burke-Ernzerhof (PBE) [10] exchange-correlation functional, including the D3 

(Becke-Johnson)[11] empirical corrections for long-range dispersions (van der Waals). [12] 

This level of QM has been validated by comparison with experiment for the NH3 synthesis 

on Fe(111) and for the oxygen reduction reaction (ORR, O2 + protons  H2O) on 

Pt(111)[13]. In both cases the calculated activation barriers were within 0.05 eV of the 

experiment. 

All calculations were carried out with the VASP [14] software package, with an energy 

cutoff of 600eV and (4 x 4 x 1) K-point sampling, PAW pseudopotentials, and including 

spin-polarization. 

 

3.2.1 Free Energy 

To obtain the total free energy, G=H-TS at temperature T, we added to the DFT electronic 

energy (E), the zero-point energy (ZPE) from the vibrational levels (described as simple 

harmonic oscillators), and the specific heat contribution to the enthalpy from 0 to T. The 

entropy (S), as a sum of vibrational, rotational and translational contributions, is evaluated 
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using the same vibrational levels. To correct the free energy for pressure, we assume an 

ideal gas behavior and add RT*ln(P2/P1) with a reference pressure of P1 = 1 atm. 

The Free energy changes (δG) for the overall Haber Bosch reaction N2+3H2 => 2NH3 under 

various conditions are calculated as 

δG = 2*E(NH3)+2*ZPE(NH3)+2*H(NH3)-2T*S(NH3)-

[E(N2)+3*E(H2)+ZPE(N2)+3*ZPE(H2)+H(N2)+3*H(H2)-T*S(N2)-3T*S(H2)] 

The pressure dependence is added using RT*ln(P2/P1). We calculate δG is -0.52 eV for the 

HB reaction under 673°K, and 21 atm total pressure (5 atm and 15 atm for N2 and H2 

respectively, and 1 atm for NH3), which can be compared with δG =-0.02eV at 700°K and 

5:15:1 atm N2, H2 and NH3, respectively, from experiment.[15]  

 

3.2.2 Surface Optimization 

In the calculations here reported, we alloy only the top surface layer with 25% Co, so we 

use the lattice parameter of 2.807Å based on PBE-D3 value for Fe. 

For pure Fe, our DFT predicts a magnetic moment for bulk Fe of 2.23 µB in excellent 

agreement with the experimental value, 2.22 µB.[16] We predict the magnetic moment for 

the 25% Co in the top layer to be 1.83 µB, while the moment on the neighboring surface 

Fe atoms change to 2.90 µB and the subsurface Fe to 2.50 µB. 

We selected the bcc(111) surface that is known to be the most active for pure Fe [17]. We 

use a two-dimensional periodic slab with six layers of Fe atoms each of which consists of 

a (2 x 2) (6.873 Å x 7.937 Å) unit cell (4 surface Fe per cell). Then we replace 1 out of the 

4 surface Fe atoms in the top layer with Co, as illustrated in Figure 3-1. We include 25 Å 

of vacuum in the z direction to minimize possible interactions between the replicated cells. 

The top three layers were relaxed while the bottom three layers were kept fixed at the 

optimum geometry calculated for bulk Fe.   

The vibrational frequencies for free energy calculations were calculated allowing the 

adsorbed molecules and the top 3 layers of Fe and Co to relax (bottom 3 layers fixed), using 
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10-6 eV energy convergence threshold to obtain reliable phonon frequencies (no negative 

eigenvalues) within density functional perturbation theory (DFPT).  

An identical procedure was used for the transition states. We note that some of the 

frequencies correspond to hindered translational or rotational modes, for which the 

harmonic oscillator description is less accurate.  In these cases, namely NH3 and N2 

desorption calculations, we use ZPE corrections only.[18–20] 

 

3.2.3 Transition States 

Transition state searches used the climbing image NEB method as implemented in the 

VASP-VTST code.[21] Here the initial and final states geometries were minimized first. 

Then three intermediate images were optimized, excluding initial and final images. An 

additional NEB climbing-image calculation was performed to obtain the final value of the 

barrier. The climbing NEB method generates a true transition state, as we confirmed by 

performing vibrational frequency calculations showing a single negative curvature in the 

Hessian. Whenever extra imaginary frequencies were found in the NEB transition state 

image, we performed dimer calculations [22]. For some transition state barriers that are not 

rate determining, we estimated the free energy corrections using the values from the 

previous pure Fe calculation. Examples are transition state from 3N.H hydrogenation to 

2N.NH, hydrogen dissociation, and N migration. For all potential rate-determining steps, 

indicated by the red circles in Figure 3-3, we calculate the real barrier using the Co dopant.  

3.2.4 Surface sites  

The adsorption sites for the various species H, N, NH, NH2, NH3 calculated here are 

consistent with previous experimental[23,24] and DFT results[25–27]. The Fe(111) 

surface has four types of adsorption sites: top (T), bridge (B), 3-fold-shallow (S), and 3-

fold-deep (D), with top/shallow (TS), and top-Shallow-deep (TSD) intermediate sites, as 

shown in Figure 3-1.  
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Figure 3-1. Structure of the ¼ ml Co doped-Fe(111) surface with various surface 

adsorption sites noted. Pink atom is Co dopant, bronze spheres represent the top layer, dark 

grey spheres represent the second layer, while white spheres are third layer Fe atoms. 

Multiple adsorption sites are labeled from both top and side views, including B, T, S, D, 

TS, and TSD sites. This figure shows only 3 of the 6 layers used in the calculations. 

We find generally that  

• H prefers the TS site between a top Fe and a 2nd layer Fe or the TSD site between Fe 

on all 3 layers 

• N prefers the B site,  

• NH prefers the BD site, with N sitting on the bridge(B) site, but NH pointing 

sideways toward the D site 

• NH2 prefers the TS site between a top Fe and a 2nd layer Fe. 

• NH3 prefers the T site.  

but as shown below in SI Fig 1, the occupation at other sites sometimes shifts the minima.  

Co dopant does not change preferred adsorption sites for any of the above species. 

3.2.5 Nomenclature of configurations 

Adsorption on the Co-doped surface generates a number of possible configurations, more 

than double the number in the pure Fe case (see Table 3-1), thus calling for the introduction 

of a dedicated nomenclature. This is illustrated in Table 3-1 and Figure 3-2, which 

considers all possible configurations in a (2x2) bcc(111) unit cell with up to 3 different 

species adsorbed in bridge (B) sites (D, S, TSD and TS sites can be associated with their 

nearest B sites). In Table 3-1 and Figure 3-2, the adsorbed species are generically named 



 

 

43 
A, B, and C. Here A is the majority adsorbate (at least 2 A present), which in Figure 3-

2 A corresponds to a N adatom (in blue), while B is illustrated with a vacancy, and C is 

illustrated with an H adatom (in red). The rationale of the proposed nomenclature is based 

on the following 3 criteria: 

• First, 2A stoichiometry can be realized in “linear” (indicated with “2A_l”) and “zig-

zag” (indicated with “2A_z”) arrangements, depending on whether the 2 A species are 

located along a horizontal axis or staggered along the vertical axis.  

• Second, in the Co-doped case, Co can be near the B-minority adsorbate (indicated with 

“/n”), at intermediate distance from B (indicated with “/i"), or far from B (indicated 

with “/f”), as in the 3A.B or the 2A_z.B.C configurations (thus e.g. the states: 3A.B/n, 

3A.B/i, 3A.B/f, etc.).  

• Third, in the Co-doped case, the Co dopant can be positioned in the same vertical 

column as the A species (indicated with “_a”), the B species (indicated with “_b”), or 

the C species (indicated with “_c”), thus e.g. the states: 2A_l.B.C_a, 2A_l.B.C_b, 

2A_l.B.C_c, etc.  

A given configuration of the pure Fe case can give rise up to 4 different structures after the 

introduction of Co, where – we note – intermediate and far configurations have typically 

similar energies.  
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Column1 Column2 Column3 Column4

Fe

# of 
possibiliti
es(Fe) Fe3Co

# of 
possibiliti
es(Co)

4A 1 4A 1
3A.B 1 3A.B/n 3

3A.B/i
3A.B/f

2A_l.2B 1 2A_l.2B_a 2
2A_l.2B_b

2A_z.2B 1 2A_z.2B_a 2
2A_z.2B_b

2A_l.B.C 1 2A_l.B.C_a 3
2A_l.B.C_b
2A_l.B.C_c

2A_z.B.C 1 2A_z.B.C_a/n 4
2A_z.B.C_a/f
2A_z.B.C_b
2A_z.B.C_c  

Table 3-1. Nomenclature for describing configurations space with at most 3 adsorbates on 

bridge sites of a (2x2) bcc(111) unit cell. Here capitalized characters A, B, and C indicate 

a different adsorbate on the surface (such as N, NH, NH2, NH3, H, and V (vacancy)). For 

the 2A stoichiometry, the lower case “_z” suffix denotes a zig-zag arrangement, while “_l” 

indicates linear. Lower case “/n”, “/i”, and “/f” suffixes (for near, intermediate, and far, 

respectively) indicate the distance between B species and Co. Lower case “_a”, “_b”, and 

“_c” suffixes indicate that Co is in the same column as A, B, or C, respectively. See Figure 

3-2 for a pictorial illustration. 
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4A

2A_l.2B_b

3A.B/n 3A.B/i 3A.B/f 2A_l.2B_a

2A_z.2B_b2A_z.2B_a 2A_l.B.C_a 2A_l.B.C_b

2A_l.B.C_c 2A_z.B.C_c 2A_z.B.C_b2A_z.B.C_a/f2A_z.B.C_a/n
 

Figure 3-2. Graphical illustration of the proposed nomenclature, covering all possible 

states in configurational space with at most 3 adsorbates on bridge sites of a (2x2) bcc(111) 

unit cell. A, B, C are used for species adsorbed on the bridge site. In this illustration, A = 

N atom (blue circle), B = vacancy, C = H atom (red circle). First, second and third layer Fe 

atoms are depicted as gold, grey and white circles respectively, while surface dopant Co is 

in pink. Figure 3-1 and Table 3-1 are ordered in descending A stoichiometry, from 4A to 

2A. A complete graphic illustration of all the possible states considered is included in the 

Supplementary Materials, Figure S3-1.  

 

3.3. Energy landscape. The most favorable pathways for converting 3H2 + N2 to 2NH3, 

with illustrations for T=673°K and p=20atm  

We carried out DFT calculations on a subset of 20 of the important configurations 

previously employed for investigating the HB process on Fe(111)[9] (the 20 for Fe become 

37 for the Co-doped case when considering the states differing by the position of Co). A 

2x2 unit cell of the bcc(111) surface is considered with a top-layer Co dopant and a variable 

number of H, N, NH, NH2, NH3 adsorbed species. For each configuration, we calculated 

the vibrational frequencies to obtain the free energy at the operational temperature. Then 
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we calculated the reaction barriers for the various reaction pathways. We finally used 

these values to find reaction sequences with lowest overall free energy barrier for the HB 

process of converting one N2 and three H2 to form two NH3.  

We take the free energy of the 3N_NH2 state as our reference point, with G=0 (which also 

allows a direct comparison with Ref. [9]. As shown below, this state has the highest 

occupancy in our kMC simulations for the Co-doped system at T=673°K, P(H2) = 15 atm, 

P(N2) = 5 atm,  and P(NH3) = 1 atm, for a total pressure of P=21 atm.  

It is worth noticing that, in contrast with pure Fe, Co doping stabilizes the 2N.NH2.2H 

configuration by 0.03-0.11 eV with respect to 2N.NH2.H (at 673K and 21 atm). 

We examined the barriers between all the states connecting though reactions of N2 and H2 

at various sites. This leads finally to the energy landscapes in Table 3-2 and Figure 3-3, 

involving 37 intermediate configurations involved in the lowest maximum barriers. We 

include in Figure 3-2 the states we found to be important for the steady state kinetics 

described in section 5. The favorable path shown in Figure 3-3 and Table 3-2 includes the 

transitions shown in Table 3-2 (all energies in eV). 

nomenclature(Co1) Co_set1 nomenclature(Co2) Co_set2 name(Fe) Fe 

01_3N.NH2/i 0.00 02_3N.NH2/n 0.13 3N.NH2 0.00 

TS_01_03 0.57 TS_02_04 0.70 TS_3N.NH2_3N.NH2.H 0.57 

03_3N.NH2/i.H 0.28 04_3N.NH2/n.H 0.30 3N.NH2.H 0.27 

TS_03_05 1.35 TS_04_06 1.37 TS_3N.NH2.H_3N.NH3 1.20 

05_3N.NH3/f 0.39 06_3N.NH3/n 0.38 3N.NH3 0.30 

TS_05_08 1.49 TS_06_07 1.45 TS_NH3desorp 1.33 

08_3N.V/i 0.51 07_3N.V/n 0.46 3N 0.41 

TS_08_09 1.08 TS_07_10 1.03 TS_3N_3N.H 0.98 

09_3N.H/i 0.21 10_3N.H/n 0.20 3N.H 0.09 

TS_09_11 1.13 TS_10_12 1.12 TS_3N.H 1.01 

11_2N_z.V.NH_b 0.69 12_2N_z.V.NH_c 0.72 2N.NH 0.57 

TS_11_13 1.26 TS_12_14 1.29 TS_2N.NH_2N.NH.2H 1.14 
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13_2N_z.H.NH.H_

b 

0.78 14_2N_z.H.NH.H_c 0.70 2N.NH.2H 0.65 

TS_13_15 1.04 TS_14_16 0.96 TS_2N.NH.2H_2N.NH

2.H 

0.91 

15_2N_z.H.NH2_b 0.26 16_2N_z.H.NH2_c 0.25 2N.NH2.H -0.04 

TS_15_38 0.83 TS_16_39 0.82 TS_2N.NH2.H_2N.NH

2.2H 

0.53 

38_2N_z.NH2.2H_c 0.15 39_2N_z.NH2.2H_

b 

0.22 2N.NH2.2H 0.08 

TS_38_58 1.49 TS_39_57 1.56 TS_2N.NH2.2H_2N.N

H3.H 

1.48 

58_2N.H.NH3_b 0.47 57_2N.H.NH3_b 0.42 2N.NH3.H 0.36 

TS_58_29 1.42 TS_57_30 1.37 TS_NH3desorption 1.38 

29_2N_z.H.V_b 0.54 30_2N_z.H.V_c 0.56 2N.H 0.48 

TS_29_33 1.11 TS_30_33 1.13 TS_2N.H_2N.2H 1.05 

33_2N_z.2H_b 0.23 33_2N_z.2H_b 0.24 2N_z.2H 0.14 

31_2N_l.2H_a 0.10 32_2N_l.2H_b 0.20 2N_l.2H 0.07 

33_2N_z.2H_b 0.23 33_2N_z.2H_b 0.24 2N.2H 0.14 

TS_19_33 1.43 TS_19_33 1.43 TS_2N_2N.2H 1.38 

19_2N_z.2V_b 0.86 19_2N_z.2V_b 0.86 2N 0.81 

TS_19_52 1.69 TS_19_51 1.69 TS_N2adsorption 1.64 

52_2N_z.N2gamma/

n 

0.85 51_2N_z.N2gamma/

f 

1.04 2N.N2_gamma 0.90 

TS_52_54 1.29 TS_51_53 1.48 TS_N2dissociation 1.34 

24_4N -0.28 24_4N -0.28 4N -0.40 

TS_24_61 0.29 TS_24_61 0.29 TS_4N_4N.2H 0.17 

61_4N.2H 0.18 61_4N.2H 0.18 4N.2H 0.08 

TS_61_25 0.75 TS_61_26 0.75 TS_4N.2H_3N.NH.H 0.63 

25_3N.NH.H_a/n 0.03 26_3N.NH.H_a/f 0.25 3N.NH.H 0.05 

TS_25_01 0.63 TS_26_02 0.85 TS_3N.NH.H 0.65 

01_3N.NH2/i -0.52 02_3N.NH2/n -0.39 3N.NH2 -0.52 
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Table 3-2 Free energies along the favorable reaction pathway (36 states including 

transition state), organized in a parallel fashion. This compares the Fe, Co dopant set 1 and 

the Co dopant set 2. The transition state energy connecting every intermediate state is 

included. Data in this table is visualized in Figure 3-3. Important resting states such as 

3N.NH2, 2N.NH2.H, 2N.NH2.2H, and 2N_l.2H are shown in bold. The rate determining 

steps such as transition state from 2N.NH2.2H to 2N.NH3.H, transition state from 

2N.NH3.H to 2N.H, and transition state from 2N to 2N.N2_gamma are highlighted using 

bold characters as well. 

As for pure Fe, the NH3 production rate is dominated by 3 types of reaction steps:  

1). N2 dissociation and adsorption. This barrier for Fe with respect to resting state 2N_l.2H 

is 1.64 – 0.07 = 1.57 eV. For Co dopants, this number changes to 1.59 eV and 1.49 eV. 

2). Langmuir-Hinshelwood hydrogenation of NH2. This barrier for Fe with respect to 

resting state 2N.NH2.H is 1.48 – (-0.04) = 1.52 eV, while with Co dopants, this number 

changes to 1.34 eV and 1.34 eV. As noted above, there is a swap of resting state between 

2N.NH2.H for Fe and 2N_z.NH2.2H for Co.  

 3). NH3 desorption. This barrier for Fe with respect to the 2N_l.2H state is 1.38 – (-0.04) 

= 1.42 eV, while for Co dopants, this number changes to 1.27 eV and 1.15 eV. 

We find that the NH3 production pathway is similar overall to that on pure Fe. However, 

The Co surface dopant leads to a modified NH3 turn over frequency (TOF) because it has 

a reduced spin, which modifies the energetics of intermediate states and transition states 

as shown in Figure 3-3. 
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Figure 3-3.  Energy landscape for NH3 synthesis reactions with ¼ ml Co surface dopant 

under Somorjai condition, 673°K, 15 atm H2, 5 atm N2, 1 atm NH3. The lowest energy 

state 3N_NH2 is taken as a reference, assigning a free energy of zero. We illustrate the full 

pathway on pure Fe(111) in dashed grey and Co doping in solid blue and orange. Two sets 

of pathway regarding Co dopants are considered. Set 1 has NHx species far from Co 

dopant, while set 2 has NH2 near Co dopant in the resting state 3N.NH2. The major 

differences brought about by Co doping to the HB free-energy diagram on Fe-bcc(111) are 

in the energies of 2N.NH2.2H and 2N.NH2.H configurations relative to each other and with 

respect to 3N.NH2, as highlighted using red arrow in Figure 3-2.  

The major differences brought about by Co doping to the HB free-energy diagram on Fe-

bcc(111) are in the energies of 2N.NH2.2H and 2N.NH2.H configurations relative to each 

other and with respect to 3N.NH2, as highlighted using red arrow in Figure 3-2. Thus, as 

noted above, 2N.NH2.2H is less stable than 2N.NH2.H on pure Fe, but it becomes lower in 

energy on the Co-doped surface. Overall, these states are destabilized with respect to 

3N.NH2, which now becomes the resting state under conditions of P(H2) = 15 atm, P(N2) 

= 5 atm, P(NH3) = 1 atm, and T=673°K, which are realistic target operating conditions for 

a less energy-demanding HB process. 
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3.4. Discussion of the wavefunctions 

Since Fe is ferromagnetic, we analyzed the magnetic moments of the various atoms and 

the changes in the key steps of ammonia synthesis. Total magnetic moments for all the 

states along the pathway is reported in Table 3-1. We can compare the change in magnetic 

moment for Co and Fe directly. 

Configurations total 

mag 

μ(Co) μ(Fe) covalent 

bonds 

ratio(Co) ratio(Fe) ratio(Co)-

ratio(Fe) 

48_Fe3Co111 62.79       

01_3N.NH2/I 

 

55.74 -7.05 -7.66 10 70% 77% -6% 

02_3N.NH2/n 

 

55.87 -6.92 -7.66 10 69% 77% -7% 

03_3N.NH2/i.H 

 

55.28 -7.51 n/a 11 68% n/a  

04_3N.NH2/n.H 

 

55.31 -7.48 n/a 11 68% n/a  

05_3N.NH3/f 

 

55.50 -7.29 n/a 9 81% n/a  

06_3N.NH3/n 

 

55.56 -7.23 n/a 9 80% n/a  

07_3N.V/n 

 

55.97 -6.82 n/a 9 76% n/a  

08_3N.V/i 

 

55.86 -6.93 n/a 9 77% n/a  

09_3N.H/i 

 

55.65 -7.14 -7.75 10 71% 78% -6% 

10_3N.H/n 

 

55.54 -7.25 -7.75 10 73% 78% -5% 

11_2N_z.V.NH_b 

 

56.53 -6.26 -6.59 8 78% 82% -4% 

12_2N_z.V.NH_c 

 

56.67 -6.12 -6.59 8 76% 82% -6% 

13_2N_z.H.NH.H_b 55.46 -7.33 -7.48 10 73% 75% -1% 
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14_2N_z.H.NH.H_c 

 

55.54 -7.25 -7.48 10 72% 75% -2% 

15_2N_z.H.NH2_b 

 

57.70 -5.09 -5.4 8 64% 68% -4% 

16_2N_z.H.NH2_c 

 

57.53 -5.26 -5.4 8 66% 68% -2% 

17_2N_z.V.NH3_b 

 

58.01 -4.78 -5.3 6 80% 88% -9% 

18_2N.V.NH3_a/f 

 

58.03 -4.75 -5.3 6 79% 88% -9% 

19_2N_z.2V_b 

 

58.25 -4.53 -4.93 6 76% 82% -7% 

20_2N_l.2V_b 

 

57.70 -5.09 n/a 6 85% n/a  

21_2N_l.2V_a 

 

58.19 -4.60 n/a 6 77% n/a  

22_2N_z.N2alpha/n 

 

57.12 -5.66 -6.11 8 71% 76% -6% 

23_2N_z.N2alpha/f 

 

57.06 -5.73 -6.11 8 72% 76% -5% 

24_4N 

 

53.07 -9.71 -9.98 12 81% 83% -2% 

25_3N.NH.H_a/n 

 

54.09 -8.70 -8.84 12 72% 74% -1% 

26_3N.NH.H_a/f 

 

54.06 -8.73 -8.84 12 73% 74% -1% 

27_2N_edge_f.H_c 57.14 -5.65 n/a 7 81% n/a  

28_2N_edge_c.H_f 56.98 -5.81 n/a 7 83% n/a  

29_2N_z.H.V_b 

 

57.95 -4.84 n/a 7 69% n/a  

30_2N_z.H.V_c 

 

57.90 -4.89 n/a 7 70% n/a  

31_2N_l.2H_a 

 

56.98 -5.81 n/a 8 73% n/a  
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32_2N_l.2H_b 

 

56.52 -6.27 n/a 8 78% n/a  

33_2N_z.2H_b 

 

57.61 -5.18 n/a 8 65% n/a  

34_3N.NH_c 54.62 -8.17 n/a 11 74% n/a  

35_3N.NH_f 54.58 -8.21 n/a 11 75% n/a  

36_2N.NH2_TfSD 57.87 -4.92 n/a 7 70% n/a  

37_2N.NH2_TcSD 57.71 -5.08 n/a 7 73% n/a  

38_2N_z.NH2.2H_c 

 

56.92 -5.86 -5.93 9 65% 66% -1% 

39_2N_z.NH2.2H_b 

 

56.98 -5.81 -5.93 9 65% 66% -1% 

40_2N_z.V.NH3_c 

 

57.93 -4.86 -5.3 6 81% 88% -7% 

41_4N_sub n/a  n/a   n/a  n/a  n/a   

42_2N_edge_f.2H_c_sub n/a  n/a   n/a  n/a  n/a   

43_4N_2Co n/a  n/a   n/a  n/a  n/a   

44_4N_Co.Cosub_relax5 n/a  n/a   n/a  n/a  n/a   

45_4N_Co.Cothird_relax

5 

n/a  n/a   n/a  n/a  n/a   

46_4NFe n/a  n/a   n/a  n/a  n/a   

47_Fe111 n/a  n/a   n/a  n/a  n/a   

49_2N_z.N2prime/n 

 

56.38 -6.41 -6.59 10 64% 66% -2% 

50_2N_z.N2prime/f 

 

56.72 -6.07 -6.59 10 61% 66% -5% 

51_2N_z.N2gamma/f 

 

57.31 -5.48 -5.92 6 91% 99% -7% 

52_2N_z.N2gamma/n 

 

57.40 -5.39 -5.92 6 90% 99% -9% 

53_2N.N2delta/f 

 

57.25 -5.54 -5.54 6 92% 92% 0% 

total covalent character    75% 80% 

(77%*) 

-5% 
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Table 3-3. Analysis of change in spin along the reaction pathway. The total magnetic 

moment for each state and the change with respect to pure Fe are shown. The number of 

covalent bonds assumes the simple VB picture that each surface N can make 3 bonds, each 

NH can make two, each NH2 can make one as can H and that NH3 makes none.  Thus we 

assume each adsorbed N, NH, NH2, NH3, H will decrease the spin moment by 3, 2, 1, 0, 1 

respectively. 

We observed that Co dopant reduce the covalent character of the surface bond by an 

average of 5%. This is consistent with the electronegativity of Co (1.88) being slightly 

greater than Fe (1.83) [28]. We observed that surfaces with greater covalent character tend 

to raise the free energy G with respect to 3N.NH2, while less covalent surfaces lower the 

free energy.  

Thus for increased rates in NH3 production, we want to decrease the energy gap between 

stable states (shown in blue circles in Figure 3-3) and the high energy TS states (show in 

red circles of Figure 3-3). 2N.NH2.H, 2N.NH2.2H and 3N.NH2 configurations are further 

analyzed and attached in Figure S3-2.  

3.5. Kinetic modeling 

We used the QM-derived free-energy diagram discussed in Section 3 to predict HB reaction 

rates under steady-state conditions via a kinetic Monte Carlo (kMC) approach.[29]. In kMC, 

we evaluated rates using transition state theory [30] as (kBT/h)exp(-∆G†/kBT), where ∆G† 

is the difference in free energy between the starting state and the saddle point. In the case 

of ER reactions involving gas-phase species turning into adsorbates, we again use transition 

state theory, but for the reverse LH process, and then we invoke microscopic reversibility 

principle to calculate the rate of the direct process. Typically, we used 4 independent 

replicas and 1010 kMC steps in each replica, testing that the results so produced are 

converged within 5% in the production rate. 

We focused on conditions of P(H2) = 15 atm, P(N2) = 5 atm, P(NH3) = 1 atm, and T=673°K, 

which are realistic target operating conditions for a less energy-demanding HB process (to 

investigate possible hydrogen poisoning effects we also consider the case of P(H2) = 5 atm). 
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In order to achieve an unbiased comparison, we contrasted the pure Fe and Co-doped 

systems using a set of corresponding configurations (the correspondence is typically one-

to-two because of the freedom associated with the presence of Co) and identical numerical 

parameters. Representative results are reported in Table 3-2, where we include kMC 

predicted: turn-over-frequency (TOF), per-cent populations (i.e., per-cent residence times), 

apparent free energy differences [evaluated as minus the logarithm of ratio of populations 

= Pi/P0, where the reference states are chosen as P0 = P3N_NH2], and thermodynamic free 

energy differences (ΔG) for selected configurations in a (2x2) unit cell under steady-state 

of ammonia synthesis.  

Significantly, at P(H2) = 15 atm, P(N2) = 5 atm, P(NH3) = 1 atm, and T=673°K, we predict  

TOF =5.70 NH3 molecules per second per (2x2) site on the Co-doped surface, compared 

to a predict TOF = 2.45 NH3 molecules per second per (2x2) site for pure Fe-bcc(111). 

Thus Co doping of the top layer accelerates NH3 synthesis by a factor of 2.3.  

In the introduction we quoted that on the pure Fe(111) surface we found the TOF = 17.7/sec 

from theory and 9.7/sec from experiment[9]. This was for a NH3 pressure of 1.5 torr. For 

pure Fe, NH3 acts as a poison so that increasing the NH3 pressure to 1 atm reduces the 

TOF to 5.70/sec. On the other hand, for the Co-doped Fe(111) surface, reducing the NH3 

pressure to 1.5 torr changes the TOF to 51.3/sec. 

Stoichiometric reactant conditions are near-optimal for these systems. Thus we predict that 

reducing the H2 pressure from 15 atm to 5 atm decreases production rates in pure Fe to 

TOF = 0.72 NH3 molecules per second per (2x2) site, and decreases the production rate in 

Co-doped Fe to TOF=0.75 NH3 molecules per second per (2x2) site, which also reduces 

the acceleration ensured by Co doping. 

These results can be rationalized as follows. As anticipated in Sections 3, 4, the increase in 

catalytic efficiency for Co doping are basically associated with a destabilization of the 

2N.NH2.2H and 2N.NH2.H configurations relative to 3N.NH2, which now becomes the 

resting state under conditions of P(H2) = 15 atm, P(N2) = 5 atm, P(NH3) = 1 atm, and 

T=673°K. Indeed, Table 3-3 show that the population of 3N.NH2 under steady-state 

increases from 29% to 79% in comparing pure Fe to Co-doped, while the population of 
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2N.NH2.H drops from 48% to 1.3%, comparing pure Fe to Co-doped (we use the sum of 

Co_set1 and Co_set2 configurations). We note here that the steady-state apparent ΔG (i.e., 

the logarithm of the relative populations) for the most relevant states, reported in Table 3-

2, show that the HB process before and after the ammonia desorption is not far from 

equilibrium. The rate-determining step under the chosen conditions is associated with 

hydrogen migration from 2N.NH2.2H to 2N.NH3.H. Co doping does not substantially alter 

the free energy difference between this saddle point and the 3N.NH2 initial state. However, 

on the pure Fe surface 2N.NH2.H is the resting state, which is lower in free energy by ≈

0.03 eV with respect to 3N.NH2. The destabilization of 2N.NH2.H and 2N.NH2.2H due to 

Co doping, pushes these states above 3N.NH2, restores this configuration as the resting 

state, thus reducing the overall reaction free-energy barrier calculated as the free-energy 

difference between the resting state and the [2N.NH2.2H→2N.NH3.H] saddle point. 

Actually, this destabilization is greater than strictly necessary to achieve HB acceleration: 

an ideal dopant would bring both 2N.NH2.2H and 2N.NH2.H close to the zero of free-

energy, i.e., 3N.NH2. 

 
T=673, pH2=15, pN2=5, pNH3=1 – Fe T=673, pH2= 15, pN2=5, pNH3= 1 – Co 

configuration ti (%) -ln(Pi/P0) ΔG ti (%) -ln(Pi/P0) ΔG 

3N.NH2 29.32   0.00 0.00  71.01/7.54 0.00/0.13 0.00 

3N.H  5.11   0.10 0.09   1.46/1.75 0.23/0.21 0.21/0.20 

2N.NH2.H 47.95  -0.03 -0.04   0.61/0.74 0.28/0.26 0.26/0.25 

2N_z.NH2.2H  6.06   0.09 0.08   4.07/1.25 0.17/0.23 0.15/0.22 

4N  3.72   0.12 -0.40   1.13 0.24 -0.28 

2N_z.2H  1.70   0.17 0.14   7.11/1.30 0.13/0.23 0.23/0.24 

2N_l.2H  5.59   0.10 0.07   0.68 0.27 0.10/0.20 

TOF from 

kMC 

NH3 

mol/s/(2x2) 

2.45 5.70 

total  80 186 
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NH3mol 

3N_NH3 ↔ 3N 39 63/30 

2N_NH3_H↔ 

2N_H 
41 63/30 

 T=673, pH2=5, pN2=5, pNH3=1 – Fe T=673, pH2= 5, pN2=5, pNH3= 1 – Co 

configuration ti (%) -ln(Pi/P0) ΔG ti (%) -ln(Pi/P0) ΔG 

3N.NH2 60.67 0.00 0.00 83.73/8.98 0.00/0.13 0.00 

3N.H  3.47 0.17 0.16  0.61/0.72 0.29/0.28 0.28/0.27 

2N_z.NH2.H 10.88 0.10 0.09  0.09/0.10 0.40/0.39 0.39/0.38 

2N_z.NH2.2H  0.79 0.25 0.24  0.33/0.10 0.32/0.39 0.31/0.38 

4N 22.99 0.06 -0.27  4.01 0.18 -0.15 

2N_z.2H  0.13 0.36 0.34  0.33/0.06 0.32/0.42 0.43/0.44 

2N_l.2H  0.43 0.29 0.27  0.03 0.46 0.30/0.40 

TOF from 

kMC 

NH3 

mol/s/(2x2) 

0.72 0.75 

total  

NH3mol 
39 36 

3N_NH3 ↔ 3N 20 24/-6 

2N_NH3_H↔ 

2N_H 
19 24/-6 

Table 3-4. Results from kMC simulations using QM/DFT data under steady-state ammonia 

synthesis at 673 K and pressures of: P(N2) = 5 atm, P(NH3) = 1 atm, and two different H2 

pressures: P(H2) = 15 or 5 atm. Per-cent of populations (i.e., per-cent residence times) = 

ti(%), apparent free energy differences [evaluated as minus the logarithm of ratio of 

populations = Pi/P0, where P0 = P3N_NH2], and thermodynamic free energy differences (ΔG) 

for selected configurations in a Fe(111)-(2x2) unit cell either pure (left – Fe) or Co-doped 

(right – Co). For the Co-doped case, values for configurations only differing by the position 

of Co are reported separated by a slash symbol (“/”). Temperature in Kelvin, pressure in 

atmospheres, free-energy in eV. We also report turn-over-frequencies (TOF), i.e., NH3 
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molecules produced per second per (2x2) unit cell under the given conditions 

[NH3mol/s/(2x2)], and total number of NH3 molecules produced in the kMC runs (total 

NH3mol), further partitioned into the 2 main steps involving NH3 adsorption/desorption: 

3N_NH3 ↔ 3N; 2N_NH3_H ↔ 2N_H. 

3.6. Summary and conclusions 

We report here a comprehensive study of the mechanisms underlying NH3 synthesis on 

Co-doped Fe bcc(111) catalysts. We calculate the reaction barriers explicitly for all 12 

important steps involved and consider both Langmuir-Hinshelwood (surface species 

reacting with surface species) and Eley-Rideal (gas phase species reacting with surface 

species) processes. The QM was at the level of PBE including the D3 London dispersion 

(van der Waals attraction) corrections as was previously applied successfully to the Haber 

Bosch synthesis on pure Fe(111).[9] Thus considering a large (20) number of 

configurations with varying stoichiometry (actually a larger number, 37 vs. 20, due to the 

greater freedom induced by Co doping), correcting the DFT for phonons to get free 

energies at experimental reaction conditions, and carrying out extensive kinetic Monte 

Carlo simulations to obtain the steady state populations at target operating conditions 

(673°K , 15 atm H2, 5 atm N2, and 1 atm NH3),  we predict TOF=5.70 for Co doped 

Fe(111) which is 2.3 times faster than the TOF= 2.45 for pure Fe under the same 

conditions. These results show that alloying Fe with Co can appreciably increase TOF 

for NH3 production. We are not aware of experiments or previous theory suggesting this 

means of improving NH3 production, which could lead to slightly less severe conditions 

for the same rates or guarantee a reduction by a factor larger than 2 in the energy 

consumption even maintaining the same conditions and industrial plants as used presently. 

Thus these results suggest experimental tests with modest doping of Co. 

We note here that our calculations considered doping only of the top layer. We calculate 

that doping Co into the 2nd layer is more stable than doping into the by 0.19 eV, so atomic 

layer deposition experiments should deposit much more than ¼ ML to ensure the ¼ doping 

at the surface.  However, we anticipate that alloying Fe with 25% Co would lead to the 

conditions we calculate.  
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Associated content 

Supporting Information. Complete sampling of possible states. Pictorial illustration of 

reaction pathway for two sets of Co doped structures.  
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C h a p t e r  4  

Dramatic Differences in CO2 Adsorption and Initial Steps of 
Reduction Between Ag and Cu 

Yifan Ye, Hao Yang, Jin Qian, Hongyang Su, Kyung-Jae Lee, Tao Cheng, Hai Xiao, Junko 
Yano*, William A. Goddard III*, and Ethan Crumlin*. " Dramatic differences in CO2 
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Abstract 

Converting carbon dioxide (CO2) into liquid fuels and synthesis gas is a national priority. 

But there is no experimental information on the initial atomic level events for CO2 

electroreduction on the metal catalysts to provide the basis for developing improved 

catalysts. In order to provide this experimental information, we used ambient pressure X-ray 

photoelectron spectroscopy (APXPS) to examine the processes as Ag is exposed to CO2 both 

alone and in the presence of H2O at 298 K, the results of which we correlated with quantum 

mechanics density to provide definitive interpretations. We find that physisorbed (l-) and 

chemisorbed (b-) CO2 are not stable on pure Ag (111) surface, but rather gaseous CO2 reacts 

with absorbed O on Ag surface to form a chemisorbed surface species (O=CO2
δ−). Adding 

H2O and CO2 then leads to up to four water attaching on (O=CO2
δ−) and two water attaching 

onto b-CO2 on the surface. On Ag we find a very different and much more favorable 

mechanism involving the O=CO2
δ− compared to that involving b-CO2 on Cu. Each metal 

surface modifies both the chemical speciation and the respective adsorption energies, thus 

providing a new basis for tuning CO2 adsorption behavior to facilitate selective product 

formations. 

4.1 Introduction 

In order to close the anthropogenic carbon circle while creating a sustainable hydrocarbon-

based energy cycle, it is essential to discover new electrocatalysts that can efficiently convert 
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carbon dioxide (CO2) into liquid fuels and feedstock chemicals1-7. However, CO2 is highly 

inert, making the CO2 reduction reaction (CO2RR) unfavorable thermodynamically. High 

throughput experimental and computational screening methods have been employed to 

discover new advanced CO2 reduction catalysts but these approaches are based on 

preconceived notions of the reaction mechanisms and have not produced dramatic 

successes8-11. To accelerate progress, we believe that it is essential to develop a complete 

atomistic understanding of how CO2 interacts with and is transformed by the catalyst surfaces 

to provide guidance to design the catalyst to selectively tune the mechanisms for adsorption 

and activation. 

Electrocatalysts such as Au, Ag, Zn, Pd, and Ga are known to yield mixtures of CO and 

H2 at varying ratios depending on the applied voltage12-16, with Ag exhibiting particularly 

high activity and selectivity to CO vs. H2. We sought to obtain a comprehensive 

understanding of how CO2 and H2O molecules adsorb on the Ag surface and interact to 

initiate CO2 dissociation and subsequent product formation. Here we report our findings 

combining in situ ambient pressure X-ray photoelectron spectroscopy (APXPS) with 

quantum mechanics (QM), which leads to unexpected and exciting findings for CO2 

surface adsorption on Ag surface that are quite different than observed previously for Cu 

surfaces (Figure 4-1a, b).  
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Figure 4-1 | Overview of surface adsorptions and reactions of CO2 on Cu and Ag 

surfaces under various conditions. a,b We earlier reported CO2 adsorption on Cu (111) at 

298 K both alone and in the presence of H2O. These studies concluded that subsurface 

oxygen leads to a surface Cu+ atom that stabilizes l-CO2 sufficiently strongly to be stable at 

298 K and 0.7 Torr (a). In the presence of subsurface O, we found that H2O adsorbs 

preferentially to the Cu+ site while interacting sufficiently strongly with CO2 to stabilize the 

b-CO2, (through a hydrogen bond (b)) sufficiently to be stable at 298 K and 0.7 Torr total 

pressure17. c,d, Based on our new studies of adsorbed CO2 on the Ag surface alone and in 

the presence of H2O at 298 K. We find that l-CO2 is not stable on Ag surface even at CO2 

pressure of 0.3 Torr at 298 K. However, CO2 reacts strongly with surface oxygen to form a 

carbonic acid like structure (c). This O=CO2
δ− species can stabilize one to four adsorbed H2O 

through hydrogen bonding (d). Furthermore, b-CO2 can also be stabilized by a pair of surface 

adsorbed H2O each forming a hydrogen bond with an O of b-CO2 (d).  

For both Ag and Cu surfaces, we find that oxygen (O) plays an essential role to induce 

reactions involving CO2 and H2O, but the consequences for each metal are dramatically 

different. We find that subsurface O (which stabilized both the linear (l-) and bent (b-) CO2 

in the Cu system17,18) is not stable on Ag; quantum mechanics (QM) finds that putting an O 

in an Ag subsurface site goes without a barrier to an on-top three-fold (η3) site 

(Supplementary Figure 4-1a). Here we consider two types of gaseous conditions at 298 K: 

0.3 Torr CO2 only (Figure 4-1c), and 0.3 Torr CO2 plus 0.15 Torr H2O (Figure 4-1d) on 

both clean Ag surfaces and with deliberate addition of surface O. As the (111) surface is the 

closest packed, energetically the most favorable facet for fcc metals (such as Ag and Cu), 

experimental evidence indicated that silver (and Cu) catalyst treated with high temperature 

exposes this facets17,19,20. Thus our simulations were performed based on the Ag (111) 

surface to correlate with the experimental observations on vacuum annealed polycrystalline 

Ag surface.  

4.2 Methods 
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QM calculations: All calculations were carried out with the Vienna Ab-initio Simulation 

Package (VASP). We used the Perdew–Burke–Ernzerhof (PBE) formulation of the 

generalized gradient approximation (GGA) exchange-correlation functional using the 

projector-augmented (PAW) method and including the D3 (Grimme, Becke, and 

Johnson) empirical corrections for long-range London dispersion. We used a plane-wave 

basis set cutoff of 600 eV. Reciprocal space was sampled by a Γ-centered Monkhorst–

Pack scheme with 3 x 3 x 1 for all calculations. For full details see Supplementary 

Methods.  

In-situ ambient pressure X-ray photoelectron spectroscopy measurements: Ambient 

pressure XPS measurements were performed at Beamline 9.3.2 of the Advanced Light 

Source, Lawrence Berkeley National Laboratory.43 The pristine Ag surface was in-situ 

prepared in the vacuum chamber by repeated argon sputtering (2keV, 60mins) and vacuum 

annealing (900 K, 60mins), leading to a clean surface with no detectable carbon- and oxygen- 

based contamination. During the APXPS measurements performed at 298K, CO2 partial 

pressure was kept at 0.3 Torr for CO2 adsorption, whereas the total pressure was kept at 0.45 

Torr with 0.3 Torr CO2 and 0.15 Torr H2O. The purities of the dosing gases (CO2, H2O) were 

in-situ monitored by a conventional quadrupole mass spectrometer to ensure no additional 

gas cross-contamination (especially, the CO and H2 gases). The XPS spectra were collected 

at an incident photon energy of 670 eV, in the following order: a low-resolution survey 

with a binding energy of 600 eV to –5 eV, then high-resolution scans of O1s, C1s and 

valence band. The IMFP for the photoelectrons was below 0.9 nm for all the spectra 

collected. For each condition, samples were equilibrated for at least 30 min before the 

measurement. By taking spectra at different sample spots and comparing spectra before 

and after beam illumination for 2hrs, we found beam damage on the sample is negligible 

during the measurements. For full details see Supplementary Methods.  

4.3 Results and Discussion 

CO2 adsorption on Ag surfaces. We start by carrying out QM studies to examine the 

stability of various surface adsorbates on pristine Ag surfaces, considering both l- and b- 
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CO2. The optimized structure for l- and b- CO2 is found to be unfavorable with Eads (QM 

electronic binding energies) = −0.15 eV and ΔG = +0.19 eV, and Eads = +0.77 eV and ΔG = 

+1.13 eV, respectively (Supplementary Figure 4-1b,c). These and all other ΔG values are 

from QM calculations including zero point energy, entropy, and specific heat to obtain ΔG 

at 298K and the pressure quoted.  

CO2 adsorption on oxygen treated Ag surfaces. We started the calculation by considering 

the possible promotion effect of sublayer oxygen that we found to stabilize CO2 adsorption 

on Cu surface. However, the QM calculation minimizes to surface oxygen for Ag.  In the 

presence of isolated surface O, we found that l-CO2 has ΔEads = −0.21 eV, but ΔG = +0.13 

eV (Supplementary Figure 4-1d). Thus a pressure of ~30 Torr would be required to stabilize 

l-CO2 on the O/Ag surface at 298 K. This contrasts with observations for Cu, where 

subsurface O stabilized the adsorption of l-CO2 on Cu surface under 0.7 Torr CO2 partial 

pressure at 298 K17 (Figure 4-1b). This attraction resulted from the subsurface O in a 

tetrahedral site inducing Cu+ character into the single Cu atom above it on the surface, which 

stabilized the l-CO2. This oxygen promotion effect was not observed for Ag because the O 

is chemisorbed on top of the Ag, which did not facilitate Ag oxidation (to Ag+)19,21-25. This 

contrasting result provides fresh insight into the tunability of CO2 adsorption on metal 

surfaces.  

We evaluated the stabilization of b-CO2 next to surface Oad on Ag, but the QM minimized to 

form a surface carbonic acid-like species (Supplementary Figure 4-1e) with a C=Oup double 

bond (1.222Å) pointing up while the other two O bind to adjacent three fold Ag(111) sites 

with C-O lengths of 1.365Å and 1.354Å and O-Ag distances of 2.276Å (Figure 4-2a and 

Supplementary Figure 4-2). This is not an ionic carbonate possessing three similar O atoms, 

as had been speculated previously26-28. We tried putting only one O bridging to the surface 

but the structure rotated to form the bidentate species. The CO2 bonding energy to form 

surface O=CO2
δ− is ΔEads = −0.75 eV, ΔG = −0.28 eV. We denote this carbonic acid-like 

adsorbate as O=CO2
δ− to indicate that the negative charge is on the two O binding to the Ag 

surface. The total charge of O=CO2
δ− is −1.26e− and charge on C is +1.46, leading to C1s 

binding energies (BEs) of −269.45 eV. The simulated BE value corresponds to 287.9 eV in 
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the experimental observation (Figure 4-2b). The properties of the surface adsorbate 

(including those discussed in the later section) are summarized in Supplementary Figure 4-

3, 4. The simulated vibrational frequency data for O=CO2
δ− (and those discussed later) are 

summarized in Supplementary Table 4-1. 

 

Figure 4-2 | The QM predictions and experimental observations of Ag surface with CO2 

adsorption alone and in the presence of H2O at 298 K. a, Predicted structures for O=CO2
δ− 

on Ag surface. The O=CO2
δ−

 C1s peak BE has been set as the reference point for subsequent 

experiments with H2O. b, The C1s APXPS spectra for Ag surfaces in the presence of 0.3 

Torr CO2 at 298 K. One single C1s peak representing O=CO2
δ− was observed. c, b-CO2 

becomes stabilized by a pair of H2Oad each forming a hydrogen bond (HB) with an O of b-

CO2, leading to ΔG of −0.18 eV with respect to desorbing H2O and CO2. d,e, The adsorbed 

O=CO2
δ− species stabilizes one or two H2Oad via HBs to the Oad and two more water with 

HBs to the Oup. O=CO2
δ− stabilizes the 1st, 2nd, 3rd, and 4th H2O on this site with ΔG of −0.41 

eV, −0.45 eV, −0.37 eV, and −0.19 eV, respectively. f, The C1s APXPS spectra and the peak 

deconvolution results for Ag surfaces in the presence of 0.3 Torr CO2 and 0.15 Torr H2O at 

298 K. This deconvolution used the peak separations from the theory. The new surface 

adsorbates, (O=CO2
δ−)-(H2O)1,2 and (b-CO2)-(H2O)2, are observed experimentally in the 
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APXPS measurements, showing up as the two new peaks at 0.4 eV and 0.8 eV, lower than 

the O=CO2
δ− peak. The species (O=CO2

δ−)-(H2O)3,4 do not lead to additional peaks, because 

they are located at position that overlaps with that of O=CO2
δ−.  

The adsorption states of CO2 on various Ag surfaces at 298 K were monitored by C1s 

APXPS. The pristine Ag surface showed no detectable carbon- and oxygen- based 

contamination (Supplementary Figure 4-5), while dosing O2 under different experimental 

conditions resulted in various oxygen coverages on Ag surface (Supplementary Figure 4-6).  

We partition the C1s spectra obtained on clean and oxygen-covered Ag surfaces into two 

parts: (1) High binding energy region from 286 eV to 290 eV, showing the surface adsorbate, 

O=CO2
δ− at 287.9 eV. O=CO2

δ− is the only stable species on the Ag surface when exposed 

solely to CO2 (no H2O is present), leading to a single C1s peak in the adsorbate signal region 

of the APXPS spectra (Figure 4-2b and Supplementary Figure 4-8). (2) Low binding 

energy region from 282 eV to 286 eV represents the surface reaction products. The chemical 

species can be assigned as atomic C or carbide (283.0 eV), sp2 C=C (284.2 eV), sp3 C-C 

(285.2 eV), and C-O(H) (286.0 eV)29-32.  

Formation of this carbonic acid-like species requires Oad, which can be constituted from O2 

pre-dosing and CO2 self-decomposition prior to the CO2 adsorption. As the initial surface 

Oad coverage is increased (Supplementary Figure 4-6), CO2 can directly adsorb on the 

surface to form O=CO2
δ−. This suppresses CO2 dissociated surface carbon formation as 

evident in the decrease of the surface carbon (mainly the sp2 C=C29-32) C 1s signals 

(Supplementary Figure 4-9), resulting in more available surfaces sites to increase the amount 

of adsorbed O=CO2
δ− (Supplementary Figure 4-8).  

Moreover, the experimental O1s spectra shown in Supplementary Figure 4-6 provide insight 

to elucidate the surface chemistry. The two peaks that represent 2 O atoms attached to Ag 

surface and the single O atom in the C=O bond, were used to fit the spectra. The energy 

difference between these two peaks was set as 0.7 eV based on the QM results. This leads to 

2:1 peak intensity ratio. Thus the peak fitting of the experimental data supports the QM 

results. By further comparing the C and O signals, we obtained that the C:O atomic ratio are 
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1:2.85, 1:3.13, and 1:2.97 for adsorbates on pristine and low and high oxygen covered Ag 

surfaces, which are all close to 1:3, providing another strong evidence of the formation of 

CO3
δ− structure on Ag surface.  

 

Figure 4-3 | The C1s signal of surface adsorbate increase as a function of CO2 dosing 

time. The adsorbate signals for 300 mTorr CO2 adsorption alone and in the presence of 

1mTorr O2 were recorded at an increased dosing time, shown as red and blue points, 

respectively. A black line across the data point is used for the eye guidance. The peak 

intensity is the raw intensity without considering the signal decay due to introducing gases. 

The adsorption of CO2 on pristine Ag surface both alone and at the presence of 1 mTorr O2 

at 298 K were investigated by recording the C1s peak intensity as a function of gas dosing 

time (Figure 4-3). The first spectrum was recorded after dosing CO2 for 5 mins, which is the 

time period needed to reach 0.3 Torr pressure from the vacuum. In the case of the CO2 

adsorption, the adsorbate peak is negligible in the first spectrum recorded after 5 mins of CO2 

dosing, and it increased significantly as a function of increasing CO2 dosing time. It reached 

equilibrate state after 60 mins gas adsorption. Adding O2 with CO2, even a ratio of 1:300, 
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significantly promoted the process of CO2 adsorption on metallic Ag. The adsorbate signal 

is strong in the first spectrum, and it did not change dramatically as a function of the 

increasing dosing time. Since CO2 adsorption on clean (non-oxygen pretreated) Ag surface 

requires a CO2 dissociation process prior to the formation of the final surface adsorbate, the 

dynamics of O=CO2
δ− formation on clean Ag surface is slower than that on the oxygen 

covered Ag surface. In the case of CO2 adsorption on pristine Ag surface, surface O 

formation requires an additional process of CO2 dissociation when interacting with the Ag 

surface. Moreover, since surface graphite carbon layer from CO2 dissociation occupied the 

Ag sites and further decreased the O=CO2
δ− coverage on the Ag surface, an increased 

adsorbate signal intensity was observed when co-dosing CO2 with O2. It is worth to note that, 

during this dynamic process, the O:C atomic ratio were calculated to be around 3:1, proving 

the surface adsorbate of CO3
δ− structure, as shown in Supplementary Figure 4-10.  

CO2 adsorption on Ag surfaces in the presence of H2O.  

The QM studies find that the l-CO2 configuration on Ag surface is not stable even 

considering the possible promotion effects of both Oad and adsorbed water (H2Oad) 

(Supplementary Figure 4-1f). Adding H2O to the surface with O=CO2
δ− formed from 

gaseous CO2 leads to two groups of structures stable at 298 K and the applied pressures 

(Figure 4-1d). First, a pair of surface H2O stabilizes b-CO2 on the Ag surface by forming 

two hydrogen bonds (HBs) between the H2Oad and CO2 (Figure 4-2c). Second, O=CO2
δ− 

can stabilize up to 4 H2O molecules through formation of HBs to the surface bonds of 

O=CO2
δ−. The 1st and 2nd H2Oad each forms a hydrogen bond to one Oad bonded to the surface 

(Figure 4-2d), while adding the 3rd and 4th H2O forced the C=Oup bond to rotate from being 

perpendicular to the surface to being nearly parallel to the surface, allowing the formation of 

HB from a 3rd and 4th surface H2Oad to the two sp2 lone pairs on the C=Oup unit (Figure 4-2e 

and Supplementary Figure 4-2). From QM predictions, the 1st and 2nd H2Oad shift the C1s 

from −269.45 eV to −269.09 eV and −269.15 eV, while the 3rd and 4th H2Oad shift the C1s 

back to −269.34 eV and −269.50 eV, nearly the same BE’s as for no H2Oad bonding (Figure 

4-2f). Considering that the O=CO2
δ− and surface water stabilize each other through HB, an 

increase in the surface adsorbate coverage when dosing CO2 in the presence of H2O is 
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expected. This was experimentally observed as a dramatic adsorbate signal increase of C1s 

spectra compared to that from the adsorption of CO2 alone (Supplementary Figure 4-8).  

The tunability of CO2 adsorption on metal surfaces. Activating inert CO2 to b-CO2 

requires both a change of the geometric molecular structure and accommodation of extra 

charge. For Cu, b-CO2 is stabilized by a subsurface O combined with a single surface 

adsorbed H2Oad while for Ag it is stabilized by two adsorbed H2Oad. The b-CO2 with surface 

H2O configuration leads to a similar amount of charge transferred directly from the metal 

catalyst to the C for both Cu and Ag. Interestingly, the b-CO2 on Ag and Cu surfaces showed 

similar charge distribution but different C1s binding energy peak position. This may be 

ascribed to the increased final state screening effect of Cu on surface b-CO2 due to the smaller 

distance between the surface adsorbate and the metal substrate (2.55 Å for C-Ag vs. 1.69 Å 

for C-Cu) 33. The direct Ag-C interaction in (b-CO2)-(H2O)2 leads to a −0.67e− charge 

accumulating on the adsorbed CO2 molecule which is larger than the −0.3e− for the O=CO2
δ− 

configuration (compared to Oad) (Figure 4-4). Moreover, adding surface H2O led to 

additional charge redistribution through the hydrogen bonding (Figure 4-4). Attaching more 

water to O=CO2
δ− decreased the total charge on adsorbates, while the 1st H2O decreased the 

charge on C atoms to +1.27 and the 2nd to 4th shift it back to +1.48, nearly the same as for no 

H2O (Figure 4-4).  
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Figure 4-4 | The electronic properties of various surface adsorbates on Ag and Cu. The 

charge distribution (calculated by performing Bader Charge Analysis on optimized 

structures34-36) on the C, O and the adsorbates are summarized, with the corresponding C1s 

BE revisited. The various configurations of the adsorbates on the surface modified the charge 

transfer process, leading to different charge distribution on the adsorbates. Compared to l-

CO2 (only observed on Cu surface), CO2 in the bent configuration exhibits extra charge 

accumulation. b-CO2 is stabilized on Ag only with two surface H2O but the charge 

distribution is similar to b-CO2 on Cu surface. However, their different distances to the Ag 

and Cu surface, lead to different C 1s peak BE’s. With the formation of the first two hydrogen 
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bonds to surface H2O, the total charge on O=CO2

δ− decreases, which decreases the C1s 

BE by ~ 0.30 eV. But adding the 3rd and 4th H2O with HB to the C=Oup, of the O=CO2
δ− 

increases the charge, shifting the BE back to 0.05 eV above the peak for no H2O. Thus the 

predicting C1s shifts and charge distribution on surface adsorbates are fully consistent with 

the experimental observed C1s BE. These observed differences show the tunability of CO2 

adsorption on the metal surfaces.  

This work highlights that the charge transfer configurations are responsible for the tunability 

of CO2 adsorption on the metal catalyst surface. These results suggest two modes for 

stabilizing adsorbed CO2. In the case of Cu, a subsurface O provided a positive Cu+ on the 

surface that stabilized water molecule sufficiently to stabilize b-CO2. This mechanism has 

been studied previously37. 

For Ag there is no subsurface O, but the surface Oad promotes the formation of surface 

carbonic acid-like species, O=CO2δ−, which leads to a very different reaction mechanism 

for Ag than for Cu. This new insight requires re-examining the subsequent steps of reactions 

to activate O=CO2δ− to form products and how this depends on surface structure, solvent, 

pH, applied potential, the presence of anions and cations, and alloying with nonmetals (S, P, 

N, Cl) that might change the local charges and structures.   

Proposed CO2 reduction reaction pathway on Ag and Cu. The CO2 adsorption on Ag 

contrasts dramatically from the results on Cu (Supplementary Table 4-2) providing possible 

explanations for why these metal catalysts have very different CO2 reduction performances. 

For Cu our full explicit solvent QM calculations for the initial step of CO2 to CO found that 

hydrogen bonding with the explicit solvent forms a similar b-CO2 stabilized by two surface 

H2O37. In that case, the next step is for one of these two H2O molecules to transfer an H to 

form the HOCO intermediate plus OHad and then a 2nd surface H2O transfers an H to the OH 

of HOCO to form H2O plus OHad, leading to COad, (this general reaction pathway is depicted 

in Figure 4-5a).  

For Ag with (b-CO2)-(H2O)n, Figure 4-5a shows that the QM predicted free energy barrier 

is 0.99 eV on Ag for protonating the complex of b-CO2 with two H2O to form HOCO* plus 
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OH* and H2O (Supplementary Figure 4-11), leading to a total barrier of hydrogenation of 

CO2 to HOCO* of −0.18+0.99 = 0.81 eV (Figure 4-5a). This energy barrier is comparable 

to that on Cu, which is 0.80 eV37.  

 

Figure 4-5 | The QM predicted kinetic pathway for the CO2 hydrogenation process 

from full explicit solvent calculations. a. The reaction pathway starting with b-CO2, the 

energy level of each step is referenced to gaseous (g-) CO2 and g-H2O; b. The reaction 

pathway starting with O=CO2
δ−, the energy level of each step is referenced to g-CO2, g-H2O 

and surface Oad. The first step was shown in Figure 4-2, representing the stable adsorption 

configuration observed on the catalyst surface. The energy barrier information obtained from 

our climbing image nudged elastic band (NEB) calculations are detailed in Supplementary 

Figure 4-11. We consider here the case of O=CO2
δ− with 2H2O to compare directly with b-

CO2+2H2O. 

Surprisingly for Ag with (O=CO2
δ−)-(H2O)n clusters we find a different mechanism that is 

significantly more favorable. The discovery that (O=CO2
δ−)-(H2O)n is a stable surface cluster 
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is most unprecedented, differing dramatically from our previous understanding of CO2 on 

a metal surface, which essentially all involve (b-CO2)-(H2O)n configurations38-42.  

We used QM to discover the mechanism of activation for the carbonic acid-like species on 

Ag. We find that the first step is for the H2O hydrogen bonded to the surface O to transfer an 

H to form the (C=O)(O)(OH) intermediate plus OHad, as shown in Figure 4-5b. The QM 

energy barrier is 0.62 eV, which is dramatically lower than the value of 0.80 eV for Cu, 

perhaps explaining the faster rate for Ag. Thus the barrier of hydrogenation of CO2 to 

OCOOH* of (−0.28)+(−0.41)+(−0.45)+0.62 = −0.52 eV (Figure 4-5b and Supplementary 

Figure 4-11b). This energy barrier is much smaller than for Cu. In particular, it is important 

to note that the energy levels of all the reaction steps starting with O=CO2
δ− are negative. 

This suggests that we might be able to see this reaction in APXPS by simply increasing the 

temperature. These results predict that the most energetically favorable reduction reaction 

pathway to hydrogenate CO2 to HOCO* involves the O=CO2
δ− configuration present only 

on Ag surface. This process is unprecedented and has never even been previously 

speculated. This result raises numerous questions about subsequent steps that will drive 

many new experimental and theoretical studies to determine the implications. Future studies 

will include the operando spectroscopic characterizations of these adsorbates under external 

potentials, and we will predict the Tafel slope to compare with previous experimental 

observations and to gain more insights into the new mechanism.   

Our studies have established a comprehensive but totally new picture of the first steps of 

CO2 activation on Ag. The dramatic differences with Cu show how interactions between 

adsorbate and catalyst can be altered by tuning the charge transfer between them through 

changing the adsorption sites, configuration, and by introducing surface co-dosing 

adsorbates. These findings provide fresh insights about CO2 adsorption species and the initial 

steps of CO2 reduction mechanism on Ag surfaces. It is dramatically different from those on 

Cu surfaces, where l-CO2 leads to b-CO2 and then directly to CO2 reduction32. 

4.4 Conclusions  
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Using synergistic experimental and theoretical analyses, we show that Cu and Ag operate 

entirely differently for the first step of activating CO2, even though the product CO is the 

same. We find that surface O (from O2 pre-dosing and CO2 self-decomposition) interacts 

with g-CO2 to form a carbonic acid like intermediate O=CO2
δ−, the only stable species on Ag 

surface (exposed to CO2 only). Adding H2O and CO2 then leads to attaching up to four water 

on O=CO2
δ−. In addition, two water stabilize b-CO2 on the Ag surface, which for Cu is the 

intermediate on the way to forming CO. On Ag we find a very different and much more 

favorable mechanism involving the O=CO2
δ−, one that has not been suggested or observed 

previously. This raises numerous questions about the subsequent steps that could motivate 

the exploration of new chemistries.  

These studies emphasize the power from combining BE, vibrational frequency, APXPS with 

QM for discovering the fundamentals underlying CO2 reduction. These unexpected findings 

will stimulate new thinking about the CO2 reduction reactions on metal surfaces, suggesting 

that stabilization of various surface adsorption configurations can be controlled through 

additives or alloying along with externally applied potentials to control the reaction 

processes.   
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Abstract 

XPS and QM studies of CO2 reduction on Cu(111) surface at 298K and ~ 1 torr pressure, 

showed that water plays a significant role by binding to a surface Cu+ site stabilized by a 

subsurface O and forming a hydrogen bond that stabilizes bent CO2 , the first step in the 

reduction mechanism, where l-CO2 + H2O=> b-CO2 +H2O => HCO2 + OH => CO + 2OH. 
1We recently reported that H2O and surface O play a critical role for CO2 reduction on 

Ag(111), but the mechanism is quite different, with surface O on Ag, activating CO2 into a 

carbonic acid O=CO2
δ- surface species that stabilizes surface H2O that subsequently activates 

the O=CO2
δ-. In this paper, we address the issues of the nature of these O species, where they 

come from, how to characterize them, and their concentration on the surface. Previous works2 

attempted to assign the species associated with the observed XPS peaks, but there remain 

questions. Here we combine Quantum Mechanics calculations, Chemical Reaction Network 

(CRN) kinetics simulation, and atmospheric XPS experiment (apXPS), to connect the atomic 

understanding and the macroscopic picture. Our protocol not only characterizes surface 

species qualitatively, but also quantifies their populations, leading to excellent agreement 

with experiment and it should be transferable to other heterogeneous catalytic systems of 

interests.  

 

5.1 Introduction 
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Ubiquitous in electrocatalytic systems are heterogeneous metal surfaces or metal 

nanoparticles with H2O based solvent. Examples include CO2 reduction (CO2RR) using Cu, 

Ag, and Au3–6 and Oxygen Evolution (OER) using Ru, Ir, Pt.7. Thus, understanding the 

adsorption of H2O at transition metal surfaces and their role in electrocatatysis is important 

for unraveling the chemistry at these solid−liquid interfaces.8 In particular, surface oxygen 

was found to interact with CO2 to form carbonate species 9; adsorbed H2O has been found to 

provide the H to protonate b-CO2 or CO3
δ- ; but OH was proposed to poison the surface by 

taking up 3-fold sites. Thus, characterizing the stability and concentration of oxygen 

containing species formed upon water adsorption are essential to the understanding of the 

first steps of adsorption, reaction, and selectivity to reduction products.  

Previous experimental methods employed to provide a macroscopic picture for water 

adsorption on metal surfaces, include low-temperature UHV-based experiments,9,10  

Temperature-programmed desorption spectroscopy (TPD),11-13 work function 

measurements,14 and ultraviolet spectroscopy or X-ray photoelectron spectroscopy (UPS and 

XPS). 15,16Among these experimental methods, XPS provides the sensitivity and resolution 

to distinguish oxygen containing surface species (surface O atom, subsurface oxygen atom, 

water clusters, or byproducts of H2O decomposition such as OH, by measuring the O1s core 

electron binding energy (BE). Often, the XPS peak assignments are based on combining 

databases17, previous publications, and chemical insight. In this work we created the 

following protocol to clearly and correctly reflects the chemistry:  

a) Quantum Mechanics (QM) screening of stable surface adsorbents based on free energy 

G, under experimental condition of temperature and pressure 

b) assignment of core level BE peak of stable surface species based on QM core level 

calculation  

c) Chemical Reaction Network (CRN) kinetics simulation of the concentration of each 

surface species  

d) deconvolution of XPS data using the QM core level shifts  
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e) cross-validation of experiment and theory by matching the intensity of deconvoluted 

peaks with the concentrations predicted from the CRN.  

The key advantage of this new protocol is that both the peak position and peak intensity of 

multiple species in a complex system can be predicted in an ab-initio fashion, and can be 

cross-validated with the XPS experimental data directly. We demonstrate this procedure by 

decoding the complex landscape of H2O adsorption on Ag(111) at 298K and different 

pressures, as shown in section 3. And then we predict isobar/isotherm conditions, which are 

both further tested and validated by experiments in section 4. At last, we predict the overall 

concentration landscape from room temperature to 500 ºC, and pressure from 10-6 torr to 1 

torr.       

5.2 Method          

5.2.a DFT Calculation 

All calculations, including geometric optimization, free energy correction, and O1s corelevel 

shift, were carried out with the Vienna Ab-initio Simulation Package (VASP).18 We used the 

Perdew–Burke–Ernzerhof (PBE) formulation of the generalized gradient approximation 

(GGA) exchange-correlation functional using the projector-augmented (PAW) method and 

including the D3 (Grimme, Becke, and Johnson)19 empirical corrections for long-range 

London dispersion.20 We used a plane-wave basis set cutoff of 600 eV. We sampled 

reciprocal space by a Γ-centered Monkhorst–Pack scheme with 3 x 3 x 1 for all calculations.  

The PBE-D3(BJ) level of DFT leads to a calculated lattice parameter of a = 4.012 Å for the 

bulk Ag structure at 0 K, slightly smaller than the experimental value 4.085 Å at 298K. 21 

We used experimental lattice parameter 4.085 Å to construct a two-dimensional periodic slab 

with four layers of Ag (111) atoms each of which consists of a (4 x4) unit cell (16 surface 

Ag per cell). We include 15 Å of vacuum in the z direction to minimize possible interactions 

between the replicated cells. The top two layers are relaxed while the bottom layers are kept 

fixed. The O1s core-level relative to gas phase H2O was used to the position of the center of 

the peak.  
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Calculations for the gas phase molecules used the PBE functional (as implemented in 

Jaguar) with the D3 empirical correction for London dispersion.19  

Free energy corrections of the enthalpy (H), entropy (S), and zero-point energy (ZPE) from 

Jaguar calculations are included in supplemental material. To obtain the total free energy, 

G=H-TS, for the gas molecules at temperature T, we add to the DFT electronic energy (E), 

the zero-point energy (ZPE) from the vibrational levels (described as simple harmonic 

oscillators), and the specific heat corrections in the enthalpy from 0 to T. The entropy (S) is 

evaluated from the same vibrational levels. To correct the free energy for pressure we assume 

an ideal gas and add RT*ln(P2/P1) with a reference pressure of P= 1 atm. 

5.2.b CRN Kinetics Simulation 

We relate the QM formation free energies to the reaction rate constant K, using the Arrhenius 

equation K= kB ∗ T
h
∗ exp � 𝑑𝑑𝑑𝑑

𝑘𝑘𝑘𝑘∗𝑇𝑇
� . For each reaction, the rate depends on both the 

concentration of reactants, as well as reaction rate constant. For example, reaction A+B => 

C has the rate of d[C]t
dt

=  [A]t ∗ [B]t ∗ K. As the reaction proceeds, products from previous 

reaction serve as the reactants for the next reaction. Our purposed CRN is shown in the Result 

Section. We obtained numerical solutions for the CRN22 at equilibrium state in terms of the 

population for each species for the (4x4) unit cell. The predicted population of each species 

is then used to determine the height of XPS peak (using the same full width at half maximum 

(FWHM) as the experimental value) for visualization purposes.  

5.2.c Experimental Methods 

Ambient pressure XPS/XAS measurements were performed at Beamline 9.3.2 of the 

Advanced Light Source, Lawrence Berkeley National Laboratory.23 The pristine Ag surface 

was prepared in-situ in the vacuum chamber by repeated argon sputtering (2keV, 60mins) 

and vacuum annealing (900 K, 60mins). During the APXPS measurements performed at 

298K, H2O partial pressure was kept either at 0.15 Torr or 10-6 Torr. The purities of the 

dosing gases (H2O) were in-situ monitored by a conventional quadrupole mass spectrometer 

to ensure no additional gas cross-contamination. The XPS spectra were collected at an 

incident photon energy of 670 eV, in the following order: a low-resolution survey with a 
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binding energy of 600 eV to –5 eV, then high-resolution scans of the O1s and the valence 

band. The IMFP (Inelastic mean free path) for the photoelectrons was below 0.9 nm for all 

the spectra collected. For each condition, samples were equilibrated for at least 30 min before 

measurements. By taking spectra at different sample spots and comparing spectra before and 

after beam illumination for 2hrs, we found beam damage on the sample is negligible during 

the measurements. 

5.3 Result and Discussion 

1) Adsorption geometry and O1s BE 

Six species were investigated using DFT, with their adsorption geometries shown in Figure 

1. We found that isolated OH* and O* adsorb at a fcc 3-fold site, while isolate H2O* adsorbs 

at the on-top site, consistent with previous calculations. 24 H2O molecule can also be 

stabilized by surface O* or OH* by forming hydrogen bonds, which we note as H2O*---hb. 

We find that Multilayer H2O molecules can be stabilized by OH*. The O1s core-level of 

each species is calculated using DFT with the relative values compared with experiment in 

Figure 2. The stability of these species as a function of temperature and pressure are shown 

and discussed in details in result section 2 and section 4.  

 

Figure 5-1. Assignment of oxygen containing species on Ag(111) surface by calculating the 

corelevel shift of O1s level, which shows excellent agreement with the ambient pressure XPS 
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experiment (all within 0.1eV). Five distinct peaks can be identified, including multilayer 

H2O*, H2O*, H2O*---hb (including both H2O*-OH, and H2O*-O), OH* and O*.  

2) Proposed CRN 

We propose a CRN consisting of 12 reactions, where ‘*’ denotes a surface site or adsorbed 

species, ‘g’ represents gas phase, and ‘---hb’ indicates hydrogen bond formed with 

neighboring O or OH. Two extreme pressure condition (10-6 torr and 100 mtorr under room 

temperature) are chosen as representatives. G1 stands for the free energy for 100 mtorr and 

G2 stands for the free energy for 10-6 torr. The favorable reactions with negative energy are 

highlighted in bold character.  

(1)       adsorption  O*+ H2Og + *-> O*+ H2O*---hb,  

      G1 = −0.28 eV, G2 = 0.02 eV 

(2)       adsorption  OH*+ H2Og+ *-> OH*+ H2O*---hb,  

      G1 = −0.14 eV, G2 = 0.16 eV 

(3)       reaction       O*+ H2O*---hb -> 2OH*,   

      G1 = −0.32 eV, G2 = −0.32 eV 

(4)       diffusion     H2O*---hb+ OH*->H2O*+ OH*,  

      G1 = 0.28 eV, G2 = 0.28 eV 

(5)       diffusion      H2O*---hb+ O*->H2O*+ O*,  

      G1 = 0.41 eV, G2 = 0.41 eV 

(6)       desorption  H2O* -> H2Og + *,  

      G1 = −0.14 eV, G2 = −0.43 eV 

(7)       adsorption  H2Og + * -> H2O*,  

      G1 = 0.14 eV, G2 = 0.43 eV 

(8)       desorption  OH* + H2O*---hb -> OH*+ H2Og,  

      G1 = 0.14 eV, G2 = −0.16 eV 

(9)       desorption  O* + H2O*---hb -> O*+ H2Og,  

      G1 = 0.28 eV, G2 = −0.02 eV 

(10) adsorption  OH*+ H2O*---hb + H2Og ->OH* + multilayerH2O,  

      G1 = −0.02 eV, G2 = 0.29 eV 
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(11) desorption  OH* + multilayerH2O -> OH*+ H2O*---H + H2Og,  

      G1 = 0.01 eV, G2 = −0.29 eV 

(12)  reaction       2OH* -> O*+ H2O*---hb,   

G1 = 0.32 eV, G2 = 0.32 eV 

We consider that this CRN represents all possibilities for the initial steps of H2O adsorption. 

Direct dissociation of H2O* -> OH* + H* and OH* -> O* + H* are not included in the CRN 

because their barriers are reported to be 1.80 eV, and 2.40 eV25 respectively, which are orders 

of magnitude slower than all the presented than the reactions considered in current CRN (all 

within 0.5eV).  

3) Direct Comparison of Theory and Experiment 

To validate our protocol, we used two extreme pressure conditions (100 mtorr and 10-6 torr) 

for H2O adsorption on Ag(111) surface . Direct comparison of theory and experiment is 

illustrated in Figure 2. 

 

 

Figure 5-2 a)- c) Comparison between predicted populations in steady state from the CRN 

kinetics and experimental deconvoluted XPS populations. Color-code for OH* is red, O* 

sky-blue, H2O*---H is black, H2O* is navy, and multilayerH2O is magenta. Top row is a 
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comparison between experiments and theory at P = 100 mtorr, room temperature; whereas 

bottom row is a comparison between experiments and theory at P = 10-6 torr a) column is the 

experimental spectrum, b) column is the theory prediction of the spectrum using QM and 

CRN, and c) column is the theory prediction of the time evolution of species concentration.  

The relative concentration for the seven species are in excellent agreement with experiment.  

Note that we are not able to directly compare the population of gas phase H2O (light grey). 

Similarly, experiment sees non-surface species AgOx (dark orange at around 528.5 eV in the 

experimental 10-6 torr spectrum), but our kinetics only focus on surface species and does not 

include them. The results can be explained using chemistry.  

At high pressure (100 mtorr), the dominant chain reactions are: 

O*+ H2Og => O*+H2O*---hb    (1), follow by, 

O*+ H2O*---hb => 2OH*           (3), 

This surface OH* can then stabilize additional gas phase H2O and multilayerH2O, as in  

OH*+ H2Og => OH* +H2O*      (2), 

OH*+ H2O*---hb + H2Og ->OH* + multilayerH2O, (10), 

Assuming that the initial surface concentration of O* is sufficiently dilute (¼ mL) that the 

above product species can be accommodated, all O* should be consumed, so that the 

O*peak (orange) would be undetectable. Instead, strong OH* (red), moderate H2O*, H2O*-

--hb, and multilayer H2O* peaks are detected;  

Under low pressure (10-6 torr), the chemistry is different: 

O*+H2Og <=> O*+H2O*---hb    (1),  

is in equilibrium. Although reaction  

O*+H2O*---hb => 2OH*          (3), 

is exoenergetic, the equilibrium would be for only a fraction of surface O* to help binding 

of H2Og to then gets converted into OH via (1) and (3). As a result, strong O* and weak OH* 



 

 

88 
peaks are detected. Extrapolated from the low pressure regime XPS data, the O* 

concentration is estimated to be ¼ mL.  

4) Predictions as a function of pressure and temperature  

4a). Isotherm condition at 298K 

Pressure plays two major roles in the kinetics.  

1). Higher pressures of H2Og increase the total amount of H2O and products on the surface. 

(pV= nRT). Collison frequency increases as well, where the flux of particles impinging on 

the surface is given by fs = 𝑝𝑝/√2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 

2). The Entropy term depends on pressure by RT*ln(P2/P1), so that the free energy for 

reactions involving adsorption and desorption are pressure-dependent. 

As shown in Figure 4b, we predict that there are two regions of interest: low pressure region 

(below ~10-5 torr) where chemisorbed O* is dominant and some amount of OH is observed; 

and a more interesting high pressure region (~10-3 torr – 1torr), where all oxygen containing 

species except for chemisorbed O are present. The dominant species under high pressure 

region is OH*. This is further validated in the experimental data shown in Figure 4a.  

Both experiments and theory arrives at the same trend for all species, which are summarized 

as below: OH* coverage increases until ~10mtorr and then decreases because of site 

constraint, as shown in reaction 3) O*+ H2O*---hb => 2OH*, where two adjacent sites are 

required for the production of OH*. H2O, H2O-OH and multi H2O coverage increases as 

pressure increases; among which H2O coverage increases at the fastest speed.  
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Figure 5-3 Isothermal condition at 298K, comparison of experiment and theory.  

4b). Isobar condition at 100mtorr 

Whereas temperature also plays two major roles in the kinetics. 

1). The rotational, vibrational and translational entropy term depends on temperature, as 

calculated in Jaguar Maestro.   

2). The rate constant for all 12 reactions involved in the CRN changes, as defined by 

Arrhenius equation K=kB ∗ T
h
∗ exp � 𝑑𝑑𝑑𝑑

𝑘𝑘𝑘𝑘∗𝑇𝑇
�, where the final concentration profile of species 

is most sensitive to the exponential part.   

As shown in Figure 5b, we predict that a non-negligible amount of chemisorbed O* starts to 

appear at around 423K, whereas all other species, such as multilayerH2O*, H2O*, and OH-

H2O* desorb and show a significant decrease in signal, in general agreement with the 

experiment shown in Figure 5a. The only small discrepancy is that OH was also observed to 
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decrease in signal in experiment, but theory does not show such obvious decrease, 

although some decrease is shown at higher temperature, see Figure 6. This discrepancy is 

hypothesized to be a possible existence of hydrogens in experimental condition, which could 

recombine with OH* and desorb as H2Og at high temperature.  

 

Figure 5-4 Isobar condition at 100mtorr, comparison of theory and experiment. 

4c). Overall landscape 

After our prediction and cross-validation of isotherm and isobar conditions, we extend our 

scope of predictions across a wide range of temperature and pressure, from 298K to 737K, 

10-6
 torr to 1torr. We notice the separation of high pressure region which all species except 

O* exist, and low pressure region, where strong O* signal and moderate OH* signal show 

up. We report that this transition point moves to the right hand side (higher pressure side) as 

temperature increases. This is mostly because reaction 3 is exothermic, and thus more O* 

would be present at higher temperature. O* and OH* are arguably the most reaction 
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important intermediates in this system, as they further determine the concentration of 

H2O*, H2O—hb and multilayerH2O* as reaction 1, 2, and 10 proceed.  At every T/P grid in 

Figure 6, we can visualize the relative concentration of all oxygen containing species. 

 

Figure 5-5 Overall predicted landscape taking consideration of both P and T.   

Conclusion 

Combining quantum mechanics to obtain binding free energies with CRN kinetics simulation 

to obtain the equilibrium concentrations as function of pressure and temperatures with QM 
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O1s chemical shifts to deconvolution the XPS experiments, we show a procedure that 

provides an atomic description compatible with the macroscopic observables. Theory and 

experiment are intertwined closely to provide the chemistry understanding, with both 

qualitative and quantitative agreements. In the presented system H2O on Ag(111), we are 

able to explain the nature of all oxygen containing surface species, the free energy of these 

species, and pin down the kinetics and concentration profile of all the 5 oxygen containing 

surface species across a wide range of pressure and temperature (pressure from 10-6 torr to 1 

torr, and temperature ranging from RT to 500ºC). We propose a new protocol that 

revolutionizes how we should interpolate spectrum data from the theory side, and it is cross-

validated using experimental data. Because of its fundamental nature in thermodynamics and 

kinetic theory, this method should be malleable to be applied to a broad surface systems of 

interest.  
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Appendix A 

Supplementary Information for Chapter 2 
 
Table of Contents 

• Comparison with PBE results 
• Transition state geometry and potential energy curves 
• Linear versus zig-zag configurations 
• Comparison with previous theory results 
• Instructions on excel file containing full numerical data 

 
Fig S2-1 to S2-6 
Fig S2-1 Energy Level Diagram at 673K, 20atm using PBE functional 

Fig S2-2 to S2-4 Transition state geometry and potential energy curves 

Fig S2-5 Linear and zig-zag configuration 

Fig S2-6 Energy Level Diagram at 730K, 200atm using PBE-D3 functional 

Table S2-1 

Table S2-1 Kinetic Monte Carlo results based on PBE DFT 

Table S2-2 Comparison with previous theory results 

Comparison with PBE results 
This paper used the DFT/PBE functional including the Grimme empirical correction for 
London dispersion (van der Waals attraction) because this level of DFT in our recent 
calculations of ORR for Pt and CO2RR for Cu led to very close agreement with experiment 
(barriers to 0.05 eV and overpotentials to 0.05 V). However, we also carried out all 
calculation using just PBE with no D3 corrections (often the case for metallic systems). 
These calculations used the PBE optimized lattice parameters for Fe (PBE: a=2.827 Å, 
PBE-D3: a=2.807 Å, experiment at 300K a=2.867 Å, and experiment at 673K: a=2.881 Å). 
Figure S2-1 shows the new energetics for PBE corresponding to Figure 2-2 in the text.  
Using these modified energetics, we carried out the full set of kMC simulations, leading to 
Table S2-1, in place of Table 2-2 of the main text. For Somorjai conditions (673K) this 
predicts a TOF=89.3 compared to 17.7 for PBE-D3 and 9.7 experiment. This indicates that 
simple PBE may lead to rates that are too fast. 
In particular, the poisoning effect of ammonia is substantially underestimated with PBE, 
with only a modest decrease of NH3 production by increasing ammonia pressure. Thus  

• the TOF changes from 89.3 to 75.7 NH3mol/s/(2x2)surface area as the NH3 pressure is 
increased from 1.5 torr to 1 atm at T=673 K, pH2=15 atm, pN2=5 atm; In contrast for 
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PBE-D3, the TOF changes from 17.7 to 2.8 NH3mol/s/(2x2)surface area. The 
experiments by Somorjai suggest a change by a factor of ∼3 from 1.5 torr to 20 torr. 

• the TOF increases from 1983.5 to 1430.0 NH3mol/s/(2x2) at T=730 K as conditions 
are changed from pH2=150 atm, pN2=50 atm, pNH3=1 atm, to pH2=120 atm, pN2=40 
atm, pNH3=20 atm. In contrast for PBE-D3, the TOF changes from 93.7 to 18.6. 

• However, the increase of ammonia production with temperature seems to be better 
predicted by PBE: from TOF=89.3 to 231.2 NH3mol/s/(2x2) as the temperature is 
increased from 673 K to 730 K, under condition of pH2=15 atm, pN2=5 atm, pNH3=1.5 
torr. In contrast for PBE-D3, the TOF changes from 17.7 to 83.3. The experiments by 
Somorjai suggest a change by a factor of 2.4. 

Overall, we conclude that theGrimme D3 dispersion correction with the Becke-Johnson 
parameters lead to a better description of the reaction energetics. 

Table S2-1 lists the steady-state apparent ∆G (i.e., the logarithm of the relative populations) 
for the most important states obtained using PBE results in the kMC. 

H2 H2

NH3
NH3

H2

2N.2H
-0.85

2N
-0.27

2N.N2
0.05

0.45

4N
-1.18

-0.02

3N.NH.H
-0.64

3N.NH2
-1.25

2N.H
-0.52

3N.NH2
0.00

3N.NH2.2H
0.73

1.47

3N.NH3.H
0.36

3N.H
-0.41

2N.NH
0.07

0.54

2N.NH.2H
0.25

0.56

3N.NH3
0.29 3N

0.20 

2N.NH3
0.17

1.26
1.23

0.89

0.68

Langmuir-Hinshelwood 

Eley-Rideal

PBE

0.95

2N.NH2.2H
-0.20

1.12

2N.NH3.H
-0.06

0.71

0.51

PBE, 673K, 20 atm

2N.NH2.H
-0.29

 
Figure S2-1.  This is equivalent to Figure 2-2 of the text except using PBE rather than 
PBE-D3. We also use the PBE lattice parameter for bulk Fe. Energy landscape for NH3 
synthesis reactions under Somorjai condition, 673 ºK, 20atm. The lowest energy state 
3N_NH2 is taken as reference, with a free energy of zero. We considered the linear pathway 
in black and proposed alternative pathway in green, in order to lower some barriers. NH3 
production rate is dominated by 3 steps: N2 adsorption, hydrogenation of NH2, and NH3 
desorption. Note that we consider reacting 3 H2 plus 1 N2 to form 2 NH3, so that the total 
free energy decreases by 1.25 eV as we go from 3N_NH2 on the left to 3N_NH2 on the 
right. 
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T=673, pH2=15, pN2=5, 
pNH3=1.5/760 
 

T=730, pH2=150, pN2=50, 
pNH3= 1 

T=730, pH2=120, pN2=40, 
pNH3=20 

configuration ti (%) -ln(Pi/P0) 
ΔG ti (%) -ln(Pi/P0) ΔG ti (%) -ln(Pi/P0) ΔG 

3N_NH2 32.7 0.00 0.00 29.7 0.00 0.00 38.4 0.00 0.00 

3N_NH2_2H 
1E-4 

0.73 
0.73 

7E-4 0.67 
0.66 

8E-4 0.68 
0.68 

3N_NH3_H 8E-5 0.75 0.36 6E-3 0.53 0.27 0.14 0.35 0.29 

3N_H 39.9 -0.01 -0.05 15.1 0.04 -0.22 16.8 0.05 -0.02 

2N_NH 2E-2 0.43 0.43 1E-2 0.48 0.26 2E-2 0.49 0.46 

2N_NH_2H 9E-4 0.61 0.61 3E-3 0.58 0.36 3E-3 0.60 0.58 

2N_NH2_H 10.7 0.06 0.07 18.1 0.03 -0.19 16.3 0.05 0.03 

2N_NH3 1E-4 0.73 0.53 6E-4 0.68 0.26 3E-3 0.60 0.48 
2N 4E-4 0.65 0.45 8E-4 0.66 0.11 7E-4 0.69 0.51 

4N 2.95 0.14 -0.46   0.73 0.23 -0.86 1.15 0.22 -0.86 

3N_NH_H 1E-3 0.60 0.08 2E-3 0.60 -0.41 3E-3 0.60 -0.39 

2N_2H_lin 9.4 0.07 -0.13 23.8 0.01 -0.56 17.4 0.05 -0.16 

2N_2H 2.0 0.16 -0.04 4.15 0.12 -0.43 3.0 0.16 -0.03 

2N_NH3_H 1E-3 0.60 0.45 1E-2 0.49 -0.02 0.11 0.37 0.20 

2N_H 3E-2 0.40 0.49 1E-1 0.36 -0.19 8E-2 0.39 0.21 

2N_NH2_2H 
2.3 

0.15 
0.16 

8.18 0.08 
-0.14 

6.6 0.11 
0.10 

kMC NH3 
mol/s/(2x2) 89.3 1983.5 1430.0 

total  
NH3mol 148584 193826 172003 

3N_NH3_H 
↔ 3N_H 74312 96935 86021 

2N_NH3_H
↔ 2N_H 74272 96891 85982 

Table S2-1. Kinetic Monte Carlo results based on PBE DFT (without the D3 London 
dispersion correction). For Somorjai conditions (673K) this predicts a TOF=89.3 compared 
to 17.7 for PBE-D3 and 9.7 experiment. Top rows – Per cent of populations (i.e., residence 
times) = ti(%), apparent free energy differences [evaluated as minus the logarithm of ratio 
of populations = Pi/P0, where P0 = P3N_NH2], and thermodynamic free energy differences 
(ΔG) for selected configurations in a Fe(111)-(2x2) unit cell under steady-state of ammonia 
synthesis as predicted by kMC simulations at different temperatures (673 and 730 K), and 
different H2, N2, NH3 pressures, using DFT/PBE data instead of DFT/PBE-D3 data as in 
Table 2-2 of the main text. All configurations are assumed in the zig-zag arrangement, 
except for “2N_2H_lin” which is linear (see SI for details). Temperature in Kelvin, 
pressure in atmospheres, free energy differences in eV. Bottom rows – NH3 molecules 
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produced per second per (2x2) unit cell under the given conditions [NH3mol/s/(2x2)], 
total number of NH3 molecules produced in the kMC runs (total NH3mol), further 
partitioned into the 2 main steps involving NH3 adsorption/desorption: 3N_NH3_H ↔ 
3N_H; 2N_NH3_H ↔ 2N_H 

Transition state geometry and potential energy curves 

The Transition state geometries and potential energy curves are reported in Figure S2-2 to 
S2-4 

3N_H
Initial

TS 2N_NH
Final

2N_NH_2H
Initial

TS 2N_NH2_H
Final

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

3N.H => 2N.NH 

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

0 2 4 6 8 10

2N.NH.2H => 2N.NH2.H 

Dimer

SI Fig. S2(a) SI Fig. S2(b)
 

Figure S2-2. Mechanism for 3N_H =>2N_NH, migration of hydrogen and addition to N 
on the surface (LH) is shown in a). Mechanism for 2N_NH_2H => 2N_NH2_H, hydrogen 
migration and addition to NH on the surface (LH) is shown in b). The climbing NEB 
method generates a true transition state, as we confirmed by performing vibrational 
frequency calculations showing a single negative curvature in the Hessian. The dimer 
calculations were performed if the negative frequency was found from NEB transition state 
image. 
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2N_NH2_2H
Initial

TS 2N_NH3_H
Final

3N_NH2_2H
Initial

TS
(Point 6)

3N_NH3_H
Final

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

2N.NH2.2H => 2N.NH3.H 

Dimer

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

3N.NH2.2H => 3N.NH3.H 

Point 3 Point 5SI Fig. S3(a) SI Fig. S3(b)
 

Figure S2-3. Mechanism for 3N_NH2_2H => 3N_NH3_H, hydrogen migration and 
addition to NH2 on the surface (LH) is shown in a). Mechanism for 2N_NH2_2H => 
2N_NH3_H, hydrogen migration and addition to NH2 on the surface (LH) is shown in b). 
The climbing NEB method generates a true transition state, as we confirmed by performing 
vibrational frequency calculations showing a single negative curvature in the Hessian. The 
dimer calculations were performed if the negative frequency was found from NEB 
transition state image. 
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Fig S2-4. Mechanism for N2 dissociation is purposed to be triple-bonded N2 adsorbed on 
the first layer (denoted as N3N-T phase, the superscription in the middle represents the 
bond order, and T represents adsorption on top layer) => triple-bonded N2 adsorbed on the 
second layer (denoted as N3N-S phase) => double-bonded N2 on two-fold site (denoted as 
N2N-η2 phase) => single-bonded N2 on three-fold site (denoted as N1N-η3 phase) => 
dissociative 4N. 

Linear versus zig-zag configurations 
For each stoichiometry of the system, there can be more than one possible configuration. 
Thus consider the 4 bridge sites of the (2x2) unit cell. If 2 or more different species are 
adsorbed on these, sites there can be at least two alternative configurations, which we name 
“linear” and “zig-zag”, as illustrated in Figure S2-5 for the “2N” system. Indeed, for most 
stoichiometries the “linear” configuration is lower in energy than the “zig-zag” one, but 
only the “2N zig-zag” configuration is able to dissociate N2. Thus most of our discussions 
report only zig-zag configurations. An exception is for “2N_2H_lin” which is linear and is 
reported in Table 2-2 and Table S2-1 due to its abundance (high population) under steady 
state conditions.  
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Figure S2-5. Schematic illustration of: (a) “linear” and (b) “zig-zag” configurations for the 
“2N” system. The (2x2) unit cell is replicated 4 time for better visualization. 

H2

NH3

NH3

H2
2N.2H
-0.92

2N
-0.21

2N.N2
-0.20

4N
-1.48

-0.53

3N.NH.H
-1.11

3N.NH2
-1.68

3N.NH2
0.00

3N.NH2.2H
0.49

1.39

3N.NH3.H
0.21

3N.H
-0.42

2N.NH
0.05

0.50

2N.NH.2H
0.06

2N.NH2.H
-0.65

0.32

3N.NH3
0.24 3N

-0.05 

2N.NH3
0.13

1.121.27

1.03

1.14

H2

2N.NH2.2H
-0.56

2N.NH3.H
-0.29

0.84

2N.H
-0.58

0.73

PBE_D3, 730K, 200 atm

0.54

Langmuir-Hinshelwood

0.25

 
Fig S2-6.  This is equivalent to Figure 2-2 of the text except using 730K , 200 atm instead 
of 673K, 20 atm. The lowest energy state 3N_NH2 is taken as reference, with a free energy 
of zero. We considered the linear pathway in black and proposed alternative pathway in 
green. NH3 production rate is dominated by 3 steps: N2 adsorption, hydrogenation of NH2, 
and NH3 desorption. Note that we consider reacting 3 H2 plus 1 N2 to form 2 NH3, so that 
the total free energy decreases by 1.68 eV as we go from 3N_NH2 on the left to 3N_NH2 
on the right. 

 

 

States Description rN-N 
Ead       

(present) 
covergae  
(present) Norskov 

coverage   
(Noskov) Lin 

coverage  
(Lin) 
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γ 
top vertical 
(1st layer) 1.13 -0.62 0.25 -0.400 1.00 NA NA 

δ 
top vertical 
(2nd layer) 1.16 -0.72 0.25 -0.150 1.00 NA NA 

ɑ 2-fold site 1.20 -0.84 0.25 -0.500 1.00 NA NA 
ɑ' 3-fold site 1.33 -0.67 0.25 -0.250 1.00 NA NA 

β 
dissociated 

N 4.02 -1.56 0.25 -1.400 1.00 -1.696 0.33 
NH TTS site NA -4.59 0.25 NA NA -4.182 0.33 

NH2 TS site  NA -3.31 0.25 NA NA -2.811 0.33 
NH3 T site NA -0.93 0.25 NA NA -0.705 0.33 

Table S2-2 Comparison of dissociatively chemisorbed binding energies for N2, with 
Mortensen et al.50 Different adsorption states are labeled as α, β, γ. Comparison of 
different chemisorbed species binding energies with Lin et.al.41  

Instructions on excel file containing full numerical data 

Overview 

Excel sheet “HB_111_Apr24” contains all calculations mentioned in this paper. 

It is divided into 4 sub-sheets, namely  

• “ENERGY_COMPILE_673K”,  
This sheet has two complete sets of 53 intermediate states’ energy using PBE and PBE-D3 
functionals at 673 K, Somorjai condition. 

• “ENERGY_COMPILE_730K”,  
This sheet has two complete sets of 53 intermediate states’ energy using PBE and PBE-D3 
functionals at 730 K, industrial condition. 

• “Small Molecule”, 
This sheet has two sets of molecular energy using PBE and PBE-D3 functionals at both 
673 K and 730 K,    

• “Reaction_Barriers”, 
This sheet has NEB electronic energy of all crucial reaction barriers along the NH3 
production pathway. 

Detailed Explanation and Instruction 

“ENERGY_COMPILE_673K” and “ENERGY_COMPILE_730K” are parallel of each 
other, and we have the relative energy in Column J and M to plot Figure 2-2 in the text, 
Figure S2-1 and S2-6 in SI. Both sheets read data from “Small Molecule” and 
“Reaction_Barriers” because free energy is dependent upon temperature and pressure.  
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Currently, “ENERGY_COMPILE_673K” reflects Somorjai experiment condition: 15 
atm pressure for H2, 5 atm for N2 and 1.5 torr for NH3. Electronic energy of these small 
molecules and 53 intermediate states (column H and K) were calculated from VASP, and 
they are independent of pressure and temperature. On the other hand, free energy (column 
I and L) depends on temperature and pressure, thus need to be carefully selected from 
“Small Molecule” and “Reaction_Barriers”. Column J and M are dG calculated using PBE 
and PBE-D3 functionals respectively, and they are referenced to the lowest energy state 
3N.NH2. Each time 1 NH3 is produced, we subtracted the free energy of ammonia. Column 
H-J are PBE values using PBE lattice parameter 2.820 Å, Column K-M are PBE-D3 values 
using PBE_D3 lattice parameter 2.807 Å. We have also considered using experiment lattice 
parameter of iron at 673K, which is 2.881 Å, from Column N to P, and they give very 
similar answers to PBE-D3 lattice parameter results (Column K-M), within ~0.1 eV in 
difference.  

Similarly, “ENERGY_COMPILE_730K” reflects industrial condition of producing NH3: 
150 atm pressure for H2, 50 atm for N2 and 1.5 torr for NH3. The layout of this sheet is 
exactly the same as “ENERGY_COMPILE_673K”.   

“Small Molecule” contains electronic energy of N2, H2, NH3 calculated using VASP, PBE 
and PBE-D3 functionals, and free energy corrections calculated from Jaguar. Free energy 
corrections include zero point energy (ZPE), Enthalpy, and Entropy (see Column D-G). 
These energies are raw output from Jaguar. ZPE and Enthalpy are in the unit of Kcal/mol, 
and entropy is in the unit of cal/mol. For details of rotational, translational and vibrational 
contributions of each section, user can refer to Row 1-27. Pressure dependence is added by 
assuming ideal gas, using RT*ln(P2/P1). User can choose any pressure they like by 
adjusting Column C.  “ENERGY_COMPILE_673K” and “ENERGY_COMPILE_730K” 
will automatically reflect the pressure preference.  

“Reaction_Barriers” contains NEB electronic energy of important reaction barriers and 
along the pathway we purposed in the text. For hydrogenation step and N2 dissociation step, 
we used NEB climb to find transition state, if more than one negative frequencies are found, 
we used dimer method to pinpoint the real transition state. Please refer to Column A-C and 
picture illustrations within the sheet for NEB energy potential curve. We used electronic 
adsorption energy+ZPE, for desorption and adsorption barriers for NH3 and N2, and please 
refer to column K-T for them.  

User can opt to switch between 673 K and 730 K by selecting and linking the appropriate 
rows in “Small Molecule” and “Reaction_Barriers”. User can select any pressure according 
to their need, by typing in the pressure in column C of “Small Molecule”, in the unit of 
atm.  

Example 
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Currently “ENERGY_COMPILE_673K” reflects Somorjai experiment condition: 15 
atm pressure for H2, 5 atm for N2 and 1.5 torr for NH3, and here’s a screen print of the 
intermediate and small molecules’ energy.  

 

If the user is curious at energy landscape of high pressure condition, say 150 atm pressure 
for H2, 50 atm for N2 and 1 atm for NH3, the user need to go to column C of “Small 
Molecule” and the notation in “ENERGY_COMPILE_673K”. Sheet 
“ENERGY_COMPILE_673K” will automatically reflect the change.   

Here’s a screen print of the intermediate and small molecules’ energy at 150 atm pressure 
for H2, 50 atm for N2 and 1 atm for NH3.  

 

 

How to obtain rates to be used in the kMC simulations 

As discussed in the main text, we evaluated forward and backward rates connecting two 
different states using transition state theory as (kBT/h)exp(-∆G†/kBT), where kB is the 
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Boltzmann constant, T is the temperature, h is the Planck constant, ∆G† is the difference 
in free energy between the starting state and the saddle point. In the case of ER reactions 
involving gas-phase species turning into adsorbates, we again use transition state theory, 
but for the reverse desorption process, and then we invoke microscopic reversibility 
principle to calculate the rate of the direct process. 
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Appendix B 
Supplementary Information for Chapter 3 

 
Supplementary Materials 
Figure S3-1 Complete sampling of possible states.  
Figure S3-2 Pictorial illustration of reaction pathway for two sets of Co doped structures.  

01_3N.NH2/i 02_3N.NH2/n 04_3N.NH2/n.H 05_3N.NH3/f 

06_3N.NH3/n 07_3N.V/n 08_3N.V/i 09_3N.H/i 10_3N.H/n 

11_2N_z.V.NH_b 13_2N_z.H.NH.H_b 12_2N_z.V.NH_c 14_2N_z.H.NH.H_c 15_2N_z.H.NH2_b 

03_3N.NH2/i.H

16_2N_z.H.NH2_c 

24_4N 

19_2N_z.2V_b 20_2N_l.2V_b 

21_2N_l.2V_a 

17_2N_z.V.NH3_b 18_2N.V.NH3_a/n 

25_3N.NH.H_a/n 

26_3N.NH.H_a/f 27_2N_l.H/n 29_2N_z.H.V_b 30_2N_z.H.V_c 

22_2N_diagonal.N2alpha_c 23_2N_z.N2alpha/f 

28_2N_l.H/f 
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31_2N_l.2H_a 32_2N_l.2H_b 33_2N_z.2H_a 35_3N.NH/f34_3N.NH/n

36_2N_z.NH2/i 37_2N_z.NH2/n 38_2N_z.NH2.2H_c 39_2N_z.NH2.2H_b 40_2N_z.V.NH3_c 

42_2N_l.2H_subsurface41_4N_subsurface 43_4N_2Co_diagonal 44_4N_Co.Cosub 45_4N_Co.Cothird

46_Fe_4N 47_Fe 48_3FeCo 49_2N_z.N2_prime/n 50_2N_z.N2_prime/f

51_2N_z.N2_gamma/f 52_2N_z.N2_gamma/n 53_2N_z.N2_delta/f 54_2N_z.N2_delta/n

56_2N_z.NH2.2H_b

55_2N_z.NH2.2H_c

58_2N.NH3.H_c 59_2N_z.2V_a 60_2N_z.2H_b57_2N_z.NH3.H_c  
Figure S3-1. Complete sample of possible states. All structures are named based on our 
nomenclature in main text Table 3-1. Out of 60 structures, 40(with name and energetics in 
main text Table 3-2 are used in studying the mechanism of Haber Bosch mechanism. Out of 
the remaining 20 cases, such as 41-38 are useful for studying stabilities of Co atoms and the 
stabilities of double dopants.  
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01_3N.NH2/i 03_3N.NH2/i.H 05_3N.NH3/f 08_3N.V/i 09_3N.H/i 11_2N_z.V.NH_b 

13_2N_z.H.NH.H_b 15_2N_z.H.NH2_b 38_2N_z.NH2.2H_c 58_2N.NH3.H_c 29_2N_z.H.V_b 33_2N_z.2H_a 

19_2N_z.2V_b 31_2N_l.2H_a 33_2N_z.2H_a 52_2N_z.N2_gamma/n 24_4N 25_3N.NH.H_a/n 

(a).

02_3N.NH2/n 

(b).

04_3N.NH2/n.H 06_3N.NH3/n 07_3N.V/n 10_3N.H/n 12_2N_z.V.NH_c 

14_2N_z.H.NH.H_c 16_2N_z.H.NH2_c 39_2N_z.NH2.2H_b 57_2N_z.NH3.H_c 30_2N_z.H.V_c 33_2N_z.2H_a 

32_2N_l.2H_b 33_2N_z.2H_a 19_2N_z.2V_b 51_2N_z.N2_gamma/f 24_4N 26_3N.NH.H_a/f 

 
Figure S3-2a) and S3-2b). Pictorial illustration of reaction pathway for two sets of Co doped 
structures. Whereas figure a). has the initial surface species NH2 far from Co dopant and 
figure b). has the initial surface species NH2 near Co dopant. Energetics of the intermediate 
states along the pathway, including transition state is given in Table 3-2 and Figure 3-2 in 
main text.  
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Appendix C 

Supplementary Information for Chapter 4 
 

1. Supplementary Methods 

1.1 QM Methods: 

1.1.1 Surface Optimization 

The PBE-D3(BJ) level of DFT leads to a calculated lattice parameter of a = 4.012 Å for 
the bulk Ag structure at 0°K, slightly smaller than the experimental value 4.085 Å at 
298°K1. We used experimental lattice parameter 4.085 Å to construct a two-dimensional 
periodic slab with four layers of Ag atoms each of which consists of a (4 x4) unit cell (16 
surface Ag per cell). We include 15 Å of vacuum in the z direction to minimize possible 
interactions between the replicated cells. The top two layers are relaxed while the bottom 
layers are kept fixed. 

All calculations were carried out with the VASP2 software package. We established that 
an energy cutoff of 500eV leads to converged forces. The K-point sampling was chosen to 
be 3 x 3 x 1. All calculations include spin-polarization. We used the Perdew-Burke-
Ernzerhof (PBE) flavor of Density Functional theory (DFT), including the D3 (Becke 
Johnson) 3 empirical corrections for long range London dispersion (van der Waals 
attraction)4.  

This level of QM has been validated recently for several systems. Thus reference5 carried 
out systematic studies for the oxygen reduction reaction (ORR, O2 + protons → H2O) on 
Pt(111) using the same PBE-D3 level as in this paper. Including 5 layers of explicit solvent 
in QM metadynamics on all reaction steps, comparisons could be made to experimental 
activation barriers for two values of the external potential. In both cases the calculated 
activation barriers were within 0.05 eV of the experiment6-9.  

Previous calculations for the CO2 reduction reaction on Cu(100) using the same level of 
theory obtain an activation energy within 0.05 eV of experiment. This same level of theory 
has also led to similar accuracy for the oxygen evolution reaction on IrO2 and for onset 
potentials on Cu(111) 10-12. 

1.1.2 Small Gas Molecules 

Calculations for the gas phase molecules used the PBE functional (as implemented in 
Jaguar) with the D3 empirical correction for London dispersion13. To obtain the total free 
energy, G=H-TS, for the gas molecules at temperature T, we add to the DFT electronic 
energy (E), the zero-point energy (ZPE) from the vibrational levels (described as simple 
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harmonic oscillators), and the specific heat corrections in the enthalpy from 0 to T. The 
entropy (S), as a sum of vibrational, rotational and translational contributions, are evaluated 
from the same levels. To correct the free energy for pressure, we assume an ideal gas and 
add RT*ln(P2/P1) with a reference pressure of P= 1 atm. For example, CO2 gas at room 
temperature and 1atm would have a free energy correction of -0.25eV, including ZPE 
(0.32eV), translational entropy contribution (-0.42eV), rotational entropy contribution (-
0.15eV) and almost negligible vibrational entropy contribution (-0.003eV). All 
calculations assume the current experimental condition: P(CO2) = 300 mtorr, and P(H2O) 
= 150 mtorr.  

1.1.3 Free Energy of Equilibrium Configurations 

After the gas molecules the adsorbed on metal surface, their rotational and translational 
degrees of freedom are reduced to vibrational modes. The vibrational frequencies for 
surface adsorbents are calculated by allowing the adsorbed molecules and the top layer of 
metal to relax, with the bottom layers fixed. For these phonon calculations we used 10-6 eV 
energy convergence threshold to obtain reliable phonon frequencies (no negative 
eigenvalues.) To obtain the Free energy, G=H-TS, for the various equilibrium 
configurations, we used density functional perturbation theory (DFPT) to calculate the 
phonon density of states, which was used to calculate the ZPE, the temperature correction 
to the enthalpy, and the vibrational contributions to the entropy.  

1.1.4 Core Level Shift Calculations 

There are two ways of calculating the change in core level energies implemented in VASP2. 
The simpler option (ICORELEVEL = 1) calculates the core levels in the initial state 
approximation, which involves recalculating the KS eigenvalues of the core states after a 
self-consistent calculation of the valence charge density. The second option 
(ICORELEVEL = 2) is more involved. In this case, electrons are removed from the core 
and placed into the valence. Our previous studies found that the ICORELEVEL =1 leads 
to relative binding energy shift in good agreement with experimental XPS14, so we use this 
approach here. 

 

1.2 Ambient Pressure XPS Measurements: 

Ambient pressure XPS measurements were performed at Beamline 9.3.2 of the 
Advanced Light Source, Lawrence Berkeley National Laboratory. The beamline has 
station consisted of a load lock chamber with base pressure of ~5×10-8 Torr for sample 
loading; a preparation chamber with base pressure of ~×10-9 Torr for sample preparation, 
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and a main chamber for sample characterization under ambient pressure condition. 
The beamline provides beams with a photon energy range of 200-800 eV. 

The clean surface of pristine Ag foil was obtained in the preparation chamber, by repeated 
argon sputtering (2keV, 60mins) and vacuum annealing (900 K, 60mins). No carbon- and 
oxygen- based contaminations were detected on the sample surface. The oxygen covered 
Ag surfaces were prepared by annealing the samples at 430 K at 40mTorr O2 for 5mins, 
and 60 mTorr O2 for 15mins.  

During the APXPS measurements performed at 298K, CO2 partial pressure was kept at 0.3 
Torr for CO2 adsorption, whereas the total pressure was kept at 0.45 Torr with 0.3 Torr 
CO2 and 0.15 Torr H2O. The purities of the dosing gases (CO2, H2O) were in-situ 
monitored by a conventional quadrupole mass spectrometer to ensure no additional gas 
crosscontamination (especially, the CO and H2 gases).   
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2. Discussion of the subsurface oxygen in Cu system. 

In a recent study performed by Garza et al., the stability of subsurface oxygen in Cu is 
questioned15. Thus, we want to further clarify the Cu results by comparing the differences 
and consistencies between our previous work with Garza’s.   

We are interested in the existence of both subsurface and surface oxygen on Cu surface. 
Our previous QM calculations on Cu used the advanced M06 version of DFT theory that 
is optimized to describe both van der Waals attraction and reaction pathways, whereas 
Garza et al. used the semiempircally modified PBE method for oxygen and the 
SCAN+rVV10 functional for physisorption of CO2 with copper. Our previous QM 
calculations were carried at experimental condition with gas phase CO2 and H2O (total 
pressure 0.7 torr, and room temperature), which could be directly compared to this current 
manuscript. On the other hand, Garza et.al carried out the calculation with electrolyte and 
external potential, which is valuable but not directly comparable.  

Our work calculated the free energy of binding of the various species showing the stability 
of the various species under the experimental pressures and temperatures. This led to 
excellent agreement with the APXPS chemical shifts. The experimental evidence of 
subsurface oxide is quite clear from the O1s spectra characterizations. Also, the 
experimental results of adding additional O experimentally confirmed our QM predictions.   

Even so, there are some consistencies between Garza’s work and our work. We both found 
that the b-CO2 can only be stable with extra charge transferred to CO2 to change the 
molecule structure. While the M06 DFT finds subsurface O changes the Cu valence state 
to provide extra charge, Garza applied an external potential that can provide extra charge 
that stabilized the bent configuration. Although our Cu experimental data does not 
represent the environment under applied potential, it shows that extra charge can stabilize 
the b-CO2 with H2O together with the theory. 

Summarizing. The previous experiments prove the existence of subsurface O that the M06 
DFT also finds and the QM and APXPS are fully consistent. 
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3. Stability and properties of adsorbates on Ag 

 

Figure S4-1. The QM predictions of adsorbates on the Ag surface. a, Surface O adsorbed (Oad) on Ag 
surface on-top three-fold (η3) site. b,c, The optimized structure for l- and b- CO2 on pristine Ag surface. Both 
l- and b- CO2 are found to be unfavorable with Eads = −0.15 eV and ΔG = +0.19 eV, and Eads = +0.77 eV and 
ΔG = +1.13 eV, respectively. d, The optimized structure of l-CO2 on Ag surface in the presence of isolated 
surface Oad. This configuration is found to be unfavorable with ΔEads = −0.21 eV, but ΔG = +0.13 eV. Thus 
a pressure of ~30 Torr would be required to stabilize l-CO2 on the O/Ag surface at 298 K. e, The optimized 
structure of b-CO2 on Ag surface in the presence of isolated surface Oad. b-CO2 interact with the on-top 
surface Oad atoms to form a chemisorbed surface carbonic acid-like O=CO2

δ− species as shown in main text 
Figure 4-1c and 4-2a. f. The optimized structure of l-CO2 on Ag surface in the presence of surface H2O. We 
find that (l-CO2)-(H2O) remains unstable on Ag surface (Eads = −0.10 eV and ΔG = +0.26 eV), even with the 
help of H2O. The hydrogen, carbon, oxygen, and silver atoms were represented with rosy brown, black, red, 
and gray balls, respectively.  

O on Ag surface 

We find that sublayer O (which stabilized both the l- and b- CO2 in Cu system) is not stable 
on Ag, quantum mechanics (QM) finds that putting an O in a Ag sublayer site goes without 
a barrier to an on-top three-fold (η3) site (Ag-O = 2.14 Å) with ΔE = −1.46 eV. Previous 
studies included some discussion on the subsurface O in the Ag system, which is introduced 
by through the grain boundary, defects in the structure, and diffusion of the surface oxygen 
into the bulk. These cases required moderate to high temperature and high oxygen 
coverage16,17. Moreover, Li et al. performed a series of studies examining the stability of 
subsurface oxygen in Ag and found that the transition barrier from surface oxygen to 
subsurface oxygen on Ag(111) surface is +0.86eV, whereas the reverse barrier from 
subsurface to surface oxygen is only +0.18eV, leading to the population of surface oxygen 
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is around exp(34)=5.8×1014, which is around 1014 times more than subsurface oxygen18. 
It is found that crystal expansion is needed to stable subsurface oxygen, where the high 
oxygen coverage is needed19,20.   

l-CO2 on Ag surface 

The optimized structure for physisorbed CO2 on the clean surface has an O-C-O angle of 
180° with 1.177Å CO bonds, essentially the same for the PBE-D3 calculation on gas phase 
CO2 (1.176Å). This linear CO2, denoted l-CO2, is physisorbed parallel to the Ag surface, 
at a height of 3.08Å above Ag surface (Figure S4-1b). The calculated QM adsorption 
energy is ΔEads = −0.15 eV. Including the phonon corrections for zero-point energy (ZPE) 
and pressure leads to a free energy of ΔG298 = +0.19 eV, so this state is not observed in our 
experiments. The core levels are C1s = 270.82 eV and O1s = 509.70 eV. These energetics 
would require a CO2 pressure of ~500 Torr for the l-CO2 be stabilized on the clean Ag 
surface at 298K. This agrees with previous reports that at UHV condition l-CO2 was only 
observed at temperatures below 130K.  

l-CO2 on Ag surface with surface oxygen 

In the presence of isolated surface O, we found that l-CO2 has ΔEads = −0.21 eV with C1s 
= −270.26 eV, but ΔG = +0.13 eV. Thus a pressure of ~30 Torr would be required to 
stabilize l-CO2 on the O/Ag surface at 298K. This contrasts with observations for Cu, 
where sublayer O stabilized the adsorption of l-CO2 on Cu surface under 0.7 Torr CO2 
partial pressure at 298K. This attraction resulted from the subsurface O in a tetrahedral site 
inducing Cu+ character into the single Cu above it on the surface, which stabilized the l-
CO2. This oxygen promotion effect was not observed in this work because the O is 
chemisorbed on top of the Ag, which does not change the valence state of Ag. 

b-CO2 on Ag surface 

We also investigated the stability of the b-CO2 on Ag surface. The optimized structure for 
b-CO2 is 2.012Å above Ag surface for C atom, and 2.145Å and 2.945Å for the two O atoms, 
respectively (Figure S4-1c). The predicted C-O bond lengths are 1.283Å and 1.245Å, 
respectively, significantly increased compared to those of g- and l-CO2 (1.176Å). The DFT 
finds that b-CO2 is unfavorable by Eads = +0.77 eV. Thus b-CO2 is not stable the on pristine 
Ag surface. 
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4. The configuration of (O=CO2δ−)-(H2O)0-4 illustrated in top view 

 

Figure S4-2. The configuration of O=CO2δ− stabilizing 0-4 water molecules illustrated in top view. 
O=CO2

δ− is a carbonic acid-like structure with a C=Oup double bond pointing up while the other two O bind 
to adjacent three fold Ag(111) sites. Adding the 1st and 2nd don’t change the O=CO2

δ− structure but forming 
two hydrogen bonds (shown as orange dashed lines) with each O bonded to the Ag surface. Adding 3rd and 
4th H2O forced the C=O bond to rotate from being perpendicular to the surface to being tilted nearly parallel 
to the surface, allowing the formation of HB from a 3rd and 4th surface H2O to the two sp2 lone pairs on the 
C=O unit. The hydrogen, carbon, oxygen, and silver atoms were represented with rosy brown, black, red, 
and gray balls, respectively. The C-O (and C=O), O-H, and hydrogen bonds were represented with black, 
blue, and orange sticks, respectively.  
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5. The geometrical structure of various adsorbates on the Ag surface 

 

Figure S4-3. The geometrical structure of various adsorbates on the Ag surface.  

O=CO2δ− on Ag 

The O=CO2
δ− has a C=Oup double bond (1.222Å) pointing up while the other two O bind 

to adjacent three fold Ag(111) sites with C-O lengths of 1.365Å and 1.354Å, respectively, 
and O-Ag distances of 2.276Å. 

(O=CO2δ−)-(H2O)1 on Ag 
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The hydrogen bond between H2Oads and O=CO2

δ− did not change the structure of 
O=CO2

δ−. The hydrogen bond showed H-O bond length of 1.561Å, with an O-H-O angle 
of 157.5º 

(O=CO2δ−)-(H2O)2 on Ag 

Forming another hydrogen bond did not change the structure of O=CO2
δ− as well. The 

hydrogen bonds showed H-O bond length of 1.585 Å and 1.583 Å with O-H-O angles of 
157.5º and 158.3º, respectively.  

(O=CO2δ−)-(H2O)3 on Ag 

Adding a 3rd H2O bends the terminal O=C toward to Ag surface to form a hydrogen bond. 
The hydrogen bonds showed H-O bond length of 1.576 Å and 1.637 Å with O-H-O angles 
of 163.3º and 161.8º for first two added waters, and H-O bond length of 1.517 Å with O-
H-O angles of 176.8º for third added water, respectively. Besides, the third water formed 
another hydrogen bond with adjacent H2O showed H-O bond length of 1.970 Å and O-H-
O angles of 140.9º. 

(O=CO2δ−)-(H2O)4 on Ag 

Forming another hydrogen bond with fourth H2O did not change the structure of O=CO2
δ−. 

The hydrogen bonds showed H-O bond length of 1.646 Å and 1.678 Å with O-H-O angles 
of 162.1º and 166.9º for first two added waters, and H-O bond length of 1.547 Å and 1.638 
Å with O-H-O angles of 170.4º and 139.4º for two additional waters, respectively. 

(b-CO2)-(H2O)2 on Ag 

This configuration has C-O bond length of 1.293Å and 1.245Å and an O-C-O angle of 
125.1º. The two hydrogen bond lengths are 1.704Å, and 1.556Å, with O-H-O angles of 
160.7º and 174.7º respectively.   
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6. The electronic structure of various adsorbates on Ag surface 

 

Figure S4-4. The electronic structure of various adsorbates on Ag surface.  

O=CO2δ− on Ag 

The two Odown have charges of −0.95 e−, and −0.94 e−, respectively, while Oup has a charge 
of −0.83 e−. The corresponding O1s core level: two O1s= −507.24 eV, and one O1s= 
−506.50 eV. 

(O=CO2δ−)-(H2O)1 on Ag 

The charge on the Odown (O1) hydrogen bonded to H2Oads (O4) changes from 0.95e− to 
0.84e− leading to O1s(1) = −506.85 eV, while the oxygen in the C=O bond (O3) changes 
from 0.83e− to 0.68e− with O1s(3) = −505.95 eV, and the charge on the other Odown (O2) 
remains unchanged with O1s(2) = −506.40 eV. The H2Oads (O4) leads to O1s(4) = −507.29 
eV. 
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(O=CO2δ−)-(H2O)2 on Ag 

The O1s of the C=O has charge of −0.53e−, with the O1s = −505.94 eV, while the two O 
attaching to H2O have charge of −0.6e− and −0.66e−, respectively, with two O1s = −506.99 
eV, and the two O of H2O have O1s = −507.43 eV.  

(O=CO2δ−)-(H2O)3 on Ag 

The O1s of the C=O has charge of −0.40e−, with the O1s = −506.24 eV, while another two 
O have charge of −0.61e− and −0.65e−, respectively, with two O1s = −506.55 eV and 
−506.76 eV, and the three O of H2O have O1s = −507.08 eV, −507.25 eV and −507.32 eV, 
respectively, 

(O=CO2δ−)-(H2O)4 on Ag 

The O1s of the C=O has charge of −0.41e−, with the O1s = −506.56 eV, while another two 
O have charge of −0.62e− and −0.72e−, respectively, with two O1s = −506.58 eV and 
−506.76 eV, and the four O of H2O have O1s = −507.06 eV, −507.14 eV, −507.57 eV and 
−507.42 eV, respectively, 

(b-CO2)-(H2O)2 on Ag 

Two O of the b-CO2 have charges of 0.88e− and 0.77e−, respectively, with O1s(1) = 
−506.93eV , O1s(2) = −507.15 eV, the O of the corresponding H2Oads have O1s(3) = 
−507.48 eV, O1s(4) = −507.81 eV.  
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7. APXPS of pristine and oxygen-covered Ag surfaces and the adsorbates on the 
surfaces 

7.1. XPS characterization of the pristine Ag surface  

 
Figure S4-5. The survey and high resolution C1s and O1s scans of the pristine Ag foil.  

The Ag foil was cleaned prior to each experiment, including the O2 surface treatment, 0.3 
Torr CO2 adsorption, and 0.3 Torr CO2 + 0.15 Torr H2O co-adsorption. The pristine Ag 
surface was prepared by repeated Ar sputtering and vacuum annealing. The Ag surface was 
characterized by XPS to ensure no detectable contamination on the surface. The survey 
with a binding energy range of -10 to 600 eV, and high resolution scans of C1s and O1s 
recorded at photon energy of 670 eV (Figure S4-5). The energy scale of the spectra was 
calibrated using the Ag3d 5/2 peak locating at 368.2 eV. The survey spectra showed only 
Ag signals, including core level peaks and an auger peak. No detectable C- and O- based 
contamination were observed in the high resolution scans recorded in the insets.  

7.2. O1s spectra of oxygen treated Ag surface before and after CO2 adsorption 
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Figure S4-6. APXPS of pristine and oxygen-covered Ag surfaces and the adsorbates on them. a, Ag3d 
spectra of pristine and oxygen treated Ag surface. The regions of the loss feature peaks was enlarged to 
indicate the metallic feature of the Ag surface after O2 treatment. b, C1s spectra of pristine and oxygen treated 
Ag surface. Three peaks locating at 528.5 eV, 530.3 eV, and 531.5 eV were observed on oxygen covered Ag 
surface. These peaks are assigned as the atomically adsorbed O on the surface, signal from O=CO2

δ−, and 
surface OH bonds, respectively. c, O1s spectra of pristine and oxygen treated Ag surface after CO2 adsorption. 
The Oads peak showed before the CO2 adsorption disappeared after CO2 adsorption. The signal attenuation 
due to 300 mTorr CO2 in the chamber has been calibrated by applying the substrate signal decay.    

The O1s spectra recorded on clean and oxygen covered surfaces. Surfaces with low and 
high oxygen coverage surfaces were obtained by heating pristine Ag foil under 40 mTorr 
O2 at 400 K for 5 mins and under 60 mTorr O2 at 400 K for 15 mins, respectively. O1s 
spectra recorded on oxygen covered Ag surface showed three peaks locating at 528.5 eV, 
530.3 eV, and 531.5 eV, respectively. The peak locating at 528.5 eV is between the 
previous observed signal of Ag2O and signal from Ag ( 111 )- p( 4 × 4 )- O surface 
reconstruction21. However, we haven’t observed any changes on the Ag peak (as shown in 
Figure S4-6a), which may show a peak lower than the bulk metallic peak if these two cases 
appeared. Thus, we tentatively assign this peak as the atomically adsorbed O on the 
surface22-24. The peak locating at 530.3 eV was assigned to the peak of O=CO2

δ−, which 
has also been reported previously24. This assignment is supported by checking the C1s 
signal and the C:O atomic ratios, which are around 1:3 during the O2 adsorption process 
(Figure S4-7). Since the peak position of this species in both the C1s and O1s spectra is 
located at the identical position as those we observed later with CO2 adsorption, we are 
confident to assign them to O=CO2

δ-. This is further evidenced by its unstable of peak B 
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above 430K. This is against the previous assigned bulk dissolved O peak, locating at 
similar position, is stable at up to 800K16,17. By applying the sensitivity factors for both 
Ag3d and O1s, which are about 1.8 and 0.32, respectively, under photon energy of 670 eV, 
the Ag:O atomic ratio is around 0.01 and 0.015 for low and high oxygen covered surface, 
respectively. The maintenance of the metallic state of Ag and the low coverage of oxygen 
on the Ag further ruled out the formation of the Ag ( 111 )- p( 4 × 4 )- O surface 
reconstruction. 

Finally, the peak located at the 531.5 eV is assigned to the OH signal, which has been well 
established in the previous work14.  

 

 
Figure S4-7. APXPS of Ag surfaces during O2 dose. (a) O1s and (b) C1s spectra taken at UHV, 40 
mTorr O2 at room temperature, 40 mTorr O2 at around 400 K, and 40 mTorr O2 at 430K were recorded 
as black, red, blue, and pink, respectively, from bottom to top. 

7.3. C1s spectra of Ag surface with different oxygen coverage after CO2 adsorption  
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Figure S4-8: C1s spectra of adsorbates on Ag surface after CO2 adsorption both alone and in the 
presence of H2O. a, C1s spectra of CO2 adsorption on various Ag surfaces. As the surface Oad coverage is 
increased, additional CO2 adsorbed on the surface to form O=CO2

δ− while suppressing CO2 dissociated 
surface carbon formation, thus leading to an increase in O=CO2

δ− signals. b, C1s spectra of CO2 + H2O 
adsorption on various Ag surfaces. The total adsorbate signal from CO2+H2O co-adsorption shows a volcano-
shaped dependence on the surface oxygen coverages. 

The formation of each O=CO2
δ− species requires one Oad prior to the CO2 adsorption. 

Starting with the pristine Ag surface, we found that exposing Ag to CO2 leads to the 
formation of O=CO2

δ− where the surface adsorbed oxygen (Oad) atom required likely came 
from CO2 dissociation, where the CO desorbs into the gas phase while leaving behind an 
Oad. Some surface Oad may desorb as O2, but we conclude that some are available to react 
with g-CO2 to form O=CO2

δ−.  

The surface C species formed from CO2 dissociation cover available Ag sites and thus 
inhibit CO2 adsorption. Interestingly, as the surface O coverage is increased, additional 
CO2 adsorbed on the surface to form O=CO2

δ− while suppressing CO2 dissociated surface 
carbon formation, thus leading to an increase in O=CO2

δ− and a decrease in sp2 C=C signals 
(showing in the later section).  

7.4. C1s spectra of Ag surface with different oxygen coverage after CO2 adsorption in 
the presence of H2O 
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Using the QM predicted C1s levels for each of the three stable species, we were able to 
deconvolute the APXPS adsorbate peak measurements. The newly formed surface 
adsorbates with decreased C1s binding energy of 0.4 eV and 0.8 eV with respect to 
O=CO2

δ− peak represent the (O=CO2
δ−)-(H2O)n (n=1,2) and (b-CO2)-(H2O)2 clusters on 

surface, respectively, with n=1,2, showing a negligible energy difference of 0.06 eV, too 
small to measure. (O=CO2

δ−)-(H2O)2 also stabilizes an additional two waters that shifted 
back the C1s to the positon of O=CO2

δ−.  

Considering that the surface adsorbate, O=CO2
δ−, and surface water stabilize each other on 

the surface through HB, we expect increased surface adsorbate coverage when dosing CO2 
in the presence of H2O. Indeed the C1s spectra show a dramatically increased adsorbate 
signal compared to that from adsorption of CO2 alone. 

Interestingly, the total adsorbate signal from CO2+H2O co-adsorption shows a volcano-
shaped dependence on the surface oxygen coverages in contrast to the linear positive 
correlation between surface oxygen coverage and dry CO2 adsorption. We explain this in 
terms of the competitive adsorption among the surface species. Given a coverage of Oad, 
we expect adsorption competition between (a) CO2 reacting with Oad to form O=CO2

δ− 
requiring 2 sites (b) one to four H2O coordinating to O=CO2

δ− requiring 3 to 6 sites and (c) 
H2O reacting with Oad to form two OHad requiring 2 or 3 sites. Thus increased amounts of 
O=CO2

δ− block further adsorption of H2Oads, which suppresses the effect of H2Oads in 
stabilizing the surface adsorbates. For the clean Ag surface, surface adsorption is 
suppressed by the formation of sp2 carbon from CO2 dissociation, showing decreased 
amounts of surface adsorbates compared to oxygen covered Ag surfaces. Thus, having too 
many surface O (more than 0.15 O per Ag) or none at all both lead to decreased adsorbates 
on the surface.  
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8. Surface products and adsorbate signals from CO2 adsorption on pristine and 
oxygen covered Ag surfaces  

 

Figure S4-9. The detailed peak deconvolution of the C1s spectra recorded on various Ag surface under 
CO2 adsorption alone and in the presence of H2O.  

The C1s spectra were divided into three parts: the surface reaction products, surface 
adsorbates, and gas phase peak. The chemical species can be assigned as atomic C (283.0 
eV), sp2 C=C (284.2 eV), sp3 C-C (285.2 eV), C-O(H) (286.0 eV), O=CO2

δ− (287.9 eV), 
g-CO2 (292-293 eV)25,26. During the coadsorption of CO2 and H2O, a new species appeared 
at 284.5 eV between the peaks of sp2 C=C and sp3 C-C. Detailed assignment for this species 
has not been made, but it may be related to the C-H bond formation, due to the reaction 
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between sp2 C=C and H2O on Ag surface. We also observed the ionic carbonate species 
at 288.7 eV in the C 1s XPS spectra. The appearance of CO3

2− may originate from some 
side reactions, which have been reported previously. The energy difference of ~0.8 eV 
between the CO3

2− and O=CO2
δ− peaks provides direct evidence that these two species 

have completely different electronic structure properties. 

Adding H2O also changes the low energy region carbon species by shifting the main feature 
to higher binding energy. The peak shift is ascribed to the appearance of new species 
between sp2 C=C carbon and sp3 C-C carbon peaks. Detailed assignment for this species 
has not been made, but it may be related to the C-H bond formation, due to the reaction 
between sp2 C=C and H2O on Ag surface. A similar reaction has been reported on Al 
surface27. Another surface reaction product that should be specially noted is the ionic 
carbonate species at 288.7 eV in the C 1s XPS spectra. The appearance of CO3

2− may 
originate from some side reactions, which have been reported previously 26. The energy 
difference of ~0.8 eV between the CO3

2− and O=CO2
δ− peaks provides direct evidence that 

these two species have totally different electronic structure properties. 
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9. Dynamic process of CO2 adsorption alone and in the presence of O2 on pristine 
Ag surface: 

 

Figure S4-10. The O:C atomic ratio of surface adsorbates as a function of CO2 dosing time.  
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10. The proposed reaction pathway  

 

Figure S4-11. Energy barrier of H transferring process originating from b-CO2 and O=CO2δ−. 

Hydrogenation process of b-CO2 with one H transferred from attached H2O molecule to 
form the HOCO intermediate plus OHad (Figure S4-11a). The energy barrier for this 
process is 0.99 eV. In the initial state, the O-H bond lengthen for the attached H2O is 1.025 
Å, while the HB lengthen is 1.557 Å. In the transition state with a H transferred, the 
distance between the attached H and the O in H2O is 2.856 Å. While this distance increased 
to 3.823 Å in the final state 

Hydrogenation process of O=CO2
δ− with one H transferred from attached H2O molecule to 

form the (C=O)(O)(OH) intermediate plus OHad (Figure S4-11b). The energy barrier for 
this process is 0.62 eV. In the initial state, the O-H bond lengthen for the attached H2O is 
1.023 Å, while the HB lengthen is 1.582 Å. In the transition state with a H transferred, the 
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distance between the attached H and the O in H2O is 2.576 Å. While this distance 
increased to 4.357 Å in the final state.  
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11. Simulated Vibrational frequency for all possible adsorbates on Ag surface 
with CO2 adsorption both alone and in the presence of H2O. 

CO2 adsorption 
Species Bond vibrational frequency (cm−1) 
O=CO2δ− C-O stretch 908.06 
O=CO2δ− C=O stretch 1663.51 

CO2+H2O adsorption 
Species Bond vibrational frequency (cm−1) 

H2O 
O-H stretch 3709.04 (anti); 3612.91 (sym) 
H-O-H bend 1555.86 

O=CO2δ−+H2O 
C-O stretch 900.79 
C=O stretch 1659.96 
O-H stretch 3777.14; 2730.96 

O=CO2δ−+2H2O 
C-O stretch 992.578159 
C=O stretch 1669.03 
O-H stretch 3772.44, 3767.26 

O=CO2δ−+3H2O 
C-O stretch 931.07 
C=O stretch 1610.86 
O-H stretch 3765.34; 2743.9; 3764.92 

O=CO2δ−+4H2O 
C-O stretch 935.66 
C=O stretch 1600.43 
O-H stretch 3762.63; 2765.34; 3720.03 

b-CO2+2H2O O-H stretch 3763.64; 3761.32; 3180.168; 2739.99 

Table S4-1. Vibrational frequency for all possible species on the surface with CO2 adsorption both 
alone and in the presence of H2O.  

We report mainly stretching frequencies for C-O, C=O, and O-H as they are unambiguous. 
Other modes such as bending, scissoring and etc. are mixed up with species nearby or first 
layer metal, hence making them hard to categorize. The vibrational frequency of the C=O 
bond ranges from 1659.96 to 1600.43 cm−1 for 0 to 4 H2O. But we expect the cases with 0 
to 2 water to be much more intense due to image charge enhancement of the dipole 
derivative. This may provide an experimental means to discriminate the various species on 
the surface. 
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12. Comparison of CO2 adsorption on Ag and Cu  

 Ag Cu 

adsorbate Stability ΔG (eV) Stability ΔG (eV) 

l-CO2 Not stable +0.19 (PBE-D3) 
Stable 

with sublayer oxygen 
−0.39 (M06L) 

b-CO2 
Stable 

with two hydrogen bonds 
−0.18 (PBE-D3) 

Stable 

with one hydrogen bond and 
a sublayer oxygen 

−0.06 (M06L) 

O=CO2δ− 

Stable 

with surface O 
−0.28 (PBE-D3) 

Not stable +1.33 (PBE-D3) 

Stable 

with one hydrogen bonds 
−0.43 (PBE-D3) 

Stable 

with two hydrogen bonds 
−0.48 (PBE-D3) 

Stable 

with three hydrogen bonds 
−0.37 (PBE-D3) 

Stable 

with four hydrogen bonds 
−0.19 (PBE-D3) 

Table S4-2. The summary of the stability and free energy of possible surface adsorbates on Ag and 
Cu surfaces. 
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Appendix D 

Supplementary Information for Chapter 5 
Table S5-1 Formation energy dG as a function of pressure from the QM based CRN.  

   Pressure 150 
mtorr 

100 
mtorr 

50 
mtorr 

30 
mtorr 

15 
mtorr 

5 
mtorr 

10E-
6 
torr 

   Temperature 298 K 298 
K 

298 
K 

298 
K 

298 
K 

298 
K 

298 
K 

# description Initial final  dG dG dG dG dG dG dG 

1 adsorption x4+x1 x4+x5 -0.31 -0.30 -0.28 -0.27 -0.25 -0.22 0.00 

2 adsorption x3+x1 x3+x5 -0.09 -0.08 -0.06 -0.05 -0.03 0.00 0.22 

3 reaction x4+x5 2*x3 -0.47 -0.47 -0.47 -0.47 -0.47 -0.47 -0.47 

4 diffusion x5+x3 x2+x3 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

5 diffusion x5+x4 x2+x4 0.46 0.46 0.46 0.46 0.46 0.46 0.46 

6 desorption  x2 x1 -0.16 -0.17 -0.19 -0.20 -0.22 -0.25 -0.47 

7 adsorption x1 x2 0.16 0.17 0.19 0.20 0.22 0.25 0.47 

8 desorption  x5+x3 x3+x1 0.09 0.08 0.06 0.05 0.03 0.00 -0.22 

9 desorption  x5+x4 x4+x1 0.31 0.30 0.28 0.27 0.25 0.22 0.00 

10 adsorption x5+x1 x6 -0.02 -0.01 0.01 0.02 0.04 0.07 0.29 

11 desorption  x6 x5+x1 0.02 0.01 -0.01 -0.02 -0.04 -0.07 -0.29 

Table S5-1. Formation energy dG as a function of pressure from the QM based CRN. 
Example pressure conditions from 10-6 to 150mtorr are included here. For a complete 
table of surface species concentration with finer grids and larger scope of temperature 
and pressure condition, please refer to the big datasheet result.txt.  

 


