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Abstract

We test the prediction that quantum systems with chaotic classical analogs
have spectral fluctuations and overlap distributions equal to those of the Gaussian
Orthogonal Ensemble (GOE). The subject of our study is the three level Lipkin-
Meshkov-Glick model of nuclear physics. This model differs from previously inves-
tigated systems because the quantum basis and classical phase space are compact,
and the classical Hamiltonian has quartic momentum dependence. We investigate
the dynamics of the classical analog to identify values of coupling strength and
energy ranges for which the motion is chaotic, quasi-chaotic, and quasi-integrable.
We then analyze the fluctuation properties of the eigenvalues for those same en-
ergy ranges and coupling strength, and we find that the chaotic eigenvalues are
in good agreement with GOE fluctuations, while the quasi-integrable and quasi-
chaotic levels fluctuations are closer to the Poisson fluctuations that are predicted
for integrable systems. We also study the distribution of the overlap of a chaotic
eigenvector with a basis vector, and find that in some cases it is a Gaussian random

variable as predicted by GOE. This result, however, is not universal.
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Chapter One

Introduction

Nonlinear (irregular, chaotic) systems have been overshadowed by the solvable
(integrable, regular) systems in the study of classical mechanics. In classes we
study the harmonic oscillator, Keplerian systems, linearly coupled oscillators, and
one dimensional systems. Texts give no indication that these regular systems are
an unfair representation of Hamiltonian systems: for most Hamiltonian systems we
cannot solve for Z(t) as t — co. This is true even for a system as simple as a single
particle in a two-dimensional potential well. In fact, most Hamiltonians give rise to
deterministic yet (practically) unpredictable long time behavior.

A simple example of unpredictability in a deterministic system is seen in the

left shift map which takes the interval [0,1) onto itself:
Tn41 = 2Tp (mod 1).
If we write a number in this interval in binary form
zo = .000101100101000011... ,

the map shifts the digits one place to the left and drops the digit to the left of the
decimal place. If we know a particular z¢ to n digits, we know the trajectory for n
iterations, but after that we lose all powers of prediction.

The precision of the initial conditions plus the information entropy of the sys-
tem determine how far our powers of prediction reach. (Information entropy is a
measure of information gain which results in loss of precision; it is unrelated to
thermodynamic entropy. See §2.4.) If we had either infinite precision, or a system

with no information gain, all deterministic systems would indeed be predictable.
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Integrable systems are zero-entropy systems - systems with no information gain,
and so the myth of predictability took hold.

This practical unpredictability has its origin in a more fundamental concept.
Consider the left shift map again: if z¢ and yp are equal to n digits, their trajectories
will be close for n iterations; after that they will be completely uncorrelated. This
instability with respect to initial conditions is chaos. In the first chapter we will
make this intuitively appealing definition quantitative.

The presence of chaos changes the questions a physicist might ask. We do not
ask for Z(t) for arbitrary t. Even if we wished to work hard enough to find Z(t), the
solution would depend very sensitively on initial conditions. We would have found
the solution for one point, and it would not give us any clues about the solution
for nearby points. This work is too hard and the results too limited to make this
the correct approach. Instead, the relevant physics questions for a chaotic system
pertain to the topology of the phase space as defined by the trajectories: Do single
trajectories cover all space, or do they lie on submanifolds? How much of phase
space is covered by chaotic trajectories? The methods used by nonlinear dynamicists
to describe and quantify phase space are also discussed in the first chapter.

A dominant feature of classical phase space are the invariant submanifolds de-
fined by trajectories. For integrable systems with N degrees of freedom these sub-
manifolds are N dimensional. In the phase space of the action-angle variables, these
surfaces have the topology of an N-torus (§2.1), and are defined by the N action
variables I} which remain constant on each torus. For integrable systems all phase
space is filled by these tori, but as a perturbation is added some tori distort, while
others disappear and are replaced by island chains and chaotic regions.

These tori are important for quantum mechanics as well. According to Einstein,
Brillouin, and Keller, we quantize the system by demanding that the actions are

quantized:

It = (ng + constant)h .
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If there are no tori, there are no actions and no good quantum numbers. This line
of reasoning led Percival [Pe73] to hypothesize that the spectra of integrable and
non-integrable systems would be completely different. This was the beginning of
quantum chaology.

Percival dubbed the two different spectral types as regular (corresponding to
integrable classical analog) and as irregular (corresponding to a non-integrable ana-
log). However, this difference was qualitative only; he offered no quantitative tests
to distinguish the two spectral types. It was not until a few years later that Berry
and Tabor [BT77] quantified the differences between regular and irregular spectra.
They looked at P(s) - the probability that two consecutive energy levels are a dis-
tance s apart; they adapted this approach from the nuclear physicists’ statistical
theory of spectra.

This statistical theory is a subject in its own right [Br81]. It began in the 1950’s,
and grew out of a need to predict the highly excited levels of heavy nuclei which
could not be calculated using traditional techniques, e.g., shell model calculations.
In analogy with statistical mechanics they used ensembles. The thought was that
nuclei were so complicated that a statistical approach was viable. These were not
ensembles of points in phase space, but ensembles of random Hamiltonians, i.e.,
real symmetric matrices whose elements are chosen from a distribution. Using
an ensemble, we can calculate ensemble averages of spectral fluctuation measures
such as the nearest neighbor spacing distribution P(s). The Gaussian Orthogonal
Ensemble (GOE) was particularly useful because it allowed analytical calculations
of fluctuation measures, although its relevance to real physical systems was in doubt.
Then in 1982 a careful study of experimental neutron resonance levels from many
nuclei showed GOE fluctuations [HBP82]; this revitalized Random Matrix Theory.

Because the statistical theory plays an important role in the description of
quantum chaos, Chapter Two will be devoted to a discussion of the GOE, and

Random Matrix Theory (RMT) in general.
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Meanwhile, the quantum chaologists continued to focus on the nearest neigh-
bor distribution P(s). Their main subject was billiards, i.e., a single particle in a
box. Depending on the shape of the box the classical analog was regular or chaotic.
For regular spectra they found level clustering: P(s) large for s = 0. For irreg-
ular spectra they found level repulsion: P(s) ~ s for small s. Level repulsion is
characteristic of the GOE. This observation, and the success of GOE in describing
nuclear level fluctuations led Bohigas, Giannoni, and Schmidt [BGS84] to look at
higher order correlations in the spectra of chaotic billiards. They found that these
correlations were also in agreement with GOE. This was surprising because the com-
plexity present in nuclei, which justified the statistical approach, was not present
in the simple billiard. In conclusion, they suggested that there is a universality
of the laws of level fluctuations: “Spectra of time-reversal invariant systems whose
classical analogs are K [chaotic] systems show the same fluctuation properties as
predicted by GOE. ” [BGS84] Chapter Three will look at recent work in quantum
chaos which supports this hypothesis, and other theories that extend beyond and
complement the GOE theory.

Chapter Four will focus on our original work. Our purpose is to test the uni-
versality hypothesis using the Lipkin-Meshkov-Glick model [LMG65]. This simple
but non-trivial model was introduced to check the approximate techniques of nu-
clear and many-body physics, and so was designed to mimic the nucleus, or at least
the shell model picture of the nucleus. The version we consider consists of three
M-fold degenerate single particle levels and M nucleons. The two-body interaction
plays the role of the residual interaction of valence nucleons, i.e., the difference
between the true nuclear two-body interaction and the mean field. This intrinsi-
cally quantum mechanical Hamiltonian, expressed in terms of fermionic creation
and annihilation operators, may be written in a compact basis, thus simplifying
the quantum calculations as well as providing a unique testing ground for the GOE

hypothesis.
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To test GOE we first investigate the dynamics of the classical analog. This is
obtained from the collective behavior in the M — oo (thermodynamic) limit. The
classical Hamiltonian has quartic momentum dependence - it does not describe a
particle in a potential well. We find the parameters and energies for which classical
chaos exists, and then examine spectral averages of the fluctuations of the corre-
sponding eigenvalues and the distributions of the eigenvectors for agreement with

GOE ensemble averages.



Chapter Two

Classical Systems from Regular to Random

Physics is a reductionist endeavor: we focus first on the simplest problems in a
field to gain expertise and then move on to more elusive topics. In the past thirty
years we have broadened our vision in classical dynamics to include the nonlinear
systems as well as integrable systems. In this chapter we will examine the spectrum
of classical systems from regular to random and the methods of the dynamicists to
quantify chaos present in these systems.

The subject of this section is the set of conservative classical Hamiltonians with
N degrees of freedom. Because energy is a constant of the motion, the trajectories
don’t cover the entire 2N phase space, but lie on a 2N — 1 dimensional energy
surface. The ignored variable may always be recovered from energy conservation if

the sign is also specified:

N-1 o
— S A _yz
PN = + QmN (E ; 2m" V(x)) y

where we have assumed canonical momentum dependence. We will also confine our

discussion to systems for which the motion is bounded.

2.1 Integrable Systems

A classical system with N degrees of freedom is integrable if there exist N func-
tionally independent constants of the motion, F(p,q). This implies that all conser-
vative systems with one degree of freedom and all conservative separable systems
are integrable. For an integrable system we may make a canonical transformation
to the action-angle coordinates (j ; 5) so that the new Hamiltonian is a function of

the actions alone:

H=H(J).
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The time evolution of the variables is obtained from Hamilton’s equations:

%t']— = —%{- =1 Ji(t) = constant
08 OH _ _ - = o, L =
i A &(J) = constant 0(t) =d(J)t+¢ (mod 27).

The solution for J(t) and g(t) is trivial, although the canonical transformation may
not be so easy.

Because there are N constants of the motion, the trajectories all lie on NV di-
mensional submanifolds of phase space. These submanifolds in action-angle space
have the topology of a torus. To see this, first consider the N = 2 case. In two
dimensions, we usually consider a torus as a doughnut, but this conceptualization
vigorously resists generalization to higher dimensions. Instead, consider a two-
torus as a rectangle with periodic boundary conditions: 6; is measured along the
horizontal; 6, along the vertical, g(t) gives a straight line trajectory on the rectan-
gle. When an edge is reached, the trajectory jumps to the parallel edge with the
height along that edge preserved. (Figure 2.1) The familiar doughnut is recovered
if you imagine each edge physically joined with its parallel (a little stretching will
be required). Generalizing to higher dimensions, the N-torus is an N-dimensional
hypercube with periodic boundary conditions, and the integrable motions is again
a straight line trajectory on such a torus.

Each torus is defined by the value of J. Once it is known, the value of & is fixed,
and the motion is completely specified. These are “invariant” tori because a trajec-
tory will remain on fhis surface for all time, not wandering into other energetically
accessible regions.

The constant slope of the trajectory is given by the ratio of wy to w;. These
parallel trajectories will never intersect themselves, a feature required of solutions
to the deterministic Hamilton’s equations. If there exists a vector m with integer
components (M # 0) such that

Bl =10, (2.1.1)
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then the trajectory eventually closes on itself, and is one-dimensional. If m =
(1,—1), it will close after one period of #; and 6,; if m = (2,—1), it will close
after one period of 6§, and two periods of 6;, and so on. Any torus for which such
an m can be found is called a rational torus. If there is no such i, then the
trajectory will densely cover the torus as time goes to infinity, and the torus is
called irrational. A semi-rational torus obeys relation 2.1.1, but only for a proper

subset of the frequencies.

2.2 Surfaces of Section and Classical Perturbation Theory

When the Hamiltonian is not integrable, and we cannot write Z(t) in analytic
form, we need a new approach. In this section we will look at surfaces of section
and classical perturbation theory; both give us a method to see and understand
the general nature of the classical flow (i.e., the continuous time evolution). The
next two sections are also devoted to a general description of phase space for non-
integrable systems; we will return to the classification of Hamiltonian systems in
§2.5.

A surface of section is a cross section of phase space filled with trajectories.
One variable is singled out as the “trigger”. Whenever this variable is equal to
a specified constant, the values of the remaining 2N — 2 variables are plotted.
(Figure 2.2) Several sets of these points, each set from different initial conditions,
is a surface of section. When N = 2 this procedure makes the three dimensional
trajectory two dimensional, which is a distinct advantage. These surfaces of section
(also called Poincaré sections) are area preserving (recall Liouville’s Theorem) maps
of the -plane onto itself. Recalling from the last section that integrable systems lie
on tori, the presence of toroidal cross sections in the sections would be a sign of
integrability. (We must now think in terms of the previously maligned doughnut-
tori. The rectangle-tori are discontinuous and cannot exist in physical phase space.)

As an historical example, integrals of motion for the Toda lattice were vigorously
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sought and consequently found when surfaces of section displayed nothing but tori
for all initial conditions. (Figure 2.3)
The necessary presence of toroidal cross sections, i.e. closed curves, for an
integrable system can be made clear in another way. For N = 2, if we have two

conserved quantities £ and L we may write

E= E(x17x23p17p2) L= L(x17327p1’p2) y

which can be inverted to give

P1=F1(Ea$17372,172) p2=F2(E,L,CL‘1,.’L'2).

On the surface of section defined by 1 = constant, p; becomes an analytic function
of zo alone; we see this as a closed curve.

Chaos, on the other hand, is seen in a surface of section as a sea of dots with no
apparent structure. This is because the tori have disappeared. The Henon-Heiles
potential [HH64],

Vizw) =3 410 + 2y — 2 (221)
gives rise to a rich variety of surfaces of section. (Figure 2.4, right column) As the
energy increases from 0 to % (where the motion becomes unbounded) the sections
change in character. At first the sections are filled with tori, then small chaotic
regions appear, and finally the whole surface is filled with chaotic dots.

Surfaces of section can never prove integrability or chaos, but they do provide
a clear and immediate picture of phase space trajectories.

Classical perturbation methods, on the other hand, can provide a rigorous proof
of integrability or chaos, but are much less accessible [LL83]. The strategy is to
transform any Hamiltonian into action-angle form, order by order in the perturba-

tion. We begin with a Hamiltonian of the form

-

H(J,8) = Ho(J) + eHy (7, 8),
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where Hj is integrable, ¢ measures the deviation from integrability, and H; is a

multiply periodic function of the angles:
Hy = ZH],ﬁ(j) gt
m

We may attempt to find new variables I, 4 such that Hy + eH; is independent of 4.

Using the generating function
S=T-6+eSi(1,0)+....

we find relations between the old and new variables:

- 0 = 05
¢ = Z== 6 + e +
J= %i =T+ e%%l +
We may write the new Hamiltonian K according to the rules of canonical transfor-
mations
K(I,$)=H(J,6)+ %?

But we may also write the new Hamiltonian as a power series in €
K(I,4) = Ko+ eKy + €Ky + ... .

Matching powers of € we find

and oo
I O0Hy 051(1,9) - =
K(I,¢)= —"- — + Hy(I,
1(1, 9) r; 93 1(1,9)

= a(d)- 3—&% + (3,9,
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K is already in action-angle form, and we will choose Sy so that K is also in that

form. We write

i —

( ?¢) ( l(I7$)>+{Hl(fa$)}v
where () indicates the average over all angular variables, and { } indicates the
angular dependent part. We delete the 5 dependence in K; by demanding that

= 051

&(I) - 93 —{H:\(1,9)} .

Fourier expanding S; and H; we find

. 8S L . .
“"6731:2%%% €= Hiz ™7,
=

m
Matching coefficients for each Fourier component we obtain

S1a(D) = H—'?‘{)— . (2.2.2)
-@(I)
We have thus defined to first order in € our new variables I , 3 We could continue
in this manner to arbitrary order in €, but the calculations become increasingly
difficult increasingly rapidly.

But we must be careful. The series does not converge in the neighborhood of
a rational torus where the denominator in 2.2.2 vanishes. This lack of convergence
may indicate that we are using an incorrect series expansion, or that the series does
not converge. Lack of convergence implies that the Hamiltonian is non-integrable,
while a series that is everywhere convergent gives integrability.

Finding all the terms in an infinite series is not a practical exercise. Usually
these calculations are carried out only to first or second order. What perturbation
theory can give is a reasonable guess for the integrals of the motion. The new actions
T are the conserved quantities, and plotting I (j , ﬁ) = constant in J,6 phase space
gives an approximation to the true invariant tori. Near rational tori this method

is very inaccurate, but in some regions of phase space it yields good results. The
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meaning of “near” depends on the size of e. This is illustrated by the figures for the
Henon-Heiles potential. (Figure 2.4) The four sets of pictures are for four different
energies; € in this system is measured by the energy. The left hand pictures were
generated by second order perturbation theory, the right are surfaces of section
obtained from numerical integration. The agreement between the two columns gets

worse as the perturbation (energy) increases.

2.3 KAM and Poincaré-Birkhoff Theorems

We have seen that invariant tori are the dominant feature of integrable phase
space. The changes in phase space arising from perturbations in the Hamiltonian
are described by two theorems: Kolmogorov-Arnold-Moser (KAM) theorem proves
the fate of irrational tori, and the Poincaré-Birkhoff theorem describes the changes
in rational tori. These two classes must be separated because of the problem of
small or vanishing denominators mentioned in the last section.

The importance of the KAM theorem cannot be understated. Canonical per-
turbation methods are usually unsatisfactory because of the presence of small de-
nominators; although they may not affect the motion on short time scales, on long
time scales they may alter the character of the motion completely. KAM avoids
the problem of small denominators, and provides analytical (infinite time) results
concerning nonintegrable Hamiltonian systems. KAM states that for small pertur-
bations of an integrable Hamiltonian, most of the invariant tori persist, although
their shape will be distorted. Therefore the general structure of phase space remains
unchanged even though the system is no longer integrable.

The proof of KAM requires [Ar78] finding a region in action space, and therefore
a J)'(j ), so that not only are the tori of the unperturbed system irrational, but they

are also sufficiently far from resonance so that

@ - | > Clm|™
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for all integer vectors 1m # 0, and for some C,v. Next we look for a nearby invari-
ant torus of the perturbed system with the same frequencies. Successful searching
requires that
32_H Ow

an :deta#o

det
so that the w’s can be used as a local coordinate system. The final requirement is
that Ho+eH; be sufficiently smooth. The searching is done in a convergent iterative
fashion similar to Newton’s method of tangents. The small divisor problem is never
encountered because the frequencies are required to remain far from degeneracy.

The existence of these (distorted) KAM tori has important implications for mo-
tion in a system with two degrees of freedom. Because the tori are two dimensional
and reside in a three dimensional space, they partition that space. A trajectory lying
between two KAM tori, even if it does not lie on a torus itself, is nevertheless greatly
restricted in its motion in phase space. This argument does not hold in higher di-
mensions since an /V-dimensional torus will not partition 2N — 1-dimensional space
for N > 2. Therefore, in higher dimensions, a trajectory can wander over the entire
energy surface even if KAM tori exist. This is known as Arnold diffusion, and takes
place on very long time scales [LL83].

Now that we know the fate of irrational tori under small perturbations, we
turn to the rational tori. These tori have zero measure in phase space, just as the
rationals occupy zero measure on the number line, but they generate the chaotic
behavior.

Why might we expect such novel behavior near rational tori? Let rw; 4 swy =0

on the rational torus. Then we define

winding number = a =

®w |3

Note that a will be irrational for an irrational torus. If we look at the surface of
section in the Jp,6; plane, and trigger on every s’th crossing, every point on the

rational torus is a fixed point, i.e., a point that is invariant under the mapping. This
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is an unusual situation: we don’t have simple isolated fixed points, but a continuous
curve of fixed points. Therefore, it should not be surprising to discover that this
topology doesn’t persist after the perturbation. Instead, we find that the curve of
fixed points breaks up into a finite number of alternating elliptic and hyperbolic
points (stable and unstable fixed points).

This change in topology is proved by the Poincaré-Birkhoff theorem, which we
will motivate by looking at the surface of section. The two dimensional surface of

section for an integrable system is equivalent to a twist mapping (Figure 2.5)

On =6n_1 + 27!'0{(]7,._1)
(2.3.1)
Jn == Jn—l )

where the subscript now indicates the iterate of the two dimensional map, and «
is the winding number defined above. The twist mapping keeps the radial variable
(the action in this case) constant, but twists or rotates the angle by an amount that
may depend on the action. The surface of section for a nonintegrable system is a
perturbed twist mapping, for which both the radial and angular variables change.

For reasonable Hamiltonians, « is a continuous function of the actions. Denot-
ing the value on resonance by ag, for smaller J’s we have a; < ayg, for larger J’s we
have ay > ag, or vice versa. Looking at the s’th iterate of the map in the unper-
turbed system, the points on rational torus are stationary; those above resonance
move counterclockwise; those below resonance, clockwise. Adding the perturbation
does not change the winding numbers significantly, and we still expect this progres-
sion of clockwise, to stationary, to counterclockwise as J changes, even though the
stationary points shouldn’t be expected to occur at exactly the same values of the
action as for the unperturbed system.

Therefore, there exists some curve for which the angular variable is stationary
under the s’th iterate of the perturbed map, although the radial variable will change.
Consider the two curves made up of the s’th and 2s’th iterates of this angular-

stationary curve. (Figure 2.6) Because the surface of section is an area preserving
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mapping, these curves must intersect each other. And because the curves are closed,
they must intersect in an even number of points. These points are then completely
stationary, and it has been shown that they are alternately hyperbolic and elliptic
fixed points [LL83].

The structure of phase space is becoming clearer (Figure 2.7). It is filled with
KAM tori, and between the tori where rational tori used to be, we have a ring of
stable and unstable fixed points. What happens about these fixed points?

Using secular perturbation theory, we investigate phase space near the elliptic
points. In a small neighborhood about the fixed point, the Hamiltonian has the
form of a one-dimensional pendulum to first order in e [LL83]. But such a system is
integrable, so there are invariant tori about the elliptic point. However, if we include
the higher order terms as a perturbation, we find that the system is not integrable,
and therefore can invoke the KAM and Poincaré-Birkhoff theorems in this small
region of phase space, and so we again expect to see KAM tori (now called second
order islands) and the alternating stable and unstable fixed points. This scenario is
repeated ad in finitum (though the higher order islands are proportionately smaller
and smaller) showing that detail exists on every scale. (Figure 2.8)

The chaotic behavior appears when we look at the unstable (hyperbolic) fixed
points and their stable and unstable separatrices. The stable and unstable directions
are given by the eigenvectors of the linearized equations of motion evaluated at
the hyperbolic point and projected onto the surface of section. A stable (unstable)
separatrix on a surface of section is operationally defined as the backward (forward)
iteration of the small line segment emanating from the hyperbolic point and in the
direction of stability (instability); it is therefore not just a single trajectory. The
stable and unstable separatrices do not coincide for non-integrable systems [He80],
however, they may intersect in “homoclinic” points. Consider a trajectory which
includes one homoclinic point. By the definition of a separatrix, the mapping of

this point is also a homoclinic point. Therefore the entire trajectory is made up of
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homoclinic points, and although the stable and unstable trajectories don’t coincide,
they intersect in an infinite number of points.

Consider the area enclosed by the two separatrices and bounded by two homo-
clinic points. (Figure 2.9) This will map into another area of the same size, but the
base between the homoclinic points will be smaller since they are approaching the
hyperbolic point as e~!. To compensate, the other sides must become exponentially
longer. Somehow these long separatrices fold themselves in the area of phase space
given to them between the KAM tori. This generates chaotic behavior. The long
time behavior of a trajectory will depend on where it lies among the folds and pleats
of the separatrices. Two points which are initially close together may actually be
separated by many layers of folds, and therefore their long time trajectories must

be quite different.

2.4 Lyapunov Exponents and Entropy

In the last section, we began to see the onset of chaos with the wild behavior
of intersecting separatrices. In this section we become more quantitative about
the “instability with respect to initial conditions” known as chaos. The calculable,
useful quantities are the Lyapunov exponents which measure the stability of a single
orbit, and the entropy which measures the rate of information gain for the entire
system.

The subject of this section are the trajectories Z(Zo,t) which depend on initial
conditions Zo and on time t. (In this section Z stands for all 2N phase space

coordinates.) These trajectories evolve in time according to Hamilton’s equations
7=F7{).
Now we define E as the vector between two trajectories initially separated by 6

f(i“o + 37 t) - 5(507t)

£(Z0,t,8) = =
6]
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To find the equations of motion for E , we Taylor expand the equations of motion

for Z(Zo + 6,t) about #(Zo,t). As long as |8| is small, we need only retain terms to

first order in |4:
where

These are the usual linear equations of motion for small separations.

The evolution of E(t) gives the linear stability of the trajectory #(t). To see
this, consider the case when DF is constant. Let its eigenvalues and eigenvectors
be A1 > X2 > ... > Aoy and &1, (:’2, e &ZN- Each eigenvector has exponential time

dependence
Gi(t) = eN'G(0)

If A\; > 0, then the motion is unstable in the &,- direction; small perturbations grow
with time. While if A\; < 0, the motion is stable in that direction, and the linear
approximation remains good for all time. In general, we begin with a vector which

is a linear combination of the eigenvectors,

N

Et=0)=>_ali,

with Zf\;l c? = 1. In this case the evolution is given by

N

Et) =) cieM'l;.

We define the Lyapunov exponent:

— -

MZo,8) = lim Slog LELEOL
t=oo b 7 |€(Z0,0,90)|
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If gHé’, then A = \;, otherwise

— lim L it
A= Jim Zlog| ) (cie™)]

1
lim = log |(cmaxe™*?)|
t—oo t

Il

= /\max y

where Apax is the largest eigenvalue for which ¢; # 0. In general ¢; # 0, therefore
if the motion is unstable in any direction, the Lyapunov exponent will be positive,
while if the motion is stable in all directions, it will be zero or negative.

Now we turn to the general case where DF is not constant [SN79,Wo85]. Be-
cause we have no eigenvalues in this case, the notions are not so clear, nor the proofs
so easy, yet the general ideas persist. First, we define a vector in tangent space

7(Z0,t,8) = lim &(Z,t,0) .
1§]—0

S

Now the equations of motion are exact because the initial separation is zero:
i(Zo,t,6) = D (0,1, 8) . (2.4.1)

We may consider the D¥ as constant at each point in phase space and varying con-
tinuously from point to point. Therefore the eigenvalues and eigenvectors change in
size and direction from point to point. The analogously defined Lyapunov exponent,

MZ0,8) = lim L1n JTE0EOI

= (2.4.2)
t—oot |ij(Zo,0,9)|

gives, in some loose sense, the infinite time average of the local Lyapunov exponent;
telling us if, on the average, the trajectory is stable or unstable. Again, if we
choose & at random, we will pick out the largest Lyapunov exponent (therefore the
dependence on § is usually suppressed). However, if we force 7j(t) always to be
perpendicular to the fastest growing direction, we will pick out the second largest

exponent, and so on.
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There are many rigorous proofs concerning the Lyapunov exponents [Os68,
ER&85, Pe77]; we will simply quote the results here without attempting any proofs.
Oseledec showed [Os68] that the limit given in 2.4.2 does exist for a compact phase
space, and is independent of metric. He also showed that there exists a spectrum of
Lyapunov exponents. The 2N exponents defined above, corresponding to the 2NV
dimensions, are first order Lyapunov exponents. A pth order Lyapunov exponent
gives the exponential rate of growth or decay of a p-dimensional volume in phase
space. This is equal to the sum of the p distinct first order exponents. For a Hamil-
tonian system, the sum of all 2N Lyapunov exponents must be zero because phase
space neither expands nor contracts. For dissipative systems the sum is negative.

From simple considerations we may learn more about these exponents for Hamil-
tonian systems. The Lyapunov spectrum for the time-reversed system is just minus
the original spectrum [ER85]. But Hamiltonian systems are time-reversal invariant,
therefore, \; = Aany_;. Moreover, as long as we avoid fixed points, the exponent
along the direction of motion is zero [ER85]. By the above argument, if one expo-
nent is zero, two must be zero. The second zero exponent is associated with the
direction perpendicular to the energy surface, because we are restricting ourselves
to motion on the surface. Combining all these facts, we see that the Lyapunov
spectrum for a two dimensional Hamiltonian system is given by (Ao, 0,0, —Ag).

The existence of positive exponents is often loosely associated with “exponential
divergence of trajectories”, a sadly misleading phrase. Positive exponents indicate
only that small perturbations do not remain small; first order perturbation theory is
no longer applicable. We can make no more predictions about the separation of close
trajectories using 2.4.1. The claim of exponential divergence is clearly incorrect if
the motion is bounded; the separation must always be finite. However, it is correct
to associate first order stability or instability of an orbit with negative or positive
characteristic exponents.

From the Lyapunov spectrum, which characterizes a single orbit, we may calcu-

late the entropy which characterizes the entire system. This entropy is not the fa-
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miliar thermodynamic entropy, but information entropy which measures the average

rate of information change in a flow. The amount of information in a measurement

is defined [Sh81] y
information = — zp,- log p; , (2.4.3)

i=1
where there are N possible outcomes of the measurement, each with probability p;.
Why is this a reasonable definition? Consider a measurement that has two
possible outcomes, one with probability one, the other with probability zero; the
information of the system is zero (with the convention that 0log0 = 0). We learn
nothing from the measurement; there is no surprise in the outcome. Alternatively, if
there are two possibilities, each with probability %—, the information is maximum for
this partition. We are most unsure of the outcome; we are “maximally” surprised
by the results of measurement. If we increase the number of possibilities to m, the
information is maximum if all p; = 1/m, i.e., we are completely unbiased before the

measurement. In this case we may write

: : 1. 1

information = — ; — log — = logm ;
the information increases as log m. The finer our measurements, the greater infor-
mation is given by each measurement. These are all intuitively reasonable features
of something we call information.

But information may change because of the flow. Consider a contracting flow.

If the original space was covered by m boxes of a given size, after some time, the
contracted space will be covered by n boxes, with m > n. The boxes are the same

size since the measuring instrument is the same. Using the formula above, the

change in information is
change in information = logm —logn =log— < 0,
n

and information has been lost.
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This terminology may be confusing: gain and loss always depend upon your
perspective. For information, loss and gain are judged by experimentalists who
have measuring devices of finite precision. They know the initial conditions to
only a certain accuracy; if the flow is contracting, future measurements give them
no more information about those initial conditions. Theorists, on the other hand,
prefer contracting flows, since the finite precision of the initial conditions does not
affect their predictive powers as t — oo.

Experimentalists gain information from expanding flows. Take as an example
the left shift map given in the introduction. The map takes an interval Az into an
interval of 2Ax. After each iteration, the points that used to be in one box are now
in two. The change in information is log 2, and information is gained. Therefore,
the experimentalists who make repeated measurements of the iterates of one point
will learn with greater and greater precision the initial conditions of that point.
However, the theorists will not find this a happy situation. If they know which box
a certain point was in at n = 1, they will not know which of two boxes it was in at
n = 2, and its long time trajectory will be completely unknown.

It is the stretching in the left shift map that is responsible for information gain.
Similarly, in Hamiltonian flows, if there is a positive exponent, indicating stretching
in at least one direction, there is information gain. Consider a set of points covering
the experimental box at ¢ = 0 as an incompressible fluid. If the flow stretches in one
direction, this fluid will evolve into a long tube. Although the fluid covers the same
volume as it did originally, it covers many more boxes; hence the measurements will
tell us something. On the other hand, if all the exponents are zero, the fluid retains
its general shape as well as volume, and will cover approximately the same number
of boxes as time goes by. (Figure 2.10)

Before we define entropy, we must first define a partition of the (2N —1)-dimen-
sional energy surface. Such a partition is specified by a set of L > 2 non-overlapping

surfaces which completely cover the energy surface. Let

A(0) = (A1(0), A2(0), ..., AL(0))
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be the set of surfaces (i.e., the partition) at t = 0. Now evolve A(0) backwards for

one unit of time to obtain a new partition given by
A(-1) = (Ai(-1), A(-1),..., AL(-1)),

and so on to obtain A(—n). Then we define the partition B(—n) as the set of

surfaces defined by the intersection of surfaces at all previous times:
Bi(—n) = A;(0)N .AJ'(—].) N...NAg(—n) .

Therefore the number of surfaces defined by B(—n) cannot decrease with increasing
n.

Entropy is defined as the change in information for one time unit, as time goes

to infinity [ER85]:
entropy = h(A;(0), u, DF) = lim (I, — I,_1) , (2.4.4)
n—oo

where

ILn=— ) u(Bi(-n))logu(Bi(-n)),

surfaces

and p gives the measure of each surface. The entropy clearly depends on the
original partition. If at ¢ = —n there are more surfaces in the partition B(¢) than
at t = —n + 1, we have gained information. If this gain persists to infinite n, this
implies positive entropy. Yet for periodic motion, after some finite n, the number
of surfaces will no longer increase, and the entropy will be zero. Positive entropy
indicates that no finite number of measurements will allow you to predict the next
measurement. Note that, unlike the thermodynamic entropy which depends on the
state of the system, the information entropy is an intrinsic property of the flow or
map.

Positive entropy is related to stretching, as discussed above; therefore, it should
not be surprising to find that the entropy is related to the Lyapunov exponents.
For a Hamiltonian flows Pesin proved [Pe77]

hrs(u DF) = [ 3 M@du(@) (2.45)
2(E) Ai>0
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where E(E) is the energy surface. For a system with two degrees of freedom,
the sum over positive exponents has only one term. This entropy is actually the
Kolmogorov-Sinai entropy which is the maximum information entropy over all the
possible finite partitions .A(0).
In summary, positive Lyapunov exponents imply stretching of the Hamiltonian
fluid, which cause information gain and instability with respect to initial conditions.

In this strict sense positive Lyapunov exponents imply chaotic motion.

2.5 Degrees of Irregularity

We began in §2.1 discussing the spectrum of classical behavior by introducing
integrable and quasi-integrable Hamiltonian flows. Now that we understand the
general features of phase space, and the notions of chaos, we can complete the
cataloging of Hamiltonian systems. In order of increasing irregularity these are
ergodic, mixing, K systems, and B systems.

We begin with the ergodic systems for which almost every trajectory comes
arbitrarily close to almost every point in phase space. The phrase “almost every”
has a precise meaning. Those points not included in “almost every” have no measure
in phase space. This qualification is necessary because even in the most chaotic
systems there are trajectories with finite period which do not explore all of phase
space. In the shift map, for example, = .100 (one half) is a periodic point.

An example of an ergodic mapping is the twist mapping mentioned in §2.3
Jn = Jn—l

if o is irrational. As time goes to infinity, the points of the mapping will densely
cover the circle of radius J, making the time average equal to an average over the
circle.

But we said previously that this twist map is equivalent to the surface of section

for an integrable system. Are we claiming now that it is irregular because it is
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ergodic? No. Every mapping or flow is ergodic on some manifold. The trajectories
of rational tori are ergodic on a line, the trajectories of an irrational torus are
ergodic on the torus, there may be ergodic trajectories in the region between KAM
tori. The important calculation determines the manifold on which the motion is
ergodic. If a Hamiltonian system is ergodic on the energy surface, then the flow
is maximally ergodic. From now on the term ergodic will be used in this strong
sense. Because KAM tori partition phase space for N = 2, the phase space of a
2-dimensional ergodic flow must be KAMless.

It is important to note the effect of ergodicity on A(Zy). Lyapunov exponents
are time averages of the growth rate of the vectors in tangent space. For an ergodic
flow, time averages equal space averages; space averages are independent of initial
conditions; therefore, the Lyapunov exponents of ergodic flows are independent of
initial conditions.

The next stage in complexity is reached by the mixing systems. Mixing requires
that any finite element of Hamiltonian fluid on the energy surface be spread evenly
over the entire surface as t — oo. This is entirely analogous to the coarse-grained
mixing of coffee and cream: in any small but finite bit of the fluid we find the same
proportions of coffee and cream as we find in the entire cup. This spreading over
phase space is caused by the stretching discussed in the last chapter. However, it is
now important to note that a positive Lyapunov exponent indicates an exponential
growth rate. For mixing the stretching need only be linear in time; mixing systems
aren’t necessarily chaotic.

K systems are defined as systems with positive entropy for any finite parti-
tion A(0) (2.4.4); they are chaotic. Note that this is stronger than having positive
Kolmogorov-Sinai entropy (2.4.5), since hgg is the mazimum value for all parti-
tions.

B systems are even more chaotic: the flow in a B system is as unpredictable

as possible, in the sense that consecutive measurements are uncorrelated. As an
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