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ABSTRACT 

This thesis consists of two parts . The first one is "Scattering of Waves in 

a Random Medium," and the second one is "Radiative Transfer in a Sphere 

Illuminated by a Parallel Beam: An Integral Equation Approach." 

In the first part, a new formalism tor partially coherent wave scattering 

in a random medium is developed. In this formalism the coherent wave is the 

solution of a phenomenological wave equation, and the mutual coherence func­

tion of the wave field satisfies a simple integral equation. Using this formalism, 

the Peierls equation can be readily derived. Also, an improved version of the 

Peierls equation is derived in which the intensity of the wave field and the first­

order derivative of the mutual coherence function are calculated at the same 

time. A simple problem is solved to find the mutual coherence function pro­

duced by a laser beam in the atmosphere. The similarity between the mutual 

coherence function and the density matrix or quantum mechanics is explored 

and a measure of the randomness is defined for the partially coherent wave 

field. 

In the second part of this work, the problem of multiple scattering of 

non-polarized light in a planetary body of arbitrary shape illuminated by a 

parallel beam is formulated using the integral equation approach. There exists 

a simple functional whose stationarity condition is equivalent to solving the 

equation of radiative transfer and whose value at the stationary point is propor­

tional to the differential cross section. Our analysis reveals a direct relation 

between the microscopic symmetry of the .Phase function for each scattering 

event and the macroscopic symmetry of the differential cross section for the 

entire planetary body, and the intimate connection between these symmetry 

relations and the variational principle . The case of a homogeneous sphere con­

taining isotropic scatterers is investigated in detail. It is shown that the 
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solution can be expanded in a multipole series such that the general spherical 

problem is reduced to solving a set of decoupled integral equations in one 

dimension. Computations have been performed for a range of parameters of 

interest, and illustrative examples of applications to planetary problems are 

provided. 
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Part One 

Scattering of Waves in a Random Medium 
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I. INTRODUCTION 

Different kinds of waves, such as electromagnetic waves, elastic waves 

and sound waves, are widely used to explore the properties and structures of 

different substances. In remote sensing, information carried by visible, ultra­

violet and infrared radiation from remote objects is collected and analyzed. In 

recent years, using the space technology and coherent light sources, a tremen­

dous amount of accurate observation data has been collected. In order to 

deduce the correct information from the observed data we must know how the 

electromagnetic wave interacts with the objects and how it propagates in a 

medium. 

Unfortunately, most media such as the atmosphere of earth and the 

ocean, and planetary atmosphere are random in the sense that the optical 

characters of these objects are subjected to fluctuations from time to time and 

from point to point. It is impossible to find the exact solution for the problem of 

wave propagation in a random medium, which is described mathematically by a 

set of partial differential equations with random parameters. 

During the past several decades, different kinds of approximate methods 

have been developed to solve this problem. Some of them treat randomly distri­

buted scatterers; others deal with continuous random media. In fact, this dis­

tinction is not fundamental. and they are . closely related to each other from 

both a physical and a mathematical point of view. After all, microscopically, any 

medium is made of discrete scatterers. 

Historically, the single scattering approximation was developed to calcu­

late the scattering of electromagnetic waves from random medium ( Booker and 
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Gordon, 1950; Vallars and Weisskopf, 1954; Salpeter and Trieman, 1964; Tatar­

skii. 1961; Wheelon, 1959; Sheffield, 1975; Hardy and Katz, 1969; Ishimaru, 

1978a; Bremmer, 1964; Batten, 1973 ). In many cases, this approximation is 

sufficient. But there are some situations where the multiple scattering effects 

must be taken into account. For example, the data on lidar scattering from 

clouds ( Milton et al., 1972; Anderson and Browell. 1972; Cohen, 1975 ) have indi­

cated that the single scattering approximation is inadequate. 

The problem of multiple scattering of electromagnetic wave in a random 

medium has been investigated from two points of view, "phenomenological" and 

"statistical". The phenomenological method is the radiative transfer theory. It 

deals with the propagation of the specific intensity of the radiation field and has 

been successfully used in many physical problems ( Chandrasekhar, 1960 ). It 

does not, however, deal directly with fluctuations and correlation functions of 

the field. This is rather unsatisfectary, since the problem of wave propagation 

in a random medium is essentially a statistical one. Also, in the phenomenologi­

cal theory it is impossible to find the region of validity for the radiative transfer 

equation or to incorporate the diffraction. Because the statistical method 

starts from first principles, the Maxwell equation, and uses the well-established 

ensemble averaging method, it is more fundamental. Several methods have been 

used to solve the moment equations, among which the so-called Bethe-Salpeter 

equation is of second moment. The diagram method ( Barabanenkov, 1967; Bar­

abanenkov and Finkel' berg, 1968; Tatarskii, 1971; Furutsu, 1972, 1975, 1985a, 

1985b and 1985c ); the operator method ( Furutsu, 1975 and 1980; Fante, 1982 

), and the asymptotic method ( Barabanenkov et al., 1972; Fante, 1975; Pro­

khorov et al., 1975) are commonly used. Instead of working with moment equa­

tions, some workers prefer the parabolic equation ( Beran, 1975; Shishov, 1968; 

Beran and Ho, 1969; Tatarskii,1971; Molyneux, 1971a and 1971b; McCoy, 1972; 



-4-

Furutsu, 1972 ), and others use the extended Huygens- Fresnel principle ( Tur 

and Beran, 1983; Feizulin and Kravtsov, 1967 and 1969; Lutominski and Yura, 

1971 ). As we have mentioned above, all these methods are approximate. They 

can usually give good results in their narrow region of validity. Some of them 

have been used to clarify the relation of the radiative transfer equation to 

Maxwell equation and give the former a more sound foundation ( Watson, 1969; 

Stott, 1968; Fante, 1973; Walther, 1968 ). Even the attempts have been made of 

putting certain diffraction effects of wave field in random medium into radiative 

transfer equation ( Lau and Watson, 1970; Barabanenkov et al., 1972 ). Since 

the basic quantity in radiative transfer theory, the specific intensity of radia­

tion, cannot be defined properly in statistical theory except in a vacuum ( Wolf, 

1976 and 1978, Zubairy and Wolf, 1977 ), a rigorous derivation of radiative 

transfer equation directly from Maxwell equation is still unavailable. This is just 

a minor problem of the theory of the wave propagation in a random medium. 

Although much progress has been made in the statistical approach, the user of 

these different methods still faces the problem of large number of parameters 

and conditions of validity. 

Because of the intrinsic complexity of the problem, it is not possible in 

the near future to establish a theory of wave propagation in a random medium 

that is comprehensive but still simple enough to be used by non-experts. But 

progress can be made along this direction using the new approach based on 

better understanding about the physical processes inside the medium when 

waves are propagating through it. 

The relationship between the multiple scattering, radiative transfer and 

wave propagation in a random medium becomes really clear only from the 

coherent theory point of view. In classical electromagnetic theory the refrac­

tion and diffraction of light in regular medium comes from the coherent sum of 
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all scattered waves ( R. P. Feynman et al., 1963, Vol. 1, Ch. 30 and 31 ) . What we 

need to do is to generalize this idea in the case of wave propagation in a random 

medium. The randomness of the medium produces the fluctuation of the elec­

tromagnetic field by wave scattering, which is not totally coherent. So the wave 

propagation in a random medium is a partially coherent phenomenon. When the 

coherence between different scattered waves is totally destroyed, the elec­

tromagnetic field loses its wave character and behaves just like a set of parti­

cles. In this extreme case the radiative transfer theory should be a good 

approximation. 

What we try to do in this research is to determine how the randomness 

of a medium destroys the coherence of the scattered waves . With better under­

standing of the basic physical processes, a more efficient method for partially 

coherent scattering problems can be developed afterwards. 

To simplify the problem, we use the scalar wave equation instead of 

Maxwell equation. Our working model is a finite volume of random medium with 

a light beam incident on it. Also we assume that the incident beam from the 

outside source is coherent, monochromatic and stationary. There is no funda­

mental difficulty in adding the vector character of the electromagnetic wave and 

the randomness of light source to the problem. We add the unscattered wave to 

the coherent scattering wave to form the coherent wave, which would be the 

whole wave field if there were no randomness in the medium. The coherent wave 

is not a random field. In a weakly random medium, we derive a phenomenologi­

cal wave equation for it. The index of refraction in this wave equation is almost 

equal to the average of the index of refraction of the medium. Because the 

coherent wave satisfies a wave equation with a regular index of refraction, it 

has all the wave properties, such as diffraction, refraction and interference. We 

can use the well-developed electromagnetic field theory to find the solution for 
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this equation. In the limit of geometric optics, the light ray follows a curve in an 

inhomogeneous medium. 

The total wave field is a random function, so we are interested only in 

the ensemble average quantities. For both practical and theoretical purposes, 

the most important one is the mutual coherence function ( see Born and Wolf, 

1980, Ch.lO ). We use the transformation between the background and source 

term to derive an integral equation for the mutual coherence function. This 

equation shows explicitly that the mutual coherence function consists of two 

parts, one of which comes from the coherent wave; the other comes from the 

incoherent wave . From this integral equation, the Peierls equation, the radia­

tive transfer equation for the homogeneous medium with isotropic scatterers, is 

derived naturally. We also derive a higher order version of the Peierls equa­

tions. A simple example is given to show the application of the integral equation 

to the mutual coherence function. Although the multidimensionality of the 

equation makes it difficult to solve in general. we think the simplicity of the 

mathematical form and the clarity of the physical processes will ensure the use­

fulness of this formalism in providing theoretical insight and numerical results. 

How to define the entropy for the partially coherent light beams has long 

been an interesting problem in physics. Jones (1953) used entropy to determine 

the reversibility of some optical experiments. Garno (1964) gave the definition 

of the entropy of a partially coherent radiation field . When we use the coher­

ence theory point of view to unify the radiative transfer theory and wave theory 

in random media, we need a quantity to measure the randomness of the wave 

field. If we can define this quantity correctly, it must be the entropy itself. In 

Section N, we use the similarity between the mutual coherence function and the 

density matrix in quantum mechanics to define a quantity which can measure 

the randomness of the partially coherent wave field in general. It is not exactly 
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the entropy as defined in thermodynamics . More work should be done before 

we can define a correct thermodynamic entropy for the partially coherent wave 

field. 
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II. A New Formalism for Wave Scattering 

1. The Wave Equation and Associated Physical Variables 

The steady state equation for the monochromatic wave scattered in a 

random medium is 

(II-1) 

where "//(r) is the random wave field, and k 2 (r) =( v ~r) )2 , with w = the frequency 

of the wave, and v (r) = the local phase speed of the wave. In electromagnetic 

wave scattering, 

v ( 7') = [ n ~ 7') l · 
So 

(Il-2) 

where k 0 = E... and n(r) is the index of refraction. n(r) is a random variable in 
c 

the problem. 

As in any statistical problem, we are interested only in the ensemble 

averaged quantities (Huang, 1963, Ch.7 ). This is because the index of refrac-

tion is a random variable. Talking about the state of a single system is meaning-

less, physically. All systems which are identical macroscopically can have a quite 
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different index refraction; so do the other physical variables . Only the ensemble 

averaged quantities can exclude ~he fluctuations and have real physical con­

tents. In our problem they are the mean-wave function <1/l(r)>, the mutual 

coherence function <1/l(r ~)1/l.(r~)> and higher-order correlation functions 

<1jl(r~)1/l(r~) · · · 1/l•(r~)1/l•(r~) · · · > ( Bohn and Wolf, 1980, Ch.10 ). Here 

< · · · > means ensemble average, and the upper index • means complex conju­

gation. Of all these quantities, the mutual coherence function <1/J(r ~)1/l.(r~)>, 

denoted by r(r ~.r~). is most important in optics and photometry. The mutual 

coherence function at the same points r(r~,r~) is the mean intensity of the wave 

field <11/J(r~)l 2 >, and the Fourier transformation of r(r~.r~) is related to the 

angular distribution of the wave energy flux ( Tatarskii, 1971 ). If r(r~,r~) is 

known, most optical problems can be solved. Fourth-order correlation func­

tions are needed only when wave intensity fluctuations are important ( Fante, 

1983, Majumdar, 1984 ) . 

The scattering properties of the medium depend not only on the mean of 

the index of refraction <n(r)>. but also on the autocorrelation of the random 

part of the index of refraction, 

(II-3) 

where n 1 (r) is the random part of the index of refraction 

nl (r) = n(r) - <n(r)> . (II-4) 

If the medium is statistically uniform and isotropic, 

<n(r)> =no ' 

where n 0 is a constant, and 
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N(r~,r~) = N(p) , (II-5) 

with 

(II-6) 

The autocorrelation function N(p) can have a different form, depending on the 

nature of the randomness of the medium. The following are some examples: 

(Il-7) 

is the Gaussian form, 

(II-8) 

is the exponential form, and 

(II-9) 

is the von Karman form, which was proposed by von Karman for turbulent media 

( Tatarskii, 1961 ). Here l is a real number, e.g., 1/3, and K, is a Bessel function 

of the second kind with imaginary argument. 

The r 0 is known as the "scale size" of the irregularities and can be 

thought of as the average distance over which the fluctuations of the index of 

refraction remain correlated. The a is a measure of the fluctuation intensity. 

2. Differential Equation for the Coherent Wave Function "¢tc(r) 

We divide the wave function "¢t(r) into a coherent part and an incoherent 

part, 
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(II-10) 

The coherent wave is defined by 

1/1 c ( r) = < 1/1 ( r) > . (II-11) 

which comes from unscattered incident wave and coherently scattered wave. 

This is the generalization of the classical electromagnetic theory, where there is 

only the coherent wave which consists of unscattered incident wave and 

coherently scattered wave. For the time being, we suppose that the incident 

wave is coherent. The two parts of the coherent wave produce all coherent 

phenomena of waves such as deflection, diffraction, reflection, and interference. 

The incoherent wave 1/1 1 (r) comes from incoherently scattered waves. This will 

be shown clearly in the integral equation for the wave function, Eqn. (II-22). 

By taking the ensemble average of Eqn. (Il-l), we have 

V2<1/l(r)> + <k2(r)1/l(r)> = o . (II-12) 

Obviously, k 2 (r) and 'ljl(r) are not statistically independent. This is because the 

fluctuation of the index of refraction causes the fluctuation of wave function. 

But this is done through the wave Equ. (Il-l). So the correlation length of the 

wave function should be of the same order as the wave length A "' 1/ k, which 

can be quite different from the correlation length of the index of refraction, T 0 • 

For stationary and statistically uniform problems, the ensemble average, the 

time average and the volume average are all the same. In volume average it is 

easy to prove that the average of the product of two variables with quite 

different correlation lengths is almost equal to the product of two average vari­

ables. So, if A>> T 0 or T 0 >>A, 
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We can write 

(Il-13) 

where o is a small correction, and 

1 o(r) 1 << 1 . (Il-14) 

We suppose that this small correction is the characteristic of the medium and is 

independent of the wave field. Otherwise, we would have to deal with a nonlinear 

wave problem. Define 

(II-15) 

In a simple problem we can derive the imaginary part of o(r) which is important 

in the complete formulation . From Eqn. (II-12) and (II-13), we find the 

differential equation for coherent wave 1/lc(r), 

(II-16) 

This is the Helmholtz equation with kc(r) as a wave number. Neither k;(r), nor 

1/lc(r) is a random variable . 

6(r) should be a complex function. If the medium is a pure scattering 

medium, k 2 (r) is a real function. In this case, the imaginary part of o(r) sup­

plies the only decay factor for a coherent wave as it propagates inside the 

medium. The decaying part of the coherent wave is not really absorbed by the 

medium; instead it is transformed into an incoherent wave. 
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The imaginary part of o(r) is crucial to our formalism. Except for some 

simple cases, it is very difficult to derive it from statistical properties of media. 

But we think it is not very difficult to measure it by experiment. 

3. Integral Equation for the Wave Function 'ljl(r) 

In the last section we have established the equation for the higher-order 

correlation functions of the wave field. We need the integral equation for the 

wave function 1/l(r). The integral equation, 

(II-1 7) 

is equivalent to the Helmholtz equation, 

(II-18) 

with appropriate boundary conditions. In Eqn. (Il-l 7), 1j1(0>(r) is the solution of 

equation 

[V2 + k;]-rp(0>(r) = o . 

and G(0)(r,r') is the Green's function which satisfies 

(II-19) 

(II-20) 

The boundary conditions of Eqn. (II-20) and (II-19) must be matched correctly 

with that of Eqn. (II-18), so that the solution of integral equation (II-20) is the 

solution of the original Helmholtz equation and boundary condition. If we write 

Eqn. (II-18) as 
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(II-21) 

the equivalence of Eqn. (II-21) and integral Eqn. (II-1 7) is obvious. Equation (II-

17) states that the solution of Eqn. (Il-21) is the sum of the solution of a homo­

geneous equation and a special solution of an inhomogeneous equation. We can 

call k; the background and [ k; - k 2 (r) ] the scattering source term, because 

the first term of the R. H. S. of Eqn. (II-1 7) is the wave field propagating in a 

medium with k 0 as the index of refraction, and the second term of R. H. S. of 

Eqn. (II-1 7) is the scattered wave. The scattered wave comes from every point of 

the medium, r. The intensity of the scattered wave is proportional to [ k; - k2(r) 

]. This wave also propagates in the same background medium described by the 

Green's function G(0>(r,r'), which is the solution of Eqn. (II-20). But there are an 

infinite number of ways to separate k 2 (r) into a background and scattering 

source term. Usually the vacuum is chosen as the background in scattering 

problems. But choosing other backgrounds may be more convenient in some 

cases. For example, the problem of wave propagation in the water with bubbles 

can be solved using the results of wave propagation in the air with water drops 

after the background of water is separated. If we want to separate the coherent 

wave from the incoherent wave, a more natural way is to choose k;(r) of (II-15) 

as a background. Then the integral equation for the wave function is 

(11-22) 

where 1/lc(r) = <'lj!(r)> is the solution of Eqn. (II-16) and .the Green's function 

Gc(r,r') is the solution of 

(11-23) 

The incoherent wave is defined by the second term of R. H. S. of Eqn. (II-22), 
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(II-24) 

Because of Eqn. (II-13) and (II-15), the ensemble average of the incoherent wave 

1/1 1 (r) is 

as required. 

<1/lt(r)> = J dr' Gc(r,r')[kc2 (r')<,P(r')>- <k 2 (r'),P(r')>] 

= f dr' Gc(r.r')[kl(r')<,P(r')> - kl(r')<w(r')>] = o , (II- 25) 

In the Appendix, a simple one dimensional scattering problem is solved 

to show that the integral equations with different backgrounds are equivalent. 

Also. it is found that the boundary condition must be treated with caution in 

order to get the correct solutions. 

4. Integral Equation for the Mutual Coherence Function r(r~.r~) 

The most important quantity in optics and photometry is the mutual 

coherence function of the wave field, defined by 

(II-26) 

The intensity of the wave field 

(II-27) 

is r(r,r). 

r(r~.r~). which itself is the correlation function of the wave function, can 

be measured and used to provide information about the random wave field ,P(r) 
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and the medium through which the wave propagates. So we need the equation 

which governs the behavior of r(r~,r;). 

The conjugate of the integral equation for the wave function (II-22) 

is 

l'•(r;) = 1/l;(r;) + 1/l{(r;) 

From Eqn. (II-28) and (II-29), we find 

The ensemble average of Eqn. (II-30) is 

(II- 28) 

(II-29) 

(II-30) 

(II-31) 

In deriving Eqn. (II-31), Eqn. (II-25) has been used. The definition of ,P 1 (r) is Eqn. 

(II-24). So, 

(II- 32) 

where 

s(r) = k~(r) - k2(r) . (II-33) 

By the same argument which was used in Section 2 of this chapter to get Eqn. 

(II-13), we have 



-17-

<S(r ~ ')s•(r~')'tf'(r ~')1ft •(r~ ')> ~ <S(r ~ ')s•(r~')><'tf'(r ~ ')'tf' •(r~')> (II-34) 

Substituting Eqn. (II-34) into Eqn. (II-32) and using the definition (II-26), we find 

the integral equation for the mutual coherence function, 

(II-35) 

Although Eqn. (II-35) looks simple, it contains a multi-dimensional integral term 

which is very difficult to handle. Only in some simple cases Eqn (II-35). can be 

used to get interesting results. 

Now we should calculate <S(r~)s•(r~)>, starting from the definition of 

S(r), Eqn. (II-33), 

= k~(r~)[k~(r;>r- k~(r~)<k2(r~)>.- <k2(r~>>(kc(r~)r 

+ <k 2 (r~)[k 2 (r~)r > 

The definition of k~(r) is 

Substituting this definition in Eqn. (II-36) we find 

(II-36) 
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: <k f ( T ~) [ k ~ ( T ~)] • > (II-37) 

where 

(II-38) 

is the fluctuation of k 2(r). Now the integral equation for the mutual coherence 

function is 

This equation can be explained as follows. The mutual coherence of the wave 

has two sources, the coherent wave and the incoherent wave. The two sources 

are independent. Obviously, 1Jic(r~)'ljl;(r~) is the correlation inside the coherent 

wave. The second term on the R.H.S. of Eqn. (11-39) is the correlation inside the 

incoherent wave. It sums all contributions from the mutual coherence function 

at (r~',r~') , which is scattered coherently by <kf(r~')[kf(r~')r>. then pro­

pagates coherently through Gc(r~.r~') G;(r~,r~') from (r~·.r~') to (r~.r;). 

Equation (11-39) is most important in our formalism. We will discuss its 

applications in the next chapter. 
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III. Applications of the Formalism 

1. Derivation of the Peierls Equation 

For a long time the theory of radiative transfer had been used in various 

applications, while there had been no sound basis for the theory. The radiative 

transfer equation had been constructed from a self-evident picture in which the 

radiation field was seen as composed of a set of independent particles moving 

with the speed of light. The particles, photons, can be scattered and absorbed in 

the medium. This picture completely ignored the wave and statistical properties 

of light and the statistical properties of the media. The situation has changed 

during the past 20 years. Many attempts have been made to derive the radiative 

transfer equation from first principles, i.e., from Maxwell equations for the elec­

tromagnetic field in a random medium. In almost all these attempts, the first 

step is to give a more rigorous definition to the usual photometric concepts 

such as specific intensity of radiation (or radiance), mean energy flux, or 

mean-energy density, by connecting them to the mutual coherence function and 

its Fourier transformation. After that, different workers used different 

mathematical forms to derive radiative transfer equations, which include 

differential equations, integra-differential equations, and integral equation 

methods. Although the relationship between the theory of radiative transfer 

and the random wave theory in the free space case is quite clear now, the status 

of the same problem in arbitrary inhomogeneous random media is not so satis­

factory. In what follows we use the integral equation for the mutual coherence 

function to derive the integral equation of radiative transfer in a homogeneous 

medium with isotropic scatters, the Peierls equation. 
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In this problem we are interested in the intensity of the wave field, 

(III-1) 

Setting two arguments in Eqn. (II-39) equal to each other, we have 

r( r. r) = I 'If c ( r) 1
2 

(III- 2) 

We assume that the correlation length of the medium is much smaller than that 

of the wave field. Then the autocorrelation of k ~ (r) in Eqn. (III-2), 

<kf(r~)[k~(r~)r>. can be replaced by C o(r~ -r~). where the constant C can be 

calculated from the following equation, 

J J dr ~ dr ~ <k ~ ( r ~) ( k f ( r ~)) • > = J J dr ~ dr ~ C o ( r ~ - r;) 

(III- 3) 

where 

So Eqn. (III-2) becomes 

(III-4) 

Suppose the medium fills half-space x > 0 and an incident plane wave 

e iko~ comes from x = -oo. By solving Eqn. (II-16) we find the coherent wave 

inside the medium, 
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(III-5) 

where 

(III-6) 

Because lol << 1, 

(III-7) 

The imaginary part of o, Im(o), must be positive so that we have a decaying 

coherent wave. During propagation the coherent wave becomes incoherent due 

to random scattering, 

(III- 8) 

The Green's function can be chosen as the solution of Eqn. (II-23) with radiation 

condition, 

ik 1"-1'1 ik 1"-1'1 -k 1"-1'1 ... ..., _ 1 e c _ 1 e r e ~ 

Gc(r,r)-4tr ir-r'l- 4tr ir-r'l (III- 9) 

Substituting Eqn. (III-8) and (III-9) in Eqn. (III-4), we have 

(III-10) 

where 

The radiative transfer equation for homogeneous medium with isotropic 
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scatters is ( Peierls, 1939 ) 

(III-11) 

Apparently, A2e-2
k'z in Eqn. (III-10) is equivalent to the source term J0 (rj) in 

Eqn. (III-11). If we define 

then Eqn. (III-1 0) is exactly the same as Eqn. (III-11) with 

c 1 
(A)=--

41T' a 
(III-12) 

For the pure scattering medium, (A) = 1 to c.onserve the energy of the wave field. 

This gives 

• 
c 1 J ~ [-+ B_l [-+ l] k;, = B1T' = B1T' dp<k ~ R + 2 k r R - 2 J > (III-13) 

This equation relates the decay rate of the coherent wave to the statistical pro-

perties of the medium. 

2. A Simple Example 

In this section we calculate the mutual coherent function in a very sim-

ple case using the formalism developed in the last chapter. 

Suppose a laser beam is projected into a homogeneous sphere, which 

can be served as the model of the atmosphere. The mutual coherence function 

of the scattering wave is measured outside of the beam trajectory. All the 
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geometry is shown schematically in Figure 1. 

Also we assume the correlation length of the medium is very small just as 

in the last section. Then from Eqn. (II-35), we have 

Suppose the geometric optics is a good approximation for coherent waves in 

this problem. Then we have 

on the beam trajectory, 

where 

and 

otherwise. (Ill-15) 

We assume that the intensity of the incident beam outside the sphere is one. 

The trajectory is a straight line with cross section S. Here we have neglected 

the dispersion effect and the reflection effect, both of which can be included into 

Eqn. (III-15) without difficulties. 

The mutual coherence function outside the beam trajectory is 

(III-16) 

As a first approximation, we use 
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(III-1 7) 

Then 

(III-18) 

where 

Let 

(III-19) 

and let 0 is the center of FG. For the simplicity of calculation, we assume r ; 2 is 

in OAB plane and lr;2 1 << r 1 and r 2 . Suppose that the angle between r;2 and OD 

is a. Using the condition 

(III-20) 

we have 

(III-21) 

where 
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19- = a: ±(3 

p = t -l IDfl 
g IODI 

Here (3 is the angle between OE and OD. Substituting Eqn. (III-2) in Eqn. (III-18), 

we have 

(III- 22) 

L = IABI I 

and 

19- = a: + (3 , when l > I AD I 

19- = a: - p , when l < I AD I . 

From Eqn. (III-22), r(r ~ ,r~) is not difficult to calculate. 

If the sphere is not homogeneous, the light beam is no longer a straight 

line. We need to solve the differential equation for the coherent wave to find the 

trajectory and the Green's function first. Then we can calculate the mutual 

coherence function as above. 

3 . An Improved Version of the Peierls Equation 

When we derived Peierls equation in Section 1, using the integral equa-

tion for the mutual coherence function, only the first term of the expansion of 

the Green's function and of the mutual coherence function in R.H.S. of Eqn. (II-
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39) is kept. Now we will keep the second term of the expansion to improve the 

Peierls equation. 

Define 

Then 

... ... ... ... ar ... 
r(r 1',r2') R1 r(R,R) + --:;-1-:t-o · P ap p-

Because the medium is homogeneous and isotropic, we can write 

Using Eqn. (Ill-23), (III-24), and (lll-25) we change Eqn. (III-2) to 

(Ill- 23) 

(Ill-24) 

(Ill-25) 
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JJ 
~ 1 "-2i:jR1 

1 ~ ~ arcR + t. R- t)] . 
+ d.Rd.p 16rr2 R~ I (p) r(R,R) + ap ~=o . P , (III-26) 

where the relation, 

(III- 27) 

has been used. Simplify the notation by 

~ ...... = [.... e_ .... - tj 1 (R,p) - r R + 
2 

, R 
2 

, 

and 

[ 

.... E._ .... E_~ ar .. = ar(R + 2 , R - 2) 

a .... (R) - a.... . 
p p =0 

(III- 28) 

Now Eqn. (III-26) is 

(III-29) 

So we need another equation for il~~l. Starting from Eqn. (111-39), using Eqn. 

(III-3), we find 

We change the variables in Eqn. (III-30) and differentiate it, 
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(III-31) 

We define 

af~(R) = r _£__ [-+ E.-J ~-+ - E.-Jl ap - fJp 1/lc R + 2 1/lclR 2 

=0 

(III-32) 

Equations (III-29) and (III-32) need to be solved simultaneously to find r(r,T) and 

ar(R) ar(R) fJp . The vector function Bp itself is a useful physical quantity. 
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IV. Mutual Coherence Function, Density Matrix and 

the Entropy of the Random Wave Field 

The mutual coherence function is quite similar to the density matrix in 

quantum mechanics (Garno, 1964). If we can use a complete set of orthonormal 

functions to expand the wave function, this similarity is even more apparent. 

Let ~cpn(r)J be this kind of set. Because our functional space is complex, ~cp~(r)J 

must be a complete set, too. The mutual coherence function r(r~.r~) has two 

variables, r~ and r~. First, we expand r(r~.r~) by ~9'n(r~)L keeping r~ as a 

parameter, 

r(r ~.r~) = 2;Fn(r~)cpn(r~) (IV-1) 
n 

If the orthonormality relation is 

J c;o:n(r)cpn(r) d.r = Omn (IV-2) 
'U 

then 

Fn(r~) = J cp~(r~)r(r~,r~)d.r~ (IV-3) 
'U 

Fn(r~) = ~ / nm9',:(r~) , (IV-4) 
m 

where 
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f nm = J TPm(r;)Fn(r;) dr; (N-5) 
v 

Putting Eqn. (N-1) and (N-4) together, we find 

r(r~,r;) = l:lnm~J\(r~)~~(r;) (N-6) 
nm 

and 

lnm = J jr(r~.r;)~~(r~)~m(r;)dr~ dr; (N-7) 
v v 

By definition, 

(N-8) 

It is easy to prove that the matrix F = (/ mn) is Hermitian, because 

= J J r·(r;.r~)~~(r~)som(r;) dr~ dr; 
v v 

= J J r(r~.r~)so,;(r~)~m(r~) dr~ dr~ = lnm (N-9) 
v v 

So we can diagonalize the matrix F by a unitary transformation 

P = UFU-1 (N-10) 

where U is a unitary matrix, 

u-1 = u+ (N-11) 

and P is a diagonal matrix. Now the mutual coherence function can be written 

as 
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r(r~,r~) = 2:Pm~m(r~)~~(r~) , (N-12) 
m 

where lPm~ are the diagonal elements of matrix P, and 

and ~umn} are the elements of matrix U. In quantum mechanics, the density 

matrix is 

13 = 2;q" li><i I , (N-13) 
.. 

which describes a statistical state (Schiff, 1968) . The normalization condition of 

the density matrix is 

(N-14) 

Compare Eqn. (N-12) and (N-13). The similarity between the mutual coherence 

function and the density matrix is quite obvious except for the normalization 

condition. 

Also, we know that if 

1 fori = s 
qi = ~ 0 others , 

then the density matrix corresponds to a pure state. 

Similarly, if 

· p form= i 
Pm = ~ 0 others , 

we have a totally coherent wave field, 

(N-15) 

(N-16) 
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(N-1 7) 

In this case, the complex degree of coherence (see Born and Wolf, 1980, for the 

definition) is 

(N-18) 

and 

(N-19) 

It means the wave field is totally coherent and the wave function is 

1 

1/l(r) = P 2~i(r) (N-20) 

Because of Eqn. (N-7), the matrix F is semi positive as defined by 

(N-21) 

where A = ~U-nJ is an arbitrary vector. The eigenvalues of a semi positive definite 

Hermitian matrix are greater or equal to zero, 

Pm~O (N-22) 

The trace of the matrix F is proportional to the total energy of the field, 

E oc f drr(r,r) = 2: f drf mn~m(r)~~(r) =~I mm = l:Pm . (N-23) 
m m 

Usually, if we want to compare two wave fields to see which one distributes the 

total energy between all possible modes more randomly, these two fields should 

have the same total energy. That means we will treat different wave fields with 

the same trace of the matrix F. So we can normalize the eigenvalues of the 
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Pi.' = Pi/ l:Pi 
i 

Then we can define a measure of randomness for the wave fields, which have the 

same total energy, 

W = l:Pi'logpi' 
i 

(N-22) 

For the totally coherent wave, i.e., Pi' = 1 fori = 1. and Pi' = 0 for others, then 

W=O 

If the energy is evenly distributed between all modes, i.e., all Pi are equal. W 

attains maximum. 
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V. Conclusions 

Our original motivation was to find a method to calculate the light 

reflection from natural surfaces without using brute force . Because usually 

natural materials have similar structures of different scales, the wave fields 

inside the materials are partially coherent. Although we have not yet reached 

this goal, we think that our new formalism is the correct approach to solve this 

problem. By separating the coherent scattering wave from the incoherent 

scattering wave and putting it into a coherent wave, the wave that is left is ran­

dom and is more easily treated. 

Still there are many places for improvement, for example, how to find a 

better expression of o(r) in Eqn. (II- 13) for the general case . Also, we need a 

better numerical codes to solve the three-dimensional integral equations. We 

will use this formalism for more realistic problems in remote sensing . And we 

hope that better understanding of entropy in partially coherent wave field will 

be found in the future . 
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APPENDIX 

Calculations of Wave Scattering 

In this appendix we show that in the problem of one-dimensional wave scattering 

by a layer of dielectric, both the vacuum background and the arbitrary back-

ground can reach the same solution. In the latter case the iteration method has 

been used to find the solution. 

1. One- Dimensional Wave Scattering 

The one dimentional wave equation is 

where 

l
m 2kf , at 0 ~ .x ~ a 

k2 .X = ( ) k 2 elsewhere ' 
0 I 

which is schematically shown in Figure 2 on page 56. Suppose the solution is 

1/l(:x) = 

It must satisfy the following boundary conditions, 

in I 

in II 

in III 

(1) 

(2) 

(3) 



where 

The solution of Eqn. ( 4) is 

where 
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B2 = ;(1 -m)eia , 

-4 . 
As = -=-m.e --1.-y n 

2. Background Separation Method 

(5) 

(6) 
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In region II the wave equation ( 1) is 

or, by separating a background nk0 , 

where n is a arbitrary constant. Therefore, 

IJ 

1/ln(x) = ~0 (x) + J G(0>(x,x')(n2 - m2)k~'l/ln(x') dx' 
0 

where cf> 0 (x) is the solution of the equation 

[ ~ + n2k2lcp (x) = 0 dx2 0 0 I 

and 

is the Green's function of equation (10). Therefore, 

(7) 

(B) 

(9) 

( 1 0) 

( 11) 

(12) 

where C1 and C2 are constants which can be fixed by boundary conditions at x = 

0 and x =a. 

Suppose we use the iterative method to solve this integral equation. First, we 

choose a test solution '1/JJJ>. Define 
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~(i+l) = J G(O)(x ,x')(n2 - m2)k;1f;tf>· i = 1, 2, · · · ( 13) 

and 

1/ltf+l)(x) = ~~i+l)(x) + cp(i+l)(x ), i = 1, 2, ... (14) 

The solution of Eqn. (9) is 

( 15) 

where 

(16) 

and C{\+l) and C~i+l) are determined by the requirement that 

( 17) 

satisfies the boundary conditions: 

1/IJl+l)(Q) = 1/IJ(O) I ! [1/IH+l)(Q)] = ! [1f1J{O)] , 

1/IJJ+l)(a) = 1/lm(a) , ! [1/IJl+l)(a)] = ! [1/lm(a)] . 
(18) 

So the iteration scheme is 

, C~2)] 
B}2) => 1/IJ!> => ~(3) .... 

We will show below that if we choose 

(19) 

with A2 and B2 having the values in Eqn. (5), then 
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and A~2), B~2 ) are exactly the same as in Eqn. (5). This gives a prove of the 

equivalence between the normal method and the background separation 

method. 

From Eqn. (13), we have 

a 

~t~1 = J G(0>(x ,x')(n2 - m2)ki'I/JJJ>(x') dx' 
0 

(n2 - m2)ko Ja .:-a.. '( ._.. , ___.:_,_ , ) = e W-o: A ''""'o% + B e -w""'o% dx' 
2 . 2e 2 tn 0 

(n2 - m2)ko r e i(m+n)kga - 1 e -i(m-n)kga - 1l 
= 2in lA2 i(m + n)k

0 
+ B 2 ~(m-n)k0 

(n2 - m2) r 1 - eia+ifl e -ia+ifl - 1] 
= 2n lA2 (m + n) + B2 (m - n) • (20) 

where 

and 
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(n2 - m2) . r 1 - eia-ip e -ia-ip - 1l = - -e,PlA + B 2n 2 ( m - n) 2 ( m + n) · 
(21) 

We know that 

!t(lxl) = ![f(x)~(x) +/(-x)~(-x)] 

= f'(x)~(x)- f'(-x)~(-x) + f(x)6(x)- f(-x)6(x) 

= f'(x)~(x) - f'( -x)~( -x) , 

where 

/'( -x) = ~ [/ (y)] ly=-z • 

and~ is the step function. Therefore, 

..!Laco>(.x _ x') = ..!!._[ .1 e inA:, lz-z'l] 
d.x dx l2'Lnk0 

The differential of <P at x = 0 is 
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= - (n2 - m2) k2f e i(m+n)koCJ - 1 :A + e -i(m-n)koCJ - 1 B l 
2 ° l i(m + n)k0 

2 --i(m - n)k0 
2 

- i(n2 - m2) r eia+ifl - 1 . e -ia+ifl - 1 l 
- k l · :A2- B2 2 ° (m+n) (m-n) · 

The differential of !ll at x = a is 

i(n2 - m2) . r eia-ifl - 1 e -ia-ifl - 1 l 
= k e'Pl :A - B 2 ° (n - m) 2 (m + n) 2 (23) 

The boundary conditions at x = 0 are 
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(n2 - m2) r 1 - eio.+i/l e -i.o.+ifl - 1 l 
ct + C2 + 2 l ( ) A2 + ( ) B2 = 1 + Bi2

> I n m+n m-n 
(24) 

and 

(n2 - m2) r eio.+ifl - 1 e -i.o.+ifl - 1 ]-
nCf2> - nC~2 ) + 2 l (m + n) A2 - (m _ n) B 2 - 1 - B}2> (25) 

The boundary conditions at x = a are 

(n2 -m2) \ r 1 - eio.-1./l e -1.o.-1.fl - 1 l 3 ikoll 
+ 2 e Ill ( ) A2 + ( ) B2 = A~ >e I n m-n m+n (26) 

and 
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(27) 

Using A2 = (-2/ D)(m + l)e-ia and B 2 = (2/ D)(l- m)eia, Eqn. (24) becomes 

Eqn. (25), (26), and (27) can be written into 

= 1 - B}2> I 

and 



Therefore, 

where 

and 
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C{2> + C~2> - I = 1 + B{2> 

(28) + (29) => 2C)2l = [1 + M + B)2l[1- !j . 
(28) + (29) => 2 C~2) - 2/ = [ 1 - ! l + B)2l[ 1 + M 

(30) + (31) => 2CI2leiP - 2J = A~2le ik,m[ 1 + ! l 
(30) - (31) => 2 C~2le --iP = A~2le ik,m[ 1 - ~l . 

From (32) and (34), we find 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 
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(36) 

From (33) and (35), we find 

(37) 

(36) x [1 + ~J- (37) x [1 - ~J gives 

But, 

= n;D{[e-->P -e•a](m + l)(m +n)(n + 1) + 

+ (e~~- eia)(l - m)(m - n)(n + 1) + 

+ [eiP- eia](m + 1)(m -n)(n- 1) + [e•P- e•a](l - m)(m + n)(n -1)} 

(39) 

Substituting (39) in (38), we find 
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( ) -4m -1Jr; " -4 . As2 = e o = -::-'TTl.e -'LJ' 
D D 

(40) 

Substitute (40) in (37) 

Therefore, 

Bl2 >[ 1 + M = :n{e-iaz(m + l)(m - n) + eiaz(l - m)(m + n) 

From this equation, we find 

(41) 

A~2) and B}2> in Eqn. (40) and (41) are the same as A3 and B 1 in Eqn. (5). By sub­

stituting Eqn.(40) and (41) in Eqn.(35) and (32) we can calculate C2 and C1. 
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= n
1
D[ei«(m - 1)(m - n)- e-i«(m + 1)(m + n)] 

So, 

1 -4 -2 = -(n - 1) -=-?TLeifl = -=m.eifl(n - 1) 
2n D nD 

Now we can calculate cp(2) in Eqn. (14): 

Cl 

cp(2)(x) = J G(O)(x ,x')(n2 - m 2)k;"//JJ)(x') dx' = 
0 

(42) 

(43) 
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( 2 2) r e i(m.-n)koZ 1 e -i(m.+n)koZ - 1 l _ n - m _ k in.t0 zl - B = 2 . o e . ( )k A2 + . ( )k 2 + 'tn 't m - n 0 -'t m + n 0 

+ e'""'•"'[~(m +n)(m + l)e-ia+ ~(1-m)(m -n)eia] + 

(44) 

Therefore, 
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1f;.f[>(x) = q,~2>(x) + q,(2)(x) 

= 1/ln(x) . 

So we get the same solution using the background separation method. 
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Figure 1. Schematic diagram for laser beam scattering in the atmo-

sphere. 
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Figure 2. Schematic diagram for one dimension wave scattering. 
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Part Two 

Radiative Transfer in a Sphere Illuminated by a Parallel Beam: 

An Integral Equation Approach 
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I. INTRODUCTION 

The problem of radiative transfer in an object illuminated by a parallel 

beam is interesting both theoretically and practically. Extensive work has been 

performed for the plane parallel atmosphere, and the results are summarized in 

the treatises by Chandrasekhar (1960), Sobolev (1975) and van de Hulst (1980) . 

But the problem with other geometries is more complicated (see review by 

Fouquart, Irvine and Lenoble, 1980). Recently, Flannery, Roberge and Rybicki 

( 1980) studied the radiative transfer of ultraviolet photons in a sphere . Chang 

and Kylafis ( 1983) investigated the scattering of X rays in a spherical shell. In 

both cases the boundary conditions are spherically symmetric. The planetary 

problem with incident radiation from infinity has advanced only as far as Monte 

Carlo simulations (Modali, Brandt and Kastner, 1975; Anderson and Hord, 1977; 

Adams and Kattawar, 1978). 

The approach we adopt is to use the integral equation and systemati­

cally exploit its symmetry properties to simplify the mathematics . In this paper 

we report two initial successes of this approach. In the first part of the paper 

we provide the first complete formulation of the most general radiative transfer 

problem (except for polarization) in the form of a variational principle. We con­

struct a functional and show that the equation of radiative transfer can be 

obtained by imposing the stationarity condition on this functional and that the 

differential cross section is given by the extremum value of the functional. This 

result generalizes the work of Stokes and DeMarcus ( 1971) and Chow, Friedson 

and Yung (1984). It extends and adds new insight to the work of Cheyney and 

Arking (1976). The symmetry of the phase function P(01,02) = P( -02 , -01) (see 

detailed discussion in §3 and Appendix B) plays a fundamental role in the 
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variational principle. 

In the second part of the paper the integral equation is applied to the 

simple case of a homogeneous sphere containing isotropic scatterers. We note 

that the symmetry of this problem is the same as that of the scattering of elec­

tromagnetic waves by a dielectric sphere (Mie, 1908; Debye, 1909; van de Hulst, 

1957). The solution can, therefore, be expanded in a similar multipole series . 

This provides a natural generalization of the work of Sobolev (1972), whose solu­

tion corresponds to the first term of our series. Representative numerical 

results are presented, along with brief discussions or applications to planetary 

atmospheres . 
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II. The Integral Equation 

The integral equation for the specific intensity inside an object of volume 

V and surface S illuminated by a parallel beam is 

where /(r,O) is the specific intensity at r, in the direction 0 in units of photons 

cm-2 s-1 sr-1; P(r;02 ,01) is the phase function which gives the fraction of pho-

tons scattered at r from 0 1 to 0 2 and is dimensionless; 

r2 

'T(r1,r2) = J ds a(r) is the optical depth between r 1 and r 2 and is dimensionless. 
rl 

Here ds = I drl. a(r) is the extinction coefficient in units of cm-1, r 12 = I r 1 - r 2 1 

and r12 = (r1 - r 2)/ r 12 . As illustrated in Figure 1 a, ( 1) states that the specific 

intensity at r 1 consists of two contributions. The first is derived from the pri-

mary solar radiation propagating from infinity to Vin direction kQ, 

(2) 

where 1rF0 is the .solar flux in units of photons cm-2 s-1 (as defined in Chan-

drasekhar, 1960). o(O) is a two-dimensional delta function, which has the 

charecter 

J d.O o(O- Oo) F(O) = F(Oo) I 

and the attenuation factor is given by 
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(3) 

with R(r1 .leo) being the point on S where the solar beam that intercepts r 1 first 

enters V. Inspection of Figure 1 a reveals that 

(4) 

The second term in ( 1) arises from photons which are scattered from all other 

points r 2 into r 1. The structure and meaning of ( 1) are either obvious or can be 

easily understood by referring to standard texts on transport theory (Davison, 

1957; Case and Zweifel, 1967). A complete solution of (1) provides the most 

detailed information of the internal and external radiation field . For observa-

tions made at asymptotic distance from V, it is convenient to define a 

differential cross section for scattering of radiation from the initial direction leo 

into final direction k, 

da 1 J J dO (k,leo) = 
4 2 dr dO a(r) e(r,-k) P(r;k,O) I(r,O) 

1i' Fa v 4n 
(5) 

Note that the attenuation factor is e(r, -k) for a beam that leaves V in the direc­

tion k (see Figure 1 a). The differential cross section is a fundamental physical 

quantity, and its relation to the more familiar quantities such as reflectivity and 

phase variation is discussed in Appendix A. 

For most problems of practical interest, the phase function admits of a 

simple expansion, 

"" P(r;01 , 02) = ~ CJt (r) P, (01 · 0 2) 

'=0 
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(6) 

where P, and Yim are Legendre polynomials and spherical harmonics, respec-

tively , and CJ0 (r) is single scattering albedo. Unless otherwise stated, the sum-

mation over the indices l and m are over the range 0 to co for l and -l to l for 

m. Without loss of generality, the specific intensity and the solar term can be 

expanded as follows, 

[ 
--* a(r) CJt (r) 

J(r,O) = 2:; Zl + 1 Jim(r) Yim(O) 
tm 

(7) 

a(r) CJt (r) [ l
~ 

F(r,O) = ~ Zl + 1 Fim(r) Yirn(O) (B) 

Substituting (6), (7), and (B) in (1), multiplying (1) by Yi•
1
m

1 
(01) and integrating 

over dOlt we obtain a set of coupled integral equations: 

(9) 

where 

( 1 0) 

Following Cheyney and Arking (1 976), we rewrite (9) in a compact operator 

notation 

(1 - K)J = F , (12) 

where 
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J = (loo(r) 1 lu (r) 1 ·Jlo(r) 1 J1-1 (r) 1 • • • Jim(r) 1 • • ·) 

F = (Foo(r) I F11 (r) I Fto(r) I F1 - 1 (r) I • • • Flm(r) I • • • ~) 

and K is the corresponding matrix. The operation of K on J involves both 

matrix multiplication and integration over spatial variables . Note that (12) is 

equivalent to (1). No approximation has been made . 
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III.Variational Method and Principle of Reciprocity 

To employ the variational method for solving the integral equation of 

radiative transfer, the kernel of the equation must be self-adjoint. By definition 

the adjoint operator K+ is 

where the upper asterisk denotes complex conjugation. In general, K is not 

self-adjoint; i.e., K+ # K. However, for phase functions with symmetry proper-

ties given by (6) (we shall later show how to relax this requirement), it is possi-

ble to define an extended equation which includes (12), and whose operator is 

self-adjoint. In the following discussion the mathematics is adapted from Chey-

ney and Arking (1976), but the physical interpretation and insight are new. 

Suppose we adopt a new coordinate system to describe the direction of 

the radiation. In the new system the direction 0 in the original system becomes 

-0. The position vector r is unchanged. We will use the tilde sign to denote 

quantities in the new system; for example: 

Expending i and F we have 

J(r,O) = J(r,-0) 

F(r, 0) = F(r, -0) 

a(r) ~, (r) "' [ l
-l 

i(r,O) = ~ 2l + 1 Jim(r) Yim(O) 

"' a(r) ~t (rl "' [ l
-l 

F(r,O) = ~ 2l + 1 Ftm(r) Yim(O) 

(14) 

(15) 
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Using (7), (8), (14) and (15) we have 

( 16) 

( 17) 

From (9), ( 13), ( 16) and ( 1 7) we can prove that J is the solution of equation 

( 18) 

where 

F = (.Foo(r), Fu(r), F1o(r), F1-1(r), · · · fim(r), · · ·) (19) 

and K+ is as defined in (13). Therefore (18) is nothing but (12) written in the 

new system! In summary, we have, 

(1 - K)Jko = Fko 

(1 - K+)Jko = Fko 

(20) 

(21) 

These equations are different expressions of the same physical process, and we 

have provided a simple physical interpretation of the adjoint operator K+. Note 

that in going from ( 12) and ( 18) to (20) and (21) we have put in the explicit 

dependence of the parameter kQ. With the help of the new coordinate system, 

we can express the differential eros section more concisely. Using (5) and sub-

stituting expressions (8) and (7) for P(r;k,O) and /(r,O), we have 

d a 1 a(r) C~Jt (r) 
[ 

+* . 
dO (k,Jr,) = rrF. [ dr~ Ji,.(r) Zl + 1 l e(r,-k) Yi,.(k) (22) 

This can be further simplified using (10), and the final result is 
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(23) 

where the scalar product is defined by 

<X, Y> = J dr 2:; Xi~(r) Yim(r) = < Y,X> • (24) 
v lm 

da 
for any two vectors of the type as in (12). It is easy to show that dO (k,ko) as 

given by (23) is real even though complex functions are involved. 

It is of interest to consider the simultaneous solution of a forward 

scattering problem and its reverse. As shown in Figure 1 b, in the forward prob-

lem the incident and emergent directions are k 1 and ~. respectively. The 

corresponding directions in the reverse problem are -~ and -k1, respectively. 

The appropriate field equations are 

(25) 

.(26) 

The corresponding differential cross-sections are 

(27) 

(28) 

Equations (25) and (26) can be written as a single equation in an extended dou-

ble Hilbert space 

LJ= s. (29) 

where 

[
0 1 -1 

L = 1- K+ 0 (30) 
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(31) 

(32) 

Since L is a self-adjoint operator, we can construct a functional 

F(Q) = <Q.LQ>- <Q,S>- <S.Q> I (33) 

where Q = (~.q) is an arbitrary vector in the double Hilbert space, and the 

scalar product is defined as the straightforward generalization of (24). On 

imposing the stationarity condition on (33) and using L + = L we have 

6F(Q) = <oQ.LQ- S>- <LQ- s.oQ> , = o (34) 

which implies 

LQ = S . (35) 

We recognize (35) as equivalent to (29) and, hence (33) is the correct functional 

for the radiative transfer problem. We can use (33) and apply the usual varia­

tional techniques to obtain approximate solutions to (20) and (21). But there is 

an additional advantage, as we shall show in the following. 

Let us evaluate (33) for some special choices of Q: Q0 = (J -ke· J11:
1
). Q1 = 

(~. J11:
1

) and Q2 = (J-ke, q), where ~ and q are arbitrary, but J11:
1 

and /_ke are the 

solutions of (25) and (26), respectively. After some simple algebra we have, 

(36) 
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(37) 

d. a = -2-(-k _..,._)rr2~ d.O 1• D-2 a (38) 

Since q and q are arbitrary, we must have 

(39) 

This proves that the differential cross section satisfies the principle of recipro-

city (Minnaert, 1941) and that the extremum value of the functional (33) is pro-

portional to the differential cross section. 

The results summarized in (33) and (39) are new and provide a generali-

zation of previous work on solving the planetary problem in radiative transfer, 

using variational methods (Huang, 1953; Stokes and DeMarcus, 1971; Cheyney 

and Arking, 1976;· Sze, 1976; Yung, 1976; Chow, Friedson and Yung, 1984). Our 

work reveals the intimate connection between the microscopic symmetry of the 

phase function P(r;01,02), the macroscopic symmetry of the differential cross 

section =~ (~.k1 ) and the variational principle. Actually, the symmetry given 

by (6) is unnecessarily strong. A weaker microscopic symmetry P(r;01,02 ) = 

P(r;-02 ,-01) is sufficient to ensure the macroscopic symmetry =~ (~,k1 ) = 

d. a 
d.O ( -k1 ,-~) (Case, 1957), and the existence of a variational principle . In 

Appendix B we give an alternative proof of our results using the weaker micros-

copic symmetry assumption. We also show that, if we use the method of succes-

sive orders to compute the radiation field to order n, then the differential cross 

section evaluated using (33) is accurate to order 2n. The usefulness of sym-

metry is appreciated by van de Hulst (1980, p. 17): "Such symmetry relations 
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are of great practical help in checking the consistency of analytic formulas or 

of computational results.'' But he did not recognize the full potential of such 

relations. The recognition of the importance of variational methods in radiative 

transfer is overdue, especially in light of notable advances in using variational 

methods in related fields such as neutron transport (Francis et al., 1959; Pom­

raning and Clark, 1963a,b), kinetic theory (Cercignani and Pagani, 1966; Cercig­

nani, 1969), electromagnetic wave scattering (Levine and Schwinger, 1950), 

acoustic wave scattering (Gerjuoy and Saxon, 1954) and quantum theory of 

scattering (Lippmann and Schwinger, 1950). Viewed in the broader context, our 

results are not only reasonable; they are inevitable (Gerjuoy, Rau, and Spruch, 

1983). 
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N . Homogeneous Sphere With Isotropic Scatterers 

We will now apply the integral equation to the particularly simple case of 

a homogeneous sphere of radius a filled with isotropic scatterers of single 

scattering albedo CJ0 • In this case only l = 0 equation is needed. From Eqn.(9) 

we have 

(1) 

Since the medium is homogeneous, we can replace the distance variable by an 

optical variable 

t = ar . 

(2) 

where the mean intensity is 

(3) 

(J(t) is not the same as the J in Eqn.(12) or J 00 (t) in Eqn.(40)): the solar term is 

(4) 

and the Green's function of the integral equation is 

(5) 

The integration of the ~ variable is over the entire optical sphere of radius T 0 . 

This equation is known in literature as the Peierls equation (Peierls, 1939). 
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Eqn. ( 41) bears striking similarity to the integral equation that describes 

the scattering of a scalar wave of wavenumber k by a dielectric sphere with the 

index of refraction equal tom (Jackson, 1975, Chapter 16), 

(45) 

where the Green's function is 

- t 
= ik2: (2l + 1)j,(lcr<)hp>(kr>) 2: Yi~(~ 1 ~ 1 ) Yim.(~2·~2) (46) 

t=O m.=-t 

of the first and the third kind, respectively. Note that 

G(t1 .~) = J du G(t1 ,~;ia) . (47) 
1 

This suggests a close connection between Eqn.(41) and (45), and that multipole 

expression method first developed for solving Eqn. ( 45) would be very useful for 

solving Eqn.(41). Because of the cylindrical symmetry around the sun-sphere 

axis (see Figure 10 b), we can expand J(t) and J0 (t), using the Legendre polyno-

mials. 

-J(t) = J(;,J.L) = ~~-1 1Jit(;)P,(J.L) (48) 
t=O 

... 
Jo(t) = Jo(i,J.L) = 2: ,-1 S,(;)P,(J.L) , (49) 

t=O 

where ; = I tl and J.L = ko ·V; is the cosine of the angle between the direction of 

incident radiation ko and the position vector t. Substituting Eqn.(45), (46), (47), 

and (48) in Eqn.(41) and integrating with respect to ~ 1 and ~2 • we get a set of 

uncoupled integral equations for l = 0, 1, 2 ... 
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To 
1ft(11) = s,(11) + (A}OJ d12(h(11,12)11tz(12) I 

0 

00 

Gz ( 11, 12) = -1112/ da ajt (ia1 <)hp>(ial >) 
1 

- ), l 6 (l + k)!(l + k')! 
~m- ~el:o~e~o k+k'.m 2m1~1~'k!k'!(l -k)!(l- k')! 

B _ ), 
0 

(-l)!e(t + k)!(l + k')! 
lm - ~el:o~e~o k+k',m 2m1~1~'k!k' !(l - k)!(l - k')! 

oo e -z:t 

~(x) = J-dt . tn 
1 

(50) 

(51) 

A detailed derivation of (50) and an examination of the properties of the 

Green's function are referred to Appendix C. To gain insight into the meaning of 

(50), let us investigate the special case l = 0, 

(52) 

This is the same as Eqn.(3) in Sobolev (1972), and is the Milne integral equation 

for a homogeneous sphere (see Appendix of Sobolev, 1975). However, to solve 

the complete planetary problem with the source of illumination placed at 

infinity we need the entire series in Eqn.(48). Thus, our results are a generaliza­

tion of Sobolev (1972). In practice we have to truncate the series in Eqn.(48) at 

some finite l = lrnax• and the series is useful only if it converges rapidly. That 

this is so will be discussed in the following section. 
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The differential cross section, according to Eqn.(5), is 

da c.>o J dO (k,ko) = 2 dte(t,-k) J(t) . 
1rF0 a 

(53) 

But the expression can be further simplified using Eqn.(48), (49), and Appendix 

A, 

(54) 

with 

(55) 

and a 5 = scattering angle defined by cosa8 = k·ko (see Figure lOb). There is a 

host of interesting functions that can be given in terms of the differential cross 

section. Two distinct sets of nomenclature exist depending on whether the 

overall scattering is viewed as due to a particle or a planet. In the former case 

we are interested l.n the extinction and absorption cross section, the g-factor 

and the scattering phase function. In the latter case, the relevant quantities 

are the geometric albedo, the phase vibration, the phase integral and the bond 

albedo. Table 1 provides a listing of the important "particle" and "planetary" 

photometric functions taken from standard references (van de Hulst, 1957; 

Horak, 1950; Harris, 1961) and their evaluation in terms of the multipole func-

tions in Eqn.(54) and (55). 
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V. Numerical Results and Discussion 

In our numerical model we evaluate the solar term in Eqn. ( 49) using 36 

points Gaussian quadrature. The Green's function in Eqn.(51) is computed using 

a procedure described in Appendix C. The integral Eqn.(50) is discretized with 

100-200 points between 0 and 10 , and the resulting matrix equation is solved as 

in Sze ( 1976) and Yung ( 1976) . A large nu~ber of cases have been studied for 1 0 

in the range 0 to 8 and for CJ0 from 0 to 1. For the requirement of an overall 

accuracy of order 3%, it turns out that the maximum number of multipole equa­

tions, lmax + 1. is less than 12. We will present detailed results for two represen­

tative cases, 10 = 1 and 1 0 = 8, both with CJ0 = 1. These results will serve to illus­

trate the character of our solutions for spheres of small to moderate optical 

thickness. A large amount of interesting information deduced from our numeri­

cal studies is summarized in the graphs of photometric functions. 

The multipole expansions of the solar term 5i ( 1) are shown in Figures 2a 

and 2b for the cases 1 0 = 1 and 8, respectively. Note that the higher multipoles 

decrease rapidly as l approaches and exceeds 10 • Figures 3a and 3b show the 

corresponding multipole solutions '1/lt ( 1). The solutions display similar proper­

ties as the solar terms. The mean intensity of the internal radiation field (as 

defined by Eqn.(48) ) on the sun-sphere axis J(1,-1) , and its comparison with 

the primary solar term / 0 (1,-1) are shown in Figure 4a for 10 = 1. Similar 

results for the case 10 = 8 are presented in Figure 4b. The comparison clearly 

demonstrates the importance of multiple scattering for determining the inter­

nal radiation field inside a sphere . Table 2 provides a summary of the integrals 

of the multipole radiation fields ft for 10 = 1 and 8. This table gives a proper 

assessment of the relative contribution of the higher multipoles. 
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Values for the extinction efficiency Q,.zt are presented in Figure 5. This is 

a measure of the efficiency of the sphere for absorbing incident light relative to 

a disk of area rra 2 . The limiting values can be easily shown to be 

lim Q,.zt = 4:--,.3 o 
T 0 -+0 

lim Qezt = 1 · 
To-+.,.. 

We note that as 1 0 exceeds 8, Q8zt exceeds 99% and, hence, the sphere is essen-

tially opaque. The scattering efficiency Qsca. is shown as a function of CJ0 in Fig-

ure 6 . Qsca. by definition is the same as the Bond albedo. The case 1 0 = oo is 

taken from Irvine's (1975) Figure 5 for Bond albedo (or spherical albedo). By 

conservation of energy, Qsca. = Q8~ for CJ0 = 1. The limiting values of Qsca. are 

(van de Hulst, 1980, Chapter 12) 

l' Q R~ ( 1 ) 1 - 0.139s 
lm sea. - S 1 1 17 0 T 0 -+.,.. + . S 

where s = (1 - c.>0 )*. The first expression reflects the importance of multiple 

scattering, as is obvious from the appearance of the factor 1 - (1 - c.>0 )*. (For 

an illuminating discussion of this factor the reader is referred to McElroy, 

1971). The second expression includes only single scattering. The asymmetry 

factor g is shown in Figure 7. For a sphere with isotropic scatterers, g is always 

negative . The limiting values of g are, 

lim g = -0.45 
To ...... 
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lim g = 0 
T 0 -+0 

The large sphere value is approximately computed using the tabulation of Harris 

(1961) and should be compared with g =-: for a Lambert sphere (van de Hulst, 

1980, Chapter 18) . 

Figure 8 shows values of the geometric albedo of a sphere as a function 

of CJ0 for a range of values of 1 0 • The case of 1 0 = oo is taken from Harris (1961). 

In the small sphere limit we have 

The values of the phase integral q can be deduced from the relation 

pq =A = QSCCJ 

and are not separately plotted. The phase variation )O(ap) as a function of the 

phase angle aP is shown in Figure 9 for 1 0 = 1, 8, and oo with CJ0 = 1. For com­

parison we also present the case of a Lambert sphere. It is clear that as 1 0 

increases, the scattering becomes more backward-peaked and the phase varia-

tion approaches that of a Lambert sphere (van de Hulst, 1980, Chapter 18), 

Note that )O(ap) is related to the scattering phase function p (a8 ) by a normaliza-

tion constant and a change of variable. 
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VI. Applications 

The results we have presented in this initial report tend to emphasize 

the theoretical rather than the practical aspects of our work. More realistic 

modeling is not difficult in principle. However, before we build more complicated 

models we will qualitatively discuss the possible applications of our results to a 

number of interesting problems. 

The photometry of Jupiter has been investigated by Cochran ( 1977); 

Tomasko, West and Castillo (1978); Sato and Hansen (1979); and Smith and 

Tomasko ( 1984); and there is general agreement that the cloud phase function 

can be represented by a two-term Henyey-Greenstein phase function, 

with 

1- g2 
P(g ,a8 ) = ----....K---­

(1 + g 2 - 2gcosa8 ) 31 2 

where a. = scattering angle, g = asymmetry parameter. The best choices of the 

parameters are: J 1 = 0.938, g 1 = 0.80, g 2 = -0.65. The first part of the phase 

function with forward-scattering g 1 = 0.80 poses no problem, since this is typi­

cal of most cloud particles (Hansen, 1969). The origin of the second part of the 

phase function with backward-scattering is obscure. The phase function of 

ammonia crystals, believed to be what the cloud particles are composed of, do 

not exhibit a pronounced backward peak (Tomasko and Doose, 1984). We pro-

pose an explanation. Figure 7 shows that the asymmetry factor for patches of 

thick spherical clouds is always negative. In fact, if the clouds of Jupiter were 
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not horizontally homogeneous, b~t possessed small scale structures, negative 

values of g would be inevitable. But, of course, to provide a realistic interpreta­

tion of the photochemistry of Jupiter, we have to make our spherical clouds out 

of anisotropic scatterers. This quantitative modeling must be deferred to the 

future. 

We can apply our method to the study of planetary coronae arising from 

resonance scattering of solar photons (Modali, Brandt and Kastner, 1975; 

Anderson and Hord, 1977), and the radiation field in the terrestrial stratosphere 

and troposphere at twilight. However, a complication arises in these problems 

due to the presence of the solid planetary body, which is opaque to radiation. In 

this case, Eqn. ( 1) must be modified so that it becomes the appropriate equation 

of radiative transfer in the spherical shell atmosphere. 

In a cometary atmosphere the geometry is roughly spherical. The 

scattering of sunlight in the continuum is dominated by micron-sized dust 

grains with low single scattering albedo Ci.> 0 "' 0.1-0.4 (Ney and Merrill, 1976; 

Hanner, 1979). The total optical depth is at most of order a few (Hellmich, 

1981). since greater optical depths would shield the incident sunlight from 

reaching the nucleus and cut otJ the production of gas and dust. In this prob­

lem, the best approach would be to use Eqn. ( 1) and apply the method of succes­

sive orders and the variational principle (Appendix B). However, /(r,O) is a func­

tion of five variables, and, therefore, solving (1) by any numerical scheme is a 

formidable task. In this case, it is desirable to find a transformation (such as 

(48)) that would allow us to separate at least one or two independent variables, 

using the intrinsic symmetry properties of the sphere, the scattering geometry 

and the phase function. 

The method developed in 4 is useful as a first approximation. The 

scattering phase function of the dust grains in a comet is not isotropic, but can 
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be approximated by 

where 0 ~1 ~ 1. In this case as in the case of a plane parallel atomosphere ( 

Sobolev, 1975 8.3 ), the problem can be reduced to the isotropic one, using a 

suitable transformation. 
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VII. Conclusions 

In the past thirty years the theory of radiative transfer in slab geometry 

has reached the level of maturity comparable to other branches of mathemati­

cal physics (Chandrasekhar, 1960; van de Hulst, 1980). However, the theory is 

still primitive for other geometries of practical interest. The integral equation 

approach holds great potential for advancing the subject. This method has at 

least three advantages: (a) there are no boundary conditions; the integral equa­

tion contains the complete formulation of the radiative transfer problem, (b) 

the important photometric quantity, the differential cross-section, can be com­

puted using a functional expression that is highly accurate for reasonably accu­

rate radiation fields, and (c) in many cases the symmetry of the equation is such 

as to suggest a simple transformation that results in the separation of variables 

for the radiation field. 

In this paper we explored and exploited some of the beauties and 

subtleties of the integral equation. A complete variational formulation of the 

radiative transfer of non-polarized light was given in III. The derivation reveals 

a profound connection, hitherto unsuspected, between the variational principle, 

the principle of reciprocity, and the differential scattering cross section. The 

use of Feynman diagrams in Appendix B provides an intuitive understanding of 

some of these connections. 

The integral equation for a homogeneous sphere with isotropic scatter· 

ers is shown to be separable, and have the solution which can be expanded in a 

multipole series. Detailed computations of the internal and photometric func­

tions have been carried out. For all practical purposes, the optical properties of 

the homogeneous sphere of arbitrary size with isotropic scatterers are now 
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known (or easily calculable). Our technique can be used to study the pho­

tometry of planetary atmospheres, cometary atmospheres and the twilight 

problem in the Earth's atmosphere. These studies will be pursued and reported 

in future publications . 
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Appendix A:. Ditlerential Cross-section 

The definition of the differential cross section given by (5) is motivated 

by similar definitions in the electromagnetic and quantum theories of scattering 

(Jackson, 1975, Chapter 9; Landau and Lifshitz, 1965, Chapter 17) . Since this is 

the first time that this quantity is introduced in radiative transfer, we shall give 

examples demonstrating the connection between the differential cross-section 

and related physical quantities that may be more familiar to the reader . 

In an optically thin homogeneous medium, Eqn.(5) can be evaluated in 

the single scattering approximation 

(A1) 

The total cross section in this case is 

(J ~ CXGJ0 V 

(A2) 

where N0 is the total number of scatterers each with cross section a0 • 

For scattering of sunlight by a plane parallel atmosphere of area A, A 

being large, Eqn.(5) gives 

(A3) 

where the reflectivity R(J..L 1J..L0 ) is a defined by van de Hulst ( 1980), and the mean-

ing of the relevant angles is as shown in Figure 1 Oa. 

For scattering of sunlight by a sphere of radius a (see Figure lOb for 

description of geometry), evaluation of Eqn.(5) yields 
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(A4) 

where a 8 is the scattering angle given by casas = kko, ap = 1T'- as and j (ap) is a 

well- known photometric function , the flux (Horak, 1950; Harris, 1961). 

It is of special interest to evaluate Eqn.(A4) for the simple case of a Lam­

bert sphere with surface reflectivity A.. From van de Hulst ( 1980) we have 

(A5) 

Substituting Eqn.(A5) in Eqn.(A4), we obtain 

(A6) 

On integrating Eqn. (A6) we get the expected total cross section 

(A7) 
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Appendix B: Method of Successive Orders 

To gain insight into the connection between the microscopic symmetry 

of P(r;01,02) and the macroscopic symmetry of :~ (k1 .~). we consider the 

method of successive orders for solving ( 1) (van de Hulst, 1980, Chapter 4). The 

idea is simple . We can regard Eqn.(l) as an iterative equation for keeping track 

of photons that have been scattered once, twice, · · · , i times, · · · . By sum-

ming over the contribution from all orders, we obtain the correct solution to 

Eqn.(l). The advantage of this approach is the intuitive understanding it offers . 

The main disadvantage seems to be slow convergence (Irvine, 1975), but that is 

not the issue here, since we are primarily interested in gaining theoretical 

insight. 

Since radiative transfer is a simple many-body problem, it is instructive 

to represent the physical processes using Feynman diagrams. Equations Eqn.(1) 

and (5) contain four fundamental processes: the input factor g(r,k), the output 

~ factor g(r,-k), the distributor 
4

11' P(r;01,02) and the propagator 1r(r1,r2), as 

summarized in Table 3, using symbols adapted from the quantum theory of 

many-body problems (Mahan, 1981). Applying the method of successive orders, 

we can write the differential cross section as a series of partial cross-sections 

(B1) 

where the superscript i refers to the number of times the photon has been scat-

tered. The expressions for the partial cross sections can be easily obtained with 

the aid of Feynman diagrams. For single scattering we have 

(B2) 

where the pointed brackets imply integration over internal variables. The 
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reverse process is 

(B3) 

The expressions (B2) and (B3) are represented by the Feynman diagrams in Fig-

ure lla. For photons that are scattered twice, we have 

where the pointed brackets have the same meaning as before. The reverse is 

where r 12 = -r21 . The corresponding Feynman diagrams are shown in Figure 

11 b. Inspection of Eqn. (B2)- (B5) reveals that 

(B6) 

for i = 1 and 2, if 

(B7) 

and 

(BB) 

Eqn. (BB) is true from its definition. Eqn. (B7) holds if 

(B9) 

We can now see the direct connection between Eqn.(B9) and (B6). The argument 

can be obviously generalized to all orders and, hence, Eqn.(B9) implies the 

reciprocity symmetry of the differential cross section in Eqn.(Bl). The results 

obtained here are stronger than those in §3 for two reasons: the symmetry 

requirement in Eqn.(B9) is weaker than in Eqn.(6), and the reciprocity relation, 

Eqn. (B6), is true for each order of scattering as well as for the sum total given 
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by Eqn. (39). 

The method of successive orders offers a demonstration of the advan-

tage of the functional expression of Eqn. (39) over the direct expression of 

Eqn. (27) for approximate evaluation of the differential cross section. Let Jn and 

ln be approximate solutions of (25) and (26) that are correct to nth order; i.e. 

(BlO) 

Jn = ~· J(n) ' (B l l) 
i=l 

where J{i) and /(i) refer to the radiation field of photons which are scattered i 

times. It can be shown, after some tedious but straightforward algebra, that 

expressions in Eqn. (27) and (39), respectively, give 

(B12) 

(B13) 

Thus, the functional expression achieves an accuracy equivalent to 2n orders of 

scattering for approximate radiation fields that are correct only to n orders of 

scattering. 
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Appendix C: Green's Function 

To derive Eqn.(5 1), all we need is to use the following formulas 

(Abramowitz and Stegun, 1972, Chapter 10): 

hP)(z) = i -t-1 z -1 eiz ± ~l + k )! ' ( -2iz )-k 
k =0 k . ( l - k) . 

(C1) 

(C2) 

(C3) 

The resulting expression in Eqn.(51) follows from simplifying and collecting the 

coefficients for the exponential integral functions. Representative values for 

the coefficients ~rn and Btm are shown in Table 4 . Eqn.(51) is unfortunately not 

suitable for numerical computation of Gt(11,12) when l is large and 11 and 12 are 

~1. The reason is that in this situation the individual terms in Eqn.(51) are 

extremely large, even though they eventually cancel each other to yield a much 

smaller sum. Indeed, round-off errors render Eqn.(51) useless for l ~ 10 even 

for computations carried out with 32 significant figures. In practice we use 

Eqn.(51) only for l = 0 to 2. For other multipoles we use another formula : 

(C4) 

and carry out the numerical evaluation with 36 points Gaussian quadrature. 

The effect of the singularity Gt(l,l) is properly assessed by its integral over a 

grid box (Yung, 1976). 

Figure 12 shows the values of Gt(11 ,12) for two representative cases: 11 

= 1 and 1 1 = 8. It is of interest to note that as l increases the Green's functions 

become more concentrated near 1 1 = 1 2 , and that the areas under the curves 

become smaller. The net effect of this behavior is to make the first term more 

important relative to the second term on the right hand side of Eqn.(50). 



-88-

Hence, it would be practical to use the method of successive orders for solving 

Eqn.(50) for higher multipoles. 
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Table 1 

List of important photometric functions for the scattering of a parallel light 

beam by a particle or a planet. These functions are evaluated in terms of func-

tions defined in this work (see Figure 1 Ob for explanation of scattering angle as 

and phase angle ap) · Note that Qsca. = A. 

Particle Photometric FUnctions: 

Differential cross section 

Scattering cross-section 

Scattering efficiency 

Extinction efficiency 

Asymmetry factor 

Phase function 
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Planetary Photometric FUnctions: 

Flux 

Geometric albedo 

Phase variation 

00 

. ( ) ~ ft P, (cos aP) 
J aP t=o 

~(a.p) = j(o) =--f;-,-,--

Phase integral 

Bond albedo 

t=o 

4~o/o 
A =pq = --­

T~ 

Table 2 



l 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

-91-

Table 2 

Values of ft (see equation (55) for definition) 

for the cases 1 0 = 1 and 8. 

ft (;o = 1) 

4.39 x 1 o-2 

5.48 x 1 o-3 

1.30 X 10-4 

4 .8 X 10-~ 

1.4 X 10-~ 

2.0 X 10-6 

2.1 X 10-6 

1.9 X 10-7 

4.5 X 10-7 

2.9 X 10-a 

1.3 x 1 o-7 

ft(To=8) 

3 .49 

3.22 

0.12 

0.05 

9.4 x 1 o-3 

1.1 x 1 o-2 

1.5 x 1 o-3 

3.5 X 10-3 

3.3 X 10-4 

1.4 X 10-4 

9.6 X 10-5 
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Table 3 

Graphical representation of fundamental processes in radiative transfer. 

These symbols are used in the construction of Feynman diagrams in Figure 11. 

Symbol 

k -------... r 

k 
r-----~---

--~2 __ _!:\_ __ ~~--
r 

--~:.-~ 
r 

____ ·k··-2--~~-~~--1--­
r 

r2~-----~---- ... rl 

F 
. dcr 

actor 1n dO 

t(r,k), incoming photon 

t(r,-k), outgoing photon 

with n,: = 0 or k 

angular distributor 

e -r(rl.r2) 

r.(rl,r2)= 2 
T12 

internal propagator 
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Table 4 

Values for the coefficients ~'"' and Btm as defined in (51) 

for the first three multipoles l = 0, 1. and 2. 

Multipole (l) Index (L,m) 

0 (0,0) 1 1 

1 ( 1,0) 1 1 

( 1,1) 
1 1 

- -(T + T ) ---(T -T) 
T<T> > < T <T> > < 

( 1.2) 
1 1 ---

T<T> T<T> 

2 (2,0) 1 1 

(2,1) 
3 3 

--(1> + T<) - :;:-:r-( T > - T <) 
T<T> < > 

(2,2) -h(2T~ + 3T>T< + 2T~) 3 
_ 2 _ 2 (2T~ - 3T> T < + 21~) 

T<T> '<'> 

(2,3) 
9 9 

""22( T> + T <) -:-w(T>- T<) 
T<T> /</> 

(2,4) 
9 9 

T~T~ T2 ... 2 
<'> 
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Figure Captions 

Figure 1 (a). Schematic diagram for radiative transfer in an object of volume v 

and surface S. The incident and emergent beams are in the directions 

ko and k, respectively. The points r 1 and r 2 are interior points, and dr2 

is an infinitesmal volume at r 2 . The points R(r1,kc,) and R(r1,-k) are on 

the surface defined such that R(r1 ,kc,) - r 1 is antiparallel to ko , and 

R(r1, -k) - r 1 is parallel to k. (b) Schematic diagram for scattering of 

sunlight by an object of volume v. In the forward process the incident 

and observation directions are k 1 and k2· respectively. In the reverse 

process the corresponding directions are -ke and -k1, respectively. 

Figure 2. Source function in Eqn. (50). (a) S0 , S 1, and S2 for 7'0 = 1 case. (b) S0 , 

8 1 , S2, Sa for T 0 = 8 case. 

Figure 3. Solution of Eqn.(50). (a) "/10 , 'f/11, '1/12 for T 0 = 1 case. (b) "/10 , '1/11. '1/12. "//a 

for T 0 = 8 case. 

Figure 4. Internal mean intensity of radiation as a function ofT. (a) J0 (T,J.L=-l), 

J(T.j./J=-1) for T 0 = 1 case. (b) J0 (T,J.L=-1), J(T,J.L=-1) for T 0 = 8 case. 

Figure 5. Extinction efficiency Qezt as a function ofT forT= 1 to 8. 

Figure 6. Scattering efficiency Qsca. as a function of CJ0 for T 0 = 1 and T 0 = 4 

cases. The case T 0 = oo is taken from Irvine's (1975) Figure 5. 

Figure 7. Asymmetry factor g as a function ofT for CJ0 = 1 and CJ0 = 0.5 cases. 

Figure 8. Geometric albedo of a sphere p as a function of CJ0 for T 0 = 1 and T 0 = 
4 cases. The case of T 0 oo is taken from Harris (1961). 

Figure 9. Phase variation 9'(cxp) as a function of phase angle aP for T 0 = 1 and T 0 

= 8 cases. The case of T 0 = oo is taken from van de Hulst ( 1980). 
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Figure 10. (a) Schematic diagram for scattering of sunlight by a plane parallel 

atmosphere of area A and local normal n. The cosine of the zenith 

angles JJ-0 and J..L are given by -ko ·nand k · n, respectively. (b) Schematic 

diagram for scattering of sunlight by a sphere of radius a . The phase 

angle aP and the scattering angle a 3 are defined by cosaP = -ko · k and 

cosa3 = ko · k. 

Figure 11 (a). Feynman diagrams for photons that are scattered once. See 

Table 3 for explanation of symbols. (b) Same as (a) for photons that are 

scattered twice. 

Figure 12. Green's function Gz('i1,'i2) as a function of 'i2 . (a) l = 0, 4, 8 and 'i1 = 

1.0 . (b) l = 0, 4, 8 and 'i1 = 8.0. 
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