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IV 

Abstract 

This study uses the full equations of motion of the massless relativistic string 

as a phenomenological model of color flux tubes in the process of hadronization in 

electron-positron annihilation. Perturbatively generated sets of partons are mapped 

onto color singlet strings, which fragment according to a generalization of the covari­

ant decay law for point relativistic particles. String evolution is terminated when 

string masses are a few GeV above particle production threshold. Low-mass strings 

are decayed into primary hadrons using a parameterization of low-mass data. The 

complete model, which factorizes event evolution into three stages including per­

turbative QCD, string fragmentation and parameterized low-mass decays, is imple­

mented as a Monte Carlo program known as the Caltech-II model of hadronization. 

An exact formalism is presented for the fragmenfation function of heavy quarks 

within the string model. 

The main results are, in their order of appearance: (1) The kinematics of the 

evolution and decay of arbitrarily complex massless relativistic strings is most con­

veniently expressed in terms of momentum currents. (2) The Caltech-II model, 

which uses the momentum current formalism to describe relativistic strings, pro­

vides a good description of electron-positron annihilation data over a wide range 

of center-of-mass energies. (3) Introducing transverse momentum at the sites of 

string breaks is conceptually necessary and may be required to further improve 

agreement between the Caltech-II model and data. ( 4) Fragmentation functions are 

predictions, not assumptions, of the string model in Caltech-II. The fragmentation 

function of heavy quarks in the Caltech-II string model is shown to exhibit the 

behavior expected from model-independent arguments. The discovery of the top 

quark or additional generations of heavy quarks will be a testing ground for future 

studies of hadronization. 
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Chapter 1 

Preamble 

1.1 Introduction 

Classify, quantify, postulate, predict. This is the traditional route physicists 

have followed to gain an understanding of physical phenomena. Today we are at 

a different stage of understanding for each of the fundamental forces of nature. 

While the electroweak theory has been spectacularly successful both qualitatively 

and quantitatively, quantum gravity is still in the "postulate" phase. Interestingly 

enough, we can't succinctly categorize our understanding of the remaining force, the 

strong force. Though the field theory of the strong force, Quantum Chromodynamics 

(QCD), is, in principle, well defined, it has many unexplored corners. 

It is customary to summarize our "first principles" knowledge of the strong force 

by writing down the SU(3)color gauge invariant QCD Lagrangian for massive quarks 

LQcD = -~ t G~llai~ll + L q(i,~(a~- igA~)- m)q. (1.1) 
4 i=l flavors 

In this equation g is the strong coupling constant and the field tensor G~11 is defined 

in terms of the potential A~ by 

(1.2) 

where A~ has the color space decomposition 

8 . _xi 

A~= LA~2. 
i=l 

(1.3) 
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The commutator term in eq. (1.2) introduces self-couplings for the gauge fields 

because the commutation relations for SU(3) 

[
,\i ,\i] 
2' 2 

·Jiik Ak =z -
2 

(1.4) 

involve nonzero structure constants Jiik. 

Two important qualitative features of QCD are 

1. QCD is a non-Abelian field theory so that the gauge (gluon) fields A~ couple 

to themselves. 

2. The fundamental fields (quarks and gluons or collectively, partons) in LQco 

do not appear to exist in isolation- only composite color singlets have so far 

been observed in nature. 

The weakening of the strong force at large momentum transfers, so-called asymptotic 

freedom, is closely related to the non-Abelian nature of QCD [1,2]. Asymptotic 

freedom permits us, at large momentum transfers, to use perturbation theory to 

calculate quantities on the parton level. However, when it comes to experimental 

physics, this is not enough. The problem is that the language of perturbative QCD, 

that is, the language of quarks and gluons, is foreign to the experimentalist's detector 

which has, to date, heard only the dialect of hadrons (protons, neutrons, kaons 

etc.) What perturbation theory will not tell us, and what we ultimately need to 

know, is how partons condense into hadrons. Unfortunately, we do not yet have 

reliable techniques for solving QCD in the nonstatic, nonperturbative regimes that 

are undoubtedly relevant to hadron formation. 

While there are many ongoing efforts to understand the nonperturbative aspects 

of QCD, such as lattice gauge theory simulations, solitons, etc., they each have a 

relatively limited applicability. At high center of mass energy, processes like 

e + e- --+ partons --+ hadrons, (1.5) 



3 

require an understanding of a wide range of both perturbative and nonperturbative 

phenomena. Progress has been slow in linking perturbative and nonperturbative 

QCD; not only is the theory difficult to work with and the questions hard to answer, 

but also we are not really sure what the relevant questions are! The only unfaltering 

guidance we have comes from experimental data. 

Just because we do not know how to "solve" all of QCD exactly does not mean 

that we should be deterred from testing what we do know. More specifically, QCD 

perturbation theory provides a means of getting from the initial e+ e- in eq. (1.5) 

to a set of partons. What is lacking is a reliable way of turning these partons In 

hadrons- we need to understand the hadronization process. 

In this thesis we present a sensible approach to hadronization, which incorpo­

rates many of our theoretical and phenomenological prejudices. The end result is a 

quantitative model of hadronization (Caltech-II [3]) capable of reproducing the ob­

served features of hadronization in e+ e- annihilation over the entire range of center 

of mass energies for which data are currently available (3 GeV ~ EcM ~ 45 GeV.) 

Why do we need a phenomenological model of hadronization? Depending on 

one's philosophical biases, there are many answers to this question. On the prac­

tical side, we need something to help us connect the hadrons observed in detectors 

to the partons that roam the range of perturbative QCD. Hadronization models 

are important not only for interpreting existing data, but also for designing new 

experiments - they can tell us when experimental signatures are feasible as well as 

help in the design of detectors. On a more fundamental level, we need a model of 

hadronization that can tell us something about the mechanisms at ~ork in hadron 

production. Caltech-II strives to answer the question at the beginning of this para­

graph both ways by successfully reproducing experimental data and by doing so 

within the constraints of a physically plausible framework. 

How far can we go? Ideally, we would like to be able to describe 100% of 
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Phase I Phase 2 Phase 3 

~ Hadrons 

• ~ Hadrons 

\ eo< -+ Hadrons 

Parton 
Shower 

) 
String 

Evolution 

Hadrons 

Cluster 
Hadronization 

Figure 1.1 Factorization of event evolution in Caltech-II. 

hadronization effects so that we could, for example, accurately determine the strong 

coupling constant 0: 8 • No existing model of hadronization can justifiably be trusted 

to this level- there is too much we still do not know. For example, the physics of 

hadronization on mass scales of a few GeV is still an unsolved problem. Until such 

problems are tackled in a sensible way, we must find a way to work around them 

without introducing spurious complications. 

The structure of the Caltech-II model is summarized schematically in fig. 1.1. 

The model factorizes the event evolution of eq. (1.5) into three distinct phases: 

1. The formation of a parton system using the leading log approximation to 

perturbative QCD, modified to account for gluon coherence effects. 

2. The mapping of partons onto relativistic strings (a phenomenological model 

for confining QCD flux tubes) that evolve and decay according to a simple, 

covariant ansatz until the strings are within 1-2 GeV of particle production 

threshold. 
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3. The decay of low-mass strings (clusters) using a parameterization of low-mass 

data. 

Of course, parceling out of the physics burden between three distinct phases is 

nothing more than a reflection of our ignorance of the "exact" solutions to QCD. 

This is quite evident if we consider the rationale for the partitioning: phase 1 has a 

relatively strong theoretical motivation since it is based on Lqcn; phase 2 has more 

of a phenomenological motivation, derived from general confinement criteria and the 

success of lattice studies; phase 3 deals with physics issues which are, currently, too 

difficult to handle in any fundamental way. 

Recognizing where the difficulties arise in hadronization allows us to avoid them 

in a systematic way. By assuming the decay of low-mass clusters is a local, universal 

phenomena, Caltech-II factors off that part of the physics which is best described 

by a fixed parameterization and instead concentrates on the physics issues for which 

there is some fundamental motivation. 

The Caltech-II model is an improvement of the Caltech-I model [4,5] in that it 

incorporates the full equations of motion for the relativistic string [6]. It uses the 

gross dynamics of the relativistic string as an approximation to QCD flux tubes. In 

this thesis we focus on the role of strings in Caltech-II. We point out i) the defects 

of the Caltech-I model that motivate the full string model, ii) how the space-time 

picture of string evolution can be decomposed to suit a computer implementation, 

iii) how strings are modeled in Caltech-II, iv) how the resulting model compares 

with data, v) how the model differs with other string models in its predictions for 

heavy quark fragmentation and vi) how the model may be elaborated. 

Chapter 2 provides a brief introduction to hadronization models and discusses 

the intentions of the string model in Caltech-II. In that chapter it is stressed that 

we are using the relativistic string as a very coarse model of QCD flux tubes, not 

as a "fundamental" model of hadronic physics (for which purposes the theory was 
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originally proposed almost twenty years ago). We use the relativistic string to 

describe only the gross, "stringy," properties of flux tubes. 

Chapter 3 discusses the general problems encountered when implementing the 

relativistic string in Caltech-II. Because Caltech-II chooses a simple covariant ansatz 

for the fragmentation of strings, it must be capable of determining the evolution 

of strings through many generations. In that chapter we devise a technique for 

obtaining string motions by superposing momentum currents that circulate on the 

world sheet of the string. We demonstrate a correspondence between fragmenting 

strings and a topological fragmentation of the domain on which momentum currents 

circulate. These developments are crucial to an efficient implementation of strings 

in Caltech-II. 

Chapter 4 addresses the specifics of string evolution in Caltech-II. We explain 

how the Artru-Mennessier ansatz for the decay of arbitrarily complex strings is 

interpreted in the formalism of Chapter 3. We discuss the details of the string 

model such as the transition to the parameterized decay of low-mass clusters, the 

treatment of heavy quarks and flavor selection at string breaks. 

Chapter 5 compares the full Caltech-II model with available e+e- data over the 

energy range 3 GeV ~ EcM ~ 45 GeV. We show how the behavior of the model is 

governed by five energy-independent parameters. We point out places where the 

model deviates from the data and suggest specific improvements. 

Chapter 6 develops an analytical approach to heavy quark fragmentation in the 

string model. Not only can this approach be used as an independent check of the 

implementation of strings in the full Caltech-II model, but it is much more efficient 

in predicting the behavior of systems containing very heavy quarks. We demonstrate 

how the heavy quark fragmentation functions predicted by the analytic approach 

(and hence also Caltech-II) agree with the general asymptotic arguments of Bjorken 

[7] and Suzuki [8]. 
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Chapter 2 

Pictures of Hadronization: Old 
and New 

2.1 Introduction 

One of the biggest hurdles in the hadronization game is the first one: getting 

oriented. The field has matured rapidly since its inception approximately ten years 

ago, with growth spurts correlated with the availability of new data. To fully ap­

preciate the central results of thesis, it is best to have a bird's-eye-view of the field; 

with this perspective, the overall physics picture in Caltech-II is seen to be both 

appealing and sensible. The dual goals of this chapter are to give the neophyte a 

walking tour of hadronization models and to lay out the basic ingredients of the 

Cal tech-II model. As we shall see, Cal tech-II is the latest logical step towards a 

model of hadronization, which embodies most of our theoretical and phenomeno­

logical prejudices. Yet before we describe the details of the model, we pay homage 

to its predecessors and contemporaries: the quickest way to get where we're going 

is to know where we've already been. To avoid complicating our introduction to 

the various models, we shall assume a familiarity with the perturbative aspects of 

QCD (see appendix A) and instead let the hadronization models pick up where 

perturbative QCD leaves off. 

In sect. 2.2 we discuss the Field-Feynman model, the first serious attempt at a 
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model of hadronization. This section is important since it introduces the concept of a 

fragmentation function. Throughout this thesis we suggest that models that assume 

fragmentation functions as their starting points, such as the Field-Feynman and 

LUND pictures, are more parameterizations than full-fledged models; they use their 

many parameters to reproduce features of the data without isolating the dynamical 

mechanisms that give rise to those features. 

Sect. 2.3 points out the glaring neglect of confinement in the Field-Feynman 

model. The independent evolution of partons in the Field-Feynman model makes 

no intrinsic allowance for the color degrees of freedom: a problem that is remedied, 

to various extents, by cluster and string models. 

Sect. 2.4 discusses cluster models in detail and outlines how they relegate the 

intricacies of hadronization to the parameterized decay of low-mass clusters (see 

appendix B). Cluster models use the color flow provided by LLA QCD, so-called 

preconfinement [9], to form color singlets at an early stage in event evolution. Unfor­

tunately, cluster models (like Caltech-I [5] and the Webber model [10]) are sensitive 

to soft or collinear gluon radiation. This problem leads to discontinuities in par­

ticle multiplicities and is one of the motivations for using the relativistic string in 

Caltech-II [3]. 

Sect. 2.5 shows how the sensitivity of cluster models to soft or collinear gluon 

radiation may be eliminated by employing the relativistic string as a semiclassical 

model of flux tubes, which are thought to give rise to QCD confinement. We briefly 

review the history of the relativistic string as well as give some simple examples of 

string motion. In this section we point out the fundamentally different approaches 

to string fragmentation in the Caltech-II and LUND [11] models. 

Sect. 2.6 allows us to catch our breath and put sects. 2.2-2.5 into perspective. We 

summarize the progression of hadronization models and reemphasize the different 

uses of relativistic strings in the Caltech-II and LUND models. 
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Figure 2.1 Independent evolution of quarks in the Field-Feynman model 
produces physical particles at each node of a decay chain. 

Sect. 2. 7 recapitulates and provides a brief summary of the Caltech-II model 

before we launch into the details of the string model in chapters 3 and 4. 

2.2 The Field-Feynman Model 

In 1978 Field and Feynman [12] proposed a simple parameterization of jet prop-

erties, which idealized hadronization as an iterative process in which highly virtual 

partons undergo the transition 

q-+(qq')+q'. (2.1) 

The physical picture implied by eq. (2.1) is that of a virtual quark q inciting the 

vacuum to produce a quark-antiquark pair q'q' so that q and q' combine to form a 

meson (qq'), while the virtual q' becomes the initial state for the next transition. 

This decay chain, illustrated in fig. 2.1, is iterated until the residual quark gets close 

to its mass shell (0(1) GeV), at which point it is combined with other debris to 

avoid the appearance of free quarks. One of the key features of the Field-Feynman 

model is that given a perturbatively generated multiparton state, say 1* -+ qq, it 
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evolves each quark independently. For this reason the Field-Feynman model is also 

known as the independent jet model or independent fragmentation model. 

The fragmentation chain in the Field-Feynman model may be viewed as a suc­

cession of two body decays in which a physical particle is peeled off at each node. 

Because jets, by their very nature, define a preferred axis about which there is lim-

ited transverse momentum, it is convenient to work in 1 + 1 dimensions where it 

takes only one variable, conventionally called z, to specify the kinematics of the de­

cay in eq. (2.1) (assuming we know the masses of the meson and the initial virtual 

quark). With the intent of reproducing the experimentally observed approximate 

scaling features of jets, Field and Feynman proposed the existence of a scale invariant 

distribution f(z), which could be applied to each node of the decay chain. 

A convenient choice of fragmentation variable is the Lorentz invariant (at least 

in 1 + 1 dimensions) scaled rapidity difference 

z = eY-Ymax' (2.2) 

where 

y = ~ ln [ E + p] , 
2 E-p 

(2.3) 

is the rapidity of the emitted meson with energy E and momentum p. In eq. (2.2), 

Ymax is the maximum meson rapidity (a function of the initial virtual quark mass 

yf'S;, the meson mass Jsmeson and the minimum mass of the virtual quark recoil 

system Jsrecoil)· By exponentiating the boost invariant quantity y - Ymax, z IS 

restricted to the interval [e-2Y~u, 1] where, in the CM frame of the parent, 

2tm:on 
e -Y~u = _______ __:. _ _;;__,...-------....--

1 + Smeson _ Srecoil + 'A_l/2 ( 1' Smeson' Srecoil) . 

Sq Sq Sq Sq 

(2.4) 

As usual, .\(a, b, c) = a 2 + b2 + c2 - 2ab- 2ac - 2bc. 

There is, fortunately, a rather simple interpret~tion of z. If we go to a frame 

in which the initial virtual quark of eq. (2.1) has infinite momentum, then z is 
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the fraction of the energy (or momentum) carried off by the meson. This intuitive 

interpretation gives meaning to the experimentally measured quantities 

E 
XE= --, 

Ema.x 
IPI 

Xp= --, 
Pmax 

which are identical to z in the limit of sources that have infinite momentum. 

(2.5) 

The predictions of the Field-Feynman model depend on the specific form chosen 

for the quark fragmentation function f(z). Strictly speaking, we should consider 

a plethora of functions f~(z) corresponding to the particular quark flavor q and 

emitted meson M, but we shall neglect such complications in the interest of clarity. 

It should be obvious that, because of the iterative nature of the Field-Feynman 

ansatz, f( z) is generally not the experimentally measured distribution of the meson 

energy fraction. Assuming a world with only one quark flavor and one type of meson, 

the Field-Feynman model requires the experimentally measurable z distribution of 

mesons emitted from a quark jet, D(z), to be given by the integral equation 

1 d 
D(z) = f(z) + j 

71

71 D(z/TJ)f(l- TJ). 
z 

(2.6) 

In this equation z is the fraction of the original quark energy even though the meson 

may not contain the quark that initiated the jet. The additive f( z) term accounts 

for the possibility that an observed meson contains the original quark that initiated 

the jet, while the integral term sums the probabilities that the meson originated 

from subsequent nodes in the fragmentation chain. Field and Feynman considered 

the functional form 

f(z) = 1- a+ 3a(l- z) 2 (2.7) 

with a = .88. Subsequent groups have investigated alternative parameterizations 

[13]. 

The simple 1 + 1 dimensional Field-Feynman model may be extended to 3 + 1 
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dimensions by assuming a Gaussian distribution 

exp (-Pi) dp2 2a2 .l. 
(2.8) 

for the transverse momentum of each quark pulled from the vacuum. Phenomena-

logical considerations require a r-.J 300 MeV. The model can also be elaborated by 

incorporating different quark flavors and meson types as well as allow baryon pro-

duction by pulling diquark pairs from the vacuum [14]. Gluons can be treated by 

forcing a splitting g ~ qij according to the Alterelli-Parisi equations [15] as was 

done by Ali et al. [16] or by postulating, as Hoyer et al. do [17], a separate gluon 

fragmentation function f 9 ( z) with the basic transition g ~ g' + Meson. 

The conceptual simplicity of the Field-Feynman model is achieved at the cost of 

violating local conservation laws and Lorentz covariance. The leftover quark at the 

end of a fragmentation chain carries flavor, color, energy and momentum that must 

be dealt with, in some ad hoc manner, so as to at least preserve global conservation 

laws. Although various techniques exist for patching up these flagrant violations, it 

has been demonstrated that many results are sensitive to the details of the scheme 

employed [18,19,20]. 

Aside from these obvious drawbacks there are other objections to treating par­

tons independently. Perhaps most striking is the neglect of QCD! No account is 

taken of the color force other than to dispose of the free quark at the end of each 

fragmentation chain. A related problem is a discontinuity in the particle multi­

plicity when two partons are collinear. Experimentally, the multiplicity of a jet of 

energy E varies roughly as ln E. Because QCD cannot distinguish between a quark 

of energy 2E and a collinear quark and gluon, each with energy E, the multiplicity 

in either case should vary as ln 2E. On the contrary, a literal application of the 

Field-Feynman model would evolve each member of a collinear pair independently 

and hence predict a multiplicity varying as 2ln E. The operative point is that the 
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Field-Feynman model is very sensitive to the initial parton configurations. 

Regardless of its shortcomings, the Field-Feynman model was an important first 

step. As the original authors noted, the Field-Feynman picture is not so much a 

model or theory as it is a parameterization of the then known properties of quark jets. 

Owing to its simplicity, the Field-Feynman model is still used in most hadron-hadron 

collision Monte Carlos [21,22,23,24,25], where the focus is not yet on hadronization 

proper but rather on testing perturbative QCD and the electro weak theory. U n­

fortunately, testing these theories without an accurate knowledge of hadronization 

effects will, in almost all cases, be difficult and frustrating. Our motive for pre­

senting the Field-Feynman model is not to advocate its use but rather to provide a 

reference point for the comparison of more plausible models of hadronization. 

2.3 Color Comes To Town 

The essential neglect of QCD in the Field-Feynman model correspondingly limits 

its applicability. Any reasonable treatment of QCD beyond the perturbative regime 

should respect color quantum numbers since the effective increase of the strong 

coupling a 8 means that color degrees of freedom become more important, not less 

important as implied in the Field-Feynman model. Since only color singlets have 

been observed in nature so far, it is plausible that the screening of color charges 

occurs early on in the process of hadronization [26]. This theoretical bias has been 

incorporated, in varying degrees, in cluster models [27,5,10] and string models [11,3] 

by partitioning perturbatively generated partons into color singlets. 

Consider the tree diagram in fig. 2.2, which depicts the results of a LLA QCD 

shower. An important conclusion from LLA QCD analyses is that color flow is pla­

nar: color lines (dashed) never cross (see ref. [26] and appendix A). Generalizations 

of planar color flow beyond LLA QCD have been discussed in ref. [28]. String models 

map the color singlets onto relativistic strings sl and s2, which subsequently evolve 
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Figure 2.2 Color How (dashed lines) allows formation of colorless objects 
by mapping partons onto strings sl' s2, or by dividing the color charge 
on gluons between adjacent clusters C/1, C/2, C/3. 

and fragment according to some, as yet unspecified, dynamical string model. In con-

trast, cluster models force the "final state" gluons, which contain two color charges, 

to undergo the effective splitting g ~ qq to form smaller singlets, Cit, Cl2 and Cb, 

called clusters. Clusters, as such, are then decayed into hadrons using some variant 

of a phase space model. In the next sections we examine the content of string and 

cluster models and point out their role in the (r)evolution of hadronization models. 

2.4 Cluster Models 

Cluster models are the simplest hadronization schemes to use the color informa-

tion provided by perturbative QCD. They make no assumptions about underlying 

fragmentation functions (unlike the Field-Feynman picture and, as we shall see, the 

LUND model) and hence avoid specifying a mechanism for the direct production 

of hadrons. Cluster models advocate that, if LLA QCD can be used to get from 

the initial ;* ~ qq vertex to massive colorless objects a few GeV above particle 



15 

production threshold, then the subsequent condensation of low-mass clusters into 

hadrons is a local, universal phenomenon that can be factored out of the overall 

event evolution [5]. In essence, the gross properties of hadronization are generated 

by LLA QCD , while many of the details, such as limited transverse momentum, are 

attributed to low energy phenomena. This philosophy makes it possible to factor 

the cluster model event evolution into three distinct stages: 

1. Perturbative generation of partons with unique color flow; 

2. Subdivision of color singlets into low-mass colorless clusters; 

3. Independent decay of low-mass clusters according to a universal ansatz. 

By relegating much of the physics to steps 2 and 3, the cluster model does not 

have to make any assumptions about fragmentation functions or transverse momen­

tum distributions. Fragmentation functions are predictions of cluster models rather 

than assumptions; transverse momentum is generated by the isotropic decay of low­

mass clusters. Step 3 is the only phase of the cluster model not presently calculable 

by QCD and is assumed to be essentially independent of the process by which low­

mass clusters are created. Though the decay of low-mass clusters is an important 

component, cluster models make no radical physics claims about this phase - for 

most purposes a well-tuned black box would suffice. Conceptually, in fact, a "black 

box" tuned to low-mass data is precisely what factorization requires! While the 

decays of low-mass systems are implicit in all hadronization models , cluster mod­

els avoid "contaminating" the perturbative physics with the complications of low 

energy phenomena. 

The original cluster model, due to Field and Wolfram [27], proposed that low­

mass cluster hadronization was dominated by the two- body phase space decay 

Cluster --+ Hadron + Hadron. (2.9) 
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Noting that this scheme was adequate only for clusters with mass :5 1.5 GeV, 

Gottschalk [5] extended the decay spectrum of eq. (2.9) to include the subcluster 

production 

Cluster ~ Cluster+ Hadron. (2.10) 

This generalization was achieved by assuming a form for the mass spectrum of the 

daughter cluster and parameterizing low energy data such as pp annihilation at 

rest (see appendix B). The results were incorporated in Caltech-I [5], an improved 

version of the Field-Wolfram model. 

At the beginning of 1987 the only cluster model actively being pursued is BIG­

WIG (Branching Iterative Generator With Interfering Gluons ), written by Webber 

[10], which has essentially the same form as the original Field-Wolfram model. Web­

ber's major improvement over the Field-Wolfram model is the incorporation of gluon 

coherence effects (see appendix A) in the LLA QCD phase. While string models are 

gaining prominence, BIGWIG attempts to account for the so-called string effect, 

to be discussed in sect. 5.4, using the perturbative QCD effects suggested by gluon 

coherence. 

The fundamental conceptual drawback of cluster models is their treatment of 

gluons in step 2 , when color singlets are formed [29,30]. While taking the "inde­

pendent" out of independent fragmentation, cluster models make use only of nearest 

neighbor color effects. Like the Field-Feynman model, cluster models force splittings 

of the form g ~ qq, which requires an assumption for the sharing of momentum. 

Regardless of the sharing scheme adopted, there is potential for disaster when soft 

gluons are generated, as is demonstrated by a simple example. 

Consider the qqg system of fig. 2.3 where the four-momenta of the quark, an­

tiquark and gluon are, respectively, pq, pq, and p9 • If two clusters are formed by 

artificially splitting the gluon into a q 'q' pair (dashed lines), then the cluster masses 
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Pq I 

Figure 2.3 Gluon of momentum p9 is artificially split into a quark­
antiquark pair (dashed lines) to form two clusters. 

Mi = [Pq + Pq'] 
2 

= 2EqEq' (1 -cos Bqii') 

Mi = [Pq + Pq'] 
2 

= 2EqEq' (1- cos Biiq' ), 

(2.11) 

(2.12) 

where we have assumed massless partons, and the notation for energies and angles 

should be apparent. If the gluon were not present, there would be only one cluster, 

of mass squared (pq + pq) 2
, which would decay into on-shell particles. Invoking the 

infrared stability of QCD, there should be no observable difference between a qq 

system and a qqg system in which E9 ~ 0. Yet according to eqs. (2.11-2.12), not 

only are there two clusters in this limit, but both their masses vanish and hence 

particle production is impossible! This state of affairs is clearly unacceptable. In 

practice this disaster is skirted by giving the gluon a mass or by cutting off the 

perturbative QCD showers early (before very soft gluons are generated). However, 

since perturbative QCD likes to give soft gluons, cutoffs of this nature end up having 

a disproportionately large influence on the physics predictions. Either "patch" com-

promises the original intent of cluster models so that a more consistent treatment 
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of color effects is warranted. 

2.5 String Models 

The use of strings in hadronization completely avoids the problems incurred 

by cluster models' riaive treatment of color. Strings are inherently insensitive to 

soft and collinear gluon radiation and provide a dynamical mechanism for confine­

ment. Before demonstrating how the gluon problem is eliminated, we shall review 

the origins of strings and consider the treatment of simple qq systems in various 

implementations of the string model. 

Strings were originally proposed by Nambu [31], Nielson [32] and Susskind [33] 

with the intent of giving dual models of strong interactions a field theoretic basis. 

It was originally hoped that strings might provide the field theory of the strong 

interaction. Unfortunately, a consistent quantization of the theory requires the 

dimensionality of space-time to be other than four. With the popularization of 

Yang-Mills QCD in the early 1970s, "fundamental" string theory fell out of grace 

until it was realized that "superstrings" might be the key to describing physics at 

the Planck scale of 10-33 em and thus might be a contender for a unified theory 

[34]. The question remains: What do we make of the salient string-like features on 

hadronic length scales of 10-13 em, which string theory intended to describe in the 

first place? 

Theoretical conjecture [35,36] and now lat~ice calculations [37,38] lend credence 

to the view that hadronic strings are the results of collective phenomena in non­

perturbative QCD. A popular view is that the QCD vacuum behaves as a type-II 

superconductor in which the color flux lines between color charges separated by 

more than about I"V .1 fm are confined to thin filaments with diameter 0 ( .1) fm. 

These filaments, or strings, give rise to a linear interquark potential, and provide a 

plausible mechanism for confinement. This state of affairs contrasts that in QED, 
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QED FIELD LINES 

QCD FIELD LINES (?) 

Figure 2.4 The spreading of field lines in QED contrasts the proposed 
containment of field lines in QCD. 

where field lines spread out in the vacuum and the familiar 1/ r potential dominates 

for large separation of electric charge (see fig. 2.4). As quarks are separated, the 

potential energy stored in the connecting string increases linearly. Eventually, there 

is a nonzero transition probability to states containing an additional qq pair, at 

which point a pair is "pulled" from the vacuum and two separate strings result (see 

fig. 2.5). 

The previous two paragraphs illustrate the interesting role of strings in hadronic 

physics. While there is strong motivation for string-like phenomena on hadronic 

length scales, most of the original artillery developed for analyzing strings antici-

pated them to be elementary objects - not some complex manifestation of QCD. 

Yet we are not deterred. It is clear that what we want is not "correct" string theory 

(in the sense of, e.g., superstrings) but rather a language in which we can describe 

hadronic strings without having to specify their inner workings. Admittedly, there 

is an interest in deriving string-like phenomena directly from the QCD Lagrangian 

[39], but we should not have to wait for all of the details to be worked out before 

we know what the basic dynamical consequences of strings are. 
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Figure 2.5 Creation of qij pairs leads to the creation of substrings. 

At this point we must make clear the distinction between "pure" theory and 

phenomenology. A fitting analogy is the response of a theorist and a phenomenolo­

gist when asked to model small amplitude lattice vibrations in a monatomic crystal. 

While the theorist may try to derive the crystal structure and crystal potentials us­

ing just the properties of a bare atom, the phenomenologist would make use of the 

knowledge that crystals exist, that there are equilibrium points about which atoms 

vibrate and that the crystal potential at a given lattice site may be approximated 

by a quadratic potential - resulting in a simple harmonic oscillator model. The 

phenomenologist would then go to experimental data to determine the value of the 

"spring constant" implicit in his model. The moral is that we don't have to know 

everything to know something. Applying this philosophy to hadronic strings, we 

want only the gross properties of strings - not the details. All we shall initially 

require of our hadronic strings are that they provide a linear confining potential and 

be consistent with special relativity. 

The first string model of hadronization was proposed by Artru and Mennessier 

[40] and Artru [41] in which they considered the breakup of qij systems. In 1 + 1 
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Figure 2.6 (a) Space-time motion of qq system of massless quarks in 
CM frame. (b) Same system viewed from a frame boosted along -x 
axis. 

dimensions the equation of motion of an endpoint quark in the CM frame of a qq 

system is 

dp . ( ) dt = -sign p K, (2.13) 

where K is the tension of a string at rest, which gives rise to the linear potential, p 

is the quark momentum, and the function 

sign(p) = { ~ ~ ; ~ ~ , (2.14) 

ensures that the potential is confining. Eq. (2.13) is covariant but not manifestly 

so. Comparisons of this simple model with Regge trajectories yield a string tension 

K = .2 GeV2
• The space-time picture of the motion of a qq system of massless quarks , 

affectionately known as a yo-yo, as viewed from its CM frame, is shown in fig. 2.6a. 

Fig. 2.6b shows the same system as viewed from a frame boosted along the -x 

axis. Since the world sheet of the string is a geometrical object with properties 

independent of any reference frame, it is not surprising that the invariant area A 

(the two-dimensional analogue of proper time) swept out during one complete cycle 
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Figure 2. 7 A string system of massless quarks fragments into less mas­
sive systems by pulling massless quark pairs from the vacuum. 

of yo-yo motion is a function of K and the invariant mass W of the system, the only 

invariants available. For a yo-yo it is easy to show that 

(2.15) 

The implication is that the areas of the rectangles in figs. 2.6a, b are equal. 

Fig. 2. 7 schematically depicts how a qq system breaks up into a number of less 

massive systems by pulling quark pairs from the vacuum. Note how the color field 

vanishes in the immediate future of the space-time points where massless pairs are 

created. However, if we want more than a schematic view, we have to specify the 

space-time distribution of string breaks. The only true guideline we have in this area 

is that we must not allow string breaks to produce substrings with masses below that 

of a pion. Below, we discuss two alternative prescriptions for breaking strings: one 

proposed by Artru and Mennessier [40], which predicts a continuous mass spectrum 

of substrings and one proposed by the LUND group [11 ], with a substring mass 

spectrum identical to the discrete mass spectrum of hadrons. Caltech-II adopts the 
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Artru-Mennessier ansatz and follows it with the parameterized decay of low-mass 

clusters (appendix B) while the LUND picture is reminiscent of the Field-Feynman 

model in that substrings (which they identify with hadrons) are "peeled" off at each 

node of a decay chain. 

The Artru-Mennessier prescription for string breaking is the simplest covariant 

ansatz possible. It assigns a uniform string-breaking probability P 0 per unit invari­

ant area of the string world sheet 

dPbreak = P adA. (2.16) 

This is simply a generalization of the familiar radioactive decay law in which the 

probability of a point particle decaying during an interval dt of its proper time is 

given by a decay constant. We shall henceforth refer to eq. (2.16) as the area law 

or area decay law. The worrisome implication of the area law is that, if applied 

literally, a massive qij system ultimately fragments into an infinite number of zero 

mass strings, since no account is taken of the physical particle mass spectrum. 

In practice, this is avoided by terminating string evolution once string masses fall 

below a certain cutoff and then applying some variant of a phase space model. This 

is precisely the approach taken in the Caltech-II model, where low-mass strings are 

identified with low-mass clusters and are decayed using a parameterization of low 

energy data. 

The LUND model [11] for string fragmentation is based on the iterative chain 

String ~ String + Hadron, (2.17) 

except at the end of the chain, in which case a string decays into two hadrons. The 

requirement that the produced hadrons be on-shell puts restrictions on the allowed 

space-time distribution of string breaks. To illustrate this point, consider a toy 

model in 1 + 1 dimensions in which there exists only one flavor of massless quark 
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Figure 2.8 Mass shell constraints in the LUND model require string 
breaks to occur along hyperbolas. Positions along a given hyperbola 
are parameterized by the variable z. 

and only one species of stable hadron, of mass M. Suppose we start peeling hadrons 

off the q end of a string as in fig. 2.8. Because of the relationship between the mass 

of a string and the invariant area in one half-cycle, the break closest to the q end 

must occur somewhere along the hyperbola H1 • If it happens that the break occurs 

at point P1 , then the next break must occur somewhere along hyperbola H2 , and 

so on for subsequent iterations. Given this set of constraints, and parameterizing 

the break position along each hyperbola by the variable z, LUND seeks a string 

fragmentation function f(z), which determines the space-time distribution of the 

string breaks. Further requiring that the iterative application of f(z) yield the same 

physics, on average, regardless of which end of the string hadrons are peeled off, it 

can be shown (42] that the fragmentation function is restricted to be of the form 

(2.18) 

where a and bare adjustable parameters and N is a normalization constant. Gener-
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alizing to many flavors requires, in principle, a corresponding increase in parameters 

but in practice a= 1 and b = .7 GeV-2 are used for all flavors. By starting from 

a fragmentation function, the LUND procedure parallels the Field-Feynman model 

except that the basic object undergoing fragmentation is a string system rather than 

a single parton. Nevertheless, this is an improvement, since confinement effects are 

taken account of explicitly. 

As stated above, string models offer an attractive picture of gluons. When 

generalizing the string model beyond qq systems, we invoke a dynamical principle, 

namely, the principle of least action, to yield string motions. As will be discussed 

more fully in Sect. 3.2, the string action is taken to be 

where 

~ 1f' 

S = -K j dr j daJ(x . x')2- x'2±2, 
7l 0 

'tJ. _ 8xtJ. 
X---, 

8r 

(2.19) 

(2.20) 

and we employ a metric such that g00 = -gii = 1; gii = 0, i =J j. Our notation is such 

that x · x' = xtJ.x~. The world sheet coordinates a and r are respectively spacelike 

and timelike. Though eq. (2.19) is the same action as is used for bosonic strings 

in "fundamental string theory," we are using it with much less lofty expectations. 

We are using it simply because we want a relativistic theory, and eq. (2.19) is the 

two-dimensional analogue of the action for a point relativistic particle: we look 

for extrema in the invariant area of a world sheet rather that for extrema in the 

invariant length of a world line. Not only does this Lagrangian lead to a linear 

confining potential as in eq. (2.13), but it also accommodates an interpretation of 

gluons as energy- and momentum-carrying kinks on the string. 

The string motion for one half-cycle of a symmetrical qqg system is shown in 

fig. 2.9. During the first phase of motion the three partons diverge from each other, 

all the while losing energy and momentum that is stored in the interconnecting 
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Figure 2.9 (a)One half-cycle of string motion for symmetrical qqg sys­
tem. (b) Corresponding string motions if original gluon is forced to 
split into quark-antiquark pair. 
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string. The gluon loses energy and momentum at twice the rate of the endpoint 

quarks, since gluons carry twice as much color charge. When the gluon loses all of 

its energy, two new oppositely moving kinks· appear. Unlike the original gluon kink, 

these new kinks carry no energy or momentum: a point that is not obvious unless 

one examines the solutions to the equations of motion. These momentumless kinks 

bounce off the ends of the strings and eventually recombine in the middle of the 

string where energy and momentum again start to accrete. This process continues 

in a periodic fashion. 

If we reconsider the infrared gluon problem encountered by cluster models, we 

can appreciate its resolution by the string picture. Fig. (2.9b) shows the space-time 

development of a qq system, where the initial gluon is artificially split into a quark­

antiquark pair with an equal division of energy and momentum. The space-time 

history of the two resulting yo-yos is certainly different from the full string motion 

in fig. 2.9a. If we let the gluon energy go to zero, it is easy to see that the full string 

motion in fig. 2.9a reduces uniformly to that of a yo-yo, while the ansatz of fig. 2.9b 

predicts two massless yo-yos separating at the speed of light. The insensitivity of 

string models to soft gluons is manifest. 

2.6 Review 

The discussion in the previous sections was intended as an overview of different 

approaches to hadronization. Here we wish to emphasize and summarize the most 

important of these differences. We have presented the Field-Feynman model as a 

zeroth order model, that parameterizes hadronization through a quark fragmentation 

function that neglects QCD. We summarily dismissed that scheme since it is an 

unrealistic hadronization picture. 

Taking color into account, we arrived at cluster models based on perturbative 

QCD and simple phase space arguments, in :which fragmentation functions are pre-
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dictions, not assumptions. Finally, we showed string models to be the most sophisti­

cated of the QCD-motivated hadronization pictures. But within a string framework 

there remain vestiges of both the Field-Feynman model and cluster models. The 

LUND scheme parallels the Field-Feynman model by assuming a "string fragmenta­

tion function," while the Caltech-II picture embraces the cluster model philosophy 

by adopting the Artru-Mennessier ansatz for string breaks, followed by a phase 

space parameterization. These differences can be rephrased in terms of answering 

the question: "At what stage of hadronization do hadrons appear?" LUND con­

tends that hadrons appear very early in event evolution by employing the iterative 

chain 

String ~ String + Hadron, (2.21) 

in which string fragments are immediately identified with hadrons. On the other 

hand, models such as Caltech-II take the conservative view that hadrons are the 

results of the decay of low-mass clusters that are produced in a framework relatively 

unconstrained by hadron mass shell requirements. 

There are already hints that nature is actually a combination of the LUND and 

Caltech-II pictures. Cal tech-II must sometimes invoke the mechanism of eq. (2.21) 

to reproduce the observed population of high z particles (sect. 5.3.4), while there 

is evidence that the LUND fragmentation function of eq. (2.18) is at variance with 

general expectations for quarks heavier than bottom (sect. 6.9). 

We have compiled a pictorial summary of the models in fig. 2.10, assuming each 

one is given the same perturbatively generated qqg set of partons. In all the models, 

hadrons are represented by solid circles. Note how the Field-Feynman and cluster 

models must effectively split the gluon into a quark-antiquark pair (dotted lines) 

before they continue hadronizing the system. Whereas the Field-Feynman model 

evolves each quark separately, without regard to color screening, the cluster model 

immediately forms colorless clusters (circles), which then decay into hadrons. 
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Field- Feynman Cluster Model 

LUND Caltech-II 

Figure 2.10 Schematic illustration of hadronization in the Field­
Feynman, Cluster (Webber), Caltech-II and LUND models. Graphical 
notation is described in the text. 
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Figure 2.11 Summary of the features common to pairs of models. This 
diagram expresses in words what fig. 2.10 illustrates schematically. 

Both the LUND and Caltech-II models refrain from artificially splitting the gluon 

by mapping the partons onto strings (horizontal bars). These string models differ 

in that LUND forces string fragmentation to yield at least one hadron each time a 

string breaks, making a direct connection between string fragments and a physical 

particles. On the other hand, Caltech-II uses string fragmentation to produce low­

mass substrings, which are then identified with clusters. The clusters may break 

into subclusters or decay directly into hadrons using a parameterization of low-mass 

data. 

Fig. 2.11 summanzes the essential features shared between pairs of the vari-

ous models. We have intentionally omitted differences in the implementations of 

perturbative QCD. 

2.7 Summary 

In this chapter we have presented a brief history and critique of hadronization 

pictures to show how Caltech-II incorporates our theoretical and phenomenological 

biases into a sensible and appealing model of hadronization. Though we have only 



31 

scratched the surface of the various models, this chapter has been rather drawn 

out - our goal will be accomplished if the reader has a cursory know ledge of the 

differences between the Field-Feynman, Cluster, Caltech-II and LUND models. 

At this point it is helpful to restate the structure of the Caltech-II model. The 

model makes hadronization tractable by factorizing event evolution into the three 

stages 

LLA QCD 
0 

Relativistic String 
0 

Low - Mass 
+Area Decay Law Parameterization. 

(2.22) 

Each stage in eq. (2.22) has either theoretical or phenomenological motivations. The 

first phase, the generation of multiparton systems according to leading log QCD, has 

the most apparent ties to the Lagrangian framework of QCD. The string phase, in 

which LLA partons are mapped onto relativistic strings and decayed into a collection 

of colorless clusters, is an elementary dynamical embodiment of the phenomenon of 

color confinement - the best that can be done with our current understanding of 

nonperturbative QCD. The third and final phase, the parameterized decay of low-

mass clusters into hadrons, is mandated by the known complexity of hadronization at 

small mass scales. In the context of a larger hadronization model, there is nothing to 

be gained by proposing a dynamical model for cluster decay; there are many missing 

pieces to the hadronization puzzle, so that progress will be made faster (and more 

accurately) if we simply use what is empirically known from low-mass data. 

Although this thesis is devoted primarily to the string phase in eq. (2.22) , it 

important to remember that the structure of the string phase will be determined 

largely by the phases surrounding it. The string phase receives its input from the 

LLA QCD phase, using the final state partons to define the world sheets of the 

associated strings. Though we use the full equations of motion for the relativistic 

string, we trust the semiclassical string model to give only the gross characteristics 

of fragmentation and instead relegate the details of hadronization to the decay of 

low-mass clusters. 
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In the next two chapters we go into the string model in more detail. Though the 

role of strings in Caltech-II is a conceptually simple one, implementing the model 

in the form of a Monte Carlo program is straightforward only if we first develop 

a familiarity with the basics of string kinematics. Chapter 3 outlines the general 

concepts that make it easy to work with relativistic strings, while chapter 4 discusses 

the specifics of implementing strings in Cal tech-II. 
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Chapter 3 

Relativistic String Kinematics 

3.1 Introduction 

Caltech-II is the only hadronization model capable of treating arbitrary rela­

tivistic strings with an area decay law. Though Artru and Mennessier (40] were 

the first to propose an area decay law for strings, they considered only the evolu­

tion of qq systems. As outlined in Chapter 2, a proper treatment of QCD must 

make allowances for gluons and be infrared stable. In this and the next chapter, 

we demonstrate how the area decay law can be made compatible with the motion 

of arbitrarily complicated relativistic strings. There is a natural division between 

the material of this chapter and the following one. In this chapter we develop a 

framework for the kinematics of relativistic strings, while the next chapter covers 

the specifics of how this framework is applied to Caltech-II. 

Since our goal is to incorporate the string model into a Monte Carlo program, 

we need a completely unambiguous interpretation of string motion. While "pencil 

pushing" calculations manipulate abstract quantities in their most general form, we 

are instead interested in numerical specifics. With these constraints in mind, we 

have developed a novel interpretation of strings in terms of momentum currents 

[6], making the simulation of relativistic string motion and fragmentation a rather 

trivial exercise. 
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Before developing our formalism, it is worthwhile to point out why this hasn' t 

been done sooner. Although the LUND model [11] is also based on relativistic 

strings, its ansatz for string breaks uses fragmentation functions, as discussed in 

Chapter 2. LUND sets up the world sheet of the string associated with perturbative 

partons, only to use it to define the boundaries of the domain of their fragmentation 

function. Because of the iterative nature of the LUND fragmentation chain, 

String --+ String + Hadron, (3.1) 

the world sheet of the daughter "recoil" string is nothing but that portion of the 

parent's world sheet that hasn't already been identified with hadrons. LUND avoids 

dealing with the complications of string kinematics by immediately identifying the 

"new" piece of the world sheet (which is not simply a leftover piece of parent's world 

sheet) with a physical hadron. 

As we shall see in the next chapter, the area decay law for string fragmentation 

can be expressed in a decay chain format similar to LUND, where decay products are 

successively peeled off one end of a string. The crucial difference is that Cal tech-II, 

unlike LUND, allows string decays of the form 

String--+ String+ String, (3.2) 

where neither of the decay products is required to be on the mass shell of a physical 

particle. Whereas the world sheet of one of the daughter strings may be identified 

with an "unused" portion of the parent's world sheet (like LUND) , the detailed 

shape of the other daughter's world sheet (the object peeled off) requires additional 

work. Since Caltech-II may want to fragment this other daughter using the area 

decay law, we must be able to calculate the detailed shape of its world sheet. The 

remainder of this chapter discusses how we can economically determine the world 

sheet of any string produced during string fragmentation from a knowledge of the 

original parton four-momenta. 
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Our approach will be to deduce the string equations of motion starting from a 

plausible string Lagrangian. We then propose an interpretation of the solution to 

the equations of motion in terms of quarks and gluons and show how an arbitrary 

initial part on configuration is mapped onto an associated string. Up to this point 

the formalism is useful to either the Caltech-II or LUND models, since no mention 

is made of mass shell constraints. However, we point out the technical difficulties 

with the naive approach to string evolution through many generations as is required 

by Caltech-II if an area decay law is adopted. Fortunately, by recasting the for­

malism in terms of momentum currents, we are able to make the propagation of 

string configuration information through many generations transparent and easy to 

implement. 

3.2 String Equations of Motion 

In sect. 2.5 we presented the simple solution to a phenomenological model of two 

massless quarks connected by a linear potential characterized by a string tension K. 

The intuitive picture we had in mind was that of a color flux tube stretched between 

the color triplet charges of the quarks. Extending this picture to gluons, which 

belong to a color octet, we might anticipate one of the two string configurations for 

a qqg system pictured in fig. 3.1. In (a) a gluon is connected to a piece of "color 

octet string" that meets two "color triplet" strings at a junction, while in (b) a gluon 

is connected to two pieces of "color triplet" string. Case (a) has been discussed by 

Montvay (43] and in general requires a separate string tension for the octet string. 

We will consider the case in (b). Since the gluon is attached to two pieces of string, 

the gluon loses energy twice as fast as quarks. This is to be compared with the 

QCD results for the case of Nc colors in which the ratio between forces on gluons 

and quarks is 2/(1 -1/N;), which is 2 for Nc---+ oo and 9/4 for Nc = 3. 

In (1 + 1) dimensions it is a straightforward exercise to extend the differential 
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Figure 3.1 Two types of flux tube connections in a qqg system. 

equation eq. (2.13) to account for gluons. Yet in that format one must explicitly 

account for the discontinuities in dpf dt that occur when partons, connected by 

a common string, intersect. This complication is manageable for qq systems but 

becomes unwieldy for arbitrary systems of partons. Furthermore, we ultimately 

want to work in (3 + 1) dimensions where partons are not necessarily collinear. If 

we dealt only with qq systems, we could always boost to the rest frame of the string 

and thus use the (1 + 1) dimensional theory. In general, however, there are many 

nonparallel pieces of string within a color singlet so that there is no global string rest 

frame. In that event we have either to set up local string rest frames or choose one 

global frame and accordingly modify the effective string tension, which is a function 

of the string's transverse velocity. Neither alternative is aesthetically pleasing nor 

particularly easy to implement, since each requires keeping track of bits and pieces of 

strings. Fortunately, a more coherent treatment is possible by applying a dynamical 

principle - the principle of least action. 
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The action for a point relativistic particle of mass m is 

7"2 

S = -m j dr, 
71 

.(3.3) 

where T is the particle's proper time. Lorentz invariance is manifest since the action 

is proportional to the in variant length of the world line of the particle. Generalizing 

this concept to objects with one-dimensional spatial extent, we can write down the 

N ambu-Goto [31] action for the string 

S = -K fdA, 
n 

(3.4) 

where dA is an element of Lorentz invariant area, the integral is performed over 

a region n of the string's world sheet and K is a proportionality constant we can 

later identify with the string tension in a frame in which the string is at rest. An 

expression for dA follows immediately from the metric tensor, which we take as 

g00 = -gii = 1; gii = 0, i =/= j, so that the action takes the form 

7'2 7r 

S = -K j dr j da.j(x. x')2- x12x2, (3.5) 
7"1 0 

with 

• axJ.I. 

XJ.I. = 8T' (3.6) 

where a and T are, respectively, arbitrary spacelike and timelike coordinates on the 

world sheet subject to the convention that a = 0 and a = 1r are identified with 

the ends of open strings. The string we are describing is often referred to as the 

massless relativistic string; however, the qualifier "massless" is somewhat misleading 

since a segment of string of length l in segment's rest frame has a mass of Kl. It 

is more appropriate to think of "massless" as referring to the explicit absence of 

massive endpoint quarks in our formulation. The theory described by eq. (3.5) may 

be viewed as a field theory in two dimensions (a, T) of a four-vector valued field. 

The results of analyzing this problem using the techniques of classical field theory 
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appear in many detailed review articles [44,45,46,4 7], but we'll reproduce some key 

results for the sake of completeness. 

Defining the string Lagrangian as 

(3.7) 

we vary the world sheet and look at the change in the action 

If we fix the "initial" and "final" configurations of the string on the spacelike curves 

r = r 1 and r = r 2 , then an extremum in the action, 8S = 0, requires the integrand 

in the first term of eq. (3.8) to vanish while the vanishing of the integrand in the 

third term yields the Euler-Lagrange equations 

!.__ 8L + !_ 8L = O. 
8r 8x JJ. 8CT 8x~ 

(3.9) 

For closed strings the integrand of the second term in eq. (3.8) vanishes identically 

since CT = 0 and CT = 1r are the same physical positions, but open strings must require 

8L 
-=0 
8x' 

J1. 

(1 = 0,7r. (3.10) 

Writing out the equations of motion explicitly, eq. (3.9) turns into the unsightly 

behemoth 

!_ [(±. x')x~- (x')
2 ±JJ.] + i_ [(± · x')xJJ.- (x) 2 x~] = O. 

8r J(x. x')2 _ x2x12 8CT J(x. x')2 _ x2x12 
(3.11) 

The arbitrariness of the parameters CT and T is usually referred to as the reparame-

terization in variance of the world sheet- a reflection of the fact that the world sheet 

is a geometrical object with properties (e.g., invariant area) independent of any co­

ordinate system. We can use this arbitrariness in CT and r to simplify eq. (3.11). 

We can partially fix CT and r by going into the local tangent plane of the string and 
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erecting orthogonal axes with the timelike T axis aligned with the time axis of a 

global Lorentz frame. With these directions specified, we can also require the a and 

T basis vectors to have the same normalization. The only degree of freedom left 

is in specifying the constant of proportionality between, say, T and the time. The 

orthogonality requirement and relative normalization condition are summarized as 

x · x' = 0, (3.12) 

where the plus sign in the normalization condition reflects the fact that one axis 

is spacelike, while the other is timelike. In the parlance of string theory, this is a 

particular choice of gauge called the orthonormal gauge (a slight misnomer because 

only the relative normalization is fixed). This choice of gauge reduces the equation 

of motion to a wave equation 

(3.13) 

where the boundary conditions for an open string are 

x~(a=O,r) = 0, x~(a=?r,r) = 0, (3.14) 

and the continuity conditions for a closed string are 

(3.15) 

Using the usual techniques for extracting conserved currents from the Lagrangian, 

it is easy to show that components of the momentum current on the surface of the 

world sheet are 

(3.16) 

and 

(3.17) 

which in our gauge become 

(3.18) 
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and 

P:;( o-, T) = -Kx'P-( o-, T ). (3.19) 

It is thus easy to see that the boundary condition eq. (3.14) is simply the statement 

that no momentum flows out of the ends of an open string. If one works with closed 

strings, the periodic boundary conditions in eq. (3.15) correspond to the uninter­

rupted flow of momentum around a loop. Since closed strings require only a slightly 

different treatment from open strings, we relegate their treatment to appendix C 

and hereafter focus our attention on open strings. 

We can develop our intuition for the string motion if we familiarize ourselves 

with the ( o-, T) coordinate system. Suppose we define T to be the time x 0 in the 

global Lorentz frame from which we view the string, scaled by K, so that r = Kx0 

has the dimensions of energy. In this case 

(3.20) 

so that the cumulative energy measured from one end of the string at a fixed time 

IS 
CT 

P 0 (o-) = j P~ de= o-. (3.21) 
0 

We conclude that o- is the cumulative energy stored in the string. This brings us to an 

interesting point. Substituting the boundary condition of eq. (3.14) into the gauge 

condition of eq. (3.12) implies that ends of the string move at the speed of light. This 

is consistent with the view of identifying the string endpoints with massless quarks: 

the vanishing of x~ at the ends of the string corresponds to point concentrations of 

energy and momentum according to eq. (3.21 ). The extension of this interpretation 

to gluons will become clear when we work out a simple example of a qqg system. 

A particularly attractive feature of this formalism is that of homogeneity. Quarks 

and gluons are, within this framework, energy- and momentum-carrying "kinks" or 
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point discontinuities on the string. This view contrasts our previous view of quarks 

and gluons as separate entities connected by a distinct string medium. 

The canonical solution to the wave equation may be written in the familiar form 

(3.22) 

where 

(3.23) 

Outside the interval a= [0, 1r], f(a) and g(a) are the even periodic extensions about 

a = 0 and a = 1r as a consequence of the boundary conditions. Our identification 

of the a and T coordinates affords us an interpretation of wave disturbances moving 

in opposite directions along the string. 

We now have all the necessary ingredients for describing string motions. What 

remains to be done is to make a correspondence between a set of partons and initial 

conditions of the associated string. As an example, suppose we are given a qqg color 

singlet, where all partons are massless and emerge from a common space-time point. 

Their respective four-momenta pq, p9 , Pii have components of the form (p0 , p1 , p2 , p3 ). 

For purposes of illustration we shall take"' = 1 in eq. (3.21 ), so that a is identically 

the cumulative energy measured from one end of the string and so runs from 0 to 

Eq + E9 + Eii instead of 0 to 1r. With this convention we can start at, say, the quark 

end of the string and use the color ordering to uniquely associate a parton with an 

energy interval 

(3.24) 

(3 .25) 
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where 

( ~~) (~q ) 
a2 = . Eq + E9 . 
a3 Eq + E9 + E-q 

(3.26) 

Since the string initially has zero spatial extent, f( a, r) = 0. Furthermore, because 

the partons are massless and we have chosen r = x 0
, the "velocity" components of 

g( a) are obtained by dividing the four-momentum vectors by their respective energy 

so that we have 

{ 

I{/ Eq ao ~ a ~ a1; 
g~(a) = zi;/ E9 a1 <a~ a2; 

p~fE-q a2 <a~ a3 . 

(3.27) 

The generalization of g~( a) to the case of multiple gluons Is straightforward. 

It might be pointed out that if LLA QCD is not used, color ordering for multiple 

gluons becomes a nontrivial issue, since different orderings will in general lead to 

different string motions [28]. 

In principle, we have a complete solution to problem of string motion for an 

arbitrary set of partons. Using initial parton momenta, we have shown how to 

generate the initial conditions for the wave equation so that one has only to insert 

values into eq. (3.22). If it should happen that the string breaks at the point (a, f) 

and creates two new strings (as opposed to a recoil system and an on-shell particle a 
la LUND), we·could generate the initial conditions for each daughter by evaluating 

x~( a, r =f) and x~( a, r =f) for the parent; after defining the suitable extensions for 

the initial conditions of the daughters, we may iterate the whole process to generate 

a cascade of string breaks. 

Practically speaking, a naive implementation of this algorithm leads to an "in-

formation explosion." To understand this phenomenon consider an initial system of 

a quark, antiquark and n- 2 gluons. From the discussion above, the function g~(a) 

will be piecewise constant on n intervals. As the system evolves in time, the super­

position of left- and right-moving waves will, in general, make x~( a, r) a piecewise 

constant function on 2n - 1 intervals. Introducing a break in the string forces us 
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to keep track of 2n intervals so that iterating this process through m generations 

entails knowledge of 2mn intervals. An associated problem, albeit a technical one, 

is that this scheme involves many intermediate calculations. Deter:inining the ini­

tial conditions for the "next" generation involves forming some superposition of the 

"current" initial conditions, which are themselves a result of previous calculations. 

The above algorithm is a scenario in which we are forced to double our workload 

each time a string breaks. In the next few sections we demonstrate how a frugal 

decomposition of the wave equation requires us to keep track of only 2( n - 2 + 2m) 

intervals. Better yet, we never have to generate new initial conditions from successive 

combinations of old ones. The significance of this result is apparent when one 

considers the prospect of fragmenting systems with large numbers of partons ( n ,GS), 

which are not uncommon in shower models of perturbative QCD [48,49] . 

3.3 Waves Expressed In Momentum Currents 

The apparent doubling of information each time a string fragments is easily 

traced back to the conspiracy of superposition. In this section we reexpress the 

solution to the wave equation to illuminate the fact that superposition may be 

effected by a time dependent linear operator acting on the initial state of the string. 

The initial state is expressed in terms of momentum currents so that a physical 

interpretation of the solutions in terms of momentum flow becomes possible. 

Because of its even extension about a= 0 and a= 1r, -the initial condition gJ.£(a) 

enjoys the properties g( a )J.£ = gJ.£ (-a) and gJ.£( 1r-a) = gJ.£ ( 1r+a). Identical properties 

are shared by the initial condition jJ.£( a) . The topology of the a domain best suited 

to these circumstances is Sl, that of a circle. jJ.£( a) and gJ.£( a) are equivalent to 

functions defined on a unit circle such that jJ.£(a) = jJ.£( -a) and gJ.£(a) = gJ.£( -a) , 

as demonstrated in fig. 3.2. From now on we shall regard jJ.£(a) and gJ.£(a) as 

suitably extended and defined on the compact domain a E [0 , 21r ). Acknowledging 
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Figure 3.2 A function symmetric about 0 and 7r (a) is equivalent to a 
function defined on a circle (b). 
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the contrived nature of the topology, we refer to the intervals [0 , 1r] and ( 1r , 21r) as 

being physical and unphysical, respectively. 

We can make our lives easier if we note that the integral term in the solution to 

the wave equation is responsible for the uniform space-time translation of the cen-

ter of mass of the string. This uninteresting feature may be eliminated by working 

exclusively with x'~-'(a, r) and x~-'(a, r). As previously noted in eq. (3.18), these quan-

tities are proportional to the components of the conserved four-momentum current 

on the world sheet of the string. 

The appearance of the combinations a± r in the canonical solution eq. (3.22) is 

routinely interpreted as waves moving in opposite directions along the string. We 

may exploit this feature by defining local light cone frames at each point of the 

world sheet by the reparameterization e± = 72( T ± a) . In these coordinates the 

components of the momentum current are 

P~( 17, T = 0) = ~ [g~( 17) =t:f'~( 17 )]. 

We may then express x~-'( a, r) and x'~-'( a, r) as superpositions of currents 

x(a,r) = 1
10 [P_(a+r,r=O) + P+(a-r,r=O)], 

Ky2 

x'(a,r) = 1
10 [P-(a+r,r=O)- P+(a-r,r=O)]. 

Ky2 

(3.28) 

(3.29) 

(3.30) 

A consequence of the boundary conditions is that P~ (a, r = 0) and P~ (a, r = 0) are 

dependent. In fact, ±~-'(a, r) and x'~-'( a, r) are derived by operating on P~( a, r = 0) 

with combinations of linear operators that are independent of the initial conditions. 

We can formalize this statement by defining a time translation operator T( r) and a 

reflection operator R by their actions on an arbitrary function h~-'( a) defined on the 

unit circle: 

T(r)h~-'(a) = h~-'(a-r), 

Rh~-'(a) = h~-'(-a). 

(3.31) 

(3.32) 
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T( T) rotates the contours of a function by T units in the positive sense and R reflects 

the function in the plane defined by the diameter through a = 0 and a = 1r. In this 

language the relations 

Pt(a,r) = T(±r)P±(a,r=O), (3.33) 

P~(a,r=O) = RPt(a,r =0) (3.34) 

permit us to rewrite x~-' and x'~-' as 

1 [A A A ] x~-'(a,r) = 10 T(-r)R+T(r) Pt(a,r=O) 
Ky2 

(3.35) 

1 [A A A ] x'~-'(a,r) = 10 T(-r)R- T(r) Pt(a,r=O). 
Ky2 

(3.36) 

These equations are the formal statements, that one· may factor the solutions to 

the equations of motion so that x~-'( a, T) and x'~-'( a, T) depend explicitly on only one 

independent function. In sect. 3.'5 we shall make implicit use of eq. (3.35) since it 

clearly demonstrates the superposition of circulating momentum currents. 

So as not to lose sight of our objective, a brief word on how strings break is 

in order. As we have already pointed out, the area decay law assumes a uniform 

probability P 0 for a break-per-unit invariant area of the world sheet 

(3.37) 

Much of our analysis tacitly hinges upon the fact that the expression for dA, as 

given in eq. (3.37), is a function of only the derivatives x~-' and x'~-'. For this reason 

we are contented with the solutions of eq. (3.35) and eq. (3.36). Monte Carlo 

implementations worry only about the momentum space picture of hadronization. 

In the Caltech-II model, when low-mass strings are identified with clusters, the 

spatial distribution of string momentum is disregarded. 
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3.4 The Directrix vs. Momentum Currents 

As a matter of completeness, it should be mentioned that the motion of complex 

string systems has been described by other authors using a construct known as the 

directrix [41,50]. Consider the motion of the a = 0 end of an open string, given 

that the string emerges from a point at T = 0. The directrix is the world line of the 

a = 0 endpoint as given by eq. (3.22) 

T 

A~'(r) = x~'(a=O, r) = j g~'(e) d( (3.38) 
0 

The algorithm for forming the directrix is simply a geometrical interpretation of the 

above equation: given a ordering for the partons that define the string, lay down 

the initial three-momentum vectors of the partons "tail to tip" until one exhausts 

all the vectors. Then repeat the process for the vectors in the reverse order as in 

fig. 3.3. Up to a scale factor, the piecewise linear curve produced will be the world 

line of the endpoint a= 0. 

The sufficiency criterion of the directrix is seen by noting that any point on the 

world sheet may be expressed as 

(3.39) 

More complex algorithms for the directrix could be formulated for cases in which 

f~' (a) =f. 0, but the momentum current formalism is much more amenable to ma­

nipulation for the general case and is especially transparent for visualizing the dis­

tribution of momentum when a string decays. Nevertheless, it should be apparent 

that the directrix and P + (a, T) contain the same information and are thus formally 

equivalent. 
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(a) (b) 

Figure 3.3 The ordered set of parton momentum vectors in (a) is as­
sembled to form the directrix in (b). 

3.5 String Breaks and Topological Fragmenta­
tion 

As promised, we shall apply our momentum current formalism of sect. 3.3 to 

the problem of fragmenting strings. Consider what happens to the momentum 

at the ends of a string. Since only the interval u E [0, 7r] is physical, it would 

appear that P+(u,r) corresponds to a momentum source at u = 0 and a momentum 

sink at u = 71". Though this is true, P~(u, r) has characteristics complementary 

to those of P+( u, r) such that local energy-momentum conservation is preserved. 

From eq. (3.35) it is apparent that whenever momentum disappears at u = 1t' to 

the unphysical interval u E [7r, 271"] via P+(u, r), a compensating amount enters the 

interval u E [0,71"] by courtesy of P~(u,r). The utility of this formalism is that 

the reflection of momentum from an endpoint is inherent; considering P+( u, r) and 

P~( u, r) individually, we note that they circulate uninhibited by the presence of the 

string boundaries so that the endpoints u = 0, 1t' serve only to define the transition 
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Figure 3.4 (a) P+ circulates on a domain. (b) A break occurs at u and 
corresponding points on the physical and unphysical sides are associ­
ated. (c) Two new domains are formed by pasting. 

between the physical and unphysical intervals of the domain. 

This interpretation of momentum flow has a direct application to the problem 

of a string fragmenting into two daughters. The relevant question is: "What is the 

equivalent of Pt( (7, T = 0) for each of the daughters?" Suppose the parent fragments 

at ( (7 =a-, r =f). At this instant the momentum current along the positive branch 

of the light cone is Pt((7-f, r=O). From the above discussion it follows that for the 

first daughter we identify the point (7 = a-- E on the physical region with the point 

(7 = 21r - a-+ E on the unphysical region and take the limit €+ --+ 0 (see fig. 3.4). 

Similarly for the second daughter, we identify (7 = a- + E and (7 = 21r - a-- E • 

The reason this algorithm works is that a break in the string creates two new string 

ends. Since we already know how the momentum currents behave at endpoints, it 

is a trivial matter to form the momentum currents for the daughters. The function 
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Pt (a - a, T = 0), now defined on a disconnected domain, is used as the initial 

condition for the daughters and subsequently may be evolved using eqs. (3.35-3.36). 

The evolution of a string through many generations of cuts is equivalent to literally 

partitioning the domain of the original P+ (a, T = 0) function among all of the final 

state strings. 

To see how fast the information increases in a fragmentation process, consider an 

initial string with n partons. The initial circular domain will have 2n - 2 intervals 

on it. The factor of 2 arises from the even extension of the initial conditions to 

the interval (1r, 27r) and the -2 compensates for double-counting the intervals that 

straddle a = 0, 1r. The fragmentation of the string and the associated cutting 

of the domain force us to keep track of two new intervals. If the fragmentation 

process continues geometrically, then after m generations we must follow a total of 

2( n- 2 +2m) intervals. Not only have we tamed the naive prospect of having to 

deal with n2m intervals, but more significantly, we see that the piecewise constant 

momentum currents of the daughters take on values drawn only from the original n 

values that comprise the momentum current of the original string: no intermediate 

calculations are required! 

3.6 Summary 

In this chapter we have shown how the full equations of motion for the relativistic 

string may be interpreted in terms of momentum currents on the world sheet of a 

string. This interpretation allows an accurate, efficient implemention of the string 

model in Caltech-II. 
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Chapter 4 

String Dynamics in Caltech-11 

4.1 Introduction 

Having discussed the kinematics of the relativistic string in chapter 3, we now 

turn to the question of dynamics. Even though the relativistic string embodies many 

of our theoretical prejudices concerning partons and confinement, it is a semiclassical 

model and as such has no clear connection with final state particles. We must 

supplement the kinematics with a mechanism by which strings ultimately lead to 

on-mass-shell particles. 

The obvious approach would be to "do it properly from the beginning" by quan­

tizing the relativistic string. This is more easily said than done. Since the quantum 

hadronic string (unlike the superstring) is a composite object, it is not easily ex­

pressed in terms of quarks and gluons, let alone stable particles. Little work has 

been done on the dynamics of the quantum string - mainly static flux tubes have 

been investigated [38]. Though string potentials have been used to predict the spec­

troscopy of bound systems of heavy quarks (51] and exclusive decay modes of mesons 

(52], the dynamical degrees of freedom of the string have been largely ignored. Until 

more is known about quantum string dynamics and even then, unless the theory 

is computationally tractable, we will explore the consequences of the semiclassical 

model. 
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While it is clear that we have to augment the semiclassical relativistic string 

with additional rules to make allowances for quantum effects, we must avoid the 

t"emptation of overelaborating the model. The number and nature of "patches" is 

a function of the detail we wish to extract from the string. As a rough guideline, 

each modification introduces a new parameter or degree of freedom. Caltech-II 

minimizes the number of refinements to the basic string model by relegating the 

details of hadronization to a parameterization of the decay of low-mass strings. By 

not asking too detailed questions, we can successfully separate the gross dynamics 

of the relativistic string from the processes that lead directly to particle production. 

This chapter outlines the modifications made to the basic string model in Caltech­

II. In essence, we shall present the details of string fragmentation. So as not to be 

overwhelming, we will introduce complications one at a time. Starting with the 

kinematics of the relativistic string and its associated massless quarks, we will 

1. introduce the area decay law for strings and explain how causality constrains 

its implementation; 

2. devise a simple picture for evaluating the invariant area of arbitrarily compli­

cated world sheets; 

3. make the semiclassical string respect the physical particle mass spectrum by 

terminating string evolution below a certain mass scale and then use a param­

terization of low energy hadronization data; 

4. specify how to handle quark masses and flavor abundances. 

4.2 Invariant Area Sampling 

As has been pointed out in chapter 3, Cal tech-II employs an area decay law that 

assumes a constant probability for a string break to occur in an element of invariant 
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area 

dPbreak = Po dA, ( 4.1) 

where our choice of gauge in eq. (3.12) with r = Kx 0 permits us to express dA as 

1 2) dA = 2 (1- v.L da dr, 
"' 

( 4.2) 

where V.L is the transverse velocity of the string. Since a is an energy coordinate 

whose scale is given by the initial parton energies and since r also has the dimensions 

of energy, all the physical constants may be lumped together by defining 

( 4.3) 

At first, this result might seem surprising, but a closer look reveals that we are not 

getting something free. Indeed, by combining K 2 with P 0 , we lose access to the scale 

parameter that gives the physical size of the strings. Fortunately, w.e don't need 

this information since we already know that hadronic strings are small on the scale 

of laboratory detectors. As pointed out before, present hadronization models (in­

cluding Cal tech-II) are essentially momentum space pictures - all particles emerge 

from a point. If so desired, one can add, by hand, information on the position 

of decay vertices of unstable particles that travel macroscopic distances, but this 

phenomenological detail is essentially irrelevant to the physics we are attempting to 

describe. 

We can now concentrate on putting the area decay law to work. Noting that 

eq. ( 4.1) is the kernel for a Poisson process, we can reexpress it in terms of the 

differential probability that the first break occurs after an invariant A is sampled: 

( 4.4) 

The obvious question, "What are the boundaries defining the invariant area A?", is 

a fundamental one, which warrants close attention if causality is to be obeyed. 
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Figure 4.1 (a) Solid and dashed curves bound the same invariant area 
but only the solid curve is consistent with causality. (b) A break at P2 

results in P1 's not being on the world sheet. 

To preserve causality, area must be swept out so that A increases as the boundary 

is expanded towards the absolute future. The world lines of the quarks must form the 

boundary in the absolute past of any point in the region contributing to A. This idea 

is best illustrated with the aid of fig. 4.1, which depicts the world sheet of a simple 

qq system. Suppose a curve bounds an area A chosen according to the distribution 

in eq. ( 4.4). In a qq system, a break will occur with equal probability anywhere 

along the boundary provided that the boundary is consistent with causality. 

The dashed curve in fig. 4.1a is inadmissible since there are points on it (e.g., 

P1 ) that lie in the absolute future of world sheet points not contained within the 

boundary (e.g., P2 ). If a point is not interior to the region defining A, there is a 

possibility that the string might break at that point. For example, if a break were 

to occur at P2 , the screening of the created color charge would change the form of 

the world sheet to that depicted in fig. 4.lb, so that there is no flux tube at P1 . All 

world sheet points in the absolute past of a point on an admissible boundary must 

already lie within the boundary in order to have a self-consistent Lorentz invariant 
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Figure 4.2 Prototype admissible boundary curve for the area decay law. 
Area A is the union of the area bounded by the backwards light cones 
and the edges of the world sheet. 

theory. This is nothing but a fancy way of saying tliat we can break the string only 

where it exists. The solid line in fig. 4.1a is an admissible boundary. 

We can quantify our causality condition quite easily. Fig. 4.2 shows a prototype 

admissible curve. It is constructed by taking a number of points and letting the 

area A be the union of the areas bounded by their backwards light cones and the 

edges of the world sheet. From this simple example we can extract the two essential 

features of an admissible curve t(x): 

• t(x) must be single valued (t(x) has a unique inverse) 
• t(x) must not be timelike ( jdtfdxl ~ 1 ). 

( 4.5) 

Other points to be considered when generating string breaks are the incorpo­

ration of local color screening and the avoidance of double-counting invariant area. 

These principles can be illustrated by extending our above example. Suppose a 

break occurs at P3 in fig. 4.la. If no further breaks were to occur, the world sheet 

of the system would look like fig. 4.3a.. The boundaries of this new world sheet are 

the ones we must use in the area decay law to determine the position of subsequent 
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L. 
(a) (b) 

Figure 4.3 (a) Both daughter strings contribute to the invariant area A2 

bounded by C1 and C2 • (b) Only one daughter contributes the invariant 
area A2 bounded by C1 and C2. 

breaks. 

Suppose the area decay law says that an additional area A2 is swept out before 

the next break. Any admissible curve obeying the guidelines outlined above would 

provide a suitable boundary, provided we start sweeping out area from where we left 

off and not do count any of the area contributing to A. In general, such a boundary 

would enclose invariant area associated with each of the daughter strings as indicated 

by curve C2 in fig. 4.3a. However, as a simplifying assumption, Caltech-II evolves 

each daughter color singlet independently, so that we can ignore situations where 

decay products interact with each other - Caltech-II considers boundary curves 

like C~, in fig. 4.3b, which associate all of the area A2 with one daughter. 

4.3 Calculation of Invariant Area 

Though the area decay law tells us when enough invariant area A has been 

swept out and the causality criterion tells us where A can be swept out, neither 
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tells us how A is to be calculated. To avoid distending our imaginations in an effort 

to visualize the convoluted world sheet topology of multiparton strings, we shall 

show in this section that working in (u, r) space greatly facilitates the calculation 

of invariant area. It would be difficult to overstate the importance of this somewhat 

technical point, since this point and the momentum redirection formalism discussed 

in sect. 3.5 are the two key ingredients in the string evolution phase of Cal tech- II. 

In our gauge, an area element may be expressed in terms of momentum currents 

by 
• 2 dudr 

dA = x dudr = P+(u, r) · P_(u, r) -
2
-. 

"' 
( 4.6) 

Since the factor of 1/ K2 is absorbed into the definition of Pc, our task is to evaluate 

the contraction of the momentum currents. 

Throughout this section it will be useful to have a specific example in mind. 

For this purpose consider a qqg system in its CM frame, where the original parton 

energies are 

Eq - 4GeV 

Eg - 3GeV ( 4.7) 

Eii 5GeV, 

so that the total string energy is Estiing = Eq + E9 + Eq. Fig. 4.4 illustrates the 

mapping of this system to the circular 0' domain at r = 0. As discussed in sect. 3.3, 

the partitioning of the circle is a way of visualizing the even extension of the initial 

conditions about 0' = 0 and 0' = Estring· The circle may be divided into four 

intervals (as opposed to six) because the even extensions of the intervals touching 

0' = 0 and 0' = Estring produce adjacent copies of themselves. This results in intervals 

of "length" 2Eq and 2Eq straddling the points 0' = 0 and 0' = Estring, respectively. 

In contrast, the central gluon is associated with two intervals, each of length E9 • 

In any case, each interval is uniquely associated with one of the original partons 
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Figure 4.4 A qijg system with energies E 9 = 3 GeV, Eq = 5 GeV and 
Eq = 4 Ge V is mapped onto a circular cr domain. 

(though there are generally more intervals than partons). 

We begin our development by recalling how P+(a,r = 0) in eq. (3.28) is defined 

on the circular a domain. As time progresses, P+(a,r) is obtained by rotating 

P+( a, T = 0) according to eq. (3.34) and then projecting out the portion defined on 

the physical interval of the domain. We can form an intuitive "space-time" picture 

of this evolution if we map the world sheet parameterization onto a cylinder where 

the circular a domain is identified with the compact dimension of the cylinder and T 

is identified with the long dimension. In our example the evolution of P + ( 0', T = 0) 

can then be visualized as the partitioning of the "world cylinder" into 4 winding 

bands, each associated with a parton, as illustrated in fig. 4.5a. 

Since only the interval a E [0, Estring] is physical, we project the corresponding 

half of the cylinder onto a rectangular strip as indicated by the solid lines in fig. 4.5b. 

The flow of P+ partitions the strip into diagonal bands, each of which is uniquely 

associated with one of the original partons. Using eq. (3.34) to relate P_(O',r) 

and P+(a,r), it is evident that the trace of the interval boundaries of P_(a,r) are 

obtained by projecting the unphysical portion of the world cylinder of P+ ( 0', T) onto 

the physical portion of the rectangular strip as indicated by the dashed lines in 
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(a) (b) 

' " ' " 

Figure 4.5 (a) Helical bands of Pt on the world cylinder. (b) Physical 
region of world cylinder mapped to a strip. 

fig. 4.5b. The end result on the rectangular strip is a network of intersecting bands 

corresponding to the superposition of bands of P+(a,r) and P_(a,r). 

The evaluation of invariant area is now straightforward. The world sheet IS 

effectively divided into many regions over which P+(a, r) · P_(a, r) is constant. The 

identification of each band of P+ with a particular parton permits us to label each 

region of superposition with a pair of parton indices as indicated in fig. 4.6. The 

first index corresponds to the parton associated with the P+ current in the region, 

while the second index corresponds to the parton associated with the P_ current 

in the region. In the general case, suppose we go to the region of superposition of 

currents corresponding to partons i and j. Since the parent string formed from the 

original partons initially has no spatial extent, the interval with indices ( i, j) has 

( 4.8) 

where P~i) is the positive light-cone momentum current density associated with 

parton i and ()ii is the original angle between the three-momenta of partons i and 
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qq qq 

Figure 4.6 Each region of superposition on the (u, r) plane is uniquely 
labeled by a pair of parton indices. 

J. An immediate consequence is that there is no contribution to the invariant area 

at the intersection of bands corresponding to the same parton. Such regions of the 

world sheet correspond to the energy grains associated with quarks and gluons. 

Fig. 4.7 shows the correspondence between regions on the (a, T) plane and the 

instantaneous configuration of a qqg system. The shaded areas in fig. 4. 7a correspond 

to the superposition of oppositely moving currents originating from the same parton 

- which, according to eq. ( 4.8), give no contribution to the invariant area. The 

borders at a = 0 and a = Estring are always shaded, cor~esponding to the lightlike 

point concentrations of energy and momentum at the ends of the string. The central 

shaded region at T = 0 corresponds to the gluon kink. From this diagram it is easy 

to see that the gluon loses energy twice as fast as the endpoint quarks. 

Fig. 4. 7b shows the instantaneous string configuration corresponding to each of 

the times marked off on the Taxis in fig. 4.7a. Each configuration is a function of the 

spacelike components of the original parton momenta (as can be seen from the di-
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Figure 4. 7 (a) Shaded regions in ( u, r) space give no contribution to 
invariant area. (b) String configurations corresponding to times indi­
cated on r axis. The quark end is represented by an open circle, the 
antiquark end by a solid circle. 

rectrix formalism of sect. 3.4 and hence cannot be obtained from the (a, r) diagram, 

which contains only the timelike (energy) information. In this sense figs. 4. 7 a, b are 

complementary. For example, the (a, T) diagram allows us to distinguish between 

momentumless kinks and bone fide gluon kinks on the string. The second string 

configuration in fig. 4. 7b corresponds to the moment at which the gluon kink has 

lost all of its energy. Immediately afterwards, the kink breaks up into two oppositely 

moving kinks. The fact that these two new kinks are momentumless is only obvious 

after inspecting the (a, r) diagram. 

Now that we have a convenient way to calculate contributions to the invariant 

area, we must translate admissible boundaries on the world sheet to admissible 

boundaries in (a, r) space. The causality criteria restricting the form of the area 

boundaries on the world sheet have direct analogues in (a, r) space. In fact , exactly 

the same constraints apply to a boundary r(a) as to t(x) in eq. (4.5) if we make 



62 

T 

a 

Figure 4.8 Lightlike (dotted) and spacelike (dashed) boundaries define 
the same invariant area. These particular choices of boundaries facil­
itate the calculation of the cumulative invariant area used in the area 
decay law. 

the replacements x -+ u and t -+ r. Though a particular choice of boundary is 

not manifestly covariant, the consistent application of a choice ultimately leads to 

the same physics in the distant absolute future. With this in mind, we choose the 

boundary that makes calculations the easiest. 

An obvious choice for a moveable boundary is to use a lightlike line as indicated 

by the dotted line in fig. 4.8. The fixed boundaries are the lines r = 0, u = 0 and 

u = Estring· Since none of the triangular regions contribute to the invariant area (see 

fig. 4.7a), the bounded invariant area is a piecewise linear function of the moveable 

boundary position. Another possibility is to use a moveable boundary parallel to 

the u axis indicated by the dashed line in fig. 4.8. With this choice the bounded 

area is a piecewise quadratic function of the boundary position. One choice is as 

good as the next - even a mixture is permissible as long no double counting occurs 

and causality is obeyed. 
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Before pointing out the deficiencies of the area decay law, we end this section with 

an interesting aside. Using the tools developed above, we can prove a fundamental 

result regarding the invariant area A1 cycle swept out during one complete cycle of 

string motion. In sect. 2.5 we pointed out that dimensional considerations suggest 

that A1 cycle be a function of W 2
, the invariant mass squared of the string - the 

only available Lorentz invariant. It is a simple matter to determine this function 

exactly. We will continue to use our qqg system, but the generalization to other 

systems should be apparent. 

Consider once more fig. 4.5, which shows one complete cycle of motion in (a, T) 

space. The periodicity of the motion allows us to identify the top and bottom of the 

figure (i.e., T = 0 and T = 2Estring)· If we recall how the semi-infinite (a, T) strip 

was obtained from the world cylinder, it should be obvious that each band of P+ 

(and hence each band of P_) winds around the world cylinder exactly once during 

one cycle of string motion. This is significant since it means that the invariant area 

of one cycle on both sides of the world cylinder is exactly twice the area A1 cycle on 

just the physical side. During one cycle on the world cylinder (including both the 

physical and unphysical sides), each band of P+ intersects each band of P_ exactly 

twice. Thus, we can sum all the contributions to the invariant area by summing 

over all the possible intersections of bands of P + and P _. 

We can make our demonstration simpler if we artificially divide the a intervals 

corresponding to the endpoint quarks into two equal parts. This results in there 

being exactly twice as many a intervals on the circular domain as there are associated 

partons. The sum over band intersections on the whole world cylinder can then be 

written as 

8 (i) U> Ei Ei 
2Al cycle= 2 L p+ · p_ . In In' 

"' · · - v2 v2 ,,;=q,q,g 
( 4.9) 

where the sums are over all partons, and P~i) and Ei are, respectively, .the momentum 

current densities corresponding to the parton i and the original energy of parton 
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z. The factor of 8 = 2 x 4 accounts for a combination of symmetries. A factor 

of 2 reflects the topological necessity of each band of P+ band intersecting each 

band of P_ twice during one cycle. The remaining factor of four is a result of our 

construction in which there are twice as many bands of P+ (and P_) as there are 

partons. This factor of four allows us to express a double sum over bands as a double 

sum over partons. The factors of v'2 arise from the fact that the rectangular regions 

of intersection are inclined at 45° to the a axis. Because our string has no initial 

spatial extent, we have P1Ei =pi/ v'2 (no sum implied), where Pi is the initial four 

momentum of parton i. This allows us to rewrite eq. ( 4.9) as 

A(open) _ 
1 cycle -

2 
_ Pstring 

K2 

w2 
K2 

( 4.10) 

The above argument may be generalized for arbitrary open strings, including 

those that do not arise directly from perturbative partons, with the same result. 

The analogous result for closed strings is 

A (closed) _ W 2 

1 cycle - 2K2 · ( 4.11) 

These results are the simplest ones consistent with the naive dimensional argument, 

yet an explicit analysis was required to get the multiplicative factors correct. It 

may have been noted from fig. 4. 7 that there is a symmetry between the first half 

and second half of one complete cycle. This symmetry can be summarized by the 

equation 
W2 

A
(open) _ 
1/2 Cycle - 2K2 • (4.12) 

These analytical results concerning areas swept out in complete cycles make finding 
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the location of a break easier. In a momentum space picture, the relevant quantity 

is not the invariant area A but rather A mod At cycle· 

4.4 The Transition From Strings to Clusters 

Since the area decay law contains no provision for stopping string fragmentation, 

it ultimately results in an infinite number of zero mass strings -as a semiclassical 

model it knows nothing of the physical particle mass spectrum. The question at 

hand is "Can we retain the desirable features of the semiclassical area decay law 

and still end up with physical particles?" The answer is a qualified yes. The 

identification of a string with a stable particle imposes severe constraints on the 

world sheet l~cation of viable string breaks and is contrary to the spirit of the area 

decay law. By limiting the frequency with which we identify strings with particles, 

most of the string fragmentation is still controlled by the basic area decay law. 

We have little reason to believe a priori that we should be able to identify a string 

in our semiclassical model with an on-mass-shell particle. To avoid this dilemma, 

Caltech-II parameterizes the decays of low-mass strings into hadrons, since that is 

the least well understood stage of hadronization. Once the mass of a string falls 

below a cutoff mass, the string fragmentation picture is abandoned in favor of the 

parameterization of low-mass data described in appendix B. Since the parameteri­

zation is a function only of mass and flavor, we call a low-mass string to be decayed 

this way a "cluster." Though it is just a matter of terminology, we will refer to an 

object as a string if it decays via the string model and call it a cluster if it decays 

via the low-mass parameterization. In this section we will discuss the motivation 

and implementation of the transition from strings to clusters. 

Because of our reluctance to identify strings directly with hadrons, we must not , 

at the very least, let a string mass fall below the strong interaction, two-particle 
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production threshold W 2pth corresponding to the valence flavor of the string. By 

valence flavor, we mean the flavor of the string's endpoint quarks or diquarks. For 

example, the mass of a uu string must never be less than W 2pth( uu) = 2m1ro. Even 

this constraint is still relatively loose since it condones the use of a string model down 

to a regime where the physics is highly nonperturbative. It makes sense to trust 

a semiclassical string model of fragmentation only in the region of high quantum 

numbers (i.e., the semiclassical limit). 

A string is not a well-defined object in a system just above threshold. With 

very little energy available to the string degrees of freedom, the string length may 

be comparable to its transverse dimensions. This is precisely the nonperturbative 

region we wish to avoid modeling. A parameterization of the hadronization of low­

mass objects provides a convenient solution to this problem and implicitly tests the 

hypothesis of being able to factor the hadronization process into the stages 

LLA QCD 
0 

Relativistic String 
0 

Low- Mass 
+Area Decay Law Parameterization. 

(4.13) 

To make the transition from strings to clusters, we introduce a parameter W max' 

which is roughly the maximum amount of invariant mass above the two-particle 

threshold that an object can have in order to be identified as a cluster; otherwise, 

the object is identified as a string. In order to provide a smooth transition be­

tween strings and clusters, we adopt a continuous distribution for Pstring(W), the 

probability that an object of invariant mass W is treated as a string 

which is plotted in fig. 4.9. 

W < W2pth + Wmax, 

otherwise 
( 4.14) 

In principle, W max could be a function of flavor but it is found empirically that 

a universal value of Wmax = 2.2 GeV is sufficient (see sect. 5.3). The need for the 

cutoff W max is consistent with the expectations of the quantized string. Artru [53] , 
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Figure 4.9 Probability that a uu object of mass W is identified as a 
string where Wmax = 2.2 GeV, Pc = 1.6 GeV- 2 and W2pth = .270 GeV . 

Andersson and Hoffmann [54], and Artru and Bowler [55] have recently revived 

interest in the general features of the quantized string. It is worth reproducing some 

of the key points of these authors' work that is relavent to Caltech-II. 

Whereas the area decay law gives the probability e-PoA of a string sweeping out 

invariant area A, a quantum treatment should deal with amplitudes. With this in 

mind, one would expect the amplitude for string propagation to be proportional to 

( 4.15) 

where the first factor is the path integral amplitude ei Action and the second factor is 

the square root of the area decay law probability. When this amplitude is summed 

over histories, the propagator for a string of mass W has a sequence of poles at 

( 4.16) 

where l is an integer and, in the limit P 0 ---+ 0, the poles give the Veneziano mass 
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spectrum W? = 27rKl. Expanding the propagator about a given Wz gives 

ZK 
( 4.17) 

which implies each resonance has a full width r = P~:'. The overlapping of these 

resonances in the region P 0 W 2 /2K2 > 1 suggests a continuum. With P 0 /2K2 = 

.5 GeV-2
, the region starts about W r-.~ 2 GeV, which should be compared to the 

spacing in the Veneziano mass spectrum. Though only a guideline, this simple 

picture lends support to Caltech-II, which allows the creation of strings with a 

continuous mass spectrum above a cutoff Wmax. 

4.5 String Evolution with Massive Quarks 

Up to this point we have restricted our discussion to the case of massless partons, 

since they arise quite naturally as point concentrations of energy and momentum on 

the relativistic string. There have been many attempts at developing a formalism 

to accommodate nonzero masses for endpoint quarks [56,57]. One approach is to 

supplement the relativistic action for the string with the relativistic action of two 

massive endpoint quarks. The resulting equations of motion partition the system 

into three distinct phases ( Q ,Q, string) with mutual boundary conditions controlling 

the exchange of energy and momentum between the phases. These modifications 

give rise to nonlinearities that void the simple treatment afforded by massless par­

tons, except for the simplest of cases. A partial solution to this problem is to include 

quark masses by evolving an associated massless string to which additional unphys­

ical string segments have been added to account for the boundary conditions of 

massive quarks. 

Consider first a simple 1 + 1 dimensional QQ yo-yo of total CM energy W 

and MQ =I 0. The naive string equation in eq. (2.13) can be solved for the quark 
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String Motion With Massive Quarks 

(a) 
t 

Figure 4.10 String evolution for (a) a simple QQ system with MQ f; 0, 
and (b) the associated massless qij system. 

trajectories during the first half-cycle of motion 

for 0 ::; t ::; tl/2, 

where 

is the time it takes to complete one half-cycle, and 

( 4.18) 

( 4.19) 

( 4.20) 

is the magnitude of the initial heavy quark three-momentum. Fig. 4.10a shows 

the evolution of this system for times 0 ::; t ::; t 1; 2 in the overall CM frame. The 

horizontal lines are the string configurations at fixed times. 

We map the QQ system onto an associated massless qq state as follows. The qq 

system be taken to have W( qq) = W( QQ) and 

f)o(q) = Po(Q) =Pox, ( 4.21) 

Po(q) = i>o(Q) =-Pox. ( 4.22) 
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Energy conservation then requires that the initial string length of the massless quark 

system be nonzero 

A - 2 A I - W - 2Po ux0 = ux - ----
K 

( 4.23) 

The motion of this associated massless quark system for times 0 ::; t ::; t1; 2 is shown 

in fig. 4.10b. 

The dashed curves in fig. 4.10b are curves xq,Q(t) defined by 

[p.(t) + Klxq( t)- xQ(t)lr- p~(t) = M~ 

[pq(t) + K jx.(t)- xQ(t)r- p~(t) = M~, 

( 4.24) 

( 4.25) 

where Xq,if( t) are given by eq. ( 4.18) with MQ = 0. The association of massless parton 

string states with massive quark systems is done by identifying the massive quark 

endpoints in fig. 4.10a with the extended "endpoint plus string segment" regions of 

fig. 4.10b, 

"Q( t)" ~ "q( t) + ~x( t)", ( 4.26) 

where the length ~x '"V lxq( t) - xQ( t) I is determined by mass shell constraints as in 

eqs. ( 4.24,4.25). 

The incorporation of string breaking according to the area decay law is trivial. 

Potential string break points for the massless quark system in fig. 4.10b are generated 

according to the simple area decay law, assuming all points on the world sheet 

are accessible. However, if the provisional break position lies within the string 

segment associated with quark masses according to eq. ( 4.26), the break is summarily 

rejected. A new prospective break point is then generated by continuing to sample 

invariant area for the simple decay law, making sure that no region is counted twice. 

It is straightforward to show that uniform breaking with rejection in the string region 

of fig. 4.10b is equivalent to uniform breaking in the string region of fig. 4.10a, since 

it is just a routine application of the Monte Carlo acceptance-rejection method [58]. 
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Extensions of this algorithm to multiparton strings in 3 + 1 dimensions are 

straightforward, though nonunique. In more than 1 + 1 dimensions, there is an 

ambiguity in the orientation and velocity of the additional string segments. (There 

is already an unrelated 2-fold orientation uncertainty in the 1 + 1 dimensional ex­

ample of fig. 4.10.) One can impose additional constraints involving combinations 

of other parton momenta, but such an ansatz is not unique and in general gives rise 

to different physical situations. In Caltech-II the three-momentum of the massless 

quark associated with a massive quark is 

p(q) = p(Q), ( 4.27) 

and the length of the extra string segment at timet= 0 is again given by 

~xo = Eo(Q) -I.Po(Q)I. 
K 

( 4.28) 

The additional string segment is assumed to lie along the initial momentum direc-

tion. We have investigated other initial orientations for this string segment and find 

that the overall physics results are insensitive to the choice made. 

The possibility of nonzero quark masses raises an interesting point concerning 

pair creation and string fragmentation. In order to conserve energy and momentum, 

a finite length of flux tube must condense into heavy quarks if the probability of 

pulling heavy quarks from the vacuum so dictates. In our semiclassical model, this 

means that finite portions of the world sheet effectively "disappear" or are attributed 

to the simulation of the mass of heavy quarks. This problem would persist even if 

we had exact solutions to the nonlinear equations governing massive quark systems. 

Nevertheless, we give all massive quarks the same treatment since we can't expect 

to simulate the quantum process of particle production that appears to be nonlocal 

in our semiclassical model. 
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4.6 Flavor Selection 

The only remaining detail of string fragmentation is the specification of flavors 

at break points. The valence flavors of the initial strings are determined in the 

perturbative QCD stage of hadronization and are assumed to be given. If the 

original strings fragment, the flavors of the daughter strings are determined by the 

flavors at the ends of the parent string and the flavor of the pair pulled from the 

vacuum. Caltech-II allows both quark pairs and diquark pairs to be pulled from the 

vacuum. These correspond to the baryon number conserving processes 

( 4.29) 

"Meson" "Meson" "Meson" 

( 4.30) 

"Meson" "Baryon" "Anti baryon" 

( 4.31) 

"Baryon" "Meson" "Baryon" 

Once a potential break is chosen on the world sheet, the invariant masses W1 and 

W2 of the candidate daughters are specified. The nominal relative probabilities for 

various flavor assignments are then taken to be 

( 4.32) 

where 

f E { u, d, s, . .. , uu, ud, us, ... } , ( 4.33) 

Pt are constant parameters, and Wi (th) = W 2pth + Wmin in the theta functions of 

eq. ( 4.32) represent minimal threshold constraints. The parameter W min is used for 

flexibility by supplementing the minimum kinematic threshold constraints with a 

constant offset. A typical value for W min is 100-200 MeV. In the event that one 

of the daughters falls below the corresponding threshold mass, it checked to see 
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whether it is possible to perturb the break point and identify the daughter with an 

on-shell particle as discussed in sect. 4. 7. If this can be done, the relative probability 

for producing the corresponding flavor is taken to be P!. The flavor production 

parameters Pt are provisionally taken to be identical to the corresponding flavor 

parameters in the low-mass hadronization part of the model (see appendix B). In 

addition to the economy of parameters, this assumption helps avoid discontinuities 

in flavor production rates during the transition from strings to clusters. 

4. 7 Hadrons Directly From Strings 

As mentioned in the previous section, it is possible to generate hadrons directly 

from strings if, in special instances, we perturb the position of a string break so that 

one of the daughters is on the mass shell of a physical hadron. 

In Cal tech-II the string decay 

String ~ String + Hadron ( 4.34) 

is considered a viable decay mode only if one of the candidate daughter masses is 

below W2pth + W min for the particular flavor pulled from the vacuum (assuming the 

original break position was chosen using the area decay law). If a mode of the form 

in eq. ( 4.34) is chosen, the orignal break position is adjusted to put one of the strings 

on-mass-shell. 

We can show that this ansatz is reasonable by considering the change in mass of 

a daughter as a function of the breakpoint position. Consider the situation where 

a break occurring at a = jj on an arbitrary string produces a daughter with four-

momentum 
0' 

p(a-) = J xda. ( 4.35) 
0 

The squared mass of this daughter is 

( 4.36) 
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so that taking the differential of both sides gives 

W dW = x · p(a)da-. ( 4.37) 

In the frame in which the string element containing the original break is at rest, 

x · p(a-) = E, ( 4.38) 

where E is the energy of the daughter in that frame. Substituting eq. ( 4.38) into 

eq. ( 4.37), and recalling that dl = Kda is the relation between energy coordinates 

and physical lengths in the rest frame of a string segment, we have 

dl = WdW < dW. 
E "' - "' 

Thus, for a shift in mass of ~ W I'V 200 MeV, 

w 
l~lii'V 0.2 fm X E' 

( 4.39) 

( 4.40) 

This result tells us that the physical shift in the position of the breakpoint is compa­

rable to the width of QCD flux tubes indicated by lattice calculations (38]. Inasmuch 

as we use the relativistic string only for the gross properties of fragmentation, small 

perturbations such as those implied by eq. ( 4.40) are easily absorbed. 

As we show in sect. 5.3, the mechanism of eq. ( 4.34) is rather ad hoc since the 

only observable it appears to affect is the production of very energetic hadrons 

in the upper tails of momentum distributions. We point out in sect. 5.4 that, in 

keeping with the philosophy of not letting string mechanisms control the details 

of hadronization, relatively few hadrons are produced through the mechanism of 

eq. ( 4.34). 
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Chapter 5 

Caltech-11 vs. Data 

5.1 Introduction 

As we have repeatedly stressed in the previous chapters, the overall physics 

picture in Cal tech-II is both appealing and sensible. Any realistic phenomenological 

model of hadronization entails a large number of parameters - a simple reflection of 

the fact that we do yet have exact solutions to QCD over all the energy scales relevant 

to hadronization. However, just because we have a large number of parameters does 

not mean that they are all at our disposal. Caltech-II's sensibility derives from the 

observation that by factoring event evolution into the three stages 

LLA QCD 
0 

Relativistic String 
0 

Low - Mass 
+Area Decay Law Parameterization ' (5·1) 

the majority of parameters occur in the last stage and are fixed by available low en-

ergy data. With such parameters fixed, the model need only explain where clusters, 

not hadrons, come from. 

Herein lies the appeal of Caltech-II: with only five energy-independent (and, un­

fortunately, highly correlated) parameters, we can describe cluster formation at any 

center of mass energy in e+e- annihilation. Subsequently, using the parameterized 

decay of low-mass clusters, Caltech-II is able to provide a good description of data 

over the entire energy range 3 GeV ~ EcM ~ 45 GeV. In this chapter we confront 

Caltech-II with the available e+ e- annihilation data to determine reasonable values 
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for its five parameters and to assess the model's strengths and weaknesses. 

In sect. 5.2 we isolate five "basic" parameters and suggest nominal values for 

them within the context of the complete Cal tech-II model. Sect. 5.3 discusses the 

effects of parameter variations on the predictions of the model with an empha-

sis on the string parameters Pc, W max, and W min· Inasmuch as all three stages of 

hadronization in eq. (5.1) are necessarily correlated, we will also discuss how the 

string parameters are related to the LLA QCD shower parameters t 0 and Aqcn. 

Sect. 5.4 compares the results of Caltech-II (with fixed parameters) to data. We 

demonstrate how the model can reproduce details of distributions at fixed energies 

as well as the EcM dependence of average values of observables. By virtue of incor-

porating the full string equations of motion, Caltech-II is shown to reproduce the 

so-called string effect [59,60,61,62,63,64] observed for three-jet events. The model 

also explains observed [65,66] angular correlations in pp production by allowing 

baryon creation during the string evolution phase. 

Sect. 5.5 briefly discusses the known shortcomings of the full Caltech-II model 

and then concentrates on ways in which the string evolution phase can be elaborated. 

We describe how, aside from being theoretically consistent, the incorporation of 

transverse momentum at string breaks will result in a smoother transition between 

the string and cluster phases of the model. 

In keeping with our desire to focus on the string aspects of Caltech-II, we relegate 

discussions of the shower and cluster stages of the model to appendices A,B. 

5.2 Identification of Five Basic Parameters 

Cal tech-II's factorization of hadronization into the three stages of eq. ( 5.1) 1s 

effectively an attempt to conquer QCD by dividing it into the three regimes 

Perturbative Nonperturbative QM Nonperturbative QM 
Quantum Mechanical ® (Semiclassical) ® (Nonclassical) · (5·2) 
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As discussed in chapter 2, there is both phenomenological and practical motivation 

for this division of event evolution. Though QCD is, in principle, a well-defined 

theory, it has resisted most conventional attempts to make predictions concern­

ing nonperturbative dynamical phenomena. The relative successes of perturbative 

calculations and lattice gauge theory have already demonstrated two qualitatively 

different regimes of QCD roughly corresponding, respectively, to the first and second 

stages of eq. (5.1). On the other hand, comprehensive "QCD predictions" for the 

third stage of eq. (5.1) simply do not exist. 

The attractive feature of factorization is that it gives us an opportunity to test 

those aspects of QCD which we believe we do know something about. Rather than 

speculate on the details of hadron formation in QCD, we instead assume that low­

mass hadronization is a local, universal phenomenon that can be factored out of the 

event evolution in eq. ( 5.1) and replaced with a parameterization of the decays of 

low-mass systems. This "black box" approach to low-mass hadronization allows us 

to concentrate more fully on the first two stages in eq. (5.1), so that we might better 

assess their influence on the features of hadronization. 

Aside from the fixed parameters describing the decays of low-mass clusters, the 

only free parameters in Caltech-II are AQco, which governs the scale in the first stage 

of eq. (5.1 ), Pc, which governs the string decays, and the three cutoff parameters 

t0 , W max, and W min· The cutoff to for the perturbative shower evolution essentially 

governs the transition between the parton picture of the first phase and the string 

picture of the second phase, while W max controls the transition from string picture 

to the low-mass parameterization. w min is a junior partner to w max, since it permits 

the occasional identification of a string with an on-mass-shell hadron as discussed 

in sect. 4. 7. 

It is found that the nominal parameter values 

Pc = 1.6 Ge y- 2 (5.3) 
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Wmax = 2.2 GeV (±0.3 GeV), (5.4) 

Wmin = .25 GeV (±0.1 GeV), (5.5) 

Aqcn = 0.6 GeV (0.3- 0.7 GeV), (5.6) 

to = 1.0 GeV2 (1- 2 GeV2
) (5.7) 

provide a good description of e+ e- annihilation data over the range 3 Ge V :::; EcM :::; 

45 GeV. The parenthetical values give reasonable ranges or variations in the param­

eters that reflect the correlations induced by the factorization of event evolution. In 

the next section we discuss how we arrive at these values for the parameters. 

5.3 Parameter Determination 

Our approach to determining values for the five basic parameters will first involve 

isolating observables sensitive to variations in the parameters. With the benefit of 

hindsight and for purposes of illustration, we shall initially set the shower param­

eters Aqcn and t0 to their nominal values to demonstrate how the string-breaking 

probability Pc and the string-to-cluster cutoff W max influence event shape variables 

such as sphericity and transverse momentum. The remaining string parameter W min 

is relatively superfluous, as it allows the occasional production of high z particles 

directly from the ends of a string. For this reason it can be fixed after all other 

parameters have been determined. 

5.3.1 Pc 

The left panel of fig. 5.1 compares the TASSO [67] 14 GeV sphericity distribu­

tion with the results of Caltech-II. The dashed curve uses the standard parame- . 

ters of eqs. (5.3-5. 7), while the solid curve corresponds to changing Pc to .6 GeV-2
• 

Sphericity is a convenient measure of the spherical nature of an event in momentum 

space [68]. The sphericity axis of an event is defined along the unit vector n that 
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Sphericity Distributions At EcM = 14 GeV 
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TASSO Data 
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Figure 5.1 Sphericity distributions at EcM = 14GeV for various values 
of Pc and Wmax (other parameters fixed at values in eqs. (5.5-5.7)). The 
data are from ref. [ 6 7]. 
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max1m1zes 
N 

L:(n. Pi) 2 + A(n2
- 1). (5.8) 

i=l 

In this equation the sum extends over N particles and A is a Lagrange multiplier 

that ensures that n is normalized. Finding the extrema of eq. (5.8) is equivalent to 

solving the eigenvalue problem 

Mn =An, (5.9) 

where M is the momentum tensor 

N 

Ma{3 = LPiPf a,f3=x,y,z. (5.10) 
i=l 

We can order the normalized eigenvalues Qi of the momentum tensor, corresponding 

to the three orthonormal eigenvectors nl, n2, n3, so that 

(5.11) 

(5.12) 

where 
N 
L: ( nj · Pi) 2 

Q j = .;...i=...;;l~N~-- (5.13) 
L (fti)2 
i=l 

The sphericity of an event is defined as 

(5.14) 

so that 0 ~ S ~ 1 where S = 0 corresponds to a perfectly collimated 2-jet event in 

the CM frame and S = 1 corresponds to a spherical momentum distribution. 

The increase in average sphericity with smaller Pc in fig. 5.1 may be qualitatively 

understood by considering the simple case of a qq system. The distribution of first 

generation breaks with respect to the proper time interval separating the breaks and 

the initial vertex is a Lorentz invariant quantity. Contours of constant invariant time 

are hyperbolae in (x, t) space as shown in fig. 5.2. According to the area decay law, 
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Figure 5.2 Points along the same contour of invariant time bound equal 
amounts of backwards light-cone area. 

all points on a fixed hyperbola are equally probable break postions since all bound 

the same backwards light-cone area. The uniform distribution of breaks along a 

hyperbola corresponds to a uniform distribution in rapidity of the daughters. Since 

the probability of invariant area A being swept out before a break occurs is e-PcA, Pc 

can be viewed as a decay constant that implies an "area half-life" of p-;1 In 2. Large Pc 

corresponds to hyperbolae closer to the world lines of the quarks and hence results in 

low-mass daughters, which populate a large range of rapidities. Accordingly, small 

Pc tends to break strings "later" and produces massive daughters within a limited 

rapidity interval. In the extreme case that daughters are produced at rest, jet-like 

phenomena disappear in favor of high sphericity configurations. 
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Table 5.1 Changes in average values ofobservables at EcM = 14GeV with 
variations of Pc and Wmax• Other parameters are fixed as in eqs. (5.5-
5.7). Data are from ref. (67]. 

Pc (Gev 2
) Wmax (GeV) (Nch) (S) (p~)(GeV2 ) 

1.6 2.2 9.18 0.220 0.183 
0.6 2.2 9.90 0.269 0.188 
1.6 3.2 8.93 0.233 0.203 

data 9.08±0.05 0.213 ± 0.004 0.168 ± 0.002 

Wmax 

The right panel of fig. 5.1 assesses the effect on the sphericity distribution when 

Wmax is increased from the standard value of 2.2 GeV to 3.2 GeV, leaving all other 

parameters at their standard values. Though the change is not as dramatic as when 

Pc was varied, the general trend is similar. Increasing W max increases the use of 

paramaterized cluster decays. Since cluster decays are isotropic in the cluster rest 

frame, an increased dependency on the low-mass parameterization leads to more 

spherical events (i.e., events with more transverse momentum). 

Though the above variations of Pc and Wmax both lead to more spherical events, 

they have opposite effects on the average charge multiplicity, as can be seen from 

table 5.1. Decreasing Pc allows strings to evolve longer before breaking and so leads 

to more massive daughters. On the other hand, increasing W max turns on the cluster 

decay sooner. Since the parameterized cluster decays of ref. [69] faithfully reproduce 

the empirical mass dependency 

w 
(Nch(W)) rv 2 + 2 GeV 1 GeV ~ W ~ 3 GeV, (5.15) 

the decay of a single large mass cluster gives fewer particles than if it first broke into 

two smaller mass clusters. Table 5.1 suggests that rather than look at (S) for the 

effects of Wmax, it would be better to look at (pf), the average squared momentum 

transverse to the sphericity axis. 
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Figure 5.3 Sensitivity of (p~) to W max as a function of EcM· Data are 
from ref. [ 6 7). 

The influence of W max is clearly visible when we consider the EcM dependence of 

(p~) as shown in fig. 5.3. Leaving all other parameters at their standard values, we 

note that the sensitivity of (p~) to Wmax permits us to determine an optimal value 

of Wmax = 2.2 GeV. 

That sphericity should be largely governed by. Pc and that (p~) be controlled 

by Wmax are not unexpected. Sphericity and (p~) are complementary in that they 

deal with different momentum components. Except for very high sphericity events, 

most of a primary hadron's longitudinal momentum can be traced back to the 

longtitudinal momentum of its parent cluster. As outlined above for the simple 

qij case, the longitudinal momenta of such clusters (i.e., strings that were too light 

to evolve using the string picture) are strongly influenced by Pc· On the other hand, 

(p~) is, by definition, invariant under boosts along the sphericity axis and should be 

sensitive to Pc only to the extent that the. totallongtitudinal momentum and total 
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transverse momentum are constrained by energy-momentum conservation. 

5.3.3 to and AQcn 

Now that. we know which observables are sensitive to Pc and Wmax' we can 

briefly describe how the standard parameters of eqs. (5.3- 5. 7) were determined. For 

different values of AQcn, best values for Pc and W max were determined by requiring 

agreement with sphericity distributions and (p~), respectively. Their opposite effect 

on (Nch) also helps pin down values of Pc and Wmax· 

The perturbative cutoff t0 , which controls the amount of soft perturbative ra­

diation, was set to the value 1 - 2 GeV2
• Because of the continuous nature of the 

mapping of soft gluons onto the relativistic string, radiation below this mass scale 

is not found to influence subsequent event evolution. In this sense, the parameter 

t 0 is very uncontroversial. 

The leading-log QCD scale AQcD plays an interesting role in the model. The ob­

servables that appear to be most sensitive to AQcD are the mean charge multiplicity 

and the various infrared safe jet measures such as thrust and the energy-energy 

correlation. 

The standard energy-energy correlation function is defined as [70, 71] 

(5.16) 

where the double sum extends over all observed particles and Xi is the fraction of the 

observed energy carried by the ith particle. The leftmost panel of fig. 5.4 compares 

Caltech-II (with standard parameters) to JADE data [72] for d"Ejd(), weighted by 

sin () 8 , where ()8 is the angle in the center of each bin. The middle panel of fig. 5.4 

demonstrates how the central values() rv 90° are sensitive to changes in AQCD· In the 

rightmost panel of fig. 5.4 we note how increasing Pc to give fatter events increases 

the central values of d"E / d(). 
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Energy- Energy Correlations At EcM = 34 GeV 

CD 
Ct> 
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·
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88 (degrees) 

Pc = 1.0 Gev- 2 

Figure 5.4 Energy-energy correlation functions. Parameters not speci­
fied explictly are given the standard values of eqs. ( 5.3-5.7). Data are 
from ref. [ 72]. 

Thrust is defined [73] as 

(5.17) 

where the unit vector nr is called the thrust axis. Like sphericity, thrust is a measure 

of the two-jet nature of event topology. Unlike sphericity, thrust is an infrared-safe 

variable - it is invariant if a single particle is replaced with a collinear pair with 

the same total momentum, and it is unchanged by the addition of zero momentum 

particles. Thrust varies between 1/2 :::; T :::; 1 with T = 1 corresponding to a 

perfectly collimated two-jet system. 

The leftmost panel in fig. 5.5 shows how Caltech-II, with the standard parameters 

of eqs. (5.3-5. 7), overestimates the number of high and low thrust events. Keeping 

all parameters fixed, except for decreasing AQco, as in the center panel of fig. 5.5, 

we see that the number of low thrust events can be decreased at the expense of 

increasing the number of high thrust events. In order to decrease the number of 

high thrust events, we are forced to decrease Pc, which, as shown in the rightmost 

panel of fig. 5.5, increases the number of low thrust events (if all other parameters 
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Thrust Distributions At EcM = 34 Ge V 
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Figure. 5.5 Sensitivity of thrust to variations in the LLA QCD scale 
AQcD and the string parameter Pe· Data are from ref. [67) 

are left at their standard values). It is possible to decrease Pc and Aqco together to 

obtain the "fat jet" parameters of fig. 5.6, which lead to a better thrust distribution 

but overbroaden the left peak of the energy-energy correlation. 

In choosing our standard set of parameters, we decided to fix Aqco by requiring 

agreement with the central values of the energy-energy correlation function. This 

is the origin of our somewhat large value for AQcD in eq. (5.6). The neglected 

O(a~) corrections to the central values of d~jd() are known [74,75,76,67,77] to be 

small, but positive; our high value of Aqco is simply mimicking these corrections 

in an artificial way: the shower model results are sensitive to Aqco for the classes 

of events where nonleading 0( a~) corrections are operative. We choose the energy-

energy correlation instead of thrust to determine AQcD because, as shown in ref. [78], 

the 0( a;) corrections to da / dT are large and, in the region T --+ 1, sensitive to the 

cutoff scheme used in dressed jet calculations. 

5.3.4 Wmin 

The parameter Wmin = .25 GeV is determined by requiring agreement with the 

high Zp = 2lpi/Q data for inclusive charged particles as shown in fig . 5.7. Increasing 
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Event Shapes At E CM = 34 GeV 
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Figure 5.6 An alternate of set "fat jet" parameters improves the agree­
ment with TASSO thrust data [67] but implies a broadening of the left 
peak in the energy-enery correlation. JADE data are from ref. [72]. 

W min increases the probability that a string break near the end of the world sheet 

will produce an on-mass-shell particle. To see why this affects only the high z region 

of fig. 5. 7, let us go back once more to our simple qq example. Consider a hyperbola 

on the world sheet formed by points bounding the same backwards light-cone area 

as in fig. 5.2. As we have already mentioned, the uniform distribution of breaks 

along such a hyperbola corresponds to a uniform distribution in the rapidity of the 

daughter strings. Since W min affects only breaks that occur close to the end of a 

string, where the rapidity with respect to the CM frame is the largest, most particles 

so produced will have large momentum (high z). 

Seeing how Wmin affects only the production of high z particles, we might be 

skeptical about calling it a basic parameter. Our skepticism is fostered by the 

observation that we can reproduce the high-z tail of fig. 5.7 with Wmin ~ 0 if we 

use quark masses of mu = md ~ 0, and m 8 ~ 150 MeV in the shower formalism 

instead of the constituent masses mu = md = m7r, and ms = m~t (which are used to 

ensure that all strings produced in shower evolution are massive enough to evolve 

into multihadron systems). Since the use of constituent quark masses is simply a 



(/) 

88 

+ 
Inclusive e+e- ~h- X 

HRS 

E eM= 29 GeV 

" ' ' ' " " \. 
WMIN = 0.25 GeV \ 

\ 

WMIN = 0.0 \ 

I0-3L-~~~~~~--~~~~ 
0.5 0.75 

Zp = 2p/O 

Figure 5. 7 Dependence of model predictions for sdu / dz on the cutoff 
parameter Wmin · Data are from ref. [79). 

technical issue, Wmin has only minor significance as a basic parameter. 

The effect of quark masses on the tail of the z distribution can be understood 

by recalling how we can use a system composed of massless quarks to simulate a 

system of massive quarks (see sect. 4.5). Referring to fig. 4.10b we note that for 

massive quarks, string breaks are unconditionly forbidden in the region of the world 

sheet between the dashed line and world lines of the corresponding massless quarks; 

the forbidden region simulates the quark mass. It is easy to see that as the mass of 

the quark becomes smaller, the forbidden region shrinks, and breaks in regions of 

higher rapidity become more accessible, populating the high z tail. 

5.3.5 Correlations 

While the parameter-fitting procedure outlined above is relatively straightfor-

ward, there are correlations among parameters that make the task nontrivial. For 
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example, increasing AQcD increases the amount of perturbative radiation and leads 

to more spherical or "fatter" events. But we already know that decreasing Pc will 

have the same effect. This interplay between Pc and AQcn should not be surprising, 

since in a formal QCD-based treatment of flux tubes, we would expect Pc to be a 

function of AQCD· With reservations concerning future improvements to Caltech-II, 

we adopt eqs. (5.3-5. 7) as a set of parameters that give an acceptable overall de­

scription of e+e- annihilation data over the energy range 3 GeV ~ EcM ~ 45 GeV. 

5.4 Comparisons With Data 

Since the string model in Caltech-II is necessarily sandwiched between the per­

turbative LLA QCD and the parameterized decays of low-mass clusters, it is some­

times difficult to attribute features of the model predictions to a specific stage of 

event evolution. In this section we demonstrate the relative harmony between the 

various stages of hadronization in Caltech-II by comparing results of the model to 

available e+ e- annihilation data. The goal is to impress upon the reader how the 

choice of the fixed parameters of eqs. (5.3-5. 7) reproduces observed phenomena to 

within 5-10% over the energy range 3 GeV ~ EcM ~ 45 QeV. This point alone is 

of some merit since other hadronization models are tuned (perhaps to excess) to 

describe the details of hadronization at one particular energy. 

The success of many of the comparisons in this section is not meant to draw 

attention to the success of the string model alone but rather is meant to point out 

the cooperation between all three stages of the factorized evolution of eq. (5.1). 

However, we also show how the incorporation of the full string equations of motion 

can be credited with the accurate reproduction of particle flow data and observed 

baryon correlations. 

Figure (5.8) compares Caltech-II to sphericity, aplanarity and thrust distribu­

tions measured by TASSO at 14 GeV and 34 GeV. Aplanarity is a measure of the 
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Figure 5.8 Caltech-11 (solid lines) compared to various shape variables 
at EcM = 14 GeV and EcM = 34 GeV. Data are from ref. [67]. 

momentum out of the event plane 

(5.18) 

where Qt, the smallest normalized eigenvalue of the momentum tensor, is given by 

eq. (5.13). 

An interesting deviation from the data is seen in fig. 5.8 where Caltech-II overes­

timates the number of high sphericity /high a planarity flow thrust events at EcM = 

34 GeV. As discus~ed in ref. [3], most of these "fat" events can be traced back to the 

use of LLA QCD showers, which lack the quantum interference effects necessary to 

correlate the decay planes of highly virtual partons in four-jet events. When exact 

0( a;) matrix elements are used in place of LLA QCD (with a suitable adjustment 

of Pc and Wmax), a better agreement with the data is obtained (see fig. 5.9). 

Fig. 5.10 compares the results of Caltech-11 with transverse momentum distri­

butions from TASSO at fixed energies while figs. 5.11a,b show the EcM dependence 

of inclusive charged particle momenta. . In fig. 5.11 b the transverse components of 

momentum in and out of the event plane are measured with respect to eigenvect.ors 
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Figure 5.9 Shape distributions at EcM = 34 Ge V using Caltech-11 
hadronization (with parameters as indicated) and LUND exact O(a;) 
matrix elements [80). Data are from ref. [67). 
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Figure 5.10 Distributions for momentum transverse to the sphericity 
axis for charged particles at EcM = 14GeV and EcM = 34GeV. Data are 
from ref. [67). 
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Figure 5.11 (a) Energy dependence of (p), (Pi) and (b) ((Pi(IN/OUT))). 
Data are from ref. [67]. 

{ni} of the momentum tensor in eq. (5.10), so that 

(p}(IN)) = ~ f.(p, · fl2) 2, 
~=1 

{pi( OUT))=~ f.(p; · ild, 
i=l 

(5.19) 

(5.20) 

where the sums extend over all charged particles. Caltech-II is seen to faithfully 

reproduce the energy dependence of all the momentum distributions. 

Fig. 5.12 shows how accurately Caltech-II reproduces the average charge mul­

tiplicity over the whole energy range of data. At the lowest energies (~ 3 GeV), 

particle production is due entirely to the parameterized decay of low-mass clusters 

since there is not enough energy available for string evolution. As EcM increases, 

more and more string evolution occurs. Fig. 5.13 tracks the flavor multiplicities of 

kaons, protons and lambda particles. The improved string model in Caltech-II has 

cured a number of the pathologies observed in Caltech-I [5]. By incorporating the 

full string equations of motion, we have eliminated an abrupt increase in (Nch) at 
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Figure 5.12 Muliplicity of inclusive charge particles as a function of 
EcM· Data are from refs. [67,81,82,83,84]. 
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Figure 5.13 EcM dependence of kaon and baryon mulitplicities. Data 
are from refs. [85,86,87,88,89,90]. 
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Particle Flow In Three -Jet Events 
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Figure 5.14 Caltech-11 compared to TPC particle flow data from 
ref. [63]. 

EcM = 5 GeV; Caltech-I's sensitivity to gluon radiation (the splitting of soft glu-

ons) caused there to be more clusters than necessary, once gluon radiation began to · 

appear. In addition, by allowing baryon creation during string evolution, an abrupt 

drop in (N(p + p)) for EcM = 10 GeV in Caltech-I has been avoided. 

A particularly interesting observable that has surfaced in recent years is the 

number density of particles in the event plane for 3-jet events [59,60,61 ,62,63,64], 

suggesting asymmetries in hadronization attributable to string-like phenomena. The 

results of Caltech-II are compared with TPC data in fig. 5.14. The event sample 

in fig. 5.14 was selected according to the procedure outlined in refs. [62,63] using 

a jet finding algorithm based on ref. [91 ]. The sample consists of relatively planar 

events in which three jets are discernible (for TPC, a "jet" must contain at least two 

particles and have a total momentum of 1.5 GeV). The resulting jets are ordered in 

energy under the hypothesis that the two most energetic jets originate from quarks, 

while the least energetic jet is induced by a gluon. The particle density is a function 

of the angle ¢ measured in the event plane where the most energetic (quark) jet 
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defines <P = 0°. The direction of increasing <P is defined so that the next most 

energetic ( antiquark) jet occurs at <P ~ 150° and the least energetic (gluon) jet is 

at <P ~ 230°. With this identification of jets with partons, the relative depletion of 

particles in the "valley" between the quark and antiquark jets corresponds to the 

absence of a flux tube connecting the quark and antiquark. Since . the flux tube 

connecting the quark to the gluon and the flux tube connecting the gluon to the 

antiquark are boosted relative to the overall CM frame, the hadrons into which they 

condense will also generally travel in the direction of the respective boosts. 

Caltech-II is able to reproduce the measured particle flow data in fig. 5.14, 

whereas Caltech-I severely overestimated the number of particles between the quark 

and antiquark jets [61,92]. The sample in the right panel of fig. 5.14 consists of 

particles with large components of momentum out of the event plane. The slightly 

larger depletion effect for such a sample is a consequence of the momentum out of 

the event plane robbing from the momentum in the event plane where momenta 

are measured in the CM frame of the parent cluster. When one boosts from the 

cluster rest frame to the overall event CM frame, there is a smaller probability that 

such particles will have enough momentum to overcome the boost and leak into the 

region between the quark and the antiquark jet. 

Both the LUND and Webber models are able to reproduce the so-called string 

effect while, not surprisingly, independent fragmentation models cannot. Though 

the Webber model is in many ways similar to the original Caltech-I model, it incor­

porates coherence effects in its LLA QCD shower algorithms. The JADE group has 

claimed (61] that these coherence effects are responsible for the success of Webber's 

description of particle flow. Surprisingly, while Caltech-II incorporates both strings 

and coherence, it is found that switching off coherence has a negligible effect on the 

particle flow of fig. 5.14. This may be indicative of something more than coherence 

at work in the Webber model. 
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TPC Proton Correlations 
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Figure 5.15 Distribution in the correlation angle of proton momentum 
from pp pairs with sphericity axis for Caltech-II and Webber models 
(a) before and (b) after experimental cuts described in the text. Data 
are from refs. [89,90]. 

Correlations in proton-antiproton production are another area in which full string 

motion benefits Caltech-II. The TPC collaboration has measured [89,90] the distri-

bution of protons (in events with pp pairs) with respect to I cos B* I where B*, mea­

sured in the pp rest frame, ·is the angle the proton three-momentum makes with the 

sphericity axis. If pp' production is entirely due to isotropic cluster decay, as in the 

Webber model [10], a flat distribution in I cos B* I is expected, as shown in fig. 5.15a. 

However, if one allows pp production from strings, as in Caltech-II, there is a strong 

correlation between the proton momentum and the sphericity axis (see fig. 5.15a). 

Fig. 5.15b compares Caltech-II and the Webber model with the TPC results, which 

include the experimental cuts of 

0.5 GeV ~ p ~ 1.5 GeV ( 5.21) 

on the momenta of the proton and antiproton. 
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Table 5.2 Parton, cluster and hadron multiplicities for coherent and 
incoherent showers at various CM energies. Parameters are as in 
eqs. ( 5.3-5.7). All calculations are for N1 = 5. 

EcM (Gev) 14 14 34 34 100 100 
Shower type Co her. In co h. Co her. In co h. Coher. In co h. 
(N (partons)) 4.45 4.56 6.29 6.75 9.20 10.46 
( N (strings)) 1.23 1.22 1.45 1.45 1.79 1.79 
(N( clusters)) 3.03 3.02 4.90 5.00 8.27 8.77 
(N(Cl =H)) 0.56 0.55 1.05 1.06 2.16 2.15 

( N (primary hadrons)) 8.90 8.91 14.00 14.34 22.46 23.87 
(Ntot) 14.85 14.88 21.84 22.30 33.13 34.96 
(Nch) 9.18 9.19 13.48 13.76 20.59 21.67 

(Wc1- Wth) (GeV) 1.54 1.54 1.51 1.52 1.44 1.47 

We end this section by noting some general features of parton and cluster final 

states in Caltech-II at different CM energies (see table 5.2). The entries in table 5.2 

are, from top to bottom, (i) the number of final partons generated in the LLA QCD 

phase; (ii) the number of multiparton strings associated with the final partons; (iii) 

the number of final clusters from string evolution; (iv) the number of final clusters 

identified with single hadrons; ( v) the number of primary hadrons from cluster 

decay; (vi) the total number of final state particles (treating 1r
0 as a stable hadron) 

(vii) the total charge multiplicity; and (viii) the average cluster mass relative to the 

appropriate two-particle threshold (averaged only over multihadron clusters). 

One of the first things we notice in table 5.2 is that coherence effects in the shower 

evolution grow with EcM but are generally rather small. The mean multiplicities 

are marginally smaller for coherent showers than for incoherent showers because 

the requirement of angle ordering inhibits wide-angle parton branchings. A more 

important feature of table 5.2 is that the average number of strings and clusters 

is rather small compared to the final state particle multiplicity. We should be 

encouraged by this aspect of the model since our original intention was to relegate the 

details of hadronization to the parameterized decays of low-mass clusters . We have 
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successfully avoided the specter of letting the semiclassical string evolution dominate 

the details of hadronization. Furthermore, we note that only a few percent of the 

primary hadrons come directly from strings (that is, through the W min mechanism). 

This is reassuring in light of the ad hoc nature of Wmin· 

5.5 Discussion 

The success of Caltech-II as a model of hadronization over the entire energy 

range 3 GeV ~ EcM ~ 45 GeV is, to date, unparalleled. However, Caltech-II's 

conceptual simplicity can be viewed both to its credit and discredit. We have shown 

how, with very conservative assumptions about string dynamics and cluster decay, 

Caltech-II can reproduce most e+e- data to within 5-10%. Yet, in the course of 

comparisons with data, we have isolated areas for improvement in all three stages 

of the model. In this section we briefly discuss how some specific changes should 

improve the model as a whole. 

The first area for improvement is the incorporation of 0( a~) corrections in the 

LLA QCD shower formalism. As was mentioned in sect. 5.4, including quantum 

correlations between the decay planes of virtual partons leads to a suppression of 

high aplanarity four-jet events. There is also evidence (3] that the cluster decays 

currently used by Caltech-II may be too local and may give rise to particles within a 

narrow rapidity interval. If this is indeed the case, the solution may be as simple as 

reassessing the choice of parameters in the low-mass cluster decay (see appendix B) 

or may involve adopting a new form for the density of cluster states. However, 

before we consider changing the cluster decay parameterization, we should consider 

the possibility that we are turning on cluster decays too early in event evolution. 

A potentially interesting and conceptually necessary modification to the Artru­

Mennessier string in Caltech-II is the incorporation of transverse momentum at the 

sites of string breaks. While the transition from the perturbative stage of eq. (5.1) 
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to the string stage is continuous, the transition between strings and clusters has 

an inherent discontinuity. Consider the case of a simple qq system that has ample 

energy to evolve using the string model. As the original parent fragments, none 

of the daughter strings attain transverse momentum- the transverse momenta of 

final state particles are due solely to the parameterized decays of low-mass clusters. 

As will be pointed out in the next chapter, when the transition from strings 

to clusters is made, information on the "preferred axis" of the string is lost, since 

low-mass clusters are forced to decay isotropically. Though the the standard value 

of Wmax = 2.2 GeV was mandated by transverse momentum considerations, we 

shall show that this value results in cluster decays causing an oversoftening of the 

momentum spectrum of heavy quarks. These symptoms suggest that we should 

try to preserve the directionality of string decays by letting strings evolve to even 

lower mass scales before hadronizing them with the parameterized cluster decay 

package. Since correspondingly less transverse momentum will be introduced in 

the parameterized decays, we should introduce transverse momentum at each string 

break. 

Strictly speaking, the introduction of transverse momentum at each string break 

is required from quantum mechanics. The small transverse dimensions of flux tubes 

( 0( .1) fm from lattice studies) suggest, through the uncertainty principle, transverse 

momentum fluctuations of 0(1) GeV. Toy models of 1+1 dimensional field theory 

[93] suggest a Gaussian distribution for locally compensated transverse momentum, 

as is used by both LUND and independent fragmentation models. While the in­

troduction of transverse momentum to the Artru-Mennessier string in Caltech-II 

may introduce an additional parameter, the basic philosophy of the model, not to 

attempt to describe the intricacies of hadronization, will be preserved. 
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5.6 Summary 

In _ this chapter we have demonstrated how the dynamics of Cal tech-II, the dy­

namics of cluster formation, is controlled by only five parameters. We have selected 

values for these parameters and have shown how the model provides an adequate 

description of e+e- data over the entire energy range 3 GeV:::; EcM :::; 45 GeV. We 

have pointed out that the introduction of transverse momentum in string evolution 

is conceptually necessary and may be required to achieve even better agreement 

with the data. 
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Chapter 6 

Heavy Quark Fragmentation 

6.1 Introduction 

Besides the qualitatively different starting points of Caltech-II and LUND, are 

there measurable quantitative differences between the models? The short answer 

is "yes." Since LUND asks its formalism to make a direct connection between 

particles and strings, it cannot distinguish the "simple" physics of the string from the 

"complicated" physics of low-mass hadronization. LUND's "package deal" comes at 

the expense of predicative power at mass scales other than that at which the model 

is tuned. 

In this chapter we demonstrate how strings in Caltech-II differ from LUND 

strings in their predictions for the fragmentation function of heavy quarks ( mQ ,G 5 

GeV). We look at the Artru-Mennessier strings in Caltech-II in two complementary 

ways. First, by artificially suppressing low-mass cluster decay in Caltech-II, we 

demonstrate how better agreement with measured fragmentation functions, D(z), 

may be obtained. Next, we develop analytical results for D(z) for Artru-Mennessier 

strings (without gluon radiation). The analytical method provides an independent 

check on strings in Cal tech-II (without gluon radiation or cluster decay) and presents 

a more efficient way of predicting fragmentation functions for very heavy quarks 

( mQ ~ 20 GeV). Using the analytic results, we show how strings in Caltech-II, 
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unlike LUND, exhibit the limiting behavior expected of heavy quark fragmentation 

[7,8]. 

6.2 The Problem 

Heavy hadrons are useful probes of hadronization since they contain quarks that 

most likely originate directly from the 1* --+ qq vertex in e+ e- annihilation. Quan-

tities that can tell us something about the hadronization process are the fractions 

of the available energy or momentum a heavy hadron carries off 

E 
XE= --, 

Emax 
IPI 

Xp = --. 
Pm.ax 

(6.1) 

The denominators in these expressions correspond to the maximum energy and 

momentum a particle can carry away from an interaction while preserving global 

energy-momentum, flavor, ~tc. The variables in eq. (6.1) are the convenient experi-

mentally measurable versions of the Lorentz invariant scaled rapidity difference 

(6.2) 

where 

y =~In [E + P] 
2 E-p 

(6.3) 

is the rapidity of an object with energy E, momentu~ p, mass M and Ymax is the 

maximum possible rapidity for such an object originating from a parent of mass ft. 

In the parent CM frame 

(6.4) 

where mrecoil is the minimum recoil mass. The variables x E and Xp are identical to 

z in the limit that they are measured in an infinite momentum frame. 

The pealcing of the z distribution D(z) of heavy hadrons towards large z is antic­

ipated from essentially kinematical arguments [7 ,8] - tacitly using the assumption 
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Figure 6.1 Caltech-II fragmentation functions for (a) charm (from re­
constructed D*± data) and (b) bottom (from inclusive muon data). 
Data are from refs. [94,95). 

that QCD is "flavor-blind." Available data make it plausible to investigate the 

detailed shape of D(z). The predictions of Caltech-II are compared with 29 GeV 

charm data [94] in fig. 6.la and 34 GeV bottom data [95] in fig. 6.lb. An immediate 

observation is that the full hadronization model predictions are consistently softer 

than the data. A close analysis reveals that the discrepancies in figs. 6.1 a, b are due 

to a discontinuity in the transition from string fragmentation to cluster hadroniza-

tion. As implemented in Caltech-II, string decays are always along the string axis , 

while the parameterized decays of low-mass clusters are isotropic. As discussed at 

the end of the previous chapter, incorporating transverse momentum at each string 

break will allow us to retain more of the directionality implied by the strings and 

permit us to evolve strings down to even lower mass scales before resorting to the 

parameterized cluster decay. 

In. this chapter we consider two approaches to the heavy quark fr~gmentation 

function, using the Artru-Mennessier string. After presenting the results of a modi-
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Figure 6.2 Results of Artru-Mennessier strings in Caltech-II (LLA QCD 
and no cluster decay) compared with (a) charm data and (b) bottom 
data. Data are from refs. (94,95]. 

fied Cal tech-II model, which bypasses the need for low-mass parameterizations (and 

hence is applicable only for very specific observables ), we develop the analytical re­

sults for heavy quark fragmentation according to the area decay law. The analytical 

results are valuable because they are completely separate from the full Caltech-II 

model and provide an independent check of iterative string decays. 

Since we are interested in the inclusive z distribution of heavy hadrons, we can 

modify Caltech-II by evolving only the strings containing the original heavy quarks 

(i.e., leading strings). In doing so, we take the heavy quark mass to be the heavy 

meson mass and asymptotically identify the leading string with a heavy meson. 

Figs. 6.2a,b compare data to the results of these modifications. We have used 

standard parameters except that we have effectively set W max = 0 and mQ = mmeson 

and have allowed only massless quarks to be pulled from the vacuum. The strings 

are allowed to fragment to within 1% of the final meson mass. It should be noted 

that the charm prediction (but not the data) in fig. 6.2a omits contributions from 
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bottom decays that would tend to populate the low x region but not otherwise alter 

the results. Using the successes of figs. 6.2a,b as an impetus, we will derive m6re 

clearly the Caltech-II string predictions for heavy quark fragmentation. 

Aside from running the complete Monte Carlo without parameterized low-mass 

cluster decay and a posteriori isolating the leading strings, we would like to in­

vestigate the analytical form for the fragmentation function for heavy quarks. An 

analytical form is valuable since it lends insight to some of the mechanisms at work 

in string fragmentation. The remainder of this chapter outlines such a framework 

for the string evolution of heavy quark systems and compares the results with data 

and the predictions of other models. 

6.3 Outline 

To arrive at a final fragmentation function D(z), we will have to piece together a 

few less ambitious components. We begin by considering a QQ system in which the 

heavy quark Q initially travels along the +x axis in the parent CM frame. The effects 

of QCD radiation are neglected as a simplifying approximation. After determining 

an efficient method for sampling the area used in the area decay law (sect. 6.4), 

we fragment the system by pulling a massless quark pair from the vacuum during 

the first half-cycle of string motion. Our first result (sect. 6.5) will be a form for 

f~ ( z, M 2
, s ), the probability density for producing, in the first half-cycle of string 

motion, a leading string with scaling variable z and mass-squared M 2 • We will 

explain the notation as it is encountered. 

The new aspect of this work is the c~nstruction of D ( z) from f~ ( z, M 2 , s). Us­

ing f~(z,M2 ,s), we construct f~(z,M2 ,s) (sect. 6.6), the analogous function cor­

responding to the situation in which Q initially travels along the -x axis. We then 

combine these two functions to construct f + ( z, M 2
, s), the first generation fragmen­

tation function for breaks occurring anywhere on the world sheet of the QQ system, 
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assuming that Q initially moves in the +x direction in the parent CM frame. Setting 

up a framework to account for the iterative structure of the fragmentation process 

then allows us to derive a recursion relation for D(z) (sect. 6.7), which is evaluated 

using elementary Monte Carlo techniques that are completely separate from the full 

Caltech-II model. In sect. 6.8 we discuss the implications of strings, as implemented 

in Caltech-11, for the fragmentation functions of very heavy quarks and we show 

how the predictions agree with the qualitative arguments of Bjorken [7] and Suzuki 

[8]. 

6.4 Isolation of Leading Strings 

To get an analytical form for the fragmentation function, we must focus our at-

tention on isolating the leading string from all the others produced during fragmen­

tation. We shall often refer to stages of string fragmentation by using the concept 

of a "generation," which we now define. Consider the multi body decay chain of a 

object X 

(6.5) 

We refer to Y1 , Y2 and }3 as first generation decay products and to Z1 and Z2 as 

second generation decay products. If we think of X as a string, as in fig. 6.3, the 

quality that characterizes the generation number of a string is the number of string 

breaks in its absolute past. First generation leading strings (Yi, Y3 ) have only one 

break in their absolute past (the one at which they were created), second generation 

leading strings (Z1 , Z 2 ) two breaks, and so on. The first generation nonleading string 

Y2 contains two breaks in its absolute past since both its valence quarks were pulled 

from the vacuum separately. Since our interest here is in following the development 

of the leading string, it is to our advantage to concentrate on the production of 

the first generation string which contains the heavy quark Q. We accomplish this 

by going back to the basic area decay law and optimizing the way in which area 
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Figure 6.3 Multiple generations of leading and nonleading strings are 
possible with the Artru-Mennessier decay ansatz. 

elements are considered as candidates for a break. 

The area decay law leads to a Poisson process in which the probability of the 

first break occurring after invariant area A has been swept out is given by 

(6.6) 

The most efficient way to generate a first generation leading string is to take A 

in eq. (6.6) to be the invariant area bounded by the edges of the world sheet and 

the backwards light-cone of the heavy quark. Referring once more to fig. 6.3, we 

generate A1 according to eq. (6.6), which defines a lightlike line along which a break 

is chosen uniformly. Iterating the process, we generate A2 as indicated, being careful 

not to double count any area. During each iteration we retain only the leading string 

and thus accomplish our goal of isolation. 

6.5 Derivation of f~(z, M 2
, s) 

Having noted the iterative structure of fragmentation, we need only calculate 

the fragmentation function for a first generation string f + ( z, M 2
, s). f + ( z, M 2

, s) is 
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the probability density for producing a first generation leading string with scaling 

variable z and mass M from a parent string of mass .jS, given that the heavy quark 

initially travels along the +x axis in the parent CM frame (hence the subscript + ) .. 

Before finding f+(z,M 2 ,s), we define the first generation fragmentation function 

J+(z, M 2
, s ), which is the probability density for producing a first generation lead­

ing string in the first half-cycle with scaling variable z and mass M from a parent 

string of mass .jS, given that the leading quark Q initially travels in the +x di­

rection. We shall refer to the first, third, fifth, etc. half-cycles as odd half-cycles 

and to the remainder as even half-cycles, denoting them by the superscripts o and 

e, respectively. If A 112 is the invariant area of one half-cycle of the world sheet, we 

define J+ ( z, M 2
, s) through the relation 

dPbreak(A) = J+(z, M 2
, s) dzdM2

, (6.7) 

Comparing this to eq. (6.6) and letting IJI be the absolute value of the Jacobian of 

the transformation between A and (z, M 2 ) gives 

(6.8) 

It is clear that the problem is reduced to finding an expression for A( z, M 2
). 

We shall sketch the derivation of A(z, M 2 ) for a QQ pair of massive quarks 

assuming that Q initially travels along the +x axis in the parent CM frame. In 1 + 1 

dimensions, a linear confining potential gives the equation of motion during the first 

half-cycle 
dp - = =f~, dt 

(6.9) 

where ~ is the string tension. We adopt the convention that the upper (lower) sign 

refers to the Q ( Q). Solving this relativistic equation gives the world lines 

(6.10) 
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Figure 6.4 Light-cone frame (e+,e-) defines bounded area as a function 
of e-· 

where E0 and p0 = ±J E5 - m~ are the initial energy and momenta of the quarks. 

Since one of the boundaries defining A is a lightlike line, it is convenient to work 

in a light-cone frame defined by 

(6.11) 

as depicted in fig. 6.4. In this frame, the world lines of the quarks have the repre-

sentation 

e+ = m~ [ "'e-/Po- ] , 
2KPo- 1 ± "'e-/Po-

where Po± = jf(Eo ±Po), in analogy to eq. (6.11). 

The bounded invariant area is given by 

Substituting eqs. (6.12) into eq. (6.13) gives 

(6.12) 

(6.13) 

(6.14) 
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In order to express~- in terms of z and M 2
, we first rewrite the rapidity of eq. (6.3) 

in the two equivalent forms 

E+p 

(6.15) 

(6.16) 

where E and pare the daughter's energy and momentum. If we let (x, t) be the coor­

dinates of a break in the string CM frame corresponding to the light-cone coordinates 

(~+' ~-), the energy and momentum of the leading string are, using eq. (6.10), 

E 

p - PQo- Ki. 

(6.17) 

(6.18) 

Substituting these results into eqs. (6.15,6.16), recalling that z = eY-Y~ax, we obtain 

the tran.sformation equations relating(~+'~-) to (z, M) 

"'~-
M e-Y~ax 

(6.19) +V2 + PQo-, 
z 

"'~+ 
M z 

(6.20) - yl2 e-Y~ax - PQO+· 

In these expressions e-Y~ax is given by eq. (6.4) with mrecoil = mQ. 

Substituting eq. (6.19) into the expression for the area, eq. (6.14), and expressing 

everything in terms of parent string CM quantities, we get 

--- +ln --m~ [M .JS e-Y~ax ( m~ z m~) 
2K2 mb z M Vs e-Y~ax s 

l(Vi) Vs] +2 n E* + p* - E* + p* ' (6.21) 

where p* = t.Js- 4m~ and E* = vs/2. In the limit m~/s ~ 0 with m~ fixed, we 

recover Bowler's analogous result (96] for the Qij (heavy quark+ massless antiquark) 

system 

(6.22) 
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Using the transformation equations, eqs. (6.19,6.20), it is a simple matter to 

show that 

(6.23) 

so that eq. (6.8) becomes 

(6.24) 

where either eq. (6.21) or eq. (6.22) is used, depending on whether the original 

parent system is ( QQ) or ( Qq). 

6.6 Constructing f+(z,M2 ,s) From f+(z,M2 ,s) 

A string system with invariant mass slightly larger than the sum of the rest 

masses of the endpoint quarks may go through many half-cycles before breaking 

since A 112 is small. In this section we demonstrate how one can account for breaks 

during any half-cycle by building up f+(z,M 2 ,s) from f~(z,M2 ,s). We can take 

advantage of the periodicity of string motion by calculating the relevant probabilities 

for the first complete cycle of string motion and then summing over all cycles. 

We begin by deriving an expression for f~ ( z, M 2 , s ), the probability density for 

getting a leading string with ( z, M 2 ) during the first half-cycle of string motion that 

Q initially travels along the -x axis. This is of interest because the world sheet 

symmetry 

[ 
First 1/2 Cycle Motion ] _ [ Second 1/2 Cycle Motion ] 

For x · PQI < 0 - For x · PQI > 0 ' 
~0 ~0 

(6.25) 

where x is the unit vector in the +x direction. It should be obvious that 

(6.26) 

where z is the scaling variable measured with respect to the -x axis. The relation 

connecting z (measured with respect to the +x axis) and z is 
e-2Y~u 

z=---
z 

(6.27) 
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where e-Y~ax is given by eq. (6.4). Now, since the an area A112 must be swept 

out before the second half-cycle begins, the probability of which is e-PoA112 , the 

probability density for getting a leading string with (z, M 2
) during the second half-

cycle of motion, given that Q initially travels along the +x axis, is 

(6.28) 

Adding this to the contribution for the first half-cycle gives 

( 6.29) 

the probability density for getting (z, M 2 ) during the first complete cycle, given that 

Q initially travels along the +x axis. 

The probability density for the first string break occurring during the nth com­

plete cycle is given by eq. (6.29) times the probability that the world sheet has no 

breaks in any of the previous cycles. The probability of a string surviving n complete 

cycles without breaking is e-2nPoA1 / 2 , so that summing eq. (6.29) over all cycles is 

equivalent to multiplying it by the factor 

00 1 
"""' e-2nPoA1 ; 2 = . 
~ 1 _ e-2PoA1 ; 2 
n=O 

(6.30) 

Thus, the complete first generation leading string fragmentation function is 

(6.31) 

In the limit P 0A112 ~ oo, f+(z,M 2 ,s) reduces to J+.(z,M2 ,s). 

For the discussion in the next section it will be convenient to discern between 

breaks that occur in even and odd half-cycles. It is easy to see that we can write 

eq. (6.31) as a sum 

(6.32) 
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f~(z,M2 ,s) 
- 1 - e-2PoA1/2' 

e-PoA112 ~~ ( z-1 e-2Y:0a.x, M2, 8 ) 

1 - e-2PoA1/2 

(6.33) 

(6.34) 

are respectively the total contributions from all odd and even half-cycles. In a 

similar manner we can decompose f _ ( z, M 2 , s) as 

where 

~~ ( z-1 e-2Y:Oa.x, M2, 8 ) 

1 _ e-2PoA1t 2 

6.7 Iterating f+(z,M2,s) 

(6.35) 

(6.36) 

(6.37) 

With the first generation fragmentation function for leading strings f + ( z, M 2
, s) 

in hand, we are prepared to iterate the procedure for an infinite number of genera-

tions. Suppose the quark Q initially travels in the +x direction in the parent CM 

frame. If the string breaks during an odd (even) half-cycle, then in the first half­

cycle of the daughter's motion, Q will initially be traveling along the -x ( +x) in the 

daughter's CM frame. Since it is important to keep track of the initial direction of 

Q for each generation, we will have to build this feature into an iterative framework. 

We should recall that the variable z is a relation between two objects. The factor 

e-Yma.x in the definition z = eY-Yma.x is a function of both the daughter mass and some 

"reference parent" mass (see eq. ( 6.4)). If we define zi(j) to be the scaling variable 

of the ith generation leading string with respect to the jth generation leading string 



(where i 2: j), it follows that 
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z · 
Zi(i- 1) = -~-, 

Zi-1 
(6.38) 

where Zj = Zj(O). As an illustration of this point, we will consider a system in the 

CM frame, where Q initially travels in the +x direction. 

Suppose we want the probability density of the first break occurring in an odd 

half-cycle and the second break in an even half-cycle, giving a second generation 

leading string with (z2, s2). The differential probability of the first break occurring 

in an odd half-cycle is 

(6.39) 

Similarly, the differential probability that the first generation daughter breaks in an 

even half-cycle and yields a leading string with (z2(1), s 2 ) is 

(6.40) 

where we have made use of eq. (6.38). The probability density we seek is thus 

the product of eqs. (6.39, 6.40) integrated over all possible first generation breaks, 

divided by dz2ds2 

( 6.41) 

As fig. 6.5 shows, there are three other classes of "histories" by which one can 

obtain (z2 , s2 ) in the second generation. These correspond to the combinations 

( odd,odd), ( even,odd) and ( even,even) for the half-cycles in each generation in which 

the string breaks. In general, there are 2n paths to the same final state after n 

generations. Since breaks in even half-cycles are suppressed by a factor of e-PoA112 , 

the most favored path is the one containing breaks in odd half-cycles, exclusively. 

We can summarize the possible products of fragmentation functions for two 
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(a) ( b) ( c ) (d) 

Figure 6.5 Four classes of histories leading to the same inclusive distri­
bution for second generation leading strings 

successive generations by noting that: 

g~ (zt, St, s 0 ) is followed only by 0 c2 ) g_ Zt 's2, St or e c2 ) g_ Zt 's2, St ' 

g+ (zt, St, so) is followed only by 0 (Z2 ) g+ Zt 's2, St or e (Z2 ) 
g+ Zt 'S2, St ' 

g~ (zt, St, so) is followed only by 0 c2 ) 9+ Zt 's2, St or e c2 ) 9+ Zt, S2, St , 

g:_ (zt, St, so) is followed only by 0 c2 ) g_ Zt 's2, St or g: ( :~ , s2, St) . 
We can condense these relations by defining a Green's function 

G2 C>2,s1) 
0 0 (Z2 ) g+ Zt' s2, St 0 c2 ) g+ Zt,s2,s1 0 

0 e c2 ) e c2 ) 0 
-

g+ Zt' S2, St g+ Zt 'S2, St 

0 c2 ) 0 c2 ) g_ Zt,s2,s1 0 0 g_ zt's2,s1 

e c2 ) 0 0 e c2 ) g_ Zt 'S2, St g_ Zt' s2, St 

which acts on vector 

(6.42) 

(6.43) 

(6.44) 
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to produce 

(6.45) 

The first two components of W 1 ( z11 st) are, respectively, the probability densities for 

getting a first generation leading string with ( Zt, st) in odd and even cycles, given 

that Q initially travels in the +x direction. The third and fourth components are 

the corresponding densities when Q initially travels in the -x direction (explicitly 

zero for the case under consideration). The multiplication G2(z2/ Zt, s2, s1)W1 (z1, si) 

in eq. (6.45) picks out only the histories allowed by eq. (6.42) and the double integral 

sums over all possible intermediate states. The components of \l12(z2, s2) have an 

interpretation analogous to those of w1(z1, si). 

It is clear that we can iterate this procedure indefinitely. For example, we have 

(6.46) 

By inserting eq. (6.45) into eq. (6.46) we see that we can alternatively define a 

Green's function, which takes us directly from 'l11(z1, s1) to \l13(z3, s3) 

(6.4 7) 

so that 

!
80 !1 

dz1 (z3 ) \l13(z3,s3) = ds1 -;;G3 z
1

,s3,s1 \l11(z11s1). 
m~ stfso 

(6.48) 

More generally, we have 

(6.49) 

where 

(6.50) 
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Figure 6.6 Fragmentation function convergence for fixed parameters. 

In the limit n ~ oo, eq. (6.50) becomes an integral equation for the Green's function 

between the first generation and "final" generation. In this limit the fragmentation 

function D(z) is the sum over the four components of Wn(zn, sn) integrated over Sn 

(6.51) 

In practice, only a few generations need be considered for D( z) to converge. Fig. 6.6 

shows the nth generation fragmentation function Dn(z) for n ~ 5 for the indicated 

parameters. Note how the fragmentation function has already converged after five 

generations. Fig. 6.7 shows the corresponding mass distribution for the leading 

string after n generations. As expected, the mass distribution tends to a delta 

function as the number of generations increases. 

Fig. 6.8 shows how the final fragmentation function varies with Pc = P 0 / K
2 for 

fixed mQ and s0 • As expected, larger Pc gives a harder fragmentation function. 
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Figure 6.9 Comparison of area decay law for (a) massless and (b) mas­
sive quark systems. 

6.8 Discussion 

It is easy to get an intuitive feel for the fragmentation function in the model de-

scribed above. For purposes of comparison, consider the fragmentation of a massless 

qij system viewed from its CM frame, as depicted in fig. 6.9a. Suppose the area law 

dictates that an invariant area A, defined by the light like line e- = e-, is swept out 

before the first break. Choosing the break uniformly along this boundary, say at 

( e+, e-), gives rise to a leading stringS( qq'). The momentum of the leading daughter 

is equal to the momentum of q at the time of the break. Thus, the momentum of 

S( qq') decreases linearly as the break point moves along the boundary from e+ = 0 

until the leading daughter actually moves backwards in the CM frame if the break 

occurs at eo+· However, if we replace q with a massive quark Q as in fig. 6.9b, the 

lightlike boundary defining A intersects the world line of Q before Q changes di­

rection in the CM frame. Since all the points along the boundary now correspond 

to leading daughters with large positive momentum, a hard fragmentation function 

results. 
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Now that we have an analytical means of generating fragmentation functions 

for simple systems, we may ask if we can sensibly compare any results to data-

remember, we have neglected gluon radiation. It turns out that we must be wary of 

comparing our analytical results directly to data. For example, fig. 6.10 compares 

the "bare" string model in Caltech-II (with LLA QCD but no cluster decay) with 

charm data from ARGUS and CLEO. The point we wish to make is that the value 

of Pc = 1.6 GeV-2 in fig. 6.10 is higher than the value Pc ::::::: 1 GeV-2 one would guess 

from fig. 6.8, which does not include perturbative QCD. The observation is that 

we must compensate for the softening effects of perturbative QCD by increasing Pc 

[79]. We mention this point because it puts the results of this section in perspective 

- our analytic results provide a convenient check of the "bare" strings in Caltech-

II but must still be tacked on the end of perturbative QCD before quantitative 

results should be believed. Nevertheless, our analytic results are helpful in exploring 

the qualitative behavior of fragmentation functions for very heavy quarks. Because 

Caltech-II simulates heavy quarks by using the veto technique described in sect. 4.5, 



121 

the calculation of heavy quark fragmentation functions is prohibitively slow (though 

precise). The analytic technique developed in this chapter is four to six orders of 

magnitude faster. In the next section we use the analytic technique to demonstrate 

the behavior of the Caltech-II string fragmentation function for very heavy quarks. 

6.9 Alternative Models; Top Fragmentation (and 
Beyond) 

The availability of data for charm (and now increasingly so for bottom) has 

inspired many forms for the associated fragmentation functions. Nevertheless, no 

individual model yet has conspicuously risen above the others in its ability to fit 

the data. It may require looking towards even heavier quarks to determine the 

best description. In this section we briefly discuss three alternate pictures: the 

fragmentation functions of the LUND group [11 ], Peterson et al. [99] and Amiri and 

Ji [100]. We will show how, compared to other. models, the fragmentation function 

predicted by the Artru-Mennesser string in Caltech-II readily exhibits the limiting 

behavior for large quark masses outlined by Bjorken [7] and Suzuki ·[8]. 

The Peterson fragmentation function is derived from elementary nonrelativistic 

perturbation theory. In the transition Q --+ H( Qq) q, where Q is a heavy quark, qq 

are a light quark pair pulled from the vacuum, and H( Qq) is a heavy meson, the 

probability of producing H with a fraction z of the Q momentum p = I.PI is taken 

to be proportional to z- 1 (~E)-2 where 

Expanding the energies about the particle masses yields 

N 
f(z)= 2' 

z [1 - 11 z - t/ ( 1 - z)] 
(6.53) 

where nominally t = m~/m~ and N is a normalization factor. 
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Figure 6.11 Typical diagrams used in ref. [100) to calculate D(z) per­
turbatively. 

The LUND fragmentation function is of the form 

(6.54) 

where N is a normalization constant, a and b are (possibly flavor-dependent) pa­

rameters, and mT = Jm2 + p} is the transverse mass of the produced hadron. In 

practice, the possible flavor dependence is neglected and the standard parameters 

are empirically determined to be a = 1 and b = . 7 Ge v- 2
• The form of the LUND 

fragmentation function is fixed uniquely by the symmetry requirement that in the 

iterative process, 

String -+ String + Hadron, ( 6.55) 

it should make no difference if particles are peeled off one end of the string or the 

other. 

To obtain predictions that may be compared directly with experiments , the 

analytic results of this chapter and the LUND and Peterson fragmentation functions 

should all be imbedded in a framework, which accounts for perturbative QCD. In 

contrast, Amiri and Ji [100] have perturbatively calculated the z distribution for 

the inclusive process e+ e- -+ 1* -+ H( Qq)X, which includes the diagrams shown in 

fig. 6.11. Assuming a simple nonrelavitistic form for the amplitude of identifying a 

collinear Qq pair with a pseudoscalar meson H( Qq), the z distribution for the heavy 
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Figure 6.12 Different models compared with bottom data from ref. [95]. 

meson, well above threshold, is 

H [ eb [1+(1-r)z]2 e~ (1+rz)2 
] 

DQ (z) = N z(1 - z) ( )2 ( ) 4 + 2 [ ( ) ]4 ' 1 - r 1 - rz r 1 - 1 - r z 
(6.56) 

where N is a normalization constant, eQ and eq are the quark charges and r = 

Fig. 6.12 compares the four models with bottom data at 34 GeV. The LUND 

curve in fig. 6.12 was calculated, using the LUND fragmentation function inside the 

full LUND Monte Carlo [80]. The Caltech-II curve is the same as that in fig. 6.2 and 

so includes LLA QCD but no cluster decays. The Amiri-Ji curve is from ref. [100]. 

A curve using the Peterson function of eq. (6.53) is not shown because it does not 

include perturbative QCD effects. As we can see, uncertainties in the data prohibit 

us from making strong statements regarding the most successful model. 

Fig. 6.13 compares all four models for top assuming a top quark of mass 40 

GeV in e+e- annihilation at EcM = 200 GeV. The LUND, Peterson and Caltech-II 

curves are all shown without perturbative QCD (strictly speaking, this isn't valid 

but we only want qualitative results). The most striking feature of fig. 6.13 is that 

the LUND function is essentially a delta function compared to the other models. 
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Figure 6.13 Fragmentation functions for top assuming mt = 40 GeV in 
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This is not an artifact of leaving out perturbative QCD. This point can be clarified 

if we look at the behavior of the mean value of z as a function of quark mass. 

The various models may be compared with Bjorken's [7] and Suzuki's [8] expec­

tations of average z behaving as (z) = 1 - c/mQ, where cis a constant 0(1 GeV). 

Fig. 6.14 plots (1 - (z) )mQ against the heavy quark mass mQ for the bare LUND, 

Peterson, and Caltech-II functions (i.e., not embedded in QCD), and the Amiri-Ji 

calculation. The curve corresponding to the Caltech-II string approaches Bjorken's 

asymptotic form rather quickly, followed later by the Peterson and Amiri-Ji curves. 

The significant feature is that the LUND curve behaves as (1 +a)f(bmQ) for large 

mQ. Though there is only a hint of the LUND function's being too hard for bottom 

in fig. 6.12 (the data are not yet compelling), the anomalous LUND effect should 

be obvious for heavier quarks. The apparent resolution for the LUND model would 

be the introduction of flavor-dependent parameters a and bin eq. (6.54). 
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Summary 

In this chapter we have developed analytic results for the Artru-Mennessier string 

in the Caltech-II model, which gives the fragmentation function for heavy quarks 

in the limit of no gluon radiation. We have shown that the oversoftening of the 

momentum spectrum of heavy hadrons in Caltech-II can be alleviated by letting the 

string phase of the model evolve strings down to smaller mass scales than suggested 

in earlier chapters. We have also shown how the string model in Caltech-II exhibits 

the behavior proposed by Bjorken [7] and Suzuki [8], whereas the LUND model does 

not. 



Chapter 7 

Conclusions 

7.1 Synopsis 
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In this thesis we have presented the motivation, formalism and results for the 

full equations of motion of the relativistic string in the Caltech-II model of e+ e­

annihilation and hadronization. We have shown how the full hadronization model, 

with fixed parameters, provides a good description of e+ e- annihilation data over 

the entire energy range 3 GeV ~ EcM ~ 45 GeV. We have pointed out the difference 

between our use of strings and those used in the LUND model. We have shown how 

the simple string decay ansatz of Caltech-II, unlike LUND, leads to heavy quark 

fragmentation functions that are in agreement with model-independent expecta­

tions. 

7.2 Review and Outlook 

Caltech-II is a phenomenological model of hadronization which, in attempting to 

untangle the complexities of hadron formation, factorizes event evolution into three 

stages: 

1. The generation of final state partons using the leading logarithmic approxi­

mation to QCD. 
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2. The mapping of final state partons onto color singlet strings that are evolved 

according to a simple, covariant ansatz. 

3. The decay of low-mass color singlets (clusters) using a parameterization of 

low-mass data. 

This factorization is appealing since it relegates many of the intricacies of hadron 

production to the parameterized decay of clusters. This permits the rest of the 

model to focus on the simpler problem of cluster formation, not hadron formation. 

With the low-mass parameterization fixed by low energy data, there are only five 

adjustable (and correlated) parameters to describe the perturbative QCD and string 

evolution phases of the model. 

The relativistic string is used as a phenomenologically motivated model of color 

confinement. Using only the gross properties of the semiclassical relativistic string, 

we map perturbatively generated partons onto color singlet strings, which are sub­

sequently decayed using a generalization of the radioactive decay law for point rel­

ativistic particles. The string evolution phase continues until the masses of the 

daughter strings fall below a cutoff, beyond which we use the parameterized decay 

of low-mass clusters. 

Acknowledging the semiclassical nature of the relativistic string used in this 

thesis, we have not pressed the string formalism to yield details of hadron formation; 

we have used only the most generic string-like features. In regard to this point, 

we have noted that the string phase in Caltech-II should be elaborated to allow 

transverse momentum at the sites of string breaks. This modification is conceptually 

necessary since actual QCD flux tubes, which strings are meant to approximate, 

have transverse dimensions and so, by the uncertainty principle, have transverse 

fluctuations. 
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In our comparisons with data we have noted how the string parameter Pc and 

the cutoff Wmax roughly govern the longitudinal and transverse momentum in an 

event. By introducing transverse momentum at string breaks, we will be able to let 

the string phase of the model run longer and hence achieve more continuity between 

the string and cluster phases. 

We have also shown how the Artru-Mennessier string in Caltech-II exhibits the 

behavior expected of heavy quark fragmentation functions. This development un­

derscores the simplicity of the strings in Caltech-II and contrasts LUND strings, 

which do not exhibit the expected asymptotic behavior. These points are relevant 

to the next generation of e+e- experiments (TRISTAN, SLC, LEP) and hadronic 

colliders (TEVATRON, SSC) in which the top quark (or even new generations) may 

be observed. A firm understanding of hadronization in these energy regimes will al­

low us to untangle signatures of new physics as well as determine what role hadronic 

strings play in the hadronization of heavy quarks. 
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Appendix A 

The Leading Logarithm 
Approximation 

In this appendix we briefly discuss the way perturbative QCD is modeled in 

Caltech-II. In summary, Caltech-II generates multiparton final states by using the 

leading log approximation (LLA) to QCD supplemented with the constraints of 

gluon coherence and with the first gluon branching weighted by the exact 0( as) 

e+ e- --+ qqg matrix element. 

In sect. A.l we introduce the concept of factorization and show how it leads to a 

classical probabilistic interpretation of perturbative QCD suitable for use in a Monte 

Carlo format. Sect. A.2 discusses the property of local color screening inherent to 

the LLA and points out how the independent evolution of partons in the LLA leads 

to an absence of correlations that are present in fixed order matrix elements. We 

finish in sect. A.3 by reviewing the incorporation of gluon coherence effects into LLA 

showers. We point out that coherence effects at EcM ~ 40 are generally masked by 

other effects in Cal tech-II. 

A.l Factorization of Mass Singularities 

There are two common approaches to perturbative QCD: fixed order matrix 

elements and the leading log approximation. While fixed oreler matrix elements 
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are "exact" up to a given order of the strong coupling constant as , they are pro-

hibitively complicated to calculate beyond the first few orders for multiparton final 

states because of the of the proliferation of Feynman graphs. There is already ev­

idence suggesting that the state of the art fixed 0( a;) matrix elements for e+ e­

annihilation cannot account for certain features of available data. The MARK-II 

collaboration has published results [101] which suggest that multiparton final states 

generated according to the leading logarithm approximation are needed to reproduce 

the observed softness of gluon jets at EcM = 29 GeV. 

The leading log approximation to perturbative QCD is capable of generating 

final states with an arbitrarily large number of partons by summing a perturbative 

expansion to all orders in as but keeping only the dominant, so-called leading loga­

rithm, contributions at each order. A bonus is that the LLA approximation is easily 

expressed in the language of classical probability - ideal for an implementation on 

a computer. 

The approximation hinges on a factorization property [102] of QCD, which ex-

ploits the equivalence between, say, a massless quark and collinear quark-gluon pair 

with the same overall quantum numbers. This factorization property relates an 

N + 1 parton cross sectio.n O'N+l to an N parton cross section O'N 

(A.1) 

in which one of theN partons, labelled A, splits into two partons Band C, where 

B carries a fraction z of A's energy. In eq. (A.1), tis the square of A's off-shell mass 

and PA-Bc(z) is a universal function, known as an Altarelli-Parisi splitting kernel 

[9], which depends only on the flavor of the partons. In their most basic forms 

_ ~ [1 + z2] ' 
3 1-z 

(A.2) 
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6 [(1 - z + z2)2] 
z(1 - z) ' 

(A.3) 

N [z
2
+(1-z)

2
] 

f 2 ' 
(A.4) 

where N1 is the number of quark flavors. 

The property of factorization may seem fine on the surface, but one may feel 

uncomfortable about imposing classical probability arguments on quantum phenom-

ena. In the LLA, this is not a problem. The argument goes as follows. Suppose we 

have to sum and square n Feynman amplitudes {Ai, i = 1, n} in order to calculate 

a fixed order matrix element for e+ e- --+ [partons ]. As usual, interference between 

the various diagrams can be traced to cross terms in the sum 

n 

L A:Aj. (A.5) 
i,j=l 

However, if one works in an axial gauge, it can be shown [102] that the leading 

collinear singularities in eq. (A.5) are contained in the incoherent sum 

(A.6) 

Each term AiAi may then be factorized in manner similar to eq. (A.1). 

Strictly speaking, the LLA is exact only in the collinear limit t --+ 0. The gen-

eration of transverse momentum in parton splittings requires t =J 0 and forces a 

consideration of nonleading terms in perturbative expansions. One way to account 

partially for this is in the definition of the splitting variable z or the argument of 

the running coupling constant in eq. (A.1 ). In Caltech-II, a generic branching of the 

form 

(A.7) 

as shown in fig. A.1a, is accomplished with the splitting variable z defined as 

z = ~ [1 - .!.] (1 +cos B*). 
2 tp 

(A.8) 
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Parton Branching CM (I) Frame 

p 

(a) (b) 
Figure A.l Kinematics of timelike showers. 

In this equation, t and tP are the squared masses of p1 and p1's parent. In the rest 

frame of p1 , (}* is the angle between P3 and a unit vector n (the dashed line in 

fig. A.1 b), where a single boost by 

(A.9) 

along n transforms the rest frame of p1 to the overall lab frame. For the initial 

1* ~ qq vertex, tp( q) = tp( q) = Q2 • Our definition of z differs from that of Odorico 

(49] and Webber (10] who use, respectively, a 8 [tz(1 - z )] and a 8 (tz2 (1 - z )2] to 

partially account for the summing of nonleading terms. 

In practice, a collection of final state partons is generated as follows. Starting 

with an off-shell q and q generated according to the cross section for e+ e- ~ qq, we 

take 
as(t) dt 

dPramation = -
2
--Pq-+qg(z) dz 
7r t 

(A.10) 

to be the probability of a virtual quark with squared mass t emitting a gluon, which 

carries away a fraction (1-z) of the energy. Blindly generating branchings according 

to this distribution would result in an infinite number of soft gluons that habitually 
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Figure A.2 Treelike structure of a parton shower in LLA QCD. 

accompany a quark. We are more interested in those branchings that stick out above 

the background of soft radiations. By defining a criterion for resolvable radiation, it 

is possible [69] to sum up the irresolvable splittings and define a function II( ti, t 1 ), 

which gives the probability that a quark of initial virtualness ti evolves to virtualness 

t f before emitting a resolvable gluon. 

The basic procedure is to recursively generate resolvable splittings according to 

the distribution II( ti, t f) and hence generate a treelike structure or shower as shown 

in fig. A.2. The virtual masses of partons decrease monotonically as one follows a 

branch starting from the initial e+ e- vertex. Perturbative evolution is terminated 

when a parton's virtuality falls below some cutoff t0 ( ~ 1-2 Ge V2
), at which point it 

is put on-mass-shell. Below t0 , shower evolution would be expected to generate only 

irresolvable radiation (irrespective of our wariness concerning the use of perturbative 

methods at such small mass scales). 
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Figure A.3 (a) LLA showers lead to local color compensation whereas 
{b) nontreelike structure may not. 

Local Color Screening 

The treelike structure of LLA showers in fig. A.2 results in what is called pla­

nar color flow and preconfinement [9]. This can naively be understood as follows. 

Because shower development includes only the splitting of partons, local color con-

servation implies that the color charge on a parton is neutralized, or compensated 

for, by its nearest neighbor in the shower tree, as illustrated in fig. A.3a. This con­

trasts the nontreelike situation in fig. A.3b, where the added gluon permits color 

communication between partons, which were color-independent in fig. A.3a. 

The implication of planar color flow is the formation of localized colorless ob-

jects, which can then be hadronized independently. The Caltech-I [5] and Webber 

[10] models take an extreme view of localized color screening by insisting that final 

state gluons split into qq pairs, so that there are N /2 independent low-mass colorless 

objects in an N parton (before forced gluon splittings) final state. Alternatively, 

Caltech-II retains the full color connection information and maps partons onto rela-

tivistic strings. In Caltech-II the number of colorless objects is equal to the number 
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of qq pairs that arise naturally in LLA QCD shower evolution. 

The independent evolution of partons in a LLA shower can not be completely cor­

rect. Total independence implies that there are only kinematic correlations between 

partons. As is discussed in chapter 5, this can lead to, for example, an overabun­

dance of high a planarity four-jet events because of a lack of correlation between the 

decay planes of q* --+ q + g and q* --+ q + g. Such correlations are automatically 

included in fixed-order matrix elements but have to be "put in by hand" in LLA 

showers. While the shower model in Caltech-II incorporates 0( as) corrections to 

ensure the correct distribution of hard gluons in e+ e- --+ qqg, it overestimates the 

number of high aplanarity four-jet events for the above reasons. As discussed in 

sect. 5.4, the incorporation of 0( a;) corrections into the LLA shower formalism for 

e+ e- annihilation is a high priority. 

A.3 Color Coherence 

The inadequacies of the LLA approximation can be traced back, not unexpect­

edly, to the omission of nonleading contributions. Including an important class of 

the next-to-leading-logarithm contributions [103] forces us to consider cross terms 

in eq. (A.5), which lead to interference effects. The net result is destructive inter­

ference, which suppresses the emission of wide angle gluon radiation. It has been 

shown [104,105,106] that this color or gluon coherence effect can be incorporated 

into LLA showers simply by requiring that the gluon emission angles decrease along 

any given branch of the shower tree. This angle ordering is illustrated in fig. A.4, 

where 

(A.11) 

Though not manifestly covariant, the angle ordering ansatz leads to frame indepen­

dent results. 

Further details of gluon coherence, as incorporated in Caltech-II, may be found 
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Figure A.4 Angle ordering of successive gluon emissions imposed by 
color coherence. 

in ref. [107]. Refs. [107,108] show how the inclusion of coherence effects correctly 

reproduces the expected energy dependence of the average hadronic multiplicity 

of jets, albeit at energies far above those generally considered in this thesis (i.e., 

for which there are experimental data). The simple incoherent LLA overestimates 

hadronic multiplicities by a factor of ~ 2 for 1 TeV quark jets, whereas for e+ e-

annihilation at EcM :::; 45 GeV, the effect on multiplicity is generally negligible and 

can be easily masked by other uncertainties. 
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Appendix B 

Low-Mass Cluster Decay 

B.l Introduction 

The decay of low-mass clusters is the final stage in the process of hadronization 

in Caltech-II. It is the stage in which primary hadrons are produced from objects 

with mass a few GeV above particle production threshold. Rather than speculate on 

the nature of the dynamical mechanisms at work in this nonperturbative regime, we 

instead choose to parameterize the decays of low-mass clusters with a simple model 

motivated by phase space. In this appendix we discuss the general form of the 

parameterization used in Caltech-II. Except for a few minor changes, the formalism 

is identical to that used in Caltech-I, so the following description will closely follow 

that given in ref. [4]. 

B.2 Outline Of The Model 

A cluster in Caltech-II is completely characterized by its mass W and its flavor. 

As a matter of convention, we refer to a cluster composed of a quark and an antiquark 

as a meson cluster and a cluster composed of a quark and a diquark as a baryon 

cluster. In general, a cluster will decay into two or more primary hadrons. We 

simulate such decays by a sequence of two-body decays 

(B.l) 
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Figure B.l Meson cluster decays via the creation of (a) quark pair or 
{b) diquark pair. M2 and B2 are on-mass-shell particles, whereas M1 
and B1 can be either subclusters or on-mass-shell particles. 

where X1 can be either a hadron H1 or a subcluster Ch. The last decay in the 

sequence is alwaysinto two hadrons. We visualize the two-body decay in eq. (B.l) 

as proceeding through the creation of a quark-antiquark pair or an effective diquark­

antidiquark pair as depicted in fig. B.l. In general, the mass spectrum of X1 consists 

of both discrete levels, corresponding to hadrons, and a continuum corresponding 

to subcluster production. 

To decay a cluster of mass W and particular valence flavor, we compile a list 

of relative decay probabilities corresponding to each of the available decay channels 

and then pick a mode at random. The relative probability of a particular decay 

mode is taken to be the product of a flavor factor, a spin factor and a kinematic 

factor 

(B.2) 

which we now describe. 
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B.2.1 Flavor Factors 

PF is a flavor factor that accounts for the relative abundances of pair flavors 

pulled from the vacuum. In the decay of a meson cluster, the quark or diquark 

con tent of the pulled pair is chosen from the set 

{u,d,s,uu,ud,us,dd,ds,ss}. (B.3) 

In the decay of baryon clusters, no diquark pairs are allowed to be pulled from 

the vacuum. For each flavor pulled from the vacuum, we compile a list of all the 

exclusive decay modes consistent with the daughters' valence flavors. Each mode is 

given the appropriate flavor factor according to eq. (B.3). To avoid overcounting, 

modes in which H2 has the same spin and valence flavor ( eg. H2 = { 1r
0

, ry, rt'}) 

receive additional weightings (in this c~se { 1/2 , 1/4 , 1/4 } ), which sum to unity. This 

additional factor is included in PF where necessary. 

B.2.2 Spin Factors 

Each of the exclusive decay modes is weighted by a spin multiplicity factor 

Ps = (2J1 + 1)(2J2 + 1), (B.4) 

determined from the spin of each of the decay products. For modes that have 

X1 = Ch, a meson subcluster is defined to have spin 0 and a baryon subcluster spin 

1/2. 

B.2.3 Kinematic Factors 

The remaining factor, PK, is a kinematic factor proportional to the Lorentz 

invariant phase space [109] available for each mode. The kinematic factor for a 

cluster decay into two hadrons is given by 

(B.5) 
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where, as usual, 

A( a, b, c) = a2 + b2 + c2 
- 2ab- 2ac- 2bc. (B.6) 

The case where X1 =Cit is a generalization of the above formalism. For a fixed 

flavor pulled from the vacuum and fixed H2 , of mass M 2 , it is convenient to consider 

all decays to a subcluster as one decay mode - we can generate the exact mass of 

the subcluster afterwards, if this collective mode is chosen. The kinematic factor for 

this collective mode is 

(B.7) 

where p(M) is the phase space density associated with a subcluster of mass M, 

and M0 is the minimum subcluster mass. In principle, p( M) can be calculated by 

summing the phase space densities of all possible exclusive multibody decay modes 

consistent with the flavor of the subcluster Cit. In lieu of this, we propose the 

parameterization 

p(M) = A(M- M0 )NB(M- M0 ), (B.8) 

where A, N, and M0 are, in general, flavor-dependent parameters. In practice, 

A= 20 and N = 1/2 are found to provide a good description of data, independent 

of the cluster flavor. If the collective mode where X1 = Cit is chosen, then the mass 

of the subcluster is generated according to the mass distribution p(M). 

B.3 Discussion 

The parameters governing low-mass cluster decay may be determined almost 

exclusively by fits to low energy data such as pp annihilation at rest, pn -+ KKX 

at rest and charm production at EcM = 5.2 GeV. The details of the parameter 

determination may be found in ref. [4]. The place where one must resort to high 

energy data is where low energy data provides only weak constraints on a parameter. 
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Such is the case for the flavor selection factor for ss diquarks. As discussed in ref. [3], 

the availability of new data for strange baryons has permitted a more accurate 

determination of PF[ss]. Thus, the only change to the parameterization of ref. [4] is 

that now 

PF[uu] : PF[us] : PF[ss] = 1 : .10: .08. (B.9) 

As mentioned in sect. 2.4, the parameterization discussed in this appendix was 

motivated by a deficiency in the cluster decay ansatz used in the Field-Wolfram 

model [27]. The Field-Wolfram model allowed only cluster decays of the form 

(B.10) 

which was found to be adequate only for rather light clusters (W ;S 1.5 GeV). It 

is interesting to note that since cluster decays in the Webber model [10] are also 

exclusively of the form in eq. (B.10), they are limited in their applicability. For 

instance, for a uu cluster with W ~ 1.9 GeV, 

(Nch[uu]) r..~ 2.6 

(Nch[ uu]) r..~ 3.2 

(Webber Model), 

(Cal tech- II). 

(B.l1) 

(B.12) 

The data in this energy range [110,111] are consistent with eq. (B.12). The fact 

that the Webber model generates cluster masses in a regime where the ansatz of 

eq. (B.10) is known to be deficient underscores the importance of having an accurate 

parameterization of cluster decays, as in Caltech-II. 
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Appendix C 

Fragmentation of Closed Strings 

The treatment of closed strings is similar to that of open strings in sect. 3.2 with 

only a few changes. The continuity of the closed string is expressed by the periodic 

boundary conditions of eq. (3.15). The functions jll(a) and gil( a) in eq. (3.23) are 

extended by defining them on the compact domain a E (0, 1r). In contrast to the open 

string, the whole a domain is physical. All the other equations of sect. 3.2 are valid 

except for eqs. (3.34,3.35,3.36) because in general, Pt( a, T = 0) and P~( a, T = 0) are 

independent for closed strings, so that both are needed for a complete specification 

of the string. 

Fig. C.1 demonstrates how cutting a closed string produces an open string. If 

a string breaks at (a= a,r =f), we rotate the contours of P+(a,r = 0) by T = f 

and the contours of P_(a,r = 0) by -f. Introducing a cut reroutes the momentum 

from one domain to the other so that we fuse the topologies of the two domains to 

form one large domain. The cut defines the physical endpoints of an open string but 

does not distinguish the physical and unphysical regions of the new a domain. This 

is not a problem, since the two identifications correspond physically to momentum 

currents along the different branches of the local light cones. Since we know that 

for an open string these currents are related by eq. (3.34), we are assured that both 

choices correspond to the same physical situation. With initial conditions for the 

open string in hand, we can apply all the formalism of chapter 3, should we decide 
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a-=0 

(a) (b) (c) 

Figure C.l (a) Momentum currents for closed strings flow on closed 
domain. (b) A string break associates points on different domains. (c) 
Domains are pasted together to create the domain of an open string. 

to fragment the string further. 
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