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ABSTRACT 

This thesis describes a series of studies devoted toward the synthesis of model complexes 

that mimic aspects of structure, redox state, and spectroscopy of the oxygen evolving 

complex (OEC) of Photosystem II. The OEC is a unique metallocofactor featuring a 

heteronuclear CaMn4 core that catalyzes water oxidation. While advances in spectroscopic 

and structural techniques offer an ever more detailed view of the structure of the S-state 

catalytic intermediates, the precise mechanism of O−O bond formation remains debated. 

Aspects such as (1) role of Ca2+, (2) the location of the substrate waters, and (3) the 

(electronic)structure of the S-state intermediates remain unclear. To obtain a better 

understanding of the OEC, systematic structure−function(property) studies on relevant 

model complexes may be necessary. Despite significant efforts to prepare tetra- and 

pentanuclear complexes as models of the OEC, relevant complexes in terms of structure, 

redox state, spectroscopy, and reactivity are rare, likely due to the synthetic challenges of 

accessing a series of isolable clusters that are suitable for comparisons. 

Chapter 1 presents a survey of tetramanganese model compounds with an emphasis on 

redox state and electronic structure, as probed by magnetometry and EPR spectroscopy. 

Structurally characterized model complexes are grouped according to Mn oxidation states 

and the S-state that they are mirroring. In contrast to the vast number of spectroscopic studies 

on the OEC, studies that probe the effect of systematic changes in structure on the 

spectroscopy of model complexes are rare in the literature. 

Chapter 2 presents ongoing synthetic efforts to prepare accurate structural models of the 

OEC. The synthesis of accurate structural models is hampered by the low structural 

symmetry of the cluster, the presence of two types of metals, and the propensity of oxo 
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moieties to form extended oligomeric structures. Desymmetrization of the previously 

reported trinucleating ligand leads to the formation of tetranuclear Mn4
II precursors. 

Oxidation in the presence of Ca2+ leads to a CaMn4O2 model of the OEC, underscoring the 

utility of low-symmetry multinucleating ligands in the synthesis of hitherto unobserved oxo-

bridged multimetallic core geometries related to the OEC. 

Chapter 3 presents a series of [MnIIIMn3
IVO4] cuboidal complexes as spectroscopic 

models of the S2 state of the OEC. Such complexes resemble the oxidation state and EPR 

spectra of the S2 state, and the effect of systematic changes in the nature of the bridging 

ligands on spectroscopy was studied.  Results show that the electronic structure of 

tetranuclear Mn complexes is highly sensitive to even small geometric changes and the 

nature of the bridging ligands. Model studies suggest that the spectroscopic properties of the 

OEC may also react very sensitively to small changes in structure; the effect of protonation 

state and other reorganization processes needs to be carefully assessed. 

Chapter 4 presents a series of [YMn3O4] complexes as models of the [CaMn3O4] subsite 

of the OEC. The effect of systematic changes in the basicity and chelating properties of the 

bridging ligands on redox potential was studied. Results show that in the absence of ligand-

induced geometric distortions that enforce a contraction of metal-oxo distances, increasing 

the basicity of the ligands results in a decrease of cluster reduction potential. A small 

contraction of metal-oxo/metal-metal distances by ~0.1 Å enforced by a chelating ligand 

results in an increase of cluster reduction potential even in the presence of strong basic 

donors. Such small, protein-induced changes in Ca-oxo/Ca-Mn distances may have a similar 

effect in tuning the redox potential of the OEC through entatic states, and may explain the 

cation size dependence on the progression of the S-state cycle. 
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Chapter 5 presents a series of [CaMn3O4] and [YMn3O4] complexes as models of the 

[CaMn3O4] subsite of the OEC. The effect of systematic changes in cluster geometry, 

heterometal identity, and bridging oxo protonation on cluster spin state structure was studied. 

Results show that the electronic structure of the Mn3
IV core is highly sensitive to small 

geometric changes, the nature of the bridging ligands, and the protonation state of the 

bridging oxos: the spin ground states of essentially isostructural compounds can be S = 3/2, 

5/2, or 9/2. Interpretation of EPR signals and subsequent structural assignments based on an 

S = 9/2 spin state of the CaMn3O4 subsite of the OEC must be done very cautiously. 

While unfinished, appendices 1 and 2 present other important aspect in OEC model 

chemistry. Appendix 1 presents the synthesis of 17O-labeled [MnIIIMn3
IVO4] and 

[CaMn3
IVO4] complexes as models of the OEC. Ongoing characterization of μ3-oxos in such 

complexes provide valuable benchmarking parameters for future mechanistic studies. 

Appendix 2 presents the synthesis and characterization of [Mn4
IVO4] cuboidal complexes as 

spectroscopic models of the S3 state of the OEC, the last observable intermediate prior to 

O−O bond formation at the OEC. 
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1.1) S-state intermediates in the oxygen evolving complex of Photosystem II 

In photosynthetic organisms such as plants and cyanobacteria, water oxidation takes 

place at the oxygen evolving complex (OEC) of Photosystem II (PSII).1-3 At 1.9 Å 

resolution, the active site of the OEC has been characterized crystallographically, revealing 

a heterometallic [Mn3CaO4] cubane motif bearing a pendant Mn via a bridging oxide or 

hydroxide (Figure 1a).4 The OEC catalyzes the 4e−/4H+ oxidation of two water molecules 

to dioxygen; the corresponding cathodic half reaction involves the synthesis of plastoquinol 

and adenosine triphosphate (ATP), both of which are used for CO2 fixation in the Calvin 

cycle. Given broad fundamental interest and potential application in the development of 

improved synthetic water oxidation catalysts, the structure of the OEC and the mechanism 

of water oxidation has been the subject of extensive biochemical, spectroscopic, synthetic, 

and computational studies.5-23 Despite such efforts, many aspects of the OEC remain 

debated: (1) the mechanism of cluster assembly and O2 formation, (2) structural changes 

in the OEC as it proceeds through the catalytic cycle, (3) electronic structure of the 

intermediates, and (4) the role of calcium. 

Mechanistic studies are performed in the context of the Joliot-Kok cycle of Sn (n = 0−4) 

states.24-25 Starting from the most reduced S0 form, light-induced sequential one-electron 

oxidations lead to progression to higher Sn states, culminating in the formation of the 

elusive S4 state, where O2 formation is proposed to occur (Figure 1b).26 Importantly, four 

oxidizing equivalents are stored in the OEC prior to O−O bond formation, precluding the 

generation and release of harmful products such as peroxide or superoxide.27 Thus, precise 

spatial and temporal resolution in the sequence of electron-transport, proton-transport, and 

substrate binding events is necessary to fully understand the mechanism of biological water 
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oxidation. Structural determination and spectroscopic characterization of Sn state 

intermediates heavily influence mechanistic proposals for O−O bond formation.5, 7, 9, 13, 16, 

19, 28-32 

 

Figure 1. a) The OEC as described by the 1.9 Å resolution structure highlighting the 
CaMn4O5 core. b) The Joliot-Kok S-state catalytic cycle. 

The dark-stable, resting S1 state of the OEC has been the primary target of structural 

methods such as X-ray absorption spectroscopy and protein crystallography.33-35 The 1.9 

Å, atomic resolution model indicates that the structure of the OEC consists of a CaMn3 

subsite with a pendant Mn center, with bridging oxo moieties (Figure 1a).4 It has been 

subsequently shown that X-ray induced Mn reduction resulted in a structural model that 

must be considered as a spatially averaged representation of physiological and non-

physiological states.36 This problem can be mitigated by using X-ray free electron laser 

(XFEL) pulses.37-41 Although issues with S-state heterogeneity and resolution need to be 

addressed, XFEL studies offer the possibility of observing structural and spectroscopic 

changes in the OEC under dynamic conditions.42 

A significant level of insight derived from EPR spectroscopy and related magnetic 

resonance techniques has been obtained for the S2 state, which features two characteristic 
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EPR signals at g = 2 and g = 4.1.5, 7-8, 30 The relative intensity of the two signals is condition-

dependent, and each signal is proposed to originate from different structures (Figure 2): an 

open-cubane structure with a low-spin (LS) S = 1/2 ground state and a closed-cubane 

structure with a high-spin (HS) S = 5/2 ground state.6, 12, 15, 43 The interconvertibility of the 

two EPR signals suggests a small energy difference between these two structures, which 

effectively differ only by the relative position of the bridging O(5) oxygen, a proposed 

substrate oxygen.44-45 EXAFS studies support structural differences between the species 

responsible for the g = 2 and the g = 4.1 signal, but further atomistic details are unknown.20, 

46 

 
Figure 2. Proposed closed-cubane (S = 5/2) and open-cubane (S = 1/2) isomers of the S2 
state, giving rise to X-band EPR signals at g = 4.1 and g = 2, respectively. 

Chemical changes such as Ca2+ removal or treatment with NH3 or F− inhibit the S2→S3 

transition specifically, highlighting opportunities for mechanistic insight, but also the need 

for benchmarking with well characterized synthetic models to address the effect of 

structure on electronic structure and spectroscopy.19, 47 Growing experimental data support 

that conversion from the LS form of the S2 state to its HS form is an intermediate step in 

the S2→S3 transition.17 pH dependence studies indicate that deprotonation of the LS form 

leads to the HS form.21 Structural changes following deprotonation are unknown, but 
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computational studies suggest that the electronic structure of the OEC is highly sensitive 

to small changes in structure as reported by EPR spectroscopy.10 Deprotonation of a Mn-

bound water and/or a reorientation of a Glu residue in the S2 state may perturb the spin 

state from LS to HS, indicating that spectroscopic properties may react very sensitively to 

small geometric changes that do not affect significantly the total energy of the cluster.  

Synthetic cluster models have been targeted to benchmark the spectroscopy and to 

mimic the reactivity of the OEC. In general, systematic studies that probe the effect of 

small structural changes on the spectroscopic and magnetic properties of S-state model 

clusters are very rare, likely due to the synthetic challenges of accessing a series of isolable 

clusters that are suitable for comparisons.48-49 Indeed, despite significant efforts to prepare 

tetra- and penta-nuclear clusters that are relevant to the S-state intermediates in terms of 

structure, reactivity, redox state, or spectroscopy, accurate models for benchmarking 

against the biological system are rare.22, 50-54 In the following sections, structurally 

characterized tetranuclear Mn complexes with oxidation states relevant to S0−S3 states 

(Mn3
IIIMnIV−Mn4

IV) are surveyed, primarily focusing on aspects of electronic structure and 

EPR spectroscopy. In Chapter 3, a series of structurally related [MnIIIMn3
IVO4] cuboidal 

complexes as spectroscopic models of the S2 state are highlighted.22 

1.2) Mixed-valent MnIIIMnIV dinuclear systems 

Although structurally not related to the OEC, oxo-bridged, mixed-valent 

[MnIIIMnIVO2]3+ complexes feature EPR spectra that are highly reminiscent of the multiline 

signal observed in the S2 state.15, 55-58 The nature of the exchange coupling interaction in 

such complexes is typically antiferromagnetic, ranging from J = −100 to −400 cm−1.59 

Accordingly, the ground state in these systems is S = 1/2, and broad EPR transitions 
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centered at g = 2 featuring Mn hyperfine interactions are observed (Figure 3). Analysis of 

the ENDOR spectra of [Mn2O2(bpy)4]3+ allowed the unambiguous assignment of 55Mn 

nuclear spin transitions of both the MnIII and MnIV ions.56 Parameters found for the dimeric 

species failed to simulate the 55Mn ENDOR spectrum of the S2 state, easily ruling out the 

dimeric origin of the multiline signal in the S2 state. The deduction of a “3+1” arrangement 

of Mn ions in the OEC by ENDOR spectroscopy prior to the advent of atomic resolution 

crystal structures is a landmark assignment from EPR spectroscopy.8 The interaction of 

ligand nuclei (e.g. 1H, 2H, 13C, 14N, 15N, 17O) with the electron spin of the Mn centers has 

been studied by pulsed EPR techniques to obtain structural information and determine 

plausible sites of substrate water binding.13, 19 Pulse-EPR data for 17O-labelled dinuclear 

complexes have provided a magnetic fingerprint for bridging oxo ligands similar to those 

found in the OEC.57 In the following sections, a selective survey of structurally 

characterized tetranuclear Mn complexes will be presented, with an emphasis on electronic 

structure as probed by magnetic susceptibility and EPR studies. 

 
Figure 3. Structure of [Mn2O2(bpy)4]3+ and its X-band EPR spectrum. 

1.3) Mn3
IIIMnIV complexes as models of the S0 state of the OEC 

A class of carboxylate-bridged Mn3
IIIMnIV complexes with a general [Mn4O3X]6+ core 

(X− = F−, Cl−, Br−, NO3
−, OH−, OCH3

−, OPh−, OAc−, OBz−, N3
−, or NCO−) has been 
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described.60-69 Single crystal X-ray crystal structures reveal a pseudo-C3 symmetric core 

with the μ3−X ligand bridging the three MnIII centers (Figure 4). Each metal center is 6-

coordinate, with the coordination sphere of the MnIV center occupied by three carboxylates 

and three oxo ligands. Monodentate ligands such as Cl− or heterocycles such as pyridine 

or imidazole bind in a cis fashion to complete the coordination sphere of each MnIII center. 

Clusters with bidentate ligands such as dibenzoylmethane (dbm) have also been reported 

(Figure 4). 

 

Figure 4. Examples of carboxylate bridged Mn3
IIIMnIV complexes with a [Mn4O3X]6+ core. 

Magnetic susceptibility studies are consistent with a well-isolated S = 9/2 ground state, 

consistent with the Curie behavior observed between 5−50 K (Figure 5). The sudden 

decrease in the effective magnetic moment below 5 K was attributed in part to the presence 

of zero field splitting. From reduced magnetization data, a positive axial zero-field splitting 

parameter in the range of the X-band EPR quanta (c.a. 0.3 cm−1) has been estimated (Figure 

5). To fit the susceptibility data, an exchange coupling model with two coupling constants 

J(MnIII−MnIV) and J(MnIII−MnIII) has been employed. Invariably, for the series of 

compounds with different X−, bridging carboxylate, and terminal ligands, the J(MnIII−MnIV) 

coupling was found to be antiferromagnetic, with values in the range of −30 to −20 cm−1; 

the J(MnIII−MnIII) coupling was found to be ferromagnetic, with values in the range +2 to 
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+11 cm−1. The first excited state S = 7/2 was estimated to lie c.a. 200 cm−1 above the S = 

9/2 ground state. Accordingly, the variable temperature EPR spectra of these complexes 

do not show significant population of spin excited states; aside from line broadening, the 

spectrum at 5 K is nearly identical to that at 78 K (Figure 6).69 The transitions occurring 

within the |±1/2⟩ Kramers doublet were observed at g = 8.2 and g = 2. The feature at g = 

5.2 was tentatively assigned to the |−1/2⟩→|−3/2⟩ transition.64 In contrast to the electronic 

structure of [Mn4O3X]6+ complexes, the ground state of the S0 state of the OEC has been 

shown to be S = 1/2, with a broad multiline EPR signal centered at g = 2.70 Although not 

structurally characterized, in situ one electron reduction of [(Mn2O2)2(tphpn)2]4+ (vide infra) 

leads to a species with an EPR spectrum reminiscent of the S0 state.71 

 
Figure 5. Temperature dependence of the effective moment (left) and reduced 
magnetization plot (right) of Mn4O3(OAc)4(dbm)3. 

 
Figure 6. X-band EPR spectra of Mn4O3Cl4(OBz)3(py)3. 
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1.4) Mn2
IIIMn2

IV complexes as models of the S1 state of the OEC 

Three classes of Mn2
IIIMn2

IV complexes have been described: (1) cubane complexes 

with a [Mn4O4]6+ core,51, 72 (2) square complexes that can be described as an alkoxide 

bridged dimer of two [Mn2O2]3+ units,73 and (3) a unique [CaMn4O4]8+ complex highly 

reminiscent of the OEC featuring a [CaMn3O4] subsite with a dangling Mn ion (Figure 7).54 

Thus far, magnetic susceptibility studies of these complexes have not been reported. The 

parallel mode X-band EPR of [(Mn2O2)2(tphpn)2]4+ shows a broad signal at g = 6; the EPR 

spectrum of the [CaMn4O4]8+ complex shows a broad signal at g = 12 (Figure 7). 

 

Figure 7. Examples of Mn2
IIIMn2

IV complexes. 

 

Figure 8. Parallel mode X-band EPR of [(Mn2O2)2(tphpn)2]4+ (left) and CaMn4O4(OPiv)8 
(right). 

For the S1 state, parallel mode signals at g = 4.9 and g = 12 have been observed.74-76 

Temperature dependence studies on the S1 state indicate that these two signals arise from 
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spin excited states S = 1 and S = 2, respectively, and that the S1 state has a diamagnetic 

ground state.76 Magnetic studies of the cubane cluster LMn2
IIIMn2

IVO4(OAc)3 reported by 

our group indicate an S = 1 ground state, consistent with the observed χT value of 0.9 emu 

K mol−1 at 5 K.77 The perpendicular EPR spectrum shows a broad signal centered at g = 2, 

and was rationalized as coming from the S = 1 ground state with a small zero field splitting 

(Figure 9).78 

 

Figure 9. Perpendicular mode X-band EPR of LMn4O4(OAc)3. 
 
1.5) MnIIIMn3

IV complexes as models of the S2 state of the OEC 

In addition to the extensive spectroscopic studies performed on the native S2 state of 

the OEC, non-native, MeOH or NH3 modified S2 states have also been studied.16, 19, 23, 31, 

79 In contrast, structural and spectroscopic studies of MnIIIMn3
IV model complexes remain 

rare. Three classes of synthetic MnIIIMn3
IV complexes have been described: (1) cubane 

complexes with a [Mn4O4]7+ core,80 (2) adamantane-shaped complexes with a [Mn4O6]3+ 

core,81-82 and (3) linear-chain complexes with a [Mn4O6]3+ core (Figure 10).83 The 

phosphinate-bridged, cuboidal complex [Mn4O4(Ph2PO2)6]+ shows a broad EPR spectrum 

with transitions consistent with an S ≥ 3/2 ground state (Figure 11).80 Complementary 

susceptibility studies have not been provided. The EPR spectrum of the adamantane-

shaped complex [Mn4O6(bpea)4]3+ features a broad signal at g = 4.1 that has been assigned 
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to the transition within the first excited |±3/2⟩ Kramers doublet of an S = 5/2 ground state 

determined from magnetization data.81 This g = 4.1 signal is highly reminiscent of the high-

spin form of the S2 state. Starting from a structurally characterized linear-chain 

[Mn4O6(bpy)6]4+ precursor, a putative [Mn4O6(bpy)6]3+ complex was generated by 

radiolysis in a frozen matrix and its EPR spectrum features a multiline signal centered at g 

= 2 consistent with an S = 1/2 ground state.83 In situ oxidation of a close OEC structural 

model complex, CaMn4O4(OPiv)8 (vide supra, section 1.4.), gives rise to two EPR signals 

Figure 10. Examples of MnIIIMn3
IV complexes and their corresponding X-band EPR

spectra. 
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at g = 4.9 and g = 2, attributed to different spin states of the cluster corresponding to a 

[CaMn4O4(OPiv)8]+ species, although  further structural, spectroscopic, and magnetic data 

have not been provided.54 Follow-up computational studies disagree on the assignment of 

the two signals, one of them suggesting that the two signals must be due to structurally 

very different clusters.84-85 

In general, systematic studies akin to those performed on the S2 state that probe the 

effect of small structural changes on the spectroscopic and magnetic properties of S2 model 

clusters are uncommon, likely due to the synthetic challenges of accessing a series of 

isolable clusters that are suitable for comparisons. A series of cuboidal complexes in the 

relevant MnIIIMn3
IV redox state, with systematic variation of bridging ligands, has recently 

been reported and provides useful insight into structure-property relationships (Chapter 

3).22  

1.6) Mn4
IV complexes as models of the S3 state of the OEC 

EPR spectroscopic studies show all Mn ions to be present as Mn(IV) in the S3 state.26 

Similar to the S2 state, the S3 state is spectroscopically heterogeneous, with an EPR 

observable species having an S = 3 ground state.1 The S2→S3 transition is highly debated, 

with the details of substrate water incorporation and deprotonation being largely unknown. 

Broadly, two general classes of synthetic tetranuclear Mn4
IV complexes have been 

described related to S3: linear complexes featuring [Mn4O5]6+ and [Mn4O6]4+ cores, and 

adamantane-shaped complexes with [Mn4O6]4+ cores (Figure 11).86-88  

For the linear complexes, strong pair-wise antiferromagnetic exchange coupling 

interactions lead to a diamagnetic ground state. An EPR spectrum has been reported at 140 

K from the population of thermally accessible spin excited states, but further 
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characterization has not been provided.88 Magnetic susceptibility studies of a series of 

adamantane-shaped [Mn4O6]4+ complexes indicate overall ferromagnetic exchange 

coupling interactions giving rise to an S = 6 ground state (Figure 12).89 EPR studies for the 

adamantane-shaped complexes have not been reported. Upon protonation of a bridging oxo, 

the overall ferromagnetic interaction in the adamantane-shaped [Mn4O6]4+ complex was 

found to switch to antiferromagnetic, but spectroscopic studies have not been reported.90 

A unique cuboidal [Mn4
IVO4] cluster mirroring the spin state of the S3 state has been 

reported (Appendix 2). 

Figure 11. Examples of Mn4
IV complexes. 

Figure 12. (Left) χT vs. T plot of the linear [Mn4O6(bpy)6]4+ complex showing a
diamagnetic ground state. (Right) Reduced magnetization plot of the adamantane-shaped
[Mn4O6(tacn)4]4+ complex showing a high-spin S = 6 ground state. 
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1.7) Structurally related Mn4 clusters on a rigid multinucleating scaffold 

Toward developing a methodology to access Mn clusters related to the OEC that can 

be systematically changed to provide rational access to different metal arrangement, oxo 

content, and heterometal content, a geometrically restricted, multinucleating ligand was 

employed. Stepwise protocols toward the synthesis of tetra- and pentanuclear complexes 

have been described.22, 50-51, 53, 77-78, 91-96 For the series of tetranuclear Mn complexes 

relevant to the OEC, initial metalation of H3L with Mn(OAc)2 leads to the trinuclear 

complex LMn3(OAc)3.97 Oxidation of LMn3(OAc)3 with KO2 in the presence of Ca(OTf)2 

leads to the formation of the Ca cubane complex LCaMn3O4(OAc)3(THF) (Figure 13).51 

Substitution of Ca2+ with Mn2+ leads to the formation of LMn2
IIIMn2

IVO4(OAc)3. From this 

complex, oxygen-atom transfer reactivity has been studied, with addition of PMe3 resulting 

in the formation of LMn4
IIIO3(OAc)3.77 Reoxidation in the presence of labelled water has 

been demonstrated and computational studies suggest oxide bridge movements reminiscent 

of the proposal for O(5) in the OEC. Depending on the synthetic procedure, lower oxidation 

state tetranuclear complexes with cores [Mn3
IIMnIIIO]7+, [Mn2

IIMn2
IIIO]8+, and 

Figure 13. Synthesis of tetranuclear Mn complexes supported by a geometrically rigid
multinucleating ligand. 
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[Mn2
IIMn2

IIIO2]6+ have been obtained, underscoring the flexibility of the ligand scaffold in 

stabilizing tetranuclear Mn complexes of different oxidation states.78 

1.8) Concluding remarks 

In the absence of direct and unambiguous structural data, proposals for the mechanism 

of water oxidation have relied heavily on the spectroscopic characterization of S-state 

intermediates. Spectroscopic features were interpreted in terms of structural implications, 

but studies that probe the effect of structural changes on the electronic structure and 

spectroscopy of relevant tetranuclear Mn complexes remain rare. In this chapter, 

tetranuclear Mn complexes with oxidation states corresponding to the S0−S3 states have 

been surveyed. With the exception of a special [CaMn4O4(OPiv)8] case, most tetranuclear 

complexes fall within a small number of structure types: cuboidal, square, linear, or 

adamantane-shaped. Although magnetic susceptibility and spectroscopic studies indicate 

that the spin ground state correlates with the cluster geometry, with linear clusters generally 

having low-spin ground states while cuboidal and adamantane clusters having higher spin 

ground states, systematic studies within a series of structurally related complexes are rare. 

A versatile ligand platform that can support a variety of oxidation states and allow 

systematic changes to the nature of bridging and terminal ligands had been developed in 

our laboratories. While trends in redox potential and oxygen atom transfer reactivity have 

been studied, systematic structure−electronic structure studies on [CaMn3O4] and [Mn4O4] 

cuboidal complexes had not been performed. Given that spectroscopic studies have been 

invaluable for gaining insight into the nature of intermediates in the catalytic cycle of water 

oxidation by the OEC, benchmarking with synthetic clusters that are thoroughly 
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characterized structurally and spectroscopically is imperative to further inform the 

interpretation of such spectroscopic studies. 

Given progress over recent years, goals such as the synthesis of more accurate 

structural models of the OEC and systematic structure−electronic structures studies may 

be within reach. Spectroscopic characterization of Mn4 complexes in oxidation states 

relevant to S2−S4 will prove valuable for benchmarking against the biological system. 

Additionally, the influence of protonation state on electronic structure and 17O labelling 

and spectroscopic characterization will provide further mechanistic insight. The following 

chapters detail efforts toward (1) the synthesis of pentanuclear CaMn4 models of the OEC 

(Chapter 2), (2) electronic structure studies on [Mn4O4] complexes as spectroscopic models 

of S2 and S3 states (Chapter 3 and Appendix 2), (3) effects of protonation and cluster 

desymmetrization on the electronic structure of [CaMn3O4] complexes (Chapter 5), and (4) 

17O labelling and pulsed-EPR studies (Appendix 1). Importantly, geometrical changes 

much smaller than the ones proposed for the OEC with respect to the metal oxo/hydroxo 

motifs could have substantial effects on the EPR signals. Therefore, the deduction of the 

geometry of OEC S-state intermediates based on EPR spectroscopic features need to be 

complemented with appropriate structural determination, and further synthetic and 

spectroscopic studies on relevant OEC model complexes are encouraged. 
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Abstract 

Using a new multinucleating ligand H3L' featuring two dipyridylalkoxide and a 

carboxylate moiety, low symmetry tetranuclear complexes 1-M featuring a [M3
II(μ3-

OH)MII] core (M = Mn, Fe, and Co) have been synthesized. Complex 1-Mn was used as 

precursor for the synthesis of a pentanuclear [CaMn2
IIMn2

IIIO2] cluster (2-Ca) with the 

same metal stoichiometry as the biological oxygen evolving complex (OEC), underscoring 

the importance of cluster desymmetrization strategies such as H3L' in the synthesis of 

hitherto unobserved oxo-bridged multimetallic core geometries related to the OEC. 
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2.1) Introduction 

Access to model complexes that mimic the structure and function of the oxygen 

evolving complex (OEC) in Photosystem II facilitates understanding of the mechanism of 

biological water oxidation.1-5 The inorganic [CaMn4O5] core of the OEC consists of a 

cuboidal [CaMn3O4] subsite bound to a dangling fourth Mn through a bridging μ2-oxo or 

hydroxo moiety (Figure 1a).1-2 The synthesis of accurate structural models is hampered by 

the low structural symmetry of the cluster, the presence of two types of metals, and the 

propensity of oxo moieties to form extended oligomeric structures.4, 6-7 The nuclearity and 

geometry of heterometallic oxo-bridged clusters is therefore often hard to control.7-17  More 

recently, models of discrete [Mn3CaOn] cores have been prepared using a methodology 

that allows for systematic structure-function studies.18-21 Pentanuclear clusters, 

[CaMMn3O4] (M = Ca,13 Ag,22 Mn23) with structures closely mimicking the OEC, have 

been accessed by both self-assembly as well as rational, stepwise approaches (Figure 1b). 

Particularly notable is the report of a [CaMn4O4] synthetic cluster.23 Despite these advances, 

general methodologies that allow investigations on the effects of cluster structure on its 

properties remain very rare. 

 
Figure 1. a) Representation of the [CaMn4O5] core of the OEC, and b) overlay of the OEC 
with a synthetic [CaAgMn3O4] cluster core. 
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Toward rational methodologies for model complex preparation, a cluster with the 

complexity of the OEC requires careful consideration of synthetic strategy. We have 

previously established a methodology that involves the synthesis of trinuclear precursors 

[Mn3
II] (A, Figure 2) on a suitable supporting ligand. Oxygenation in the presence of a 

fourth equivalent of metal results in [MMn3
IVOn] clusters, with cubane (n = 4) highlighted 

(B) in Figure 2.  Further synthetic steps have been demonstrated to provide access to 

[CaAgMn3
IVO4] (C), and hold promise for other cluster compositions. An alternative 

approach targeted in this study involves a ligand framework that can directly support a 

[Mn4
II] (D) in a low symmetry cluster. From this tetranuclear precursor, oxygenation in the 

presence of a fifth equivalent of metal can provide model [MMn4O5] (E). We report herein 

new desymmetrized ligands that afford access to tetranuclear clusters that can be further 

elaborated to more oxidized pentanuclear clusters, including a heterometallic 

[CaMn2
IIMn2

IIIO2] complex with the same metal stoichiometry as the OEC. 

 
Figure 2. Previously reported synthetic strategy to OEC models and a new approach 
targeted in this study. 
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The nuclearity and geometry of multinuclear metal-oxo complexes can be controlled 

through careful ligand design. For approach 1, a series of trinuclear complexes was 

accessed using a pseudo−C3 symmetric ligand based on a 1,3,5-triarylbenzene framework 

functionalized with three dipyridyl alkoxide moieties.24 These precursors (A, Figure 2) 

allowed the synthesis of tetranuclear species with a variety of oxo content (for example, 

B).18-22, 25-26 Given the low symmetry of the OEC, pseudo−C3 symmetric CaMn3O4 

complex (B) was desymmetrized via ligand substitution, which facilitated binding of Ag(I) 

to a specific oxo moiety to generate a CaAgMn3O4 cluster (C).22 A desymmetrized version 

of the supporting ligand was targeted as an alternate approach, with the goals of preparing 

a tetranuclear, rather than trinuclear, precursor and to obtain a low-symmetry Mn4 core. 

Changing one of the three dipyridyl alkoxide moieties of the pseudo−C3 symmetric ligand 

for a carboxylate or a phosphinate group provides a more sterically open ligand precursor, 

H3L' or H2LiLP, with lower symmetry. 

2.2) Ligand synthesis 

Two variations of the symmetric ligand H3L featuring three dipyridyl alkoxide moieties 

were envisioned. Substitution of one of the dipyridyl alkoxide moieties with a carboxylate 

(H3L') or a phenylphosphinate (H2LiLP) moiety was targeted (Figures 3 and 4). The 

targeted proligand H3L' was synthesized in four steps from 1,3,5-tris(2-

bromophenyl)benzene (Figure 3), previously used for the synthesis of the pseudo−C3 

symmetric ligand.24 Lithium-halogen exchange using 1 equiv of n-BuLi followed by 

addition of DMF gives the monoaldehyde-dibromide L1 as a major product. L1 was 

separated from minor amounts of starting material as well as the dialdehyde species via 

silica flash column chromatography. The aldehyde moiety in L1 was then protected by 
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conversion to an acetal upon condensation with ethylene glycol, giving L2. The conversion 

to L2 is quantitative and the product can be used without further purification. Treatment of 

L2 with 4 equiv of t-BuLi followed by addition of 2 equiv of di(2-pyridyl)ketone gives the 

aldehyde precursor L3 upon acidic workup. Conversion of the aldehyde moiety in L3 to 

the carboxylic acid was achieved via Pinnick oxidation using NaClO2.27 Without 

optimization, H3L can be obtained on multigram scale (> 20 g) in 46% overall yield from 

the tribromide precursor. 

 

Figure 3. Synthesis of proligand H3L'. a) 1.1 equiv n-BuLi, 2 equiv DMF, THF; b) 
ethylene glycol, 10 mol% TsOH, C6H6; c) 4.1 equiv t-BuLi, 2 equiv di(2-pyridyl)ketone, 
THF; d) 3 equiv NaClO2, 3 equiv NaH2PO4, THF/H2O/DMSO. 
 

The synthesis of the analogous lithium phosphinate proligand H2LiLP was achieved in 

three steps from the same tribromide precursor (Figure 4). Lithium-halogen exchange using 

1 equiv of n-BuLi followed by addition to a cold solution of PhPCl2 gives the phosphine 

oxide-dibromide L4 as a major product upon aqueous workup. L4 was separated from 

minor amounts of starting material as well as the diphosphine-bromide species via silica 

flash column chromatography. Oxidation of the phosphpine oxide moiety to the phosphinic 
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acid was achieved via treatment with H2O2/NaOH in refluxing MeOH. The protonated 

phosphinic acid L5 was isolated upon acidic workup with aqueous HCl. Treatment of L5 

with 1 equiv of LiN(SiMe3)2 affords the Li-phosphinate dibromide intermediate; this is 

then treated with 4 equiv of t-BuLi followed by addition of 2 equiv of di(2-pyridyl)ketone 

to afford the desired pro-ligand H2LiLP upon acidic workup with aqueous NH4Cl. Note 

that the phosphinate moiety stays deprotonated at this stage. Based on ESI-MS, the lithium-

phosphinate formulation is proposed: reliable NMR data has not been obtained due to its 

very low solubility. 

 

Figure 4. Synthesis of proligand H2LiLP. a) 1.1 equiv n-BuLi, 1 equiv PhPCl2, THF, −78 
oC; b) NaOH (aq.); c) rearrangement of hydroxyphosphine to the phosphine oxide; d) 2 
equiv NaOH, 10 equiv H2O2, MeOH, reflux, then acidic workup; e) 1.1 equiv LiN(SiMe3)2, 
4.2 equiv. t-BuLi, 2 equiv di(2-pyridyl)ketone, THF. Aqueous workup with NH4Cl (aq.) 
affords the Li-phosphinate ligand. 
 
2.3) Complexes supported by the desymmetrized carboxylate ligand 

Metalation reactions were performed with Mn(II) (Figure 5). Treatment of H3L' with 

Mn(OAc)2 in THF/H2O results in the formation of a tetranuclear complex as indicated by 

a prominent peak at m/z = 1128 in the ESI-MS corresponding to the mass of 
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[L'Mn4O(OAc)3]+. Single crystals suitable for X-ray diffraction could not be obtained to 

date. Treatment of H3L' with different Mn(II) benzoate precursors (benzoate, OBz−) gives 

rise to ESI-MS peaks at m/z = 1543 and 1724, corresponding to the masses of 

[LMn4O(OBz)3]+ and [LMn4(OBz)4]+, respectively, for OBz− = 2-phenylbenzoate. 

Colorless single crystals of 1-Mn were obtained from DCM/Et2O vapor diffusion (Figure 

6a). Structural parameters and charge balance are consistent with the LMn4
II(OH)(OBz)4 

formulation. For OBz− = 4-t-Bu-benzoate, single crystals consistent with the LMn4
 

II(OH)(OBz)4(HOBz) formulation were obtained (Figure 6b). Both alkoxide moieties of 

H3L' serve as bridging ligands between Mn(1) and Mn(2) through O(1), and between Mn(1) 

and Mn(3) through O(2). The binding mode of the dipyridyl alkoxide moieties in 1-Mn is 

identical to that in the trimetallic complex.24 In contrast, a fourth Mn center is incorporated 

in 1-Mn supported by the carboxylate moiety of H3L, bridging Mn(3) and Mn(4), and by 

a water derived μ3-O(3) ligand bridging Mn(2), Mn(3), and Mn(4). Notably, the μ3-O(3) 

ligand occupies the position that an alkoxide moiety occupies in the trimetallic complex 

geometrically and in terms of bridging two metals that are also coordinated by alkoxides.  

Figure 5. Synthesis of complexes 1-M (M = Mn, Fe, Co) supported by H3L'. 
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Although the trinuclear [Mn3(μ3-OH)] subsite in 1-Mn is reminiscent of the numerous 

examples of carboxylate bridged [Mn3O]6+/7+ complexes, comparison of Mn-O(3) bond 

distances in 1-Mn suggests that O(3) is a hydroxide.28-29 Bond metrics within the [MnII
3(μ3-

OH)] core are consistent with known Mn(II) complexes.30-31 

Figure 6. a) Crystal structure of 1-Mn and the truncated Mn4 core. Bolded bonds highlight
metal-hydroxide and metal-alkoxide bonds. b) Truncated core of the 4-t-Bu-benzoate
analogue. 



31 
 

 
 

To test the versatility of L3− in supporting tetranuclear clusters, other first row transition 

metals were tested. Fe and Co complexes structurally analogous to 1-Mn were targeted. 

Treatment of H3L with Fe(OAc)2 or Co(OAc)2 in the presence of organic bases such as 

Et3N or py leads to the formation of tetranuclear complexes 1-Fe and 1-Co, respectively. 

For both compounds, single crystals suitable for X-ray crystallography were obtained from 

py/Et2O vapor diffusion (Figure 7). The structures are consistent with the 

LM4(OH)(OAc)4(py) formulation. 1-Fe and 1-Co are isostructural, and the binding mode 

of H3L is essentially analogous to 1-Mn. Bond metrics within the [MII
3(μ3-OH)] core are 

consistent with known Fe and Co complexes.32-34 A pyridine molecule is bound to the six-

coordinate Fe(4) and Co(4) centers, in contrast to the five-coordinate Mn(4) center in 1-

Mn. Such difference in coordination geometry is accompanied by structural changes in the 

[M3(μ3-OH)] core. Mn(2)−Mn(4) and Mn(3)−Mn(4) distances are shorter than the 

corresponding Fe−Fe and Co−Co distances, whereas the Mn(2)−Mn(3) distance is longer. 

Mn(2)−O(3)−Mn(4) and Mn(3)−O(3)−Mn(4) angles are more acute than the corresponding 

Fe−O(3)−Fe and Co−O(3)−Co angles, whereas the Mn(2)−O(3)−Mn(3) angle is more 

Figure 7. Truncated crystal structures of a) 1-Fe and b) 1-Co. Bolded bonds highlight
metal-hydroxide and metal-alkoxide bonds. 
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obtuse. Aside from these differences, the overall topology of the three 1-M complexes is 

highly analogous. 

 
Figure 8. Zero-field Mössbauer spectrum of 1−Fe at 80 K with simulated parameters: δ = 
1.18 mm/s, │ΔEQ│ = 2.95 mm/s. 
 

The zero-field Mössbauer spectrum of 1-Fe shows a broad quadrupole doublet with δ 

= 1.18 mm/s and │ΔEQ│ = 2.95 mm/s (Figure 8). These values are consistent with known 

carboxylate bridged high-spin Fe(II) centers.35-36 Mössbauer parameters for the diiron(II) 

μ2−hydroxo species supported by bridging acetate ligands (δ = 1.16 mm/s, │ΔEQ│ = 2.83 

mm/s) are in excellent agreement with the values observed for 1-Fe.37-38 

To obtain insight into the magnetic exchange coupling interactions between the M(II) 

centers, magnetic susceptibility measurements were performed on powdered crystalline 

samples of 1-Mn, 1-Fe, and 1-Co in the temperature range 2 K−270 K at a non-saturating 

field of 0.1 T. For 1-Mn, the χT value of 10.8 emu K mol−1 at 270 K indicates 

antiferromagnetic coupling between the Mn(II) centers, deviating from the expected spin-
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only value of 17.5 emu K mol−1 (g = 2) for four uncoupled MnII (S = 5/2) centers (Figure 

9). χT decreases monotonically with temperature, reaching a value of 1.18 emu K mol−1 at 

Figure 9. χT vs T and reduced magnetization plot of 1-Mn. 

Figure 10. χT vs T and reduced magnetization plot of 1-Fe. 

Figure 11. χT vs T and reduced magnetization plot of 1-Co. 
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2 K, in good agreement with the expected χT value of 1.0 emu K mol−1 for an S = 1 (g = 2) 

ground state. Accordingly, the reduced magnetization reaches a maximum value of 1.84 

μBNA for the 4 T isofield curve, deviating slightly from the expected value of 2.0 for an S 

= 1 (g = 2) ground state. The lower reduced magnetization value can be attributed to zero-

field splitting effects. For 1-Fe, the χT value of 11.6 emu K mol−1 at 270 K is in good 

agreement with the spin only value of 12.0 emu K mol−1 (g = 2) for four uncoupled FeII (S 

= 2) centers (Figure 10). Therefore, the magnitude of the magnetic exchange coupling in 

1-Fe is expected to be very small. Consistent with antiferromagnetic interactions, χT 

decreases monotonically with temperature, reaching a value of 2.57 emu K mol−1 at 2 K. 

This value is intermediate between the expected values of 1.0 emu K mol−1 for an S = 1 (g 

= 2) and 3.0 emu K mol−1 for an S = 2 (g = 2) ground state. A small separation between the 

S = 1 ground state and the S = 2 first excited state is expected. Accordingly, the reduced 

magnetization reaches a maximum value of 2.61 μBNA for the 4 T isofield curve, deviating 

from the expected value of 2.0 for an S = 1 (g = 2) ground state. The higher reduced 

magnetization value can be attributed to the contribution from the S = 2 excited state. For 

1-Co, the χT value of 9.57 emu K mol−1 at 270 K deviates from the spin only value of 7.5 

emu K mol−1 (g = 2) for four uncoupled CoII (S = 3/2) centers (Figure 11). The larger value 

of 9.57 emu K mol−1 can be attributed to the unquenched orbital angular momentum of the 

CoII centers. χT decreases monotonically with temperature, reaching a value of 3.6 emu K 

mol−1 at 2 K, in good agreement with the expected χT value of 3.0 emu K mol−1 for an S = 

2 (g = 2) ground state. Accordingly, the reduced magnetization reaches a maximum value 

of 3.98 μBNA for the 4 T isofield curve, in excellent agreement with the expected value of 

4.0 for an S = 2 (g = 2) ground state. 
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Figure 12. Synthesis of pentanuclear complexes 2-Mn, 2-Ca, and 2-Mg from 1-Mn. 

Tetranuclear Mn clusters with varying oxo content have been obtained from the higher 

symmetry trinuclear analogs of 1-Mn.26 For instance, treatment of LMn3(OAc)3 with 

Mn(OAc)2 and KO2 results in the formation of a Mn4O2 cluster featuring μ4−O and μ2−O 

moieties. Similar incorporation of an additional metal center is observed upon treatment of 

1-Mn with Mn(O2CR)2 and PhIO or Mn(OTf)2, KO2, and 2-phenylbenzoic acid (Figure 

12), as indicated by a prominent ESI-MS peak at 1810 that corresponds to the mass of 

[LMn5O2(OBz)4]+. The solid-state structure of product 2 is consistent with the 

LMn5O2(OBz)5(THF) formulation (Figure 13a). While the binding mode of the dipyridyl 

alkoxide moieties remains unchanged compared to the higher symmetry ligand, the 

incorporation of a carboxylate moiety in L facilitates binding of Mn(5). Based on Mn−oxo 

distances, the oxidation states of Mn(1), Mn(2), and Mn(5) are assigned to Mn(II), and 

those of Mn(3) and Mn(4) to Mn(III). The [Mn5O2]8+ core of 2-Mn is reminiscent of an 

incomplete [Mn6(μ4-O)2]10+ core of pseudo-D3h symmetric [Mn6(μ4-O)2(OAc)10] 

complexes, missing one of the metal centers.29  

Toward the synthesis of a Ca-Mn cluster, treatment of 1-Mn with Ca(OTf)2, KO2, and 

2-phenylbenzoic acid (Figure 12) results instead in the formation of product 2-Ca 

consistent with the LCaMn4O2(OBz)5(THF) formulation. The structure of 2-Ca (Figure 
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13b) is analogous to 2 and shows a CaMn4O2 cluster with the same metal stoichiometry as 

the OEC. Based on Mn−oxo distances, the oxidation states of Mn(1) and Mn(2) are 

assigned to Mn(II), and those of Mn(3) and Mn(4) to Mn(III). Among reported discrete 

CaMn4 clusters,3c, 3h, 6, 13 there are only two reports of clusters that display oxo bridges 

CaMn4Ox (x = 1 or 4).3c, 6 To our knowledge, the [Mn5(μ4-O)(μ3-O)]8+ and [CaMn4(μ4-

O)(μ3-O)]8+ clusters have not been described, underscoring the utility of low-symmetry 

multinucleating ligands such as H3L' in the synthesis of hitherto unobserved oxo-bridged 

multimetallic core geometries related to the OEC. Furthermore, addition of Mn(OTf)2 to 

2-Ca results in the formation of 2-Mn, providing a modular approach to the synthesis of 

other pentametallic complexes.  

2.4) Complexes supported by the desymmetrized phosphinate ligand 

Metalation reactions with H2LiLP were performed with several Mn carboxylate 

precursors (Figure 14). Treatment of H2LiLP with Mn(OAc)2 in DMF/H2O results in the 

formation of a hexanuclear species despite careful addition of only 4 equiv of Mn(II). 

Colorless single crystals of 3-Mn were obtained from DMF/Et2O vapor diffusion (Figure 

Figure 13. Truncated crystal structures of a) 2-Mn and b) 2-Ca. Bolded bonds highlight
metal-oxo bonds. 
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15a). The structure is consistent with the LMn6(OH)(OAc)8 formulation. Both of the 

dipyridyl alkoxide moieties of serve as bridging ligands between Mn(1) and Mn(2) through 

O(1), and between Mn(1) and Mn(3) through O(2). The phosphinate moiety bridges Mn(2) 

and Mn(4), and a water derived hydroxide μ3-OH(3) ligand bridges Mn(2), Mn(3), and 

Mn(4). The [MnII
3(μ3-OH)] subsite of 3-Mn is reminiscent of the tetrametallic complexes 

1-M isolated from H3Lꞌ (Figure 5). Interestingly, the phosphinate moiety also bridges 

Mn(4) and Mn(5) through O(5), which we initially attributed to the superiority of the 

phosphinate moiety as a bridging ligand compared to the carboxylate moiety. Further 

binding of a sixth Mn(6) center was observed through bridging acetate moieties. To prevent 

formation of 3-Mn, a bulkier Mn pivalate precursor was used for metalation. We found 

Mn2(H2O)(Piv)4(bpy)2 to be an adequate precursor readily accessible from Mn(OAc)2 and 

HPiv. We reasoned that binding of bpy to Mn(4) could also prevent binding of additional 

Mn centers through the phosphinate O(5).  Despite careful addition of only 4 equiv of 

Mn(II), colorless single crystals of 4-Mn were obtained from DCM/Et2O vapor diffusion 

Figure 14. Synthesis of hexanuclear (3-Mn), pentanuclear (4-Mn), and tetranuclear (5-
Mn) complexes supported by H2LiLP. 



38 
 

 
 

(Figure 15b). The structure is consistent with the LMn5(OH)(Piv)6 formulation. 

Interestingly, the major peak in ESI-MS corresponds to the mass of [LMn4(OH)(Piv)3]+ 

Figure 15. Synthesis of hexanuclear (3-Mn), pentanuclear (4-Mn), and tetranuclear (5-
Mn) complexes supported by H2LiLP. 



39 
 

 
 

and no peaks consistent with the pentanuclear species was observed. The overall topology 

of 4-Mn is highly analogous to 3-Mn: formation of the [MnII
3(μ3-OH)] subsite is again 

observed and the phosphinate moiety bridges Mn(4) and Mn(5) through O(5). A capping 

pivalate moiety prevents further binding of a sixth Mn. Notably, bpy was found to be 

ineffective in preventing binding of a fifth metal. Gratifyingly, when Mn(p-tert-Bu-

benzoate)2 [abbreviated as Mn(OBz]2] was used for metalation, clean formation of the 

desired tetranuclear complex 5-Mn was obtained. Single crystals were obtained from 

py/Et2O vapor diffusion (Figure 15c). The structure is consistent with the 

LMn4(OH)(OBz)4(py) formulation. The reduced basicity of the benzoate moieties and 

binding of a pyridine molecule to Mn(4) may preclude further binding of a fifth Mn. 

Starting from 5-Mn, further oxidation in the presence of a fifth metal have not been 

explored in detail thus far. 

2.5) Discussion 

In summary, low symmetry tetranuclear complexes 1-M (M = Mn, Fe, Co) have been 

synthesized and structurally characterized. The feasibility of using 1-Mn as a precursor for 

the synthesis of novel pentanuclear clusters has been demonstrated with the synthesis of 2-

Mn and 2-Ca featuring more oxidized [Mn5O2]8+ and [CaMn4O2]8+ cores. Compound 2-

Ca is notable as a rare example of cluster of same metal composition, with oxo bridges, as 

the OEC. Synthesis of pentanuclear complexes with higher oxo content toward more 

accurate models of the OEC is currently being pursued. 

2.6) Experimental section 

Synthesis of L1: A 500-mL Schlenk flask equipped with a stir bar was charged with 

tris(2-bromophenyl)benzene (34.5 g, 63 mmol, 1 equiv). Anhydrous THF (300 mL) was 
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added via cannula, and the flask was cooled to −78 °C. A solution of n-butyllithium in 

hexane (2.5 M, 30 mL, 75 mmol, 1.2 equiv) was added slowly via syringe and stirred for 

an additional hour at −78 °C. Anhydrous, degassed DMF (9.8 g, 134 mmol, 2.1 equiv) was 

added via syringe, and the mixture was stirred at ambient temperature for 12 h. The reaction 

mixture was quenched with a saturated aqueous solution of NH4Cl, and the organic phase 

was separated. The aqueous phase was extracted three times with EtOAc, and the combined 

organic fraction was washed repeatedly with brine to remove excess DMF, dried over 

anhydrous MgSO4, filtered, and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica using 5:1 hexanes/CH2Cl2 (Rf = 0.4), 

then dried under reduced pressure to yield L1 as a white foamy solid (21.4 g, 69%). 1H 

NMR (CDCl3, 300 MHz): δ 10.23 (s, 1H, CHO), 8.08 (dd, J = 7.8, 1.5 Hz, 1H, o-CHO), 

7.71 (dd, J = 8.2, 1.5 Hz, 2H), 7.68 (td, J = 7.5, 1.5, 1H), 7.59 (d, J = 8.5 Hz, 1H), 7.55 (t, 

J = 1.5 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.50 (d, J = 1.5 Hz, 2H), 7.46 (dd, J = 7.8, 1.5 

Hz, 2H), 7.40 (td, J = 7.5, 1.5 Hz, 2H), 7.25 (td, J = 7.8, 2.0 Hz, 2H) ppm. 13C NMR (CDCl3, 

75 MHz): 192.6, 145.5, 141.6, 141.2, 137.3, 134.0, 133.8, 133.4, 131.5, 131.1, 130.4, 130.3, 

129.3, 128.2, 127.8, 127.7, 122.8 ppm. HRMS (FAB+): calculated for C25H17OBr18Br: 

492.9626; found: 492.9645 [M+H]. 

Synthesis of L2: A 500-mL round-bottom flask equipped with a stir bar was charged 

with a solution of L1 (21.4 g, 43.5 mmol) in benzene (200mL), ethylene glycol (25 mL), 

and p-toluenesulfonic acid monohydrate (0.5 g, 2.6 mmol, 0.06 equiv). A Dean-Stark 

apparatus was connected to the flask, and the mixture was refluxed for 15 h under N2. The 

mixture was cooled to ambient temperature and quenched with a saturated aqueous solution 

of NaHCO3. The organic fraction was separated, washed with brine, dried over anhydrous 
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MgSO4, filtered, and dried under reduced pressure to yield L2 as a white foamy solid (22.1 

g, 95%). The resulting material was used without further purification. 1H NMR (CDCl3, 

300 MHz): δ 7.78–7.74 (m, 1H), 7.70 (dd, J = 8.0, 1.2 Hz, 2H), 7.54 (d, J = 1.7 Hz, 2H), 

7.48−7.43 (m, 6H), 7.40−7.35 (overlapping ddd and s, 3H), 7.22 (ddd, J = 8.0, 7.3, 1.9 Hz, 

2H), 5.92 (s, 1H), 4.18 (m, 2H), 3.98 (m, 2H) ppm. 13C NMR (CDCl3, 75 MHz): δ 142.20, 

141.63, 140.61, 139.41, 134.79, 133.28, 131.60, 130.39, 130.01, 129.36, 129.28, 129.04, 

127.98, 127.56, 127.02, 122.83, 101.48, 65.73 ppm. HRMS (FAB+): calculated for 

C27H20O2Br18Br: 535.9810; found: 535.9816 [M+H]. 

Synthesis of L3: A 500-mL Schlenk flask equipped with a stir bar was charged with 

L2 (22.1 g, 41 mmol, 1 equiv) under N2 counter-flow. Anhydrous THF (250 mL) was 

added via cannula, and the flask was cooled to −78 °C. A solution of t-butyllithium in 

pentane (1.7 M, 100 mL, 170 mmol, 4.1 equiv) was added slowly via cannula, and the 

resulting red solution was stirred at −78 °C for 1 hr. A solution of di(2-pyridyl)ketone (15.2 

g, 82 mmol, 2 equiv) in anhydrous THF (100 mL) was added via cannula, and the resulting 

mixture was stirred at ambient temperature for 15 hrs. The reaction mixture was quenched 

with 1M hydrochloric acid to pH 1 and stirred for 2 hrs. After neutralizing the acid with a 

saturated aqueous solution of NaHCO3, the mixture was concentrated under reduced 

pressure to remove excess THF. The product was extracted with CH2Cl2, washed with brine, 

dried over anhydrous MgSO4, filtered, and dried under reduced pressure. L3 is obtained as 

a white foamy solid and used without further purification. 1H NMR (CDCl3, 300 MHz): δ 

9.82 (s, 1H, CHO), 8.33 (d, J = 5.1 Hz, 4 H), 8.01 (d, J = 7.8 Hz, 1 H), 7.66 (d, J = 8.1 Hz, 

4 H), 7.61 (d, J = 7.5 Hz, 1 H), 7.46 (t, J = 7.5 Hz, 6 H), 7.36 (t, J = 7.5 Hz, 2 H), 7.21 (t, 

J = 7.5 Hz, 2 H), 7.13 (d, J = 7.5 Hz, 2 H), 7.07 (s, 1 H), 6.97 (m, 6 H), 6.81 (s, 2 H), 6.75 
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(d, J = 8.1 Hz, 2 H) ppm. HRMS (FAB+): calculated for C47H35N4O3: 703.2709; found: 

703.2697 [M+H]. 

Synthesis of H3L': A 1 L round-bottom flask equipped with a stir bar was charged with 

crude L3 (obtained from 22.1 g of L2) and THF (50 mL). DMSO (450 mL) was added as 

an HClO scavenger. A saturated aqueous solution of NaH2PO4•2H2O (3.5g, 22.4 mmol, 5 

equiv) was added via a dropping funnel. Subsequently, a saturated aqueous solution of 

NaClO2 (1.2 g, 13.27 mmol, 3 equiv) was added via a dropping funnel and the resulting 

mixture was stirred for 18 hrs at ambient temperature. The reaction mixture was eluted 

with EtOAc (500 mL) and washed repeatedly with brine to remove excess DMSO, dried 

over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The residue 

was dissolved in minimum acetone and precipitated from Et2O to afford H3L as a white 

powder (20.9 g, 46% overall yield in 4 steps). 1H NMR (300 MHz, CDCl3): δ 8.32 (d, J = 

4.8 Hz, 4H), 7.65 (m, 5H), 7.47 (t, J = 7.2 Hz, 4H), 7.27 (m, 2H), 7.14 (t, J = 7.8 Hz, 2H), 

7.02 (d, J = 7.5 Hz, 2H), 6.96 (m, 5H), 6.86 (s, 2H), 6.73 (d, J = 7.8 Hz, 2H), 6.63 (s, 1H) 

ppm. 13C NMR (75 MHz, CDCl3): 162.88, 146.86, 144.07, 143.23, 142.00, 140.35, 137.36, 

136.36, 133.00, 130.93, 130.81, 130.74, 129.96, 129.02, 128.65, 127.21, 127.16, 126.68, 

126.46, 123.46, 122.04 ppm. HRMS (ES+): calculated for C47H35N4O4: 719.2658; found: 

719.2677 [M+H]. 

Synthesis of manganese benzoate precursors: An example for the 2-phenylbenzoate 

analogue is presented here. Under strictly anaerobic conditions, an aqueous suspension of 

2-phenylbenzoic acid (0.951 g, 4.8 mmol, 2 equiv) was treated with NaOH (0.192 g, 4.8 

mmol, 2 equiv). The mixture was gently warmed to 60 oC, resulting in a slightly yellow 

solution. An aqueous solution of MnCl2•4H2O (0.474 g, 2.4 mmol, 1 equiv) was added 
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dropwise. The total volume of the reaction was 20 mL. The mixture was stirred at 60oC for 

3 h, resulting in the formation of a white precipitate. After cooling to room temperature, 

the precipitate was collected and washed thoroughly with copious amounts of water and 

Et2O, successively. The remaining white solid was dried under reduced pressure. Yield = 

1.041 g. Crystallization from DME affords Mn3(OBz)6(DME)2. 

Synthesis of 1-Mn: A solution of H3L' (1.708 g, 2.38 mmol, 1 equiv) in THF was 

added to a stirring suspension of Mn(OBz)2•xH2O (4.956 g, 9.5 mmol, 4 equiv) in THF. 

The reaction mixture was stirred at ambient temperature, becoming homogeneous within 

1 hour. After stirring for 18 hours, all volatiles were removed under reduced pressure. The 

residue was washed with copious amounts of Et2O, then dissolved in hot benzene and 

filtered through Celite. All volatiles were removed from the filtrate under reduced pressure. 

The residue was dissolved in CH2Cl2. Clear, colorless crystals of the product were obtained 

by slow vapor diffusion of Et2O. Compound 1−Mn was isolated by filtration and dried 

under reduced pressure. Yield = 3.87 g, 94 %. Analysis calculated for 

LMn4(OH)(OBz)4•1/2(CH2Cl2) [C199H138Cl2Mn8N8O26]: C 66.99, H 3.90, N 3.14; found: 

C 67.03, H 4.08, N 3.02. 

Synthesis of 1-Fe: A solution of H3L' (1.162 g, 1.62 mmol, 1 equiv) in THF (10 mL) 

was added to a stirring suspension of Fe(OAc)2 (1 g, 5.75 mmol, 3.5 equiv) in THF (5 mL). 

Water (2 mL) was added and the mixture was stirred until a homogeneous red solution was 

obtained. Triethylamine (1 mL) was added and the mixture was stirred for 12 hours at 

ambient temperature, resulting in the formation of an orange precipitate. This precipitate 

was collected and washed with copious amounts of THF. The solid residue was dissolved 

in pyridine and filtered through Celite. All volatiles were removed from the filtrate under 
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reduced pressure. Compound 1-Fe was isolated as air-sensitive red microcrystals. Yield = 

1.67 g, 91 % (based on Fe). Crystals suitable for X-ray crystallography are obtained by 

slow vapor diffusion of Et2O into a concentrated solution of 1-Fe in pyridine. Analysis 

calculated for LFe4(OH)(OAc)4(py)•py [C65H54Fe4N6O13]: C 57.81, H 4.03, N 6.22; found: 

C 57.91, H 4.29, N 6.49. 

Synthesis of 1-Co: A solution of Co(OAc)2•4H2O (1.476 g, 5.93 mmol, 3.8 equiv) in 

MeOH (10 mL) was added to a solution of H3L' (1.120 g, 1.56 mmol, 1 equiv) in MeOH 

(5 mL). Pyridine (1 mL) was added, and the resulting violet solution was stirred for 12 

hours at ambient temperature. All volatiles were then removed under reduced pressure. The 

residue was washed with copious amounts of Et2O, THF, and MeCN. The solid residue 

was dissolved in pyridine and filtered through Celite. All volatiles were removed from the 

filtrate under reduced pressure. Compound 1-Co was isolated as air-stable violet 

microcrystals. Yield = 1.477 g, 79 %. Crystals suitable for X-ray crystallography are 

obtained by slow vapor diffusion of Et2O into a concentrated solution of 1-Co in pyridine. 

Analysis calculated for LCo4(OH)(OAc)4(py)•2py [C70H59Co4N7O13]: C 58.31, H 4.12, N 

6.80; found: C 58.40, H 4.29, N 6.40. 

Synthesis of 2-Mn: A solid mixture of 1-Mn (0.442 g, 0.25 mmol, 1 equiv), Mn(OTf)2 

(99 mg, 0.28 mmol, 1.1 equiv), and 2-phenylbenzoic acid (56 mg, 0.28 mmol, 1.1 equiv) 

was treated with CH3CN (15 mL) and stirred to a homogeneous yellow solution. KO2 (55 

mg, 0.77 mmol, 3 equiv) was added as a solid and stirred at r.t. for 18 h, resulting in the 

formation of a brown-red precipitate. The precipitate was collected and washed with 

copious amounts of CH3CN. The solid residue was dissolved in THF, filtered through 

Celite, and concentrated under reduced pressure. Yield = 0.435 g, 82 %. Red crystals 
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suitable for X-ray crystallography are obtained from a concentrated THF solution by slow 

vapor diffusion of Et2O. Analysis calculated for C116H84Mn5N4O17: C 66.96, H 4.07, N 

2.69; found: C 66.15, H 4.35, N 2.98. 

Synthesis of 2-Ca: A solid mixture of 1-Mn (0.640 g, 0.367 mmol, 1 equiv), Ca(OTf)2 

(135 mg, 0.40 mmol, 1.1 equiv), and 2-phenylbenzoic acid (96 mg, 0.48 mmol, 1.3 equiv) 

was treated with CH3CN (15 mL) and stirred to a homogeneous yellow solution. KO2 (65 

mg, 0.091 mmol, 2.5 equiv) was added as a solid and stirred at r.t. for 18 h, resulting in the 

formation of a red-orange precipitate. The precipitate was collected and washed with 

copious amounts of CH3CN. The solid residue was dissolved in THF, filtered through 

Celite, and concentrated under reduced pressure. Yield = 0.421 g, 55 %. Red crystals 

suitable for X-ray crystallography are obtained from a concentrated THF/CH2Cl2 solution 

by slow vapor diffusion of Et2O. Analysis calculated for C116H84CaMn4N4O17: C 67.45, H 

4.10, N 2.71; found: C 67.67, H 4.46, N 2.46. 

Synthesis of L4: A 2 L three-neck, round-bottom flask equipped with a stir bar was 

charged with tris(2-bromophenyl)benzene (55.3 g, 102 mmol, 1 equiv). THF (500 mL) was 

added via cannula, and the solution was cooled to −78 °C in a dry ice/acetone bath. A 

solution of n-butyllithium in hexane (2.5 M, 45 mL, 113 mmol, 1.1 equiv) was added over 

10 min via syringe, and the resulting orange solution was stirred for 1 hour at −78 °C. A 

separate 2 L three-neck, round-bottom flask equipped with a stir bar was charged with 

PhPCl2 (19.2 g, 15 mL, 107 mmol, 1.05 equiv) and THF (500 mL). The solution containing 

the lithiated species was added to the solution of PhPCl2 via cannula. The mixture was 

warmed to ambient temperature and stirred for 15 additional hours. The reaction was 

quenched with a saturated aqueous solution of NaHCO3. The organic phase was separated, 
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and the aqueous phase was extracted three times with CH2Cl2. The combined extract was 

washed with brine and dried over anhydrous MgSO4, filtered, and dried under reduced 

pressure. The residue was purified by flash column chromatography on silica using 1:1 

hexanes/EtOAc (Rf = 0.3), and then dried under reduced pressure to yield L4 as a white 

foamy solid (31.6 g, 53%). 31P NMR (CDCl3): 18.20 ppm. HRMS (FAB+): calculated for 

C30H22OPBr18Br: 588.9754; found: 588.9749 [M+H]. 

Synthesis of L5: A pure sample of L1 obtained from 36.8 g of tris(2-

bromophenyl)benzene was used for this procedure. A 500 mL round-bottom flask equipped 

with a stir bar was charged with L1, KOH (4 g), and MeOH (300 mL). An aqueous solution 

of H2O2 (30 %, 10 mL) was added and the mixture was heated to 80 oC for 1 hour. The 

mixture was cooled to room temperature and stirred for 15 additional hours. The reaction 

was quenched with water (500 mL) and concentrated hydrochloric acid was added 

dropwise until pH 0. The resulting white precipitate was collected in a fritted funnel and 

washed with copious amounts of water. The remaining white solid was dissolved in EtOAc, 

rinsed with brine, dried over anhydrous MgSO4, filtered, and dried under reduced pressure 

to yield L2 as a white solid (20.44 g, 50% over two steps). 31P NMR (CDCl3): 32.65 ppm. 

HRMS (FAB+): calculated for C30H22O2PBr18Br: 604.9704; found: 604.9709 [M+H]. 

Synthesis of H2LiLP: In the glovebox, a 500 mL round-bottom flask equipped with a 

stir bar was charged with L2 (19.93 g, 33 mmol, 1 equiv) and THF (200 mL). A solution 

of LiN(SiMe3)2 (6.12 g, 36 mmol, 1.1 equiv) in THF (100 mL) was added dropwise, and 

the resulting red solution was stirred for 8 hours at ambient temperature. Subsequently, all 

volatiles were removed under reduced pressure. The beige residue was washed twice with 

100 mL portions of pentane, redissolved in THF, and filtered through a pad of Celite. The 
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total volume of the red THF filtrate was 300 mL. The filtrate was then transferred to a 1 L 

Schlenk flask equipped with a stir bar and cooled to −78 oC in a dry ice/acetone bath. A 

solution of n-butyllithium in hexane (2.5 M, 29 mL, 73 mmol, 2.2 equiv) was added via 

syringe at −78 °C, and the resulting green solution was stirred for 30 minutes, during which 

a white precipitate formed. A separate 500 mL Schlenk flask was charged with di(2-

pyridyl)ketone (13.44 g, 73 mmol, 2.2 equiv) and THF (150mL). The solution of the ketone 

was added to the solution of the lithiated species via cannula, resulting in a green solution. 

Subsequently, the mixture was warmed to ambient temperature and stirred for 40 hours. 

The reaction was quenched by adding a saturated, aqueous solution of NH4Cl (300 mL) 

and EtOAc (300 mL). The organic phase was separated, and the blue aqueous phase was 

extracted three times with CH2Cl2. The combined extract was dried over anhydrous MgSO4, 

filtered, and dried under reduced pressure. The yellow residue was washed with copious 

amounts of Et2O and dried under reduced pressure to yield LphosH2Li as a beige powder 

(23.7 g, 85%). HRMS (ES−): calculated for C52H38N4O4P: 813.2631; found: 813.2661 [M−]. 
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Table 1. Crystal and refinement data for complexes 1−Mn, 1−Fe, and 1−Co. 

Compound 1−Mn 1−Fe 1−Co 

CCDC 1540537 1540538 1540539 

Empirical formula C102.88H75.05Cl2.56Mn4N4O13.65 C64H58Fe4N5O14 C64H58Co4N5O14 

Formula weight 1896.13 1344.55 1356.87 

Temperature/K 99.99 100.04 100.03 

Crystal system triclinic triclinic triclinic 

Space group P-1 P-1 P-1 

a/Å 13.5028(18) 13.7237(14) 13.7817(7) 

b/Å 16.598(2) 13.9138(13) 13.8132(7) 

c/Å 21.517(3) 17.8609(17) 17.7104(9) 

α/° 77.057(3) 75.523(4) 75.742(2) 

β/° 82.240(3) 75.229(3) 75.384(2) 

γ/° 83.778(3) 65.876(3) 66.637(2) 

Volume/Å3 4641.4(11) 2968.4(5) 2954.1(3) 

Z 2 2 2 

ρcalcg/cm3 1.357 1.504 1.525 

μ/mm-1 0.671 1.030 1.176 

F(000) 1946.0 1386.0 1394.0 

Crystal size/mm3 0.1 × 0.05 × 0.05 
0.02 × 0.02 × 

0.02 
0.2 × 0.1 × 0.1 

Radiation MoKα (λ = 0.71073) 
MoKα (λ = 
0.71073) 

MoKα (λ = 
0.71073) 

2Θ range for data 
collection/° 

3.802 to 61.494 4.782 to 56.528 4.82 to 61.016 

Index ranges 
-19 ≤ h ≤ 19, -23 ≤ k ≤ 23, -

30 ≤ l ≤ 30 

-18 ≤ h ≤ 18, -
18 ≤ k ≤ 18, -23 

≤ l ≤ 23 

-19 ≤ h ≤ 19, -19 
≤ k ≤ 19, -25 ≤ l 

≤ 25 
Reflections collected 132477 105521 113132 

Independent reflections 
28763 [Rint = 0.0752, 

Rsigma = 0.0738] 

14691 [Rint = 
0.1863, Rsigma = 

0.1232] 

18006 [Rint = 
0.0489, Rsigma = 

0.0335] 

Data/restraints/parameters 28763/8/1108 14691/6/765 18006/0/765 

Goodness-of-fit on F2 1.061 1.045 1.054 

Final R indexes [I>=2σ 
(I)] 

R1 = 0.0904, wR2 = 0.2523 
R1 = 0.0744, 
wR2 = 0.1510 

R1 = 0.0448, 
wR2 = 0.1262 

Final R indexes [all data] R1 = 0.1340, wR2 = 0.2767 
R1 = 0.1521, 
wR2 = 0.1771 

R1 = 0.0641, 
wR2 = 0.1375 

Largest diff. peak/hole / e 
Å-3 

2.22/-1.47 1.67/-1.06 1.84/-1.46 
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Table 2. Crystal and refinement data for complexes 2-Mn and 2-Ca. 

Compound 2-Mn 2-Ca 

CCDC 1540540 1540541 

Empirical formula C128H109Mn5N4O20 C120H92CaCl4Mn4N4O17.5

Formula weight 2297.93 2271.61 

Temperature/K 100.04 100.0 

Crystal system triclinic triclinic 

Space group P-1 P-1 

a/Å 14.7524(8) 14.8017(4) 

b/Å 16.2906(8) 16.3782(5) 

c/Å 22.1991(12) 21.9258(6) 

α/° 90.350(2) 88.2880(10) 

β/° 98.124(2) 81.0900(10) 

γ/° 92.207(2) 87.5960(10) 

Volume/Å3 5277.2(5) 5245.1(3) 

Z 2 2 

ρcalcg/cm3 1.446 1.438 

μ/mm-1 0.658 0.693 

F(000) 2380.0 2336.0 

Crystal size/mm3 0.05 × 0.05 × 0.05 0.1 × 0.05 × 0.05 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 

collection/° 
4.312 to 61.016 4.408 to 61.046 

Index ranges 
-21 ≤ h ≤ 21, -23 ≤ k ≤ 

23, -31 ≤ l ≤ 31 
-21 ≤ h ≤ 21, -23 ≤ k ≤ 

23, -31 ≤ l ≤ 31 

Reflections collected 130593 161254 

Independent reflections 
32156 [Rint = 0.0384, 

Rsigma = 0.0461] 
31911 [Rint = 0.0567, 

Rsigma = 0.0615] 

Data/restraints/parameters 32156/10/1412 31911/26/1362 

Goodness-of-fit on F2 1.032 1.025 

Final R indexes [I>=2σ (I)] 
R1 = 0.0528, wR2 = 

0.1279 
R1 = 0.0745, wR2 = 

0.1886 

Final R indexes [all data] 
R1 = 0.0782, wR2 = 

0.1414 
R1 = 0.1157, wR2 = 

0.2124 
Largest diff. peak/hole / e 

Å-3 
1.69/-1.10 2.22/-1.84 
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Figure 16. 1H NMR of L1 in CDCl3. 

 
Figure 17. 13C NMR of L1 in CDCl3. 
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Figure 18. 1H NMR of L2 in CDCl3. 

 
Figure 19. 13C NMR of L2 in CDCl3. 
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Figure 20. 1H NMR of H3L' in CDCl3. 

 
Figure 21. 13C NMR of H3L' in CDCl3. 
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Figure 22. 31P NMR of L4. 
 

 
Figure 23. 1H NMR of L5 in CDCl3. 
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Figure 24. 31P NMR of L5. 
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Abstract 
 

Despite extensive biochemical, spectroscopic, and computational studies, the 

mechanism of biological water oxidation by the Oxygen Evolving Complex (OEC) of 

Photosystem II remains a subject of significant debate. Mechanistic proposals are guided 

by the characterization of reaction intermediates such as the S2 state, which features two 

characteristic EPR signals at g = 2 and g = 4.1. Two nearly isoenergetic structural isomers 

have been proposed as the source of these distinct signals, but relevant structure−electronic 

structure studies remain rare. Herein, the synthesis, crystal structure, electrochemistry, 

XAS, magnetic susceptibility, variable temperature CW-EPR, and pulse EPR data for a 

series of [MnIIIMn3
IVO4] cuboidal complexes as spectroscopic models of the S2 state of the 

OEC is reported. Resembling the oxidation state and EPR spectra of the S2 state of the 

OEC, these model complexes show two EPR signals, a broad low field signal and a 

multiline signal, that are remarkably similar to the biological system. The effect of 

systematic changes in the nature of the bridging ligands on spectroscopy were studied.  

Results show that the electronic structure of tetranuclear Mn complexes is highly sensitive 

to even small geometric changes and the nature of the bridging ligands. Our model studies 

suggest that the spectroscopic properties of the OEC may also react very sensitively to 

small changes in structure; the effect of protonation state and other reorganization 

processes needs to be carefully assessed. 
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3.1) Introduction 

Structural determination and spectroscopic characterization of intermediates (and 

derivatives thereof) in the S-state catalytic cycle of the Oxygen Evolving Complex (OEC) 

of Photosystem II (PSII) heavily influence mechanistic proposals for O−O bond 

formation.1-14 The dark-stable S1 state of the OEC consists of a CaMn4O5 cluster with Mn 

oxidation states MnIII
2MnIV

2.15 Light-induced one electron oxidation of the S1 state results 

in the formation of the S2 state, with two characteristic EPR transitions centered at g = 2 

and g = 4.1.9, 11, 13, 16 Two additional one electron oxidations lead to the formation of S3 and 

S4 states, respectively, and dioxygen is evolved following formation of the elusive S4 

state.17 Chemical changes such as Ca2+ removal or treatment with NH3 or F− inhibit the 

S2→S3 transition specifically, highlighting opportunities for mechanistic insight,4, 18 but 

also the need for benchmarking with well characterized synthetic models. Constrained by 

available data from XAS and EPR spectroscopy, the current understanding of the S2 state 

structure is based on theoretical studies starting from the high-resolution (1.95 Å), radiation 

damage-free X-ray structure of the S1 state.19-20 Each EPR signal in the S2 state is proposed 

to originate from different structures (Figure 1): an “open cubane” structure with a low-

spin (LS) S = 1/2 ground state and a “closed cubane” structure with a high-spin (HS) S = 

5/2 ground state.21-23 The interconvertibility of the two EPR signals suggests a small energy 

difference between these two structures; IR irradiation of the LS form at 120−150 K results 

in the formation of the HS form, which can be reverted to the LS form by annealing at 200 

K.11 The two structural isomers effectively differ only by the relative position of the 

bridging O(5) oxygen, a water derived oxygen, which is proposed to undergo O−O 

coupling to generate O2.24-25 Time-resolved, femtosecond X-ray free electron laser (XFEL) 
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techniques offer the possibility of observing structural and spectroscopic changes in the 

OEC under dynamic, catalytically active conditions.26-31 For such studies, further 

improvements in resolution and issues with S-state heterogeneity and deconvolution 

remain to be addressed.27, 31-32 

 
Figure 1. Computed structures for the proposed isomers of the inorganic CaMn4O5 core of 
the OEC in the S2 state. The large structural changes in the Mn-oxo distances have been 
calculated to lead to different electronic coupling between the Mn centers and a change in 
the spin ground state (SG), which explain the two observed EPR signals. Mn(4)−O(5) and 
Mn(1)−O(5) distances shown with bold and dashed lines. Nature of the computed magnetic 
exchange coupling initeractions shown in red (antiferromagnetic) and blue (ferromagnetic) 
arrows. 
 

Growing experimental data support that conversion from the LS form of the S2 state to 

its HS form is an intermediate step in the S2→S3 transition.33 pH dependence studies 

indicate that deprotonation of the LS form leads to the HS form.34 Structural changes 

following deprotonation are unknown, but computational studies suggest that the electronic 

structure of the OEC is highly sensitive to small changes in structure as reported by EPR 

spectroscopy.35 Deprotonation of a Mn-bound water and/or a reorientation of a Glu residue 

in the S2 state may perturb the ground spin state from LS to HS, indicating that 

spectroscopic properties may react very sensitively to small geometric changes that do not 

lead to significant changes in the total energy of the cluster.35 EXAFS studies support 

structural differences between the species responsible for the g = 2 and the g = 4.1 signal, 

but further atomistic details are unknown.36-37  
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In contrast to the extensive studies performed on the S2 state of the OEC, structural and 

spectroscopic studies of MnIIIMn3
IV model complexes remain rare38-40, and can be 

summarized as follows. The phosphinate-bridged, cuboidal complex [Mn4O4(Ph2PO2)6]+ 

shows a broad EPR spectrum.41 The g = 4.1 signal of the adamantane-shaped complex 

[Mn4O6(bpea)4]3+ has been assigned to the first excited Kramers doublet of an S = 5/2 

ground state determined from magnetization data.42 Starting from a linear-chain precursor, 

a putative complex  [Mn4O6(bpy)6]3+ was generated by radiolysis and features a multiline 

signal centered at g = 2 consistent with an S = 1/2 ground state.43 In-situ oxidation of a 

close OEC structural model complex, CaMn4O4(OPiv)8, gives rise to two EPR signals at g 

= 4.9 and g = 2, attributed to different spin states of the cluster corresponding to a 

[CaMn4O4(OPiv)8]+ species, although  further structural, spectroscopic, and magnetic data 

have not been provided.44  Follow-up computational studies disagree on the assignment of 

the two signals, one of them suggesting that the two signals must be due to structurally 

very different clusters.45-46 In general, systematic studies that probe the effect of small 

structural changes on the spectroscopic and magnetic properties of S2 model clusters are 

very rare, likely due to the synthetic challenges of accessing a series of isolable clusters 

that are suitable for comparisons.47-48 Indeed, despite significant efforts to prepare tetra- 

and penta-nuclear clusters that are relevant to the S-state intermediates in terms of structure, 

redox state, or spectroscopy, accurate models for benchmarking against the biological 

system are rare.41, 47, 49-69 

Herein, we report the synthesis, crystal structure, electrochemistry, XAS, SQUID 

magnetometry, variable temperature CW-EPR, and pulse EPR data for a series of 

[MnIIIMn3
IVO4] cuboidal complexes. Results show that the electronic structures of 
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tetranuclear Mn complexes are highly sensitive to even small geometric changes promoted 

by the nature of the supporting ligands. Similar to the computational studies performed on 

the S2 state, our experimental studies on model clusters suggest that the spectroscopic 

properties of the OEC may also react very sensitively to small changes in structure. 

3.2) Synthesis, crystal structure, and electrochemistry 

One electron reduced [Mn2
IIIMn2

IVO4] cuboidal complexes were chosen as precursors 

for the targeted [MnIIIMn3
IVO4] complexes. We have previously reported the synthesis of 

Figure 2. Synthesis of complexes 2~4 and their oxidized analogues 2-ox~4-ox. 
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LMn2
IIIMn2

IVO4(OAc)3 (1, Figure 2).56-57, 70 The cyclic voltammogram (CV) of 1 shows a 

reversible redox process at +250 mV vs. Fc/Fc+ assigned to the (Mn2
IIIMn2

IV)/(MnIIIMn3
IV) 

couple. Treatment of 1 with 1 equiv. of [(4-BrPh)3N][SbCl6] results in the formation of an 

unstable species, but rapid freeze-quenching of the reaction mixture allowed the 

observation of an intense EPR spectrum with a broad signal centered at g = 2 featuring Mn 

hyperfine interactions, consistent with an S = 1/2 ground state (Figure 3). In contrast, the 

phosphinate-bridged cuboidal complex [Mn4O4(Ph2PO2)6]+ has a higher spin ground state 

S ≥ 3/2. The product of oxidation of 1 features other broad EPR signals at g > 2 that can be 

assigned to spin excited states or decomposition products, but further investigation was not 

pursued. 

 
Figure 3. Temperature-dependent X-band CW-EPR spectra of a freeze-quenched reaction 
mixture of 1 and [(4-BrPh)3N][SbCl6]. Data acquisition parameters: frequency = 9.35 MHz, 
power = 2 mW, conversion time = 20.48 ms, modulation amplitude = 8 G. 
 

Based on the reduction potential of the isolable [Mn4O4(Ph2PO2)6]+ complex at +680 

mV vs. Fc/Fc+, we targeted oxidatively stable phosphinate-bridged complexes.41, 61 

Treatment of 1 with 3 equiv. HO2PPh2 in THF leads to the formation of 2 via a protonolysis 

reaction (Figure 2). The ESI-MS peak at m/z = 1792 is consistent with the mass of 

[LMn4O4(O2PPh2)3]+. The X-ray crystal structure of 2 is consistent with the 

LMn4O4(O2PPh2)3 formulation (Figure 4). Based on Mn−oxo distances, the oxidation 
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states of Mn(1) and Mn(2) are assigned to MnIV, and those of Mn(3) and Mn(4) to MnIII. 

Axial elongation of MnIII−oxo distances is observed, at 2.177(2) and 2.187(2) Å for Mn(3) 

and Mn(4), respectively. These are due to population of a dz2-σ antibonding orbital. Given 

the heteroleptic coordination around Mn(3), the Jahn-Teller effect is not invoked to 

describe the observed distortion. The coordination environment around Mn(4) can be 

viewed as pseudo-Oh, in which case the Jahn-Teller elongation can be invoked to remove 

the degeneracy of the 5Eg ground state.71-72 Similar MnIII−oxo elongations were observed 

for 1, at 2.201(2) and 2.234(2) Å. The CV of 2 shows a reversible redox process at +190 

mV vs. Fc/Fc+ assigned to the (Mn2
IIIMn2

IV)/(MnIIIMn3
IV) couple (Figure 5). Treatment of 

2 with 1 equiv. of [(4-BrPh)3N][OTf] leads to the formation of the one-electron oxidized 

species 2-ox.73 The ESI-MS and crystal structure of 2-ox is consistent with the 

LMn4O4(O2PPh2)3(OTf) formulation (Figure 4). Based on Mn−oxo distances, the oxidation 

state of Mn(4) is assigned as MnIII. The elongated Mn(4)−O(4) distance of 2.241(1) Å is 

consistent with this assignment. 

 
Figure 4. Truncated crystal structures of 2-ox (left), 3-ox (middle), and 4-ox (right). Mn 
(green), O (red), N (blue), P (purple), C (black), and F (light green). Bolded bonds highlight 
metal-oxo bonds. 
 

Toward expanding the series of Mn4 clusters with the same redox state as the S2 state 

of the OEC, other supporting ligands were targeted. Based on the precedent that amidate 
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ligands have been employed for the synthesis of a high oxidation state MnV-oxo complex,74 

we targeted a related class of oxidatively stable amidate-bridged [Mn4O4] cuboidal 

complexes. In contrast to the vast number of carboxylate-bridged high oxidation state 

Figure 5. a) CV of 2. Isolated redox couple shown in dotted lines. E = + 194 mV vs. Fc/Fc+.
b) SWV of 2. c) Isolated redox couple measured at various scan rates. d) Plot of peak
current vs. square root of scan rate. 

Figure 6. (Left) CV (solid lines) and SVW (dotted lines) of 3 in propylene carbonate. E =
−150 mV vs. Fc/Fc+. (Right) CV (solid lines) and SVW (dotted lines) of 4 in propylene
carbonate. E = −15 mV vs. Fc/Fc+.
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metal-oxo clusters, amidate-bridged metal-oxo clusters are rare.75-78 We employed an n-

propyl-linked diacetamide proligand (H2diam) to replace two acetate moieties. Treatment 

of 1 with 1 equiv. H2diam and 2 equiv. NaOtBu in DMF leads to the formation of 3 (Figure 

2). The ESI-MS and crystal structure of 3 are consistent with the LMn4O4(diam)(OAc) 

formulation. A smaller variation of Mn−oxo distances is observed in 3, ranging from 

1.860(2) to 2.087(2) Å. The n-propyl-linked diamidate serves as a bridging ligand across 

two faces of the [Mn4O4] cubane moiety, resulting in a pseudo-CS symmetric complex. The 

reversible (Mn2
IIIMn2

IV)/(MnIIIMn3
IV) couple is observed at −150 mV vs. Fc/Fc+ (Figure 

6). The diamidate ligand decreases the oxidation potential by 400 mV relative to that of 1. 

Treatment of 3 with 1 equiv. Ag(OTf) leads to the formation of the one-electron oxidized 

species 3-ox. The ESI-MS and crystal structure of 3-ox are consistent with the 

LMn4O4(diam)(OAc)(OTf) formulation (Figure 4). The oxidation state of Mn(3) is 

assigned as MnIII in 3-ox. With the exception of an elongated Mn(3)−O(3) distance of 

2.051(4) Å, all other Mn−oxo distances are in the range 1.893(4)−1.937(4) Å, consistent 

with the MnIIIMn3
IV oxidation state assignment.  

To further investigate the effect of small geometric changes on the electronic structure 

of the resulting cluster, a diamidate-benzoate complex was targeted.79 Treatment of 3 with 

1 equiv. of p-CF3C6H4CO2H (CF3BzOH) leads to the formation of 4 via a protonolysis 

reaction (Figure 2). The ESI-MS peak at m/z = 1485 is consistent with the mass of 

[LMn4O4(diam)(OBzCF3)]+. The CV of 4 shows a reversible redox process at −15 mV vs. 

Fc/Fc+ assigned to the (Mn2
IIIMn2

IV)/(MnIIIMn3
IV) couple (Figure 6). The positive shift by 

135 mV relative to that of 3 is consistent with the decreased basicity of OBz− compared to 

OAc−.80-81 Treatment of 4 with 1 equiv. Ag(OTf) leads to the formation of the one-electron 
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oxidized species 4-ox. The LMn4O4(diam)(OBz)(OTf) formulation is consistent with the 

crystal structure (Figure 4). Similar to 3-ox, the oxidation state of Mn(3) is assigned as 

MnIII. An elongated Mn(3)−O(3) distance of 2.143(3) Å is consistent with the MnIIIMn3
IV 

assignment. Overall, comparing complexes 2-ox, 3-ox, and 4-ox, the elongated MnIII-oxo 

distance varies from 2.241(1), to 2.051(4), and 2.143(3), while the other Mn-oxo distances 

are in the range 1.831(1)−1.976(2) Å, 1.893(4)−1.937(4) Å, and 1.873(3)−1.965(3) Å, 

respectively. For 2-ox, 3-ox, and 4-ox, the redox potential for the reversible 

(Mn2
IIIMn2

IV)/(MnIIIMn3
IV) couple was measured at +190 mV, −150 mV, and −15 mV vs. 

Fc/Fc+, respectively. In comparison, the estimated midpoint redox potential for the (S1/S2) 

couple in the OEC was estimated at +900 mV vs. SHE, which is approximately +250 mV 

vs. Fc/Fc+.82 

3.3) XAS spectroscopy 

Solution and solid-state Mn K-edge X-ray absorption near-edge spectroscopy (XANES) 

and extended X-ray absorption fine structure (EXAFS) were used to further characterize 

the metal oxidation states and provide evidence of structural integrity in solution (Figures 

Figure 7. (Left) Normalized XANES data at Mn K-edge for complexes 2-ox, 3-ox, and 4-
ox in solid and solution phases. (Right) k3-weighted k-space EXAFS data at Mn K-edge
for complexes 2-ox, 3-ox, and 4-ox in solid and solution phases highlighting the integrity
of the complexes in solution. 
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7−8). Absorption edge positions were determined from the second-derivative zero-

crossings, giving the following values (eV): 6553.3 (2-ox), 6552.8 (3-ox), 6553.3 (4-ox). 

These values are comparable to 6553.1 (S1) and 6554.1 (S2) from cyanobacteria PSII.20 

Solution EXAFS data for 2-ox, 3-ox, and 4-ox are indistinguishable from the 

Figure 8. Fourier Transforms of k3-weighted Mn K-edge EXAFS data (circles) along with
the respective best fits (black line) for complexes 2-ox (a), 3-ox (b), and 4-ox (c). The
corresponding best fit parameters are presented in Table S3.
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corresponding solid-state EXAFS data and are consistent with the solid state structural 

assignments (Figure 4). 

 
Table 1: Best fit parameters for Mn K-edge EXAFS curve fitting of complexes 2-ox, 3-ox, 
and 4-ox.a 

Sample Path R (Å) N σ2 (10-3 Å2) R-factor (%) ΔE0 (eV) 

  EXAFS XRD     

2-ox Mn-O 1.83±0.01 1.83-1.91 3 5.50±1.05 0.80 -0.51±0.94 

 Mn-
O/N 

1.93±0.01 1.92-2.24 3 2.00±0.20   

 Mn-Mn 2.86±0.01 2.85-2.96 3 4.23±0.94   

 Mn-C 2.96±0.01 2.77-3.05 2.25 2.00±0.61   

 Mn-P 3.08±0.01 3.07-3.15 1.50 2.00±0.81   

3-ox Mn-O 1.81±0.02 1.83-1.92 3 8.00±1.52 1.96 -5.00±3.50 

 Mn-
O/N 

1.91±0.02 1.93-2.06 3 2.00±0.20   

 Mn-Mn 2.79±0.02 2.76-2.96 3 6.15±2.24   

 Mn-C 3.01±0.10 2.79-3.04 4 6.04±6.99   

4-ox Mn-O 1.82±0.02 1.83-1.92 3 5.01±2.25 1.21 -3.57±2.63 

 Mn-
O/N 

1.92±0.02 1.93-2.08 3 2.00±0.20   

 Mn-Mn 2.79±0.01 2.75-2.99 3 5.58±2.17   

 Mn-C 2.98±0.06 2.79-3.05 4 5.27±5.28   

a EXAFS data for complex 2-ox was fit in the k-range 2.84 ≤ k(Å-1) ≤ 10.79 (1.0 ≤ R'(Å) ≤ 
3.2). EXAFS data of complex 3-ox was fit in the k-range 2.79 ≤ k(Å-1) ≤ 11.30 (1.0 ≤ R'(Å) 
≤ 2.9). EXAFS data for complex 4-ox was fit in the k-range 2.79 ≤ k(Å-1) ≤ 11.21 (1.0 ≤ 
R'(Å) ≤ 2.9). 

 

Fourier Transforms of k3-weighted Mn EXAFS data for complexes 2-ox, 3-ox, and 4-

ox in solid phase are shown in Figure 7 along with the corresponding best fits. It is 

important to note that the x-axis represents the non-phase-shift corrected radial distance 
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(R') which is shorter than the actual scatterer distance by ~0.5 Å originating from the phase 

shift. The first peak in the FT data corresponds to metal-ligand (Mn-O/N) scattering 

whereas the second peak includes metal-metal/metal-ligand interactions (Mn-Mn, Mn-

C/P). The scattering contribution from relatively heavier P atoms results in greater 

amplitude of second peak in the EXAFS data of complex 2-ox as compared to 3-ox and 4-

ox. For each complex two metal-ligand distances were used for the first peak to get the best 

fit. In case of complex 2-ox, one of the Mn atoms has three P second neighbors whereas 

each of the other three Mn has only one P second neighbor. Therefore, an average 

coordination number of 1.50 was used to fit the data. Similarly, an average coordination 

number (2.25) was used for C atoms contributing to the second shell as each of the three 

Mn atoms with one P in second shell is linked to three C atoms. The best fit parameters 

obtained are listed in Table 1. The bond distances extracted from fits to the EXAFS data 

are in good agreement with those determined from XRD data.  

3.4) Magnetic susceptibility 

To obtain insight into the magnetic exchange coupling interactions between the Mn 

centers, magnetic susceptibility measurements were performed on powdered crystalline 

samples of 2-ox, 3-ox, and 4-ox in the temperature range 1.8 K−300 K at a non-saturating 

field of 0.4 T. For 2-ox, the χT value of 5.64 emu K mol−1 at 300 K indicates 

antiferromagnetic coupling between the Mn centers, deviating from the expected spin-only 

value of 8.62 emu K mol−1 (g = 2) for uncoupled MnIII (S = 2) and MnIV (S = 3/2) centers 

(Figure 9). χT decreases monotonically with temperature, reaching a value of 0.383 emu K 

mol−1 at 1.8 K, in good agreement with the expected χT value of 0.375 emu K mol−1 for an 

S = 1/2 (g = 2) ground state. The near-ideal Curie behavior observed between 1.8−10 K 
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can be attributed to the absence of thermally accessible spin excited states S > 1/2 in this 

temperature range. Using software that employs an exact solution to the isotropic spin 

exchange Hamiltonian (Equation 1)83, an exchange coupling model that consists of two 

edge-sharing isosceles triangles with vertices at Mn(1)-Mn(2)-Mn(3) and Mn(2)-Mn(3)-

Mn(4) was employed to fit the susceptibility data. This model takes into account the 

pseudo-CS symmetry of the [Mn4O4] core, with the mirror plane containing the Mn(4)-

Mn(1) and Mn(4)-O(4) vectors and bisecting the Mn(2)-Mn(3) vector. The following 

Figure 9. Exchange coupling model, fit parameters, and χT vs. T plot of complexes 2-ox,
3-ox, and 4-ox. For the exchange coupling models, the mirror plane of the pseudo-CS

symmetry contains the bold vector and bisects the hashed vector. 
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parameters were used to fit the data: J12 = J13 = −8.8 cm−1, J23 = −18.7 cm−1, J14 = −21.0 

cm−1, J24 = J34 = −3.2 cm−1, and g = 2.00. The smaller J24 = J34 coupling is expected given 

the elongated Mn(4)−O(4) distance of 2.241(1) Å. Simulating the susceptibility data 

assuming single-site zero field splitting parameters D(MnIV) = 0 cm−1 and D(MnIII) = 0, −2, 

or −4 cm−1 did not result in significant differences in J. Values of D ≈ −0.2 cm−1 and D ≈ 

−4 cm−1 are typical for 6-coordinate MnIV and MnIII, respectively.17, 84-85 The calculated 

energy level diagram indicates a quartet excited state c.a. 28 cm−1 (equivalent temperature 

of 40 K) above the doublet ground state. This energy separation is comparable to the 25−35 

cm−1 measured for MeOH-treated OEC poised in the multiline S2 state.86 

𝐻෡ ൌ  െ2 ෍ 𝐽௜௝𝑆ప෡ ∙ 𝑆ఫ෡
௜,௝∈ே

௜ஷ௝

         ሺ1ሻ 

Complex 3-ox was studied by SQUID magnetometry. Similar to 2-ox, the χT value of 

5.32 emu K mol−1 at 300 K indicates antiferromagnetic coupling between the Mn centers 

(Figure 9). χT decreases monotonically with temperature, reaching a value of 0.85 emu K 

mol−1 at 5 K. The deviation from the expected χT value of 0.38 emu K mol−1 (S = 1/2, g = 

2) can be attributed to the presence of thermally accessible spin excited states S > 1/2. At 

1.8 K, the χT value of 0.383 emu K mol−1 is in good agreement with the S = 1/2 (g = 2) 

ground state. To fit the susceptibility data, an isotropic exchange coupling model that 

consists of two edge-sharing isosceles triangles with vertices at Mn(1)-Mn(2)-Mn(3) and 

Mn(1)-Mn(2)-Mn(4) was employed. This model is different from that employed for 2-ox, 

and takes into account the pseudo-CS symmetry of the [Mn4O4] core, with different mirror 

planes that contain the Mn(3)-Mn(4) and Mn(3)-O(3) vector and bisecting the Mn(1)-Mn(2) 

vector. The following parameters were used to fit the data: J12 = −15.3 cm−1, J13 = J23 = 
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−8.9 cm−1, J14 = J24 = −16.7 cm−1, J34 = −10.6 cm−1, and g = 1.97. Compared to 2-ox, the 

smaller variation of exchange coupling constants is consistent with the smaller variation of 

Mn−oxo bond distances in 3-ox. The calculated energy level diagram indicates the 

presence of a low-lying quartet excited states at 3−5 cm−1 (equivalent temperature of 

4.3−7.2 K) above the doublet ground state. Interestingly, an energy separation of 3−6 cm−1 

has been reported for untreated higher plant OEC in the S2 state.86-87 

Complex 4-ox was studied by SQUID magnetometry. A higher χT value of 6.0 emu K 

mol−1 at 300 K indicates weaker antiferromagnetic coupling in 4-ox compared to 3-ox. χT 

decreases monotonically with temperature, reaching a value of 0.82 emu K mol−1 at 1.8 K, 

deviating significantly from the expected χT value of 0.375 emu K mol−1 for an S = 1/2 (g 

= 2) ground state. This indicates a further decreased energy separation between the ground 

and excited states, as expected from the weaker antiferromagnetic coupling between the 

Mn centers. In fact, 4-ox does not have a well-isolated spin ground state, vide infra. To fit 

the susceptibility data, a model identical to 3-ox was employed. The following parameters 

were used to fit the data: J12 = −11.6 cm−1, J13 = J23 = −7.2 cm−1, J14 = J24 = −11.1 cm−1, 

J34 = −6.8 cm−1, and g = 1.97. The calculated energy level diagram indicates that the lowest 

doublet and quartet states are separated by 0−1 cm−1 (equivalent temperature of 1.4 K). 

Overall, magnetic susceptibility studies indicate that the spin ladder in exchange-coupled 

tetranuclear Mn complexes is highly sensitive to small changes in structure and nature of 

the bridging ligands. 

3.5) Variable-temperature X-band EPR spectroscopy 

EPR studies were conducted in frozen solution samples of 2-ox, 3-ox and 4-ox. At 5 K, 

the EPR spectrum of 2-ox features a broad signal centered at g = 2 featuring Mn hyperfine 
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interactions (Figure 10). This is consistent with the S = 1/2 ground state determined from 

susceptibility studies. As the temperature is increased, the g = 2 signal loses intensity until 

no signal is observed above 15 K. Importantly, EPR signals originating from thermally 

populated spin excited states are not observed, in agreement with the predicted energy 

Figure 10. (Left) Variable-temperature X-band continuous-wave EPR spectra of 2-ox, 3-
ox and 4-ox. (Right) Expanded view of the low field (g > 2) region. 
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separation of 28 cm−1 (40 K) between the ground and excited states. The spectrum can be 

approximated by g = [2.053, 2.003, 1.952], giso = 2.00, and the following 55Mn hyperfine 

interactions Ai, (Aiso)i: Mn1 = [434, 434, 313], 394 MHz; Mn2 = [293, 155, 245], 231 MHz; 

Mn3 = [128, 146, 198], 157 MHz; Mn4 = [134, 133, 72], 113 MHz (Figure 11). The unique, 

larger Mn hyperfine coupling constant (394 MHz) is consistent with the MnIII center in 2-

ox.88 The EPR spectrum of 2-ox is in stark contrast to that of the related [Mn4O4(Ph2PO2)6]+ 

complex with a higher spin ground state S ≥ 3/2,41 indicating that the EPR of exchange-

coupled tetranuclear Mn complexes are highly sensitive to the Mn coordination 

environment, even if the core Mn4O4 cluster is maintained. 

 

Figure 11. X-band EPR spectrum of 2-ox. Acquisition parameters: frequency = 9.64 MHz, 
power = 8 mW, conversion time = 20.48 ms, modulation amplitude = 8 G. See text for 
simulation parameters. 

 
For the EPR spectrum of 3-ox at 5 K, only the multiline signal centered at g = 2.0 is 

discernible. As the sample is warmed, the signal at g = 2 decreases in intensity as a signal 

centered at g = 4.2 gains intensity (Figure 10). Above 20 K, both signals start to lose 

intensity due to relaxation. The signal at g = 2 is consistent with the S = 1/2 ground state 

determined from susceptibility studies. The g = 4.2 signal, assigned to the S = 3/2 excited 
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state of 3-ox, is highly reminiscent of the S2 state in its HS form. The g = 2 and the g = 4.2 

signals of the S2 state arise from the ground states of structurally distinct species, the 

relative ratio of which is affected by external chemical stimuli such as pH. As such, both 

EPR signals can be observed at low temperatures in a ratio that reflects the relative 

population of the two species.34 In the case of 3-ox, the two signals arise from different 

spin states of a single, structurally static species (Figure 7). The temperature dependence 

of the EPR spectrum of 3-ox can be explained in terms of small differences in the 

Boltzmann distribution of the ground and excited states. At 5 K, only the S = 1/2 ground 

state is significantly populated, and the g = 2 signal corresponds to the |−1/2⟩→|1/2⟩ 

transition. As the temperature is increased, the difference in the population of the |−1/2⟩ 

and the |1/2⟩ states decrease, resulting in weaker absorption. Concurrently, as the 

temperature is increased, the S = 3/2 spin excited state is populated, and the g = 4.2 signal 

corresponds to the transition within the |±3/2⟩ Kramers doublet. In contrast to 2-ox, the 

observation of the g = 4.2 signal is consistent with a smaller energy separation between the 

ground doublet and excited quartet state in 3-ox, in agreement with the magnetic 

susceptibility studies. The EPR spectrum of a weakly antiferromagnetically coupled 

MnIIIMnIV dimer shows a similar temperature dependence: at 20 K, only the g = 2 signal is 

observed, but upon warming to 43 K and to 110 K, a new low-field signal at g = 5 gains 

intensity.89 This low-field signal has been assigned to the S = 3/2 excited state. For more 

strongly coupled MnIIIMnIV dimeric systems, the quartet excited state is separated from the 

doublet ground state by hundreds of wavenumbers and the signal corresponding to the S = 

3/2 excited state was not observed.39, 90-95  
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For the EPR spectrum of 4-ox, in addition to the signal at g = 2, other signals assignable 

to S = 3/2 spin states were observed even at 5 K, at g = 7.5 and g = 5.5. This indicates a 

very small energy separation between the doublet and quartet states in 4-ox, in agreement 

with the susceptibility studies. As the sample is warmed, the signal at g = 2 decreases in 

intensity. In the low field region, the g = 7.5 signal loses intensity upon warming, whereas 

the g = 5.5 and g = 4.2 signals gain intensity. At 15 K, the low-field region collapses to the 

g = 4.2 signal observed for 3-ox. The temperature dependence of the low field region may 

be explained by the presence of two distinct S = 3/2 excited states. 

3.6) 55Mn Davies ENDOR spectroscopy 

To gain better understanding of the Mn hyperfine interactions (HFI) in 3-ox, 55Mn 

Davies ENDOR spectra were collected at Q-band using the pulse sequence π-tRF-πRF-tRF-

π/2-τ-π-τ-echo. Spectra were collected at selected field positions along the electron spin-

echo-detected EPR spectrum (ESE-EPR): 1170 mT, 1200 mT, 1240 mT, 1270 mT, and 

1300 mT (Figure 12a). By incorporating the ESE-EPR spectrum at D-band (130 GHz) vide 

infra, the g values were constrained to g = [1.944, 1.964, 2.002], giso = 1.97, though it 

should be noted that there is no significant resolution of any individual g-values in the 

spectrum, likely due to slight inhomogeneity in the g-values (g-strain = 0.012 for all 

simulations).96 This introduces field-dependent broadening that also causes a loss in 

resolution of the 55Mn hyperfine structure evident in the field swept spectra as the 

excitation frequency is increased, a phenomenon also observed in multi-frequency EPR 

spectra of the S2 state of the CaMn4O5 cluster of photosystem II.97 A global fit of the Mn 

hyperfine interactions incorporating the ENDOR spectra as well as the X-band CW 

spectrum yields the parameters listed in Table 2. Similar to 2-ox, the unique, larger Mn 
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hyperfine coupling constant is consistent with the MnIII center in 3-ox.16, 95 The Mn 

hyperfine coupling constants reported for 3-ox are similar in magnitude to that of the S2 

state of T. elongatus.16, 86, 97-98 Notably, 55Mn ENDOR spectra for tetranuclear Mn model 

complexes have been hitherto absent in the literature.  

ESE-EPR and electron-electron double resonance-detected NMR (EDNMR) of 3-ox 

were recorded at D-band (130 GHz). EDNMR employs a high-turning angle microwave 

pulse which concurrently excites NMR and EPR transitions rather than an RF pulse to drive 

NMR transitions as in ENDOR.99 EDNMR offers some distinctive features compared to 

ENDOR, including decreased selectivity between magnetic nuclei with very different 

Figure 12. Experimental spectra of 3-ox (black traces) and simulation (dashed red traces).
a) Q-band electron spin echo (ESE) EPR. b) Q-band 55Mn Davies ENDOR recorded at five
magnetic field positions indicated in a). Acquisition parameters: Temp. = 3.8 K, MW freq.
= 34.115 MHz, πMW = 40 ns, πRF = 3 μs, tRF = 2 μs, τ = 400 ns. c) D-band ESE-EPR. d) X-
band CW EPR. Acquisition parameters: Temp. = 5 K, MW freq. = 9.359 MHz, power = 2
mW, modulation amplitude = 4 G. See Table 1 for global fit parameters. 
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gyromagnetic ratios, decreased dependence on the species of interest to exhibit long spin 

lattice relaxation times, and vastly enhanced signal intensity for the same amount of 

acquisition time.100 However, EDNMR typically suffers from far broader lineshapes in 

comparison to ENDOR, as well as combination bands and multiple-quantum transitions, 

which can produce complex, feature-rich spectra.68, 101 The EDNMR spectrum of 3-ox at g 

= 1.97 (4.7 T) is displayed in Figure 13. Features observed at 14 MHz and 200 MHz 

correspond to single-quantum transitions from 14N and 1H nuclei of the ligand scaffold (14N 

and 1H Larmor frequencies at 4.7 T are 14.4 MHz and 200 MHz, respectively). A large, 

broad peak is observed at 50 MHz (FWHM = 48 MHz) as well as peaks at 140 MHz, 150 

MHz, and 170 MHz corresponding to 55Mn single-quantum transitions. In the strong 

coupling limit, these couplings are centered at A/2 and split by twice the 55Mn Larmor 

frequency (c.a. 50 MHz at 4.7 T). Based on the observed 55Mn transitions, the 55Mn HFI 

are estimated in the range 180–240 MHz, in line with the Mn(IV) HFI measured from Q-

band 55Mn ENDOR. The spectral signature of the unique Mn(III) ion cannot be 

Figure 13. D-band EDNMR of 3-ox recorded at 4.7 T. 
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unambiguously assigned from the EDNMR due to multiple overlapping transitions. 

Nonetheless, the general agreement of the EDNMR and ENDOR data support the hyperfine 

assignments of 3-ox. The remaining features appearing from 250–350 MHz are assigned 

to 55Mn double-quantum transitions.  

Table 2. Summary of the effective g and 55Mn HFI tensors for 3-ox, and the S2 states of T. 
elongatus and spinach PSII.86, 97 Note: all hyperfine tensor frames are collinear with g-
tensor frame. 

  g Ai (MHz) 

   A1 A2 A3 A4 

3-ox x 1.944 376 233 253 193 

 y 1.964 297 198 283 222 

 z 2.002 272 260 149 131 

 iso 1.970 315 230 228 198 

T. elongatus x 1.971 350 249 202 148 

 y 1.948 310 227 182 162 

 z 1.985 275 278 240 263 

 iso 1.968 312 251 208 191 

Spinach x 1.997 310 235 185 170 

 y 1.970 310 235 185 170 

 z 1.965 275 275 245 240 

 iso 1.977 298 248 205 193 

 
The temperature dependence of electron spin-lattice relaxation in 3-ox was studied 

using the inversion-recovery sequence (π – t – π/2 – τ – π – echo) (Figure 14).102 Data were 

fit to a bi-exponential function (Equation 2). Subscript f denotes the fast relaxing process; 

s denotes the slow process. At 3.8 K, the relaxation time constants for the fast and slow 

exponential components were 1.3 μs and 6.3 μs, respectively. Over the temperature range 

studied, both ln(1/T1) vs. 1/T and ln(1/T1) vs. ln(T) are approximately linear, consistent 

with either an Orbach or Raman relaxation process.86 Assuming an Orbach mechanism, an 

energy separation of 13 cm−1 was obtained from the fast relaxing component. This value is 

slightly larger than the 3−5 cm−1 estimated from susceptibility studies but approximately 
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in the same magnitude. Overall, both electron spin-lattice relaxation and magnetic 

susceptibility measurements support a small separation between the doublet ground state 

and the quartet excited state. 
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Figure 14. a) Temperature-dependent inversion recovery trace for 3-ox. b) Plot of ln(1/T1), 
T1 in seconds vs. 1/T (K−1) for the fast and slow exponential components. Slope of the 
linear fit: 18.9 K (red) and 22.4 K (blue). c) Plot of ln(1/T1) vs. ln(T) and linear fit to the 
data. Acquisition parameters: frequency = 34.07 MHz, πMW = 24 ns, τ = 140 ns, srt = 2 ms. 
 
3.7) Discussion 

Between the optimized structures of the proposed open- and closed-cubane forms of 

the S2 state, Mn(4)−O(5) and Mn(1)−O(5) distances interchange from 1.87 Å to ~3.2 Å, 

tantamount to a bond breaking-reforming process (Figure 1). This rearrangement process 

is accompanied by a change in the electronic structure of the S2 state, as explained from 

the computed magnetic exchange coupling constants in both open and closed forms. The g 

= 2 and the g = 4.2 signals of the S2 state result from the ground states of clusters that differ 

significantly in geometry, the relative ratio of which is affected by external chemical 

stimuli. Our studies indicate that such large structural changes to the inorganic CaMn4O5 

core of the OEC may not be necessary to perturb its electronic structure. Comparisons 

between the crystal structures of 2-ox, 3-ox, and 4-ox indicate only small variations in 
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Mn−oxo bond distances, with the longest Mn−oxo bond in each species varying from 

2.051(4) Å to 2.241(1) Å. The remaining Mn-O distances are in the range 1.831(1)−1.976(2) 

Å. Yet such small geometric changes in the [MnIIIMn3
IVO4] core have a substantial effect 

in its electronic structure, as is evident from magnetic susceptibility and EPR studies. 

Assigned to a thermally accessible spin excited state S = 3/2, the g = 4.2 signal in 3-ox and 

4-ox is highly reminiscent of the S2 state in its high-spin form. The absence of such a signal 

in 2-ox indicates that spectroscopic properties of tetranuclear Mn complexes are highly 

dependent on the nature and magnitude of the magnetic exchange coupling interactions, 

which are finely tuned by the nature of not only bridging ligands but also terminal ligands 

in the immediate coordination sphere of each Mn ion. While the two signals observed in 

3-ox and 4-ox are not resulting from ground states of two different isomers, as proposed in 

PSII, they do correspond to low- and high-spin electronic states. As in PSII, the degrees of 

population of the two states are affected by different coupling schemes between the Mn 

centers, which arise from structural differences. Most importantly, large structural 

distortions are not necessary for the complete disappearance of one of the signals (the HS 

in this case, for 2-ox). In a previously reported MnIIIMn3
IVO4 cubane with six phosphinate 

ligands, the LS signal completely disappears, consistent with a higher S ≥ 3/2 ground 

state.41 Furthermore, the energy separation between the doublet ground state and the first 

non-doublet excited state can be fine-tuned with small changes in the overall geometry of 

the cluster, as evidenced by the variable temperature EPR of 3-ox and 4-ox (Figure 10). 

These findings suggest that geometrical changes much smaller than the ones proposed for 

PSII with respect to the metal and oxo/hydroxo motifs could have substantial effects on the 

EPR signals. Therefore, the deduction of the geometry of OEC S-state intermediates based 
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on EPR spectroscopic features need to be complemented with appropriate structural 

determination. Given that in the present series of compounds, even a change in the nature 

of a single carboxylate ligand affects the state energies and EPR signals, it is expected that 

features such as the protonation state of aquo ligands, bridging oxos, and nearby His 

residues will greatly affect the electronic structure of the OEC. 

In conclusion, a series of MnIIIMn3
IVO4 cuboidal complexes has been synthesized and 

characterized by XRD, electrochemistry, XAS, SQUID magnetometry, variable 

temperature CW-EPR, and pulsed-EPR. To our knowledge this is the first set of 

experimental studies that directly addresses the effect of systematic changes of supporting 

ligands on the EPR behavior of clusters in the redox state of the S2 state of the OEC. With 

implications in the interpretation of the OEC spectroscopic properties, our benchmarking 

results show that the electronic structure of tetranuclear Mn complexes is highly sensitive 

to small geometric changes and the nature of the bridging ligands. Even in the absence of 

large oxo movements proposed to account for the HS and LS signals of the OEC, we find 

that the EPR feature of essentially isostructural compounds can move from LS to a mixture 

of LS and HS to HS signals. Therefore, interpretation of EPR signals in terms of structural 

implications must be done very cautiously.  Ideally, complementary structural information 

will be obtained to corroborate spectroscopic assignments. 

3.8) Experimental section 

Synthesis of propane-1,3-diacetamide (H2diam): (Caution! 1,3-diaminopropane fumes 

in air and is very toxic!) A round bottom flask equipped with a magnetic stir bar was 

charged with a solution of 1,3-diaminopropane (19 mL) in MeCN (200 mL) and cooled in 

an ice bath. Three equivalents of acetic anhydride (65 mL) were added dropwise via an 
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addition funnel. Immediately, an exothermic reaction ensued. While a white precipitate 

was observed initially, a homogeneous, colorless solution was obtained as the reaction 

progressed. Upon complete addition of acetic anhydride, the temperature was raised to 100 

oC and all volatiles were distilled off under partial vacuum, leaving behind a white, 

crystalline residue. This residue was washed with Et2O, air-dried, crushed into a fine 

powder using a mortar and pestle, and washed once again with Et2O. Propane-1,3-

diacetamide was isolated as a white powder. 1H NMR (300 MHz, DMSO−d6) 7.812 (bs, 

2H), 3.01 (td, J = 7.0, 5.6 Hz, 4H), 1.78 (s, 6H), 1.49 (p, J = 7.1 Hz, 2H). 

Synthesis of 2-ox: A solution of LMn4O4(OAc)3 (600 mg, 0.46 mmol, 1 equiv) in 

CH2Cl2 (12 mL) was added to a stirring CH2Cl2 suspension of diphenylphosphinic acid 

(330 mg, 1.51 mmol, 3.3 equiv). After stirring the reaction at room temperature for 16 

hours, a colorless precipitate formed and was filtered away. All volatiles were removed 

from the filtrate under reduced pressure. The solid residue was triturated with CH2Cl2 (15 

mL) and Et2O (15 mL). The brown powder was then suspended in 15 mL of THF, collected 

on a pad of Celite, dissolved in CH2Cl2, and filtered through Celite. All volatiles were 

removed from the filtrate under reduced pressure, yielding compound 2 as a red-brown 

powder. Yield = 462 mg, 57 %. Crystals suitable for X-ray crystallography were grown 

from slow vapor diffusion of Et2O into a concentrated solution of 2 in CH2Cl2. 

To a stirring solution of 2 (150 mg, 84 μmol, 1 equiv) in CH2Cl2 (5 mL), a blue CH2Cl2 

solution (4 mL) of [(4-BrPh)3N][OTf] (53 mg, 84 μmol, 1 equiv) was added. After the 

brown solution was stirred at room temperature for 16 hours, all volatiles were removed 

under reduced pressure. The residue was washed with Et2O (4 mL), washed with THF until 

the filtrate was no longer blue/green, dissolved in CH2Cl2, and filtered through Celite. 
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Volatiles were removed from the filtrate under reduced pressure, yielding 2-ox as a brown 

powder (112 mg, 69 %). Crystals suitable for X-ray crystallography were obtained from a 

slow vapor diffusion of Et2O into a concentrated solution of 2-ox in CH2Cl2. Analysis 

calculated for LMn4O4(O2PPh2)3(OTf) [C94H69F3Mn4N6O16P3S]: C 58.19, H 3.58, N 4.33; 

found: C 58.00, H 3.79, N 4.66. 

Synthesis of 3-ox: To a stirred suspension of LCaMn3O4(OAc)3(THF) (660 mg, 0.5 

mmol, 1 equiv) in DMF (10 mL) was added Mn(OTf)2•2MeCN (230 mg, 0.53 mmol, 1.06 

equiv) and propane-1,3-diacetamide (84 mg, 0.53 mmol, 1.06 equiv). After stirring the 

reaction mixture at room temperature for 1 hour, sodium tert-butoxide (102 mg, 1.06 mmol, 

2.1 equiv) was added and additional DMF was added to adjust the volume of the reaction 

to 20 mL. After stirring at room temperature for 18 hours, the precipitate formed in the 

reaction mixture was collected on a pad of Celite. The precipitate was rinsed with 

additional DMF and subsequently with Et2O. The solid residue was dissolved in CH2Cl2 

and filtered through Celite. All volatiles were removed from the filtrate under reduced 

pressure. Compound 3 was isolated as air- and moisture-stable red powder. Yield = 330 

mg, 50 %. Crystals suitable for X-ray crystallography were obtained by slow vapor 

diffusion of Et2O into a concentrated solution of 3 in CH2Cl2. Analysis calculated for 

LMn4O4(diamidate)(OAc)∙½CH2Cl2∙Et2O [C71H65ClMn4N8O12]: C 57.72, H 4.43, N 7.58; 

found (duplicate runs): C 57.68, H 4.77, N 7.28; C 57.70, H 4.74, N 7.23. 

To a suspension of 3 (70 mg, 52 μmol, 1 equiv) in THF (10 mL), Ag(OTf) (15 mg, 58 

μmol, 1.1 equiv) was added as a THF solution. After stirring for 18 hrs, the reaction mixture 

was filtered through a pad of Celite and concentrated under reduced pressure. The residue 

was washed with generous amounts of Et2O, redissolved in CH2Cl2, and filtered through a 
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pad of Celite. All volatiles were removed from the filtrate under reduced pressure. Crystals 

suitable for X-ray crystallography were obtained by slow vapor diffusion of Et2O into a 

concentrated solution of 3-ox in CH2Cl2. Yield = 30 mg, 39 %. Analysis calculated for 

LMn4O4(diamidate)(OAc)(OTf)∙CH2Cl2 [C68H56Cl2F3Mn4N8O14S]: C 51.40, H 3.55, N 

7.05; found (duplicate runs): C 51.26, H 3.49, N 6.73; C 51.24, H 3.61, N 6.87. 

Synthesis of 4-ox: To a stirred solution of 3 (282 mg, 0.21 mmol, 1 equiv) in CH2Cl2 

(10 mL) was added a solution of p-CF3-benzoic acid (50 mg, 0.26 mmol, 1.25 equiv) in 

THF (5 mL). After stirring the resulting red solution at room temperature for 6 hours, all 

volatiles were removed under reduced pressure. To ensure complete substitution, the 

residue was redissolved in THF, stirred for 1 hour, and all volatiles removed under reduced 

pressure. This procedure was repeated three times. The solid residue was rinsed with 

hexanes and subsequently with diethyl ether. The solid residue was dissolved in benzene 

and filtered through Celite. All volatiles were removed from the filtrate under reduced 

pressure. The residue was rinsed with MeCN and subsequently with diethyl ether, and dried 

under reduced pressure. Compound 4 was isolated as a red powder. Yield = 260 mg, 84 %. 

Crystals suitable for X-ray crystallography could not be obtained. 

To a stirred solution of 4 (230 mg, 0.15 μmol, 1 equiv) in CH2Cl2 (5 mL), a solution of 

Ag(OTf) (42 mg, 0.16 μmol, 1.1 equiv) in THF (5 mL) was added. After stirring the 

resulting mixture at room temperature for 18 hours, the reaction mixture was filtered 

through a pad of Celite and concentrated under reduced pressure. The residue was washed 

with a generous amount of Et2O, redissolved in benzene, and filtered through a pad of 

Celite. All volatiles were removed from the filtrate under reduced pressure. Crystals 

suitable for X-ray crystallography were obtained by slow vapor diffusion of Et2O into a 
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concentrated solution of 4-ox in CH2Cl2. Yield = 147 mg, 58 %. Analysis calculated for 

LMn4O4(diamidate)(OBz)(OTf)∙CH2Cl2 [C74H57Cl2F6Mn4N8O14S]: C 51.70, H 3.34, N 

6.52; found: C 51.51, H 3.38, N 6.76. 

 

 

Figure 15. 1H NMR of 2 in CD2Cl2. 

 

Figure 16. 1H NMR of 2-ox in CD2Cl2. 

 

Figure 17. 1H NMR of 3 in CD2Cl2. 
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Figure 18. 1H NMR of 3-ox in CD2Cl2. 

 

Figure 19. 1H NMR of 4 in CD2Cl2. 

 

Figure 20. 1H NMR of 4-ox in CD2Cl2. 

 

Figure 21. ESI-MS of 2. m/z = 1792 consistent with [LMn4O4(O2PPh2)3]+. 
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Figure 22. ESI-MS of 3. m/z = 1355 consistent with [LMn4O4(diam)(OAc)]+. 

 
Figure 23. ESI-MS of 4-ox. m/z = 1485 consistent with [LMn4O4(diam)(CF3OBz)]+. 
 

 

Magnetometry: Magnetic susceptibility measurements were carried on a Quantum 

Design MPMS 3 instrument running MPMS Multivu software. Crystalline samples were 

powdered and suspended in clear plastic straws in polycarbonate capsules. Data were 

recorded at 0.4 T from 1.8−300 K. Diamagnetic corrections were made as follows: –970, 

–795, and –860 × 10−6 cm3/mol for 2-ox, 3-ox, and 4-ox, respectively. Fitting simulations 

were performed using PHI. Fitting simulations were performed assuming an on-site zero 

field splitting parameter D(MnIV) ≈ 0 cm−1 and D(MnIII) = 0, −2, or −4 cm−1. The average 

J values are reported. 
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Figure 24. Fit parameters and corresponding χT vs. log(T) plots and Zeeman splitting 

diagrams for 2-ox. 
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Figure 25. Fit parameters and corresponding χT vs. log(T) plots and Zeeman splitting 

diagrams for 3-ox. 
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Figure 26. Fit parameters and corresponding χT vs. log(T) plots and Zeeman splitting 

diagrams for 4-ox. 
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Table 3. Crystal and refinement data for complexes 2, 2-ox, and 3. 
 

Compound 2 2-ox 3 

CCDC 1863637 1863638 1863639 

Empirical formula 
C94H71Cl2Mn4N6O1

3P3 
C95H71Cl2F3Mn4N6O16

P3S 
C73.55H56Cl2.51Mn4N8O

12.57 
Formula weight 1876.13 2025.20 1561.80 
Temperature/K 296.15 100.0 100.0 
Crystal system triclinic monoclinic triclinic 
Space group P-1 P21/n P-1 

a/Å 14.2765(10) 14.3608(9) 13.2586(18) 
b/Å 14.3034(8) 27.4932(17) 15.443(3) 
c/Å 23.7048(18) 23.6617(14) 18.255(3) 
α/° 72.614(2) 90 89.004(5) 
β/° 87.529(2) 101.255(2) 85.374(5) 
γ/° 67.645(2) 90 82.474(5) 

Volume/Å3 4258.6(5) 9162.5(10) 3693.5(10) 

Z 2 4 2 

ρcalcg/cm3 1.463 1.468 1.404 

μ/mm-1 0.767 0.748 0.825 

F(000) 1920.0 4132.0 1593.0 

Crystal size/mm3 0.1 × 0.1 × 0.1 0.1 × 0.05 × 0.03 0.1 × 0.1 × 0.1 

Radiation 
MoKα (λ = 
0.71073) 

MoKα (λ = 0.71073) MoKα (λ = 0.71073) 

2Θ range for data 
collection/° 

3.094 to 61.002 4.272 to 72.664 4.992 to 61.126 

Index ranges 
-20 ≤ h ≤ 19, -20 ≤ 
k ≤ 20, -33 ≤ l ≤ 33 

-23 ≤ h ≤ 23, -45 ≤ k 
≤ 45, -39 ≤ l ≤ 39 

-18 ≤ h ≤ 18, -22 ≤ k ≤ 
22, -26 ≤ l ≤ 26 

Reflections collected 163138 470337 130778 

Independent 
reflections 

25775 [Rint = 
0.0594, Rsigma = 

0.0494] 

43739 [Rint = 0.0541, 
Rsigma = 0.0346] 

22581 [Rint = 0.0305, 
Rsigma = 0.0250] 

Data/restraints/parame
ters 

25775/0/1099 43739/30/1211 22581/37/935 

Goodness-of-fit on F2 1.012 1.049 1.052 

Final R indexes 
[I>=2σ (I)] 

R1 = 0.0495, wR2 = 
0.1122 

R1 = 0.0590, wR2 = 
0.1539 

R1 = 0.0626, wR2 = 
0.1885 

Final R indexes [all 
data] 

R1 = 0.0780, wR2 = 
0.1244 

R1 = 0.0861, wR2 = 
0.1739 

R1 = 0.0781, wR2 = 
0.2028 

Largest diff. peak/hole 
/ e Å-3 

0.90/-1.32 2.16/-2.32 2.25/-1.47 
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Table 4. Crystal and refinement data for complexes 3-ox and 4-ox. 
 

Compound 3-ox 4-ox 

CCDC 1863640 1863641 

Empirical formula C68H57Cl2F3Mn4N8O14S C77H65F6Mn4N8O15S 

Formula weight 1589.93 1708.19 
Temperature/K 100.04 99.99 
Crystal system triclinic monoclinic 
Space group P-1 C2/c 

a/Å 12.925(2) 41.9795(15) 
b/Å 15.479(2) 15.5642(8) 
c/Å 18.467(3) 26.7105(8) 
α/° 81.151(6) 90 
β/° 84.367(6) 122.4230(10) 
γ/° 66.925(7) 90 

Volume/Å3 3355.5(9) 14731.5(10) 

Z 2 8 

ρcalcg/cm3 1.574 1.540 

μ/mm-1 7.697 0.787 

F(000) 1620.0 6984.0 

Crystal size/mm3 0.02 × 0.02 × 0.02 0.1 × 0.1 × 0.05 

Radiation CuKα (λ = 1.54178) 
MoKα (λ = 
0.71073) 

2Θ range for data 
collection/° 

6.256 to 150.802 4.328 to 61.122 

Index ranges 
-16 ≤ h ≤ 15, -19 ≤ k ≤ 

19, -23 ≤ l ≤ 23 
-59 ≤ h ≤ 59, -22 ≤ 
k ≤ 22, -38 ≤ l ≤ 38 

Reflections collected 51382 150607 

Independent reflections 
13628 [Rint = 0.0684, 

Rsigma = 0.0600] 

22494 [Rint = 
0.0436, Rsigma = 

0.0305] 

Data/restraints/parameters 13628/0/914 22494/0/1004 

Goodness-of-fit on F2 1.029 1.051 

Final R indexes [I>=2σ 
(I)] 

R1 = 0.0786, wR2 = 
0.2145 

R1 = 0.0766, wR2 = 
0.2334 

Final R indexes [all data] 
R1 = 0.1078, wR2 = 

0.2416 
R1 = 0.0991, wR2 = 

0.2585 
Largest diff. peak/hole / e 

Å-3 
3.12/-1.56 2.58/-2.61 
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Abstract 

The function of proteins involved in electron transfer is dependent on attaining the 

necessary reduction potential. We establish here a new mode of cluster redox tuning, 

through steric pressure on a synthetic model related to Photosystem II. Resembling the 

cuboidal [CaMn3O4] subsite of the biological oxygen evolving complex (OEC), [Mn4O4] 

and [YMn3O4] complexes featuring bridging ligands of different basicity and chelating 

properties have been synthesized and characterized by cyclic voltammetry. In the absence 

of ligand-induced geometric distortions that enforce a contraction of metal-oxo distances, 

increasing the basicity of the ligands results in a decrease of cluster reduction potential. A 

small contraction of Y-oxo/Y-Mn distances by 0.1/0.15 Å enforced by a chelating ligand 

results in an increase of cluster reduction potential even in the presence of strong basic 

donors. Such small, protein-induced changes in Ca-oxo/Ca-Mn distances may have a 

similar effect in tuning the redox potential of the OEC through entatic states, and may 

explain the cation size dependence on the progression of the S-state cycle. 
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4.1) Introduction 

In many enzymatic processes such as photosynthesis and respiration, electron transfer 

(ET) steps play key functional roles.1-2 Cupredoxins, iron-sulfur clusters, and cytochromes 

have been studied extensively in the context of biological ET and the structural features 

responsible for their redox properties.3-6 In addition to controlling the rate of ET, tuning 

the redox potential of ET mediators can regulate biological reactions.7-8 Factors that tune 

the redox potentials of metallocofactors include: (1) oxidation state and geometry of the 

metal center(s),9-12 (2) nature of the ligands in the primary coordination sphere,13-17 (3) 

secondary coordination sphere interactions such as hydrogen bonding and polarity of the 

medium,18-22 and (4) binding of regulatory molecules.23 

Featuring a multimetallic [CaMn4O5] core, the oxygen evolving complex (OEC) of 

Photosystem II catalyzes the 4 e−/4 H+ oxidation of H2O to O2.24-26 The mechanism of O−O 

Figure 1. Linear correlation between redox potential and effective ligand basicity in 
[Mn4O4] complexes 1-Mn~4-Mn. Similar trend based on ligand basicity observed for 
[YMn3O4] complexes 1-Y and 2-Y. Deviation from the trend in 3-Y attributed to a steric 
effect described in this study.  
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bond formation and the role of the redox-inactive Ca2+ ion have been the subject of 

numerous biochemical, spectroscopic, computational, and synthetic studies, but the role of 

Ca2+ remains unclear.27-40 Removal of Ca2+ has a minimal effect on the [Mn4O5] core 

structure.31 Incorporation of alkali metals to Ca2+-depleted OEC reveals a cation size 

dependence in the S1→S2 one e− oxidation step: Li+ and Na+ supplemented samples show 

the multiline EPR signal characteristic of the S2 state, while K+, Rb+, and Cs+ supplemented 

samples do not show formation of the S2 state, suggesting that the redox properties of the 

OEC are affected by the size of the redox-inactive metal.41 Notably, turnover is inhibited 

by substitution of Ca2+ with other metal ions with the exception of Sr2+,42 providing 

opportunities for mechanistic insight through systematic structure-function studies on 

model complexes. Studies on heterometallic complexes featuring acetate-bridged 

[MMn3O4], [MMn3O2], and [MFe3O(OH)] cores with redox-inactive metal ions M = Ca2+, 

Sr2+, Zn2+, Y3+, Ln3+, and Sc3+ have shown that cluster reduction potentials correlate 

linearly with the pKa of the metal aqua ion, with the least acidic Ca2+- and Sr2+-containing 

clusters in the series having the lowest reduction potentials.43-47 For the series of 

[Ln3+Mn3O4] complexes, redox potential is also found to correlate linearly with the ionic 

radii of the lanthanides, with the larger, and therefore less acidic lanthanide-containing 

clusters having lower reduction potentials. Theoretical studies on the cuboidal [MMn3O4] 

model complexes have validated the correlation between redox potential and the Lewis 

acidity of the redox-inactive metal ion; however, calculations also suggest that such 

correlation does not hold for the OEC, which is proposed to respond only to the charge of 

the redox-inactive metal ion.48 Mononuclear examples have been reported in which metal 

ions not only influence redox potential, but also modulate the reactivity of bound oxo or 
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peroxo moieties.49-52 However, the well-documented correlation between cation acidity 

and redox potential in model studies fails to address the cation size dependence in the OEC: 

larger, less acidic alkali metals inhibit the S1→S2 oxidation, an observation that directly 

contradicts our current understanding of the effect of redox inactive metals in tuning redox 

potentials. 

Herein, we report the synthesis, crystal structure, and electrochemical characterization 

of a series of [Mn4O4] and [YMn3O4] complexes featuring bridging ligands of different 

basicity and chelating properties (Figure 1). In the absence of ligand-induced geometric 

distortions that enforce a contraction of metal-oxo distances, increasing the basicity of the 

ligands results in a decrease of cluster reduction potential. A small contraction of Y-oxo/Y-

Mn distances by 0.1/0.15 Å enforced by a chelating ligand results in an increase of cluster 

reduction potential even in the presence of strong basic donors. We propose that such small 

changes in Ca-oxo/Ca-Mn distances may have a similar effect in tuning the redox potential 

of the OEC. A similar effect may explain the cation size dependence in the S1→S2 

oxidation, whereby the rigid cavity surrounding the OEC may enforce shorter, non-

equilibrium metal-oxo distances that increase the reduction potential of the OEC. 

4.2) Synthesis, crystal structure, and electrochemistry 

To investigate the effect of ligand basicity in modulating cluster reduction potential, 

[Mn4O4] complexes featuring carboxylate and amidate bridging ligands were synthesized 

(Figure 2). Treatment of the previously reported LMn4O4(OAc)3 complex 1-Mn with a 

tethered diamidate ligand results in the formation of LMn4O4(diam)(OAc) (3-Mn).53 

Subsequent treatment of 3-Mn with p-CF3-benzoic acid results in the formation of 

LMn4O4(diam)(OBzCF3) (2-Mn).53 For the series of nearly isostructural complexes 1-
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Mn~3-Mn, electrochemical studies show a redox process assigned to the 

[Mn2
IIIMn2

IV]/[MnIIIMn3
IV] couple at +250, −15, and −150 mV vs Fc/Fc+, respectively.44, 

53 Toward further decreasing the potential of this redox couple, a triamidate-supported 

[Mn4O4] cluster was targeted. Treatment of 1,1,1-tris(aminomethyl)ethane with pivaloyl 

chloride results in the formation of the tethered tris-amidate ligand precursor H3triam 

(Figure 2). Deprotonation of H3triam with KH followed by treatment with 1-Mn results in 

the formation of LMn4O4(triam) (4-Mn). The ESI-MS peak at m/z = 1505 is consistent 

Figure 2. Synthesis of complexes studied in this work. 
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with the mass of [LMn4O4(triam)]+ (Figure 14). The tethered triamidate serves as a bridging 

ligand across all three faces of the [Mn4O4] cubane, resulting in a pseudo-C3 symmetric 

complex (Figure 3). The reversible [Mn2
IIIMn2

IV]/[MnIIIMn3
IV] couple is observed at −465 

mV vs Fc/Fc+, representing a shift of 600 mV relative to 1-Mn (Figure 3). Treatment of 4-

Mn with Ag(OTf) affords the one electron oxidized species [LMn4O4(triam)][OTf] (4-Mn-

ox). In a related series of [Co4O4] cuboidal systems, cluster reduction potentials were found 

to be inversely proportional to the weighted sum of ligand pKa’s (effective basicity) in 

H2O.54 A similar correlation can be obtained for 1-Mn~4-Mn using the pKa of HOAc 

(12.6), p-CF3-C6H4CO2H (9.6), and N-methylacetamide (25.9) in DMSO, with a slope of 

−70 mV/pKa (Figure 1, Table 3), establishing a linear trend between ligand basicity and 

cluster potential in [Mn4O4] complexes.55-58 

To investigate the effect of ligand basicity in modulating the reduction potential of 

clusters featuring redox-inactive metals, [YMn3O4] complexes supported by different 

bridging ligands were targeted (Figure 2). Electrochemical studies on [LYMn3O4(OAc)3]+ 

(1-Y) show a redox process at −430 mV vs Fc/Fc+ assigned to the [YMn3
IV]/[YMnIIIMn2

IV] 

Figure 3. a) Truncated crystal structure of 4-Mn and b) cyclic voltammogram at various 
scan rates. 
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couple.46 Accordingly, treatment of 1-Y with Cp*2Fe results in the formation of the one 

electron reduced complex [LYMn3O4(OAc)3] (1-Y-red).59 Treatment of 1-Y with 1 equiv 

of a chelating bis-oxime proligand (H2N4O2) results in the formation of 2-Y via a 

protonolysis reaction (Figure 2). The ESI-MS peak at m/z = 1460 is consistent with the 

mass of [LYMn3O4(N4O2)(OAc)]+ (Figure 15), suggesting that two acetate moieties have 

been substituted by the chelating bis-oximate ligand. The X-ray crystal structure is 

consistent with the [LYMn3O4(N4O2)(OAc)(DMF)][OTf] formulation (Figure 4). Despite 

the pKa difference of 13 units between acetic acid and acetoxime (pKa = 25.2)60 moieties, 

the reaction is thought to be driven by a kinetic chelate effect. Analogous bis-oximate 

supported [CaMn3O4] and [GdMn3O4] complexes have been reported, but their 

electrochemical properties had not been reported.61 Electrochemical studies on 2-Y show 

a reversible redox process at −860 mV vs Fc/Fc+ assigned to the [YMn3
IV]/[YMnIIIMn2

IV] 

couple (Figure 4). The bis-oximate ligand decreases the reduction potential of 2-Y by 430 

mV relative to that of 1-Y, consistent with the increased basicity of the oximate donors 

compared to acetates. Interestingly, the difference in redox potential between 1-Y and 2-Y 

Figure 4. a) Truncated crystal structure of 2-Y and b) cyclic voltammogram at various 
scan rates. 
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is similar to that between 1-Mn and 3-Mn, suggesting that a similar trend based on 

effective ligand basicity may be operative in [YMn3O4] complexes.  

On the basis of the effective basicity trend, a triamidate-supported [YMn3O4] complex 

was targeted to further decrease the potential of the [YMn3
IV]/[YMnIIIMn2

IV] couple. 

Treatment of 1-Y with 1 equiv of tren-based triacetamide proligand (H3Ntriam) and 3 equiv 

of NaOtBu results in the formation of the amidate-supported, one electron reduced complex 

3-Y-red (Figure 2). The ESI-MS peak at m/z = 1443 is consistent with the mass of 

[LYMn3O4(Ntriam)]+ (Figure 16), suggesting that all three acetate moieties have been 

substituted by the chelating tris-amidate ligand. Through an analogous procedure, 

treatment of 1-Y with 1 equiv of tren-based triurea proligand (H3triurea) results in the 

formation of the ureate-supported, one electron reduced complex 4-Y-red (Figure 2). The 

X-ray crystal structure of 4-Y-red is consistent with the LYMn3O4(triurea) formulation. 

Electrochemical studies on 3-Y-red show a reversible redox process at −290 mV vs Fc/Fc+ 

assigned to the [YMn3
IV]/[YMnIIIMn2

IV] couple (Figure 5). Accordingly, treatment of 3-Y-

red with (Fc)(OTf) leads to the formation of the one electron oxidized complex 3-Y. The 

Figure 5. a) Truncated crystal structure of 3-Y and b) cyclic voltammogram at various 
scan rates. 
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X-ray crystal structure of 3-Y is consistent with the [LYMn3O4(Ntriam)][OTf] formulation 

(Figure 5). Despite the similarity in pKa for acetoxime and acetamide moieties, and the 

increased effective ligand basicity in 3-Y, the tris-amidate ligand increases the reduction 

potential of 3-Y by 140 mV relative to that of 1-Y, inconsistent with the increased basicity 

of the amidate donors compared to acetates.  

Table 1. Metal-oxo and metal-metal distances (Å) in complexes 1-Y-red, 1-Y, 2-Y, 3-Y, 
and 4-Y-red. 
 

 1-Y-red 1-Y 2-Y 3-Y 4-Y-red 

Y(1)−O(1) 2.297(3) 2.432(2) 2.308(2) 2.289(4) 2.326(2) 

Y(1)−O(2) 2.344(3) 2.335(2) 2.396(2) 2.278(4) 2.273(2) 

Y(1)−O(3) 2.306(3) 2.389(2) 2.422(3) 2.289(4) 2.284(2) 

Y−O average 2.316(3) 2.385(2) 2.375(2) 2.285(4) 2.294(2) 

      

Y(1)−Mn(1) 3.212(1) 3.239(1) 3.181(1) 3.106(1) 3.123(1) 

Y(1)−Mn(2) 3.144(1) 3.298(1) 3.193(1) 3.119(1) 3.137(1) 

Y(1)−Mn(3) 3.192(1) 3.213(1) 3.295(1) 3.100(1) 3.133(1) 

Y−Mn average 3.183 3.250(1) 3.223(1) 3.108(1) 3.131(1) 

      

Mn(1)−O(1) 1.926(3) 1.840(2) 1.863(3) 1.862(4) 1.843(3) 

Mn(1)−O(2) 1.897(3) 1.874(2) 1.882(2) 1.884(4) 1.865(2) 

Mn(1)−O(4) 2.205(3) 1.909(2) 1.941(3) 1.926(4) 1.878(2) 

Mn(2)−O(1) 1.869(3) 1.875(2) 1.875(3) 1.884(4) 1.876(2) 

Mn(2)−O(3) 1.853(3) 1.839(2) 1.849(2) 1.843(4) 1.853(2) 

Mn(2)−O(4) 1.854(3) 1.910(2) 1.949(3) 1.923(4) 1.841(3) 

Mn(3)−O(2) 1.862(3) 1.844(2) 1.836(3) 1.846(4) 1.919(2) 

Mn(3)−O(3) 1.887(3) 1.877(2) 1.869(3) 1.893(4) 1.906(3) 

Mn(3)−O(4) 1.857(3) 1.912(2) 1.906(2) 1.921(4) 2.219(2) 
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To obtain a rationale for the shifts in redox potential observed in complexes 1-Y~3-Y, 

metal-oxo and metal-metal distances were compared among the series of oxidized and 

reduced complexes (Table 1). Comparing the reported crystal structures of complexes 1-

Y-red and 1-Y, a slight contraction of Y-oxo and Y-Mn distances is observed in the 

reduced analogue.46, 59 This contraction can be rationalized in terms of the increased 

basicity of the bridging oxos in the reduced cluster, resulting in the observed Y-oxo/Y-Mn 

contraction. In addition to charge balance considerations, the unique, elongated 

Mn(1)−O(4) distance of 2.205(3) Å in 1-Y-red is consistent with the MnIIIMn2
IV oxidation 

state assignment. 

Comparing the structure of complexes 1-Y and 2-Y, the average Y-oxo and Y-Mn 

distances differ only by about 0.01 Å and 0.03 Å, respectively. The absence of a distinctly 

elongated Mn-oxo distance in both 1-Y and 2-Y is consistent with the Mn3
IV oxidation state 

assignment. Binding of the bis-oximate ligand does not significantly change the geometry 

of the [YMn3O4] core, and the decrease in reduction potential of 2-Y relative to that of 1-

Y can be attributed to the increased effective basicity of the ligand framework. 

Comparing the structures of complexes 1-Y and 3-Y, a more significant contraction in 

the average Y-oxo and Y-Mn distances is observed in 3-Y, by about 0.1 Å and 0.15 Å 

respectively. This contraction in 3-Y can be attributed to the steric pressure exerted by the 

chelating tris-amidate ligand framework, resulting in Y-oxo and Y-Mn distances that 

would otherwise be more comparable to 1-Y and 2-Y. Despite the increase in ligand 

basicity going from acetates to amidates, the closer Y-oxo interactions enforced by the 

chelating ligand framework increase the reduction potential of 3-Y, potentially by 

decreasing the electron density available for the Mn centers at the expense of stronger Y-
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oxo interactions. In the series of [Mn4O4] complexes 1-Mn~4-Mn, noticeable changes in 

the [Mn4O4] core enforced by the chelating ligand have not been observed.53 By taking into 

account only the basicity of the triamidate ligand (N3triam3−), the reduction potential of 3-

Y would be expected to be in the range of −1000 mV vs Fc/Fc+, implying that small 

geometrical changes (0.1/0.15 Å) in the equilibrium Y-oxo/Y-Mn distances may shift the 

cluster redox potential by ~700 mV. Finally, comparing the structure of the reduced 

complexes 1-Y-red and 4-Y-red, the differences in the average Y-oxo and Y-Mn distances 

become smaller, to about 0.02 Å and 0.05 Å respectively; the release of steric strain 

imposed by the chelating ligand framework upon reduction may contribute to the increase 

in reduction potential. 

4.3) Discussion 

In summary, a series of [YMn3O4] complexes featuring bridging ligands of different 

basicity and chelating properties have been synthesized and characterized by X-ray 

crystallography and cyclic voltammetry. In agreement with previous studies, increasing the 

effective basicity of the ligand framework results in a decrease of cluster reduction 

potential. A novel mode of tuning cluster reduction potential is reported; ligand-induced 

distortion of cluster geometry. A small contraction of Y-oxo/Y−Mn distances by 0.1/0.15 

Å enforced by the chelating ligand results in an increase of the cluster reduction potential 

even in the presence of electron donating tris-amidate donors. To the best of our knowledge, 

such an effect has not been described in heterometallic complexes featuring redox-inactive 

metals. We propose that within the rigid cavity surrounding the OEC,31, 62 structural 

changes that affect Ca-oxo/Ca−Mn distances may have a similar effect in tuning the redox 

potential of the OEC. Furthermore, our model studies suggest that the cation size 
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dependence in the S1→S2 one e− oxidation in the OEC is the result of redox tuning through 

a similar steric effect: The rigid cavity surrounding the OEC may enforce shorter, non-

equilibrium metal-oxo distances for cations with ionic radii larger than that of Ca2+, 

resulting in an increase in the reduction potential of the OEC and inhibiting the S1→S2 

transition. While other factors such as the pKa of the water bound to the redox-inactive 

metal may affect the slower turnover frequency of the Sr-substituted OEC, a similar size 

effect may also be in place.63-64 

4.4) Experimental section 

Synthesis of H3triam: Prepared according to literature65, the HCl salt of 1,1,1-

tris(aminomethyl)ethane (1.5 g, 6.62 mmol, 1 equiv) was suspended in DMF (100 mL) and 

treated with Et3N (10 mL). The resulting mixture was cooled to 0 oC in an ice bath then 

treated with pivaloyl chloride (5 mL) dropwise. The mixture was warmed to room 

temperature and stirred for 2 days at room temperature. All volatiles were removed under 

reduced pressure, and the residue was treated with CH2Cl2 and saturated aqueous NaHCO3. 

The CH2Cl2 layer was separated, washed with water, dried over anhydrous MgSO4, and 

filtered. All volatiles were removed from the filtrate, and the residue was washed with 

copious amounts of Et2O. H3triam was obtained as an off-white powder. Yield: 750 mg, 

31 %. 1H NMR (500 MHz, CDCl3): δ 7.09 (t, J = 5 Hz, 3H, NH), 2.90 (d, J = 5 Hz, 6H, 

CH2), 1.24 (s, 27H, −C(CH3)3), 0.77 (s, 3H, CH3) ppm. 13C NMR (125.7 MHz, CDCl3): 

180.12, 42.25, 41.48, 39.04, 27.85, 19.27 ppm. HRMS (FAB+): calculated for C20H40N3O3: 

370.3070; found: 370.3059 [M+H]. 

Synthesis of 4-Mn: A solution of H3triam (265 mg, 0.717 mmol, 1.1 equiv) in THF 

(200 mL) was treated with KH (300 mg, ~10 equiv) and stirred for 18 hours at room 
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temperature. Excess KH was removed by filtration, and the filtrate was treated with 1-Mn 

(860 mg, 0.653 mmol, 1 equiv). After stirring for 18 hours at room temperature, all volatiles 

were removed from the crude reaction mixture. The residue was washed with generous 

amounts of Et2O and benzene, then redissolved in CH2Cl2 and filtered through a pad of 

Celite. All volatiles were removed from the filtrate. The residue was washed three times 

with small amounts of MeCN, redissolved in CH2Cl2 and filtered through a pad of Celite. 

Volatiles were removed from the filtrate under reduced pressure, yielding 4-Mn as a brown 

powder. Yield: 820 mg, 83 %. Crystals suitable for X-ray crystallography were obtained 

from slow vapor diffusion of Et2O into a concentrated solution of 4-Mn in CH2Cl2. 1H 

NMR (300 MHz, CD2Cl2): δ 35.5, 30.0, 17.8, 13.3, 9.7, −5.9 ppm. 

Synthesis of 4-Mn-ox: A solution of 4-Mn (220 mg, 0.146 mmol, 1 equiv) in THF (10 

mL) was treated with a solution of Ag(OTf) (40 mg, 0.155 mmol, 1.05 equiv) in MeCN (3 

mL) and stirred for 18 hrs at room temperature. All volatiles were removed from the crude 

reaction mixture. The residue was washed with generous amounts of Et2O and ben. The 

residue was dissolved in CH2Cl2 and filtered through a pad of Celite. All volatiles were 

removed from the filtrate. The residue was washed three times with small amounts of THF, 

redissolved in CH2Cl2 and filtered through a pad of Celite. Volatiles were removed from 

the filtrate under reduced pressure, yielding 4-Mn-ox as a brown powder. Yield: 133 mg, 

55 %. Crystals suitable for EPR spectroscopy were obtained from slow vapor diffusion of 

Et2O into a concentrated solution of 4-Mn-ox in CH2Cl2. 1H NMR (300 MHz, CD2Cl2): δ 

114.5, 74.6, 13.1, 11.0, −18.5 ppm. Analysis calculated for [LMn4O4(triam)](OTf) 

[C78H75F3Mn4N9O13S]: C 56.60, H 4.57, N 7.62; found: C 56.34, H 4.46, N 7.97. 
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Synthesis of 2-Y: A solid mixture of 1-Y (930 mg, 0.565 mmol, 1 equiv) and H2N4O2 

(143 mg, 0.62 mmol, 1.1 equiv) was treated with THF (18 mL) and stirred at room 

temperature for 16 hours. The resulting red precipitate was collected, washed with THF 

until the filtrate was no longer red, dissolved in CH2Cl2, and filtered through Celite. 

Volatiles were removed from the filtrate under reduced pressure, yielding 2-Y as a red 

powder. Crystals suitable for X-ray crystallography were obtained from slow vapor 

diffusion of Et2O into a concentrated solution of 2-Y in py (250 mg, 26%). 1H NMR (300 

MHz, CD2Cl2): δ 68.2, 61.2, 18.6, 17.1, 11.8, 11.0, −17.0, 19.2 ppm. Analysis calculated 

for [LYMn3O4(N4O2)(OAc)(DMF)](OTf) [C73H69F3Mn3N11O15SY]: C 52.09, H 4.13, N 

9.15; found: C 52.07, H 4.23, N 9.37. 

Synthesis of 3-Y-red: A solid mixture of 1-Y (420 mg, 0.255 mmol, 1 equiv) and the 

triacetamide (85 mg, 0.312 mmol, 1.2 equiv) was treated with MeCN (18 mL) and stirred 

briefly at room temperature. NaOtBu (81 mg, 0.843 mmol, 3.3 equiv) was added as a solid 

and the mixture was stirred at room temperature for 16 hours. The resulting orange-brown 

precipitate was collected, washed with MeCN until the filtrate was no longer brown, 

dissolved in CH2Cl2, and filtered through Celite. Volatiles were removed from the filtrate 

under reduced pressure, yielding 3-Y-red as a red powder. (120 mg, 32%). 1H NMR (300 

MHz, CD2Cl2): δ 24.9, 11.2, 10.2, 9.3, −22.43 ppm. 

Synthesis of 3-Y: A solution of 3-Y-red (28 mg, 0.019 mmol, 1 equiv) in CH2Cl2 (3 

mL) was treated with a solution of Fc(OTf) (8 mg, 0.024 mmol, 1.2 equiv) in CH2Cl2 (2 

mL). The mixture was stirred at room temperature for 16 hours. All volatiles were removed 

from the resulting red-brown solution, and the residue was washed with Et2O. The residue 

was dissolved in cold THF (−30 oC) and filtered through a pad of Celite. Volatiles were 
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removed from the filtrate under reduced pressure, yielding 3-Y as a red powder. Yield: 28 

mg, 90%. Crystals suitable for X-ray crystallography were obtained from slow vapor 

diffusion of Et2O into a concentrated solution of 3-Y in THF. 1H NMR (300 MHz, CD2Cl2): 

δ 15.0, 11.5, 9.2, −15.4, −17.2 ppm. Analysis calculated for [LYMn3O4(Ntriam)](OTf)ꞏ 

CH2Cl2 [C71H62Cl2F3Mn3N10O13SY]: C 50.85, H 3.73, N 8.35; found: C 50.56, H 4.02, N 

8.09. 

Synthesis of 4-Y-red: A solid mixture of 1-Y (250 mg, 0.152 mmol, 1 equiv) and the 

triurea (77 mg, 0.168 mmol, 1.1 equiv) was treated with MeCN (18 mL) and stirred briefly 

at room temperature. NaOtBu (48 mg, 0.5 mmol, 3.3 equiv) was added as a solid and the 

mixture was stirred at room temperature for 16 hours. The resulting orange-brown 

precipitate was collected, washed with MeCN until the filtrate was no longer brown, 

dissolved in THF, and filtered through Celite. Volatiles were removed from the filtrate 

under reduced pressure, yielding 4 as a red powder. (100 mg, 39%). Crystals suitable for 

X-ray crystallography were obtained from slow vapor diffusion of Et2O into a concentrated 

solution of 4 in THF. Analysis calculated for [LYMn3O4(triurea)] [C84H69Mn3N13O10Y]: C 

60.26, H 4.15, N 10.88; found: C 60.00, H 4.21, N 10.59. 
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Table 2. Crystal and refinement data for complexes 4-Mn, 2-Y, and 3-Y. 
 

Compound 4-Mn 2-Y 3-Y 

CCDC 1897119 1897117 1897118 

Empirical formula C81H85Mn4N9O12 
C92.48H88.48F3Mn3N14.9

O15SY 
C82H60F3Mn3N10O16S

Y 
Formula weight 1596.33 1991.34 1784.19 
Temperature/K 100.0 100.0 99.99 
Crystal system triclinic triclinic monoclinic 
Space group P-1 P-1 C2/c 

a/Å 12.1663(5) 13.9021(6) 25.8213(17) 
b/Å 15.8988(7) 16.1176(7) 17.6106(12) 
c/Å 21.2417(10) 21.2112(8) 35.578(2) 
α/° 85.786(3) 87.635(3) 90 
β/° 85.114(3) 77.947(3) 103.105(2) 
γ/° 72.129(2) 83.333(3) 90 

Volume/Å3 3891.5(3) 4615.8(3) 15757.0(18) 

Z 2 2 8 

ρcalcg/cm3 1.362 1.433 1.504 

μ/mm-1 5.702 4.943 1.307 

F(000) 1660.0 2049.0 7256.0 

Crystal size/mm3 0.5 × 0.5 × 0.1 0.1 × 0.1 × 0.05 0.1 × 0.1 × 0.1 

Radiation CuKα (λ = 1.54178) CuKα (λ = 1.54178) MoKα (λ = 0.71073) 
2Θ range for data 

collection/° 
5.848 to 150.194 7.034 to 149.336 4.412 to 54.95 

Index ranges 
-15 ≤ h ≤ 15, -19 ≤ k 

≤ 19, 0 ≤ l ≤ 26 
-17 ≤ h ≤ 17, -20 ≤ k 

≤ 20, -26 ≤ l ≤ 26 
-33 ≤ h ≤ 33, -22 ≤ k 

≤ 22, -46 ≤ l ≤ 45 

Reflections collected 13231 101142 125697 

Independent 
reflections 

13231 [Rint = merged, 
Rsigma = 0.0974] 

18768 [Rint = 0.0560, 
Rsigma = 0.0428] 

18015 [Rint = 0.0634, 
Rsigma = 0.0390] 

Data/restraints/param
eters 

13231/2139/943 18768/0/1065 18015/49/942 

Goodness-of-fit on F2 1.072 1.055 1.061 

Final R indexes 
[I>=2σ (I)] 

R1 = 0.1746, wR2 = 
0.4017 

R1 = 0.0624, wR2 = 
0.1781 

R1 = 0.0905, wR2 = 
0.2546 

Final R indexes [all 
data] 

R1 = 0.2030, wR2 = 
0.4246 

R1 = 0.0695, wR2 = 
0.1842 

R1 = 0.1204, wR2 = 
0.2849 

Largest diff. 
peak/hole / e Å-3 

3.46/-1.42 1.99/-2.23 3.20/-1.12 
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Figure 6. 1H NMR of H3triam in CDCl3. 

 
Figure 7. 13C NMR of H3triam in CDCl3. 

 
Figure 8. 1H NMR of 4-Mn in CD2Cl2. 

 
Figure 9. 1H NMR of 4-Mn-ox in CD2Cl2. 
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Figure 10. 1H NMR of 2-Y in CD2Cl2. 
 

 
Figure 11. 1H NMR of 3-Y-red in CD2Cl2. 
 

 
Figure 12. 1H NMR of 3-Y in CD2Cl2. 
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Figure 13. 1H NMR of 4-Y-red in CD2Cl2. 
 
 

 
Figure 14. ESI-MS of 4-Mn. m/z = 1505 consistent with [LMn4O4(triam)]+. 
 
 

 
Figure 15. ESI-MS of 2-Y. m/z = 1460 consistent with [LYMn3O4(N4O2)(OAc)]+. 
 

 
Figure 16. ESI-MS of 3-Y. m/z = 1443 consistent with [LYMn3O4(triam)]+. 
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Figure 17. Cyclic voltammogram of 4-Mn at various scan rates and plot of peak current 
vs. square root of scan rate. 
 

 
Figure 18. Square-wave voltammogram of 4-Mn. 

 

 
Figure 19. Cyclic voltammogram of 2-Y at various scan rates and plot of peak current vs. 
square root of scan rate. 
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Figure 20. Square-wave voltammogram of 2-Y. 
 
 

 
Figure 21. Cyclic voltammogram of 3-Y at various scan rates and plot of peak current vs. 
square root of scan rate. 
 

 
Figure 22. Square-wave voltammogram of 3-Y. 
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Figure 23. X-band CW-EPR of 4-Mn-ox. Data acquisition parameters: frequency = 9.366 
MHz, power = 2 mW, conversion time = 20.48 ms, modulation amplitude = 8 G. The 
variable-temperature behavior of 4-Mn-ox is reminiscent of a reported complex 
[LMnIIIMn3

IVO4(diamidate)(OAc)]+ (Chapter 3).  
 
Table 3. Values of ligand pKa in DMSO, effective basicity, and cluster redox potential. 

Complex Ligand 1 Ligand 2 
pKa 

ligand 1 
pKa 

ligand 2 
Effective 
basicity 

Redox 
potential (V 
vs. Fc/Fc+) 

1-Mn Acetate  12.6 - 9.45 250 

2-Mn Acetamide 
CF3-

benzoate 
25.9  15.35 −15 

3-Mn Acetamide Acetate 25.9 12.6 16.1 −150 

4-Mn Acetamide  25.9 - 19.42 −465 

1-Y Acetate  12.6 - 9.45 −430 

2-Y Acetoxime Acetate 25.2 12.6 15.75 −860 
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C H A P T E R    5 

 

 

 

CaMn3
IVO4 Cubane Models of the Biological Oxygen Evolving Complex: 

Desymmetrization and Oxo Protonation Lead to S < 9/2 
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Abstract 

Biological water oxidation is catalyzed at the oxygen evolving complex (OEC) of 

Photosystem II featuring a CaMn4O5 core. Mechanistic proposals are guided by 

spectroscopic characterization of intermediates such as the S2 and S3 states. On the basis 

of the spin ground state of such intermediates, a CaMn3
IVO4 cuboidal subunit of 

ferromagnetically coupled MnIV centers has been proposed. Herein, we report the synthesis, 

crystal structure, XAS, magnetic susceptibility, and multifrequency EPR data for a series 

of MMn3
IVO4 (M = CaII, YIII) complexes as structural and spectroscopic models of the 

cuboidal subunit of the OEC. The effect of systematic changes in cluster geometry, 

heterometal identity, and bridging oxo protonation on cluster spin state structure was 

investigated. Importantly, the spin ground state of CaMn3
IVOn(OH)(4−n) (n = 0~4) 

complexes need not necessarily be S = 9/2 as previously reported. Desymmetrization and 

slight geometrical changes in the previously reported pseudo-C3 symmetric MMn3
IVO4 

complexes with an S = 9/2 ground state lead to a lower, S = 5/2 ground state. Protonation 

of a single bridging oxo moiety has a strong influence in attenuating the magnitude of the 

magnetic exchange coupling interactions, and an S = 3/2 ground state is observed in 

CaMn3
IVO3(OH). Removal of the heterometal leads to a pseudo-C3 symmetric Mn3

IVO4 

complex with an S = 3/2 ground state, suggesting that geometric considerations are not 

sufficient for the deduction of the nature of magnetic exchange coupling interactions. Our 

model studies suggest that the magnetic properties of the OEC may also react very 

sensitively to small changes in structure; the protonation state of the bridging oxo moieties 

and the magnetic coupling scheme within the CaMn3
IVO4 cuboidal subunit in the OEC need 

to be carefully assessed. 
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5.1) Introduction 

Biological water oxidation is catalyzed at the oxygen evolving complex (OEC) of 

Photosystem II (PSII).1-3 The active site of the OEC has been characterized 

crystallographically, revealing a heterometallic CaMn3O4 cubane motif binding to a fourth 

Mn center via bridging oxo moieties.4-7 Mechanistic studies have been performed within 

the context of the Joliot-Kok cycle of Sn (n = 0~4) states,8-9 with the Mn oxidation states 

of the dark-stable S1 state corresponding to Mn2
IIIMn2

IV.10 Light-induced one electron 

oxidation leads to the formation of the S2 state, and numerous mechanistic studies have 

been performed to better understand the (electronic)structure of the S2 state and the 

requirements needed to advance to the more oxidized S3 state.11-26 In the absence of direct 

and unambiguous structural data concerning the O−O bond forming S4 intermediate, 

Figure 1. Proposed structures of the inorganic CaMn4O5 core of the OEC in the S2 and S3

states. Overall ferromagnetic coupling between the Mn centers within the CaMn3
IVO4

subsite has been proposed, leading to S = 9/2. Antiferromagnetic coupling to the dangling 
Mn leads to the observed spin ground states SG = 5/2 and SG = 3 for S2 and S3 respectively. 
Nature of the computed magnetic exchange coupling interactions shown in red
(antiferromagnetic) and blue (ferromagnetic) dashed lines. 
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spectroscopic characterization of lower Sn state intermediates heavily influence 

mechanistic proposals for O−O bond formation.27-30 

Connected to oxidation state changes and possible structural differences, each of the Sn 

state intermediates adopts a unique electronic structure with a characteristic spin ground 

state:31 S(S0) = 1/2,19 S(S1) = 0,32 S(S2) = 1/2 or 5/2,33-35 S(S3) = 3.16, 36 The interconversion 

between the S = 1/2 and S = 5/2 forms of the S2 state (Mn oxidation states MnIIIMn3
IV) is 

particularly interesting:34 supported with computed values of magnetic exchange coupling 

constants (Jij) between adjacent Mn centers, structural differences have been proposed to 

lead to changes in the magnetic coupling interactions in the OEC, resulting in different spin 

ground states.22 In the so-called “closed-cubane” structure with the S = 5/2 ground state, 

ferromagnetic coupling between Mn(1), Mn(2), and Mn(3) is proposed to lead to an S = 

9/2 spin state for the CaMn3
IVO4 cuboidal subsite; antiferromagnetic coupling to the 

dangling Mn(4) would lead to the observed S = 5/2 ground state (Figure 1). In the “open-

cubane” structure, an internal valence redistribution is proposed, with the CaMnIIIMn2
IVO4 

Figure 2. Previously reported complexes featuring a CaMn3O4 core with an S = 9/2 ground 
state. 
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subsite now proposed to have an S = 1 spin state; antiferromagnetic coupling to the 

dangling Mn(4) would lead to the observed S = 1/2 ground state.22, 31 On the basis of two 

reported CaMn3
IVO4 complexes having an S = 9/2 ground state vide infra, the spin state 

equilibrium observed in the S2 state has been attributed to the structural flexibility of the 

OEC core. Such a concept has been firmly established in the literature, strongly influencing 

current mechanistic proposals that focus on the incorporation of a sixth substrate oxygen 

O(6) in the cleft between Mn(1) and Mn(4) (Figure 1).37 A similar magnetic coupling 

scheme has been advanced for the S3 state, featuring a ferromagnetically coupled  

CaMn3
IVO4 subsite with an S = 9/2 spin state: antiferromagnetic coupling to Mn(4) would 

lead to the observed S = 3 ground state (Figure 1).16 Since changes in the nature and 

magnitude of Jij affect not only the spin ground state of the cluster but also other 

spectroscopic properties such as the sign and magnitude of the projected 55Mn hyperfine 

coupling constants (Ai), a better understanding of the magnetic coupling interactions in the 

OEC is desirable.38 

In contrast to the extensive studies performed on the OEC, structural, magnetic, and 

spectroscopic studies of heterometallic MMn3O4 complexes remain rare.39 Relevant studies 

on CaMn3O4 complexes can be summarized as follows (Figure 2). On the basis of magnetic 

and EPR spectroscopic data, the spin ground state of a pivalate-bridged asymmetric 

CaMn3O4 model of the OEC has been assigned to S = 9/2.40 On the basis of magnetic and 

computational data, the spin ground state of an acetate-bridged pseudo-C3 symmetric 

CaMn3
IVO4 complex has been assigned to S = 9/2.41-43 In general, studies on the effect of 

structural distortions, heterometal identity, and bridging oxo protonation on the electronic 

structure of heterometallic model complexes remain rare, in part due to the synthetic 
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difficulties in obtaining a series of compounds suitable for comparisons.44-46 Despite 

significant efforts to prepare complexes that mimic the OEC in terms of structure and redox 

state, accurate models for benchmarking against the biological system are rare.39, 47-52 

Herein, we report synthesis, crystal structure, magnetic susceptibility, and D-band 

pulsed EPR data for a series of cuboidal complexes featuring CaMn3
IVO4, YMn3

IVO4, and 

CaMn3
IVO3(OH) cores. Additionally, the synthesis and characterization of an incomplete 

cubane with a Mn3
IVO4 core that mimics the Ca2+-depleted cuboidal subsite of the OEC is 

reported. Similar to our previous studies on MnIIIMn3
IVO4 complexes,53 results show that 

the electronic structure of CaMn3
IVO4 complexes are highly sensitive not only to small 

geometrical changes promoted by the nature of the supporting ligands, but also to the 

Figure 3. Synthesis of complexes studied in this work. 
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protonation state of the bridging oxo moieties. Our results contradict previous 

computational studies that predict an S = 9/2 ground state for all CaMn3
IVO4 complexes 

including analogues with protonated oxo moieties.43 Results indicate that ground states 

such as S = 5/2 and S = 3/2 are possible in such complexes. Removal of the heterometal 

leads to a pseudo-C3 symmetric Mn3
IVO4 complex with an S = 3/2 ground state, suggesting 

that geometric considerations are not sufficient for the deduction of the nature of magnetic 

exchange coupling interactions. The protonation state of the bridging oxo moieties and the 

magnetic coupling scheme within the CaMn3
IVO4 cuboidal subunit need to be carefully 

assessed. 

5.2) Synthesis and crystal structure 

We have previously reported the synthesis of LCaMn3
IVO4(OAc)3 (1-Ca) (Figure 3).42 

Magnetic susceptibility and computational studies on 1-Ca indicate an S = 9/2 ground 

state.41, 43 Treatment of 1-Ca with Y(OTf)3 leads to the formation of [LYMn3O4(OAc)3]+ 

(1-Y).52 Magnetic studies on 1-Y also indicate an S = 9/2 ground state with no significant 

magnetic anisotropy, consistent with the Mn3
IV oxidation state assignment.54 

Desymmetrization of the pseudo-C3 symmetric complex 1-Ca was achieved via 

substitution of two acetate moieties with a chelating bis-oximate ligand (H2N4O2, Figure 

3). Treatment of 1-Ca with H2N4O2 results in the formation of LCaMn3O4(N4O2)(OAc) (2-

Ca) via a protonolysis reaction.55 Due to its limited solubility, a crystal structure of 2-Ca 

has not been obtained to date. However, treatment of 2-Ca with 1 equiv 2,6-lutidinium 

triflate (LutH)(OTf) results in the protonation of a unique oxo to afford 

[LCaMn3O3(OH)(N4O2)(OAc)]+ (3-Ca), consistent with the desymmetrized, pseudo-CS 

symmetric CaMn3O4 core in 2-Ca. The crystal structure of 3-Ca features Mn-(μ3-OH) 
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distances that are slightly elongated by 0.09 Å in comparison to the corresponding Mn-(μ3-

O) distances in 1-Ca. Ca-oxo/hydroxo distances in 3-Ca are also slightly elongated by 0.05 

Å in comparison to the Ca-oxo distances in 1-Ca.55 Such relatively small structural changes 

have a significant influence in the spin state structure of the CaMn3
IVO4 core vide infra. 

Figure 4. Truncated crystal structures of 2-Y (top) and 4 (bottom). Mn (green), O (red), N 
(blue), C (black). Bolded bonds highlight metal-oxo bonds. Selected bond distances (Å): 
2-Y: Mn(1)−O(1) 1.863(3), Mn(1)−O(2) 1.882(2), Mn(1)−O(4) 1.941(3), Mn(2)−O(1) 
1.875(3), Mn(2)−O(3) 1.849(2), Mn(2)−O(4) 1.949(3), Mn(3)−O(2) 1.836(3), 
Mn(3)−O(3) 1.869(3), Mn(3)−O(4) 1.906(2), Y(1)−O(1) 2.308(2), Y(1)−O(2) 2.396(2), 
Y(1)−O(3) 2.422(3), Mn(1)−Mn(2) 2.8817(8), Mn(1)−Mn(3) 2.8362(8), Mn(2)−Mn(3) 
2.8400(8), Mn(1)−Y(1) 3.1810(6), Mn(2)−Y(1) 3.1934(6), Mn(3)−Y(1) 3.2950(6). 4: 
Mn(1)−O(1) 1.839(9), Mn(1)−O(1)' 1.881(9), Mn(1)−O(2) 1.913(7), Mn−Mn 2.799(4). 
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Toward expanding the series of desymmetrized cuboidal complexes featuring a closed-

shell, redox inactive metal, the Y-analogue of 2-Ca was targeted. Treatment of 1-Y with 

H2N4O2 results in the formation of 2-Y via a protonolysis reaction. The ESI-MS peak at 

m/z = 1460 is consistent with the mass of [LYMn3O4(N4O2)(OAc)]+. The X-ray crystal 

Figure 5. Truncated crystal structures of LCaMn3O4(OBz)3 (top) and LSrMn3O4(OBz)3

(bottom) synthesized from 4 via reconstitution of the cubane. Mn (green), O (red), N (blue), 
and C (black). Bolded bonds highlight metal-oxo bonds. 
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structure of 2-Y shows the pseudo-CS symmetry of the YMn3O4 core, with the mirror plane 

containing the Y(1)−O(1) vector and bisecting the Mn(1)−Mn(2) vector (Figure 4). 

Accordingly, Y(1)−O(2) and Y(1)−O(3) distances are similar to each other and longer than 

the Y(1)−O(1) distance; Y(1)−Mn(1) and Y(1)−Mn(2) distances are similar to each other 

and shorter than the Y(1)−Mn(3) distance. A DMF solvent molecule completes the 

coordination sphere around Y(1). On the basis of the crystal structure of 2-Y, a similar 

pseudo-CS symmetric CaMn3O4 core is expected in 1-Ca. 

While no reaction is observed between 1-Ca and (LutH)(OTf),55 treatment of 1-Ca 

with 3 equiv (pyH)(OTf) in the presence of added py results in the formation of  4 via a 

protonolysis reaction. The ESI-MS peaks at m/z = 1242 and 1321 are consistent with the 

masses of [LMn3O4(py)2]+ and [LMn3O4(py)3]+, respectively. Complex 4 crystallizes in the 

rhombohedral R−3 space group with the asymmetric unit containing a third of the molecule. 

The crystal structure of 4 is consistent with the pseudo-C3 symmetry of the incomplete 

cubane Mn3O4 core lacking a fourth metal (Figure 4). The bond metrics in 4 are similar to 

that of 1-Ca, with the Mn(1)−O(2) distance of 1.913(7) Å in 4 being comparable to the 

corresponding average distance of 1.917(2) Å in 1-Ca; similar to the Mn(1)−O(1) 1.839(9) 

Å and Mn(1)−O(1)' 1.881(9) Å distances in 4, a similar set of corresponding average 

distances 1.832(2) Å and 1.866(2) Å is observed in 1-Ca. In the OEC, removal of CaII is 

found to have a minimal effect in the Mn-oxo core structure,56 and spectroscopic properties 

of the CaII-depleted S2 state do not differ significantly from the native S2 state.57-58 While 

such observations may suggest that the electronic structure of 1-Ca and 4 should be similar, 

this is not the case vide infra. Reconstitution of the cubane core is possible via treatment 

of 4 with different metal-benzoate precursors MII(OBz)2, leading to the formation of 
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LMIIMn3
IVO4(OBz)3 complexes (Figure5). Crystal structures of examples with Ca(4-tert-

Bu-benzoate)2, Sr(4-tert-Bu-benzoate)2, and Ca(2,6-diphenyl-benzoate)2 are reported, 

underscoring the versatility of 4 as a precursor for the synthesis of heterometallic cuboidal 

complexes with different bridging ligands. Overall, 1-Ca(Y), 2-Ca(Y), 3-Ca, and 4 

represent a unique series of complexes mimicking the cuboidal substructure of the OEC in 

which cluster symmetry, heterometal identity, and oxo protonation state is systematically 

varied. 

5.3) Magnetometry 

To obtain insight into the magnetic exchange coupling interactions between adjacent 

MnIV centers, magnetic susceptibility studies were performed on powdered samples of 2-

Ca, 3-Ca, and 4 in the temperature range 1.8−300 K at a non-saturating field of 0.2 T. For 

three uncoupled MnIV (S = 3/2) centers, a temperature independent χT value of 5.625 emu 

K mol−1 (g = 2) is expected; the temperature dependence of χT provides information about 

the nature and magnitude of the magnetic exchange coupling interactions. For pseudo-CS 

symmetric Mn3
IV cores, an isotropic spin exchange Hamiltonian (equation 1) with two 

distinct magnetic interactions can be employed, with a unique J' = J12 and J = J13 = J23.59 

For Mn3
IV systems with equivalent local spin Si = 3/2, application of the vector coupling 

model S' = S1 + S2, ST = S' + S3 gives rise to a total of twelve (ST, S') states, in which S' 

varies in integer increments from 0 to 2Si (i.e. S' = 0, 1, 2, 3); for each value of S', ST varies 

in integer increments from |S' − Si| to S' + Si (i.e. for S' = 3, ST = 3/2, 5/2, 7/2, 9/2) (Table 

1). The relative energies of the (ST, S') states can be expressed as shown in equation 2. By 

incorporation of the energies of the twelve (ST, S') states into the simplified Van Vleck 

equation (first order Zeeman only), an analytical solution for the magnetic susceptibility χ 
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can be obtained. Qualitatively, one can regard χ as being derived from the sum of the 

individual (ST, S') states weighed by their Boltzmann populations: At sufficiently low 

temperatures where only the ground state is significantly populated, variable-temperature, 

variable-field (VT-VH) magnetization studies can be performed to obtain information 

about the spin ground state and magnetic anisotropy. 

𝐻෡ ൌ െ2𝐽ሺ𝑆ଵ𝑆ଷ ൅ 𝑆ଶ𝑆ଷሻ െ 2𝐽ᇱ𝑆ଵ𝑆ଶ                                 ሺ1ሻ 

𝐸ሺ𝑆், 𝑆ᇱሻ ൌ െJ𝑆்ሺ𝑆் ൅ 1ሻ െ ሺ𝐽ᇱ െ 𝐽ሻ𝑆ᇱሺ𝑆ᇱ ൅ 1ሻ        ሺ2ሻ 

Table 1. Twelve possible (ST, S') states in an exchange coupled Mn3
IV system. 

ST S' 
3/2 3 
5/2 3 
7/2 3 
9/2 3 
1/2 2 
3/2 2 
5/2 2 
7/2 2 
1/2 1 
3/2 1 
5/2 1 
3/2 0 

 
Complex 2-Ca was studied by SQUID magnetometry (Figure 6). The χT value of 4.526 

emu K mol−1 at 300 K decreases slowly to a local minimum χT value of 4.313 emu K mol−1 

at 150 K. Upon further cooling, the χT value increases slowly to reach a plateau value of 

4.405 emu K mol−1 at 15 K, in good agreement with the expected value of 4.375 emu K 

mol−1 for an S = 5/2 (g = 2) ground state. Further decrease in χT with temperature can be 

attributed to intermolecular antiferromagnetic interactions and/or magnetic anisotropy. The 

temperature dependence of χT observed in 2-Ca is indicative of an irregular spin state 

structure where the first excited state is S ≤ 3/2 and the second excited state is S ≥ 5/2. 
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Similar magnetic behavior has been observed in other trinuclear systems.60-63 On the basis 

of the small curvature of the χT vs. T curve, the expected separation between the spin 

Figure 6. Exchange coupling model, fit parameters, χT vs T plot, and reduced 
magnetization plot of complex 2-Ca. 
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ground state and the first excited state is in the order of hundreds of wavenumbers. To 

simulate the susceptibility data, an isotropic exchange coupling model consisting of an 

isosceles triangle was employed (Figure 6). The following parameters were used: g = 1.99 

± 0.01, J = J13 = J23 = +250 ± 50 cm−1, J' = J12 = −280 ± 50 cm−1. Due to the small curvature 

of the χT vs. T curve, small changes in the diamagnetic correction lead to a relatively large 

variance in the fitted J values. The range in the J/J' ratio is narrower, between −0.90 and 

−0.93, and falls within the predicted region for an S = 5/2 ground state (Figure 7).43 The 

(ST, S') = (5/2, 1) ground state is separated from the (3/2, 0) first excited state by 210 ± 50 

cm−1 (equiv. temp. 302 ± 72 K) and from the (7/2, 2) second excited state by 350 ± 50 cm−1 

(equiv. temp. 504 ± 72 K). Thermally well-isolated spin ground states have been observed 

in multinuclear complexes, with values of |J| in the range of 160~900 cm−1.64-66 Such 

systems behave as pure Curie paramagnets, with no temperature dependence of χT. To 

further characterize the spin ground state in 2-Ca, VT-VH magnetization studies were 

performed. The reduced magnetization isofield at 7 T reaches a value of 4.71 NAμB at 1.8 

K, consistent with the S = 5/2 ground state. Reduced magnetization isofields were 

simulated assuming a single value of D = +1.46 cm−1 or −1.17 cm−1. In many cases, powder 

susceptibility data is insensitive to the sign of D.67 D-band EPR studies on 2-Ca are 

currently ongoing to determine a more precise value of D. Magnetic studies on 2-Ca show 

that the ligand environment has a strong influence in the nature and magnitude of the 

magnetic coupling interactions; in the case of 2-Ca, the relatively large values of |J| can be 

attributed to the increased ligand basicity of the chelating oximates (pKa ≈ 25 in DMSO) 

compared to acetates (pKa = 12.6 in DMSO).53, 68-70 The electronic influence of the ligand 

framework is manifested in the increased oxo basicity of 2-Ca compared to 1-Ca: 1-Ca 
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does not react with (Lut)(OTf) while 2-Ca reacts readily to give the protonated analogue 

3-Ca. Even in the hypothetical case where J and J' are an order of magnitude smaller, at J 

= +25cm−1 and J' = −28 cm−1, an S = 5/2 ground state would still be observed, albeit with 

a smaller energy separation from the same first and second excited states, at 19 and 37 cm−1 

respectively. Overall, magnetic studies on 2-Ca show that geometric considerations are not 

sufficient for the reliable deduction of magnetic coupling interactions. An intact 

CaMn3
IVO4 cubane moiety need not necessarily have an S = 9/2 ground state.  

Complex 3-Ca was studied by SQUID magnetometry (Figure 8). The χT value of 3.856 

emu K mol−1 at 300 K decreases monotonically to reach a plateau value of 1.886 emu K 

mol−1 at 10 K, in good agreement with the expected value of 1.875 emu K mol−1 for an S 

= 3/2 (g = 2) ground state. To simulate the susceptibility data, the following parameters 

were used: g = 2.00, J = +11 cm−1, and J' = −55 cm−1 (Figure 8). The J/J' ratio of −0.2 falls 

within the predicted region for an S = 3/2 ground state (Figure 7).43 The (ST, S') = (3/2, 0) 

Figure 7. Dependence of the total spin ground state for three coupled S = 3/2 spin sites 
through an isosceles coupling model described in the text. Experimentally determined
ratios for 2-Ca, 3-Ca, and 4. 
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ground state is separated from the (5/2, 1) first excited state by 77 cm−1 (equiv. temp. 110 

K) and from the (3/2, 1) second excited state by 132 cm−1 (equiv. temp. 190 K). VT-VH 

Figure 8. Exchange coupling model, fit parameters, χT vs T plot, and reduced 
magnetization plot of complex 3-Ca. 
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magnetization studies were performed. The reduced magnetization isofield at 7 T reaches 

a value of 2.93 NAμB at 1.8 K, consistent with the S = 3/2 ground state. Reduced 

magnetization isofields were simulated assuming a single value of D = ± 1.0 cm−1. For a 

more careful determination of the zero field splitting parameter in 3-Ca, D-band (130 GHz) 

EPR studies are currently ongoing. Magnetic studies on 3-Ca show that protonation of a 

single bridging oxo moiety has a strong influence in attenuating the magnitude of the 

magnetic coupling interactions.71 In this case, protonation of 2-Ca does not change the 

nature (sign) of the magnetic coupling interactions in 3-Ca; in a different case, a complete 

reversal from ferromagnetic to antiferromagnetic interactions has been reported in a 

tetranuclear Mn4 system.72 Overall, magnetic studies on 3-Ca show that the protonation 

state of the bridging oxos in an intact CaMn3
IVO4 cubane moiety may have a large effect 

in lowering the spin state of the cluster below the predicted S = 9/2 ground state. 

Complex 4 was studied by SQUID magnetometry (Figure 9). The χT value of 4.73 emu 

K mol−1 at 300 K decreases monotonically with temperature, reaching a plateau value of 

1.882 emu K mol−1 at 15 K, in good agreement with the expected χT value of 1.875 emu 

K mol−1 for an S = 3/2 (g = 2) ground state. Similar to the other complexes, the near-ideal 

Curie behavior observed between 1.8−15 K can be attributed to a well-isolated S = 3/2 

ground state. To simulate the susceptibility data, the following parameters were used: g = 

2.0, J = −11.4 cm−1, and J' = +3.9 cm−1 (Figure 9). The J/J' ratio of −2.92 falls well within 

the predicted region for an S = 3/2 ground state (Figure 7).43 The expected (ST, S') = (3/2, 

3) ground state is separated from two nearly isoenergetic excited states (5/2, 3) and (1/2, 2) 

by ~58 cm−1 (equiv. temp. ~83 K). The reduced magnetization isofield at 7 T reaches a 

value of 2.90 NAμB at 1.8 K, consistent with the S = 3/2 ground state. Reduced 
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magnetization isofields were simulated assuming a single value of D = ±1.7 cm−1. The 

increase in the magnitude of |J| in 4 compared to 1-Ca can be attributed to the absence of 

Figure 9. Exchange coupling model, fit parameters, χT vs T plot, and reduced 
magnetization plot of complex 3-Ca. 
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a Lewis acidic Ca2+ metal center. Overall, magnetic studies on 4 further show that spin 

ground states do not translate between complexes of similar geometry and symmetry, 

urging a careful reevaluation of the S = 9/2 ground state assignment for the closed-cubane 

CaMn3
IVO4 subsite of the OEC.  

5.4) EPR spectroscopy 

Complex 2-Ca was studied by continuous-wave X-band EPR spectroscopy (Figure 10). 

The spectrum of 2-Ca at 5 K shows two broad signals centered at ~1200 G (g = 5.7) and 

~1600 G (g = 4.3). Additionally, a weak signal near ~3300 G (g = 2) is observed. On the 

basis of the reduced magnetization data collected for 2-Ca, the zero field splitting 

parameter is expected to be larger than the X-band EPR quanta (D >> hν ≈ 0.3 cm−1 at X-

band). In the case of half-integer spin systems with D >> hν, the |±ms⟩ states can be treated 

as Kramers doublets, and rhombograms that describe the position of the X-band EPR 

Figure 10. Continuous-wave X-band EPR spectrum of 2-Ca. 
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transitions as a function of rhombicity are available (Figure 11). For a purely axial system 

with g = 2, a signal centered at ~1100 G (g = 6) and ~3400 G (g = 2) is expected from the 

|±1/2⟩ Kramers doublet; the signal from the |±3/2⟩ Kramers doublet overlaps at g = 6 

(Figure 11). With a slight increase in rhombicity, at E/D = 0.06, three signals are expected 

from the |±1/2⟩ Kramers doublet, roughly at g ~ 7, 4.5, and 1.95. Two signals are expected 

from the |±3/2⟩ Kramers doublet roughly at g ~ 5.9, and 1.9. Taken together, these are the 

signals that are observed in the EPR spectrum of 2-Ca, supporting the S = 5/2 spin ground 

state determined from magnetic susceptibility studies. The shoulder at 800 G can be 

assigned to the signal from the |±5/2⟩ Kramers doublet roughly at g = 10 (~700 G). The 

Figure 11. Rhombogram for S = 5/2. 
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precise value of D cannot be determined reliably from X-band EPR spectrum alone, and 

D-band studies are currently ongoing. 

Complex 2-Y was studied by continuous-wave X-band EPR spectroscopy (Figure 12). 

Similar to the spectrum of 2-Ca, the spectrum of 2-Y at 5 K shows the same two broad 

signals centered at ~1200 G (g = 5.7) and ~1600 G (g = 4.3). The broad signal at ~4500 G 

(g = 1.5) corresponds to the high field edge of the |±3/2⟩ Kramers doublet signal that was 

too broad to observe in 2-Ca. On the basis of the similar peak positions observed in the 

spectrum of 2-Y, the ground state of 2-Y is assigned as S = 5/2. The differences in the 

relative intensities of the two signals at 1200 G and 1600 G can be explained in terms of 

the relative Boltzmann populations of the |±1/2⟩ and the |±3/2⟩ Kramers doublets. In the 

case of 2-Y, the intensity of the peak at 1000 G assigned to the |±3/2⟩ Kramers doublet is 

reduced in comparison to 2-Ca; this is consistent with the thermal depopulation of the 

Figure 12. Continuous-wave X-band EPR spectrum of 2-Y. 
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|±3/2⟩ Kramers doublet for a system with positive zero field splitting. In effect, more 

intense EPR transitions within the lowest energy |±1/2⟩ Kramers doublet is observed, 

consistent with a larger positive zero field splitting in 2-Y than in 2-Ca. Accordingly, the 

larger signal at 1000 G in 2-Ca is due to a higher population of the |±3/2⟩ Kramers doublet 

resulting from a smaller zero field splitting. Importantly, the spin ground state of both 2-

Ca and 2-Y is S = 5/2, in agreement with magnetic susceptibility studies on 2-Ca. 

Complex 3-Ca was studied by continuous-wave X-band EPR spectroscopy (Figure 13). 

The spectrum of 3-Ca at 5 K shows a broad feature in the range 1000−2000 G. The 

lineshape of this transition suggests that two signals are overlapping in this region, one that 

is centered at around g = 5.7 and another that is centered at around g = 4.2. The spectrum 

also features several more transitions centered at g = 2.45, g = 1.96, and a very broad 

transition at g = 1.4. On the basis of the zero field splitting parameter determined from 

Figure 13. Continuous-wave X-band EPR spectrum of 3-Ca. 
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reduced magnetization studies on 3-Ca, the rhombograms for the S = 3/2 state were used 

to interpret the spectrum (Figure 14). For a purely axial system with g = 2, two signals 

centered at g = 4 and g = 2 are expected from the |±1/2⟩ Kramers doublet; a signal centered 

at g = 6 is expected from the |±3/2⟩ Kramers doublet (Figure 14). With a slight increase in 

rhombicity, the g = 4 signal diverges into two separate signals. The g = 2 and the g = 6 

signal decrease slightly with the increase in rhombicity, and a new signal at the high field 

edge of the spectrum may be observed from the |±3/2⟩ Kramers doublet. Due to the 

broadness of the signals and the presence of multiple overlapping signals, satisfactory 

simulations have not been obtained thus far. D-band EPR studies are underway. However, 

the signals observed in the X-band EPR spectrum agree with the expected peaks predicted 

by using the rhombograms, and support the S = 3/2 spin ground state of 3-Ca as determined 

from magnetic susceptibility studies. 

Complex 4 was studied by continuous-wave X-band EPR spectroscopy (Figure 15). 

The spectrum of 4 at 5 K shows a broad feature in the range 1000−2000 G. The lineshape 

Figure 14. Rhombogram for S = 3/2. 
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of this transition suggests that two signals are overlapping in this region, one that is 

centered at around g = 3.7 and another that is centered at around g = 2.6. The spectrum also 

features another broad transition in the range 3000−5000 G. Similarly, the lineshape of this 

transition suggests that two signals are overlapping in this region. These features cannot be 

explained using the rhombograms for the S = 3/2 state, and suggests that the zero field 

splitting in 4 is smaller than the value obtained from magnetometry. Thus far, spin states 

other than S = 3/2 have not given satisfactory simulations. Using the parameters shown in 

Figure 15, the spin ground state of 4 is assigned as S = 3/2, with a small zero field splitting 

parameter of 0.17 cm−1. 

5.5) Discussion 

A series of MMn3
IVO4 cuboidal complexes has been synthesized and characterized by 

XRD, SQUID magnetometry, and EPR spectroscopy. To our knowledge this is the first set 

Figure 15. Continuous-wave X-band EPR spectrum of 4. 
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of experimental studies that directly addresses the effect of systematic changes in cluster 

geometry, heterometal identity, and bridging oxo protonation on the spin state structure of 

tetranuclear cubane models of the OEC. With implications in the interpretation of the OEC 

spectroscopic properties, our benchmarking results show that the electronic structure of the 

Mn3
IV core is highly sensitive to small geometric changes, the nature of the bridging ligands, 

and the protonation state of the bridging oxos. Even in the absence of large oxo movements 

proposed to account for the high spin and low spin signals of the S2 state of the OEC, we 

find that the spin ground states of essentially isostructural compounds can be S = 3/2, 5/2, 

or 9/2. Recent pH dependence studies show that deprotonation of the S = 1/2 form leads to 

the S = 5/2 form of the S2 state. This phenomenon was interpreted in the context of the 

“open cubane”−“closed cubane” paradigm. An alternative interpretation based on 

deprotonation of a bridging hydroxo can be invoked. Interpretation of EPR signals and 

subsequent structural assignments based on an S = 9/2 spin state of the CaMn3O4 subsite 

of the OEC must be done very cautiously. The development of computational methods that 

reproduce experimentally observed spin ground states of exchange-coupled tetranuclear 

complexes will be of great interest. 

5.6) Experimental section 

Complexes 1-Ca, 2-Ca, and 3-Ca were synthesized according to published 

procedure.42, 55 Complex 2-Y was synthesized according to the procedure described in 

Chapter 4. 

Synthesis of 4: Complex 4 can be synthesized from a variety of starting materials. 

Treatment of LCaMn3O4(OAc)3, LMn4O4(OAc)3, or LMn4O4(diam)(OAc) with three 

equivalents of pyridinium triflate all lead to the formation of LMn3O4(py)3(OTf) (4). A 
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representative procedure starting from LCaMn3O4(OAc)3 is described below. A suspension 

of LCaMn3O4(OAc)3(THF) (1.66 g, 1.21 mmol, 1 equiv) in a 1:1 mixture of THF-pyridine 

(50 mL) is treated with a solution of pyridinium triflate (0.86 g, 3.75 mmol, 3.1 equiv) in 

pyridine (20 mL). The resulting mixture is stirred overnight at room temperature. All 

volatiles are removed, and the residue is washed with generous amounts of Et2O and 

benzene. The residue is dissolved in CH2Cl2 and filtered through a pad of Celite. All 

volatiles are removed from the filtrate. The residue is treated with a small amount of THF 

Figure 16. 1H NMR spectrum in CD2Cl2 and ESI-MS of 4. m/z = 1321 consistent with 
[LMn3O4(py)3]+. m/z = 1242 consistent with [LMn3O4(py)2]+. 
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and stirred until a fine suspension is obtained. The precipitate is collected on a pad of Celite 

and rinsed with a small amount of THF and then with Et2O. Complex 4 is isolated as a 

brown solid (0.86 g, 48 %). Crystals suitable for X-ray crystallography were obtained from 

slow vapor diffusion of Et2O into a concentrated solution of 4 in CH2Cl2 with a drop of 

pyridine. 1H NMR (300 MHz, CD2Cl2): δ 23.0, 10.3, 8.9, −13.2, −14.2 ppm. Analysis 

calculated for [LMn3O4(py)3](OTf)ꞏ CH2Cl2 [C74H56Cl2F3Mn3N9O10S]: C 57.12, H 3.63, 

N 8.10; found: C 57.41, H 3.56, N 8.55. 
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Abstract 

One of the most important questions about the mechanism of biological water oxidation 

at the oxygen evolving complex (OEC) of Photosystem II is the location of the substrate 

water molecules binding to the CaMn4 core of the OEC. On the basis of previous FTIR 

spectroscopy, mass spectrometry, and W-band 17O EPR studies on the S2 state, three 

classes of fast, solvent exchangeable oxygen nuclei have been identified as potential 

substrate binding sites: terminal Ca-H2O, terminal Mn-OH/H2O, and a unique bridging μ3-

oxo. Beside dinuclear MnIIIMnIV(μ2-O)2 complexes, relevant spectroscopic studies on 17O 

labeled higher nuclearity complexes mimicking the structure of the OEC are absent in the 

literature. Herein, we report the synthesis and D-band pulsed EPR data for 17O labeled 

[MnMn3
IVO4] and [CaMn3

IVO4] complexes as models of the OEC. Such complexes 

resemble aspects of structure, redox state, and spin state; characterization of μ3-oxos in 

such complexes provide valuable benchmarking parameters for future mechanistic studies. 
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A1.1) Introduction 

Despite extensive biochemical, spectroscopic, and computational studies, the 

mechanism of biological water oxidation by the oxygen evolving complex (OEC) of 

Photosystem II remains a subject of significant debate.1-3 Recent studies employing 

femtosecond X-ray free electron laser (XFEL) techniques provide opportunities to observe 

time-resolved structural and spectroscopic changes in the OEC along the S-state catalytic 

cycle.4-11 Thus far, the structure and spectroscopic properties of the O−O bond forming S4 

state remains elusive, and characterization of earlier S0−S3 intermediates heavily influence 

mechanistic proposals for O−O bond formation.12-21 Importantly, the location of the 

substrate water binding to the CaMn4 core of the OEC is debated.22-23 On the basis of 

previous FTIR spectroscopy, mass spectrometry, and W-band 17O EPR studies on the S0 

and S2 states, three classes of fast, solvent exchangeable oxygen nuclei have been proposed 

as potential substrate binding sites: terminal Ca-H2O, terminal Mn-OH/H2O, and a unique 

bridging μ3-oxo (Figure 1).24-27 The 17O hyperfine coupling constants for the exchangeable 

Figure 1. Proposed structure of the CaMn4 core of the S2 state of the OEC showing the 
proposed location of the fast, solvent exchangeable oxygen nuclei: terminal Mn(Ca)-bound 
aquo or hydroxo moieties W1~W4 and a unique, bridging μ3-O(5). 
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oxygen nuclei at ~10 MHz, ~5 MHz, and <2 MHz have been assigned to bridging oxo, 

terminal Mn-aquo(hydroxo), and Ca-aquo, respectively.22-23 A non-competitive inhibitor, 

ammonia, binds to the S2 state via displacement of water at W1.18, 20 While the precise 

mechanism of ammonia inhibition and the changes in 17O spectral features upon ammonia 

binding are not fully understood, mechanistic proposals such as (1) formation of a terminal 

oxo at W2 and nucleophilic attack by W3 or (2) bridging oxo coupling involving O(5) 

remain viable. 

To support the assignment of observed 17O hyperfine interactions to specific moieties 

in the OEC, relevant synthetic and EPR spectroscopic studies on 17O-labeled Mn model 

complexes need to be performed.28 Such studies remain rare, and can be summarized as 

follows. Incorporation of 17O label was achieved by incubation of the antiferromagnetically 

coupled (S = 1/2), dinuclear complex [(bpy)4MnIIIMnIVO2][ClO4]3 with 17O water.29 The 

[MnIIIMnIVO2(OAc)]2+ core of a related synthetic complex and the dimanganese catalase 

was also labeled through a similar incubation procedure.28 The experimental 17O isotropic 

hyperfine coupling constants were found to be similar in the three species mentioned above, 

varying from +5.2 to +6.4 MHz.28 The insensitivity of the 17O coupling to the exact 

geometry of the [MnIIIMnIVO2] core was used to suggest that μ-oxos in related systems 

may have similar isotropic coupling values. On the other hand, the 17O hyperfine anisotropy 

is more sensitive to the overall geometry and electronic structure of the complex. In general, 

17O hyperfine tensors depend on the relative contribution of the different Mn centers to the 

overall effective spin state of the complex: the contribution from each metal center is 

described in terms of spin projection coefficients, which depend on the nature and 

magnitude of the magnetic exchange coupling interactions.16, 23, 30 On the basis that 
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magnetic exchange coupling interactions in tetranuclear Mn complexes are sensitive to 

small structural changes,31 spectroscopic studies on well-defined, 17O labeled high-

nuclearity complexes are crucial. Thus far, such studies on 17O labeled tri- and tetranuclear 

Mn model complexes have not been reported.  

Herein, we report the synthesis and high-field (D-band) pulsed EPR data for 17O-

labeled [MnIIIMn3
IVO4], [Mn3

IVO4], and [CaMn3
IVO4] complexes. This unique series of 

compounds resemble aspects of structure, redox state, and spin state. With an S = 1/2 

ground state, the [MnIIIMn3
IVO4] complex resembles the spin state and spectroscopy of the 

S2 state. With an S = 9/2 ground state, the [CaIIMn3
IVO4] complex closely mimics the 

Figure 2. Synthesis of complexes 1~4. 
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cuboidal subsite of the OEC. Characterization of μ3-oxos in such complexes provide 

valuable benchmarking parameters for future mechanistic studies. 

A1.2) Synthesis 

Treatment of the previously reported LMn3
II(OAc)3 complex with Mn(OTf)2 and KO2 

leads to the formation of LMn4
IIIO3(OAc)3.32 Oxidative incorporation of 18O-water to the 

[Mn4
IIIO3] species leads to a mixture of isotopologues LMn2

IIIMn2
IV(16O)n(18O)(4−n)(OAc)3 

(n = 0~4), in which the 18O label is scrambled in all four positions.33 Incubation of the 

[Mn2
IIIMn2

IV(16O)4] species in 18O water does not result in label incorporation. 

Analogously, treatment of LMn4
IIIO3(OAc)3 with 30 equiv 17O-water, 2 equiv Et3N, and 4 

Figure 3. ESI-MS of 17O labeled complex 1. Mass of LMn4(16O)4(OAc)3 = 1316. 
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equiv Fc(OTf) leads to a mixture of isotopologues LMn2
IIIMn2

IV(16O)n(17O)(4−n)(OAc)3 (n 

= 0~4): The distribution of ESI-MS peaks at m/z = 1317−1321 is consistent with this 

assignment (Figure 3). On the basis of the largest intensity observed for the peak at m/z = 

1319, [Mn2
IIIMn2

IV(16O)2(17O)2] is assigned qualitatively as the major isotopologue. The 

use of Fc(PF6) instead of Fc(OTf) leads to the oxidative incorporation of fluoride, resulting 

Figure 4. ESI-MS of 17O labeled complex 2. Mass of LMn4(16O)4(diam)(OAc) = 1354. 
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in the formation of LMn3
IIIMnIVO3F(OAc)3 (Figure 8). For ease of notation, the mixture of 

16O/17O will be shown as O* (e.g. LMn2
IIIMn2

IVO*
4(OAc)3) (1, Figure 2). Substitution of 

two acetate moieties in 1 with a tethered diamidate ligand (diam2−) followed by one 

electron oxidation leads to the formation of [LMnIIIMn3
IVO*

4(diam)(OAc)][OTf] (2): the 

distribution of ESI-MS peaks at m/z = 1355~1359 is consistent with this assignment (Figure 

Figure 5. ESI-MS of 17O labeled complex 3. Mass of LMn4(16O)3(py)2 = 1242. 
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4).31 With Mn oxidation states and EPR spectrum resembling the S2 state, complex 2 is a 

valuable target for further spectroscopic studies involving 17O (Chapter 3). Treatment of 1 

or 2 with 3 equiv (pyH)(OTf) leads to the formation of [LMn3
IVO*

4][OTf] (3), featuring an 

incomplete cubane core resembling a subsite of the Ca-depleted OEC (Chapter 5). The 

distribution of ESI-MS peaks at m/z = 1242~1246 and 1321~1324 is consistent with the 

Figure 6. ESI-MS of 17O labeled complex 4. Mass of LCaMn3(16O)4(OBz)3 = 1655. 
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mass of [LMn3
IVO4

*(py)2]+ and [LMn3
IVO4

*(py)3]+, respectively (Figure 5). Previous 

magnetic and spectroscopic studies indicate an S = 3/2 ground state for 3 (Chapter 5). 

Reconstitution of the cubane is possible by treating 3 with the choice of metal carboxylate 

or by addition of metal triflates and the choice of bridging ligands. Accordingly, treatment 

of 3 with Ca(4-tBu-benzoate)2 leads to the formation of the highly soluble cuboidal 

complex LCaMn3
IVO*

4(OBz)3 (4): the distribution of ESI-MS peaks at m/z = 1656~1660 

is consistent with this assignment (Figure 6). With an S = 9/2 ground state, complex 4 

closely resembles the CaMn3O4 subsite of the OEC (Chapter 5). The 1H NMR of 17O 

labeled complexes 2~4 are identical to their unlabeled counterparts (Figure 7). Overall, 

complexes 2~4 represent a unique series of 17O labeled model complexes that mimic 

Figure 7. 1H NMR spectra of 17O labeled complexes a) 2, b) 3, and c) 4. 
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aspects of structure, redox state, and spectroscopy in the OEC. D-band pulse EPR studies 

are ongoing. 

 
Figure 8. Structure of LMn3

IIIMnIVO3F(OAc)3, obtained via oxidative fluoride 
incorporation at LMn4

IIIO3(OAc)3 using (Fc)(PF6). 
 

 
 

Figure 9. Comparison of the X-band EPR spectra of unlabeled and 17O labeled 2. 
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Abstract 

The S3 state is the last observable intermediate prior to O−O bond formation at the 

oxygen evolving complex (OEC) of Photosystem II, and its electronic structure has been 

assigned to a homovalent Mn4
IV core with an S = 3 ground state. While characterization of 

the further one electron oxidized S4 state remains a challenge, valuable mechanistic insight 

can be obtained through synthetic and spectroscopic studies on complexes mirroring the 

redox and spin state of the S3 state. Herein, we report our ongoing efforts on the synthesis, 

X-ray spectroscopy, and multifrequency EPR spectroscopy for unique tetranuclear 

[Mn4
IVO4] complexes as models of S3 state. Preliminary results show that the [Mn4

IVO4] 

complex has an S = 3 ground state, resembling the electronic structure of the S3 state. The 

S = 3 effective spin ground state may arise from an αααβ spin topology arising from a 

trimer-monomer magnetic coupling model of pseudo-octahedral MnIV centers. 
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A2.1) Introduction 

Mechanistic studies of biological water oxidation at the oxygen evolving complex 

(OEC) of Photosystem II (PSII) are performed in the context of the Joliot-Kok cycle of Sn 

(n = 0−4) states.1-4 Starting from the dark stable S1 state, sequential light-induced one 

electron oxidations lead to the progression to higher Sn states, resulting in the formation of 

the S3 state, the last observable intermediate prior to dioxygen formation.5-6 Involving a 

series of elementary steps that include H+ transfer, substrate H2O binding, and e− transfer, 

the S2→S3 transition represents a critical step in the catalytic cycle of the OEC; despite 

being the subject of extensive biochemical, structural, spectroscopic, and computational 

studies, the S3 state remains poorly understood, both in terms of its (electronic) structure 

and mechanism of formation.7-24 To obtain a better understanding of the S3 state and 

beyond, toward the elusive S4 state, systematic structure-function (property) studies on 

relevant model complexes may be necessary. Despite significant efforts to prepare tetra- 

and pentanuclear complexes as models of the OEC, relevant complexes in terms of 

structure, redox state, spectroscopy, and reactivity are rare.25-39 

On the basis of EPR, MCD, and X-ray spectroscopic studies, the electronic structure of 

the S3 state has been assigned to a homovalent Mn4
IV core with an S = 3 spin ground state.5, 

40-42 Two structural isomers S3
A (dimer-of-dimers) and S3

B (trimer-monomer) with the 

same S = 3 spin state have been proposed to account for the spectroscopic heterogeneity of 

the S3 state (Figure 1a).5, 43 A similar structural isomerism has been proposed for the S2 

state.25, 44 Such proposed structural changes may lead to differences in the nature and 

magnitude of the magnetic exchange interactions (Jij) between adjacent Mn centers, which 

in turn affect not only the spin ground state of the cluster but also the observed sign and 
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magnitude of the projected 55Mn hyperfine coupling constants (Ai).44-45 The observed Ai for 

the S3 state has been accommodated with the calculated Jij for the S3
A structure.5 Although 

high-resolution (2.04 Å), time-resolved structural data of the S3 state obtained using 

femtosecond X-ray free electron laser (XFEL) techniques also support the S3
A structure,8 

further improvements in resolution and possible contributions from lower oxidation state 

components need to be addressed, as evidenced from abnormally long Mn-oxo bond 

distances of ca. 2.2 Å.8, 46 

In contrast to the extensive studies performed on the S3 state, synthetic and 

spectroscopic studies on Mn4
IV model complexes remain rare. Only two general classes of 

tetranuclear Mn4
IV complexes have been described in the literature: linear and adamantane-

shaped complexes, both featuring [Mn4
IVO6]4+ cores (Figure 1b).47-53 For the linear 

Figure 1. a) Proposed isomers S3
A and S3

B of the inorganic CaMn4O5(OH) core of the S3 
state of the OEC. b) Representative examples of Mn4

IV complexes and their 
corresponding spin ground states. 



173 
 

 
 

complexes, strong pairwise antiferromagnetic interactions lead to a diamagnetic S = 0 

ground state:47 An EPR spectrum has been reported at 140 K from the population of 

thermally accessible spin excited states, but further characterization has not been 

provided.52 Magnetic susceptibility studies on a series of adamantane-shaped [Mn4
IVO6]4+ 

Figure 2. Synthesis of complexes 1~6 studied in this work. 
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complexes indicate overall ferromagnetic interactions giving rise to an S = 6 ground state.48 

EPR studies for the adamantane-shaped complexes have not been reported. For the 

adamantane-shaped complexes, the [Mn4
IV]/[Mn3

IVMnV] redox couple was observed upon 

substitution of the facially-coordinating triamine ligands with anionic, stronger donor 

ligands such as aminedicarboxylates.48 Further spectroscopic properties of the [Mn3
IVMnV] 

species have not been reported. In general, detailed spectroscopic studies on Mn4
IV and 

Mn3
IVMnV model complexes suitable for comparisons with the S3 and S4 states are absent 

in the literature.  

Herein, we report our ongoing efforts on the synthesis, X-ray spectroscopy, and 

multifrequency EPR spectroscopy for unique tetranunclear [Mn4
IVO4] complexes as 

models of S3 state. Preliminary results show that the [Mn4
IVO4] complex has an S = 3 

ground state, resembling the electronic structure of the S3 state. The S = 3 effective spin 

ground state may arise from an αααβ spin topology arising from a trimer-monomer 

magnetic coupling model of pseudo-octahedral MnIV centers. 

A2.2) Synthesis 

The tethered diamidate-bridged cuboidal complex LMn2
IIIMn2

IVO4(diam)(OAc) (1) 

was used as the precursor for the targeted [Mn4
IVO4] complex (3) (Figure 2).25 In propylene 

carbonate, the cyclic voltammogram of 1 shows a reversible oxidation to the previously 

characterized one electron oxidized [MnIIIMn3
IVO4] complex (2) at −50 mV vs Fc/Fc+.25 A 

second quasi-reversible [MnIIIMn3
IV]/[Mn4

IV] couple is observed at +780 mV vs Fc/Fc+ 

(Figure 3). Notably, formation of the [Mn4
IV] species is not observed for analogous tris-

acetate or tris-phosphinate complexes, highlighting the ability of amidate ligands in 

supporting high oxidation state complexes.54 Accordingly, treatment of 1 with two 



175 
 

 
 

equivalents of tris(2,4-dibromophenyl)aminium hexachloroantimonate (E1/2 = +1140 mV 

vs Fc/Fc+ in MeCN)55-56 in thawing MeCN leads to the formation of the two electron 

oxidized [Mn4
IVO4] complex (3). Addition of fewer equivalents of the aminium oxidant 

leads to a mixture of 2 and 3 by 1H NMR (Figure 4). While the ESI-MS of 2 shows a peak 

at m/z = 1354 consistent with the mass of [LMn4O4(diam)(OAc)]+, the ESI-MS of 3 shows 

two additional peaks at m/z = 677 and 1687 consistent with [LMn4O4(diam)(OAc)]2+ and 

[LMn4O4(diam)(OAc)(SbCl6)]+, respectively (Figure 5), supporting the formulation of 3 

as [LMn4
IVO4(diam)(OAc)][SbCl6]2. EPR studies show that 3 has an S = 3 ground state 

vide infra. 

The tethered triamidate-bridged cuboidal complex LMn2
IIIMn2

IVO4(triam) (4) was also 

used as the precursor for an analogous [Mn4
IVO4] complex (6) (Figure 2). While the cyclic 

voltammogram of 4 does not show a quasi-reversible [MnIIIMn3
IV]/[Mn4

IV] couple, the 

[Mn2
IIIMn2

IV]/[MnIIIMn3
IV] decreases by 300 mV relative to the corresponding 1/2 couple. 

Synthesis of the one electron oxidized complex 5 via treatment of 4 with Ag(OTf) has been 

previously reported (Chapter 4). Treatment of 5 with tris(4-bromophenyl)aminium triflate 

Figure 3. (Right) Overlay of the cyclic voltammogram and square wave voltammogram of
1 in propylene carbonate. (Left) Isolated [MnIIIMn3

IV]/[Mn4
IV] couple +780 mV vs Fc/Fc+.
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(E1/2 = +670 mV vs Fc/Fc+ in MeCN) leads to the [Mn4
IVO4] complex (6). Addition of 

fewer equivalents of the above aminium oxidant leads to a mixture of 5 and 6 by 1H NMR 

(Figure 6). While the ESI-MS of 5 shows a peak at m/z = 1505 consistent with the mass of 

[LMn4O4(triam)]+, the ESI-MS of 6 shows an additional peak at m/z = 753 consistent with 

Figure 4. 1H NMR spectra of a) 2, b) mixture of 2 and 3, and c) 3. 

Figure 5. ESI-MS of 3. Peak assignments: [LMn4O4(diam)(OAc)]
2+

 (m/z = 677), 

[LMn4O4(diam)(OAc)]
+
 (m/z = 1354), and [LMn4O4(diam)(OAc)(SbCl6)]

+
 (m/z = 1684). 
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[LMn4O4(triam)]2+ (Figure 7), supporting the formulation of 6 as [LMn4
IVO4(triam)][OTf]2. 

EPR studies show that the spin ground state of 6 is also an S = 3 vide infra. Due to the 

difficulties in working with 6, subsequent XAS studies were performed only on 3. 

A2.3) X-ray spectroscopy 

Frozen solution Mn K-edge X-ray absorption near-edge spectroscopy (XANES) and 

extended X-ray absorption fine structure (EXAFS) were used to further characterize metal 

Figure 6. 1H NMR spectra of a) 5 and b) 6. 

Figure 7. ESI-MS of 6. Peak assignments: [LMn4O4(triam)]
2+

 (m/z = 753), 

[LMn4O4(triam)]
+
 (m/z = 1505). 
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oxidation states and provide evidence of structural similarity among the series 1~3 in 

solution (Figure 8). While the exact Mn edge energy depends on the structure of the Mn 

ion and the nature of the coordinated ligands, higher edge energies are generally expected 

as the oxidation state of Mn is increased. For a series of isostructural complexes 1~3, the 

highest edge energy for 3 is expected. This is exactly what is observed in the XANES 

spectra of the three complexes. The EXAFS regions of the spectrum is sensitive to the 

coordination environment around Mn, and again, for the series of isostructural complexes 

1~3, similar EXAFS spectra are expected. The EXAFS spectra of the three complexes can 

be plotted in k-space or r-space; aside from small shifts in peak position presumably due 

Figure 8. Comparison of the XANES and EXAFS spectrum of complexes 1, 2, and 3. 
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to small changes in Mn−Mn distances, significant changes are not observed, consistent 

with a conserved [Mn4O4] cuboidal core in all three complexes. 

A2.4) EPR spectroscopy 

Parallel mode EPR studies of 3 and 6 were conducted in frozen solution at X-band. The 

spectrum features a broad transition centered at g ~ 12 (Figure 9). This signal is reminiscent 

of the corresponding spectrum for the S3 state.5-6 The spectral lineshape is suggestive of an 

axial signal, and the spectrum can be approximated using the following parameters: S = 3, 

g = 2.0, D = 0.114 cm−1, and E/D = 0.134. These fit values may change upon obtaining a 

Figure 9. Comparison of the parallel mode X-band EPR of 3 (left) and 6 (right).  

Figure 10. Perpendicular mode X-band EPR of 3. (Left) Frozen solution in 2-methyl-THF. 
(Right) Frozen solution in MeCN. 
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higher frequency D-band EPR. A glimpse of the 55Mn hyperfine interactions can be seen 

in the 750−1000 G region of the spectrum of 3. The corresponding parallel mode X-band 

EPR of 6 also shows this signal at g ~ 12. The sharp signal and the multiline signal at g = 

2 is from residual 5 and the excess aminium radical. Perpendicular mode EPR studies were 

performed on 3. While satisfactory fits have not been obtained thus far, the spectrum 

indicates the presence of a small zero field splitting parameter, on the order of 0.2 cm−1, as 

is observed for the S3 state. Further D-band EPR studies are ongoing. 

D-band EPR studies are ongoing, but aspects of spectral interpretation are mentioned 

here. On the basis of the electron-spin nutation experiment performed at the low-field or 

high-field edge of the spectrum, the spin ground state of 3 may be more definitively 

assigned. On the low- and high-field edges of the spectrum, contributions from the 

|−3⟩→|−2⟩ transition (negative zero field splitting assumed) can be proved selectively. 

Relative to the EPR transition of an S = 1/2 species, the optimal π pulse length for each 

|ms⟩→|ms+1⟩ transition in S > 1/2 spin states is always shorter by a factor ω described in 

equation 1. Relative to an organic S = 1/2 radical species, the optimal pulse length for the 

|−3⟩→|−2⟩ transition in an S = 3 system is expected to be shorter by a factor of ω = √6 ≈ 

2.45.5  

𝜔 ൌ ඥ𝑆ሺ𝑆 ൅ 1ሻ െ 𝑚௦ሺ𝑚௦ ൅ 1ሻ           ሺ1ሻ 
 

To be able to perform spin nutation experiments at an isolated |ms⟩→|ms+1⟩ transition, 

well-isolated transition need to obtained. The breadth of EPR spectra depends largely on 

the axial zero field splitting (ZFS) parameter D, which removes the degeneracy of the |ms⟩ 

states. For an integer spin system S = n, ms takes the values 0, …, ±(n−1), ±n. For D < 0, 

|ms⟩ = ±n is the lowest in energy at zero field; for D > 0, |ms⟩ = 0 is the lowest. Following 
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the electron Zeeman effect, the magnitude of D determines the magnetic field position of 

a given EPR transition; for isotropic systems with D = 0, all EPR transitions are 

coincidental at ge. The relative amplitude of the allowed EPR transitions |ms⟩→|ms+1⟩ 

follow the Boltzmann distribution of |ms⟩ states. 

To gain a better understanding of the 55Mn hyperfine interactions in 3, electron-nuclear 

double resonance (ENDOR) and electron-electron double resonance detected NMR 

(EDNMR) spectra can be collected at selected field positions along the D-band ESE-EPR 

spectrum. In the strong coupling regime (|A| > 2νn), ENDOR and EDNMR peaks appear 

about multiples of the hyperfine coupling constant separated by 2νn (i.e. n|A|±νn where n 

represents the |ms⟩ level being pumped). νn(55Mn) varies linearly with magnetic field as 

10.554 MHz/T. Qualitatively, the relative amplitude of the n|A|±νn peaks depend on the 

sign of A, with a larger amplitude of the n|A|+νn peak observed for A > 0 and a larger 

amplitude of the n|A|−νn peak observed for A < 0. For A > 0 in the weak coupling regime 

(|A| < 2νn), peaks appear shifted by multiples of A about νn (i.e. νn±nA). For A < 0 in the 

weak coupling regime, peak positions depend on the specific |ms⟩ level being pumped: (1) 

If n|A| > νn, the strong coupling pattern is observed (i.e. n|A| ± νn, n|A| − νn being more 

prominent). (2) If n|A| < νn, the weak coupling pattern is observed (i.e. νn ± n|A|). 

Additionally, the sign of A can be determined from shifts in peak position with magnetic 

field: For A > 0, peak position increases with increasing field and for A < 0, peak position 

decreases with increasing field. Using this information, half-integer spin systems will 

feature peaks at (1/2)|A|±νn, (3/2)|A|±νn, (5/2)|A|±νn, etc.; integer spin systems will feature 

peaks at uniformly spaced (1)|A|±νn, (2)|A|±νn, (3)|A|±νn, etc., which can be used to further 

ascertain the spin state of the system. D-band studies are ongoing. 
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A2.5) Experimental section 

Synthesis of 3. A suspension of 1 (13 mg, 9.6 μmol, 1 equiv) in MeCN is frozen in the 

cold well. Separately, thawing MeCN (1 mL) is added to tris(2,4-dibromophenyl)aminium 

hexachloroantimonate (31 mg, 29.4 μmol, 3 equiv), resulting in a dark green-blue solution. 

The cold aminium solution is added to the thawing suspension of 1. Upon complete 

thawing, a bright red solution is obtained, with the tris(2,4-dibromophenyl)amine 

byproduct precipitating out of solution. The mixture is stirred for 1 min after thawing and 

filtered quickly through a pad of Celite. The pad of Celite is rinsed with thawing MeCN 

and all volatiles are removed from the combined MeCN filtrate. The residue is then treated 

with thawing THF and quickly filtered to remove a white, insoluble byproduct. The bright 

red filtrate contains complex 3. The purity of the material is checked by 1H NMR and is 

shown in Figure 5c. Attempts to scale up the reaction result in a mixture of species. 

Attempts to crystallize the product result in decomposition. In particular, treatment of 3 

with 2-methyltetrahydrofuran results in rapid decomposition, suggesting that 3 may engage 

in hydrogen atom transfer reactivity with weak C−H bonds. XAS and D-band EPR samples 

were prepared as a concentrated, frozen solution of 3 in MeCN. 
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A P P E N D I X    3 

 

 

 

Synthesis and characterization of tetranuclear MCo3(μ4-O) complexes supported by 

benzoate and pyrazolate bridging ligands. 
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Abstract 

Starting from a trimetallic cobalt complex, synthetic efforts have been extended toward 

the synthesis of benzoate bridged heterometallic cobalt μ4−oxido clusters of the form 

[Co3MꞌO] and [Co3MꞌO(OH)], featuring redox-inactive metals Mꞌ. Systematic 

electrochemical studies could provide important insights into the role of redox-inactive 

metals in the redox chemistry of cobalt oxo species. Previous effort in this area has resulted 

in the isolation of tetrametallic [Mn3MꞌO4], [Mn3MꞌO(OH)], and [Fe3MꞌO(OH)] clusters. 

So far, isolation of cobalt clusters with higher oxido content has been challenging. Using 

pyrazolates as bridging ligands, the synthesis of lower oxidation state, tetrametallic clusters 

has been demonstrated. 
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A3.1) Introduction 

In both biological and synthetic systems, Lewis acidic, redox-inactive metals play an 

important role in tuning redox reactions. In particular, participation of Lewis acids has been 

implicated in the chemistry of metal-oxygen species. The Ca2+ ion is vital for the function 

of the oxygen-evolving complex in Photosystem II.1 In synthetic systems, binding of Ca2+ 

or Sr+2 to an iron peroxo moiety facilitates the release of dioxygen upon oxidation, whereas 

other, more acidic metals preclude this process.2 The oxygen evolution activity of 

LnBaCo2O5+x double-perovskite materials depend on the identity of the lanthanide ion.3 

Based on previous studies performed in our group, the redox potentials of metal-oxo 

complexes are correlated to the Lewis acidity of the redox-inactive metal (Figure 1).4 To 

further understand the role of Lewis acids in the redox chemistry of metal-oxo species, 

heterometallic cobalt oxo cluster complexes were targeted.5 

 

Figure 1. Effect of Lewis acids in the redox potential of Mn4a, 4b and Fe4c oxo clusters (left), 
and oxygen evolution activity of LnBaCo2O5+x double-perovskite materials3 (right). 
 
A3.2) Results 

Following a modified literature procedure6, the trimetallic cobalt benzoate complex 

was synthesized via a protonolysis reaction. Under ambient conditions, treatment of a 
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suspension of cobalt bis(4-tert-butylbenzoate) with H3L in dichloromethane results in the 

formation of a violet species (Figure 2). After removal of all volatiles, the residue is washed 

with copious amounts of diethyl ether to remove the benzoic acid byproduct. Violet crystals 

of 1a are obtained by slow vapor diffusion of diethyl ether to a concentrated DCM solution. 

Analogous tricobalt acetate cluster 1b can be synthesized according to literature6. The 

crystal structure of 1a shows that each alkoxide moiety from the ligand bridges between 

two adjacent cobalt centers, to which each pyridyl moiety is bound. The tricobalt 

trialkoxide core is reminiscent of the cyclohexane chair conformation. The coordination 

sphere around each cobalt center is completed by three benzoate ligands, featuring both 

monodentate and bidentate binding modes (Figure 3). Additionally, the benzoate ligands 

are labile and react with electrophiles such as methyl triflate (Figure 2). Reaction of 1a 

with 3 equivalents of MeOTf results in the selective removal of two benzoate moieties, 

giving rise to complex 2a. Similar reactivity is observed with 1b. The structure of 2a and 

2b was confirmed by x-ray crystallography (Figure 4). 

 
Figure 2. Synthesis of tricobalt tricarboxylate (1a, 1b) and monocarboxylate (2a, 2b) 
complexes. 
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Figure 3. Crystal structure of 1a, and truncated structure of 1a highlighting the tricobalt 
core. 
 

 
Figure 4. Crystal structure of 2a, and truncated structure of 2a highlighting the tricobalt 
core. Two triflate anions were omitted for clarity. 
 

 
 

Figure 5. Synthesis of carboxylate bridged hexacobalt oxo complexes 3-Na, 3-Ca, 3-Sr, 
and 3-Y. 
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Figure 6. Crystal structure of 3-Na. Notable bond distances (Å): Co1−O1 1.967(4), 
Co2−O1 1.950(4), Co3−O1 2.034(5), Na1−O1 3.895. 
 

Following synthetic protocols developed for tetrametallic manganese4a [Mn3MꞌO(OH)] 

and iron4c [Fe3MꞌO(OH)] clusters incorporating redox-inactive metals Mꞌ, similar 

heterometallic cobalt oxo clusters were targeted. Treatment of a suspension of 1a in THF 

with metal triflate salts and iodosobenzene (PhIO) or H2O2 as oxygen atom transfer 

reagents results in the formation of carboxylate bridged, hexacobalt bis(μ3−oxo) clusters 

3-M (Figure 5). Reactions performed with sodium (3-Na), calcium (3-Ca), strontium (3-

Sr), and yttrium (3-Y) triflate salts all give similar results. Recrystallization from 

DCM/Et2O gives analytically pure samples. All four clusters were characterized 

crystallographically. The crystal structure of 3-Na shows slight differences in Co−oxo 

bond distances (Figure 6): the two shorter Co−O bond distances at ~1.95 Å are assigned to 

CoIII centers and a longer Co−O bond ~2.03 Å is assigned to a CoII center. A long Na−oxo 

distance ~3.90 Å indicates that there is negligible interaction between the redox-inactive 

metal and the [Co3O] core. Changing the stoichiometry of the added metal triflate salt, 

and/or adding macrocyclic crown ethers to prevent dimerization does not change the 

outcome of the reaction. Switching to a bulky 2-phenylbenzoate results in the incorporation 

of a μ3−oxo only (similar to Figure 7).  
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Figure 7. Synthesis and crystal structure of benzoate free, tricobalt oxo complex. Notable 
bond distances (Å): Co1−O1 2.247(2), Co2−O1 1.907(2), Co3−O1 2.027(2). 
 

Following a periodic trend, the oxo moiety of the [Co3O] core would be less Lewis 

basic as compared to both the [Mn3O] and the [Fe3O] analogs. We hypothesized that 

reduction of the cluster may lead to the formation of tetrametallic μ4−oxido clusters by 

increasing the basicity at the oxo moiety. Electrochemical studies of 3-M reveal broad 

cathodic peaks followed by irreversible anodic peaks. These results suggest that cluster 

decomposition is likely occurring upon reduction. Consistent with the electrochemical 

experiments, a complex mixture of products is obtained upon chemical reduction of these 

complexes with CoCp2. An isolable product is 1a. We next hypothesized that using a more 

Lewis acidic metal triflate salt may result in the formation of μ4−oxido clusters. Treatment 

of 1a with scandium or aluminum triflate and PhIO results in the formation of a carboxylate 

free tricobalt oxo complex (Figure 7). The crystal structure of the product indicate that all 

three benzoate ligands have been exchanged with triflates with incorporation of a μ3−oxo 

coming from PhIO. Presumably, formation of the homoleptic Sc or Al tris-carboxylate is 

favored over formation of the tetrametallic cluster. Even more Lewis acidic Bi and Ga 

triflate salts react in a similar fashion. 
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Figure 8. Synthesis of μ4 oxo complexes. 
 

 
Figure 9. Cyclic voltammogram and differential pulse voltammogram of 4-Zn. 
 

At the fine balance between ionic radii and Lewis acidity, Treatment of a suspension 

of 1a in THF with zinc tetrafluoroborate and PhIO results in the formation of the desired 

μ4−oxido cluster 4-Zn.  An isostructural tetracobalt complex 4-Co can be obtained when 

1a is treated with cobalt(II) tetrafluoroborate (Figure 8). Conveniently, both 4-Zn and 4-

Co precipitate from the reaction mixture as green solids, and recrystallization from 

DCM/Et2O affords single crystals amenable for x-ray diffraction. The triflate salts give rise 

to hexagonal crystals and due to problems with twinning, structure solution is complicated. 

The tetrafluoroborate salts are therefore preferred. The brown, THF soluble material from 

the synthesis of 4-Zn or 4-Co has later been shown to contain one electron reduced, 

monocationic zinc and cobalt complexes, correspondingly. Syntheses of lithium (4-Li) or 
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magnesium (4-Mg) analogs can also be achieved, but substitutional disorder with cobalt at 

the apical metal site complicates isolation. 

 
Figure 10. Chemical reduction of 4-Zn/4-Co to afford reduced compounds 5-Zn/5-Co. 
 

Electrochemical experiments were performed to study the redox properties of 4-Zn and 

4-Co (Figure 9). After testing a number of different conditions, it was found that a 3:1 

mixture of MeCN:DCM was optimal for electrochemical measurements. Data was 

recorded in a conventional glassy carbon, platinum wire, silver wire three-electrode setup 

using [nBu4N][PF6] as the supporting electrolyte and ferrocene (Fc) as an internal standard. 

The cyclic voltammogram (CV) of 4-Zn features an electrochemically irreversible 

reduction at ca. −0.5V vs. Fc/Fc+. Together with the corresponding oxidation, isolation of 

this first redox couple can be achieved (Figure 9, left). The large separation between the 

cathodic and the anodic peak in the CV is likely due to slow electron transfer kinetics. In 

this case, the E1/2 of the redox process can be more reliably assigned from the differential 
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pulse voltammogram (Figure 9, right). A second, chemically irreversible reduction at ca. 

−1.3V vs. Fc/Fc+ is also observed. The near absence of the returning oxidation wave 

suggests that the complex is unstable upon a second reduction.  

 
Figure 11. Truncated crystal structure of 4/5-Co and comparison of notable bond distances 
(Å). 

 
Figure 12. Truncated crystal structure of 4/5-Zn and comparison of notable bond distances 
(Å). 
 

Based upon the electrochemical data, chemical reductions of both 4-Zn and 4-Co were 

performed. Treatment of a solution of 4-Zn in DCM with a dilute solution of cobaltocene 

in DCM results in the immediate change in color from green to brown. The reaction is 

nearly quantitative in 30 min, affording the reduced, monocationic complex 5-Zn (Figure 

10). A similar procedure with 4-Co affords 5-Co. Crystallographic studies indicate that the 

μ4−oxo core is intact. Basal cobalt−oxo distances are elongated in both reduced species, 
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but apical metal−oxo distance is decreased. Both of these observations are consistent with 

a more reduced cluster. Consistent with the electrochemical data, further reduction with 2 

equivalents of sodium acenaphthylene results in a complex mixture of products. An 

isolable product is 1a. 

Complex 4-Co has been characterized using SQUID. The magnetization data shows no 

presence of ferromagnetic impurities and behaves as a paramagnet, giving rise to a linear 

plot. From the susceptibility measurement, the experimental room temperature χT value of 

4.33 emu is close to a spin-only value of 3.75 emu for two 3/2 centers. The higher 

experimental χT value is likely due to unquenched orbital angular momentum. Complex 4-

Co behaves as a perfect paramagnet down to 100K. At lower temperatures, 

antiferromagnetic interactions dominate. Data is consistent with S=0 CoIII and S=3/2 CoII. 

 
Figure 13. Synthesis of a lutetium μ4−oxo, μ2−hydroxo complex 6-Lu. 
 

To increase the scope of Lewis acids that can be incorporated into the cluster, synthesis 

of μ4−oxo, μ2−hydroxo complexes [Co3MꞌO(OH)] were targeted. From electrochemical 

data, further oxidation of the CoIICo2
III core does not seem to be accessible within the 

solvent window. Addition of excess PhIO, tBuOOH, or H2O2 to 4-Co does not result in 

addition of oxo moieties. Reaction of 5-Co with similar reagents results in one electron 

oxidation back to 4-Co. Treatment of 1a with permanganate results in the formation of a 

neutral, μ4,μ2−dioxo complex 6-Mn (Figure 13, left). Similar results can be obtained with 
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Mn(II) triflate and KO2. Recrystallization from benzene affords crystals amenable for 

diffraction studies (Figure 15). The crystal structure features a 5-coordinate trigonal 

bipyramidal Mn center with a very short Mn−oxo distance at ~1.78 Å, suggesting that the 

Mn center is in the +3 oxidation state. Treatment of 1a with Lu(III) triflate and PhIO results 

in the formation of μ4−oxo, μ2−hydroxo Lu complex 6-Lu (Figure 13, right). A carboxylate 

is lost during the reaction, likely during protonolysis with a water molecule. The crystal 

structure reveals a 7 coordinate Lu center with 2 water molecules bound terminally (Figure 

14). Two outer-sphere triflate anions are poised toward hydrogen bonding with the terminal 

water molecules and the bridging hydroxide moiety. This is a rare example of a 

heterometallic cobalt-lanthanide oxo/hydroxo complex. Based on Co−oxo bond distances, 

Co1 and Co2 are assigned in the +3 oxidation state (Figure 14). Taking advantage of 

differences in Lewis acidity, isostructural Sc and Al complexes might be accessible via 

transmetallation. 

 
Figure 14. Truncated crystal structure of 6-Lu. Notable bond distances (Å): Co1−O1 
1.899(6), Co2−O1 2.088(6), Co3−O1 1.914(6), Co3−O2 1.902(6), Lu1−O1 2.234(6), 
Lu1−O2 2.231(6). 
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Figure 15. Crystal structure of 6-Mn. Notable bond distances (Å): Co1−O1 2.047(5), 
Co2−O1 2.016(5), Co3−O1 2.149(5), Co3−O2 2.047(6), Mn1−O1 1.775(6), Mn1−O2 
1.926(5). 
 

Recently, the chemistry of tetrametallic Fe complexes using pyrazolates as bridging 

ligands has been explored in our group (isostructural to Figure 16). Reversible redox events 

were observed from [Fe4
II] to [FeIIFe3

III], and reactivity of small molecules such as NO and 

NH3 at the apical Fe center is currently being studied. Intramolecular C−H bond 

hydroxylation has been demonstrated, suggesting possible formation of a transient, 

terminal Fe=O. To move beyond structure-property studies with cobalt cluster complexes, 

similar tetrametallic cobalt pyrazolate complexes were pursued. Taking advantage of the 

established [Co2
IICoIIIMꞌ]/[CoIICo2

IIIMꞌ] redox couple and any other redox processes 

available in the fourth metal center Mꞌ, multi-electron redox processes can be envisioned7. 

Introduction of pyrazolate moieties can be achieved by a metathesis reaction between 2b 

and alkali-pyrazolate salts. The product of this reaction is not isolated. Upon treatment of 

this intermediate with Co2(CO)8 and PhIO, a neutral [Co4
IIO] complex 7-Co can be 

obtained (Figure 15, left). The structure of 7-Co confirms the formation of the tetracobalt 

complex. The apical cobalt center is 4 coordinate, poised for substrate binding in the axial 

position. The synthesis of heterometallic Mn and Fe complexes is underway. Preliminary 
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ESI-MS data support the formation of a heterometallic [Co3MnO2] and [Co3FeO] clusters. 

Furthermore, using low valent metal precursors, incorporation of μ4−nitrido moieties can 

also be envisioned by reduction of azides8. The effect of the interstitial atom in bonding 

and the resulting reactivity of the cluster is actively being pursued in our lab. 

 
Figure 15. Synthesis of low ox. state tetrametallic clusters 7-Co and 8-Cu supported by 
pyrazolates. 
 

 
Figure 16. Crystal structure of 7-Co. Notable bond distances (Å): Co1−O1 1.940(7), 
Co2−O1 1.947(5), Co3−O1 1.954(7), Co4−O1 1.898(5), Co4−N1 1.999(6). 
 

Treatment of 2b with 2 equivalents of sodium pyrazolate and copper(I) chloride results 

in the formation of 8-Cu (Figure 15, right). The crystal structure reveals the presence of an 

acetate and two pyrazolate moieties and a three coordinate copper(I) center. A single 

acetate moiety bridges across three metal centers. Removal of this acetate moiety may lead 

to a reactive species able to reduce small molecules such as O2, and NO2
−, substrates for 
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copper metalloenzymes. A heterobimetallic CoMg cluster has been shown to reduce NO2
− 

selectively to N2O.9 Given the propensity with which the tricobalt core incorporates oxo 

moieties in the interstitial μ3 position, other element−oxygen bonds may be functionalized. 

Unlike carboxylate bridges, pyrazolate bridges provide an opportunity to incorporate 

reduced metal centers. The synthesis of heterometallic Mn and Fe complexes is underway. 

 
Figure 17. Crystal structure of 8-Cu. Notable bond distances (Å): Co2−O1 2.188(2), 
Co3−O1 2.308(2), Cu1−O1 2.234(2), Cu1−N1 1.873(2), Cu1−N2 1.875(2). 
 
A3.3) Summary and future studies 

Toward understanding the role of Lewis acids in the redox chemistry of cobalt-oxo 

species, a trimetallic cobalt complex has been used for the synthesis of benzoate(acetate) 

bridged heterometallic complexes. The underlying, fundamental coordination chemistry of 

cobalt μ3−oxo complexes has been established. Incorporation of Zn, Co, and Lu gives rise 

to tetrametallic μ4−oxo complexes. Future studies can be directed toward expanding the 

series of μ4−oxo μ2−hydroxo complexes incorporating other Lewis acids such as Ca+2. The 

effect of redox inactive metals in modulating redox potential can be studied by 

electrochemical methods. 

The versatility of pyrazolates as bridging ligands has been demonstrated. Tetrametallic 

cobalt clusters incorporating lower oxidation state metal centers will be pursued for multi-
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electron activation of small molecules such as O2 and NO2
−. Multimetal catalysis can be 

explored from such reduced clusters.10 
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A P P E N D I X    4 
 
 
 
Miscellaneous Mn, Fe, and Co structures 
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A4.1) Miscellaneous iron structures 
 

 
 

Figure 1. Structure of [L'2Fe5O(OH)2][OTf]. Byproduct in the attempted metalation of 
H3L' with FeII(OTf)2 with exposure to air. All alkoxide moieties are bridging. A unique μ2-
oxo bridges Fe(2) and Fe(5). Two μ3-hydroxos (based on bond distances) bridge Fe(1)-
Fe(3)-Fe(5) and Fe(1)-Fe(2)-Fe(4). Tentative oxidation state assignment is Fe4

IIFeIII. 
 

 
 

Figure 2. Structure of (HL')2Fe2
II. Byproduct in the attempted metalation of H3L' with 

FeII(OTf)2. One alkoxide arm from each ligand is bridging; one arm seems to be protonated 
and does not bind to the metals. 



203 
 

 
 

 
 

Figure 3. Structure of LFe3O(OAc)3/4. N-hydroxylureas were explored as potential two 
atom bridging ligands. Treatment of LFe3(OAc)3 with N-tBu-N'-hydroxyurea results in the 
formation of a new species characterized crystallographically as LFe3O(OAc)4. Oxygen 
atom transfer is observed, leading to an acetate-bridged, planar Fe3(μ3-O) core. Two 
alkoxide arms are terminal; one alkoxide arm is bridging. 
 

 
 

Figure 4. Structure of L'Fe4(OH)(p-tBu-OBz)4. Diamond Thomas, a visiting summer 
student, synthesized Fe(p-tBu-OBz)2 via FeCl2 and Na(p-tBu-OBz). Treatment of Fe(p-
tBu-OBz)2 with H3L' in wet THF leads to the formation of the desired tetrairon complex 
L'Fe4

II(OH)(p-tBu-OBz)4 which is highly analogous to the published complex 1-Fe 
(Chapter 2). 
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A4.2) Miscellaneous cobalt structures 
 

 
 

Figure 5. Structure of L'Co4(OH)(p-tBu-OBz)4(THF). Co(p-tBu-OBz)2 is synthesized via 
CoCl2 and Na(p-tBu-OBz). Treatment of Co(p-tBu-OBz)2 with H3L' in wet THF leads to 
the formation of the desired tetracobalt complex L'Co4

II(OH)(p-tBu-OBz)4(THF) which is 
highly analogous to the published complex 1-Co (Chapter 2). 
 

  
 
Figure 6. Structure of Co4(μ4-O)(PhPz)6 and Co(py)4(OTf)2. 
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Figure 8. Structure of [LCo2
IICuI(PhPz)][OTf]. 

 
A4.3) Miscellaneous manganese structures 
 

 
 

Figure 9. Structure of [L'Mn2
IIMnIIIO(OAc)2]2. Initial attempts to metallate H3L' with 

Mn(OAc)2 and NaOtBu under anhydrous conditions led to a partially oxidized product. 
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Figure 10. Structure of K[L'Mn4LaO2(2-Ph-OBz)7]. Crystals formed in the reaction of 
L'Mn4(OH)(2-Ph-OBz)4 with La(OTf)2, KO2, and 2-phenyl-benzoic acid. 
 

 
 

Figure 11. Structure of L'2Mn5O2(4-tBu-OBz)4. Decomposition product of L'Mn5O2(4-
tBu-OBz)5 upon attempted oxidation to a cluster with higher oxo content. 
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Figure 12. Structure of (bis-phosphinate)2Mn4
II(OAc)4(py)4. Treatment of 1,3,5-tris(2-

lithiophenyl)-benzene with 3 equiv PhPH(O)(OEt) results in the formation of the bis-
phosphinate ligand, presumable via deprotonation of the P−H bond. Product formed upon 
subsequent metalation with Mn(OAc)2 in pyridine. 
 

 
 

Figure 13. Structure of (tris-phosphinate)2Mn6
II(p-CF3-OBz)6(bpy)2(py)4. Tris-

phosphinate ligand obtained via treatment of 1,3,5-tris(2-lithiophenyl)-benzene with 3 
equiv PhPCl2 and subsequent oxidative workup. Metalation with Mn(OBz)2 with bpy and 
py. 
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Figure 14. Structure of (LP)2Mn4
II(p-tBu-OBz)2(OTf)2(Et2O)2. Product of unsuccessful 

attempts to metalate H2LiLP with Mn(OBz)2/Mn(OTf)2. 
 

 
 

Figure 15. Structure of (HLP)2Mn4
II(OPiv)4(py)2. Product of unsuccessful attempts to 

metalate H2LiLP with Mn(OPiv)2/Mn(OTf)2. 
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Figure 16. Structure of [LMnIIIMn3
IVO4(diam)(OAc)][(C6F5)3B(OH)]. Treatment of 

[LMn2
IIIMn2

IVO4(diam)(OAc)] with B(C6F5)3 under not strictly anhydrous conditions leads 
to oxidation of the cluster instead of removal of the acetate moiety. Thus far, attempts to 
synthesize diamidate complexes that do not incorporate a bridging carboxylate have not 
been successful. 
 

 
 

Figure 17. Structure of LMn4
IIIO3(diam)(OAc). With the goal of removing the acetate 

moiety, treatment of [LMn2
IIIMn2

IVO4(diam)(OAc)] with B(C6F5)3 under reducing 
conditions (CoCp2) leads to the trioxo complex. Presumably, [CoCp2]2[(C6F5)3BOB(C6F5)3] 
is formed as a byproduct. 
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Figure 18. Structure of LMn2
IIMn2

IIIO(tetraoxime)(OTf)2. Treatment of LCaMn3O4(OAc)3 
with the tetraoxime ligand results in decomposition of the cluster. Triflate from impure Ca 
cubane. 
 

 
 

Figure 19. Structure of LMn3
II(OAc)(Cl)2.  
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Figure 20. Structure of LMn2
IIMn2

IIIO2(CF3-diamidate)(OAc)(OTf). 
 

 
 

Figure 21. Structure of LMnIIMn2
IIIO(PhPz)2Cl. 
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Figure 22. Structure of [LMn3
IIIMnIVO2(trioxime)(OAc)Cl][BF4]. 

 

 
 

Figure 23. Structure of LMn2
IIIMn2

IVO4(2-pyridonate)3. Treatment of 
[LMn2

IIIMn2
IVO4(OAc)3] with deprotonated 2-hydroxypyridine leads to the formation of 

the tris-pyridonate complex. 
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Figure 24. Structure of LMn2
IIIMn2

IVO4(p-tBu-benzoate)3. Treatment of 
[LMn2

IIIMn2
IVO4(diam)(OAc)] with excess benzoic acid leads to the formation of the tris-

benzoate complex. 
 

 
 

Figure 25. Structure of Mn2
II(2,6-diphenyl-benzoate)4(H2O)(THF)2. Crystals obtained 

upon treatment of MnCl2 with Na(2,6-diphenyl-benzoate) in MeOH followed by THF 
workup. 
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Figure 25. Structure of Mn12
IIIMnIVO14(2-phenylbenzoate)12. 

 
 

Figure 26. Structure of MnII(H2N4O2)(2-PhOBz)2. 
 

 
Figure 27. Structure of Mn2

II(H2N4O2)2(PhPO3)2. 
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