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ABSTRACT

Mechanical resonators are used in a wide variety of technical applications, from
precision time keeping and sensing, to the delay and filtering of microwave signals
in mobile communication systems. Critical to many of these applications is the
ability of a mechanical object to store vibrational energy at a well defined frequency
of oscillation and with minimal damping. Energy damping can occur through
acoustic radiation into the resonator support structure, or through impurities and
defects in the resonator material, and is highly dependent on the temperature of
operation due to the inherent anharmonic motion of atoms within solid-state mate-
rials. Here, we present optical measurements down to milliKelvin temperatures of
the acoustic mode properties of a crystalline silicon nanobeam cavity incorporating
a three-dimensional phononic bandgap support structure for acoustic confinement.
Utilizing pulsed laser light to excite a co-localized optical mode of the optomechani-
cal crystal (OMC) device, we are able to measure the dynamics of the internal cavity
acoustic modes which are coupled to the light field via radiation pressure. These
measurements represent an almost ideal scenario in which the ringdown occurs free
of any additional mechanical or probe field contact, and where elastic scattering
or radiation of the acoustic field does not lead to energy damping due to the full
bandgap shield. The resulting ringdown measurements for the fundamental 5 GHz
acoustic mode of the cavity show an exponential increase in phonon lifetime versus
phononic shield period number, which at a bath temperature of 35 milliKelvin sat-
urates above six periods to a value as long as 1.5 seconds. This ultra-long lifetime,
corresponding to an effective phonon propagation length of several kilometers, is
found at the lowest temperatures to be consistent with damping from non-resonant
tunneling states whose energy lies below the acoustic shield phononic bandgap, and
which are most likely present in the amorphous etch-damaged region of the sili-
con surface. Other, more rapid forms of damping such as resonant tunneling state
damping or three-phonon scattering are suppressed due to the phononic bandgap
shield and the reduced density of phonon states in the effectively one-dimensional
nanobeam geometry. Prospects for new applications of ultra-coherent nanoscale me-
chanical resonators include tests of various collapse models of quantum mechanics,
or, if appropriately integrated with microwave superconducting quantum circuits,
as miniature quantum memory or processing units with potentially many-orders of

magnitude longer coherence time than their electromagnetic counterparts.
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Table 0.1: Index of symbols and notation.

| Symbol | Description

h Reduced Planck’s constant
c Speed of light
€ Permittivity of free space
Ho Permeability of free space
kg Boltzmann’s constant
G Thermal conductance
We Optical cavity resonance frequency
wL Laser drive frequency
wLOo Local oscillator frequency
A Laser-cavity detuning, A = w, — wr
W Mechanical resonance frequency
Y0 Intrinsic mechanical energy damping rate
Om Mechanical quality factor
Mefr Mechanical effective mass
K Optical cavity energy decay rate, k = kj + Ke
K Intrinsic optical cavity decay rate
Ke Extrinsic (coupling) optical cavity decay rate
a@ah Optical cavity mode bosonic annihilation (creation) operator
b (b") | Mechanical mode bosonic annihilation (creation) operator
g0 Vacuum optomechanical coupling rate
ne Intracavity photon number, n. = (d'd)
G Effective optomechanical coupling rate, G = go/nc
7 Thermal phonon occupancy, i1 = (¢"m/ksT _ 1)~1
(n) Average phonon occupancy
np Effective phonon occupancy of optically-induced heating bath
np Effective phonon occupancy of total effective mechanical bath
YoM Optomechanical scattering rate, yom = 4g8nc/ kK (A = xwy)
Yp Mechanical heating bath-induced damping rate
Co Bare optomechanical cooperativity, Cy = Yom/Yo
C Optomechanical cooperativity, C = yom/(yo + ¥p)
Ceft Effective (quantum) optomechanical cooperativity, Cef = C/ny,
Xzpf Mechanical zero-point fluctuation, x,pr = \/h [ Cmegw,y,)
ya(w) | Bare optical cavity susceptibility, yq(w) = (i(A — w) + k/2)7!
y»(w) | Bare mechanical mode susceptibility, y,(w) = (i(wm — w) + ¥i/2)7!
Spslwl | Two-sided spectral density of the mechanical mode, Sp;[w]
o % (B @)b(w)
Spplwl | Symmetrized spectral density of the mechanical mode, Sj;[w]
(Spplw] + Sppl-w])/2
NINEP Noise-equivalent phonon number
I'sgo | Per-phonon scattered photon flux




Chapter 1

PROLOGUE

The fact that light exerts a force on matter has been known in some degree for
centuries. Early scientific attention to this notion took the form of comments upon
observations of apparently unrelated physical phenomena, the earliest of which is
thought to be Kepler’s notes on the deflection of comet tails by solar irradiation
in 1619 [1]. Over 250 years later, Sir William Crookes invented a hand-held
radiometer device which rotates when irradiated with light—attracting a flurry of
phenomenological theories aiming to explain its rotation as the result of an optical
force [2]. In actuality the rotation of the Crookes radiometer is explained by
thermodynamic effects [3|], and the optical radiation pressure force as predicted
by Maxwell’s full theory of classical electromagnetism [4] would not find direct
experimental confirmation for a further two decades. This came in 1901 when
Nichols and Hull developed a new radiometer, very similar to that of Crookes, but
with appropriate sensitivity to detect Maxwell’s radiation pressure force to within

0.6% of its predicted magnitude [5].

In the decades that followed in the early 20" century, the quantum theory of light
and its interactions with matter was rapidly maturing with herculean experimental
studies of the photoelectric effect and blackbody radiation by Millikan, Einstein,
Planck, and others. Einstein considered the effects of radiation pressure fluctuations
on a movable mirror [|6] in helping to develop the theory of blackbody radiation. In
parallel with this, theoretical work by the Dirac and others aimed at understanding
the interaction of light and matter at the level of single quanta—in particular to
develop a theory of atomic spontaneous emission and level shifts in Hydrogen.
In this era nearing the middle of the 20" century, the theoretical framework of
quantum electrodynamics (QED) was resolving as the full quantum theory of light.
The theoretical foundations provided by QED would underpin all later studies of the

radiation pressure interaction at the quantum level.

Following the development of the laser in the late 1950s [7]], a new frontier was
opened in the study of radiation pressure and its potential applications to precision

sensing and manipulation of matter. Laser feedback cooling of dielectric particles
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and atomic clouds was demonstrated in the late 1970s [8},9]], in which the vibrational
degrees of freedom of a test mass are cooled by appropriate frequency tuning of an
impinging optical field, and optical scattering via radiation pressure was also finding
use in the study of many-body physics in atomic clouds [10]. The possibility of using
laser light to cool ever larger mechanical objects attracted a great deal of scientific
interest in the 1970s. Braginsky, Dykman, and others scrutinized the interaction of
suspended mirrors and cavity light fields, largely in the context of developing ever
better optical interferometers for position sensing, and identified regimes in which
vibrations of a mirror may be either damped (cooled) or amplified (heated) by inter-
actions with the light field (although these early experimental works were performed
in the more experimentally accessible microwave frequency regime). A pioneer-
ing experimental work by Dorsel [11] in 1983 found regimes of optical bi-stability
arising from the radiation pressure in an optical cavity with a suspended movable
end-mirror—begetting in the optical domain the field of cavity-optomechanics. In
this field, the canonical physical picture is that of a Fabry-Perot cavity for which one
of the end-mirrors is mechanically compliant and typically modeled as a harmonic
oscillator linearly coupled to the circulating light field. In this picture, the motion
of the end-mirror modulates either the phase or intensity of incident light, allowing
readout of the position or momentum of the mechanical object with a sensitivity
that may be limited only by quantum fluctuations in either the light field, the mirror

position, or the detection electronics.

Questions regarding the ultimate precision with which the motion of an end-mirror
may be sensed motivated a series of theoretical studies by Braginsky in the 1970s,
which implied there exists a fundamental quantum-mechanical limitation to the ac-
curacy with which the position of a mechanical element may be measured using
optical probing. This imprecision, known later as the Standard Quantum Limit
(SQL), arises from quantum fluctuations in the radiation pressure interaction which
impart random momentum impulses upon the mechanical oscillator. In particular,
as the measurement strength or optical intensity is increased, so are the random
impulses on the mirror arising from optical shot noise, amounting to the presence of
a measurement back-action on the motion of the mechanical oscillator. Such a lim-
itation has direct consequences for gravitational wave detection, and specifically for
the feasibility of using optical interferometers to sense optical path-length changes
induced by a passing gravitational wave. Theoretical analyses by Caves [12]] and
others in the early 1980s treated this measurement imprecision problem thoroughly,

and firmly established in the relevant scientific communities the formal origins of
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the SQL in optical sensing. In the following decade various proposals for circum-
venting the SQL were made, usually relying either on injection of a squeezed optical
vacuum to the interferometer—thereby suppressing quantum fluctuations in either
the amplitude or phase quadrature—or by placing a Kerr medium in the optical
path [[13} 14]]. Nevertheless, cavity-optomechanical systems (interferometers) have
held great interest and demonstrated success as a platform for gravitational wave

detection even in the presence of such an SQL.

In the last two decades, cavity-optomechanics has undergone a profound transfor-
mation as its versatility in probing the physics of light-matter interaction has become
both more apparent and more experimentally accessible with proliferation of optical
materials fabrication and nanofabrication techniques. The use of a confined optical
mode to cool macroscopic mirrors in 1999 [15]] was in many ways the beginning of
an ongoing effort to realize control of the acoustic and optical fields, as well as their
energy exchange, at ever more delicate levels. Presently, cavity-optomechanical
experiments are used for extremely broad classes of studies in the physics of light-
matter interaction, quantum information science, gravitational wave detection, force
and rotation sensing, gas sensing, and more. The physical principles that describe
the light-matter interaction in a cavity-optomechanical system are germane over
enormous ranges in size scale, from individual atoms trapped in focused light fields
to kilogram-scale mirrors in the gravitational wave detectors of LIGO and VIRGO.
The fact that the same system Hamiltonian and governing equations of motion can
be used to analyze the dynamics and measurement imprecision over such disparate
size scales gives cavity-optomechanics great relevance to human understanding of

natural principles.

In its applications to quantum information science and the physics of hybrid- and
open-quantum systems, the field of cavity-optomechanics is particularly well suited
to miniaturization and interfacing with disparate quantum systems at the nano- and
meso-scale. One finds with simple consideration that for any optical cavity, given a
number of circulating photons and making fairly general assumptions regarding the
quality of the cavity, maximizing the force exerted by a photon on the end-mirror—
and hence maximizing the sensitivity of the mechanical degree of freedom to the
presence of a light field and vice versa—is achieved by decreasing the effective
length of the cavity. In a general sense, then, this (as well as other considerations,
such as increasing mechanical frequencies and thereby the bandwidth of cavity-

optomechanical sensors) helped to motivate a trend of miniaturizing a large class
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of cavity-optomechanical devices from the 1990s onward. This is the domain
of the work presented in this dissertation, wherein nanoscale localized acoustic
resonances coupled to wavelength-scale optical cavities are used to study low-
temperature phonon dynamics in a highly engineered cavity-optomechanical device
system known as an optomechanical crystal (OMC). These OMCs, which possess
co-localized optical and acoustic modes with large coupling in a thin-film dielectric
material, have previously been used to demonstrate sideband cooling of mesoscopic
mechanical modes to the motional quantum ground state, optomechanically-induced
transparency and slow-light, the generation of squeezed states of light, and more [|16),
17,/18,|19,20,21]. The work presented here represents a concerted effort to optimize
the technical performance of silicon OMCs with regard to manipulating phonon
modes at the level of individual quanta, and generally to understand the physics
governing their dynamical behavior at low temperature, in order that they may be
useful in future hybrid quantum systems both for studying fundamental physics and

for applications to the quantum control of matter using light.

1.1 Extremely Long-Lived Acoustic Resonances

A key figure of merit in cavity-optomechanical systems, and generally in oscillator
systems which are coupled to a thermal environment, is the fQ-product of the cou-
pled mechanical mode. The importance of the frequency and quality factor product
can be understood by considering the number of coherent oscillations the resonator
will experience before losing one quantum of energy to the thermal environment at
temperature 7. The heating rate of an oscillator coupled to a thermal environment

with occupancy ny, = (eMemlkBT _ 1)1 g [22]

1
I = thm(nth + 5)’ (L.1)

where 7y is the energy decay rate of the oscillator (Q = w,,/y). Then the time for
one quantum of energy fiw,, to be lost is 7y, = (y(nm + 1/2))7!, so the number of

coherent oscillations is

Wi hiw,

Yo+ 172 - Lt

(1.2)

WyTth =

which scales as w,,Q = 27 fQ. The fQ-product, then, evidently quantifies the de-
gree to which a system is protected from decoherence caused by interactions with its

thermal environment. For example, at room temperature, a minimum fQ-product
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of fO = Quu/2m > kgT/h ~ 101 is required for coherent quantum optome-
chanics, whereas at typical dilution refrigerator base temperatures of 10 mK one
requires a much more relaxed fQ > 10° due to a greatly reduced thermal bath
occupancy at low temperature. Figure gives a summary of the fQ products re-
alized for the mechanical element in various optomechanical and electromechanical
systems representing the state of the art, with data adapted from Refs. [23} 24} [25]].
The 5 GHz acoustic modes presented in this thesis obtain unprecedented energy
coherence, reaching fQ = 2.6 x 10?° and thermal decoherence times as large as

T = 1.5 seconds.
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Figure 1.1: Summary of fQ products achieved in cavity optomechanics and
related systems. Experiments in cavity optomechanics are represented by circles,
with data adapted from Ref. [23], and the experiments presented in this work
are represented by squares. Diamonds represent electromechanical/piezoelectric
coupling to bulk acoustic modes, possessing some of the highest fQ products of
any bulk material phonon modes prior to the work presented here [24, [25]]. Item (1)
is from Ref. [20], measured in a similar nanobeam OMC within the Painter Group
prior to the work presented here, which is measured on an improved version of the
same device platform. Items (2), (6), and (7) represent the work presented in this
thesis [MacCabe:etal:2018, 26]).

In our structures, we are primarily interested in acoustic mode frequencies of a
few GHz, placing them in the microwave (or hypersonic) frequency regime. This
is motivated by several considerations, including that we will be working in the
sideband-resolved regime of cavity-optomechanics in which the mechanical res-
onance frequency w,, is much greater than the optical cavity energy decay rate

k. In photonic crystal optical resonators, « < 1 GHz is typical, so we will need
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large mechanical frequencies to reach sideband resolution in OMCs — a prerequisite
for protocols such as sideband cooling of the mechanical mode into its quantum
ground state. These high mechanical frequencies also allow greater bandwidth of
phonon-photon conversion processes, where the total conversion bandwidth will
correspond to an optically-damped mechanical mode linewidth [19]]. Moreover, at
these frequencies the acoustic mode wavelength is close to the optical cavity mode
wavelength (of order 1 ym), providing good mode overlap for generating optome-
chanical coupling through radiation pressure. High-mechanical-frequency acoustic
modes also minimize thermal occupation (thermal noise), and in our devices we
have measured phonon occupancy as low as 1073 at an environmental temperature

of 10 mK in a dilution refrigerator.

Perhaps most important, though, is the fact that our mechanical modes exist in
the same frequency range as common superconducting qubits, suggesting a future
for devices of this type in hybrid quantum systems which couple superconducting
qubits to acoustic modes. With energy decay times greater than one second, these
microwave acoustic modes present a potentially valuable resource in the context
of superconducting quantum computing as energy storage elements. Ongoing ef-
forts within the Painter Group are investigating the possibility of coupling similar
vibrational modes in silicon to superconduting circuits in order to leverage their
ultra-long lifetimes for storage of quantum information. The challenges in doing
this are multitudinous, as one is then concerned with generating electromechanical
coupling between the superconducting circuit and the localized acoustic mode with-
out sacrificing the acoustic mode lifetime. This may be achieved with the use of
a piezoelectric material (commonly aluminum nitride) which couples strain fields
to electric fields. The technical challenges associated with introducing more com-
plex materials systems into nanostructures harboring GHz cavity-acoustic modes

are currently under investigation.

Going forward, the temptation to couple nonlinear quantum elements (e.g., qubits)
to these high-Q acoustic modes is ever increasing. Various other research groups
are pursuing similar programs of research in this emerging field of quantum acous-
todynamics (QAD) [25, |27, 28, [29]], and have already made extremely impressive
demonstrations of peizo-electrical coupling between surface- or bulk-acoustic wave
phonons (SAW, BAW) and superconducting qubit circuits. However, there is great
promise in the possibility of miniaturizing the mechanical element by using a local-

ized cavity acoustic mode like that studied in the silicon-based systems of this thesis,
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with a footprint on-chip of only a few square microns owing to the slow speed of
sound in silicon (or other future material systems) compared to that of microwaves in
a superconducting circuit. Success in this endeavor may directly enable scalability
of quantum-acoustodynamic devices simply because many hundreds or thousands
of long-lived mechanical resonators can be placed in an on-chip area that would be

occupied by only a handful of electrical microwave or SAW/BAW resonators.

1.2 Beginnings

My early work in the Painter Group was under the wings of Justin Cohen and Seén
Meenahan, then already quite senior graduate students in their fifth year of study,
who were more than helpful in getting me up to speed on their ongoing projects
in low-temperature optomechanics. At that time the prospect of optically coupling
to an OMC device in a dilution refrigerator was practically working but fairly new,
and Sedn and Justin had spent a great deal of time developing the optical coupling
techniques and technical know-how to enable our cryogenic measurements. Working
with Justin very closely, I tried to learn the team’s methods and technical strategies
while he and Sedn made the group’s first milliKelvin OMC measurements that would
later be published in Ref. [30]]. Justin spent an immense amount of time training
me in the details of the device fabrication process, for which I am deeply grateful to
him. My contributions to the team’s efforts, aside from trying to learn the relevant
physics as thoroughly as I could, began during our team’s early development of the
phonon-counting technique. We worked with Matt Shaw and Francesco Marsili,
who (in collaboration with Sae Woo Nam’s group at NIST) had developed incredibly
high-performance superconducting nanowire single-photon detectors for the near-
infrared with very low background count rates and high quantum efficiency. These
detectors proved an invaluable tool in our group’s efforts to start making time-
domain mechanical dynamics measurements on our OMCs. The motivations for
these types of measurements are several: first, many quantum-state preparation and
heralding protocols rely on detection of single photons that herald the occurrence
of an individual scattering event. Second, the fine timing resolution (< 10 ns)
afforded by these SPDs promised us a window into the short-timescale heating
and damping dynamics of our mechanical mode, and ultimately enabled us to
perform mechanical thermometry at the sensitivity level of 10~2 phonons. Third, the
milliKelvin temperature measurement results in Ref. [30] proved to us the challenge
of reaching high cooperativity in the presence of steady-state optical-absorption

heating, which could be mitigated by using low duty-cycle pulsed excitation in
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order to study temporal acoustic dynamics deep in the ground state (phonon number
(n) < 1).

1.3 Dil Fridge Days

With the demonstration of phonon intensity interferometry at room temperature
in Ref. [31], the phonon-counting technique had matured. I became much more
involved in performing measurements during this time period. Subsequent pulsed
excitation measurements [26] of the nanobeam OMC device at milliKelvin temper-
atures inside the dilution fridge required substantial build-up of the measurement
setup, protocols, and data handling capabilities. Those measurements set the stage
for a program of low-temperature OMC research that forms the bulk of my thesis
work, and has been the most rewarding and enjoyable technical pursuit I’ve made
thus far.

With the indication that our breathing mode mechanical lifetime could approach
a millisecond, we were motivated to for the first time make a systematic study of
the effectiveness of the acoustic bandgap radiation shielding which had been used
in all previous cryogenic measurements of the nanobeam OMC [20, 21} {30, 32].
Previous works had made use of the shielding on the basis of numerical modeling,
which indicated that substantial localization of the mechanical mode energy could
be achieved with by clamping with the full-bandgap material to eliminate clamping
losses. To prepare for this series of measurements, we spent time to re-optimize the
fabrication process used to make OMC samples suitable for end-fire optical coupling
in the dilution refrigerator (Chapter[3.2). This would allow us nearly 100% reliable
fabrication of device arrays for future experiments, and enable us to couple to several
dozens of devices on an individual chip sample during one cooldown cycle of the
dil fridge.

A key aspect of preparing for this experiment was to carefully optimize the SEM
image fitting and lithography feedback to ensure the design geometry of the bandgap
shield (and the OMC cavity) was being realized as faithfully as possible. This proved
critical, as an initial round of measurements showed disappointingly little benefit to
extending the number of bandgap shielding periods relative to modeling predictions,
likely due to misalignment of the bandgap and the mechanical mode frequency due
to subtleties of the lithography in fabrication. However, our ability to test large
arrays of devices paid off, as a small degree of fabrication disorder yielded that

some of the devices housed mechanical resonances further from the bandgap edge
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than others. We observed a few devices with mechanical Q-factors above 1 billion
and, knowing that there was substantial room for improvement, embarked to generate
a round of devices in which the acoustic bandgap was optimally centered around the
mechanical resonance frequency. After refining the lithography feedback to achieve
this, later measurements of the mechanical lifetime showed a much clearer trend
of mechanical-Q with acoustic shield depth as well as extremely large saturated

mechanical-Q factors on the order of 40 billion for our 5 GHz mode.

Alongside the mechanical mode lifetime measurements was a course of study into
the optical heating and resulting phonon bath dynamics present in our devices.
Owing to the relatively large energy of a single photon (at 200 THz) compared to
a single phonon (at 5 GHz) and the reduced thermal conductivity of silicon at low
temperature, even a very small amount of parasitic optical absorption can generate a
significant phonon bath which damps the cavity mode. In fact, an intracavity photon
population as small as ~ 1076 average photons introduces an effective mechanical
damping rate comparable to the intrinsic mechanical decay rate — a single intracavity
photon generates a local bath temperature of 1 -2 K at an environmental temperature
of order 10 mK. We developed various optical measurement techniques to study the
bath damping and heating rates, generally using pump-probe techniques in which
one laser is used to generate optical-absorption heating while another is used to probe
the resulting dynamics. Around this time we had built the optical setup capabilities
sufficiently that we were able to coherently excite the mechanics to large phonon
amplitude and probe the decay in a minimally invasive way, decreasing the impact of
bath effects on our studies of the mode lifetime. These measurements expanded into
a study of the mechanical mode’s spectral properties, including the dependence of
the mechanical linewidth and frequency upon laser power and temperature, in a novel
regime in cavity optomechanics where the mechanical dissipation and decoherence
is driven dominantly by coupling to material defect tunneling states residing in
the etch-damaged surface layer of the device material. These nanobeam device
platforms have proved a unique resource for studying the low-temperature behaviors
of strain-coupled tunneling state defects ubiquitous in amorphous surface layers of

silicon.
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Chapter 2

PRINCIPLES OF OPTOMECHANICAL CRYSTALS

The fundamental feature of a cavity-optomechanical system is an optical cavity
resonance in which the resonance frequency is sensitive to the motion of a me-
chanical degree of freedom within the cavity. Consider for example the canonical
optomechanical system in Figure[2.1] consisting of a Fabry-Perot cavity in which one
end-mirror is mechanically compliant. Circulating photons inside the cavity impart
an impulse to the mirror upon reflection, having magnitude 27k per photon where
k = 2n/A is the wavenumber of a photon with wavelength 4. Given an average
number N of photons circulating inside the cavity of length L with round-trip time
T = 2L/c, one sees that the average radiation pressure force imparted on the mirror
is Frp = 2Nhick /2L = Nhw/L. In a general sense then, maximizing the force per
photon is equivalent to decreasing the length (or effective length, in the case of a

photonic crystal cavity) L of the cavity.

~ ~

& = 2,01 + )
>

Figure 2.1: Canonical cavity-optomechanical system. The canonical optome-
chanical system can be modeled by a Fabry-Perot cavity of effective length L.g in
which one mirror is mechanically compliant. If the mirror has mass m and resonant
frequency wy,, its zero-point motion is given by x,,¢ = 4/fi/(2mw,,), and the position
operator is given by £ = szf(BT + b), where b is the bosonic annihilation operator
for the mechanical degree of freedom. Similarly, the optical mode is described by
the bosonic annihilation operator a and cavity frequency w.. The radiation pressure
interaction causes a coupling by which w. depends explicitly on %, approximately
given by wg = wo(1 — £/ Leg). Input and output to the system are described by djy
and doy using the input-output formalism for open quantum systems.
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The Fabry-Perot cavity implementation of an optomechanical device is suitable for
many macroscopic applications of optomechanics, such as in kilometer-scale grav-
itational wave detectors. At the millimeter-to-centimeter scale, thin-film materials
have instead been used in device architectures ranging from cantilever-mounted
and torsional-oscillator mirrors for force sensing at high frequencies and near the
quantum limit [33} (34} 35]], to micro-fabricated membranes coupled to macroscopic
optical cavities for microwave-to-optical transduction near the level of individual
photons and generation of squeezed states of light |36} 37,38, 39, 40], and in whis-
pering gallery optical resonators [41]. At still smaller length scales, nanofabrication
techniques allow replacement of the Fabry-Perot cavity architecture with analogous
structures through patterning of dielectric and semiconductor materials down to
feature sizes which are deeply sub-wavelength. The push to shorter length scales is
partially driven by the desire to reduce the effective motional mass of the mechanical
element, thereby increasing the acceleration imparted on the mechanics per reflected
optical photon, as well as to achieve structures with large mechanical frequencies for
the reasons outlined above. Each of these various implementations has advantages
and disadvantages, but for the purpose of the work presented here, we will focus
exclusively on photonic devices using near-IR light to couple to high-frequency me-
chanical modes in structures known as optomechanical crystals (OMCs), in which
light can be confined to mode volumes near the theoretical minimum of (1/2n)3.
These OMC:s are crystals in the sense that they are formed through periodic pattern-
ing of semiconductor materials (here usually Si or SiN,) to support co-localized
photonic and mechanical/acoustic vibrational modes. Silicon-based OMCs are able
to reach mechanical frequencies in the microwave regime (~ 1 — 10 GHz) owing
to the large speed of sound in silicon (5 — 8 km/s) with optical resonances in the
telecommunications bands from 1200 — 1600 nm reaching optical quality factors on
the order of 10%. Moreover, the extremely small photonic mode volume of these
OMC:s is accompanied by a correspondingly large electric field strength per photon,
giving rise to the possibility for large optomechanical coupling rates through pho-
toelastic coupling in which the refractive index change (effective cavity length) is

sensitive to the electric field strength in the material.

2.1 Periodic Structures and Optomechanical Crystals
Optomechanical crystal devices are created by patterning periodic structures into
thin-film semiconductor materials. Periodicity in any potential gives rise to propa-

gating wave solutions for the fields experiencing that potential; here, both electro-
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magnetic fields and acoustic (strain) fields experience periodic effective potentials
which give rise to dispersive eigenmodes analogous to the cavity modes present
in a Fabry-Perot cavity. In this sense optomechanical crystals are simultaneously
photonic crystals and mechanical crystals. In the case of an electromagnetic or
photonic structure, the supported eigenmodes can be understood by investigating

the form of solutions to Maxwell’s equations in a dielectric material:

V-B=0 (2.1)
V-D=d4np 2.2)
16D 4
vxH= 19D, 47y (2.3)
c Ot c
1B
VXE=--22 2.4
X c Ot 24

We are interested in the solutions of these equations in dielectric materials in the
absence of source terms p and J, and which can be described as consisting of discrete
regions of different dielectric constants £ = &(r, w). For now we will consider only
lossless materials for which ¢ is real, and ignore any frequency dispersion of &.
In general numerical methods for solving for the modes of a structure, such as
the finite-element method (FEM) solver packages in COMSOL Multiphysics [42],
the full complex-valued anisotropic dielectric tensor € (r, w) is used. The field
amplitudes for general solutions of Maxwell’s equations will be linear combinations
of the normal modes which are harmonic in time, of the form H(r, ) = H(r)e'“!
and E(r,t) = E(r)e/’. If we insert these temporal normal mode solutions into

Maxwell’s equations, we obtain two curl equations of motion for the fields:

V x E(r) + i%)H(r) =0 (2.5)

V x H(r) - %‘“g(r)E(r) = 0. (2.6)

Eliminating the electric field from the coupled equations yields an electromagnetic

master equation for the magnetic field:

2
1 yx H(r)] - (%) H(r). 2.7)

V X
g(r)
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Equation 2.7 has the familiar form of an eigenvalue problem in which the magnetic
field profile in a given region parametrized by a dielectric constant &(r) can be
determined as a function of frequency [43]. The solutions to the master equation
will be a set of normal modes. Additionally, because we have assumed the media
in which the solutions exist is free of source terms, the field patterns must be
transverse, further limiting the spatial forms of solutions to the master equation. In
the specific case of photonic crystals, the material (described by &(r)) is patterned
periodically, such that in addition to finding electromagnetic field solutions which
are harmonic in time, we will search for modes which are also harmonic in space.
Bloch’s Theorem [44] tells us that the spatial normal modes will take the form of

plane waves in a periodic medium,

H(r, 1) = Hye'* T, (2.8)

where Kk is the wave-vector and and the transversality requirement amounts to requir-
ing that Hy - k = 0. If we restrict ourselves to the case of a quasi-one-dimensional
photonic crystal, in which periodicity of the material is realized in only one of the
three spatial axes (£), the solutions have the form H(r, r) = Hy(y, z)e***e/!. For
a given frequency, then, we can calculate the spatial mode profiles using Equa-
tion and catalogue the spatial mode profile solutions according to their spatial
wave-vector eigenvalue k,. Performing this calculation yields a band structure dia-
gram for a structure, describing the relationship between frequency and wave-vector
for each normal mode, where typically the band structure is accompanied by the
assumption that the spatial symmetry extends to infinity or nearly infinity, i.e., that
the plane-wave solutions are valid in all space. The generation of normal modes
which are separated in frequency by virtue of a periodic electromagnetic potential
(here, the dielectric constant) is a general result of solutions to the wave equation in
the presence of a periodic material. Structures may be engineered in which the local
periodicity of the potential (dielectric constant) is varied to create defects in which
the effective potential is not uniformly periodic. Such defects to the periodicity of
a photonic structure cause the approximate normal modes of the structure to vary
from one unit cell to the next, and can result in localization of the field intensity
to one region preferentially to another, as regions of higher dielectric constant will
contain a greater electromagnetic energy density [43]] (see Figure [2.2)). In partic-
ular, it is routine to design structures in which one or more modes of a defect in

a periodic structure has a frequency which lies in a bandgap of the surrounding
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material, where no propagating modes exist at the frequency of the defect mode. In
this way, electromagnetic energy can be confined in an effective optical potential in

a qualitative analogy to confinement due to total internal reflection.

The Nanobeam OMC

In the devices studied in this work, the principles of quasi-1D photonic crystals
are used to generate optical defect cavities in a nanobeam photonic crystal. The
beam consists of a suspended thin-film (220 nm) Si layer patterned into regions of
alternating effective dielectric constant by removing some of the dielectric material
in elliptical holes, as shown in Figure [2.3] The resulting optical potential is then
readily modulated by changing the relative filling fraction and lattice constant of a
unit cell (see Figure [2.2). The optical cavity of the nanobeam consists of a series
of "mirror" unit cells on either end of the nanobeam, in which a pseudo-bandgap
at the defect mode resonance frequency exists due to the choice of lattice constant
and filling fraction of the unit cells. The lattice constant is set by the wavelength
of the defect mode in the material, here roughly ay ~ A/ns; = 450 nm (ng; = 3.48
at 1550 nm). In the central defect region of the nanobeam, the lattice constant and
elliptical hole geometry are modulated adiabatically along the length of the beam
to form a symmetric optical potential [20], in which there exists a confined mode
at approximately w. /27 = 194 THz (free space wavelenth 1550 nm). Confinement
in the transverse (9) and out-of-plane (Z) directions are achieved by total internal
reflection due to index contrast with the surrounding vacuum or air. However,
there do exist radiation modes which are not confined to the z = O plane; these
are classified by wave-numbers greater than the longitudinal wavenumber k., or
equivalently, w > ck,. These radiation modes form a light cone, as shown in
Figure 2.2b. Due to the presence of the light cone and nearby bands which can
couple strongly to radiation modes, the photonic bandgap of the mirror region is
really a pseudo-bandgap. Nevertheless, it is possible to tailor a central defect in
such a way that the guided mode in the defect region experiences large reflectivity
at the mirror portion of the beam. A final comment here regards the polarization of
the defect mode. The modes of interest in thin-film OMCs are usually Z-symmetric
with E-fields largely in the z-plane; thus, we classify them as "transverse-electric-
like" (TE-like) modes. Details of the nanobeam optical cavity design are given in

Ref. [20], and the geometry of the structure and the defect optical mode are shown
in Figure[2.3]

In analogy with the periodic solutions of the photonic master equation, the periodic-
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Figure 2.2: Periodicity in 1D photonic crystals. a, Alternating regions of high and
low index with lattice constant ag can lead to constructive or destructive interference
of propagating waves of wavelength 1 ~ ag. An optical cavity can be constructed by
combining two end-mirror regions with central defect region of different effective
refractive index. b, A unit cell of the end-mirror portion of a nanobeam OMC,
which is periodic in the X direction, and the photonic band structure of the mirror
portion [20]. Bands shown in red (blue) have odd (even) y-symmetry. Radiation
modes exist for w > ck,. A pseudo-bandgap exists near w/2n = 200 THz, in the
vicinity of a defect mode of the central defect region of the nanobeam (dashed line).

ity of the nanobeam gives its structural acoustic normal modes a spatial periodicity
as well. The central defect region of the nanobeam supports a so-called breathing
acoustic resonance in the microwave frequency regime, here near 5 GHz. By tai-
loring the mechanical properties of the defect region relative to the mirror regions
at either end of the beam, the acoustic breathing mode is localized to the defect
region. The mirror regions support a partial acoustic bandgap at the breathing mode
frequency. Note that because the acoustic modes cannot radiate into the vacuum
(unlike electromagnetic modes), they are confined to the plane of the nanobeam,
and therefore the band-structure diagrams for the modes in the longitudinal axis of

the nanobeam (£) do not contain light-cones of continuum modes.

Although the mechanical breathing mode is confined to the defect region of the
nanobeam by the partial acoustic bandgap of the mirror portions of the nanobeam,
it is still possible for the mode to couple to the bulk Si of the substrate chip via leaky
mechanical modes in the mirror region. In particular, fabrication imperfections
inevitably break the Z-symmetry of the device, so the realized resonant mode is

not truly an eigenmode of Z-inversion. In this case, it has some overlap with the
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Figure 2.3: Optical and acoustic modes of the nanobeam OMC. a, Scanning elec-
tron microscope (SEM) image of a full nanobeam optomechanical crystal (OMC)
device fabricated on silicon-on-insulator (SOI) with 7 periods of acoustic shielding.
A central coupling waveguide allows for fiber-to-chip optical coupling as well as
evanescent side-coupling to individual nanobeam OMC cavities. b, SEM image
of an individual nanobeam OMC and the coupling waveguide, with enlarged il-
lustration of an individual unit cell in the end-mirror portion of the nanobeam. c,
Finite-element method (FEM) simulation of the transverse in-plane electric field
magnitude |E,| for the fundamental optical mode at w./2m = 194 THz (free-space
wavelength A; = 1550 nm). d, FEM simulation of the displacement field magnitude
of the "breathing" acoustic mode at w,, /27 = 5.0 GHz. Distortion of the mechanical
mode profile is exaggerated for clarity.

mode profile of propagating modes in the mirror portion of the nanobeam, and
therefore the partial bandgap allows for energy dissipation of the confined mode
by coupling to radiation modes. Since the experiments presented here will rely
heavily on minimizing the acoustic loss rate of the OMC structure, additional
design considerations must be made to better confine the acoustic mode and prevent
radiation of phonons into the bulk Si. To accomplish this, we employ a quasi-2D
periodic "cross shield" pattern for clamping the ends of the nanobeam, in which
the effective mass of alternates between large and small from one half-unit cell to
the next 45]]. The cross shield pattern is shown in Figures [2.4] and [2.5] and
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Figure 2.4: Phononic crystal radiation shield image analysis and optimization.
a, SEM image of the clamping region of the nanobeam OMC, patterned with a
phononic crystal "cross shield." b, Close view of several unit cells of the cross
shield used for image fitting and analysis. ¢, SEM image of an individual unit
cell of the cross-crystal acoustic shield. The dashed lines show fitted geometric
parameters used in simulation, including cross height (h, = 503 nm), cross width
(w. = 169 nm), inner fillet radius (r;), and outer fillet radius (1;).

the structure supports a full acoustic bandgap ~ 3 GHz-wide around the breathing
mode resonance frequency (gap-midgap ratio 0.6). The band structure of a realized
cross shield is shown in Figure [2.5] The origin of the bandgap can be qualitatively
understood as arising from the large difference in resonance frequencies of the square
masses (high frequency) and narrow, floppy tethers by which they are connected
(low frequency). In such a structure, the planar acoustic modes experience a full
bandgap, and as the acoustic modes are also prohibited from radiating into the 2

direction, the bandgap is fully three-dimensional.

The importance of the three-dimensional microwave-frequency phononic bandgap is
detailed in Chapter[6.1] in which the reduction in clamping losses by patterning of an
increasing number of cross shield periods is studied numerically and experimentally.
In the numerical studies performed using COMSOL, the geometric parameters of
the structure are measured from scanning electron microscope (SEM) images of

realized structures, as shown in Figure[2.4] and used to generate model geoemtries
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Figure 2.5: Band structure of the phononic crystal radiation shield ''cross"
pattern. Acoustic band structure of the realized cross-crystal shield unit cell, with
the full acoustic bandgap highlighted in pink. Solid (dotted) lines correspond to
modes of even (odd) symmetry in the direction normal to the plane of the unit cell.

The dashed red line indicates the nanobeam mechanical breathing-mode frequency
at wy /27 = 5.0 GHz.

for calculation of band structure diagrams. Of particular importance in accurately
modeling the acoustic bandgap structure is the inclusion of fillet curvature radii r;
and r, of the concave and convex corners of the structure. This curvature arises
from technical limitations of the lithography preventing the reliable fabrication of
abrupt corners with curvature radii less than about 20 nm, and the fillet radii used in
modeling substantially impact the frequencies of the upper and lower bandgap-edge
modes. A lack of propagating modes in the acoustic shield region gives rise to an
exponential decay of the acoustic field in that region as a function of position, which
alternatively can be understood as a finite penetration depth of the acoustic mode in
the bandgap material region. For sufficiently many periods of the acoustic shielding,
the energy damping rate of the acoustic mode is not limited by radiation into the
bulk (clamping losses), but becomes limited by other intrinsic material properties
and defects, discussed in detail in Chapterm

Origins of Optomechanical Coupling
In the case of planar thin-film optomechanical crystals, coupling between the optical

and mechanical modes arises differently than in the case of Fabry-Perot resonators.
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Rather than the real distance between the two end-mirros becoming modulated by
reflected photons, the effective dielectric constant in the cavity region experienced
by circulating photons is modulated by the mechanical motion. There are two main
ways in which this can occur. First, mechanical motion will physically displace the
boundaries of the dielectric structure, modifying the band structure and thus the
frequency of the photonic mode. This change in boundary condition is referred to as
a "moving boundary" effect. Second, the presence of a strain field in the dielectric
can change the dielectric constant of that bulk material through the photoelastic

effect.

The magnitude of the optomechanical coupling rate, defined as the rate of change
of the optical resonance frequency as a function of mechanical displacement gom =
dw,./da for a generalized position coordinate a, can be decomposed into contribu-
tions arising from the moving boundary effect and the photoelastic effect. This de-
composition is useful in the design of OMCs, as the absolute and relative magnitudes
of these contributions motivate the choice of which acoustic and electromagnetic
modes should be used to tailor the device geometry. The total optomechanical cou-
pling rate can be calculated by considering the effect of an infinitesimal mechanical
displacement on the optical resonance frequency. The electromagnetic energy den-
sity depends on the electric field E and dielectric constant £(r), and to first order in
perturbation theory the change in energy can be calculated using the non-perturbed

normal modes according to [20, 46]

ow: a)cfd31' E*(r) - 6§—£:)E(1')
da ~ 2 [dPrE(r)-s(mEr)

8OM = (2.9)
Calculation of the moving boundary contribution to gom can be performed by
ignoring the strain-induced changes in & to first order in @. In terms of the un-
perturbed electric field mode profile and the mechanical mode profile q(r), the

moving boundary contribution to gom is given by [47]

&fdA q(r) - A(r)(Ae(E)(r))* — As™ (D (r))?)
2 [ dre(r)(E(r))?

80OM,bnd = — , (2.10)
where || and L represent the parallel and perpendicular components of the fields
with respect to the material surface. The integral in the numerator is performed over

the boundaries of the material with surface normal vector 7, q is the normalized
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mechanical mode profile, and Ae is the difference between the dielectric constants

across the material boundary.

The contribution of the photoelastic effect to the optomechanical coupling rate,
goM,ph, can be calculated using an expression for the strain-induced change in
dielectric constant for the material [48]]:

de —s( p ) @2.11)

da ~ “\&S

Here p is the rank-four photoelastic tensor of the material and S is the mechanical

mode strain tensor, with components

S = (—' + —) (2.12)

The resulting integral expression for gom,ph is

coelw, [ dVE; (X)E;(r)pijaSi(r)
2 [ d®re(r)[E(r)[?

8OM,ph = (2.13)
where the integral in the numerator is taken over the volume of the material. With
expressions for gom,bnd and gom,ph, the total optomechanical coupling rate gom =
goM,bnd + gom,ph Can be calculated using the eigenmode solutions for the field
profiles E and q obtained by FEM simulations. The optomechanical coupling rate
is conveniently expressed as go = xzpfgom, Where x,pr is the zero-point mechanical
amplitude and go therefore describes the optical cavity frequency shift due to the
zero-point mechanical fluctuations (see Chapter 2.2). For the nanobeam OMC,
typical contributions to the optomechanical coupling rate are numerically computed
to be xprgombnd/2m = =90 kHz and x,prgomph/27 = 860 kHz, giving go/2n ~
770 kHz, in good agreement with the corresponding experimentally-determined

coupling rates typically measured as go/27 = 700 — 900 kHz.

2.2 The Optomechanical System Hamiltonian

Let us more quantitatively investigate the origin of optomechanical coupling in the
canonical cavity-optomechanical system. Let L.g be the effective cavity length, meg
be the effective mass of the movable mirror, k be the effective spring constant of
the mirror. The mirror then has a mechanical resonance frequency w,, = \/k/Teff

and the optical cavity resonances occur at frequencies w,—; = nmxc/L, where n is a
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positive integer. Consider the fundamental optical mode at frequency wg = m¢/ Leg.
As seen above, a single photon circulating in the cavity produces an average force
Frp = hwo/Leg on the end-mirror. By Hooke’s Law this results in an average
displacement of x = fiwg/(Legk), i.€., the cavity length is L + x. This shift in cavity
length results in a shift of the optical resonance frequencies, which are now written

to depend explicitly on x:

nnc  dw,—1 nmwc  nmnc
X = -
Leff dLeff Leff Lesz

wWp-1(x) ~ x = wp-1(1 = x/Lefr). (2.14)
Assuming x < Leg. The fundamental mode frequency is shifted by Awy =
~(x/Le)wo = ~Twg/(KLZ).

Modeling the system quantum mechanically we describe the optical and mechanical
modes as quantum harmonic oscillators at frequencies wp and w,, respectively,
where @ (@") is the bosonic annihilation (creation) operator for the optical mode and
similarly b (b") are the bosonic operators for the mechanical mode. The Hamiltonian
of the quantum cavity-optomechanical system can then be written in terms of the

self-energy terms of the modes as:

A A A

H = hwod'a + hw,b'b + Hyy, (2.15)

where the term Plim describes the interaction of the optical and mechanical modes.
We can find an expression for Hi by writing wy as an explicit function of the mirror’s
displacement £, following the simplified analysis above, so that wy(£) = wg + %ﬁ

to first order in X. Then

0
‘”}%e)aﬂa A (2.16)
ox

H= hwo(ﬁ)dT& + hw,b'b = h(wo +

from which we identify Hip = h%ﬁcﬂd. Now, the mechanical position operator X =

)czpf(l;T + b) is written in terms of the zero-point fluctuations x,pr of the mechanical

oscillator, x,pf = V(0]£2|0) = \/h/ (2mefwp,). Then the interaction Hamiltonian is
expressed as

N 0 ~ ~
Ay = hxzpf%(zﬂ + bata. 2.17)
X

After defining a vacuum optomechanical coupling term



24

ow
g = xzpfa—;, (2.18)

which physically represents the optical cavity frequency shift due to the zero-point

fluctuations of the mechanical oscillator, we can write the full Hamiltonian

H = hwod'a + hwnb' b + higo(b™ + b)a'a. (2.19)

Referring to Eqn. we see that we can approximately write go = wo(xzpt/ Lefr),
reinforcing our intuition that increasing the optomechanical coupling is equivalent

to decreasing the effective length of the cavity.

Generally we are interested in the dynamics of the optical and mechanical fields
governed by Eqn. (2.19) under the influence of a strong coherent driving tone with
frequency wy. In this situation it is convenient to move into a reference frame
rotating at the drive frequency—where the dynamics of the system operators on
the optical timescale can be eliminated—in anticipation of later making a Rotating
Wave Approximation. To do this, we define A = hwp a'd and the unitary operator

U = e*4"/" and make the unitary transformation to the Hamiltonian:

A—UAHU-A (2.20)
+ hwnb b + hgod a(b" + b), (2.21)

where the optical detuning is defined A = w, — wr.. The full Hamiltonian in general
includes both additional driving and dissipation terms. We will append an explicit
driving term Hgrive = fie(@" + &), but temporarily neglect dissipation. The constant
€ here is proportional to the square root of the laser drive power, and is taken to be

real. The system Hamiltonian is then

A/l = Ad"a + wnb™b + goaTa(b’ + b) + e(@’ + a). (2.22)

Linearization Approximation

Using a semiclassical analysis one can show that the effect of the pump is to cause a
static shift in the coherent amplitudes of the optical and mechanical fields. Intuitively
this is the statement that the optical field will fluctuate around a large coherent

amplitude, and similarly the mechanical oscillator will experience a static deflection
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due to the average radiation pressure force. It is then useful to re-formulate the
Hamiltonian (and resulting dynamics) in terms of fluctuations about these coherent

amplitudes. To this end we make the substitutions

a— ag +d

o . (2.23)
b — Bss + b,

where agg, B are the coherent parts of the steady-state optical field and mechanical
field, respectively. From here forward we drop the subscript "ss" for convenience.
The substitution in Eqn. [2.23]is formally performed by applying a displacement to
the Hamiltonian for each field:

H — DD HD;D,, (2.24)

+

with D, = ¥4 =@ and DI; = ¢B(6'-D) and B taken to be real. We then have

A/l = A" +a")(@+a)+wn(B+bN)(B+b)+e(a* +a+a" +a)+go(a*+a ) (a+a)(bT+b+2P).
(2.25)

Ignoring constant terms which have no effect on the dynamics, this is

A/h=(A+2p)a"a + wub b+ (A +2g0B)(a*d + @) + (WP + golal*)(B" + b)
+e(@" + a) + go[(a*a" + ad)(b" + D)+ a’a(b" + b)).
(2.26)

Taking « to be real, which amounts to using the phase of the coherent part of the

optical field as a reference and therefore loses no generality,

H/h=(A+2B)a"a + wnb'b + (A + 2g0B)a(@ + a") + (wmP + gola|*)(b" + b)
+e(@ +a)+ gola(@ +a)b' + by +a’ab" + b)).

Now we observe that the effective driving terms for two fields, which are of the form
(a% + @) and (b' + b) respectively, can be eliminated if we substitute the appropriate
steady-state field amplitudes:
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—€
X4 =——
A+2g08
806 2.27)
_ —8ole|
g =SV
W
Then
. 2 2 A PV
A/n = (A _ 280la )a*a + wnb'h + go[a(@® +a)+atal(b" +b).  (2.28)
Wi

We see from this that the optical cavity obtains an effective frequency shift 2goa?/w,y,.
This term is typically small, but can become large compared to the optical cavity

linewidth « at high intracavity photon number o

. It is simplest to re-define the
optical detuning A to incorporate this shift. Further, we note that the interaction
part of the Hamiltonian consists of terms which are products of two field operators
and terms which are products of three field operators. The resulting Heisenberg
equations of motion for these terms will respectively be linear and quadratic in the
field operators; thus it will be useful to restrict the analysis to the terms which yield
linear equations of motion. This linearization approximation is most valid in the
limit of large @, where the nonlinear term a'a(b™ + b) is smaller by a factor of «
than the dominant coupling terms. Under the linearization approximation, the full

optomechanical system Hamiltonian can be written

Hom/Bi = AdTa4 + wn,b'b + goa(a™ + a)(b" + b). (2.29)

We make a few observations about this optomechanical system Hamiltonian. First,
the coupling strength go is parametrically enhanced by & = VN, the square root of
the intracavity photon number. This is a central result in linearized optomechanics,
as it allows the effective coupling rate to be boosted and controlled by simply
adjusting the input power to the system. We will follow a usual convention and
define the enhanced effective coupling G = goVN. Next, we note that the interaction
part of the Hamiltonian Hi, = G(a* + a)(b™ + b) in general contains four product
terms (a"b%, a*h, abt, ab), but that we can identify regimes in which it is simplified
to include only energy-conserving "exchange" terms. In particular, recall that we
have moved into a reference frame rotating at the drive frequency wy, = w, — A. In
the lab frame, we may write the field operators as the slowly varying amplitudes a

and b rotating at their respective frequencies relative to the lab frame:
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dlab ~ &e—ile‘ — aAe—i(wc—A)l"
(2.30)

[;lab - lse—i(a)L+wm)t — ];e—i(a)c—A+a)m)t.

It is straightforward to see then that depending on the choice of detuning A, some
of the product terms will be rapidly-varying at twice the optical frequency, while
some will be slowly-varying at approximately the timescale of w,,. We will make
a Rotating Wave Approximation (RWA) by neglecting the rapidly-varying terms in
the Hamiltonian, which we will see correspond to energy non-conserving scattering

processes within an intuitive picture of the optomechanical interaction.

Much like in the context of Raman scattering spectroscopy, in cavity optomechanics
one is often interested in the Stokes and anti-Stokes motional optical sidebands
generated by the acoustic mode through the optomechanical interaction. Thus
the two non-resonant detuning parameters of greatest interest will be the higher-
frequency (blue-detuned, Stokes-like) choice of A = —w,, and the lower-frequency
(red-detuned, anti-Stokes-like) choice of A = +w,,. Upon closer inspection of Flint

above, we observe that for these choices of pump detuning we obtain

. hG(aTh" + ab)y if A = —w,

" nGath + abty if A = +wp,
where we have applied the RWA. In the case of A = —w,, the interaction term takes
form of a two-mode squeezing Hamiltonian, and the terms describe the creation
of a correlated cavity photon and phonon pair by the scattering of a blue-detuned
photon into the cavity frequency (and the reverse process, its Hermitian conjugate).
This interaction effectively produces amplification or heating of the acoustic mode
by parametric driving, as well as anti-damping of the mechanics. Chapter [ also
describes how a blue-detuned optical probe can yield self-oscillation of the mechan-
ical resonator [31]. Conversely, for A = +w,, the interaction takes the form of a
beam-splitter Hamiltonian between the optical and acoustic modes. The interaction
is described by scattering events in which a red-detuned photon is scattered into the
cavity frequency via the absorption of a phonon (and the Hermitian conjugate of
this process). As this process absorbs energy from the acoustic mode, red-detuning
is the regime of optomechanical cooling, and, as we shall see, additional damping

of the mechanics.
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Figure 2.6: The scattering picture for red- and blue-detuned driving. (a) Under
the linearization approximation, the interaction Hamiltonian for a red-detuned (A =
+wy,) optical pump takes the form of a beam-splitter Hamiltonian. Pump photons
are scattered into the cavity frequency w, via absorption of a phonon, cooling and
damping the mechanics. (b) For blue-detuned (A = —w,,) driving, the interaction
takes the form of a two-mode squeezing Hamiltonian, whereby pump photons are
scattered into the cavity frequency by emission of a phonon. This gives rise to
correlated pairs of cavity photons and phonons, as well as amplification and anti-
damping of the mechanics. For both A = +w,,, the scattered sideband at w, F2w,, is
suppressed by the reduced cavity susceptibility (according to the sideband resolution
parameter «/(2w,y,)).

2.3 Dynamical Back-Action

The full optomechanical Hamiltonian (2.19)) does not account for damping of the
optical or mechanical mode annihilation operators, or noise inputs from the sur-
rounding environment. In principle, the dynamics of the system will be governed in
the Heisenberg picture by the equation of motion for any system operator A, given
by A= —(i/h)[A, H] + 0A/dt. However, in order to incorporate damping and noise
inputs it is standard to use the input-output formalism of quantum optics describing
cavities coupled to a noisy environment. The input-output formalism [49] allows
the equations of motion for the optical and mechanical mode annihilation operators

to be written:

i= —(iA . g)a — igoa(b" + b) + \iedin — Riins 2.31)
j- —(iwm . %)B —igod'a + \Fibim (2.32)

where we have introduced several terms describing damping and noise inputs:

K = Kj + K. is the total energy loss rate of the optical mode, «. is the extrinsic loss
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rate to detection channels, and «; is the intrinsic loss rate to undetected channels
(e.g., through scattering out of the cavity mode or absorption). The operator dj,
describes input to the cavity mode in the input-output formalism, and dj, ; describes
noise input to the cavity mode via intrinsic loss channels (hereafter we will write 4;
for notational convenience). Similarly, vy; is the total mechanical energy damping
rate, where by, is a stochastic noise operator describing noise inputs to the mechanics
which satisfies the bosonic commutation relation [bin(7), lA)iTn(t’)] = 6(t —t'). The
input-output formalism yields a boundary condition for computing the output field

at the extrinsic optical channel:

dout = din — VKed. (2.33)

While the expressions [2.32] hold for general noise inputs, we usually assume that
the mechanical mode is in thermal equilibrium at a temperature 7y, having average

hw/kgTy _

phonon occupancy ny, = (e 1)~!. This gives rise to the noise correlators

(b (bin(t") = npd(t = 1), (2.34)
(bin()] (1)) = (np + 1)8(t — 1'). (2.35)

Using the Fourier Transform convention outlined in Appendix [A] these can be

written in the frequency domain as

(bjp(@)bin(@)) = npd(w + ), (2.36)
(bin(w)b! (")) = (my + 1)S(w + ). (2.37)

Similarly for the optical mode noise inputs we have the commutation relations
[ain(2), djn(t’)] = 0(t = t') and [dini(?), Gini(?")] = 6(t — t’) for the extrinsic and
intrinsic noise channels, respectively. The intrinsic noise is usually assumed to
be thermal as well, but the corresponding noise occupancy of the optical bath is
negligible at frequencies on the optical scale, effectively leading to d; as a vacuum

noise input. Therefore, we use the correlators

(@ nat")y =0, (2.38)
(@(nal 0y =6t - 1), (2.39)
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and in the frequency domain

(@l (w)ai(w) =0, (2.40)
(4i(w)a! () = 6(w + ). (2.41)

In the preceding discussion we have explicitly separated the input optical noise into
extrinsic (i.e., via a measurement channel) and intrinsic loss channels. We note that
the noise on the extrinsic optical input dj, is generally assumed to be vacuum noise

unless otherwise stated, such that d;, satisfies the same two-time correlators as ;.

In analogy with Section [2.2] we aim to simplify the analysis of system dynamics
by making a linearization approximation by which we replace the system operators
with operators describing fluctuations about some steady-state displacements a and
B. By solving Eqn. [2.32]in the steady-state, one finds the steady-state amplitudes in
direct analogy with Eqn. 2.27] as

o= \/K_eain
i(A+go(B*+p)+ K/Z’ (2.42)
_ _ Tigone
Wy + 71’/2,

where we have used n. = || is the intracavity photon number. Once again we
choose the phase of @ to be real without loss of generality going forward. As
before we re-define the optical detuning to incorporate the static shift go(8* + ) =
2g§nC /w,. Note that the steady-state drive amplitude dj, is related to the generalized
drive parameter in Eqn. by din = \/ke€. Now we may obtain the linearized
Heisenberg-Langevin equations of motion by one of two equivalent methods: either
by substitution of 4 — a + 4, h — B+ 13, din — @iy + djy into Eqn. m
(ignoring terms beyond first order in the noise operators), or by using our linearized
optomechanical Hamiltonian [2.29] along with the Heisenberg-picture prescription
A= —(i/h)[A, H]+8A/dt. In either case we again include damping and noise terms
according to the input-output formalism and arrive at the full linearized Heisenberg-

Langevin equations of motion for the system annihilation operators:

Cl;\ = —(ZA + g)& — lG([;T + E) + \/K_edin - \/K_i&in,ia
. (2.43)
b

—(iwm + %)13 —iG(@a" + a) + \Yibin,
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where again G = goa is the parametrically-enhanced optomechanical coupling rate.
We can solve for the field amplitudes in the frequency domain by taking the Fourier

Transform of Eqn. [2.43] In the frequency domain,

~iG(bY(w) + b(w)) + VKedin(w) + VKidi(w)
i(A—w)+k/2 ’
Vibin(w) — iG(4(w) + d'(w))
(W — w) +7i/2

ad(w) =

(2.44)

b(w) = (2.45)

Inserting Eqn. [2.44] into Eqn. [2.45] we obtain an expression for the mechanical

fluctuations entirely in terms of coherent and noise optical inputs:

1 ~iG(bT(w) + b(w)) + VKedin(w) + VKidi(w)

blw) = (wy —w)+vi/2 (ﬁbin(w) B iG[ I(A—w)+«k/2
(2.46)
iG(b*(w) + b(w)) + Vel (-w) + VKid) (~w)
* ~i(A - w) + £/2 ]) (2.47)

Defining the bare optical and mechanical susceptibilities, respectively y,(w) =

(i(A — w) + k/2)7" and yp(w) = (i(wy — w) +¥i/2)", we can re-write this as

b(w) = (1 = G* xp(w)) [ xa(@) = X:(@)] ™ (Vi xp(@)bin(w) (2.48)
~ G xp(W) Ya(@)(VRelin(w) + VK@) + X3 (~w) Vel (~w) + Viid, (-w))]).
(2.49)

Let us group the optical driving terms by defining Aj,(w) = Xa(w)(VKedin(w) +
Vkidi(w)) + xa (—w)(\/K_ediTn(—w) + Kid;((—a))). Then the mechanical mode annihi-

lation operator in the frequency domain is

Bw) = —\Yibin(w) iGAin(w)

T -0+ 72 Wy —w) + )2 (2.50)

The mechanical fluctuations are now found to be peaked around an optomechanically-
shifted mechanical frequency wy,, where w), = w;, + dw,,, with a new total damping

rate of y = y; + 07y, and the optomechanical back-action induced shifts given by
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Figure 2.7: Dynamical back-action damping and the optical spring effect. Plots
of the normalized optical back-action modification to the mechanical damping rate
(left) and to the mechanical frequency (right) as a function of detuning A, where
we have chosen a ratio x/w,, = 0.1 typical to the sideband-resolved systems in this
work.

Swm(A) = G* Im{ xa(w) — x5(-w)} @2.51)
—_ 2 1 _ 1
=G"Im {l(A - Cl)m) + K/2 _I(A + wm) + K/2 }’ (2.52)

6y(A) = 2G*Re{ xa(w) — xi(-w)} (2.53)
B ) 1 B 1
=26 Re{i(A "o+ 62 Zi(A+wp) + K/z}' (2.54)

These dynamical back-action induced optical shifts to the mechanical frequency and
damping rate are plotted schematically in Figure In the second equality of the
above expressions we have substituted w — w,, since the mechanical response
will be approximately constant over the bandwidth of the optical cavity, as y < «
holds in all systems considered in this work, and hence the mechanical response is

only significant for frequencies |w — w,| < v < k.

Sideband Resolved Systems

Most relevant to the experiments presented in this work is the resolved sideband
regime in which the optical cavity linewidth satisfies xk < w,,. We will see that
for typical devices we have studied here with microwave-frequency mechanical

resonances the sideband resolution ratio is k /(2w,,) ~ 5% 1072, placing us securely
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in the resolved sideband regime. In particular we consider the two detuning scenarios
most relevant to experiment, A = +w,,, and find that we can write the optomechanical

corrections to the mechanical frequency (the "optical spring") and damping rate as:

G? 1 G?
owy(A = xw,,) = £ ~ , 2.55
Wn wn) 2w (1 + (K/(Zwm))z) 20 (2.55)
4G?
0y(A = 2wy,) = iT. (2.56)

The mechanical frequency shift §w,, ~ (G?/2w,,) is typically small and unimportant
in the studies presented here, but the optomechanical damping ¢y is critically impor-
tant. For convenience we will follow the convention to define the optomechanical

damping term at A = tw,, as

4G?  4gin
YoM = 16wn(A = wy)| = —— = 0= (2.57)

A=%w,, K

which is a strictly positive quantity, such that the total mechanical damping rate is

given by v = y; £ yom for A = +w,, (red- or blue-detuning, respectively).

Generally we are interested in calculating and measuring the output optical field
doyt in a cavity-optomechanical system using the boundary condition given by the
input-output formalism, and by this we are motivated to find simplified expressions
for the optical fluctuation operator @ in terms of coherent and noise inputs from
both the optics and mechanics. We consider the special case of red-detuning with
A = +w,,, where we find that we can write the mechanical fluctuation operator in
Eqn. 2.50]in a simplified way:

h(w)

= )(l;(a))( - \/)7,-@1“(0)) —iG yo(w)| Vkedin(w) + \/K_id,-(a)))). (2.58)

A=+w,,

In the above expression we have defined a shifted mechanical susceptibility y,(w) =
(i(w), — w) +y/2)~! and also chosen to neglect terms involving products of terms
peaked near ~ +w,, and terms peaked near ~ —wy,, in particular y;(w) X x;(-w),
as wy, being < «, y implies that the product of these susceptibility functions will be

negligible. This expression can be rewritten
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b(w)

’ 7 . (0] A A
= 30| = VTw) = iy T (VRen(w) + VRG], (259
A=+w,,
Substituting [2.59]into [2.44] and making use of the input-output boundary condition
[2.33] we write an expression for the optical output fluctuations in terms of only

optical inputs, optical noise, and mechanical noise fluctuation operators:

~ r(w; +)ain(w) + n(w; H)ai(w) + s(w; +)bin(w), (2.60)
A=+wy,

&out(w)

where r(w; +), n(w; +), s(w; ) are optomechanical scattering matrix elements given

explicitly in Appendix In a similar way we obtain for blue-detuning

dou(w) ~ (w3 =)ain(w) + n(w; —)a(w) + s(w; -)b! (w). (2.61)

A=—wp,

2.4 Heterodyne Detection

Here we will give a brief review of heterodyne detection, a method used in the work
presented throughout this thesis to observe the mechanical noise power spectral
density imprinted on the intracavity light field. Heterodyne detection (heterodyning)
is a linear detection technique as it involves measuring a photocurrent proportional
to the squared field amplitudes incident on a receiver. In heterodyne detection
setups, a strong local oscillator (L.O.) amplifies a signal tone and mixes it into a
frequency range which is convenient for detection. A special case of heterodyne
detection—known as homodyne detection—in which the L.O. frequency is equal to the
signal frequency, is also discussed for comparison to heterodyning. In homodyne
detection, the L.O. frequency is matched to the signal frequency (often they are
derived from the same laser source), allowing the relative phase of the L.O. to be
controlled to perform detection of any desired quadrature of the signal. In general,
the L.O. frequency may be chosen for a host of reasons, but is commonly used
to either place the desired signal tone within a narrow radio-frequency detection
bandwidth or to spectrally separate it from technical L.O. noise. These concepts are

illustrated schematically in Figure 2.§]

Single-Port Heterodyne Detection
The simplest implementation of heterodyne detection is illustrated in Figure [2.9]

in which a signal beam @ and a local oscillator b are combined on a beam-splitter,
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Figure 2.8: Comparison of heterodyne and homodyne detection methods. a,
In heterodyne detection, an offset frequency Aw between the L.O. and the signal
frequency of interest (contained in the operator &) is used to place the signal in a
desired frequency band. This may be performed to mix a high-frequency signal
to a lower frequency within the bandwidth of a receiver. In this work, a 5 GHz
mechanical noise spectrum is routinely mixed to < 100 MHz for detection on a high-
gain RF photoreceiver. Noise on the local oscillator (indicated as 6b) is generically
centered at wyo. Upon photodetection, a photocurrent is generated proportional to
the squared field amplitude. Local oscillator noise is mixed to near DC while the
signal spectrum is offset by Aw. b, In homodyne detection, in which wy o matches
the signal frequency, L.O. noise is generically centered at the same frequency as the
signal. Upon photodetection, the signal is mixed to to near DC. Because the L.O.
and signal frequency are at the same frequency, the relative phase of the L.O. may
be controlled in order to perform detection on any desired quadrature of the signal.

with one output ¢ measured on a photodetector producing a photocurrent /,(¢). For
simplicity we will assume that the input and output ports of the beamsplitter are
single-mode and single-polarization, allowing us to neglect any concerns of spatial
mode-matching. In this context the input and output mode operators are bosonic
mode continuum operators, in the Schrodinger picture, indexed by frequency (or
in general, wave-vector), @ = d,. They satisfy the usual bosonic commutation

relations,

[Gur )] = 6(w — ), (2.62)

and have units of Hz"!'/2. It is convenient to define a corresponding time-domain

operator,
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Figure 2.9: A simple single-port heterodyne detection setup. An input signal
a and a strong local oscillator (L.O.) are incident upon a beam-splitter with trans-
mission coefficient T and reflection R = 1-T. A beat note appears at the sum and
difference frequency of the signal and local oscillator (frequency wpp). At the
output of the beam-splitter, one port is used to generate a photocurrent (here, mode
¢), which will consist of the beat-note terms as well as a DC term and terms arising
from noise on the LO.

© g ]
ar) = / 48 -ivrg, (2.63)
o 2T

as having units of square root of flux Hz!/? ~ \/M- These () should not
be confused with the Heisenberg picture operators used in the quantum Heisenberg-
Langevin formalism of the previous section, but instead are simply constructs written
in terms of the Schrodinger-picture continuum operators. It is straightforward to

show that the Heisenberg operator d(w) is related to the continuum operator by
a(w) = 2ra,(0).

Now, a main objective of heterodyne detection is to amplify a weak signal by a
strong coherent local oscillator (L.O.) amplitude, and hence we will assume the

local oscillator amplitude may be written as

b(r) = Be™'“ro! + §b(t), (2.64)

where § € Cis alarge coherent field amplitude, equal to the square root of the average
L.O. photon flux, and 6b() contains all the L.O. noise, including both vacuum noise
and technical noise. If we assume an ideal detection quantum efficiency o = 1 and
a beam-splitter transmission coefficient 7 = 1 — R, we may write the (normalized)

photocurrent generated by the output ¢ as

I(t)=Ta'a+ Rb'b+iNTR(b'a - a'b). (2.65)

We will typically assume that |8| is sufficiently large that we can ignore the term

Ta'a. We will also use a convenient notation to denote the slowly-varying parts of
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the relevant fields relative to the L.O. For example, d(t) = a(t)e o', Then the

photocurrent becomes

L.@) ~ B +iB(*108(1) — €907 (1)) + BVR(e7 906D — e108bT).  (2.66)

Referring the quadrature operator definitions as introduced in Appendix[A.2] we can

write this in a simpler form:

I(6) ~ 1B = V2B %4, p04n/2 — iIVREs0, gr08m/2 |- (2.67)

We will refer to this result later, using the fact that the photocurrent consists of
the position quadrature of the signal field amplified linearly by the local oscillator
amplitude. The measured photocurrent consists of a DC term, quadrature of the
signal mode 4@, and a quadrature of the L.O. noise operator éb. In this case, both
the signal and noise terms are linearly amplified by the L.O. strength 5. A more
powerful measurement technique might be desired to eliminate such noise terms on

the output photocurrent.

Balanced Heterodyne Detection

The photocurrent obtained in Equation contains both a large D.C. offset term
and an amplified local oscillator noise term proportional to S%sp, ¢, ,- These common
mode noise terms can in principle be eliminated with the use of a more sophisticated
technique known as balanced heterodyne (homodyne), in which the previously
discarded output port of the beam-splitter is used as a resource for noise reduction

by measuring the difference in photocurrents at the two beam splitter output ports.

The generic balanced heterodyne setup is sketched in Figure[2.10] in which the output
field doy from a cavity-optomechanical system is sent to to an idealized beam-splitter
along with a strong L.O. tone. The difference photocurrent /_(¢) between the two
output port photocurrents is measured. In direct analogy to Equation [2.63] it is

straightforward to see that the difference photocurrent may be written

I(t) = i|B]|e7?04(r) — 9047 (1) (2.68)

for a signal input @ = 4,, where we have assumed |B| is sufficiently large that

we may ignore terms of order 6b. Note that in contrast to single-port heterodyne
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Figure 2.10: Balanced heterodyne detection of a cavity-optomechanical sys-
tem output field. A single-mode, single-polarization field dj, is input to a
cavity-optomechanical system. The output field doy is sent to a balanced het-
erodyne/homodyne detection setup, here modeled as an ideal 50/50 beam-splitter
and two photodetectors. A local oscillator of frequency wio is mixed with the
signal doy on the beam-splitter. Measuring the difference photocurrent from the
two photodetectors allows common-mode noise of the local oscillator to be rejected
(to some common-mode rejection ratio CMRR, typically 35 — 60 dB).

detection, here we do not have any noise terms going like 36 b, amplified by the local
oscillator. In our Heisenberg-Langevin formalism using the input-output operators
as expressed in Equations [2.60 and [2.61] this can then be written in the frequency

domain as

f—(w) = 27Ti|18| e_i¢Lodout(w) - ei¢LOaAZut

(@)] = 2V27|BISout, groinj2-  (2:69)
Let us consider as an illustrative example the case of a sideband-resolved system un-
der red-detuned (A = +w,,) driving as measured on a balanced heterodyne detection
setup. Then Equation [2.60] gives the output field in terms of reflection coefficients
and fluctuation operators, and we may directly write an expression for the power

spectral density of the difference photocurrent using Equation [A.8}

siplol= [ G2 @) 2.70

= 27T|ﬁ|2/ dw/ ((dzut(_w)dout(w,)> + <dout(_w)dzut(w/)> (2-71)

+ e%dro <dZut(_w)aA(J§ut(w,)> + e %00 (Gout(~w)dou(~w'))]. (2.72)
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Recognizing that the terms going like (dzmdiut

Y and {dyudou) Will vanish due to the
noise input correlation relations, we can simplify this expression, keeping only the

terms independent of the L.O. phase. Explicitly, using Eqn. [2.60] we have

1. L] = 2nlgP [ "o (r*(w; Pr(es )@ (~w)in(@) @.73)
+n*(w; H)n(w'; +)(a) (~w)a (")) (2.74)
+5™(w; +)s('s +)(B] (~w)bin(w)) (2.75)
+ (w3 H)r*(@'s +){ain(w)a] () (2.76)
+ n(w; (W' +)d] (w)ai(-w)) 2.77)
+ 5(w; H)s™(@'; +){bin(w)b] () (2.78)

= |r(w; +)I? + |n(w; H) + [s(@; H)P(np + 1) + [s(-w; H)m. (2.79)

The scattering matrix elements have the property |r(w; +)|?+|n(w; +)|>+|s(w; +)|? =

1, allowing us to write

Si i [w]

= 2n|,8|2(1 + np(|s(w; H)|* + |s(-w; +)|2)) (2.80)

A=+w,,

K, _
= 27‘(|ﬁ|2(1 + nyOMS%[a);nb]), (2.81)

where S 35 18 the symmetrized PSD of b as defined in Appendix Similarly, for

the case of blue detuning (A = —w,,), we have

S: i [w]

= 2ﬂ|ﬁ|2(1 + (| s(w; H)|* + [s(—w; +)|2)) (2.82)

A=—wy,

K, _
= 27T|ﬁ|2(1 + 2?670MSET}}T [w;nb])- (2.83)

In a real balanced heterodyne setup there will be a sub-unity quantum efficiency in
detection n7qg < 1, as well as technical and vacuum noise on the local oscillator. To

consider this, we will modify the local oscillator field as

b(t) = Be 0N (1 + n(r)) + 6b,, (2.84)
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where n(?) is a time-dependent stochastic variable modeling amplitude noise of the
L.O., and 6Abv is the vacuum noise of the L.O. field. It is straightforward to show

that the difference current may now be written

I_(t) = 2mnoe|BI*(1 + 2n(1)) + 2ﬂnQE,B(e'i¢L°5:bv + e“ﬁw(fb’g) (2.85)
+ 271i| Blnoe/1 — nQE(e"magut(z) - e_i¢L0dout(t)). (2.86)

The corresponding spectral density is found to be

S; i [w] = noplBI* + 27|81 + 27|14 (6(w) + 2Su(w]) (2.87)
A=+wy,
K, —
+ 27| B1*nqe1 - nge 2ffyOMS,;g[w; ]|, (2.88)

where S;,[w] is the classical NPSD of the amplitude noise n(z). As usual, for A =
—w,, we obtain an analogous result with the replacement S pplws mp] — S bpr[@s ).
The spectral density is illustrated schematically in Figure 2.11} The experimentally
measured quantity will be a symmetrized S; ; [w], where the overall magnitude of

the signal is scaled according to gain and loss characteristics of the detectors.

Sf_f_ [w}
Ad(w)
- Sbb 7 Snn ~ |B| Sbb N |ﬁ|2
S g z A
Shot noise
w
—Wm Wm

Figure 2.11: Balanced heterodyne output spectrum illustration. The spectral
density of the difference photocurrent generated by a balanced heterodyne detection
setup used in a sideband-resolved cavity-optomechanical system. The output will
consist of a DC term, electronic (dark) detector noise, shot noise proportional to the
L.O. photon flux |3|?, the amplitude noise power spectral density, and signal terms
proportional to annihilation or creation operator spectral densities S; and Sz
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Chapter 3

DEVICE NANOFABRICATION AND LOW-TEMPERATURE
OPTICAL METHODS

In this chapter various technical and experimental details will be presented briefly in
order to give a more complete picture of how device fabrication and low-temperature

characterization are performed in the Painter Lab.

3.1 Nanofabrication Methods

Virtually all of the device fabrication summarized in this thesis was performed in
cleanroom laboratories on the Caltech campus. The Painter Group maintains a
dedicated class 10,000/1,000 cleanroom containing a variety of instruments suit-
able for processing photonic devices, optomechanical crystals, micro- and nano-
electromechanical systems (MEMS and NEMS), as well as superconducting quan-
tum circuits. Additionally, the work presented here made heavy use of the shared
campus cleanroom facilities of the Kavli Nanoscience Institute (KNI), in particu-
lar for lithographic exposures for both electron-beam and photo-lithography. The
nanobeam and other silicon optomechanical crystal devices were fabricated on
silicon-on-insulator (SOI) wafers from Soitec, with a device layer Si thickness
220 nm, buried oxide (BOX) layer 3 um, handle Si thickness 500 um, crystal ori-
entation (1,0, 0), resistivity p ~ 5 — 15 Q - cm, diced into die of either 5 X 13 mm
or 5 X 10 mm. Silicon-on-insulator is a natural choice of substrate as it allows the
ease of fabrication of suspended nanoscale structures within the thin membrane of
the silicon device layer by simply removing or undercutting the buried oxide layer,
and the standard fabrication processes for SOI are very mature in both industrial
and academic applications. An overview of the fabrication process for nanobeam
OMCs is shown in Figure [3.I] In its simplest form this process involves only a
single layer of lithography to fabricate suspended silicon structures. These steps are

shown schematically in Figure 3.1 The main process steps are:

1. Pre-cleaning of the chip. This step prepares the substrate chip for application
of resist. Chips will typically retain some protective coating after the wafer-

dicing process, either in the form of an adhesive film or a layer of photoresist.
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In either case, a solvent rinse in acetone (ACE) followed by isopropanol (IPA)

is usually sufficient to obtain a clean chip surface.

2. Spinning and baking of electron-beam (e-beam) resist. We typically use a
ZEON ZEP-520A e-beam resist for its high resolution and high selectivity
against common plasma etch chemistries. The resist is hardened by baking

using a hot-plate or oven.

3. Electron-beam (e-beam) lithography exposure. The optomechanical crystal
device pattern is defined in the resist using e-beam lithography, including

proximity effect corrections to refine the dose exposing the resist.

4. Resist development. The chip is submerged in a developing solvent to relieve
the patterns, in the case of ZEP-520A the developer used here is ZED-NS50.

5. Plasma etching. Inductively-coupled plasma reactive-ion etching (ICP-RIE)

is used to transfer the device pattern from the resist into the silicon layer.

6. Resist stripping. A chemical cleaning is performed to remove the resist layer,
typically by submerging the chip in a piranha solution (3:1 sulfuric acid to
hydrogen peroxide), in which a highly exothermic reaction chemically burns

organics such as resist from the chip and mechanically scrubs debris.

7. Oxide undercutting or device layer release. To remove the buried oxide in the
vicinity of the OMC device, hydrofluoric acid (HF) is used as an etchant. This
is typically performed using anhydrous vapor-HF, but may also be performed

with an aqueous solution.

8. Final surface cleaning and hydrophobic passivation. The HF etching of
the release step removes any native or chemically-grown oxide at the silicon

surface and passivates the silicon surface with hydrogen bonds.

As the techniques and principles used for plasma etching of silicon are quite well-
known and understood across both industry and academia [50, 51], only a brief
review of silicon etching principles will be given here as it pertains to fabricating
nanophotonic devices. We are concerned with realizing photonic structures with
feature sizes down to several tens of nm in device layer silicon with a thickness
of 220 nm. A standard technique for etching patterns defined in e-beam resist

is reactive-ion etching (RIE), in which a combination of reactive species gases is
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Silicon (220 nm device layer, 500 um handle)
® Buried oxide (BOX), 3 um
= ZEP-520A E-beam resist

(1) Pre-clean (2) E-beam exposure (3) Develop resist

9

(4) ICP-RIE device layer (5) Strip resist (6) Vapor-HF release

Figure 3.1: Silicon-on-insulator single-layer process flow. For fabrication of
suspended devices a single lithography layer process is used. Optical coupling to
these planar devices must be performed using an out-of-plane coupling method,
e.g. optical tapered-fiber coupling. The resist is patterned via e-beam lithography
to define the OMC and coupling waveguide. Plasma etching (ICP-RIE) is used
to transfer the pattern into the 220 nm silicon device layer. After the resist is
stripped, the buried oxide layer is removed via vapor-HF etching to suspend the
optical structures.

driven into a plasma phase by application of a large radio-frequency (RF) voltage.
The etching process depends in detail upon the choice and relative flow rates of
reactive species, as well as the RF voltage and resulting DC bias voltage across the
plasma chamber which emerges upon separation of the gases into radicals, ions, and
electrons. An enhancement to RIE etching known as inductively-coupled plasma
(ICP-RIE) is frequently implemented, in which a second RF field is applied to the
plasma at high power (typically 1 — 2 kW), increasing the density of ions for better
control of etch rates and other process variables. We use a combination of reactive
species C4Fg and SF in a standard pseudo-Bosch etching process [52]. In a regular
Bosch process, these two gases are introduced to the etch chamber in alternation.
The C4Fg serves to form a protective film, or passivation layer, at the Si surface,
while also mechanically milling some Si. Volatile species are desorbed from the
surface and pumped out of the chamber, then SF¢ is introduced. The reactive

species produced by SFg break down the passivation layer and chemically etch the
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underlying Si for a fixed time, then the chamber is pumped out and the cycle is
repeated. This cyclic Bosch process is the primary technique for deep reactive-ion
etching (DRIE) of high-aspect ratio features deep into a substrate material (aside
from cryo-DRIE).

Chemical etching by SFg is less rapid on sidewall features than on bottom features
owing to the directionality of particle acceleration by the applied bias voltage, and
thus by tuning the relative flow rates of the gases in their respective recipe steps
one can control the directionality of the etch profile. Pseudo-Bosch is an analogous
process, in which the alternation of gases is eliminated and both (or multiple) species
are admitted to the chamber simultaneously. In this type of etch, which is used for the
majority of the plasma etching in this work, the etch profile is primarily controlled
by the relative flow rates or pressures of the reactive gases and the applied RF
power (and resulting DC bias voltage) as well as the applied ICP power. A recipe
with a relatively high ratio of SFg to C4Fg flow will tend toward isotropic etching,
yielding features with side-walls that are narrower at the top and bottom of the Si
layer and wider near the center. A low ratio of SFg to C4Fg will overly passivate
the sidewall features, slowing etching by the SFg, and result in side-walls which
are wide at the top and narrow at the bottom. To obtain structures nearly vertical
side-walls, we refine the gas flow rates and applied DC bias voltage iteratively during
successive rounds of device fabrication until the recipe parameters are optimized.
Some optimized recipe parameters used for fabrication of the devices in this work
are given in Table [3.3] Good verticality of the side-wall profiles are important in
OMC devices as symmetry in the Z direction has a significant impact on the realized
optical and mechanical quality factor. Etch selectivity is not typically a limiting
factor for thin-film OMC devices, as the ZEP-520A e-beam resist we have chosen
has better than 1 : 1 selectivity for relevant process parameters and its film thickness

is = 240 nm.

End-Fire Device Fabrication

In practice, additional process steps are generally carried out to enable a desired
method of optical coupling. In particular, the process above results in suspended
silicon structures which may be optically addressed by a tapered fiber or other out-
of-plane mechanism (such as an on-chip grating), but it does not allow end-fire
coupling via a lensed optical fiber tip. In order to enable end-fire coupling, an
on-chip waveguide facet as shown in Figure [2.3p must be accessible by an aligned

fiber tip in the plane of the silicon device layer. There are several ways in which
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Table 3.3: ICP-RIE optimized etch recipe parameters.

Parameter Substrate SOI layer
Device-layer Si ~ SiO,  Handle Si
C4Fg flow (sccm) 84 70 0
SFg flow (sccm) 30 0 300
O, flow (sccm) 0 5 0
RF power (W) 15.5 150 0
ICP power (W) 600 2200 1200
D.C. bias (V) 76 165 0
Chamber pressure (mTorr) 15 10 100
Helium pressure (Torr) 10 5 10
Helium flow (sccm) 5.0-6.0 5.0-6.0 5.0-6.0
Table temperature (°C) 15 15 20
Etch rate (nm/min) 45 220 2500

one might accomplish fiber-coupling in the plane of the device layer. First, one may
envision patterning the waveguide and OMC devices directly at the edge of the chip,
so that the waveguide facet is coplanar with the edge of the chip, and a fiber might
simply be brought into proximity with the edge of the chip. This method is flawed,
however, due to the tendency of resists to form an edge-bead—a thickened strip
along the edges of a sample—during spin-coating. With local variations in the resist
thickness near the edge of the chip, the e-beam exposure becomes unpredictable
and non-repeatable, and realizing highly-optimized nanophotonic structures with
tight geometric constraints is unsound. In practice, the edge-bead extends 1 —2 mm
from the chip edge. Clearly it is desirable to restrict pattern exposures to the central
region of the chip where the effects of edge-bead formation are minimal, and the
resist thickness is the most spatially uniform. With this in mind, two further options
for end-fire fabrication are apparent. After defining the patterns, one may cleave the
chip along an axis in or near the plane of the waveguide facet, effectively forming
a new chip edge. This is a viable method, but it relies on scribing and cleaving the
sample, which is a relatively high-risk process that can result in either breakage of
devices near the cleave or contamination from particulates of silicon or silicon oxide
which are released during scribing and cleaving. Alternatively, one may follow the
patterning lithography step with a deep etch into the handle silicon wafer in the
region abutting the waveguide facets, forming a trench in the silicon. Assuming the

device layer is effectively masked during this process, the final result is a sample
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which has been exposed only to resists and dry plasma etches, and is therefore
fabricated with a high degree of repeatability. It is also possible to perform such a
trench etching process with a wet chemical etch of the handle silicon, and in fact such
a process was used in the Painter Group to fabricate some of the early generation
end-fire coupled nanobeam devices as presented in Refs. [26, 30, 31]. This wet etch
process relied upon a photoresist mask (ProTEK-PSB) to encapsulate the devices
during chemical etching of silicon with either tetramethylammonium hydroxide
(TMAH) or potassium hydroxide (KOH). While the process is often successful, it
is particularly sensitive to a failure caused by etchants attacking the interface layer
between the photoresist and the oxide layer. This can result in partial delamination
of the photoresist layer, and subsequent etching of the devices. To avoid yield issues
associated with wet chemical etching of a substrate with a vulnerable resist-oxide
interface, we sought to develop a recipe based upon dry plasma etching with a large

degree of directionality (anisotropy) to perform the deep trench etch.

We have developed a fabrication process for fabrication of end-fire-coupled devices
using a thick photoresist (Megaposit SPR220-7.0) to mask the devices during the
dry plasma etch into the handle silicon layer. Details of the fabrication process
incorporating the end-fire process are given in Table [3.1] and shown schematically
in Figure [3.2] After plasma etching of the device layer silicon and removal of the
e-beam resist, the photoresist (PR) is spun onto the sample to an average thickness
of 7 um. The edge-bead of the photoresist, which can reach thicknesses up to
~ 500 um, is removed by hand using a swab applicator wetted with trichloroethylene
(TCE). The PR is then exposed using UV light (365 nm i-line exposure) using a
Karl Suss MA6 Mask Aligner to form a simple rectangular mask pattern which
encapsulates all the devices on the chip and leaves the trench region of the substrate
unmasked. The edge of the PR mask is roughly aligned to the waveguide facets,
but withdrawn by a stand-off distance of 70 um. The purpose of this stand-off
distance is to compensate for lateral etching during the final etch into the silicon
handle. The final handle-layer etch is largely isotropic, and will etch the handle
toward the waveguide while it clears a depth of > 100 um into the handle (see
Figure[3.3). The trench region is formed by a series of etches outlined in Table [3.3]
First, the silicon device layer is etched using a recipe identical to that used to pattern
the devices. Second, the BOX layer is etched anisotropically using a high-DC-bias
(> 150 V) plasma etch using C4Fg and O,. Lastly, the silicon handle is etched with
an isotropic plasma etch using pure SF¢ and no DC bias. Following the final etching

steps, the PR is removed using a heated solution of N-Methyl-2-pyrrolidone (NMP)
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1 Silicon (220 nm device layer, 500 um handle)
u Buried oxide (BOX), 3 um
1 Megaposit SPR220-7.0 photoresist

2

(1) Strip e-beam resist (2) Photolithography 3) Develop resist

” "

(4) ICP-RIE etch (5) Strip resist (6) Vapor-HF release

Figure 3.2: End-fire device process flow. Illustration beginning with a patterned
silicon device layer of an SOI sample. A 7 um-thick photoresist (Megaposit SPR220-
7.0) is used in a photolithography layer to protect the device region of the chip while
exposing a trench region to subsequent etches. A highly anisotropic ICP-RIE etch
is used to etch the device layer and buried oxide in the trench region, and a further
deep etch is performed to clear the handle silicon to a depth of ~ 100 um in order
to allow fiber access to waveguides patterend in the device layer. The deep etch
may be either (1) an isotropic SFg etch with no DC voltage bias, or (2) a standard
Bosch etch using C4Fg and SFg in alternation. The photoresist is then stripped and
the sample is cleaned in piranha solution. Finally, a vapor-HF undercut releases the
end-fire devices.

followed by solvent rinsing. A subsequent piranha cleaning step is performed to
remove any residual resist fragments. Finally, the devices are released using an
anhydrous vapor-HF undercutting etch to remove the BOX layer and suspend the
devices. The result of this fabrication process is a fully suspended membrane
featuring optomechanical structures as shown in Figure [3.3] We fabricate arrays
of suspended OMC devices formed in the silicon device layer, where the deep
trench now allows an optical fiber to address the on-chip waveguides in an end-fire
coupling scheme compatible with measurements in the dilution fridge. Figure [3.4]
shows a representative final fabricated device array in detail, and Figure [3.5] shows
the optomechanical cavity region of one representative device having seven periods

of acoustic bandgap shielding.

The end-fire fabrication process outlined in Figure [3.2]is versatile, particularly be-



49

Si device layer

<«—— Trench etch profile

Si handle

Figure 3.3: End-fire device illustration. Scanning electron microscope (SEM)
image of an illustrative device sample fabricated using the end-fire process outlined
in Table 3.1} (a) At the edge of the sample chip the SFg trench etch profile in the
handle silicon is visible. The isotropic etch yields a "cresting wave" profile in the
handle silicon. (b) Edge-on view of a device array patterned in the silicon device
layer. The depth of the trench allows fiber access; the optical axis of the fiber will be
approximately along the line-of-sight of this image. (c) Closer view of the device
array. (d) An individual end-fire nanobeam device having a nanobeam OMC on
either side of a central coupling waveguide.

cause itdoes not rely upon any wet etching steps which would more tightly restrict the
number of material systems with which it is compatible, and is applicable to a broad
range of nanofabrication applications in which in-plane optical access to device
arrays is desirable without etching large fiber-alignment features into the substrate
handle. The process has been applied to other research areas within the Painter
Group, and in particular to the fabrication of integrated opto-electromechanical
transducers for frequency conversion between the microwave and optical domains.
The basic principle of such a device is to use a zipper optomechanical cavity (see,
for example, Refs. [18] 53]]) coupled to a superconducting Al lumped-element LC
resonator, in which the mechanical motion couples to both the optical mode and
the microwave LC-resonance. This is accomplished by forming a long (~ 60 um)

"double nanostring" silicon beam pinned at the center, in which one end of the



Figure 3.4: Example of a fabricated nanobeam device array. a, SEM of an
individual device array with the cross shield period number scaled from 0 — 10 from
left to right. b, Closer view of the device array showing the deep handle Si etch
aligned to the optical-coupling waveguides. ¢, Overall view of one end-fire coupled
nanobeam device with seven periods of acoustic shielding.

double-beam forms the zipper optical cavity and the other forms a mechanically-
compliant nano-gap capacitor with gaps on the order of 50 nm. The fundamental
bowstring mode near 8 MHz then couples to both the optical and electrical reso-
nances. The entire region of the device layer Si near the device is undercut with
a vapor-HF release step, leaving the patterned device sitting upon a suspended Si
membrane. Initial measurements on such a converter have been made at milliKelvin

temperatures, but further studies are ongoing at the time of writing. A representative
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Figure 3.5: The nanobeam OMC device cavity region. a, Overall view of two
nanobeam OMCs coupled to a central waveguide beam. b, Close view of the
clamping region featuring the acoustic bandgap shielding cross pattern. e, Close
view of the OMC cavity defect regions.

device fabricated using the end-fire process is shown in Figure [3.6] Of particular
concern in the fabrication of such a device, in which a metallization layer is inte-
grated with the silicon photonic device, is the ability to protect the superconducting
coil and its delicate crossover bridges within resist during the trench-etching steps.
We find that the Megaposit SPR resist encapsulates the coil resonator to protect it
effectively during trench etching, and resist removal in a solvent such as NMP leaves
the coils intact with high yield (Figure [3.6c). Under such a constraint, alternative
fabrication methods such as cleaving the chip at a plane near the waveguide facet
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would be impossible without flipping the chip and destroying the coil resonators, so

a deterministic and reproducible fabrication technique is valuable.

zipper cavity

pling waveguide: -\

s

ercut holes

Figure 3.6: Application of the end-fire fabrication process to integrated opto-
electromechanical transducers. a, SEM of an experimental on-chip integrated
opto-electromechanical transducer for optical-microwave frequency conversion us-
ing an optical "zipper" cavity [53]] coupled to a superconducting Al LC-resonator
via a shared mechanical resonance. The end-fire fabrication process is compatible
with integrated metallized device architectures. Optical access is made by align-
ment to a waveguide at the lower-left of the image. The LC coil features cross-overs
which must not be destroyed during the end-fire process and etching steps. The
thick photoresist used for trench etching is readily removed from the coils with high
fabrication yield. b, Close view of the optomechanical component of the device.
The zipper cavity and nano-gap capacitor are suspended by a release step in which
pinholes etched in the silicon device layer allow vapor-HF access for undercutting.
¢, Aluminum cross-over bridges after photoresist removal.
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Electron-Beam Lithography Considerations

The minimum critical features sizes in the nanobeam device are about 50 nm, at
the smaller end of the state-of-the art e-beam and ICP-RIE lithography patterning
capability for device layer thicknesses of order 200 nm. However, most of the feature
sizes, including elliptical holes and straight-edge gaps between the neanobeams, and
the height A of the acoustic shield cross pattern, are somewhat larger, typically 200-
400 nm. In this size range, most of the fabrication disorder is due to randomness
in the realized position and edges of etched holes due to run-to-run variability in
the lithography step. A major source of variability is the so-called feature blow-out,
causing enlargement of realized negative features (holes, where Si will be removed)
relative to the sizes requested of the e-beam pattern generator (EBPG) [54]. Feature
blow-out arises in two main ways. First, the finite size of the electron writing beam,
as well as the back-scattering of electrons which have already passed through the
resist once, result in developed features which are larger than the requested sizes.
These effects are summarized as proximity effects and can be mitigated to some extent
using standard algorithms for modulating the local distribution of e-beam dosage
admitted to the resist. Second, an etching blow-out arises from anisotropicity in the
plasma etching step. The degree of anisotropicity for a given etch can be minimized
to a great extent by adjusting the DC bias voltage and gas chemistry. These blow-out
effects can have varied impact on the realized device dimensions from one region of
a device to another, and are particularly sensitive to the local exposed feature sizes
through e-beam proximity and mass-loading during plasma etching. Additionally,
transfer of the e-beam pattern to the resist during development invariably involves
local fluctuations in temperature and flow of the developer over the resist. Figure[3.7]
shows a representative result of image analysis for an individual end-fire coupled
device consisting of two nanobeam OMCs. The hole edges are identified using a
simple contrast edge-detection algorithm, and the measured hole sizes are compared
to designed target values to generate feedback for the following fabrication iteration.
The overall feature-size-dependent blow-out is also characterized in this way, and
for typical nanobeam feature sizes is =~ 40 nm for the optimized ICP-RIE etch recipe
summarized in Table

The devices studied here were fabricated using the Raith EBPG5200+ electron-
beam lithography system in the Kavli Nanoscience Institute at Caltech. The tool
uses a peak accelerating voltage of 100 kV to write features with a minimum
writing resolution of 1 nm over a 1060 X 1060 um? main-field, with the minimum

writing resolution achieved for beam currents of 100 — 200 pA (beam spot size 10 —
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15 nm). The cleanroom environment is held stable at a temperature of 21 °C, relative

humidity ~ 40%, and with an ETS-Lindgren active magnetic field-cancellation

system.
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Figure 3.7: Lithography corrections and SEM image fitting for nanobeam
devices. a, SEM image of an end-fire nanobeam OMC device showing the central
waveguide beam for optical coupling to a nanobeam OMC on each side. The
nanobeam defect region is shown. Hole edges and beam edges are detected in image
processing. Large arrays of devices are studied in this way to generate fabrication
disorder statistics. Typical randomness in hole size and hole positions is 3 — 4 nm.
b, Lateral and longitudinal hole sizes of the nanobeam defect region normalized
to the nominal lattice constant ap = 534 nm. These measurements are iteratively
used to generate the lithography patterns in fabrication until the realized dimensions
converge to the design values.

For typical feature sizes of the nanobeam OMC, randomness in hole size and beam
width on the order of 0.25% corresponds to a displacement of the optical resonance
by of order (0.0025) X 1550 nm = 4 nm. Imaging of large collections of realized
structures indicates typical variability in hole sizes is approximately 4 nm for device
arrays in which the greatest degree of care is taken to account for blow-out and
process variability. An important strategy in realizing the best individual OMC
devices by reducing fabrication-induced randomness is to embed the target devices
within a large array of dummy or "barrier" devices. This ensures that long-range
e-beam proximity effects across the extent of any one individual device are minimal;
in other words, that the local on-chip environment of the target device is as uniform

as is practical in all directions. Uniformity of the device array pattern not only
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impacts the long-range e-beam proximity effect, but also ensures a homogeneous

mass-load during ICP-RIE etching in the vicinity of the target device.

3.2 Dilution Refrigerator Optical Techniques

In order to perform measurements in a low-temperature environment in which the
thermal bath occupancy of the mechanics is frozen out (T < hw,,/kp =~ 240 mK),
we use a *He/*He dilution refrigerator from BlueFors cryogenics in Helsinki, Fin-
land. We feed single-mode optical fiber (Corning SMF28e) through teflon vacuum
fiber-feed-throughs at the top plate of the fridge and couple to OMC device chips

mounted on the mixing chamber plate.

Optically coupling to the device inside the fridge requires a robust and easily-aligned
fiber coupling scheme, ideally with large single-pass coupling efficiency > 50%,
which will allow coupling to a large number of individual devices on-chip during a
single cooldown. This precludes coupling methods which involve affixing a fiber to
the chip prior to cooldown, for example by epoxy or a mechanical alignment ferrule.
One technique that meets these criteria is to use a dimpled optical fiber-taper, in
which a single-mode optical fiber is thinned and dimpled such that the guided mode
is largely evanescent. This technique was developed by and has been used exten-
sively within the Painter Group [55]]. In this technique, coupling to on-chip devices
can be achieved by positioning the fiber-taper a few tens or hundreds of nm from
an optical cavity. This coupling technique is used routinely in the Group for device
characterization at room temperature, and has been used at low-temperature in he-
lium cryostats on various early nanobeam OMC experiments as well as zipper optical
cavity experiments [[18} |19} 20, 56]. The Davis Research Group at the University of
Alberta has made impressive demonstrations of fiber-taper coupling to optomechan-
ical bottle resonators inside a dilution fridge [57, 58], achieving overall transmission
efficiencies over 70%. This setup requires in-sifu imaging for alignment of the taper
to devices, which the Davis Group achieves with a cryogenic bundle of ~ 37,000
imaging fibers. They demonstrate that the challenges associated with porting this
technology into a dilution refrigerator are daunting but manageable. Additionally,
fiber tapers are relatively floppy and support many vibrational modes ranging from
sub-kHz to several tens of kHz [59]. Such vibrations modulate coupling to the
cavity and must be deconvolved from measurement dynamics of interest. We note
that recent work from the Lukin Group at Harvard [60] demonstrates highly efficient
(transmission > 97%) coupling to an on-chip waveguide using a single-sided conical

optical fiber taper. In this scheme, adiabatic coupling between the taper and chip
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waveguide is achieved by contacting the two waveguides over a transition region
extending about 10 um. This allows for robust alignment with high efficiency. To
meet the various challenges outlined above for robust low-temperature optical cou-
pling, we employ a lensed optical fiber in an end-fire configuration which requires
no low-temperature imaging in order to achieve alignment. The lensed-fiber tip
focuses the ~ 8 um diameter Gaussian mode of a single-mode fiber to a beam waist
of 2.5 um at a working distance of approximately 14 ym from an on-chip waveguide

facet, and single-pass coupling efficiencies as high as 72% are realizable [30].

Adiabatic Waveguide Coupling

In our devices silicon is used as a material for its large optomechanical coupling,
but it has the drawback of being quite floppy (in particular relative to silicon nitride
structures, in which the material tensile stress can exceed 1 GPa). This floppiness
limits the length of a released optical waveguide on chip to about 16 um, effectively
limiting our ability to satisfy the adiabaticity criteria. Still, using a waveguide taper
of this length the theoretical taper efficiency is 7gper > 90%, and in experiments we

achieve typical overall single-pass coupling efficiencies of ¢, = 62%.

Optical Alignment at Low Temperature

We employ standard cryogenic mounting techniques to ensure that the microchip
device sample and its sub-mount are thermalized to the cold mixing chamber plate
as well as possible. Indium foil is placed at all metal interfaces in the mount and
between the mount and cold plate of the fridge. Additionally gold braiding is
used to thermally link the cold plate with the sample mount. The sample itself is
thermalized to the sub-mount using high-thermal-conductivity cryogenic vacuum
grease (Apiezon N Grease) and mechanical contact with a copper clamp and bulk

copper on all three edges of the chip which are not needed for fiber access.

The lensed fiber is mounted in a groove on a plate fixed atop a 3-axis nanopositioning
piezo motor stack (Attocube ANPx101, ANPz101 stepper positioner series, con-
troller Attocube ANC350). The Attocube stack and sample sub-mount are fixed on
a custom copper mounting plate. During preparation for cooling a sample, the entire
mount is detached from the mixing chamber plate of the fridge and moved to an
adjacent imaging setup where the lensed-fiber can be easily brought into alignment
with any individual on-chip device. After this pre-alignment is performed, ideally
the mount would simply be reattached to the mixing chamber and the cooldown

commenced. However, cooling any complex mechanical mount consisting of mul-
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tiple materials and parts from 300 K to 0.01 K will introduce a significant amount
of thermal expansions and contractions, resulting in misalignment of the fiber from
the device. For this reason, the fiber is typically retracted by about 200 um in the
longitudinal and vertical directions from the position of optimal coupling when the
cooldown is begun. After the fridge reaches base temperature, the fiber is re-aligned
by shining laser light into the fridge and searching for a reflection signal as the
positioner stages are stepped toward the expected optimal-coupling position. When
a reflection signal is found, the position of the fiber is optimized to increase the
signal. Still, once the fiber is aligned to a device at low-temperature, one needs a
method for identifying which particular on-chip device is being probed (again, this is
done without any cryogenic imaging). The thermorefractive effect in silicon results
in an approximately 15 nm shift of the device optical modes to shorter wavelength
during cooldown, while the variations in wavelength between adjacent devices are
typically of order 1 nm due to fabrication disorder; hence it is generally difficult to
identify a specific device simply by knowing its mode wavelength at room temper-
ature. Instead we must measure the optical mode wavelengths of many devices in
a given device array at room temperature prior to cooling down, then again at low
temperature, and correlate our two optical mode maps to pinpoint the fiber position
within a device array as shown in Figure [3.8p. Typical samples may contain 5 — 10
such device arrays with varied parameters of interest for testing, such as designed
optical wavelength, optical loading parameter 7,, cross shield period number, or

blow-out correction.
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Figure 3.8: Map of optical mode wavelengths in an array of devices at room
temperature and 7y = 10 mK. a Measured mode wavelengths for a typical device
array at room temperature (orange) and 7t = 10 mK (blue). The optical wavelength
map is used to identify coupled devices without real-time imaging inside the fridge.
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Side-Coupling

In the end-fire coupling scheme outlined above, we have so far neglected the question
of routing light from the on-chip waveguide to the optical cavity itself. There are two
evident methods to achieve this: end-coupling and side-coupling. In end-coupling,
the on-chip waveguide is connected end-on with the nanobeam optical cavity. Cou-
pling is controlled using a variable number of mirror cells between the waveguide
and the cavity, effectively controlling the reflectivity of one cavity end-mirror in
discrete steps set by the number of mirror holes. This has the drawback that fine-
tuning of the loading parameter 7, = k/k is not available without modifying the
local geometry of the holes, and furthermore that one end of the nanobeam cavity
is effectively anchored to the bulk by the waveguide. This becomes problematic
when we aim to clamp our nanobeam with a full bandgap acoustic shield pattern.
To circumvent the limitations of end-coupling, we employ a side-coupling method
in which the waveguide mode is evanescently coupled to a nanobeam optical cavity
located adjacent to the waveguide but is not co-linear in the propagation direction.
In this scheme, the cavity loading parameter 7, is tunable through the continuous
variable g¢p1, the gap size between the nanobeam and waveguide beam, as shown in
Figure The coupling or "extrinsic" optical quality factor Q, = w./«k. theoreti-
cally increases exponentially with gcp1. This configuration also allows placement of
a nanobeam cavity on either side of the waveguide, doubling the number of devices
which may be probed by alignment to a single waveguide. Perhaps most importantly
for this work, however, is the fact that by side-coupling we are able to optically cou-
ple to the nanobeam without any mechanical contact to the routing waveguide. The
nanobeam may therefore be clamped on both sides using an acoustic bandgap pat-
terned material, and no asymmetries or mechanical defects are introduced through

the method of optical coupling.

Single-photon detectors

The SPDs used in this work are amorphous WSi-based superconducting nanowire
single-photon detectors developed in collaboration between the Jet Propulsion Lab-
oratory and NIST [62]. The SPDs are mounted on the still stage of the dilution
refrigerator at ~ 700 mK. Single-mode optical fibers are passed into the refrig-
erator through vacuum feedthroughs and coupled to the SPDs via a fiber sleeve
attached to each SPD mount. The radio-frequency output of each SPD is ampli-
fied by a cold-amplifier mounted on the 50 K stage of the refrigerator as well as a

room-temperature amplifier, then read out by a triggered PicoQuant PicoHarp 300
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Figure 3.9: Side-coupling and tuning of the extrinsic optical quality factor. a,
Two nanobeam devices are evanescently coupled to a guided mode of a central
waveguide beam. Close view: the cavity loading parameter 1, depends exponen-
tially on the waveguide-nanobeam gap gcp1. b, FDTD simulations using Lumeri-
cal of the extrinsic and intrinsic quality factors of the optical cavity mode. An
increase in Q. with gy reflects the exponentially decreasing overlap between the
cavity mode and the waveguide mode as g, increases, while an increase in the
intrinsic quality factor Q; is attributed to decreased scattering losses experienced
by the cavity mode as a result of increased separation from the surfaces of the
waveguide beam.

time-correlated single photon counting module. We have observed SPD dark count

rates as low as ~ 0.6 c.p.s. and SPD quantum efficiency nspp =~ 60% as summarized

in Figure.
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Figure 3.10: SPD calibration curve. Efficiency and dark-count rate calibrations
for an SPD used in this work, plotted against the D.C. bias voltage applied through
the nanowire (series resistance from bias voltage source was 5 M, input count rate
for calibration was I, = 10° c.p.s.). At high bias current (/pjas = 1.5 nA), the SPD
switches into a normal state and its response is no longer linear. We operate in the
saturated region of the curve, where the linear efficiency n = I' /T, of the SPD is
not sensitive to small fluctuations in bias current. Here n includes all losses from
the input to the dilution fridge port to the SPD itself. Note that through fiber-coiling
techniques, black-body radiation isolation, and minimization of stray light entering
the optical path, we are able to operate the SPDs with ultra-low intrinsic dark-count
rates below 1 c.p.s.

3.3 Optical Characterization and Calibration at MilliKelvin Temperatures

Each device we have measured in this work was characterized optically in order to
determine its optical resonance frequency w,, total optical linewidth «, waveguide-
cavity coupling efficiency 7, = ke/k, and fiber-to waveguide coupling efficiency 7cp.
In particular, the waveguide-cavity coupling efficiency 7, is measured by placing
the laser far off-resonance and using the VNA to drive an intensity modulator to
sweep an optical sideband through the cavity frequency. The cavity response is
measured on a high-speed PD (after amplification by the EDFA) connected to the
VNA signal port, as shown in Figure [3.11] From this we obtain the amplitude and

phase response of the cavity, which are fitted to determined 7.

The theoretical amplitude and phase responses of the optical cavity can be derived in

a simple classical analysis, neglecting small effects due to optomechanical coupling.
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Figure 3.11: Characterization of the optical cavity. a, Simplified schematic of the
measurement setup used for characterization of the optical cavity. EOM: electro-
optic modulator, A-mater: wavemeter, VNA: vector network analyzer, EDFA:
erbium-doped fiber amplifier, PD: photodetector, DUT: device under test. b, Am-
plitude and phase responses of a typical nanobeam optical cavity obtained by park-
ing the laser at a detuning A > « from resonance. An EOM is driven using a
VNA to sweep a probe sideband through the cavity frequency. Solid lines are
fits to the data. Expression [3.7] is used to fit the response as obtained by the
VNA. Here, we extract a waveguide-cavity coupling efficiency 1, = «./x = 0.301
using A/2r = —4.039 GHz. ¢, Normalized reflection as a function of wave-
length for a typical optical cavity mode. A tunable laser is swept through the
cavity resonance and the reflection spectrum is fitted to the Lorentzian response
function R(w) = 1 — keki/((A — w)?* + (x/2)%). Here we extract the mode wave-
length 4 = 1540.3 nm (w./27 = 194.63 THz), total linewidth « /27 = 446.4 MHz
(Q; = 4.36 x 10°), and «;/27 = 274.9 MHz (Q; = 7.08 x 10°). From the reflection
spectrum only, we can also estimate 77, = (1 — VRpin)/2 = 0.384.
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Starting with the input-output boundary condition [2.33}

dout = din — VKed, (3.1)

we can directly write the optical reflection coefficient r(w) = doyt/din as

A

Hw) = 1 - Vie—t 3.2)
Ain
Ke
=1-— 33

I(A—w)+«k/2 3-3)

where we have used the optical susceptibility y,(w) as in Equation Here we
are neglecting quantum noise operators and considering only the large coherent field
amplitudes; to make this explicit we will write @ — « in the following steps. The
VNA will weakly modulate a carrier tone of amplitude o to generate a sideband at
frequency w and amplitude ;. Upon reflection from the cavity, the total field will

be the sum

Aou(w) = r(0)ap + r(w)ay, 3.4)

whereupon detection the photocurrent will be proportional to the squared amplitude

|@ou(@)* = 1r(0)aol* + [r(@)ai |* + (r(0)ag) r(w)ar + r0)ap(r(w)ar)*.  (3.5)

The first two terms are DC offsets that do not contribute to the frequency response.
In general we may consider the two input sideband amplitudes to be in phase with
each other at phase angle 6 relative to the intracavity field, allowing us to factor
out real a real number @ = a@ga; from the frequency response signal. Thus the
explicit amplitude and phase response expressions for fitting are respectively |S| and
Arg{S}, having forms shown in Figure where

S(w, A, k, ke) = ae'’

Ke Ke
(1 B —iA+K/2)(1 B i(A—w)+/</2) (36

Ke Ke
+(1_iA+K/2)(1_ —i(A—w)+K/2)]' (-7)
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Similarly, the bare optical cavity reflection is measured using a single laser tone
scanned through the cavity resonance, yielding a characteristic Lorentzian normal-

ized reflection signal

2
K
R(w) = 2ol — 2 3.8
@ = (@) = |1 = s (338)
K2 K
=1+ ¢ —2Re{ —— 39
(A — W) + (x/2)2 e{i(A—w) n K/z} 39)
KeK]
=1- . 3.10
(- P + (/27 G40
We can see that the resonant coupling depth, defined as
KeKl
Royn=Rw=A)=1-——, 3.11
@=8)=1- 20 3.11)

vanishes under the critical-coupling condition k. = x; = /2. For non-vanishing
resonant coupling depth, one can calculate the deviation from critical coupling
lke/k — 0.5] = m, but cannot determine unambiguously whether the
cavity is over- or under-coupled without performing the phase-sensitive measure-

ment described above.

Calibration of the Vacuum Optomechanical Coupling Rate

The measurements presented in this work rely on accurate calibration of the vacuum
optomechanical coupling rate gy, which physically represents the optical frequency
shift due to the zero-point motion of the mechanical resonator. We employ various
techniques for calibrating go both at room temperature and at mK temperatures.
From Eqn. [2.54] we see that the optically-induced damping rate broadens the me-
chanical linewidth by yom for red-detuned driving. A measurement of the linear
dependence of the total mechanical linewidth vy as a function of pump photon num-
ber n. then allows us to extract the coefficient 4g§ /k, and with x known from a

reflection scan as shown in Figure we obtain g.

At room temperature, the mechanical mode occupancy of our 5 GHz nanobeam
OMC breathing mode is thermally occupied with about 77 = 1,200 phonons. Un-
der mechanically-detuned optical driving, then, the mechanical motion imparts
a phase modulation of the carrier tone with an effective modulation index of

B = g0\ {n)/wm ~ 5 x 1073 at room temperature, which is easily observed using a
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Figure 3.12: Room-temperature calibration of the vacuum optomechanical
coupling rate in a nanobeam OMC. a, Direct detection (single-port heterodyne) is
used to observe the mechanical NPSD using a blue-detuned probe laser (A = —w,,).
The total linewidth is measured as a function of intracavity photon number n,
given by Equation [3.12] which is proportional to the pump laser power Pj,. The
total mechanical mode linewidth is given by ¥y = y; — yom, which is fitted to the
data to extract a vacuum optomechanical coupling of go/2m = 923 kHz for this
representative device. Device parameters are: (k, ke, g0, Wm) = 21(997 MHz,
324 MHz, 923 kHz, 5.39 GHz). We also extract the intrinsic linewidth y;/2n =
2.3 MHz. Note that at higher intracavity photon number, the condition yom > i
corresponds to a regime of self-sustained oscillations. b, Several representative
mechanical NPSD curves measured as a function of n..

simple single-port heterodyne detection (sometimes referred to as direct detection)
as described in Section [2.4] The intracavity photon number is related to the input

pump power Py, by

P; K
= (ata) = O 3.12
ne =) = N T (k]2P (3.12)

For typical device parameters «/2n ~ 800 MHz, «./k ~ 0.5, for red- or blue-
detuned driving (A = +w,,), we have n. = 7 photons per uW input power (on
resonance, A = 0, n. = 5,000 photons per uW). The results of an illustrative power
sweep are shown in Figure [3.12] in which the mechanical lineshape is measured at
driving powers ranging over an order of magnitude from n, = 50 — 630. The

total mechanical linewidth is

4gone

Y=Y —YOM = Yi— PR (3.13)
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from which we extract in this case go/2m = 923 kHz. The zero-power intercept of
the curve in Figure represents the intrinsic mechanical damping rate y; /27 =
2.3 MHz at room temperature and pressure, corresponding to a mechanical Q-factor
of ~ 2,200. In these conditions the room-temperature mechanical-Q is limited

primarily by thermoelastic damping and clamping losses, as detailed in Chapter[7]
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Chapter 4

PHONON COUNTING AND PHONON INTENSITY
INTERFEROMETRY

Measurement of the properties of mechanical systems in the quantum regime typi-
cally involves heterodyne detection of a coupled optical or electrical field, yielding
a continuous signal proportional to the displacement amplitude [63]]. An alternative
method, particularly suited to optical read-out, is to utilize photon counting as a
means to probe the quantum dynamics of the coupled optomechanical system [64,
65]. Photon counting can be readily adapted to study intensity correlations in
an optical field, and has been used not only in the astronomical HBT studies of
thermal light, but also in early studies of the photon statistics of laser light and
single-atom fluorescence [|66} 67]. In the field of photon-correlation spectroscopy,
such intensity interferometry techniques have found widespread application in the
measurement of particle and molecular motion in materials [68]. More recently,
photon counting of Raman scattering events in diamond has heralded and verified
the quantum entanglement of a THz phonon shared between two separate bulk
diamond crystals [69]]. In the case of engineered cavity optomechanical systems,
much longer phonon coherence times are attainable, albeit at lower mechanical
frequencies (MHz-GHz) which limit the temperature of operation and the optical
power handling capability of such structures. Quantum optical schemes for manip-
ulation of the quantum state of motion in cavity optomechanical systems thus rely
on a large per-phonon scattering rate and efficient detection of scattering events.
Here we embed a high-Q, GHz-frequency mechanical resonator inside an optical
nanocavity, greatly enhancing the phonon-photon coupling rate and channeling op-
tical scattering into a preferred optical mode for collection. Single photon detection
of this scattered light then allows for a precise counting of single-phonon emission
or absorption events, effectively phonon counting (although this terminology should
not be confused with Fock state detection or quantum non-demolition measurement
of phonon number). The highly engineered and optimized nature of this optome-
chanical resonator furthermore yields a sub-phonon-level counting sensitivity of the

intracavity mechanical resonator occupancy.
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4.1 Phonon Counting Theory

We consider the explicitly case of a sideband-resolved system under red-detuned
(A = +w,,) driving, and calculate the detected photon count rate for sideband-
scattered photons at the cavity frequency. In the presence of a large coherent driving
tone, the total output from the cavity will be the sum of the coherent reflected tone

and the fluctuation term given by Equation [2.44}

doulw)) = Poud() + r(w; +)din(w) + n(w; +)ai(w) + s(w; H)bin(w). (4.1)
—twp,

The output field coming from interaction with the mechanics will occur where the

scattering coeflicient s(w; +) is peaked at w ~ +w,, (specifically, |w — w;,| < «, due

to the optical cavity susceptibility). We are thus motivated to filter out the strong

optical pump around w = 0 and keep only signal within a narrow bandwidth (<« «)

of the cavity frequency. We can model this post-filtering of the optical output by a

complex filter transmission function

K2
i(w - wf) + Kf/2,

Fr(w; wr) = 4.2)

with filtering bandwidth «¢, and as we are usually interested in filtering at the cavity
frequency as mentioned above we will set wf = w,,. The filtered output from the

cavity takes the form

an(w) = Fi(w; 0m) | @outd(w)+7(w; +)din(w)+n(w; +)di(w)+s(w; +)bin(w) ).
A=+wy,
4.3)

The time-dependent photon count rate detected at the filtered optical output is

T(1) = (a} (Daa ()
1

= 5= dw / do '@+t (&gh(w)dﬁlt(w'»
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= g(lFf(O» wm)|2|a'0ut|2+

o 0

/ dw / dw'e"<w+w’>’F;(w;wm>Ff(w';wm>s*<w;+)s<w';+>e“‘"+w’>f<B§n<w>ém<w'»),

4.4)
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where we have used the fact that the vacuum noise terms d;, and d; do not contribute
to real photon counts and therefore neglected terms arising from these optical noise
operators. Using the scattering matrix expression in Appendix [A.4] we identify this

expression as

(o)

1 K,
I(r) = E(|Ff<o;wm>|2|aout|2+;%M / dw |Fe(w; wm)*Spslw; (m)]]  (4.5)

—00

1 K
= ﬂ(lFf(O, wm)lzlaout|2 + ?eyOM<n>) (46)
2, Ke
~ A|aout| + ?'}’OM(”% (47)

where we have assumed that the filter bandwidth is large compared to y (satisfying
v < k < k) allowing us to set F(w,,; w;,) = 1 in Equation and also defined
a pump attenuation factor A = |F¢(0; w,,)|?/(27). Further we have used Equation
[A.22] evaluating the integral of the phonon spectral density. A completely analo-
gous expression obtains in the case of blue detuning, where the integral is instead

performed over S [w; (n)], resulting in the substitution (n) — (n) + 1.

Here we can directly see that in the idealized case in which the filter has completely
rejected the coherent pump tone with flux |aoy|?, the signal photon count rate is
proportional to (n), illustrating the formal equivalence of photon counting with
phonon counting. Hereafter we will use the term phonon counting to describe the
detection method outlined above. In practice, inefficiencies in the optical path lead
to photon loss which we model with an overall detection efficiency n. Let us define
a pump noise photon count rate I'yymp = 77A|a/out|2 + I'hoise consisting of the coherent
pump tone which leaks through the sideband filtering as well as any additional
noise counts arising from technical laser noise, including laser phase noise. The
total measured count rate will also include a dark-count rate I'g,x, Which will be
used to describe both intrinsic dark counts of the SPD as well as counts arising
from stray radiation (e.g., due to thermal blackbody radiation inside the fridge, or
environmental light sources coupling into the optical fiber path). To summarize, we

find that for red- and blue-detuning the total measured output photon count rate is

() = Iﬂpump + I'gark + I'sB,o (n) if A = +wy,
I_‘pump + Ddark + 1—‘SB,0(<”Z> + 1) if A =—-w,
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where we have defined the per-phonon count rate as I'sg g = U%VOM-

In the case of resonant driving (A = 0) again with filtering at wf = +w,,, a similar
expression is obtained after replacing s(w; +) in Equation[4.4]with the corresponding
effective scattering matrix element for A = 0, which is simply suppressed by the

sideband-resolution factor «/(2w,,). Explicitly, the substitution

s(w; +) — Ser(w; 0) = %S(w; +) (4.8)

m

yields a modified per-phonon count rate of (ﬁ ) ZFSB,O at both the upper- and lower-
frequency mechanical sidebands of the cavity. This will be useful in situations where
it is desirable to perform thermometry at large intracavity photon number but with

negligible back-action damping of the mechanics (see Section[6.3).

4.2 Phonon Counting Sensitivity

A useful parameterization of these quantities is the amount of noise (in units of
mechanical occupation quanta) as a proportion of the signal generated by a single
phonon in the OMC. Alternatively, this noise-equivalent phonon number nygp can be
interpreted as the mechanical occupation which would produce a phonon-counting
SNR of 1. We obtain nxgp then by dividing the noise count rates by the per-phonon
sideband photon count rate I'sg 0 = 17|yom|, Where 7 is the total efficiency of the
setup, including the system efliciency of the SPDs as well as optical insertion loss

along the path from cavity to detector. For a coherent pump, this yields

4.9)

2
KZFdark KWy,
NnNEp = ——— + A .

AnKegine 2ke80

The above equation makes clear the benefits of large cavity-enhanced optomechan-
ical coupling go, both in terms of the low power sensitivity limited by detector dark

counts and the high power sensitivity limited by pump bleed-through.

The measured sensitivity follows the expected curve at low power due to detector
dark counts (solid red curve), but at high n saturates to a value several times larger
than expected for the filter suppression of the pump (solid blue curve). In order to
better understand this excess noise, Fig. d.Ib shows measurements of the nngp as a
function of filter-pump detuning, Agjer, at a high power where the pump transmission

dominates the noise (n. ~ 65). A strong dependence on Agye, is observed, with a
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Figure 4.1: Phonon counting sensitivity. a, Noise equivalent phonon number
NNEP Versus intracavity photon number 7. calculated using the measured signal and
noise count rates for the detection setup in 2015 (grey circles). Solid lines indicate
the theoretically expected contributions due to dark counts (red) and pump bleed-
through (blue), based on the measured system efficiency and pump suppression,
with the sum of the two contributions displayed as a purple dashed line. Error bars
show one standard deviation determined from the measured count rates, assuming
Poissonian counting statistics. b, nNgp versus filter-pump detuning Agjer for ne = 65,
with (red) and without (grey) an additional C-band band-pass filter inserted. The
vertical green line indicates the detuning corresponding to the data from a, and the
horizontal black line indicates the expected limiting sensitivity.

peak in the noise at 5 GHz and a secondary peak at 6.1 GHz, consistent with phase-
noise of our pump laser [70]. With the addition of a C-band bandpass filter prior
to the SPD to remove broadband spontaneous emission from the pump laser, and
at frequencies far from the laser phase-noise peaks, the measured nngp agrees well
with the theoretical predictions based on the filter pump suppression (horizontal
dashed curve). At the relevant detuning of Agyer = wp (vertical dashed curve),
we measure a limiting sensitivity of nygp = 0.89 + 0.05. While this sensitivity is
directly measured at n. = 65, nNgp is observed in Fig. to be pump-limited for
ne 2 1, implying that this setup setup (ca. 2015) achieves nngp < 1 for n. of order

unity.
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4.3 Phonon Intensity Interferometry

In this section, we focus on measurements made with a blue-detuned pump (A =
—wn), in which the optomechanical back-action results in instability and self-
oscillation of the acoustic resonator [70, [71]]. The Stokes sideband count rate
detected on a single SPD, shown versus n. in Figure 4.2, displays a pronounced
threshold, with an exponential increase in output power beginning at n. ~ 1200,
where C = |yom|/yi = 0.8, in agreement with the expected onset of instability
around C = 1 (y = 0). This sharp oscillation threshold can also be observed from
the measured NPSD (Fig. #.2p), in which the amplitude of the mechanical spec-
trum is seen to rapidly increase with a simultaneous reduction in linewidth, and in
plots of the in-phase and in-quadrature components of the photocurrent fluctuations,
which show a transition from thermal noise to a large amplitude sinusoidal oscil-
lation. Also shown in Figure is the inferred phonon occupancy (n). Below
threshold, the photon count rate is simply related to (n) via the simple linear relation
Tt = nlyom| ((n) + 1). Atand above threshold, self-consistent determination of the
oscillation amplitude indicates that even at our highest pump power the mechanical

amplitude remains small enough that this linear approximation remains valid.

The statistical properties of the resonator near the self-oscillation threshold can also
be characterized by measuring photon correlations using a Hanbury Brown and
Twiss (HBT) setup. Blue-detuned pumping produces anti-normally ordered phonon
correlations. In this case g®(7) refers to the anti-normally ordered second-order

phonon correlation function, defined by

(b(0)b()b" (7)b"(0))

(2) —
S = T 0ROy

(4.10)

For measurements made with a red-detuned pump, as shown in Fig. , g?(1)
refers to the normally ordered phonon correlation function,

(b (0)b" (7)b(7)b(0))
(b1 (0)b(0))2

2@ (r) = .11

In the case of the classical states measured here, there is no observable difference
between the normally and anti-normally ordered correlation functions. As the
oscillation threshold is crossed, the state of the acoustic resonator will transition
from a thermal state into a displaced thermal state (DTS), and the normalized

phonon intensity correlation function near 7 = 0 should show a transition from
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Figure 4.2: Phonon lasing. a, Phonon count rate (blue) and inferred phonon
occupancy (n) (red) as a function of intracavity photon number for A = —wy,.
Dashed lines indicate points below (blue), at (green), and above (magenta) threshold.
b, Noise power spectral densities (NPSD) corresponding to the dashed lines in a.The
small satellite peaks in the thermal emission background of the above threshold
spectrum correspond to beating of the phonon laser line with low frequency modes
of the nanobeam structure. ¢, Phase plots of the in-phase (/) and in-quadrature
(Q) amplitudes of the optical heterodyne signal for each of the dashed lines in a,
acquired in a 36 MHz span around 5.588 GHz over a 60 second time interval.

bunching (g?(0) > 1) to Poissonian statistics (¢ (r) = 1 for all 7). Plots of
g(2)(7') below, at, and above threshold are shown in Figure Below threshold
bunching is clearly visible, with g (0) = 2 as expected for a purely thermal state.
In Figure g?(0) is plotted versus n. for both blue- and red-detuned pump
light. For a blue-detuned pump a smooth decrease from g®(0) = 2 to g (0) = 1
is observed in the threshold region, while for a red-detuned pump the oscillator is
observed to remain in a thermal state through threshold and beyond. The decay rate
of the acoustic resonator, measured from both the linewidth of the NPSD and from
an exponential fit to g () below threshold, is plotted in Figure The decay rate
as measured from the NPSD, which includes both phase and amplitude fluctuations,
is seen to increase around threshold before continuing to decrease. This behavior

is commonly observed in semiconductor lasers where a coupling exists between the
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gain and the cavity refractive index, and a similar effect arises in optomechanical
oscillators due to the optical spring effect [72]. The decay rate measured from
g(z)(T), on the other hand, which measures intensity fluctuations, begins to deviate
from the measured linewidth in the vicinity of threshold. Thermal phonon emission
dictates a strict correspondence between the second-order and first-order coherence
functions [66]; however, above threshold where the phonon statistics are no longer
purely thermal, such a deviation is possible, and in fact predicted for self-sustaining

oscillators [[73]]. The Fano factor, defined as

B (An)?
=

provides additional statistical information about the fluctuations of the oscillator,

=1+ (n)(g@(0) - 1), (4.12)

and is useful for defining a precise oscillator threshold [[74]] as well as distinguishing
between states that may have similar or identical values of g®)(0) (e.g., a coherent
state versus a DTS) [72]. The Fano factor of our mechanical oscillator, computed
from the measured g‘®(0) and the inferred values of (n), is displayed in Figure
and shows the expected increase and peak in fluctuations at threshold. Above
threshold, the Fano factor drops again due to saturation in the optomechanical gain,

approaching a measured value consistent with that expected for a DTS (F' ~ 2n,+1).

Although we have emphasized the analogy between the optomechanical oscillator
studied here and a laser, there are unique differences which arise due to the intrinsi-
cally nonlinear nature of the radiation pressure interaction in an optomechanical cav-
ity. Recent theoretical studies [64, 72, /5] indicate that a laser-driven optomechan-
ical oscillator will enter a nonclassical mechanical state with anti-bunched phonon
statistics (F' < 1), and under slightly more restrictive conditions, strongly negative
Wigner density. Surprisingly, this is predicted to be observable even for classi-
cal parameters, i.e., outside the single-photon strong-coupling regime (go/x < 1),
and in the presence of thermal noise. Beyond phonon correlation spectroscopy of
optomechanical oscillators, it is envisioned that sensitive photon counting of the
filtered motional sidebands may be utilized in the preparation and heralding of non-
Gaussian quantum states of a mechanical resonator [76]]. For the OMC cavities of
this work, with their large optomechanical coupling rate and near millisecond-long
thermal decoherence time at sub-Kelvin temperatures [30], the phonon addition
and subtraction processes of Ref. [[76] should be realizable with high fidelity and
at rates approaching a megahertz. Whether for studies of the quantum behavior of

mesoscopic mechanical objects or in the context of proposed quantum information
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Figure 4.3: Phonon intensity correlations. a, Normalized anti-normally ordered
second-order intensity correlation function g(z)(r) for A = —wy, shown below,
at and above threshold (left to right, respectively). Green lines show a simple
exponential fit, while black lines indicate the expected theoretical curve using decay
rates measured from fitting the NPSD linewidth. b, Phonon correlation at zero
time delay versus n. for A = —wy, (blue) and A = wy, (red). The top and bottom
dashed lines indicate the expected values for purely thermal or displaced thermal
states (DTS), respectively. Error bars show one s.d. determined from the fit value
of g®(0). ¢, Mechanical decay rate versus n for A = —wy,, determined from the
measured linewidth of the NPSD (circles) and from the exponential fit to g (r)
(diamonds). d, Fano factor versus n.. Error bars show one s.d. determined from

the measured count rates, assuming Poissonian counting statistics, and the fit value
of g)(0).
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processing architectures utilizing phonons and photons [77], such photon counting
methods are an attractive way of introducing a quantum nonlinearity into the cavity

optomechanical system.
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Chapter 5

PULSED EXCITATION DYNAMICS OF OPTOMECHANICAL
CRYSTALS AT LOW TEMPERATURES

The recent cooling of nanomechanical resonators to their motional quantum ground
state [20, 78, 79]] opens the possibility of utilizing engineered mechanical systems
strongly coupled to optical or microwave fields for a variety of quantum metrology
and information processing applications [[80], amongst them the preparation and
optomechanical conversion of highly non-classical mechanical states [[76}[81},/82, 83]]
and coherent frequency conversion between microwave and optical signals [[19, 84,
85,180, 87]]. A particularly interesting device architecture for realizing large radiation
pressure coupling between light and mechanics is the thin-film optomechanical
crystal (OMC) [88, 89], in which optical and acoustic waves can be guided and
co-localized via patterning of the surface layer of a microchip. Based largely
upon the OMC concept, new ideas for phononic quantum networks [83, |90] and
optomechanical metamaterials [91]] have been proposed, in which arrays of cavity-
optomechanical resonators are coupled together via optical or acoustic degrees of
freedom, and in which laser light is used to parametrically control the emergent
network or material properties. Similar nanobeam OMC device architectures have
been used to demonstrate optical readout of nonclassical states of GHz acoustic
modes [92]], including intensity interferometry of nonclassical states generated at
the single-phonon level [93]], as well as remote quantum entanglement between two
such nanomechanical oscillators [94]]. These initial measurements demonstrate the
potential of this device platform as a key state-transduction component in future
hybrid quantum networks based on optomechanical device arrays, although as we
will detail below, substantial technical challenges remain in order to achieve more
complete quantum coherent control over the mechanical state in these OMC devices
in the presence of steady-state optical-absorption heating. Moreover, demonstrations
of such non-classical state preparation and manipulation in devices having long-
lived (~ 1 second) acoustic modes is an outstanding challenge, as the acoustic
lifetime effectively limits the repetition rate which can be used in probabilistic state-

preparation protocols based on state-heralding or entanglement post-selection [82,
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Figure 5.1: Schematic of the pulsed-excitation phonon counting technique.
Laser pump light at frequency wy, (red arrows) is passed through an EOM to generate
pulsed light. The optical pulses are directed to a nanobeam OMC cavity inside a
dilution fridge via an optical circulator. The cavity reflection is then filtered at the
cavity frequency w, (black arrows) and directed to a SPD.

92,93].

Recent measurements at millikelvin (mK) bath temperatures of an OMC resonator
formed from single crystal silicon [21}, [88] have shown substantial mechanical mode
heating and mechanical damping due to weak sub-bandgap optical absorption [30].
Although optical Q-factors in excess of 10° are realized in these highly optimized
structures [21]], the large impact of even very weak optical absorption can be at-
tributed to a combination of the relatively large energy per photon, and the sharp
drop in thermal conductance with temperature in the low temperature limit [95].
Further complications arise from the seemingly contradictory requirements of iso-
lating the mechanical resonator from its environment to obtain high mechanical
Q-factor, and that of providing large thermal anchoring to a low temperature bath

for cooling of the mechanical resonator.

In this work we utilize pulsed optical excitation and single phonon counting [96] as
outlined in Chapter[d]to study the transient dynamics of optical back-action, heating,
and damping of the 5 GHz mechanical mode of a silicon optomechanical crystal
resonator at mK bath temperatures. Phonon counting yields simultaneously a high
time resolution (~ 10 ns) and mechanical mode occupancy sensitivity (< 1072).
Measurement of both Stokes and anti-Stokes sidebands also yields an absolute
calibration of the occupancy of the resonator mode in terms of mechanical vacuum
noise 97]. In addition to measuring initial phonon mode occupancies as
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low as (n) = 0.017 £ 0.007 and mechanical decay times as long as 7 = 1.21 s, we
observe a slow (~ 740 ns) turn-on time for the optical-absorption-induced phonon
bath that both heats and damps the mechanical resonator mode. Taken together,
these measurements demonstrate the feasibility of using short pulsed measurements
for quantum optical state engineering of the mechanics in silicon optomechanical

crystals, despite the presence of large steady-state optical heating.

5.1 Pulsed Excitation Phonon-Counting Measurement Methods

The full measurement setup used for device characterization is shown in Figure
The light source is a C-band fiber-coupled tunable external-cavity diode laser
(ECDL), of which a small portion is sent to a wavemeter (1-meter) for frequency
stabilization. The light is then sent to high-finesse tunable fiber Fabry-Perot filter
(Micron Optics FFP-TF2, bandwidth 50 MHz, FSR 20 GHz) to reject laser phase
noise at the mechanical frequency, which can contribute to noise-photon counts on
the SPDs [26]. After this prefiltering, the light is routed to an electro-optic phase
modulator (¢-mod) which is driven by an RF signal generator at the mechanical fre-
quency to generate optical sidebands used for locking the detection-path filters. The
light is then directed via 2X2 mechanical optical switches into a "high-extinction"
path consisting of a series of modulator components which are driven by a digital
pulse generator to generate high-extinction-ratio optical pulses. The digital pulse
generator is used to synchronize the switching of the modulation components as
well as to trigger the time-correlated single-photon-counting (TCSPC) module. Of
these modulation components, one is a 200 MHz acousto-optic modulator (AOM,
Gooch & Housego) which provides ~57 dB of fast extinction (~20 ns rise and fall
times), and two are Agiltron NS 1x1 switches (rise time 100 ns, fall time ~30 us)
which provide a total of 36 dB of additional extinction. The AOM and its driver are
shown in Figure [5.3]

The total optical extinction achieved in generating these optical pulses is approx-
imately 93 dB, which is greater than the cross-talk specification (60 dB) of our
mechanical optical switches. For this reason we use two 2X2 switches in parallel
(SW2 in Figure [5.2) to isolate the high-extinction path to ensure that our off-state
optical power is limited by our high-extinction modulation components rather than
by cross-talk through the mechanical switches. The light is then passed through a
variable optical attenuator (VOA) to control the input pulse on-state power level to
the cavity, and sent to a circulator which directs the light to a lensed-fiber tip for

end-fire coupling to devices inside the dilution refrigerator. The reflected signal is
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Figure 5.2: Pulsed-excitation phonon counting measurement setup. Simplified
diagram of the experimental setup used for low-temperature optomechanical device
characterization and phonon-counting measurements. Lasers A and B are passed
through 50 MHz-bandwidth filters to suppress broadband spontaneous emission
noise. Both lasers are equipped with modulation components (AOM, Ag.) for gen-
erating high-exctinction optical pulses. The modulation components are triggered
by a digital delay generator (Laser B components are triggered by the "master" Laser
A generator). Upon reflection from the device under test, a circulator routes the out-
going light to either (1) an EDFA and spectrum analyzer, or (2) a sideband-filtering
bank consisting of three cascaded fiber Fabry-Perot filters (Micron Optics FFP-TF2)
and the SPD operated at ~ 760 mK. A-meter: wavemeter, ¢-m: electro-optic phase
modulator, EOM: electro-optic intensity modulator, AOM: acousto-optic modula-
tor, Ag.: Agiltron 1x1 MEMS switch, SW: optical 2 x 2 switch, VOA: variable
optical attenuator, EDFA: erbium-doped fiber amplifier, VNA: vector network ana-
lyzer, SPD: single photon detector, TCSPC: time-correlated single photon counting
module (PicoQuant PicoHarp 300).



80

Fiber input' '

od

T 0O

c

2

§10

c

e

5-20¢

&

= 20 nsil ]y 80 ns |
€30t 30ns 60 ns 200 ns |
5 40 ns

4

0 50 100 150 200 250
Time (ns)

Figure 5.3: Acousto-optic modulator fiber-Q switch for optical pulse generation.
a, View of the fiber-coupled AOM components for generation of high-extinction
optical pulses. The RF driver is triggered using a digital delay generator and drives
a fiber-Q switch using a 200 MHz AOM. The RF driver is heat-sinked to the optical
breadboard. Optical fiber inputs are spliced to the rest of the optical measurement
train, and the total insertion loss of of the AOM is ~ 3.5 dB. b, Close view of the
Gooch & Housego AOM fiber-Q switch clamped to its optical breadboard mount. c,
The AOM REF driver. Fine tuning of the D.C. level is necessary to ensure maximum
pulse extinction ratio over a wide range of duty cycles from < 107#% to > 50%.
d, Output optical pulse from the AOM component at several short pulse widths
(time binning is 1 ns). We measure a 90% rise-time of 75 = 41 ns. At pulse
trigger lengths shorter than ~ 80 ns, diminished peak output power will be delivered
through the AOM due to partial turn-on of the switch. Maximum on-off extinction
ratio is approximately 57 dB.

then routed back to either one of two detection setups. The first includes an erbium-
doped fiber amplifier (EDFA) and a high-speed photodetector (PD) connected to a
spectrum analyzer (SA) and a vector network analyzer (VNA). The second detection
path is used for the phonon counting measurements. Here the light passes through
three cascaded high-finesse (bandwidth 50 MHz, FSR 20 GHz) tunable fiber Fabry-
Perot filters (Micron Optics FFP-TF2) inside an insulating housing and then to the

SPD inside the dilution refrigerator.
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Figure 5.4: Transmission stability of the FFP filter stack used in phonon-
counting experiments. a, Optical breadboard assembly of the cascaded FFP filter
stack. b, Normalized transmission plotted versus measurement duration. Drift of
the filters due to thermal and acoustic fluctuations in the laboratory causes a 10%
decline in transmission typically in a period of ~ 40 minutes. Measurements are
stopped at regular intervals to allow re-locking and stabilization of the filters, and the
transmission through the filter stack is recorded periodically during measurements.
The insertion loss of the cascaded filter bank is g = —13.1 dB.

The cascaded fiber Fabry-Perot (FP) filters are aligned to the optical cavity resonance
frequency w. during measurement such that the signal reaching the SPDs consists of
sideband-scattered photons and a small contribution of laser-frequency pump-bleed-
through. In total the filters suppress the pump by >100 dB. This bleed-through is
calibrated by positioning the laser far off-resonance of the optical cavity, such that
the device acts simply as a mirror, while fixing the relative detuning of the filters
and the pump laser at the mechanical frequency wp, /27 and measuring the photon

count rate on the SPDs as a function of laser power.
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Additionally, both the FP-filters and the EOMs will drift during measurement and

must be periodically re-locked. Figure [5.4p plots the normalized transmission
through the FP filter stack following stabilization of the filters to illustrate the
time period over which the FP filter stack is stable during measurement when no
active stabilization can be performed. The average transmission drops by 10% over
a period of about 40 minutes. We therefore regularly stop the measurement every
2—6 minutes to check the filter stack transmission (discarding data sets during which
the transmission has dropped by > 10%) and perform a re-locking routine. First, we
re-lock the EOMs by applying a sinusoidal dithering signal of ~1 V to them while
monitoring the optical transmission, then decrease the dithering amplitude gradually
to lock to the minimum of transmission. Next we switch out of the high-extinction
pulse path (SW-2A,2B) and out of the SPD path (SW-5) to prevent blinding of the
detectors, drive the phase modulator with a large RF power at frequency wy, /27 to
generate large optical sidebands at the cavity resonance frequency, and send this light
into the FP-filter stack. The transmission through each filter is monitored while a
dithering sinusoidal voltage is applied to each filter successively, and the amplitude
and DC offset of the dithering signal are adjusted until the optical transmission
signal at the desired sideband is maximized. The offset voltage is then held fixed
during the subsequent measurement run. The filters will drift due to both thermal
fluctuations and acoustic disturbances in their environment, so in order to further
improve the filters’ stability we have placed them inside a custom-built insulated

housing as shown in Figure [5.4p.

5.2 Calibration of the mechanical vacuum noise

In phonon-counting measurements the mechanical mode vacuum noise enters the
detection signal via the mechanical noise-power spectral density of Equation [A.20]
giving for a blue-detuned pump a detected count rate which includes a vacuum noise

term:

I'(A = —wp) = Tspo((n) + 1), (5.1)

where here I'sg,0 = 7det7cpifcyom is the detected photon scattering rate per phonon
(including experimental set-up efficiencies) and yom = 4g§nC /k is the optomechan-
ical damping rate. In the absence of mechanical occupancy, pump photons may
be spontaneously scattered by the mechanics owing to the nonzero mechanical sus-

ceptibility at the pump frequency. These real photons scattered by the mechanical
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Figure 5.5: Calibration of the mechanical vacuum noise for thermometry.
Pulsed measurements of the sideband count rate I'sgp for a blue-detuned probe
laser (n. = 101 photons during the pulse-on state) with 1/Tpe; = 4 kHz, measured
on a zero-shield nanobeam device with yy/27r = 14.1 kHz. The count rate during
the initial measurement bin during the pulse, marked with a gray vertical line, cor-
responds to a per-phonon scattered photon count rate of I'sg g = 3.263 x 103 c.p.s.
During the pulse, optomechanical back-action amplifies the mechanical occupancy
at a rate yom — i, while in the pulse-off state the mechanics undergoes free decay
to a local fridge bath temperature with effective bath occupancy ng ~ 1073.

vacuum noise in the presence of a pump laser are detected at a rate I'sg o according
to Equation[5.1] providing a calibration of the per-phonon count rate directly to the
vacuum noise. Here 14 is the measured overall detection efficiency of the setup,
including losses in the fiber runs and circulator, insertion losses in the filters, the
fiber run inside the dilution refrigerator, and the detection efficiency of the SPD.
To calibrate I'sg ¢ (for a fixed intracavity photon number n.), a blue-detuned pump
(A = —wy,) pulsed with a repetition time of Ty, drives the mechanics. In the initial
time bin during the pulse, (n) < 1 (if 1/Tper < ¥0) and we can approximate the
sideband photon count rate I' = I'sg . Including detection non-idealities such as
bleed-through of the pump laser to the SPD and dark counts on the SPD, the detected
count rate is I'(Tpuise = 0) = I'dbcr + Ipump + I'sp,o. This measurement provides an
absolute calibration of the detection photon count rate to the mechanical vacuum
noise, where the count rate is proportional to intracavity photon number, allowing
calibrated thermometry with a precision that is independent of knowledge of the
losses in the optical path. Additional knowledge of the optical path losses enables
the inference of yom from a measurement of I'sg o, which can be used to calibrate
the vacuum optomechanical coupling rate. For one representative device, as shown

in Figure we measure I'sg g = 3.263 X 103 c.p.s. using a measurement photon
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number of n. = 101, and with ¥ known from independent measurements we extract

go/2n = 713 kHz, consistent with previous measurements on similar devices.

5.3 Thermal Ringdown and Bath Turn-On Dynamics

We perform thermally-excited ringdown measurements of the mechanical breathing
mode by impinging a series of red-detuned (A = wp,) optical excitation pulses on
the device at a series of different repetition rates fyuse. For each f,uise, the photon
count rate during the pulse is averaged over many measurement cycles to generate a
histogram of the mode occupancy () as a function of time Ty in the pulse-on state.
The ratio n;/n¢ of the initial to final mode occupancy during the pulse is the effective
decay ratio of the mechanical mode and is fitted to obtain an intrinsic decay rate
vo. At milliKelvin temperatures, the dynamics of (n) during the pulse is dominated
by two processes: back-action cooling via the red-detuned pump, and optical-
absorption heating which has previously been characterized in similar devices at
milliKelvin temperatures [30, |98]]. The optical absorption and subsequent phonon-
assisted relaxation processes can be modeled phenomenologically by introducing an
effective local phonon bath of occupancy n, which couples to the mode of interest
at a rate 7y, (see Section[6.3). Thus, during the pulse-on state the total mechanical
damping rate is y = yo + ¥, + Yom, Where 7 is the intrinsic damping rate to the
local milliKelvin fridge-temperature bath of occupancy ng. As detailed in Ref. [98]],
the effective rate equation for the mode occupancy during the pulse can be modeled
as (n) = —y(n) + Yphip(1 — 6pe™5") + yong, where 6y, is a fraction of the hot phonon
bath which turns on slowly at a rate ys and (1 — 6p) is the fraction which turns on

effectively instantaneously. This rate equation has the solution

(n)(t) = (nY(0)e ™ + ne(1 — ™) + ns(e™s" — ™) (5.2)

in terms of the steady-state occupancy ny = (ypnp+yono)/y, where ns = ypnpop /(ys—
v). Here the variable ¢ labels the elapsed time since the pulse turn-on.

The hot phonon bath does not leave the nanobeam structure instantaneously after the
pulse is turned off, but rather introduces a transient heating lasting from several us to
several ms, depending on the details of the device geometry and surface preparation.
This residual bath results in heating of the cavity mode to a peak occupancy npeax
after the end of the optical pulse. At longer times Tyg in the pulse-off state, the
mechanics ultimately undergoes free exponential decay such that
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Figure 5.6: Phonon dynamics during the red-detuned excitation pulse. a,
Phonon number as a function of time Ty during the red-detuned (A = +wy;,)
optical excitation pulse, measured with Tog = 654 us and on-state photon number
ne = 569. Squares are data points and the solid line is a best fit to the dynamical
model. The nanobeam device has six periods of acoustic shielding, and device
parameters are (K, Ke, £0, Wm, Yo) = 27 (1.13 GHz, 605 MHz, 713 kHz, 5.013 GHz,
0.21 Hz). During the pulse, back-action cooling occurs at a timescale y(_)]lv[ ~ 100 ns.
Note that the initial mode occupancy n; = 27 phonons is determined by extrapo-
lating the model fit back to Tpyse = 0, while the earliest measurement bin has an
occupancy of 13.6 phonons. The optical-absorption-induced bath heats the mode
at a rate ypn, according to Equation[5.2} such that at long Tpyise a steady-state mode
occupancy ng is reached. Here ny = 4.2 phonons. The bin size is 10.24 ns. b,
Normalized phonon occupancy during and after the optical pulse. In the pulse-off
state (gray squares), the residual phonon bath heats the mode at a rate y,(#)np(t),
where the bath damping and effective occupancy are explicitly time-dependent. A
full dynamical model of the bath heating is used to generate the fit (dotted line).
The purple data point in the off-state plot indicates the pulse shown in the on-state
plot (Tog = 200 us).
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T
i+l = Npeakke 0 °F, (5.3)

where the subscript k labels the k™ pulse. In steady-state, all pulses are identical,
and the decay ratio becomes simply 7;/ns = Ae™"Tof where we have defined the
normalization constant A = 7peak /n¢. Figure shows a representative measure-
ment of the pulse occupancy with high time-resolution (10.24 ns) for a high-Q
device having six periods of acoustic shielding, obtained using a pulse delay time of

Tof = 654 us and a large readout photon number of n. = 569 in the pulse-on state.

A series of measurements of the pulse occupancy at various Ty values allows fitting
of the decay of the initial occupancy n; = Ange™7°Tof as shown in Figure The
final pulse occupancy ny is approximately constant for each measurement, so plotting
the initial occupancy is approximately equivalent to plotting the normalized decay
ratio n;/n¢. For sufficiently long Tog, the initial peak in the pulse occupancy decays
to below the steady state occupancy n¢. From this decay curve we extract a decay
constant of /2 = 0.24 Hz, corresponding to a mechanical Q-factor of 2.09x 10'°.
We choose the pulse duration (here 10 us) such that the effects of back-action cooling
and bath-induced heating reach a steady-state during the pulse, ensuring that the
normalized decay ratio is referenced to a constant n¢ for different Tog. The measured
decay rate for this high-Q mode corresponds to an inferred thermal decoherence time
given by 7y, = (yo(no + 1/2))~' = 662 ms, which is representative of measurements
made on a large number of similar devices summarized later in Figure [6.3] This
result represents a promising improvement of more than two orders of magnitude in

measured fQ-products for OMC devices.
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Figure 5.7: Thermal ringdown measurement of an ultra-high-Q acoustic mode.
a, Measured phonon occupancy during a red-detuned pulse with Ty = 10 ms for
a device having seven acoustic shield periods. Solid line is a fit to the dynamical
model Equation[5.2] b, Diagram of a ringdown measurement performed by varying
the delay Tog between subsequent pulses. The initial phonon occupancy n; (orange
squares) is measured for Tog = (10, 100, 250, 500, 1000) ms using a readout photon
number n, = 320. The phonon amplitude decay is fitted to extract an intrinsic
mechanical damping rate yo /27 = 0.24 Hz, corresponding to a mechanical Q-factor
of 2.09 x 10'° (1, = 662 ms). Device parameters are (k, ke, wm) = 27 (1.21 GHz,
362 MHz, 5.014 GHz). Insets show the measured occupancy during the pulse at
each T,g value; blue circles are data and solid lines are fits.
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5.4 Electromagnetically Induced Transparency at MilliKelvin Temperatures
Using Single-Photon Detectors
Electromagnetically induced transparency (EIT), or its cavity-optomechanical ana-
logue optomechanically-induced transparency (OMIT) allows for a spectral mea-
surement of the mechanical mode response function via observation of a trans-
parency window in the optical cavity reflection spectrum [16},99,|(100]. A pump laser
tone at w. is amplitude modulated to generate a weak probe tone at ws , = we £ Ap.
If the pump-cavity detuning is fixed on either the red- or blue-side of the optical
cavity (A = +wp), the optical susceptibility of the cavity strongly suppresses one
of the probe sidebands (at ws =) and only the other probe sideband will have an
appreciable intracavity population. For a red-detuned pump, the interaction of the
pump tone and mechanics with the probe sideband yields a reflection coeflicienct
r(A, 8) for the probe which contains a transparency window having a bandwidth

equal to the mechanical mode linewidth.

Derivation of Reflection Coefficient

To see the form of the reflection coefficient, we begin with the usual optomechanical
Heisenberg-Langevin equations of motion for the optical and mechanical fields. In
this semiclassical treatment we will ignore vacuum noise and be concerned only
with large coherent field amplitudes, making the replacement (4, b) — («, ) and
similarly for the noise input operators (din, lsm) —> (ain, Bin). The equations of

motion are then

@ = —(iA + g)oz —igoa(B* + ) + Vkein, G4
B = _(ia)m + %)ﬁ - ig()lalz + \/%:Bin’ (55)

We can explicitly separate the input field and intracavity field amplitudes at the

carrier and modulated-sideband tone frequencies,

=~ ay+ a_e et a+eiAPt, (5.6)

B~ Bo+ e + Bl (5.7)

Assuming that the sideband amplitudes are much weaker than the carrier, |a.| <

|ap|, we can assume the carrier amplitude is unaffected and solve for the sideband
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amplitudes in the frequency domain by grouping terms oscillating at the same

frequencies:

—iApas = —(iA + g)at — ig0a0B+ + VKein, 1, (5.8)
—iApB- = —(ia)m + %),8_ —igo(aga- + ao}) + \YiBin.-- (5.9)

Consider the case of a red-detuned pump for which A = +w,, > 0. Then in the
rotating wave approximation we may ignore terms like a; which are far detuned

from the cavity, and the mechanical amplitude can then be written

 —igo(aga-) + \Fibin.
—i(Ap — wp) + &

B (5.10)

and insert this into our equation of motion for @_. The result is

IG? )1( iG~YiBin.-

K
a_ = [I(A—=Ap) + = + — ;
( 2R —i(Ap — wm) +7i/2) \=i(Ap — wp) +7i/2

- VR ),
(5.11)
where as usual we have defined the enhanced optomechanical coupling rate G =

goo. Using Equation[5.11]together with the usual input-output formalism boundary

condition

Qout,- = Tin, - — \/Ea—’ (5.12)

the reflection coefficient is found to be

Qout,- Ke

_1- , (5.13)

. ; 2
ip - (A= (0 +wnm)+ % + %LG/Z

r(6) =

where we have defined an effective mechanical detuning 6 = A, — wp,.
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EIT Using SPDs: Measurement Data

We measure the reflection amplitude R = |r|* given in Equation by driving an
EOM weakly to generate a probe tone and observing the count rates of sideband-
scattered probe photons. The pump is locked at A = +wy and the cascaded
filter stack is locked to the cavity frequency. The RF modulation power is chosen
to generate a sideband intracavity photon number much smaller than the carrier
photon number (7. , < n¢) while maintaining a large count rate ~ 10° c.p.s. at the
SPDs to minimize data integration times. This corresponds to modulation indices
in the range of & ~ 5 x 107 — 3 x 1073 for our system parameters. The modulation
frequency A, is swept over a range of about 1 MHz, with the reflected count rate
measured at each step, to map out the transparency window. This range is large
enough to include the optomechanically-broadened mechanical linewidth which sets
the bandwidth of the transparency window, but much narrower than the bandwidth
of the FFP filters (= 50 MHz), allowing for the filters to be stably locked at a single
position in the center of the optical cavity line throughout the measurement. Figure
[5.8] shows the normalized reflection level detected for various optical probe power
levels n., as well as fits to the data using the model Equation[5.13] The extracted total
mechanical linewidth y = y;+7,+yowm is plotted in Figure[5.8] Atlow probe-power,
v/2r saturates to a value ~ 50 kHz, which represents time-averaged broadening of
the intrinsic mechanical linewidth due to jitter of the mechanical frequency. With «

and n. known, the linear portion of the curve is fitted to extract go/2m = 833 kHz.



91

a
120
C
9 100
(9}
(0] n:
= 80 =
>
? 60 2
5 -
£ 40 &
S
z 20

-600 -400 -200 0 200 400 600
6/2m (kHz)

b 400
350¢
300¢

N 250t

=3

= 200F

N

= 150
100f
50gpe

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140

n, (photons)

g,/2m =833 kHz

Figure 5.8: EIT mechanical spectroscopy performed at Ty = 10 mK using
single-photon detectors. a, Normalized reflection amplitude for probe photons
as a function of pump photon number. The reflection peak represents an EIT-like
transparency window approximately centered within the bare optical cavity line (a
Lorentzian with width x/2n ~ 1 GHz). Asymmetry in the trace at n, = 129 can be
attributed to an effective detuning shift, likely caused by thermal shifting of the cav-
ity at high input power. These EIT measurements were performed on a device having
seven acoustic shield periods and mechanical Q = 1.5 x 10'° measured via ring-
down. b, Plot of the fitted total mechanical linewidth y versus pump photon number.
Atlow nc, y/2n saturates to ~ 50 kHz due to mechanical frequency jitter. At higher
ne, the mechanical mode is broadened by yom and we extract go/2n = 833 kHz.
Device parameters are (k, ke, Wm, Yo) = 21 (1.244 GHz, 261 MHz, 4.98 GHz,
0.33 Hz).
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5.5 Mode Thermalization Measurements

At the lowest milliKelvin temperatures, the mechanical mode thermalizes to a bath
temperature 7, which is related to the applied fridge temperature 77 through the
thermal conductance Gy, of the structure (see Figure inset) which is dependent
upon the details of the local device geometry and material. As detailed in Section[6.3]
the finite dimensions of the thin-film nanobeam OMC modify the phonon density of
states of the phonon bath at low temperature, giving rise to a quasi-discrete spectrum
of bath modes well-approximated by a 2D density of states. A simple model for
the thermal conductance valid for a 2D density of states of bath modes, Gy, « T2,
yields an effective temperature offset between the fridge temperature and the bath

thermalization temperature:

P P
Tb:Tf+G—th:Tf+ th

—, (5.14)
2
th ATb

where Py, is an effective heating power of the bath upon the mode of interest.
We aim to measure the minimum temperature 7y to which the mode thermalizes
at the lowest fridge temperature 7t = 10 mK, and the corresponding true low-
temperature fridge bath occupancy ng. We perform this measurement using a
low-power (n. = 10) red-detuned pulsed probe and a device having relatively low
mechanical Q = 3.57 x 10°, such that for a rapid measurement repetition rate 1/ Toer
the mode is well thermalized to its base temperature between subsequent incident
optical pulses. The initial mode occupancy during the pulse then approximately
corresponds to the "off-state" occupancy ny. However, as the optical probe turns on
during the first several time bins of the pulse, the mode is heated such that the initial
observed occupancy exceeds ny. We therefore extract ng by fitting the pulse on-state
occupancy data to the full dynamical heating and damping model, and extrapolate

the fit back to Tpyise = 0 to measure the true bath occupancy ny.

Figure [5.9] shows the fit to the pulse occupancy in the on-state, which yields a
best fit value 7, = 35.6 mK, corresponding to an initial fridge bath occupancy of
no = 1.1 x 1073, While the fit is not tightly constrained by the bath temperature,
the best fit corresponds well to previously estimated values [26] and is a small
modification to the temperature of the measured initial occupancy, which yields
60 mK. From these points we can set reasonable bounds on the bath temperature,
as shown in Figure [5.9a, where the lower bound of 10 mK is set by the minimum

applied fridge temperature, and the upper bound 60 mK corresponds to the directly
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Figure 5.9: Base temperature phonon occupancy measurement and pulse turn-
on dynamics due to heating. a, Mode occupancy during the pulse on-state of a
zero-shield device. The photon number ., = 10 is chosen to be small to minimize
parasitic heating during the initial time bins of the pulse (bin size is 10.24 ns.). The
model best-fit corresponds to T, = 35.6 mK (9 = 1.1 x 107). Bounding curves to
the fit are shown for 7, = 60 mK (orange dashed line) and 7, = 10 mK (green dotted
line). b, Overlay plot of the initial time bins of the mode occupancy curve and the
input optical pulse (purple squares). Time bins earlier than 51.2 ns occur during the
fast rise of the pulse, which occurs at a timescale set by the rise of the EOMs and
optical switches. The first measurement bin is chosen at T,ye = 51.2 ns, where the
input optical pulse has reached > 70% of its nominal on-state value (here n. = 10).
For 10.24 ns binning as shown here, the initial measurement bin is bin number 5.
Device parameters are (k, ke, Wm, Yo) = 27 (1.507 GHz, 778 MHz, 5.050 GHz,
14.1 kHz).

observed occupancy value in the initial measurement bin.

Measurement Sensitivity
The sensitivity of the mode thermalization measurement can be estimated using the

expression

(5.15)

2
Kzrdark KWy,
NNEp = —————— + A .

AnKegine 2ke 80

and the known setup efficiencies and device parameters for the zero-shield device
on which the thermalization measurement was made. Compared to the sensitivity
measurement in Figure the setup has undergone various improvements. First,
the detector dark count rate was decreased to ~ 0.8 c.p.s. by additional coiling of
the optical fiber inside the fridge and isolation of the fiber paths outside the fridge
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from environmental lighting. Additionally, the overall detection path efficiency
was improved by ~ 5 dB by replacing various fiber-unions in the detection path
with fiber-splices. In particular, the insertion loss of the cascaded filter bank was
improved by 4.5 dB between experimental runs performed in 2015 and 2017. The
resulting measured sensitivity plot is shown below (Figure [5.10), obtained in 2017.
The minimum effective sensitivity nygp = 0.010 is achieved for photon number
ne 2 100. Note that this effective sensitivity depends upon the filter bleed-through
through the parameter A in Equation4.9| which is frequency-dependent as illustrated
in Figure [.1] due to the laser phase noise characteristic and the filter response
functions. The sensitivity of nygp = 0.010 obtained for a device having mechanical
frequency 5.05 GHz, whereas the ultimate maximum sensitivity ever measured
using this setup is nygp = 0.007 for a device having mechanical frequency 5.6 GHz
in Ref. [26]. Future improvements to the phonon counting sensitivity will be
achievable in a number of ways via reduction of the pump bleed-through count
rate. Notably, improvements in the cavity Q-factor are not immediately useful in
reducing the technical phonon counting sensitivity, as the first term in Equation 4.9
is an order of magnitude smaller than the second term in the range of measurement
photon numbers around n; ~ 10 — 100. The greatest improvements will come from
technical improvements in the ability to filter the pump laser in the sideband filtering
bank, either through alternative filter architectures or improved setup efficiency.
Additionally, over-coupling of the optical cavity serves to reduce effective sensitivity,
as does any substantial improvement to the optomechanical coupling rate which may

be realized in next-generation (quasi-2D or other) OMC devices.
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Figure 5.10: Phonon counting sensitivity improvements. Plot of the phonon
counting sensitivity of the measurement setup as of 2017. Data were taken on the
zero-shield device presented in Figure [6.7] Compared to Figure §.1] a reduction
in SPD dark counts to 0.8 c.p.s. has been made, as well as an increase in the
overall optical path detection efficiency. The solid red line corresponds to the
noise contribution from pump bleed-through counts, and the dashed purple line
corresponds to the contribution from SPD dark counts. The thick green line is the
total nygp as a function of n. predicted by the model. We achieve maximum a
maximum sensitivity of nygp = 0.010 with these device parameters, (k, ke, Wm, Y0)
=2r (1.507 GHz, 778 MHz, 5.050 GHz, 14.1 kHz).
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Chapter 6

ULTRA-HIGH-QUALITY PHONON MODES IN
NANOMECHANICAL RESONATORS

Mechanical resonators are used in a wide variety of technical applications, from
precision time keeping and sensing, to the delay and filtering of microwave signals in
mobile communication systems. Critical to many of these applications is the ability
of a mechanical object to store vibrational energy at a well defined frequency of
oscillation and with minimal damping. Energy damping can occur through acoustic
radiation into the resonator support structure, or through impurities and defects in
the resonator material, and is highly dependent on the temperature of operation due
to the inherent anharmonic motion of atoms within solid-state materials. Here we
present optical measurements down to milliKelvin temperatures of the acoustic mode
properties of a crystalline silicon nanobeam cavity incorporating a three-dimensional
phononic bandgap support structure for acoustic confinement. Utilizing pulsed laser
light to excite a co-localized optical mode of the structure we are able to measure the
dynamics of the internal cavity acoustic modes which are coupled to the light field
via radiation pressure. These measurements represent an almost ideal scenario in
which the ringdown occurs free of any additional mechanical or probe field contact,
and where elastic scattering or radiation of the acoustic field does not lead to energy
damping due to the full bandgap shield. The resulting ringdown measurements for
the fundamental 5 GHz acoustic mode of the cavity show an exponential increase in
phonon lifetime with phononic shield period number, which at a bath temperature of
35 mK saturates above six periods to a value as long as 1.5 s. This ultra-long lifetime,
corresponding to an effective phonon propagation length of several kilometers, is
found at the lowest temperatures to be consistent with damping from non-resonant
tunneling states whose energy lies below the acoustic shield phononic bandgap, and
which are most likely present in the amorphous etch-damaged region of the silicon
surface. Other, more rapid forms of damping such as resonant tunneling state
damping or three-phonon scattering are suppressed due to the phononic bandgap
shield and the reduced density of phonon states in the effectively one-dimensional

nanobeam geometry. Prospects for new applications of ultra-coherent nanoscale
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mechanical resonators include tests various collapse models of quantum mechanics,
or if appropriately integrated with microwave superconducting quantum circuits,
as miniature quantum memory or processing units with potentially many-orders of

magnitude longer coherence time than their electromagnetic counterparts.

In this chapter we present a summary of various measurement techniques used to
study these ultra-high-Q confined acoustic modes, especially under coherent excita-
tion to large phonon amplitude and in the presence of optical-absorption heating, as
well as under the influence of back-action amplification to the regime of mechanical
self-oscillation at extremely low threshold powers. The theoretical model of the
optical-absorption heating phonon bath is developed in detail, and is compared with
measurements of the bath properties as a function of laser power to constrain the
effective dimensionality of the reduced bath phonon density of states proposed in
the model. We exclude the possibility that the measured mechanical Q-factor is a
residual effect of technical noise or unaccounted global lattice heating by obtaining
consistent ringdown curves through three independent measurement techniques, in
which the range of average optical power used to excite and probe the mechanical
decay varies over more than three orders of magnitude. Furthermore, we observe
an exponential relationship between the number of acoustic shielding periods and
the mechanical Q-factor in agreement with numerical modeling results at low pe-
riod number, as well as a saturation of the Q-factor at large period number which
is quantitatively consistent with theoretical analyses of the intrinsic damping rate
attributable to material defects and anharmonicity of the Si lattice (see Chapter (7).
We conclude with a discussion of the relevance of these high-Q nanobeam OMCs
to quantum coherent optomechanics featuring an analysis of the achievable quan-
tum optomechanical cooperativity Ces in the presence of large optical-absorption
heating, and the technical limits thereof, proposing routes to further improvement

of Cef foreshadowing a discussion of quasi-2D planar OMCs in Chapter [3]

6.1 Impact of Fabrication Imperfections on Mechanical Q-Factor

Imperfections in the realized device structure due to randomness and disorder in
the fabrication process will impact the energy loss rate of the mechanics, primarily
by breaking symmetries of the structure and introducing coupling between the
mode of interest and other mechanical modes below the acoustic shield bandgap
which radiate acoustic energy into the bulk. We study the impact of fabrication
imperfections numerically using FEM modeling of the full device geometry [42], as

shown in Figure [6.1] by introducing randomness to the geometric parameters of the
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simulated structure. The unit cells of the acoustic radiation shield are parameterized
by nominal parameters h, = 503 nm and w, = 169 nm as introduced above, as well
as a nominal center coordinate .. Similarly, the unit cells of the nanobeam OMC
are parameterized by the elliptical hole height hj, width wj, and center coordinate

A

Cp.

E— |
=
=

Displacement (a.u.)

—
»

Figure 6.1: Modeling of the breathing mode in the presence of fabrication dis-
order. Finite-element method (FEM) simulation of the breathing-mode mechanical
displacement field for a nanobeam OMC with N¢ = 6 periods of acoustic shielding,
illustrating localization of the vibrational energy. The geometry in the simulation
consists of the nanobeam OMC, acoustic shielding, and the surrounding silicon
substrate. The borders of the simulation geometry are modeled as an absorbing
perfectly-matched layer (PML, outlined with solid black lines). The insets show
critical parameters of the device geometry. To introduce disorder into the simu-
lations, each of these geometric parameters is drawn from independent Gaussian
distributions centered on the nominal design parameter value and having a standard
deviation o in units of nm.

The simulated structures are then generated by drawing each geometric parameter
from an independent Gaussian random distribution centered on the nominal design
value and having standard deviation o in units of nm, analogous to the impact
of random fabrication disorder upon realized structures. We separately consider
randomness in the center coordinates €. and ¢, with a standard deviation ooy and
in the hole-size parameters with ;.. For the results plotted in Figure[6.2] we choose
realistic randomness parameters, with o, = 4 nm fixed and varying oposn = 2, 4,
and 8 nm. Absorbing perfectly-matched layer (PML) boundary conditions are used
in all of our modeling. In Figure[6.2p we plot a line cut of the integrated acoustic
energy density W along the longitudinal (£) direction of the nanobeam. The partial
bandgap of the mirror unit cells of the nanobeam provides some localization of the
acoustic energy density, with a simulated cavity-mode mechanical Q-factor on the
order of 10° for Oposn = 2 nm, in reasonable agreement with measured values of
Q ~ 4 x 10°. The acoustic energy density decays rapidly in the full-bandgap shield

region. Here the modeling results yield a scaling Q o e!”Nc_ where N is the
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number of cross shield periods. In simulation this trend of exponential increase
of Q with shield period number continues to larger N¢, though as we detail below
losses due to a combination of intrinsic material nonlinearity and strain-coupled

defects are dominant for N¢ > 4.
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Figure 6.2: Simulation of the impact of fabrication disorder on the mechanical
QO-factor. a, Plot of the simulated mechanical Q-factor due to acoustic radiation
from the cavity through the acoustic shielding for randomness parameters oposy =
0,2,4,8 nm. The straight lines are exponential fits. b, Plots of the normalized
acoustic energy density W at various cut planes throughout the beam at longitudinal
position x, for oposn = 2, 4, 8 nm.

6.2 Impact of Acoustic Bandgap Shielding on Mechanical Q-Factor

While the modeling results presented in Section[6.1]suggest an exponential increase
in mechanical Q-factor with increasing period number of the acoustic bandgap
shielding, one expects that effects not incorporated into the structural FEM modeling
will ultimately cause deviations from this trend and a resulting saturation of the
mechanical-Q to some maximum value. This saturation may be due to any of a
variety of non-idealities not captured by the FEM modeling, including the intrinsic
anharmonicity of the Si lattice, defects or impurities present in the crystal lattice, or
coupling of the breathing mode to additional degrees of freedom in the amorphous
material at the Si surface. Of particular interest is the amorphous surface material,
which generally consists of a layer of etch-damaged Si as well as a thin native
oxide growth which is well-known to contain two-level system (TLS) fluctuators
and electronic defect states with large dipole coupling to strain and electromagnetic
fields [101} [102]. The impact of these and other non-idealities to the lifetime and
coherence of the mechanical mode will be addressed in detail in Chapter[7} Here we
will only summarize the experimental indications that deviations from the radiative

loss rate g through the acoustic shielding are observed.
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Figure 6.3: Measured mechanical Q-factor at 7 = 10 mK versus number of
acoustic shielding periods. Arrays of otherwise identically-designed nanobeam
OMC devices were fabricated with acoustic shield period number scaling from
zero to ten. The green circles represent ringdown measurements performed using
red-detuned excitation by optical-absorption heating to a thermal population of
~ 10 phonons. The blue square represents a ringdown measurement using coherent
excitation of ~ 3 x 10* phonons. The solid green line is a fit to the corresponding
simulated Q-factor for device geometries having randomness parameter oo = 4 nm,
with a shaded region corresponding to the standard deviation of the simulated Q-
values. For devices with > 5 acoustic shield periods, the Q-factor is saturated to a
few tens of billions, and is no longer limited by radiation through the acoustic shield.
Inset: ringdown decay curve for the 8-shield device indicated by the blue square.
The solid line is an exponential fit from which we extract Q = 3.60i8:§§ % 10'°, and
the shaded region represents a 90% confidence interval.

Figure [6.3] summarizes a series of ringdown measurements performed on nearly
identical nanobeam devices at the base temperature 7y = 10 mK of a dilution
refrigerator. Arrays of devices were fabricated as shown in Figure [3.3] wherein the
optical and mechanical design parameters of the devices are held identical, and
the number of acoustic shielding periods is varied from zero to ten. In this way,
the only variations from one device to the next will be due to fabrication-induced
randomness and the deliberate scaling of the acoustic shielding period number.
Measurements of the mechanical-Q factor of each device were performed using
the thermal excitation ringdown technique as illustrated in Figure[5.3] in which red-

detuned pulses indirectly excite the mechanical mode to a thermal population of order
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10 phonons through generation of a large optical-absorption phonon bath locally in
the nanobeam. For devices having between zero and four acoustic shield periods,
the Q-factor follows an approximately exponential trend with N¢, corresponding to
the scaling predicted from modeling the full acoustic structure with a randomnes
parameter of oy0sn = 4 nm. Note that there are large variations in Q-factor from
one device to another of a fixed shield number, which is also consistent with the
modeling results, and likely arises from variations in the realized geometry of the
local optomechanical cavity defect. For N¢ > 5, the Q-factor is observed to saturate
to a value < 5 x 10'°, representing a deviation from the ideal unbounded scaling
predicted by FEM modeling. This saturation indicates that the dominant damping
mechanism influencing the mechanics is not radiation through the acoustic shielding
for sufficiently many periods of acoustic shielding, but rather that additional non-
idealities are present as loss channels for the regime of Q~! ~ 10710 (or at the
frequency of interest, an energy damping rate of /2w ~ 0.1 Hz). In Chapter [7| we
will explore the contributions of various material non-idealities and defects to the
observed energy decay beyond the acoustic-shield radiation limit, relying primarily
on temperature-dependent measurements of the total damping rate and theoretical
models of the behavior of these various damping mechanisms as a function of

temperature.

6.3 Properties of the Optical Heating Bath

Optical absorption induces additional heating and damping to the cavity mechanical
mode in silicon OMC devices at milliKelvin temperatures, likely through excita-
tion of sub-bandgap electronic defect states at the silicon surfaces which undergo
phonon-assisted decay to generate a local bath of thermal phonons coupled to the
cavity mode [30]. We may gain some understanding of the optically-induced bath
which heats and damps the mode of interest by considering a simple model of
the phonon-phonon interactions which couple the bath to our breathing mode. As
we are concerned in this work with the phonon dynamics at low bath temperature
(Ty < 10 K), the mean free path of the thermal phonons of the heating bath is large
compared to the breathing mode wavelength. In this regime the phonon-phonon
interactions leading to heating and damping of the breathing mode can be under-
stood in terms of a Landau-Rumer scattering processes [[103, |104], in which the
anharmonicity of the silicon lattice gives rise to nonlinear phonon mixing processes
(see Chapter([7). In this context, we may consider a simple model in which our mode

of interest at frequency w,, is coupled to higher-frequency bath phonon modes at
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frequencies w; and w,, with wy — w; = w,,. Then we may write the scattering rates
into and out of the mode of interest to first order in perturbation theory [30, 103]] as
Iy = A(ny + 1)(np + 1)ny and ' = An,,ny(ng + 1), respectively, where np, ny, and
n,, are the number of phonons in each mode involved in the scattering and A is a
constant describing the Si lattice anharmonicity. Then the overall rate of change in

the occupancy of the mode of interest is

g =Ty —T_=-A(n; —nmo)n,, + Anj(ny + 1). (6.1)

This expression has exactly the form of a harmonic oscillator coupled to a thermal

bath with rate y, = A(n; — ny) and effective occupancy n, = Ana(ny + 1)/vp.

In the real material system of the nanobeam, the local hot phonon bath at elevated
temperature Ty is expected to be generated as THz-frequency electronic states un-
dergo phonon-assisted relaxation processes, emitting a shower of high-frequency
phonons which subsequently decay by a cascade of nonlinear multi-phonon interac-
tions into a bath of GHz phonons. Due to the relatively large geometric aspect ratios
of the thin-film nanobeam, the local density of phonon states becomes restricted at
lower frequency, decreasing the rates of phonon-phonon scattering at low frequency
relative to those of a bulk crystal with a 3D Debye density of states. The beam
thickness (r = 220 nm, width w =~ 560 nm, length / ~ 15 um) corresponds to a rel-
atively high cutoff frequency in the vicinity of wc /27 = v;/(2t5) = 20 GHz, where
v; = 8.433 km/s is the longitudinal-phonon velocity in Si. This cutoff frequency
imposes an effective phonon bottleneck preventing further rapid thermalization to
lower-lying modes and a resulting buildup in the bath phonon population above
the bottleneck. For phonon frequencies below the cutoff, where the wavelength
is large enough to approach the lattice constant of the acoustic bandgap clamping
region, the reflectivity of the clamping region increases as ballistic radiation out of
the nanobeam is suppressed. The result is a reduced density of phonon states near
and below the cutoff, where the nanobeam supports quasi-discrete (and long-lived,
especially in the vicinity of the mirror bandgap and acoustic shield bandgap) phonon
modes at lower frequency as outlined in Figure[6.4 The phenomenological coupling
rate y, describes the rate at which the lower-lying modes—in particular the breathing
mode at 5 GHz—are coupled to the elevated-temperature bath of higher-frequency

phonons above the bottleneck.

In the context of this proposed phonon-bottleneck model, we now consider instead of
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a discrete pair of modes n; and n; a quasi-continuum of high-frequency bath modes
coupled to the mode of interest via an anharmonicity matrix element A(w; w,,). We
will assume that the thermal phonons populating the bath have sufficient time to
thermalize among each other before decaying, or in other words, that they couple
to each other at a mixing rate ypnix much greater than their coupling rates to their
external environment or to the lower-lying modes. Under this assumption, we may
define an effective local temperature 7}, such that the occupancy of a bath phonon at

frequency w is given by the Bose-Einstein occupation factor

1

T (6.2)

Npath(w) =

b P abs ~ N¢ =———————————>
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Figure 6.4: Impact of the phonon-bottleneck on the optical-absorption bath.
a, Cross-sectional dimensions of the thin-film nanobeam. b, Absorption of sub-
Si-bandgap photons gives rise to phonon-assisted decay of THz phonons into a
local bath of GHz phonons in the nanobeam. This bath is expected to experience a
bottleneck at a cutoff frequency corresponding to the cross-sectional dimensions of
the nanobeam, such that a high-frequency phonon bath accumulates and thermalizes
among itself to a local temperature 7, at rate ypix. In the vicinity of the bottleneck
frequency the relevant normal modes of the beam are those shown in the inset (black
lines are schematics of the local strain in the beam). The lowest-lying discrete mode
(wo, tp) is a fundamental bowstring mode of the nanobeam at ~ 20 MHz.

The temperature 7y can then be simply related to the absorbed optical power Paps
using simple a simple model of the lattice thermal conductivity. Assuming the
optical absorption process is linear, we can write the absorbed optical power as a

fraction 1 of the optical pump power: Pups = nPin, = n'nc. In steady state, the power
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output into the phonon bath is equal to its input, Poyt = Paps ~ ne. Well-known
models of the lattice thermal conductivity in silicon at low temperatures describe
a thermal conductance scaling as the cube of temperature [105, [106], Gy ~ Tb3,
corresponding to a bath temperature scaling of Ty, ~ thh/ 3. Pél/f ~ né/ 3. This
approximate scaling is expected to be valid for the high-frequency thermal photons
with wavelength small compared to the dimensions of the beam [107] which are
excited via decay of higher-lying electronic and acoustic states. Now, for a local
phonon bath density of states p(w), we can calculate the effective coupling rate y,

between the local bath and the mode of interest in analogy with Equation [6.1}

¥ = /0 " 4w A omp(@)p(@ + On)lman(©@) — (@ + o)l (63)

In a simple continuum elastic model [30, 103]], the product of the anharmonicity
matrix element A(w;w,,) and the density of states is taken to obey a polynomial
scaling A(w; wy)p(w)p(w) = A’w* for some constants A’ and a, where we have
introduced the cut-off frequency below which we assume the density of states is

zero. With this assumption,

Yp= A / dw (0 — wc)® (Mpat[w] = npa[w + wm]) (6.4)
Y ® . a | Mbath [0) + wm](nbath [0)] + 1)
=A /wc dw (w — we) ( nalhom/keT] (6.5)
A/ (o]
= ng [hwm/kBTp] +1 LC dw (CL) - wC)a (nbath [w](nbath [(.l) + a)m] + 1))7 (66)

where in the last line we used the identity ng[x + x"|(ng[x] + 1)/ng[x’] = (ng[x +
x']+ 1)ng[x]/(ng[x'] + 1). Making a change of variables to x = /i(w — wc)/ksT, in
the integral in Eq. (6.6)), we have

) (5

a+1 )
Yp = (nB[xm] 11 7 ) /0 dx x* (ng[x](ns[x + xm] + 1)) (6.7)

where Xy, = hwny/kpTp. The integral in Equation |6.7|depends on temperature only
through x,,, and in the small and large x,, limit (corresponding to low and high
temperature), is relatively independent of x,,. If we assume that the anharmonicity
element A[w; w,,] is approximately frequency independent, and the only frequency

dependence in A’ (w—wc)® comes from the phonon density of states, thena =~ 2(d—1)
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for a phonon bath of dimension d. We can thus make a general observation about the
scaling of the bath-induced damping rate 7y, in the low (x;, > 1) and high (x,, < 1)

temperature regimes:

- (faloye o 20D o b, 68)
' _ .
(%)a+l N ngzd 1)/(d+1) fOI‘T < h;{um

for a generic hot phonon bath of dimension d. In a structure such as the OMC
nanobeam cavity we expect the dimensionality of the effective bath density of
states to be reduced relative to the Debye 3D density of states for a bulk crystal.
Here we will assume that the phonon bath has a two-dimensional density of states
corresponding to a = 2. In this case, we have the following scaling of the damping

factor with intra-cavity photon number,

(%)2 ~ nc/3 for T, > h]i"m,
Yp kT3 o (6.9)
(T) ~ N¢ for T < ks .

Upon thermalizing with the hot phonon bath, the effective thermal occupancy n, of
the high-Q breathing mode of the acoustic cavity can be found from a similar rate
equation analysis as considered for the 3-mode scattering in Eq. (6.I). Integrating
over all the possible 3-phonon scattering events involving the mode of interest at

frequency wy, yields,

1 o
= dw Alw; wn]plw]plw + On]nvam[w + O] (Mpan[w] +1])  (6.10)
P
~ [wc;- “mlA’ / dw W (npaim[w] = NMpam[w + Wm]) (6.11)
p wc
= np[fwm/ksT,]. 6.12)

We therefore have a characteristic scaling behavior for the effective phonon occu-

pancy n, coupled to the cavity mode of interest that is,

kgTy 1/(a'+l)d_2 1/3 hiw,
(m) ~ ne fOI'T > 1

KX (6.13)

np o .
exp{[~iwm/ksTp]} for 7, < 2.
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Bath Measurements

In order to measure the additional bath-induced damping rate y,,, we use a pump-
probe technique employing two laser sources. The pump laser is tuned to optical
resonance (A = 0) to eliminate dynamical back-action effects (yom = 0), and
impinges upon the cavity in continuous-wave (CW) operation. The pump laser gen-
erates a steady-state intracavity photon population 7. and feeds an optical absorption
phonon bath at elevated local temperature in the steady state. A second laser, the
probe laser, is used to make pulsed measurements of the mode occupancy as de-
scribed in Section [5.3] In the pulse-off state, but in the presence of the CW pump
laser light, the mechanical mode occupancy relaxes to a steady-state occupancy of

(n) = Vp(nc)”p(”c) + 7’0”0’ (6.14)
Yp(ne) + vo

at a modified total damping rate yo+7y,(n.), where y, and nj, are explicitly dependent
upon the pump laser photon number. By observing this modified exponential decay
rate we can directly extract yp, with yo known from independent measurements.
In Figure [6.5p, a ringdown measurement of the total damping rate in a high-Q
nanobeam is shown for a pump laser photon number of n. = 1072, from which we
extract y,/2m = 42.8 Hz.

For larger power levels n., the steady-state occupancy (n) becomes comparable to
the final occupancy n¢ during the pulse due the additional heating term y,n, in
Equation [6.14] In this range of optical power, which for the device presented here
corresponds to n. of order unity, no decay in the occupancy as a function of Tog will
be observed via the thermally-excited ringdown technique. However, it is possible
to probe the scaling behavior of v, at larger n. by observing the relaxation of (n)
to an elevated value greater than ny in the pulse-off state, if the bath temperature is
sufficiently high. In this case, we observe a ring-up in the pulse-off state from the
final pulse occupancy s to the elevated (n), with an effective amplification rate given
by the difference of the total heating rate and the total damping rate: yp(nc) — ¥o.
However, as we have previously discussed, the probe laser itself introduces a sh