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ABSTRACT

It has been experimentally determined by previous investigators that
hydrodynamic forces can cause a centrifugal pump impeller to whirl in a
volute. The present work was undertaken to develop a theoretical model
of the interactions that occur between an impeller and a volute, and to
identify the source of the hydrodynamic forces. Experiments were then
conducted to test the predictions of the model. The theoretical analysis
presents a quasi-one dimensional treatment of the flow in the volute and
accounts for the disturbance at the impeller discharge that is caused by
the volute. The model also considers the lack of perfect guidance
through the blade passages. Extending this model allowed for the calcu-—
lation of hydrodynamic force perturbations that result when the impeller
whirls eccentrically in the volute. These force perturbations were shown
to encourage, rather than dissipate the whirling motion. The predictions
of the model gave reasonable comparisons with the experimental data
obtained in this study. Further, it was experimentally observed that
pressure forces acting on the front shroud of the impeller could have a
major influence on the hydrodynamic force perturbations acting on an

eccentrically positioned impeller.
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Chapter 1

INTRODUCTION

1.1 Historical Perspective

Given a rather broad definition, a pump might be considered as any
device that could be used to increase the elevation of liquids, solids,
or gases. One of the earliest known devices to be used in such an appli-
cation was the undershot—bucket waterwheel which made its appearance in
Asia and Africa about 3000 years ago, and is still in common use today.
The invention that is commonly thought of as being the first pump though,
is Archimedes’ screw pump that was developed around 250 B.C.. Modern
versions of these pumps can still be seen pumping water over the dikes of
Holland. Initially, pumps were used primarily for agricultural and
domestic purposes, but when mining operators began exploring at levels
lower than the local water tables, an indusfrial interest in pumps began
as well.

Most of the early pumps were of the positive displacement type.
meaning that they relied on volume changes to transport the fluid such as
in piston pumps, screw pumps, and the human heart. The idea that
centrifugal force could be used to move liquids was suggested by Leonardo
da Vinei in the fifteenth century but apparently the application of such
a device had already been discovered by fifth century copper miners in
Portugal. With the introduction of rotary steam engines and (later)
electric motors, the centrifugal pump gained in popularity to become one
of the predominant types of pumps in use today. Such pumps are relatively

inexpensive to operate given the amount of fluid that they move, and have



allowed many areas of the world to grow beyond the capacity of their own
local water resources (e.g.., Los Angeles, California).

It is the study of the centrifugal pump that will be the main focus
of this research. Inspiration for work in this area is due in part to
the recent aerospace applications of such devices, particularly in
connection with the High Pressure Fuel Turbopumps of the Space Shuttle.
The special requirements of high power to weight ratios coupled with the
necessity for reliability, have led to new problems that cannot be prop-

erly addressed by previous design practices.

1.2 Defining the Problem

1.2.1 Description of a Centrifugal Pump

Conceptually, the centrifugal pump has a fairly simple design
consisting of only the two principle parts shown in Figure 1.1. The
basic idea is that the fluid will axially enter into the center of the
rotating impeller where it turns and passes into the moving blade
passages. There, the fluid will gain momentum and pressure, and then be
discharged into volute. In the volute the flow is collected and the high
velocity flow at the impeller discharge is diffused into a high pressure
flow. Some modifications on this concept have been made, such as placing
vanes at the volute inlet to guide the flow, but fundamentally the pump
remains unchanged.

In the past, pumps were designed so that their physical size
generally correlated directly with the job requirements. For high power
applications where weight is relatively unimportant compared to reliabil-
ity, the systems chosen are typically large and run at lower speeds (less
than 3000 RPM). But when the weight becomes an important factor, smaller

pumps are required with much higher operating speeds (greater than 30,000
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RPM). Along with the higher speeds come larger forces acting on the
impeller, and the option of simply using a heavier drive train is no
longer viable. Because of this situation, it becomes necessary to have a
clearer understanding of what causes the forces on the impeller and what
can be done to minimize their impact.

Several sources, both dynamic and hydrodynamic, have been identified
as contributing to the forces on the impeller. One area that has
received a great deal of attention is the force on the impeller that is
generated by fluid in the annular seals separating the high pressure
discharge of the pump from the relatively low pressure inlet (see for
instance Black and Jensen [2], or Childs [11]). Other forces that are
beginning to generate interest are the ones caused by fluid trapped
between the front shroud of the impeller and the pump housing. These
latter forces will be briefly investigated in this study, but the main
focus will be placed on the hydrodynamic forces that arise from the
interaction betwéen the impeller and its accompanying volute.

It is traditional in studies of hydraulic forces on turbomachinery
to separate the forces into one of two categories. In the first
category are the forces that are developed when the rotor (impeller) is
in the "centered” position. For an axial symmetric case it is easy to
identify the center, but in the case of a spiral volute it is usually
defined by the volute design criteria. In the second category are the

forces caused by an eccentric positioning of the rotor.

1.2.2 Radial Forces on the Centered Impeller
The usual hypothesis in designing a volute for a given impeller is
that it should offer a minimum interference to the symmetric flow pattern

that would result if no volute was present. These free flow patterns
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will change, however, with both impeller speed and discharge flow rate.
For this reason, the volute can only be designed for a particular speed
and flow rate, and in general, for any deviation from this point the
volute will cause a disturbance in the impeller discharge flow. The end
result of this interference is that the asymmetric pressure and velocity
distributions at the impeller discharge will cause a net force acting on
the impeller at the "off design” conditions.

As a crude approximation, it might be assumed that the radial forces
are related to the discharge pressure times the area at the outer perime-
ter of the impeller. It is also known from an elementary treatment of
the impeller (see for instance Streeter and Wylie [26]1), that the
discharge pressure is proportional to the square of the impeller tip
speed. This would indicate that the forces on the centered impeller
should scale with the square of the rotational speed and the cube of the
outer diameter of the impeller. So when the impeller speed is increased
by a factor of 10, it can be anticipated that the radial forces will

increase by a factor of 100,

1.2.3 Forces on the Eccentrically Positioned Impeller

Forces will result on the impeller even at the design flow rate if
the impeller is not in the center of the volute. The impeller may be
dislocated from the center for a number of reasons, such as manufacturing
flaws, bearing wear, or even shaft deflection from the radial forces
mentioned above. When this happens, one must ask whether the resulting
forces tend to restore the rotor to the original position or drive it
further off center. There is also a third option, called “impeller
whirl®” or "whip”, where the forces drive the impeller into a circular

orbit about the center. Usually the forces are linearized with respect
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to the small eccentric displacement of the impeller, so that the total
force may be written as,
[y (Fyo hyx  Ayy] [ e cosut

(1.1)

E=1r [ F T |a A e sin ot ’
y | ¥O xy Uyy ,

where F_. and Fyp are the steady forces on the impeller when it is

located in the center of the volute. The [A] matrix, which is a function
of the whirling speed of the impeller, relates the instantaneous force to
the displacement. Often the [A] matrix is expanded as a quadratic of the
whirl speed, o, so that it can be described in terms of stiffness, damp-

ing, and inertial effects (see Equation 3.7).

Recently, concern has developed that the eccentric contribution to
the force may cause the impeller to whirl at a speed other than that of
the main shaft. In an article by Ehrich and Childs [14], it was emphasized
that subsynchronous vibrations will generally cause a more hazardous
failure than the one associated with synchronous vibrations. Part of the
reasoning they give for this is that the synchronous vibrations (which
are typically associated with unbalanced rotors) tend to cause the shafts
to whirl in a "frozen” flexed condition. Subsynchronous vibrations, on
the other hand, will cause alternating flexural stresses in the rotors
because of the differences in rotational speeds. The problem will be
further aggravated if the subsynchronous vibration occurs at a natural
frequency of the shaft/impeller system. This would lead to exaggerated
displacements associated with a particular mode shape for a given natural

frequency.



1.3 Previous Investigations

1.3.1 Experimental Determination of Forces on a Centered Impeller

Even with the long history of centrifugal pump development, the
theoretical models for such devices are still rather tentative, and most
design improvements have come abouf through experimentation and practical
experience. In connection with finding the hydrodynamic forces that act
on the impeller, several experimental programs have been undertaken.

In 1936, Binder and Knapp [3] calculated the radial forces on a
centrifugal pump impeller by measuring the pressures and velocities at
the discharge of the impeller. The velocities were included because the
authors had realized that an asymmetric momentum flux at the discharge
would also contribute the force on the impeller. Knapp [18] later
extended this work by studying the effect of using a single and a double
spiral volute, as well as a volute with diffuser vanes. Using the same
impeller for all three cases, he determined by static pressure measure-
ments that a single spiral volute gives the greatest off design force on
the impeller and the double spiral gives the least force.

Similarly, in 1961, Iversen, Rolling, and Carlson [15] performed
pressure integrations to find the radial forces, but they also obtained
the forces directly by measuring the bearing reactions of the shaft
supporting the impeller. Their results indicated that the forces came
primarily from the the pressure imbalance at the discharge. At the sanme
time, in a paper by Agostinelli et al. [1], the forces were found by
measuring the deflections of the shaft on which the impeller was mounted.
They tested several volute configurations, including one hybrid of a
circular and a spiral volute that minimized the radial forces over a wide

range of flow rates.
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1.3.2 Experimental Determination of Forces on an Eccentrically
Positioned Impeller

The need to determine the forces that result when the impeller is
deflected from the volute center has only recently been recognized. As a
result, there are only a few pertinent experimental studies. Ohashi and
Shoji [23] have undertaken an investigation where a two dimensional
impeller is placed in a large circular diffuser in order to minimize the
generation of steady radial forces. With a variable displacement
eccentric drive mechanism they were able to cause the impeller to whirl
in a circular orbit while measuring the resulting bearing reactions.
Their results indicate that at low flow rates and low whirl speeds, the
forces are such that there is a possibility of self-induced impeller
whirl.

Another test facility also exists in the pump division at Sultzer
Brothers Limited in Switzerland. Bolleter and Wyss [4] describe the pump
as modeling a single section of a multi-stage pump with a vaned diffuser.
The pump is constructed so that there are axial symmetric conditions at
the discharge (for a centered impeller) and therefore the mean forces are
eliminated. The shaft supporting the impeller is forced to undergo a
small single direction translational motion, and the resulting two direc-
tion deflection of the impeller is measured with eddy current probes.

The forces are found using strain gages mounted in a rotating cylinder at
the base of the impeller. The results from this facility also show that
for certain flow conditions impeller whirl may occur.

At the California Institute of Technology. a test program was
developed by Brennen, Acosta, and Caughey [7] so that whirl excitation
forces could be determined using realistic pump configurations. In their

facility, the center of the impeller was caused to orbit in a circular
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path of a fixed radius inside of a volute. The forces were obtained by
measuring the displacement of the entire eccentric drive assembly on
which the impeller was mounted. Results of this program given by Chamieh
et al. [9,10], demonstrated that for both spiral and circular volutes,
the forces resulting from a stationary displacement of the impeller would
cause the impeller to orbit.

Work at the Caltech facility was extended by Jery et al. [16,17] to
ineclude hydrodynamic forces generated by a whirling impeller. The test
section was modified so that the forces were measured directly at the
base of the impeller with a strain gage balance. This study presented
the dependence of the whirl excitation forces on both whirl frequency and

the pump configuration.

1.3.3 Theoretical Analyses of Volute-Impeller Interactions

Because of the complicated geometries in centrifugal pumps, simple
theories that adequately describe the internal flows do not exist.
Still, several models have been developed in order to explain and
extrapolate experimental observations. These theoretical solutions
generally fall into one of two categories depending on whether a one
dimensional bulk flow approximation was made or a two dimensional poten—
tial flow was assumed.

Csanady [13] was the first to introduce the concept of using a
potential flow analysis of the impeller and volute. In his model, a
spiral volute was transformed into an equivalent flat—-plate cascade
through a conformal mapping. Pressure forces on the impeller were
determined by assuming that the total head was constant around the
impeller periphery. This work was later broadened by Colding-Jorgensen

[12] to include the effects of whirling. Colding-Jorgensen‘s model not
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only predicted hydrodynamic forces, but it also gave stiffness and damp-
ing terms associated with the displacement of the impeller in a spiral
volute.

Singularity methods were used by Shoji and Ohashi [24] to calculate
fluid forces on an impeller in an unbounded region. To model the effect
of an eccentric displacement of the impeller on the inlet conditions,
they introduced small velocity perturbations in the flow field within the
blade passages. Shockless entry conditions are assumed for the steady
portion of the flow and vortices shed from the trailing edges of the
blades are considered to be carried downstream along the steady stream—
lines at steady velocities. Tsujimoto, Acosta, and Brennen [28,29] also
used singularity methods for finding the unsteady forces on a whirling
impeller, but in their analysis the influence of the volute on the
downstream flow was included.

A bulk flow model was purposed by Kurokawa [19] in which the flow
field is divided into a diffuser region immediately at the impeller
discharge, and a volute region afterwards. The equations of continuity
and motion were satisfied for the flow in the diffuser region that was
treated as a narrow annular gap with inlet conditions described by
Busemann [8]. The flow in the volute was considered as an equivalent
convergent or divergent straight channel, depending on whether the pump
was being operated at high or low flow rates. These calculations
predicted the steady fluid forces acting on the impeller.

Lorett [21] has also developed a bulk flow model that includes an
approximation for the flow in the impeller and accounts for the effects
of friction. The flow was assumed to be perfectly guided by the impeller
blades and allowances were made for the peripheral variations at the

discharge. Pressure distributions in the volute were obtained by linear
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momentum considerations so that the steady radial forces could be
calculated.

Finally, the study that the current research most closely parallels
was given by Iversen, Rolling, and Carlson [15]. They presented a
quasi-one dimensional treatment of the internal flows with the pressure
being obtained by continuity and a linear momentum balance in the volute.
The radial velocity at the inlet of the volute was assumed to be uniform
and the tangential velocity was obtained using Stodola’s [27] correction
factor. Comparisons between their predicted and experimental results

were given.

1.4 Goals of the Present Research

The need for analytical design methods in turbomachinery is clear.
Previously it has been accepted that accurate information could only be
obtained through extensive testing. As the pumping problems have grown
more complex, the cost of maintaining a "trial and error” design program
has become difficult to justify. For this reason it is necessary to
provide the pump designer with analytical tools so that only a limited
testing program is required.

The current research is undertaken to provide a comprehensive
theoretical analysis to compliment the experimental program conducted at
the California Institute of Technology by Brennen, Acosta, and
Caughey [7], Chamieh [9], and Jery [16]. The ultimate aim is to develop
a procedure by which the hydrodynamic radial forces on an impeller
whirling in a volute can be predicted. A bulk flow analysis is chosen so
that the model can be closely tied to the actual physical geometry of a
centrifugal pump.

It was realized at the onset of this study that attempts had to be
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made to validate the model at several levels of complexity. For this
reason, an experimental program on the interaction between a non-whirling
impeller and the volute is included in this thesis. There will also be a
limited investigation of other sources of fluid forces that may have
influenced previous investigations. Altogether, it is hoped that this
will provide a clearer understanding of the origins of the hydrodynamic
forces so that the observations of past studies can be better understood
and that future research in this area will have a clearer direction.

In this thesis an analytical model for the hydrodynamic interactions
between a whirling impeller and the surrounding volute in a centrifugal
pump will be developed and tested. The model is introduced in the
following chapter and the theoretical predictions are presented in
Chapter 3. Chapter 4 provides a description of the test facilities used
in verifying the model. Correlations between the theoretical and experi-
mental results are given in Chapter 5, along with comparisons to previous
investigations. An examination of the hydrodynamic force on the front
shroud of the impeller is also presented in Chapter 5. Finally, a

summary of the experimental results and an assessment of the model are
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Figure 1.1 Description of a centrifugal pump
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Chapter 2

THEORETICAL ANALYSIS OF A CENTRIFUGAL PUMP

2.1 Overview of the Apalysis

In order to model the flow through the centrifugal pump, the problem
will be broken down into two parts. First, the flow through the impeller
will be investigated, and seeqnd, the flow through the volute will be
considered. A circumferentially periodic perturbation of the flow is
assumed in the impeller model to give a periodic nomuniformity in the
flow conditions at the exit of the impeller. Non—uniform inlet flow
conditions are then included in the volute analysis so that the volute
and impeller models can be combined by matching pressures and flow rates
at the impeller discharge. This matching of conditions will allow the
magnitude and phase of the impeller flow perturbation to be found. It
also allows the radial forces on the impeller that result from such a

circumferential perturbation to be calculated.

2.2 Impeller Model

2.2.1 Introduction

The primary objective of the impeller model is to relate the pres-
sure and velocity at the exit of the impeller to the pressure and
velocity at the inlet. In order to do so, the flow is considered to be
inviscid and two dimensional throughout the blade passage and an unsteady
form of Bernoulli’s Equation is used in describing the variation in pres-
sure and velocity along an instantaneous streamline in the impeller. The
form of Bernoulli’s Equation used is developed in Appendix A, but for

convenience it will be repeated here. With reference to Figure 2.1 it is
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given as,
2
Pi V2 ﬂzr'” J. av g T ) j-
—+ - + £y . ds - w - -8’ 0o
o ) ) T e s"c:os(mt 0t -6")dr
— .
w sf 'sn.n(mt-m,—e")r"d 9" =F(t) s (2.1)
s'

where F(t) is a function of only time along a streamline, but may vary
from one streamline to another.

Here Bernoulli’s Equation is still in a fairly general form and to
be of any use in modeling the impeller flow some restrictions must be
placed on the flow path through the impeller. In an idealized model it
would be assumed that there are an infinite number of blades, perfectly
guiding the flow from the inlet to the discharge of the impeller. In
this situation the flow path would correspond exactly with the blade
passage. But most impellers use only a small number of blades for prac—
tical reasons (i.e. reducing friction and flow blockage), so it is
unlikely that the flow can be considered as perfectly guided through a
blade passage. Alternatively, it is just as unlikely that the blades
have no influence on the fluid at all and that the flow appears as a sim-
ple source flow in the volute reference frame.

Estimating how well the flow is guided through. the impeller has long
been a problem faced by centrifugal pump designers. One of the more
popular methods used to deal with this difficulty has been to assign a
"slip factor” to the velocity at the impeller discharge. The slip factor
is included to account for the difference between the predicted head rise
across the impeller (assuming perfectly guided flow) and the total head
rise which is actually observed. A rather extensive review of these fac—
tors is given by Wiesner [30] where both theoretical and empirical

results are presented. There are, however, two major drawbacks to using
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a slip factor approach in this study. The first shortcoming is that the

factors do not take into account the influence of the volute on the flow

at the discharge of the impeller and it is known that the volute can make
an important difference (see Bowerman and Acosta [5]). The second draw-

back is that the slip factors generally apply only to the velocity at the
impeller exit while the current model needs the velocity profile

throughout the impeller.

2.2.2. Velocity Profile in the Impeller
In order to find a compromise in dealing with the flow path dilemma,
it is assumed that the flow follows a spiral path with respect to the
rotating impeller, with the kinematic relationship between the radial and
angular velocities being,
Vg r’'d o’

T - =—tan'y(d:l/7) for R1 <r' <R, . (2.2)
r' dr’’

The angle, ¥, in the expression will be referred to as the flow path
angle and in the idealized perfectly guided case it would be equal to the
blade angle, Yg. For the time being, the flow path angle will remain as
an unknowh, and will be considered to be a function of only the flow rate
and the total head rise for the centered impeller. It should be
emphasized that this is a major assumption, because by making it the
streamlines relative to the impeller will be treated as uniform and
independent of the position of the impeller. The streampaths which

follow from this assumption are given by the equation,
ez"ae!f+tanyln(r”iﬁz) , (2.3)

with Rz, 95' being the terminal point of each stream path. Some
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generality is still maintained by having the flow path angle change with
¢ andiﬂ. Doing so will allow for the streampaths in the impeller to
change when different exit conditions are imposed on the impeller by the
volute and downstream conditions.

For the problem of an impeller discharging into cylindrically
symmetric environment, continuity requires that the radial velocity is
inversely proportional to the radial distance from the center. In
accordance with this observation, the radial velocity within the

impeller is written in the form,

VP,,=dQR%B(G",r”,ﬂt,wt,e)/r'" , (2.4)
and the streamwise velocity through the impeller is,

= (v2,, +v2 )" = ¢ qnr2

e T Vg 5 p(e’,r,0t,wt,e)sec y/r , (2.5)

for R1<r"_<.R2 .

The function B in Equations 2.4 and 2.5 is included to account for the
influence of the volute on the flow in the impeller. Although the number
of variables in B makes it appear complicated, some progress towards
simplification can be made by realizing the relationships that must exist
between the variables. First, the perturbation associated with B must be
constant along a streampath so that continuity is satisfied. For the
flow perturbation within the impeller to be the same as that at the
discharge will require that the relationship between r'' and 6° in p be
given by Equation 2.3. Next, because the perturbation is caused by the
volute, it is reasonable to expect that f is stationary in the volute
reference frame for a non—whirling impeller. This would suggest that 6”

and 2t arguments of § combine as & = 8’ + Qt.
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It now remains to determine the dependence of B on ¢ and wt. Since
the eccentricity of the impeller orbit, e, is small, the perturbation

function, B, will be linearized in ¢ as,

B0 ,r",0t,ut,e) =B(8,) + ¢ (B (8,)cos ut + B5(8,)sinut) . (2.6)

The function B, is the perturbation in the impeller flow caused by the
interaction between the centered impeller and the volute. The functions
Be and By are introduced to account for the first harmonic effects on the
perturbation due to the impeller whirling in the volute. All three

components are functions of 8, but remain constant along each streampath

in the impeller.

2.2.3. Pressure Distribution at the Impeller Discharge
Substituting the streamwise velocity of Equation 2.5 into
Bernoulli’s Equation and performing the integrations along the streamline

described by Equation 2.3 results in,

2p2

p 2

{dﬂzseczY'“l}"wZG{chos(wt—~92)-Rlcos(wt-el)}/tanzv

ap ®
+d9 R% sec? y ln(R)[ﬂ'é-e-'z-+ e {—Be sin ot + Bg cos wt}]

2 2n2

» 2 - . (2.7

From this equation the pressure distribution at the exit of the impeller
is known in terms of the perturbation B and the inlet pressure and
velocity.

At the inlet of the impeller the total head will be assumed to be
constant. This will mean that where the flow enters the blade passage at

r=R1 .
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P.(Ry,04) + 1 uz(R 8,) = constant =h (2.8)
i{R1.,84) *5 P 1:%1 ° 1 .

where u(Rl,el) is the absolute velocity of the flow at the inlet. If it
is assumed that there is no pre-swirl at the inlet, then the velocity of
the flow entering the blade passage has only a radial component in the

absoclute reference frame, and is of the form,
(R ,0,) =6 2B R3/Ry + e wsin(6y —wt) . (2.9)

This gives the velocity relative to the rotating impeller as,

v*(Rl,el) = {¢2 R? ﬁ2 + [e"'%cos(e1 - wt) + 1/}?]2}’/z , (2.10)
and the pressure distribution at the inlet of the impeller as,
PS(R,,0,) Sh} - dRB(8,)(dRE(S,) +2¢ Lsin(o, - wt))
101,890 =0y 2 BiOy) +28 gsinldy -~ w
- 2:"2 R B(o,) (5 (8,) t +B_(8,)sin wt} (2.11)
2 ac pjcO8 © ﬁs pisine .

where R=‘RZ/R1 and terms of order 32 and higher have been neglected.
When the assumptions concerning the inlet conditions are applied to
Bernoulli’s Equation, the result gives the pressure distribution at the
exit of the impeller in terms of the perturbation function, B, and the
inlet total head. It is further assumed that this pressure distributiocn

2

can be separated into three parts and that terms of order &“ are negligi-

ble. The result is the following expression for the pressure distribution

at the exit of the impeller,
—_ %
Cpl0y.0t,e) =Tp(8y) +& (C, (8;)cos wt + Cpg(0;)sin wt) (2.12)
~ oF &
- Pi(R2:92) - hl »

where,
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T 2 11652 (0 e,
p(92) =1-dsec” vI0B (9,) +2 1n(R) d"z »

— dp
C o(8y) = -2 sec? YL B(9,) B (0,) + 1n(R) g;,j + 21n(R)B_(8,)]

2

o
+ 2 - [cos(8,) - cos(®, + tany 1n(R))/R] Jtan® v
Q

- 2g[4R E(ez)sin(ef tany 1n(R)) - cos(8, + tany 1n(R))/R1

and,

- dp
C g(8y) = -2 sec® Y[ B(8,)p_(0,) + 1n(R);;9§ = § 1n(®)B,(6,)]

2

(6]
-+2-—-[sin(92)-—sin(92+ tan'yln(R))/R]/tanzY
92

+2 % [¢R E(Bz)cos(ef tan y 1n(R)) + sin(8,+ tany In(R))/RT .

2.2.4. Pressure Distribution at the Volute Inlet

Equation 2.12 will be used to solve for the perturbation function,
B, once the pressure distribution, €, is obtained from the volute model.
Some care must be observed in carrying out this procedure because it will
. prove more convenient to describe the pressure distribution at the volute
inlet in terms of a volute centered coordinate system and not the
impeller centered coordinates used above. This makes it necessary to
establish certain geometric relationships between the two coordinate

systems. With the aid of Figure 2.2 it is seen that,
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sina= e*sin(e'-— wt) »
or otherwise stated,
e Ze'sin(0'- wt) . (2.13)

With this angle known, the angular positions 92 and &' at R2 may now be

related by the approximation,

6,=0"+aT0’+ etsin(6'- wt) . (2.14)

An expression for Ré may alsoc be obtained from geometric considerations
as,

Ry SR,[1+¢ cos(@'-ut)] . (2.15)

The pressure distribution is assumed to be continuous from the
impeller discharge to the volute inlet. Utilizing Equation 2.14, the

relationship between the pressures is found to be,

~ &
Cp(8) =D (8") =D (8, - & sin(9, - ut)) (2.16)
dD,(8,)
= ® ey P20
- Dp(‘ez) - & Sln(ez &t) d92 °

If it is further assumed that the pressure distribution at the entrance

of the volute may be linearized in e as,

Dp(e')==5p(9')-+e*[Dpc(G')cosam-+Dps(9')sinu¢] , (2.17)

then the final expression for the impeller discharge pressure in terms of

the volute pressure distribution becomes,
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dD., (8,)
D * Yo 27
Cp(ez) = Dp(GZ) +e [(Dpc(GZ) - 8in 92 d@z )cos wt

D, (8,)
+(Dps(ez)-+00592"JL‘2“)sinu¢] . (2.18)

d62

With this description of the pressure distribution and the previous
results of Equation 2.12, Bernoulli’s Equation resolves into three parts.
Together these three parts relate the perturbation in the flow through
the impeller to the pressure distribution at the inlet of the volute.

The first part accounts for the interaction between the centered impeller
and the volute. The other two parts yield the in-phase and quadrature
components (sin ot and cos wt coefficients) of the first harmonic effects

of the whirling impeller. These three equations are as follows :

steady term:

d sec” y[2 In(R) T—+dB°1+D_~-1=0 (2.1%a)
d92 b
cos ot term:
dp dD
2 —=c © —P
24 sec® y[1n(R) as, +3FB, + §1n(RIB ] + Dpe — 8in 8y a8,

*2 5 [6RP sin(8, + tany 1n(R)) - cos(8, + tany 1n(R)) /R]

2
©

-2 5 [cos 62 - cos(92 +tany 1n(1'1‘))/R]/tan2 vy=0 (2.19b)
Q
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sin ot term :

[e

D
+ cos 92 &_g

dg —
2 -8 ©
2d sec y[ln(R)dez +d BB - 8 1n(R)ﬁc] + Dps )

-2 % [RB cos(8, + tany 1n(R)) + sin(8, + tany in(R))/R]

p

L]
-2 — [sin®, - sin(@, + tany In(R)) /R1/tan’ y=0 . (2.19)
g

2.3 Volute Model

The volute model is developed so that the flow conditions at the
exit of the impeller may be related to the geometry of the volute. The
three basic equations used in the volute model are the continuity equa-
tion, the moment of momentum equation, and the radial equation of moﬁion.
These three equations are derived in Appendix B but will be repeated here
for convenience. With reference to the geometry described in Figure 2.3,

the basic equations are as follows.

continuity

i)

367 . (2.20)

R. ° R

?

R3
Ve'f war'| =wl (v, ,R-V,’
RZ 2 2 2

moment of momentum :

2
o g2 2 L o
—— ’ ’ -—
357 Ve,f , wr'dr +wV9,| » Ry 307 wVe' r-" vRZRZ
Ry Ry 2

Ra '
i) ’ ) —
*o | Vgrf ,wrirrdr +WVG'IR' R

R2 2

{continued)
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7 ¢

8 B R R
ap. (R, ,0°) 13
1wt ___Q._
-5 Y IR' wr'dr’ IYY ,wr "1n(r’ /R Ydr?
2 2
2
R
+ V2 aRZ f wr'dr’ (2.21)
8’ R' 36"’ e °
2 2
radial equation of motion :
12 2 [
P (r',8') =P (Ry.0") +pVy,(8")1n(r'/R)) . (2.22)

Underlying the development of these equations were the assumptions that
within the volute the flow is primarily in the 8' direction, and that
this velocity is a function of only ¢’ and t . The radial and axial
velocities along with their gradients were considered negligible and any
viscous effects are also ignored.

Using the expression for R given by Equation 2.15, the volute cross
section integrals may be written in terms of their mean quantities and a
perturbation due to the eccentric impeller position. With an additional

assumption that the width of the volute at the impeller discharge is a

constant, Wi, the cross section integrals are given by,

1
R3
j wdr’ /bR, = F(8") - e"W, cos(0' - ut) /b ,
2
Ry
_[ ,r'wdr'/bng = TA(O’) - a*wicos(e' -wt)/b ,

R

3
R3 "
f ,r'r'wdr'/bRg==rrA(9')-—e Wicos(e'-mt)/b ,
R

2
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[

R

3 a————— —
J 'ln(r'/RZ)wdr'/sz = 1nra{®") —a*A(G')cos(e' -ot) ,
Ry
8
Ry
f ,r'ln(r'/Ré)wdr'/bﬁg==rlnrA(9’) —e*;K(O')cos(e’-mt) »
R2
and,
7
1 9R, 3 s e—
- ‘“7'I r'wdr’/bR; =~ ¢ rA(8') sin(@’' —-wt) ,
R' 08 R' 2
2 2
where,
3 7
Ry Ry
A6 =_fR2wdr'/bR2 ,1nra(e") =jR21n(r'/R2)wdpv/bRZ , (2.23a,b)
[ ¢
R3 R3
TE(8') =.f r'wdr’/bR2 , PrA(0’) =.f r'r'wdr’/bRS , (2.23c,d)
R2 2 R2
2
R3
- ? P 2
rlnPA(G')-fRzr in(r /Rz)wdr'/bR2 s (2.23¢)

and b is the width of the impeller discharge.

In order to complete the connection between the impeller discharge
and the volute inlet, the relationships between the velocities must be
found. From kinematic relationships and Equations 2.2 and 2.4 of the
impeller study, it is known that the velocity distribution at the

impeller discharge is given by,
E(Rz,e) = [dSIRZB(OZ) +twe sin(ez— mt)]gr

+[2Ry(1-dtany B(8y)) +we cos(8y- wt)lgg - (2.24)
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where, as was previously described, the perturbation function is given

as,

B(O,,ut,e) =B(6,) +¢" [B (6,)cos ut + B (8,)sinut] . (2.6)

It will be assumed that this velocity is equal to the velocity at the
inilet of the volute. Care must be taken at this point, however, because
what is needed is the velocity at the volute inlet in terms of the volute
reference frame. The unit vectors appearing in Equation 2.24 can be

approximated in the volute reference frame by using the unit vector

transformations,
~ ® )
€ =8t sin(@'~ wt)ge, , (2.25a)
and
29;— e sin(9'- wtle ,+ g4, (2.25b)

In addition, the perturbation function, 53(92), may also be written in

terms of the volute coordinates as,

o ag(e”)
B(0,) SB(8'+ e sin(0'- wt)) TB(8') + e’ sin(@'- wt) ~qer - (2.26)
which, when combined with the Equation 2.6 becomes,
o . dp(e")
B(8,) =p(8’) +e {[B (8') +sin0’ —gv Jcos ut
ag(e")
+[BS(9')—cose' Ty Isinwt} . (2.27)

Incorporating the preceding transformations gives the velocity

components of the flow entering the volute from the impeller as,
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v '(RZ'.O')

Ty = 3(F(0’) + & [B_(6')cos ut +B_(8')sin utl)
. _ dp(e”)
~¢g [1-dtanyB(o8') -4 T]sin(e'— wt)
+e 9 5in(8'- wt) (2.28)
and,
v ,(R‘:G’) -
—9—;52“—11 -d tan y{B(8") +e*[Bc(9')eos wt + B (8’)sin wtl]
2
. - dp(e’)
+& d[B(O')—tany"‘—“—"‘*de, 1sin(® '~ wt)
+ e* %cos(e'— wt) (2.29)

Both the continuity and the moment of momentum equations may now be
broken into three parts by substituting the preceding relationships for
cross sectional area integrals and the inlet velocities. These three
parts are : (1) a steady mean flow term that is due to the interaction
between the centered impeller and the volute; (2) an unsteady term with a
cos wt dependence generated by the whirling impeller; and (3) an unsteady
term with a sin ot dependence. The three components of the continuity

equation are :

steady centered :

avd
—5 = @B (2.30a)
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whirling cos ot :

d(ch) ,d(Vecose’) d(p sin@’)
Jor =W, Yy +%sine'+d[ﬁc+—-—€57—-——] (2.30b)
whirling sin ot
d(VsD . d(v sin@’) d(p cos e")
= - -

In the above equations B =p(8°), and the tangential velocity in the

volute is separated into components as,

v (e =T(o’) + g*[ve(ec)cos ot +VS(9')Sin at] = OR . (2.31)

Similarly, the moment of momentum equation yields three parts relating
the pressure gradients to the velocity distributions and the volute

geometry. These three parts are :

steady centered :

_— — —_2 2
rd dD, d(ra V) av )
2 de' _ _ ae’ - rinrd g5y

+d(1 - dtany B)B (2.322a)

whirling cos et :

rA dD,, d(raVVy) = —
—— = e D —— g @ $ 'Y
T 2 Y +5 (wisul 8'V-rrAV,.) (2.32b)
_.2 . —
s — d(Vicose ) a(v Vc)
+ (W, +rd) Y = 2rlnrh — o3

+ d2sin G'FZ + deose'(%+2 ~-2d tany B)B

(continued)
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— * —
_ dp W d
+¢(1—2dtanyb)(ﬂc+sine'w)+2—icose"d—eg
whirling sin ot :
— dD d(raVV))
rA_Dps _ _ 5. _ o (y* V-rrk
2 do’ 2 Y n(Wicosé)'V r-r'AVc) (2.32¢)

. — d(V’sine’) —_d(VV)
+ (Wi+ ri) Y Y E—— 2rinrA a0’

- ¢%cos 9'§2 +dsin9'(%+2-—2d tany B)B

— * J—
_ g W dD

- _ PG — )
+d(1-2¢ tan'yB)(Bs cos 6’ de') +5 siné Y

In these expressions the volute pressure coefficient is defined as,

D (6") =D (6") + e'[Dpc(e')cos wt +D_ (8')sin ut] (2.33)

. (Py(R,,0") —h))
(p nzngm

2.4 Closure Conditions

2.4.1 Restrictions on the Flow Perturbations in the Impeller
Although B is referred to as the perturbation function, nowhere in
the derivation was it assumed to be small. However, by the definition of
the flow coefficient, d, one restriction has already been placed on B.
In order to find the total flow rate through the impeller, the radial
velocity in Equation 2.4 can be integrated around the discharge of the

impeller. Doing so gives,
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2n
Q=bf  deR,B(6,)d0, . (2.34)

Since the flow rate through the pump is not necessarily steady for a
whirling impeller, Q might be considered to be composed of steady and

non—steady parts. This may be written as,

Q=a[1+a*(qccos ot +qsin wt)l (2.35)
thereby making,
21 _ _ 2
df, B(8,))d0,/2n=0/21b QR =3 (2.36a)
2m — 2
df, B,(8,)d0,/2n =Qa /2nb QR; =da, (2.36b)
and,
2n — 2
df, B(8,)d0,/2n =Qa/2mb @Ry =da . (2.36¢)

From the first equation it is clear that the mean value of E is one.
Unfortunately, the appropriate mean values of Bc and ﬁs are not so obvi-
ous.

Physically, the flow rate perturbations would come about from the
interaction between the centrifugal pump and the piping system to which
it is attached. As the impeller orbits about in the volute, the
performance characteristics of the pump will change slightly and this
will cause the flow rate and the total head rise across the pump to
fluctuate. The amount of fluctuation,though, would depend on how the
piping system attached to the pump reacts to such perturbations. The
significance of the flow rate perturbations is not known at this point.
For the time being, the quantities q0 and Qg will be retained as a
reminder of the possible influence of the entire hydraulic system.

The final restriction placed on B is that it has at least zeroth
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order continuity everywhere. This limitation is based on the physical
argument that the flow in the impeller is not capable of the infinite
acceleration necessary to maintain a discontinuity. What this means is
that B must be continuous around the discharge of the impeller, and in

particular that,

B(R,,0) =B (Ry.,21) , (2.37)
even though the pressure may be discontinucus at the tongue.

2.4.2. Matching Conditions Across the Volute Tongue

At the tongue of the volute, the cross sectional area distribution
is discontinuous and this is likely to cause a discontinuity in the pres-
sure and velocity distributions. In order to deal with this, it is
assumed that the total head of the recirculated flow remains constant
from one side of the tongue to the other. This may be stated as,
Ry (0) Ry (0)

2 2 ,
J oo Vg2l war' = |, (P + ,>119,/2)I9 wdr’ , (2.38)

R2 8'= 2n R2 '= 0

or, when non-dimensionalized and separated into harmonics Equation 2.38

becomes,

[Dp(2n)-Dp(0)]A(0)-+[V (2n) - V(0)1[A(0) +2 InrA(0)] =0 s (2.39a)
—_ — — %

[Dpc(Z”)"Dpc(O)]A(O)"[Dp(Z")"Dp(°)1wi (2.39)

+2 [V(Zn)vc(zﬂ) —V(O)Vo(o)] [A€0) +2 TnrA(0)]

- [V (2n) - T2(0)] W] +2K(0)1 =0
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and
[Dyg(2m) =D (0)]A(0)
+2[V(2n)vs(2n) —V(o>vs(o)][K(0) +2 1nrA(0)] =0 . (2.39¢)

These three equations may be further simplified by implementing the
continuity equation developed in the volute model. Integrating the

continuity equation of Expressions 2.30a, 2.306b, and 2.30c from 0 to 2=

gives,
V(2r)A(27) = V(0)A(0) +2nd (2.40a)
V_(20)K(2n) =V_(0)A(0) +w;[7(2n) -T(0)1 +2nda, (2.40b)
and,
Vs(Zn)A(Zn) = VS(O)A(O) + 2ndqs . (2.40¢)

Combining these three relations with those given by matching the total
head at the tongue yields three expressions for the initial volute flow

velocity at the tongue. These three expressions are :

steady centered :

2nda/A(2n) +\/[znd/i(zn)12+ (1-2a’11D_(2r) -D_(0)1/c
V(0) =

1-—a2

(2.412)
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whirling cos wt :

o & — - -
—V(Zn)[wi(V(Zn)-V(O))-+2ﬂdqc]/A(2n)

V2 (2m) - V2 (0)) (2 + Wy /E(0))

& — J— —_
--{DDC(Zﬂ')--Dpc:(O)}‘i-IN_,i_{Dp(21r)--Dp(O)}/I-\.(O)_J

VC(O) = (2.41b)

A0 IV(2) /A (271) - V(O)/A(0)]

whirling sin ot :

[{D__(2r) —=D__(0)}/2¢ + 2ndq_v(2n) /A(2r)]
v (0) = - — PSP e (2.41c)
A(O)IV(2n)/A(2n) - V(0)/A(0)]

In these three expressions,
a=A4(0)/A(21) and c=1+21nrA(0)/A(0) .

Of course, matching the total head across the tongue is not the only
option possible. Matching velocities or the pressures from one side of
the tongue to the other might also be considered appropriate, as would
several other more intricate solutions. The consequences of some of the

choices available will be mentioned later in Section 5.6.

2.4.3. Determination of the Flow Path Angle

Finally, the flow path angle, y, must be found in order to complete
the solution of Equations 2.19, 2.30, and 2.32 . In the derivation of
the impeller model this angle was assumed to be a function of only the
flow coefficient, &, and the total head rise across the pump, $'. This
statement can also be interpreted to mean that once ¢ and ﬂ; are chosen

then y may be calculated using the model. For the theoretical mocdel, the
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total head rise is defined as,

R,{(2n)
w 3 % *2 — —
=fR3(0) [Pv<2n) +V  (2n)lwdr/{2[A(2n) - A(0)]} (2.42)

Usually the relationship between ¢ and ¥ is known through experimental
results presented in the performance curves for a given pump. So an
iterative procedure is adopted to find the appropriate value of ¥ for

which the theoretical total head rise matches the experimental value, or,

R — -
lllexp:: Y= [Dp(zn) +C,V (2m)1/2 (2.432)
where
C,=1+2[1nrA(2n) - 1nrA(0)1/1A(27) - A(0)] .

Once the flow path angle is found, it is assumed not to change for small
eccentric displacements of the impeller. The total head rise across the
pump, however, does change and the in—-phase and quadrature components of

this change are found from Equation 2.42 to be,

o~
[

- -2
d’c [Dpc(znnzcv\uzmvc(z..) 2v°(2m)1/2 ,

and
tlfs = [Dps(Zn) +2C V(2mV (2m)1/2 . (2.43¢)

This information will be needed in finding qC and qg. Once it is known
how the piping connected to the pump responds to fluctuations in the

flowrate,
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2.4.4. Additional Restrictions

A11 of the restrictions listed in Equations 2.36, 2.37, 2.41 and
2.43 are necessary for finding a unique solution to the theoretical
model. There is one additional equation which is actually redundant, but
it will make solving Equations 2.19, 2.30, and 2.32 much simpler. In the
impeller model a restriction is placed on Dp by Equation 2.19 that must
be met by Dp in Equation 2.32 . This restriction is found by integrating
the three expressions of Equation 2.19 around the discharge of the
impeller to give,

T
fo (@Psec’y B +D a0, /an =1 (2.442)
n - —

J’f) {24% sec?y BB+ Dy o+ cos €D

+ 2 9’6 R B sin(® + tan v 1n(R)}d0/2n

-2 8 gq_sec’y1n(R) , (2.44b)

and,

27

2 .2, 70 2 S
Jo {24° sec™y ﬁﬂs- DpS+ siné D

p
-2 g d R Bcos(8 + tan vy 1n(R))}de/2n

- (0 -E;(znn/zn +2 84 qcse027 1n(R)  (2.44c)

2.5 Hydrodynamic Forces on the Impeller

There are two contributions to the forces on the impeller which will
be considered. One deals with the momentum exchange between the impeller
and the fluid, and the other concerns the pressure acting at the impeller

inlet and discharge.
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In Appendix A an expression for the net momentum flux contribution
to the force is developed for an impeller of constant blade passage
width, that rotates and whirls at constant speeds. Referring back to the
geometry of Figure 2.1, the contribution of the momentum flux to the

force acting on the impeller is given in complex notation as,

R

En (Fu* JF) 8 2m 2
s X - yo__ Jat— s Jer . 7 vp
pb  pb e .le(Vr"ﬂ‘ jvg'"ed" r'*dr''de
R
. 2n 2
- ejﬂt[-"o (vrn+ jven)vr‘neje"rndeull
R
1
R
. 29 2
- eJQtZQJ‘O IR (jvpvr_ ve")eje”r"dr"de”
1
+w28ﬂ(R§— Ri)e*]"ut . (2.45)

This equation can be written in terms of B and v by using the velocity
profiles described by Equations 2.2, 2.4, 2.6, and 2.10, and then divided
into three parts for the steady, in—phase, and quadrature force
components. The resulting expressions for the momentum flux force on the

impeller are as follows:

steady centered :

27 je
- Y ) 2
Em.-...q; (1-3 tany—}gR)fo B (92)e a8,/

2n_ je,
- 39f, Bloye “do,/m (2.462)
whirling cos wt :
9 Zn_ Jé,
Fo,=-2d"(1-Jtany-kR) [, B(8,)B,(8,)e” “d0,/n

{continued)
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, 2
2n 392 [ 2
- 38f, B (8y)e “a0,/n +— (1-1/R)
0

2% 302
) -
- 0 d1-k/R [, B (8y)e “d8,/x

© 2n_ j92
- & 83k f, B(8,)cos(0,+ tany In(R))e d8,/m ,  (2.46b)

whirling sinwt :

2 2n_ j92
F o =-26°(1-Jjtany-kR) [, B(8,)B_(8,)e ~d8,/n
2
2% 302 © 9
- J¢f0 B (8y)e A8, /m + ] ;5'(1-1/R )
2n je
+ 8 4(1-k/m [, B (8,0 d0,/n

-24d3k IZKE(G Ysin(@,+ tan vy ln(R))ejesz Iz (2.46¢)
0 ~Jo 2 2 2 ’
where, K =cos(tany ln(R)) + j sin(tany 1n(R)).
The contribution to the impeller force made by the pressure is found
by integrating the pressure distributions around the inlet and exit of
the impeller. In terms of the previously defined geometry, the pressure

force acting on the impeller is,

Je,

27
E = (Fy+ JF) =bfo P, (R;,0)Re ~do

2n ie,
=W, [y Pi(Ry,0,)R,e “do, . (2.47)

The entire exit width of the impeller, Wi, is used because the pressure

was considered continuous across the width at the volute inlet. The

indicated integrations may be performed using the pressure distributions
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given in Equations 2.11 and 2.12 . The resulting contribution of the
pressure to the force acting on the impeller is divided into the steady,

in-phase, and quadrature components to give the following expressions.
steady centered :

L, e

2 B2(8,)¢" 249, /2n

27
Ep_ ¢ [Wisec Y-k R]j0

je

An_
- jw;d sec?y 1n(R)_f0 B(o,)e 2d92/n (2.48a)

whirling cos wt :

Jje

2n
e 2eu® o 2 - 2
E o= 26" W sec®y ~k RIf( B(8,)p (6))e “a0/2n

21 jé
- fW3d sec’y 1n(R) [ B_(0,)e” 40,/

(0] JQ

2n
w ., 2 2
+ 9 Wid sec’y ln(R)f0 ﬁs(ez)e d92/n

" « 2n_ j92
- 2 g(x-W.R) [ B(8,)sin(8,+ tany 1n(R))e ~d8,/m

(k R)1/tan’y (2.48b)
whirling sin ot :

36
2 2d92/2n

9 % 27
=28 W sec’y ~k R1[  B(8,)p_(8,)e

F
~p
2n jé

_ iyt 2 2
W d secy 1n(R) [ B_(8)e “d0,/x

je

27
- * 2 2
2 W.d sec’y 1n(n)jo Bo(8y)e ~d0,/m

(continued)
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® « 2n_ j92
t g ¢(E-Wiﬁ)f0 B(8,)cos(8,+ tan ¥ In(R))e ~d8,/=

2
©

——JW/(kR)—

i[1 -1/(x R)1/tan’y . (2.48¢)
Q

2

In order to find the total force acting on the impeller the force
contributions of the momentum flux and the pressure are added together.

The resulting total force is given by.

® & %
F =E +

= &
o F =E+e (E coset+E sinat) , (2.49)

where,

- % n je
F=d’[W;sec’y +kR-2+23tany 1f, B (8,)e 240/ 2n

je

2 27 2
v1n(R) +11f B(8,)e “do,/n , (2.502)

- j¢[WZsec

je

2 iﬂ_ 2
T+KkR-2+2] tanylf, B(8,)B (8,)e ~48,/n

2. #
Ec_.¢ [Wisee

n je
JOL;sec’y 1n(R) +11f B _(0,)e “d0,/x

@ ® 2 9

+ 9 é[wisec v 1n(R) +k/R - fo 2;e dGZ/n
© e 27 392

+ 9 {d Rwi fO B(Oz)sin(92+ tan v 1n(R))e dezln]

Q ‘
- gl2J8 + W, /(kR)]

2

o
-—Z'{W ll—ll(kR)]/tan y—1+1/n Yo, (2.50D)
Q

and,
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2% 2 2 38,
Es =g [Wisec Yy +kR~-2+2jtan V]J‘O B(Gz)ﬁs(ez)e d92/n

2 je
. e 9 2
JOLW sec’y 1n(R) +1]f0 B (8))e 40, /m

2% je
& 2
- £ grw sec’y 1n(R) + /R -11f, B_(0,)e a0, /n

Jje

2m_
[d RWS [ B(O,)cos(0,+ tany 1n(R))e 40 /x]

Die

31236 + W,/ (K R)]

Die

2
)

- 3 W [1-1/(k B /tan’y -1+ 1/R?) (2.50¢)
Q

where k was defined in Equation 2.46 .

The force equation may also be written in vector form as,

Ft —_ At A*

x Fx . xx Xy cos wt

- = - + e . - » (2.51)
F F A A sin ot

y y ¥yx YYJ

where the force components are obtained from,

_‘F-" fand #+A* dF**-i-A*
‘x+ij’Ec"Axx jyx.an F. o= A J .

1|

Matrix [A*] is referred to in the literature as the generalized
hydrodynamic force matrix and it will be written here as [A‘(w/ﬂ)] to
emphasize that it is a function of the ratio between the whirling speed

and the shaft speed.
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Figure 2.3 Geometry used in the volute model.
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CHAPTER 3

RESULTS OF THE THEORETICAL ANALYSIS

3.1 Measurements Required for the Theoretical Analysis

In order to perform the theoretical analysis on a centrifugal pump,
the dimensions of the impeller and the volute must be known in advance.
The geometry used in this analysis was taken from one of the impellers
and two of the volutes available in Caltech’s Turbomachinery Lab. This
choice allows the theoretical results to be compared in detail to experi-
mental measurements gathered from the Caltech facilities. A full
description of the impeller and volutes will be presented in Chapter 4,
but the measurements necessary for the theoretical calculations will be
described here,

The impeller discharge radius, R2, and the inlet radius, Rl, must be
known, along with the blade discharge width, b, and the width of the
impeller at R2, Wi. The impeller used (referred to as Impeller X) has the
following properties:

R2=3.19 inches , R=R, / R1=2.00 ,

b=0.62 inches , and W =W,/b=1.54
As for the volute, the integrals of Equation 2.23 must be evaluated and
presented as a function of the angle from the tongue, 8’. These
integrals were calculated at several angles where the cross sectional
geometry of the volute was available from fabrication drawings. Once the
integrals were evaluated, the intermediate values were estimated using a
quadratic spline fit to interpolate between the measured values. The

resulting cross section integrals for the two volutes, & and C, are shown
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in Figure 3.1. The circles indicate points where actual measurements of
the volute geometry were available.

The cross sectional area of Volute C is only slightly smaller than
that of Volute A, and this in turn makes the moments of the cross sec-
tional area smaller. The major difference between the two volutes,
though, is that the cross sectional area at the tongue in Volute C is
only about half the size of that in Volute A. This by-pass area is of
considerable importance in the theoretical model because of the part it
plays in the closure conditions at the tongue.

In addition to the pump geometry, the relationship of the total head
rise across the pump to the flow rate must also be known for the theoret-
ical analysis to be undertaken. This information is presented in Section
5.1. Figure 5.1 shows the measured performance of Impeller X in Volute
A, and Impeller X in Volute C. The mean values for the total head rise
are given by the lines in Figure 3.2 and the circles indicate the meas-
ured results.

The last bit of information that must be known has more to do with
the plumbing of the test facility than with the centrifugal pump being
tested. As was indicated in the theoretical analysis, the way in which
the entire pumping network responds to fluctuations in the flow rate and
total head might prove to be important in calculating the flow perturba-
tions caused in the pump by an eccentrically whirling impeller. The
total head perturbations, d% and d%, were included in the pump analysis
to account for the response of the pump to the flow rate perturbations,
qc and Qg- What must be known from the test facility, is the magnitude
and the phase of the perturbation in the total head losses of the pumping

system that would be caused by a perturbation in the flow rate.
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It was indicated in the work of Braisted [6] that the present test
loop can be represented by dynamic transfer functions for the inlet pip-
ing, the discharge piping, and the accumulator (air bag) used for system
pressure control. Those transfer functions can be used to evaluate the
system response in this situation, but the complexity of estimating such
functions for any other system might prove to be a limiting factor in
applying the current model. Fortunately, the resistance alone in most
realistic pumping systems should prove large enough to make the whirling

impeller’'s effect on the flowrate negligible.

3.2 Preliminary Steps in Obtaining a Solution

Once the impeller and volute information described above is avail-
able, the steady parts of the impeller flow perturbation and the volute
pressure and velocity distributions can be found by integrating Equations
2.19a, 2.30a, and 2.32a, while meeting the restrictions imposed by
Expressions 2.36a, 2.37, 2.41a, and 2.43a. When calculating for the
distributions, it is first necessary to solve for the flow path angle, vy.
This was done for Impeller X in both volutes A and C and the results are
shown in Figure 3.3. The blade angle of Impeller X is 65 degrees and
from the theoretical analysis the flow path angle is found to be approxi-
mately 82 degrees. From this it can be concluded that the flow is not
being perfectly guided through the impeller. This was to be expected
though, because Impeller X has only five blades, giving each blade
passage a 72 degree arc of flow to turn in less than 2 inches. The
consequence of the 82 degree flow path angle is that the velocity enter-
ing into the volute has a much lower tangential velocity (in an absolute
reference frame) than a perfectly guided flow would have.

As was mentioned earlier in the theoretical analysis, most models
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used to predict the direction of the flow at the discharge, consider only
the impeller geometry and the flow rate, and neglect the influence of the
volute. As shown in Figure 3.3, there are only small differences in the
flow path angles (~ 1 degree) between the two volutes. These
discrepancies, however, will result in significant changes (~ 10%) in the
relative tangential velocity, since it is the tangent of the angles which
is used in their determination.

After the flow path angle and the steady distributions are obtained
for a given flow rate, the disturbances caused by the impeller whirling
in an eccentric orbit may also be found. The perturbation distributions
for the eccentrically positioned impeller are generated by solving both
parts b and ¢ of Equations 2.19, 2.30, and 2.32, subject to the restric-
tions of Expressions 2.36b and c, 2.37, and 2.41b and ¢. When such
calculations were performed, the resulting perturbations in the total
head rise, ig and dg, were found to have a maximum of about 0.12. This
perturbation was used with the system resistance given by Braisted’s [6]
transfer functions to determine that the flow rate disturbances, q, and
qs, were less than order sza For this reason it is felt that q, and Qq
can justifiably be set equal to zero.

Further detail on the method used in obtaining a numerical solution

may by found in Appendix C.

3.3 Predicted Flow Properties for the Centered Impeller

3.3.1 Pressure Distributions at the Volute Inlet

Figure 3.4 gives the calculated pressure distributions at the inlet
of the volute for flow rates both above and below the empirically
determined design flow rates of ¢ =0.092 for Volute A and ¢ =0.085 for

Volute C (see Section 4.2). It is apparent from this figure that a
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discontinuity exists in the pressure distribution from one side of the
volute tongue to the other. This might be expected, however, since the
cross sectional area is discontinuous at this point and it was the total
head that was equated across the tongue in the model. Whether this
discontinuity is a pressure drop or a pressure rise depends on whether
the pump is being operated below or above the empirically determined
design point. For Volute C, the pressure distributions are similar to
those that were calculated for Volute A, except that the discontinuities
across the tongue are much larger for the off design flow rates. This
was anticipated, though, because the discontinuity in the cross sectional
area at the tongue is also much larger in Volute C.

At the empirically determined design flow rate for Volute 4, a
nearly symmetric pressure distribution is observed at the discharge of
the impeller. The same result is also true for Volute C. This suggests
that volutes with similar geometries would probably be chosen by the past
design methods and the current theoretical model.

The phenomena of all pressure distributions passing through a single
point (at 8’ ~60°, for example, in Volute A4) should be mentioned at this
time but further discussion of this issue will be postponed until Subsec-

tion 3.3.4.

3.3.2 Velocity Distributions in the Volute

Along with the pressure distributions at the volute inlet, the
velocity distributions within the volute were also calculated for various
flowrates, and the results are presented in Figure 3.5. As might have
been anticipated from the pressure results, a discontinuity across the
tongue also exists in the velocity profile in the volute. The velocity

distributions for Volute C are similar to those of Volute A, except that
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the flow accelerated immediately after the tongue in Volute 4 for below
design flow coefficients, whereas there was for Volute C only a rapid
deceleration in the flow. This is clearly a result of the smaller by-
pass area of Volute C restricting the amount of flow re—ecirculation past
the tongue.

There is one problem with the current theoretical model which occurs
when calculating the velocity in the volute at the tongue by-pass. At
flow rates above design, the velocities at this point decrease to a point
where the model becomes no longer viable. The flow was never actually
predicted to stagnate, but rather the pressure increase across the tongue
grows large enough that the term under the radical of Equation 2.41a
becomes negative. Since this problem occurred above the design flowrate,
the model is still applicable over the most important range of flowrates
and for this reason the question of how to handle the flow reversal
problem will not be pursued any further at this point. This problem will
be discussed further in Section 5.6 where the alternative solutions that

have been tried will be mentioned.

3.3.3 Velocity Distributions in the Impeller
The steady portion of the impeller flow velocity can be determined
by combining Equations 2.2, 2.4 and 2.6 to give the radial and tangential

velocities relative to the rotating impeller as,

V.1 =dB(8,)Ry/r"" and Vg =-d tany B(8,)R/r" . (3.1)

The impeller flow perturbations, B(GZ), are presented in Figure 3.6 and
the accompanying flow path angles were already given in Figure 3.3.
When interpreting the impeller flow perturbation curves of Figure

3.6, it should be remembered that E has an average value of one and that
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any deviation from this average is the result of the impellers interac-
tion with the volute. It might be tempting to neglect this deviation,
because as shown in Figure 3.6, it accounts for only about 5% of the flow
at any point of the impeller discharge. In fact, this is what was done
by Iversen, Rolling, and Carlson [15] in their pump model., when they
assumed that the discharge velocity around the impeller was

symmetric. But there are at least two reasons why this assumption may
cause problems in the analysis of the pump. The first reason is that
this assumption will neglect the cumulative effect that these small
perturbations have on the average velocity within the volute. The second
reason is that without allowing for this perturbation, it becomes
difficult to justify why the asymmetric pressure distribution around the
impeller discharge has no effect on the flow through the impeller. So
for these two reasons alone it is felt that the perturbation in the
impeller flow must be included in any centrifugal pump model.

It should be pointed out that it is the gradient of the flow pertur-
bation and not the magnitude that is the major cause of the asymmetric
pressure distribution on the impeller. This point can be established by
exanining Equation 2.19a and realizing that the coefficient in front of
the E term is ¢ times the coefficient of the gradient of E, where ¢ is
usually much less than one. The gradient of E originates from the
unsteady part of Bernoulli’s Equation and is the result of the perturba-
tion being stationary in the volute reference frame, but appearing as an
unsteady distribution to the rotating impeller. The gradient of E tends
to be largest around the constricted area of the volute immediately
following the tongue, and is even seen to be discontinuous at the tongue

itself for the off design flowrates.
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3.3.4 Comments on the Property Distributions for the Centered
Impeller

One of the original attempts to model the volute flow in this
research was to assume that the average total head rise around the volute
was a constant that depended only on the overall flow rate. As a matter
of interest, the total head distributions around the volute generated by
current model are presented in Figure 3.7. The total head increases in
the radial direction, so in order to find a mean value, it was averaged
over the volute cross section as,

— * R3 - -3 —

h (8" —h1=fR2{Dp(e') +7°(8")[1+2 1n(r'/Ry)1Iwdr’/K(0")

or,

P 1 *—_ ? [ 4 _2 4
hy(8') —hy =D (8") +C(0")V (") , (3.2)
where,
C(O') =1 +21nrA(8')/A(0') .

Since the velocity is assumed to be constant over the volute cross sec—
tion, this can also be considered to be the mass flow averaged total head
rise. It might be noticed in Figure 3.7 that the total head is
discontinuous at the tongue, while in the model it was assumed that the
total head was constant across the tongue. This contradiction can be
clarified by recalling from Equation 2.38 that the total head was matched
across the tongue only for the recirculated portion of the flow. The
remaining discharged portion was not included in the matching condition

and this is what causes the apparent total head discontinuity.
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Figure 3.7 shows that the average total head does vary with €’, but
to a much lesser extent than either the pressure or velocity distribu-
tions. It is hoped that this might provide a clue as to why the volute
pressure curves presented in Figure 3.5 tend to all pass through a single
point. This same feature also occurs in the velocity profiles of Figure
3.6, although the particular point that is passed through is different.
A complete physical description of why this happens would, by necessity,
end up being as complicated as the model, but a couple of simple
oberservations can be made about the consequences of this phenomena.
First, all of the velocity distributions in the volute passing through a
single point, Gv. would require that the total flow rate at @ was
independent of the overall flow through the pump. From the continuity

equation for the volute, this would require ev to be given by,

e

v — — ———— —
(b, - dpe =-d_ [, B, -1de’ + ROV (0) -Vp()1 ,  (3.3)

where the subscripts D and o designate properties at design and off
design points respectively. Second, while the pressure distribution
curves do not intersect each other at OV, they do appear to cross at a
point where the total head curves of Figure 3.7 have either a minimum or
maximum.

The one reason for mentioning that all the pressure distributions
have a particular point in common, is that this observation eliminates
the need to know the complete pump performance curve before applying the
model. If it is known in advance that the volute inlet pressure
distribution passes through a single value at a single point, independent
of the flow rate, then this information could be used to find y., rather

than the total head rise across the pump. In essence, this means that
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the model could be used to extrapolate the performance data once the
total head rise across the pump was known for two different flow rates.
Even though this was sucessfully done with the current model, the argu-
ment remains rather speculative until experimental pressure distributions

are given.

3.4 ¥Whirl Induced Perturbations

In the introduction it was mentioned that in some applications the
whirl may be synchronous with the shaft speed and for this reason it
would be desirable to calculate the hydrodynamic force matrix up to
%==1. Unfortunately, the model begins to encounter complications in
converging to a solution for whirling speeds of much over 15% of the
shaft speed. Part of the problems arise because the governing equations
become increasingly coupled as the whirling increases, making it
difficult to update the guess on Bc and ﬁs from one iteration to the
next. In addition, the discontinuity of the pressure at the tongué also
grows with whirling, and causes the gradients of ﬁc and BS to change
sharply with @ near € =0. This of course only adds to the difficulty
in updating the approximation and generates some concern that the pres-
sure perturbation caused by increasing whirl speeds can no longer be
considered of order g. Because of these problems the model will be
assumed to be applicable only for whirling speeds from ~15% to +15% of
the shaft speed, where the pressure discontinuities will be less than 20
times the mean.

The predicted pressure perturbations, DpC and Dps’ at the inlet of
Volute A are presented in Figure 3.8 for both stationary and whirling
impeller situations. The figure indicates that the pressure disturbance

caused by the eccentric positioning of the Impeller X will increase with
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decreasing flow coefficient. This leads to the conclusion that the
hydrodynamic stiffness of the pump will be a function of flow rate just
as the forces were predicted to be.

Given in Figure 3.9 are the disturbances in the impeller flow
perturbations, Be and Bs, that correspond to the pressure disturbances
given in Figure 3.8. The distributions show that not only do the
magnitudes of the disturbances change with the whirl speed, but the
phases also change, making it difficult to use lower whirl speed results

to predict Bc and BS at higher speeds.

3.5 Performance Curves and Mixing Losses

Possibly the largest compromise that has been made in this theoreti-
cal analysis is that the total head rise across the pump must be known
before the model can be applied. A restriction that requires the pump to
have been built and tested certainly limits the use of the model as a
preliminary design tool, even though the model might greatly extend the
usefulness of the test results once they are obtained. To see if a
previous impeller model could be used to predict the performance curves
in advance of testing, a model developed by Stodola [27] and a potential
flow model by Busemann [8] were applied to Impeller X. The results are
shown in Figure 3.10, along with the experimental total head coefficient
across the entire pump composed of Volute A and Impeller X. The impeller
flow models of both Stodola and Busemann give the total head rise across
the impeller alone by correcting for the inability of the blades to
perfectly guide the flow. They do not take into account the mixing in
the volute or the frictional losses in the pump, and these are the rea—
sons that are traditionally used to explain the differences between their

results and actual pump performances.
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In order to obtain an estimate of the volute mixing losses, the
current model was used to calculate the total head rise coefficient
across the impeller alone. The total head rise across the impeller can
be found by combining the discharge pressure given in Equation 2.12 with

the exit velocities of Equation 3.1 to give,

- 2 dp
50) =2{1-d8 tany — sec”y 1n(R) a(‘;"} . (3.4)

— % —

-

r? + (l—ve

To find the average value of the total head rise, Equation 3.4 is
integréted around the impeller discharge and the resulting total head

coefficient across the pump is given by,

‘l‘2=jzn(-ﬂz—h1)d9/4ﬂ=1-—dtan7 . (3.5)
If the flow path angle were to match the blade angle, the above equation
would become Euler'’s prediction for the total head rise across the pump.
But, as has already been demonstrated, the current model predicts that
the flow path angle is actually greater than the blade angle, and varies
with both the flow rate and the particular volute being used. The total
head coefficient found by applying Equation 3.5 to Volute A and Impeller
X is shown as a dashed line in Figure 3.10 . By comparing the predicted
total head rises shown in this figure it is evident that the previous
theories will be of little use in calculating the performance
characteristics needed by the current model.

In the current model, it is difficult to distinguish what should be
considered a volute loss and what should be considered an impeller loss,
because of the influence that the two parts have on each other. However,
from the results of the current theory shown in Figure 3.9, it appears

that between the exit of the impeller and the exit of the volute, there
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is a substantial volute mixing loss at lower flow rates that becomes
almost negligible at higher flow rates. Experimental evidence presented
by Bowerman and Acosta [5] tends to support these findings, but the
results are somewhat contradictory to previous notions. Streeter and
Wylie [26] contend that much of the head loss at lower flow rates is due
to improper flow alignment at the impeller inlet, and that at higher flow

rates a large portion is due to friction in the blade passages.

3.6 Radial Forces on the Centered Impeller

From the asymmetric pressure and velocity distributions that were
presented in Section 3.3, it can be anticipated that there will be a net
force acting on the impeller. The expressions to determine the momentum
and pressure contributions to the forces on the centered impeller are
given in Equations 2.46a and 2.48a, respectively, and the combined total
force on the impeller is given by 2.50a . Shown in the upper part of
Figure 3.11 are the predicted x,y components of the total hydrodynamic
force acting on Impeller X when it is used with Volute A, and in the
lower part of the figure are the resulting force components when Volute C
is used. For both volutes, the magnitude of the force tends to go
through a minimum near the empirical design point and steadily increase
as the pump operates further from the design conditions. It is also
noticed that for Volute C the total force on the impeller never goes to
zero as it does for Volute A. This is due to the large pressure
discontinuities that result from the small tongue by-pass area.

Theoretically it was found that the force on the impeller is almost
entirely due to the asymmetric pressure distribution at the impeller
discharge. Less than two percent of the force is contributed by the

momentum flux terms and the pressure variation at the impeller inlet.
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This suggests that a reasonable approximation to the hydrodynamic forces
could be calculated from pressures measured at the impeller discharge.
The calculation of forces in this manner is supported by the work of
Iversen et al. [15], where it was found that forces obtained by measuring
bearing reactions were almost identical to those obtained by integrating
the pressure distributions around the impeller discharge. This observa-
tion, however, is contradictory to the earlier finding of Binder and
Knapp [3] that up to twenty five percent of the force on the impeller was
caused by the asymmetric momentum flux. In obtaining the momentum force
contribution, Binder and Knapp were required to measure the velocity as
close as possible to the impeller discharge, and even then, there was no
assurance that it was the impeller discharge velocity that was being

measured.

3.7 Stiffness Matrices for the Displaced Impeller

Displacing the impeller from the center of the volute in essence
creates a new pump with new velocity and pressure distributions. The
perturbations in the hydrodynamic forces that occur when the impeller is
statically perturbed from the volute center are found by applying Equa-
tions 2.50b and ¢ with ®=0. In rotordynamic analyses, the matrix
relating the force perturbations to the displacement is traditionally
referred to as the stiffness matrix, and the total force acting on the

impeller is written in a simplified version of Equation 2.51 as,



% - & & &
Fy F Ko x ny g cos
=7 _ - . (3.6
F' F k' K e sin¥
y y yx vy

where the stiffness matrix, [K*], is equal to the [A*(w/Q)] matrix of
Equation 2.51 when w=0. The positive direction of each of the
components of Equation 3.6 is indicated in Figure 3.12.

To clarify the implications of the stiffness forces, suppose that
the impeller is displaced a small distance & along the +x axis. If Kxx
and ny are both positive, then the impeller is subject to a force e Kxx
tending to restore it to the original position and e ny driving it in
the -y direction. Likewise, if the impeller is moved g along the +y
axis, then a positive ny and Kyy would produce forces ¢ ny in the -x
direction and a restoring force e Kyy' Now if the off diagonal terms had
opposite signs, the impeller could be expected to travel in a small orbit
unless other forces were present to dissipate the stiffness forces.

The stiffness matrix components for Impeller X in Volute A are given
in Figure 3.13 as a function of flow rate, and the similar results are
also shown for Impeller X in Volute C. For both volutes the stiffness
components are such that the impeller could be caused to orbit. It is
also evident from these figures that the stiffness components for y dis-
placements are rather insensitive to changes in the flow rate and are
generally smaller than the stiffness components for x impeller displace-
ments. Physically this seems reasonable though, since displacements of
the impeller in the x direction are likely to cause larger

discontinuities in the pressure across the tongue (and therefore larger

perturbations) than impeller displacements in the y direction.
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3.8 Effects of Whirling on the Impeller Forces

It has already been demonstrated in the stiffness analysis that the
forces necessary to cause the impeller to orbit exist once the impeller
is displaced from the volute center. How the impeller proceeds to orbit
will depend at least in part on the dynamic elements of the generalized
hydrodynamic force matrix, [A(w/2)] of Equation 2.51 . The [A(w/Q)]
matrix was calculated for Volute A using a discrete number of whirl speed
to shaft speed ratios from -12% and +12% for several different flowrates.
The resulting components for the flow coefficients ¢ =0.06 and ¢ =0.,10
are shown as circles in Figure 3.14.

Usually those who work in rotordynamics prefer to write the general-
ized hydrodynamic force matrix in terms of powers of w/@. For the
impeller progressing in a circular orbit, the governing equations take on
the more familiar appearance of a mass, stiffness, and damping system.
From the Axy results with é=0.06 it is apparent that the quadratic form
associated with a simple damped oscillator will not appropriately model
the [A] matrix. A cubic expression, however, will adequately
characterize the [A]l matrix elements, with only minor discrepancies from
the theoretical predictions. The results for the cubic expansion of‘the
[A] matrix elements are shown in Figure 3.14 as dashed lines. Of course,
the temptation to assume that the hydrodynamic force matrix can always be
approximated by a cubic equation should be avoided because of the limited
range of whirl frequencies that were used in the theoretical model.

Knowing the coefficients of the cubic expansion of [A] will allow

the matrix to be written in powers of /@ as,
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XX Xy
A = (3.7)
yx vy

2 3 2 3
~ Ky m0lyy to Mex T o ny ~ Ky tulyy to Mxy 0"y

2 3 2 3
-k - M J - + oM - d
yx " WCyy t o By ey Kyy T oCyx v o Fyy — 0 dyy

or alternatively, as

x X X x X
[A{w/2)] y = - [K] y - [C] 3 - [M] 5 - [J] v (3.8}

where x=gcosoet and y=¢ sinwt. The [K] matrix has already been
discussed as representing the stiffness of the hydrodynamic foreces, and
similarly the [C] matrix represents the damping and the [M] matrix
represents the mass, or inertial components of the hydrodynamic forces.
The cubic term of Equation 3.7 would be the result of the time rate of
change of acceleration on the hydrodynamic forces. Because the rate of
change of acceleration is known as the "jerk” in most other dynamic
systems, the elements of the [J] matrix will be referred to as the jerk
coefficients.

For Impeller X in Volute A, the variation of the matrix elements of
Equation 3.7 with flow rate are presented in Figures 3.15a and b. Just
as the off diagonal elements in the stiffness matrix would encourage a
whirling motion of the impeller, the diagonal terms of the damping matrix
would also encourage whirling when the flow rate drops below ¢ =0.07.
The off diagonal elements, however, will always oppose any tendency of
the orbit to increase in size. The inertial forces will tend to drive
the impeller in the direction of displacement over most of the flow range
that is shown in Figure 3.15b, but will discourage an orbital motion of
the impeller. The jerk coefficients would also act to retard the

impeller whirling, but their influence is almost negligible for flow
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rates over ¢ =0.07.

One surprising observation about the mass matrix is that only a
small portion of it can be attributed to the actual mass of the fluid in
the blade passages. To estimate the inertial forces that are not due to
the flow through the impeller, the centrifugal terms of equations 2.50b

and ¢ can be evaluated to give the "mass alone” term as,

MD  MC
[MA] = [_ uC MD} , (3.9)
where,
MD = - {W[1- cos(tany 1n(R))/Rl/tan’y -1+ 1/R%} ,
and,

%

isin(tan v 1In{R))/(R tanz'y) .

MC=W

Even though the [MA] matrix was said to be independent of the flow rate,
it does depend on the flow path as demonstrated by the tany terms in
Equation 3.9. This dependence turns out to be rather insignificant
though. Over the range of flow rates investigated with either Volute A
or C, the [MA] matrix elements are approximately MD=0.73 and MC=0.0013,

which is far less than the [M] matrix elements.
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Chapter 4

EXPERIMENTAL TEST FACILITY

4.1 Description of the Test Facility

The experimental results for this research were obtained using the
Rotor Force Test Facility available at the California Institute of
Technology. Extensive detail of this facility has been given by Ng [22],
Braisted [6], Chamieh [9], and most recently Jery [161, but it is still
appropriate to include a general description of the apparatus.

Shown in Figure 4.1 is an overhead view of the Rotor Pump Test
Facility with the key components identified. The centrifugal pump being
examined is located in the test section. Utilizing this pump, water is
circulated in a clockwise direction through the closed loop. The flow
rate is governed by the "silent” throttle valve which is servo—controlled
using the output from the turbine flow meter located downstream. The
overall system pressure is regulated by an air bag situated in the
reservoir. The flow fluctuators on either side of the reservoir are
remnants from earlier experiments designed to obtain transfer functions
for cavitating turbomachinery (see Ng [22] and Braisted [61). In the
present work, the fluctuators have been dismantled. The flow smoothing
sections are honeycomb shaped passages which were also used by Ng and
Braistead to obtain a more uniform velocity profile for observation with
a laser doppler velocimeter (LDV) located downstream of each smoothing
section. The LDV’s have since been removed, but the flow smoothing sec-
tions were retained in the system.

A simplified schematic of the test section is shown in Figure 4.2
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along with the internal components of the eccentric drive mechanism. The
volute is located in the pressurized chamber of the test section housing
so that the volute casings can be inexpensively manufactured from less
durable materials. The impeller is mounted on the internal balance (see
Section 4.4) and the entire assembly is turned by the 20 hp d.c. main
motor that is capable of delivering speeds of 3500 RPM after the 2:1
step-up gear box., The shaft that drives the internal balance and
impeller passes through an eccentrically drilled cylinder that causes a
0.0495 inch displacement of the impeller from the center position in the
volute. This cylinder is located in the eccentric drive mechanism and
can be rotated in either direction by the whirl motor up to 1000 RPM.
The eccentric drive causes the impeller to whirl in a 0.0990 inch diame-

ter circular orbit.

4.2 Description of the Test Pumps

4.2.1 Test Impeller

The Byron-Jackson Company of Commerce, California donated the
impeller that was used to obtain all of the experimental data in this
thesis. A machine drawing of this five bladed cast bronze impeller
(referred to as Impeller X) is given in Figure 4.3. Through testing,
Byron-Jackscn determined that Impeller X has a specfic speed of Ns==0.57

where,

\}2n¢Db/R2

N =

—_— (4.1)
s lpg/4

Here, the subscript D refers to the best efficiency point of Impeller X

in the Byron-Jackson test volute.
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4.2.2 Test Volutes

Two volutes were designed and fabricated out of fiberglass at
Caltech. The method used to design the volutes was the principle of
constant mean velocity of flow in the volute described in Lazarkiewicz
and Troskolanski [20]. Because many analyses place such an emphasis on
the design point of a volute, it is important to give a brief description
of this procedure. The principle of constant mean velocity assumes that
the velocity is uniform around the volute and, according to Stepanoff
[25], can be related to the flow coefficient and the specific speed of

the impeller by,
T ry 241/3
V—Kcv\/z [(anDb/Rz)/Ns] , (4.2)

where Kcv is an empirical coefficient used to account for the non—uniform
velocity distribution and friction in the volute. A constant velocity
around the veolute will require a linear variation of the cross section

with distance from the tongue so that,
AG0') =A_6'/21 . | (4.3)
From Equation 4.2 and the definition of the flow coefficient,
o = v b P P 2 . (4.4)
v s°D 2 cv

The coefficient Kcv is presented as a function of specific speed in
Stepanoff [25] and for Impeller X it is determined that Kcv==0.37.

Using the above procedure, Volute A was designed and constructed by
Chamieh [9]. According to this empirical methodology it is considered to
be "well matched” with Impeller X for éD==0.092. Similiarly, Volute C
was designed with ¢D==0.085. Figures 4.4 and 4.5 present the overall

geometry of the two volutes and Figure 4.6 gives the cross sectional
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dimensions every 45 degrees. It is important to recognize from the above
discussion that these design points are purely empirical and depend upon
the particular method used in designing the volute. This is why an

emphasis was placed on using the actual volute geometry in developing the

theoretical analysis of this paper.

4.3 Modification of the Test Facility

4.3.1 Remodeling the Test Section

In order to evaluate the present theoretical analysis or "model”,
the forces acting on the impeller and the pressure distributions at the
inlet of the volute are measured. Since the model only deals with the
interaction between the impeller and the volute, it is necessary to
isolate the flow in the volute from all other flows. This was partially
achieved by placing rings at the impeller discharge as shown in Figure
4.7. These rings were installed so that there was approximately 0.005
inch clearance between the rings and the impeller (this is approximate
because a +0,002 inch axial misalignment of the impeller exists at the
discharge). In addition to using the rings, the front seal was adjusted
to 0.005 inch clearance to reduce leakage flow at the inlet of the
impeller.

From the way in which the test section is constructed, it is possi-
ble that fluid trapped in the eccentric annular gap between the impeller
front shroud and the front alignment flange of the test section will
contribute to the net force on the impeller. The area described is shown
in Figure 4,7. In an attempt to reduce this effect, most of the experi~
ments were performed with the alignment flange removed. Doing so exposes
the front shroud of the impeller to the reservoir conditions of the test

section chamber. The influence of these forces can then be estimated by
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comparing the current test results to those taken by Chamieh [10] and
Jery [17] when the flange was in place. The point at which the flange

was removed is shown in Figure 4.7.

4.3.2 Pressure Taps in the Volute

Pressure taps were installed in both Volutes A and C in order to
observe the static pressure variations around the volute near the inlet,
as shown in Figure 4.7. Small tubes that ran through port holes in the
test section connected the pressure taps to a total of forty manometers.
The taps were placed alternately on the front and back of each volute
about every 10 degrees, but extra taps were used near the tongue. The
precise angular locations of the pressure taps are documented in Appendix
D and the circle diameters on which the taps were drilled are shown in
Figures 4.4 and 4.5. It might have been instructive if the taps could
have been placed directly at the impeller discharge, but this was

precluded by the eccentric position of the impeller in the volute.

4.3.3 Pressure Taps in the Front Alignment Flange

Taps were placed in the front alignment flange before it was removed
so that the pressure in the annular gap could be measured. This was done
so that the net force on the impeller contributed by the flow in this
region could be estimated for further comparison with the work of [10]
and [17]1. Because the axial variation of the pressure in the annular gap
was unknown, two rows of twenty taps were used (see Appendix D for
precise location). One row was placed over the front seal of the
impeller at the narrowest point of the gap, and the other row was
installed where the gap was widest as shown in Figure 4.7. The tap holes
were connected in such a way that either the seal tap or the mid-section

tap could be viewed independently by plugging the unused pressure tap
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with epoxy. With the same arrangement of tubes that was used in the
volute pressure measurements, the pressure taps for the annular gap were

connected to a bank of twenty manometers.

4.4 Instrumentation and Measurement Errors

4.4.1 The Internal Balance for Force Measurements

The most complicated piece of instrumentation used in this research
was the internal balance developed by Jery [16] under the supervision of
Professors Acosta, Brennen, and Caughey at the California Institute of
Technology. Basically the internal balance consists of a single piece of
steel that has been machined into two disks linked parallel to one
another by four square posts. Nine solid state strain gage bridges are
located on the four posts so that the deflections of the posts can be
measured. The wiring from the strain gages runs through the main drive
shaft to the slip ring assembly and from there to the signal amplifiers
and processing equipment. The forces on the cantilever impeller that is
mounted directly to the internal balance were calculated using a force to
strain signal transfer matrix. This transfer matrix was obtained by a
static calibration, and was further reinforced by dynamic tests (see Jery
[16]1). Since there are six force components, three of the bridges are
actually redundant and only used as auxiliaries. For the current work
only the radial forces are of interest.

The principle way of performing a dynamic check of the calibration
was to use the internal balance to measure the weight of the impeller
while it was rotating. When this was done for Impeller X over a range of
speeds from 300 to 3000 RPM the results were within +4% for the magnitude
of the weight (~9.5 pounds) and within 2 degrees for the direction. An

additional test was performed by whirling the impeller and measuring the
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centifugal force. The mass was predicted to within 2% by this procedure,

4.4.2 Pressure Transducers for Total Head Rise Measurements

Two Statham pressure transducers were used to measure the static
pressures in the large pipes immediately downstream of both the upstream
and the downstream flow smoothing sections. From these results the total
head rise across the pump was calculated after including a small correc-
tion for the dynamic head difference caused by the difference in the
cross sectional areas. The two transducers were calibrated by comparing
their conditioned outputs (read in volts on a digital voltmeter) against
an accurate Heise pressure gage. The signals were found to be linear

over the range of pressures measured.

4.4.3 Manometer Measurements of the Pressure Taps

The pressure taps around the volute were read using forty 42 inch
inverted air/water manometers. A common pressure was applied to the
airspace the top of the manometers and the tubes leading from the pres-
sure taps were connected to the bottom of each manometer. Flip valves at
the base of the manometer tubes allowed the pressure taps to be switched
off simultaneously, thereby freezing the results once the system came to
equilibrium. One of the pressure taps was also connected to the bottom
of a mercury manometer. The top of the mercury manometer was connected
to a static pressure tap in the pipe upstream of the lucite viewing
window (and therefore upstream of the pump). This furnished the upstream
total head reference for the pressure tap measurements once the correc-
tion for the velocity head was made.

Before each series of tests the manometers were leveled and the
lines leading to the pressure taps were bled. The water manometers could

accurately be read to within +0.2cm (0.08 in.) of water meaning that the
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pressure taps measurements relative to one another at a given flowrate

are fairly accurate. The mercury manometers were slightly less accurate
and could only be read to within +0.2in. of Hg (2.5 in. of water). This
will effect the relative accuracy of the readings from one flow rate to

another.

4.4.4 Magnetic Pickup for Impeller Speed

A magnetic pick-up transducer in conjunction with an HP 53024
universal counter was used to find the rotational speed of a 64 tooth
steel wheel mounted on the main shaft. A rather intricate speed control
system is used because an accurate assessment of the angular position of
the impeller is required by the internal balance. The reader is referred
to the work of Jery [16] for discussion of the control system and the

data acquisition procedure.

4.4.5 Turbine Flowmeter

The flow rates were measured using a 1250 GPM Potter turbine flow
meter. In comparing the measurements of the turbine meter to those of an
electro—magnetic flow meter, the results were found to be linear. How-
ever, for flows less than 40 GPM the turbine meter did exhibit oscilla-

tions of approximately 2 GPM.

4.5 Eliminating the Tare Forces

In the data reduction procedure, all of the forces that were clearly
not associated with the hydrodynamic forces were eliminated from the
results of the internal balance measurements. These tare forces were in
part calculated by running the impeller dry and inside of the test
chamber without a volute. This procedure was repeated for every combina-

tion of main shaft and whirl speeds that were to be used in actual test
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runs so that the dead weight and inertial forces could be eliminated. In
addition, the buoyancy forces were also eliminated by directly subtract-
ing the difference between the wet and dry weight of the impeller from

the results.
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Chapter 5§

EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY

5.1 Head Rise Performance Characteristics

To apply the current theoretical model, it is essential to have an
accurate measurement of the total head rise across the pump as a function
of flow rate. Shown in the upper part of Figure 5.1 are the experimental
total head measurements for the pump consisting of Impeller X in Volute
A, and in the lower part of the figure are the results for Impeller X in
Volute C. As expected, the head coefficients were found to be independent
of speed and therefore Reynolds Number effects. For neither volute was
there any consistent and observable variation of the head coefficient
with the impeller position.

The only noticeable change in the pump performance that occurred,
took place when the flow separation rings were installed (see Figure
4.7). To demonstrate the difference in the total head output, Chamieh’s
[9] results for the same pump without the flow separation rings are
included in the upper graph of Figure 5.1. Unless otherwise stated, all
of the results presented in this thesis were taken with the rings
installed because the interaction between the impeller and the volute is
the primary focus of this investigation. It is, however, recognized that
the leakage flow from the volute into the annular gap (see Figure 4.7)
will have an influence on the total force acting upon the impeller.

Further discussion of flow in this region will be given in Section 5.5.
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5.2 Correlation Between Predicted and Measured Pressures

As was described in the previous chapter, pressure readings were
taken at the inlet of the volute in order to evaluate the predictions of
the model. Measurements from the ring of pressure taps at r'’ = Rt in
Volute A are shown in Figure 5.2 and the same information for Volute C is
shown in Figure 5.3. The dotted lines in both of these figures are
included only to aid in distinguishing the results from one flow rate to
another. The pressures were taken at impeller speeds from 800 RPM to
1000 RPM and the resulting pressure coefficients were found to be
independent of the speed. The taps were installed so that they
alternately measured pressures from the front and back of the volute over
most of the pressure ring perimeter. This is the why there is an
apparent jump in the data from one tap to the next. The slightly larger
pressures measured by the front taps might be attributed to the front
taps being larger than the back taps in Volute A. But in Volute C the
tap holes were all the same size and the front taps still gave slightly
higher readings. This leads to the conclusion that the difference was
caused by a small rearward axial component of the velocity at the
discharge of the impeller.

When examining the pressure coefficients at lower flow rates, the
most noticeable feature is that there appears to be one particular point
where volute inlet pressure is independent of the flow rate. This same
feature was predicted by the model and even the particular crossing point
is very close to the observed results when allowances are made for the
impeller not being positioned at the volute center. To account for the
impeller position and the fact that the pressures are not measured at the
impeller discharge, Equations 2.15, 2.22, 2.31 and 2.33 are combined to

give the theoretical pressure at the volute tap ring as,
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p: l =b'"+2x72[1n(at/nz) — ¢ cos(8’ -] (5.1)

Rt ol

* —

+e [Dpc+4VVc ln(Rt/Rz)]cos‘Z
t —

+ g [DpS +4VV_1n(R,/R,y)Isin (4

Figures 5.4 through 5.6 give a direct comparison of the theoretical and

experimental pressures at r'=1R Figure 5.4 shows that from about 75%

£
to 100% of the design flow rate of Volute A (dD==0.092), there is an
extremely good correlation of the results. For flow rates less than
about 75% of design the correspondence is still fair, as shown in the
upper part of Figure 5.5, but for flow rates greater than the design
point the predictions begin to falter as demonstrated in the lower part
of Figure 5.5. Figure 5.5 also illustrates the effects of moving the
impeller from a position nearest to the tongue (T =0°) of Volute A to a
position farthest from the tongue (z==1800). From this figure it
appears that the model adequately predicts the pressure changes which
occur when the impeller is moved in the x direction. Similar results
were found for movement in the y direction but the magnitude of the
changes were smaller.

To complete the comparison of pressure distributions, Figure 5.6
gives the results when Impeller X is positioned near the tongue of Volute
C. The range of flow coefficients presented is from about 63% to 112% of
the design (dD==O.085). Just as with Volute A, the best predictions are

for flow rates just below design.
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5.3 Radial Forces Acting on the Impeller

5.3.1 Integrated Pressure Forces

In the theoretical results presented in Chapter 3, it was found that
the asymmetric pressure distribution at the impeller discharge was the
major contributor to the radial force acting on the impeller. When the
measured pressure results are integrated around the impeller, an estima-
tion of this force can be made. It will be assumed that on the average
the pressure is constant in the axial direction across the impeller, even
though small variations were shown to exist in Figures 5.2 and 5.3.

Because the impeller is actually located a distance s*==0.0155 from
the center of the pressure taps, the pressure results cannot be directly
integrated. Instead, the change in the relative coordinate systems must
be taken into account using the approximation.

dP
L _ L 2 Vv
P (R,,8') =P (R,,8, - ¢ S1n(92~§)) =P (R,,8,) — ¢ s:Ln(GZ—’C) 3e, , (5.2)

1]
to R, .

and neglecting the radial variation in the pressure from r==R2 t

The pressures may then be integrated around the perimeter of the impeller
to give,
2n *
FVX(Z) =-W, R, fo P, lc[cos(ez) +e cos(2(¢)2 - 'C)]cie2 , (5.3a)

and,

2n «
F (D =-W R, fo Pl [sin(e,)) +e sin(20, - Plde, ,  (5.3b)

T

These expressions are only approximate because the radial variation in
the pressure was neglected, and from Equation 2.22 of the volute model
the pressure was predicted to vary logarithmically in the radial direc-

tion. One note of caution that should be added is that even if the
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impeller was positioned in the center of the volute, there would still be
error introduced into the force calculation by the radial pressure varia-
tion. This error would come about because of the dependence on the
volute flow velocity which varies with €'. Unless the pressure resultis
are taken directly at the impeller discharge there will always be a
velocity contribution. It was assumed though, that Equations 5.3a and
5.3b would at least give an estimate to the pressure forces acting upon
the impeller.

Using the above approximations, the volute pressure forces on
Impeller X when it positioned near the tongue (T =0°) are given in Fig-
ure 5.7. The theoretical curves that are included in this figure were
also calculated with §==O°. From the top graph of Figure 5.7 the
predicted forces are shown to correlate well with the pressure forces on
Impeller X in Volute A. The comparison is not as good when Volute C is
used as shown in the lower part of the figure, but for most engineering
applications only the magnitude of the force is of primary concern and
the theory predicts this satisfaétorily. Also included in Figure 5.7 are
the direct force measurements taken with the internal balance developed
by Jery [16]1. These results reaffirm the conjecture that the non—uniform
pressure distribution at the impeller discharge is the principal cause of

the radial force on the impeller.

5.3.2 Direct Force Measurements

Using the internal balance, the forces were measured with the
impeller placed in four positions of the eccentric orbit, (==0,90,180,
and 270 degrees. The forces were then averaged and the results when
Volute A was used in the pump are presented in Figure 5.8. Also included

in the figure are the average pressure forces for two flow rates and the
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corresponding theoretical predictions. It is shown that the analytical
model over-predicts the mean forces slightly, but in general the
comparison is good. Similar results for Volute C are shown in Figure
5.9. For Volute C the radial force measurements were taken at both 1000
RPM and 2000 RPM impeller speeds. The results show that the non-
dimensionalized force is independent of the impeller speed, as was

anticipated from the pressure measurements.

5.3.3 Comparison with Previous Force Predictions

For historical reference, Figure 5.10 presents a comparison between
the current theoretical radial forces on Impeller X in Volute A, the
forces predicted by Colding-Jorgensen [12], and the experimental results
obtained by Chamieh [9]. The results of Colding-Jorgensen were
calculated using the same spiral angle as Volute A (86 degrees), but the
blade angle used was slightly different from that of Impeller X (67.5
degrees as compared to 65 degrees for Impeller X). Even with this minor
difference in the impeller geometry, the two pumps are still similar
enough to estimate that Colding-Jorgensen’s model will predict forces
with about half the magnitude of the current model.

The experimental results of Chamieh [9] were obtained using Impeller
X in Volute A, but without the flow separation rings and the modified
front flange (see Section 4.3.1). The impeller forces in the y direction
measured by Chamieh are shown to be very close to those predicted by the
current model, unlike the forces in the x direction. It is difficult to
Justify a direct comparison with this work though, because without the
flow separation rings in place, there would be extensive leakage into the
annular gap shown in Figure 4.7. The forces on the impeller that result

from this leakage will be discussed further in Section 5.5.
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5.4 Stiffness and the Generalized Hydrodynamic Force Matrices

5.4.1 Hydrodynamic Stiffness Matrices

Using the internal balance, the hydrodynamic stiffnesses were
experimentally determined by measuring the radial forces on the impeller
when it was positioned at four eccentric positions (§==0,90,180,270
degrees) in the volute. Once the x and y force components afe obtained
from each of the four positions, the elements of the stiffness matrix are

calculated by.

K %= (FX(O) —Fx(180))/28 5

< = (Fx(90)-Fx(270))/23 »(5.4a,b)

ny

ny==(Fy(O)-Fy(180))/23 s Kyy==(Fy(90)-—Fy(270))/28 » (5.4¢,d)

These calculations were made at several different flow rates for Impeller
X in Volute A and Volute C and the results are shown in Figures 5.11 and
5.12 respectively along with the theoretical predictions. Also given in
Figure 5.11 are the stiffness matrix components that were calculated
using the volute pressure forces described in Section 5.3. Comparing the
experimental and theoretical results, it is shown that the model gives
slightly lower magnitudes for the stiffnesses, but their variation with
flow rate is predicted fairly well. The only exception to this is the
ny coefficient, which from the experiments would appear to be
independent of the flow rate. Presently there is no suitable explanation
of why this might be true.

In Chamieh’'s [10] work it was experimentally determined that the
stiffnesses were given approximately by Kxx==Kyy==—2.0 and
ny==—ny==0.9 for Impeller X in Volute A, regardless of the flow rate.
The stiffnesses from the current experiments are shown to vary with flow

rate and are only about 25% of those given by Chamieh. This difference
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can be directly attributed to the installation of the flow separation
rings and the removal of the front flange of the test section as will be

shown in Section 5.5.

5.4.2 Force Effects of Whirling the Impeller

It is uncertain how much of the force measured on the whirling
impeller is the result of the interaction with the volute, and how nmuch
is caused by the presence of fluid at the outer shroud of the impeller.
As was explained in the Chapter 4, a portion of the front flange of the
test section was removed so that the front shroud of the impeller was
subject to the "reservoir” conditions of the test chamber. While this
may have eliminated the front shroud pressure imbalance for the station-—
ary impeller, it is unlikely that there will be no net force on the front
shroud when the whirling impeller is agitating the water in the test sec-—
tion chamber.

Under the assumption that these forces will be small at lower
whirling speeds, tests were run for whirl ratios between +20% with a
main shaft speed of £ =1000 RPM. The resulting generalized hydrodynamic
force matrix coefficients are shown in Figure 5.13 for Impeller X in
Volute A operating at the design flow rate, along with the predictions of
the current model and the two dimensional distributed vortex model of
Tsujimoto [29]. In comparing the results, it is shown that both models
predict the general trends of the coefficients, but the model proposed by
Tsujimoto tends to give a more accurate assessment of the magnitudes.

To complete the comparison between the current model and previous
models, Figure 5.14 shows the hydrodynamic stiffness and damping matrices
calculated by Colding-Jorgensen [12] for a pump similar to that of

Impeller X in Volute A. Even though the diagonal elements of the stiff-
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ness matrix are shown to be of the same order, the off-diagonal terms
which would induce whirl are shown to be much larger in the current
model. As for the damping matrices, Colding-Jorgensen'’s predictions are
only about one tenth of the magnitude of those predicted by the current

model. Unfortunately, test resulis giving the damping are not available.

5.5 Radial Pressure Forces and Stiffnesses Caused by Fluid on the

Front Shroud of the Impeller

Up to this point, the primary focus of this work has been to study
the interaction between the impeller and the volute alone. There has
been some concern though, that the fluid surrounding the front shroud of
the impeller might also contribute to the measured forces. In the previ-
ous work by Chamieh [9,10] and Jery [16,17], the alignment flange of the
test section extended into the volute and fluid was trapped in the
annular gap between the flange and the front shroud of the impeller (see
Figure 4.7). This problem was further complicated by the lack of a seal
between the annular gap region and the discharge of the impeller. The
water in this region will circulate when driven by the shear forces from
the spinning impeller and the pressure gradient in the volute. Since the
impeller is located eccentrically with respect to the alignment flange,
the flow in the gap will be nomuniform and the pressure will therefore
vary circumferentially. In the current experimental work, the test sec—
tion was modified in an effort to minimize these effects by sealing the
volute flow from the annular gap and exposing the annular gap region to
the reservoir-like conditions of the test chamber (see Figures 4.2 and
4.7).

Pumps that are normally used in industrial applications would more

closely resemble the unmodified pump of Chamieh and Jery, although the
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annular gap clearances are ordinarily much smaller. To estimate the
influence of the flow in the annular gap on the overall hydrodynamic
forces, pressure measurements were taken in this region and the results
are shown in Figure 5.15. The upper diagram gives the annular gap pres—
sure data when the rings are installed to separate the annular gap flow
from the volute flow, and the lower diagram shows the results when no
rings were used. For both situations the pressures have been referenced
to the upstream total head. What is apparent in examining the two fig-
ures is that the annular gap flow and the volute flow have a considerable
influence on each other when the rings are not used. Also, by comparing
the pressure measurements taken over the impeller inlet seal to those
made over the midsection of the impeller shroud, it appears that there is
a negligible variation of the pressure in the axial direction.

Just as the volute pressures were integrated around the impeller to
estimate the radial forces, the pressures in the annular gap were
integrated to obtain the net force acting on the impeller. The geometry
used in this calculation is shown in Figure 5.16. By once again neglect-—
ing the radial and axial variations in the pressures, the pressure forces

are given as,

F (0 =- fzﬂﬁp(e,l)[cos(e) + &' cos(20 - T)1a6 fzr' dz (5.5a)
and
27 « T
Fop(® == fo A,(8,DIsin(e) +e'sin(20 - Tlao frdz . (5.5Db)
These forces were then used to estimate the average force on the centered

impeller and the stiffness forces caused by the impeller displacement so

that,
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( k-4 F % K* % ,c
Fax ax Kaxx axy & cos
= - (5.6)
S - # ®
K K sin
Fay Fay ayx ayy e sinf
where,

- % ® * *
F =(F (0)+F (90) +F (180) +F (270))/4 ,
ax ax ax ax ax

F o= (F (0) +F (90) +F° (180) +F* (270))/4 .
ay ay ay

%
ay ay
and,

%

* * # * * * ®
K <= (Fax(O) - FaX(ISO))/Ze » K = (Fax(90) —Fax(270))/28

ax axy

% %

K° = (F (0} -F (180))/2e° , K =(F (90) -F (270))/2¢
ayx ay ay ayy ay ay

The results of this linearization are presented in Table 5.1, along
with the combined pressure forces from the front shroud and the discharge
of the impeller. Also included in this table are the direct force meas-
urements made by Jery [17] and Chamieh [9]. It is evident from the
results in Table 5.1 that the fluid trapped in the annular gap
contributes significantly to the mean force and stiffness acting upon the
impeller. With the rings installed, the mean force on the shroud was
found to be near zero, but the hydrodynamic stiffness from the pressures
in this region represent from about 50% to 75% of the total stiffness
acting on the impeller. When the rings are removed, the mean forces on
the shroud are no longer negligible at below design flowrates, and the
stiffness is still modified substantially by the annular gap pressures.
Table 5.1 also shows that the integrated pressure results are comparable
with those obtained by the direct force measurements of Chamieh and Jery.
Jt is believed that some of the differences that do exist can be

attributed to the current inability to measure the pressures directly at
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the impeller surface.

5.6 Apparent Limitations of the Theoretical Model

5.6.1 Lower limit on the flow coefficient

Up to this point the lowest flow coefficient used in the calcula-
tions has been 50% of the design flow rate. This lower limit might actu-
ally be considered a bit conservative, since the model does offer solu—
tions all the way down to near shut-off conditions. One must be skepti-
cal about the validity of the results below 30% of the design flow.
because it is known that the assumption of no preswirl at the impeller
inlet would not be valid. This can be established by simply watching
through the lucite window of the test section as small bubbles spiral in
towards the impeller inlet when the pump is being operated at low flow
rates. Nevertheless, calculations were made at the lower flow rates for
Impeller X in Volute A and, provided the results are viewed cautiously,
they might prove to yield some insight into the operation of a pump.

When flow coefficients from & =0.02 to d =0.05 were investigated,
it was found that the predicted perturbation in the impeller discharge
flow never exceeded 6% of the mean flow and the flow path angle
approached 87°. The theoretical and experimental forces that result over
the extended range of flow rates are shown in Figure 5.17 and the

stiffnesses are shown in Figure 5.18.

5.6.2 Upper limit on the flow coefficient

It was mentioned in Chapter 2 that different closure conditions at
the tongue are possible (other than the matching total head condition
that was used). When it was found that the total head matching assump—
tion caused the model to fail at the above design flow coefficients, two

other conditions were tested. In both attempts, the assumptions were
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kept as simple as possible to avoid introducing new parameters into the
problem. In the first investigation the velocity was equated from one

side of the tongue to the other so that from the continuity equation,
V(0) = 2nd/ (A(21) - A(0)) (5.7)

and in the second investigation the pressure was matched across the

Neither of these matching conditions produced results that predicted the
pressure distributions as well as the head matching condition. Even at
the above design conditions (where the original model failed) the two
alternatives produced poor comparisons with the experimental results.

For the above design flow rates, it is possible that the one dimen-
sional treatment of the volute flow fails to adequately model the
velocity profile. Some indication of this can be found by comparing the
measured pressure at the tongue of the volute to the total head at the
discharge of the Volute A/Impeller X pump for ¢ =0.10. At this flow
rate the pressure is found to be greater than what would be expected from
the discharge total head (PV(Rt,Zn)==0.77 compared to 2¢¥=0.70).
Further, for flow rates greater than design, Lazarkiewicz and
Troskolanski [20] indicate that eddys form at the tongue of the volute
and that this results in a flow reversal through the tongue bypass. If
this actually happens, then it is doubtful that any one dimensional model

for the volute flow will produce reasonable results.
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Chapter 6

SUMMARY AND CONCLUSIONS

An investigation was undertaken to provide a theoretical understand-
ing of the destablizing hydrodynamic forces that have been observed
[{10,17] on a whirling centrifugal pump impeller. The analytical model
that was developed takes into account the interactions between the
impeller and the surrounding volute. The impeller flow was assumed to
follow a log spiral path (though not perfectly guided by the impeller
blades) and have a periodic perturbation resulting from the discharge
conditions imposed by the volute. Flow in the volute was considered to
have a flat velocity profile across each cross section and satisfy the
continuity and moment of momentum equations. Allowances were made for
the radial variation of pressure in the volute and the recirculation of
flow at the tongue. The need for empirical judgement was kept to a
minimum, so that the model requires only the dimensions of the impeller
and the volute and the total head rise across the pump. Calculations
were performed for two situations: one with the impeller centrally
located in the volute, and the other with the impeller whirling in an
eccentric orbit.

What follows are the theoretical observations that were made for the

centrally located impeller:

i) The presence of the volute causes at most a 6% circumferential
perturbation to the impeller discharge velocity. This perturba-
tion decreases as the flow rate approaches the volute design

conditions.



ii)

iii)

iv)

v)
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The flow is not perfectly guided through the impeller, but

follows a path that varies with both flow rate and volute design.

Flow recirculation at the tongue has a major influence on the
pressure discontinuity in this region. For larger by-pass areas
the pressure discontinuities are smaller, but this does not

necessarily mean that the overall radial forces are smaller.

Radial forces that occur on the impeller are primarily due to the
asymmetric pressure distribution at the impeller discharge. Less
than 1% of the force is due to asymmetries in the inlet pressure

distribution or discharge momentum flux.

For flow rates above design, the one-dimensional volute flow

model is inadequate in the region near the tongue.

For a small eccentric orbit of the impeller center, it was assumed

that the flow properties could be linearized in terms of the steady

(centered impeller) distributions and first order effects caused by the

whirling motion. The findings of this analytical investigation of the

whirling impeller are:

vi)

vii)

viii)

The forces that result from an eccentric displacement of the
impeller could induce or perpetuate impeller whirl over a wide

range of flow rates.

These forces are functions of the whirl speed of the impeller,
but results were obtained only for whirl speeds equal to + 15% of

the impeller speed.

The current model predicts a larger magnitude for the
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hydrodynamic stiffness and damping coefficients than those
predicted by Colding-Jorgensen [12].
Experimental tests were done in conjunction with the analytical work.
The facility used for these tests have been utilized in previous experi-
mental investigations [10,17], but slight modifications have been made

for the current analysis. The following results were obtained from these

tests:

ix) The pressure distribution at the impeller discharge is the major
cause of the radial forces in the volute/impeller interaction.

X) Agreement with theoretical predictions for the forces on a
centered impeller is fair, but the model tends to overpredict the
magnitude of the force.

xi) The hydrodynamic forces vary with the square of the impeller
speed.

xii) The measured hydrodynamic stiffnesses were only about one fourth

the size of those obtained by Chamieh et al.[10] and Jery et al.
{17]. This difference is attributed to a modification of the
test section that gives a uniform pressure distribution on the
front shroud of the impeller in the current experiments. The
stiffnesses are still such that they would encourage the impeller

to whirl as was previously observed by Chamieh and Jery.

xiii) The theoretical analysis predicts some of the trends demonstrated
in the experimental stiffness results, but some questions still

remain about the cross coupling effects of the stiffnesses.
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xiv) A reasonably good comparison is obtained between the theoretical
and experimental forces that result from the impeller whirling in
the volute., This observation is, however, based on a limited

range of data.

xv) Pressure measurements have shown that hydrodynamic forces on the
front shroud of the impeller have a larger contribution to the
stiffnesses (50% — 75% of total) than the impeller/volute
interaction forces. These forces in combination with the volute
pressure forces compare well with the direct measurements of [10]

and [17].

A major advantage that this theoretical approach has over other ana-
lyses, is that by using the actual geometry of the volute it provides a
more physical interpretation of what happens inside of the centrifugal
pump. With some modifications, it might be possible in the future to
extend the model to include the effects of an inducer at the inlet of the
impeller and vanes at the inlet of the volute. This would be an
important improvement in the model since many of today’s high performance
pumps use inducers and diffuser vanes.

The analytical model does give reasonable estimates for the pressure
distributions and the hydrodynamic forces, although there are limitations
on the range of flow rates and whirling speeds. The present theory could
perhaps be extended to higher whirl rates, but it is unlikely that the
flow near the volute tongue will ever be adequately described by a simple
one dimensional treatment for the above design flow rates. It is possi-
ble that an improvement in the model might be achieved by incorperating a
two dimensional treatment of the flow near the tongue. Even with no

improvement, the predictions of the model could be more crucially tested
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by investigating a volute where the tongue bypass area is much larger
than those used in this study.

Finally, it should be emphasized that this model alone will not
account for all of the hydrodynamic forces that act on the centrifugal
pump impeller. It was shown by the experimental analysis in this
research that principal influence on the hydrodynamic stiffnesses was
contributed by the fluid interactions with the front shroud of the

impeller. This is definitely an area that deserves more attention.
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APPENDIX A

DERIVATION OF GOVERNING EQUATIONS FOR A

WHIRLING IMPELLER

A.1 Introduction

Bernoulli’s equation is used to relate the velocities and pres-
sures between the inlet and the exit of the impeller. A brief derivation
of the form of Bernoulli’s equation used is presented in this appendix to
alleviate any suspicion as to the origin of some of the terms. In addi-
tion, the equation used in finding the momentum flux contribution to the
forces on the impeller is developed. Frictional forces will be neglected
and the flow through the impeller will be considered to be two dimen-
sional. The impeller is both spinning and whirling at constant rota-

tional speeds.

A.,2 Bernoulli‘s Equation

Figure A.1 defines the coordinate systems to be used. With the
frictional forces ignored, the equilibrium of forces in the streamwise

direction on a differential element ds”dn” requires that.

oP P

- i X 0
(P, - 5o ds’/2)dn" = (P, +

i
asl'

ds’''/2)dn'" =p ds"dn"as,, »

or,

3p.
—L (A.1)

s ="53s" °

sl!

© e

When viewed from the rotating reference frame, the absolute acceleration

of the differential fluid element is given by,
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Dv

Ypreger
§=-——-—-—-—Dt + gx”y” +2gxzr,,9,,+gx (@xr)
where,
‘Y‘I‘”e" = Ve oo +Ven g TV g

a .
~xy'’axis

Q,:ﬂgzn »
and,
Dy ov
r''e’ _ av v —n _yv
Dt = Ge Y as") gst (3¢ Cr)gn"

, (4.2)

= -wzs[cos(mt -0t - 9“)§r"+ sin(wt - Ot - 9")@,9”] s

The Cr appearing in the acceleration is the instantaneous radius of

curvature of the fluid elements path (notice that it is the streamwise

acceleration that is used so the Cr term will present no problem).

To find the acceleration component in the streamwise direction, the

following identity relating the r"”, 6" and the s”,n” systems is used,

dr’ r'de’ Vpe Vo
grn = ds?t Rgv - ds*’ ,.,nn = v ‘%S” Ty Enn
e _rprdev dr*’ _ e Tpre |
,.,9" - dS” SS” + dsn g.qu = v gsu + v ~.nn

along with the definition of the tangential acceleration,

asn=§ 'an D

» (A.3a)

» (A.3b)

Using these relationships and integrating along a streamline gives the

desired form of Bernoculli’s equation as,

2 g2pm

2

2
P

i v

-— + P4 N |- ¥4
p J at 945

v
+ o

(continued)
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f cos(wt - Qt -9’ )dr’’

— = F(¢ 5 A.5
v E + J' sin(et ~ 2t - 8°)r*'de” (t) ( )
s'l

where F(t) is a function only of time but may vary from one streamline to

another.

A.3 Momentum Force Equation

What is referred to here as the momentum force equation is actually
an expression which combines the impeller force contributions of the
momentum flux terms and the body forces. The momentum force of the fluid

acting on the impeller may be written as,

il .
E,m": - 5—6 j pzr,ne ve d’""“"; p:lrnen Irugn df:
cv cs
_j.cvp[gxnynaxis +2gxxruen +§ZX(QX£) +Q,x£]d'V' . (A.6)

The control volume in this expression is the fluid in the impeller blade

passages between Rl and R, . When the velocities and the accelerations

used in the development of Bernoulli’s equation are incorporated into

this equation, it becones,

R
Ep, (Fy+JF)) ot 3 2T 2. @
;E'= -—‘*;E;-*L- = - gd™v ;; Jo JR (vr.. + ve,.)e“" r''dr''de”’
1

R

2n 2
0t . e’ , .
- ed [_fo (Vs + 3 Y90) Vs eI® " rriger “R

1
R
2n 2 .
- 2sze3“tj'o Jp v - vgr)ed® 'rrar e
1

+ wle nmg—ni)ej""‘ , (A.7)

for constant rotational velocity and whirl. Here it was also assumed
that the blade passage width, b, is constant and that the blade thickness

is negligible. The terms have been written in complex notation to
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facilitate in the transformation of coordinate systems.
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(imaginary)

/—instantaneous
streamline

xll

= x{real)

X
x’y’ - Volute frame
xy - Impeller frame
x"y”- Axis fixed to
impeller
Figure A.1 Description of the coordinate systems used in the deriva-

tion of Bernoulli’s equation.
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APPENDIX B

DERIVATION OF THE GOVERNING EQUATIONS FOR FLOW IN

THE VOLUTE

The ultimate goal of this appendix is to develop an expression which
relates the pressure distribution in the volute to the geometry and the
inlet flow conditions of the volute. Shown in Figure B.1 are the
coordinate systems to be used in this derivation. The r’, 8’, axis is
fixed at the center of the volute and the r, © axis is fixed at the
center of the orbiting impeller, as shown. The velocity in the z' direc-
tion (normal to the page) and its derivatives will be considered negligi-
ble in the derivation of the basic equations.

The moment of momentum equation for a differential element of

width, w, may be written as,

8' +A0'/2 r’'+Ar’/2
pr'Vg, Vg WAr’ + pVg V. Wr'AQ" +pr'Vg,V . WAr’AQ’
8’ ~AB'/2 {r’'—Ar’'/2
[ A— [}
v, , L) AB'/2
+ pwr'r’ 7t Ar’A8’ = var'Ar’ + P r'AwAr’
8’ +A0°/2

so that in differential form the equation becomes,

a(r'wVe,Ve.) a(r'r'wve.vr,)
Y * ar * eV, Vo,

3V9, ap

ot - _ur' v
+r'r'w oy o 20’ " (B.1)
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For the flow in the wvolute, it will be assumed that the radial
velocity is small in comparison to the angular velocity so that the

Coriolis term, r'Ve,Vr,, can be neglected. With this observation the

moment of momentum equation becomes,

a(wr'Ve.Ve.) a(Wr'r'vervrp) aver wr’ an
) = -
Y + Py +wWr'p 3t > a6’ (B.2)

Similiarly the continuity equation is given by,

a(wve,) . a(wr'VP,)
28’ or’

=0 , (B.3)

and if the radial gradient of Vr, is also neglected, then the equation of

motion in the radial direction becomes,

aPV _ pVe,Ve,
ar' r'

. (B.4)

With the assumption that Vg, varies only with 8’ and t, Equation B.4 may

be integrated to give the radial pressure distribution as,

? ? - ! 1] 2 ? ? !
P (r',0') =P (Ry.0') +pV2 (8")1n(r'/R)) . (B.5)

In order to get equations that are functions of 8’ alone, the moment
of momentum and continuity equations will be integrated across volute
sections of constant €’. For the continuity equation this gives,

ks 3(wig,) K3 a(wr'VP,)

—_— dr' + -——;.._—__...—d 't =0 .
IRz'ae' r IRz'ar- r

implying that,
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Rg
alvg, f ,wdr'] , ,
R, l dR, | aR '
-wv o, twv =+ Wy R
a0’ 8’ "' , ae o' , a0’ rt o

3 2

But from kinematic constraints at the outer edge of the volute it is

known that,

, , dR,
L = 4
V (Ra)e ) _Ve'(R3JG ) ? o (B-6)

r' ?
R3d9

Therefore, the continuity equation may finally be written as,

Ry
alvy, [ ,wdr’] ,
R, , 3R,
557 =wl '(Vr,l 'RZ—VG,I ,5—9—,) . (B.7)
Ry Ry Ry

Likewise, integrating the moment of momentum equation across the volute

cross—section gives,

1

R

, 23
alvg, [ wrrar’] ' '
R, 2 , dRg 5 , 3Ry .
TX “Wgl Ry G *Werl Ry ey * Vg Vil RgRs
R, R, 3
]
Ry
a(VG. 5 Wr'r’dr’) ,
o R, . , 9R,
=WV Ry Ryt 5% *wig,l SRRy 3%
R R
2 2
1
R
3 9P
=1 y —V
p_fR,wr' 20’ 4r - (B.8)
2

This may be simplified further by again implementing the kinematic

constraint at R; and also using the radial pressure distribution found
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in Equation B.5 . Doing so yields,

)

Rs
a(vg, f ,wr'dr’] ,
R 3R
2 +uv2,l R =2 -wv,,v.,| R.R.
20" o' B2 aer "o Vrrl R
R, 2
Rs
a(Ve, f ,wr'r‘dr’) ,
. R . » 3Ry
at ol BBy 5t
Ry
Ra '
gm0 F3 o avd, T3
== R,wr dr’ - 557~ fR,wr In(r /Rz)dr
2 2
8
' R
aR, 3
+-V§, { 55% ,wrldre’ .

(B.9)
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Volute
Cross Section

Centered
Axis

\ / ' x| Tongue
\ Rp—7 | \R2 / [V

2 olute .
\ Centered Axis

Figure B.1 Geometry used in the volute model.



- 141 -

APPENDIX C

SOLVING THE EQUATIONS OF THE THEORETICAL MODEL

C.1 QObtaining a Numerical Solution

All of the basic equations for a unique solution have been
developed, but finding the solution might present some conceptual
problems. Solving the equations will consist of finding the impeller
flow perturbation, B, and the volute pressure and velocity distributions
which will satisfy Equations 2.19, 2.30, and 2.32 while meeting the
conditions imposed by Equations 2.36, 2.37, 2.41 and 2.43. The equations
for the steady centered impeller are independent of those for the whirl-

ing impeller and must be solved first to establish the E, 5;, and V
distributions, and the flow path angle, y. Once these components are
known, the distributions resulting from the eccentrically whirling
impeller can be found. If the impeller is simply in an off center posi-
tion but not whirling, the cos wt and the sin wt equations are
independent of each other and may be solved separately. When the
impeller is whirling, however, the in-phase and quadrature equations
become coupled and must be solved simultaneously.

To numerically solve the nine total differential Equations of 2.19,
2.30, and 2.32, they were written in finite diffeerence form using
centered differencing. The integrals of Equations 2.36 and 2.44 were
also calculated numerically, using Simpson’s rule. All of the flow
quantities of B, DD, and V were solved for in an iterative manner, and
what follows is a brief description of the procedure used in finding

these distributions.
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Steady Centered Impeller :

(a)

(b)

(c)

(d)

(e)

(£)

(g)

(h)

(i)

(3

Assume B(®) =1 and choose B;(Zﬂ)"B;(O).
Choose 7v.
Calculate V(0) with Equation 2.41a and V(8') from Equation 2.30a .

Calculate 5;(9') with Equation 2.32a using a value of 5;(0) which

satisfies condition 2.44a .

See if B;(Zn)-ﬁg(o) matches the initial estimate. If it does, go

to (f), and if not., go to (c¢) with a new 5;(2ﬂ)-5;(0) estimate.

Using 5;(9’), calculate new B(8) from Equation 2.19a and march far

enough in 6 so that §(0) =B(2n) as required by 2.37 .

Compare new 3(9) with previous estimate and go to (i) if it

matches. If it does not match go to (h).

Update the guess on E(G) using the new E(G) and the condition

imposed by Equation 2.36a .

See if $==¢%xp as required by condition 2.43a . If it does then

go to (j). If it does not then choose a new v and go to (b).

This completes the solution of the centered impeller problem and

gives the E,V and 5; distributions as well as the flow path angle,

7.

With the steady distributions established, the calculations for the in-

phase and quadrature components can commence. The procedure used is

almost identical to that outlined above, except that ¥ is assumed as

fixed by the steady flow calculations and the flow rate perturbations, a,
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and qs, are unknown. The solution for the whirling impeller components

is as follows.

Eccentric Whirling Impeller :

(a)

(b)

(c)

(d)

(e)

(£)

(g)

(h)

Assume Bc(9)==0 and Bs(0)==0, and choose Dpc(Zﬂ)"Dpc(O) and

Dps(21r) -Dps(O),

Choose a, and qq-

Calculate VC(O) and V_(0) using Equations 2.41b and ¢, and find

VC(O') and VS(O') from Equations 2.30a and b .

Calculate Dpc(e') and Dps(e') with Equations 2.32b and c using a

value of Dpc(O) and Dps(O) which satisfies conditions 2.44b and ¢ .

See if Dpo(Zn)-Dpc(O) and Dps(Zn)-Dps(O) match the initial esti-
mates. If they do, go to (f), and if they do not, go to (¢) with

new estimates of Dpc(zn)-Dpc(O) and Dps(2n)-—DpS(0)

Using Dpc(e') and DpS(G') calculate new Bc(e) and BS(G) distribu~
tions using Equations 2.19b and ¢ and marching far enough in @ so

that B_(2m) =B (0) and B_(2n) =B_(0) as required by Equation 2.37.

Compare the new Bc(e) and ﬁs(e) distributions with the previous
estimates and go to (i) if they are the same. If they do not match

go to (h)

Update the guess on 50(9) and ss(e) using the new Bc(e) and BS(B)
distributions and the conditions imposed by Equations 2.36 b and

C.
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Calculate d% and ¢% using Equations 2.43b and c and see what size
of flow rate perturbations, q, and q4 in the piping attached to the
pump, would correspond to these total head perturbations. If the
new estimates of a, and ag match the previous estimates then go to
(j). If they do not match, then go to (b) with an updated guess at

the flow rate perturbations.

This completes the solution of the whirling impeller problem and
gives the in-phase and quadrature components of the f, V and Dp

distributions.
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C.z2 Program for the Theoretical Solution

18 ©  WHIRLZ.BAS Revized 81-13-84

26 DIM TH(200),B(3,208),P¢3,288) ,V(3,208) ,ARC200) ,A1288) ,AP(1,20)

38 DIM LAC288) ,RLACZ08) ,ARR(268) ,BOC2084) ,B02(260)

48 DIM Ca(15),C1¢15),£2(13),DBR(7) ,DBILT)

58 DIM FEX(1),FOY(1),FOXCD)  FOY(D) FSX(D) FSY(T)

48 DIM CM(288> ,SM(2083,57(280),0T(280) ,CLM(208),5LM(208) ,CTL(288),5TL(288)
78 P12=4,283185

88 INPUT “Volute A or C ";\N$

28 INPUT "How many integration divisions are wanted®;ND

188 W=PI2/MND : * W=Integration step size

118 © Initialize angles

128 FOR 1=8 TOND : THCD=WE] s NEXT 1 ¢ 7 TH{i)=Angle {from tongue

138 *

146 Me="SF("4WN$+° .DAT" : / Volutle cross-sectional area (Equa. 2.233)
159 GOSUB 2328 : /  Read and interpolate the volute geometry

168 FOR 1=8 TO ND41 : A(1)=AR(1) ; NEXT ]

170 ME="SRXINT#N4+® DAT" @ 7 Log moment of volute (Equa. 2.230)

188 GOSUB 2328 : ’  Read and interpolate the volute geometry

196 FOR I=8 TO ND+1 : LA{DI=AR(]) s NBXT 1

206 H3="SFARL" WN$+® DAT® : Radiz) log moment of volute (Equa. 2.23e¢)
218 GOSUB 2328 : ¢ Read and interpolate the volute gecmetry

226 FOR 1=6 TO ND41 : RLA(1)=AR(]) @ NEXT ]

230 N3="SFXRR®+#UN$+".DAT® ¢ * Radia) moment squared of volute (Equa. 2.23d)
248 GOSUB 2328 : *  Read and inlerpolate the volute geometry

258 FOR 1=8 70 ND+1 ; ARR(I)=AR(I) & NEXT !

268 N3="SFXM°4UN$+° . DAT® : * Moment of volute area (Equa. 2.230)

278 GOSUB 2328 : /  Read and interpolate the volute geometry

286 ¢

298 WB=1.,452 : / WB ic the impeller width divided by blade passage width
388 INPUT "UWhat ic the outer to inper radiuvs ratio™;RR

310 LR=LOGKRR) : / RR is the outlet to inlet radivs ratio

328 DPXL=,3 3 CPXL=1 : SPXL=-1 : / Lower estimates on DELTA P(8)

338 PL=.5 : CPL=-2 : SPL=8 : ' Lower esiimates on PC8) {mean & epsilon)
348 GOSUB 2418 : / Initialize beta distributions (BETA=1 for mean =@ for rest)
356 ¢

346 INPUT *What is the 4low coefficient®;FC

378 INPUT *What is the flow path angle, GAM";GAM

386 INPUT *What is the range & increment of speed ratio” ;WOM,WO0HU W0

398 PRINT ° RUMNING. ..o vt

488 GOTO 428

416 INPUT "WHAT 15 & NEW INITIAL ESTIMATE OF DELTA P®;DPXL

420 GOSUB 2568 : Calculate SEC(GAM)"2, TAN(GAM), & SIN & COS Arrays
438 ¢

440 ¢ yxEpaeaxarass STEADY MEAN TERM ZEussssysssasussxss

430 EF4=8 : *  Centered Impeller Solution

448 ’............. ..... CereseerensessrarEressrenas Cierasees Cerrens

478 COUNTI/~E Begin the iteration §ar BETA, guessing initial ﬁ»sirlbut!nn
L Seseer i e s aseeraas Ve

490 COUNTZ/=8 & * COUNT2 gtues the number of DELTA P(8) lteratlons

586 DPX=DPXL : BOTO 338
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318 DPYL=DPY : DPX=DPX+.81 : GOTO 3538

326 DPX=C(DPXL-DPXU) #DPYL4 (DPYU-DPYL) #DPXL)/ (DPXL-DPXU4 DPYU-DPYL)
530 GOSUB 2658 : /  Find V(B) given DELTA P{D)

540 GOSUB 2748 : *  Find the velocity distribution given V(B),

308 7 ieeianerennonnoosnnrsasanactnarsisrarcrtoaarraacts veeonesrae
366 COUNT/=8 : /  COWNT gives number of P(8) iterations for a glven DELTA P{B)
378 PU=PL4.2 ¢« P(EPY,8)=PU : GOSUB 2828 : ’ Find Pressure Distribution
288 TU=INH : PCEPY,B)=PL : GOSUB 2828 : * Find Pressure Distribution
398 IL=INH

688 1F JU=IL GOTO 498

618 PM=PL-IL#CPU-PLY/{TU-IL)

628 PLEPZ,8)=PM : GOSUB 2828 : * Find Pressure Distribution

638 CONTY=COUNTY+1

| Cretaersitarrens
458 IF COUNTZ=2 GOTO 498 ELSE IF INH=8 GOTO 499

448 1F INHXB GOTD 489

678 PL=PM : IL=INH : GOTD 4&8

688 PU=PM : IL=INK : GOTO 408

498 PL=PLH-.1 3 COUNTZ/=LOUNTZi41

788 ‘... e rerereaeerrra i eseesracat et ntrns veerines Serrirernes
718 DPY=PCEPY NDY-P{EPY,8)

728 1F COINTZ/=1 GOTD 518

738 IF COUNTZ4)2 GOTD 758

746 DPXU=DPX : DPYU=DPY : GOTD 528

758 1F COUNTZ/=3 BOTO 798 ELSE IF ABS(DPX-DPY)(.88883 GOTD 770

748 1F DPX{DPY GOTO 788

778 DPAU=DPX : DPYU=DPY : GOTO 328

788 DPXL=DPX : DPYL=DPY : GOTO 528

798 FOR 1=8 70 ND ¢ BOCI)=B(EP%,I) 3 NEXT 1

888 GOSUB 2998 1+ *  Calculate BETA and its integral,

B18 COUNTI/=COUNT I +]

4
838 VAR=8 : FOR I=8 TO ND : VAR=VAR+{BO(I1)-B{8,1))°2 1 NEXT ]

B4 FOR 1=8 TG ND 3 B(8,1)=B(B,1D/INB ¢  Give BETA a mean of one
850 NEXT I @ {as per Equation 2.36a)
868 1F COUNT/=B GOTD 910

878 DPXL=DPX

888 IF VAR{.B80884 GOTD 928

899 FOR 1=8 TO ND : B(,1)=(32B(,1)4BOCI))/4 s NEXT 1 ¢ / MNew quess for BETA
288 GOTO 4%0

718 LPRINT "Non-convergent in 7 iterations, VAR =";VAR

928 /=8 : LPRINT "VARIANCE = ";SQR(VAR/ND) : LPRINT

938 /

948 KE=KWA4T 1 ¢ % START FREQUENCY RATIO CALCULATIONS ##asassssiaassaadsuisy
958 ¢ sEmxssxaaaasaass COS & SIN EPSILON TERMS ##ussdidsntirsrsssss

948 7 EPV=2 for Order of coz epsilon term, EP/=3 sin epsilon term

988 COUNT3/=6 : / Begin iteration for BETA, guessing initial distribution
99B IlllltllllIlllllllll!llllll.l'llll'llltlllll‘ll.l'llllll!llllllll

1886 CONTZ/=8 : / COINT2 gives the number of DELTA P(8) iterations

1818 CPX=CPXL : SPX=5PXL : GOTD 1839

1828 CPYL=CPY : CPX=CPX+,] : SPYL=SPY : SPX=GPX¢.1 : GOTD 1658

1830 CPX=((CPXL-CPXU)*CPYL&{CPYU-CPYL) %CPXL) /{CPYL-CPXUCPYU-CPYL)
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1848 SPX={ (SPXL-SPXUY¥SPYL+(SPYU-SPYL) 28PXL) / (SPXL-SPXU+SPYU-5PYL)

1856 GOSUR 3138 : ©  Fing V(8) given DELTA P(8),

1848 GOSUB 3238 : *  Find the velocity distribution given V().
R saarerraseavEstertatsatattasthtresaenns
1888 COUNT/=8 : © COUNT gives number of P(B) iterations for DELTA P(B)
1898 CPU=CPL+,2 : SPU=SPL4.2 ¢/ Upper approximation on P(R)

1109 P<2,8)=CPU : P(3,8)=5PU : GOSUB 3358 : ’ Find Pressure Distribution
{316 JUC=INHC @ P(2,8)=CPL : JUS=INHS : P{3,0)=8PL : GOSUB 3358 : / Find Press
1128 1LC=INHC : ILS=INHS

1138 IF 1UC=ILC THEN PSTEPC=8 ELSE PSTEPC=-JLC2(CPU-CPL)/(IUC-ILD)

1148 IF IUS=ILS THEN PSTEPS=8 ELSE PSTEPS=-1LS#(5SPU-SPL)/(IUS-ILS)

1158 CPM=CPL+PSTERC : SPM=GPL+PSTEPS

1148 P(2,8)=CPM = P{3,8)=5PM : GOSUB 3330 : 7 Find Pressure Distribution
13178 COUNT/=COUNTZ+]

I rrrrrrentrserteriraretesseans
1198 IF COUNTY=2 GOTD 1278 ELSE IF INHC>8 GOTO 1218

1268 IF INHS=8 GOTD 1278

1218 IF INHC® GOTO 1238

1228 CPL=CPM : ILC=INHC : GOTO 1248

1236 CPU=CPM : IUC=INHC

§248 1F INHSX® GOTO 1248

1238 SPL=5PM : ILS=INHS : GOTO 1138

1240 SPU=SPM : JUS=INKS : GOTO 1138

{278 SPL=5PM-.1 1 CPL=CPM-.1 : COWNTZ/=COWNTZA+)

1288 0 oiiinnnn Srrrertresieenteriesttrraranss Sektasriteisersarertes
1298 CPY=P(2,ND)-P{2,8) : SPY=P{(3,ND)-P(3,8)

1388 1F COUNTZ:=1 GOTO 1828

1318 IF COUNTZ{>2 GOTO 1338

1328 CPXU=CPX : SPXUESPX : CPYU=CFY ; SPYU=SPY : GOTO 1838

1338 1F COUNTZ/=5 GOTOD 1448 ELSE IF ABS(CPX-CPY)).08880 GOTO 1368

1348 1F ABS(SPX-SPY)<.08085 GOTC 1448

1358 1F CPX=CPY GOTO 1486

1348 1F CPXACPY 6OTO 1386

1378 CPXU=CPX @ CPYU=CPY & GOTD 1398

1388 CPXL=CPX : CPYL=CPY

1398 CPY=((CPXL-CPXU #CPYL+ (CPYU-CPYL) 2CPXL)/ (CPXL-CPXUSCPYU-CPYL)

1488 IF SPX=SPY GOTO 1834

1418 IF SPX{SPY GOTD 1438

1428 SPXU=SPX : SPYU=SPY : GOTD 1848

1430 SPXL=SPX : SPYL=SPY : GOTO 1848

1448 FOR 1=0 TO ND : BOCDI)=B{(2,1) ¢ BO2(1)=B(3,1} :« NEXT 1

1458 GOSUB 3488 : °  Find SIN & £O5 of EPSILON BETA distribution

1440 COUNTI/=COUNT 344

1478 " voeiiinens S eretrariaeasaas Certrasrrrerrens
1488 IF COUNT3/=7 GOTO 1438

1496 VARC=8 : FOR 1=8 TO ND : VARC=VARC+{BO(1)-B{2,1))°2 : NEXT ]

1988 UARS=08 : FOR I=0 TO ND : UARS=VARS+(BO2(1)-8(3,1))°2 1 NEXT |

1518 LPRINT "Iteration "jCOUNTIA-13" Var COS =" ;58R(VARC/ND);

1528 LPRINT * Var SIN =";5GR(VARS/ND)

1338 LPRINT ° INBC =®;INBC;™ INBS =";INBS

1548 * Satisfy Equations 2.36b & c with qr=8 and gs=0
1556 FOR 1=8 TO ND : B(2,1)=(B{Z,1)41)/(INBC+1)-1 1 * Give BETAC a 8 mean
1348 B(3,1)=(B{3,13+1)/(INBS+)-] & / Give BETAS a 8 mean
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1978 B(2,1)=(3#B(2,1)4B0(11/4 ; ’ New guess at BETAC
1588 B(3,1)=(3%R(3,1)4B02(13)/4 ; NEXT 1 : / Mew guess at BETAS
1598 SPXL=SPX : CPXL=CPX

1488 1F VARC> 880887 GOTO {60g

1418 IF VARS).88687 GOTOD 1086

1628 GOTO 1458

1438 LPRINT "Non-convergent variance in 6 iterations " jBQR(VARC/ND) ,58R{VARSAND)
1448 -

1650 7 sxxxrzsaxssssx FORCE CALCULATIONS  s3sssasddsdxiyasspasusss
14468 LPRINT

1678 * Find hydrodynamic forces acting on a whirling impeller,

1488 GOSUB 3948 : ¢ Calculate of BETA harmonics

169% J/i=6 : GOSUB 4256 : *  Calculate constants used in TOTAL FORCE
1788 6070 1728

1718 J/=1 : GOSUB 4338 : * Calculate constants used in MOMENTIM FORCE
1728 © Perform FORCE component calculations (see Equations 2.44 and 2.58)
1738 FEX(JA)=TIR*BBR-T114BBI-T2#B1 : FOY(J4)=TIR#BRI+T114BBR+T24BR

1748 FLKX=2#(TIR#BCBR-T11#BCBI}-T2%BCI : FCKY=2%(TIR#BCBI+T{I1#BCBR)+T24BCR
1758 FLOX=-(T3R4BSR-T312RE1I4TOR%BUSR4TE 1 FLCY=-(T3R#BSI4TT4BSR)+TSR*BKSI4T?
1768 FLCX=FCCX+TOR*BKCR-TBI#BKLI : FCCY=FCCY+TBR#BKCI+TBI*BKCR

1778 FOM{=T4R : FCHY=T4]

1788 FSKX=2%(TIR#BSBR-T11#BSB1)-T2%BS] 1 FSKY=2%(T{R%BSBI+T1]1xBSER)4+T2%B5R
1798 FSCX=T3R*BCR-T314BCI-TSR=BKCR-T7 : FSCY=T3R#BCI+T31#BCR-TOR#BKCI+T4
1888 FSCX=FSCX4TBR2BKSR-TBI%BKSI : FSOY=FSCY+TBR4BKS1+478]#BKSR

1818 FSM{=-T41 : FSMY=T4R

1828 FOXCTA=FCIHW0#FCOX W00 25F OMX ¢ FSACDD=F SIGUI0EF SCX -0 2%F SHX
1838 FLY(TA)=FOKY+WOMsFCOY-W0W" 25F0MY ¢ FSYCJA)=FOKY W 0WFSCY -0 2%F SMY
j848 -

1858 IF J/=1 GOTC 2810

1868 *  Print oul the results.

1878 LPRINT “WHIRLZ.BAS Revised 81-13-84

1888 FL$="Flow Coefficient = * ; SR$="Speed Ratio, wM ="

1676 GM8="Flow Path Angle = ®

1908 LPRINT USING"& #.%H8";FLs,FC

1918 LPRINT USING"& #%.44° ;5M3,6AM

1928 LPRINT USING®& #.%99%° ;SRe, W0

1938 LPRINT

1948 LPRINT ®  Writing the force on the impeller as,®

1938 LPRINT

19648 LPRINT © { yoo{Fox ) [ Fxx Fxy 1 ( cos(ut))

1978 LPRINT *® { Y= Y tex [ 14 )

1988 LPRINT * { Fy ) { Foy) [ Fyx Fyy 1 ¢ sintut))

1998 LPRINT : LPRINT "Total Force Components® : LPRINT

2088 GOTO 2028

2618 LPRINT : LPRINT °Momentum Force Components® : [PRINT

2028 FB$=" ( Fx ) (" i Fi$=") {* 1 F3%="1 ( costwt))

2838 LPRINT USING " & +H.480 & °F88,FoX(J4) F1%;

2048 LPRINT USING “+H.388 +0.888 & °;FCX(JY) FXCJ%) F38

2858 LPRINT * « Y= Y tex | 14 2
2848 FOs=" ( Fy )y {* : Fi$=") [% ¢ F3="1 ( sinfwl))

2078 LPRINT USING ™ & +4.580 & °;Fos FaY(D0 F18;

2088 LPRINT USING "+H.4HR +H.408 & ";FUYCJ0) FOY(JL) F38

2098 LPRINT & LPRINT

Fx
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2180 IF J/=8 GOTD 1718

2118 LPRINT *® _ _

2120 LPRINT ° THETA Dp Dpc Dps B Bc Bs®
2138 FOR 1=8 T0 ND STEP 1B : LPRINT USING * #88":TH(1)%368/P12;

2148 LPRINT USING ®  +8.4u08°;P(B,1);P(2,1);P(3,1) ;848,10 ;B(2,12;B43,1)
2158 NEXT ]

21408 LPRINT & LPRINT

2178 A1Z3=1423(LAIND) -LACE) )/ {A(ND) -ACB) ) 3 THRB=(P(B NDI4A12339(8 ND)"2)/2
2188 THRI=P{2 ND)/2+¢A12350(0 NDYAV(Z ND)-V(B ND)*2

2190 THRZ=F(3,ND)/ 2441 2380(8 ND) 3Y(3 RD)

2288 LPRINT ® total head rise mean, cos, sin ="}

2210 LPRINT USING °  +,HHBHH" ;THRE; THR1;THRZ

2228 LPRINT & LPRINT

2238 ¢ Check on condition required by Equation 2.43a

2248 INPUT “Is the Theoretical Total Head = Experimental (Y or N)°;AREPLYS
2238 1F AREPLY$="N" GOTO 348

2248 WOL=WOWHICU]

2278 1F ABS(WOW) {ABS{WIU+ .0881) GOTD %48

2288 GOTO 348

2298 END

2368 ¢

2328 ¢ Subroutine to READ and INTERPOLATE the VOLUTE GEOMETRY

2338 OPEN *1° 81 ,N$

2348 INPUTH1,K

2356 FOR 1=1 TO K : INPUTH1,AP(B,13,AP{(1,1) s HEXT 1 + 7 Measured Results
2348 FOR I=1 TO K-1 & INPUTHI,C201),C1(1),00¢1) ¢ NEXT 1 3 “ Spline Fit Results
2378 CLOSE 41

2388 ¢

2398 © Number of divisions = ND, Width = ¥, TH{iY = cross-section location,
2488 © & AR() = cross-sectional area. (TH(B) = tongue location)

2418 J=1 1 AR(BI=APCT, 1) 1 AR(ND)=AR(L,K-1) @ ARIND+1)=AP(1,K)

2428 FOR I=1 TO ND-1

2438 THD=TH(])#348/P12

2448 1F THDXAP(8,Jt1) THEN J=J¢i

2858 ARCTI=(CZ{I¥TRDACICIN #THD+CR(D)

2448 NEXT 1

2478 FOR 1=8 T0 ND STEP 26 : PRINT TH(1)%3468/P12,AR(1) ¢ NEXT |

2488 RETURN

2588 ¢ Subroutine to CALCULATE SEC(GAM)"2 & TANCGAM) & SIN(th) & COS(th)
2318 BG62=1/(COSCGAM#P12/360))°2 1 TO=TAN(GAMXP12/348) : TGLR=TG#LR

2528 CTGLR=COS(TGLR) : STGLR'SIN(TGLR) : CTIND)=1 : ST(ND)=B

2538 CTL(ND)=CTGLR : STLYND)=STGLR

2548 FOR 1Y=8 TO ND-1 : THE(TH(IZ+1)4THILN)/2

2558 CTC(LA=COSCTHIXDY) + STATO=CIN(TH(IX) @ THCLA)=C05(THY)

2568 SMU1Z)=GIN(THM) : CLMCIZ)=COS(THM+TGLR) @ SLMCIZ)=SIN(THM+TGLR)

2378 CTLITA=COSCTRCIAMTOLRY ¢ STLOIA)=SINCTRCIA)4TGLR)

2380 NEXT 14

25%¢ RETURN
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2688 /- ---
2418 7 Subroutine {o GIVE FIRST GUESS OF BETA DISTRIBUTION
2628 FOR 1=0 TO ND : B(8,1)=1 ¢ BCI,1)=6 s B(2,1)=0 : B(3,D)=B : NEXT |
2638 RETURN

2648 ' mmmmmm oo e e e o
2458 ¢ Subroutine to CALCULATE W¥(8)  {(Equa. Z.41a)
2648 thies is the closure condition al the longue

2678 BB=FL*P12/4(ND)

2688 Bi=A(B)/AND)

2690 B2=1+24LA(8)/A(8)

2788 RT=(1-B1"2)DPX/B2¢BE"2

2718 1F RT>8 G070 2738

2728 PRINT "Too high of & delta P." : GOTD 418
2738 V(0 ,0)=(BO*BI+5OR(RTS)/(1-B1°2)

2748 RETURN

2748 Subroutine to CALCULATE THE VELOCITY DISTRIBUTION (Equa 2.38a)
2778 FOR 1=8 70 ND-1

2788 VCERA T+ 1)=(UCERY, 1) 3R 1) eW=FCa(BCEPY, T4 1 4BCEPE, 1)/ 2)/AL14 )

2798 NEXT 1

2808 RETURN

2828 ¢ Subroutine PRESSURE AND CLOSURE CONDITION <{Equa. 2.32a)
2838 FOR 1=0 7O ND-%

2848 WM=V(B,1)4V(B,141) + BM=B(B,1)4B(E,141) 1 ARAIDAID

2838 ARM=ARCIIHAR(I1) ¢ RLAM=RLA{I)4RLACIHY)

2840 PCB,141)=20CARMIRLAMIRCVCR 1410 2-UC8 1) )4 (ARC141)-AR(T ) BM"2
2878 P(B,1+1)=PCB,10-(P{8,1+1)~(2-FCATG*BM) #FC*BMW) /ARM

2888 NEXT ]

2898 * lmpeller Problem Closure Condition (Equa. 2.44a)

2908 INH=P{ER%,8)-P(EPY,ND) : IND=8

2918 FOR 1=1 70 ND-{ STEP 2

2928 INH=INH+4xPCEPY, 104 23PCEPY, 141) 5 IND=IND+Z#{23BCEPY, 1) " 24R(EPY,141)°2)
2738 NEXT 1

2948 ¢ As required by the impeller problem

2956 ¢ the integral of (P4FC*2456248*2)/P12=1
2960 INH=CINR#FCRFCESG2IND) / (3AND) -1

2978 RETURN

2980 * === e

2998 © Subroutine INTEGRATE FOR BETA  (Equa. 2.1%2)

3008 DI=43LR/(FCH) o DZ=FCRFC¥562/2

3018 FOR J=1 TO 4

3828 FOR I=0 70 ND-1

3838 BB=(P(8,1)+P(8,141)-2)/D2

3048 B(H,141)=-D1-B(8,1)180QR(DI#¢D1+4xB{@,1))-BR)

3058 NEXT 1

3868 IMB=BLEF/,B)-B(EML,HD)

3878 FOR 1=1 TO ND-1 STEF 2 ; INB=INB+4#B(EPY,1)425B(EFY,141) 1 NEXT |
3888 INB=INB/(33ND)

3898 IF BCEPY,B8)=B(EP/,ND) GOTC 3128 : * (Condition of Equa. 2.37)
3188 B(EPY,8)=B{EPL,ND)

3118 NEXT 4

3128 RETURN
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3138/ sszsuxsasy EPSILON SIN & £0S TERMS #%aissdaiss Rsadiassiiissss

3158 7 Subroutine to calculate EPSILON V(8) <L0S & SIN) {Equa. 2.41b & O}
3168 BB=(1425LACH)/A(B))22 ¢ BI=UB/A(B)

3178 B2=V<8,8)-A(8)¥(B ND)/ACND)

3188 V(2,0)=UB% (V{8 NDI-V(8,8))30(8 ND)/AND)

3198 V{(2,0)=(v(2,8)-((V{B,ND)I* 248 ,8) " 2)%{ 2¢B1 )+ B1 xDPX-CPX) /BB) /B2

3268 V(3,8)=5P%/B4/B2

3218 RETURN

3238/ Subroutine to calculate EPSILON V (COS & SIN)  (Equa. 2.38b & ©)
3248 FOR 1=8 T0 ND-1

3256 DI1=5T{141) : DB=5T(1) : Ti=CT(1#1) : Te=CT(D)

3268 U(2,1+1)=UB#(V(B, 1+1)5T1-V(8, 1) 2T +FC#(B(@,1+1)%D1-B(8,1)%D@)
3278 V(2,14 1)=9(2, 141 )30 a1

3288 V(2,141)=(V(2, 141 )4FCix(B2, 1+ 4B, D)/ 24AL 1D R(2, 1) )/A(141)
3298 V(3,14 1)=WBaCV(B 141 4D1-0(0, 1) #D8) -FCa(B(D, 141 )5T1-R(8, 1 )£TH)
3308 W(3,141)=9(3, 1+ 1) a0 lMC D)

3318 W3, 14 D=(0(3, T4 4FCH (B3, 14 1)4B(3, )/ 24ACH N3, 1)) /A1)
3328 NEXT 1

3330 RETURH

3338 ©  Subroutine to calculate EPSILON P (COS & SIN)  (Equa. 2.32b & c)
3368 FOR EF/=2 T0 3

3378 FOR 1=8 TO ND-1

3388 VP2V, 141072 ¢ V2=V(B,10°2 ¢ WRVCE, 141040CH, 1) « BEBCE,14104BCB, D)
3398 WP=U(B, T 1) AERL 14 1) ¢ WRVGB, 1CERL D 3 ARMRARCT+1)4AR(D)

3488 1F EPY=3 GOTO 3444

3418 DI=CT(I41) 5 DE=CT(D) : TH=248M(DD

3428 VEMEV(3, 14104903, 1) ¢ Di=230M(]) & &=

3438 GOTD 2448

3448 DI=ST<141) 1 DB=ST(1) : TH=2:DM(D)

3458 VBMEV(2,14DD40C2,10 1 DM=238M(D) & 8=-1

3448 Hi=Sls (W0UE (LIRS THAM-(ARRCT+14ARRCT) Y SVEMY 4 THR(FC3EM) * 2/2) /4

3478 Hi=H1+FCx(1-FC#TO#BM) #(Wx(B(ERY, 141D +BCEPY 1) )45 TM2(B(8,1+1)-B(8,1)0)/2
3486 Hi=HI+FCadaDM# (W04 2-FCRTHEBM) #BM/4- 28 (ARCT4 1) ¥WP- ARCTIAN)

3498 Hi=HI-(RLACT+1)4RLACT) ) 1 {WP-W) + (UB+ARM/ 2) # (DI WWP2-DBN2)

3586 PCEPA, 141)=PERY 1)+ (4xRI4UB2DMu(P(B,141)-P(B,1)))/ARY

3518 NEXT 1

3528 NEXT EPY

3338 Impeller Problem Closure Condition (Equa. 2.44b & )

3548 INHC=P(2,8)-P(2,ND)+P(8,8)-P(8,ND) : INDC=8 : INHS=P(3,0)-P(3,ND) : INDS=8
3558 INWC=6 : INUS=8

3568 FOR 1=1 TO ND-i STEP 2

3578 IRHC=INHC44%(PC2, 1)4PCR, D 3COSCTHOI D)4 2%(P(2, 14 1) 4P(0, 14 1) 2C0SCTH{I4 D))
35808 INHS=INHS+4%{P(3,1)+P(8  IxSINCTHC(I) D)4 23(P(3,141)4P(8, 1+ D #SINCTH(I+ 1) D)
3598 INDC=INDC+42B(2,1)#B(8,1)423B42,1+1)2B(B , 141)

3688 INDS=INDS+42B(3,1)%B(8,])+24B(3,141)2B(8 141}

3418 INAC=1NWC+4%B(R  1)RCTL(T)423B(8, 141)2CTLCI4])

3628 INWS=INGS+4%B(8,1)=5TL(1)+28B(8,I+1)=5TLCI4)

3838 NEXT 1

3648 INHC=(INHC+2#FC2FC3S62% INDC 22U #FC2RR* INWS )/ (33ND)

3450 INHS=(INHS+2aFCxFC2562% INDS- 200 #F CaRR*INWC) / (3:ND) + (P (8 ,ND)-P(8 ,8)) /P12



3648 RETURN

3488 /  Subroutine to find EPSILON BETA {Equa. 2.19b & ©)

3698 CI=FC/(LR24) : C22UOW/2 ; C3=28(WIW/TE) "2 : Ca=2FUxS623LR
3788 FOR J=1 70 4

3718 FOR 1=6 T0 ND-1

3728 B=B<a,1+1)+BR, D

3738 Fi=CI%(CMCI)-CLMCD)/RRY U0 -FCaRR2SLMC T ) 5B 22CLMC 1 )/RR)
3748 Fi=CFI-(P(2,1+1)4P(2, 1)) /248410 4(P(8, 1+1)-P(R, 1)) /W) /C4

3758 F2=C32(SM(1)-SLMCT /RR) +W0M{ FCxRRECLMC1 ) 2BM+ 205LHMC 1) /RR)D

3768 F2=(F2-(P(3,1+1)4P(3,10)/2-CH (104 (P(8, 1+1)-P{8, 1) )/W) /T4

3778 Al=14Cis42BN : Bi=C2dd

3788 Di=Wx(F1-C2%B43,1)-CiaBM*B(2, 1004842, 1)

3798 D2=Uu(F2+C23B(2,1)-CI3BMxB(3,1))4B(3,1)

3808 DEN=A1%A1+B1%B1

3818 B(2,141)=(A1D1-BI12D2)/DEN

3828 B(3,141)=(B1xDi+A1%D2)/DEN

3838 NEXT |

3848 ©  Calculate integrals of Epsilon Bela

3858 INBC=B(2,8)-B(2,ND) : INB5=B(3,8)-B{(3,ND

3848 FOR I1=1 T0 ND-1 STEP 2 : INBC=INBC+4¥B<2,1)42%B(2,141) : NEXT ]
3878 FOR I=1 TO ND-1 STEP 2 : INBS=INBS+4¥B(3,1)42#B(3,1+1) : NEXT |
3888 INBC=INBC/(33ND) : INBS=INBS/(3=ND)

3898 IF B(2,8)=B(2,ND) GOTD 3918 ; (Condition of Equa. 2.37)
3968 B{2,8)=B{2,ND) : GOTO 3728

3918 IF B(3,8)=B(3,ND) GOTO 3948 : * {Condition of Equa. 2.37)
3928 B(3,8)=R{3,ND)

3938 NEXT J

3948 RETURN

3948 © Subroutine to calculate the BETA INTEGRALS (used in Equa. 2.44 & 2.58)
3978 FOR J/=8 70 7 ; DBR(J=8 : DBI(JO=8 : NEXXT J/

3788 FOR J/=1 TO WD-1 STEP 2

3998 L=CT(I0) @ S=ETCID

4888 FOR /=0 10 3

4818 1F Wi=1 SUTD 4048

4828 DBRCICLI=DBRCICL) 4 4xBCIC,  JX) 204 2380, B4 1) 20T JA4Y)

4838 DBICKA)=DBICIC)) +4#BLICL, J) %84 25B (I, A 1) 25T {JA+1)

4848 DBRUIC(+4)=DBRCIC/+4) 44B(B (JAY¥BUCL , JAI 34 24BCB , JA4 1) RBOCL A4 1) 20T (A4 1)
4958 DBICIC4+4)=DBIIC/+4) +4%B(8 ,J/) ¥BCA, JL) 45+ 2688 , T+ 1) ¥BCKA , A+ 1) 38T (e 1)
4868 NEXT K/

4878 NEXT J%

4088 FOR K/=8 70 7

4098 DBRCIA)=DBR{ICL)/(33D) 1 DBICICO=DBI(KX)/{3MD)

4108 NEXT K/

4118 BR=DBR(8) : Bl=DEI{8) : BBR=DER{4) : BBi=DB1(4)

4126 BCR=DBR(2) : BCI=DBI(2) : BSR=DBR(3) : BSI=DBI(3)

4138 BCBR=DBR(4) : BCBI=DBI{é) : BSBR=DBR(?7) : BSBI=DBI{(7)

4148 BKCR=8 : BKCIl=8 : BKSR=8 : BKSI=0

4158 FOR J4=1 70 ND-1 STEP 2

4166 BKCR=BKCR+4xB(8 0 3CTL(JA) 2CT{JA) 4 24B(8  J/4 D 2CTL(FA D RCT(I D

4178 BKCI=BKCI+4xB(8,J) #CTLAJA) #5T(JA)+ 23808, JA+ 1) 2CTLJA+ 1) #8T( A+ 1)

4188 BKSR=BUSR442B(8 ,JA)#BTLATAYRCT(IA) 4 24B48  JA4 DASTLATA 0TI D
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4190 BKSI=BKS1+4#B(B,J7)#5TLIA) #ST () 4 24BCB , e 1) #5TL(T4 1) 28T (J/+1)
4286 NEXT J%

4218 BKCR=BKCR/(33ND)} : BKCI=BKCI/{33ND)

4228 BKSR=BKSR/(3#ND) : BKSI=BKSI/{3mD)

4230 RETURN

424B 7 mmmmmm e e e e e s e e
4258 *  Subroutine to calculate TOTAL FORCE CONSTANTS (see Equa. 2.58)
4248 TIR=FC#FCa(WB¥562-2+RRECTGLR)

4276 T1I=FC4FC(28TO+RR4STOLRY 3 T2=-23FCa(UB%SG25LR1)

4288 T3R=2aFCx(1-WRx5625LR-CTOLR/RR) : T31=-2#FC2STHLR/RR

4298 T4R=-1+1/RR"2+UB+(1-CTGLR/RR)/T6°2 : T41=UB¥5STGLR/(RR*T5"2)

4308 TOR=24FCHdBaRR : T&=-UR*CTELR/RR 1 T7=-24FC+WRB*STGLR/RR : T8R=8 : TBI=¢
4318 RETURN

4328 / mmmmemmmm e e o s s o
4338 * Subroutine to calculate MOMENTUM FORCE CONSTANTS (see Equa. 2.46)
4348 TiR=FC#FCx(-14RR*CTGLR)

4358 T11=FC4FCx(TG+RR2STOLR) : T2=-23FC

4348 T3R=24FCx(1-CIBLR/RR) : T3l=-2¥FC#STGLR/RR

4378 T4R=-1+1/RR°2 : T4l=B : ToR=0 : Té=8 : T7=@

4388 TBR=2%FC*5TGLR : TBI=-Z#FC4(TELR

4398 RETURN
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APFENDIX D

DOCUMENTATION ON FACILITY MODIFICATIONS

%

Tap Location
No Front Tap Dia.tin.} Back Tap Dia.vin.)
i F:3@ 1714 a:08 1732
Z 1i:15 1716& 3:38 1732
3 Z2Z:38 17164 i3:68 1/32
4 33:48 1714 2138 1732
3 36:15 1716 45:88 1732
é 76:45 1/14 48:38 1732
7 181315 1416 9688 1/32
8 123:45 1716 112:38 1732
2 146:15 17168 135:08 1/32
1@ 168:45 1716 15738 1732
ii 191:19 1714 186 :00 1/32
1z 213:43 1714 282:36 1732
13 236:15 1716 225:88 1732
14 258:45 1714 247 :38 1/32
15 281:15 1716 276 :86 1432
ié 363:45 1716 292:38 1732
i7 326:43 17164 315:86 1732
ig 337:38 1714 337:38 1/32
19 348:45 1716 348:45 1432
28 352:68@ {/1é 354:38 1732
21 358:348 1716
2z ic@ a4 1732
I3

A1l locations are measured relative to the tongue in the
direction of increasing volute cross-sectional area.
Units are deoressiminutes,

TaBLE 0.1 LOCATION OF THE PRESSURE TAPS IN YOLUTE A (see Fiqure 4.4)
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*
Tap Location

No Frant Tap Dia.tin.? Back Tap Dia.tin.
i T 1716 B:680 1751é
2 15:68 1416 18:08 1/16
3 36:88 17164 26848 1716
4 S0:60 1716 46 : 08 1716
5 J@:6n i/1é &@:88 17164
é 20:80 i/1é 80:00 1714
7 116:04 1714 iaa:e4 1/716é
8 138:60 1714 126:60 1714
4 i56:86 1714 146 :60 1716
id 17B:0@ 1714 168 :08 i71é
11 5@ a8 17164 1g8@:04 1/71é&
12 220:08 1718 286160 /16
id 238:08 1714 278 :648 1716
14 256:88 {714 246 :88 17164
19 278:88 14164 2466:88 1716
1é 278 :68 i/1é 286 : 68 1716
17 Si6:68 1/16 Je@:80 1716
18 336:60 1/16 326 :4848 1714
i% 3495:88 171é 346 : 848 14164
28 355:88 1716 356:80 1716
F

A1l locations are measured relative to the tongue in the
direction of increasing volute cross—sectional area.
Units are deqrees:minutes.

TARBLE D.Z LOCATION OF THE PRESSURE TAPS IN VOLUTE C (see Figure 4.5)
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Tap Location

No., angle Tap Dia.qin.?
i g:08 1714
2 18:68 1716
3 34:48 1714
4 S4:00 1714
5 7Z:8@ 1716
& @06 1716
7 168:28 1714
8 118:34 1716
b 136:386 1/1é
18 154:30 1714
11 172:38 1714
12 220 :60 1716
i3 238:40 1714
14 2506 :06 1714
15 276646 1714
14 256 :86 1716
17 316:04 i/14
ig 330:88 1716
19 345: a6 1714
28 355:800 1714
¥

#11 locations are measured relative
to the tongue in the direction of
increasing cross-sectional area.
Units are degrees:minutes.

TABLE D.3 LOCATION OF THE FRESSURE TAPS IN THE ANNULAR GAF (see Figure 4.7)



