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ABSTRACT 

One of the most important challenges in chemistry is the creation of new catalysts. 

Nature excels at this: constructed from biologically available elements, enzymes are 

versatile catalysts which adapt quickly to changing environments in order to sustain life. 

The combination of adaptable proteins with abiological reagents from synthetic chemistry 

affords a new direction for catalyst development. This thesis describes new enzymes, 

derived from a cytochrome P450 monooxygenase, which catalyze nitrogen and carbon 

atom transfer reactions to olefins and carbon−hydrogen bonds. Chapter 1 introduces 

directed evolution, a strategy for the laboratory optimization of proteins, in the context of 

improving metalloproteins for their native catalysis or for new reactions. Chapter 2 details 

the development of an enzyme-catalyzed transformation of olefins to aziridines, a valuable 

motif which is both present in bioactive molecules and used as a versatile building block 

for synthesis. This study establishes that when provided the appropriate reagents (e.g. 

styrenes and tosyl azide), heme proteins can adopt a nitrene transfer catalytic cycle to form 

aziridine products and that the turnover and selectivity of the catalyst can be optimized 

through mutation of its amino acid sequence. The activity of heme protein catalysts is 

extended to the functionalization of sp3 hybridized C−H bonds for carbon–nitrogen and 

carbon–carbon bond formation through nitrene and carbene insertion respectively 

(Chapters 3 and 4). With the exception of C−H oxygenation chemistry, iron complexes are 

under-utilized for sp3 C−H functionalization reactions, despite iron being readily available 

and non-toxic. Combining previously engineered heme proteins with suitable substrates 

led to initial reaction discovery. Directed evolution of these enzymes significantly 

improved their C−H functionalization activity (by 140-fold in Chapter 4). Characterization 

of evolved enzymes, including the attainment of an X-ray crystal structure (Chapter 3) and 

substrate scope studies (Chapters 3 and 4), were pursued. In sum, the thesis work addresses 

both the biological question of expanding the catalytic capabilities of existing enzymes 

through mutation and expands the chemistry of iron-porphyrin catalysts.   
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1  
C h a p t e r  1  

DIRECTED EVOLUTION OF METALLOPROTEINS:                             
AN INTRODUCTION 

Material for this chapter appears in Zhang, R. K.; Romney, D. K.; Kan, S. B. J.; Arnold, 
F. H. “Chapter 5. Directed evolution of artificial metalloenzymes: bridging synthetic 
chemistry and biology” In: Dieguez, M.; Bäckvall, J.-E.; Pamies, O., editors. Artificial 
Metalloenzymes and MetalloDNAzymes in Catalysis. From Design to Applications. Wiley-
VCH 2018, 137–170. DOI: 10.1002/9783527804085.ch5. Reprinted with permission from 
John Wiley and Sons. 
 
Related material: 
Zhang, R. K.; Huang, X.; Arnold, F. H. “Selective C−H bond functionalization with 
engineered heme proteins: New tools to generate complexity,” Current Opinion in 
Chemical Biology 2019, 49, 67–75. DOI: 10.1016/j.cbpa.2018.10.004. 
 
 
1.1 Opening Remarks 

Nature is an expert at creating protein frameworks which can be repurposed to perform 

a multitude of chemical transformations. For example, the P450 superfamily consists of 

structurally similar heme-containing proteins that catalyze C−H oxygenation, alkene 

epoxidation, oxidative cyclization,1 aryl-aryl coupling,2 and nitration,3 among others.4 

While an enzyme may be optimized to catalyze a specific reaction on a native substrate, it 

often exhibits activity on alternative substrates or may even be able to promote a different 

transformation. Evolution takes advantage of these ‘promiscuous’ activities in response to 

a changing environment to create and optimize enzymes for new functions.5–7 

Directed evolution, the laboratory mimic of adaptive evolution, harnesses the 

malleability of proteins to invent useful catalysts suitable to the experimenter’s needs. In 

this process, beneficial mutations identified by screening libraries are accumulated, one or 

a few at a time, to enhance desired function(s) or performance. This technique has been 

used to confer useful properties such as stability under harsh conditions and improved 

activity on non-native substrates (vide infra).  
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More recently, scientists have discovered that synthetically useful reactions not found 

in nature can be catalyzed by metalloproteins, designed or natural, and that these non-

natural activities can also be improved by directed evolution. New activities can arise when 

natural metalloproteins are exposed to abiological reagents or when an artificial 

metallocofactor is introduced into a protein scaffold (vide infra). Indeed, this development 

has led to a paradigm shift in which proteins are no longer relegated to their annotated 

functions but can now participate as elements for designing synthetic methodology. Guided 

by a chemical perspective, target reactions can be investigated using suitable natural and 

designed proteins. Once even a low level of the activity has been found, the enzyme can 

be optimized and diversified by directed evolution. 

This chapter will introduce directed evolution in the context of metalloproteins.  

Approaches that have been used to improve different enzyme systems are described in 

order to illustrate opportunities and requirements for using directed evolution. Finally, the 

thesis research is summarized with an emphasis on its contribution to conceptual advances 

in the field.  

1.2 Strategies for Directed Evolution 

The goal of a directed evolution experiment is to imbue a protein with a new property, 

such as high selectivity, activity with a non-native substrate, or stability in a different 

temperature or pH range. The process involves four key steps: 1) identification of a starting 

protein (that may have only low levels of the desired property), 2) diversification of the 

starting protein through mutagenesis of the corresponding DNA sequence, 3) functional 

screening of the variants to identify improved variants, and 4) repeating steps 2 and 3 until 

sufficient levels of the desired property are achieved (Figure 1-1). With advances in 

molecular biology and analytical tools, there are many methods available for executing 

each step, the choice of which will affect the evolutionary trajectory and end point.  
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Figure 1-1. Overview of directed evolution. 
 

Identification of a starting protein is the most crucial step of this process. One 

requirement is that the starting protein exhibits a measurable level of the desired function. 

In the case for catalysis, this would mean that the starting protein needs to have a 

measurable level of activity for the desired transformation under target conditions. 

Knowledge of chemical mechanisms, both of the target reaction and natural enzyme 

mechanisms, can aid in the choice of suitable proteins to test or design. Other properties of 

a protein, such as thermostability8 and the plasticity of the fold in natural enzyme diversity,4 

may impact the evolvability of a chosen starting point.    

Screening is one of the most experimentally challenging steps in directed evolution of 

synthetically useful enzymes, and screening capacity will often determine how the 

sequence diversification is done. Because the goal of the experiment is to find beneficial 

mutations, the variant library should have a frequency of beneficial mutations that matches 

the screening capability. Of course, the beneficial mutation frequency is not known at the 

beginning, but one can make educated guesses.  In random mutagenesis, mutations are 

made throughout the protein. This approach is advantageous because it recognizes that the 

effects of mutations on protein structure, dynamics, and catalysis are not predictable a 

priori. For instance, mutations distant from an enzyme’s active sites can affect catalysis.9, 

10 However, even for a small protein, the number of possible ways to make even a single 
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mutation is so large that a rapid-throughput screen, such as a colorimetric assay, is usually 

required to sample enough sequences to find a beneficial mutation. (Whole protein random 

mutagenesis at 1–3 mutations per gene usually requires screening hundreds to thousands 

of mutant proteins per generation.11) Unfortunately, many desired properties are not easily 

assayed in high throughput.  

An alternative is to introduce mutations in a focused manner, guided by structural, 

mechanistic, or computational information. The assumption is that beneficial mutations 

will appear at the chosen positions (e.g., residues in the active site) with a higher frequency 

than at positions chosen at random.12 With the use of degenerate codons, focused libraries 

of variants can be created in which one or more specific residues are mutated to all or 

selected subsets of the 20 proteinogenic amino acids.13 This approach can significantly 

reduce library size and focus on amino acids believed to be key. However, success rests on 

making the right choice of residues to target. The fact remains that the effect of a mutation 

is often unpredictable. Thus, sites hypothesized to be important may in fact exert little 

influence on the desired function or property, or may not even tolerate mutation.  

Other methods for sequence diversification include recombination, wherein genes or 

gene fragments of related proteins are shuffled and reassembled, thus enabling beneficial 

combinations of amino acids to appear in a single protein.14 Furthermore, beneficial 

mutations that are found separately can be recombined in a combinatorial fashion, or 

hybrids of evolutionarily related proteins can be made. Frequently, a combination of 

diversification methods is used, especially if multiple rounds of directed evolution are 

necessary.15–17 

1.3 Directed Evolution as an Uphill Walk in the Protein Fitness Landscape  

The concept of directed evolution as a walk through sequence space that passes 

through functional proteins was born out of a paper by John Maynard Smith in 1970.18 

Smith asserted that in order for evolution by natural selection to be successful, there must 

be a continuous trail of functional proteins that can be traversed in single mutational steps 
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without passing through nonfunctional proteins. He illustrated the idea with a word game, 

using conversion of the word ‘WORD’ to ‘GENE’ one letter at a time, with the requirement 

that all intermediate words be meaningful. A nonsense word, analogous to a nonfunctional 

protein, would be eliminated by selection before a second change could occur. His solution 

to the game, WORD à WORE à GORE à GONE à GENE, interconverts the two words 

through a series of single letter changes, each of which produces a meaningful word.  

Directed evolution takes the game one step further and searches for improvements. 

With Smith’s analogy, we can assign each word (and the protein it represents) a fitness, 

defined as the number of letters it matches with ‘GENE’, and think of this transformation 

from ‘WORD’ to ‘GENE’ as an adaptive uphill walk to a fitness peak. Laboratory protein 

evolution can then be envisioned as a walk on a high-dimensional fitness landscape in 

sequence space, where fitness is defined by the experimenter. Iterative rounds of 

mutagenesis and screening lead the experimenter to higher fitness levels, provided that the 

landscape is smooth (Figure 1-2).15 We do not know the structure of a protein fitness 

landscape; indeed, we expect the structure of the landscape to depend on the specific 

protein and problem. Past directed evolution successes and the success of natural evolution, 

however, suggest that enzyme landscapes are smooth for some properties, including 

catalysis and stability (vide infra), in at least some sequence dimensions.  

 
Figure 1-2. Hypothetical protein fitness landscape. Directed evolution takes a protein 
along its fitness landscape, where fitness is a metric defined by the experimenter. Sequence 
diversification samples the nearby sequences, and screening identifies fitness 
improvements. Two possible evolutionary trajectories (green and black) from a single 
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starting point (red) illustrate that there may exist multiple local maxima or solutions to any 
given optimization, and the results may depend on the path taken. Sequence space is of 
very high dimensionality; a simplified fitness landscape is presented here. 

 
1.4 Improving Enzymes for Native Reactions 

Natural metalloenzymes catalyze a myriad of chemical transformations. However, the 

utility of these biocatalysts for chemical synthesis or industrial applications is limited. This 

could be due to restricted substrate scope or instability under process conditions. Directed 

evolution can address these issues by altering the activity profile of an enzyme or changing 

the range of optimal operating conditions. Here, recent examples with carbonic anhydrase 

and cytochrome P450 are highlighted to illustrate the success of this approach for 

enhancing biocatalyst performance on a native reaction.   

Carbonic anhydrase is a Zn-dependent metalloenzyme that catalyzes the reversible 

hydration of carbon dioxide into bicarbonate and a proton (Figure 1-3a). It is potentially a 

useful catalyst for carbon capture and sequestration (CCS), a process to reduce 

anthropogenic CO2 released from fossil fuel emissions.19 However, naturally occurring 

carbonic anhydrases are limited by their inability to tolerate the harsh alkaline solvent and 

high process temperatures required for CCS. This challenge was addressed by Lalonde and 

coworkers at Codexis, who used direction evolution to generate a highly stable carbonic 

anhydrase capable of withstanding CO2 capture conditions.20 Nine rounds of evolution 

converted the parent enzyme (wild type carbonic anhydrase from Desulfovibrio vulgaris), 

which had negligible activity after exposure to aqueous amine solvent at 50 °C, to a variant 

that retained activity after heating to 107 °C in alkaline solvent (Figure 1-3b). Mutations at 

36 positions (representing 15% of the enzyme) were accumulated during the evolution. 

Exactly how the mutations enhance protein stability is not known, and this optimization 

solution could not be predicted a priori. The utility of an ultrastable variant was 

demonstrated in a pilot scale CO2 capture system. Comparison of pilot scale CO2 capture 

demonstrations performed in the presence or absence of the ultrastable enzyme showed 

that the rate of CO2 capture was enhanced 25-fold using the evolved variant.  



 

 

7  

Figure 1-3. Directed evolution of a carbonic anhydrase stable to CO2 capture process 
conditions.20 (a) Carbonic anhydrase catalyzes the reversible hydration of CO2 to 
bicarbonate and a proton. The enzyme utilizes a catalytic zinc atom, displayed as a sphere. 
Only a single subunit of the tetrameric protein is shown (PDB 2A5V).  (b) Evolution of an 
ultrastable carbonic anhydrase. Half-lives of the variants at the indicated temperature 
(black) were determined by measuring CO2 absorption in a reactor. The fold improvement 
over the previous round is shown above each bar (red).  

The cytochrome P450 superfamily has exploited a versatile protein framework to 

create enzymes with many different functions. A good indication of a protein family’s 

evolvability in the laboratory is its functional diversity in nature,21 and indeed P450s are 

among the most studied metalloenzymes for directed evolution. In one example, two 

variants derived from cytochrome P450BM3 from Bacillus megaterium were engineered for 

regiodivergent hydroxylation of a non-native steroid substrate, testosterone.22 Although 

testosterone is not accepted as a substrate by wild type P450BM3, a single mutation activated 

the enzyme toward this substrate. Using degenerate codons, sets of amino acid residues 

were mutated simultaneously and screened for improved selectivity for oxidation at the 2β- 

or 15β-position (Figure 1-4). Molecular dynamics simulations and substrate docking were 

performed on a non-selective variant, a 2β-selective variant, and a 15β-selective variant to 

investigate the basis of the observed regioselectivity. The results of these studies suggest 

that in the non-selective variant, testosterone can adopt two energetically equivalent 

orientations, one of which would lead to the 2β-hydroxylated product and the other to the 

15β-hydroxylated product. In contrast, for the 2β-selective and the 15β-selective enzymes, 

each has a distinct binding pocket that allows only one active orientation of testosterone.  
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Figure 1-4. Regiodivergent hydroxylation of testosterone by engineered P450BM3 
variants.22 

Additional applications of directed evolution to expand the scope of P450 oxidation 

reactions have led to the identification of numerous variants with impressive activities.23 

These activities include hydroxylation of simple molecules, such as short-chain alkanes,24 
–27 as well as complex molecules, such as anti-malarial therapeutic artemisinin28 and natural 

product parthenolide,29 with defined regio- and stereoselectivities. Evolution for 

chemoselectivity has also been investigated; in one report, an engineered variant displayed 

up to 90% chemoselectivity in favor of allylic hydroxylation versus epoxidation.30  As 

collections of diverse cytochrome P450 variants expand, more applications for these 

malleable protein scaffolds will undoubtedly arise. 

1.5 Directed evolution of heme proteins for carbene and nitrene transfer reactions 

Although metalloproteins catalyze an impressive set of reactions, there are many 

synthetically useful metal-catalyzed transformations that are not found in nature— the 

question becomes: how do we identify proteins capable of acquiring some of these non-

natural activities? One approach to creating new enzymes relies on using the catalytic 

promiscuity of natural enzymes to find suitable starting points for directed evolution. 

Metalloproteins containing versatile cofactors are a good place to start. In mechanistically 

guided efforts, researchers challenge these proteins with synthetic reagents known to be 

capable of reacting with the cofactor. This approach has been especially successful with 

heme proteins, which have served as starting points for a number of synthetically useful 
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carbene and nitrene transfer reactions in recent years.31 A second strategy is to replace the 

cofactor with a structurally similar derivative. This has been demonstrated through the 

creation of catalytically active heme proteins in which the heme prosthetic group is 

replaced with an Ir(Me)-porphyrin (vide infra), among others.32,33 After identifying a 

starting point, the next question is whether the fitness landscape for these abiological 

reactions is locally smooth and contains higher peaks, such that the new activity can be 

optimized through directed evolution. The answer appears to be yes, natural 

metalloproteins and their derivatives can acquire new, non-natural activities, and their 

performance can be enhanced by directed evolution. Seminal examples are discussed in the 

following paragraphs.  

Iron-porphyrin complexes have been used as models to study the reaction mechanism 

of cytochrome P450s.34 Since then, these complexes have been shown to catalyze a variety 

of reactions, some of which are not found in nature. For example, the reaction of an iron-

porphyrin complex with a diazo compound and an alkene produces a cyclopropane product, 

with the reaction thought to proceed through a reactive iron-carbene intermediate.35 Other 

examples of carbene transfer reactions mediated by iron porphyrins include carbene 

insertion into N–H bonds36 and formation of phosphonium ylides.37  

Given this body of work and the similarity between the iron-carbene and iron-oxo 

reactive intermediate in the natural P450 hydroxylation mechanism, Coelho et al. 

hypothesized that a cytochrome P450 could perform abiological carbene transfer 

reactions.38 Indeed, the authors found that wild type cytochrome P450BM3 and variants of 

this enzyme, as well as other heme proteins, had this promiscuous activity. Using styrene 

and ethyl diazoacetate as model substrates, they demonstrated that P450BM3 could be 

optimized by mutagenesis and screening to become an efficient and highly selective 

cyclopropanation catalyst (Table 1-1). Since this report, other carbene transfer enzymes 

derived from the cytochrome P450BM3 scaffold have been developed; these enzymes 

catalyze reactions including cyclopropanation with other olefins39 and alkyne substrates,40 

N–H insertion,41 and C−H insertion (Chapter 5). Notably, an enzyme scaffold is not 



 

 

10  
required for carbene transfer. Catalysts derived from myoglobin, cytochrome c, and globin 

homologs, heme proteins with no known natural catalytic function, can also be evolved to 

become efficient and selective carbene transfer enzymes for reactions including olefin 

cyclopropanation,42 Si–H insertion,43 and B–H insertion.44  

Table 1-1. Improvement of P450BM3 for a non-natural cyclopropanation reaction.38  TTN, 
total turnover number, is defined as the amount of indicated product divided by protein 
concentration. 

 

When given the opportunity to interact with certain nitrogen-containing substrates, 

heme proteins can putatively form iron-nitrene species and perform nitrogen-atom transfer 

reactions, such as C−H amination. Though first demonstrated in 1985,45 it was only with 

the advent of modern directed evolution techniques that variants of P450BM3 adopted the 

C−H amination function with synthetically useful levels of activity.46,47 Impressively, the 

P450BM3 protein scaffold could be engineered to provide strong control over substrate 

orientation during a non-natural C−H amination reaction, such that it could override the 

kinetic bias of the reaction.48 This was demonstrated by developing two P450BM3 variants 

with divergent regioselectivity for benzylic or homobenzylic C−H amination (Figure 1-5). 

Further work with variants of P450BM3 and myoglobin have led to other catalysts for 

intramolecular C−H amination using arylsulfonyl azides as well as intermolecular 

aziridination (Chapter 2), sulfimidation,49 and C−H amination (Chapter 3) with tosyl azide. 

Recent advances have also extended the scope of the nitrene precursor to include 
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PivONH3OTf, which relies on the cleavage of an N–O bond for nitrene formation in 

contrast to the azide reagents which release N2. A method for aminohydroxylation of 

styrenes catalyzed by engineered variants of cytochrome c has been developed using the 

PivONH3OTf reagent.50 

 

Figure 1-5. Regiodivergent C−H amination catalyzed by engineered cytochrome P450BM3 
variants.48 

In an effort to further expand the reaction space accessible to heme proteins, 

replacement of the heme cofactor with other metal-porphyrins has been investigated. 

Sperm whale myoglobin and Cyp119, a P450 from Sulfolobus acidocaldarius, have been 

used as scaffolds for non-natural catalysis by replacing the native Fe of the heme cofactor 

with alternative metals. This approach is advantageous because it introduces the reactivity 

of abiological metals while retaining a metalloprotein scaffold that has already been shown 

to be evolvable. In the first report, it was found that myoglobin containing Ir(Me)-

mesoporphyrin IX (Ir(Me)-PIX) in place of heme was a superior catalyst for an 

intramolecular carbene C−H insertion reaction compared to myoglobin with other 

metallated porphyrins (Fe, Co, Cu, Mn, Rh, Ru(CO), or Ag). Although the wild type 

Ir(Me)-PIX myoglobin was not enantioselective, variants with divergent enantioselectivity 

could be created through directed evolution (Figure 1-6).51 Notably, the free Ir(Me)-PIX 

complex catalyzes the model reaction and with a higher reaction rate than evolved Ir(Me)-

PIX myoglobin enzymes. Changing the protein scaffold to apo-CYP119 and subsequent 

directed evolution of the Ir(Me)-PIX Cyp119 protein delivered an artificial metalloenzyme 

with 23-fold higher turnover frequency compared with the free cofactor.52 Other reactions, 
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including cyclopropanation53 and intramolecular C−H amination54, have also been 

achieved using Ir(Me)-PIX proteins.  

 

Figure 1-6. Carbene transfer catalyzed by metal-substituted myoglobin variant.51 (a) 
Representative C−H insertion reaction. (b) Evolutionary trajectory resulting in variants 
which deliver the product shown in (a) with divergent enantioselectivity.  

1.6 Optimization of Proteins with Artificial Metallocofactors or Metal-Binding 
Sites 

Natural proteins cannot access the diversity of chemical transformations available to 

synthetic chemistry. This is in part because biological systems appear to use only a limited 

number of cofactors and elements from the periodic table. Scientists have sought to expand 

the catalytic repertoire of enzymes by creating proteins with completely artificial 

metallocofactors. One approach for the creation of such proteins is to introduce amino acids 

that can coordinate metal ions through their side-chains (e.g., histidine, cysteine, lysine). 

Several properly positioned coordinating residues will create a new metal-binding site that 

can compete for locally present metal ions. A second approach is to functionalize an 

organometallic complex with a pendant moiety that can bind to a protein scaffold. While 

both approaches have been used to create a number of novel metalloproteins, there are only 

a few examples of such proteins being optimized for catalytic activity through directed 

evolution.  

In one example, directed evolution was applied to homo-tetrameric proteins with 

three-coordinate Zn(II) sites competent for ampicillin hydrolysis to improve this catalytic 

activity.55   The homo-tetrameric proteins were derived from modified cytochrome cb562 
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building blocks which spontaneously self-assemble through four-coordinate structural 

Zn(II) coordination, hydrophobic interactions, and disulfide bonds. They were designed to 

have triads of histidine and glutamate residues that could sequester Zn(II) ions which would 

impart the hydrolysis activity. Although the initial construct, which contains eight zinc ions 

(Zn8:AB34, Figure 1-7a), exhibited no hydrolase activity, a single mutation (K104A) led to 

a variant with detectable activity against ampicillin (Figure 1-7b). Furthermore, its 

hydrolase activity with ampicillin was sufficient to enable Escherichia coli to survive on 

ampicillin-containing media, thus allowing the authors to use cell survival as a metric for 

ampicillin-hydrolysis activity. Site-saturation mutagenesis at four positions around the 

active zinc ions, performed on the K104A variant, identified a second mutation that 

improved catalytic activity.   

 
Figure 1-7. Artificial Zn-binding protein of Tezcan and co-workers.55 (a) Tetrameric 
complex that served as parent for directed evolution (PDB 4U9D). (b) Progression of 
evolution for ampicillin-hydrolase activity. 

In addition to metal ions, synthetic chemists have created a vast array of 

organometallic catalysts which could be conjugated to proteins. In principle, any of these 

catalysts can be conjugated to a protein to create a hybrid catalyst whose properties may 

be tuned through directed evolution. In practice, however, in order for these hybrid 

catalysts to achieve high activity and selectivity, the metal center must be sufficiently 

surrounded by the protein and held in a well-defined orientation so that the protein may 

exert significant influence on the reaction.  

One conjugation strategy explored for construction of artificial metalloenzymes is to 

append a biotin linker (Figure 1-8a) to an organometallic complex, and then incorporate it 

into a biotin-binding protein, typically streptavidin (Figure 1-8b). Complexes which have 
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been incorporated into streptavidin and the target reactions of these hybrid catalysts include 

Rh-complex 1 for hydrogenation of acrylate 2 to alanine derivative 3,56 Ru-complex 4 for 

reduction of ketones to alcohols,57 and Pd-complex 7 for Suzuki cross-coupling (Figure 1-

8).58 In these examples, a catalytically active organometallic catalyst was introduced into 

the streptavidin scaffold with the hypothesis that the protein would impart selectivity to the 

reaction. Mutagenesis to the streptavidin protein and screening of target reactions was 

performed to improve enantioselectivity. In contrast to the examples in Figure 1-8, which 

required purification of streptavidin, Ward and co-workers recently demonstrated that a 

streptavidin-based hybrid catalyst with a biotinylated Hoveyda-Grubbs second-generation 

complex can catalyze alkene metathesis in the presence of whole cells (not shown).59 This 

advance was enabled by targeting streptavidin to the periplasm of E. coli cells. Since the 

periplasm is an oxidizing environment the majority of glutathione, an inhibitor of the 

hybrid catalyst, is in its oxidized form disulfide form which does not impact metathesis 

activity.  

 
Figure 1-8. Examples of hybrid catalysts based on the biotin-streptavidin technology 
which have been optimized by directed evolution. (a) Biotin linker for attachment of 
organometallic catalysts. (b) Schematic of catalyst design. (c) Enantioselective 
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hydrogenation of alkenes with Rh-streptavidin metalloenzymes reported by Reetz and co-
workers.56 (d) Reduction of ketones to alcohols with Ru-streptavidin metalloenzymes 
reported by Ward and co-workers.57 (e) Suzuki cross-coupling catalyzed by Pd-streptavidin 
metalloenzymes reported by Ward and co-workers.58 
 

Lewis and co-workers have reported a design strategy that relies on the strain-

promoted azide-alkyne cycloaddition to covalently attach a rhodium complex to the interior 

of a protein (Figure 1-9).60 Proline oligopeptidase from Pyrococcus furiosus (PfPOP) was 

chosen due to its hyperthermostability and large interior cavity, which was expected to 

envelop Rh-complex 11, thus enhancing the ability of the protein to influence activity. 

Rationally introduced mutations guided by a homology model led to the creation of a 

hybrid catalysts which perform cyclopropanation of styrene using diazo compound 12 with 

good activity and enantioselectivity. The challenge of creating and screening larger 

numbers of variants (hundreds) is in part due to the significant cyclopropanation activity 

of the free cofactor, which forms racemic product. As a result, creation of the hybrid 

catalyst is complicated by the need to remove unbound cofactor. An efficient and higher 

throughput procedure was recently developed for the assembly of hybrid PfPOP-Rh-

complex catalysts with subsequent removal of unbound catalyst.61 This procedure enabled 

directed evolution of the hybrid catalyst via random mutagenesis which ultimately 

identified an enzyme variant with superior cyclopropanation activity compared with the 

previous variant from the rational design effort.   

 
Figure 1-9. A platform for Rh-protein conjugates based on proline peptidase.60,61 (a) 
Strategy for formation of artificial metalloenzyme. (b) Carbene transfer catalyzed by 
enzyme variants. 
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1.7 Outlook 

A key question for abiological catalysis with proteins is: what can the protein impart 

that cannot be readily achieved with small-molecule catalysts? We believe this is partially 

a substrate-binding problem. In addition to rate acceleration, such binding will enable 

precise control of transition-state orientation; this can impart selectivity for kinetically 

disfavored products, as in the cis-cyclopropanation of alkenes38 or the amination of 

homobenzylic C−H bonds48 catalyzed by engineered variants of P450BM3. Furthermore, the 

ability to improve enzyme activity through directed evolution may allow earth-abundant 

metals, like Fe and Co, to catalyze reactions that are typically associated with more 

precious transition metals, like Rh and Ir, provided a protein with trace levels of activity 

can be discovered. Careful analysis of side products from enzyme-catalyzed reactions may 

even be a feasible route for the invention of uncharted chemical transformations.  

Synthetic chemistry has been revolutionized by the use of enzymes, which catalyze 

natural reactions with high activity and selectivity, often under mild conditions and without 

the need for protecting groups. We anticipate that directed evolution of artificial 

metalloenzymes will extend these advantages to non-natural reactions, including those 

currently inaccessible to small molecule catalysts.  
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C h a p t e r  2  

ENANTIOSELECTIVE ENZYME-CATALYZED AZIRIDINATION 
ENABLED BY EVOLUTION OF A CYTOCHROME P450 

Material for this chapter appears in Farwell, C. C. †; Zhang, R. K. †; McIntosh, J. A.; 
Hyster, T. K.; Arnold F. H. “Enantioselective enzyme-catalyzed aziridination enabled by 
active-site evolution of a cytochrome P450,” ACS Central Science 2015, 1, 89–93. 
DOI: 10.1021/acscentsci.5b00056. (†Denotes equal contribution) This work was 
performed in collaboration with all authors. Reprinted with permission from American 
Chemical Society.  
 
 
2.1 Abstract 

One of the greatest challenges in protein design is creating new enzymes. But nature 

does this all the time, in response to new challenges and opportunities. Borrowing from 

nature's evolutionary strategy, we engineered a bacterial cytochrome P450 through a 

process of accumulating beneficial mutations to catalyze highly enantioselective olefin 

aziridination, a synthetically useful reaction. The new enzyme is genetically encoded, 

functions in vitro or in whole cells, and has been engineered to exhibit high selectivity (up 

to 99% ee) and productivity (up to 1,000 total turnovers) for intermolecular aziridination, 

demonstrated here with tosyl azide and substituted styrenes.  

2.2 Introduction 

Aziridines are three-membered saturated nitrogen-containing heterocycles. This motif 

has attracted significant interest due to its utility as a building block in chemical synthesis 

and its presence in biologically active molecules.1,2 The inherent ring strain of this 

heterocycle coupled with the electrophilicity of the nitrogen atom, which may be 

modulated by attached groups, allows this motif to undergo ring cleavage and ring 

expansion reactions. Many useful motifs, including the ones shown in Figure 2-1, can be 

accessed from the aziridine. In addition, certain functionalized aziridines, such as 

vinylaziridines and ethynylaziridines, can participate in rearrangement and additional 
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cycloaddition reactions.3 Indeed, due to the reactivity of the aziridine ring, bioactive 

molecules which contain this group often rely on its reactivity for their mechanism of 

action.2 

Figure 2-1. Select examples of reactions of 
aziridines, using 2-phenyl-N-tosylaziridine as 
a model. (1) MeOH (as solvent), H2SO4 (3 
equiv), continuous flow conditions.4 (2) n-
Bu4N+ Br-, BF3•OEt2, CH2Cl2, 0°C, 2 min.5 
(3) NaN3, ammonium-12-molybdophosphate 
(10 mol%), MeCN, room temperature.6 (4) 
Anisole (2 equiv), [Ag(COD)2]PF6 (2 mol%), 
DCE, room temperature, 3 h.7 (5) n-BuZnBr 
(3 equiv), NiCl2•glyme (5 mol%), dimethyl 
fumarate (10 mol%), dioxane/DMA, 23 °C, 6 
h.8 (6) Polymethylhydrosiloxane, Pd/C, 

EtOH, room temperature.9 (7) 2-Iodophenol, Cu/Al2O3 (4 mol%), K2CO3, DMF, 100 °C, 8 
h.10 (8) 1,3-dimethylindole (limiting reagent), [(MeCN)4Cu]BF4 (5 mol%), (R)-XylBINAP 
(3 mol%), m-xylene, 15 °C, 12 h.11   

Several strategies have been developed to access aziridines.1 The primary routes 

include delivery of a suitable nitrogen source to alkenes, addition of a carbon source to 

imines, and intramolecular cyclization of an amine with an appropriately placed leaving 

group (Figure 2-2). Of these approaches, we found the transformation of alkenes with a 

suitable nitrogen source to be particularly attractive, as alkenes are prevalent functional 

groups and typically stable under aqueous conditions. Aziridination of alkenes using 

reagents such as azides,12–15 iminoiodinanes,16 and haloamines17 is known to be catalyzed 

by transition metal catalysts, including metalloporphyrins, and occurs presumably through 

a metal-nitrene intermediate.   

 
Figure 2-2. Strategies to access aziridines.1  
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metal-nitrene intermediate are extremely rare. As a result, the biosynthesis of naturally 

occurring aziridine rings, for instance that in azicemicin,18 is believed to typically proceed 

by intramolecular nucleophilic displacement of an appropriately placed leaving group 

(Figure 2-3a). Notably, after the publication of the work presented in this chapter, Ohnishi 

and co-workers discovered a cytochrome P450 from Streptomyces sp. Rl18, BezE, 

involved in the biosynthesis of benzastatins, which may perform aziridination through 

nitrene transfer as its native function (Figure 2-3b).19 This discovery demonstrates how 

biocatalysis can inform mechanistic possibilities for enzymes in complex biosynthetic 

pathways.  

 
 
Figure 2-3. Natural biosynthetic routes to aziridines. (a) Proposed strategy for aziridine 
formation in azicemicins.18 (b) Proposed nitrene transfer mechanism of BezE, a 
cytochrome P450 enzyme involved in benzastatin biosynthesis.19  

In 2014, our group reported sulfide imidation with tosyl azide catalyzed by variants of 

cytochrome P450BM3 from Bacillus megaterium.20 In this work, it was observed that the 

reaction was promoted by electron-rich sulfides. Given the less nucleophilic nature of 

alkenes relative to sulfides, we surmised that intermolecular aziridination would be a more 

challenging activation mode for the enzyme. We hypothesized, however, that protein 

engineering would allow us to circumvent these limitations if the enzyme could more 
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effectively bind and orient the substrates in the enzyme active site for productive nitrene 

transfer. Here we demonstrate that active site engineering can indeed enable a heme protein 

to catalyze efficient, highly enantioselective intermolecular nitrene transfer to alkenes to 

make aziridines. 

2.3 Results and discussion 

2.3.1  Identification of heme proteins with promiscuous aziridination activity 

We started this investigation of enzyme-catalyzed aziridination with an engineered 

variant of cytochrome P450BM3, P411BM3-CIS T438S, which differs from wild type by 15 

mutations (see Table A-1 in Appendix A for mutations from wild type P450BM3). This 

variant was previously found to be effective for intramolecular C−H amination21 and 

sulfide imidation.20 We call this enzyme a “ P411”  due to the change in the characteristic 

CO-bound Soret peak from 450 to 411 nm effected by mutation of the cysteine residue that 

coordinates the heme iron to serine (C400S).22 This axial cysteine is completely conserved 

in cytochrome P450s and is required for the native monooxygenase activity.23,24 Thus, the 

P411 enzyme is no longer a “ cytochrome P450”. Two crystal structures of P411 variants 

of P450BM3 show that S400 coordinates the iron and causes no significant structural 

perturbation in the substrate binding pocket.22,25 

Previous work on enzymatic sulfide imidation suggested that electron-rich sulfides 

promote nitrene transfer.20  Reasoning that the electronic properties of the alkene substrate 

could influence aziridination as well, we tested the activity of P411BM3-CIS T438S toward 

the electron-rich 4-methoxystyrene using tosyl azide (TsN3) as the nitrene precursor 

(Figure 2-4). Tosyl azide was completely consumed in this reaction, the major product of 

which was the azide reduction product p–toluenesulfonamide (17, >300 total turnovers 

(TTN), not shown in Table 1). Amidoalcohol 16 appeared as a minor product. Control 

experiments showed that the desired aziridine product rapidly decomposes under aqueous 

reaction conditions to the corresponding amidoalcohol 16 (Figure A-1 in Appendix A). 

Degradation of this aziridine product has also been observed in studies with small-molecule 

catalysts.26 
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Figure 2-4. Initial olefin aziridination activity catalyzed by purified holoenzyme P411BM3-
CIS T438S. Reactions were performed in 0.1 M KPi buffer pH = 8.0, with 7.5 mM olefin 
and 2.5 mM tosyl azide. TTN, total turnover number; TTNs were determined by HPLC 
analysis. KPi, potassium phosphate.  

We therefore inferred that production of 16 is directly related to the nitrene transfer 

activity of the enzyme toward olefin 15. The low level of nitrene transfer activity to 4-

methoxystyrene using P411BM3-CIS T438S prompted us to investigate other heme proteins 

for this activity. Myoglobin (horse heart), cytochrome c (bovine heart), cytochrome 

P450Rhf (from Rhodococcus sp. NCIMB 9784), and the heme cofactor alone (iron 

protoporphyrin IX) were all inactive for this intermolecular aziridination (Table A-2 in 

Appendix A). An engineered variant of the thermostable cytochrome P450 from Sulfolobus 

acidocaldarius, CYP119, that contained an axial cysteine-to-serine mutation (C317S) did 

catalyze low levels of aziridination (∼ 7 TTN). This demonstrates that mutations previously 

described to activate non-natural nitrene-transfer activity in P450BM3 may confer 

measurable activity on other P450s as well. In turn, these enzymes should be suitable 

starting points for further engineering.27 

2.3.2  Active-site engineering of an enzyme aziridination catalyst 

We also tested a set of P450BM3 variants (Table A-3 in Appendix A). Proteins lacking 

the C400S and/or T268A mutations, mutants of P411BM3-CIS T438S with different axial 

mutations, and other enzymes differing from P411BM3-CIS T438S by 2–5 alanine 

mutations in the active site showed showed low or no aziridination activity (< 8 TTN). Of 

all the enzymes tested, a variant of P411BM3-CIS T438S having a single active site 

substitution, I263F, was the most active toward 4-methoxystyrene by a wide margin, 

providing 150 total turnovers in the formation of amidoalcohol 16 from 4-methoxystyrene. 

This variant, which was found to promote regioselective intramolecular C−H amination in 

a previous study,25 supported aziridination at 10-fold increased total turnovers compared 
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to the P411BM3-CIS T438S parent enzyme (henceforth referred to as the P enzyme). 

Additionally, this I263F-containing variant was active for aziridination on less electron-

rich olefins 4-methylstyrene (18) and styrene (20), for which the corresponding aziridine 

products 19 and 21 were stable under the reaction conditions (Table 2-1). Hereafter 

P411BM3-CIS T438S will be referred to as P (for parent) and by extension P411BM3-CIS 

T438S I263F will be called P-I263F. 

Table 2-1. Total turnovers (TTN) to product for aziridination catalyzed by purified 
holoenzymes P411BM3-CIS T438S (P) and P411BM3-CIS T438S I263F (P-I263F) with 
selected styrenes and tosyl azide.a 
 

 
 

aReactions were performed in 0.1 M KPi buffer pH = 8.0 with 7.5 mM olefin and 2.5 mM 
tosyl azide, using purified holoproteins.  

The aziridination reaction could also be carried out using whole Escherichia coli cells 

expressing the P-I263F enzyme. No aziridine product was observed when cells not 

expressing the P411 catalyst were used, although tosyl azide was converted to sulfonamide 

17 over the course of the reaction (Table 2-2). Reactions with E. coli cells harboring the P-

I263F enzyme provided enough aziridine product to allow for screening variants in 96-well 

plate format. Thus, we sought further improvement by mutagenesis and screening for 

aziridination productivity. Site-saturation mutagenesis (SSM) libraries were created at 

several active site positions that were previously shown to influence productivity and 

enantioselectivity in other non-natural reactions (A78, L181, T438, A328).25,28 Screening 

of these single SSM libraries for aziridination of 4-methylstyrene (19) identified P-I263F 

A328V, which performed the reaction with slightly improved yield and substantially 

improved %ee (96% ee; entry 4, Table 2-2). Another round of SSM performed on this 
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variant at additional active site positions (F87, T268, L437) resulted in P-I263F A328V 

L437V with improved aziridine yield and a further increase in enantioselectivity (99% ee 

(S); entry 6, Table 2-2). The P-I263F L437V and P-I263F A328V mutants were both less 

selective than P-I263F A328V L437V, demonstrating that both new mutations contribute 

to the very high enantioselectivity.  

Table 2-2. Improvement in yield and %ee for aziridine product 19 with active-site 
evolution of P411BM3CIS T438S (P).a 

 
 

a Reactions were carried out using whole E. coli cells resuspended in M9-N reaction buffer 
under anaerobic conditions, using 7.5 mM 4-methylstyrene and 2.5 mM tosyl azide. Yield 
is based on tosyl azide.  See Experimental Methods (Section 2.5) for detailed reaction set 
up and quantification procedures.  b % ee determined by SFC analysis and calculated as (S 
– R)/(S + R).  c ‘No enzyme’ reactions were carried out using whole cells with no P411 
enzyme expressed, as described in the experimental methods. N.A., not applicable. 
 

The highly enantioselective P-I263F A328V L437V variant has three mutations in its 

active site relative to the P enzyme used in initial reaction characterization (P411BM3-CIS 

T438S). The crystal structure of the heme domain of P-I263F was recently solved and 

shows how the F263 side chain is oriented toward the heme cofactor within the active site 

(PDB ID: 4WG2, Figure 2-5).25  The effect of the I263F mutation on the active site is 

significant: the F263 side chain fills space above the heme cofactor whereas the I263 side 

chain is pointed up and away from the heme (Figure 2-5). Given the more conservative 

nature of the A328V and L437V mutations, these residues likely exert more subtle 

influences on active site structure, yet their impact on enantioselectivity is substantial (55% 
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ee with P-I263F vs 99% ee with P-I263F A328V L437V, using 4-methylstyrene, Table 2-

2). 

 
 

Figure 2-5. Comparison of active site residues in P411BM3-CIS and P-I263F. (a) P411BM3-
CIS structure (PDB ID: 4H23) with I263 shown as van Der Waals spheres in gold, L437 
and A328 shown in pink. The heme domain of P411BM3-CIS T438S is has not been solved, 
however this variant is only one mutation (T438S) different from P411BM3-CIS (shown 
here). (b) P-I263F structure (PDB ID: 4WG2) showing the active site and residues F263, 
A328 and L437 in pink. 

 
 

We proposed a hypothesis for the mechanism of this reaction, which is summarized in 

Figure 2-6. The reaction begins with the reduction of the Fe(III)-heme through gaining an 

electron from NADPH via the reductase domain. Control experiments show that aziridine 

19 is not formed in the absence of NADPH when full-length P-I263F is used as catalyst in 

purified form (Table A-4 in Appendix A). Furthermore, no aziridine is formed when the 

heme domain of P-I263F is used as catalyst with NADPH as the reductant (Table A-4 in 

Appendix A), since NADPH is not capable of reducing P-I263F in the absence of the 

reductase domain (Figure A-2 in Appendix A). We propose that reaction of tosyl azide 

with ferrous heme results in the formation of an iron-nitrene species in the active site 

(formally in the +4 oxidation) which can be either intercepted by olefin to produce aziridine 

or reduced by a second electron transfer to form sulfonamide and return the catalyst to its 

ferric state.29 Control experiments which monitored the formation of sulfonamide 17 under 

purified protein reaction conditions suggest that its formation is enzyme catalyzed (Table 

A-4 in Appendix A). In the event that sulfonamide is formed, the Fe(III)-heme must then 

consume another reducing equivalent to return to the reactive ferrous state. 
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Figure 2-6. Proposed mechanism of a cytochrome P411-catalyzed aziridination reaction. 
Reaction of tosyl azide with the ferrous heme cofactor generates an enzyme-bound iron 
nitrene intermediate. This nitrene then reacts with an olefin substrate, delivering an 
aziridine product. The nitrogen atoms in a plane represent the enzyme's heme cofactor. Ts 
= 4-toluenesulfonyl; Ser = serine. Notes: to date, the protonation state of the axial serine 
ligand in P411BM3 enzymes is not known; a formal oxidation state of the iron nitrene 
intermediate is shown, but may not accurately reflect its electronic structure.  

The improved aziridine yield could result from either an increase in the rate of 

aziridine formation or a decrease in the rate of competing azide reduction, or from a 

combination of both. To address this, we measured initial rates of reaction with the PI263F, 

P-I263F A328V, and P-I263F A328V L437V enzymes as purified holoenzymes (Table 2-

3, Figure A-3 in Appendix A). Initial rates of aziridination for the purified enzymes 

reflected the yield improvements observed in whole cells: P-I263F and P-I263F A328V 

have similar turnover frequencies (15–16 min−1), while P-I263F A328V L437V, having 

both new mutations, was improved (TOF ∼24 min−1). The initial turnover frequency of 

sulfonamide formation in vitro was similar for all the enzymes, and faster than aziridine 

formation (TOFs ∼26–29 min−1).  
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Table 2-3. Initial rates of aziridination and azide reduction for engineered enzymes.a  
 

 
 

Enzyme TOF 19 
(min-1) 

TOF 17 
(min-1) 

TOF 19/ 
TOF 17 TTN 19 

 
TTN 17 

TTN 19/ 
TTN  17 

P-I263F 15 29 0.51 150 280 0.52 
P-I263F-A328V 16 26 0.62 145 290 0.50 
P-I263F-A328V-L437V 24 29 0.83 185 250 0.73 

a Initial rates were measured using purified P411 enzymes with 7.5 mM olefin and 2.5 mM 
TsN3, as described in the Experimental Methods section (Section 2.5). Total turnover 
(TTN) values were determined using the same method as described for initial rates, with 
the exception that reactions were allowed to proceed for 4 hours in the anaerobic chamber. 
Data used to determine the initial rates is presented as Figure A-3. TOF, turnover 
frequency. 
 
2.3.3  Substrate scope 

Having obtained a highly active and selective enzyme variant, P-I263F A328V 

L437V, we investigated its substrate scope in whole cells using variously substituted 

styrenes and tosyl azide (Table 2-4). In addition to 15, 18, and 20, P-I263F A328V L437V 

accepted electron deficient styrenes, differently substituted styrenes, and bulky 

vinylnaphthalene. Similar to 4-methoxystyrene, α-methylstyrene gave exclusively racemic 

amido-alcohol hydrolysis product. We reason that this is likely the result of carbocation 

stabilization at the benzylic position afforded by resonance and hyperconjugative 

stabilization by the p-OMe and α-Me groups respectively. The aziridine products were all 

highly enantioenriched though (Table 2-4). We demonstrated that with higher substrate 

concentration, the enzyme could catalyze higher turnovers to the aziridine product. For 

example, using 2-fold more styrene (15 mM) and 3-fold more tosyl azide (7.5 mM) 

compared to typical reaction conditions, the enzyme catalyzed 1,000 turnovers for aziridine 

21. 
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Table 2-4. Substrate scope of aziridination with P-I263F A328V L437V.a 

 
aUnless otherwise indicated, reactions were carried out using E. coli cells expressing P-
I263F A328V L437V under anaerobic conditions, with 7.5 mM olefin and 2.5 mM tosyl 
azide. % ee determined as (S − R)/(S + R); absolute configurations were assigned based on 
analogy to 21. Rac, racemic. See Experimental Methods (Section 2.5) for detailed 
procedures. bReactions were carried out with 15 mM olefin and 7.5 mM tosyl azide. 
 

Compared to small molecule transition metal catalysts, P-I263F A328V L437V 

catalyzes the olefin aziridination reaction with superior enantioselectivity. For example, 

the reaction of styrene with tosyl azide catalyzed by a chiral Ru-salen-CO complex affords 

aziridine 21 at 93% yield (982 turnovers) and 86% ee.1 Using a chiral Co-porphyrin 

complex, aziridination of styrene with related nosyl azide affords the nosyl-protected 

aziridine in 75% yield (38 TTN) and 88% ee.30
 Comparatively, E. coli harboring P-I263F 
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A328V L437V delivers aziridine 21 with 99% ee (70% yield, 600 TTN) and related 

aziridines with good enantioselectivity (>80% ee). Notably though, enzymatic 

aziridination is performed at dilute substrate concentrations (significantly more dilute than 

with typical small molecule transition metal systems). Increasing the substrate 

concentration in enzyme-catalyzed reactions results in decreased yields, though the high 

enantioselectivity is maintained (entries 2 and 3, Table 2-4). This highlights a need for 

further investigation and optimization of these nitrene transfer enzymes. 

2.3.4  Tuning the enantioselectivity of enzyme-catalyzed olefin aziridination  

Either enantiomers of the aziridine product can be obtained by changing the enzyme 

catalyst. A different P411 variant, P411-H2A10, was found to perform the reaction 

between 4-methylstyrene and tosyl azide with the opposite stereochemical preference 

compared with P-I263F A328V L437V (Figure 2-7). Variant P411-H2A10 (15 amino acids 

from wild type), differs at six amino acid residues compared with P-I263F A328V L437V. 

Adding the I263F mutation to P411-H2A10 improved the yield without affecting 

enantioselectivity (Figure 2-7). This demonstrates the versatility of the P411 protein 

scaffold; the stereochemical preference of a reaction can be altered by introducing a small 

number of amino acid changes. The influence of protein sequence on product 

enantioselectivity has previously been demonstrated with P411-catalyzed sulfide 

imidation20 and with other enzymes including carbonyl reductase31 and halohydrin 

dehalogenase.32 We did not pursue further efforts in improving the activity and 

enantioselectivity of P411-H2A10 I263F. 

 
Figure 2-7. Enzyme-controlled enantioselectivity of olefin aziridination. Reactions were 
carried out using E. coli cells expressing the enzyme under anaerobic conditions, with 7.5 
mM olefin and 2.5 mM tosyl azide. Absolute configurations were assigned based on 
analogy to 21.  
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2.4 Conclusion  

We report the first example of enzyme-catalyzed olefin aziridination. This challenging 

intermolecular reaction is catalyzed by a serine-ligated “P411” variant of cytochrome 

P450BM3. Mutations in the enzyme active site resulted in a variant that exhibits 

significantly improved azide utilization compared to the parental enzyme and high 

enantioselectivity (up to 99% ee). These results demonstrate the critical role of protein 

engineering in optimizing non-native activity and suggest that the well-known plasticity of 

the P450 active site can be leveraged to target synthetically useful reactions.  

Findings from biocatalysis can additionally inform mechanistic possibilities for 

natural enzymes. Previously thought to be absent from natural enzyme mechanisms, after 

the publication of the work presented in this chapter, olefin aziridination by nitrene transfer 

was put forth as a possible natural mechanism for a P450 involved in benzastatin 

biosynthesis.19 

This new aziridination biocatalyst is likely just one of many new catalysts that will be 

discovered when researchers start systematically exploring the new functions that existing 

enzymes can take on.33,34 Exploiting the catalytic promiscuity of natural enzymes 

combined with evolutionary optimization will enable us to greatly expand the reaction 

space of genetically encoded and tunable biocatalysts. 

2.5 Experimental Methods 

See Appendix A for supporting tables and figures, characterization of compounds, 

details regarding calibration curves, assignment of absolute stereochemistry, and 

determination of enantioselectivity. HPLC calibration curves and NMR spectra are in the 

Supporting Information of the published paper, but not included here.   

2.5.1 General information 

Unless otherwise noted, all chemicals and reagents were obtained from commercial 

suppliers (Sigma-Aldrich, VWR, Alfa Aesar) and used without further purification. Silica 
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gel chromatography purifications were carried out using AMD Silica Gel 60, 230-400 

mesh. 1H spectra were recorded on a Varian Inova 300 MHz or 500 MHz, or Bruker 

Prodigy 400 MHz instrument in CDCl3, and are referenced to the residual solvent peak. 

Synthetic reactions were monitored using thin layer chromatography (Merck 60 gel plates) 

using an UV-lamp for visualization. 

2.5.2 Chromatography 

Analytical high-performance liquid chromatography (HPLC) was carried out using an 

Agilent 1200 series, and a Kromasil 100 C18 column (4.6 x 50 mm, 5 µm) with water and 

acetonitrile as the mobile phase. Semipreparative HPLC was performed using an Agilent 

XDB-C18 column (9.4 x 250 mm, 5 µm). Liquid-chromatotography-mass-spectrometry 

(LC-MS) was carried out using an Agilent 6140 series equipped with a C18 column with 

water (+0.1% acetic acid) and acetonitrile as mobile phases. Analytical chiral HPLC was 

conducted using a supercritical fluid chromatography (SFC) system with isopropanol and 

liquid CO2 as the mobile phase. Chiral OB-H and AS-H columns were used to separate 

aziridine and amido-alcohol enantiomers (4.6 x 150 mm, 5 µm). Olefins were all 

commercially available; amido-alcohol35 and aziridine36 standards were prepared 

following literature procedures. %ee was calculated by dividing the major peak area by the 

sum of the peak areas determined by SFC chromatography. 

2.5.3 Cloning and site-directed mutagenesis 

pET22b(+) was used as a cloning and expression vector for all enzymes described in 

this study. P450 and P411 enzymes described in this study were expressed with a C-

terminal 6xHis-tag. Site-directed mutagenesis was performed using a modified 

QuikChangeTM mutagenesis protocol.37 The PCR products were gel purified, digested with 

DpnI, repaired using Gibson MixTM,38 and directly transformed into E. coli strain BL21 E. 

cloni cells (Lucigen). 

2.5.4 Determination of P450 concentration 
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Concentration of P450 and P411 enzymes in whole cell experiments was determined 

from ferrous carbon monoxide binding difference spectra using previously reported 

extinction coefficients for cysteine-ligated (ε = 91,000 M-1 cm-1)39 and serine-ligated 

enzymes (ε = 103,000 M-1 cm-1).40 When purified enzymes were used, concentration of 

P450 and P411 enzymes was accomplished by quantifying the amount of free hemin 

present in purified protein using the pyridine/hemochrome assay and the published 

extinction coefficient (ε = 191,500 M-1 cm-1).41 

2.5.5 Protein expression and purification 

E. coli BL21 E. cloni cells carrying a plasmid encoding a P450 or P411 protein were 

grown overnight in 25 mL Luria-Bertain medium with 0.1 mg/mL ampicillin (LBamp, 37 

ºC, 250 rpm). Hyperbroth medium (supplemented with glucose nutrient mix according to 

package instructions) with 0.1 mg/mL ampicillin (HBamp, 630 mL) in a 1-L flask was 

inoculated with 25 mL of the preculture and incubated at 37 ºC and 230 rpm for 2.5 h. 

Cultures were then cooled on ice (30 min) and induced with 0.5 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) and 1.0 mM 5-aminolevulinic acid (final concentrations). 

Expression was conducted at 23 ºC, 130 rpm, for 16–20 h. Cultures were then centrifuged 

(5,000 x g, 8 min, 4 ºC) and the cell pellets frozen at –20 ºC. 

For purification, frozen cells were resuspended in buffer A (20 mM tris, 20 mM 

imidazole, 100 mM NaCl, pH 7.5, 4 mL/g of cell wet weight), loaded with 300 µg/ml 

hemin, and disrupted by sonication (2 x 1 min, output control 5, 50% duty cycle; Sonicator 

3000, Misonix, Inc.). To pellet insoluble material, lysates were centrifuged (20,000 x g for 

0.5 h at 4 °C). P450 and P411 enzymes were expressed in a construct containing a C-

terminal 6xHis-tag and were consequently purified using a nickel NTA column (1 mL 

HisTrap HP, GE Healthcare, Piscataway, NJ) using an AKTAxpress purifier FPLC system 

(GE healthcare). P450 or P411 enzymes were then eluted on a linear gradient from 0% 

buffer B (20 mM tris, 300 mM imidazole, 100 mM NaCl, pH 7.5) to 100 % buffer B over 

10 column volumes (P450/P411 enzymes elute at around 80 mM imidazole). Fractions 

containing P450 or P411 enzymes were pooled, concentrated, and subjected to three 
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exchanges of phosphate buffer (0.1 M potassium phosphate (KPi), pH = 8.0) to remove 

excess salt and imidazole. Concentrated proteins were aliquoted, flash-frozen on powdered 

dry ice, and stored at -20 °C until later use. 

2.5.6 Typical procedure for small-scale aziridination bioconversions under 
anaerobic conditions using purified enzymes.  

Small-scale reactions (400 µL) were conducted in 2 mL crimp vials (Agilent 

Technologies, San Diego, CA) containing buffer (0.1 M KPi, pH = 8.0), purified enzyme, 

and oxygen depletion system (GOX, 20X stock solution containing 14,000 U/mL catalase, 

1,000 U/mL glucose oxidase dissolved in 0.1 M KPi pH 8.0). Enzyme (P450 or P411) and 

oxygen depletion mixture (20 µL) were added to the vial before crimp-sealing. Portions of 

D-glucose (250 mM, 40 µL), NADPH (100 mM, 40 µL), and potassium phosphate buffer 

(0.1 M, pH = 8.0, appropriate volume so final reaction volume is 400 µL), or multiples 

thereof, were combined in a larger crimp sealed vial and degassed by sparging with argon 

for at least 10 min. In the meantime, the headspace of the sealed 2 mL reaction vial with 

the enzyme solution was made anaerobic by flushing argon over the headspace (with no 

bubbling). The buffer/reductant/glucose solution (appropriate volume such that final 

reaction volume is 400 µL) was added to the reaction vial via syringe under continuous 

argon purge of the vial headspace. Olefin (10 µL, 300 mM in DMSO) then tosyl azide (10 

µL, 100 mM in DMSO) was added to the reaction vial using a glass syringe and the reaction 

was allowed to shake for 4 h at room temperature. Final reaction volume was 400 µL; final 

concentrations of reagents were typically: 7.5 mM olefin, 2.5 mM tosyl azide, 10 mM 

NADPH, 25 mM D-glucose, and GOX oxygen depletion system. Note: Sodium dithionite 

(5 mM) was used as reductant in place of NADPH for reactions with hemin, myoglobin, 

cytochrome c, CYP119, and P450Rhf. After, reactions were quenched by adding acetonitrile 

(460 µL) and the resulting mixture was transferred to a microcentrifuge tube and 

centrifuged at 14,000 rpm for 5 minutes. The solution (540 µL) was transferred to an HPLC 

vial, charged with internal standard (60 µL, 10 mM 1,3,5-trichlorobenzene in acetonitrile), 

and analyzed by HPLC. Concentrations of products in small-scale reactions were 

calculated using a calibration curve; TTN was calculated by dividing the concentration of 
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product by the concentration of protein catalyst.  

2.5.7 Reaction screening in 96-well plate format 

Site-saturation mutagenesis libraries were generated by employing the “22c-trick” 

method.37 Libraries in E. coli were generated and cultured in 300 µL LBamp. Pre-culture 

(50 µL) was transferred to 1000 µL of HBamp using a multichannel pipette. The cultures 

were incubated at 37 °C, 220 rpm, 80% humidity for 3 hours. The plates were cooled on 

ice for 15 minutes before expression was induced (0.5 mM IPTG, 1.0 mM 5-aminolevulinic 

acid, final concentrations). Expression was conducted at 20 °C, 120 rpm, 20 h. The cells 

were pelleted (3000 x g, 5 min) and re-suspended in 40 µL/well GOX solution (14,000 

U/ml catalase (Sigma 02071) and 1000 U/ml glucose oxidase (Sigma G7141)). The 96-

well plate was transferred to an anaerobic chamber. In the anaerobic chamber, 300 µL per 

well argon sparged reaction buffer (4 : 1, M9-N : 250 mM glucose in M9-N) was added 

followed by 4-methylstyrene (300 mM, 10 µL/well) and tosyl azide (100 mM, 10 µL/well). 

The plate was sealed with aluminum sealing tape, removed from the anaerobic chamber, 

and shaken at 400 rpm. After 16 hours, the seal was removed and 400 µL of acetonitrile 

was added to each well. The contents of each well were mixed by pipetting up and down 

using a multichannel pipette. Then the plate was centrifuged (4,000 x g, 5 minutes) and 

500 µL of the supernatant was transferred to a shallow-well plate for analysis by HPLC. 

2.5.8 Typical procedure for small-scale aziridination bioconversions under 
anaerobic conditions using P411 enzymes in E. coli cells.  

E. coli BL21 E. coni cells carrying a plasmid encoding a P411 variant were inoculated 

from glycerol stock and grown overnight in 5 ml LBamp (37 °C, 250 rpm). The preculture 

was used to inoculate 45 mL of HBamp in a 125 mL Erlenmeyer flask; this culture was 

incubated at 37 °C, 220 rpm for 2 h and 30 min. After, the cultures were cooled on ice and 

induced with 0.5 mM IPTG and 1 mM 5-aminolevulinic acid (final concentration). 

Expression was conducted at room temperature, 130 rpm, 20 h. The cultures were then 

harvested and resuspended to OD600 = 30 in M9-N. Aliquots of the cell suspension (4 mL) 

were used to determine the P450 or P411 expression level after lysis by sonication. 
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E. coli cells (OD600 = 30) were made anaerobic by sparging with argon in a sealed 6 

mL crimp vial for at least 30 minutes. To a 2 mL crimp vial was then added glucose (250 

mM in M9-N, 40 µL) and the GOX oxygen depletion solution described previously (20 

µL). The headspace of the sealed 2 mL reaction vial was made anaerobic by flushing argon 

over the solution. Resuspended cells (320 µL), followed by olefin substrate (10 µL, 300 

mM in DMSO), then tosyl azide (10 µL, 100 mM in DMSO) were added to 2 mL reaction 

vial via syringe under continuous flow of argon. Reactions were allowed to shake for 4 h 

at room temperature. Final reaction volume was 400 µL; final concentrations of reagents 

were typically: 7.5 mM olefin, 2.5 mM tosyl azide, 25 mM D-glucose, and GOX oxygen 

depletion system. The no enzyme control experiment was conducted using E. coli BL21 

cells containing empty pET22b(+) vector with the same reaction conditions as described 

above. The reactions were quenched by adding acetonitrile (460 µL) and the resulting 

mixture was transferred to a microcentrifuge tube and centrifuged at 14,000 rpm for 5 

minutes. The solution (540 µL) was transferred to an HPLC vial, charged with internal 

standard (60 µL, 10 mM 1,3,5-trichlorobenzene in acetonitrile), and analyzed by HPLC. 

Concentrations of products in small-scale reactions were calculated using a calibration 

curve; TTN was calculated by dividing the concentration of product by the concentration 

of protein catalyst.  

Reactions for chiral HPLC analysis were performed on a 2 mL scale (final reaction 

volume) using the same concentration of reagents and a similar procedure as described 

above. Briefly, E. coli containing P411 enzymes were expressed and resuspended to an 

OD600 = 30 in M9-N, and then degassed by sparging with argon in a sealed 6 mL crimp 

vial for at least 30 minutes. To a 6 mL crimp vial was then added glucose (250 mM in M9-

N, 200 µL) and the GOX oxygen depletion mixture described previously (100 µL). The 

headspace of the sealed 2 mL reaction vial was made anaerobic by flushing argon over the 

solution. Resuspended cells (1600 µL), followed by olefin substrate (50 µL, 300 mM in 

DMSO), then tosyl azide (50 µL, 100 mM in DMSO) were added to 6 mL reaction vial via 

syringe under continuous flow of argon. Reactions were allowed to shake for 4 h at room 

temperature. Reactions were quenched with 2 mL acetonitrile and extracted with ethyl 
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acetate, and concentrated under reduced pressure. The remaining material was resuspended 

in acetone (200 µL) and purified by C18 semi-preparative HPLC. The purified product was 

concentrated, resuspended in acetonitrile, and analyzed by SFC for enantioselectivity. 

2.5.9  Experimental methods for determination of initial rates 

All initial rate experiments were conducted in an anaerobic chamber. Initial rate 

measurements were performed using 0.2 mol% purified enzymes in 400 µL scale reactions. 

A sealed 6-mL vial charged with glucose (250 mM, 480 µL), NADPH (100 mM, 480 µL), 

and potassium phosphate buffer (0.1 M, pH = 8.0, 3240 µL) was sparged for at least 30 

minutes with argon. After the degassing was complete, the reaction solution, 2-mL vials 

charged with GOX oxygen depletion solution (20 µL), and purified protein (250 µM in 

potassium phosphate buffer), kept on ice, were brought into the anaerobic chamber. Note: 

the GOX oxygen depletion solution is a 20X stock solution containing 14,000 U/mL 

catalase, 1,000 U/mL glucose oxidase dissolved in 0.1 M KPi pH 8.0. The reaction solution 

(350 µL) was added to each 2-mL vial and allowed to equilibrate in the anaerobic chamber 

for 30 minutes. Reaction vials were then placed on a shaker (400 rpm), charged with 10 µL 

purified protein (250 µM in 0.1 M KPi buffer, pH = 8.0) and 4-methyl styrene substrate 

(10 µL, 300 mM in DMSO) followed by tosyl azide (10 µL, 100 mM in DMSO). Reactions 

were set up in duplicate and products quantified at 1-2 minute intervals by quenching with 

acetonitrile (460 µL). The resulting mixture was removed from the anaerobic chamber, 

transferred to a microcentrifuge tube and centrifuged at 14,000 rpm for 5 minutes. The 

solution (540 µL) was transferred to an HPLC vial, charged with internal standard (60 µL, 

10 mM 1,3,5-trichlorobenzene in acetonitrile), and analyzed by HPLC. The rates of 

aziridination and azide reduction for different enzyme variants are presented in Table 2-3 

& Figure A-3. The rate of azide reduction was determined in the presence of olefin 18 (7.5 

mM). 
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A p p e n d i x  A  

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

Material for this chapter appears in Farwell, C. C. †; Zhang, R. K. †; McIntosh, J. A.; 
Hyster, T. K.; Arnold F. H. “Enantioselective enzyme-catalyzed aziridination enabled by 
active-site evolution of a cytochrome P450,” ACS Central Science 2015, 1, 89–93. 
DOI: 10.1021/acscentsci.5b00056. (†Denotes equal contribution) This work was 
performed in collaboration with all authors. Reprinted with permission from American 
Chemical Society. 
 
A.1  Supporting Tables A-1 through A-5 

Table A-1. Mutations present in P450BM3 variants used in Chapter 2.  

 Enzyme Mutations relative to wild type P450BM3 

P450BM3 none 
P450BM3 T268A T268A 
P411BM3 C400S 
P411BM3 T268A T268A, C400S 
P450BM3-CIS T438S V78A, F87V, P142S, T175I, A184V, 

S226R, H236Q, E252G, T268A, A290V, 
L353V, I366V, T438S, E442K 

P411BM3-CIS T438S P450BM3-CIS C400S, T438S 
P-I263F P411BM3-CIS T438S I263F 
P-I263F A328V P411BM3-CIS T438S I263F A328V 
P-I263F A328V L437V P411BM3-CIS T438S I263F A328V L437V 
P411BM3-CIS A268T T438S P411BM3-CIS A268T, C400S, T438S 
P411-H2A10 P411BM3-CIS L75A, L181A 
P411-H2A10 I263F P411BM3-CIS L75A, L181A, I263F 
P411BM3 H2-5-F10 P411BM3-CIS L75A, I263A, L437A 
P411BM3 H2-4-D4 P411BM3-CIS L75A, M177A, L181A, L437A 
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Table A-2. Heme and other heme proteins tested for aziridination acitivty with 4-
methoxystyrene and tosyl azide.a 

 
 

Entry Catalystb TTN 2 
1 Hemin < 1 
2 Hemin + BSA < 1 
3 Myoglobin (horse heart) < 1 
4 Cytochrome c (bovine heart) < 1 
5 CYP119  C317S 7 
6 CYP119 T213A C317H < 1 
7 P450Rhf < 1 
8 P450Rhf T275A < 1  

a Purified enzyme reactions were conducted as described in the experimental methods 
section (Chapter 2.5), using 7.5 mM olefin and 2.5 mM TsN3.1 Sodium dithionite (5 mM) 
was used as reductant. bMyoglobin and cytochrome c were purchased as lyophilized 
powder from Sigma Aldrich.  P450RhF mutants were expressed and purified as described in 
the methods section; P450CYP119 was expressed and purified as described previously.2 
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Table A-3. Panel of P450BM3 and P411 purified enzymes tested for aziridination activity 
with 4-methoxystyrene and tosyl azide.a, b 

 

Entry Enzyme  TTN 16  
1 P411BM3-CIS T438S  15 
2 P450BM3-CIS T438S < 1 
3 P450BM3-CIS T438S C400H 3 
4 P450BM3-CIS T438S C400D 4 
5 P450BM3-CIS T438S C400M 4 
6 P411BM3-CIS A268T T438S < 1 
7 P411BM3-H2-5-F10 8 
8 P411BM3-H2-A-10 4 
9 P411BM3-H2-4-D4 5 
10 P450BM3 < 1 
11 P411BM3 3 
12 P450BM3-T268A 2 
13 P411BM3-T268A 4 
14 P411BM3-CIS T438S I263F 150 
15 P411BM3-CIS T438S I263F V87F 19 
16 P411BM3-CIS T438S I263F A268T < 1 

aPurified enzyme reactions were conducted as described in the experimental methods 
section (Chapter 2.5). bReactions were conducted by Dr. Chris Farwell.  
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Table A-4. Control experiments using purified P-I263F proteins and NADPH as 
reductant.a 
 

 
 

a Concentrations are 7.5 mM olefin, 2.5 mM TsN3, 10 mM NADPH (when applicable), 5.0 
µM P-I263F proteins (when applicable) in M9-N buffer. P-I263F refers to full-length P-
I263F enzyme. P-I263F heme refers to the heme domain only of the protein (without the 
reductase domain). The mixtures were allowed to shake for 4 h at room temperature under 
anaerobic conditions to mimic conditions used for in vitro (purified protein) experiments. 
N.D., not detected. 
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Entry Conditions mM 19 mM 17

1
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4
5
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0.92
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0.02

0.27
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4 h, RT

N.D.
N.D.
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A.2  Supporting Figures A-1 through A-3 and Related Experimental Details 

(a) HPLC chromatogram of controls, monitored at 220 nm. 
 
Co-injection of 4-methoxystyrene (Sigma Aldrich) and synthetic standard 16’, confirmed 
by NMR: 

 
 
Synthetic standard 16’, confirmed by NMR: 

 

  

MeO

NTs

MeO

Co-injection

+

NTs

MeO



 

 

50  
(b) HPLC chromatograms of P411-enzymatic reaction with 4-methoxystyrene 15 and tosyl 
azide as substrates analyzed at different time points, monitored at 220 nm. Putative 
aziridine 16’ and amido-alcohol 16 are marked with arrows.  
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(c) HPLC chromatograms of synthetic standard 16’ in reaction conditions without P411 
catalyst at several time points, monitored at 220 nm. Putative aziridine 16’ and amido-
alcohol 16 are marked with arrows. 

 

 

 

 
 
Figure A-1. Demonstration of enzymatic synthesis and degradation of aziridine 16’ under 
reaction conditions. 
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(a) P-I263F (full-length) 

 
 
(b) P-I263F heme domain 

 
 

Figure A-2. UV-vis absorbance spectra of P-I263F (full-length) (a) and P-I263F heme 
domain only proteins (b) after addition of NADPH. Representative UV-vis absorbance 
spectra are shown for purified protein in the presence of no reductant (FeIII, green), 
NADPH (blue), and dithionite (FeII, red). In the case of full-length P-I263F, the FeII (426 
nm) Soret band is observed when either NADPH or dithionite is used as reductant. The 
shoulder at 404 nm observed in the NADPH spectrum is due to incomplete reduction of 
full-length P-I263F under the experimental conditions. For P-I263F heme domain, only the 
FeIII (404 nm) Soret band is observed when NADPH is used as the reductant.  
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Experimental methods for UV-visible absorbance spectroscopy results presented in 
Figure A-2.  

UV-Visible absorbance spectroscopy was performed under anaerobic conditions. A 

sealed 6-mL vial charged with potassium phosphate buffer (0.1 M, pH = 8.0, 4 mL) and a 

sealed 2-mL vial charged with NADPH (100 mM in 0.1 M KPi pH = 8.0 buffer, 1 mL) 

were sparged for at least 20 minutes with argon. In parallel, purified full-length P-I263F 

(200 µM, 25 µL) or PI263F heme domain only (250 µM, 20 µL) was added to a semi-micro 

cuvette. The cuvette was sealed with a cap equipped with rubber septa and the headspace 

was purged with argon for at least 10 minutes. After degassing was complete, potassium 

phosphate buffer (880 µL), followed by NADPH (100 mM, 100 µL), were added to the 

anaerobic cuvette containing protein via syringe under a continuous stream of argon. UV-

vis spectra of the protein sample was recorded until a stable ferrous state was reached, or 

for 20 minutes if no ferrous state was observed.  

The negative control (no reductant) and positive control (dithionite-reduced protein) 

experiments were performed in a similar manner except degassed potassium phosphate 

buffer (100 uL, negative control) or degassed dithionite solution (100 mM in 0.1 M Kpi 

pH = 8.0, 100 µL, positive control) was added to the protein sample instead of NADPH 

solution. 
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Figure A-3. Data used to determine initial rate results presented in Table 2-3. Blue 
diamonds represent sulfonamide 17 and green triangles represent aziridine 19 for all plots. 
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A.3  Synthesis and Characterization of Substrates and Reference Compounds 

All olefin substrates presented in Table 2-3 were obtained from commercial sources 

(Sigma Aldrich, Alfa Aesar) and used as received. Racemic reference compounds 

corresponding to enzymatic products were prepared according to the following procedures. 

Reference compounds are characterized below. 

N-(2-hydroxy-2-(4-methoxyphenyl)ethyl)-4-methylbenzenesulfonamide (16). 
This compound was prepared following the method of B. Srinivas et al.3 

1H NMR (400 MHz, CDCl3) δ 7.72 (d, 2H, J = 8.1 Hz), 7.29 (d, 2H, J 
= 8.3 Hz), 7.19 (d, 2H, J = 8.6 Hz), 6.84 (d, 2H, 8.6 Hz), 5.06 (dd, 1H, 
J = 8.1, 4.6 Hz), 4.73 (dd, 1H, J = 8.7, 3.7 Hz), 3.78 (s, 3H), 3.20 (ddd, 
1H, J = 13.3, 8.1, 3.7 Hz), 3.01 (ddd, 1H, J = 13.2, 8.6, 4.6 Hz), 2.42 
(s, 3H). 13C NMR (101 MHz, CDCl3) δ 159.66, 143.69, 136.86, 
133.00, 129.90, 127.26, 127.21, 114.16, 72.50, 55.44, 50.30, 21.66. 
HRMS (FAB+): calculated for C16H18NO4S ([M+H]+): 320.0956; 
found: 320.0950 

N-(p-Tolylsulfonyl)-2-(p-methoxyphenyl)aziridine (16’).   
This compound was prepared following the method of T. Ando et al.4; spectral data are in 
agreement with literature values.5 

1H NMR (500 MHz, CDCl3) δ 7.87 (d, 2H, J = 8.3 Hz), 7.34 (d, 2H, J 
= 8.5 Hz), 7.14 (d, J =8.7 Hz, 2H), 6.83 (d, J = 8.7, 2H), 3.78 (s, 3H), 
3.75 (dd, 1H, J = 7.2, 4.5 Hz), 2.97 (d, 1H, J =7.2 Hz), 2.44 (s, 3H), 
2.39 (d, 1H, J = 4.5 Hz).  

N-(p-Tolylsulfonyl)-2-(p-methylphenyl)aziridine (19).   
This compound was prepared following the method of T. Ando et al.4; spectral data are in 
agreement with literature values.5  

1H NMR (300 MHz, CDCl3)  δ 7.86 (d, 2H, J = 8.3 Hz), 7.32 (d, 2H, J 
= 8.3 Hz), 7.10 (s, 4H), 3.74 (dd, 1H, J = 7.2, 4.5Hz), 2.97 (d, 1H, J = 
7.2 Hz), 2.43 (s, 3H), 2.38 (d, 1H, J = 4.5 Hz), 2.31 (s, 3H).  

N-(p-Tolylsulfonyl)-2-phenylaziridine (21).   
This compound was prepared following the method of T. Ando et al.4; spectral data are in 
agreement with literature values.6 

1H NMR (300 MHz, CDCl3) δ 7.87 (d, 2H, J = 8.3 Hz), 7.19-7.36 (m, 
7H), 3.77 (dd, 1H, J =7.2, 4.5 Hz), 2.98 (d, 1H, J = 7.2 Hz), 2.43 (s, 
3H), 2.39 (d, 1H, J = 4.5 Hz). 
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N-(p-Tolylsulfonyl)-2-(p-chlorophenyl)aziridine (22).   
This compound was prepared following the method of T. Ando et al.4; spectral data are in 
agreement with literature values.6  

1H NMR (300 MHz, CDCl3) δ 7.86 (d, 2H, J = 8.3 Hz), 7.34 (d, 2H, J 
= 7.9 Hz), 7.26 (d, 2H, J = 8.5 Hz), 7.15 (d, 2H, J = 8.5 Hz), 3.73 (dd, 
1H, J = 7.2, 4.4 Hz), 2.98 (d, 1H, J = 7.2 Hz), 2.44 (s, 3H), 2.34 (d, 
1H, J = 4.4 Hz). 

N-(p-Tolylsulfonyl)-2-(m-chlorophenyl)aziridine (23).    
This compound was prepared following the method of T. Ando et al.4; spectral data are in 
agreement with literature values.7  

1H NMR (400 MHz, CDCl3) δ 7.87 (d, 2H, J = 8.3 Hz), 7.35 (d, 2H, J 
= 7.7 Hz), 7.19– 7.26 (m, 3H), 7.12 (dt, 1H, J = 6.8, 1.8 Hz), 3.73 (dd, 
1H, J = 7.2, 4.3 Hz), 2.97 (d, 1H, J = 7.2 Hz), 2.44 (s, 3H), 2.35 (d, 
1H, J = 4.4 Hz). 

N-(p-Tolylsulfonyl)-2-(m-methylphenyl)aziridine (24).    
This compound was prepared following the method of T. Ando et al.4; spectral data are in 
agreement with literature values.8  

1H NMR (400 MHz, CDCl3) δ 7.87 (d, 2H, J = 8.3 Hz), 7.33 (d, 2H, J 
= 8.6 Hz), 7.01 – 7.20 (m, 4H), 3.74 (dd, 1H, J = 7.2, 4.5 Hz), 2.96 (d, 
1H, J = 7.2 Hz), 2.43 (s, 3H), 2.38 (d, 1H, J = 4.5 Hz), 2.30 (s, 3H). 

N-(p-Tolylsulfonyl)-2-(2,4-dimethylphenyl)aziridine (25).    
This compound was prepared following the method of T. Ando et al.4  

1H NMR (400 MHz, CDCl3) δ 7.90 (d, 2H, J = 8.4 Hz), 7.34 (d, 2H, J 
= 8.5 Hz), 6.91 – 7.00 (m, 3H), 3.84 (dd, 1H, J = 7.2, 4.6 Hz), 2.97 (d, 
1H, J = 7.2 Hz), 2.44 (s, 3H), 2.35 (s, 3H), 2.32 (d, 1H, J = 4.6 Hz), 
2.28 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 144.72, 137.95, 136.72, 
135.15, 130.89, 130.32, 129.84, 128.11, 126.82, 125.98, 39.61, 35.07, 
21.75, 21.11, 19.08. HRMS (FAB+): calculated for C17H20NO2S 
([M+H]+): 302.1215; found: 302.1210. 

N-(2-hydroxy-2-phenylpropyl)-4-methylbenzenesulfonamide (26).    
This compound was prepared following the method of B. Srinivas et al.3  

1H NMR (400 MHz, CDCl3) δ 7.67 (d, 2H, J = 8.3 Hz), 7.24 – 7.38 
(m, 7H), 4.59 (s, 1H), 3.22 (dd, 1H, J = 12.8, 8.5 Hz), 3.12 (dd, 1H, J 
= 12.8, 4.8 Hz), 2.42 (s, 3H), 1.56 (s, 3H). 13C NMR (101 MHz, 
CDCl3) δ 144.87, 143.73, 136.73, 129.93, 128.75, 127.60, 127.19, 
124.93, 73.81, 53.99, 27.62, 21.68. HRMS (FAB+): calculated for 
C16H20NO3S ([M+H]+): 306.1164; found: 306.1160.  
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N-(p-Tolylsulfonyl)-2-(2-naphthyl)aziridine (27).    
This compound was prepared following the method of T. Ando et al.4; spectral data are in 
agreement with literature values.6  

1H NMR (400 MHz, CDCl3) δ 7.90 (d, 2H, J = 8.3 Hz), 7.75 – 7.81 
(m, 3H), 7.73 (s, 1H), 7.45– 7.49 (m, 2H), 7.33 (d, 2H, J = 8.3 Hz), 
7.25 – 7.30 (m, 1H), 3.93 (dd, 1H, J = 7.2, 4.4 Hz), 3.07 (d, 1H, J = 
7.2 Hz), 2.50 (d, 1H, J = 4.5 Hz), 2.42 (s, 3H). 

A.4  Calibration Curves 

Calibration curves with an internal standard were created for quantitative HPLC 

analysis of reaction products; these curves plot the response factor (the ratio of product 

area to internal standard area, y-axis) against the concentration of product (x-axis). Internal 

standard was 1,3,5-trichlorobenzene (1.0 mM) and reactions were monitored at 220 nm. 

Calibration curves can be found in the Supplementary Information of the published paper. 

The identity of the products was additionally confirmed by LC-MS co-injections of 

reaction mixtures with chemically synthesized reference compounds; these traces can be 

found in the Supporting Information of the published paper.   
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A.5  Assignment of Absolute Stereochemistry 

Absolute stereochemistry of enzymatically produced aziridine 21 was assigned by 

chiral HPLC analysis and optical rotation. In particular, absolute stereochemistry of 21 was 

previously assigned by chiral HPLC using Chiracel OJ column (isopropanol/ n-hexane 

mobile phase), with (S)-21 the earlier eluting enantiomer.9 Analytically enantiopure 21 

produced by P-I263F A328V L437V (using whole cell catalyst) was subjected to the same 

chiral HPLC conditions and observed to be the earlier eluting enantiomer (Figure A-4), 

leading to an assignment of (S)-21. Further support for this assignment came from 

measuring optical rotation. The optical rotation values for enantiomers of 21 have been 

previously reported: (R)-21 [α]24
D = –80.25° (c 0.8, CHCl3)10 and (S)-21 [α]20

D = +26.7° (c 

0.7, CHCl3).11 Optical rotation measurement of analytically enantiopure 21 produced by P-

I263F A328V L437V gave [α]25
D = +80.2° (c 1.2, CHCl3), revealing it to be (S)-21.  

Similarly, the optical rotation of P-I263F-A328V-L437V produced 19 (analytically 

enantiopure) was measured to be [α]25
D = +106.1° (c 0.45, CHCl3). By analogy, the 

configuration of enzymatically preferred (+)-19 is assigned as (S)-19.   
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Racemic synthetic aziridine 21, tR = 16.7 min and 21.0 min.  

 
 
P-I263F A328V L437V produced aziridine 21, tR = 16.8 min. 

 
 
Figure A-4.  Assignment of absolute stereochemistry of enzymatically produced aziridine 
21 by chiral HPLC (Chiracel OJ column, 30% isopropanol : 70% n-hexane, 210 nm). 
 

A.6  Determination of Enantioselectivity 

Enantioselectivities of enzymatic products were determined by chiral SFC analysis. 

Representative traces, and their conditions, are shown below. 
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N-(2-hydroxy-2-(4-methoxyphenyl)ethyl)-4-
methylbenzenesulfonamide (16). SFC (Chiralpak AS-H column): 
25% isopropanol in supercritical CO2, 210 nm.  
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N-(p-Tolylsulfonyl)-2-(p-methylphenyl)aziridine (19).   
SFC (Chiralcel OB-H column): 20% isopropanol in supercritical CO2, 
210 nm. 

 
Racemic reference compound 
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P-I263F A328V 
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N-(p-Tolylsulfonyl)-2-phenylaziridine (21).  SFC (Chiralcel OB-H 
column): 15% isopropanol in supercritical CO2, 210 nm. 
 

Racemic reference compound 
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P-I263F A328V 
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N-(p-Tolylsulfonyl)-2-(p-chlorophenyl)aziridine (22).  SFC (Chiralpak 
AS-H column): 8% isopropanol in supercritical CO2, 210 nm. 
 

Racemic reference compound 
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N-(p-Tolylsulfonyl)-2-(m-chlorophenyl)aziridine (23).  SFC (Chiralcel 
OB-H column): 20% isopropanol in supercritical CO2, 210 nm. 
 

Racemic reference compound  
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N-(p-Tolylsulfonyl)-2-(m-methylphenyl)aziridine (24). SFC (Chiralcel 
OB-H column): 20% isopropanol in supercritical CO2, 210 nm. 
 

 
Racemic reference compound 
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N-(p-Tolylsulfonyl)-2-(2,4-dimethylphenyl)aziridine (25). SFC 
(Chiralcel OB-H column): 10% isopropanol in supercritical CO2, 210 
nm. 

 
Racemic reference compound  
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N-(2-hydroxy-2-phenylpropyl)-4-methylbenzenesulfonamide (26). SFC 
(Chiralpak AS-H column): 15% isopropanol in supercritical CO2, 210 nm. 
 

  
Racemic reference compound 
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N-(p-Tolylsulfonyl)-2-(2-naphthyl)aziridine (27). SFC (Chiralpak AS-
H column): 8% isopropanol in supercritical CO2, 210 nm. 
 

Racemic reference compound  
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A.7  1H and 13C NMR Spectra 

1H and 13C NMR spectra of the following compounds can be found in the Supporting 

Information of the published paper: 

Compound Spectra 

 1H (400 MHz, CDCl3), 
13C (400 MHz, CDCl3) 

 

	 1H (400 MHz, CDCl3), 
13C (400 MHz, CDCl3) 
	

	 1H (400 MHz, CDCl3), 
13C (400 MHz, CDCl3) 
	

 
 

 

 

 
 

 

 

 
 

 

 

  

NHTs

MeO

OH

NTs

Me Me

NHTs
HO Me



 

 

72  
A.8  References and Notes 

1.  Farwell, C. C. et al. Enantioselective imidation of sulfides via enzyme-catalyzed 
intermolecular nitrogen-atom transfer. J. Am. Chem. Soc. 2014, 136, 8766–8771. 

2.  Heel, T.; McIntosh, J.A.; Dodani, S.C.; Meyerowitz, J.T.; Arnold, F.H. Non-natural 
olefin cyclopropanation catalyzed by diverse cytochrome P450s and other 
hemoproteins. ChemBioChem. 2014, 15, 2556. 

3.  Srinivas, B.; Kumar, V.P.; Sridhar, R.; Surendra, K.; Nageswar, Y.V.D; Rao, K.R. J. 
Regioselective nucleophilic opening of epoxides and aziridines under neutral 
conditions in the presence of β-cyclodextrin in water. J. Mol. Catal. A: Chem. 2007, 
261, 1–5. 

4.  Ando, T.; Kano, D.; Minakata, S.; Ryu, I; Komatsu, M. Iodine-catalyzed aziridination 
of alkenes using chloramine-T as a nitrogen source. Tetrahedron 1998, 54, 13485–
13494. 

5.  Evans. D. A.; Faul, M. M.; Bilodeau, M. T. Development of the copper-catalyzed 
olefin aziridination reaction. J. Am. Chem. Soc. 1994, 116, 2742–2753. 

6.  Huang, C. Y.; Doyle, A. G. Nickel-catalyzed Negishi alkylations of styrenyl 
aziridines. J. Am. Chem. Soc. 2012, 134, 9541–9544.  

7.  Craig II, R.A.; O’Connor, N.R.; Goldberg, A.F.G.; Stoltz, B.M. Stereoselective lewis 
acid mediated (3+2) cycloadditions of N-H- and N-sulfonylaziridines with 
heterocumulenes. Chem. Eur. J. 2014, 20, 4806 – 4813. 

8.  Gao, G.Y.; Harden, J.D.; Zhang, X.P. Cobalt-catalyzed efficient aziridination of 
alkenes. Org. Lett. 2005, 7, 3191–3193. 

9.  Takeda Y.; Ikeda, Y.; Kuroda, A.; Tanaka, S.; Minakata, S. Pd/NHC-Catalyzed 
enantiospecific and regioselective Suzuki–Miyaura arylation of 2-arylaziridines: 
Synthesis of enantioenriched 2-arylphenethylamine derivatives. J. Am. Chem. Soc. 
2014, 136, 8544-8547. 

10.  Alonso, D.A.; Andersson, P.G. Deprotection of sulfonyl aziridines. J. Org. Chem. 
1998, 63, 9455-9461. 

11.  Wang, X.; Ding, K. One-pot enantioselective aziridination of olefins catalyzed by a 
copper(I) complex of a novel diimine ligand by using PhI(OAc)2 and sulfonamide as 
nitrene precursors. Chem. Eur. J. 2006, 12, 4568-4575. 

 

                                                



 

 

73  
C h a p t e r  3  

INTERMOLECULAR BENZYLIC C−H AMINATION CATALYZED BY 
ENGINEERED CYTOCHROME P450 ENZYMES  

Material for this chapter appears in Prier, C. K. †; Zhang, R. K. †; Buller, A. R.; Brinkmann-
Chen, S.; Arnold, F. H. “Enantioselective, intermolecular benzylic C−H amination 
catalysed by an engineered iron-haem enzyme,” Nature Chemistry 2017, 9, 629–634. DOI: 
10.1038/nchem.2783. (†Denotes equal contribution) This work was performed in 
collaboration with all authors. Reprinted with permission from Nature Publishing Group.  
 
3.1 Abstract 

C−H bonds are ubiquitous structural units of organic molecules. While these bonds 

were traditionally considered to be chemically inert, the recent emergence of methods for 

C−H functionalization promises to transform the way synthetic chemistry is performed. 

Due to the prevalence of nitrogen in bioactive molecules, the intermolecular amination of 

C−H bonds represents a particularly desirable transformation. Here we report the directed 

evolution of an iron-containing enzyme catalyst, based on a cytochrome P450 

monooxygenase, for the highly enantioselective, intermolecular amination of benzylic 

C−H bonds. The biocatalyst is capable of up to 1,300 turnovers, exhibits excellent 

enantioselectivities, and provides access to valuable benzylic amines. Although iron 

complexes are generally poor catalysts for C−H amination, the protein framework enables 

this transformation and does so with exquisite control of enantioselectivity. This work 

demonstrates that a renewable protein catalyst based on iron, the most abundant transition 

metal in the earth's crust, can solve an outstanding challenge in synthetic chemistry. 

3.2 Introduction 

Chiral amine compounds are valuable intermediates in the synthesis of 

pharmaceuticals and other target molecules. The chiral amine moiety is widely present in 

top-selling drugs, including Cinacalcet (Sensipar), Sertraline (Zoloft), and Valsartan 

(Diovan), as well as many others (Figure 3-1).1 Methods for their preparation typically 

require the addition of a stoichiometric auxiliary (e.g. chiral tert-butanesulfinamide2), 
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kinetic resolution (e.g. by organocatalysis3 or biocatalysis4), or the use of a transition metal 

catalyst with chiral ligands (e.g. asymmetric hydrogenation5, hydroamination6, or C−H 

functionalization7). Due to the demonstrated importance of the chiral amine functionality, 

continued research efforts to develop efficient and sustainable methods for their 

preparation, such as the use of base metal catalysts and biocatalysts, will make a huge 

impact on synthesis. 

 

 

 

Figure 3-1. Examples of chiral amine containing pharmaceutical agents.  

 

We were intrigued by the direct transformation of an sp3 hybridized C−H bond to a 

C−N bond, which can be accomplished via the generation and transfer of a metal nitrene.7–

9 Many of the methods that have been developed for this transformation are 

intramolecular,10 which requires that a nitrogen source already be present in the same 

molecule as the targeted C−H bond. An elegant yet more elusive transformation is the 

intermolecular C−H amination of starting materials which do not contain a required 

functionality; such a reaction provides a dramatically simplified and convergent 

disconnection for the synthesis of amines (Figure 3-2). Recognizing the potential of this 

transformation, the development of innovative catalytic systems for intermolecular C−H 

amination have been pursued. While many of these methods are racemic, enantioselective 

intermolecular C−H amination via nitrene transfer has been developed using rhodium,11–13 

ruthenium,14,15 and manganese15,16 catalysts. Highly diastereoselective C−H amination 

N
NHN

NN

O

Me

O OH

Me

Me

Valsartan (Diovan)
high blood pressure treatment

H
N CF3

Me

Sensipar (Cinacalcet)
treatment for hyperparathyroidism

N N
N N

O

F3C

NH2

F

F
F

Sitagliptin (Januvia)
antidiabetic drug

CO2Et

O
NHAc

NH2•H3PO4Et

Et

Tamiflu (Oseltamivir)
flu medication

N
H

MeO
NH2

NH2

Lisdexamfetamine (Vyvanse)
ADHD medication

HN

Cl

Cl

Me

Sertraline (Zoloft)
antidepressant



 

 

75  
using a chiral nitrogen source has also been achieved using a rhodium catalyst.17 These 

systems represent major advances in C−H functionalization; none, however, offers the 

combination of high catalytic efficiency (turnover), high enantioselectivity across diverse 

substrates, and ready access to the chiral catalyst. 

 

 
Figure 3-2. Intermolecular C−H amination, a simplifying transformation for chiral amine 
synthesis. Intermolecular C−H amination enables direct and convergent functionalization 
in which a substrate and a nitrogen atom source are brought together in a single step. In 
principle, any C−H bond in the substrate is a potential site of functionalization. 

Curiously, a process for the direct transformation of a sp3 C−H bond to C−N bond is 

not known to be a natural function of any known enzyme. Biosynthetic routes to amines 

instead appear to exclusively rely on functional group manipulation of pre-oxidized 

substrates, and biocatalytic multi-enzyme cascades have been engineered for formal C−H 

amination using this general approach.18,19 We and others, however, have demonstrated 

that heme proteins can catalyze nitrene transfer, including for intramolecular C−H 

amination,20–24 under appropriate reaction conditions. In particular, variants of cytochrome 

P450BM3 from Bacillus megaterium that feature a serine axial ligand to the heme iron in 

place of the wild-type cysteine ligand, which we term cytochrome P411s,25 are proficient 

catalysts for these reactions. 

Building on Chapter 2 and other work in the Arnold group, here we describe the 

directed evolution of P411 enzymes for intermolecular benzylic C−H amination. Similar 

to the proposed aziridination mechanism, we envisioned a catalytic cycle for 

intermolecular amination as shown in Figure 3-3. First, reduction of the ferric state of the 

heme cofactor gives the catalytically active ferrous state. Reaction with a nitrene source, 

here tosyl azide (TsN3), then provides the putative iron nitrene intermediate. Subsequent 

nitrogen source valuableC−H bonds in
simple or complex 

molecules
chiral amines

• Direct C–H amination is not a natural function of any known enzyme
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• Challenging transformation with no highly enantioselective, earth-abundant catalysts
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reaction of this intermediate with an alkane substrate such as 4-ethylanisole (28) would 

deliver the C−H amination product 29 and regenerate the ferrous state of the catalyst. A 

competing process observed in P411-catalyzed nitrene transfer is the reduction of the iron 

nitrene, generating the undesired by-product p-toluenesulfonamide (TsNH2, 17). While 

heme protein catalysts have been identified for intramolecular C−H amination, in such 

cases the targeted C−H bond has an implicit proximity advantage to the nitrene 

intermediate due to the intramolecular arrangement. In contrast, a catalyst for the desired 

intermolecular amination must bind a separate alkane substrate and promote its amination 

faster than the transient nitrene species is consumed in the reductive side reaction. 
 

 

 

Figure 3-3. Proposed mechanism of intermolecular C−H amination catalyzed by a 
cytochrome P411 enzyme. Reaction of tosyl azide with the ferrous heme cofactor generates 
an enzyme-bound iron nitrene intermediate. This nitrene then inserts into a C−H bond in a 
second substrate, delivering a benzylic amine product. The nitrogen atoms in a plane 
represent the enzyme's heme cofactor. Ts = 4-toluenesulfonyl; Ser = serine. Notes: to date, 
the protonation state of the axial serine ligand in P411 enzymes is not known; a formal 
oxidation state of the iron nitrene intermediate is shown, but may not accurately reflect its 
electronic structure. 
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In initial studies, we found that almost all cytochrome P411s reported to date display 

no activity toward intermolecular C−H amination of substrate 28 with tosyl azide, instead 

delivering exclusively sulfonamide 17 (Table B-1 in Appendix B). This includes catalysts 

that were developed for ostensibly similar reactions such as intermolecular aziridination 

(Chapter 2) and intramolecular C−H amination with arylsulfonyl azides.21,22 Other heme 

proteins, as well as the heme cofactor alone (iron protoporphyrin IX) were similarly 

inactive (Table B-2 in Appendix B).  

Remarkably, Dr. Christopher Prier identified a P411 variant, P-4, previously 

engineered for the imidation of allylic sulfides,26 that showed some activity toward the 

desired C−H amination reaction. Under anaerobic conditions, variant P-4, which differs 

from wild-type P450BM3 by 17 mutations, catalyzes the amination of 4-ethylanisole (28) at 

the benzylic carbon in 11% yield and 14% ee. Testing other variants created for the sulfide 

imidation reaction identified P-4 A82L, with an additional A82L mutation, which provides 

greater than 4-fold improvement in yield (to 51%) and delivers the product 4 in 77% ee 

(Table B-3 in Appendix B). Although it is not clear why evolution for sulfide imidation 

engendered activity for C−H amination, we can speculate that this may be due to 

similarities between the molecular geometries at the reactive positions of the two substrates 

(Figure 3-4). Like 4-ethylanisole, which is tetrahedral at the benzylic carbon, the sulfide 

substrate is also expected to be near tetrahedral at the reactive sulfur atom. In contrast, the 

olefin moiety which undergoes the aziridination reaction is planar.    
 

 
 

Figure 3-4. Comparison of sulfide imidation (left) and C−H amination (right) substrate 
geometries. Substrates for both reactions have tetrahedral molecular geometry at the 
reactive position. The plane represents the enzyme's heme cofactor; nitrogen atoms have 
been omitted for clarity.  
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We next performed sequential rounds of site-saturation mutagenesis of selected 

residues in P-4 A82L and screening to improve C−H amination activity and 

enantioselectivity. We targeted sites in the heme domain that were either previously shown 

to impact the activity and/or selectivity of P450s, residues that are highly conserved in 

P450s, or residues that were already mutated in P-4 relative to wild-type P450BM3 (see 

Table B-5 in Appendix B for details).27 The libraries were screened for enhanced C−H 

amination activity, and potential hits were subsequently evaluated for activity across a set 

of three substrates with different electronic demands for C−H amination: 4-ethylanisole 

(28), 4-ethyltoluene (30), and ethylbenzene (31) (Figure 3-5). Two mutations, A78V and 

F263L, improve activity and selectivity on all three substrates, yielding a catalyst that 

delivers the benzylic amine products as single enantiomers (>99% ee). A final mutation, 

E267D, is neutral with respect to the amination of 4-ethylanisole but provides a two-fold 

improvement in the amination of ethylbenzene (31, to 15% yield), a less electronically 

activated substrate. We call this final variant P411CHA, for "cytochrome P411 C−H 

aminase." Under the conditions employed for evolution, this catalyst generates the benzylic 

amine 29 in 66% yield, with >99% ee and 1,000 turnovers in whole E. coli cells.  
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Figure 3-5. Evolution of a cytochrome 
P411 catalyst for enantioselective C−H 
amination. Directed evolution via 
sequential rounds of site-saturation 
mutagenesis and screening, improved both 
the yield and enantioselectivity of P411-
catalyzed C−H amination. Reactions were 
performed using E. coli cells expressing the 
P411 variant, resuspended to OD600 = 30, 
with 5 mM alkane substrate and 5 mM tosyl 
azide, under anaerobic conditions. Results 
are the average of experiments performed 
with duplicate cell cultures, each used to 
perform duplicate chemical reactions (four 
reactions total). Bars represent yield; 
numbers above bars represent enantiomeric 
excess (ee); both are color-coded to match 
the substrate (blue, 28; red, 30; purple, 31). 
Error bars correspond to one standard 
deviation. P-4 gives predominantly the S 
enantiomer in the amination of 28; all other 
variant/substrate combinations give 
predominantly the R enantiomer. Data are 
tabulated in Table B-6 of Appendix B. 

 
3.3.2 In Vitro Studies  

With a variant optimized for intermolecular C−H amination of ethylbenzenes in hand, 

we characterized the activity of the enzyme under in vitro conditions. Using purified 

P411CHA, we investigated the effect of NADPH concentration, previously shown to be a 

suitable reductant for P411-catalyzed olefin aziridination reactions, on C−H amination 

activity (Figure 3-6). Surprisingly, in the absence of external reductant, a small amount of 

benzylic amine product was detected (ca. ~40 TTN). Addition of sub-stoichiometric 

amounts of NADPH (1 mM) significantly increased turnover to amine product (130 TTN 

to 29) while stoichiometric and super-stoichiometric concentrations of NADPH (5 mM or 

above) gave a further improvement (up to ~180 TTN). The amount of sulfonamide 17 

detected in reaction mixtures also increased with addition of up to 10 mM NADPH. These 

results support the hypothesis that the ferrous enzyme is active for the amination chemistry. 
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Increasing NADPH concentration may be beneficial to activity through reduction of ferric 

enzymes created during the course of catalysis (from production of sulfonamide 17, for 

example, Figure 3-3), back to the catalytically active ferrous state.  

 
Figure 3-6. Effect of NADPH concentration on C−H amination activity of P411CHA in 
vitro. Reactions performed with 5 µM P411CHA purified protein, NADPH (variable), 5 mM 
4-ethylanisole, and 5 mM tosyl azide as described in the Experimental Methods (Section 
3.5). Bars represent the average of duplicate reactions; error bars represent one standard 
deviation.  
 

Employing 10 mM NADPH as the reductant, the four enzymes of the C−H amination 

lineage were evaluated in vitro using model substrates 4-ethylanisole and tosyl azide (Table 

3-1). Notably, the amination activity of the purified proteins (up to 190 TTN to 29) is much 

lower than in E. coli cells (1,000 TTN with P411CHA); further investigation of differences 

between in vitro and in whole cell conditions was not pursued. Increasing the enzyme 

concentration from 5 µM to 20 µM resulted in a higher yield of amination product 29 (from 

15% to 47%), though with some loss to TTN (entries 4 and 5, Table 3-1). Characterization 

of initial rates of reaction with these enzymes demonstrate that the accumulated mutations 

increase the rate of the amination reaction: indeed, the initial rate of C−H amination was 
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enhanced by greater than 8-fold for reaction by P411CHA compared to starting variant P-4 

(Table 3-2). 

Table 3-1. C−H amination of 4-ethylanisole performed with purified P411 variants.a 

 

Entry Catalyst Yield, TTN, ee of 29 

1 P-4  (5 µM) 2.2% yield, 22 TTN, –4% ee (S) 

2 P-4 A82L (5 µM) 9.7% yield, 97 TTN, 80% ee (R) 

3 P-4 A82L A78V F263L (5 µM) b 19% yield, 190 TTN, >99% ee (R) 

4 P411CHA (5 µM) 15% yield, 150 TTN, >99% ee (R) 

5 P411CHA (20 µM) 47% yield, 120 TTN, >99% ee (R) 
aReactions performed with 5 mM 4-ethylanisole, 5 mM tosyl azide, 10 mM NADPH and 
purified enzyme; results are the average of duplicate reactions. b Variant P-4 A82L A78V 
F263L outperforms P411CHA in vitro, demonstrating differences in enzyme activities under 
whole cell versus in vitro conditions. 
 

Table 3-2. Initial rates of intermolecular C−H amination and azide reduction.a 

 

Variant TOF 29 TOF TsNH2 (17) 

P-4 0.73 min–1 29.1 min–1 

P-4 A82L 3.0 min–1 13.6 min–1 

P-4 A82L A78V F263Lb 7.3 min–1 12.2 min–1 

P411CHA 6.4 min–1 23.7 min–1 
aReactions performed with 5 mM 4-ethylanisole, 5 mM tosyl azide, 10 mM NADPH and 
5 µM purified enzyme; see Experimental Methods (Section 3.5) for details. Data used to 
calculate rates are presented in Figures B-1 and B-2 in Appendix B. bVariant P-4 A82L 
A78V F263L outperforms P411CHA in vitro, demonstrating differences in enzyme activities 
under whole cell versus in vitro conditions. TOF, turnover frequency. 

 

MeO

Me
+ TsN3

P411 variant

MeO

Me

NHTs

10 mM NADPH
in vitro28 29

MeO

Me
+ TsN3

0.1 mol% P411 variant

MeO

Me

NHTs

10 mM NADPH
28 29 17

+ TsNH2



 

 

82  
Preliminary mechanistic studies were pursued to investigate the nature of the C−H 

insertion step. Independent rate measurements conducted with deuterated substrate 28-d2 

show a kinetic isotope effect (kH/kD) of 1.6 in the reaction catalyzed by P411CHA, suggesting 

C−H insertion effects the rate of the reaction (Figure 3-7).28   A similar value (KIE = 1.9) 

was measured by Dubois and coworkers on Rh2(OAc)4 mediated intramolecular C−H 

amination of sulfamates, although they employed an intramolecular competition 

experiment for this measurement so the values are not directly comparable.29 KIE values 

of this magnitude have been associated with a concerted nitrene transfer step.30 However, 

in the absence of additional computational or experimental studies, which were not 

conducted, we cannot conclude details regarding the mechanism.  

 
Figure 3-7. Kinetic isotope effect studies with P411CHA. The kinetic isotope effect for 
P411CHA-catalyzed C−H amination was determined from independent in vitro rate 
experiments; see Experimental Methods (Section 3.5) for details. Data used to calculate 
rates are presented in Figure B-3 in Appendix B 
  
3.3.3 Structural Studies 

We obtained an X-ray crystal structure of the penultimate variant in the intermolecular 

C−H amination lineage (P-4 A82L A78V F263L, heme domain only) at 1.70-Å resolution 

(see Table 3-6 in Section 3.5 Experimental Methods for crystallography analysis). Note: 

we only attempted crystallization of the heme domain because full length P450BM3, which 

contains three domains (heme domain, FMN binding domain, and FAD domain), has never 

been successfully crystallized. The beneficial mutations identified in this study are all 

located in helices that line the active site; two mutations are located in the enzyme's Bʹ 

helix (A82L, A78V) and two are located in the I helix (F263L, E267D) (Figure 3-8). 

Residues in both of these helices are known to mediate substrate binding and/or impact 
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selectivity in P450-catalyzed oxygenation reactions.31–33 Soaking experiments in which 

crystals of P-4 A82L A78V F263L heme domain were combined with 4-ethylanisole (28) 

or benzylic amine product (29) were unsuccessful at yielding a structure with substrate or 

product occupancy in the active site.   

Figure 3-8. Active site view of the P-4 
A82L A78V F263L crystal structure. 
The heme is shown in white and the iron 
atom in orange. Key active site residues 
are labeled and shown as sticks in blue. 
Residue S400 ligates the iron center; 
mutations at positions 78, 82, 263, and 
267 enhance C−H amination activity 
and/or selectivity. All beneficial 
mutations identified in this study lie in 
the P411 active site on the distal face of 
the heme. 

 

 

The structure of the evolved aminase adopts the P450 closed state typically induced 

by substrate binding, which was also observed with two earlier reported P411 structures 

(Figure 3-9).22,25 Compared to the structure of P411 variant P-I263F,22 which differs by 

only six mutations yet performs intermolecular C−H amination with trace activity (<1% 

yield), there are only minor movements of the protein scaffold. Globally, the largest 

differences in the position of protein backbone atoms are observed between the F and G 

helices and the F/G and G/H loops, which are known to be the most variable regions of 

P450s (Figure 3-10).32 Local differences within the distal heme pocket were also observed; 

for example, active-site residue P329 adopts an endo conformation in P-4 A82L A78V 

F263L compared to exo in P-I263F.  On average, the volume of the heme distal pocket is 

estimated to be reduced by approximately 10% in the evolved variant compared to P-I263F 

(calculations performed by CASTp server; see Chapter 3.5 Experimental Methods for 

details). The smaller active site potentially enforces productive substrate binding modes. 
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These observations suggest that the mutations introduced on the path to P411CHA exert local 

effects that modulate interactions with the azide and alkane substrates in the active site.  

 
Figure 3-9. Heme domain protein alignments of cytochrome P411 variant P-4 A82L A78V 
F263L with wild type P450BM3 and other P411BM3 structures. Top panels show alignments 
of P411BM3 P-4 A82L A78V F263L (cyan) with open (substrate free) form of wild type 
P450BM3 (tan, PDB 2IJ2) and closed (substrate bound) form of wild-type P450BM3 
(magenta, PDB 1JPZ). Large movements of the I, F, and G helices are observed when 
comparing P-4 A82L A78V F263L with the open form of wild-type P450BM3 (arrows); the 
position of these helices align more closely with the closed form of wild type P450BM3. 
Bottom panels show alignments of P-4 A82L A78V F263L (cyan) with previously obtained 
P411BM3 structures, P411BM3-CIS (orange, PDB 4H23) and P-I263F (green, PDB 4WG2). 
No significant structural changes are observed. Protein alignments were carried about using 
the align tool of PyMOL (PyMOL Molecular Graphics System, Version 1.3, Schrodinger 
LLC). 
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Figure 3-10. Representative plots of root-mean-square deviation (RMSD) between the 
backbone atoms of P-4 A82L A78V F263L and P-I263F (PDB 4WG2). Blue: comparison 
of molecule A in P-4 A82L A78V F263L and molecule A in P-I263F. Yellow: comparison 
of molecule B of P-4 A82L A78V F263L and molecule C of P-I263F. 
 

3.3.4 Substrate Scope 

All substrate scope studies were carried out using P411CHA in E. coli cells. Subsequent 

experiments on modifying the reaction conditions revealed that P411CHA can support up to 

1,300 turnovers (Table 3-3, entry 3), which exceeds the highest turnover number reported 

with any chiral transition metal complex to date for enantioselective, intermolecular C−H 

amination (85 TTN with a chiral manganese porphyrin).15  Employing two equivalents of 

tosyl azide improved the yield of benzylic amine product: under these conditions, product 

29 is obtained in 86% yield, with >99% ee and 670 turnovers (Table 3-3, entry 8).  
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Table 3-3. Optimization of the P11CHA-catalyzed amination of 4-ethylanisole.a b 

entry mM 4-ethylanisole (3) mM tosyl azide  yield (4) TON 
1 5 5 66% 1,000 
2 7.5 7.5 51% 1,200 
3 10 10 41% 1,300 
4 15 15 26% 1,200 
5 20 20 20% 1,200 
6 2.5 2.5 56% 430 
7 2.5 3.75 80% 630 
8 2.5 5 86% 670 
9 2.5 7.5 83% 640 
10 2.5 10 78% 610 

aReactions were performed with E. coli cells expressing P411CHA, as in Figure 3-5. All 
reactions generate benzylic amine 29 in >99% ee. Blue, conditions employed during 
evolution; Red, turnover-optimized conditions; Purple, yield-optimized conditions, 
employed for evaluating the substrate scope. bThese experiments were conducted by Dr. 
Chris Prier.  
 

Scope studies, led by Dr. Chris Prier, were carried out using the yield-optimized 

conditions. Cytochrome P411CHA aminates a diverse set of arene-containing hydrocarbons. 

Substitution of the aromatic ring is tolerated at para, meta, and ortho positions (32–34 in 

Figure 3-11). While electron-withdrawing functionality reduces the reactivity of the alkane 

substrate toward the metal nitrenoid, several halogenated ethylbenzenes are functionalized 

with >100 turnovers (36–38). The cyclic substrates indan and tetralin are excellent 

substrates (giving products 39 and 40), while the related 2,3-dihydrobenzofuran displays 

reduced reactivity (product 41). Larger alkylarenes such as ethylnaphthalenes and 4-

propylanisole are still accommodated in the enzyme active site, undergoing amination with 

varying levels of efficiency (products 42–44). Notably, the amination of 1-

ethylnaphthalene delivers the nitrogen-containing fragment of the calcimimetic drug 

cinacalcet (Sensipar, Figure 3-1) with the correct absolute configuration (43).34 

Furthermore, although the activity is low, the amination of the methyl group of 4-

methylanisole demonstrates that these catalysts are capable of functionalizing a primary 

benzylic C−H bond (product 45). Interestingly, cumene and 4-methoxycumene are not 

aminated by P411CHA despite the presence of weak benzylic C–H bonds. Benzylic ethers 
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are suitable substrates for amination, but the products are isolated in racemic form (46 and 

47). For the amination of isochroman (product 47), analysis of crude reaction mixtures 

demonstrated that the C−H insertion event is moderately enantioselective (65% ee), but the 

product undergoes racemization during purification on silica gel (see Table B-7 in 

Appendix B). Notably, most of the alkane substrates evaluated undergo functionalization 

with excellent levels of enantioselectivity (>90% ee), a key advantage of this enzymatic 

approach over most reported metal catalysts.  

 

Figure 3-11. Substrate scope of enzymatic intermolecular C−H amination. Reactions were 
performed in duplicate with E. coli cells expressing P411CHA at OD600 = 30 (~3 µM 
enzyme), with 2.5 mM alkane substrate and 5.0 mM tosyl azide. Absolute configurations 
were assigned based on analogy to 29, 32, and 43; rac, racemic.  †Isolated yield from a 
reaction performed on 0.25-mmol scale (see Appendix B for details). 
 

The enzymatic amination reaction can be performed on preparative scale: from a 0.25 

mmol-scale biotransformation, the benzylic amine 29 was isolated in 78% yield (59.5 mg, 

610 TTN, >99% ee). The tosyl group present in the C−H amination product may be 
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removed via treatment with samarium diiodide,35 providing the corresponding primary 

amine with no erosion of enantiomeric excess (see Appendix B for details).   

 

3.3.5 Extended Substrate Scope Studies 

The harsh reductive conditions required for removal of the tosyl group limits the 

synthetic utility of this amination method. Carbamates, by contrast, are among the most 

widely used protecting groups for amines with many methods developed for their 

deprotection.36 In addition, the carbamate moiety is present in bioactive molecules, 

including insecticides and therapeutics.37 To test whether current heme protein variants 

could perform C−H amidation to install a carbamate group, a small set of proteins evolved 

for intermolecular C−H amination with tosyl azide were challenged with 4-ethylanisole 

(28) and nitrene precursor substrates 48 (Table 3-4) or 49 (Table 3-5). Notably, these 

nitrene precursor substrates are hydroxylamine derivatives; hydroxylamine reagents are 

preferred in order to avoid the use of low carbon organic azides (e.g. tert-butyl-oxycarbonyl 

azide (boc-azide), which has been implicated in explosions,38 would be the corresponding 

azide reagent).  Amination of sp3-hybridized C−H bonds using hydroxylamine reagents has 

been demonstrated with small molecule catalysts based on rhodium39, 40 and copper.41  

The tested heme protein variants showed no activity for the desired reactions. Enzyme 

reactions were extracted into organic solvent (1:1 mix of ethyl acetate and cyclohexane) 

and analyzed by gas chromatography-mass spectrometry (GC-MS). Comparison of traces 

from enzymatic reactions with separately synthesized reference compound 50 showed no 

product or signal close to background (trace). Additional experiments were not pursued.   
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Table 3-4. Initial tests for C−H amidation using reagent 48 with select cytochrome P411 
variants.a 

 

Variant Mutations relative to P-4 Yield to 50 

P-4 A82L F263Y A82L, F263Y N.D. 

P-4 A82L A78V F263L A82L, A78V, F263L N.D. 

P-4 A82L A78V F263L A264X-A2 A82L, A78V, F263L, A264M N.D. 

P-4 A82L A78V F263L A74X-D8 A82L, A78V, F263L, A74C N.D. 

P-4 A82L A78V F263L A74X-B11 A82L, A78V, F263L, A74E N.D. 
aReactions were conducted using E. coli cells expressing the appropriate P411 variant at 
OD600 = 45, with 10 mM 4-ethylanisole and 10 mM reagent 48. Cytochrome P411 variants 
were derived from the study described in this chapter. N.D., not detected. Amintion at the 
homobenzylic position was not observed using any of the tested enzymes.  

Table 3-5. Initial tests for C−H amidation using reagent 49 with select cytochrome P411 
variants.a 

 

Variant Mutations relative to P-4 Yield to 50 

P-4 A82L F263Y A82L, F263Y N.D. 

P-4 A82L A78V F263L A82L, A78V, F263L N.D. 

P-4 A82L A78V F263L A264X-A2 A82L, A78V, F263L, A264M N.D. 

P-4 A82L A78V F263L A74X-D8 A82L, A78V, F263L, A74C trace 

P-4 A82L A78V F263L A74X-B11 A82L, A78V, F263L, A74E trace 
aReactions were conducted using E. coli cells expressing the appropriate P411 variant at 
OD600 = 45, with 10 mM 4-ethylanisole and 10 mM reagent 49. Cytochrome P411 variants 
were derived from the study described in this chapter. N.D., not detected; trace indicates a 
small signal, close to noise, was observed at the correct retention time. Amintion at the 
homobenzylic position was not observed using any of the tested enzymes.  
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3.4 Conclusion 

Cytochrome P411CHA displays the ability to aminate benzylic C−H bonds 

intermolecularly in diverse structures with high selectivity, demonstrating that a renewable 

protein catalyst based on iron (the most abundant transition metal in the earth's crust)42 can 

solve a long-standing challenge in synthetic chemistry. Biocatalysts for non-natural 

reactions have alternatively been created by introducing precious metals (such as iridium 

and rhodium) into proteins.43–46 An artificial iridium metalloenzyme has been shown to 

perform nitrene transfer; this system is capable of up to ~300 turnovers in intramolecular 

C−H amination reactions.46 That the P411 achieves intermolecular C−H amination with 

the native iron cofactor suggests that costly precious metals – and strategies for 

introduction of the non-native metal – are not necessary to achieve highly active 

biocatalysts for challenging non-natural reactions. The current work also describes an 

evolutionary pathway in which P411s evolved for a more readily accessible nitrene transfer 

reaction (sulfimidation) picked up promiscuous activity toward a more challenging 

reaction (intermolecular C−H amination). This strategy of stepwise evolution through 

increasingly challenging activities may be generally useful for engineering enzymes for 

new activities not readily found by testing wild-type proteins. Finally, the ability to 

accelerate C−H insertion via mutation suggests that cytochrome P411CHA may be a 

platform for evolving catalysts for diverse C−H functionalization reactions currently 

inaccessible to chemical catalysis. 

3.5 Experimental Methods 

See Appendix B for supporting tables and figures, details of protein variants, 

characterization of compounds, details of calibration curves, assignment of absolute 

stereochemistry, and methods for determining enantioselectivity. Additional information 

can be found in the Supporting Information of the published paper.  
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3.5.1 General Information 

Unless otherwise noted, all chemicals and reagents were obtained from commercial 

suppliers (Sigma-Aldrich, VWR, Alfa Aesar) and used without further purification. Silica 

gel chromatography was carried out using AMD Silica Gel 60, 230-400 mesh. 1H and 13C 

NMR spectra were recorded on a Varian Inova 300 MHz or 500 MHz, or Bruker Prodigy 

400 MHz instrument, in CDCl3 and are referenced to residual protio solvent signals. Data 

for 1H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = 

doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = doublet of doublets, dt = 

doublet of triplets, ddd = doublet of doublet of doublets), coupling constant (Hz), 

integration. Sonication was performed using a Qsonica Q500 sonicator. High-resolution 

mass spectra were obtained at the California Institute of Technology Mass Spectral 

Facility. Synthetic reactions were monitored using thin layer chromatography (Merck 60 

gel plates) using a UV-lamp for visualization. Substrates were purchased from commercial 

suppliers. Tosyl azide was prepared according to de Nanteuil and Waser.47 

3.5.2 Chromatography 

Analytical high-performance liquid chromatography (HPLC) was carried out using an 

Agilent 1200 series instrument and a Kromasil 100 C18 column (4.6 x 50 mm, 5 µm) with 

water and acetonitrile as the mobile phase. Semi-preparative HPLC was performed using 

an Agilent XDB-C18 column (9.4 x 250 mm, 5 µm) with water and acetonitrile as the 

mobile phase. Liquid-chromatotography-mass-spectrometry (LC-MS) was carried out 

using an Agilent 6140 series equipped with a C18 column with water (+0.1% acetic acid) 

and acetonitrile as mobile phases. Analytical chiral HPLC was conducted using a 

supercritical fluid chromatography (SFC) system with isopropanol and liquid CO2 as the 

mobile phase. Product enantiomers were separated using a Chiralpak AS column (4.6 x 

150 mm, 5 µm) from Chiral Technologies Inc. Gas chromatography-mass spectrometry 

(GC-MS) analyses were carried out using a Shimadzu GCMS-QP2010SE system and J&W 

HP-5ms column (30 m x 0.25 mm, 0.25 µm film). 
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3.5.3 Cloning and Site-Directed Mutagenesis 

pET22b(+) was used as a cloning and expression vector for all enzymes described in 

this study. P450 and P411 enzymes described in this study were expressed with a C-

terminal 6xHis-tag. Site-directed mutagenesis was performed using a modified 

QuikChangeTM mutagenesis protocol.48 The PCR products were gel purified, digested with 

DpnI, repaired using Gibson MixTM,49 and directly transformed into E. coli strain BL21 E. 

cloni cells (Lucigen). 

3.5.4 Determination of P411 Concentration 

The concentration of P411 enzymes in whole cell experiments was determined from 

ferrous carbon monoxide binding difference spectra using the previously reported 

extinction coefficient for serine-ligated enzymes (ε = 103,000 M-1 cm-1).50 The 

concentration of purified P411 enzymes was determined by quantifying the amount of free 

hemin present using the pyridine/hemochrome assay and the published extinction 

coefficient (ε = 191,500 M–1 cm–1).51 

3.5.5 Protein Expression and Amination Bioconversions Using Whole E. coli Cells 

E. coli BL21 E. cloni cells carrying a plasmid encoding a P411 variant were grown 

overnight in 5 mL Luria-Bertani medium with 0.1 mg/mL
 
ampicillin (LBamp, 37 ºC, 250 

rpm). The preculture was used to inoculate 45 mL of Hyperbroth medium (supplemented 

with glucose nutrient mix according to package instructions) with 0.1 mg/mL ampicillin 

(HBamp) in a 125-mL Erlenmeyer flask; this culture was incubated at 37 ºC, 230 rpm for 2 

h. Cultures were then cooled on ice (20 min), and expression was induced with 0.5 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG) and 1.0 mM 5-aminolevulinic acid (final 

concentrations). Expression was conducted at room temperature (23 ºC), at 130 rpm, for 

16–18 h. Cultures were then centrifuged (2,600 x g, 10 min, 4 ºC), and the pellets were 

resuspended to an OD600 of 30 (unless otherwise specified) in M9-N minimal media (no 

nitrogen). Aliquots of the cell suspension (4 mL) were used to determine the P411 

expression level after lysis by sonication. 
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For amination bioconversions, the cells (OD600 of 30 in M9-N media) were 

degassed by sparging with argon in sealed 6-mL crimp vials for at least 40 minutes. 

Separately, a glucose solution (250 mM in M9-N) was degassed by sparging with argon 

for at least 10 minutes. An oxygen depletion system (20 µL of a stock solution containing 

14,000 U/mL catalase and 1,000 U/mL glucose oxidase in 0.1 M KPi, pH 8.0) was added 

to 2-mL crimp vials. All solutions were uncapped and transferred into an anaerobic 

chamber. Resuspended cells (320 µL) were added to the vials, followed by glucose (40 µL, 

250 mM in M9-N), alkane substrate (10 µL of a DMSO stock), and tosyl azide (10 µL of a 

DMSO stock). Final concentrations were typically 2.5–5.0 mM alkane substrate, 5.0 mM 

tosyl azide, and 25 mM glucose; final reaction volume was 400 µL. The vials were sealed, 

removed from the anaerobic chamber, and shaken at room temperature and 40 rpm for 16–

20 h. The reactions were quenched by addition of acetonitrile (400 µL) and internal 

standard (10 µL of a DMSO stock). This mixture was then transferred to a microcentrifuge 

tube and centrifuged at 20,000 x g for 10 minutes. The supernatant was transferred to a vial 

and analyzed by HPLC; product concentrations were calculated using a calibration curve. 

For the determination of enantioselectivity, reaction mixtures were extracted with 

cyclohexane or cyclohexane : ethyl acetate (1:1, concentrated to dryness and re-suspended 

in an appropriate cyclohexane/ isopropanol mixture) and samples were analyzed by chiral 

SFC.  

3.5.6 Reaction Screening in 96-well Plate Format. 

Site-saturation libraries were generated employing the “22c-trick” method.48 E. coli 

libraries were cultured in LBamp (300 µL/well) at 37 ºC, 220 rpm and 80% relative humidity 

overnight. Hyperbroth medium (1000 µL/well, 0.1 mg/mL
 
ampicillin) was inoculated with 

the preculture (50 µL/well) and incubated at 37 ºC, 220 rpm, 80% humidity for 3 h. The 

plates were cooled on ice for 30 minutes, and then expression was induced with 0.5 mM 

IPTG and 1.0 mM 5-aminolevulinic acid (final concentrations). Expression was conducted 

at 20 ºC and 120 rpm for 24 h. The cells were pelleted (3,000 x g, 5 min, 4 ºC) and 

resuspended in the oxygen depletion system (20 µL/well). The 96-well plate was then 

transferred to an anaerobic chamber. In the anaerobic chamber, argon-sparged reaction 



 

 

94  
buffer (50 mM glucose in M9-N, 300 µL/well) was added, followed by the alkane substrate 

(10 µL/well, 200 mM in DMSO) and tosyl azide (10 µL/well, 200 mM in DMSO). The 

plate was sealed with an aluminum foil, removed from the anaerobic chamber, and shaken 

at 40 rpm. After 16–20 h, the seal was removed and acetonitrile (400 µL/well) and internal 

standard (10 µL/well of a DMSO stock) were added. The wells were mixed, the plate was 

centrifuged (5,000 x g, 10 min), and the supernatant was filtered through an AcroPrep 96-

well filter plate (0.2 µm) into a shallow-well plate for HPLC analysis.  

3.5.7 Protein Purification 

E. coli BL21 E. cloni cells carrying a plasmid encoding a P411 variant were grown 

overnight in 25 mL LBamp (37 ºC, 250 rpm). HBamp (630 mL, 0.1 mg/mL
 
ampicillin) in a 

1-L flask was inoculated with 25 mL of the preculture and incubated at 37 ºC and 230 rpm 

for 2.5 h (to OD600 ca. 1.8). Cultures were then cooled on ice (30 min) and induced with 

0.5 mM IPTG and 1.0 mM 5-aminolevulinic acid (final concentrations). Expression was 

conducted at 23 ºC, 130 rpm, for 16–20 h. Cultures were then centrifuged (5,000 x g, 8 

min, 4 ºC) and the cell pellets frozen at –20 ºC. For purification, frozen cells from two such 

cultures were resuspended in buffer A (25 mM tris, 20 mM imidazole, 100 mM NaCl, pH 

7.5, 4 mL/g of cell wet weight), loaded with hemin (1 mg/gram wet cell weight) and 

powdered DNaseI, and lysed by sonication. To pellet cell debris, lysates were centrifuged 

(20,000 x g, 20 min, 4 ºC). Proteins were expressed in a construct containing a 6x-His tag 

and purified using a nickel NTA column (1 mL HisTrap HP, GE Healthcare, Piscataway, 

NJ) using an AKTA or AKTAxpress purifier FPLC system (GE healthcare). P411 enzymes 

were eluted with a linear gradient from 100% buffer A to 100% buffer B (25 mM tris, 300 

mM imidazole, 100 mM NaCl, pH 7.5) over 10 column volumes. 

Proteins used for crystallography were subjected to an additional ion-exchange 

purification step. For these proteins, fractions were pooled and subjected to three 

exchanges of anion exchange buffer A (25 mM tris-HCl, pH 7.5) using centrifugal spin 

filters (10 kDa molecular weight cut-off, Amicon Ultra, Merck Millipore). Next, the 

protein was loaded onto an anion exchange Q Sepharose column (HiTrapTM Q HP, GE 
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Healthcare) and purified using an AKTA or AKTAexpress purifier FPLC system (GE 

healthcare). The enzyme was eluted from the Q-column by running a gradient from 0 to 

0.5 M NaCl over 10 column volumes. Fractions containing the enzyme were pooled, 

concentrated, and exchanged into storage buffer (25 mM tris-HCl, 25 mM NaCl, pH 7.5) 

as before. Subsequently, the concentrated protein was aliquoted, flash-frozen on powdered 

dry ice, and stored at –80 ºC.  Protein concentrations were determined via Bradford assay 

with a bovine serum albumin standard curve.  

Proteins used for other purposes were eluted from the Ni-NTA column as described 

above, pooled, concentrated, and subjected to three exchanges of phosphate buffer (0.1 M 

KPi, pH 8.0) using centrifugal filters (10 kDa molecular weight cut-off, Amicon Ultra, 

Merck Millipore) to remove excess salt and imidazole. Concentrated proteins were 

aliquoted, flash-frozen on powdered dry ice, and stored at –80 or –20 ºC. 

3.5.8 Amination Bioconversions Using Purified Protein 

Aliquots of phosphate buffer (260 µL 0.1 M potassium phosphate (KPi), pH 8.0) 

and NADPH (40 µL, 100 mM), or multiples thereof, were combined in a 6-mL crimp vial 

and degassed by sparging with argon for at least 30 minutes. Separately, a glucose solution 

(250 mM in 0.1 M KPi, pH 8.0) was also degassed in the same manner. Crimp vials (2 mL) 

were each charged with the oxygen depletion system (20 µL of a stock solution containing 

14,000 U/mL catalase and 1,000 U/mL glucose oxidase in 0.1 M KPi, pH 8.0). After 

degassing was complete, all solutions, 2-mL crimp vials, and purified protein (100 µM in 

0.1 M KPi, pH 8.0), kept on ice, were brought into the anaerobic chamber. Glucose solution 

(40 µL), NADPH solution (300 µL), and purified protein (20 µL of 100 µM stock solution) 

were added to each 2-mL vial. Reaction vials were then charged with alkane substrate (10 

µL, 200 mM in DMSO) and tosyl azide (10 µL, 200 mM in DMSO). Final concentrations 

were typically 5 mM alkane substrate, 5 mM tosyl azide, 10 mM NADPH, 25 mM glucose, 

and 5 µM P411; final reaction volume was 400 µL. Sodium dithionite (5 mM) was used as 

the reductant instead of NADPH for reactions with hemin and myoglobin. The vials were 

sealed, removed from the anaerobic chamber, and shaken at room temperature and 40 rpm 
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for 16–20 h. The reactions were quenched by addition of acetonitrile (400 µL) and internal 

standard (10 µL of a DMSO stock). This mixture was then transferred to a microcentrifuge 

tube and centrifuged at 20,000 x g for 10 minutes. The supernatant was transferred to a vial 

and analyzed by HPLC; product concentrations were calculated using a calibration curve. 

For the determination of enantioselectivity, reaction mixtures were extracted with 

cyclohexane or cyclohexane : ethyl acetate (1:1, concentrated to dryness and re-suspended 

in an appropriate cyclohexane/ isopropanol mixture) and samples were analyzed by SFC.  

3.5.9 Determination of Initial Rates Using Purified Protein 

Portions of phosphate buffer (260 µL 0.1 M KPi, pH 8.0) and NADPH (40 µL, 100 

mM), or multiples thereof, were combined in a 6-mL crimp vial and degassed by sparging 

with argon for at least 30 minutes. Separately, glucose solution (250 mM in 0.1 M KPi, 

buffer pH 8.0) was also degassed in the same manner. In preparation, 2-mL crimp vials 

were each charged with a stir bar and the oxygen depletion system (20 µL of a stock 

solution containing 14,000 U/mL catalase and 1,000 U/mL glucose oxidase in 0.1 M KPi, 

pH 8.0). After degassing was complete, all degassed solutions, prepared 2-mL crimp vials, 

and purified protein (100 µM in 0.1 M KPi pH 8.0), kept on ice, were brought into the 

anaerobic chamber. Glucose solution (40 µL), reaction solution (300 µL), and purified 

protein (20 µL of 100 µM stock solution) were added to each 2-mL vial; the vials were 

placed on a stir plate and allowed to stir for 5 minutes. Reaction vials were then charged 

with alkane substrate (10 µL, 200 mM in DMSO) and tosyl azide (10 µL, 200 mM in 

DMSO). Final concentrations were 5 mM alkane substrate, 5 mM tosyl azide, 10 mM 

NADPH, 25 mM glucose, and 5 µM P411; final reaction volumes were 400 µL. Reactions 

were set up in duplicate and products quantified at 1-minute intervals by quenching with 

acetonitrile containing internal standard (410 µL). This mixture was then removed from 

the anaerobic chamber, transferred to a microcentrifuge tube, and centrifuged at 20,000xg 

for 10 minutes. The supernatant was transferred to a vial and analyzed by HPLC; product 

concentrations were calculated using a calibration curve. Rates of C−H amination and azide 

reduction were measured from the same reactions. 
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3.5.10 Crystallization, X-ray Data Collection, and Protein Structure Determination 

of P-4 A82L A78V F263L Heme Domain 

The heme domain of variant P-4 A82L A78V F263L was crystalized by vapor 

diffusion. A 1:1 mixture of protein stock (22 mg/mL protein in 25 mM tris-HCl, 25 mM 

NaCl, pH 7.5 buffer) and mother liquor were combined in 24-well sitting drop plates 

(Hampton Research). The crystals were grown at room temperature over a span of 4–10 

days. Crystals formed in 0.1 M bis-tris pH 4.0–5.0, 13% PEG 3350, 0.2 M NaHCOO. Data 

was collected on a crystal that formed under the following conditions: 0.1 M Bis-tris pH 

5.0, 13% PEG 3350, 0.2 M NaHCOO. Crystals were cryo-protected by immersion into 

well solution with 25% glycerol before being flash-frozen in liquid N2. Diffraction data 

were collected on the Stanford Synchrotron Radiation Laboratory Beamline 12-2. Data was 

processed using XDS52 in the space group P21212 and scaled using AIMLESS53 to 1.70-Å 

resolution. 

The structure of P-4 A82L A78V F263L heme domain was solved by molecular 

replacement using PHASER, as implemented in CCP4, using the P411BM3-CIS T438S 

I263F structure (PDB ID: 4WG2) as the search model. Model building was performed in 

Coot and restrained refinement performed using Refmac5.54,55 TLS operators were 

included in the last round of refinement.56 Model quality was assessed with the MolProbity 

online server.57 Crystallographic and model statistics are described in Table 3-6. 

Soaking experiments with 4-ethylanisole (28) and benzylic amine 29 were performed 

as follows. Crystals of P-4 A82L A78V F263L heme domain were allowed to soak in well 

solution with 5–7.5 mM benzylic amine 29 or 5 mM 4-ethylanisole (28) and 5 to 15% 

DMSO as co-solvent for 24 h. Crystals survived these soaking conditions. Following, 

crystals were cryo-protected by immersion into well solution with 25% glycerol before 

being flash-frozen in liquid N2. Diffraction data were collected on the Stanford Synchrotron 

Radiation Laboratory Beamline 12-2. While some crystals which were soaked with 

substrate 28 and product 29 did diffract, occupancy of substrate or product was not 

observed in the active site of the protein.   
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Table 3-6. X-ray crystallography analysis of cytochrome P411 P-4 A82L A78V F263L 
heme domain (PDB: 5UCW). 
 

   Data collection   
Protein Cytochrome P411BM3 P-4 A82L A78V F263L 
PDB ID 5UCW 
Beamline SSRL 12.2a 

Space group P21212 
Cell dimensions  
    a, b, c (Å) 123.9, 127.0, 62.6 
    α, β, γ (°) 90.0, 90.0, 90.0 
  
Wavelength 0.9795 
Resolution (Å) (last bin A) 

 

 

 

40.0 – 1.70  
Last bin (Å) 1.73 – 1.70 
Rmeas (%)b 5.5 (262.2) 
Rpim (%)b 1.5 (69.8) 
CC1/2 

b 1.00 (0.593) 
< I / σI >b 23.9 (1.3) 
Completeness (%)b 99.8 (100.0) 
No. of observations 1,462,616  
No. of unique reflectionsb 108,841 (5,345) 
Redundancyb 13.4 (13.8) 
  
Refinement  
Resolution (Å) 40.0 – 1.70 
Final bin (Å) 1.744 – 1.700 
No. of reflections 103,324 
No. of reflections test set 5,400 (5.0%) 
Rwork / Rfree

b 18.9 / 22.3 (34.4 / 33.1) 
Total no. atoms (non-hydrogen) 7,709 
Average B-factor (Å2) 42.2 
RMSD  
    Bond lengths (Å)  0.012 
    Bond angles (°) 1.44 
  
Ramachandran plotc  
    Favored (%) 97.3 
    Additionally allowed (%) 2.7 
    Outliers (%) 0.0 
  
MolProbity  
    Clashscorec 2.76 (99th percentile) 
    Molprobity scorec 1.29 (97th percentile) 
   

aSSRL, Stanford Synchotron Radiation Lightsource. bHighest-resolution shell is shown in parentheses. cAs 
determined by MolProbity. 
Rwork is ||Fo – Fc|| / Fo, where Fo is an observed amplitude and Fc a calculated amplitude; Rfree is the same 
statistic calculated over a 5.0% subset of the data that has not been included during refinement. 
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3.5.11 Protein Cavity Volume Estimations 

Volumes of the heme distal pocket were estimated by the CASTp server using a 1.4-

Å probe.58 Estimated volumes for P-4 A82L A78V F263L were 1489 and 1411 Å3 for the 

two chains; estimated volumes for P-I263F (4WG2) were 1422, 1655, and 1737 Å3 for the 

three chains. 
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A p p e n d i x  B  

SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

Material for this chapter appears in Prier, C. K. †; Zhang, R. K. †; Buller, A. R.; Brinkmann-
Chen, S.; Arnold, F. H. “Enantioselective, intermolecular benzylic C−H amination 
catalysed by an engineered iron-haem enzyme,” Nature Chemistry 2017, 9, 629–634. DOI: 
10.1038/nchem.2783. (†Denotes equal contribution) This work was performed in 
collaboration with all authors. Reprinted with permission from Nature Publishing Group. 
 
B.1  Supporting Tables B-1 through B-7 
 
Table B-1. C−H amination of 4-ethylanisole with select variants of cytochrome P450BM3.a 

 

Variant Mutations relative to wild-type 
P450BM3 

Yield 

pET22b(+) vector N/A N.D. 

P450BM3 None N.D. 

P411BM3 C400S N.D. 

P411BM3 T268A T268A, C400S N.D. 

P411BM3-CIS T438S ("P") V78A, F87V, P142S, T175I, A184V, 
S226R, H236Q, E252G, T268A, 
A290V, L353V, I366V, C400S, 
T438S, E442K 

N.D. 

P411BM3-CIS T438S 
A268T 

V78A, F87V, P142S, T175I, A184V, 
S226R, H236Q, E252G, A290V, 
L353V, I366V, C400S, T438S, E442K 

N.D. 

P411BM3-H2-5-F10 L75A, V78A, F87V, P142S, T175I, 
A184V, S226R, H236Q, E252G, 
I263A, T268A, A290V, L353V, 
I366V, C400S, L437A, E442K 

N.D. 

P411BM3-H2-A-10 L75A, V78A, F87V, P142S, T175I, 
L181A, A184V, S226R, H236Q, 
E252G, T268A, A290V, L353V, 
I366V, C400S, E442K  

N.D. 

MeO

Me
+ TsN3

E. coli harboring
P450BM3 variant

MeO

Me

NHTs

28 29
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P411BM3-H2-4-D4 L75A, V78A, F87V, P142S, T175I, 

M177A, L181A, A184V, S226R, 
H236Q, E252G, T268A, A290V, 
L353V, I366V, C400S, L437A, 
E442K 

N.D. 

P411BM3 T268A F87Ab F87A, T268A, C400S N.D.  

P-I263Fb V78A, F87V, P142S, T175I, A184V, 
S226R, H236Q, E252G, I263F, 
T268A, A290V, L353V, I366V, 
C400S, T438S, E442K 

<1% yield 

P-I263F A268T P-I263F A268T N.D. 

P-I263F A328V P-I263F A328V <1% yield 

P-I263F A328V L437Vc P-I263F A328V L437V N.D. 
aReactions performed using E. coli cells expressing the appropriate protein at OD600 = 30 
with 5 mM of each substrate; results are the average of duplicate reactions. N.D., not 
detected. bVariants identified for regioselective intramolecular C−H amination.1 cVariant 
identified for aziridination of styrenes (Chapter 2).2  
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Table B-2. C−H amination of 4-ethylanisole performed with hemin or select heme 
proteins.a 

 

Catalyst Yield 

hemin (25 µM)b N.D. 

hemin (25 µM) + imidazole (1 mM)b N.D. 

hemin (25 µM) + bovine serum albumin (10 µM)b N.D. 

Myoglobin (Mb, equine heart, 10 µM)b N.D. 

Mb H64V V68A (sperm whale, 10 µM)b,c N.D. 

Rhodothermus marinus cytochrome cd N.D. 

Hydrogenobacter thermophilus cytochrome cd N.D. 

Rhodopila globiformis cytochrome cd N.D. 

Rhodothermus marinus cytochrome c V75T M100D M103Ed,e N.D. 
aReactions performed with 5 mM 4-ethylanisole and 5 mM tosyl azide; results are the 
average of duplicate reactions. N.D., none detected.  bPerformed in vitro with 5 mM sodium 
dithionite.  cVariant identified for intramolecular C−H amination.3 dPerformed using E. coli 
cells at OD600 = 30. eVariant identified for carbene Si−H insertion.4 
 
  

MeO

Me
+ TsN3

catalyst

MeO

Me

NHTs

28 29
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Table B-3. C−H amination of 4-ethylanisole with P411 variants previously engineered for 
the imidation of allylic sulfides (ref. 5).a 

 

Variant Mutations relative to wild-type 
P450BM3 

Yield 

P-I263F V87A P-I263F V87A 2% yield 

P-I263F V87A A328V P-I263F V87A A328V 2% yield 

P-4b P-I263F V87A A328V A268G	 11% yield	

P-I263F V87A A328V 
A82L 

P-I263F V87A A328V A82L 4% yield 

P-4 A82Lb P-I263F V87A A328V A268G A82L	 51% yield	

P-5 P-I263F V87A A328V A268G A82I 14% yield 
aReactions performed using E. coli cells expressing the appropriate protein at OD600 = 30 
with 5 mM of each substrate; results are the average of at least duplicate reactions. N.D., 
not detected. bThis data also appears in Table B-6. 
 

Table B-4. Mutations present in cytochrome P450BM3 variants used in Chapter 3. 

Variant Mutations relative to wild type P450BM3 

P-4 V78A, F87A, P142S, T175I, A184V, S226R, H236Q, E252G, 
I263F, T268G, A290V, A328V, L353V, I366V, C400S, T438S, 
E442K 

P-4 A82L V78A, A82L, F87A, P142S, T175I, A184V, S226R, H236Q, 
E252G, I263F, T268G, A290V, A328V, L353V, I366V, C400S, 
T438S, E442K 

P-4 A82L A78V A82L, F87A, P142S, T175I, A184V, S226R, H236Q, E252G, 
I263F, T268G, A290V, A328V, L353V, I366V, C400S, T438S, 
E442K 

P-4 A82L A78V 
F263L 

A82L, F87A, P142S, T175I, A184V, S226R, H236Q, E252G, 
I263L, T268G, A290V, A328V, L353V, I366V, C400S, T438S, 
E442K 

P-4 A82L A78V 
F263L E267D 

(P411CHA) 

A82L, F87A, P142S, T175I, A184V, S226R, H236Q, E252G, 
I263L, E267D, T268G, A290V, A328V, L353V, I366V, C400S, 
T438S, E442K 

MeO

Me
+ TsN3

E. coli harboring
P411 variant

MeO

Me

NHTs

28 29
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Table B-5. Summary of directed evolution for intermolecular C−H amination.a 

Gen. Parent enzyme Site-saturation 
libraries evaluated 

Screening 
substrate 

Mutation 
identified 

1 P-4 A82L A78X, L181X, 
F263X, T327X 

4-ethylanisole  A78V  

2 P-4 A82L A78V F263X, T327X 4-ethylanisole F263L 

3a P-4 A82L A78V 
F263L 

A74X, A264X, 
F393X, G402X 

4-ethylanisole none 

3b P-4 A82L A78V 
F263L 

R47X, S142X, 
V184X, G252X, 

E267X 

4-ethyltoluene E267D 

4 P-4 A82L A78V 
F263L E267D 

(P411CHA) 

R47X, Y51X 4-ethyltoluene none 

aSome residues were saturated more than once, in different parent variants. Gen, 
generation. 
 

Further information regarding residues: 

A74, L181, F263, A264, E267, T327: Distal face of heme, active site residues 

F393, G402: Axial face of heme 

A78, S142, V184, G252: Already mutated in P-4 relative to wild type P450BM3 

R47, Y51: Polar residues that interact with the carboxylate of the native fatty acid 
substrates 
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Table B-6. Intermolecular C−H amination data presented in Figure 3-5.a 

Variant Substrate [P411] Yield ee TTN 

P-4 4-ethylanisole 1.8 µM 11 ± 1% 14% (S) 310 

P-4 A82L 4-ethylanisole 2.4 µM 51 ± 3% 77% (R) 1000 

P-4 A82L 
A78V 

4-ethylanisole 2.7 µM 66 ± 2% 80% (R) 1200 

P-4 A82L 
A78V F263L 

4-ethylanisole N.A.a 66 ± 2% >99% (R) N.A.a 

P411CHA 4-ethylanisole 3.2 µM 66 ± 3% >99% (R) 1000 

P-4 4-ethyltoluene 1.8 µM 2.0 ± 0.3% N.A. 58 

P-4 A82L 4-ethyltoluene 2.4 µM 11 ± 1% 98% ee (R) 220 

P-4 A82L 
A78V 

4-ethyltoluene 2.7 µM 29 ± 1% >99% ee (R) 530 

P-4 A82L 
A78V F263L 

4-ethyltoluene N.A.a 32 ± 1% >99% ee (R) N.A.a 

P411CHA 4-ethyltoluene 3.2 µM 34 ± 3% >99% ee (R) 530 

P-4 ethylbenzene 1.8 µM 0.50 ± 0.01% N.A. 15 

P-4 A82L ethylbenzene 2.4 µM 2.2 ± 0.1% N.A. 46 

P-4 A82L 
A78V 

ethylbenzene 2.7 µM 6.5 ± 0.4% 92% ee (R) 120 

P-4 A82L 
A78V F263L 

ethylbenzene N.A.a 6.7 ± 0.4% >99% ee (R) N.A.a 

P411CHA ethylbenzene 3.2 µM 15 ± 1% >99% ee (R) 240 
aReactions were performed using E. coli cells expressing the P411 variant, resuspended to 
OD600 = 30, with 5 mM alkane substrate and 5 mM tosyl azide, under anaerobic conditions. 
Results are the average of experiments performed with duplicate cell cultures, each used 
to perform duplicate chemical reactions (four reactions total). bProtein concentration could 
not be accurately determined; variant is poorly behaved in carbon monoxide-binding assay. 
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Table B-7. Enantioselective C−H amination of isochroman with cytochrome P411CHA 
followed by post-reaction racemization.a 

 

Entry Conditions ee 

1 1 hour reaction time 65% 

2 2 hour reaction time 65% 

3 4 hour reaction time 65% 

4 6 hour reaction time 65% 

5 20 hour reaction time 65% 

6 20 hour reaction time, followed by treatment with 
silica 

racemic 

aReactions performed as in Table 2, using whole E. coli cells overexpressing P411CHA at 
OD600 = 30 (~3 µM enzyme), with 2.5 mM alkane and 5 mM tosyl azide. Identical small 
scale reactions (400 µL) were set up in parallel. After the indicated time, crude reaction 
mixtures were extracted with 1:1 cyclohexane:ethyl acetate, concentrated to dryness, and 
redissolved in 50% isopropanol in cyclohexane. Silica treatment was performed by 
allowing the crude reaction mixture (in cyclohexane/ethyl acetate) to rest on a silica pipette 
column (approx. 1 hour) followed by elution with ethyl acetate. Samples were analyzed by 
SFC chromatography using Chiralpak AS column (35% isopropanol). Representative 
traces are shown below. 
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Representative traces to accompany Table B-7.  

Racemic standard, N-tosyl-isochroman-1-amine (rac-47): 

 

 

Table B-7, Entry 5, with P411CHA (65% ee): 

 

 

Table B-7, Entry 6, with P411CHA post silica treatment (racemic): 
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B.2  Supporting Figures B-1 through B-3 
 

 
 

 
Figure B-1. Initial rates of intermolecular C−H amination of 4-ethylanisole. Reactions 
performed with 5 mM 4-ethylanisole, 5 mM tosyl azide, 10 mM NADPH and 5 µM purified 
enzyme; see Experimental Methods (Section 3.5) for details. These data were used to 
calculate the results presented in Table 3-2. 
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Figure B-2. Initial rates of azide reduction in the C−H amination of 4-ethylanisole. 
Reactions performed with 5 mM 4-ethylanisole, 5 mM tosyl azide, 10 mM NADPH and 5 
µM purified enzyme; see Experimental Methods (Section 3.5) for details. These data were 
obtained from the same experiments as Figure B-1 and used to calculate the results 
presented in Table 3-2. 
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Figure B-3. Independent rate experiments of P411CHA-catalyzed C−H amination of 4-
ethylanisole or 4-ethylanisole-d2 with tosyl azide. Reactions performed with 5 mM 4-
ethylanisole or 5 mM 4-ethylanisole-d2, 5 mM tosyl azide, 10 mM NADPH and 5 µM 
P411CHA purified enzyme; see Experimental Methods (Section 3.5) for details. These data 
were used to calculate a kinetic isotope effect (kH/kD) of 1.6, which was presented in Figure 
3-7. 
 
 
B.3  Amino Acid Sequences 

Amino acid sequence of cytochrome P411CHA: 
MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDE
SRFDKNLSQALKFVRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMVDIAVQLVQK
WERLNADEHIEVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISMVRALDEVMNKLQRANPD
DPAYDENKRQFQEDIKVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQII
TFLLAGHDGTSGLLSFALYFLVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRL
WPTVPAFSLYAKEDTVLGGEYPLEKGDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHA
FKPFGNGQRASIGQQFALHEATLVLGMMLKHFDFEDHTNYELDIKETLSLKPKGFVVKAKSKKIP
LGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSNMGTAEGTARDLADIAMSKGFAPQVATLDSH
AGNLPREGAVLIVTASYNGHPPDNAKQFVDWLDQASADEVKGVRYSVFGCGDKNWATTYQKVPAF
IDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFNLDIENSEDNKSTLSLQFVDS
AADMPLAKMHGAFSTNVVASKELQQPGSARSTRHLEIELPKEASYQEGDHLGVIPRNYEGIVNRV
TARFGLDASQQIRLEAEEEKLAHLPLAKTVSVEELLQYVELQDPVTRTQLRAMAAKTVCPPHKVE
LEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYYSISSSPRVDEKQASI
TVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAP
FRGFVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTY
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VQHVMEQDGKKLIELLDQGAHFYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKG
RYAKDVWAG 

Sequence of heme domain of P-4 A82L A78V F263L used for crystallography: 

The construct employed for crystallization is the heme domain of variant P-4 A82L A78V 
F263L (residues 1 to 463 of the holoprotein, followed by an XhoI site and a C-terminal 
His-tag).  
MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDE
SRFDKNLSQALKFVRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMVDIAVQLVQK
WERLNADEHIEVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISMVRALDEVMNKLQRANPD
DPAYDENKRQFQEDIKVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQII
TFLLAGHEGTSGLLSFALYFLVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRL
WPTVPAFSLYAKEDTVLGGEYPLEKGDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHA
FKPFGNGQRASIGQQFALHEATLVLGMMLKHFDFEDHTNYELDIKETLSLKPKGFVVKAKSKKIP
LGGIPSPSTLEHHHHHH 
 

B.4  Synthesis and Characterization of Substrates and Reference Compounds 

B.4.1  Substrates and Reference Compounds for Sections 3.3.1 to 3.3.5 

4-Ethylanisole-d2 (28-d2) was prepared according the procedure of Kurita et al.6 to 

97% deuterium incorporation at the benzylic position, as determined by 1H NMR analysis. 

Reference compounds corresponding to enzymatic reaction products were prepared by 

tosylation of the corresponding benzylic amine or by racemic C−H amination.7 The 

following are known compounds and their spectral data are in agreement with reported 

values7–12: N-tosyl-1-(p-methoxyphenyl)ethylamine (29), N-tosyl-1-(p-tolyl)ethylamine 

(32), N-tosyl-1-(m-tolyl)ethylamine (33), N-tosyl-1-(o-tolyl)ethylamine (34), N-tosyl-1-

phenylethylamine (35), N-tosyl-1-(p-bromophenyl)ethylamine (36), N-Tosyl-1-(p-

chlorophenyl)ethylamine (37), N-tosyl-1-(p-fluorophenyl)ethylamine (38), N-tosyl-1-

aminoindane (39), N-tosyl-1-aminotetralin (40), N-tosyl-1-(2-naphthyl)ethylamine (42), 

N-tosyl-1-(1-naphthyl)ethylamine (43), N-tosyl-1-(p-methoxyphenyl)propylamine (44), 

N-tosyl-4-methoxybenzylamine (45), N-tosyl-1,3-dihydroisobenzofuran-1-amine (46), N-

tosyl-isochroman-1-amine (47). 1H NMR data for these compounds are provided in the 

Supplementary Information of the published paper.  



 

 

117  
N-Tosyl-3-amino-2,3-dihydrobenzofuran (41) 

1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 
7.9 Hz, 2H), 7.23–7.17 (m, 1H), 6.94–6.88 (m, 1H), 6.86–6.78 (m, 
2H), 5.05 (ddd, J = 8.1, 8.1, 4.1 Hz, 1H), 4.77 (d, J = 8.5 Hz, 1H), 4.49 
(dd, J = 10.3, 7.9 Hz, 1H), 4.28 (dd, J = 10.3, 4.1 Hz, 1H), 2.48 (s, 3H); 
13C NMR (100 MHz, CDCl3) δ 160.0, 144.1, 137.8, 130.9, 130.2, 
127.3, 125.3, 125.0, 121.4, 110.7, 77.4, 55.6, 21.8; IR (film) 3284, 
2921, 1598, 1482, 1330, 1155, 1082, 970, 750, 667 cm-1; HRMS 
(FAB+) exact mass calculated for C15H16NO3S+ requires m/z 
290.0851, found 290.0855. 
 
 

B.4.1  Substrates and Reference Compounds for Section 3.3.6 

Substrates and reference compounds associated with Section 3.3.6 were prepared 

according to literature procedures.  

tert-butyl (4-nitrophenoxy)carbamate (48) 
 

This compound was prepared following the method of T. Sheradsky 
et al.13 1H NMR (400 MHz, CDCl3) δ 8.22 (d, J = 9.3 Hz, 2H), 7.22 
(d, J = 9.3 Hz, 2H), 1.51 (s, 9H). 
 

tert-butyl acetoxycarbamate (49).    
 

This compound was prepared following the method of P. Patel et al.14; 
spectral data are in agreement with literature reported values.15 1H 
NMR (400 MHz, CDCl3) δ 7.90 (s, 1H), 2.20 (s, 3H), 1.49 (s, 9H). 

 

tert-butyl (1-(4-methoxyphenyl)ethyl)carbamate (50)  

This compound was prepared from 1-(4-methoxyphenyl)ethan-1-
amine and di-tert-butyl dicarbonate following the method of F. Jahani 
et al.16 Spectral data are in agreement with literature reported values.17 
1H NMR (300 MHz, CDCl3) δ 7.22 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 
8.6 Hz, 2H), 4.73 (br s, 2H), 3.79 (s, 3H), 1.44 (d, J = 6.8 Hz, 3H), 1.42 
(s, 9H). 
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tert-butyl (4-methoxyphenethyl)carbamate (50’) 
 

This compound was prepared from 2-(4-methoxyphenyl)ethan-1-
amine and di-tert-butyl dicarbonate; spectral data are in agreement 
with literature reported values.16 1H NMR (300 MHz, CDCl3) δ 7.11 
(d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 4.52 (br s, 1H), 3.79 (s, 
3H), 3.34 (q, J = 6.7 Hz, 2H), 2.73 (t, J = 7.0 Hz, 2H), 1.43 (s, 9H). 
 
 

B.5  HPLC Calibration 

Calibration curves with an internal standard were created for quantitative HPLC 

analysis of reaction products; these curves plot the concentration of analyte (mM, y-axis) 

against the HPLC ratio (peak area ratio of analyte over internal standard, x-axis). Internal 

standards were 1,3,5-trimethoxybenzene (1.25 mM) or methyl phenylacetate (1.0 mM) and 

reactions were monitored at 230 nm or 210 nm. Calibration curves can be found in the 

Supplementary Information of the published paper. The identity of the products was 

additionally confirmed by HPLC co-injections of reaction mixtures with chemically 

synthesized authentic products, or by NMR analysis of products isolated from reactions 

performed on preparative scale.  

 

B.6  Preparative Scale Reactions 

These experiments were conducted by Dr. Chris Prier. E. coli BL21 E. cloni cells 

transformed with the plasmid encoding P411CHA were grown overnight in 25 mL LBamp 

(37 ºC, 250 rpm). Hyperbroth medium (470 mL, 0.1 mg/mL
 
ampicillin) in a 1-L flask was 

inoculated with 19 mL of the preculture and incubated at 37 ºC and 230 rpm for 2.5 h (to 

OD600 ca. 1.8). Cultures were then cooled on ice (30 min) and induced with 0.5 mM IPTG 

and 1.0 mM 5-aminolevulinic acid (final concentrations). Expression was conducted at 

room temperature (23 ºC) at 130 rpm for 16–18 h (to OD600 ca. 7.0). Cultures were then 

centrifuged (2,600 x g, 10 min, 4 ºC) and the pellets resuspended to OD600 = 30 in M9-N. 

Aliquots of the cell suspension (4 mL) were used to determine the P411 expression level 

after lysis by sonication. The cells (80 mL) were then combined with glucose (10 mL, 250 

mM in M9-N) in a 250-mL Erlenmeyer flask and degassed by sparging with argon for at 

NHBoc

MeO
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least 40 minutes. The reaction flask was then transferred into an anaerobic chamber. To the 

flask were added the oxygen depletion system (5 mL, 14,000 U/mL catalase and 1,000 

U/mL glucose oxidase in 0.1 M KPi, pH 8.0) followed by alkane (2.5 mL, 100 mM in 

DMSO) and tosyl azide (2.5 mL, 200 mM in DMSO). Final concentrations were typically 

2.5 mM alkane, 5.0 mM tosyl azide, and 25 mM glucose; final reaction volume was 100 

mL. The flask was sealed with parafilm, removed from the anaerobic chamber, and shaken 

at room temperature and 130 rpm for 20 h. The reaction was quenched by adding 

acetonitrile (50 mL) and then centrifuged (4,000 x g, 10 min). The supernatant was 

concentrated and extracted with EtOAc (3 x 25 mL). The organic layers were washed with 

brine (20 mL), dried over MgSO4, filtered, concentrated, and purified by chromatography. 

N-Tosyl-1-(p-methoxyphenyl)ethylamine (29). The reaction was performed under two 

different conditions. To optimize yield, the reaction was performed on 0.25-mmol scale 

with 2.5 mM 4-ethylanisole, 5.0 mM tosyl azide, and 3.18 µM P411CHA. The product was 

purified by silica gel chromatography (5 to 30% EtOAc/hexanes). Isolated 59.5 mg (78% 

yield, 610 TTN, >99% ee). To optimize turnovers, the reaction was performed on 1.0-mmol 

scale with 10 mM 4-ethylanisole, 10 mM tosyl azide, and 2.80 µM P411CHA. The product 

was purified by silica gel chromatography (20 to 30% EtOAc/hexanes). Isolated 103.3 mg 

(34% yield, 1,200 TTN, >99% ee). 

N-Tosyl-3-amino-2,3-dihydrobenzofuran (41). The reaction was performed on 0.25-

mmol scale with 2.5 mM 2,3-dihydrobenzofuran, 5.0 mM tosyl azide, and 2.98 µM 

P411CHA. The product was purified by C18 chromatography (5 to 100% MeCN/water). 

Isolated 15.1 mg (21% yield, 180 TTN, 92% ee). 

N-Tosyl-1,3-dihydroisobenzofuran-1-amine (46). The reaction was performed on 0.25-

mmol scale with 2.5 mM o-xylylene oxide, 5.0 mM tosyl azide, and 2.86 µM P411CHA. 

The product was purified by preparative HPLC (50 to 100% MeCN/water). Isolated 50.7 

mg (70% yield, 610 TTN). 
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N-Tosyl-isochroman-1-amine (47). The reaction was performed on 0.25-mmol scale with 

2.5 mM isochroman, 5.0 mM tosyl azide, and 2.73 µM P411CHA. The product was purified 

by silica gel chromatography (5 to 30% EtOAc/hexanes). Isolated 60.6 mg (80% yield, 730 

TTN). 

B.7  Determination of Enantioselectivity 

For the determination of enantioselectivity, reaction mixtures were extracted with 

cyclohexane, or purified compounds were dissolved in 20% isopropanol in hexanes, and 

samples were analyzed by chiral SFC.  

B.7.1  Assignment of Absolute Stereochemistry 

Assignment of absolute stereochemistry was performed by Dr. Chris Prier. Absolute 

stereochemistry was assigned by chemical synthesis of (R)-N-tosyl-1-(p-

methoxyphenyl)ethylamine ((R)-29), (S)-N-tosyl-1-(p-tolyl)ethylamine ((S)-32), and (R)-

N-tosyl-1-(1-naphthyl)ethylamine ((R)-43). Comparison to the enzymatic reactions reveals 

the enzymatic products to be the R enantiomer. Other benzylic amine products were 

assigned by analogy. Traces for the assignment using compound 29 are shown; additional 

traces for the other compounds can be found in the Supporting Information of the published 

paper.  
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N-Tosyl-1-(p-methoxyphenyl)ethylamine (29). SFC (Chiralpak AS 
column): 25% isopropanol in supercritical CO2, 2.5 mL/min, 40 ºC. 
 

 
rac-29  

 
(R)-29, chemically prepared: 

 
Enzymatic reaction, with P411CHA (>99% ee): 
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B.7.2  Analytical Conditions for Measurement of Enatiomeric Excess 

Representative traces for P411CHA catalyzed production of compounds 29, 32–44 are 

included in the Supporting Information of the published paper.  

Compound Analytical conditions for separating enantiomers 

	

SFC (Chiralpak AS column): 25% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 

tR: 7.6 min, 9.2 min	

	

SFC (Chiralpak AS column): 25% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 
tR: 6.3 min, 7.8 min	

 

SFC (Chiralpak AS column): 25% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 
tR: 5.5 min, 8.0 min 

 

SFC (Chiralpak AS column): 30% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 

tR: 5.0 min, 8.2 min 

 

SFC (Chiralpak AS column): 25% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 
tR: 6.2 min, 7.7 min 

 

SFC (Chiralpak AS column): 30% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 

tR: 5.1 min, 6.7 min 

 

SFC (Chiralpak AS column): 25% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 
tR: 5.9 min, 8.1 min 

 

SFC (Chiralpak AS column): 25% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 

tR: 4.6 min, 6.3 min 
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SFC (Chiralpak AS column): 35% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 

tR: 6.1 min, 8.4 min 

 

SFC (Chiralpak AS column): 40% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 
tR: 5.2 min, 7.3 min 

 

SFC (Chiralpak AS column): 30% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 

tR: 5.6 min, 8.5 min 

 

SFC (Chiralpak AS column): 40% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 
tR: 4.3 min, 5.9 min 

 

SFC (Chiralpak AS column): 40% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 
tR: 4.5 min, 8.0 min 

 

SFC (Chiralpak AS column): 25% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC 

tR: 6.3 min, 9.3 min 

 

B.8  Tosyl Group Removal 

Tosyl group removal was performed by the method of Ankner and Hilmersson.18 

 

Enzymatically produced tosylamide 29 (30.5 mg, 0.1 mmol, >99% ee) in dry THF (1 mL) 

was added to a 0.1 M solution of SmI2 in THF (20 mL, 2.0 mmol) at room temperature 

under argon. Water (108 µL, 6.0 mmol, degassed for 10 min with argon) and pyrrolidine 

(334 µL, 4.0 mmol, degassed for 10 min with argon) were then added. The solution was 
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allowed to stir at room temperature under argon for 1.5 hours. The resulting reaction 

mixture was diluted with diethyl ether (20 mL) and quenched with a solution of potassium 

sodium tartrate and potassium carbonate (20 mL, 10% w/v each). The aqueous phase was 

extracted with three portions of diethyl ether (3 × 20 mL). The combined organics were 

pooled and evaporated to yield the crude amine. The crude amine was taken up in aqueous 

10% HCl solution (5 mL) and washed with diethyl ether (4 × 3 mL). The aqueous layer 

was basified with 10% NaOH solution (5 mL) to pH 14 and extracted with dichloromethane 

(3 × 10 mL). The combined organic layers were dried over Na2SO4. Concentration gave 

(R)-1-(4-methoxyphenyl)ethanamine (9.2 mg, 61% yield) as an oil with spectral data in 

agreement with reported values.19 The ee was determined to be >99% using an Agilent 

7820A GC equipped with a Cyclosil-B chiral column (30 m × 0.320 mm, 0.25 µm film); 

method: 90–98 °C at 0.1 °C/min, 98–240 °C at 15 °C/min, 240 °C hold 5 min. 

(R)-1-(4-methoxyphenyl)ethanamine: 1H NMR (400 MHz, CDCl3) δ 7.26 (d, J = 8.5 Hz, 

2H), 6.87 (d, J = 8.7 Hz, 2H), 4.08 (q, J = 6.6 Hz, 1H), 3.80 (s, 3H), 1.59 (br s, 2H), 1.36 

(d, J = 6.6 Hz, 3H). 

Representative traces. Racemic standard, 1-(4-methoxyphenyl)ethanamine:  

 
(R)-1-(4-methoxyphenyl)ethanamine from tosyl group removal of enzymatically produced 
29:  
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C h a p t e r  4  

CARBON−CARBON BOND FORMATION BY HEME PROTEIN 
CATALYZED C−H FUNCTIONALIZATION 

Material for this chapter appears in Zhang, R. K.; Chen, K.; Huang, X.; Wohlschlager, L.; 
Renata, H.; Arnold, F. H. “Enzymatic assembly of carbon−carbon bonds via iron-catalysed 
sp3 C−H functionalisation,” Nature 2019, 565, 67–72. DOI: 10.1038/s41586-018-0808-
5. This work was performed in collaboration with all authors. Reprinted with permission 
from Nature Publishing Group.  
 
 
4.1 Abstract 

Though abundant in organic molecules, carbon−hydrogen (C−H) bonds are typically 

considered unreactive and unavailable for chemical manipulation. Recent advances in C−H 

functionalization technology have begun to transform this logic, while emphasizing the 

challenge and importance of selective alkylation at an sp3 carbon.1,2 Here we describe the 

first iron-based catalysts for enantioselective intermolecular alkylation of sp3 C−H bonds 

through carbene C−H insertion. The catalysts, derived from a cytochrome P450 enzyme 

whose native cysteine axial ligand has been substituted for serine (“cytochrome P411”), 

are fully genetically encoded and produced in bacteria, where they can be tuned by directed 

evolution for activity and selectivity. The laboratory-evolved enzymes functionalize 

diverse substrates containing benzylic, allylic, or α-amino C−H bonds with high turnover 

and exquisite selectivity. Furthermore, these highly efficient enzymes have enabled the 

development of concise chemoenzymatic routes to several natural products. The 

demonstration that these enzymes mediate sp3 C−H alkylation using their native iron-heme 

cofactor unlocks a vast natural heme protein diversity for this abiological transformation 

and will facilitate the development of new enzymatic C−H functionalization reactions for 

applications in chemistry and synthetic biology.  
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4.2 Introduction 

Biological systems use a limited set of chemical strategies to form carbon−carbon 

(C−C) bonds during construction of organic molecules.3 Whereas many of these 

approaches rely on the manipulation of functional groups, certain enzymes, including 

members of the radical S-adenosylmethionine (SAM) family, can perform alkylation of sp3 

C−H bonds. This has been an especially versatile strategy for structural diversification, as 

seen by its essential role in the biosynthesis of structurally varied natural products and 

cofactors.4–6 Known biological machineries for this transformation, however, are limited 

to enzymes that transfer a methyl group5,6 or conjugate an activated radical acceptor 

substrate4,7 to specific molecules, with methylation as a common mode for sp3 C−alkyl 

installation by radical SAM enzymes (Figure 4-1a).  

We sought to introduce a new enzymatic strategy for the alkylation of sp3 C−H bonds. 

For our design, we drew inspiration from the most widely used biological C−H 

functionalization transformation, C−H oxygenation. Enzymes such as the cytochromes 

P450 accomplish C−H oxygenation using a heme cofactor; their activities rely on 

activation of molecular oxygen for the controlled generation of a high-energy iron-oxo 

intermediate capable of selective insertion into a substrate C–H bond.8 Analogously, we 

anticipated that the combination of a heme protein and a diazo compound would generate 

a protein-enclosed iron-carbene species and that this carbene could participate in a selective 

C−H insertion reaction with a second substrate (Figure 4-1b). While it has been shown that 

heme proteins are capable of performing carbene transfer processes such as 

cyclopropanation and heteroatom–hydrogen bond insertions9–11, their functionalization of 

sp3 C−H bonds remained elusive. Of note, the alkylation of sp2-hybridized C−H bonds of 

unprotected indole substrates has recently been achieved using variants of myoglobin. 

Chemoselective for C3 functionalization, the alkylation occurs through electrophilic 

aromatic substitution rather than a C−H insertion mechanism which is expected for sp3 

C−H functionalization.13 
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Figure 4-1. Enzymatic C−H functionalization systems. (a) Methylation catalyzed by 
cobalamin-dependent radical SAM enzymes, as illustrated by Fom3 in fosfomycin 
biosynthesis.6 (b) Oxygenation catalyzed by cytochrome P450 monooxygenase (top) and 
envisioned alkylation reaction achieved under heme protein catalysis (bottom). Structural 
illustrations are adapted from Protein Data Bank (PDB) ID code 5UL4 (radical SAM 
enzyme) and PDB 2IJ2 (cytochrome P450BM3). Ad, adenosyl; Cys, cysteine; R, organic 
group; X, amino acid. 

 
Metal-carbene sp3 C−H insertion in small-molecule catalysis, especially 

intermolecular and stereoselective versions of this reaction, typically relies on transition 

metal complexes based on rhodium,14 iridium,15 and others.17–19 Artificial metalloproteins 

for carbene C−H insertion have been created by introducing an iridium-porphyrin into 

variants of apo heme proteins.20  Though rare, there are a few examples of iron-carbene sp3 

C−H insertion. The iron-catalyzed examples employ elevated temperatures (e.g. 80 °C),21 

are stoichiometric,22 or are restricted to intramolecular reactions,23 indicating a high 

activation energy barrier for C−H insertion with an iron-carbene. However, because the 

protein framework of an enzyme can impart significant rate enhancements to reactions24 

and even confer activity to an otherwise unreactive cofactor,25 we surmised that directed 
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evolution could reconfigure a heme protein to overcome the barrier for the iron-carbene 

C−H insertion reaction and acquire this new function (Figure 4-1b).  

4.3 Results and Discussion 

4.3.1 Reaction discovery and directed evolution 

In initial studies, we tested a panel of seventy-eight heme proteins which included 

variants of cytochromes P450, cytochromes c, and globin homologs. The heme proteins in 

whole Escherichia coli (E. coli) cells were combined with p-methoxybenzyl methyl ether 

(51) and ethyl diazoacetate at room temperature under anaerobic conditions; the resulting 

reactions were analysed for formation of C−H alkylation product 52a (see Section C.3 in 

Appendix C for the complete list of tested heme proteins). We found heme proteins from 

two superfamilies that showed low levels of this promiscuous activity, establishing the 

possibility of creating C−H alkylation enzymes with very different protein architectures 

(Figure 4-2). An engineered variant of cytochrome P450BM3 from Bacillus megaterium 

with an axial cysteine-to-serine mutation (cytochrome “P411”), P-4 A82L (ref. 25), 

provided 52a with 13 total turnovers (TTN). In Chapter 3, P-4 A82L was found to be an 

effective variant for the intermolecular C−H amination of ethylbenzenes with tosyl azide. 

In addition, nitric oxide dioxygenase from Rhodothermus marinus containing the Y32G 

mutation (Rma NOD Y32G) catalyzed the reaction with 7 TTN. A second alkane substrate, 

4-ethylanisole, was also accepted by the nascent C−H alkylation enzymes, albeit with 

lower turnover numbers (Table C-2 in Appendix C). The heme cofactor alone (iron 

protoporphyrin IX) or in the presence of bovine serum albumin were inactive (Table C-1 

and Table C-2 in Appendix C).  
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Figure 4-2. Select subset of heme proteins tested 
for promiscuous sp3 C−H alkylation activity. 
Structural illustrations are of representative 
superfamily members with the heme cofactor 
shown as red sticks: cytochrome P450BM3 (PDB 
2IJ2), sperm whale myoglobin (PDB 1A6K), and 
Rma cytochrome c (PDB 3CP5). Reaction 
conditions were heme protein in E. coli whole 
cells (re-suspended to OD600 = 30), 10 mM 
substrate 51a, 10 mM ethyl diazoacetate, 5 vol% 
EtOH in M9-N buffer at room temperature under 
anaerobic conditions for 18 hours. TTN, total 
turnover number; N.D., not detected; WT, wild 
type; Mb, sperm whale myoglobin, HGG, Hell’s 
Gate globin; cyt c, cytochrome c; Hth, 
Hydrogenobacter thermophilus. 

 

With P411 P-4 A82L as the starting template, sequential rounds of site-saturation 

mutagenesis and screening in whole E. coli cells were performed to identify increasingly 

active and enantioselective biocatalysts for C−H alkylation (see Section C.4 in Appendix 

C for details). Amino acid residues chosen for mutagenesis included those which line the 

active site pocket, reside on loops and other flexible regions of the protein, or possess a 

nucleophilic side chain.26 Improved variants were subsequently evaluated in reactions 

using clarified E. coli lysate with p-methoxybenzyl methyl ether (51a) and 4-ethylanisole. 

Five rounds of mutagenesis and screening yielded variant P411-gen6, which furnished 

product 52a with 60 TTN. Unlike the native monooxygenase activity, the C−H alkylation 

process does not require reducing equivalents from the FAD and FMN domains of the 

enzyme. Surmising that these domains may not be needed for the C−H alkylation reaction, 

we performed systematic truncations of P411-gen6 to determine the minimally sufficient 

domain(s) for retaining catalytic activity (Figure 4-3). Curiously, removal of the FAD 

domain, containing 37% of the amino acids in the full-length protein, created an enzyme 

with higher C−H alkylation activity: P411∆FAD-gen6 delivers 52a with 100 TTN, a 1.7-

fold increase in TTN compared with P411-gen6. This indicates that the FAD domain may 

have (negative) allosteric effects on C−H alkylation activity. Further studies with these 
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truncated enzymes revealed that they could be used in whole E. coli cells, in clarified E. 

coli cell lysate, and as purified proteins (Table C-3 in Appendix C).  

 

 

P411-gen6 variant TTN to 52a 
Full-length (P411-gen6) 59 
∆FAD (P411-gen6b) 98 
Heme domain only 73 (100†) 

Figure 4-3. Truncation of a full-length P411 protein delivers active C−H alkylation 
enzymes. (a) Domain architecture of cytochrome P450BM3. For its native monooxygenase 
activity, the FMN and FAD domains, collectively called the reductase domain, are 
responsible for delivering the necessary reducing equivalents from NADPH to the heme 
domain.  The end of the FMN domain and the fragment of the polypeptide chain included 
in the ∆FAD complex were chosen based on a report by S. Govindaraj and T. L. Poulos.27 
(b) Systematic truncation of the P411-gen6 full-length protein was performed to deliver 
P411-gen6b (P411∆FAD-gen6, amino acids 1–664) and P411-gen6 heme-domain only 
(amino acids 1–463). Standard reaction conditions: lysate of E. coli with 2.0 µM heme 
protein, 10 mM 51a, 10 mM ethyl diazoacetate, and 1 mM Na2S2O4 (unless otherwise 
indicated). TTN results are an average of at least duplicate reactions. RT, room 
temperature; TTN, total turnover number. †5 mM dithionite was used in these reactions. 
 

Eight additional rounds of mutagenesis and screening yielded P411-CHF (P411∆FAD 

C−H Functionalization enzyme, full list of changes provided in the Supplementary 

Information). The activities of the enzymes developed over the course of this directed 

evolution evaluated on substrates 51a and ethyl diazoacetate are summarized in Figure 4-

4 (see Figure C-1 in Appendix C for results with 4-ethylanisole and ethyldiazoacetate). 

P411-CHF displays 140-fold improvement in activity over P-4 A82L and delivers 52a with 

excellent stereoselectivity (2020 TTN, 96.7 : 3.3 e.r. using clarified E. coli lysate). 
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Subsequent studies showed that the stereoselectivity could be improved by conducting the 

reaction at lower temperature (e.g. 4 °C) with no significant change to TTN (Table C-4 in 

Appendix C).  Enzymatic C−H alkylation can be performed on millimole scale: using 1.0 

mmol substrate 51a, E. coli harboring P411-CHF at 4 °C furnished 52a in 82% isolated 

yield, 1060 TTN, and 98.0 : 2.0 e.r. (Figure 4-4).   

Figure 4-4. Directed evolution of a 
cytochrome P411 for enantioselective C−H 
alkylation. Bars represent mean TTN values 
averaged over four reactions (performed from 
two independent cell cultures; each used for 
duplicate reactions); each TTN data point is 
shown as a grey dot. Enantioselectivity 
results are represented by green diamonds. 
Reaction conditions were P411 variant in 
clarified E. coli lysate, 1 mM Na2S2O4, 10 
mM substrate 51a, 10 mM ethyl diazoacetate, 
5 vol% EtOH in M9-N buffer at room 
temperature under anaerobic conditions for 
18 hours.  

 
 

 
 

 
 

 

4.3.2  Kinetic isotope effect study 

Preliminary mechanistic investigations were pursued to interrogate the nature of the 

C−H insertion step. Independent initial rates measured for reactions with substrate 51a or 

deuterated substrate 51a-d2 revealed a normal kinetic isotope effect (KIE, kH/kD) of 5.1 for 

C−H alkylation catalyzed by P411-CHF (Figure 4-5). This suggests that C−H insertion is 

rate-determining and could possibly involve a linear transition state28.  In contrast, kinetic 
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isotope effects for rhodium catalysts with carboxylate ligands are significantly less (KIE = 

1.55–3.2)29,30; this has been invoked as evidence to support a widely accepted three-

centered transition state for C−H insertion with these systems31. (Note: KIE values for 

rhodium-carboxylate catalysts are commonly measured using an intermolecular 

competition experiment.) The difference in KIE between P411-CHF and the rhodium-

carboxylate catalysts suggests that these systems may have different transitions states or 

different mechanisms for the C−H insertion step. Since the nature of the C−H insertion step 

could influence the substrate and product profiles of the catalyst, this is one strong 

motivation to develop diverse systems for this chemistry.  

 
Figure 4-5. Kinetic isotope effect of C−H alkylation catalyzed by P411-CHF. Data points 
represent an average of duplicate measurements; error bars represent one standard 
deviation. Data collected at the 10-minute time point using substrate 51a-d2 were excluded 
due to non-linear behavior. Detailed experimental methods are described in Section 5.5 
Experimental Methods. 
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4.3.3 Benzylic C−H insertion substrate scope 

Using E. coli harboring P411-CHF, we assayed a range of benzylic substrates for 

coupling with ethyl diazoacetate (Figure 4-6). Both electron-rich and electron-deficient 

functionalities on the aromatic ring are well-tolerated (52a–52e, 52h); cyclic substrates are 

also suitable coupling partners (52f, 52g). Functionalization of alkyl benzenes is successful 

at secondary benzylic sp3 C−H bonds (52i–52l).  Notably, in the biotransformation of 

substrate 51l containing both tertiary and secondary benzylic C−H bonds, P411-CHF 

preferentially functionalizes the secondary position despite its higher C−H bond 

dissociation energy (BDE).  The carbene intermediate derived from ethyl diazoacetate 

belongs to the acceptor-only class. In contrast to the more widely-used donor/acceptor 

carbenes, acceptor-only intermediates are more electrophilic, and as a result selective 

reactions with this carbene class are still a major challenge for small-molecule catalysts.15,19 

Our results show that P411-CHF can control this highly reactive intermediate to furnish 

the desired sp3 C−H alkylation products and do so with high enantioselectivity.  

Enzymes can exhibit excellent reaction selectivity arising from their ability to form 

multiple interactions with substrates and intermediates throughout a reaction cycle. We 

hypothesized that the protein scaffold could be tuned to create complementary enzymes 

which access different reaction outcomes available to a substrate. When P411-CHF was 

challenged with 4-allylanisole (51m), a substrate which can undergo both C−H alkylation 

and cyclopropanation, we observed that C−H alkylation product 52m dominates, with 

selectivity > 25:1 (Figure 4-6, Figure C-4 in Appendix C) In contrast, a related full-length 

P411 variant P-I263F, containing thirteen mutations in the heme domain relative to P411-

CHF, catalyzed only the formation of cyclopropane product 52m’. Additionally, despite 

the established reactivity of silanes with iron-carbene,10 P411-CHF delivered C−H 

alkylation product 52h when substrate 51h was employed in the reaction (Si−H insertion 

product 52h’ was also observed but its formation may not be catalyzed by P411-CHF, 

Figure C-5 in Appendix C).  Reaction with P-I263F, in contrast, provided only the Si−H 

insertion product. These examples demonstrate an exceptional feature of macromolecular 
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enzymes: different products can be obtained simply by changing the amino acid sequence 

of the protein catalyst.  

 
Figure 4-6. Substrate scope for benzylic C−H alkylation with P411-CHF. (a) Experiments 
were performed using E. coli expressing cytochrome P411-CHF (OD600 = 30) with 10 mM 
substrate 51a–52l and 10 mM ethyl diazoacetate at room temperature (RT) under anaerobic 
conditions for 18 hours; reported TTNs are the average of four reactions (performed from 
two independent cell cultures, each used for duplicate reactions). †Si−H insertion product 
52h’ is also observed (see Figure C-5 in Appendix C). (b) Reaction selectivity for carbene 
C−H insertion or cyclopropanation can be controlled by the protein scaffold. Experiments 
were performed as in (a) using the indicated P411 variant. ξd.r. is given as cis : trans; e.r. 
was not determined. 

4.3.4 Enzymatic functionalization of allylic, propargylic, and α–amino C−H bonds 

Enzymatic C−H alkylation is not limited to functionalization of benzylic C−H bonds. 

Structurally dissimilar molecules containing allylic or propargylic C−H bonds are excellent 

substrates for this chemistry (Figure 4-7a). In contrast to 51a–51m, which contain a rigid 
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benzene ring, compounds 53a–53c and 53e feature flexible linear alkyl chains. Their 

successful enantioselective alkylation suggests that the enzyme active site can 

accommodate substrate conformational flexibility while enforcing a favoured substrate 

orientation relative to the carbene intermediate. To demonstrate the utility of this 

biotransformation, we applied the methodology to the formal synthesis of lyngbic acid 

(Figure 4-7a). Marine cyanobacteria incorporate this versatile biomolecule into members 

of the malyngamide family of natural products; likewise, total synthesis approaches to 

these natural products typically access lyngbic acid as a strategic intermediate en route to 

the target molecules.32 Using E. coli harboring P411-CHF, intermediate 54a was produced 

on 2.4 mmol scale in 86% isolated yield, 2810 TTN, and 94.7 : 5.3 e.r.. Subsequent 

hydrogenation and hydrolysis provided (R)-(+)-55 in quantitative yield, which can be 

elaborated to (R)-(+)-lyngbic acid by decarboxylative alkenylation.33  

As part of our substrate scope studies, we challenged P411-CHF with alkyl amine 

compounds. Compounds of this type are typically challenging for C−H functionalization 

methods because the amine functionality may coordinate to and inhibit the catalyst or 

create the opportunity for undesirable side reactions (e.g. ylide formation and its associated 

rearrangements).34,35 Using 56a or 56b, substrates which have both benzylic C−H bonds 

and α-amino C−H bonds, P411-CHF delivered the corresponding β-amino ester product 

with high efficiency (57a and 57b, Figure 4-7b). Notably, benzylic C−H insertion was not 

observed (with 56a, Figure C-7 in Appendix C) or significantly suppressed (with 56b, 

Figure C-8 in Appendix C), despite the typically lower BDEs of benzylic C−H bonds 

compared to α-amino C−H bonds.36 Additionally, N-aryl pyrrolidines (56c–56e) served as 

excellent substrates and were selectively alkylated at the α-amino sp3 position. Using P411-

CHF, the sp3 C−H alkylation of 56c outcompetes a Friedel-Crafts type reaction on the aryl 

ring, which is a favourable process with other carbene-transfer systems.37,38 Furthermore, 

alkylation product 57d offers a conceivable strategy for the synthesis of β-homoproline, a 

motif which has been investigated for medicinal chemistry applications.39  
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Given that P411-CHF alkylates both primary and secondary α-amino C−H bonds, we 

interrogated whether the enzyme could be selective for one of these positions. Employing 

N-methyl tetrahydroquinoline 56f as the alkane substrate, P411-CHF afforded β-amino 

ester products with 1050 TTN and a 9 : 1 ratio of regioisomers (C2 : C1, and 73.0 : 27.0 

e.r. for (–)-57f) (Figure 4-7b). As the tetrahydroquinoline ring is a privileged structural 

motif in natural products and bioactive molecules,40 its selective functionalization could 

provide a concise strategy for the synthesis of alkaloids. To improve the selectivity for 

alkylation of 56f, we tested variants along the evolutionary lineage from P-4 A82L to P411-

CHF. We found that P411-gen5 had even better regioselectivity and delivered product with 

the opposite stereo-preference. In a 3.0 mmol scale reaction, E. coli harboring P411-gen5 

delivered (+)-57f in 85% yield with excellent selectivity (1310 TTN, > 50 : 1 r.r., 91.1 : 

8.9 e.r.). In only a few steps, the enzymatic product was successfully transformed to 

alkaloid (R)-(+)-cuspareine (Figure 4-7b).40 
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Figure 4-7. Application of P411 enzymes for sp3 C−H alkylation. (a) Allylic and 
propargylic C−H alkylation. Unless otherwise indicated, experiments were performed 
using E. coli expressing cytochrome P411-CHF with 10 mM substrate 53a–53e and 10 mM 
ethyl diazoacetate; reported TTNs are the average of four reactions (performed from two 
independent cell cultures, each used for duplicate reactions). #TTN was calculated based 
on isolated yield from a reaction performed at 0.25 mmol scale. †Cyclopropene product 
was also observed (Figure C-6 in Appendix C). *Hydrogenation, followed by hydrolysis. 
(b) Enzymatic alkylation of substrates containing α-amino C−H bonds. Unless otherwise 
indicated, experiments were performed at 0.5 mmol scale using E. coli expressing 
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cytochrome P411-CHF with substrates 56a–56f and ethyl diazoacetate; TTNs were 
calculated based on isolated yields of products shown.  ξIsolated in 9 : 1 r.r. for 57f : 57f’. 
ψReduction, halogen exchange, and Suzuki-Miyaura cross-coupling. 

 

4.3.5  Diazo reagent scope 

We also probed the ability of select P411 enzymes to use other diazo reagents for C−H 

functionalization. Using different diazo reagents, enzymatic C−H alkylation can diversify 

one alkane substrate, such as 56a, to several products (59a–59c in Figure 4-8 and Figure 

C-9 in Appendix C). The diazo substrate scope extends beyond ester-based reagents: 

Weinreb amide diazo compound 58c and diazoketone 58d were found to participate in 

enzymatic C–H alkylation to furnish products 59c and 59d, respectively. Additional 

substitution at the α-position of the carbene, however, is generally not well-tolerated by 

P411-CHF and current related enzymes. With the exception of 58b, reactions using 

disubstituted carbene reagents failed to yield appreciable amounts of desired products 

(Figure C-9 in Appendix C).  

 

Figure 4-8. Enzymatic C−H alkylation with alternative diazo reagents. Unless otherwise 
indicated, reactions were performed at 0.5 mmol scale using E. coli expressing cytochrome 
P411-CHF with coupling partner 51a or 56a and diazo compounds 58a–58d; TTNs were 
calculated based on isolated yields of products shown. 

⏊
Variant P411-IY T327I was used. 

See Appendix C for the complete list substrates (Figure C-10 and Figure C-11) and 
information about enzyme variants. 
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4.4 Conclusion  

This study demonstrates that a cytochrome P450 can acquire the ability to construct 

C−C bonds from sp3 C−H bonds and that activity and selectivity can be greatly enhanced 

using directed evolution. Nature provides a huge collection of possible alternative starting 

points for expanding the scope of this reaction even further and for achieving other 

selectivities. The cytochrome P450 superfamily can access an immense set of organic 

molecules for its native oxygenation chemistry; we envision that P411-derived enzymes 

and other natural heme protein diversity can be leveraged to generate families of C−H 

alkylation enzymes that emulate the scope and selectivity of nature’s C−H oxygenation 

catalysts. 

4.5 Experimental Methods 

See Appendix C for supporting tables and figures, details about protein variants, 

synthesis and characterization of compounds, details regarding calibration curves, 

preparative scale enzymatic reactions, syntheses of (+)-lyngbic acid and (+)-cuspareine, 

and methods for determining enantioselectivity. Additional information, including 

nucleotide and amino acid sequences of variants, calibration curves and data analysis, 

chromatography traces, and 1H and 13C NMR spectra, can be found in the Supporting 

Information of the published paper.  

4.5.1 General information 

Unless otherwise noted, all chemicals and reagents were obtained from commercial 

suppliers (Sigma-Aldrich, VWR, Alfa Aesar, Combi-Blocks) and used without further 

purification. Silica gel chromatography was carried out using AMD Silica Gel 60, 230-400 

mesh. 1H and 13C NMR spectra were recorded on a Varian Inova 300 MHz, Varian Inova 

500 MHz, or Bruker Prodigy 400 MHz instrument in CDCl3 and are referenced to residual 

protio solvent signals. Data for 1H NMR are reported as follows: chemical shift (δ ppm), 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sext = sextet, m = 
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multiplet, dd = doublet of doublets, dt = doublet of triplets, ddd = doublet of doublet of 

doublets), coupling constant (Hz), integration. Sonication was performed using a Qsonica 

Q500 sonicator. High-resolution mass spectra were obtained at the California Institute of 

Technology Mass Spectral Facility. Synthetic reactions were monitored by thin layer 

chromatography (TLC, Merck 60 gel plates) using a UV-lamp or an appropriate TLC stain 

for visualization.  

E. coli cells were grown using Luria-Bertani medium (LB) or Hyperbroth (AthenaES) 

(HB) with 0.1 mg/mL ampicillin (LBamp or HBamp). Primer sequences are available upon 

request. T5 exonuclease, Phusion polymerase, and Taq ligase were purchased from New 

England Biolabs (NEB, Ipswich, MA). M9-N minimal medium (abbreviated as M9-N 

buffer; pH 7.4) was used as a buffering system for whole cells and lysates, unless otherwise 

specified. M9-N buffer was used without a nitrogen source; it contains 47.7 mM Na2HPO4, 

22.0 mM KH2PO4, 8.6 mM NaCl, 2.0 mM MgSO4, and 0.1 mM CaCl2.  

4.5.2 Chromatography 

Analytical reversed-phase high-performance liquid chromatography (HPLC) was 

carried out using an Agilent 1200 series instrument and a Kromasil 100 C18 column (4.6 

× 50 mm, 5 µm) or an Eclipse XDB C18 column (4.6 x 150 mm, 3 µm) with water and 

acetonitrile as the mobile phase. Analytical chiral HPLC was conducted using either an 

Agilent 1200 series instrument with n-hexane and isopropanol as the mobile phase or 

JACSO 2000 series supercritical fluid chromatography (SFC) system with supercritical 

CO2 and isopropanol as the mobile phase. Enantiomers were separated using one of the 

following chiral columns: Chiralpak AD-H, Chiralpak IC (4.6 mm × 25 cm), Chiralcel OB-

H (4.6 mm × 25 cm), Chiralcel OD-H (4.6 mm × 25 cm), Chiralcel OJ-H (4.6 mm × 25 

cm).  Gas chromatography (GC) analysis was carried out using an Agilent 7820A or 

Shimadzu GC-17A GC system, both equipped with an FID detector and with a J&W HP-

5 column (30 m × 0.32 mm, 0.25 µm film). Chiral GC was conducted using either an 

Agilent 7820A instrument (FID) and an Agilent CycloSil-B column (30 m × 0.32 mm, 0.25 

µm film) or an Agilent 6850 GC (FID) with a Chiraldex G-TA column (30 m × 0.25 mm, 
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0.12 µm film). Gas chromatography-mass spectrometry (GC-MS) analyses were carried 

out using a Shimadzu GCMS-QP2010SE system and J&W HP-5ms column (30 m × 0.25 

mm, 0.25 µm film). 

4.5.3 Cloning and site-saturation mutagenesis 

pET22b(+) was used as a cloning and expression vector for all enzymes described in 

this study. All enzymes described in this study were expressed with a C-terminal 6xHis-

tag. Site-saturation mutagenesis was performed using the “22c-trick” method.41 The PCR 

products were digested with DpnI, gel purified, and ligated using Gibson MixTM (ref. 42). 

The ligation mixture was used to directly transform electrocompetent E. coli strain E. cloni 

BL21(DE3) cells (Lucigen). 

4.5.4 Expression of P450 and P411 variants in 96-well plates 

Single colonies from LBamp agar plates were picked using sterile toothpicks and 

cultured in deep-well 96-well plates containing LBamp (300 µL/well) at 37 ºC, 220 rpm 

shaking, and 80% relative humidity overnight. After, HBamp (1000 µL/well) in a deep-well 

96-well plate was inoculated with an aliquot (50 µL/ well) of these overnight cultures and 

allowed to shake for 3 hours at 37 ºC, 220 rpm, and 80% relative humidity. The plates were 

cooled on ice for 30 minutes and the cultures were induced with 0.5 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) and 1.0 mM 5-aminolevulinic acid (final concentrations). 

Expression was conducted at 20 ºC, 150 rpm for 16–20 hours. 

4.5.5 Reaction screening in 96-well plate format 

E. coli (E. cloni BL21(DE3)) cells in deep-well 96-well plates were pelleted (3,000 × 

g, 5 min, RT) and resuspended in M9-N buffer (20 µL/well) by gentle vortexing. A GOX 

oxygen depletion system was added (20 µL/well of a stock solution containing 14,000 

U/mL catalase and 1,000 U/mL glucose oxidase in 0.1 M potassium phosphate buffer, pH 

8.0) and the 96-well plate was transferred into an anaerobic chamber. In the anaerobic 

chamber, argon-sparged reaction buffer (50 mM glucose in M9-N or 33 mM glucose in 
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M9-N, 300 µL/well) was added, followed by alkane substrate (10 µL/well, 400 mM in 

EtOH) and ethyl diazoacetate (10 µL/well, 400 mM in EtOH). In some cases, the substrates 

and reaction buffer were mixed together prior to addition to the plate.  The plate was sealed 

with an aluminum foil and shaken at room temperature and 500 rpm in the anaerobic 

chamber. After 5–20 hours, the seal was removed and the reactions were worked up 

following the appropriate method below. 

Product formation screening using GC and GC-MS. After 5–20 hours, a solution of 

0.4 mM 1,3,5-trimethoxybenzene (internal standard) in a mixed solvent system 

(cyclohexane/ ethyl acetate = 1:1, 510 µL) was added. The plate was tightly sealed with a 

reusable silicone mat, vortexed (15 s × 3), and centrifuged (3,000 × g, 5 min) to completely 

separate the organic and aqueous layers. The organic layers (180 µL/well) were transferred 

to 300 µL vial inserts, which were then placed in 2 mL vials and analyzed by GC. 

Product formation screening using HPLC. After 5–20 hours, the reaction mixtures, or 

an aliquot thereof (150 µL/well), were quenched by the addition of an equal or greater 

volume of acetonitrile (400 µL/well or 150–200 µL/well). This step is kept consistent 

within each round of directed evolution. The plate containing the resulting mixture was 

tightly sealed with a reusable silicone mat, vortexed (15 s × 3), and centrifuged (3,000 × g, 

5 min) to pellet the cells. The supernatant was filtered through an AcroPrep 96-well filter 

plate (0.2 µm) into a shallow-well plate and analyzed by reverse-phase HPLC.  

Enantioselectivity screening. After 5–24 hours, mixed solvent (cyclohexane/ ethyl 

acetate = 1:1, 250–500 µL/ well) was added to the reaction mixtures or aliquots thereof 

(250 µL). The plate containing the resulting mixture was tightly sealed with a reusable 

silicone mat, vortexed (15 s × 3) and centrifuged (3,000 × g, 5 min) to completely separate 

the organic and aqueous layers. When smaller volumes of mixed solvent were used for the 

extraction (< 400 µL), the extraction mixture was transferred to a 1.6 mL Eppendorf tube, 

vortexed (15 s × 3), and centrifuged (20,000 × g, 1 min). The organic layers (180 µL/well) 

were transferred to 300 µL vial inserts, which were then placed in 2 mL vials and analyzed 

by chiral HPLC (IC column, 2% i-PrOH in n-hexane).  
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4.5.6 Expression of P411 variants. 

E. coli (E. cloni BL21(DE3)) cells carrying plasmid encoding the appropriate P411 

variant were grown overnight in 5 mL LBamp. Preculture (2 mL) was used to inoculate 48 

mL of HBamp in a 125 mL Erlenmeyer flask; this culture was incubated at 37 ºC, 230 rpm 

for 2.5 hours. The culture was then cooled on ice (20–30 min) and induced with 0.5 mM 

IPTG and 1.0 mM 5-aminolevulinic acid (final concentrations). Expression was conducted 

at 20 ºC, 130 rpm, for 16–18 hours. Following, E. coli cells were pelleted by centrifugation 

(2,600 × g, 10 min, 4 ºC or 3,000 × g, 5 min, 4 ºC). Media was removed and the resulting 

cell pellet was resuspended in M9-N buffer to OD600 = 60. An aliquot of this cell suspension 

(3 mL) was taken to determine P411 concentration using the hemochrome assay after lysis 

by sonication. When applicable, remaining cell suspension was further diluted with M9-N 

buffer to the OD600 used for the biotransformation (described in (4.5.8)) and the 

concentration of P411 protein in the biotransformation was calculated accordingly. 

4.5.7 Hemochrome assay for the determination of heme protein concentration. 

E. coli cells expressing heme protein and resuspended in M9-N buffer were lysed by 

sonication using a Qsonica Q500 sonicator equipped with a microtip (2 mins, 1 second on, 

1 second off, 25% amplitude); samples were kept on wet ice for this process. The resulting 

lysed solution was centrifuged (20,000 × g, 10 min, 4 °C) to remove cell debris. The 

supernatant (clarified lysate) was separated from the pellet and kept on ice until use. In a 

falcon tube, a solution of 0.2 M NaOH, 40% (v/v) pyridine, 0.5 mM K3Fe(CN)6 was 

prepared (pyridine-NaOH-K3Fe(CN)6 solution). Separately, a solution of 0.5 M Na2S2O4 

(sodium dithionite) was prepared in 0.1 M NaOH. To an Eppendorf tube containing 500 

µL of clarified lysate in M9-N buffer was added 500 µL of the pyridine-NaOH-K3Fe(CN)6 

solution, mixed, and transferred to a cuvette; the UV-Vis spectrum of the oxidized FeIII 

state was recorded immediately. To the cuvette was then added 10 µL of the sodium 

dithionite solution. The cuvette was sealed with parafilm and the UV-Vis spectrum of the 

reduced FeII state was recorded immediately. A cuvette containing 500 µL of M9-N, 100 

µL 1 M NaOH, 200 µL pyridine, and 200 µL water (complete mixture without protein and 
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K3Fe(CN)6) was used as a reference for all absorbance measurements. Concentrations of 

cytochromes P450, cytochromes P411, and globins were determined using a published 

extinction coefficient for heme b, ε556(reduced)-540(oxidized) = 23.98 mM-1cm-1 (ref. 43).  

Cytochrome c concentration was measured using a modified procedure, reported 

previously.10 

4.5.8 Biotransformations using whole E. coli cells 

Suspensions of E. coli (E. cloni BL21(DE3)) cells expressing the appropriate heme 

protein variant in M9-N buffer (typically OD600 = 30) were degassed by bubbling with 

argon in sealed vials for at least 40 minutes; the cells were kept on ice during this time. 

Separately, a solution of D-glucose (250 mM in M9-N) was degassed by sparging with 

argon for at least 30 minutes. All solutions were then transferred into an anaerobic chamber 

for reaction set up. To a 2 mL vial were added a GOX oxygen depletion solution (20 µL of 

stock solution containing 14,000 U/mL catalase and 1,000 U/mL glucose oxidase in 0.1 M 

potassium phosphate buffer, pH 8.0), D-glucose (40 µL of 250 mM stock solution in M9-

N buffer), degassed suspension of E. coli expressing P411 (typically OD600 = 30, 320 µL), 

alkane substrate (10 µL of 400 mM stock solution in EtOH), and diazo compound (10 µL 

of 400 mM stock solution in EtOH) in the listed order. Final reaction volume was 400 µL; 

final concentrations were 10 mM alkane substrate, 10 mM diazo compound, and 25 mM 

D-glucose. Note: reaction performed with E. coli cells resuspended to OD600 = 30 indicates 

that 320 µL of OD600 = 30 cells were added, and likewise for other reaction OD600 

descriptions. The vials were sealed, removed from the anaerobic chamber, and shaken at 

room temperature and 500 rpm for 18 hours. A modified procedure was used for reactions 

conducted at 4 °C. Reactions were set up in the same manner, except kept on ice. Reactions 

were shaken in a cold room (4 °C) and 500 rpm for 18 hours. The reactions were worked 

up and analyzed by HPLC or GC as appropriate. Preparative scale enzymatic reactions 

were performed using a different procedure which is described in detail in Section C.8. 

The expression of heme protein was measured using the hemochrome assay (Section 

4.5.7), and the concentration of heme protein in the biotransformation was calculated 
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accordingly. 

4.5.9 Enzymatic reactions using clarified E. coli lysate. 

Lysates for biocatalytic reactions were prepared as follows: E. coli (E. cloni 

BL21(DE3)) cells expressing the appropriate heme protein variant were resuspended in 

M9-N buffer and adjusted to OD600 = 60. The cell suspension, in 3 mL portions, was lysed 

by sonication using a Qsonica Q500 sonicator equipped with a microtip (2 mins, 1 second 

on, 1 second off, 25% amplitude); samples were kept on wet ice for this process. The 

resulting lysed solution was centrifuged (20,000 × g, 10 min, 4 °C) to remove cell debris. 

Protein concentration of the supernatant (clarified lysate) was determined using the 

hemochrome assay (see Section 4.5.7); the protein concentration in lysate was adjusted to 

the desired amount by addition of M9-N buffer. Lysate was placed in a sealed vial and the 

headspace of the vial was purged with a stream of argon for at least 40 minutes. The lysate 

was kept on ice during all parts of this procedure. Separately, D-glucose solution (500 mM 

in M9-N buffer) and Na2S2O4 (20 mM in M9-N) were degassed by bubbling the solutions 

with argon for at least 40 minutes. All solutions were then transferred into an anaerobic 

chamber for reaction set up. To a 2 mL vial were added a GOX oxygen depletion solution 

(20 µL of stock solution containing 14,000 U/mL catalase and 1,000 U/mL glucose oxidase 

in 0.1 M potassium phosphate buffer, pH 8.0), D-glucose (20 µL of 500 mM stock solution 

in M9-N buffer), lysate (320 µL), Na2S2O4 (20 µL of 20 mM solution in M9-N), alkane 

substrate (10 µL of 400 mM stock solution in EtOH), and ethyl diazoacetate (10 µL of 400 

mM stock solution in EtOH) in the listed order. Final reaction volume was 400 µL; final 

concentrations were typically 2.0 µM heme protein, 1 mM Na2S2O4, 10 mM alkane 

substrate, 10 mM ethyl diazoacetate, and 25 mM D-glucose. The vials were sealed, 

removed from the anaerobic chamber, and shaken at room temperature and 500 rpm for 18 

hours. Reactions were analyzed following the same methods as described for 

biotransformations using whole E. coli cells. 

4.5.10 Protein purification 
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 E. coli (E. cloni BL21(DE3)) cells carrying plasmid encoding a P411 variant were 

grown overnight in 19 mL LBamp (37 ºC, 250 rpm). HBamp (450 mL) in a 1 liter flask was 

inoculated with 19 mL of the preculture and shaken for 2.5 hours at 37 °C and 220 rpm. 

Cultures were cooled on ice (30 min) and induced with 0.5 mM IPTG and 1.0 mM 5-

aminolevulinic acid (final concentrations). Expression was conducted at 22 °C, 130 rpm, 

for 16–20 hours. Cultures were then centrifuged (5,000 × g, 10 min, 4 ºC) and the cell 

pellets frozen at -20 ºC. For purification, frozen cells from two such cultures were 

combined; purification was conducted according to the previously described procedure of 

Section 3.5.7. Concentrated proteins were aliquoted, flash-frozen on powdered dry ice, 

and stored at -80 ºC until use.  

4.5.11 Enzymatic reactions using purified heme proteins 

A solution of NADPH or Na2S2O4 in phosphate buffer (0.1 M potassium phosphate, 

pH 8.0) was degassed by sparging with argon for at least 30 minutes (reaction solution). 

Separately, a solution of D-glucose (250 mM in 0.1 M potassium phosphate, pH 8.0) was 

also degassed in the same manner. Crimp vials (2 mL) were each charged with the GOX 

oxygen depletion system (20 µL of a stock solution containing 14,000 U/mL catalase and 

1,000 U/mL glucose oxidase in 0.1 M potassium phosphate, pH 8.0). After degassing was 

complete, all solutions, 2 mL crimp vials, and purified protein (in 0.1 M potassium 

phosphate, pH 8.0), kept on ice, were brought into the anaerobic chamber. D-Glucose (40 

µL of 250 mM solution), reaction buffer containing reductant (300 µL, reductant is either 

NADPH or Na2S2O4), and purified protein (20 µL) were added to the 2 mL vial.  The 

mixture was shaken for 5 min to ensure even distribution of the proteins; then, reaction 

vials were charged with alkane substrate (10 µL of 400 mM stock solution in EtOH) and 

ethyl diazoacetate (10 µL of 400 mM stock solution in EtOH). Final reaction volume was 

400 µL. Final concentrations were 10 mM alkane substrate, 10 mM ethyl diazoacetate, and 

25 mM D-glucose; concentrations of protein and reductant are variable and described with 

the individual experiment. The vials were sealed, removed from the anaerobic chamber, 

and shaken at room temperature and 500 rpm for 18 hours. The reactions were quenched 
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by the addition of acetonitrile (400 µL) and internal standard (10 µL). This mixture was 

then transferred to a microcentrifuge tube and centrifuged (20,000 × g, 10 min). The 

supernatant was transferred to a vial and analyzed by HPLC. 
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A p p e n d i x  C  

SUPPLEMENTARY INFORMATION FOR CHAPTER 4 

Material for this chapter appears in Zhang, R. K.; Chen, K.; Huang, X.; Wohlschlager, L.; 
Renata, H.; Arnold, F. H. “Enzymatic assembly of carbon−carbon bonds via iron-catalysed 
sp3 C−H functionalisation,” Nature 2019, 565, 67–72. DOI: 10.1038/s41586-018-0808-
5. This work was performed in collaboration with all authors. Reprinted with permission 
from Nature Publishing Group. 
 

C.1  Supporting Tables C-1 through C-4 
 
Table C-1. Initial results for C−H alkylation of p-methoxybenzyl methyl ether (51a) with 
ethyl diazoacetate catalyzed by heme proteins and control reactions.  
 

 
 

Catalyst Catalyst concentration TTN to 52a 

P-4 A82L (in E. coli cells, OD600 = 29) 4.0 µM 13 

R. marinus NOD Y32G (in E. coli cells, 
OD600 = 30) 

11.6 µM 7 (12†) 

Vector control (in E. coli cells, OD600 = 
40)*, ξ 

N. A.  N.D. 

Hemin 400 µM N.D.†, # 

Hemin + BSA 400 µM (hemin),  
0.6 mg/mL (BSA) 

N.D.†, #  

Notes: Reactions performed with 10 each substrate; results are the average of duplicate reactions. 
BSA, bovine serum albumin; TTN, total turnover number; N.D., not detected. OD600 value refers 
to that of the resuspension used for the reaction. †These reactions contain 1 mM Na2S2O4, used as 
reductant. *Vector control indicates that E. coli harboring pET22b(+) encoding a protein which 
does not have a transition metal cofactor (halohydrin dehalogenase, UniProt ID: Q93D82) was 

employed in the reaction. ξReaction time was 24 h. #For reactions with hemin ± BSA, a 0.5 mM 
solution of hemin (± BSA, 0.75 mg/mL) in M9-N (320 µL) was used instead of a cell suspension; 
no D-glucose was added to these reactions. 
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Table C-2. Initial results for C−H alkylation of 4-ethylanisole with ethyl diazoacetate 
catalyzed by heme proteins and control reactions.  

 
 

Catalyst Catalyst concentration TTN to 52i 

P-4 A82L (in E. coli cells, OD600 = 21) 4.0 µM 3 

R. marinus NOD Y32G (in E. coli cells, OD600 

= 30) 
11.6 µM < 1 (2†) 

Vector control (in E. coli cells, OD600 = 40)*, ξ N. A.  N.D. 

Hemin 400 µM N.D.†, # 

Hemin + BSA 400 µM (hemin),  
0.6 mg/mL (BSA) 

N.D.†, #  

Notes: Reactions performed with 10 mM each substrate; results are the average of duplicate 
reactions. Other notes are the same as in Table C-1.  

Table C-3. P411-gen9, an evolved P411∆FAD C−H alkylation enzyme, is active in whole 
E. coli cells, in clarified E. coli lysate, and as a purified protein.  

 
 

Form [P411], µM Exogenous reductant TTN to 52a 
 whole E. coli cells 
(OD600 = 15–17) 

2.0 µM None 900 

Lysate 2.0 µM Na2S2O4, 1 mM 940 

Purified protein 11.9 µM Na2S2O4, 1 mM 150 

Purified protein 11.9 µM Na2S2O4, 5 mM 210 

Purified protein 10.0 µM–11.9 µM NADPH, 10 mM 250 

Notes: Reactions were performed with 10 mM each substrate for 18–20 hours at room temperature. 
Results are the average of at least two reactions.  

 These experiments demonstrate that C−H alkylation can be catalyzed using an evolved 
P411∆FAD enzyme in whole E. coli cells, in clarified E. coli lysate, and as a purified 
protein. The results using purified P411-gen9 are preliminary and the TTN values should 
be interpreted with caution as no studies regarding the effect of purification conditions on 
the activity of the enzyme nor studies to optimize the reaction conditions were pursued. 
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Table C-4. Enzymatic C−H alkylation reactions performed using E. coli cells harboring 
P411-CHF under non-standard conditions. 

 
 

Conditions TTN to 52a e.r. 
Anaerobic, full system, room temp. 2150 96.7 : 3.3 

Anaerobic, full system, 4 °C 2090 98.0 : 2.0 
Anaerobic, no GOX, room temp. 2100 96.7 : 3.3 

Anaerobic, no GOX, no D-glucose, room temp. 1770 96.7 : 3.3 

Aerobic, no GOX, no D-glucose, room temp. 30 not measured 

Notes: Standard reaction conditions are E. coli cells expressing P411-CHF (resuspended to 
OD600 = 30) with 10 mM each substrate. Reactions were allowed to proceed at the indicated 
temperature for 18 h. For reactions without the GOX oxygen depletion solution, 20 µL of M9-
N buffer was added instead; for reactions without D-glucose, 40 µL of M9-N buffer was added. 
The aerobic reaction was set up under air, without prior degassing of cells or reagents with 
argon. Results are the average of duplicate reactions. 
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C.2  Supporting Figures C-1 through C-9 

 

 
Figure C-1. Evolutionary lineage from P-4 A82L to P411-CHF evaluated for C−H 
alkylation of 4-ethylanisole. 
Notes: Standard reaction conditions: clarified lysate of E. coli expressing the indicated 
heme protein variant, 10 mM of each substrate, 1 mM Na2S2O4. Reactions with generations 
1, 2, and 3 variants employed 4.0 µM heme protein; all other reactions used 2.0 µM heme 
protein. Bars represent mean TTN values averaged over four reactions (performed from 
two independent cell cultures, each used for duplicate reactions); each TTN data point is 
shown as a grey dot. Enantioselectivity results are represented by green diamonds. See 
Table C-12 in Section C.III for the data presented here. TTN, total turnover number; RT, 
room temperature. 
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Figure C-2. Structural visualization of amino acids mutated during directed evolution of 
P-4 A82L to P411-CHF. 
Notes: The structure of P-4 A82L (heme domain) was modeled using the crystal structure 
of a related P411 variant (PDB 5UCW), which contains two additional mutations. 
Considering only the changes incurred in the heme domain, the following mutations were 
accumulated in going from P-4 A82L to P411-CHF: N70E, A74P, A78L, M177L, F263Y, 
H266V, A330Y, T436L, S438T (shown as blue spheres, residues 327 and 437 were not 
included in this analysis because P-4 A82L and P411-CHF contain the same amino acid 
residues at those positions). Most of the mutations are at positions that line the distal heme 
pocket and all of the mutated residues are within 15 Å of the iron atom in the heme cofactor.  
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Figure C-3. Structural visualization of amino acid differences between P450BM3 wild-
type and P411-CHF. 
Notes: The structure of P450BM3 wild-type (heme domain) was modeled using the crystal 
structure of H. M. Girvan et al. (PDB 2IJ2).  Comparing only the heme domains of the two 
proteins, the following 23 amino acids are changed in P411-CHF relative to P450BM3 wild-
type: N70E, A74P, V78L, A82L, F87A, P142S, T175I, M177L, A184V, S226R, H236Q, 
E252G, I263Y, H266V, T268G, A290V, A328V, A330Y, L353V, I366V, C400S, T436L, 
E442K (shown as green spheres). Overall, 5% of the amino acids in the heme domain of 
P450BM3 have been substituted in P411-CHF.   
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Figure C-4. Product profiles for the reaction of 4-allylanisole (51m) and ethyl diazoacetate 
with P411-CHF and with P-I263F. 

Notes: Representative GC traces of reactions performed with P411-CHF (top), P-I263F 
(middle), or a vector control (bottom) in E. coli cells. Reactions were performed with 10 
mM each substrate.  Vector control indicates that E. coli harboring pET22b(+) encoding a 
protein that does not contain a transition metal cofactor (halohydrin dehalogenase, UniProt 
ID: Q93D82) was employed in the reaction.  
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Figure C-5. P411-CHF catalyzes C−H alkylation of 51h with ethyl diazoacetate. 

Notes: Representative GC traces of reactions performed with P411-CHF (top), P-I263F 
(middle), or a vector control (bottom) in E. coli cells. Reactions were performed as in 
Supplementary Fig. 6.  

While P411-CHF was able to access C−H alkylation product 52h (930 TTN to 52h, 
1:1 52h:52h’) in the presence of a reactive Si−H bond, reaction with E. coli harboring P-
I263F only afforded Si−H insertion product 52h’. Additionally, compound 52h’ was also 
observed in vector control reactions employing whole E. coli cells. Neither 52h nor 52h’ 
were detected in a control reaction where 51h and ethyl diazoacetate were combined in 
M9-N buffer in the absence of cells.  
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Figure C-6. Enzymatic reaction of P411-CHF with substrate 53e and ethyl diazoacetate 
produces cyclopropene 54e’ as a side product.  

Notes: Representative GC trace of a reaction performed using P411-CHF in E. coli cells 
(top) with 10 mM each substrate. Also shown are GC traces for reference compounds 54e 
(middle) and 54e’ (bottom), used for the identification of P411-CHF synthesized products.  
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Figure C-7. Enzymatic C−H alkylation of 4,N,N-trimethylaniline (56a) with P411-CHF 
is selective for the α-amino position. 
Notes: Representative GC-MS trace of a reaction performed using P411-CHF in E. coli 
cells (top) with 10 mM each substrate. Also shown is a trace for reference compound 57a’ 
(bottom), which is not observed in the reaction with P411-CHF.  This demonstrates that 
P411-CHF has exquisite selectivity for the alkylation of α-amino C−H bond in the presence 
of primary benzylic C−H bonds. 
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Figure C-8. Product profile of P411-CHF catalyzed C−H alkylation of 4-ethyl-N,N-
dimethylaniline (56b) with ethyl diazoacetate.  
Notes: Representative HPLC trace of a reaction performed using P411-CHF in E. coli cells 
(top) with 10 mM each substrate. Also shown is a trace for reference compound 57b’ 
(bottom), which was identified as a minor side product in the P411-CHF catalyzed reaction. 
Major product 57b was assigned by performing a preparative scale enzymatic reaction (see 
Section C.8) and isolation and characterization of the major product.  
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Figure C-9. Additional diazo substrates tested for C−H alkylation with P411-CHF and 
P411-gen5. ‘+’ indicates product was detected; N. D., not detected. #Other products 
derived from compound 56a were also observed by GC-MS. 
Notes: Reactions were performed using E coli cells expressing P411-CHF (resuspended 
to OD600 = 59) or P411-gen5 (resuspended to OD600 = 49) with 10 mM coupling partner 
56a and 10 mM diazo compound. Product formation was analyzed by GC-MS only. The 
identity of the product was not confirmed by comparison with chemically synthesized 
reference compounds or through isolation and characterization. These preliminary results 
are noteworthy, but should not be used alone for drawing conclusions.  

Diazo compounds 58a, 58b, and 58c, for the formation of products 59a, 59b, and 
59c, were also investigated with P411-CHF (+, +, +, respective preliminary results) and 
P411-gen5 (+, N. D., +). Additional variants were tested for these transformations and 
subsequent preparative scale reactions for product isolation and characterization were 
pursued; these results are described in Figure 4-8.   

Because P411-CHF and its related variants are fully genetically encoded and can be 
readily optimized by directed evolution, these enzymes can serve as starting points for the 
evolution of future variants.  Some of these future variants will certainly surpass P411-
CHF in C−H alkylation activity with alternative diazo reagents. 
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C. 3  Screening of heme proteins for C−H alkylation activity  

C.3.1  Testing diverse heme proteins for reaction discovery 
A composite plate of 40 heme proteins and their variants from various organisms were 

screened for formation of product 52a from substrates 51a and ethyl diazoacetate. These 
proteins were cloned and used in other studies, including carbene Si−H insertion1 and 
alkene cyclopropanation2,3. Expression of these proteins followed the procedures as 
described by the prior studies and testing for initial activity was carried out with whole E. 
coli cells. The general procedure for reaction screening in 96-well plate format was 
employed and the reactions were analyzed by GC-MS. Note: Since this was an initial test, 
proper expression of the indicated proteins was not verified. Consequently, negative results 
should be interpreted with caution. From this experiment, it was observed that R. marinus 
NOD (Y32G) had a low level of C−H alkylation activity (Table C-5).  

In addition, eight diverse heme proteins, including R. marinus NOD (Y32G), were 
chosen and tested for C−H alkylation activity using substrates 51a and ethyl diazoacetate 
following the general procedure for small scale enzymatic reactions using whole E. coli 
cells (Table C-6).  Product formation by variant R. marinus NOD (Y32G) was 
characterized by HPLC. Other reactions were analyzed by GC-MS for formation of product 
52a and the expression of all proteins were measured using the hemochrome assay. 
Conditions with no exogenous reductant as well as with the addition of 1 mM Na2S2O4 
(final concentration) were tested. 
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Table C-5. Preliminary experiments with heme proteins. 

 

UniProt 
ID 

Organism Annotation Abbrev. 
name 

No. of 
variants 

Ref. Formation 
of 3a 

B3FQS5 Rhodothermus 
marinus 

Cytochrome c Rma cyt 
c 

9 1 n. d. 

P15452 Hydrogenobacter 
thermophilus 

Cytochrome c-
552 

Hth cyt c 2 1 n. d. 

P00080 Rhodopila 
globiformis 

Cytochrome c2 - 2 1 n. d. 

D0MGT2 Rhodothermus 
marinus 

Nitric oxide 
dioxygenase 

Rma 
NOD 

10 11 detected† 

P02185 Physeter catodon 
(Sperm whale) 

Myoglobin Mb 1 2* n. d. 

B3DUZ7 Methylacidiphilum 
infernorum  

Hemoglobin-like 
flavoprotein 

HGG# 2 2* n. d. 

O66586 Aquifex aeolicus Thermoglobin - 1 2 n. d. 

G7VHJ7 
 

Pyrobaculum 
ferrireducens 

Protoglobin 
 

- 1 2 n. d. 

Q0PB48 Campylobacter 
jejuni 

Truncated 
hemoglobin 

- 1 2 n. d. 

Q9YFF4 Aeropyrum pernix Protoglobin - 10 2 n. d. 

O31607 Bacillus subtilis Truncated 
hemoglobin 

- 1 3 n. d. 

Notes: Reactions performed with 10 mM each substrate. No., number; Abbrev., 
abbreviated; Ref., reference.; n. d., not detected. †Small amount of 52a was detected in the 
reaction with variant R. marinus NOD (Y32G). No product 52a was detected in the reaction 
mixtures of other R. marinus NOD variants. *While these heme proteins were not reported 
in this reference, the expression conditions employed for these variants followed those 
given in the reference. #This protein is abbreviated as Hell’s Gate Globin (HGG) on the 
basis of a prior literature report which uses this name4.  
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Table C-6. Heme proteins tested for C−H alkylation activity. 

 
UniProt 

ID 
Organism Annotation Abbrev. 

Name 
Mutation(s) 

from WT 
Formation 

of 3a 

P14779 
 

Bacillus 
megaterium 

 

cytochrome 
P450/NADPH-
P450 reductase 

P450BM3 none* 
 
 

n. d. 

Q55080 
 

Sulfolobus 
acidocaldarius 

Cytochrome 
P450 

CYP119 none* n. d. 

D0MGT2 Rhodothermus 
marinus 

Nitric oxide 
dioxygenase 

Rma 
NOD 

Y32G+, * 7 TTN† 

(12 TTNξ) 

B3DUZ7 
 

Methylacidiphilum 
infernorum 

Hemoglobin-like 
flavoprotein 

HGG none+, * n. d. 

P02185 Physeter catodon 
(Sperm whale) 

Myoglobin Mb H64V V68A 
D122N+, * 

n. d. 

B3FQS5 Rhodothermus 
marinus 

Cytochrome c Rma cyt c none+, # n. d. 

B3FQS5 Rhodothermus 
marinus 

Cytochrome c Rma cyt c V75T 
M100D 

M103E+, # 

n. d. 

P15452 Hydrogenobacter 
thermophilus 

Cytochrome c Hth cyt c none+, # n. d. 

Notes: Heme proteins were tested in whole E. coli cells (OD600 = 30) both with and without 
the addition of 1 mM Na2S2O4 (final concentration). Reactions were performed with 10 
mM each substrate; results are the average of at least duplicate reactions. Abbrev., 
abbreviated; WT, wild-type; n. d., not detected; TTN, total turnover number. †This data is 
also included in Table C-1. ξReaction includes 1 mM Na2S2O4. +These variants are also 
included in Table C-5. *These proteins were expressed following the procedure of A. M. 
Knight et al.2. #Cytochrome c variants were expressed following the procedure of S. B. J. 
Kan et al.1 
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C.3.2  Screening previously engineered cytochrome P450BM3 variants 

 A composite plate of 36 cytochrome P450BM3 variants from lineages engineered for 
non-natural reactions including C−H amination5, olefin aziridination6, and olefin 
cyclopropanation7a was screened for C−H alkylation activity using substrates 51a and ethyl 
diazoacetate. Variants of cytochrome P450BM3 in which the axial cysteine ligand is 
replaced with serine are termed cytochrome P41116b. The general procedure for reaction 
screening in 96-well plate format was employed and the reactions were analyzed by HPLC. 
Most variants showed no activity (17 variants) or trace activity (15 variants) for 52a 
formation. The four highest performing variants, all which contain an axial cysteine-to-
serine mutation (P411), are shown in Table C-7. While P-4 A82L was chosen as the parent 
protein for the directed evolution of a C−H alkylation enzyme, the information gained from 
this experiment was used to guide the first several rounds of evolution. 
 

Table C-7. Engineered cytochrome P411 variants show promiscuous C−H alkylation 
activity. 

 
Name Mutations from P450BM3 WT Relative amount 

of 52a formed† 

P-4 (A82L) V78A, A82L, F87A, P142S, T175I, A184V, 
S226R, H236Q, E252G, I263F, T268G, A290V, 
A328V, L353V, I366V, C400S, T438S, E442K  

1 

P-4 (A82L A78V 
F263Y) 

A82L, F87A, P142S, T175I, A184V, S226R, 
H236Q, E252G, I263Y, T268G, A290V, 
A328V, L353V, I366V, C400S, T438S, E442K 

1.4 

P-4 (A82L A78V 
F263L) 

A82L, F87A, P142S, T175I, A184V, S226R, 
H236Q, E252G, I263L, T268G, A290V, 
A328V, L353V, I366V, C400S, T438S, E442K 

0.5 

P-4 (A82L A78V 
F263L E267D) 
(a.k.a.	P411CHA) 

A82L, F87A, P142S, T175I, A184V, S226R, 
H236Q, E252G, I263L, E267D, T268G, 
A290V, A328V, L353V, I366V, C400S, T438S, 
E442K 

0.7 

Notes: Reactions were performed with 10 mM each substrate following the general 
procedure for reaction screening in 96-well plate format. Results are the average of 
duplicate reactions. All variants are reported in ref. 5. †This refers to the ratio of the HPLC 
peak area for 52a in reactions with the indicated variant to that in reactions with P-4 A82L.  
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C.4  Directed evolution of C−H alkylation enzymes 

Site-saturation libraries were generated employing the “22c-trick” method8 and 
screened in one 96-well plate; double site-saturation libraries were generated using the 
same method to target two different sites and these were screened in three 96-well plates. 
Following the general screening in 96-well plate procedure, variants which exhibited 
higher formation of C−H alkylation product (52a or 52i) or improved enantioselectivity for 
product 3a were identified. A summary of the amino acid residues targeted for mutagenesis 
is presented in Table C-8, as well as the beneficial mutation(s) selected for each round of 
mutagenesis. The locations of the selected beneficial mutations are displayed on a 
structural model of the P411 enzyme (Section C.2, Table C-2).  

 Variants which were identified to show higher activity and/ or enantioselectivity 
during screening were streaked out on LBamp agar plates. A single colony was selected, 
sequenced, and the TTN measured for both products 52a and 52i using clarified lysate of 
E. coli cells overexpressing the desired protein (unless otherwise indicated, the 
concentration of P411 variant was normalized such that each reaction contained 2.0 µM 
enzyme. Enantiomeric ratios of the enzymatic products produced by P411-gen6 and further 
evolved variants were also characterized. The results are summarized in Tables C-11 and 
C-12. 
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Table C-8. Summary of directed evolution for C−H alkylation. 

Round Parent Diversification strategy† Screening substrate 
(selection criteria) 

Changes 
made* 

1 P-4 A82L Individual variants 
identified as active for C−H 

amination14 

4-ethylanisole 
(activity) 

F263Y 

2 P-4 A82L F263Y Site-saturation mutagenesis 
A78X 

4-ethylanisole 
(activity) 

A78L 

3 P-4 A82L F263Y 
A78L 

Site-saturation mutagenesis 
T327X 

4-ethylanisole 
(activity) 

T327I 

4 P411-gen4 
(P-4 A82L 

F263Y A78L 
T327I) 

Site-saturation mutagenesis 
A74X, E267X 

4-ethylanisole 
(activity) 

A74G 

5 P411-gen5 
(P411-gen4  

A74G) 

Site-saturation mutagenesis 
A328X, H92X, R255X, 
A264X, H100X, F393X, 

L437X 

p-methoxybenzyl 
methyl ether 

(activity) 

L437Q 

6 P411-gen6 
(P411-gen5 

L437Q) 

Protein truncations: 
full-length P411,  
∆FAD domain, 

heme-domain only 

p-methoxybenzyl 
methyl ether 

 (activity) 

∆FAD 
domain 

6b P411-gen6b 
(P411∆FAD-

gen6) 

Site-saturation mutagenesis 
A78X, F87X, I263X, 

T438X 

p-methoxybenzyl 
methyl ether 

 (activity) 

S438T 

7 P411-gen7 
(P411-gen6b  

S438T) 

Site-saturation 

mutagenesisψ 
A330X, F331X, T436X, 
A82X, L181X, L188X 

p-methoxybenzyl 
methyl ether 

 (activity) 

T436L 

8 P411-gen8 
(P411-gen7  

T436L)  

Site-saturation mutagenesis 
D63X, F162X, M177X, 

V178X, L439X 

4-ethylanisole 
(activity) 

M177L 

9 P411-gen9 
(P411-gen8 

M177L) 

Site-saturation mutagenesis 
F87X, E267X, M118X, 
L437X, H266X, S332X, 

T260X, T365X 

4-ethylanisole 
(activity) 

H266V 

10 P411-gen10 
(P411-gen9 

Site-saturation mutagenesis 
N70X, T88X, H171X, 

4-ethylanisole 
(activity) 

N70E 
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H266V) 

 
H361X, P329X, T269X, 

L75X, L52X 
& 

p-methoxybenzyl 
methyl ether 

 (enantioselectivity) 

11 P411-gen11 
(P411-gen10 

N70E) 

Site-saturation mutagenesis 
L71X, S72X, F261X, 
G265X, L86X, I401X, 

A330X, C400X 

p-methoxybenzyl 
methyl ether 
(activity & 

enantioselectivity) 

A330Y 

12 P411-gen12 
(P411-gen11 

A330Y) 

Double site-saturation 
mutagenesis 

P329X-F331X#, A328X-
F331X#,  T327X-T268X, 

A74X-L437X 

p-methoxybenzyl 
methyl ether 
(activity & 

enantioselectivity) 

I327T 

13a P411-gen13 
(P411-gen12  

I327T) 

Double site-saturation 
mutagenesis 

L181X-L437X, V178X-
E267X, M118X-I401X 

p-methoxybenzyl 
methyl ether  
(activity & 

enantioselectivity 

None 

13b P411-gen13 
(P411-gen12 

I327T) 

Testing previously 
identified beneficial and 

neutral mutationsξ. 

p-methoxybenzyl 
methyl ether 
(activity & 

enantioselectivity 

G74P, 
Q437L 

14 P411-CHF 
(P411-gen13  

G74P Q437L) 

N. A. N. A. N. A. 

Notes: Some residues were saturated more than once, in different parents. Gen, generation; 
N. A., not applicable. †Residues for site-saturation mutagenesis libraries are listed relative 
to the amino acid at that position in wild-type P450BM3. *Beneficial mutations are listed 
relative to the amino acid at that position in the parent protein. ψRandom mutagenesis by 
error-prone PCR on this parent enzyme and screening for C−H alkylation activity was also 
performed (unpublished results). However, no mutations from this study were carried 
forward to the next enzyme generation; the F162L mutation, identified in this context, was 
included in the diversification strategy of round 13b. #Only NDT libraries were constructed 
and screened for this double-site saturation experiment. ξSelect mutations identified from 
previous rounds of mutagenesis and screening were introduced in various combinations to 
P411-gen13. Twenty-seven variants were attempted and screened.  
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Table C-9. Mutations and truncations relative to P450BM3 wild-type for the P411 variants 
described in Table C-8.  

Gen. Name Mutations relative to P450BM3 WT Domain 
composition† 

1 P-4 A82L V78A, A82L, F87A, P142S, T175I, A184V, 
S226R, H236Q, E252G, I263F, T268G, 
A290V, A328V, L353V, I366V, C400S, 
T438S, E442K 

Full-length 

2 P-4 A82L F263Y V78A, A82L, F87A, P142S, T175I, A184V, 
S226R, H236Q, E252G, I263Y, T268G, 
A290V, A328V, L353V, I366V, C400S, 
T438S, E442K 

Full-length 

3 P-4 A82L F263Y 
A78L 

V78L, A82L, F87A, P142S, T175I, A184V, 
S226R, H236Q, E252G, I263Y, T268G, 
A290V, A328V, L353V, I366V, C400S, 
T438S, E442K 

Full-length 

4 P411-gen4 
(P-4 A82L F263Y 

A78L T327I) 

V78L, A82L, F87A, P142S, T175I, A184V, 
S226R, H236Q, E252G, I263Y, T268G, 
A290V, T327I, A328V, L353V, I366V, 
C400S, T438S, E442K 

Full-length 

5 P411-gen5 
(P411-gen4 A74G) 

A74G, V78L, A82L, F87A, P142S, T175I, 
A184V, S226R, H236Q, E252G, I263Y, 
T268G, A290V, T327I, A328V, L353V, 
I366V, C400S, T438S, E442K 

Full-length 

6 P411-gen6 
(P411-gen5  

L437Q) 

A74G, V78L, A82L, F87A, P142S, T175I, 
A184V, S226R, H236Q, E252G, I263Y, 
T268G, A290V, T327I, A328V, L353V, 
I366V, C400S, L437Q, T438S, E442K 

Full-length 

6b P411-gen6b 
(P411∆FAD–gen6) 

A74G, V78L, A82L, F87A, P142S, T175I, 
A184V, S226R, H236Q, E252G, I263Y, 
T268G, A290V, T327I, A328V, L353V, 
I366V, C400S, L437Q, T438S, E442K 

∆FAD domain 

7 P411-gen7 
(P411-gen6b 

S438T) 

A74G, V78L, A82L, F87A, P142S, T175I, 
A184V, S226R, H236Q, E252G, I263Y, 
T268G, A290V, T327I, A328V, L353V, 
I366V, C400S, L437Q, E442K 

∆FAD domain 

8 P411-gen8 
(P411-gen7 

T436L) 

A74G, V78L, A82L, F87A, P142S, T175I, 
A184V, S226R, H236Q, E252G, I263Y, 
T268G, A290V, T327I, A328V, L353V, 
I366V, C400S, T436L, L437Q, E442K 

∆FAD domain 

9 P411-gen9 
(P411-gen8 

A74G, V78L, A82L, F87A, P142S, T175I, 
M177L, A184V, S226R, H236Q, E252G, 

∆FAD domain 
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M177L) I263Y, T268G, A290V, T327I, A328V, 

L353V, I366V, C400S, T436L, L437Q, E442K 

10 P411-gen10 
(P411-gen9 

H266V) 
 

A74G, V78L, A82L, F87A, P142S, T175I, 
M177L, A184V, S226R, H236Q, E252G, 
I263Y, H266V, T268G, A290V, T327I, 
A328V, L353V, I366V, C400S, T436L, 
L437Q, E442K 

∆FAD domain 

11 P411-gen11 
(P411-gen10 

N70E) 

N70E, A74G, V78L, A82L, F87A, P142S, 
T175I, M177L, A184V, S226R, H236Q, 
E252G, I263Y, H266V, T268G, A290V, 
T327I, A328V, L353V, I366V, C400S, T436L, 
L437Q, E442K 

∆FAD domain 

12 P411-gen12 
(P411-gen11 

A330Y) 

N70E, A74G, V78L, A82L, F87A, P142S, 
T175I, M177L, A184V, S226R, H236Q, 
E252G, I263Y, H266V, T268G, A290V, 
T327I, A328V, A330Y, L353V, I366V, 
C400S, T436L, L437Q, E442K 

∆FAD domain 

13 P411-gen13 
(P411-gen12 

I327T) 

N70E, A74G, V78L, A82L, F87A, P142S, 
T175I, M177L, A184V, S226R, H236Q, 
E252G, I263Y, H266V, T268G, A290V, 
A328V, A330Y, L353V, I366V, C400S, 
T436L, L437Q, E442K 

∆FAD domain 

14 P411-CHF 
(P411-gen13 

G74P Q437L) 

N70E, A74P, V78L, A82L, F87A, P142S, 
T175I, M177L, A184V, S226R, H236Q, 
E252G, I263Y, H266V, T268G, A290V, 
A328V, A330Y, L353V, I366V, C400S, 
T436L, E442K 

∆FAD domain 

†Full-length cytochrome P411 variants contain amino acids 1–1048. Cytochrome P411 
variants containing the FAD truncation (∆FAD domain) contain amino acids 1–664.  

 
Table C-10. Other P411 variants described in this study. 

Name Mutations from P450BM3 WT Reference 

P-I263F V78A, F87V, P142S, T175I, A184V, S226R, 
H236Q, E252G, I263F, T268A, A290V, 
L353V, I366V, C400S, T438S, E442K   

9 

P411-IY T327I N70E, A74G, V78L, A82L, F87A, M118S, 
P142S, F162L, T175I, M177L, A184V, S226R, 
H236Q, E252G, I263Y, H266V, T268G, 
A290V, T327I, A328V, A330Y, L353V, I366V, 
C400S, I401L, T436L, L437Q, E442K 

N. A. † 

†N. A., not applicable. The parent of this variant, P411-IY, was made for round 13b of 
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directed evolution (see Table C-8). The P411-IY T327I variant, which contains an 
additional T327I mutation, was identified in the context of a separate carbene transfer 
project (Chen, K., Zhou, A. Z. & Arnold, F. H., unpublished results). 
 
Table C-11. Enzymatic C−H alkylation data presented in Figure 4-4.  
 

 

Variant [P411], µM TTN ± SD e.r. 

P-4 A82L 4.0 14 ± 2 N. A. 

P-4 A82L F263Y 4.0 29 ± 1 N. A. 

P-4 A82L F263Y A78L 4.0 23 ± 5 N. A. 

P411-gen4 2.0 48 ± 3 N. A. 

P411-gen5 2.0 68 ± 3 N. A. 

P411-gen6 2.0 59 ± 4 rac 

P411-gen6b 2.0 98 ± 2 rac 

P411-gen7 2.0 200 ± 4 55.0 : 45.0 

P411-gen8 2.0 560 ± 50 59.4 : 40.6 

P411-gen9 2.0 940 ± 30 64.7 : 35.3 

P411-gen10 2.0 1480 ± 50 68.1 : 31.9 

P411-gen11 2.0 1240 ± 30 77.9 : 22.1 

P411-gen12 2.0 1490 ± 40 88.5 : 11.5 

P411-gen13 2.0 1960 ± 40 94.0 : 6.0 

P411-CHF 2.0 2020 ± 40 96.7 : 3.3 

Notes: Reactions were performed using clarified E. coli lysate with 10 mM each substrate. 
Each reported TTN is the average over four reactions (performed from two independent 
cell cultures, each used for duplicate reactions). TTN, total turnover number, refers to TTN 
to 52a; SD, standard deviation; N. A., not applicable, indicates that this value was not 
measured; rac, racemic.  
  

52a

P411 variant
OMe

H H
CO2Et

N2

OMe+
1 mM Na2S2O4

M9-N buffer
RT, 18 h

CO2Et

MeO MeO
51a
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Table C-12. Enzymatic C−H alkylation data presented in Figure C-1.  
 

 

Variant [P411], µM TTN ± SD e.r. 

P-4 A82L 4.0 2 ± 0 N. A. 

P-4 A82L F263Y 4.0 4 ± 0 N. A. 

P-4 A82L F263Y A78L 4.0 7 ± 2 N. A. 

P411-gen4 2.0 13 ± 1 N. A. 

P411-gen5 2.0 14 ± 0 N. A. 

P411-gen6 2.0 12 ± 1 N. A. 

P411-gen6b 2.0 18 ± 1 N. A. 

P411-gen7 2.0 34 ± 1 N. A. 

P411-gen8 2.0 130 ± 20 67.7 : 32.3 

P411-gen9 2.0 260 ± 20 71.9 : 28.1 

P411-gen10 2.0 510 ± 30 76.9 : 23.1 

P411-gen11 2.0 450 ± 10 83.0 : 17.0 

P411-gen12 2.0 630 ± 20 92.0 : 8.0 

P411-gen13 2.0 500 ± 30 96.9 : 3.1 

P411-CHF 2.0 440 ± 30 98.0 : 2.0 

Notes: Reactions were performed using clarified E. coli lysate with 10 mM each substrate. 
Each reported TTN is the average over four reactions (performed from two independent 
cell cultures, each used for duplicate reactions). TTN, total turnover number, refers to TTN 
to 52i; SD, standard deviation; N. A., not applicable, indicates that this value was not 
measured.  
  

52i

P411 variant
Me

H H
CO2Et

N2

Me+
1 mM Na2S2O4

M9-N buffer
RT, 18 h

CO2Et

MeO MeO
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C.5  Amino acid sequence of P411-CHF 

All heme proteins disclosed below were cloned into a pET22b(+) vector and contain 
a C-terminal 6xHis-tag. 

Amino acid sequence of P411-CHF, an evolved C–H alkylation enzyme: 
MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRF
DKELSQPLKFLRDFLGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMVDIAVQLVQKWERLNA
DEHIEVSEDMTRLTLDTIGLCGFNYRFNSFYRDQPHPFIISLVRALDEVMNKLQRANPDDPAYDENKR
QFQEDIKVMNDLVDKIIADRKARGEQSDDLLTQMLNGKDPETGEPLDDGNIRYQIITFLYAGVEGTSG
LLSFALYFLVKNPHVLQKVAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPTVPYFSLYAKEDT
VLGGEYPLEKGDEVMVLIPQLHRDKTVWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRASIGQQFAL
HEATLVLGMMLKHFDFEDHTNYELDIKELLTLKPKGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAE
NAHNTPLLVLYGSNMGTAEGTARDLADIAMSKGFAPQVATLDSHAGNLPREGAVLIVTASYNGHPPDN
AKQFVDWLDQASADEVKGVRYSVFGCGDKNWATTYQKVPAFIDETLAAKGAENIADRGEADASDDFEG
TYEEWREHMWSDVAAYFNLDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFSTLEHHHHHH. 
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C.5  Substrate synthesis and characterization 

Commercially available alkane and diazo substrates were used as received: 51a, 51d, 
51f, 51g, 51i–51k, 51m, 56a, 56c–56f, 58a, 58e, 58f (custom synthesis, Arch Bioscience). 
Compound 1c was also commercial (Combi-Blocks), though the commercial product was 
used only for synthesis. Ethyl diazoacetate (Sigma-Aldrich) was concentrated under 
reduced pressure and its concentration relative to residual dichloromethane was determined 
by 1H NMR. Diazo compounds 58h (ref. 10) and 58i (ref. 11) are known and were prepared 
according to literature procedures. Caution: although no safety issues were encountered, 
diazo compounds are reactive and should be used with caution. 

 
Figure C-10. Alkane substrates. This terminology is used to emphasize that the reaction 
reported here acts on a sp3-hybridized C−H bond in the alkane portion of the substrate. 
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Figure C-11. Diazo compounds. 

 
General Procedure A: Methylation of alcohols 

To a 250 mL round bottom flask was added NaH (60% dispersion in mineral oil, 15–
30 mmol, 1.2–1.5 equiv.). The flask was evacuated and filled with argon (3 times). 
Anhydrous THF (45–80 mL) was added by syringe and the reaction mixture was cooled to 
0 °C in an ice bath. Alcohol (10–20 mmol, 1.0 equiv.) in THF (5–10 mL) was added 
dropwise and the reaction mixture was allowed to warm to room temperature and stirred 
for 30 minutes. Following, iodomethane (20–40 mmol, 2.0 equiv.) in THF (10 mL) was 
added and the reaction was stirred at room temperature (8–15 hours). The reaction was 
quenched by the addition of brine (60 mL) or NH4Cl (sat. aq., 60 mL) and the phases were 
separated. The aqueous layer was extracted with diethyl ether (3 × 60 mL); the combined 
organics were washed with aq. sodium thiosulfate (10% w/v, 50 mL, when necessary), 
dried over Na2SO4 and concentrated under reduced pressure. Purification by silica column 
chromatography with hexanes / ethyl acetate or pentane / diethyl ether afforded the desired 
products in 37–99% yield.  
 

1-Methoxy-4-(methoxymethyl-d2)benzene (51a-d2) 
Labeled substrate 51a-d2 was prepared from methyl 4-methoxybenzoate using a two-

step sequence to 98% deuterium incorporation at the benzylic position. First, to a dry round 
bottom flask, under argon, was added LiAlD4 (0.23 g, 5.5 mmol, 1.1 equiv.) and anhydrous 
Et2O (10 mL). A solution of methyl 4-methoxybenzoate (0.83 g, 5 mmol, 1.0 equiv.) in dry 
Et2O (5 mL) was added dropwise and the reaction was allowed to stir at room temperature 
for 12 hours. Following, the reaction mixture was cooled to 0 °C and diluted with Et2O. 
The reaction was quenched by the addition of 0.2 mL H2O, 0.2 mL NaOH (aq., 1M), and 
0.6 mL H2O. The mixture was allowed to warm to room temperature and stirred for 15 
minutes. MgSO4 was added and the mixture was stirred for a further 15 minutes, filtered, 
and concentrated under reduced pressure. The crude product was purified by silica column 
chromatography with hexanes / ethyl acetate to give (4-methoxyphenyl)methanol-d2 (0.43 
g, 61% yield, 98% deuterium incorporation), with spectral data in agreement with literature 
report12. Methylation of this compound was performed following General Procedure A 
(note: reaction performed on 3.0 mmol scale) to afford 51a-d2 (0.43 g, 61% yield, 98% 
deuterium incorporation).  
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1H NMR (400 MHz, CDCl3) δ 7.27 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.5 
Hz, 2H), 3.81 (s, 3H), 3.36 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 
159.3, 130.3, 129.5, 113.9, 73.7 (m, labeled), 57.8, 55.4. HRMS (EI) 
m/z: 154.0964 (M+˙); calc. for C9H10O2

2H2: 154.0963. 
 

1-(Methoxymethyl)-4-methylbenzene (51b) 
Prepared from p-tolylmethanol using General Procedure A. This 
compound is known in the literature13. 1H NMR (400 MHz, CDCl3) δ 
7.23 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 4.43 (s, 2H), 3.37 (s, 

3H), 2.35 (s, 3H). 
 

1-Bromo-4-(methoxymethyl)benzene (51c) 
Prepared from (4-bromophenyl)methanol using General Procedure A. 
This compound is known13. 1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 
8.4 Hz, 2H), 7.21 (d, J = 8.6 Hz, 2H), 4.41 (s, 2H), 3.38 (s, 3H). 

 
1-(Methoxymethyl)-3-methylbenzene (51e) 

Prepared from m-tolylmethanol using General Procedure A. 1H NMR 
(400 MHz, CDCl3) δ 7.28 – 7.21 (m, 1H), 7.19 – 7.08 (m, 3H), 4.43 (s, 
2H), 3.40 (s, 3H), 2.36 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 138.2, 

128.6, 128.5, 128.4, 124.9, 74.9, 58.3, 21.5. HRMS (FAB) m/z: 135.0810 [(M + H+)–
H2]; calc. for C9H11O: 135.0810.  
 

(4-(Methoxymethyl)phenyl)dimethylsilane (51h) 
In a 250 mL round bottom flask, under argon, 1-bromo-4-(methoxymethyl)benzene 

(3.0 g, 15 mmol, 1.0 equiv.) in anhydrous THF (60 mL) was cooled to -78 °C. A solution 
of n-butyllithium (9 mL, 2.5 M in hexanes, 22.5 mmol, 1.5 equiv.) was added dropwise. 
The resulting mixture was stirred at -78 °C for 2 hours before the dropwise addition of 
chlorodimethylsilane (2.4 mL, 22.5 mmol, 1.5 equiv.). The reaction was allowed to warm 
to room temperature and stirred overnight. The reaction mixture was cooled to 0 °C and 
quenched with NH4Cl (sat. aq., 20 mL). The aqueous layer was extracted with diethyl ether 
(3 × 30 mL); the combined organics were washed with brine (30 mL), dried over Na2SO4 
and concentrated under reduced pressure. The crude reaction mixture was purified by silica 
column chromatography with hexanes / ethyl acetate to afford 51h (2.14 g, 79% yield). A 
second round of purification by silica column chromatography with hexanes / ether was 
performed on a portion of the product.  
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1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 8.1 Hz, 2H), 7.35 (d, J 
= 8.1 Hz, 2H), 4.47 (s, 2H), 4.43 (hept, J = 3.7 Hz, 1H), 3.40 (s, 
3H), 0.35 (d, J = 3.7 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 
139.3, 136.9, 134.3, 127.3, 74.7, 58.3, -3.6. HRMS (FAB) m/z: 

179.0894 [(M + H+)–H2]; calc. for C10H15OSi: 179.0892.  

 
1-Ethyl-4-isopropylbenzene (51l) 

The following procedure was modified from the literature14. To a 250 mL round 
bottom flask were added Pd/C (10% Pd on activated charcoal, 486 mg, 20% w/w), 4-
isopropylacetophenone (2.43 g, 15 mmol), and methanol (60 mL). The solution was 
sparged with H2 and stirred under 1 atm H2 for 48 hours; monitoring the mixture by TLC 
showed that that the reaction did not go to completion under these conditions. The crude 
reaction mixture was filtered through a pad of Celite, dried over Na2SO4, and concentrated 
under reduced pressure. Purification by silica column chromatography with hexanes 
afforded product 51l (218 mg, 1.47 mmol, 10% yield).  

1H NMR (500 MHz, CDCl3) δ 7.19 – 7.13 (m, 4H), 2.90 (hept, J = 6.9 
Hz, 1H), 2.65 (q, J = 7.6 Hz, 2H), 1.29 – 1.24 (m, 9H). 13C NMR (126 
MHz, CDCl3) δ 146.2, 141.7, 127.9, 126.5, 33.8, 28.5, 24.2, 15.7. 
HRMS (FAB) m/z: 149.1327 (M + H+); calc. for C11H17: 149.1330.  

 
(E)-1-Methoxyoct-2-ene (53a) 

Prepared from (E)-oct-2-en-1-ol using General Procedure A. This 
compound is known in the literature15. 1H NMR (400 MHz, CDCl3) δ 
5.70 (dtt, J = 15.6, 6.6, 1.2 Hz, 1H), 5.54 (dtt, J = 15.3, 6.2, 1.4 Hz, 1H), 
3.86 (dq, J = 6.2, 1.0 Hz, 2H), 3.31 (s, 3H), 2.08 – 1.99 (m, 2H), 1.43 – 
1.34 (m, 2H), 1.34 – 1.21 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H). 13C NMR 

(101 MHz, CDCl3) δ 135.2, 126.1, 73.5, 57.8, 32.4, 31.5, 28.9, 22.7, 14.2. 

 

(E)-1-Methoxyhex-2-ene (53b) 

Prepared from (E)-hex-2-en-1-ol using a modified version of General Procedure A. 
To a 100 mL dry round bottom flask, cooled under argon, were added (E)-hex-2-en-1-ol 
(2.0 g, 20 mmol, 1.0 equiv.), DMF (35 mL), and iodomethane (5.7 g, 40 mmol, 2.0 equiv.). 
The resulting solution was cooled to 0 °C and NaH (60% dispersion in mineral oil, 960 mg, 
24 mmol, 1.2 equiv.) was added portion-wise. The mixture was stirred at 0 °C for 30 
minutes, then allowed to warm to room temperature and stirred for an additional 3 hours. 
The reaction mixture was cooled to 0 °C, quenched with the addition of NH4Cl (sat. aq., 
30 mL), and diluted with diethyl ether (50 mL). Phases were separated and the aqueous 
layer was extracted with diethyl ether (3 × 50 mL). The combined organics were washed 
with H2O (2 × 25 mL) and brine (25 mL), dried over Na2SO4, and concentrated under 
reduced pressure (≥ 200 mbar). Purification by silica column chromatography with pentane 
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/ diethyl ether afforded compound 53b (746 mg, 6.5 mmol, 33% yield).  

This compound is known in the literature16. 1H NMR (500 MHz, 
CDCl3) δ 5.70 (dtt, J = 15.4, 6.6, 1.2 Hz, 1H), 5.55 (dtt, J = 15.4, 6.3, 

1.4 Hz, 1H), 3.87 (dq, J = 6.3, 1.1 Hz, 2H), 3.32 (s, 3H), 2.06 – 2.00 (m, 2H), 1.42 (app. 
sext, J = 7.4 Hz, 2H), 0.91 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 134.9, 
126.3, 73.4, 57.8, 34.5, 22.4, 13.8. 
 

(E)-7-Bromo-1-methoxyhept-2-ene (53c) 
To a 100 mL flamed dried flask was added Grubbs’ catalyst 2nd generation (85 mg, 1 

mol%). The flask was then evacuated and backfilled with argon for three times. Under 
argon, a dry CH2Cl2 solution containing 6-bromo-1-hexene (1.63 g, 10 mmol, 1.0 equiv.) 
and crotonaldehyde (3.50 g, 50 mmol, 5.0 equiv.) was added to the flask. The mixture was 
stirred under reflux for 20 hours and then cooled to room temperature and filtered through 
a silica plug. The solvent was removed under reduced pressure and the crude product was 
purified by flash chromatography (hexanes / ethyl acetate) to give (E)-7-bromohept-2-enal 
(1.6 g, 84% yield). This product was then dissolved in 10 mL dry THF and then added 
slowly to a suspension of NaBH4 (375 mg, 10 mmol, 1.0 equiv.) in dry THF (10 mL) at 0 
°C. To this reaction mixture, iodine (1.27 g, 5 mmol, 0.5 equiv.) in 10 mL of THF was 
slowly added at 0 °C. Reaction was stirred until the aldehyde was fully reduced as indicated 
by TLC. The reaction was quenched with NH4Cl (sat. aq.), the phases were separated, and 
the aqueous phase was extracted with ethyl acetate (3 × 20 mL). The combined organic 
layers were washed with brine and dried over Na2SO4. The solvent was removed under 
reduced pressure and the crude alcohol product was used directly without purification. 
General Procedure A was used for the methylation step and the final product 53c was 
obtained with 50% overall yield (1.03g, 5 mmol). This compound was prepared by Dr. 
Xiongyi Huang.  

This compound is known in the literature17. 1H NMR (400 MHz, CDCl3) 
δ 5.68 (dtt, J = 15.3, 6.4, 1.1 Hz, 1H), 5.57 (dtt, J = 15.4, 6.0, 1.2 Hz, 1H), 
3.86 (dq, J = 5.9, 1.0 Hz, 2H), 3.41 (t, J = 6.8 Hz, 2H), 3.32 (s, 3H), 2.14 
– 2.05 (m, 2H), 1.92 – 1.82 (m, 2H), 1.57 – 1.49 (m, 2H). 13C NMR (101 

MHz, CDCl3) δ 133.9, 127.0, 73.3, 57.9, 33.8, 32.3, 31.5, 27.7. HRMS (EI) m/z: 205.0216 
(M ‒ H+); calc. for C8H14

79BrO: 205.0228. 
 

(E)-1-(But-1-en-1-yl)-4-methoxybenzene (53d) 
This compound was accessed in a two-step sequence. First, to 

propyltriphenylphosphonium bromide (7.6 g, 19.7 mmol, 1.0 equiv.) suspended in 
anhydrous THF (70 mL) and cooled to 0 °C was added n-butyllithium (2.5 M in hexanes, 
7.9 mL, 19.7 mmol, 1.0 equiv.) dropwise over 10 min to form a bright orange solution. 
After stirring for 1 hour, 4-methoxybenzaldehyde (2.7 g, 19.7 mmol, 1.0 equiv.) was added 
dropwise over 5 min. The reaction mixture was allowed to slowly warm to room 
temperature and stirred at room temperature overnight. The reaction mixture was diluted 
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with pentane (50 mL) and the resulting solution was washed with HCl (aq., 0.1 M, 50 mL), 
H2O (50 mL), NaHCO3 (sat. aq., 50 mL), and brine (50 mL). The organics were dried over 
sodium sulfate and concentrated under reduced pressure. The crude product was purified 
by silica column chromatography with pentane / diethyl ether to afford (E:Z)-53d (2:1 E:Z, 
2.50 g, 15.4 mmol, 78% yield).  

 Next, (E:Z)-53d was isomerized following a literature method18. To a dry 25 mL 
round bottom flask, under argon, were added (E:Z)-53d (300 mg, 1.85 mmol), 
(MeCN)2PdCl2 (235 mg, 50 mol%), and 4 mL anhydrous dichloromethane. The resulting 
mixture was stirred at room temperature for 24 hours. The crude reaction mixture was 
filtered through Celite and concentrated under reduced pressure. Purification by silica 
column chromatography using hexanes / diethyl ether delivered 53d (> 20:1 E:Z, 279 mg, 
1.72 mmol, 93% yield).  

This compound is known in the literature18. 1H NMR (400 MHz, 
CDCl3) δ 7.28 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.33 (dt, 
J = 15.7, 1.6 Hz, 1H), 6.13 (dt, J = 15.8, 6.5 Hz, 1H), 3.80 (s, 3H), 

2.26 – 2.16 (m, 2H), 1.08 (t, J = 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 158.7, 130.9, 
130.7, 128.2, 127.1, 114.0, 55.4, 26.2, 14.0. 

 
1-Methoxyoct-2-yne (53e) 

To a solution of 3-methoxyprop-1-yne (845 µL, 10 mmol, 1.0 equiv.) in anhydrous 
THF (50 mL) at -20 °C, was added n-butyllithium (2 M in THF, 6 mL, 12 mmol, 1.2 equiv.) 
and HMPA (869 µL, 5 mmol, 0.5 equiv.) dropwise over 5 min. The resulting mixture was 
stirred at -20 °C for 3 hours before the addition of 1-iodopentane (1.96 mL, 15 mmol, 1.5 
equiv.). The reaction was allowed to slowly warm to room temperature in 2 hours and 
stirred for additional 18 hours. The reaction was then quenched by NH4Cl (sat. aq., 20 mL) 
and H2O (30 mL), and extracted by diethyl ether (40 mL × 3). The combined organic layer 
was washed by H2O (50 mL) and brine (50 mL), and then dried over sodium sulfate and 
concentrated under reduced pressure. The crude product was purified by silica column 
chromatography with pentane / diethyl ether to afford 53e (1.04 g, 7.4 mmol, 74% yield).  

This compound is known in the literature19. 1H NMR (400 MHz, 
CDCl3) δ 4.07 (t, J = 2.2 Hz, 2H), 3.37 (s, 3H), 2.22 (tt, J = 7.2, 
2.2 Hz, 2H), 1.56 – 1.47 (m, 2H), 1.41 – 1.26 (m, 4H), 0.89 (t, J = 

7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 87.4, 75.8, 60.4, 57.5, 31.2, 28.5, 22.3, 18.9, 
14.1. HRMS (EI) m/z: 139.1128 [(M – H•)+]; calc. for C9H15O: 139.1123. 
 

4-Ethyl-N,N-dimethylaniline (56b) 
4-Ethylaniline (0.605 g, 5 mmol, 1.0 equiv.) and formaldehyde (1.8 mL, 50 mmol, 

10.0 equiv.) were mixed in acetic acid (30 mL). The solution was stirred for 30 min at 0 
°C before portionwise addition of NaBH3CN (1.57 g, 25 mmol, 5.0 equiv.). After the 
reaction was stirred overnight, NaOH (aq., 2M) was used to neutralize the reaction at 0 °C 
until pH 8-10. The crude product was extracted with diethyl ether (30 mL × 3). The 
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combined organic layer was washed with H2O (50 mL) and brine (50 mL), and then dried 
over sodium sulfate and concentrated under reduced pressure. The crude product was 
purified by silica column chromatography with hexanes / ethyl acetate to afford 56b (635 
mg, 4.25 mmol, 85% yield).  

This compound is known in the literature20. 1H NMR (400 MHz, 
CDCl3) δ 7.09 (d, J = 8.8 Hz, 2H), 6.72 (d, J = 8.7 Hz, 2H), 2.92 (s, 
6H), 2.57 (q, J = 7.6 Hz, 2H), 1.21 (t, J = 7.6 Hz, 3H). 13C NMR (101 
MHz, CDCl3) δ 149.1, 132.8, 128.5, 113.3, 41.2, 27.9, 16.1. 

 

3-Diazodihydrofuran-2(3H)-one (58b) 
The preparation of the title compound 58b followed a modified procedure 
reported by Sattely et al21. Sodium azide (4.83 g, 74.3 mmol, 4 equiv.), sodium 
hydroxide (80 mL of 2 M in water, 160 mmol), tetrabutylammonium bromide 
(60.0 mg, 0.190 mmol, 0.01 equiv.), and hexane (80 mL) were combined in a 

500-mL flask with magnetic stir bar open to the air and cooled to 0 °C. With vigorous 
stirring, triflic anhydride (6.20 mL, 37.1 mmol, 2 equiv.) was added dropwise. After 15 
min, a solution of 2-acetyl-butyrolactone (2.00 mL, 18.6 mmol) in acetonitrile (70 mL) was 
poured into the vessel through a funnel, followed by an additional 10 mL of acetonitrile to 
complete the transfer. The initially colorless reaction mixture immediately turned yellow. 
After stirring for 20 min at 0 °C, the mixture was diluted with ice water (50 mL) and chilled 
EtOAc (50 mL) and transferred to a separatory funnel. After phase separation and removal 
of the organic fraction, the aqueous layer was washed with chilled EtOAc (50 mL × 5). 
The combined organic layer was dried over Na2SO4, filtered, and concentrated under 
reduced pressure. The resulting crude product was purified by silica column 
chromatography with hexanes / ethyl acetate as eluents. The yellow-colored fractions were 
concentrated to afford the product as a bright yellow crystalline solid (1.2‒1.6 g, 60‒75% 
yield). Spectral data are consistent with Sattely et al21.  This compound was prepared by 
Kai Chen. 
 

2-Diazo-N-methoxy-N-methylacetamide (58c) 
4-Methylbenzenesulfonohydrazide (9.31 g, 50 mmol, 1.0 equiv.) was dissolved in 

aqueous hydrochloric acid (2 M, 30 mL) and warmed to 50 °C (solution 1). 2-Oxoacetic 
acid (7.40 g of 50% in water, 50 mmol, 1.0 equiv.) was dissolved in water (100 mL) and 
heated to 50 °C (solution 2). Pre-warmed solution 1 was slowly transferred to solution 2. 
The reaction mixture was then stirred at 60 °C for 4 h until all the hydrozone product 
crashed out. The mixture was cooled to 0 °C and kept for 2 h. The product 2-(2-
tosylhydrazineylidene)acetic acid (9.88 g, 82% yield) was collected by filtration, washed 
with hexane: ethyl acetate (10:1) and dried under vaccum. 

2-(2-Tosylhydrazineylidene)acetic acid (4.84 g, 20 mmol, 1.0 equiv.) was dissolved 
in dry dichloromethane (30 mL). Thionyl chloride (16 mL) and N,N-dimethyl 
formaldehyde (3 drops, cat.) were added to the solution. The reaction mixture was stirred 
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at room temperature for 1 h and then heated to reflux (~ 50 °C) for 5 h until the starting 
material was completely dissolved and the reaction turned clear and light yellow. After the 
reaction was cooled to room temperature, organic solvent and the excess thionyl chloride 
was removed under reduced pressure. The resulting mixture (solid) was then dissolved in 
dry dichloromethane (20 mL) and used for the next step. 

N,O-Dimethylhydroxylamine hydrochloride (3.91 g, 40 mmol, 2.0 equiv.) and 
triethylamine (11.2 mL, 80 mmol, 4.0 equiv.) were mixed in dry dichloromethane (80 mL) 
and stirred for 30 min. The solution of acyl chloride was added dropwise over 20 min to 
the reaction mixture at 0 °C. The reaction was then stirred at room temperature for 5 h 
before water (80 mL) was added to quench the reaction. The liquid phases were transferred 
to a separatory funnel, and the aqueous phase was extracted with dichloromethane (50 mL× 
4). The combined organic phase was washed with water (40 mL) and brine (40 mL), dried 
over Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude 
product was purified by silica column chromatography with hexanes / ethyl acetate to 
afford 9c as a yellow liquid (0.82 g, 32% yield). This compound was prepared by Kai Chen. 

This compound is known in the literature22. 1H NMR (400 MHz, CDCl3) δ 
5.33 (s, 1H), 3.66 (s, 3H), 3.19 (s, 3H). 

 
 

1-Diazopropan-2-one (58d) 
The preparation of the title compound 9d followed a modified procedure 
reported by Zhang et al23. To a solution of acetylacetone (3.4 mL, 33.0 mmol, 
1.10 equiv.) and triethylamine (5.04 mL, 36.4 mmol, 1.21 equiv.) in dry 
acetonitrile (25 mL), a solution of p-acetamidobenzenesulfonyl azide (7.20 g, 
30.0 mmol, 1.0 equiv.) in dry acetonitrile (25 mL) was added dropwise. The 

reaction mixture was stirred at room temperature for 4 h. Then, the solvent was removed 
under reduced pressure and the resulting mixture was then purified by silica column 
chromatography with hexanes / ethyl acetate to give 3-diazopentane-2,4-dione (3.65 g, 
96% yield) as a pale yellow liquid. 

3-Diazopentane-2,4-dione (1.89 g, 15 mmol, 1.0 equiv.) was dissolved in diethyl ether 
(25 mL). An aqueous solution (25 mL) of NaOH (3.00 g, 75 mmol, 5.0 equiv.) was added 
dropwise over 10 min to the ether layer with vigorous stirring at 0 °C. The reaction mixture 
turned dark brown within 20 min and was then stirred at room temperature for 4 h. The 
liquid phases were transferred to a separatory funnel, and the aqueous phase was extracted 
with diethyl ether (30 mL × 5). The combined organic phase was dried over Na2SO4, 
filtered, and concentrated under reduced pressure (T = 24 °C, P ≥ 20 kPa) to give product 
58d as a volatile yellow liquid (0.892 g, 71% yield). Spectral data is consistent with Zhang 
et al23. This compound was prepared by Kai Chen and Dr. Xiongyi Huang.  
 

 

N2

O

N
OMe

Me

N2

O

Me



 

 

185  
 

Ethyl 2-diazobutanoate (58g) 
The preparation of the title compound 58g followed a modified procedure 
reported by Huang et al24.  To a solution of ethyl 2-ethylacetoacetate (3.16 
g, 20.0 mmol, 1.0 equiv.) and p-acetamidobenzenesulfonyl azide (7.21 g, 
30.0 mmol, 1.5 equiv.) in dry acetonitrile (50 mL) was added 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU, 4.5 mL, 30.0 mmol, 1.5 equiv.) 

dropwise at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and at room temperature 
for 2 h. Water (50 mL) was added to quench the reaction. Acetonitrile was removed under 
reduced pressure (T = 24 °C, P ≥ 20 kPa). The mixture was extracted with diethyl ether (25 
mL × 4). The combined ether layer extract was washed with water (30 mL) and brine (30 
mL), dried over Na2SO4, filtered, and concentrated under reduced pressure (T = 24 °C, P 
≥ 30 kPa). The crude product was purified by silica column chromatography with hexanes 
/ ethyl acetate to give product 9g as a volatile yellow liquid (2.40 g, 84% yield). Spectral 
data is consistent with Huang et al24. This compound was prepared by Kai Chen.  

 
C.6  Synthesis and characterization of reference compounds 

Racemic reference compounds corresponding to enzymatic products and side-
products were prepared according to the following procedures. Reference compounds are 
characterized below.  
 

General Procedure B: Aldol reaction and methylation synthetic sequence 
In a dry 100 or 250 mL round bottom flask, under argon, a solution of 

diisopropylamine (6–24 mmol, 1.1–1.2 equiv.) in THF (15–30 mL) was cooled to 0 °C 
(General Procedure B-1) or -78 °C (General Procedure B-2). n-Butyllithium (6–25 
mmol, 1.1–1.2 equiv., 1.6 or 2.5 M in hexanes) was added dropwise and the resulting 
mixture was stirred at the appropriate temperature for 15-30 min. The mixture was cooled 
to -78 °C and kept at this temperature for the remainder of the reaction. Ethyl acetate (14–
28 mmol, 1.4 equiv., General Procedure B-1 or 6–10 mmol, 1.0 equiv., General 
Procedure B-2) was added dropwise and the mixture was stirred for an additional 30-45 
min. Then, aldehyde (10–20 mmol, 1.0 equiv., General Procedure B-1 or 9–11 mmol, 
1.1–1.5 equiv., General Procedure B-2) as a solution in THF (15–30 mL, General 
Procedure B-1) or neat (General Procedure B-2) was added slowly and the solution was 
stirred for a further 0.5–3 hours. The reaction mixture was quenched at -78 °C by the 
addition of NH4Cl (sat. aq., 10–30 mL) and allowed to thaw to room temperature. For 
General Procedure B-1 only, HCl (1 M aq., 1.5–3.0 mL) was also added. Phases were 
separated and the aqueous phase was extracted with ethyl acetate or diethyl ether (3 × 20–
30 mL). The combined organics were washed with NH4Cl (sat. aq., 2 × 10–15 mL), brine 
(10 mL), dried over Na2SO4, and concentrated under reduced pressure. Purification by 
silica column chromatography with hexanes / ethyl acetate afforded the desired aldol 
adducts in 56–95% yield.  
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In the appropriate reaction vessel, aldol adduct (3–4 mmol, 1.0 equiv.), Ag2O (9–10 

mmol, 2.5–3.0 equiv.), and solvent (10–15 mL) were combined, followed by iodomethane 
(40–60 mmol, 10–15 equiv., General Procedure B-1 or 9 mmol, 3.0 equiv., General 
Procedure B-2). The reaction was then stirred at the specified temperature for 24–48 
hours, with additional equivalents of iodomethane (10–20 mmol, 2.5–5 equiv., General 
Procedure B-1) added as necessary. For General Procedure B-1, the reaction was 
performed in a vial equipped with a pressure release cap, toluene was employed as the 
solvent, and the reaction mixture was stirred at 70 °C. For General Procedure B-2, diethyl 
ether was employed as solvent and the reaction mixture was stirred at room temperature; 
the reaction vessel was covered in aluminum foil to protect its contents from light. The 
crude mixture was filtered through a pad of Celite and concentrated under reduced 
pressure. Purification was performed by silica column chromatography with hexanes / 
ethyl acetate; if necessary, a second purification by reverse phase chromatography was 
performed (Biotage Isolera equipped with Biotage SNAP Ultra C18 column, water / 
acetonitrile eluent system). The desired products were obtained in 25–57% yield. 

 
General Procedure C: Horner-Wadsworth-Emmons reaction and Pd/C alkene 
reduction synthetic sequence  

In a dry round bottom flask, under argon, NaH (60% dispersion in mineral oil, 7.4–12 
mmol, 1.1–2.0 equiv.) in anhydrous THF (8–23 mL) was cooled to 0 °C. Triethyl 
phosphonoacetate (7.4–18 mmol, 1.1–3.0 equiv.) was added dropwise and the mixture was 
allowed to warm to room temperature and stirred for 1 hour. Ketone (5–6.7 mmol, 1.0 
equiv.) in THF (2–4 mL) was added and the reaction was stirred at room temperature for 
12–18 hours (for the preparation of 3j and 3l) or heated to reflux (for the preparation of 3i, 
3k, 8a’, and 8b’). The reaction was quenched with NH4Cl (sat. aq., 20 mL). Phases were 
separated and the aqueous layer was extracted with ethyl acetate (3 × 30 mL). The 
combined organics were washed with brine (10–20 mL), dried over Na2SO4, and 
concentrated under reduced pressure. When necessary, the crude product was purified by 
silica column chromatography with hexanes / ethyl acetate to afforded the desired alkene 
compounds in 23% to quantitative yield.  

To a round bottom flask were added Pd/C (10% Pd on activated charcoal, 24–30% 
w/w of alkene), methanol (5–6 mL), and alkene (1.2–2.3 mmol). H2 was bubbled through 
the solution for ~30 minutes. The reaction was stirred at room temperature under 1 atm H2 
until complete reduction of the alkene was observed by TLC (typically 3–8 hours). The 
crude product was filtered through a pad of Celite and concentrated under reduced pressure. 
Purification by silica column chromatography with hexanes / ethyl acetate afforded the 
desired products in quantitative yield.  
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Ethyl 3-methoxy-3-(4-methoxyphenyl)propanoate (52a) 

This compound was prepared from 4-methoxybenzaldehyde using 
General Procedure B-1.  1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 
8.5 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 4.58 (dd, J = 9.0, 4.9 Hz, 1H), 
4.14 (qd, J = 7.1, 1.2 Hz, 2H), 3.81 (s, 3H), 3.19 (s, 3H), 2.80 (dd, J = 
15.2, 9.0 Hz, 1H), 2.55 (dd, J = 15.2, 4.9 Hz, 1H), 1.23 (t, J = 7.1 Hz, 

3H). Spectral data are in agreement with that for the enzymatic product (see Section C.8).   

 
Ethyl 3-methoxy-3-(p-tolyl)propanoate (52b) 

This compound was prepared from 4-methylbenzaldehyde using 
General Procedure B-1. 1H NMR (400 MHz, CDCl3) δ 7.22 (d, J = 
8.0 Hz, 2H), 7.16 (d, J = 7.9 Hz, 2H), 4.60 (dd, J = 9.2, 4.7 Hz, 1H), 
4.14 (qd, J = 7.1, 1.2 Hz, 2H), 3.21 (s, 3H), 2.79 (dd, J = 15.3, 9.2 Hz, 
1H), 2.55 (dd, J = 15.3, 4.7 Hz, 1H), 2.35 (s, 3H), 1.24 (t, J = 7.2 Hz, 

3H). 13C NMR (101 MHz, CDCl3) δ 171.2, 137.9, 137.6, 129.4, 126.7, 80.0, 60.7, 56.9, 
43.7, 21.3, 14.3. HRMS (FAB) m/z: 221.1169 [(M + H+)–H2]; calc. for C13H17O3: 
221.1178. 

 
Ethyl 3-(4-bromophenyl)-3-methoxypropanoate (52c) 

This compound was prepared from 4-bromobenzaldehyde using 
General Procedure B-1. 1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 
8.4 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 4.59 (dd, J = 8.9, 5.0 Hz, 1H), 
4.14 (qd, J = 7.1, 0.7 Hz, 2H), 3.21 (s, 3H), 2.77 (dd, J = 15.4, 8.9 Hz, 
1H), 2.53 (dd, J = 15.4, 5.0 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H). 13C 

NMR (101 MHz, CDCl3) δ 170.8, 139.8, 131.9, 128.5, 122.0, 79.6, 60.8, 57.1, 43.5, 14.3. 
HRMS (FAB) m/z: 287.0282 (M + H+); calc. for C12H16

79BrO3: 287.0283 
 
Ethyl 3-methoxy-3-(4-(trifluoromethyl)phenyl)propanoate (52d) 

This compound was prepared from 4-(trifluoromethyl)benzaldehyde 
using General Procedure B-1. 1H NMR (400 MHz, CDCl3) δ 7.62 
(d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 4.70 (dd, J = 8.8, 4.9 Hz, 
1H), 4.15 (qd, J = 7.2, 0.7 Hz, 2H), 3.24 (s, 3H), 2.79 (dd, J = 15.5, 
8.9 Hz, 1H), 2.56 (dd, J = 15.4, 4.9 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H).  

13C NMR (101 MHz, CDCl3) δ 170.7, 145.0, 130.4 (q, J = 32.4 Hz), 127.1, 125.7 (q, J = 
3.8 Hz), 124.2 (q, J = 272.1 Hz), 79.7, 60.9, 57.3, 43.5, 14.3. HRMS (FAB) m/z: 277.1041 
(M + H+); calc. for C13H16F3O3: 277.1052 
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Ethyl 3-methoxy-3-(m-tolyl)propanoate (52e) 

 This compound was prepared from 3-methylbenzaldehyde using 
General Procedure B-1. 1H NMR (400 MHz, CDCl3) δ 7.27 – 7.21 
(m, 1H), 7.16 – 7.08 (m, 3H), 4.60 (dd, J = 9.2, 4.6 Hz, 1H), 4.15 (qd, 
J = 7.1, 1.3 Hz, 2H), 3.22 (s, 3H), 2.79 (dd, J = 15.3, 9.3 Hz, 1H), 2.56 

(dd, J = 15.3, 4.6 Hz, 1H), 2.36 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, 
CDCl3) δ 171.2, 140.7, 138.3, 128.9, 128.6, 127.4, 123.8, 80.2, 60.7, 57.0, 43.7, 21.6, 14.3. 
HRMS (FAB) m/z: 223.1338 (M + H+); calc. for C13H19O3: 223.1334. 

 
Ethyl 2-(1,3-dihydroisobenzofuran-1-yl)acetate (52f) 

This compound was prepared by the method of U. S. Dakarapu et al.25. To a flame-
dried Schlenk flask under argon was added [Ir(coe)2Cl]2 (5 mg, 0.0056 mmol, 0.11 mol%), 
phthalide (671 mg, 5 mmol, 1.0 equiv.), anhydrous dichloromethane (1.6 mL), and H2SiEt2 
(1.3 mL, 10 mmol, 2 equiv.). The reaction mixture was stirred for 14 hours at room 
temperature. The reaction mixture was concentrated under reduced pressure to afford the 
crude silyl acetal, which was used without purification.  

 In a dry round bottom flask, the crude silyl acetal (5 mmol, 1.0 equiv.) was combined 
with THF (5 mL) and the resulting mixture cooled to 0 °C. To the mixture were added 
triethyl phosphonoacetate (1.23 g, 5.5 mmol, 1.1 equiv.) and KOSiMe3 (713 mg, 5 mmol, 
1.0 equiv.) in THF (7.5 mL). The reaction was allowed to warm to room temperature and 
stirred for 1.5 hours. The reaction was quenched with the addition of NH4Cl (sat. aq., 12 
mL) and the aqueous phase was extracted with diethyl ether (3 × 15 mL). The combined 
organics were washed with brine (15 mL), dried over Na2SO4, and concentrated under 
reduced pressure. Purification by silica column chromatography with hexanes / ethyl 
acetate afforded desired product 3f with impurities (667 mg, 3.2 mmol, 65% yield). A 
portion of the product was taken for a second purification by reverse phase chromatography 
(Biotage Isolera equipped with Biotage SNAP Ultra C18 column, water / acetonitrile eluent 
system).  

Spectral data are in agreement with literature report25. 1H NMR (400 
MHz, CDCl3) δ 7.33 – 7.26 (m, 2H), 7.25 – 7.16 (m, 2H), 5.71 – 5.63 
(m, 1H), 5.19 – 5.13 (m, 1H), 5.11 – 5.04 (m, 1H), 4.20 (q, J = 7.1 Hz, 

2H), 2.80 (dd, J = 15.6, 4.9 Hz, 1H), 2.73 (dd, J = 15.6, 7.9 Hz, 1H), 1.27 (t, J = 7.1 Hz, 
3H). 13C NMR (101 MHz, CDCl3) δ 171.0, 140.8, 139.3, 128.0, 127.6, 121.3, 121.2, 
80.5, 72.9, 60.8, 41.8, 14.3. 

 
Ethyl 2-(isochroman-1-yl)acetate (52g) 

This compound was prepared by the method of R. E. TenBrink et al.26. To a 100 mL 
dry round bottom flask, under argon, were added 2-phenylethanol (1.47 g, 12 mmol, 1.0 
equiv.), ethyl 3,3-diethoxypropionate (90% technical grade, 2.51 g, 13.2 mmol, 1.1 equiv.), 
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and anhydrous dichloromethane (5 mL). The resulting mixture was cooled to 0 °C and 
TiCl4 (1 M in dichloromethane, 26.4 mL, 26.4 mmol, 2.2 equiv.) was added slowly. The 
reaction was stirred for 2 hours at 0 °C and a second portion of ethyl 3,3-
diethoxypropionate (90% technical grade, 0.12 g, 0.6 mmol, 0.05 equiv.) was added. The 
reaction was stirred for an additional 2 hours at 0 °C.  The mixture was poured into ice cold 
HCl (aq., 1 M, 20 mL) and the aqueous phase was extracted with dichloromethane (2 x 20 
mL). The combined organics were washed with brine (30 mL), dried over Na2SO4, and 
concentrated under reduced pressure. Purification by silica column chromatography with 
hexanes / ethyl acetate afforded desired product 3g with minor impurities (2.59 g, ~11.8 
mmol, ~98% yield). A portion of the product was taken for a second purification by reverse 
phase chromatography (Biotage Isolera equipped with Biotage SNAP Ultra C18 column, 
water / acetonitrile eluent system).  

Spectral data are in agreement with literature report26. 1H NMR (400 
MHz, CDCl3) δ 7.22 – 7.15 (m, 2H), 7.15 – 7.09 (m, 1H), 7.08 – 7.02 (m, 
1H), 5.25 (dd, J = 9.6, 3.5 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.13 (ddd, J 
= 11.4, 5.2, 4.2 Hz, 1H), 3.82 (ddd, J = 11.4, 9.0, 3.9 Hz, 1H), 3.04 – 2.93 

(m, 1H), 2.88 (dd, J = 15.2, 3.6 Hz, 1H), 2.80 – 2.68 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H). 13C 
NMR (101 MHz, CDCl3) δ 171.4, 136.9, 134.1, 129.2, 126.8, 126.4, 124.6, 73.1, 63.2, 
60.8, 41.9, 28.9, 14.3. 

 
Ethyl 3-(4-(dimethylsilyl)phenyl)-3-methoxypropanoate (52h) 

This compound was prepared from ethyl 3-(4-bromophenyl)-3-methoxypropanoate 
(3c). The following procedure was modified from the literature27.  To a 25 mL round 
bottom flask was added Mg turnings* (48 mg, 2.0 mmol, 2.0 equiv.), flame dried, and 
cooled under positive argon pressure. (*Mg turnings were prepared by washing with 0.1 M 
HCl, sonication, then washing with H2O and acetone.) THF (3 mL), LiCl (64 mg, 1.5 
mmol, 1.5 equiv.), and Me2SiHCl (170 mg, 1.8 mmol, 1.8 equiv.) were added and the 
resulting mixture was stirred for 30 minutes at room temperature under positive argon 
pressure. Aryl bromide 52c (287 mg, 1.0 mmol, 1.0 equiv.) was added dropwise via syringe 
and the reaction was stirred for an additional 2 hours. The crude reaction mixture was 
filtered through a pad of Celite and concentrated under reduced pressure. Purification by 
silica column chromatography with hexanes / ethyl acetate afforded desired product 52h 
(145 mg, 0.54 mmol, 54% yield). 

1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 
7.9 Hz, 2H), 4.63 (dd, J = 9.3, 4.5 Hz, 1H), 4.42 (hept, J = 3.8 Hz, 
1H), 4.15 (qd, J = 7.1, 1.6 Hz, 2H), 3.23 (s, 3H), 2.79 (dd, J = 15.3, 
9.3 Hz, 1H), 2.56 (dd, J = 15.3, 4.5 Hz, 1H), 1.24 (t, J = 7.2 Hz, 3H), 
0.35 (d, J = 3.8 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 171.1, 141.8, 

137.4, 134.4, 126.2, 80.2, 60.7, 57.1, 43.7, 14.3, -3.6. HRMS (FAB) m/z: 265.1253 [(M + 
H+)–H2]; calc. for C14H21SiO3: 265.1260. 
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Ethyl 2-((4-(methoxymethyl)phenyl)dimethylsilyl)acetate (52h’) 

This compound was prepared by rhodium-catalyzed Si−H insertion. To a dry 50 
mL round bottom flask, under argon, was added (4-
(methoxymethyl)phenyl)dimethylsilane (51h) (541 mg, 3 mmol, 1.0 equiv.), Rh2(OAc)4 
(13.3 mg, ~1 mol%), and anhydrous dichloromethane (12 mL). The mixture was cooled to 
-78 °C, after which ethyl diazoacetate (393 mg, 3.0 mmol, 1.0 equiv.) in dichloromethane 
(3 mL) was added dropwise to the solution over 2 hours. The reaction was allowed to 
slowly warm to room temperature and stirred for a total of 12 hours. The crude reaction 
mixture was filtered through a pad of Celite and concentrated under reduced pressure. The 
crude mixture was purified by silica column chromatography using hexanes / ethyl acetate 
to deliver 52h’ with impurities. A second purification by silica column chromatography 
using hexanes / diethyl ether/ dichloromethane afforded 52h’ (92.6 mg, 0.35 mmol, 12% 
yield).  

1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 
8.1 Hz, 2H), 4.46 (s, 2H), 4.04 (q, J = 7.2 Hz, 2H), 3.39 (s, 3H), 2.11 
(s, 2H), 1.16 (t, J = 7.1 Hz, 3H), 0.40 (s, 6H). 13C NMR (101 MHz, 
CDCl3) δ 172.7, 139.7, 136.4, 133.8, 127.2, 74.6, 60.1, 58.3, 26.4, 
14.5, -2.6. HRMS (FAB) m/z: 265.1260 [(M + H+)–H2]; calc. for 

C14H21SiO3: 265.1260. 

  
Ethyl 3-(4-methoxyphenyl)butanoate (52i) 

This compound was prepared from 1-(4-methoxyphenyl)ethan-1-one 
using General Procedure C. 1H NMR (500 MHz, CDCl3) δ 7.14 (d, 
J = 8.5 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 4.08 (qd, J = 7.2, 1.2 Hz, 
2H), 3.79 (s, 3H), 3.24 (h, J = 7.1 Hz, 1H), 2.57 (dd, J = 14.9, 7.2 Hz, 
1H), 2.51 (dd, J = 14.9, 8.0 Hz, 1H), 1.28 (d, J = 7.0 Hz, 3H), 1.19 (t, 

J = 7.1 Hz, 3H). Spectral data are in agreement with that for the enzymatic product (see 
Section C.8).   

 

Ethyl 3-(4-methoxyphenyl)pentanoate (52j) 

 This compound was prepared from 1-(4-methoxyphenyl)propan-1-one 
using General Procedure C. Spectral data are in agreement with 
literature report28;  1H NMR (400 MHz, CDCl3) δ 7.09 (d, J = 8.6 Hz, 
2H), 6.83 (d, J = 8.8 Hz, 2H), 4.03 (qd, J = 7.2, 1.3 Hz, 2H), 3.78 (s, 

3H), 2.95 (tdd, J = 9.0, 7.0, 5.3 Hz, 1H), 2.60 (dd, J = 15.0, 7.0 Hz, 1H), 2.51 (dd, J = 14.9, 
8.3 Hz, 1H), 1.68 (ddq, J = 13.3, 7.4, 5.4 Hz, 1H), 1.56 (ddq, J = 13.5, 9.4, 7.3 Hz, 1H), 
1.14 (t, J = 7.1 Hz, 3H), 0.78 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.7, 
158.2, 136.1, 128.5, 113.8, 60.3, 55.3, 43.3, 41.9, 29.4, 14.3, 12.1. 
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Ethyl 3-(4-ethylphenyl)butanoate (52k) 

 This compound was prepared from 1-(4-ethylphenyl)ethan-1-one 
using General Procedure C. 1H NMR (400 MHz, CDCl3) δ 7.14 
(app. s, 4H), 4.08 (q, J = 7.1 Hz, 2H), 3.25 (dp, J = 8.3, 7.0 Hz, 1H), 
2.66 – 2.48 (m, 4H), 1.29 (d, J = 6.9 Hz, 3H), 1.26 – 1.15 (m, 6H). 13C 
NMR (101 MHz, CDCl3) δ 172.7, 143.1, 142.3, 128.0, 126.8, 60.4, 

43.2, 36.2, 28.5, 22.0, 15.7, 14.3. HRMS (FAB) m/z: 221.1532 (M + H+); calc. for 
C14H21O2: 221.1542 

 
Ethyl 3-(4-isopropylphenyl)butanoate (52l) 

This compound was prepared from 1-(4-isopropylphenyl)ethan-1-one 
using General Procedure C. 1H NMR (400 MHz, CDCl3) δ 7.15 
(app. s, 4H), 4.08 (q, J = 7.1 Hz, 2H), 3.25 (dp, J = 8.5, 6.9 Hz, 1H), 
2.87 (hept, J = 6.9 Hz, 1H), 2.60 (dd, J = 14.9, 6.7 Hz, 1H), 2.51 (dd, 
J = 14.9, 8.4 Hz, 1H), 1.29 (d, J = 7.0 Hz, 3H), 1.23 (d, J = 6.9 Hz, 
6H), 1.18 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.7, 

147.0, 143.2, 126.8, 126.6, 60.4, 43.3, 36.2, 33.8, 24.2, 21.9, 14.3. HRMS (FAB) m/z: 
235.1696 (M + H+); calc. for C15H23O2: 235.1698. 

 
Ethyl 3-(4-methoxyphenyl)pent-4-enoate (52m) 

This compound was accessed in a two-step sequence. First, p-
methoxycinnamaldehyde (811 mg, 5 mmol, 1.0 equiv.) was reduced using NaBH4 (227 
mg, 6 mmol, 1.2 equiv.) in methanol (15 mL) under standard reaction conditions (0 °C for 
2 hours). The reaction mixture was quenched with NH4Cl (sat. aq., 10 mL) and diluted with 
dichloromethane (15 mL). Phases were separated and the aqueous layer was extracted with 
dichloromethane (4 × 15 mL). The combined organics were washed with brine (25 mL), 
dried over Na2SO4, and concentrated under reduced pressure. Purification by silica column 
chromatography with hexanes / ethyl acetate delivered p-methoxycinnamyl alcohol (752 
mg, 4.6 mmol, 92% yield), with spectral data that match literature report29.  

 Next, to a 50 mL round bottom flask equipped with short-path condenser were added 
p-methoxycinnamyl alcohol (740 mg, 4.5 mmol, 1.0 equiv.), triethyl orthoacetate (7.3 g, 
45 mmol, 10 equiv.), and propionic acid (52 mg, 0.7 mmol, 0.15 equiv.). Following 
standard Johnson-Claisen rearrangement conditions, this mixture was heated to 140 °C 
until complete conversion of p-methoxycinnamyl alcohol was observed by TLC (~23 
hours). Additional propionic acid (2 × 52 mg) was added after 6 hours and 9 hours reaction 
time. The reaction mixture was removed from heat, concentrated under reduced pressure, 
and purified using silica gel chromatography with hexanes / ethyl acetate as eluents. A 
second purification by silica gel chromatography with hexanes / ether afforded 52m (357 
mg, 1.6 mmol, 36% yield).  
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Spectral data for 52m are in agreement with literature report30. 1H 
NMR (400 MHz, CDCl3) δ 7.13 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.8 
Hz, 2H), 5.96 (ddd, J = 17.5, 9.9, 6.9 Hz, 1H), 5.09 – 5.05 (m, 1H), 
5.03 (dt, J = 5.4, 1.3 Hz, 1H), 4.07 (qd, J = 7.1, 1.0 Hz, 2H), 3.86 – 
3.80 (m, 1H), 3.78 (s, 3H), 2.73 (dd, J = 15.0, 8.0 Hz, 1H), 2.65 (dd, 

J = 15.0, 7.6 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.1, 
158.4, 140.7, 134.6, 128.6, 114.6, 114.0, 60.5, 55.4, 44.9, 40.6, 14.3. 
 
Ethyl 2-(4-methoxybenzyl)cyclopropane-1-carboxylate (52m’) 

  This compound was prepared by rhodium-catalyzed alkene cyclopropanation. To a 
dry 100 mL round bottom flask, under argon, were added 4-allylanisole (3.0 g, 20 mmol, 
10 equiv.), Rh2(OAc)4 (8.8 mg, ~1 mol%), and anhydrous dichloromethane (10 mL). Ethyl 
diazoacetate (262 mg, 2 mmol, 1.0 equiv.) in dichloromethane (10 mL) was added over ~8 
hours using a syringe pump; the reaction mixture was allowed to stir for a total of 20 hours 
at room temperature. The reaction mixture was diluted with diethyl ether (20 mL), filtered 
through a pad of Celite, and concentrated under reduced pressure. Several rounds of 
purification by silica column chromatography with hexanes / ethyl acetate or hexanes / 
diethyl ether eluent systems afforded cis-52m’ and trans-52m’ as individual isomers 
(combined mass 148.1 mg, 0.632 mmol, 32% yield).  

Spectral data are in agreement with literature report31. 
Characterization data for cis-52m’: 1H NMR (400 MHz, CDCl3) δ 
7.13 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 4.13 (q, J = 7.2 
Hz, 2H), 3.79 (s, 3H), 2.86 (dd, J = 14.9, 6.9 Hz, 1H), 2.77 (dd, J 

= 15.0, 7.6 Hz, 1H), 1.77 (ddd, J = 8.8, 7.6, 5.9 Hz, 1H), 1.56 – 1.44 (m, 1H), 1.24 (t, J = 
7.1 Hz, 3H), 1.14 – 1.06 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 173.1, 158.0, 133.7, 
129.3, 113.9, 60.5, 55.4, 32.1, 23.1, 18.7, 14.5, 13.7. Characterization data for trans-52m’: 
1H NMR (400 MHz, CDCl3) δ 7.12 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 4.11 (qd, 
J = 7.1, 1.1 Hz, 2H), 3.79 (s, 3H), 2.71 (dd, J = 14.7, 6.3 Hz, 1H), 2.52 (dd, J = 14.8, 7.1 
Hz, 1H), 1.65 (ddtd, J = 8.7, 7.1, 6.4, 4.1 Hz, 1H), 1.52 – 1.46 (m, 1H), 1.27 – 1.20 (m, 
4H), 0.81 (ddd, J = 8.2, 6.3, 4.2 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 174.4, 158.2, 
132.3, 129.5, 113.9, 60.5, 55.4, 37.6, 23.4, 20.3, 15.3, 14.4. 

 
Ethyl (E)-3-methoxydec-4-enoate (54a) 

This compound was prepared from (E)-oct-2-enal using General 
Procedure B-2. 1H NMR (400 MHz, CDCl3) δ 5.69 (dt, J = 15.4, 6.8 Hz, 
1H), 5.28 (ddt, J = 15.4, 8.3, 1.5 Hz, 1H), 4.14 (qd, J = 7.2, 0.8 Hz, 2H), 
3.97 (td, J = 8.2, 5.5 Hz, 1H), 3.25 (s, 3H), 2.59 (dd, J = 14.9, 8.1 Hz, 

1H), 2.42 (dd, J = 14.9, 5.5 Hz, 1H), 2.10 – 1.97 (m, 2H), 1.43 – 1.20 (m, 9H), 0.88 (t, J = 
6.9 Hz, 3H). Spectral data are in agreement with that for the enzymatic product (see Section 
C.8).   
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Ethyl (E)-3-methoxyoct-4-enoate (54b) 

This compound was prepared from (E)-hex-2-enal using General 
Procedure B-2. 1H NMR (400 MHz, CDCl3) δ 5.69 (dt, J = 15.4, 
6.8 Hz, 1H), 5.29 (ddt, J = 15.4, 8.2, 1.5 Hz, 1H), 4.14 (qd, J = 7.1, 

0.8 Hz, 2H), 3.97 (td, J = 8.1, 5.5 Hz, 1H), 3.25 (s, 3H), 2.59 (dd, J = 14.9, 8.1 Hz, 1H), 
2.42 (dd, J = 14.9, 5.6 Hz, 1H), 2.06 – 1.99 (m, 2H), 1.40 (sext, J = 7.3 Hz, 2H), 1.25 (t, J 
= 7.1 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 171.2, 135.3, 128.9, 
79.0, 60.6, 56.2, 41.5, 34.3, 22.4, 14.4, 13.7. HRMS (FAB) m/z: 199.1320 [(M + H+)–H2]; 
calc. for C11H19O3: 199.1334. 

 
Ethyl (E)-9-bromo-3-methoxynon-4-enoate (54c) 

This compound as prepared from (E)-7-bromohept-2-enal using 
General Procedure B-2. The synthesis of (E)-7-bromohept-2-enal was 
described in the synthesis of compound 53c in Section C.5. This 
compound was prepared by Dr. Xiongyi Huang. 1H NMR (400 MHz, 

Chloroform-d) δ 5.67 (dt, J = 15.4, 6.7 Hz, 1H), 5.31 (dd, J = 15.4, 8.1 Hz, 1H), 4.13 (q, J 
= 7.1 Hz, 2H), 3.97 (td, J = 8.0, 5.5 Hz, 1H), 3.40 (t, J = 6.7 Hz, 2H), 3.25 (s, 3H), 2.59 
(dd, J = 15.0, 8.0 Hz, 1H), 2.41 (dd, J = 15.0, 5.6 Hz, 1H), 2.08 (q, J = 7.2 Hz, 2H), 1.91 – 
1.79 (m, 2H), 1.53 (p, J = 7.5 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, 
CDCl3) δ 171.1, 134.3, 129.5, 78.8, 60.6, 56.3, 41.4, 33.7, 32.2, 31.4, 27.7, 14.4. HRMS 
(FAB) m/z: 293.0764 (M + H+); calc. for C12H22O3

79Br : 293.0752. 
 
Ethyl (E)-5-(4-methoxyphenyl)-3-methylpent-4-enoate (54d) 

To a 6 mL vial equipped with a stir bar was added Grubbs’ catalyst 2nd generation (10 
mg, 2 mol%). The vial was then evacuated and backfilled with argon for three times. Under 
argon, a dry CH2Cl2 solution (2 mL) containing 4-vinylanisole (100 mg, 0.75 mmol) and 
ethyl 3-methylpent-4-enoate (503 mg, 3.75 mmol) was added to the vial via syringe. The 
mixture was stirred at 40 °C for 24 hours and then cooled to room temperature and filtered 
through a silica plug. The solvent was removed under reduced pressure and the crude 
product was purified using silica column chromatography with hexanes / ethyl acetate to 
give 54d (37 mg, 20% yield). 

1H NMR (400 MHz, CDCl3) δ 7.30 – 7.24 (m, 2H), 6.84 (d, J = 
8.8 Hz, 2H), 6.34 (d, J = 15.9 Hz, 1H), 5.99 (dd, J = 15.9, 7.6 Hz, 
1H), 4.12 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 2.90 – 2.75 (m, 1H), 
2.41 (dd, J = 14.7, 7.3 Hz, 1H), 2.34 (dd, J = 14.7, 7.3 Hz, 1H), 
1.23 (t, J = 7.1 Hz, 3H), 1.14 (d, J = 6.7 Hz, 3H). Spectral data are 

in agreement with that for the enzymatic product (see Section C.8).   
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Ethyl 3-methoxydec-4-ynoate (54e) 

This compound was prepared from oct-2-ynal using General 
Procedure B-2. This compound was prepared by Kai Chen. 1H 
NMR (400 MHz, CDCl3) δ 4.39 (ddt, J = 8.3, 5.4, 2.0 Hz, 1H), 
4.16 (qd, J = 7.2, 1.0 Hz, 2H), 3.39 (s, 3H), 2.73 (dd, J = 15.5, 

8.4 Hz, 1H), 2.63 (dd, J = 15.5, 5.4 Hz, 1H), 2.20 (td, J = 7.1, 2.0 Hz, 2H), 1.50 (p, J = 7.2 
Hz, 2H), 1.41 – 1.29 (m, 4H), 1.26 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 7.1 Hz, 3H). 13C NMR 
(101 MHz, CDCl3) δ 170.4, 87.3, 67.7, 60.8, 56.6, 41.7, 31.1, 28.4, 22.3, 18.8, 14.3, 14.1 
(one carbon may be overlapping with the solvent peaks). HRMS (FAB) m/z: 227.1638 (M 
+ H+); calc. for C13H23O3: 227.1647. 
 

Ethyl 2-(methoxymethyl)-3-pentylcycloprop-2-ene-1-carboxylate (54e’) 
This compound was prepared by rhodium-catalyzed cyclopropenation. To a dry 50 

mL round bottom flask was added 1-methoxyoct-2-yne (54e) (280 mg, 2.0 mmol, 1.0 
equiv.), Rh2(OAc)4 (9.0 mg, 1 mol%), and anhydrous dichloromethane (6 mL). The 
mixture was cooled to -78 °C, after which ethyl diazoacetate (87%, 525 mg, 4.0 mmol, 2.0 
equiv.) in dichloromethane (5 mL) was added dropwise to the solution over 6 hours. The 
reaction was allowed to slowly warm to room temperature and stirred for a total of 18 
hours. The reaction mixture was concentrated under reduced pressure. The crude product 
was purified by silica column chromatography using hexanes / ethyl acetate, followed by 
C18 column using methanol / water, to afford 54e’ (26 mg, 0.11 mmol, 6% yield). This 
compound was prepared by Kai Chen.  

1H NMR (400 MHz, CDCl3) δ 4.37 (t, J = 1.6 Hz, 2H), 4.12 (q, J 
= 7.1 Hz, 2H), 3.39 (s, 3H), 2.47 (tt, J = 7.5, 1.6 Hz, 2H), 2.20 (s, 
1H), 1.64 – 1.52 (m, 2H), 1.37 – 1.28 (m, 4H), 1.24 (t, J = 7.1 Hz, 
3H), 0.93 – 0.86 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 176.2, 

110.3, 102.5, 65.8, 60.2, 58.6, 31.5, 26.7, 24.7, 22.7, 22.5, 14.5, 14.1. HRMS (EI) m/z: 
226.1573 (M+•); calc. for C13H22O3: 226.1569. 
 

Ethyl 3-(4-(dimethylamino)phenyl)propanoate (57a’) 
This compound was prepared from 4-
(dimethylamino)benzaldehyde using General Procedure C. This 
compound was prepared by Kai Chen. 1H NMR (400 MHz, 
CDCl3) δ 7.09 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 8.7 Hz, 2H), 4.13 

(q, J = 7.2 Hz, 2H), 2.92 (s, 6H), 2.89 – 2.82 (m, 2H), 2.61 – 2.54 (m, 2H), 1.25 (t, J = 7.1 
Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.4, 149.4, 129.0, 128.8, 113.1, 60.4, 41.0, 
36.6, 30.2, 14.4. HRMS (EI) m/z: 221.1430 (M+•); calc. for C13H19NO2: 221.1416. 
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Ethyl 3-(4-(dimethylamino)phenyl)butanoate (57b’) 

This compound was prepared from 1-(4-
(dimethylamino)phenyl)ethan-1-one using General Procedure C. 
Spectral data are in agreement with literature report32. This 
compound was prepared by Kai Chen. 1H NMR (400 MHz, CDCl3) 
δ 7.10 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 8.7 Hz, 2H), 4.08 (qd, J = 7.1, 

1.1 Hz, 2H), 3.20 (dt, J = 8.4, 6.8 Hz, 1H), 2.92 (s, 6H), 2.57 (dd, J = 14.8, 6.8 Hz, 1H), 
2.49 (dd, J = 14.8, 8.4 Hz, 1H), 1.27 (d, J = 7.0 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). 13C NMR 
(101 MHz, CDCl3) δ 172.8, 149.4, 134.0, 127.4, 113.0, 60.3, 43.5, 41.0, 35.7, 22.0, 14.4. 

 
Ethyl 3-(3,4-dihydroquinolin-1(2H)-yl)propanoate (57f’) 

To a 100-mL round-bottom flask were added 1,2,3,4-tetrahydroquinoline (266.4 
mg, 2.0 mmol, 1.0 equiv.), ethyl 3-bromopropanoate (0.97 mL, 6.0 mmol, 3.0 equiv.), 
K2CO3 (0.552 g, 4.0 mmol, 2.0 equiv.), KI (66.0 mg, 0.4 mmol, 0.2 equiv.) and N,N-
dimethylformamide (30 mL). The reaction mixture was heated at 120 °C for 4 hours. After 
the reaction was cooled to room temperature and quenched by H2O (40 mL), the crude 
product was extracted by diethyl ether (20 mL × 3). The combined organic layer was 
washed by H2O (40 mL) and brine (40 mL), and then dried over sodium sulfate and 
concentrated under reduced pressure. The crude product was purified by silica column 
chromatography with pentane / diethyl ether, followed by C18 column with methanol / 
water, to afford 57f’ (350 mg, 1.5 mmol, 75% yield). This compound was prepared by Kai 
Chen.  

This compound is known in the literature33. 1H NMR (400 MHz, CDCl3) 
δ 7.11 – 7.01 (m, 1H), 6.95 (dq, J = 7.1, 1.1 Hz, 1H), 6.66 – 6.54 (m, 2H), 
4.14 (q, J = 7.1 Hz, 2H), 3.65 – 3.57 (m, 2H), 3.33 – 3.25 (m, 2H), 2.75 
(t, J = 6.4 Hz, 2H), 2.64 – 2.54 (m, 2H), 1.99 – 1.89 (m, 2H), 1.26 (t, J = 
7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.6, 144.6, 129.5, 127.3, 

122.8, 116.2, 110.7, 60.7, 49.5, 47.4, 31.5, 28.1, 22.3, 14.4. 
 
4-Methoxy-4-(4-methoxyphenyl)butan-2-one (59d) 

 This compound was prepared according to the procedure of Yadav et al34. Briefly, 
a mixture of 4-anisaldehyde (10 mmol), 2,2-dimethoxypropane (20 mmol) and iodine (0.2 
mmol) in dry methylene chloride (20 mmol) was stirred under N2 for 30 min. After the 
reaction was complete as indicated by TLC, the reaction mixture was diluted with water 
and extracted with ethyl acetate (2 × 30 mL). The combined organic extracts were washed 
with sodium thiosulfate (aq., 15% w/v) and brine, and then dried over sodium sulfate and 
concentrated under reduced pressure. The crude product was purified by silica column 
chromatography with hexanes / ethyl acetate. This compound was prepared by Dr. Xiongyi 
Huang.  
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1H NMR (300 MHz, CDCl3) δ 7.25 – 7.21 (m, 2H), 6.88 (d, J = 8.8 
Hz, 2H), 4.58 (dd, J = 8.8, 4.5 Hz, 1H), 3.79 (s, 3H), 3.16 (s, 3H), 3.05 
– 2.88 (m, 1H), 2.57 (dd, J = 15.8, 4.5 Hz, 1H), 2.14 (s, 3H). Spectral 
data are in agreement with that for the enzymatic product (see Section 
C.8).   

 
 

C.7  Small scale enzymatic reactions and product calibration curves 
Enzymatic reactions performed on analytical scale were conducted following the 

general procedure described in Chapter 4.5 Experimental Methods. Product formation was 
quantified by HPLC or GC based on the calibration curve of the corresponding racemic 
reference compound. TTN is defined as the amount of product divided by total heme 
protein as measured by the hemochrome assay. Calibration curves and data analysis for 
results shown in Figures 4-6 and 4-7 are available in the Supplementary Information of the 
published paper.  

 
HPLC calibration curve preparation 

Stock solutions of chemically synthesized products at various concentrations (1 to 200 
mM in EtOH) were prepared. To a 2 mL vial were added 380 µL water, 20 µL product 
stock solution, 10 µL internal standard (60 mM ethyl phenoxyacetate or 40 mM ethyl 
benzoate in acetonitrile, as appropriate) and 400 µL acetonitrile. The mixture was vortexed 
and analyzed by HPLC. Data points represent the average of two runs. The standard curves 
plot product concentration in mM (y-axis) against the ratio of product area to internal 
standard area on the HPLC (x-axis). 
 

GC calibration curve preparation  
Stock solutions of chemically synthesized products at various concentrations (0.2 to 

200 mM in EtOH) were prepared. To a microcentrifuge tube were added 380 µL M9-N 
buffer, 20 µL product stock solution, 10 µL internal standard (40 mM 1,3,5-
trimethoxybenzene in cyclohexane), and 800 µL mixed solvent system (cyclohexane : ethyl 
acetate = 1:1). The mixture was vortexed (10 seconds, 3 times) then centrifuged (20,000 × 
g, 5 min) to completely separate the organic and aqueous layers. The organic layer was 
removed for GC analysis. All data points represent the average of at least two runs. The 
standard curves plot product concentration in mM (y-axis) against the ratio of product area 
to internal standard area on the GC (x-axis).  
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C.8  Enzymatic C−H alkylation reactions on preparative scale 

 
Preparation of E. coli cells expressing P411 variants for preparative-scale reactions  

HBamp (480 mL) in a 1 L flask was inoculated with an overnight culture (20 mL, LBamp) 
of E. coli (E. cloni BL21(DE3)) cells containing a pET22b(+) plasmid encoding the desired 
P411 variant. The culture was shaken at 37 °C and 220 rpm (no humidity control) for 2.5 
hours. The culture was placed on ice for 40 minutes, and 5-aminolevulinic acid (1.0 mM 
final concentration) and IPTG (0.5 mM final concentration) were added. The incubator 
temperature was reduced to 20 °C, and the culture was allowed to shake for 16–18 hours 
at 130 rpm. When greater amounts of cells were required, additional E. coli cultures were 
prepared in this manner. Cells were pelleted by centrifugation (3,000 × g, 5 min, 4 °C), 
resuspended in M9-N buffer and adjusted to OD600 ≈ 60. An aliquot of cells at OD600 ≈ 60 
(3 mL) was taken for the hemochrome assay to determine protein concentration. When 
applicable, the cell suspension was diluted with M9-N buffer to achieve the OD600 which 
was used for the reaction. Cell suspensions in M9-N buffer were kept on ice until use.  

 
General Procedure D:  Enzymatic C−H alkylation reactions on preparative scale  

Procedure D-I (alkane substrate is limiting reagent). To an Erlenmeyer flask equipped 
with a screw cap (reaction vessel, Chemglass CG-1543: 250 mL, 500 mL, or 1000 mL) 
was added a suspension of E. coli expressing the indicated P411 variant (generally OD600 
= 30). The headspace of the reaction vessel was degassed with argon (at least 1 hour for 
volumes less than 200 mL, at least 2 hours for volumes greater than 200 mL) while kept 
on ice. To degas the headspace of a flask containing E. coli cells, the flask is covered with 
aluminum foil and a stream of argon is flowed through the flask just above the cell 
suspension. Separately, a solution of D-glucose (250 mM in M9-N) was bubbled with 
argon and the headspace of a flask containing GOX oxygen depletion system (a solution 
of 14,000 U/mL catalase and 1,000 U/mL glucose oxidase, kept on ice) was degassed for 
at least 1 hour. In an anaerobic chamber, GOX, D-glucose, alkane substrate (1.0 equiv.), 
and diazo compound (1.0 equiv.) were added to the reaction vessel in this order.  The vessel 
was capped, sealed with parafilm, and shaken (150–200 rpm) at room temperature. After 
one hour, the reaction vessel was transferred again to the anaerobic chamber where a 
second portion of E. coli cells expressing the P411 variant (the headspace of the flask 
containing these cells was degassed with argon following same procedure) and additional 
diazo compound (1.0 equiv.) were added. The vessel was capped, sealed with parafilm, 
and shaken (150–200 rpm) at room temperature for 14–17 additional hours. Final 
conditions were E. coli expressing P411 variant, alkane substrate (0.2–0.5 mmol, 1.0 
equiv., larger scales for 52a, 54a, and 57f, see Section C.9), diazo compound (2.0 equiv.), 
D-glucose (25 mM), GOX oxygen depletion system (700 U/mL catalase, 50 U/mL glucose 
oxidase), 2 vol% EtOH in M9-N buffer under anaerobic conditions; total reaction time 15–
18 hours.  

Procedure D-II (diazo compound is limiting reagent). To an Erlenmeyer flask 
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equipped with a screw cap (reaction vessel, Chemglass CG-1543: 250 mL, 500 mL, or 
1000 mL) was added a suspension of E. coli expressing the indicated P411 variant. The 
headspace of the reaction vessel was degassed with argon (at least 1 hour) while kept on 
ice. To degas the headspace of a flask containing E. coli cells, the flask is covered with 
aluminum foil and a stream of argon is flowed through the flask just above the cell 
suspension. Separately, a solution of D-glucose (250 mM in M9-N) was bubbled with 
argon. In an anaerobic chamber, D-glucose, alkane substrate (2.0 equiv.), and diazo 
compound (1.0 equiv.) were added to the reaction vessel in this order.  The vessel was 
capped, sealed with parafilm, and shaken (150–200 rpm) at room temperature. Final 
conditions were E. coli expressing P411 variant, alkane substrate (1.0 mmol, 2.0 equiv.), 
diazo compound (0.5 mmol, 1.0 equiv.), D-glucose (25 mM), 2 vol% EtOH in M9-N buffer 
under anaerobic conditions; total reaction time 15–18 hours.  

Workup Procedure D-i. Every 35 mL portion of the preparative scale reaction mixture 
was transferred to a 50 mL Eppendorf conical tube (catalog no. 0030122178). To the 
reaction mixture in every tube was added 15 mL mixed organic solvent (1 : 1 hexanes : 
ethyl acetate); the solution was shaken vigorously and centrifuged (10,000 × g, 5 minutes, 
Beckman-Coulter Avanti J-25 centrifuge equipped with JA-12 rotor) to separate the 
organic and aqueous layers. The organic layer was collected and the aqueous layer was 
subject to three additional rounds of extraction. The organic layers were combined, dried 
over Na2SO4, and concentrated under reduced pressure. Purification was performed by 
silica column chromatography with either hexanes / ethyl acetate or hexanes / 
dichloromethane / diethyl ether as eluent systems to afford the desired product. Additional 
purification by reverse phase chromatography (Biotage Isolera equipped with Biotage 
SNAP Ultra C18 column, water / methanol eluent system) was utilized if necessary. TTNs 
were calculated based on measured protein concentration and the isolated yield of the 
product. 

Workup Procedure D-ii. Every ~100–125 mL portion of preparative scale reaction 
mixture was transferred to a centrifuge bottle. To the reaction mixture in every bottle was 
added equal volume ethyl acetate; the solution was shaken vigorously and centrifuged 
(14,000 × g, 10 minutes, Beckman-Coulter Avanti J-25 centrifuge equipped with JA-10 
rotor) to separate the organic and aqueous layers. The organic layer was collected and the 
aqueous layer was subject to three additional rounds of extraction. The combined organics 
were dried over Na2SO4, and concentrated under reduced pressure. Purification was 
performed by silica column chromatography with either hexanes / ethyl acetate or hexanes 
/ dichloromethane / diethyl ether as eluent systems to afford the desired product. Additional 
purification by reverse phase chromatography (Biotage Isolera equipped with Biotage 
SNAP Ultra C18 column, water / methanol eluent system) was utilized if necessary. TTNs 
were calculated based on measured protein concentration and the isolated yield of the 
product. 
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Ethyl 3-methoxy-3-(4-methoxyphenyl)propanoate (52a) 

This compound was prepared using a modified version of General Procedure D-I 
carried out at 4 °C. The reaction mixture was kept on ice during the addition of all reagents 
and shaken in an incubator set to 4 °C and 150 rpm. In addition, a solution of Na2S2O4 (5 
mL, 40 mM in M9-N, bubbled with argon for 1 hour) was added following the second 
addition of E. coli cells expressing P411-CHF. Final conditions were E. coli expressing 
P411-CHF (resuspended to OD600 = 44), alkane substrate (1.0 mmol, 1.0 equiv.), ethyl 
diazoacetate (2.0 mmol, 2.0 equiv.), D-glucose (25 mM), GOX oxygen depletion system 
(700 U/mL catalase, 50 U/mL glucose oxidase), Na2S2O4 (1 mM), 2 vol% EtOH in M9-N 
buffer under anaerobic conditions at 4 °C; total reaction time 18 hours.  

The reaction was quenched with the addition of 100 mL acetonitrile. The crude 
reaction mixture was transferred to a centrifuge tube, shaken vigorously, and centrifuged 
to pellet the cells (14,000 × g, 10 minutes). The supernatant was decanted and the 
acetonitrile was removed under reduced pressure. Following, the aqueous layer was 
extracted with ethyl acetate (3 × 100 mL). The cell pellet was resuspended in H2O and this 
suspension was also extracted using ethyl acetate (3 × 20 mL; centrifugation (3,000 × g, 5 
min) was used to help separate the organic and aqueous layers. The combined organics 
were dried over Na2SO4 and concentrated under reduced pressure. Purification by reverse 
phase preparative HPLC (column: Eclipse XDB-C8, 5 um, 9.4 × 250 mm) using water / 
acetonitrile eluent system afforded 52a.  

E. coli suspension in M9-N  
(variant: P411-CHF, OD600 = 44, 4 °C) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

110.0 51.0* 4.77 0.768 10.0 20.0 
Alkane substrate (51a) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.50 2.0 1.0 1.0 1.0; 1.0 2.0 
Purification eluent Product 
1: water / MeCN (reverse phase 
preparative HPLC) 
 

m[Pdt]/mg n[Pdt]/mmol yield TTN 

194.7 0.817 82% 1060 

*A solution of Na2S2O4 (5 mL, 40 mM in M9-N, bubbled with argon for 1 hour) was added 
following the second addition of E. coli cells expressing P411-CHF. Final concentration of 
Na2S2O4 in the reaction is 1 mM. 
Notes: [PC] = protein concentration in original cell suspension, n_pro = amount of protein 
in the reaction, n_1 = amount of alkane substrate in the reaction, n_2 = total amount of 
diazo compound in the reaction, add. = addition, m[Pdt] = mass of product isolated, n[Pdt] 
= amount of product. a GOX oxygen depletion system is 14,000 U/mL catalase and 1,000 
U/ mL glucose oxidase in 0.1 M potassium phosphate buffer (pH=8.0); the final reaction 
mixture contains 700 U/mL catalase and 50 U/mL glucose oxidase. bD-glucose stock 
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solution is 250 mM in M9-N buffer; final concentration of D-glucose in the reaction is 25 
mM. These notes apply for all tables in this section. 
 

 1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 
8.8 Hz, 2H), 4.58 (dd, J = 9.0, 4.9 Hz, 1H), 4.14 (qd, J = 7.1, 1.2 Hz, 
2H), 3.81 (s, 3H), 3.19 (s, 3H), 2.80 (dd, J = 15.2, 9.0 Hz, 1H), 2.55 
(dd, J = 15.2, 4.9 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H). 13C NMR (101 

MHz, CDCl3) δ 171.2, 159.5, 132.7, 128.0, 114.0, 79.7, 60.7, 56.7, 55.4, 43.7, 14.3. HRMS 
(EI) m/z: 238.1213 (M+˙); calc. for C13H18O4: 238.1205. [α]23

D = –46.354 ± 0.411° (c 0.5, 
CHCl3). SFC Chiralpak AD-H column (3% i-PrOH in supercritical CO2, 2.5 mL/min, 40 
°C), tr = 9.02 min (major), 10.50 min (minor), 98.0 : 2.0 e.r. 

 
Ethyl 3-(4-methoxyphenyl)butanoate (52i) 

This compound was prepared using General Procedure D-I and Workup Procedure D-i.  

E. coli suspension in M9-N  
(variant: P411-CHF, OD600 = 29) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

110.0 56.0 2.25 0.374 10.0 20.0 
Alkane substrate (51i) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.10 2.0 0.2 0.20 1.0; 1.0 0.4 
Purification eluent Product 
1: Hex / EtOAc (normal phase) 
2: water / MeOH  
(reverse phase) 

m[Pdt]/mg n[Pdt]/mmol yield TTN 

21.3 0.096 48% 260 

 
Spectral data is in agreement with literature report32. 1H NMR (500 
MHz, CDCl3) δ 7.14 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 
4.08 (qd, J = 7.2, 1.2 Hz, 2H), 3.79 (s, 3H), 3.24 (h, J = 7.1 Hz, 1H), 
2.57 (dd, J = 14.9, 7.2 Hz, 1H), 2.51 (dd, J = 14.9, 8.0 Hz, 1H), 1.28 

(d, J = 7.0 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 172.6, 158.2, 
138.0, 127.8, 113.9, 60.4, 55.4, 43.4, 35.9, 22.1, 14.3. [α]23

D = +26.334 ± 0.676° (c 0.5, 
CHCl3). SFC Chiralcel OB-H column (supercritical CO2, 2.5 mL/min, 40 °C), tr = 5.50 
min (minor), 6.24 min (major), 97.9 : 2.1 e.r. 
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Ethyl (E)-5-(4-methoxyphenyl)-3-methylpent-4-enoate (54d) 

This compound was prepared using General Procedure D-I and Workup Procedure D-ii.  

E. coli suspension in M9-N 
(variant: P411-CHF, OD600 = 32) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

137.5 70.0 2.59 0.536 12.5 25.0 
Alkane substrate (53d) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.10 2.5 0.25 0.20 1.25; 1.25 0.50 
Purification eluent Product 
Hex / (4 : 1 DCM : Et2O) (normal 
phase) 

m[Pdt]/mg n[Pdt]/mmol yield TTN 
9.7 0.039 15.6% 70 

 
1H NMR (400 MHz, CDCl3) δ 7.30 – 7.24 (m, 2H), 6.84 (d, J = 
8.8 Hz, 2H), 6.34 (d, J = 15.9 Hz, 1H), 5.99 (dd, J = 15.9, 7.6 Hz, 
1H), 4.12 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 2.90 – 2.75 (m, 1H), 
2.41 (dd, J = 14.7, 7.3 Hz, 1H), 2.34 (dd, J = 14.7, 7.3 Hz, 1H), 

1.23 (t, J = 7.1 Hz, 3H), 1.14 (d, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.6, 
159.0, 132.3, 130.4, 128.3, 127.3, 114.0, 60.4, 55.4, 42.1, 34.3, 20.5, 14.5. HRMS (FAB) 
m/z: 248.1417 (M+˙); calc. for C15H20O3: 248.1413.  SFC Chiralcel OB-H column (3% i-
PrOH in supercritical CO2, 2.5 mL/min, 40 °C), tr = 6.62 min (minor), 7.66 min (major), 
97.0 : 3.0 e.r. 
 

Ethyl 3-(methyl(p-tolyl)amino)propanoate (57a) 
This compound was prepared using General Procedure D-I and Workup Procedure D-i.  

E. coli suspension in M9-N 
(variant: P411-CHF, OD600 = 29) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

55.0 28.0 2.13 0.177 5.0 10.0 
Alkane substrate (56a) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.50 1.0 0.50 1.00 0.50; 0.50 1.0 
Purification eluent Product 

1: Hex / EtOAc (normal phase) m[Pdt]/mg n[Pdt]/mmol yield TTN 
91.2 0.412 82% 2330 

Me

MeO

CO2Et



 

 

202  
 

Spectral data is in agreement with literature report35. 1H NMR 
(400 MHz, CDCl3) δ 7.05 (d, J = 8.3 Hz, 2H), 6.67 (d, J = 8.6 Hz, 
2H), 4.12 (q, J = 7.1 Hz, 2H), 3.64 (t, J = 7.2 Hz, 2H), 2.90 (s, 3H), 
2.54 (t, J = 7.2 Hz, 2H), 2.25 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). 13C 

NMR (101 MHz, CDCl3) δ 172.6, 146.8, 129.9, 126.3, 113.1, 60.7, 49.1, 38.5, 31.8, 20.4, 
14.3. 
 

Ethyl 3-((4-ethylphenyl)(methyl)amino)propanoate (57b) 
This compound was prepared using General Procedure D-I and Workup Procedure D-ii.  

E. coli suspension in M9-N 
(variant: P411-CHF, OD600 = 30) 

GOX 
solutiona 

D-glucose 
in M9-Na 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

55.0 28.0 2.02 0.168 5.0 10.0 
Alkane substrate (56b) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.50 1.0 0.50 1.00 0.50; 0.50 1.0 
Purification eluent Product 
1: Hex / (4 : 1 DCM : Et2O) 
(normal phase) 
2: water / MeOH 
(reverse phase) 

m[Pdt]/mg n[Pdt]/mmol yield TTN 

88.0 0.374 75% 2230 

 

1H NMR (400 MHz, CDCl3) δ 7.08 (d, J = 8.7 Hz, 2H), 6.69 (d, 
J = 8.8 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 3.65 (t, J = 7.2 Hz, 
2H), 2.91 (s, 3H), 2.60 – 2.51 (m, 4H), 1.25 (t, J = 7.1 Hz, 3H), 
1.20 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.6, 

146.9, 132.8, 128.7, 113.0, 60.7, 49.1, 38.5, 31.9, 27.9, 16.1, 14.3. HRMS (ESI-TOF) m/z: 
236.1673 (M + H+); calc. for C14H22NO2: 236.1651.  
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Ethyl 2-(1-phenylpyrrolidin-2-yl)acetate (57c) 

This compound was prepared using General Procedure D-I and Workup Procedure D-ii.  

E. coli suspension in M9-N  
(variant: P411-CHF, OD600 = 31) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

55.0 28.0 2.65 0.220 5.0 10.0 
Alkane substrate (56c) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.50 1.0 0.50 1.00 0.50; 0.50 1.0 
Purification eluent Product 

1: Hex / (4 : 1 DCM : Et2O) 
(normal phase) 

m[Pdt]/mg n[Pdt]/mmol yield TTN 

104.1 0.446 89% 2030 

 
1H NMR (400 MHz, CDCl3) δ 7.29 – 7.20 (m, 2H), 6.69 (tt, J = 7.2, 1.1 
Hz, 1H), 6.62 (d, J = 7.9 Hz, 2H), 4.21 – 4.14 (m, 3H), 3.48 – 3.37 (m, 
1H), 3.23 – 3.14 (m, 1H), 2.79 (dd, J = 15.0, 2.9 Hz, 1H), 2.22 (dd, J = 
15.0, 10.5 Hz, 1H), 2.12 – 1.98 (m, 3H), 1.97 – 1.82 (m, 1H), 1.29 (t, J = 
7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.2, 146.6, 129.5, 116.0, 

112.0, 60.6, 55.5, 48.0, 37.8, 31.1, 23.1, 14.4. HRMS (ESI-TOF) m/z: 234.1491 (M + H+); 
calc. for C14H20NO2: 234.1494. [α]23

D = +2.056 ± 0.834° (c 0.5, CHCl3). HPLC Chiralcel 
OD-H column (6% i-PrOH in n-hexane, 1.0 mL/min, room temperature), tr = 6.20 min 
(minor), 8.58 min (major), 82.8 : 17.2 e.r. 

 
Ethyl 2-(1-(4-methoxyphenyl)pyrrolidin-2-yl)acetate (57d) 

This compound was prepared using General Procedure D-I and Workup Procedure D-i.  

E. coli suspension in M9-N 
(variant: P411-CHF, OD600 = 31) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

55.0 28.0 2.17 0.180 5.0 10.0 
Alkane substrate (56d) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.50 1.0 0.50 1.0 0.50; 0.50 1.0 
Purification eluent Product 
1: Hex / EtOAc (normal phase) 
2: water / MeOH  
(reverse phase) 

m[Pdt]/mg n[Pdt]/mmol yield TTN 

102.1 0.388 78% 2150 

N
CO2Et
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1H NMR (400 MHz, CDCl3) δ 6.86 (d, J = 9.1 Hz, 2H), 6.58 (d, J = 9.1 
Hz, 2H), 4.16 (q, J = 7.2 Hz, 2H), 4.13 – 4.05 (m, 1H), 3.76 (s, 3H), 3.42 
– 3.35 (m, 1H), 3.17 – 3.09 (m, 1H), 2.76 (dd, J = 14.9, 3.0 Hz, 1H), 2.20 
(dd, J = 14.9, 10.4 Hz, 1H), 2.13 – 1.96 (m, 3H), 1.92 – 1.82 (m, 1H), 
1.28 (t, J = 7.1 Hz, 3H).  13C NMR (101 MHz, CDCl3) δ 172.3, 151.1, 
141.5, 115.3, 112.9, 60.6, 56.1, 56.0, 48.6, 38.1, 31.1, 23.3, 14.4. HRMS 

(FAB) m/z: 263.1518 (M+˙); calc. for C15H21NO3: 263.1521. [α]23
D = +7.310 ± 0.478° (c 

0.5, CHCl3). HPLC Chiralcel OD-H column (6% i-PrOH in n-hexane, 1.0 mL/min, room 
temperature), tr = 7.25 min (minor), 8.12 min (major), 83.7 : 16.3 e.r. 
 

Ethyl 2-(1-(3-chlorophenyl)pyrrolidin-2-yl)acetate (57e) 
This compound was prepared using General Procedure D-I and Workup Procedure D-i.  

E. coli suspension in M9-N 
(variant: P411-CHF, OD600 = 29) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

137.5 70.0 3.24 0.673 12.5 25.0 
Alkane substrate (56e) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.20 2.5 0.50 0.40 1.25; 1.25 1.0 
Purification eluent Product 
1: Hex / EtOAc (normal phase) 
2: water / MeOH  
(reverse phase) 

m[Pdt]/mg n[Pdt]/mmol yield TTN 

89.6 0.335 67% 500 
 

1H NMR (500 MHz, CDCl3) δ 7.13 (t, J = 8.1 Hz, 1H), 6.65 (dd, J = 7.9, 
1.8 Hz, 1H), 6.57 (t, J = 2.2 Hz, 1H), 6.48 (dd, J = 8.3, 2.3 Hz, 1H), 4.23 
– 4.12 (m, 3H), 3.44 – 3.36 (m, 1H), 3.22 – 3.12 (m, 1H), 2.74 (dd, J = 
15.1, 3.0 Hz, 1H), 2.23 (dd, J = 15.1, 10.4 Hz, 1H), 2.13 – 2.01 (m, 3H), 
1.97 – 1.85 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H).  13C NMR (126 MHz, 

CDCl3) δ 171.9, 147.6, 135.3, 130.4, 115.9, 111.9, 110.2, 60.7, 55.5, 48.1, 37.7, 31.1, 23.0, 
14.4. HRMS (ESI-TOF) m/z: 268.1094 (M + H+); calc. for C14H19NO2

35Cl: 268.1104. 
[α]23

D = +7.144 ± 0.875° (c 0.5, CHCl3). HPLC Chiralcel OD-H column (6% i-PrOH in 
n-hexane, 1.0 mL/min, room temperature), tr = 6.29 min (minor), 6.87 min (major), 90.3 : 
9.7 e.r. 
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(–)-Ethyl (R)-2-(1-methyl-1,2,3,4-tetrahydroquinolin-2-yl)acetate ((–)-57f) 

This compound was prepared using General Procedure D-I and Workup Procedure D-i.  

E. coli suspension in M9-N  
(variant: P411-CHF, OD600 = 31) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

55.0 28.0 2.40 0.199 5.0 10.0 
Alkane substrate (56f) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.50 1.0 0.50 1.00 0.50; 0.50 1.0 
Purification eluent Product 
1: Hex / (4 : 1 DCM : Et2O) 
(normal phase) 
2: water / acetonitrile (reverse 
phase preparative HPLC) 

m[Pdt]/mg n[Pdt]/mmol yield TTN 

48.9c 0.210 42% 1050d 

c Regiomeric ratio 9 : 1 for 57f : 57f’ determined by 1H NMR. 
d Reported for the sum of regioisomers 57f and 57f’. 

1H NMR (400 MHz, CDCl3) δ 7.14 – 7.02 (m, 1H, 
both isomers), 6.99 (d, J = 7.3 Hz, 0.9H, isomer 57f), 
6.97 – 6.93 (m, 0.1H, isomer 57f’), 6.68 – 6.51 (m, 
2H, both isomers), 4.15 (q, J = 7.1 Hz, 2H, both 
isomers), 3.86 – 3.78 (m, 0.9H, isomer 57f), 3.65 – 
3.57 (m, 0.2H, isomer 57f’), 3.32 – 3.25 (m, 0.2H, 

isomer 57f’), 2.93 (s, 2.7H, isomer 57f), 2.91 – 2.79 (m, 0.9H, isomer 57f), 2.77 – 2.67 (m, 
1.1H, both isomers), 2.65 – 2.54 (m, 1.1H, both isomers), 2.39 (dd, J = 14.7, 8.6 Hz, 0.9H, 
isomer 57f), 2.08 – 1.84 (m, 2H, both isomers), 1.30 – 1.24 (m, 3H, both isomers). 13C 
NMR (101 MHz, CDCl3) δ 172.6, 172.3, 144.8, 144.6, 129.5, 129.0, 127.3, 127.3, 122.8, 
121.6, 116.2, 116.2, 111.0, 110.7, 60.7, 60.7, 56.1, 49.6, 47.3, 37.8, 36.7, 31.5, 28.2, 25.5, 
23.3, 22.3, 14.4. With variant P411-CHF: [α]23

D =  –2.980 ± 0.898° (c 1.0, CHCl3). With 
variant P411-CHF: SFC Chiralcel OB-H column (3% i-PrOH supercritical CO2, 2.5 
mL/min, 40 °C), tr = 6.47 min (major), 7.38 min (minor), 73.0 : 27.0 e.r. 
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Benzyl 3-(methyl(p-tolyl)amino)propanoate (59a) 

This compound was prepared using General Procedure D-I and Workup Procedure D-i.  

E. coli suspension in M9-N  
(variant: P411-CHF, OD600 = 30) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

55.0 28.0 2.04 0.170 5.0 10.0 
Alkane substrate (56a) stock in EtOH Diazo (58a) stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.50 1.0 0.50 1.00 0.50; 0.50 1.0 
Purification eluent Product 

1: Hex / EtOAc (normal phase) 
m[Pdt]/mg n[Pdt]/mmol yield TTN 
19.0c 0.061d 12%d 360d 

c Isolated with 10% diazo dimer.  
d Corrected for diazo dimer.  
 

This compound is known in the literature.36 1H NMR (400 MHz, 
CDCl3) δ 7.39 – 7.31 (m, 5H), 7.04 (d, J = 8.7 Hz, 2H), 6.66 (d, J 
= 8.8 Hz, 2H), 5.11 (s, 2H), 3.66 (t, J = 7.2 Hz, 2H), 2.87 (s, 3H), 
2.61 (t, J = 7.2 Hz, 2H), 2.25 (s, 3H). 13C NMR (101 MHz, CDCl3) 
δ 172.4, 146.7, 135.9, 133.9, 129.9, 128.7, 128.4, 126.3, 113.2, 

66.5, 49.1, 38.5, 31.8, 20.4. HRMS (ESI-TOF) m/z: 284.1635 (M + H+); calc. for 
C18H22NO2: 284.1651. 
 

3-((Methyl(p-tolyl)amino)methyl)dihydrofuran-2(3H)-one (59b) 
This compound was prepared using General Procedure D-II and Workup Procedure D-i.  

E. coli suspension in M9-N  
(variant: P411-IY (T327I), OD600 = 55) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Volume/ mL [PC]/µM n_pro/µmol volume/mL volume/mL 
88.0 6.77 0.595 0.0 10.0 
Alkane substrate (56a) stock in EtOH Diazo (58b) stock in EtOH 
stock/M volume/mL n_1/mmol stock/M volume/mL n_2/mmol 
1.0 1.0 1.0 0.50 1.0 0.50 
Purification eluent Product 

1: Hex / EtOAc (normal phase) 
m[Pdt]/mg n[Pdt]/mmol yield TTN 
37.2 0.170 34% 280 
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1H NMR (400 MHz, CDCl3) δ 7.07 (d, J = 8.3 Hz, 2H), 6.68 (d, J = 
8.6 Hz, 2H), 4.35 (td, J = 8.8, 2.6 Hz, 1H), 4.15 (ddd, J = 10.0, 9.1, 
6.6 Hz, 1H), 3.94 (dd, J = 15.1, 4.5 Hz, 1H), 3.43 (dd, J = 15.1, 8.0 
Hz, 1H), 2.96 (s, 3H), 2.91 (dddd, J = 10.6, 8.6, 8.0, 4.5 Hz, 1H), 2.34 

(dddd, J = 12.7, 8.9, 6.6, 2.6 Hz, 1H), 2.26 (s, 3H), 2.11 (dtd, J = 12.8, 10.2, 8.5 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 178.5, 146.8, 130.0, 126.7, 113.1, 66.7, 53.3, 39.6, 38.7, 
28.1, 20.4. HRMS (FAB) m/z: 218.1172 ([(M + H+)–H2); calc. for C13H16NO2: 218.1181. 
With variant P411-IY T327I: HPLC Chiralcel OD-H column (6% i-PrOH in n-hexane, 
1.0 mL/min, 32 °C), tr = 22.826 min (major), 24.286 min (minor), 78.0 : 22.0 e.r. 

 
N-Methoxy-N-methyl-3-(methyl(p-tolyl)amino)propanamide (59c) 

This compound was prepared using General Procedure D-II and Workup Procedure D-i.  

E. coli suspension in M9-N  
(variant: P411-IY (T327I), OD600 = 55) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Volume/ mL [PC]/µM n_pro/µmol volume/mL volume/mL 
88.0 7.00 0.616 0.0 10.0 
Alkane substrate (56a) stock in EtOH Diazo (58c) stock in EtOH 
stock/M volume/mL n_1/mmol stock/M volume/mL n_2/mmol 
1.0 1.0 1.0 0.50 1.0 0.50 
Purification eluent Product 

1: Hex / EtOAc (normal phase) 
m[Pdt]/mg n[Pdt]/mmol yield TTN 
72.3 0.306 61% 500 

 
1H NMR (400 MHz, CDCl3) δ 7.04 (d, J = 8.2 Hz, 2H), 6.68 (d, 
J = 8.7 Hz, 2H), 3.70 – 3.64 (m, 2H), 3.62 (s, 3H), 3.17 (s, 3H), 
2.92 (s, 3H), 2.66 (t, J = 7.2 Hz, 2H), 2.25 (s, 3H). 13C NMR 
(101 MHz, CDCl3) δ 173.2, 146.8, 129.9, 125.9, 112.8, 61.5, 

48.8, 38.6, 32.2, 29.0, 20.4. HRMS (ESI-TOF) m/z: 237.1616 (M + H+); calc. for 
C13H21N2O2: 237.1603. 
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4-Methoxy-4-(4-methoxyphenyl)butan-2-one (59d) 

This compound was prepared using General Procedure D-II and Workup Procedure D-i. 

E. coli suspension in M9-N  
(variant: P411-CHF, OD600 = 60) c 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Volume/ mL [PC]/µM n_pro/µmol volume/mL volume/mL 
88.0 8.17 0.719 0.0 10.0 
Alkane substrate (51a) stock in EtOH Diazo (58d) stock in EtOH 
stock/M volume/mL n_1/mmol stock/M volume/mL n_2/mmol 
1.0 1.0 1.0 0.50 1.0 0.50 
Purification eluent Product 

1: Hex / EtOAc (normal phase) 
m[Pdt]/mg n[Pdt]/mmol yield TTN 
21.8 0.105 21% 150 

c Enzyme was expressed using a modified procedure. After addition of 5-aminolevulinic 
acid (1.0 mM final concentration) and IPTG (0.5 mM final concentration), the incubator 
temperature was set to 24 °C, and the culture was allowed to shake for 20 hours at 140 
rpm. Product formation was also observed when cultures were expressed following the 
typical protocol. 
 

 1H NMR (400 MHz, CDCl3) δ 7.24 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 
8.7 Hz, 2H), 4.58 (dd, J = 8.8, 4.5 Hz, 1H), 3.81 (s, 3H), 3.17 (s, 3H), 
2.97 (dd, J = 15.8, 8.8 Hz, 1H), 2.58 (dd, J = 15.8, 4.5 Hz, 1H), 2.15 (s, 
3H). 13C NMR (101 MHz, CDCl3) δ 206.9, 159.4, 133.0, 127.9, 114.1, 
79.3, 56.6, 55.4, 52.0, 31.2. HRMS (ESI-TOF) m/z: 231.0999 (M + 

Na+); calc. for C12H16O3Na: 231.0997. HPLC Chiralcel OJ-H column (6% i-PrOH in n-
hexane, 1.0 mL/min, 28 °C), tr = 20.152 min (major), 21.760 min (minor), 71.0 : 29.0 e.r. 
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C.9  Syntheses of (+)-lyngbic acid and (+)-cuspareine 

 Experimental details for the formal synthesis of (R)-(+)-lyngbic acid and the total 
synthesis of (R)-(+)-cuspareine can be found below. Enzymatic C−H alkylation is the key 
stereo-defining step in the routes to both molecules.  

 
Figure C-12. Detailed scheme for the formal synthesis of (+)-lyngbic acid. 

 

(+)-Ethyl (E)-3-methoxydec-4-enoate ((+)-54a) 
Prepared following General Procedure D-I and Workup Procedure D-ii (see Section C.8).  

E. coli suspension in M9-N  
(variant: P411-CHF, OD600 = 29) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

220.0 112.0 2.21 0.734 20.0 40.0 
Alkane substrate (53a) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.60 4.0 2.4 1.2 2.0; 2.0 4.8 
Purification eluent Product 
1: Hex / (4 : 1 DCM : Et2O) 
(normal phase) 
2: water / MeOH 
(reverse phase) 

m[Pdt]/mg n[Pdt]/mmol yield TTN 

470.6 2.061 86% 2810 

Notes: [PC] = protein concentration in original cell suspension, n_pro = amount of protein 
in the reaction, n_1 = amount of alkane substrate in the reaction, n_2 = total amount of 
diazo compound in the reaction, add. = addition, m[Pdt] = mass of product isolated, n[Pdt] 
= amount of product. a GOX oxygen depletion system is 14,000 U/mL catalase and 1,000 
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U/ mL glucose oxidase in 0.1 M potassium phosphate buffer (pH=8.0); the final reaction 
mixture contains 700 U/mL catalase and 50 U/mL glucose oxidase. bD-glucose stock 
solution is 250 mM; final concentration of D-glucose in the reaction is 25 mM. These notes 
apply for all tables in this section.  

1H NMR (400 MHz, CDCl3) δ 5.69 (dt, J = 15.4, 6.8 Hz, 1H), 5.28 (ddt, 
J = 15.4, 8.3, 1.5 Hz, 1H), 4.14 (qd, J = 7.2, 0.8 Hz, 2H), 3.97 (td, J = 
8.2, 5.5 Hz, 1H), 3.25 (s, 3H), 2.59 (dd, J = 14.9, 8.1 Hz, 1H), 2.42 (dd, 
J = 14.9, 5.5 Hz, 1H), 2.10 – 1.97 (m, 2H), 1.43 – 1.20 (m, 9H), 0.88 (t, 
J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 171.2, 135.6, 128.7, 

79.0, 60.6, 56.2, 41.5, 32.3, 31.5, 28.9, 22.6, 14.4, 14.2. HRMS (EI) m/z: 228.1717 (M+˙
); calc. for C13H24O3: 228.1726.  [α]23

D = +7.504 ± 0.733° (c 0.5, CHCl3). GC CycloSil–B 
column (110 °C), tr = 53.72 min (minor), 55.35 min (major), 94.7 : 5.3 e.r. Absolute 
stereochemistry was assigned after elaboration to (+)-55. 
 

(+)-Ethyl 3-methoxydecanoate ((+)-55s) 
To a solution of (+)-ethyl (E)-3-methoxydec-4-enoate ((+)-54a, 114.2 mg, 0.5 mmol, 

1.0 equiv.) in MeOH (5 mL) was added Pd/C (10% Pd on activated charcoal, 13.3 mg, 2.5 
mol%). H2 was bubbled through the solution for ~30 minutes. The reaction was stirred at 
room temperature under 1 atm H2 for 16 hours. The crude product was filtered through a 
pad of Celite and concentrated under reduced pressure. Purification by silica column 
chromatography with hexanes / ethyl acetate afforded (+)-55s (116.9 mg, 0.5 mmol, 
quantitative yield). This experiment was conducted by Kai Chen.  

1H NMR (400 MHz, CDCl3) δ 4.15 (q, J = 7.1 Hz, 2H), 3.63 (ddt, J = 
7.3, 6.3, 5.5 Hz, 1H), 3.35 (s, 3H), 2.52 (dd, J = 15.0, 7.3 Hz, 1H), 2.39 
(dd, J = 15.0, 5.4 Hz, 1H), 1.57 – 1.41 (m, 2H), 1.40 – 1.20 (m, 13H), 
0.88 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.0, 78.0, 60.5, 

57.1, 39.7, 34.1, 31.9, 29.8, 29.4, 25.2, 22.8, 14.4, 14.2. HRMS (FAB) m/z: 231.1965 (M 
+ H+); calc. for C13H27O3: 231.1960. [α]23

D = +4.293 ± 0.136° (c 1.0, MeOH). Absolute 
stereochemistry was assigned after derivatization to (+)-55. 
 

(+)-3-Methoxydecanoic acid ((+)-55) 

To a solution of (+)-ethyl 3-methoxydecanoate ((+)-55s, 46.1 mg, 0.2 mmol, 1.0 
equiv.) in MeOH (2 mL) was added NaOH (aq., 15%, 2 mL). The reaction mixture was 
stirred at room temperature for 1 hour and then slowly acidified with HCl (aq., 1 M) at 0 
°C until pH 2‒3. Extraction by dichloromethane (15 mL × 3), drying over magnesium 
sulfate, followed by concentration under reduced pressure afforded product 6 (40.8 mg, 0.2 
mmol, quantitative yield) without further purification. 

This compound is known in the literature38. 1H NMR (400 MHz, CDCl3) 
δ 3.63 (p, J = 6.0 Hz, 1H), 3.39 (s, 3H), 2.55 (dd, J = 15.5, 6.9 Hz, 1H), 
2.50 (dd, J = 15.5, 5.3 Hz, 1H), 1.68 – 1.55 (m, 1H), 1.55 – 1.42 (m, 1H), 
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1.38 – 1.20 (m, 10H), 0.88 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 176.2, 77.7, 
57.1, 39.1, 33.6, 31.9, 29.7, 29.4, 25.1, 22.8, 14.2. [α]23

D = +4.021 ± 1.649° (c 1.0, MeOH). 
The absolute configuration of (+)-6 was assigned to be (R) by comparing the measured 
optical rotation value with the literature reported value for (R)-(+)-6 (lit. [α]27

D = +3.0°, c 
0.67, MeOH)38. HRMS (EI) m/z: 202.1598 (M•+); calc. for C11H22O3: 202.1569. 

 

Figure C-13. Detailed scheme for the synthesis of (+)-cuspareine. 

 
(+)-Ethyl (S)-2-(1-methyl-1,2,3,4-tetrahydroquinolin-2-yl)acetate ((+)-57f) 

Prepared following General Procedure D-I and Workup Procedure D-ii (see Section C.8).  

E. coli suspension in M9-N  
(variant: P411-gen5, OD600 = 31) 

GOX 
solutiona 

D-glucose 
in M9-Nb 

Addition 1, 
volume/ mL 

Addition 2, 
volume/mL [PC]/µM n_pro/µmol volume/mL volume/mL 

275.0 140.0 4.67 1.938 25.0 50.0 
Alkane substrate (56f) stock in EtOH Ethyl diazoacetate stock in EtOH 

stock/M volume/mL n_1/mmol stock/M volume/mL 
add. 1; add. 2 n_2/mmol 

0.60 5.0 3.0 1.20 2.5; 2.5 6.0 
Purification eluent Product 
1: Hex / (4 : 1 DCM : Et2O)  
2: water / MeOH 
(reverse phase) 

m[Pdt]/mg n[Pdt]/mmol yield TTN 

594.1c 2.546 85% 1310 

c Regiomeric ratio > 50 : 1 for 57f : 57f’ determined by 1H NMR.  
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1H NMR (400 MHz, CDCl3) δ 7.14 – 7.04 (m, 1H), 6.99 (d, J = 7.3 
Hz, 1H), 6.63 (td, J = 7.3, 1.1 Hz, 1H), 6.55 (d, J = 8.2 Hz, 1H), 4.15 
(q, J = 7.1 Hz, 2H), 3.86 – 3.78 (m, 1H), 2.93 (s, 3H), 2.91 – 2.79 (m, 
1H), 2.71 (ddd, J = 16.6, 5.5, 2.8 Hz, 1H), 2.60 (ddd, J = 14.7, 5.4, 0.8 

Hz, 1H), 2.39 (dd, J = 14.7, 8.6 Hz, 1H), 2.07 – 1.95 (m, 1H), 1.89 (ddt, J = 13.4, 5.8, 2.9 
Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.3, 144.8, 129.0, 
127.3, 121.6, 116.2, 111.0, 60.7, 56.1, 37.8, 36.6, 25.5, 23.3, 14.4. HRMS (FAB) m/z: 
233.1405 (M+˙); calc. for C14H19NO2: 233.1416. With variant P411-gen5: [α]23

D = +9.440 
± 0.292° (c 0.5, CHCl3). With variant P411-gen5: SFC Chiralcel OB-H column 
(supercritical CO2/isopropanol = 97:3, 2.5 mL/min, 40 °C), tr = 6.44 min (minor), 7.25 min 
(major), 91.1 : 8.9 e.r. Absolute stereochemistry was assigned after elaboration to (+)-
cuspareine.  
 

(–)-2-(1-Methyl-1,2,3,4-tetrahydroquinolin-2-yl)ethan-1-ol ((–)-57fa) 
To a solution of (+)-ethyl 2-(1-methyl-1,2,3,4-tetrahydroquinolin-2-yl)acetate ((+)-

57f, 233.3 mg, 1.0 mmol, 1.0 equiv.) and MeOH (60.8 µL, 1.5 mmol, 1.5 equiv.) in dry 
diethyl ether (20 mL) was added LiBH4 (2 M in THF, 1.0 mL, 2.0 mmol, 2.0 equiv.) 
dropwise. The reaction mixture was heated to reflux (~45 °C) for 4 hours (monitored by 
TLC). Upon completion, the reaction was quenched by ethyl acetate (2 mL) and stirred for 
30 min at room temperature, quenched by MeOH (2 mL) and stirred for another 20 min at 
0 °C, and finally quenched by NH4Cl (sat. aq., 5 mL) at 0 °C. The crude product was then 
extracted by diethyl ether (30 mL × 3). The combined organic layer was washed by brine 
(30 mL), dried over sodium sulfate and concentrated under reduced pressure. Purification 
by silica column chromatography with hexanes / ethyl acetate afforded 57fa (192.1 mg, 
1.0 mmol, quantitative yield). This experiment was conducted by Kai Chen.  

This compound is known in the literature39. 1H NMR (400 MHz, 
CDCl3) δ 7.12 – 7.06 (m, 1H), 7.01 – 6.96 (m, 1H), 6.62 (td, J = 7.3, 
1.2 Hz, 1H), 6.59 (dd, J = 8.2, 1.1 Hz, 1H), 3.82 – 3.71 (m, 2H), 3.51 
– 3.44 (m, 1H), 2.97 (s, 3H), 2.88 – 2.76 (m, 1H), 2.70 (ddd, J = 16.4, 

5.3, 3.4 Hz, 1H), 2.00 – 1.81 (m, 3H), 1.72 – 1.61 (m, 2H). 13C NMR (101 MHz, CDCl3) 
δ 145.4, 129.0, 127.3, 122.2, 116.2, 112.0, 60.6, 56.2, 39.1, 34.6, 24.8, 23.8. [α]23

D = –
28.096 ± 2.416° (c 0.5, CHCl3). Absolute stereochemistry was assigned after derivatization 
to (+)-cuspareine.  

 
(+)-2-(2-Bromoethyl)-1-methyl-1,2,3,4-tetrahydroquinoline ((+)-57fb) 

To a solution of (–)-2-(1-Methyl-1,2,3,4-tetrahydroquinolin-2-yl)ethan-1-ol ((–)-57fa, 
114.8 mg, 0.6 mmol, 1.0 equiv.) and triethylamine (133.8 µL, 0.96 mmol, 1.6 equiv.) in 
dry THF (12 mL) at 0 °C was added methanesulfonyl chloride (MsCl, 70 µL, 1.5 equiv.). 
The reaction mixture was warmed to room temperature over 30 min and stirred for 
additional 30 min. Upon completion, the reaction was quenched by NaHCO3 (sat. aq., 10 
mL) and H2O (10 mL). The mesylated product was then extracted by diethyl ether (30 mL 
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× 3). The combined organic layer was washed by brine (30 mL), dried over sodium sulfate 
and concentrated under reduced pressure. The mesylated product was then dissolved in 
DMF (6 mL) and LiBr (259.5 mg, 3.0 mmol, 5.0 equiv.) was added. The reaction was 
heated to 70 °C and stirred for 2 hours. Upon completion, the reaction was quenched by 
H2O (30 mL). The crude product was then extracted by diethyl ether (30 mL × 3). The 
combined organic layer was washed by H2O (30 mL) and brine (30 mL), dried over sodium 
sulfate and concentrated under reduced pressure. Purification by silica column 
chromatography with hexanes / ethyl acetate afforded 57fb (136.8 mg, 0.54 mmol, 90% 
yield). This experiment was conducted by Kai Chen.  

1H NMR (400 MHz, CDCl3) δ 7.12 – 7.06 (m, 1H), 7.01 – 6.95 (m, 
1H), 6.61 (td, J = 7.3, 1.2 Hz, 1H), 6.56 (dd, J = 8.2, 1.1 Hz, 1H), 3.58 
– 3.47 (m, 2H), 3.43 (ddd, J = 10.1, 7.7, 6.3 Hz, 1H), 2.99 (s, 3H), 2.84 
– 2.66 (m, 2H), 2.22 – 2.11 (m, 1H), 2.01 – 1.90 (m, 2H), 1.90 – 1.81 

(m, 1H). 13C NMR (101 MHz, CDCl3) δ 145.1, 129.0, 127.4, 121.5, 116.0, 111.2, 57.0, 
38.7, 34.9, 31.0, 24.3, 23.6. HRMS (FAB) m/z: 254.0548 (M + H+); calc. for C12H17

79BrN: 
254.0544. [α]23

D = +33.638 ± 2.022° (c 0.5, CHCl3). Absolute stereochemistry was 
assigned after derivatization to (+)-cuspareine.  
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(+)-Cuspareine 

(+)-Cuspareine was synthesized through Suzuki-Miyaura cross-coupling between an 
alkyl bromide and an aryl boronic acid. The reaction conditions for this cross-coupling are 
derived from those described by Fu et al.40. 

To a 50-mL resealable Schlenk tube were added Pd(OAc)2 (4.04 mg, 0.018 mmol, 15 
mol%), di-tert-butyl(methyl)phosphonium tetrafluoroborate (tBu2PMe·HBF4, 8.93 mg, 
0.036 mmol, 30 mol%), KOtBu (40.4 mg, 0.36 mmol, 3.0 equiv.) and tAmyl-OH (0.6 mL). 
The tube was charged with Ar and sealed. The mixture was stirred at 60 °C for 20 min until 
the color of mixture turned pale yellow. After the mixture was cooled to room temperature, 
(3,4-dimethoxyphenyl)boronic acid (54.6 mg, 0.30 mmol, 2.5 equiv.) and a solution of (+)-
2-(2-bromoethyl)-1-methyl-1,2,3,4-tetrahydroquinoline ((+)-8fb, 30.5 mg, 0.12 mmol, 1.0 
equiv.) in tAmyl-OH (0.6 mL) were added to the tube. Another portion of tAmyl-OH (0.8 
mL) was used to wash the solution residue of (+)-8fb and then transferred to the tube. The 
tube was charged with Ar and sealed again. After the reaction mixture was stirred at 60 °C 
for 15 hours, it was then cooled to room temperature, diluted with diethyl ether (6 mL), 
filtrated through a pad of Celite, washed by diethyl ether (30 mL) and concentrated under 
reduced pressure. Purification by silica column chromatography with hexanes / ethyl 
acetate afforded (+)-cuspareine (20.8 mg, 0.067 mmol, 56% yield). This experiment was 
conducted by Kai Chen.  

Spectral data is in agreement with literature report.41 1H NMR 
(400 MHz, CDCl3) δ 7.09 (td, J = 7.6, 1.4 Hz, 1H), 6.99 (d, J = 
7.0 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.75 – 6.70 (m, 2H), 6.60 
(td, J = 7.3, 1.1 Hz, 1H), 6.54 (d, J = 8.2 Hz, 1H), 3.88 (s, 3H), 

3.86 (s, 3H), 3.33 – 3.26 (m, 1H), 2.92 (s, 3H), 2.91 – 2.80 (m, 1H), 2.74 – 2.63 (m, 2H), 
2.54 (ddd, J = 13.9, 10.1, 6.4 Hz, 1H), 2.01 – 1.87 (m, 3H), 1.74 (dddd, J = 13.6, 10.1, 8.8, 
5.4 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 149.0, 147.3, 145.4, 134.8, 128.8, 127.2, 
121.8, 120.2, 115.5, 111.7, 111.4, 110.7, 58.5, 56.1, 56.0, 38.2, 33.2, 32.1, 24.5, 23.7. [α]23

D 
= +23.404 ± 0.723° (c 0.5, CHCl3). The absolute configuration of (+)-cuspareine was 
assigned to be (R) by comparing the measured optical rotation value with the literature 
reported value for (R)-(+)-cuspareine (lit. [α]27

D = +23.516°, c 0.8, CHCl3).41  
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C.10  Determination of enantioselectivity  
  

The absolute configuration of P411-CHF synthesized 52i was assigned to be (S) by 
comparing the chiral HPLC separation of rac-52i and P411-CHF synthesized 52i with that 
reported in the literature42. The absolute configuration was further confirmed by comparing 
the optical rotation values for P411-CHF synthesized 52i and (S)-(+)-52i as reported in the 
literature42. The absolute configurations of 52a–52h and 52j–52m were inferred by 
analogy, assuming the selectivity with P411-CHF remains the same in the enzymatic 
syntheses of those compounds.  

 The absolute configuration of P411-CHF synthesized (+)-54a was determined to be 
(S) after elaboration to (+)-55 (see Section C.9 for more details). The absolute 
configurations of 54b–54e were inferred by analogy, assuming the selectivity with P411-
CHF remains the same in the enzymatic syntheses of those compounds. 

The absolute configuration of P411-gen5 synthesized (+)-57f was determined to be (S) 
after elaboration to (+)-cuspareine (see Section C.9 for more details). As P411-CHF shows 
the opposite selectivity for the synthesis of (–)-57f, P411-CHF produces (R)-57f in excess.  

Enantioselectivity of enzymatic C−H alkylation products were determined by chiral 
HPLC, chiral SFC, or chiral GC analysis. Conditions are shown below. Representative 
traces and further information for compounds 57c, 57d, and 57e, can be found in the 
Supplementary Information of the published paper.  

Compound Analytical conditions for separating enantiomers 

	

SFC (Chiralpak AD-H column): 3% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC, 235 nm. 
tR: 9.1 min, 10.5 min	

	

SFC (Chiralpak AD-H column): 2% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC, 210 nm 

tR: 5.7 min, 7.3 min	

 

SFC (Chiralpak AD-H column): 3% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC, 210 nm 
tR: 8.1 min, 9.3 min 

	

GC (Chiraldex G-TA column): 110 °C 

tR: 36.4 min, 37.6 min	
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HPLC (Chiralpak IC column): 4% isopropanol in 
hexane, 1.5 mL/min, 23 ºC, 210 nm 

tR: 5.7 min, 6.8 min	

	

SFC (Chiralpak AD-H column): 3% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC, 210 nm 

tR: 8.5 min, 10.4 min	

	

SFC (Chiralcel OJ-H column): 0.2% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC, 210 nm 
tR: 5.3 min, 6.0 min	

	

SFC (Chiralcel OD-H column): 2% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC, 210 nm 
tR: 3.3 min, 4.0 min	

	

SFC (Chiralcel OB-H column): supercritical CO2, 
2.5 mL/min, 40 ºC, 210 nm 
tR: 5.5 min, 6.4 min	

	

SFC (Chiralcel OB-H column): 1% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC, 210 nm 
tR: 3.8 min, 4.6 min	

	

HPLC (Chiralcel OD-H column): 3% isopropanol in 
hexane, 1.0 mL/min, 32 ºC, 210 nm 
tR: 6.2 min, 6.6 min	

	

SFC (Chiralpak IC column): 0.5% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC, 210 nm 
tR: 7.9 min, 8.7 min	

	

SFC (Chiralpak AD-H column): 1% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC, 210 nm 

tR: 6.7 min, 7.5 min	
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GC (CycloSil-B column): 110 °C 
tR: 53.6 min, 55.4 min	

	

GC (CycloSil-B column): 90 °C 
tR: 45.6 min, 48.3 min	

	

GC (CycloSil-B column): 130 °C 

tR: 108.6 min, 110.6 min	

	

SFC (Chiralcel OB-H column): 3% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 ºC, 254 nm 
tR: 6.6 min, 7.6 min	

	

GC (CycloSil-B column): 110 °C for 50 min., ramp 
1 °C perminute for 10 min. (to 120 °C), 120 °C for 
10 min. 
tR: 64.1 min, 65.2 min	

	

HPLC (Chiralcel OD-H column): 6% isopropanol in 
hexane, 1.0 mL/min, room temp., 235 nm 

tR: 6.2 min, 8.6 min	

	

HPLC (Chiralcel OD-H column): 6% isopropanol in 
hexane, 1.0 mL/min, room temp., 235 nm 
tR: 7.2 min, 8.1 min	

	

HPLC (Chiralcel OD-H column): 6% isopropanol in 
hexane, 1.0 mL/min, room temp., 235 nm 
tR: 6.3 min, 6.9 min	

	

SFC (Chiralcel OB-H column): 3% isopropanol in 
supercritical CO2, 2.5 mL/min, 40 °C, 235 nm 

tR: 6.4 min, 7.3 min	
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C.11  1H and 13C NMR 
1H and 13C NMR spectra of new compouds can be found in the Supplementary 

Information of the published paper.  
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