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Abstract

This study uses the full equations of motion of the massless relativistic string
as a phenomenological model of color flux tubes in the process of hadronization in
electron-positron annihilation. Perturbatively generated sets of partons are mapped
onto color singlet strings, which fragment according to a generalization of the covari-
ant decay law for point relativistic particles. String evolution is terminated when
string masses are a few GeV above particle production threshold. Low-mass strings
are decayed into primary hadrons using a parameterization of low-mass data. The
complete model, which factorizes event evolution into three stages including per-
turbative QCD, string fragmentation and parameterized low-mass decays, is imple-
mented as a Monte Carlo program known as the Caltech-II model of hadronization.
An exact formalism is presented for the fragmentation function of heavy quarks
within the string model.

The main results are, in their order of appearance: (1) The kinematics of the
evolution and decay of arbitrarily complex massless relativistic strings is most con-
veniently expressed in terms of momentum currents. (2) The Caltech-II model,
which uses the momentum current formalism to describe relativistic strings, pro-
vides a good description of electron-positron annihilation data over a wide range
of center-of-mass energies. (3) Introducing transverse momentum at the sites of
string breaks is conceptually necessary and may be required to further improve
agreement between the Caltech-II model and data. (4) Fragmentation functions are
predictions, not assumptions, of the string model in Caltech-II. The fragmentation
function of heavy quarks in the Caltech-II string model is shown to exhibit the
behavior expected from model-independent arguments. The discovery of the top
quark or additional generations of heavy quarks will be a testing ground for future

studies of hadronization.
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Chapter 1

Preamble

1.1 Introduction

Classify, quantify, postulate, predfct. This is the traditional route physicists
have followed to gain an understanding of physical phenomena. Today we are at
a different stage of understanding for each of the fundamental forces of nature.
While the electroweak theory has been spectacularly successful both qualitatively
and quantitatively, quantum gravity is still in the “postulate” phase. Interestingly
enough, we can’t succinctly categorize our understanding of the remaining force, the
strong force. Though the field theory of the strong force, Quantum Chromodynamics
(QCD), is, in principle, well defined, it has many unexplored corners.

It is customary to summarize our “first principles” knowledge of the strong force

by writing down the SU(3)color gauge invariant QCD Lagrangian for massive quarks

1& . .
Lqcp = —ZZ; G, G*" + > q(1v*(8, — igAu) — m)q. (1.1)

flavors

In this equation g is the strong coupling constant and the field tensor G, is defined

in terms of the potential A, by
G, =0,A, —0,A, —ig[A,, A, (1.2)
where A, has the color space decomposition

8 i’\i
A, = ZA“-z-. (1.3)
=1



2

The commutator term in eq. (1.2) introduces self-couplings for the gauge fields

because the commutation relations for SU(3)

A; /\j s ijk/\k
[5, 7} = ifnd (1.9

involve nonzero structure constants f*.

Two important qualitative features of QCD are

1. QCD is a non-Abelian field theory so that the gauge (gluon) fields A couple

to themselves.

2. The fundamental fields (quarks and gluons or collectively, partons) in Lqgcp
do not appear to exist in isolation — only composite color singlets have so far

been observed in nature.

The Weakenir;g of the strong force at large momentum transfers, so-called asymptotic
freedom, is closely related to the non-Abelian nature of QCD [1,2]. Asymptotic
freedom permits us, at large momentum transfers, to use perturbation theory to
calculate quantities on the parton level. However, when it comes to experimental
physics, this is not enough. The problem is that the language of perturbative QCD,
that is, the language of quarks and gluons, is foreign to the experimentalist’s detector
which has, to date, heard only the dialect of hadrons (protons, neutrons, kaons
etc.) What perturbation theory will not tell us, and what we ultimately need to
know, is how partons condense into hadrons. Unfortunately, we do not yet have
reliable techniques for solving QCD in the nonstatic, nonperturbative regimes that
are undoubtedly relevant to hadron formation.

While there are many ongoing efforts to understand the nonperturbative aspects
of QCD, such as lattice gauge theory simulations, solitons, etc., they each have a

relatively limited applicability. At high center of mass energy, processes like

ete” — partons — hadrons, (1.5)
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require an understanding of a wide range of both perturbative and nonperturbative
phenomena. Progress has been slow in linking perturbative and nonperturbative
QCD; not only is the theory difficult to work with and the questions hard to answer,
but also we are not really sure what the relevant questions are! The only unfaltering
guidance we have comes from experimental data.

Just because we do not know how to “solve” all of QCD exactly does not mean
that we should be deterred from testing what we do know. More specifically, QCD
perturbation theory provides a means of getting from the initial e*e™ in eq. (1.5)
to a set of partons. What is lacking is a reliable way of turning these partons in
hadrons — we need to understand the hadronization process.

In this thesis we present a sensible approach to hadronization, which incorpo-
rates many of our theoretical and phenomenological prejudices. The end result is a
quantitative model of hadronization (Caltech-II [3]) capable of reproducing the ob-
served features of hadronization in e*e~ annihilation over the entire range of center
of mass energies for which data are currently available (3 GeV < Egm < 45 GeV.)

Why do we need a phenomenological model of hadronization? Depending on
one’s philosophical biases, there are many answers to this question. On the prac-
tical side, we need something to help us connect the hadrons observed in detectors
to the partons that roam the range of perturbative QCD. Hadronization models
are important not only for interpreting existing data, but also for designing new
experiments — they can tell us when experimental signatures are feasible as well as
help in the design of detectors. On a more fundamental level, we need a model of
hadronization that can tell us something about the mechanisms at work in hadron
production. Caltech-II strives to answer the question at the beginning of this para-
graph both ways by successfully reproducing experimental data and by doing so
within the constraints of a physically plausible framework.

How far can we go? Ideally, we would like to be able to describe 100% of
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Figure 1.1 Factorization of event evolution in Caltech-II.

hadronization effects so that we could, for example, accurately determine the strong
coupling constant c,. No existing model of hadronization can justifiably be trusted
to this level — there is too much we still do not know. For example, the physics of
hadronization on mass scales of a few GeV is still an unsolved problem. Until such
problems are tackled in a sensible way, we must find a way to work around them
without introducing spurious complications.

The structure of the Caltech-II model is summarized schematically in fig. 1.1.

The model factorizes the event evolution of eq. (1.5) into three distinct phases:

1. The formation of a parton system using the leading log approximation to

perturbative QCD, modified to account for gluon coherence effects.

2. The mapping of partons onto relativistic strings (a phenomenological model
for confining QCD flux tubes) that evolve and decay according to a simple,

covariant ansatz until the strings are within 1-2 GeV of particle production

threshold.
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3. The decay of low-mass strings (clusters) using a parameterization of low-mass

data.

Of course, parceling out of the physics burden between three distinct phases is
nothing more than a reflection of our ignorance of the “exact” solutions to QCD.
This is quite evident if we consider the rationale for the partitioning: phase 1 has a
relatively strong theoretical motivation since it is based on Lgcp; phase 2 has more
of a phenomenological motivation, derived from general confinement criteria and the
success of lattice studies; phase 3 deals with physics issues which are, currently, too
difficult to handle in any fundamental way.

Recognizing where the difficulties arise in hadronization allows us to avoid them
in a systematic way. By assuming the decay of low-mass clusters is a local, universal
phenomena, Caltech-II factors off that part of the physics which is best described
by a fixed parameterization and instead concentrates on the physics issues for which
there is some fundamental motivation.

The Caltech-II model is an improvement of the Caltech-I model [4,5] in that it
incorporates the full equations of motion for the relativistic string [6]. It uses the
gross dynamics of the relativistic string as an approximation to QCD flux tubes. In
this thesis we focus on the role of strings in Caltech-II. We point out i) the defects
of the Caltech-I model that motivate the full string model, ii) how the space-time
picture of string evolution can be decomposed to suit a computer implementation,
iii) how strings are modeled in Caltech-II, iv) how the resulting model compares
with data, v) how the model differs with other string models in its predictions for
heavy quark fragmentation a;nd vi) how the model may be elaborated.

Chapter 2 provides a brief introduction to hadronization models and discusses
the intentions of the string model in Caltech-II. In that chapter it is stressed that
we are using the relativistic string as a very coarse model of QCD flux tubes, not

as a “fundamental” model of hadronic physics (for which purposes the theory was
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originally proposed almost twenty years ago). We use the relativistic string to
describe only the gross, “stringy,” properties of flux tubes.

Chapter 3 discusses the general problems encountered when implementing the
relativistic string in Caltech-II. Because Caltech-II chooses a simple covariant ansatz
for the fragmentation of strings, it must be capable of determining the evolution
of strings through many generations. In that chapter we devise a technique for
obtaining string motions by superposing momentum currents that circulate on the
world sheet of the string. We demonstrate a correspondence between fragmenting
strings and a topological fragmentation of the domain on which momentum currents
circulate. These developments are crucial to an efficient implementation of strings
in Caltech-II.

Chapter 4 addresses the specifics of string evolution in Caltech-II. We explain
how the Artru-Mennessier ansatz for the decay of arbitrarily complex strings is
interpreted in the formalism of Chapter 3. We discuss the details of the string
model such as the transition to the parameterized decay of low-mass clusters, the
treatment of heavy quarks and flavor selection at string breaks.

Chapter 5 compares the full Caltech-II model with available ete~ data over the
energy range 3 GeV < Foym < 45 GeV. We show how the behavior of the model is
governed by five energy-independent parameters. We point out places where the
model deviates from the data and suggest specific improvements.

Chapter 6 develops an analytical approach to heavy quark fragmentation in the
string model. Not only can this approach be used as an independent check of the
implementation of strings in the full Caltech-II model, but it is much more efficient
in predicting the behavior of systems containing very heavy quarks. We demonstrate
how the heavy quark fragmentation functions predicted by the analytic approach

(and hence also Caltech-II) agree with the general asymptotic arguments of Bjorken

[7] and Suzuki [8].



Chapter 2

Pictures of Hadronization: Old
and New

2.1 Introduction

One of the biggest hurdles in the hadronization game is the first one: getting
oriented. The field has matured rapidly since its inception approximately ten years
ago, with growth spurts correlated with the availability of new data. To fully ap-
preciate the central results of thesis, it is best to have a bird’s-eye-view of the field;
with this perspective, the overall physics picture in Caltech-II is seen to be both
appealing and sensible. The dual goals of this chapter are to give the neophyte a
walking tour of hadronization models and to lay out the basic ingredients of the
Caltech-II model. As we shall see, Caltech-II is the latest logical step towards a
model of hadronization, which embodies most of our theoretical and phenomeno-
logical prejudices. Yet before we describe the details of the model, we pay homage
to its predecessors and contemporaries: the quickest way to get where we're going
is to know where we’ve already been. To avoid complicating our introduction to
the various models, we shall assume a familiarity with the perturbative aspects of
QCD (see appendix A) and instead let the hadronization models pick up where
perturbative QCD leaves off.

In sect. 2.2 we discuss the Field-Feynman model, the first serious attempt at a
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model of hadronization. This section is important since it introduces the concept of a
fragmentation function. Throughout this thesis we suggest that models that assume
fragmentation functions as their starting points, such as the Field-Feynman and
LUND pictures, are more parameterizations than full-fledged models; they use their
many parameters to reproduce features of the data without isolating the dynamical
mechanisms that give rise to those features.

Sect. 2.3 points out the glaring neglect of confinement in the Field-Feynman
model. The independent evolution of partons in the Field-Feynman model makes
no intrinsic allowance for the color degrees of freedom: a problem that is remedied,
to various extents, by cluster and string models.

Sect. 2.4 discusses cluster models in detail and outlines how they relegate the
intricacies of hadronization to the parameterized decay of low-mass clusters (see
appendix B). Cluster models use the color flow provided by LLA QCD, so-called
preconfinement [9], to form color singlets at an early stage in event evolution. Unfor-
tunately, cluster models (like Caltech-I [5] and the Webber model [10]) are sensitive
to soft or collinear gluon radiation. This problem leads to discontinuities in par-
ticle multiplicities and is one of the motivations for using the relativistic string in
Caltech-II [3].

Sect. 2.5 shows how the sensitivity of cluster models to soft or collinear gluon
radiation may be eliminated by employing the relativistic string as a semiclassical
model of flux tubes, which are thought to give rise to QCD confinement. We briefly
review the history of the relativistic string as well as give some simple examples of
string motion. In this section we point out the fundamentally different approaches
to string fragmentation in the Caltech-II and LUND [11] models.

Sect. 2.6 allows us to catch our breath and put sects. 2.2-2.5 into perspective. We
summarize the progression of hadronization models and reemphasize the different

uses of relativistic strings in the Caltech-II and LUND models.
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Figure 2.1 Independent evolution of quarks in the Field-Feynman model
produces physical particles at each node of a decay chain.

Sect. 2.7 recapitulates and provides a brief summary of the Caltech-II model

before we launch into the details of the string model in chapters 3 and 4.

2.2 The Field-Feynman Model

In 1978 Field and Feynman [12] proposed a simple parameterization of jet prop-
erties, which idealized hadronization as an iterative process in which highly virtual

partons undergo the transition

!

g—(97)+4q - (2.1)

The physical picture implied by eq. (2.1) is that of a virtual quark ¢ inciting the
vacuum to produce a quark-antiquark pair ¢'¢’ so that ¢ and §' combine to form a
meson (¢g'), while the virtual ¢’ becomes the initial state for the next transition.
This decay chain, illustrated in fig. 2.1, is iterated until the residual quark gets close
to its mass shell (O(1) GeV), at which point it is combined with other debris to
avoid the appearance of free quarks. One of the key features of the Field-Feynman

model is that given a perturbatively generated multiparton state, say v* — qg, it
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evolves each quark independently. For this reason the Field-Feynman model is also
known as the independent jet model or independent fragmentation model.

The fragmentation chain in the Field-Feynman model may be viewed as a suc-
cession of two body decays in which a physical particle is peeled off at each node.
Because jets, by their very nature, define a preferred axis about which there is lim-
ited transverse momentum, it is convenient to work in 1 + 1 dimensions where it
takes only one variable, conventionally called z, to specify the kinematics of the de-
cay in eq. (2.1) (assuming we know the masses of the meson and the initial virtual
quark). With the intent of reproducing the experimentally observed approximate
scaling features of jets, Field and Feynman proposed the existence of a scale invariant
distribution f(z), which could be applied to each node of the decay chain.

A convenient choice of fragmentation variable is the Lorentz invariant (at least

in 1 + 1 dimensions) scaled rapidity difference

g == gf imem (2.2)
where
1 E+p
y—2ln{E_p], (2.3)

is the rapidity of the emitted meson with energy F and momentum p. In eq. (2.2),
Ymax 18 the maximum meson rapidity (a function of the initial virtual quark mass
/3¢, the meson mass /Smeson and the minimum mass of the virtual quark recoil
system \/Srecoil). By exponentiating the boost invariant quantity y — Ymax, 2 is

restricted to the interval [e~2¥msx, 1] where, in the CM frame of the parent,

Smeson
2 , i
e‘yl'nax — S

Smeson Srecoil 1/2 Smeson S il .
1 + me: _ + A Vi 1’ , recoi

Sq Sq Sq Sq

(2.4)

As usual, A\(a,b,¢) = a® + b* + ¢ — 2ab — 2ac — 2be.
There is, fortunately, a rather simple interpretation of 2. If we go to a frame

in which the initial virtual quark of eq. (2.1) has infinite momentum, then z is
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the fraction of the energy (or momentum) carried off by the meson. This intuitive

interpretation gives meaning to the experimentally measured quantities

E
TE = E ’ Ty = M—a (25)

max pma:c

which are identical to z in the limit of sources that have infinite momentum.

The predictions of the Field-Feynman model depend on the specific form chosen
for the quark fragmentation function f(z). Strictly speaking, we should consider
a plethora of functions f;" (z) corresponding to the particular quark flavor ¢ and
emitted meson M, but we shall neglect such complications in the interest of clarity.
It should be obvious that, because of the iterative nature of the Field-Feynman
ansatz, f(z) is generally not the experimentally measured distribution of the meson
energy fraction. Assuming a world with only one quark flavor and one type of meson,
the Field-Feynman model requires the experimentally measurable z distribution of

mesons emitted from a quark jet, D(z), to be given by the integral equation

D) = £2) + [ LD/ ) (26)

In this equation z is the fraction of the original quark energy even though the meson
may not contain the quark that initiated the jet. The additive f(z) term accounts
for the possibility that an observed meson contains the original quark that initiated
the jet, while the integral term sums the probabilities that the meson originated
from subsequent nodes in the fragmentation chain. Field and Feynman considered

the functional form

f(z)=1—a+3a(l —2)? (2.7)

with @ = .88. Subsequent groups have investigated alternative parameterizations
[13].

The simple 1 + 1 dimensional Field-Feynman model may be extended to 3 + 1
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dimensions by assuming a Gaussian distribution

pi 2

exp (—27’2-) dp{ (2.8)
for the transverse momentum of each quark pulled from the vacuum. Phenomeno-
logical considerations require o ~ 300 MeV. The model can also be elaborated by
incorporating different quark flavors and meson types as well as allow baryon pro-
duction by pulling diquark pairs from the vacuum [14]. Gluons can be treated by
forcing a splitting ¢ — ¢g according to the Alterelli-Parisi equations [15] as was
done by Ali et al. [16] or by postulating, as Hoyer et al. do [17], a separate gluon
fragmentation function f,(z) with the basic transition g — ¢’ + Meson.

The conceptual simplicity of the Field-Feynman model is achieved at the cost of
violating local conservation laws and Lorentz covariance. The leftover quark at the
end of a fragmentation chain carries flavor, color, energy and momentum that must
be dealt with, in some ad hoc manner, so as to at least preserve global conservation
laws. Although various techniques exist for patching up these flagrant violations, it
has been demonstrated that many results are sensitive to the details of the scheme
employed [18,19,20].

Aside from these obvious drawbacks there are other objections to treating par-
tons independently. Perhaps most striking is the neglect of QCD! No account is
taken of the color force other than to dispose of the free quark at the end of each
fragmentation chain. A related problem is a discontinuity in the particle multi-
plicity when two partons are collinear. Experimentally, the multiplicity of a jet of
energy F varies roughly as In E. Because QCD cannot distinguish between a quark
of energy 2F and a collinear quark and gluon, each with energy F, the multiplicity
in either case should vary as In2E. On the contrary, a literal application of the
Field-Feynman model would evolve each mernber' of a collinear pair independently

and hence predict a multiplicity varying as 21n E. The operative point is that the
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Field-Feynman model is very sensitive to the initial parton configurations.

Regardless of its shortcomings, the Field-Feynman model was an important first
step. As the original authors noted, the Field-Feynman picture is not so much a
model or theory as it is a parameterization of the then known properties of quark jets.
Owing to its simplicity, the Field-Feynman model is still used in most hadron-hadron
collision Monte Carlos [21,22,23,24,25], where the focus is not yet on hadronization
proper but rather on testing perturbative QCD and the electroweak theory. Un-
fortunately, testing these theories without an accurate knowledge of hadronization
effects will, in almost all cases, be difficult and frustrating. Our motive for pre-
senting the Field-Feynman model is not to advocate its use but rather to provide a

reference point for the comparison of more plausible models of hadronization.

2.3 Color Comes To Town

The essential neglect of QCD in the Field-Feynman model correspondingly limits
its applicability. Any reasonable treatment of QCD beyond the perturbative regime
should respect color quantum numbers since the effective increase of the strong
coupling o, means that color degrees of freedom become more important, not less
important as implied in the Field-Feynman model. Since only color singlets have
been observed in nature so far, it is plausible that the screening of color charges
occurs early on in the process of hadronization [26]. This theoretical bias has been
incorporated, in varying degrees, in cluster models [27,5,10] and string models [11,3]
by partitioning perturbatively generated partons into color singlets.

Consider the tree diagram in fig. 2.2, which depicts the results of a LLA QCD
shower. An important conclusion from LLA QCD analyses is that color flow is pla-
nar: color lines (dashed) never cross (see ref. [26] and appendix A). Generalizations
of planar color flow beyond LLA QCD have been discussed in ref. [28]. String models

map the color singlets onto relativistic strings S; and S;, which subsequently evolve
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A —

Figure 2.2 Color flow (dashed lines) allows formation of colorless objects
by mapping partons onto strings S;, Sz, or by dividing the color charge
on gluons between adjacent clusters Cly, Cl,, Cls.

and fragment according to some, as yet unspecified, dynamical string model. In con-
trast, cluster models force the “final state” gluons, which contain two color charges,
to undergo the effective splitting ¢ — ¢g to form smaller singlets, C'ly, Cl; and Cl3,
called clusters. Clusters, as such, are then decayed into hadrons using some variant
of a phase space model. In the next sections we examine the content of string and

cluster models and point out their role in the (r)evolution of hadronization models.

2.4 Cluster Models

Cluster models are the simplest hadronization schemes to use the color informa-
tion provided by perturbative QCD. They make no assumptions about underlying
fragmentation functions (unlike the Field-Feynman picture and, as we shall see, the
LUND model) and hence avoid specifying a mechanism for the direct production
of hadrons. Cluster models advocate that, if LLA QCD can be used to get from

the initial 4* — ¢g vertex to massive colorless objects a few GeV above particle
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production threshold, then the subsequent condensation of low-mass clusters into
hadrons is a local, universal phenomenon that can be factored out of the overall
event evolution [5]. In essence, the gross properties of hadronization are generated
by LLA QCD, while many of the details, such as limited transverse momentum, are
attributed to low energy phenomena. This philosophy makes it possible to factor

the cluster model event evolution into three distinct stages:
1. Perturbative generation of partons with unique color flow;
2. Subdivision of color singlets into low-mass colorless clusters;
3. Independent decay of low-mass clusters according to a universal ansatz.

By relegating much of the physics to steps 2 and 3, the cluster model does not
have to make any assumptions about fragmentation functions or transverse momen-
tum distributions. Fragmentation functions are predictions of cluster models rather
than assumptions; transverse momentum is generated by the isotropic decay of low-
mass clusters. Step 3 is the only phase of the cluster model not presently calculable
by QCD and is assumed to be essentially independent of the process by which low-
mass clusters are created. Though the decay of low-mass clusters is an important
component, cluster models make no radical physics claims about this phase — for
most purposes a well-tuned black box would suffice. Conceptually, in fact, a “black
box” tuned to low-mass data is precisely what factorization requires! While the
decays of low-mass systems are implicit in all hadronization models, cluster mod-
els avoid “contaminating” the perturbative physics with the complications of low
energy phenomena.

The original cluster model, due to Field and Wolfram [27], proposed that low-

mass cluster hadronization was dominated by the two-body phase space decay

Cluster — Hadron + Hadron. (2.9)
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Noting that this scheme was adequate only for clusters with mass < 1.5 GeV,
Gottschalk [5] extended the decay spectrum of eq. (2.9) to include the subcluster
production

Cluster — Cluster + Hadron. (2.10)

This generalization was achieved by assuming a form for the mass spectrum of the
daughter cluster and parameterizing low energy data such as pp annihilation at
rest (see appendix B). The results were incorporated in Caltech-I [5], an improved
version of the Field-Wolfram model.

At the beginning of 1987 the only cluster model actively being pursued is BIG-
WIG (Branching Iterative Generator With Interfering Gluons), written by Webber
[10], which has essentially the same form as the original Field-Wolfram model. Web-
ber’s major improvement over the Field-Wolfram model is the incorporation of gluon
coherence effects (see appendix A) in the LLA QCD phase. While string models are
gaining prominence, BIGWIG attempts to account for the so-called string effect,
to be discussed in sect. 5.4, using the perturbative QCD effects suggested by gluon
coherence.

The fundamental conceptual drawback of cluster models is their treatment of
gluons in step 2 , when color singlets are formed [29,30]. While taking the “inde-
pendent” out of independent fragmentation, cluster models make use only of nearest
neighbor color effects. Like the Field-Feynman model, cluster models force splittings
of the form g — ¢q, which requires an assumption for the sharing of momentum.
Regardless of the sharing scheme adopted, there is potential for disaster when soft
gluons are generated, as is demonstrated by a simple example.

Consider the qgg system of fig. 2.3 where the four-momenta of the quark, an-
tiquark and gluon are, respectively, p,, pz, and p,. If two clusters are formed by

artificially splitting the gluon intoa ¢'¢" pair (dashed lines), then the cluster masses
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Figure 2.3 Gluon of momentum p, is artificially split into a quark-
antiquark pair (dashed lines) to form two clusters.

are

2

M} = [p, +py| =2E,E;(1 - cosb,,) (2.11)
2

M} = [pq+pq'] = 2EqEq/(l — cos 0@'), (2.12)

where we have assumed massless partons, and the notation for energies and angles
should be apparent. If the gluon were not present, there would be only one cluster,
of mass squared (p, + p;)%, which would decay into on-shell particles. Invoking the
infrared stability of QCD, there should be no observable difference between a ¢g
system and a ¢gg system in which E; — 0. Yet according to egs. (2.11-2.12), not
only are there two clusters in this limit, but both their masses vanish and hence
particle production is impossible! This state of affairs is clearly unacceptable. In
practice this disaster is skirted by giving the gluon a mass or by cutting off the
perturbative QCD showers early (before very soft gluons are generated). However,
since perturbative QCD likes to give soft gluons, cutoffs of this nature end up having
a disproportionately large influence on the physics predictions. Either “patch” com-

promises the original intent of cluster models so that a more consistent treatment
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of color effects is warranted.

2.5 String Models

The use of strings in hadronization completely avoids the problems incurred
by cluster models’ naive treatment of color. Strings are inherently insensitive to
soft and collinear gluon radiation and provide a dynamical mechanism for confine-
ment. Before demonstrating how the gluon problem is eliminated, we shall review
the origins of strings and consider the treatment of simple ¢g systems in various
implementations of the string model.

Strings were originally proposed by Nambu [31], Nielson [32] and Susskind [33]
with the intent of giving dual models of strong interactions a field theoretic basis.
It was originally hoped that strings might provide the field theory of the strong
interaction. Unfortunately, a consistent quantization of the theory requires the
dimensionality of space-time to be other than four. With the popularization of
Yang-Mills QCD in the early 1970s, “fundamental” string theory fell out of grace
until it was realized that “superstrings” might be the key to describing physics at
the Planck scale of 10733 c¢m and thus might be a contender for a unified theory
[34]. The question remains: What do we make of the salient string-like features on
hadronic length scales of 10~!2 cm, which string theory intended to describe in the
first place?

Theoretical conjecture [35,36] and now lattice calculations [37,38] lend credence
to the view that hadronic strings are the results of collective phenomena in non-
perturbative QCD. A popular view is that the QCD vacuum behaves as a type-II
superconductor in which the color flux lines between color charges separated by
more than about ~ .1 fm are confined to thin filaments with diameter O(.1) fm.
These filaments, or strings, give rise to a linear interquark potential, and provide a

plausible mechanism for confinement. This state of affairs contrasts that in QED,



19

QED FIELD LINES

QCD FIELD LINES (?)

ST N N
B;

Figure 2.4 The spreading of field lines in QED contrasts the proposed
containment of field lines in QCD.

where field lines spread out in the vacuum and the familiar 1/r potential dominates
for large separation of electric charge (see fig. 2.4). As quarks are separated, the
potential energy stored in the connecting string increases linearly. Eventually, there
is a nonzero transition probability to states containing an additional ¢g pair, at
which point a pair is “pulled” from the vacuum and two separate strings result (see
fig. 2.5).

The previous two paragraphs illustrate the interesting role of strings in hadronic
physics. While there is strong motivation for string-like phenomena on hadronic
length scales, most of the original artillery developed for analyzing strings antici-
pated them to be elementary objects — not some complex manifestation of QCD.
Yet we are not deterred. It is clear that what we want is not “correct” string theory
(in the sense of, e.g., superstrings) but rather a language in which we can describe
hadronic strings without having to specify their inner workings. Admittedly, there
is an interest in deriving string-like phenomena directly from the QCD Lagrangian
[39], but we should not have to wait for all of the details to be worked out before

we know what the basic dynamical consequences of strings are.
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Figure 2.5 Creation of ¢q¢ pairs leads to the creation of substrings.

At this point we must make clear the distinction between “pure” theory and
phenomenology. A fitting analogy is the response of a theorist and a phenomenolo-
gist when asked to model small amplitude lattice vibrations in a monatomic crystal.
While the theorist may try to derive the crystal structure and crystal potentials us-
ing just the properties of a bare atom, the phenomenologist would make use of the
knowledge that crystals exist, that there are equilibrium points about which atoms
vibrate and that the crystal potential at a given lattice site may be approximated
by a quadratic potential — resulting in a simple lha.rmonic oscillator model. The
phenomenologist would then go to experimental data to determine the value of the
“spring constant” implicit in his model. The moral is that we don’t have to know
everything to know something. Applying this philosophy to hadronic strings, we
want only the gross properties of strings — not the details. All we shall initially
require of our hadronic strings are that they provide a linear confining potential and
be consistent with special relativity.

The first string model of hadronization was proposed by Artru and Mennessier

[40] and Artru [41] in which they considered the breakup of ¢q systems. In 1 + 1
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Figure 2.6 (a) Space-time motion of ¢§ system of massless quarks in

CM frame. (b) Same system viewed from a frame boosted along —=z
axis.

dimensions the equation of motion of an endpoint quark in the CM frame of a ¢g

system 1is

A (2.13)

dt
where £ is the tension of a string at rest, which gives rise to the linear potential, p

is the quark momentum, and the function

, -1 p<o0
sign(p) = {+1 §>0 , (2.14)

ensures that the potential is confining. Eq. (2.13) is covariant but not manifestly
so. Comparisons of this simple model with Regge trajectories yield a string tension
k = .2 GeVZ. The space-time picture of the motion of a ¢g system of massless quarks,
affectionately known as a yo-yo, as viewed from its CM frame, is shown in fig. 2.6a.
Fig. 2.6b shows the same system as viewed from a frame boosted along the —=z
axis. Since the world sheet of the string is a geometrical object with properties
independent of any reference frame, it is not surprising that the invariant area A

(the two-dimensional analogue of proper time) swept out during one complete cycle
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Figure 2.7 A string system of massless quarks fragments into less mas-
sive systems by pulling massless quark pairs from the vacuum.

of yo-yo motion is a function of ¥ and the invariant mass W of the system, the only

invariants available. For a yo-yo it is easy to show that

M2

k2’

A= (2.15)

The implication is that the areas of the rectangles in figs. 2.6a,b are equal.

Fig. 2.7 schematically depicts how a ¢g system breaks up into a number of less
massive systems by pulling quark pairs from the vacuum. Note how the color field
vanishes in the immediate future of the space-time points where massless pairs are
created. However, if we want more than a schematic view, we have to specify the
space-time distribution of string breaks. The only true guideline we have in this area
is that we must not allow string breaks to produce substrings with masses below that
of a pion. Below, we discuss two alternative prescriptions for breaking strings: one
proposed by Artru and Mennessier [40], which predicts a continuous mass spectrum
of substrings and one proposed by the LUND group [11], with a substring mass

spectrum identical to the discrete mass spectrum of hadrons. Caltech-II adopts the
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Artru-Mennessier ansatz and follows it with the parameterized decay of low-mass
clusters (appendix B) while the LUND picture is reminiscent of the Field-Feynman
model in that substrings (which they identify with hadrons) are “peeled” off at each
node of a decay chain.
The Artru-Mennessier prescription for string breaking is the simplest covariant
ansatz possible. It assigns a uniform string-breaking probability P, per unit invari-

ant area of the string world sheet
dPyreak = PodA. (2.16)

This is simply a generalization of the familiar radioactive decay law in which the
probability of a point particle decaying during an interval dt of its proper time is
given by a decay constant. We shall henceforth refer to eq. (2.16) as the area law
or area decay law. The worrisome implication of the area law is that, if applied
literally, a massive ¢g system ultimately fragments into an infinite number of zero
mass strings, since no account is taken of the physical particle mass spectrum.
In practice, this is avoided by terminating string evolution once string masses fall
below a certain cutoff and then applying some variant of a phase space model. This
is precisely the approach taken in the Caltech-II model, where low-mass strings are
identified with low-mass clusters and are decayed using a parameterization of low
energy data.

The LUND model [11] for string fragmentation is based on the iterative chain
String — String + Hadron, (2.17)

except at the end of the chain, in which case a string decays into two hadrons. The
requirement that the produced hadrons be on-shell puts restrictions on the allowed
space-time distribution of string breaks. To illustrate this point, consider a toy

model in 1 4+ 1 dimensions in which there exists only one flavor of massless quark
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X

Figure 2.8 Mass shell constraints in the LUND model require string
breaks to occur along hyperbolas. Positions along a given hyperbola
are parameterized by the variable :.

and only one species of stable hadron, of mass M. Suppose we start peeling hadrons
off the ¢ end of a string as in fig. 2.8. Because of the relationship between the mass
of a string and the invariant area in one half-cycle, the break closest to the ¢ end
must occur somewhere along the hyperbola H;. If it happens that the break occurs
at point P;, then the next break must occur somewhere along hyperbola H,, and
so on for subsequent iterations. Given this set of constraints, and parameterizing
the break position along each hyperbola by the variable z, LUND seeks a string
fragmentation function f(z), which determines the space-time distribution of the
string breaks. Further requiring that the iterative application of f(z) yield the same
physics, on average, regardless of which end of the string hadrons are peeled off, it

can be shown [42] that the fragmentation function is restricted to be of the form
1
f(z)=N-(1~ z)te Mz (2.18)

where a and b are adjustable parameters and N is a normalization constant. Gener-
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alizing to many flavors requires, in principle, a corresponding increase in parameters
but in practice a = 1 and b = .7 GeV~? are used for all flavors. By starting from
a fragmentation function, the LUND procedure parallels the Field-Feynman model
except that the basic object undergoing fragmentation is a string system rather than
a single parton. Nevertheless, this is an improvement, since confinement effects are
taken account of explicitly.

As stated above, string models offer an attractive picture of gluons. When
generalizing the string model beyond ¢g systems, we invoke a dynamical principle,
namely, the principle of least action, to yield string motions. As will be discussed

more fully in Sect. 3.2, the string action is taken to be

m

5= —nf dT/ dov[(& - 2')? — 272, (2.19)

n 0
where

. oz* oz

ot = 8_7‘, IL‘Iu = a—o, (220)
and we employ a metric such that g% = —g" = 1;¢" = 0,7 # j. Our notation is such

that & - 2’ = 2*z],. The world sheet coordinates o and 7 are respectively spacelike
and timelike. Though eq. (2.19) is the same action as is used for bosonic strings
in “fundamental string theory,” we are using it with much less lofty expectations.
We are using it simply because we want a relativistic theory, and eq. (2.19) is the
two-dimensional analogue of the action for a point relativistic particle: we look
for extrema in the invariant area of a world sheet rather that for extrema in the
invariant length of a world line. Not only does this Lagrangian lead to a linear
confining potential as in eq. (2.13), but it also accommodates an interpretation of
gluons as energy- and momentum-carrying kinks on the string.

The string motion for one half-cycle of a symmetrical ¢gg system is shown in
fig. 2.9. During the first phase of motion the three partons diverge from each other,

all the while losing energy and momentum that is stored in the interconnecting
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Figure 2.9 (a)One half-cycle of string motion for symmetrical ¢gg sys-
tem. (b) Corresponding string motions if original gluon is forced to
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split into quark-antiquark pair.
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string. The gluon loses energy and momentum at twice the rate of the endpoint
quarks, since gluons carry twice as much color charge. When the gluon loses all of
its energy, two new oppositely moving kinks appear. Unlike the original gluon kink,
these new kinks carry no energy or momentum: a point that is not obvious unless
one examines the solutions to the equations of motion. These momentumless kinks
bounce off the ends of the strings and eventually recombine in the middle of the
string where energy and momentum again start to accrete. This process continues
in a periodic fashion.

If we reconsider the infrared gluon problem encountered by cluster models, we
can appreciate its resolution by the string picture. Fig. (2.9b) shows the space-time
development of a ¢g system, where the initial gluon is artificially split into a quark-
antiquark pair with an equal division of energy and momentum. The space-time
history of the two resulting yo-yos is certainly different from the full string motion
in fig. 2.9a. If we let the gluon energy go to zero, it is easy to see that the full string |
motion in fig. 2.9a reduces uniformly to that of a yo-yo, while the ansatz of fig. 2.9b
predicts two massless yo-yos separating at the speed of light. The insensitivity of

string models to soft gluons is manifest.

2.6 Review

The discussion in the previous sections was intended as an overview of different
approaches to hadronization. Here we wish to emphasize and summarize the most
important of these differences. We have presented the Field-Feynman model as a
zeroth order model, that parameterizes hadronization through a quark fragmentation
function that neglects QCD. We summarily dismissed that scheme since it is an
unrealistic hadronization picture.

Taking color into account, we arrived at cluster models based on perturbative

QCD and simple phase space arguments, in which fragmentation functions are pre-



28

dictions, not assumptions. Finally, we showed string models to be the most sophisti-
cated of the QCD-motivated hadronization pictures. But within a string framework
there remain vestiges of both the Field-Feynman model and cluster models. The
LUND scheme parallels the Field-Feynman model by assuming a “string fragmenta-
tion function,” while the Caltech-II picture embraces the cluster model philosophy
by adopting the Artru-Mennessier ansatz for string breaks, followed by a phase
space parameterization. These differences can be rephrased in terms of answering
the question: “At what stage of hadronization do hadrons appear?” LUND con-
tends that hadrons appear very early in event evolution by employing the iterative
chain

String — String + Hadron, (2.21)

in which string fragments are immediately identified with hadrons. On the other
hand, models such as Caltech-II take the conservative view that hadrons are the
results of the decay of low-mass clusters that are produced in a framework relatively
unconstrained by hadron mass shell requirements.

There are already hints that nature is actually a combination of the LUND and
Caltech-II pictures. Caltech-II must sometimes invoke the mechanism of eq. (2.21)
to reproduce the observed population of high z particles (sect. 5.3.4), while there
is evidence that the LUND fragmentation function of eq. (2.18) is at variance with
general expectations for quarks heavier than bottom (sect. 6.9).

We have compiled a pictorial summary of the models in fig. 2.10, assuming each
one is given the same perturbatively generated ¢gg set of partons. In all the models,
hadrons are represented by solid circles. Note how the Field-Feynman and cluster
models must effectively split the gluon into a quark-antiquark pair (dotted lines)
before they continue hadronizing the system. Whereas the Field-Feynman model
evolves each quark separately, without regard to color screening, the cluster model

immediately forms colorless clusters (circles), which then decay into hadrons.
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Figure 2.10 Schematic illustration of hadronization in the Field-

Feynman, Cluster (Webber), Caltech-II and LUND models. Graphical
notation is described in the text.
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forced
Field-Feynman gluon Cluster Model
splittings (Webber)
fragmentation parameterized
functions low-mass decays
strings

Figure 2.11 Summary of the features common to pairs of models. This
diagram expresses in words what fig. 2.10 illustrates schematically.

Both the LUND and Caltech-II models refrain from artificially splitting the gluon
by mapping the partons onto strings (horizontal bars). These string models differ
in that LUND forces string fragmentation to yield at least one hadron each time a
string breaks, making a direct connection between string fragments and a physical
particles. On the other hand, Caltech-II uses string fragmentation to produce low-
mass substrings, which are then identified with clusters. The clusters may break
into subclusters or decay directly into hadrons using a parameterization of low-mass
data.

Fig. 2.11 summarizes the essential features shared between pairs of the vari-
ous models. We have intentionally omitted differences in the implementations of

perturbative QCD.

2.7 Summary

In this chapter we have presented a brief history and critique of hadronization
pictures to show how Caltech-II incorporates our theoretical and phenomenological

biases into a sensible and appealing model of hadronization. Though we have only
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scratched the surface of the various models, this chapter has been rather drawn
out — our goal will be accomplished if the reader has a cursory knowledge of the
differences between the Field-Feynman, Cluster, Caltech-II and LUND models.
At this point it is helpful to restate the structure of the Caltech-II model. The
model makes hadronization tractable by factorizing event evolution into the three

stages

Relativistic String Low — Mass
+Area Decay Law Parameterization.

LLA QCD ® (2.22)

Each stage in eq. (2.22) has either theoretical or phenomenological motivations. The
first phase, the generation of multiparton systems according to leading log QCD, has
the most apparent ties to the Lagrangian framework of QCD. The string phase, in
which LLA partons are mapped onto relativistic strings and decayed into a collection
of colorless clusters, is an elementary dynamical embodiment of the phenomenon of
color confinement — the best that can be done with our current understanding of
nonperturbative QCD. The third and final phase, the parameterized decay of low-
mass clusters into hadrons, is mandated by the known complexity of hadronization at
small mass scales. In the context of a larger hadronization model, there is nothing to
be gained by proposing a dynamical model for cluster decay; there are many missing
pieces to the hadronization puzzle, so that progress will be made faster (and more
accurately) if we simply use what is empirically known from low-mass data.
Although this thesis is devoted primarily to the string phase in eq. (2.22), it
important to remember that the structure of the string phase will be determined
largely by the phases surrounding it. The string phase receives its input from the
LLA QCD phase, using the final state partons to define the world sheets of the
associated strings. Though we use the full equations of motion for the relativistic
string, we trust the semiclassical string model to give only the gross characteristics
of fragmentation and instead relegate the details of hadronization to the decay of

low-mass clusters.
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In the next two chapters we go into the string model in more detail. Though the
role of strings in Caltech-II is a conceptually simple one, implementing the model
in the form of a Monte Carlo program is straightforward only if we first develop
a familiarity with the basics of string kinematics. Chapter 3 outlines the general
concepts that make it easy to work with relativistic strings, while chapter 4 discusses

the specifics of implementing strings in Caltech-II.
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Chapter 3

Relativistic String Kinematics

3.1 Introduction

Caltech-II is the only hadronization model capable of treating arbitrary rela-
tivistic strings with an area decay law. Though Artru and Mennessier [40] were
the first to propose an area decay law for strings, they considered only the evolu-
tion of ¢7 systems. As outlined in Chapter 2, a proper treatment of QCD must
make allowances for gluons and be infrared stable. In this and the next chapter,
we demonstrate how the area decay law can be made compatible with the motion
of arbitrarily complicated relativistic strings. There is a natural division between
the material of this chapter and the following one. In this chapter we develop a
framework for the kinematics of relativistic strings, while the next chapter covers
the specifics of how this framework is applied to Caltech-II.

Since our goal is to incorporate the string model into a Monte Carlo program,
we need a completely unambiguous interpretation of string motion. While “pencil
pushing” calculations manipulate abstract quantities in their most general form, we
are instead interested in numerical specifics. With these constraints in mind, we
have developed a novel interpretation of strings in terms of momentum currents
[6], making the simulation of relativistic string motion and fragmentation a rather

trivial exercise.
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Before developing our formalism, it is worthwhile to point out why this hasn’t
been done sooner. Although the LUND model [11] is also based on relativistic
strings, its ansatz for string breaks uses fragmentation functions, as discussed in
Chapter 2. LUND sets up the world sheet of the string associated with perturbative
partons, only to use it to define the boundaries of the domain of their fragmentation

function. Because of the iterative nature of the LUND fragmentation chain,
String — String + Hadron, (3.1)

the world sheet of the daughter “recoil” string is nothing but that portion of the
parent’s world sheet that hasn’t already been identified with hadrons. LUND avoids
dealing with the complications of string kinematics by immediately identifying the
“new” piece of the world sheet (which is not simply a leftover piece of parent’s world
sheet) with a physical hadron.

As we shall see in the next chapter, the area decay law for string fragmentation
can be expressed in a decay chain format similar to LUND, where decay products are
successively peeled off one end of a string. The crucial difference is that Caltech-II,

unlike LUND, allows string decays of the form
String — String + String, (3.2)

where neither of the decay products is required to be on the mass shell of a physical
particle. Whereas the world sheet of one of the daughter strings may be identified
with an “unused” portion of the parent’s world sheet (like LUND), the detailed
shape of the other daughter’s world sheet (the object peeled off) requires additional
work. Since Caltech-II may want to fragment this other daughter using the area
decay law, we must be able to calculate the detailed shape of its world sheet. The
remainder of this chapter discusses how we can economically determine the world
sheet of any string produced during string fragmentation from a knowledge of the

original parton four-momenta.
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Our approach will be to deduce the string equations of motion starting from a
plausible string Lagrangian. We then propose an interpretation of the solution to
the equations of motion in terms of quarks and gluons and show how an arbitrary
initial parton configuration is mapped onto an associated string. Up to this point
the formalism is useful to either the Caltech-II or LUND models, since no mention
is made of mass shell constraints. However, we point out the technical difficulties
with the naive approach to string evolution through many generations as is required
by Caltech-II if an area decay law is adopted. Fortunately, by recasting the for-
malism in terms of momentum currents, we are able to make the propagation of
string configuration information through many generations transparent and easy to

implement.

3.2 String Equations of Motion

In sect. 2.5 we presented the simple solution to a phenomenological model of two
massless quarks connected by a linear potential characterized by a string tension «.
The intuitive picture we had in mind was that of a color flux tube stretched between
the color triplet charges of the quarks. Extending this picture to gluons, which
belong to a color octet, we might anticipate one of the two string configurations for
a q7g system pictured in fig. 3.1. In (a) a gluon is connected to a piece of “color
octet string” that meets two “color triplet” strings at a junction, while in (b) a gluon
is connected to two pieces of “color triplet” string. Case (a) has been discussed by
Montvay [43] and in general requires a separate string tension for the octet string.
We will consider the case in (b). Since the gluon is attached to two pieces of string,
the gluon loses energy twice as fast as quarks. This is to be compared with the
QCD results for the case of N, colors in which the ratio between forces on gluons
and quarks is 2/(1 — 1/N?2), which is 2 for N, — oo and 9/4 for N, = 3.

In (1 + 1) dimensions it is a straightforward exercise to extend the differential
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(a) (b)

Figure 3.1 Two types of flux tube connections in a ¢gg system.

equation eq. (2.13) to account for gluons. Yet in that format one must explicitly
account for the discontinuities in dp/dt that occur when partons, connected by
a common string, intersect. This complication is manageable for ¢ systems but
becomes unwieldy for arbitrary systems of partons. Furthermore, we ultimately
want to work in (3 + 1) dimensions where partons are not necessarily collinear. If
we dealt only with ¢7 systems, we could always boost to the rest frame of the string
and thus use the (1 + 1) dimensional theory. In general, however, there are many
nonparallel pieces of string within a color singlet so that there is no global string rest
frame. In that event we have either to set up local string rest frames or choose one
global frame and accordingly modify the effective string tension, which is a function
of the string’s transverse velocity. Neither alternative is aesthetically pleasing nor
particularly easy to implement, since each requires keeping track of bits and pieces of
strings. Fortunately, a more coherent treatment is possible by applying a dynamical

principle — the principle of least action.
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The action for a point relativistic particle of mass m is

S=—m/&, (3.3)

!t

where 7 is the particle’s proper time. Lorentz invariance is manifest since the action
is proportional to the invariant length of the world line of the particle. Generalizing
this concept to objects with one-dimensional spatial extent, we can write down the
Nambu-Goto [31] action for the string

S=—n!dA, (3.4)

where dA is an element of Lorentz invariant area, the integral is performed over
a region () of the string’s world sheet and « is a proportionality constant we can
later identify with the string tension in a frame in which the string is at rest. An

expression for dA follows immediately from the metric tensor, which we take as

g% = —g" =1;4" = 0,i # j, so that the action takes the form
™ T
S =« [dr [do\/(s a2 — 2737, (3.5)
no0
with
. Oz Oz
T, = a—:, "L':‘ = a—;, (36)

where o and 7 are, respectively, arbitrary spacelike and timelike coordinates on the
world sheet subject to the convention that ¢ = 0 and ¢ = 7 are identified with
the ends of open strings. The string we are describing is often referred to as the
massless relativistic string; however, the qualifier “massless” is somewhat misleading
since a segment of string of length / in segment’s rest frame has a mass of «l. It
is more appropriate to think of “massless” as referring to the explicit absence of
massive endpoint quarks in our formulation. The theory described by eq. (3.5) may
be viewed as a field theory in two dimensions (o, 7) of a four-vector valued field.

The results of analyzing this problem using the techniques of classical field theory
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appear in many detailed review articles [44,45,46,47], but we’ll reproduce some key
results for the sake of completeness.

Defining the string Lagrangian as

L= —K,\/(a': @' — 2re, (3.7)
we vary the world sheet and look at the change in the action

o=r F 7 0 0L 8 0L
_0_/‘”/‘1” la—raiu T 30 07 ] O
o= ! 0 123

(3.8)

oL
55 = / do 520

T=T2 aL
. + / dr 5;7“6%

If we fix the “initial” and “final” configurations of the string on the spacelike curves
T =7 and T = 7y, then an extremum in the action, S = 0, requires the integrand
in the first term of eq. (3.8) to vanish while the vanishing of the integrand in the

third term yields the Euler-Lagrange equations

0 0L 0 0L

e e, i e, = ] B

0r 0z, 0o dz 0 (3:9)
For closed strings the integrand of the second term in eq. (3.8) vanishes identically

since 0 = 0 and o = 7 are the same physical positions, but open strings must require

oL

=== 0 oc=0,~. (3.10)
m

Writing out the equations of motion explicitly, eq. (3.9) turns into the unsightly
behemoth

5 |:(:1: ) m')zL _ (:v')2.’i‘“] N 9 |:(x 33')5’;1 = (x)Z.’E:L:| -0 (3.11)

ar \/(:c - z')? — E2g" do \/(:c - a')? — i2g7
The arbitrariness of the parameters o and 7 is usually referred to as the reparame-
terization invariance of the world sheet — a reflection of the fact that the world sheet
is a geometrical object with properties (e.g., invariant area) independent of any co-
ordinate system. We can use this arbitrariness in o and 7 to simplify eq. (3.11).

We can partially fix o and 7 by going into the local tangent plane of the string and
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erecting orthogonal axes with the timelike 7 axis aligned with the time axis of a
global Lorentz frame. With these directions specified, we can also require the o and
7 basis vectors to have the same normalization. The only degree of freedom left
is in specifying the constant of proportionality between, say, 7 and the time. The

orthogonality requirement and relative normalization condition are summarized as
t-z' =0, 2422 =0, (3.12)

where the plus sign in the normalization condition reflects the fact that one axis
is spacelike, while the other is timelike. In the parlance of string theory, this is a
particular choice of gauge called the orthonormal gauge (a slight misnomer because
only the relative normalization is fixed). This choice of gauge reduces the equation

of motion to a wave equation

2 2
Pz, 'z,

or2 o2

=), (3.13)
where the boundary conditions for an open string are
z,(0=0,7) =0, z,(c=n,7)=0, (3.14)
and the continuity conditions for a closed string are
z,(0=0,7)=z,(0=m,7), #Me=0,7) = M oe=x,T). (3.15)

Using the usual techniques for extracting conserved currents from the Lagrangian,
it is easy to show that components of the momentum current on the surface of the

world sheet are

PP = —%[—;—, (3.16)
and
oL
Py = o= (3.17)

which in our gauge become

P¥(o,1) = k3*(o,T), (3.18)
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and

P*(o,7) = —kz™(o, 7). (3.19)

It is thus easy to see that the boundary condition eq. (3.14) is simply the statement
that no momentum flows out of the ends of an open string. If one works with closed
strings, the periodic boundary conditions in eq. (3.15) correspond to the uninter-
rupted flow of momentum around a loop. Since closed strings require only a slightly
different treatment from open strings, we relegate their treatment to appendix C
and hereafter focus our attention on open strings.

We can develop our intuition for the string motion if we familiarize ourselves
with the (o,7) coordinate system. Suppose we define 7 to be the time z° in the
global Lorentz frame from which we view the string, scaled by &, so that 7 = kz°

has the dimensions of energy. In this case

pu oz*

T 929’

(3.20)

so that the cumulative energy measured from one end of the string at a fixed time
is
a
W@:/ﬂ&:m (3.21)
0
We conclude that o is the cumulative energy stored in the string. This brings us to an
interesting point. Substituting the boundary condition of eq. (3.14) into the gauge
condition of eq. (3.12) implies that ends of the string move at the speed of light. This
is consistent with the view of identifying the string endpoints with massless quarks:
the vanishing of =/, at the ends of the string corresponds to point concentrations of
energy and momentum according to eq. (3.21). The extension of this interpretation
to gluons will become clear when we work out a simple example of a qgg system.
A particularly attractive feature of this formalism is that of homogeneity. Quarks

and gluons are, within this framework, energy- and momentum-carrying “kinks” or
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point discontinuities on the string. This view contrasts our previous view of quarks
and gluons as separate entities connected by a distinct string medium.

The canonical solution to the wave equation may be written in the familiar form

(0,7) = 3 [Ho4m) + Mo-n)+ [ g ae], (3:22)

where
f#(o) = z*(o,7=0), g (o) = &*(o,7=0), 0<o<m. (3.23)

Outside the interval o = [0, 7], f(¢) and g(o) are the even periodic extensions about
o =0 and 0 = 7 as a consequence of the boundary conditions. Our identification
of the o and T coordinates affords us an interpretation of wave disturbances moving
in opposite directions along the string.

We now have all the necessary ingredients for describing string motions. What
remains to be done is to make a correspondence between a set of partons and initial
conditions of the associated string. As an example, suppose we are given a ¢gg color
singlet, where all partons are massless and emerge from a common space-time point.
Their respective four-momenta py, py, p; have components of the form (p°, p, p?, p*).
For purposes of illustration we shall take x = 1 in eq. (3.21), so that ¢ is identically
the cumulative energy measured from one end of the string and so runs from 0 to
E,+ E,; + E; instead of 0 to m. With this convention we can start at, say, the quark
end of the string and use the color ordering to uniquely associate a parton with an

energy interval

q— o9 < 0 < oy,
g o0, < o < oy, (3.24)
qr— 0y < 0 L 03,

(3.25)
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where
(o) 0
ol _ | E 3.26
o | | E,+E, (3.26)
g3 Eq + Eg + Eq

Since the string initially has zero spatial extent, f(o,7) = 0. Furthermore, because
the partons are massless and we have chosen 7 = z° the “velocity” components of
g(o) are obtained by dividing the four-momentum vectors by their respective energy
so that we have

p/E; o00< 0 <oy

Flo)= pg/Eg o1 <o <oy (3.27)
pg/E; 02<0 < os.

The generalization of g#(o) to the case of multiple gluons is straightforward.
It might be pointed out that if LLA QCD is not used, color ordering for multiple
gluons becomes a nontrivial issue, since different orderings will in general lead to
different string motions [28].

In principle, we have a complete solution to problem of string motion for an
arbitrary set of partons. Using initial parton momenta, we have shown how to
generate the initial conditions for the wave equation so that one has only to insert
values into eq. (3.22). If it should happen that the string breaks at the point (7, 7)
and creates two new strings (as opposed to a recoil system and an on-shell particle a
la LUND), we could generate the initial conditions for each daughter by evaluating
z#(o,7=7) and &#(o,7=T7) for the parent; after defining the suitable extensions for
the initial conditions of the daughters, we may iterate the whole process to generate
a cascade of string breaks.

Practically speaking, a naive implementation of this algorithm leads to an “in-
formation explosion.” To understand this phenomenon consider an initial system of
a quark, antiquark and n — 2 gluons. From the discussion above, the function g#(o)
will be piecewise constant on n intervals. As the system evolves in time, the super-
position of left- and right-moving waves will, in general, make #(o,7) a piecewise

constant function on 2n — 1 intervals. Introducing a break in the string forces us
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to keep track of 2n intervals so that iterating this process through m generations
entails knowledge of 2™n intervals. An associated problem, albeit a technical one,
is that this scheme involves many intermediate calculations. Determining the ini-
tial conditions for the “next” generation involves forming some superposition of the
“current” initial conditions, which are themselves a result of previous calculations.

The above algorithm is a scenario in which we are forced to double our workload
each time a string breaks. In the next few sections we demonstrate how a frugal
decomposition of the wave equation requires us to keep track of only 2(n — 2 4 2™)
intervals. Better yet, we never have to generate new initial conditions from successive
combinations of old ones. The significance of this result is apparent when one
considers the prospect of fragmenting systems with large numbers of partons (n >5),

which are not uncommon in shower models of perturbative QCD [48,49] .

3.3 Waves Expressed In Momentum Currents

The apparent doubling of information each time a string fragments is easily
traced back to the conspiracy of superposition. In this section we reexpress the
solution to the wave equation to illuminate the fact that superposition may be
effected by a time dependent linear operator acting on the initial state of the string.
The initial state is expressed in terms of momentum currents so that a physical
interpretation of the solutions in terms of momentum flow becomes possible.

Because of its even extension about o = 0 and o = 7, the initial condition ¢#(o)
enjoys the properties g(o)* = g#(—0) and g#(r—0) = g*(7+0). Identical properties
are shared by the initial condition f#(¢) . The topology of the o domain best suited
to these circumstances is S!, that of a circle. f*(o) and g#(o) are equivalent to
functions defined on a unit circle such that f#(¢) = f#(—o) and g#(o) = g#(—0),
as demonstrated in fig. 3.2. From now on we shall regard f*(o) and ¢*(o) as

suitably extended and defined on the compact domain o € [0,27). Acknowledging
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Figure 3.2 A function symmetric about 0 and 7 (a) is equivalent to a
function defined on a circle (b).
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the contrived nature of the topology, we refer to the intervals [0, 7] and (7,27) as
being physical and unphysical, respectively.

We can make our lives easier if we note that the integral term in the solution to
the wave equation is responsible for the uniform space-time translation of the cen-
ter of mass of the string. This uninteresting feature may be eliminated by working
exclusively with 2’#(o, 7) and z#(o, 7). As previously noted in eq. (3.18), these quan-
tities are proportional to the components of the conserved four-momentum current
on the world sheet of the string.

The appearance of the combinations o £ 7 in the canonical solution eq. (3.22) is
routinely interpreted as waves moving in opposite directions along the string. We
may exploit this feature by defining local light cone frames at each point of the
world sheet by the reparameterization ¢é* = é;(r + o) . In these coordinates the

components of the momentum current are
K
Pi(o,7=0) = —=[¢*(c "“(a)]. 3.28
+(0,7=0) ﬁ[g()¢f()] (3.28)
We may then express ##(o,7) and z'#(o,7) as superpositions of currents

) 1
#lo,7) = /3 [P-(o+71,7=0) + Pi(c—7,7=0)], (3.29)

1
k2

A consequence of the boundary conditions is that P{(o,7=0) and P%(o,7=0) are

¥ia,r) =

[P-(047,7=0) — Py(o—7,7=0)]. (3.30)

dependent. In fact, ##(o,7) and z'#(o,7) are derived by operating on P{ (o, =0)
with combinations of linear operators that are independent of the initial conditions.
We can formalize this statement by defining a time translation operator 7'(r) and a
reflection operator R by their actions on an arbitrary function h*(c) defined on the
unit circle:

T(r)h*(0) = k(o ~7),  (3.31)

A

Rh*(0) = h*(—0). (3.32)
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T(T) rotates the contours of a function by 7 units in the positive sense and R reflects
the function in the plane defined by the diameter through o = 0 and o = 7. In this

language the relations
Pf(o,7) = T(£7)Pi(0,7=0), (3.33)

PY(o,7=0) = RPY(o,7=0) (3.34)
permit us to rewrite # and z’* as

1
kV2
1

[T(=7)R + T(r)| Pi(o,7=0) (3.35)

(o, 1) =

[T(=)& - T(r)| P4(a,7=0). (3.36)

2'*(e,7) =

KV2

These equations are the formal statements, that one may factor the solutions to
the equations of motion so that z#(o,7) and z"#(o,7) depend explicitly on only one
independent function. In sect. 3.5 we shall make implicit use of eq. (3.35) since it
clearly demonstrates the superposition of circulating momentum currents.

So as not to lose sight of our objective, a brief word on how strings break is
in order. As we have already pointed out, the area decay law assumes a uniform

probability P, for a break-per-unit invariant area of the world sheet

dPorea = PodA = Poy/(& - 2')? — 2232 dr do. (3.37)

Much of our analysis tacitly hinges upon the fact that the expression for dA, as
given in eq. (3.37), is a function of only the derivatives #* and z'#. For this reason
we are contented with the solutions of eq. (3.35) and eq. (3.36). Monte Carlo
implementations worry only about the momentum space picture of hadronization.
In the Caltech-II model, when low-mass strings are identified with clusters, the

spatial distribution of string momentum is disregarded.
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3.4 The Directrix vs. Momentum Currents

As a matter of completeness, it should be mentioned that the motion of complex
string systems has been described by other authors using a construct known as the
directrix [41,50]. Consider the motion of the & = 0 end of an open string, given
that the string emerges from a point at 7 = 0. The directrix is the world line of the

o =0 endpoint as given by eq. (3.22)

T

A#(r) = o#(0=0,7) = / g4(€) de. (3.38)

0
The algorithm for forming the directrix is simply a geometrical interpretation of the
above equation: given a ordering for the partons that define the string, lay down
the initial three-momentum vectors of the partons “tail to tip” until one exhausts
all the vectors. Then repeat the process for the vectors in the reverse order as in
fig. 3.3. Up to a scale factor, the piecewise linear curve produced will be the world
line of the endpoint o = 0.

The sufficiency criterion of the directrix is seen by noting that any point on the

world sheet may be expressed as

o, 1) = A(r+a) ; A#(T—a). (3.39)

More complex algorithms for the directrix could be formulated for cases in which
f*(o) # 0, but the momentum current formalism is much more amenable to ma-
nipulation for the general case and is especially transparent for visualizing the dis-
tribution of momentum when a string decays. Nevertheless, it should be apparent
that the directrix and Py (o, 7) contain the same information and are thus formally

equivalent.
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Figure 3.3 The ordered set of parton momentum vectors in (a) is as-
sembled to form the directrix in (b).

3.5 String Breaks and Topological Fragmenta-
tion

As promised, we shall apply our momentum current formalism of sect. 3.3 to
the problem of fragmenting strings. Consider what happens to the momentum
at the ends of a string. Since only the interval o € [0, 7] is physical, it would
appear that P{(co,7) corresponds to a momentum source at ¢ = 0 and a momentum
sink at ¢ = 7. Though this is true, P%(o,7) has characteristics complementary
to those of P{(o,7) such that local energy-momentum conservation is preserved.
From eq. (3.35) it is apparent that whenever momentum disappears at ¢ = 7 to
the unphysical interval o € [x,2x] via Pi(o,T), a compensating amount enters the
interval o € [0, 7] by courtesy of P%(o,7). The utility of this formalism is that
the reflection of momentum from an endpoint is inherent; considering P} (o,7) and
P%(o,7) individually, we note that they circulate uninhibited by the presence of the

string boundaries so that the endpoints 0 = 0,7 serve only to define the transition
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Figure 3.4 (a) P; circulates on a domain. (b) A break occurs at & and
corresponding points on the physical and unphysical sides are associ-
ated. (c) Two new domains are formed by pasting.

between the physical and unphysical intervals of the domain.

This interpretation of momentum flow has a direct application to the problem
of a string fragmenting into two daughters. The relevant question is: “What is the
equivalent of P{(o,7=0) for each of the daughters?”r Suppose the parent fragments
at (c=0,7=7). At this instant the momentum current along the positive branch
of the light cone is P} (oc—7,7=0). From the above discussion it follows that for the
first daughter we identify the point & = & — € on the physical region with the point
o0 = 21 — & + € on the unphysical region and take the limit et — 0 (see fig. 3.4).
Similarly for the second daughter, we identify 0 = 6 + e and 0 = 27 — 7 — € .
The reason this algorithm works is that a break in the string creates two new string
ends. Since we already know how the momentum currents behave at endpoints, it

is a trivial matter to form the momentum currents for the daughters. The function
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P{(c—a,7 = 0), now defined on a disconnected domain, is used as the initial
condition for the daughters and subsequently may be evolved using egs. (3.35-3.36).
The evolution of a string through many generations of cuts is equivalent to literally
partitioning the domain of the original P} (o,7=0) function among all of the final
state strings.

To see how fast the information increases in a fragmentation process, consider an
initial string with n partons. The initial circular domain will have 2n — 2 intervals
on it. The factor of 2 arises from the even extension of the initial conditions to
the interval (7,27) and the —2 compensates for double-counting the intervals that
straddle o = 0,7. The fragmentation of the string and the associated cutting
of the domain force us to keep track of two new intervals. If the fragmentation
process continues geometrically, then after m generations we must follow a total of
2(n — 2 4+ 2™) intervals. Not only have we tamed the naive prospect of having to
deal with n2™ intervals, but more significantly, we see that the piecewise constant
momentum currents of the daughters take on values drawn only from the original n
values that comprise the momentum current of the original string: no intermediate

calculations are required!

3.6 Summary

In this chapter we have shown how the full equations of motion for the relativistic
string may be interpreted in terms of momentum currents on the world sheet of a

string. This interpretation allows an accurate, efficient implemention of the string

model in Caltech-II.
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Chapter 4

String Dynamics in Caltech-II

4.1 Introduction

Having discussed the kinematics of the relativistic string in chapter 3, we now
turn to the question of dynamics. Even though the relativistic string embodies many
of our theoretical prejudices concerning partons and confinement, it is a semiclassical
model and as such has no clear connection with final state particles. We must
supplement the kinematics with a mechanism by which strings ultimately lead to
on-mass-shell particles.

The obvious approach would be to “do it properly from the beginning” by quan-
tizing the relativistic string. This is more easily said than done. Since the quantum
hadronic string (unlike the superstring) is a composite object, it is not easily ex-
pressed in terms of quarks and gluons, let alone stable particles. Little work has
been done on the dynamics of the quantum string — mainly static flux tubes have
been investigated [38]. Though string potentials have been used to predict the spec-
troscopy of bound systems of heavy quarks [51] and exclusive decay modes of mesons
[52], the dynamical degrees of freedom of the string have been largely ignored. Until
more is known about quantum sfring dynamics and even then, unless the theory
is computationally tractable, we will explore the consequences of the semiclassical

model.
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While it is clear that we have to augment the semiclassical relativistic string
with additional rules to make allowances for quantum effects, we must avoid the
temptation of overelaborating the model. The number and nature of “patches” is
a function of the detail we wish to extract from the string. As a rough guideline,
each modification introduces a new parameter or degree of freedom. Caltech-II
minimizes the number of refinements to the basic string model by relegating the
details of hadronization to a parameterization of the decay of low-mass strings. By
not asking too detailed questions, we can successfully separate the gross dynamics
of the relativistic string from the processes that lead directly to particle production.

This chapter outlines the modifications made to the basic string model in Caltech-
II. In essence, we shall present the details of string fragmentation. So as not to be
overwhelming, we will introduce complications one at a time. Starting with the

kinematics of the relativistic string and its associated massless quarks, we will

1. introduce the area decay law for strings and explain how causality constrains

its implementation;

2. devise a simple picture for evaluating the invariant area of arbitrarily compli-

cated world sheets;

3. make the semiclassical string respect the physical particle mass spectrum by
terminating string evolution below a certain mass scale and then use a param-

terization of low energy hadronization data;

4. specify how to handle quark masses and flavor abundances.

4.2 Invariant Area Sampling

As has been pointed out in chapter 3, Caltech-II employs an area decay law that

assumes a constant probability for a string break to occur in an element of invariant
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area

dPoreax = PodA, (4.1)

where our choice of gauge in eq. (3.12) with 7 = xz° permits us to express dA as

dA = —1—(1 —v?)dodr, (4.2)

e
where v is the transverse velocity of the string. Since o is an energy coordinate

whose scale is given by the initial parton energies and since 7 also has the dimensions

of energy, all the physical constants may be lumped together by defining

P,

At first, this result might seem surprising, but a closer look reveals that we are not
getting something free. Indeed, by combining x? with Py, we lose access to the scale
parameter that gives the physical size of the strings. Fortunately, we don’t need
this information since we already know that hadronic strings are small on the scale
of laboratory detectors. As pointed out before, present hadronization models (in-
cluding Caltech-II) are essentially momentum space pictures — all particles emerge
from a point. If so desired, one can add, by hand, information on the position
of decay vertices of unstable particles that travel macroscopic distances, but this
phenomenological detail is essentially irrelevant to the physics we are attempting to
describe.

We can now concentrate on putting the area decay law to work. Noting that
eq. (4.1) is the kernel for a Poisson process, we can reexpress it in terms of the

differential probability that the first break occurs after an invariant A is sampled:
dPyreax(A) = Poe~FPo4 dA. (4.4)

The obvious question,“What are the boundaries defining the invariant area A?”, is

a fundamental one, which warrants close attention if causality is to be obeyed.



54

Ol
Qa

(a) (b)

Figure 4.1 (a) Solid and dashed curves bound the same invariant area
but only the solid curve is consistent with causality. (b) A break at P,
results in P;’s not being on the world sheet.

To preserve causality, area must be swept out so that A increases as the boundary
is expanded towards the absolute future. The world lines of the quarks must form the
boundary in the absolute past of any point in the region contributing to A. This idea
is best illustrated with the aid of fig. 4.1, which depicts the world sheet of a simple
qq system. Suppose a curve bounds an area A chosen according to the distribution
in eq. (4.4). In a ¢qg system, a break will occur with equal probability anywhere
along the boundary provided that the boundary is consistent with causality.

The dashed curve in fig. 4.1a is inadmissible since there are points on it (e.g.,
P,) that lie in the absolute future of world sheet points not contained within the
boundary (e.g., P;). If a point is not interior to the region defining A, there is a
possibility that the string might break at that point. For example, if a break were
to occur at P,, the screening of the created color charge would change the form of
the world sheet to that depicted in fig. 4.1b, so that there is no flux tube at P;. All
world sheet points in the absolute past of a point on an admissible boundary must

already lie within the boundary in order to have a self-consistent Lorentz invariant
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Figure 4.2 Prototype admissible boundary curve for the area decay law.
Area A is the union of the area bounded by the backwards light cones
and the edges of the world sheet.

theory. This is nothing but a fancy way of saying that we can break the string only
where it exists. The solid line in fig. 4.1a is an admissible boundary.

We can quantify our causality condition quite easily. Fig. 4.2 shows a prototype
admissible curve. It is constructed by taking a number of points and letting the
area A be the union of the areas bounded by their backwards light cones and the
edges of the world sheet. From this simple example we can extract the two essential

features of an admissible curve #(z):

e t(z) must be single valued (¢(z) has a unique inverse)
e t(z) must not be timelike ( |dt/dz| <1).

(4.5)

Other points to be considered when generating string breaks are the incorpo-
ration of local color screening and the avoidance of double-counting invariant area.
These principles can be illustrated by extending our above example. Suppose a
break occurs at P; in fig. 4.1a. If no further breaks were to occur, the world sheet
of the system would look like fig. 4.3a. The boundaries of this new world sheet are

the ones we must use in the area decay law to determine the position of subsequent
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Figure 4.3 (a) Both daughter strings contribute to the invariant area A,
bounded by C; and C>. (b) Only one daughter contributes the invariant
area A; bounded by C; and Cj.

breaks.

Suppose the area decay law says that an additional area A, is swept out before
the next break. Any admissible curve obeying the guidelines outlined above would
provide a suitable boundary, provided we start sweeping out area from where we left
off and not do count any of the area contributing to A. In general, such a boundary
would enclose invariant area associated with each of the daughter strings as indicated
By curve (5 in fig. 4.3a. However, as a simplifying assumption, Caltech-II evolves
each daughter color singlet independently, so that we can ignore situations where
decay products interact with each other — Caltech-II considers boundary curves

like Cj, in fig. 4.3b, which associate all of the area A, with one daughter.

4.3 Calculation of Invariant Area

Though the area decay law tells us when enough invariant area A has been

swept out and the causality criterion tells us where A can be swept out, neither
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tells us how A is to be calculated. To avoid distending our imaginations in an effort
to visualize the convoluted world sheet topology of multiparton strings, we shall
show in this section that working in (o, 7) space greatly facilitates the calculation
of invariant area. It would be difficult to overstate the importance of this somewhat
technical point, since this point and the momentum redirection formalism discussed
in sect. 3.5 are the two key ingredients in the string evolution phase of Caltech-II.

In our gauge, an area element may be expressed in terms of momentum currents

by
dodt

K2

dA = ¢*dodr = Py(o,7) - P_(0,T) (4.6)

Since the factor of 1/x2 is absorbed into the definition of p., our task is to evaluate
the contraction of the momentum currents.

Throughout this section it will be useful to have a specific example in mind.
For this purpose consider a ¢gg system in its CM frame, where the original parton

energies are

E, = 4GeV
E, = 3GeV (4.7)
Eq‘ = 9 GeV,

so that the total string energy is Eguing = E, + Ey + E;. Fig. 4.4 illustrates the
mapping of this system to the circular o domain at 7 = 0. As discussed in sect. 3.3,
the partitioning of the circle is a way of visualizing the even extension of the initial
conditions about ¢ = 0 and 0 = Esuing. The circle may be divided into four
intervals (as opposed to six) because the even extensions of the intervals touching
o =0 and ¢ = Eing produce adjacent copies of themselves. This results in intervals
of “length” 2E, and 2E; straddling the points ¢ = 0 and 0 = Eqying, respectively.
In contrast, the central gluon is associated with two intervals, each of length E,.

In any case, each interval is uniquely associated with one of the original partons
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Figure 4.4 A ¢gg system with energies E;, = 3GeV, E; = 5GeV and
E, = 4GeV is mapped onto a circular ¢ domain.

(though there are generally more intervals than partons).

We begin our development by recalling how Py(o,7 = 0) in eq. (3.28) is defined
on the circular ¢ domain. As time progresses, P,(o,7) is obtained by rotating
P, (0,7 = 0) according to eq. (3.34) and then projecting out the portion defined on
the physical interval of the domain. We can form an intuitive “space-time” picture
of this evolution if we map the world sheet parameterization onto a cylinder where
the circular o domain is identified with the compact dimension of the cylinder and 7
is identified with the long dimension. In our example the evolution of P, (o,7 = 0)
can then be visualized as the partitioning of the “world cylinder” into 4 winding
bands, each associated with a parton, as illustrated in fig. 4.5a.

Since only the interval o € [0, Eguing is physical, we project the corresponding
half of the cylinder onto a rectangular strip as indicated by the solid lines in fig. 4.5b.
The flow of P, partitions the strip into diagonal bands, each of which is uniquely
associated with one of the original partons. Using eq. (3.34) to relate P_(o,7)
and P, (o,7), it is evident that the trace of the interval boundaries of P_(o,7) are
obtained by projecting the unphysical portion of the world cylinder of P, (o, 7) onto

the physical portion of the rectangular strip as indicated by the dashed lines in
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Figure 4.5 (a) Helical bands of P{ on the world cylinder. (b) Physical
region of world cylinder mapped to a strip.

fig. 4.5b. The end result on the rectangular strip is a network of intersecting bands
corresponding to the superposition of bands of P.(o,7) and P_(o,7).

The evaluation of invariant area is now straightforward. The world sheet is
effectively divided into many regions over which P,(o,7)- P_(o,7) is constant. The
identification of each band of P, with a particular parton permits us to label each
region of superposition with a pair of parton indices as indicated in fig. 4.6. The
first index corresponds to the parton associated with the Py current in the region,
while the second index corresponds to the parton associated with the P_ current
in the region. In the general case, suppose we go to the region of superposition of
currents corresponding to partons z and j. Since the parent string formed from the

original partons initially has no spatial extent, the interval with indices (7, j) has
Py(0,7)- P_(5,7) = P - PP = 2(1 - costy) (43)
+\9, =\ + + 9 1) :

where Pf) is the positive light-cone momentum current density associated with

parton 7 and 6;; is the original angle between the three-momenta of partons ¢ and



Figure 4.6 Each region of superposition on the (¢, 7) plane is uniquely
labeled by a pair of parton indices.

J. An immediate consequence is that there is no contribution to the invariant area
at the intersection of bands corresponding to the same parton. Such regions of the
world sheet correspond to the energy grains associated with quarks and gluons.

Fig. 4.7 shows the correspondence between regions on the (o,7) plane and the
instantaneous configuration of a ¢gg system. The shaded areas in fig. 4.7a correspond
to the superposition of oppositely moving currents originating from the same parton
— which, according to eq. (4.8), give no contribution to the invariant area. The
borders at o = 0 and 0 = Ejging are always shaded, corresponding to the lightlike
point concentrations of energy and momentum at the ends of the string. The central
shaded region at 7 = 0 corresponds to the gluon kink. From this diagram it is easy
to see that the gluon loses energy twice as fast as the endpoint quarks.

Fig. 4.7b shows the instantaneous string configuration corresponding to each of
the times marked off on the 7 axis in fig. 4.7a. Each configuration is a function of the

spacelike components of the original parton momenta (as can be seen from the di-
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T —

Figure 4.7 (a) Shaded regions in (o,7) space give no contribution to
invariant area. (b) String configurations corresponding to times indi-
cated on 7 axis. The quark end is represented by an open circle, the
antiquark end by a solid circle.

rectrix formalism of sect. 3.4 and hence cannot be obtained from the (o, 7) diagram,
which contains only the timelike (energy) information. In this sense figs. 4.7a,b are
complementary. For example, the (o, 7) diagram allows us to distinguish between
momentumless kinks and bone fide gluon kinks on the string. The second string
configuration in fig. 4.7b corresponds to the moment at which the gluon kink has
lost all of its energy. Immediately afterwards, the kink breaks up into two oppositely
moving kinks. The fact that these two new kinks are momentumless is only obvious
after inspecting the (o, 7) diagram.

Now that we have a convenient way to calculate contributions to the invariant
area, we must translate admissible boundaries on the world sheet to admissible
boundaries in (o, 7) space. The causality criteria restricting the form of the area
boundaries on the world sheet have direct analogues in (o, 7) space. In fact, ezactly

the same constraints apply to a boundary 7(¢) as to ¢(z) in eq. (4.5) if we make
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Figure 4.8 Lightlike (dotted) and spacelike (dashed) boundaries define
the same invariant area. These particular choices of boundaries facil-
itate the calculation of the cumulative invariant area used in the area
decay law.

the replacements ¢ — o and ¢t — 7. Though a particular choice of boundary is
not manifestly covariant, the consistent application of a choice ultimately leads to
the same physics in the distant absolute future. With this in mind, we choose the
boundary that makes calculations the easiest.

An obvious choice for a moveable boundary is to use a lightlike line as indicated
by the dotted line in fig. 4.8. The fixed boundaries are the lines 7 = 0, o = 0 and
0 = Egtring. Since none of the triangular regions contribute to the invariant area (see
fig. 4.7a), the bounded invariant area is a piecewise linear function of the moveable
boundary position. Another possibility is to use a moveable boundary parallel to
the o axis indicated by the dashed line in fig. 4.8. With this choice the bounded
area is a piecewise quadratic function of the boundary position. One choice is as
good as the next — even a mixture is permissible as long no double counting occurs

and causality is obeyed.
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Before pointing out the deficiencies of the area decay law, we end this section with
an interesting aside. Using the tools developed above, we can prove a fundamental
result regarding the invariant area A; cyce SWept out during one complete cycle of
string motion. In sect. 2.5 we pointed out that dimensional considerations suggest
that A; cyae be a function of W2, the invariant mass squared of the string — the
only available Lorentz invariant. It is a simple matter to determine this function
exactly. We will continue to use our ¢gg system, but the generalization to other
systems should be apparent.

Consider once more fig. 4.5, which shows one complete cycle of motion in (o, 7)
space. The periodicity of the motion allows us to identify the top and bottom of the
figure (i.e., 7 = 0 and 7 = 2FE;ng). If we recall how the semi-infinite (o, 7) strip
was obtained from the world cylinder, it should be ébvious that each band of P,
(and hence each band of P_) winds around the world cylinder exactly once during
one cycle of string motion. This is significant since it means that the invariant area
of one cycle on both sides of the world cylinder is exactly twice the area A; ¢yqe On
just the physical side. During one cycle on the world cylinder (including both the
physical and unphysical sides), each band of P, intersects each band of P_ exactly
twice. Thus, we can sum all the contributions to the invariant area by summing
over all the possible intersections of bands of P, and P_.

We can make our demonstration simpler if we artificially divide the o intervals
corresponding to the endpoint quarks into two equal parts. This results in there
being exactly twice as many o intervals on the circular domain as there are associated
partons. The sum over band intersections on the whole world cylinder can then be

written as

8 Y
2A; cycle = E ' ‘Z_ P_f_) . PEJ) %712,
$J=9,9,9

where the sums are over all partons, and PL‘) and E; are, respectively, the momentum

(4.9)

current densities corresponding to the parton : and the original energy of parton



64
t. The factor of 8 = 2 X 4 accounts for a combination of symmetries. A factor
of 2 reflects the topological necessity of each band of P, band intersecting each
band of P_ twice during one cycle. The remaining factor of four is a result of our
construction in which there are twice as many bands of P, (and P-) as there are
partons. This factor of four allows us to express a double sum over bands as a double
sum over partons. The factors of v/2 arise from the fact that the rectangular regions
of intersection are inclined at 45° to the o axis. Because our string has no initial
spatial extent, we have PiE; = p;/v/2 (no sum implied), where p; is the initial four
momentum of parton i. This allows us to rewrite eq. (4.9) as
AT = 5 T nen
%J=999

1
= (P +Pitp,) (4.10)

The above argument may be generalized for arbitrary open strings, including
those that do not arise directly from perturbative partons, with the same result.

The analogous result for closed strings is

2
Aldosed) _ W (4.11)

1cycle — 2'92’

These results are the simplest ones consistent with the naive dimensional argument,
yet an explicit analysis was required to get the multiplicative factors correct. It
may have been noted from fig. 4.7 that there is a symmetry between the first half
and second half of one complete cycle. This symmetry can be summarized by the
equation

W2

AT e = 57" (4.12)

These analytical results concerning areas swept out in complete cycles make finding
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the location of a break easier. In a momentum space picture, the relevant quantity

is not the invariant area A but rather A mod A; cycle-

4.4 The Transition From Strings to Clusters

Since the area decay law contains no provision for stopping string fragmentation,
it ultimately results in an infinite number of zero mass strings — as a semiclassical
model it knows nothing of the physical particle mass spectrum. The question at
hand is “Can we retain the desirable features of the semiclassical area decay law
and still end up with physical particles?” The answer is a qualified yes. The
identification of a string with a stable particle imposes severe constraints on the
world sheet location of viable string breaks and is contrary to the spirit of the area
decay law. By limiting the frequency with which we identify strings with particles,
most of the string fragmentation is still controlled by the basic area decay law.

We have little reason to believe a priori that we should be able to identify a string
in our semiclassical model with an on-mass-shell particle. To avoid this dilemma,
Caltech-II parameterizes the decays of low-mass strings into hadrons, since that is
the least well understood stage of hadronization. Once the mass of a string falls
below a cutoff mass, the string fragmentation picture is abandoned in favor of the
parameterization of low-mass data described in appendix B. Since the parameteri-
zation is a function only of mass and flavor, we call a low-mass string to be decayed
this way a “cluster.” Though it is just a matter of terminology, we will refer to an
object as a string if it decays via the string model and call it a cluster if it decays
via the low-mass parameterization. In this section we will discuss the motivation
and implementation of the transition from strings to clusters.

Because of our reluctance to identify strings directly with hadrons, we must not,

at the very least, let a string mass fall below the strong interaction, two-particle
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production threshold Wjp, corresponding to the valence flavor of the string. By
valence flavor, we mean the flavor of the string’s endpoint quarks or diquarks. For
example, the mass of a uu string must never be less than Wy (utt) = 2m 0. Even
this constraint is still relatively loose since it condones the use of a string model down
to a regime where the physics is highly nonperturbative. It makes sense to trust
a semiclassical string model of fragmentation only in the region of high quantum
numbers (i.e., the semiclassical limit).

A string is not a well-defined object in a system just above threshold. With
very little energy available to the string degrees of freedom, the string length may
be comparable to its transverse dimensions. This is precisely the nonperturbative
region we wish to avoid modeling. A parameterization of the hadronization of low-
mass objects provides a convenient solution to this problem and implicitly tests the

hypothesis of being able to factor the hadronization process into the stages

Relativistic String Low — Mass
+Area Decay Law Parameterization.

LLA QCD ® (4.13)

To make the transition from strings to clusters, we introduce a parameter W,
which is roughly the maximum amount of invariant mass above the two-particle
threshold that an object can have in order to be identified as a cluster; otherwise,
the object is identified as a string. In order to provide a smooth transition be-
tween strings and clusters, we adopt a continuous distribution for Pying(W), the

probability that an object of invariant mass W is treated as a string

0 W< W2pth .3 Wmax7

Puuing(W) = { 1 — e~ 5pe(W=-Wapm—Wmax)®  therwise (414)

which is plotted in fig. 4.9.
In principle, Wiax could be a function of flavor but it is found empirically that
a universal value of Wy, = 2.2GeV is sufficient (see sect. 5.3). The need for the

cutoff Wi,y is consistent with the expectations of the quantized string. Artru [53],
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Figure 4.9 Probability that a uu object of mass W is identified as a
string where Wyay = 2.2GeV, p. = 1.6GeV~2 and Wapth = 270 GeV .

Andersson and Hoffmann [54], and Artru and Bowler [55] have recently revived
interest in the general features of the quantized string. It is worth reproducing some
of the key points of these authors’ work that is relavent to Caltech-II.

Whereas the area decay law gives the probability e~ Fo4

of a string sweeping out
invariant area A, a quantum treatment should deal with amplitudes. With this in

mind, one would expect the amplitude for string propagation to be proportional to

e~trde=Pod/2 (4.15)

#Action and the second factor is

where the first factor is the path integral amplitude e
the square root of the area decay law probability. When this amplitude is summed

over histories, the propagator for a string of mass W has a sequence of poles at

o7kl
W?= —— (4.16)
|1 + z;fl

where [ is an integer and, in the limit Py — 0, the poles give the Veneziano mass
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spectrum W}? = 2r«l. Expanding the propagator about a given W, gives

K
2 _ W2 4 ;PoW?
%% W =i,

(4.17)

which implies each resonance has a full width I' = _E%CVK. The overlapping of these
resonances in the region PoW?/2k? > 1 suggests a continuum. With Py/2x% =
.5GeV~2, the region starts about W ~ 2GeV, which should be compared to the
spacing in the Veneziano mass spectrum. Though only a guideline, this simple
picture lends support to Caltech-II, which allows the creation of strings with a

continuous mass spectrum above a cutoff Wi,a.

4.5 String Evolution with Massive Quarks

Up to this point we have restricted our discussion to the case of massless partons,
since they arise quite naturally as point concentrations of energy and momentum on
the relativistic string. There have been many attempts at developing a formalism
to accommodate nonzero masses for endpoint quarks [56,57]. One approach is to
supplement the relativistic action for the string with the relativistic action of two
massive endpoint quarks. The resulting equations of motion partition the system
into three distinct phases (Q,Q, string) with mutual boundary conditions controlling
the exchange of energy and momentum between the phases. These modifications
give rise to nonlinearities that void the simple treatment afforded by massless par-
tons, except for the simplest of cases. A partial solution to this problem is to include
quark masses by evolving an associated massless string to which additional unphys-
ical string segments have been added to account for the boundary conditions of
massive quarks.

Consider first a simple 1 + 1 dimensional QQ yo-yo of total CM energy W

and Mg # 0. The naive string equation in eq. (2.13) can be solved for the quark
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String Motion With Massive Quarks
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Figure 4.10 String evolution for (a) a simple Q@ system with Mg # 0,
and (b) the associated massless ¢ system.

trajectories during the first half-cycle of motion

1 (W
Tq,a(t) = i; 5~ \/Ma + (Po— nt)2] for 0 <t < ty)s, (4.18)

where

2P,

is the time it takes to complete one half-cycle, and

p, = YW =AM

5 (4.20)

is the magnitude of the initial heavy quark three-momentum. Fig. 4.10a shows
the evolution of this system for times 0 < t < ¢/, in the overall CM frame. The
horizontal lines are the string configurations at fixed times.

We map the QQ system onto an associated massless qq state as follows. The ¢g

system be taken to have W(qq) = W(QQ) and
po(g) = Po(Q) = Pod, (4.21)

Po(q) = Po(Q) = —Pos. (4.22)
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Energy conservation then requires that the initial string length of the massless quark
system be nonzero

Azo=2Az" = W—;—Q&. (4.23)

The motion of this associated massless quark system for times 0 < ¢ < t,/5 is shown

in fig. 4.10b.
The dashed curves in fig. 4.10b are curves zy, 5(¢) defined by

[po(0) + 5 [ot) — 20)]| ~ 230 = 113 (1.24)

[pa(t) + K ea(t) — (0]~ #3) = M3, (425)
where z, () are given by eq. (4.18) with Mg = 0. The association of massless parton
string states with massive quark systems is done by identifying the massive quark
endpoints in fig. 4.10a with the extended “endpoint plus string segment” regions of
fig. 4.10Db,

“Q()" — “q(t) + Az(2)", (4.26)

where the length Az ~ |z,(t) — z((¢)| is determined by mass shell constraints as in
eqs. (4.24,4.25).

The incorporation of string breaking according to the area decay law is trivial.
Potential string break points for the massless quark system in fig. 4.10b are generated
according to the simple area decay law, assuming all points on the world sheet
are accessible. However, if the provisional break position lies within the string
segment associated with quark masses according to eq. (4.26), the break is summarily
rejected. A new prospective break point is then generated by continuing to sample
invariant area for the simple decay law, making sure that no region is counted twice.
It is straightforward to show that uniform breaking with rejection in the string region
of fig. 4.10b is equivalent to uniform breaking in the string region of fig. 4.10a, since

it is just a routine application of the Monte Carlo acceptance-rejection method [58].
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Extensions of this algorithm to multiparton strings in 3 + 1 dimensions are
straightforward, though nonunique. In more than 1 4+ 1 dimensions, there is an
ambiguity in the orientation and velocity of the additional string segments. (There
is already an unrelated 2-fold orientation uncertainty in the 1 + 1 dimensional ex-
ample of fig. 4.10.) One can impose additional constraints involving combinations
of other parton momenta, but such an ansatz is not unique and in general gives rise
to different physical situations. In Caltech-II the three-momentum of the massless

quark associated with a massive quark is

#lq) = F(Q), (4.27)

and the length of the extra string segment at time ¢ = 0 is again given by

Ae, = Fo(@ — [B(QI

K

(4.28)

The additional string segment is assumed to lie along the initial momentum direc-
tion. We have investigated other initial orientations for this string segment and find
that the overall physics results are insensitive to the choice made.

The possibility of nonzero quark masses raises an interesting point concerning
pair creation and string fragmentation. In order to conserve energy and momentum,
a finite length of flux tube must condense into heavy quarks if the probability of
pulling heavy quarks from the vacuum so dictates. In our semiclassical model, this
means that finite portions of the world sheet effectively “disappear” or are attributed
to the simulation of the mass of heavy quarks. This problem would persist even if
we had exact solutions to the nonlinear equations governing massive quark systems.
Nevertheless, we give all massive quarks the same treatment since we can’t expect
to simulate the quantum process of particle production that appears to be nonlocal

in our semiclassical model.
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4.6 Flavor Selection

The only remaining detail of string fragmentation is the specification of flavors
at break points. The valence flavors of the initial strings are determined in the
perturbative QCD stage of hadronization and are assumed to be given. If the
original strings fragment, the flavors of the daughter strings are determined by the
flavors at the qnds of the parent string and the flavor of the pair pulled from the
vacuum. Caltech-II allows both quark pairs and diquark pairs to be pulled from the

vacuum. These correspond to the baryon number conserving processes

S(¢a; 3] — Sl4a> ] + Slge, %], (4.29)
N ! A s
“Meson” “Meson” “Meson”
S[qav qb] = S[qaa chd] + S[chda ‘jb] ) (430)
. y - ~ e 2
“Meson” “Baryon” “Antibaryon”
S(¢a» 99c] = S[ga, 4] + Slga, g4c] - (4.31)
N, i N e e e
“Baryon” “Meson” “Baryon”

Once a potential break is chosen on the world sheet, the invariant masses W; and
W, of the candidate daughters are specified. The nominal relative probabilities for

various flavor assignments are then taken to be
P[f] = P{O(Wy — Wy (1s))0(Ws — W (sn)), (4.32)

where

f €{u,d,s,...,uu,ud, us,...}, (4.33)

Pg are constant parameters, and W; ) = Waptn + Whin in the theta functions of
eq. (4.32) represent minimal threshold constraints. The parameter Wi, is used for
flexibility by supplementing the minimum kinematic threshold constraints with a
constant offset. A typical value for _Wmin is 100-200 MeV. In the event that one

of the daughters falls below the corresponding threshold mass, it checked to see
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whether it is possible to perturb the break point and identify the daughter with an
on-shell particle as discussed in sect. 4.7. If this can be done, the relative probability
for producing the corresponding flavor is taken to be P{. The flavor production
parameters P({ are provisionally taken to be identical to the corresponding flavor
parameters in the low-mass hadronization part of the model (see appendix B). In
addition to the economy of parameters, this assumption helps avoid discontinuities

in flavor production rates during the transition from strings to clusters.

4.7 Hadrons Directly From Strings

As mentioned in the previous section, it is possible to generate hadrons directly
from strings if, in special instances, we perturb the position of a string break so that
one of the daughters is on the mass shell of a physical hadron.

In Caltech-1II the string decay
String — String + Hadron (4.34)

is considered a viable decay mode only if one of the candidate daughter masses is
below Wapth + Whin for the particular flavor pulled from the vacuum (assuming the
original break position was chosen using the area decay law). If a mode of the form
in eq. (4.34) is chosen, the orignal break position is adjusted to put one of the strings
on-mass-shell.

We can show that this ansatz is reasonable by considering the change in mass of
a daughter as a function of the breakpoint position. Consider the situation where
a break occurring at ¢ = & on an arbitrary string produces a daughter with four-

momentum

p(3) = / ido. (4.35)

W?(a) = p(a) - p(3), (4.36)
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so that taking the differential of both sides gives
WdW = t - p(o)da. (4.37)
In the frame in which the string element containing the original break is at rest,
& p(o) = E, (4.38)

where E is the energy of the daughter in that frame. Substituting eq. (4.38) into
eq. (4.37), and recalling that dl = kda is the relation between energy coordinates

and physical lengths in the rest frame of a string segment, we have

= —— < —_— .
dl= 25— < = (4.39)

Thus, for a shift in mass of AW ~ 200 MeV,

Al] ~ 0.2 fm x %ﬁ (4.40)

This result tells us that the physical shift in the position of the breakpoint is compa-
rable to the width of QCD flux tubes indicated by lattice calculations [38]. Inasmuch
as we use the relativistic string only for the gross properties of fragmentation, small
perturbations such as those implied by eq. (4.40) are easily absorbed.

As we show in sect. 5.3, the mechanism of eq. (4.34) is rather ad hoc since the
only observable it appears to affect is the production of very energetic hadrons
in the upper tails of momentum distributions. We point out in sect. 5.4 that, in
keeping with the philosophy of not letting string mechanisms control the details
of hadronization, relatively few hadrons are produced through the mechanism of

eq. (4.34).



75

Chapter 5
Caltech-II vs. Data

5.1 Introduction

As we have repeatedly stressed in the previous chapters, the overall physics
picture in Caltech-II is both appealing and sensible. Any realistic phenomenological
model of hadronization entails a large number of parameters — a simple reflection of
the fact that we do yet have exact solutions to QCD over all the energy scales relevant
to hadronization. However, just because we have a large number of parameters does
not mean that they are all at our disposal. Caltech-II’s sensibility derives from the

observation that by factoring event evolution into the three stages

Relativistic String Low — Mass
+Area Decay Law Parameterization

LLA QCD ® : (5.1)

the majority of parameters occur in the last stage and are fized by available low en-
ergy data. With such parameters fixed, the model need only explain where clusters,
not hadrons, come from.

Herein lies the appeal of Caltech-II: with only five energy-independent (and, un-
fortunately, highly correlated) parameters, we can describe cluster -formation at any
center of mass energy in ete™ annihilation. Subsequently, using the parameterized
decay of low-mass clusters, Caltech-II is able to provide a good description of data
over the entire energy range 3 GeV < Ecy < 45 GeV. In this chapter we confront

Caltech-II with the available et e~ annihilation data to determine reasonable values
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for its five parameters and to assess the model’s strengths and weaknesses.

In sect. 5.2 we isolate five “basic” parameters and suggest nominal values for
them within the context of the complete Caltech-II model. Sect. 5.3 discusses the
effects of parameter variations on the predictions of the model with an empha-
sis on the string parameters p., Wiax, and Wpin. Inasmuch as all three stages of
hadronization in eq. (5.1) are necessarily correlated, we will also discuss how the
string parameters are related to the LLA QCD shower parameters to and Aqcp.

Sect. 5.4 compares the results of Caltech-II (with fixed parameters) to data. We
demonstrate how the model can reproduce details of distributions at fixed energies
as well as the Ecym dependence of average values of observables. By virtue of incor-
porating the full string equations of motion, Caltech-II is shown to reproduce the
so-called string effect [59,60,61,62,63,64] observed for three-jet events. The model
also explains observed [65,66] angular correlations in pp production by allowing
baryon creation during the string evolution phase.

Sect. 5.5 briefly discusses the known shortcomings of the full Caltech-II model
and then concentrates on ways in which the string evolution phase can be elaborated.
We describe how, aside from being theoretically consistent, the incorporation of
transverse momentum at string breaks will result in a smoother transition between
the string and cluster phases of the model.

In keeping with our desire to focus on the string aspects of Caltech-1II, we relegate

discussions of the shower and cluster stages of the model to appendices A,B.

5.2 Identification of Five Basic Parameters

Caltech-II’s factorization of hadronization into the three stages of eq. (5.1) is

effectively an attempt to conquer QCD by dividing it into the three regimes

Perturbative Nonperturbative QM Nonperturbative QM
Quantum Mechanical (Semiclassical) (Nonclassical)

. (5.2)
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As discussed in chapter 2, there is both phenomenological and practical motivation
for this division of event evolution. Though QCD is, in principle, a well-defined
theory, it has resisted most conventional attempts to make predictions concern-
ing nonperturbative dynamical phenomena. The relative successes of perturbative
calculations and lattice gauge theory have already demonstrated two qualitatively
different regimes of QCD roughly corresponding, respectively, to the first and second
stages of eq. (5.1). On the other hand, comprehensive “QCD predictions” for the
third stage of eq. (5.1) simply do not exist.

The attractive feature of factorization is that it gives us an opportunity to test
those aspects of QCD which we believe we do know something about. Rather than
speculate on the details of hadron formation in QCD, we instead assume that low-
mass hadronization is a local, universal phenomenon that can be factored out of the
event evolution in eq. (5.1) and replaced with a parameterization of the decays of
low-mass systems. This “black box” approach to low-mass hadronization allows us
to concentrate more fully on the first two stages in eq. (5.1), so that we might better
assess their influence on the features of hadronization.

Aside from the fired parameters describing the decays of low-mass clusters, the
only free parameters in Caltech-II are Aqcp, which governs the scale in the first stage
of eq. (5.1), p., which governs the string decays, and the three cutoff parameters
to, Wiax, and Wiin. The cutoff ¢y for the perturbative shower evolution essentially
governs the transition between the parton picture of the first phase and the string
picture of the second phase, while W,,, controls the transition from string picture
to the low-mass parameterization. Wy, is a junior partner to Wiy, since it permits
the occasional identification of a string with an on-mass-shell hadron as discussed
in sect. 4.7.

It is found that the nominal parameter values

p. =1.6 GeV™? (£0.3GeV~?), (5.3)
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Winax = 2.2 GeV (£0.3 GeV), (5.4)
Wiin = .25 GeV (£0.1 GeV), (5.5)
Aqcp = 0.6 GeV (0.3 — 0.7 GeV), (5.6)

to = 1.0 GeV? (1 —2GeV?) (5.7)

provide a good description of et e~ annihilation data over the range 3 GeV < Ecy <
45 GeV. The parenthetical values give reasonable ranges or variations in the param-
eters that reflect the correlations induced by the factorization of event evolution. In

the next section we discuss how we arrive at these values for the parameters.

5.3 Parameter Determination

Our approach to determining values for the five basic parameters will first involve
isolating observables sensitive to variations in the parameters. With the benefit of
hindsight and for purposes of illustration, we shall initially set the shower param-
eters Aqcp and tp to their nominal values to demonstrate how the string-breaking
probability p. and the string-to-cluster cutoff Wy, influence event shape variables
such as sphericity and transverse momentum. The remaining string parameter W
is relatively superfluous, as it allows the occasional production of high z particles
directly from the ends of a string. For this reason it can be fixed after all other

parameters have been determined.

5.3.1 p.

The left panel of fig. 5.1 compares the TASSO [67] 14 GeV sphericity distribu-
tion with the results of Caltech-II. The dashed curve uses the standard parame-
ters of egs. (5.3-5.7), while the solid curve corresponds to changing p. to .6 GeV~2.
Sphericity is a convenient measure of the spherical nature of an event in momentum

space [68]. The sphericity axis of an event is defined along the unit vector n that
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Sphericity Distributions At Egp =14 GeV
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Figure 5.1 Sphericity distributions at Ecy = 14GeV for various values
of p. and Wax (other parameters fixed at values in eqs. (5.5-5.7)). The

data are from ref. [67].
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maximizes
N

(A B+ AR - 1). (5.8)

=1

In this equation the sum extends over N particles and ) is a Lagrange multiplier
that ensures that 7 is normalized. Finding the extrema of eq. (5.8) is equivalent to
solving the eigenvalue problem

M#n = A, (5.9)

where M is the momentum tensor
ul B
M =" p2p; a,f=uz,y,=z. (5.10)
=1
We can order the normalized eigenvalues @; of the momentum tensor, corresponding

to the three orthonormal eigenvectors 7y, Ny, n3, so that

0< Q1 <Q:<Q3, (5.11)
+Q2+Q3=1, (5.12)
where
N
2 (A - pi)?
Q; = v (5.13)
(p:)?

=

-

The sphericity of an event is defined as

S = 3(1 ~Qy), (5.14)

so that 0 < § <1 where S = 0 corresponds to a perfectly collimated 2-jet event in
the CM frame and S = 1 corresponds to a spherical momentum distribution.

The increase in average sphericity with smaller p, in fig. 5.1 may be qualitatively
understood by considering the simple case of a ¢g system. The distribution of first
generation breaks with respect to the proper time interval separating the breaks and
the initial vertex is a Lorentz invariant quantity. Contours of constant invariant time

are hyperbolae in (z,t) space as shown in fig. 5.2. According to the area decay law,
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-

X

Figure 5.2 Points along the same contour of invariant time bound equal
amounts of backwards light-cone area.

all points on a fixed hyperbola are equally probable break postions since all bound
the same backwards light-cone area. The uniform distribution of breaks along a
hyperbola corresponds to a uniform distribution in rapidity of the daughters. Since
the probability of invariant area A being swept out before a break occurs is e=?<4, p,
can be viewed as a decay constant that implies an “area half-life” of p;! In 2. Large p.
corresponds to hyperbolae closer to the world lines of the quarks and hence results in
low-mass daughters, which populate a large range of rapidities. Accordingly, small
p. tends to break strings “later” and produces massive daughters within a limited
rapidity interval. In the extreme case that daughters are produced at rest, jet-like

phenomena disappear in favor of high sphericity configurations.
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Table 5.1 Changes in average values of observables at Ecy = 14 GeV with
variations of p. and Wyax. Other parameters are fixed as in eqs. (5.5-
5.7). Data are from ref. [67].

Pc (Gev_r[) Winax (GeV) (Nen) (S) (p?r)(GeVz)
1.6 2.2 9.18 0.220 0.183
0.6 2.2 9.90 0.269 0.188
1.6 3.2 8.93 0.233 0.203

data 9.08+0.05 0.213 £ 0.004 0.168 & 0.002

5.3.2 Whax

The right panel of fig. 5.1 assesses the effect on the sphericity distribution when
Wax 18 increased from the standard value of 2.2 GeV to 3.2 GeV, leaving all other
parameters at their standard values. Though the change is not as dramatic as when
p. was varied, the general trend is similar. Increasing Wi,,, increases the use of
paramaterized cluster decays. Since cluster decays are isotropic in the cluster rest
frame, an increased dependency on the low-mass parameterization leads to more
spherical events (i.e., events with more transverse momentum).

Though the above variations of p. and Wi,ax both lead to more spherical events,
they have opposite effects on the average charge multiplicity, as can be seen from
table 5.1. Decreasing p. allows strings to evolve longer before breaking and so leads
to more massive daughters. On the other hand, increasing Wipax turns on the cluster
decay sooner. Since the parameterized cluster decays of ref. [69] faithfully reproduce

the empirical mass dependency

w

1GeV < W <3GeV, (5.15)

the decay of a single large mass cluster gives fewer particles than if it first broke into
two smaller mass clusters. Table 5.1 suggests that rather than look at (S) for the
effects of Winax, it would be better to look at (p%), the average squared momentum

transverse to the sphericity axis.
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Figure 5.3 Sensitivity of (p?r) to Whax as a function of Ecpy. Data are
from ref. [67].

The influence of W, is clearly visible when we consider the Ecy dependence of
(p%) as shown in fig. 5.3. Leaving all other parameters at their standard values, we
note that the sensitivity of (p%) to Wpnax permits us to determine an optimal value
of Whax = 2.2GeV.

That sphericity should be largely governed by p. and that (p%) be controlled
by Whax are not unexpected. Sphericity and (p%) are complementary in that they
deal with different momentum components. Except for very high sphericity events,
most of a primary hadron’s longitudinal momentum can be traced back to the
longtitudinal momentum of its parent cluster. As outlined above for the simple
qq case, the longitudinal momenta of such clusters (i.e., strings that were too light
to evolve using the string picture) are strongly influenced by p.. On the other hand,

2

(p%) is, by definition, invariant under boosts along the sphericity axis and should be

sensitive to p. only to the extent that the total longtitudinal momentum and total
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transverse momentum are constrained by energy-momentum conservation.

5.3.3 tp and Aqcp

Now that. we know which observables are sensitive to p, and Wpax, we can
briefly describe how the standard parameters of egs. (5.3- 5.7) were determined. For
different values of Aqcp, best values for p, and Wi, were determined by requiring
agreement with sphericity distributions and (p%), respectively. Their opposite effect
on (Ne) also helps pin down values of p. and Wiay.

The perturbative cutoff ¢y, which controls the amount of soft perturbative ra-
diation, was set to the value 1 — 2GeV?. Because of the continuous nature of the
mapping of soft gluons onto the relativistic string, radiation below this mass scale
is not found to influence subsequent event evolution. In this sense, the parameter
to is very uncontroversial.

The leading-log QCD scale Aqcp plays an interesting role in the model. The ob-
servables that appear to be most sensitive to Aqcp are the mean charge multiplicity
and the various infrared safe jet measures such as thrust and the energy-energy
correlation.

The standard energy-energy correlation function is defined as [70,71]

d¥ 1 d*c
d_9 = - Z/dx,-d:vjx,-a:j [—dx,dmjde] ) (516)

t,J

where the double sum extends over all observed particles and z; is the fraction of the
observed energy carried by the i* particle. The leftmost panel of fig. 5.4 compares
Caltech-II (with standard parameters) to JADE data [72] for d¥/df, weighted by
sin fg, where fg is the angle in the center of each bin. The middle panel of fig. 5.4
demonstrates how the central values § ~ 90° are sensitive to changes in Agep. In the

rightmost panel of fig. 5.4 we note how increasing p. to give fatter events increases

the central values of d¥/d6.
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Energy-Energy Correlations At Ecp =34 GeV
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Figure 5.4 Energy-energy correlation functions. Parameters not speci-
fied explictly are given the standard values of eqs. (5.3-5.7). Data are
from ref. [72].

Thrust is defined [73] as

N
,_El O(nr - p;)|Pi - oz
T = n}gx = = , (5.17)
;§1 |pil

where the unit vector iy is called the thrust axis. Like sphericity, thrust is a measure

of the two-jet nature of event topology. Unlike sphericity, thrust is an infrared-safe
variable — it is invariant if a single particle is replaced with a collinear pair with
the same total momentum, and it is unchanged by the addition of zero momentum
particles. Thrust varies between 1/2 < T' < 1 with 7' = 1 corresponding to a
perfectly collimated two-jet system.

The leftmost panel in fig. 5.5 shows how Caltech-1II, with the standard parameters
of egs. (5.3-5.7), overestimates the number of high and low thrust events. Keeping
all parameters fixed, except .for decreasing Aqcp, as in the center panel of fig. 5.5,
we see that the number of low thrust events can be decreased at the expense of
increasing the number of high thrust events. In order to decrease the number of
high thrust events, we are forced to decrease p., which, as shown in the rightmost

panel of fig. 5.5, increases the number of low thrust events (if all other parameters
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Thrust Distributions At Ecp =34 GeV
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Figure 5.5 Sensitivity of thrust to variations in the LLA QCD scale
Aqcp and the string parameter p.. Data are from ref. [67]

are left at their standard values). It is possible to decrease p. and Aqcp together to
obtain the “fat jet” parameters of fig. 5.6, which lead to a better thrust distribution
but overbroaden the left peak of the energy-energy correlation.

In choosing our standard set of parameters, we decided to fix Aqcp by requiring
agreement with the central values of the energy-energy correlation function. This
is the origin of our somewhat large value for Agecp in eq. (5.6). The neglected
O(a?) corrections to the central values of dX/df are known [74,75,76,67,77] to be
small, but positive; our high value of Aqcp is simply mimicking these corrections
in an artificial way: the shower model results are sensitive to Aqcp for the classes
of events where nonleading O(a?) corrections are operative. We choose the energy-
energy correlation instead of thrust to determine Agcp because, as shown in ref. [78],
the O(a?) corrections to do/dT are large and, in the region T — 1, sensitive to the

cutoff scheme used in dressed jet calculations.

5.3.4 Whin

The parameter Wy, = .25 GeV is determined by requiring agreement with the

high z, = 2|p|/Q data for inclusive charged particles as shown in fig. 5.7. Increasing
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Figure 5.6 An alternate of set “fat jet” parameters improves the agree-
ment with TASSO thrust data [67] but implies a broadening of the left
peak in the energy-enery correlation. JADE data are from ref. [72].

Whin increases the probability that a string break near the end of the world sheet
will produce an on-mass-shell particle. To see why this affects only the high z region
of fig. 5.7, let us go back once more to our simple ¢g example. Consider a hyperbola
on the world sheet formed by points bounding the same backwards light-cone area
as in fig. 5.2. As we have already mentioned, the uniform distribution of breaks
along such a hyperbola corresponds to a uniform distribution in the rapidity of the
daughter strings. Since Wi, affects only breaks that occur close to the end of a
string, where the rapidity with respect to the CM frame is the largest, most particles
so produced will have large momentum (high z).

Seeing how Wiy, affects only the production of high z particles, we might be
skeptical about calling it a basic parameter. Our skepticism is fostered by the
observation that we can reproduce the high-z tail of fig. 5.7 with W, ~ 0 if we
use quark masses of m, = my = 0, and m, =~ 150 MeV in the shower formalism
instead of the constituent masses m, = my = m,, and m; = m, (which are used to
ensure that all strings produced in shower evolution are massive enough to evolve

into multihadron systems). Since the use of constituent quark masses is simply a
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Figure 5.7 Dependence of model predictions for sdo/dz on the cutoff
parameter Wp,. Data are from ref. [79].

technical issue, Wy, has only minor significance as a basic parameter.

The effect of quark masses on the tail of the z distribution can be understood
by recalling how we can use a system composed of massless quarks to simulate a
system of massive quarks (see sect. 4.5). Referring to fig. 4.10b we note that for
massive quarks, string breaks are unconditionly forbidden in the region of the world
sheet between the dashed line and world lines of the corresponding massless quarks;
the forbidden region simulates the quark mass. It is easy to see that as the mass of
the quark becomes smaller, the forbidden region shrinks, and breaks in regions of

higher rapidity become more accessible, populating the high z tail.
5.3.5 Correlations

While the parameter-fitting procedure outlined above is relatively straightfor-

ward, there are correlations among parameters that make the task nontrivial. For
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example, increasing Aqcp increases the amount of perturbative radiation and leads
to more spherical or “fatter” events. But we already know that decreasing p. will
have the same effect. This interplay between p. and Aqcp should not be surprising,
since in a formal QCD-based treatment of flux tubes, we would expect p. to be a
function of Aqcp. With reservations concerning future improvements to Caltech-II,
we adopt egs. (5.3-5.7) as a set of parameters that give an acceptable overall de-

scription of e*e™ annihilation data over the energy range 3 GeV < Ecm < 45 GeV.

5.4 Comparisons With Data

Since the string model in Caltech-II is necessarily sandwiched between the per-
turbative LLA QCD and the parameterized decays of low-mass clusters, it is some-
times difficult to attribute features of the model predictions to a specific stage of
event evolution. In this section we demonstrate the relative harmony between the
various stages of hadronization in Caltech-II by comparing results of the model to
available ete~ annihilation data. The goal is to impress upon the reader how the
choice of the fixed parameters of egs. (5.3-5.7) reproduces observed phenomena to
within 5-10% over the energy range 3 GeV < Ecy < 45 GeV. This point alone is
of some merit since other hadronization models are tuned (perhaps to excess) to
describe the details of hadronization at one particular energy.

The success of many of the comparisons in this section is not meant to draw
attention to the success of the string model alone but rather is meant to point out
the cooperation between all three stages of the factorized evolution of eq. (5.1).
However, we also show how the incorporation of the full string equations of motion
can be credited with the accurate reproduction of particle flow data and observed
baryon correlations.

Figure (5.8) compares Caltech-II to sphericity, aplanarity and thrust distribu-
tions measured by TASSO at 14 GeV and 34 GeV. Aplanarity is a measure of the
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Figure 5.8 Caltech-II (solid lines) compared to various shape variables
at Ecm = 14 GeV and Ecm = 34 GeV. Data are from ref. [67].

momentum out of the event plane

3
A=3Qi, (5.18)

where @), the smallest normalized eigenvalue of the momentum tensor, is given by
eq. (5.13).

An interesting deviation from the data is seen in fig. 5.8 where Caltech-II overes-
timates the number of high sphericity/high aplanarity/low thrust events at Ecy =
34 GeV. As discussed in ref. [3], most of these “fat” events can be traced back to the
use of LLA QCD showers, which lack the quantum interference effects necessary to
correlate the decay planes of highly virtual partons in four-jet events. When exact
O(a?) matrix elements are used.in place of LLA QCD (with a suitable adjustment
of p. and Wpay), a better agreement with the data is obtained (see fig. 5.9).

Fig. 5.10 compares the results of Caltech-II with transverse momentum distri-
butions from TASSO at fixed energies while figs. 5.11a,b show the Ecy dependence
of inclusive charged particle momenta. In fig. 5.11b the transverse components of

momentum in and out of the event plane are measured with respect to eigenvectors
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Figure 5.11 (a) Energy dependence of (p), (p%) and (b) ((pA(IN/OUT))).
Data are from ref. [67].

{n;} of the momentum tensor in eq. (5.10), so that

1 N

(p2(IN)) = ﬁg(ﬁf - fig)?, (5.19)
1 N

(PH(OUT)) = 1 3 (5i - ), (5.20)

where the sums extend over all charged particles. Caltech-II is seen to faithfully
reproduce the energy dependence of all the momentum distributions.

Fig. 5.12 shows how accurately Caltech-II reproduces the average charge mul-
tiplicity over the whole energy range of data. At the lowest energies (= 3 GeV),
particle production is due entirely to the parameterized decay of low-mass clusters
since there is not enough energy available for string evolution. As Egy increases,
more and more string evolution occurs. Fig. 5.13 tracks the flavor multiplicities of
kaons, protons and lambda particles. The improved string model in Caltech-II has
cured a number of the pathologies observed in Caltech-I [5]. By incorporating the

full string equations of motion, we have eliminated an abrupt increase in (N,) at
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Figure 5.12 Muliplicity of inclusive charge particles as a function of
Ecm. Data are from refs. [67,81,82,83,84].
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Particle Flow In Three-Jet Events
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Figure 5.14 Caltech-II compared to TPC particle flow data from
ref. [63].

Ecm = 5 GeV; Caltech-I’s sensitivity to gluon radiation (the splitting of soft glu-
ons) caused there to be more clusters than necessary, once gluon radiation began to
appear. In addition, by allowing baryon creation during string evolution, an abrupt
drop in (N(p+ p)) for Ecm = 10 GeV in Caltech-I has been avoided.

A particularly interesting observable that has surfaced in recent years is the
number density of particles in the event plane for 3-jet events [59,60,61,62,63,64],
suggesting asymmetries in hadronization attributable to string-like phenomena. The
results of Caltech-II are compared with TPC data in fig. 5.14. The event sample
in fig. 5.14 was selected according to the procedure outlined in refs. [62,63] using
a jet finding algorithm based on ref. [91]. The sample consists of relatively planar
events in which three jets are discernible (for TPC, a “jet” must contain at least two
particles and have a total momentum of 1.5 GeV). The resulting jets are ordered in
energy under the hypothesis that the two most energetic jets originate from quarks,
while the least energetic jet is induced by a gluon. The particle density is a function

of the angle # measured in the event plane where the most energetic (quark) jet
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defines ¢ = 0°. The direction of increasing ¢ is defined so that the next most
energetic (antiquark) jet occurs at ¢ =~ 150° and the least energetic (gluon) jet is
at ¢ = 230°. With this identification of jets with partons, the relative depletion of
particles in the “valley” between the quark and antiquark jets corresponds to the
absence of a flux tube connecting the quark and antiquark. Since the flux tube
connecting the quark to the gluon and the flux tube connecting the gluon to the
antiquark are boosted relative to the overall CM frame, the hadrons into which they
condense will also generally travel in the direction of the respective boosts.

Caltech-II is able to reproduce the measured particle flow data in fig. 5.14,
whereas Caltech-I severely overestimated the number of particles between the quark
and antiquark jets [61,92]. The sample in the right panel of fig. 5.14 consists of
particles with large components of momentum out of the event plane. The slightly
larger depletion effect for such a sample is a consequence of the momentum out of
the event plane robbing from the momentum in the event plane where momenta
are measured in the CM frame of the parent cluster. When one boosts from the
cluster rest frame to the overall event CM frame, there is a smaller probability that
such particles will have enough momentum to overcome the boost and leak into the
region between the quark and the antiquark jet.

Both the LUND and Webber models are able to reproduce the so-called string
effect while, not surprisingly, independent fragmentation models cannot. Though
the Webber model is in many ways similar to the original Caltech-I model, it incor-
porates coherence effects in its LLA QCD shower algorithms. The JADE group has
claimed [61] that these coherence effects are responsible for the success of Webber’s
description of particle flow. Surprisingly, while Caltech-II incorporates both strings
and coherence, it is found that switching off coherence has a negligible effect on the
particle flow of fig. 5.14. This may be indicative of something more than coherence

at work in the Webber model.
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Figure 5.15 Distribution in the correlation angle of proton momentum
from pp pairs with sphericity axis for Caltech-II and Webber models
(a) before and (b) after experimental cuts described in the text. Data
are from refs. [89,90].

Correlations in proton-antiproton production are another area in which full string
motion benefits Caltech-II. The TPC collaboration has measured [89,90] the distri-
bution of protons (in events with pp pairs) with respect to |cos 6*| where 6*, mea-
sured in the pp rest frame, is the angle the proton three-momentum makes with the
sphericity axis. If pp production is entirely due to isotropic cluster decay, as in the
Webber model [10], a flat distribution in |cos 6*| is expected, as shown in fig. 5.15a.
However, if one allows pp production from strings, as in Caltech-II, there is a strong
correlation between the proton momentum and the sphericity axis (see fig. 5.15a).
Fig. 5.15b compares Caltech-II and the Webber model with the TPC results, which

include the experimental cuts of
0.5GeV < p<1.5GeV (5.21)

on the momenta of the proton and antiproton.
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Table 5.2 Parton, cluster and hadron multiplicities for coherent and

incoherent showers at various CM energies. Parameters are as in
egs. (5.3-5.7). All calculations are for N; = 5.

Ecm (Gev) 14 14 34 34 100 100
Shower type Coher. Incoh. Coher. Incoh. Coher. Incoh.
(N (partons)) 4.45 4.56 6.29 6.75 9.20  10.46
(N (strings)) 1.23 1.22 1.45 1.45 1.79 1.79
(N(clusters)) 3.03 3.02 4.90 5.00 8.27 8.77
(N(Cl1=H)) 0.56 0.55 1.05 1.06 2.16 2.15
(N(primary hadrons)) 8.90 891  14.00 14.34 22.46 23.87
(Niot) 14.85 14.88 21.84 2230 33.13 34.96
(Nen) 9.18  9.19 1348 13.76 20.59  21.67

(Wor — W) (GeV) 154 154 151 152 1.44 147

We end this section by noting some general features of parton and cluster final
states in Caltech-II at different CM energies (see table 5.2). The entries in table 5.2
are, from top to bottom, (i) the number of final partons generated in the LLA QCD
phase; (ii) the number of multiparton strings associated with the final partons; (iii)
the number of final clusters from string evolution; (iv) the number of final clusters
identified with single hadrons; (v) the number of primary hadrons from cluster
decay; (vi) the total number of final state particles (treating #° as a stable hadron)
(vii) the total charge multiplicity; and (viii) the average cluster mass relative to the
appropriate two-particle threshold (averaged only over multihadron clusters).

One of the first things we notice in table 5.2 is that coherence effects in the shower
evolution grow with Ecy but are generally rather small. The mean multiplicities
are marginally smaller for coherent showers than for incoherent shéwers because
the requirement of angle ordering inhibits wide-angle parton branchings. A more
important feature of table 5.2 is that the average number of strings and clusters
is rather small compared to the final state particle multiplicity. We should be
encouraged by this aspect of the model since our original intention was to relegate the

details of hadronization to the parameterized decays of low-mass clusters. We have
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successfully avoided the specter of letting the semiclassical string evolution dominate
the details of hadronization. Furthermore, we note that only a few percent of the
primary hadrons come directly from strings (that is, thro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>