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ABSTRACT 

The entrainment and aixing processes in an axisymmetric vertical 

turbulent buoyant jet and its transition from a jet to a plume have been 

studied. The ambient fluid is or uniform density and calm except tor 

the flow induced by the jet, and the density variations are assumed 

amall. 

A systematic set of experiments was carried out to examine 

turbulent buoyant jet behavior over a vide ranse or initial jet 

Richardson numbers. All experiments were performed in a glass vall tank 

with dimensions 1.15m x 1.15m x 3.30m deep, equipped with a jet flow 

source and an instrument carriage to enable velocity and concentration 

measurements in the entire jet flow field. 

The axial and radial velocity components and the concentration of a 

Rhodamine 6G dye were measured simultaneously at the same point of the 

jet flow field using a two - reference beam laser - Doppler velocimeter 

combined with a laser induced fluorescence aeasuring device. From the 

time signals of the axial and radial velocity components (v) and (u) and 

the concentration (c) of a Rhodamine 6G dye, information vas obtained 

concerning the mean values, turbulent fluctuations and correlations 

between v, u and o, up to 100 jet and 80 plume diameters downstream of 

the jet exit. 

More specifically, the aean flow (including the spreading rate of 

the aean velocity and tracer concentration profiles and distribution 

along the jet axis) and the turbulent structure (including the profile 

of turbulence intensity, turbulent aasa tlux of a tracer and turbulent 
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.o~entum flux) were investigated as a fUnction of distance trom jet 

origin made dimensionless by a characteristic length scale based on jet 

buoyancy and momentum fluxes. The results from a detailed dimensional 

analysis were verified experimentally. It vas deter.mined that the 

turbulent flux of a tracer (or buoyancy) varied trom 6-10% for jets and 

was 15-20% of the total for plumes. The turbulent momentum flux was 

found to be 15% of the local momentum flux transported by the mean flow. 

While the profiles of w and c and the turbulent velocity profiles 

are round to be much the same tor both jets and plumes, the turbulence 

intensity profiles of the concentration take higher values in plumes 

than in jets. More rapid dilutions were obtained in buoyancy driven 

plumes than in momentum driven jets. 

Useful information concerning engineering applications is provided 

from the experimental constants derived. 
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English Symbols 
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b 
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c 

c 

c 

c 

c 
c 

c' 

• universal entrainment coefficient. 

• entrainment coefficient for a pure jet. 

• entrainment coefficient for a pure plume. 

~ constants of proportionality in equations (1.3.2) to 
(1.3.10), (page 17). 

• distance shown in Figure 2.4.5, (page 46). 

• constant in 5th-order polynomial for the laser-Doppler 
calibration, (page 62). 

• visual width of the jet, (page 67). 

• b (z), 1/e-width of the time-averaged mean velocity w profile, (e = 2.718 ••• ). 

• bc(z), 1/e-width of the time-averaged mean concentra­
tion profile, (e = 2.718 ••• ). 

• constants of proportionality in equations (1.3.2) to 
(1.3.10), (page 17). 

= distance in Figure 2.4.5, (page 46). 

• {<~P)o/Pa)g, ~pecific buoyancy flux at the jet orifice. 

= constant in 5th-order polynomial for the laser-Doppler 
calibration, (page 62). 

• speed of light in vacuum, (page 38). 

= specific heat of water, (page 17). 

• c(r,z,t), instantaneous concentration excess (above 
the ambient) at point (r,z) at time t. 

- c(r,z), time-averaged mean concentration excess (above 
the ambient) at point (r,z). 

• c (z), time-averaged mean concentration excess (above 
tfie ambient) at the jet axis. 

• c'(x,y,t), turbulent component of the concentration, 
c' • c - 1!". 

• intensity of turbulent fluctuations of concentration. 
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NOMENCLATURE (continued) 

ambient fluid concentration of Rhodamine 6G dye. 

~b /z • C, plume width parameter (growth coefficient) 
in e~uation (1.3.11), (page 16). 

C, jet width parameter (growth coefficient) in equation 
(1.3.4), (page 17). 

~/zm~, jet/plume width parameter, (page 14). 

excess (above the ambient) concentration of Rhodamine 
6G dye at the jet orifice. 

coefficients for the distribution of the mean velocity 
along the jet axis. 

coefficients for the distribution of the mean concen­
tration along the jet axis. 

constant in 5th-order polynomial for the laser-Doppler 
calibration, (page 62). 

jet diameter. 

constant in 5th-order polynomial for the laser-Doppler 
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= w2 /frequency, u2 /frequency, c2 /frequency, power of the 
energy spectrum (frequency distribution) of w, u, c. 

= 

-

-
-

frequency of light scattered by a moving particle. 

frequency of laser light in the direction of the laser 
beam. 

frequency of the scattered light in the direction of 
an observer on a photodetector. 

frequency of the reference laser beam of the laser­
Doppler velocimeter. 

Doppler frequency. 

fR - fs' frequency shift between reference and scat­
tering beams. 
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NOMENCLATURE (continued) 

• distance, (page 45). 

- f - F. D 

- 2f0 + 2f0 • 

- 2fo + F + fD. 

- 2fR = 2fo + 2F. 

• f - F, Doppler frequency that corresponds to the axial 
wl . ve oc1ty component, w. 

-
fu - F, Doppler frequency that corresponds to the 
radial velocity component, u. 

frP.quency outputs from the photodetectors that corre­
spond to axial and radial velocity components recorded 
on diskettes in digital form. 

[w2 /g~D]~ densimetric jet froude number. 

specific buoyancy flux at a jet exit, (page 25). 

gravitational acceleration (981 cm/sec2
). 
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calibration constant for the induced fluorescence 
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• h(R,G), buoyant force function, (page 14). 

• calibration constant for the induced fluorescence 
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= QCo• Rhodamine 6G dye flux at the jet exit. 

• transport of a tracer (Rhodamine 6G dye) by mean flow. 

• turbulent tracer (Rhodamine 6G dye) flux. 

• coefficient in the exponent for the exponential weak 
velocity and concentration profiles, (page 20, page 99). 

• spreading rate of the mean velocity profile. 

• non-dimensional virtual origin of the mean velocity 
profile. 

• spreading rate of the mean concentration profile. 
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NOMENCLATURE (continued) 

• non-dimensional virtual origin of the mean concentra­
tion profile. 

• M3 /q/B1 / 2 , characteristic momentum (or buoyancy) 
length scale. 

m Q/M1 / 2 , characteristic length scale proportional to 
the orifice size. 

• m(z), kinematic momentum flux. 

"" QW, specific momentum flux at jet origin. 

= index of refraction. 

= mean deviation from the hydrostatic pressure. 

= 
.. 
... 

= 
= 

= 

c 

q(R,C), entrainment function, (page 14). 

(TID2 /4)W, volume flux at the jet orifice. 

input heat flux at the jet orifice, (page 26). 

coordinate axis in the radial direction, normal to the 
gravity force. 

(%),indication of the flowmeter, (page 61). 

~Q/~, initial jet Richardson number. 

R(z) = ~e1 /2 /m5 / 4 , jet Richardson number at a distance 
z from jet orifice. 

plume Richardson number. 

= Reynolds number. 

.. 
• 
... 
... 

• 
... 

Co/c, mean dilution. 

Co/~, "rms dilution11
• 

time. 

temperature (pages 25-27 and 50). 

T - T, turbulent component of the temperature (pages 
25-27). 

time-averaged mean temperature (pages 25-27 and 50). 

u(r,z,t), instantaneous radial velocity at a point 
(r,z). 
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NOMENCLATURE (continued) 

m u(r,z), time-averaged mean radial velocity. 

= u - u, turbulent component of the radial velocity. 

• turbulence intensity of the radial velocity component • 

• particle velocity, (pages 38,39). 

• v(r,z,6,t), instantaneous tangential velocity compo­
nent at a point (r,_z,6). 

E v(r,z,e) K v(r,z), mean tangential velocity. 

• digital output from the photodiode to the computer. 

= w(r,z,t), instantaneous longitudinal (axial) velocity 
component at a point (r,z). 

a time-averaged mean longitudinal (axial) velocity. 

= w - w, turbulent component of the longitudinal (axial) 
velocity. 

= turbulence intensity of the axial velocity component. 

= w-(z), time-averaged mean axial velocity at the jet c axis. 

= velocity at the orifice of the jet. 

• position vector of a point in a flow field. 

= y(x,t), flow parameter at location~ and time t. 

= QC 0 , tracer flux at the jet exit. 

• coordinate axis in the vertical direction, same direc­
tion as gravity force • 

• locus of the virtual origin of a jet. 

- a(z), thermal expansion coefficient of the water. 

- constant exponent to be defined, (page 12). 

- constant exponent to be defined, (page 12). 

- S(z), kinematic buoyancy flux. 
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NOMENCLATURE (continued) 

• constant exponent to be define~, (page 12). 

• constant of proportionality in equation (1.2.5), (page 
5). 

= (c /R )(z/£M)' dimensionless elevation. 
p p 

• n(z) • d~/dz = m~q(R,C), entrainment function. 

• angle. 

= b /b , width ratio. w c 

= wavelength of laser light in a vacuum. 

• wavelength of the incident laser light. 

= wavelength of the fluorescent (emitted) light. 

= (~/Q)(Ro/Rp)' dimensionless dilution • 

~(z), kinematic volume flux at a distance z from the 
jet orifice. 

• kinematic viscosity. 

• ~(z) = dm/dz = (~G/m)h(R,C), buoyancy function. 

c 3.14159 ••• 

• fluid density at the jet orifice. 

... ambient fluid density. 

... p(r,z), time-averaged mean fluid density at a point 
(r,z). 

= o unit, 1 gr/cc. 

= time. 

"' angle. 

• quantities of the ambient fluid. 

• quantities of the jet axis (centerline). 

= quantities at the jet orifice. 
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NOMENCLATURE "(continued) 

• quantities corresponding to plumes. 

• quantities corresponding to jets. 

• time-averaged mean value. 

~ fluctuating component. 

Mathematical Symbols 

!::. - deficiency or difference symbol. 

expA ~ eA, exponential function. 

1T ... 3.14159 ••• 

E .. summation symbol. 

"' .. is proportional to. 



1. INTBODDCTION 

1.1 Introductory note 

The subject of the present experimental work is the study or a 

round vertical turbulent buoyant jet discharging into a body of vater of 

uniform density. Our purpose is the description of the velocity and 

concentration distributions in the jet, especially in the region where 

buoyancy is the driving force rather than the initial momentum flux. 

Buoyant jets are observed in nature above fires, active volcanos or 

underwater springs. Man-made jets can be seen at ocean outfalls for 

wastewater disposal, factory stacks, cooling towers, rocket propelled 

missiles after launch and airplane jet engines. The continuously 

growing demand tor nuclear electric power and the growth or cities by 

ocean sites, increase the demands for wastewater disposal into the ocean 

by ocean outfalls. Design of outfalls that can obtain fast dilution 

will minimize the disruption of the ecological balance due to thermal or 

biological pollution. Understanding of the mechanics of buoyant jets, 

and especially the entrainment and the mixing that occurs at round jets 

will help in optimal design of ocean outfalls. 

Apart from environmental appli~ations, the present investigation 

will help in understanding some fundamental turbulence characteristics 

of turbulent free shear flows. It will also contribute to the knowledge 

of the mechanics of the round plumes, since they have been investigated 

here in a systematic way, especially in the far field where the flow is 

tully developed. 

1 



2 ---- --r-

c(b {z),z) = c (z)/e c c 
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Figure 1.2.1. Geometry of a buoyant jet - definition sketch. 
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1.2 Definition of the problem- a review of previous theories 

Previous investigations or round vertical jets, buoyant jets and 

plumes vill be examined in this chapter. The flow con1'1guration and 

geometry are shown diagrammatically in Figure 1.2.1 • The basic 

assumptions to be considered are: (1) The ambient fluid is of uniform 

density P
8 

and motionless, except tor the tlow induced by the jet. 

(11) The difference between the time- averaged fluid densityp(r,z) at 

any point and the ambient fluid density will be small, so that 

(p(r,z)-p
8
)/p

8 
<< 1 

in the case of buoyant jets and plumes. Thus, there will be little 

error it the local density p(r,z) is replaced by the ambient fluid 

density p
8

in the equations of motion in the description or the inertia 

forces (Boussinesq approximation). (iii) That the flow is tullY 

turbulent and that the viscous and molecular transport of beat, or some 

other tracer, can be neglected relative to its turbulent transport. 

(iv) There is no swirl introduced to the jet, so that the mean 

tangential velocity v(r,z,B) = v(r,z) = 0. (v) Within the range of the 

problem the denslty ot the fluid is assumed to be linear function of 

tracer concentration above the reference level as shown in Figure 1.2.2. 

(vi) Pressure is assumed to be hydrostatic throughout the ambient fluid 

.. and (vii) The fluids are supposed to be inoompresoible. Under these 

assumptions the time - averaged Boussinesq equations for the three-

dimensional incompressible motion ot a turbulent axisymmetric 

non-swirling jet with density variations in cylindrical polar 

coordinates are: 

(a) Conservation or volume flux 

1 a a'; r ar (rU) + az - 0 (1.2.1) 
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Figure 1.2.2. Relative density of aqueous NaCl solutions as a function 
of the NaCl weight (%) at 20°C. 
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(b) Momentum ooJ18erva tion 

(i) Axial .omentum 
-

! aar [r (w + w'u')]+ aaz (w2 + w'2 + ~) .. c~:a) g (1.2.2) 

(ii) Radial momentum 

-
-.!...1. [r(<~2 + u' 2 ) + L)~+ ..1. (w + w'u') = o r ar Pa ~ oz (1.2.3) 

where w• and u• are the deviations in velocity from the time-averaged 

mean values w and u respectively, and p is the mean deviation from the 

hydrostatic pressure. 

(c) Energy equation (tracer conservation) 

1.1.. ( rcu + rc' u') + .1.. (we + w' c') ... 0 r ar az (1.2.4) 

where o is the time-averaged concentration and c' the deviation from 

this mean value. The linear form 

p(r,z)- p
8 

----- ... o(c(r,z)- c8 ) 
Pa 

is assumed, where 6 is taken to be constant. 

The above system of five (5) equations (1.2.1) to (1.2.5) has 

(1.2.5) 

eleven ( 11) unknowns v, ii, c, 'W'f%', ;tT, c' 2 , p, li'i'ii", 'W"i'Ci"', u' c 1 , p , 

and therefore cannot be solved even if the appropriate boundary 

conditions were provided. This is the fundamental problem or turbulent 

fluid mechanics. 

A large number of methods or dealing with this general problem have 

been proposed but the existing work on axisymmetric tree shear tlows can 

be classified into two schools or thought. The first school. tries to 
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derive a constitutive equation between the Reynolds stress.tensor and 

the de~ormation tensor or the ~luid. The early workers in this school 

in addition assumed self preservation for the mean and ~luotuating 

quantities (see for example, Tollmien (1945), G. I. Taylor (1932), 

Schlichting (1968) and Rajaratnam (1976)). More recent workers use more 

complex constitutive equations and solve the appropriate system of 

equations numerically (see, tor example, sarrman (1970), Rodi (19BQ), 

Ooms and Wicks (1975), Launder and Spalding (1972). 

A second group of investigators integrates the equations of motion 

across the jet and derives conservation integrals tor the mass, momentum 

and buoyancy fluxes (see Corrsin and Uberoi (1950),Horton et al (1956), 

Brooks and Koh (1965) and List and Imberger (1973)). For a round 

vertical buoyant jet this approach leads to equations (see Fischer et al 

(1979)) or the form 

or 

or 

(1) Conservation or volume flux 

dll -- .. -lim(2nru) 
dz ~ 

U • Jm W(r, z) 2nrdr 

0 

(2) Conservation or momentum flux 

f
ill) 

d _2 
dz w (r,z) 

0 
/

CIO -p(r,z)- p 
2nrdr .. ( Pa a) g 2nrdr 

0 

dm [ (p(r,z)- Pa) 
- • g 2nrdr dz p 

o a 
m • /m W2 (r,z) 2nrdr 

0 

(1.2.6) 

(1.2.7) 
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(3) Conservation or buoyancy flux 

d lao - (p(r,z)- pa) 
Ci:t w(r,z) p g 

a 
0 

21Trdr • 0 

dB = 0 
dz 

p(r,z)- p J
CIO -

a - w{r,z) ( pa a) g 21Trdr 

0 

For the derivation or the above three equations the following 

(1.2.8) 

assumptions were made 

that 

(i) The integration is extended to infinity, benoe it is argued 

11m rw rr + i'\i1l = o 
r+a> 

11m rw a + 'i'OTJ = o 
r-+co 

lim ru c + U'C'l = o 
r-+co 

(ii) It is assumed that the turbulent tracer transport W'O' is 

negligible in comparison to w c. 
(111) It is assumed that ~ + p/p << w2 • This bas been justified 

a 

by Miller and Comings (1957). 

The above three equations have provided the conceptual framework 

tor almost all or the previous investigations or jets, plumes and 

buoyant jets. From this point on, two approaches have been used to 
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obtain the basic jet behavior: the entrainment coefficient approach, 

and dimensional analysis. 

(a) Entrainment coefficient approach 
• 

The entrainment coefficient approach used by Brooks and Koh (1965), 

Horton !lal.(1956), Morton (1959), Fan (1967) and Fan and Brooks {1969) 

is based on the h'~othesis made by G. I. Taylor (1956) that the 

entrainment abould be proportional to some characteristic velocity of 

the jet, i.e. 

lim (2 'IT rU) = 2'1Ta b w 
~ e w c 

(1.2.9) 

where Morton (1959) assumed the entrainment coefficient ae to be 

constant with the same value tor jets and plumes. The velocity and 

concentration profiles are assumed to be similar, based on the 

experimental results, following Gaussian distributions 

w(r,z) = w (z) exp[-(r/b )2 l 
c 'W 

(1.2.10) 

c(r,z) = 0 (z) exp[-(r/b ) 2 l 
c c 

(1.2.11a) 

or 

p(r,z) - p = (p (z)~ p ) exp[-(r/b ) 2 ] 
a c a c 

(1.2.llb) 

where the characteristic lengths of the velocity profile,b (z), and the 
'W 

concentration profile (density ditterenoe), b (z), are defined by the 
c 

relations 
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i(b (z),z) = w (z)/e w c (1.2.12) 

(1.2.13a) 

(6p){b (z),z) = (6p) (z)/e 
c c (1.2.13b) 

where e is the base of the Napierian logarithms. (Many authors define 

the b(z)'s as the half-velocity and half-concentration characteristic 

lengths. This multiplies the exponent of the Gaussian profile by a 

factor of ln(2)). One further assumption has been that 

b (z) 
c .. A 

bw(z) 
(1.2.14) 

where A is supposed to be a universal constant. 

Under these assumptions the equations (1.2.6), (1.2.7) and (1.2.8) 

can be written as 

.E... (1Tw b 2 ) "" 27Ta b w 
dz c w e w c (1.2.15) 

(1.2.16) 

(1.2.17) 

where (Ap)c(z) = pc(z)-p
8

• Fan and Brooks (1969) solved the above 

system or equations numerically to find the evolution of bw(z), wc(z), 
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(t.p) (z). 
c 

At this point it will be useful to try to solve the above system of 

equations for the tvo limiting oases, jets and plumes. We define: 

(i) Pure momentum jet as the tlow driven by continuous injection of 

momentum at the source 

(ii) Pure plume as the tlow driven by continuous addition of 

buoyancy at the source 1 and 

(iii) Buoyant jet as the tlow which is driven by both, buoyancy and 

momentum. 

(a) For the limiting case of the pure momentum jet (bp) =0) 
0 

system of the above equations (1.2.15) 1 (1.2.16) and (1.2.17) becomes 

~ (w b2
) = 2ajb w 

dz c w w c 
(1.2.18) 

and 

(1.2.19) 

Also the tracer tranoported by the jet is conserved, therefore 

(1.2.20a) 

or 

(1.2.20b) 
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where W and C are the velocity and concentration at the jet exit. 
0 

By aubstituting equation (1.2.19) into (1.2.18) one can get explicitly 

db 
~ .. K 2 dz lw • aj (1.2.21) 

where I 1w is a constant and aj is the entrainment coetficient for a pure 

jet. Equation (1.2.21) can be written as 

(1.2.22) 

From the equations (1.2.19) and (1.2.22) the derived centerline mean 

velocity is 

.,li_ ... ff K (~ + K ) 
- lw D 2w 

(1. 2. 23) 
we 

From equations (1.2.20b) and (1.2.23) the centerline concentration is 

determined as 

c 
0 -= (1.2,24) 

(b) For the l~ting case of a pure plume the equations (1.2.15), 

(1.2.16) and (1.2.17) become 

2.. (w b 2
) • 2a b w dz c w p w c 

(1. 2. 25) 

(1.2.26) 

dB d /-
dz • dz \we 

(lip) 
c (1.2.27) 
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where B is tbe specific plume buoyancy flux. Following Morton et al 
a - e - y ( 1956), ve uaume tbat bw=bz , vc=wz , (ll P) c/P8 =PZ , and 

substituting into (1.2.25), (1.2.26) and (1.2.27) ve obtain 

for a point source 

a = 1 

e = -113 

y = -5/3. 

Substituting forb , wand (~p) 1n equations (1.2.25), (1 12,26) and 
w c c 

(1.2.27) leads to 

or 

and 

or 

6 
b •- a z w 5 p 

- 5 [9 l+A2 B] 1/3 -1/3 w •- -a - z c 6a 5 p n 
p 

(1. 2. 28) 

(1.2. 29) 

(1.2.30) 

From tbe equations (1.2.21) and (1.2.28) and for a constant entrainment 

coefficient (i.e. a taP ) it ia concluded that the width or the jet is 
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5/3 times the plume width. Bxperimen~al evidence shows that they are 

approximately equal and therefore the assumption of a universal 

entrainment ooettioient is incorrect. Alternatively it b E b then w c 

5 a •- a. 
p 3 J 

(b) Dimensional analysis 

The results above agree with those deduced from dimensional 

analysis: For a pure jet in uniform environment, equation (1.2.16) 

implies that the kinematic momentum flux is conserved i.e. 

Dimensional analysis then gives for a pure jet 

w (z) "~~1/z 
c 

(see Schlichting (1968) 1 Landau and Lifshitz (1975) and Rajaratnam 

(1976)). For a plume 1 Batchelor (1954) showed that 

w (z) "' (H/z) 113 
c: 

b (z) "' z w 
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Lbt and Iaberger (1973) used dimensional analysis to write the 

equations of .ation in tb13 form 

where 

and 

~ c ~(z) • m112 q(R,C) 

dm ~ · --d • n(z) • h(R,C) z m 

dB .. 0 dz· 

~ ~ ~m W(r,z) 2nrdr , 

0 

m ~ [m W' (r, z) 2nrdr 

0 

B • f a> (oCr,z) -

pa 
0 

Their objective vas to find the leading terms of the tunotions q(R,C) 

and h(R,C). 

In the next section we discuss the dimensional analysis approach 

.. aystematioally. 
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1.3 Dimensional analysis 

In this section the problem of jets, plumes and buoyant jets is 

presented using characteristic dimensionless quantities. There are 

two main reasons this is done here. (i) Both in nature and in the 

laboratory it is difficult to obtain an ideal pure jet or pure plume. 

The reason is that there is almost always initial momentum injected to 

the flow and a temperature difference between the jet and the ambient 

fluid. (ii) A jet with even very small initial buoyancy will 

eventually become a plume in a uniform environment. Given these 

results an understanding of the transition from jets to plumes becomes 

or significance and in practical applications the following jet 

parameters with their dimensions are defined 

Q ••• (L3 /T) initial jet discharge 

W ••• (L/T) initial jet exit velocity 

H ••• (L 4/T 2
) specific momentum flux at the jet origin 

B ••• (L 4/T 3
) specific buoyancy flux at jet exit 

where W=4Q/TID 2 and B=([). P)
0

/P
8

gQ. Following Fischer et al. (1979) it 

·. is possible to define two characteristic length scales or a jet as 

follows 

(1.3.1) 

Tbe beic properties or a pure 110mentum jet and a simple plume based 

on dimensional arguments as in Chapter 9 by Fischer et al.(1979), are --
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summarized in Table 1.3.1 The parameters a1, ai• b1, bi• and cj are the 

constants or proportionality tor equations (1.3.2) to (1.3.10); Y and 

s are defined as 

y .. QC 
0 

From equations (1.3.8a) and (1.3.9a) by eliminating zone finds 

-5/lt where RP =b3b2 =constant, and it is called the plume Richardson 

number. Also by eliminating B from the above equations and by 

evaluating m(z) and ~(z) t.rom the Gaussian velocity profile equation 

(1.3.9) becomes 

5 b .. c z ~ c •b /b ~ w p p 3 2 
(1.3.11) 

cp and cj are therefore the growth ooefticients tor plumes and jets. 

The jet has initially both momentum H and buoyancy tlux B. At a 

distance z from the orifice the velocity on the axis or the jet will 

be 

1M _,.. 

The two limiting cases tor z/lM <<1 (momentum driven flow) and 

z/lM >>1 (buoyancy driven flow) lead us to the equations (1.3.2) and 

(1.3.7) respectively. The same is observed tor the concentrations. 

The ratio lQ /lM is called initial jet Richardson number and for 

a round jet ve define 
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Momentum Jet 

w Q :_q .v'M ' _c_.,. a (1.3.2a) or - ... a (1.3.2b} M 1 z - 1 w z 
c 

k.W. ... a .L 
iQ 2 iQ 

(1.3.3) 

.1:!.,.. z (1.3.4) Q cj r 
Q 

: = constant (1.3. 5) 

c 1 
~ ~""a {~) (1.3.6a) or "" a' (1.3.6b) c 4 z ziM 4 

0 

Simple Plume 

_ {B)l/a 
(1.3. 7a) 1M ( z f2/3 (1.3. 7b) w ""b - or -= b' -c 1 z - 1 9.. wz M c 

m(z) = b B2/3z~tfa 
2 (1.3.Ba) or m(z) = b' (..!:...)4/3 

M 2 1M 
(1.3.Bb) 

= b alfazsfa 
( ) 1/2 s/3 

lJ(z) (1.3.9a) or lJ z B = b' (~) (1.3.9b) 
3 MS/~t 3 ~ 

-
b4 c c -= (1.3.10a) or ..!!1.. ( z )2/3 = b' -

zvi1 4 9..M 
y Bl/3z~/3 

Table 1.3.1. Summary of properties of turbulent jets and 
plumes. 

(1.3.10b) 
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Fd is commonly oalled the densimetric Froude number. Making use of 

the previously defined plume coefficients op and RP we write for round 

jets according to lotsovinos and List (1976) 

and 

then equation (1.3.~) for the jet volume flux becomes 

1..1 = z;, z;«1 ; Rol~ small. 

Similarly equation (1.3.9) becomes 

b R2/a 
~ = 3 p r,S/3 = r,S/3; 1;»1 

csf~ 
p 

tor the volume flux in a plume. 
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1.~ Review of previous experiments 

There is a large number or experimental investigations on turbulent 

jets while the published work for plumes is very limited. Our interest 

is centered on the investigations that deal with the jet characteristics 

away t.rom the jet oritioe i.e. for z/lQ>7. Experimenters have 

determined the flow field of the jet by measuring velocities, 

concentrations (or temperatures), and pressures, one at a time or 

simultaneously. Instrumentation and techniques vary for the different 

investigators and have become more advanced every year. In the 

following paragraph previous work will be reviewed briefly. 

(a) Momentum jet: Experimenters usually measure velocities and 

concentrations at various locations of the jet field, and plot the 

growth widths, radial and axial distributions of the mean velocities and 

concentrations and determine the relations 

b 

; "" Klw (-5- + K2w} 

b 
De = Klc (~ + K2c) 

w 
clw (~ + c2w) -= 

We 

Co 
clc (~ + c2c) =- .. 

Cc 

The coefficients Klw' K2w' Klc' K2c, Clw' c2w, Clc• c2c, are determined 

empirically from the experimental data. Some authors report their mean 

velocity and concentration results in the form 
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without eve~ determining the location or a vi~tual origin. The 

coefficient ~w and K
10 

then are calculated by 

K •K 
lw lc 

1 
c-

fk 

Tables (1.4.1) and (1.4.2) summarize the principal paramete~s and 

results (K's and C's) and the turbulence parameters respectively. 

Abbis, Bradbury and Wright (1975) measured the turbulence 

characteristics of an air jet up to 25 jet diamete~s by using 

laser~Doppler anemometry. The width or the jet vas calculated from the 

mean velocity profile. Albertson ~81.(1950) used a Pitot tube to 

measure the mean velocity or an air jet up to 250 diameters dovnst~eam. 

They repo~ted the mean velocity decay constant c1w , but the half 

velocity width was determined trom the mean velocity profile. Antonia 

!ial.(1975) measured velocities and temperatu~es conditionally in a 

heated jet with a c~flowing stream using X-wire anemometers tor three 

initial velocity ratios, 59 diameters trom the jet origin. The values 

or the various turbulent parameters (except the axial turbulent 

velocities) are higher than those reported by other investigators, which 

implies that the c~tloving stream has some oftect on the jet 

turbulence. Antonia ~ al. (1980) discuss the accuracy or temp"'-rature 

·· fluctuation measurements in heated turbulent air jets by using bot 

vires. They give the mean velocity and temperature profiles at 20 and 

60 diameters dcvnst~eam and conditional probability density fUnctions of 

the velocity, along with the mom~nts up to the 6th o~der. Becker et al. 

(1967) used a light scattering technique to measure concentrations in an 

air jet traced by oil smoke; their results are or high quality. Mean 

and turbulence profiles a~e presented up to 85 jet diameters along with 
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AUTHOR-) z/0 Rt tc,. ~- 1(2• c,. c2w ~c ICic IC2c clc ~c 

Abltl•• 0-2.5 0.090 0,110 -o.ta Q,llll -o.91 
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~~~~mol 0- 2.50 22,7~01: 
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Aatoaia 

"' n,soo 
n al. (lt15) 

btcraia • I e 174,600 -
.'t. .. 1. (lMQ) 20 'D tl1,DOO 
llectar to-n ,,,ODD 

0.106 0.11:1 -2.4 r,115 -2.4 at al. (lt'l) 

ltrdt 7- 70 16,0011 0.117 o.zo -3,7 0.250 -5.11 a'l. at. {1971) 

ChnraJ6 l5 332,1100 o.oas 0,0995 o.tu 0.096 o.ns 0.111 Tuto (1911) 

Cona1a (1943) '-so U,IIOO o.ou 0,100 0.20 -3.106 0.108 o.u:z 0.1114 1.511 

Conalll 6 
Uberol ~ U949l o-n >33,.500 0,107 O,IU. o.uu -2.76 0,107 0.140 0,1711 

torrolll • 20- 5%. 79,000 0.0911 o.nz 2.50 
ltlatlar (19.55) 

Fon'l.all • 0- so o.oas- 0,161 0.0116 - 0,192 lcaylortl Clt551 O.lll o.us 

CU.ao.a (1963) so 
Cr~ zo- eo 21,0011 0,10.5 -2.4 o.tas -2.4 at al, ~ ( 11177) 270,000 

~~~==--' ,. .... 0-40 67,000 0,01] o.1oz o.uu 3.114 0.96 O,ll5 0,]19 -4.17 

u ... (1963) 0- 40 )0,000 0,01115 1." 0,164 1.15 0,104 l,U o.zo 1.15 .50,000 

Jol-11 
It &1, ~(1Hl) . -'" 26,200 0.100 o.ua 

Joat ... ' 5-30 41,000 .Sr/vatar ~jvatar 
llaDU ff (1963 J .19/lll86 1:1.11/0.9 
Sfona 6 0- 26 o.on '·' 0.16 1.11 0,1011 0.7 0.21!1 l.S ...... (1971) 

3<ocnala u-u j211o7DO - o.ll7 0.141 0,215 -1.5 It al. utnJ 56,900 

~Ita (1967) 10- 25 24,000 o .... 0,00 - 6],000 

t!!::,• na (1964) 5- 100 J!I,OOO o.uo 0,100 O.U6 o.us 
t!IM'l• .. l' 

1od1er (1969) 5 - ''·' 
• 105 0,085 0.104 o.na -7.0 

Table 1.4.1. Review of previous experiments for an axisymmetric jet. 
Hean values - widths. 
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t peak t peak 

AUTHOR (year) g~ btwa ;rurM ~c ~c w'c~c wtcJo\cc u'c~c: 
Abbiss 

(1975) 0.28 0.22 0.20 et al. 
~berucm 
fet al. (1 950) 

r.ntonia (1975) 0.30/0.32 o.3o/o.32 0.035 0.255 0.330 0.030 0.038 0.041 
~t al. 
~toni a 0.228 - 0.210 0.260 
~t •1. (1980) 0.250 
Becker 

(1967) 0.20 0.23 et al. 

Birch 0.11! - 0.20- 0.24 -
et al. (1978) 0.26 0.28 0.336 
Chevray fa 0.22 I 0.19 0.20 0.24 0.213 0.028 0.016 
Tutu (1978) 0.235 

Corrsin (1943) 0.26 

CorrsiD & 0.22 0.175 o.ou 0.15 0.170 0.0125 iuberoi (1949) 
Corrsin & 
!Kistler {1955) 
lforstall & 
F•Ylord (1955) 

~ibaon (1963) 0.30 0.30 

Frandmaison 0.219 0.263 
~t al. (1977) 
~inze & 0.2o-0.2J iZtjnen (1949) 

~ser (1963) 

RoseDVeig 0.170 0.220 let al. (1961) 
:aos1er & airfwater ~/water 
~nk.aff (1963) p.22/ 0.3 b.Ol~.Ol7 
Sforza & 0.25 
Mons (1978) 
Sunavala 
et al. (1957) 

White (1967) 

Wilaon & 
0.18 0.216 Dank.'Werts (1964) 

Wygnanaki & 0.28 0.25 0.0165 Fiedler (1969) 

Table 1.4.2. Review of previous experiments for an axisymmetric jet. 
Turbulence properties. 
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1Dtermittenoiea 1 apeotra, spatial autocorrelation and integral scales of 

turbulence. Chevray and Tutu (1978) examined the turbulence parameters 

and the radial and azial turbulent aass transport of heat in a heated 

air jet using hot wire probes. Their work is first class but limited to 

15 diameters, a region vhere the tlow is not tully developed. Corrsin 

(19~3) 1 Corrsin and Uberoi (1949) and Corrsin and Kistler (1955) 

examined a heated air jet into air at rest very systematically. 

Forstall and Gaylord (1955) measured velocities and concentrations in a 

liquid into liquid jet using a transversing impact tube and conductivity 

cell with 1~ ~alt added as a tracer into the jet water. Gibson (1963) 

.easured the turbulence spectra, tor z/D=50 and round all three 

components of the velocity fluctuations to be the same on the jet axis, 

vbich ~ans that the turbulence there is isotropic, a result that does 

not agree with the data of any other author(aee Table 1.~.2). 

Grandmaison~ !! (1977) •repeated" Becker's (1967) experiments at 

higher Reynolds numbers. Hinze and Zijnen (19.1J9) easured the mean 

velocity, temperature and concentration profiles in a round air jet 

using roreign gas as tracer. Kiser (1963), using a technique similar to 

the one by Fcrstall and Gaylord (1955), derived the mean profiles and 

tbe axial decay or velocities and concentrations. Lassiter (1957) 

.· Maaured the axial velocity component at the initial jet region using 

hot wire anemometry. Rosenweig !1~·(1961) measured concentrations in 

an air jet utilizing a.oke scattered light trom the jet. Their data are 

inconsistent. Resler and Bankorr (1963) aeasured velocities in both, 

air and vater jets using a hot wire and a hot film anemometer 

respectively. Both experiments were performed at the same initial 

Reynolds number. They round that the decay of the mean velocity along 
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the centerline vas the aame tor both air and water jet. The rms values 

.eaaured 1n the vater jet vere 30J higher than those measured in the air 

jet. Sforza and Mona (1978) Maaured th'l 1188S and enthalpy transport in 

1aothermal and non 1aotbermal heated air jets. They used a static 

pressure probe vith sampling ability. Vbite (1967), looked at the jet 

growth rate and mean velocity profile vith fluid additives present. 

Ouar gum up to 50 ppm did not attect the flow, vhile Polyox solution at 

50 ppm reduced the .aan velocities. wygnanski and Fiedler (1969) in a 

oaretul experiment using hot vire anemometry measured three velocity 

components in a round jet. Their flow became self similar atter the 

tirat -0 jet diameters vith tvo virtual origins observed tor z/D less or 

bigger than -0. The profiles tor mean values, intensities ot turbulence 

and abear stresses vere also presented, along vith the intermittency, 

spectral properties and the turbulent energy balance. Birch et al. --
(1978) measured concentrations by uaing laser Raman spectroscopy. In 

high quality work they measured the mean and turbulent concentrations, 

and calculated correlations and integral length scales. Sunavala !i~· 

(1957) and 'Wilson and Danokwerts (1964) measured temperatures in a 

heated jet. Their data are comparable but 'Wilson's experimental work is 

.ore complete. Rioou and Spalding (1961) directly measured tbe 

: ·· entrain=ent rate in jets and buoyant jets of various gases into air with 

or vithout combustion. Rill (1972) uaed a similar technique in order to 

.easure the entrainment rate at the iDitial region or a round jet. 

Ribeiro and Whitelaw (1975) used bot wire anemometers to •easure 

probability density tunotions and autooorrelations or the velocity 

components at z/D=57. Tbe use or bot vires or bot films tor velocimetry 

turned out to be very l!Bdted, in regions where the flow is reversed. 
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This is shown olearly :l.n the work or Lau et a1 ( 1979) • They measured 

h:l.gber turbulent intensities and broader probability density fUnctions 

with the laser-Doppler anemometer than with the hot wires. 

(b) Pure plume. Rouse et al (1952) used a copper-constantan 

thermocouple and a vane anemometer 1n order to measure temperatures and 

velocities above a heated air plume. They calculated the input heat 

flux a posteriori without taking into account the turbulent heat 

transfer (they assumed that w'T' «WT). This kind or experiment is very 

delicate because in the ambient air small convection currents usually 

ezist. Therefore the assumption ot a motionless environment is usually 

violated. The substantial scatter in their data are probably due to 

either inadequate instrumentation or to existing ambient air currents. 

From the mean profiles determined from their data, the half velocity and 

temperature widths were calculated to be b ~0.085z and b ~o.oggz. w c 

George n .Bl ( 1977) measured velocities and temperatures simultaneously 

using a two-wire probe. They knew the initial heat flux, and the mean 

profiles for i, T round were 

The halt widths were calculated and found b w ~ 0 .112z and b c ~ 0.1 03z 

which means that the half velocity Width is wider than the temperature 

width, opposite to what Rouse et a1 (1952) found. The relative 

turbulent intensities were found to be o.~ and 0.25 at the plume axis 

for the temperature and axial velocity respectively. They also found 

that the turbulent heat transport is about 15% of the total. All 

Maaurements were 118de at B, 12 and 16 diameters and therefore the 

assumed aelf-a:l.milarity aay not be correct (see Vygnanslci and Fiedler 
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(1969))e Hakagome and Hirata (1976) performed plume experiments above a 

heated disc aeasuri.ng velocities and temperatures using hot wires. The 

- -half widths were round bw~ 0.133z and be~ o.105z for wand T 

respectively, results that agree qualitatively with those or George~ 

81.(1977). They present mean profiles tor w, T and the relative 

turbulent intensities are 0.25 and 0.35 for velocity and temperature 

respectively. Their measurements extended to radial distances r/z:0.15, 

without reaching the jet boundary. They round w'T'/w T = 0.04 on the 

plume axis. There is some question to how well the flow was developed 

since their experiments were performed at less than 11 disc diameters 

downstream. Abraham (1960) measured salt concentrations along the jet 

axis by using conductivity probe techniques. The tank in which the 

experiments were performed was very small and the ambient density did 

not remain constant tor very long. From the published data z/~was 

calculated to vary trom 2 to 8, which implies measurements in the 

transition region from jets to plumes (see paragraph 1.3). From these 

data no asymptotic value tor either jets or plumes can be deduced. 

Zimin and Frik (1977) measured the temperature distribution in a heated 

water jet by looking at the changes or the refractive ind~x of the fluid 

with temperature variation. They found that the 1/e temperature width 

.· or their jet was b c/z=O .110 and that the average temperature profile was 

given by the relationship 

7. 
(Qpc)2/3 I 

T(r,z) ~ -- - z- 5 3 exp[-80(r/z) 2 ] 
(go.)'-/3 

where, Q is the input heat flux at the jet, a is the thermal expansion 

coefficient and c is the specific beat or the water. They measured from 

13 up to 38 diameters downstream, and the virtual origin tor the 
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temperatures along the jet axis vas determined at -12.5 jet diameters. 

Pryputniewicz and Bowley (1975) per~ormed experiments in a tinite depth 

tank up to ~0 jet diameters. From the way their experimental results 

are presented, it is impossible to reach to any conclusion for 

comparison with other authors. Rao and Brzustowski (1969) present raw 

data tor a plume above a fire up to ten disc diameters downstream. The 

changes in the velocity and temperature turbulent intensities and the 

turbulent transport term w'T' along the plume axis are found to be 

dramatic. 

In summary, the data resulting tram previous experimental studies 

confirm the basic features ot the dimensional analysis. However, there 

is significant variation in the •universal" constants and basically no 

experimental evaluation ot the fundamental hypothesis that the turbulent 

fluxes of momentum and mass are relatively small. Furthermore, there is 

no good experimental evidence to confirm the basic hypothesis used in 

computation that A =be /~is constant. Evaluations ot the other plume 

parameter (the Richardson number) are equivocal. Also the already 

existing data tor the plumes were obtained in tbe initial flow region 

wbere it is believed tbat tbe tlow bas not become self-similar. Finally 

·· there is no evidence that tbe profiles ot w' 2 and c' 2 are necessarily 

different in plumes nompared to jets. 

The scope o~ tbe present experimental work is detailed 

investigation ot tbe properties o~ jets plumes and buoyant jets in the 

tar flow field vbere tbe tlow becomes sel~-similar. In particular we 

seek tor jet and plume growth laws, velocity and concentration decay 

laws and turbulence properties. It will be attempted to define basic 



28 

rlov parameters or great iHportance in engineering applications auch as 

the plume Richardson nu~~w~ and the mean plume dilution. Finally a 

novel experimdntal approach ror simultaneous velocity and tracer 

concentration measurement 1s preaented, that can be used extensively for 

experimental investigations 1n turbulent abear flows. 
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2. EXPERIMENTAL EQUIP}I(ENT AND TECHNIQUES 

2.1 Introduction 

The objective of the experimental investigation was the study of 

round turbulent vertical buoyant jets over a wide range of initial 

Richardson numbers. The initial Richardson number R
0 

is estimated to 

vary ~om zero (very small) for jet- like rlow to about 1.5 for plume­

like flow. Experiments were carried out in a glass wall tank with a 

cross section 1.15 m x 1.15 m and 3.35 m deep, where a jet was injected 

trom an orifice with diameter which varied from .75 om to 2.0 om. Fluid 

velocities (w and u) and Rhodamine 6G dye concentrations (c) were 

measured simultaneously at the same point of flow by a laser-Doppler 

velooimeter combined with a laser-induced fluorescence system. For this 

purpose, a glass wall tank was equipped with an instrument carriage 

supporting a laser-Doppler velocimeter and a laser-induced fluorescence 

concentration measuring device. The carriage was able to move both 

vertically and horizontally with respect to the tank. Thus measurements 

of velocity and concentration could be obtained at various axial and 

radial locations in vertical planes containing the jet axis. The jet 

was located either deep in the tank and pointing vertically upwards (see 

Figure 2.1.1 (b)), or on top of the tank and pointing down as shown in 

Figure 3.1.1. In the first case the jet fluid was less dense than the 

ambient fluid and in the second case vice-versa. Sodium chloride-water 

solutions were used to obtain the desired initial density difference 

between the jet and the ambient fluid. 
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2.2 Tank, design and operation 

The tank used for the experimental task was designed and 

constructed in. the laboratory. In Figures 2.1.1 (a), (b) and (c) the 

plan view and two vertical cross sections o~ the tank are shown. The 

tank was constructed in two parta: 

(a) The upper tank is the part where all the experimental work was 

carried out. Four corner posts were constructed tram rectangular tubing 

steel cross sections with dimensions 6 in.x3 1n.x1/4 in. and 

4 in.x2 in.x1/4 in. welded together. They support tour 1 in. thick 

tempered glasa panels with dimensions 1.20 m x 1.85 m • The tour corner 

posts, with a 3/8 in. thick plate welded on their upper and lower edge, 

were held together by two square frames made out of 6 in. vide steel 

~section (see Figure 2.2.1 (a)). The glass is located on a 

1/2 in. thick rubber inset on the inside edge ot the lower tank, as 

shown in FigUres 2.1.1 (a) and (b) and detail in Figure 2.2.2 (a). The 

glasa windows were supported by aluminum clips, screwed to the frame on 

the top and bottom, and glazed with polyester body putty. Silicon 

rubber vas placed in all tour vertical corners and between the glass and 

the lower trame 1n order to obtain water tightness, avoiding any 

possible leakage of water trom the tank {aee details in Figures 2.2.2 

.. {a), (b) and (c). A square overflow was placed tour (4") inches below 

the top of the tank. It is made out or a 5 in. vide aluminum u-section 

with a knife-edge towards the glass. Four long screws were used to 

level the overflow and enable uniform surface drainage or the excess 

water. A 2 in. hole at one oorner vas used to drain the excess water 

out of the tank (see Figures 2.2.3 (a) and (b)). Four precision 

cylindrical rails 1 in. in diameter manufactured by the Linear 
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(a) 

(b) 

Figure 2.2.1. Tank: (a) upper frame, (b) lower tank. 
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Figure 2.2.2. Details of the layout of the glass panels. 
(a) Glass sitting on the lower tank; 

1- "" 

-~ 

(b) glass supported by aluminum clips at the upper 
square frame; 

(c) glass vertical corner posts. 
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Figure 2.2.3. Overflow. (a) rlan view; (b) set-up detail. 
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Industries Ltd., were bolted in a vertical position at the four corner 

posts and used as supports and guides tor the instrument carriage. 

(b) The upper tank is bolted onto the lower tank. The lower tank 

(see Figure 2.2.1 (b)) was constructed trom five 1/~ in. thick steel 

plates welded together (four on each side and one on the bottom). A 

square frame made.out of 7 in. and 10 in. wide steel o-sections was 

welded to the four side plates, and formed a frame to which the upper 

frame was bolted. Two 3 in. wide steel u-section beams were welded in a 

vertical direction on each of the four sides and also along the bottom 

or the tank in order to provide extra support and rigidity. The bottom 

plate also supported by a steel ~ 1n.x4 in.x1/2 in. L-section welded 

around its perimeter. The tank is bolted to the floor with tour 

22 in. long legs made out of the same L-section as above and welded at 

each corner. In the center of the free side of the tank a 3 in. pipe 

section and a valve were attached for drainage. In the top right corner 

another 3 in. pipe section was welded in order to allow drainage of the 

excess water of the overflow. A 3 in. pipe connector was welded to the 

bottom of the tank and used for drainage or filling. Four air 

injectors, placed at each corner of the bottom and 10 in. from the tank 

walls were used tor mixing to provide homogeneity in the density and 

concentration of the tank fluid before each experiment. Two 

1 in. stainless steel rods were located vertically in one side of the 

tank to support the jet carriage. All the above details are shown 

schematically in Figures 2.1.1 and 3.1.1. 

2.3 Instrumentation carriage 

Tbe transmitting and receiving optics of tbe laser-Doppler 



35 

velooimeter and the laser induced fluorescence system, were mounted 

tir.mly on a counterweighted instrument oarriage. It was attached to the 

tank so as to provide both, vertical and lateral movement tor the 

instrumentation. The carriage consists or two parts; (a) the main 

trame (rigid •box•) which vas attached to the tank and (b) the 

•platform" on which the instrumentation is mounted. It slides on two 

abaft assemblies on the main frame. The main frame is a •box" 

constructed from 4 in.x4 in.x1/4 in. square aluminum tubing and 

4 in. vide aluminum U-section in order to provide rigidity (see Figure 

2.3.1 (a)). Eight cylindrical bearings, two on each corner or the box, 

mount the frame to the four 1 in. precision shaft assemblies b;,lted on 

the corner posts and allow it to move vertically. Details or the 

1 in. abaft assemblies and the pillow blocks containing cylindrical ball 

bearings (manufactured by the Linear Industries Ltd. ) are shown in 

Figures 2.3.2 (a) and (b). Four 3/8 in. cables were booked at the 

corners of the frame tor support. The carriage was counterweighted by 

tour weights at the ~ther edge or the tour cables. These allow five (5) 

feet of vertical motion of the carriage. The counterweights were 

calculated from the weight distribution or the carriage at the locations 

or the pillow blocks and allowed the carriage to move easily by hand. 

The instrumentation platform (eee Figure 2.3.1 (b)) vas able to slide on 

two 1• precision shatt assemblies with tour cylindrical bushings (pillow 

blocks). The platform vas constructed or three pieces of 4 in. wide 

aluminum D-section. One side supported the laser-Doppler transmitting 

optics and the other the receiving optics. The third aide supported a 

2-vatt argon ion laser and the laser-induced fluorescence device 

transmitting optics. 
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2.4 The laser-Doppler velocimeter 

2.4.1 Introduction 
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The vertical (axial) and horizontal (radial) velocity components 

v and u were measured simultaneously at the same point of flow using a 

two reference beam laser-Doppler velooimeter. The basic principles of 

the laser-Doppler velocimetry will be briefly discussed here. For a 

more complete description of the technique, see Watrasiewicz and Rudd 

(1976), Drain (1980) and Durst, Helling and Whitelaw (1976) • 
.... 

Consider a particle moving with velocity U, irradiated with a 
.... beam of polarized laser light of frequency r in the direction e (see 

0 0 

Figure 2.~.1). The light scattered by the moving particle will have a 

frequency f given by 
p .... .... 

e •U 
f = f (1 - n ..E.,_) 

p 0 c 

where n is the index of refraction of the medium that the particle 

moves in and c is the speed of light in a vacuum. Light scattered 
.... 

trom the same particle towards the direction e will have frequency r 
s s 

... f + n u sin9/2 
o A 

- f + f o D 

... ... 
where e is the angle between e and e in the medium of index of 

0 s 
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Figure 2.4.1. Scattering light from a moving particle. 
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-+ 
retraction n, u is the component of the vector velocity U in the plane 

-+ -+ 
ot e

0 
and e

6 
and perpendicular to their bisectrice and A is the 

vaveleng·;h of the luer light in vacuum. Suppose that a photodetector 

is placed in the position of an observer and that the scattered light 

in this direction is mixed with light of frequency fR from a reference 

beam with the same polarization as the scattered light. Tbe intensity 

of the output current ot the photodetector will be a waveform 

• ~A5 (t)[cos2n(£ 5-fR)t- cos2n(f
5
+fR)t] 

+ A~(t){l-~ cos2n(2£
6
)t) + ~(1-t cos2n(2£R)t} 

Let the frequency fR be f
0 

+F then 

i(t) tU ~A8 (t)(cos2n(£0-F)t- cos2n(2f
0
+F+f

0
) .t) 

+ A:(t)(l- ~ cos2n(2f
6
)t)+'{(l-t cos2n(2£R)t} 

and the energy spectrum of i(t) will be as show in Figure 2.4.2 • In 

order to be able to measure t 0 we can band-pass the signal in the 

t'requency band F+.6F to F-M where the frequency 6 F is a tunction of u 

tor t'ixed n, e and A • This way we can avoid totally the higher 

frequencies or the signal and the very low ones due to the fluctuation 

of the DC component or the current i(t). 

2.4.2 The velcaimeter, optical layout - operation. 

The optical layout ot' the laser-Doppler velooimeter is shown in 
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~$4 ,,, 1 ,, expected frequencies from 
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Figure 2.4.2. Spectrum analysis of the output current signal 
of the photodetector used in laser-Doppler 
velocimetry. 
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Figure 2.~.3. A Model 3027B-P polarized 7 mW helium - neon laser 

manufactured by Bugbee, is operated by a Model ~040 power eupply of 

the same make. The light of the laser beam has a Gaussian magnitude 

distribution normal to the beam axis and the diameter or the beam 

defined as where the intensity is 1/e2 (e = 2.718 ••• ) of the 

centerline intensity, is 0.80 mm. A 90% - 10% beam splitter is used 

to split the original laser beam into two beams, the reference beam 

and the scattering beam with an intensity ratio 1 to g. Both beams 

are shifted optically, at frequencies 42.23 MHz and 42.30 MHz for the 

scattering and the reference beam respectively. Optical shirting is 

obtained by two 40 KHz Hodel 305 Bragg cells manufactured by Coherent. 

The Bragg cells were excited by using oscillating crystals with 

frequencies 42.23 and 43.00 KHz. The amplifiers used to drive the 

Bragg cells were Hodel 300L RF Broadband Power Amplifiers that could 

cover a frequency range or 250 kHz to 110 MHz, manufactured by the 

Electronic Navigation Industries Inc •• Tbe electronics for the Bragg 

cell exciters (oscillating crystals) are shown schematically in Figure 

2.4.4 • The shifted scattering beam is splitted into two beams with 

intensity ratio 55/45 by a cube beam splitter. Two right angle prisms 

moved the second reference beam approximately to the desired location. 

Two 1° wedge prisms were used to make the reference beams parallel to 

the scattering beam, which was set to be horizontal by moving the 

lBBer mounting plate. A front surface mirror is set at a 45° angle 

with the direction or the beams which is parallel to the glass panels 

of the tank. It deflects the beams in a direr •• n normal to the 

glass. The parallel beams are focused at the same point inside the 

tank by a 600 mm focal length converging lens. The lens can be moved 
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44 

sv 

3mH 

27on 

33.2kn T 15pf lkn 
OUTPUT 

0 

Figure 2.4.4. Electronic circuit for the Bragg cell exciters. 

: 



45 

back and tortb so that the beam - crossing is obtained close to the 

center ot the tank. All the optics described above and the plate with 

the mounted laser were firmly attached to a 1/2 in. thick jig plate, 

which sat bolted on the instrument platform. The beam location in 

apace and the beam crossing point were determined by using a 

theodolite. In Figure 2.~.5 tbe location of tbe beams and other 

dimensions are shown. The points Rl' ~and S are located on the glass 

from its wet side, 0 is tbe point of the beam intersection at a 

distance F from the glass, e1 ~d e2 are the angles between the 

scattering and the reference beams R1and E2respectively and $1 and 

~2 the angles or the sides R1s and R2S or the triangle R1sR2 with the 

vertical and horizontal directions respectively. From the dimensions 

given in figure 2.4.5 one can calculate that 

(1) vertical velocity component 

2nsin(91/2) 2n6 1/2 2na/2F 
A = A = A ... 1129 Hz/ (em/sec) 

(2) horizontal velocity component 

fD2 2nsin(92/2) _.., 
A 

2nS2/2 2nb/2F 
• A • A ~ 494.7 Hz/(cm/sec) 

where n=1.333 tor water and A=632.Bx10 mm. The 1/e2 (e=2.718 ••• ) 

diameter or the waist of tbe beams at the probe volume at their 

crossing vas tound to be 0.1mm at a length of 3.55 mm for reference 

beam R
1 

and 8.0 mm tor reference beam R
2 

from the formulas given by 



Figure 2.4.5. Three dimensional configuration of the spatial location of the 
scattering and reference beams; F = 576 mm, SR2 = 13.50 nun, 
SRt = 30.87 nun. 
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Durst et al (1976). 

2.5 The laser induced ~luorescence system 

2.5.1 Introduction 

It a water solution or Rhodamine 6G dye is excited by absorbing 

aonoohromatic light of vavelength Aint it emits light (fluoresces) at 

a di~terent wavelength Aem• Drexhage (1976) gives that if the 

incident light has a wavelength 51~ nm the emitted light will have a 

wavelength approximately 570 nm. This is the principle that the 

induced fluorescence technique is based on. The evolution and 

limitations of this technique and its advantages over the probe based 

techniques will be discussed in this paragraph. In Figure 2.5.1 a 

collimated laser beam of intensity I and wavelength Ain=51~ nm excites 

a Rhodamine 6G dye water solution which flouresces at a wavelength 

A •570 nm. A photodeteotor located at the point A' •seesw the point 
em 

A of the beam through a converging lens L. The light that reaches the 

photodetector through the aperture P will be a mixture of the 

fluorescent light at about 570 nm and scattered light at 51~ nm from 

possible existence of other particles in the water. If a high pass 

light filter is placed in front of the photodetector, which will allow 

.. aay, only the light otlwavelengths longer than 530 nm to go through, 

then the photodeteotor will receive only the fluorescent light. This 

is attenuated a little due to the nature of the optical filter. The 

output intensity or the photodetector will be •proportional• to the 

fluorescence trom the point A. This is proportional to the 

concentration of Rhodamine 6G dye in the water, or proportional to the 

intensity or the laser beam that excites the solution at the point A. 
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Figure 2.5.1. Principle of the laser induced 
fluorescence of a Rhodamine 6G dye 
water solution. 
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The above observations led to the proper design of an aqueous solution 

Rhodamine 6G dye concentration measuring device. It vas observed that 

tot• a given laser light intensity ot about 0.8 watts with a collimated 

beam of 1/e (e=2.718 ••• ) diameter 0.4 mm, the current output from the 

photodetector vas linear tor Rhodamine 6G dye concentrations varying 

between 1 and 40 ppb. Also the minimUm dye concentration that the 

photodeteotor could detect vas approximately 0.4 ppb. 

2.5.2 The induced fluorescence system 

The light source is a 2 - watt Model 164 Spectra Physics argon 

ion laser operated at a single line or wavelength 514 nm. The laser 

vas operated by a Model 265 Spectra Physics power supply which can 

provide two modes of operation of the laser; the current mode which 

is based on stabilizing the current of the input power and the light 

stabilized mode based on the intensity ot the output laser light. The 

laser 1n the present experiment vas operated at the light stabilized 

mode. The reason is that the light stabilized mode provides constant 

light intensity atter the laser is warmed up. A traction of the laser 

beam C 1~ ) is removed by a beam splitter and input to a photodiode. 

Possible fluctuations of the laser light intensity are detected by the 

photodiode and a feedback controlled system readjusts the power supply 

·• output, so that the output light intensity does not change from its 

preset value. It vas round that the calibration of the system did not 

change through the experiment. The light stability vas also proved by 

taking long records or concentration at a point of the tank when the 

concentration vas uniform. The variance vas round to be almost 0.05 

ppb and it vas not due to the light intensity variations but due to 

electronically induced noise. The noise shoved up as a peak at 60 Hz 
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in the concentration power spectrum. The 1/e2 (e=2.718 ••• ) diameter 

or the laser beam is 1.25 mm. A system of optical components (see 

Figure 2.5.2) auoh as prisms and rront aurtace mirrors, detlects the 

beam goo so that it beoome:s normal to the tank window. The beam also 

crosses the intersection or the three beams used tor velocimetry and 

it is focused by a converging lens with focal length 750 mm. 

2.5.3 Advantages and limitations or the technique 

The main objective of this project vas to determine the 

turbulence characteristics in round jets and plumes by measuring 

simultaneously two velocity components and tbe concentration or a 

tracer. Thus ve obtain estimates of the turbulent mass transport or 

the tracer. Initially we bad in mind to use a technique based on 

laser-Doppler velooimetry combined with a thermistor probe set close 

to the rooal volume or the velooimeter (see Kotsovinos (1975) and 

Gartrell (1979)). Some preliminary temperature measurements were 

performed by Papanicolaou and List (1983) by using fast response 

thermistor probes (characteristic time or the thermistors was 0.014 

msec). It was shown that tbe resolution that we were able to obtain 

concerning the average and turbulent concentrations, was not good 

beyond 40 jet or plume diameters. rotsovinos (1975) vas able to 

·· measure temperature profiles up to 90 jet diameters and lJO plume 

diameters downstream. The d1tference in between the present 

investigation on the round jets and Eotsovinos' (1975) work on plane 

jets is that the mean temperature on a round jet axis decays much 

taster than the temperature along a plane jet axis. The reason is 

that ~z-1 /2 for a plane jet and TVl/z for a round jet. Also for a 

plane plume TVl/z while for the round plume TVz- 513 (see Chapter 1). 
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Figure 2.5.2. Optical arrangement for high power laser for laser 
induced fluorescence system. 
(a) Elevation; 
(b) Plan. 
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The reasons that ve found important tor using an optical technique 

versus probe-based techniques for tracer concentration measurements 

are summarized as follows: (i) Probe based teobniqugs, such as 

thermometry or use o~ conductivity probes do not give good enough 

resolution beyond ~0 jet or plume diameters in the case of round 

buoyant jets. Wygnanski and Fiedler (1969) and Birch et al (1978) 

shoved that a jet is tully developed and self similarity is obtained 

beyond ~0 jet diameters. By using h~gh enough initial jet 

concentrations of Rhodamine 6G 1 then at 100 diameters we were still 

able to obtain a mean concentration of 5 to 10 units (ppb). The 

advantage was that the initial jet concentration up to 200 ppb does 

not essentially affect the density of the water. Therefore an 

initially jet-like flow Will still behave as a jet for z/D>100. 

(ii) The thermistor probes give a certain error at the jet 

boundaries where reverse flow can appear. The reason is that the 

fluid attached to the glass bead is not removed properly so that there 

is bias in the measured temperature. The induced fluorescence 

technique does not depend upon the direction of the flow. 

(iii) Optical techniques do not disturb the flow field like the 

probe-based techniques. A problem in the present investigation could 

·· arise from the beating of the flow field from the dissipated heat from 

the 2-watt laser beam. Calculations showed that the effects due to 

the heat dissipation from the laser beam are negligible. 

(iv) Eotsovinos bad set a thermistor probe 2.5 mm tar trom the 

focal volume of his velocimeter. Be measured simultaneously both, 

velocities and temperatures, but not at the same point. Gibson (1963) 

has found that the lolmogorov microsoale for a round jet around its 
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azis is 0.8 mm. This aay have biased totsovinos' data at a oertain 

degree, due to the u - T spatial correlation. 

2.6 Tbe receiving optics - data acquisition system 

The layout of the receiving optics tor both, velocimetry and 

induced tluoreecence measurement, is ehown in Figure 2.6.1 • Two fast 

response silicon photodiodes type DT-25 made by EG & G collected the 

heterodyning of the two reference beams and the scattering beam. Two 

converging lenses with focal length 125 mm were set in front the above 

photodiodes at a distance 125 mm trom a o.s mm pinhole. The 

scattering beams were deflected by two front surface mirrors M1and 

~and directed into pinholes through the center of the lenses L1 an~ 

L2• The reason for using the two lenses L1and ~at a distance equal 

to their focal length in tront of each photodiode is that small 

changes in the refractive index (due to density variations) were 

moving the scattering beams around. Without the lenses the signal was 

interrupted about 50% of the time. Uee of the lenses gave almost 

uninterrupted signal. In the next chapter the errors in the velocity 

signals due to the change in the refractive index will be discussed. 

Another pbotodiode of the type 81223-01 made by Hamamatsu was used to 

.. collect the light emited from point 0 (intersection of all four beams) 

in a solid angle ~ through the 250 mm converging lens L3 • A small 

LED vas ueed in order to excite this photodiode and move itB operation 

in to the linear response region. The light source bad no effect on 

tbe measurement of the concentration since it was taken into account 

in the concentration calibration. The 81223-01 pbotodiode vas put on 

the same aide ot tbe tank as the velocimeter transmitting optics, to 
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Figure 2.6.1. Plan view - configuration of the receiving optics 
and photodetectors for the laser-Doppler velocimeter 
and the laser induced fluorescence measuring system. 
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avoid any bias to the signal due to the forward scattering or the 

beams Bl' ~and s. Tbe back scattering vas tound to have no ett'ect to 

the signal. Initially the photodiode vas put on the opposite side of 

the tank and an optical band-pass til ter was used in order to cut off 

the unwanted scattered laser light at 632.8 nm. Its transmittance was 

.115J at A =570 nm and the output signal from the photodiode was very 

weak. At the present location a low-pass filter is used in order to 

avoid ettects trom the scattered light at a wavelength of 51~ nm. Due 

to imperfections ot the instrumentation carriage, a pinhole in trent 

ot this photodiode did not work accurately enough because the line 

image or the fluorescent light was moving orr oenter. Thus it was 

decided to use a vertical slit 0.152mm wide and 1.5 mm long so that 

the horizontal line image was always detected, especially when there 

were changes in the refractive index in the flow. The probe volume 

that the photodiode was seeing was calculated, and tound to be a 

cylinder ot diameter o.~ mm and length o.~mm. All three photodiodes 

were mounted properly in aluminum boxes in order to avoid possible 

bias to their output signals due to electronic noise. A preamplifier 

was operated by 9 volt batteries enclosed inside the photodiode box. 

Electronic noise problems due to the 2-watt laser were avoided by 

... insulating the detectors from the carriage using nylon sheet and 

acrews at their contact. Photodiodes, mirrors and lenses could move 

in three directions. 

2.7 Signal processing, data acquisition system 

The preamplitied signal of the pbotodiodes was processed in order 

to be brought into a usetul torm that would allow extraction or all 
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the desired information. The signal· processing tor both, 

laser-Doppler velooimeter and induced fluorescence measuring device, 

is shown schematically in Figure 2. 7. 1 • 'l'he signal trom the 

photodiode vas converted trom a current t·o a voltage and preamplified. 

The preamplitied LDV signal vas amplified and filtered with a band 

pass filter which bas a center frequency set near the expected Doppler 

frequency. The band-pass filters were Krobn-Hite Model 3202 with 

high-pass and low-pass cutoff frequencies that are continuously 

adjustable trom 20 Hz to 2 MHz in five bands. The signal then passed 

through a dual processor. One part of the processor detected the 

level ot the Doppler burst and could be externally adjusted so that 

the burst was continuous. The other part or the processor detected 

the zero crossings or the Doppler bursts and put out one pulse for 

each positive going zero crossing. The pulses then were ted into a 

counter. If the burst detector output vas high enough (signal level 

detector vas set low but above the noise level ot the photodiode) the 

zero crossings were counted. The counting or the first pulse started 

a timer; after counting an externally selected number of pulses the 

timer stopped and the digital signal vas converted to analog output, 

which vas sent and stored in digital form on a diskette of a PDP 11/60 

.. computer for subsequent analysis. For details or the design of the 

LDV processor see Gartrell (1978)~ The signal from the photodiode 

that detected the fluorescence was also converted from a current to a 

voltage and preamplified, then amplified to a voltage range of ±5.0 

volts. 'l'be amplified signal vas low-pass filtered and the filtered 

analog output stored in digital form on the same diskette as the 

velocity signals. 
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3. EXPERIMENTAL PROCEDURE 

3.1 Introduction 

In this chapter the details for calibration and usage of the 

experimental apparatus are given and the experimental procedures are 

described. In addition, sources of possible errors are discussed. 

The chapter will be closed with the full description of a typical 

experiment, the acquisition and subsequent reduction of the sampled 

data. 

3.2 Tank, jet, operation and usage 

Figure 3.2.1 is a schematic diagram of the plumbing, operation 

and usage of the tank and jet. A 3/4 in. PVC pipe was used to bring 

water from the 1 in. laboratory high pressure water supply to the 

tank. Valves V 5 and V 6 were used for draining the tank when needed. 

A 2 in. in diameter spiral bose was used for a tank overflow drain 

when the jet vas running during the experiments, or whenever needed. 

Four air injectors were located at the bottom of the tank and 

connected with the laboratory air-supply line. They were activated by 

·· valve v7 • The resulting air-bubble jets were used for mixing of the 

tank water in the following oases: (i) To dissolve anhydrous granular 

sodium sulfite (Na 2so 3) in order to dechlorinate the tank water. 

Dechlorination of the tank and jet fluid were found to be necessary as 

the chlorine content or the laboratory water oxidized the Rhodamine 6G 

dye used in jet concentration measurements. (ii) To mix filtered 

salt-water solutions with the tank water in order to get a desired 
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ambient fluid density. (iii) To mix high concentration Rhodamine 6G -

vater solutions with the water in tbe tank providing tbe desired 

ambient tracer concentration. (iv) To destratify tbe tank after each 

experiment and provide an ambient fluid of uniform density and dye 

concentration tor a subsequent experiment. 

The jet fluid supply consisted of a 220 liter mixing tank T
1 

, 

vitb constant bead tank, pump, flowmeter and 3/~in. connecting hoses. 

After the water in tank T1 was dechlorinated, it was mixed with the 

exact quantities of salt (NaCl) and conoentrat~d Rhodamine 6G solution 

that would provide the desired initial jet density and concentration. 

Tba jet was supplied from the constant bead tank located approximately 

4 meters above the tree surface of the tank. A return pipe took the 

excess water trom tbe constant bead tank to the mixing tank T1• The 

jet supply bose incorporated a valve and a flowmeter. Valve v3 vas 

used to regulate the flowmeter and adjust the flow according to the 

flowmeter calibration shown in Figure 3.2.2 • Valve v4 was used to 

bleed any possible air which might be trapped in the jet supply 

system. 

3.3 Laser-Doppler velocimeter 

3.3.1 Calibration 

Calibration of the laser-Doppler velocimeter was obtained 

electronically. A frequency generator fed the counter with sinusoidal 

waves at known trequencies(f
1
). The analog output of the processor 

vas sent and recorded by the computer in digital (binary) form(V1). 

From the available pairs (f
1
,vi) a least square fifth order polynomial 
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(3.3.1) 

was tound to be the best tit to the data,. and the values of the 

constants A,B,C1D and E were calculated. Equation 3.3.1 is the 

calibration curve tor the detected frequencies versus the digital 

output recorded by the computer. In Figures 3.3.1 (a) and (b), 

typical calibration curves are shown for the frequencies that 

correspond to the axial and radial velocity components w and u 

respectively. The Doppler frequency tD then was calculated from the 

measured frequencies t as w,u 

tD = f - F w,u 

where F is the frequency ahitt between the reference and scattering 

beams. The frequency shift F is the frequency difference between the 

two Bragg cell exciters and it was measured exactly. 

The axial velocity w was estimated to be bigger than -3 em/sec 

and the radial varied in the interval !5 em/sec. These values 

correspond to frequencies r less than 70. kHz. Therefore 
w,u 

... frequencies larger than 75. kHz that could possibly bias the data are 

totally avoided (see Figures 3.3.1 (a) and (b)). The calibration was 

checked to be very stable. Drifts in the electronics occurred in about 

one week period of time. The laser-Doppler processor was always on ON 

pOsition, and it bad to be calibrated once a week. In tact it was 

calibrated every day that experiments were run. 
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by the photodetectros used in laser-Doppler velocimetry 
versus digital output to the computer. 
(a) Axial velocity component. 
(b) Radial velocity component. 
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3.3.2 Errors in the velocity measurements 

There are various sources of error inherent in the velocimetry 

used in this study. The estimated relative errors due to the nature 

of the processor and the data acquisition system will· be discussed 

Tbe absolute error as a result of the proper tests will be described. 

Thus the accuracy of the measured velocities can be estimated. Error 

sources and their estimates are discussed in the following paragraphs. 

(i) Large scattering particles can cause significant measurement 

error because they do not follow the fluid trajectories. Hunt (1978) 

measured the particle distribution of tbe laboratory water used in 

this experiment. He found no particles larger than 5 ~ (see Gartrell 

(1979)). According to Durst et al (1976), particles with a diameter 

smaller than 15 ~ are required for measuring turbulence in the water. 

Hence it is believed that the scattering particles are small enough that 

they essentially followed the fluid trajectories. Therefore no 

significant measurement errors resulted from this source. 

(ii) Counter, data-digitization errors. One source of error is 

the inability of the counter system to distinguish two signals of 

slightly different frequency. The estimated error (see Gartrell 

(1978), (1979)) was found to be 

£ 
I:J.f -r. m 
T~l.6xl0 k-T 

vhere At/f is the relative error in the frequency measurement, f is 
m 

the aeasured frequency in Hertz and k-1 is the number of periods timed 

by the counter. The maximum number of Doppler periods in a signal 

burst from the laser-Doppler system was about sixty, but the counters 

vere set to time twenty-four to thirty periods. Thus it was ensured 
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that the particles crossed the beams near the center of their 

intersection. '!'be number of periods also was not eo large as to 

require such a low threshold setting that the counter system could not 

distinguish noise trom a signal burst. For the range of frequencies 

aeasured, M/f was found to be less than o.oos. 

Another source or error is the digitization error while the data 

were being acquired. The analog output of the processor was amplified 

and offset before being sampled by the A/D converter in order to 

utilize as much of the s5 V range as possible. The range ~5 V was 

recorded in a digital form and corresponded to 4090 11umbers. 

Therefore the laboratory data a~quisition system had a precision ot 

O.OD25V in the ±5V range used in the measurements. From the frequency 

calibration curves and for a range of frequencies 45 kHz to 70 kHz the 

digitization error was estimated to be 

~f < 2.00 x 10-7 fm 

where fm is the measured frequency in Hertz. Hence the absolute error 

was calculated to be D.1mm/sec and 0.2mmlsec for the axial and radial 

velocity components respectively. 

The combined error due to digitization and the counter was 

measured as follows. A sinusoidal wave of frequency f=69.547 kHz was 

ted in the processor (counter) l\lld the output was sampled for 10 

aeoonds at a rate of 50 Hz by the AID converter and recorded by the 

computer in digital form. The calculated mean and rms values for the 

two velocity components were calculated to be 

w =-0.245cm/sec u =0.972om/sec 
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~ :0.017om/sec ~ cO.O~O om/sec 

Assuming that the absolute maximum error is twice the standard 

deviation, it is obvious then that tbe maximum absolute error vas 

+0.04cm/sec and +0.08cm/sec tor w and u velocities respectively. 

(iii) It vas desired to have continuous velocity signal, 

therefore tbe thresbbold level for the Doppler bursts was lowered. 

This means that the threshhold level was moved close to the noise 

level of the photodiodes and the~efore an ~rror was introduced to the 

system. Further=ore the existence of many particles in the probe 

volume introduced some noise to the velocimetry. In order to measure 

the combined effects of all the previously described error sources, 

the following test was performed. With the threshold level close to 

the photodetector noise level and with no flow in the tank the 

processor vas fed with the output from the photodiodes. From the 

recorded digital signal the mean and rms values were calculated to be 

v:u:O om/sec as expected,and 

~2 =O.OB7omlsec ~2 =0.156om/sec 

respectively. Therefore the maximum combined absolute error in the 

velocities due to the processor, data acquisition system. low threshold 

level tor the Doppler burst detection, and multiparticle scattering 

trom the beam-crossing did not exceed the t0.15om/sec and %0.312om/sec 

tor the axial and radial velocities respectively. The above measured 

rms values ot v and u are the maximum noise levels of the output 

signal or the system to the computer. The contribution ot this noise 
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to the velocity signals vill be discussed in fqlloving paragraphs. It 

vill be shown from the velocity energy spectrum that this noise does 

not essentially affect the velocimetry. 

(iv) The deflection of the glass panels because or the 

hydrostatic pressure can introduce an error in defining the exact 

location of the beam-crossing inside the jet flowfield. The location 

of the beam crossing at the point or measurement, could be read from 

tvo scales one vertical and one horizontal, vhich determined the 

relative position or the instrument carriage vith respect to the tank 

and the jet origin. Thus the readings on the vertical and horizontal 

scales could be easily converted to axial and radial distances z and r 

of the beam-crossing from the jet origin and axis reBpectively. The 

maximum deflection that occurred at 2/3 height of the glass distance 

from the water surface, was calculated and measured to be 1.30mm. The 

error in the beam crossing location, after laborious calculations vas 

estimated to be ±0.2mm in the radial (r) and ±D.5mm in the axial (z) 

direction. This location error vas also measured as follows: on the 

side of the tank where the receiving optics are and at a distance 1 

meter from the tank, a vertical board covered with millimeter paper 

was placed parallel to the glass panel. The carriage was moved at 

··· various distances zi from the jet. For each z
1 

the beam spots were 

aarked tor various r i 1 s. Thus for each pair ( z i , :r ij ) measured on the 

scales a pair (z ,:r j) vas measured on the millimeter paper. From 
m m 

these values the same estimates as above vera calculated concerning 

the location or the beam-crossing. The :relative error in the jet 

region vhere the flow became self similar (z/D>~O) was estimated to be 

A z/z,±D.0167 and A r/b,:t0.0067 where b is defined to be the visual 



68 

width of the jet. 

The laser beam uaed tor the induced fluorescence vas affected by 

the glass deflection only in the vertical direction. Tbat is because 

it w~ ~~Y able to move on a vertical plane· through the middle of the 

tank. Its relative position with respect to the center or the probe 

volume for velocimetry vas zero in the vertical (z) direction and at 

most +D.2mm in the radial (r) direction. 

(v) A very important source of error in the measurement of the 

velocity is due to the changes of the index of refraction in the 

buoyant jet and plume tlow field. Figure 3.3.2 shows the change of 

the refractive index of aqueous sodium chloride (NaCl) aqueous 

solutions as a function of the density. Equation (1.2.5) shows that 

the density fluctuations in the plume tlow field follow the 

fluctuations of the tracer concentration, resulting in a laser beam 

wobble. The wobble of the laser beams can introduce noise to the 

velocity signal as (a) fictitious fluid velocity due to the movement 

of the beam-crossing volume and (b) discontinuities in the Doppler 

bursts received by the photodetector when the reference beam does not 

mix with the scattered light on the pinhole. Mizushina et al (1979) 

proposed a correction technique for application to laser-Doppler 

·· velocimetry in non-isothermal flows. Also in order to avoid the beam 

wobble because of changes in the refractive index, He Dougall (1979) 

proposed a technique tor matching of the refractive indices of the jet 

and ambient fluid. He used two solutes to produce density differences 

which would avoid the double-diffUsion convection (salt-finger type). 

He Dougall's (1979) technique vas applied by the author using 

commercial salt-water and sugar-water solutions tor the ambient and 
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the jet respectively and it vas suooesfu1. Use o~ reasonable amounts 

o~ salt and sugar resulted an initial density difference ot 2 ~ 3 

a units. However in order to perform measurements in the tully 

d~veloped plume region in this experimental tank, very large 

concentrations o~ salt and sugar would be needed to obtain initial 

density differences of 10 to 20 0 units. On the other hand use of 

salt-water solutions for the jet, and fresh water for the ambient 

~luid have an initial density difference of about 20 a units, but the 

salt concentration is not large for z/lM >40. This is true because of 

the high dilution o~ the initial salt concentration at large distances 

from the jet origin. In the following paragraph, tbe tests performed 

to describe the effects of the density gradient in velocimetry, will 

be summarized. 

The velocity measuring system was tested for the highest possible 

mean local density difference that was expected to be measured. An 

initial density difference of 25.0 a units was chosen and tor a plume 

diameter D=1.25cm, velocity measurements were performed at z/lM ~ ~5. 

There existed some beam wobble but lenses L1 and L2 shown in Figure 

2.6.1, contributed to obtaining a continuous signal from the 

photodetectors. The maximum beam wobble was marked on the millimeter 

·· paper on the vertical board described previously and did not exceed 

1mm. This corresponded to a wobble of ±o.~mm at the beam crossing 

point. A 3.5mm thick plexiglass plate was then introduced into the 

plume flow field at tbe beam-crossing point so that the 3mm long probe 

volume tor the axial velocity component {and also the center part or 

the probe volume tor the radial velocity) were enclosed in the 

plexiglass. Then with the plume running both mean velocities were 
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aeasured and were found to be zero. The turbulence intensities also 

did Dot exceed the values measured in a calm environment. These 

results imply that the probe volume did Dot move out of the plexiglass 

plate because of the beam wobble. 

Another test vas performed to measure the noise level of the 

signal due to the changes of the index of refraction. A square bottle 

3om x 3om and 15om high tilled with tank water vas introduced into the 

tlow, at the point containing the beam crossing. Both longitudinal 

and transverse velocities were measured with and without the plume 

running. In the case of a calm ambient fluid it was round that inside 

the bottle 

w u wn-
-0.063 -0.084 0.069 0.099 -0.001 (om/sec) 

For a plume operating with (t. p )
0 

=25 gr/lt and at z/~ =52.8 the 

aeasured velocities inside the bottle were 

- -w u w'u' 

-0.063 -0.084 0.099 0.2118 0.001 (om/sec) 

These measurements indicate the beam wobble noise is almost twice as 

big as the noise introduced into the system by the various sources 

that were discussed previously. However, part of this noise 

attributed to the beam wobble is probably due to the vibration of the 

plexiglass bottle by the plume tlowfield. 

In Figures 3.3.3 and 3.3.4 the energy spectra for w and u are 
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presented at z/1 M =52 .8 close to the plume centerline with 

~5.48cm/sec, u:-D.291cm/sec,~ :1.287cm/sec,~ =D.695om/sec and 

-- ( 2 2) w•u•=0.117 em /aec • In the same figures the spectra obtained from 

the signals measured inside the bottle are plotted for comparison. It 

can be aeen that the noise sources do not have any essential 

contribution to the energy spectrum. These spectra are in agreement 

with the spectral estimates or Mizushina et al (1979). It is also 

apparent here that for r/z>0.1, the effect of the fluctuations in the 

index of refraction is diminished as would be expected from the lower 

density differences and smaller segments of the laser beams that cross 

the plume flow field. 

3.4 Calibration and errors of the laser induced fluorescence technique 

As it was mentioned in Chapter 2, the concentration of Rhodamine 

6G dye tor a laser intensity of 800 mW is a linear tunction of the 

amplified voltage output from the photodetector. It can be written as 

c = G + H V (3.4.1) 

where V is the digital output to the computer, G and H are calibration 

constants. c varies from 1 to about 40 ppb. The photodiode could not 

detect Rhodamine 6G oonoentr~tions smaller than 0.4 ppb tor an 800 mW 

power output from the argon ion laser. A typical calibration is shown 

in Figure 3.4.1. The laser and the electronics were turned on for at 

least one hour before the experiment started, so that electronic drift 

vas avoided. The initial jet concentration varied trom 100 to 200 
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Figure 3.4.1. Typical calibration curve of the laser induced 
fluorescence concentration measuring system. 
Concentration (ppb) of Rhodamine 6G dye versus 
digital output to the computer. 
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ppb. Jet fluid vas diluted and samples were made at various 

concentrations from 1 to about ~0 ppb. The samples were put in square 

ple~glass bottles with oro9s-seotion 3om x 3om and placed at the 

beam-crossing point so that the photodiode was focused on the beam 

section within the sample concentration. From the known pairs 

(ci ,Vi) of sample concentrations and digital outputs to the 

computer, a least square straight line vas fitted leading to Equation 

(3.11.1). 

3.4.1 Errors in the laser induced fluorescence technique 

Several different tests were performed in order to justify the 

usefulness, validity and limitations of the technique. The errors 

resulting from various sources were measured. They will be discussed 

explicitly in the following paragraphs. 

(i) The laser beam is attenuated as it travels through Rhodamine 

6G dye solutions. The attenuation is due to the light absorption from 

the Rhodamine molecules and is proportional to the Rhodamine 

concentration and is hence minimized by low Rhodamine 6G 

concentrations. The attenuation of the laser beam was measured in a 

test performed as shown in figure 3.4.2. The ambient concentration 

vas measured at point A with and without the jet of high Rhodamine 

concentration flowing. The results found are 

v 

1622.0 

1620.7 

c(ppb) 

0.757 

0.873 

Vc' 2 (ppb) 

0.21!6 

0.290 

(jet flowing) 

{no jet flowing) 
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Figure 3.4.2. Schematic for the fluorescence attenutation 
tests performed at points A, B, and C. 
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and the difference'in concentrations vas found to be or the order or 

0.1ppb vhioh is of the same order or magnitude as other errors 

discussed consequently. 

(ii) A second source of error is the lateral position of the 

instrumentation platfor.m. Deflection of the glass and slight changes 

in the beam diameter can produce errors. At points A, B and C shown 

in Figure 3.~.2 with AB=BC=15cm the concentrations or two Rhodamine 6G 

solutions were measured and found 

C!Cppb) o2(ppb) r(om) 

point A 3.783 8.743 -15.0 

point B 3.728 8.468 o.oo 

point C 3.599 8.457 +15.0 

From the data shown in the table above for small and large 

concentrations the absolute error with respect to the centerline 

concentration is at most ~0.28ppb for radial distances ±15om. This 

error is significant close to the jet boundaries, but absolutely 

insignificant everywhere else. The fact that the concentrations are 

higher at point A than those at point B prove the point that the beam 

waist changed slightly for various radial distances from the jet axis. 

(iii) Another noise aouroe is the beam wobble because of the 

changes in the index of refraction. A bottle containing a known 

concentration or Rhodamine vas placed in the tank and the 

concentration was measured with and without the plume active. For the 

tlow conditions described in section 3.2 (v) of this chapter, no 

significant error vas determined. For high density differences the 
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relative error reached values as large as 8% of the measured mean 

concentration. In Figure 3.~.3 the spectrum of this noise is compared 

with the energy spectrum of the oonct~ntration variation in the plume 

tlow tield. 

All the above tests give a reasonable estimate of the errors to be 

expected. Since simultaneous velocity and concentration measurements 

vere made, it is apparent that the beam wobble could possibly 

introduce large errors in the turbulent mass transport estimates. In 

order to not to exceed the error estimates made previously for 

velocity and concentration measurements, the source density was chosen 

carefully to provide appropriate expected local mean densities at the 

measurement point. Bence the changes in the refractive index would 

not introduce error bigger than the previously estimated. Thus all 

tests that are discussed previously in paragraphs 3.3 and 3.~ were the 

guidelines for the subsequent experimental procedure. 

3.5 Response of the measuring systems, sampling times and sampling 

rates - spectrum of turbulence 

The response (characteristic) time for both, the laser-Doppler 

.. velocimeter and induced fluorescence system were very low. With the 

laser-Doppler system and the processor set to count 2~ to 30 periods 

this time vas 0.001sec. The response time for the laser induced 

tluorescence measurements varied trom O.OOSsec to o.001sec. Hence 

there were no limitations in the sampling rates imposed by the 

response of the instrumentation. With relatively high sampling rates 

the sampling time vas chosen to be longer than that necessary to give 
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Figure 3.4.3. Power spectral estimate for the Rhodamine 6G concentration 
C at a plume centerline. Noise levels from the set-up 
(solid line) and from changes in the refractive index 
(dotted line) for constant concentration. 
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constant values of the first three moments of the signal recorded. 

The values of the three moments plotted versus sampling time were 

constant for sampling times longer than 80 se~onds. The 

sampling time at a point of the flow was chosen to be larger than 100 

seconds. Sampling rates varied from 25 to 50 data per second (except 

tor data acquired in order to examine the spectral properties of the 

jet). For the momentum driven jets (fast flows) higher sampling rates 

were required than for the slow (plume-like) flows. The reason is 

that large velocity fluctuations occur much more frequently for 

jet-like flows at a point of the jet flow field. 

The probe volume resolution for both velocity and concentration 

measurements was also a regulatory factor for the choice of the 

sampling rates. Very small probe volumes allow higher sampling rates 

that provide better information about the measured flow field. In 

figures (3.5.1.), (3.5.2), (3.5.3), (3.3.3), (3.3.4) and (3.4.3) the 

energy spectra of w, u and c are given for jets and plumes. From the 

spectral energy distribution it oan be seen that the maximum 

contribution comes from frequencies lower than 10 Hz. The amplitude 

drops in the frequency range 0.1 to 10Hz by almost three orders of 

magnitude. Thus the minimum sampling rate should not be less than 

0.05 seconds. Also, tor frequencies larger than 10 Hz the noise 

contribution becomes very significant. This can be seen in all the 

Figures discussed above above. 

In figures (3.3.3), (3.3.4) and (3.4.3) the spectral 

distributions of w,u and c close to a plume centerline are plotted. 

Also the noise spectra of a calm environment (bottle) are plotted in 

both oases, with and without changes in the refractive index in the 
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aedium around the calm volume of fluid. It can be easily observed 

that the noise contribution is negligible in the low frequencies, and 

becomes more significant at higher frequencies. Also the noise level 

is higher when changes in the refractive index occur (dotted lines in 

figures). Furthermore the noise level is of great importance near the 

the jet boundaries where velocities and concentrations ar~ small. 

3.6 Data acquisition 

The two velocity and concentration signals detected by the three 

photodiodes, were amplified and processed with the analog outputs 

offset so that the range of the expected values would be within +5V. 

Data were trAnsmitted to a PDP 11/60 where they were converted into 

digital form and recorded on diskettes for subsequent analysis. Using 

the calibrations tor w,u and c the digital data were converted into 

velocities and concentration. Figures 3.6.1 and 3.6.2 represent 

typical filtered and unfiltered time records respectively, of the two 

velocity components and the concentration measured simultaneously at 

the same point. Also the calculated values of w•z , u'z , o•z , 

w•u•, w'c' and u'c' from w,u and care plotted as functions of time. 

All the information needed to study the turbulence field or the jet 

.. vas provided from the discrete signals in time tor the two velocity 

components and concentration. The results of these experiments are 

presented in detail in the next chapter. 

3.7 Procedure followed in a typical experiment 

The entire procedure of a typical experiment will be presented 

step by step in this paragraph. That is, for a desired set of jet 
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Figure 3.6.1. F~ltered time-records of w, u and c (measured) and w' 2
, 

u' 2 , c' 2 , w'u', w'c', u'c' (calculated). Jet center­
line: z• 48.50 em, D-= 1.25 em, W= 29.65 em/sec, 
We'"' 5.134 em/sec. 
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Figure 3.6.2. Unfiltered time-records (labels as in 
Figure 3.6.1). 
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initial conditions D, M and B, how the mean and turbulence characteristics 

of w, u and c were obtained in the entire jet cross-section at a distance 

z from the origin. The step by step procedure is: 

(1) Assume that information is needed tor a given z/lM. After 

some preliminary calculations the jet diameter D, the initial density 

ditterence (~p)0 and the distance z from the jet origin were 

estimated. The experimental parameters were chosen in a such way that 

the error in the measurements does not exceed the maximum estimates 

made previously. 

(2) The tank was tilled with tresh lab water, Na2so3 was added 

and mixed with the water in the tank tor dechlorination. A proper 

amount or Rhodamine 6G dye in aqueous solution with known 

concentration was added and mixed in the tank so that the ambient 

water concentration was close to 1 ppb. 

(3) The water in the small mixing tank T 1 was dechlorinated. Then 

filtered solutes of known high concentrations of NaCl and Rhodamine 6G 

dye were added accurately so that the jet initial C and ( ~ p ) were 
0 0 

known. In this oase the jet was denser than the ambient fluid and 

pointed down, as shown in Figure 3. 2. 1 • 

(4) Both lasers and all electrical units such as amplifiers, 

Bragg cell exciters and data processors were turned on at least one 

hour in advance. The laser-Doppler velooimeter was calibrated. 

Maximum and minimum velocities and concentrations were estimated so 

that the analog outputs or the three signals were ottset to be always 

in the ± 5V region. 

(5) The battery operated preamplifiers or the photodeteotors were 

turned on. The LED to excite the photodetector used to detect the 
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induced fluo~esoenoe was turned on and the pump was started. The 

output t~equenoies t~om the Bragg cell exciters were meas~ed and 

their diffe~enoe F was the frequency shitt between the reference and 

scattering beams. 

(6) A 10 second record or the ambient fluid conditions (ambient 

w, u and o) was sampled. 

(7) The jet was turned on and valve V3 (see Figure 3.2.1) 

adjusted to the prescribed flowmeter indication R {J). 

(8) After the jet had reached ateady state (2- 3 minutes late~), 

data sampling tor w,u and c was performed at 10 to 15 different radial 

distances from the known jet centerline, at sampling times and rates 

previously discussed. It was not possible to perform data sampling at 

aore than 10 to 15 points tor the reason that attar a while the 

interface of the density and concentration stratified body of the tank 

water reached the cross section where meas~ements vere performed. 

(9) After the run vas completed the laser induced fluorescence 

system was oalib~ated. 

(10) The tank water was mixed using by air-bubble jets from the 

tour air injectors at the bottom of the tank and a new uniform ambient 

fluid vas o~eated. 

The time histo~y of v, u and c to~ various radial positions vas 

reoo~ded on diskettes in bina~ form. The data were then converted to 

velocities and concentration using the previously de~ived calibration 

curves. Tbe converted data vere properly analyzed to p~ovide the 

information about the turbulent jets and plumes that 1s di~cussed in 

the following ohapte~. 
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The next experimental run tor .aaaurements at a new z/lM with the 

new ambient conditions tolloved the steps (5) to (10). Ho more than 

three consecutive experiments were performed betore the tank water vas 

renewed, so that the ambient Rhodamine 6G concentration would not 

exceed 5 ppb, thereby avoiding beam attenuation problems. 
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4. EXPERIMENTAL RESULTS 

4 .1 Basic experimental parameters and initial data 

Complete information regarding the basic initial parameters of all 

the experimental work that will be subsequently presented is given in 

Tables 4.1.1, 4.1.2 and 4.1.3. More specifically, Table 4.1.1 contains 

the initial data from the combined velocity and Rhodamine 6G dye 

concentration measurements (EXP series) for all cases, jets, plumes and 

buoyant jets. Table 4.2.2 contains measured flow parameters such as 

mean and turtiulent velocities and concentrations and the derived widths 

of the jet for the EXP series. Table 4.1.3 contains the initial jet 

parameters and measured parameters of velocimetry tor the case of a 

simple jet (VEL and PAP series). 

(i) The initial flow parameters mentioned above are 

z the distance from the jet origin at which measurements 

were performed (em) 

D the jet diameter (om) 

W jet exit velocity (em/sec) 

excess (above the ambient) concentration of Rhodamine 6G dye 

at the jet orifice (ppb) 

g~ •((!J.p)/PJg buoyancy force at the jet exit (cm/sec 2
) 

lM jet momentum length scale (om). 

(ii) Measured quantities at a distance z trom the jet origin 

we aean velocity at the jet centerline (om/sec) 
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~)o 
z D w Co 

g 
~ a 

em em em/sec ppb cm/sec2 em 

EXP01 JJ8.250 1.500 7.601 98.740 7.225 3.260 
EXPOS ll0.750 1.000 13.560 97.000 7.225 .1!.750 
EXPOS 58.050 2.000 3;390 98.000 8.850 1.510 
EXP09 57.950 2.000 6.710 97.100 8.850 3.003 
EXP10 ~~.450 2.000 3.169 96.000 8.650 1.416 
EXP11 .1!4 • .1!50 2.000 3.390 98.000 8.850 1.520 
EXP12 83.000 2.000 4.500 97.800 15.337 1.530 
EXP15 35.900 0.750 46.934 98.650 1.082 36.794 
EXP16 53.600 0.750 55.590 96.800 1.082 43.582 
EXP17 24.600 0.750 35.128 95.100 1.082 27.540 
EXP18 48.600 0.750 31.980 94.200 1.082 25.070 
EXP19 48.600 0.750 31.980 98.400 0.668 31.428 
EXP20 63.700 0.750 .1!7.722 97.600 0.688 46.900 
EXP21 39.600 0.750 31.980 95.500 0.688 31.428 
EXP22 59.500 0.750 39.850 97.000 0.688 39.163 
EXP23 59.500 0.750 31.980 97.600 5.800 10.825 
EXP24 39-900 0.750 31.980 96.400 5.800 10.826 
EXP25 39-900 0.750 16.237 95.750 s.8oo 5.497 
EXP27 50.100 0.750 47.720 97.750 0.197 87.740 
EXP28 34.100 0.750 39.850 96.410 0.197 73.200 
EXP29 73.600 0.750 47.720 96.600 0.197 87.740 
EXP30 58.100 0.750 39.850 94.600 o. 197 73.200 
EXP31 58.100 1.250 4.712 98.500 10.913 1.500 
EXP32 43.600 1.250 5.845 127.900 10.710 1.879 
EXP33 43.600 1.250 11.513 127.400 10.710 3.703 
EXP34 70.100 1.250 8.680 126.400 10.710 2'.791 
EXP35 32.000 1.250 5.845 129.000 10.710 1.880 
EXP36 32.000 1.250 11.510 98.650 3.146 6.833 
EIP37 32.000 0.750 24.108 97.100 3.146 11.082 
EXP38 37-700 0.750 31.979 97.150 3.1 !16 14.700 
EXP39 62.100 2.000 2.283 208.150 15.815 0.764 
EXP40 62.100 2.000 3.390 207.500 15.815 1.130 
BXP41 92.400 1.500 4.925 209.250 15.815 1.1128 
EXP42 77-700 1.500 5.161 207.800 15.815 1.496 
EXP43 56.800 1.500 5.043 208.700 15.815 1.462 

.. EXP44 77.600 1.500 5.200 207.400 15.815 1.508 
EXP45 77.600 1.250 5.845 199.550 24.060 1.254 
EXP46 39-800 1.250 5.847 248.900 25.066 1.229 
EIP47 60.100 1.250 5.959 248.000 25.066 1.253 

Table 4.1.1. Initial jet parameters of the simultaneous 
velocity-concentration measurement. 
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w c "wc'2 ~u 12 v c 12 (w'c:') b b c c c c c w c 
em/sec ppb em/sec em/sec ppb eeucm em em sec 

EXP01 5.180 6.350 1.091 0.7JI1 2.264 1.159 5.635 5.800 
EXPOS 4.900 7.880 ·1.000 0.640 2.650 1.230 4.310 4.420 
EXPOS 11.500 3.493 0.967 0.643 1.346 0.650 5.774 6.934 
EIP09 5.880 5.900 1.210 0.868 2.114 1.345 5.808 6.967 
UP10 4.715 5.000 1.036 0.731 1.918 1.053 4.725 
EXP11 4.700 4.675 1.071 0.6511 2.019 1.105 5-399 5.315 
EXP12 5.502 1.878 1.300 0.800 1.129 0.600 8.704 10.847 
EXP15 7.110 11.500 1.400 1.023 2.325 1.371 3.669 4.940 
EXP16 5.687 8.130 1.207 0.914 1.889 1.190 5.455 6.900 
EXP17 6.500 17.000 1.280 0.980 3.275 2.020 2.800 3.200 
EXP18 3-570 7.539 0.705 0.528 1.898 0.745 5.490 5.630 
EXP19 3.475 10.000 0.736 0.532 . 2.209 0.705 5.384 5.773 
EXP20 3-728 6.850 0.882 0.628 1.477 0.506 7.392 8.304 
EXP21 .11.012 9.569 0.834 0.638 2.352 0.858 4.635 4.810 
EXP22 3-190 7.084 0.743 0.543 1.853 0.523 
EXP23 5.023 5.250 1.048 0.734 1.595 0.879 5.670 6.324 
EXP24 6.200 8.500 1.184 0.850 2.260 1.420 
EXP25 11.200 6.030 0.850 0.640 2.181 0.838 4.375 5.000 
EXP27 4.700 g.ooo 0.970 0.740 2.000 0.881 
EXP28 5.650 11.600 1.200 0.810 2.611 1.676 3.907 5.064 
EXP29 3.350 7.312 0.705 0.580 1.419 0.408 8.771 10.850 
EXP30 3.500 7.200 0.690 0.553 1.783 0.533 6.594 7.454 
EXP31 4.000 3.300 0.806 0.635 1.433 0.737 6.450 6.820 
EXP32 11.600 11.880 1.025 0.690 2.210 1.090 
EXP33 6.500 9.800 1.209 0.967 3.051 1.860 .11.472 4.767 
EXP34 4.800 3.850 1.000 0.740 1.384 0.715 6.742 7.063 
EXP35 4.900 8.800 1.086 0.745 3.416 1.822 3.780 3.835 
EXP36 ll.5oo 15.500 0.960 0.685 4.920 1.900 3.410 3-770 
EXP37 5.250 10.500 0.918 0.716 3.096 1.457 3.310 3.750 
EXP38 4.800 9.000 0.950 0.700 2.1100 1.057 4.470 5.000 
EIP39 4.200 3.300 1.137 0.7211 1.680 1.192 7.905 8.300 
EXP40 5.200 4.700 1.150 0.785 1.900 1.000 6.325 7.450 
EXP41 ~-723 3.400 0.921 0.757 1.238 0.580 g. 129 
:UP42 4.903 5.000 1.172 0.779 2.057 1.253 8.452 

.. EXP43 4.875 6.417 1.072 0.790 2.700 1.610 6.350 6.040 
EXP44 5.326 11.300 1.121 0.711 1.792 1.126 7-274 7.590 
EXP45 5.300 2.950 1.122 0.766 1.100 0.533 7.071 7.900 
EIP46 6.750 9.500 1.243 0.912 3.530 2.100 4.714 5.000 
EXP47 5.500 ~-750 1.274 0.868 2.012 1.191 5.774 5.980 

Table 4.1.2. Basic experimental turbulence parameters measured in 
the simultaneous velocity and concentration measurements. 
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z D w w iM b c c c Pa w 
em em em/sec em/sec em/sec em/sec cm/sec2 em em 

VEL05 67.100 0.750 79.210 5.800 1.517 0.929 0.085 222.130 7.440 
VELDT 50.400 0.750 66.613 7.000 1.675 1.0110 0.131 150.200 5.712 
VEL10 64.900 0.750 80.781 6.131 1.487 0.934 0.197 148.534 6.468 
VEL11 17.300 0.750 95.736 5.612 1.487 0.963 0.287 145.690 8.006 
VEL13 33.500 0.750 55.590 7.900 1.780 1.165 0.263 88.300 3.987 
VEL15 60.500 0.750 87.080 7.250 1.621 1.159 0.263 138.320 6.667 
VEL17 82.500 0.750 111.085 6.750 1.768 1.1111 0.281 170.820 8.607 
VEL19 63.750 0.750 94.950 7.500 1.700 1.159 0.351 130.660 6.324 
VEL21 115.000 0.750 63.464 7.320 1.600 1.000 0.260 101.380 4.657 
VEL23 26.250 0.750 40.638 7.100 1.597 o.Bll3 0.306 59.920 2.820 
PAP12 118.750 0.750 61.890 6.143 1.492 0.905 0.192 115.260 4.530 
PAP13 63.750 0.750 110.690 7.850 1.718 1.115 0.279 170.810 6.711 
PAP16 18.250 0.750 31.980 6.900 1.762 1.021 0.110 78.570 2.370 \D 

N 
PAP17 37.500 0.750 70.550 8.600 2.351 1.437 0.088 194.440 4.124 
PAP20 75.000 0.750 142.180 a.aoo 2.133 1.527 0.043 557.300 7-956 
PAP21 52.500 0.750 94.950 8.200 1.913 1.421 0.043 372.220 5.774 
PAP30 66.000 0.750 140.600 11.000 2.517 1.581 0.150 296.075 6.788 
PAP32 38.250 0.750 79.206 10.500 2.232 1.593 0.150 166.790 3.922 
PAP31 51.600 0.750 98.880 9.147 2.275 1.521 
PAP34 79-350 0.750 1110.600 8.468 1.999 1.312 
PAP3ll 70.650 0.750 140.600 9.936 2.396 1.476 
PAP34 60.950 0.750 1110.600 11.321 2.820 1.733 
PAP34 49.350 0.750 63.460 5.832 1.559 0.857 
PAP34 40.350 0.750 63.460 7.711 1.664 1.038 
PAP34 30.850 0.750 117.720 7.273 1.525 0.958 
PAP34 26.250 0.750 31.980 5.361 1.153 0.713 
PAP34 21.000 0.750 24.110 4.960 0.999 0.646 
PAP34 75.000 0.750 126.430 8.169 1.878 1.288 
PAP34 54.600 0.750 94.950 8.7511 1.94~ 1.196 
Table 4.1.3. Basic experimental parameters and data for the velocity 

measurements in jets. 
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axial rms velocity at the jet axis (em/sec) 

radial rma velocity at the jet axis (om/sec) 

c mean (time-averaged) concentration above the ambient of 
c 

Rhodamine 6G dye at the jet axis (ppb) 

rmS concentration at the jet axis (ppb) 

turbulent transport term (w, c correlation) 

at the jet axis (ppb em/sec) 

b 1/e mean velocity width of the jet (em) 
w 

b 1/e mean concentration width of the jet (em). 
c 

The 1/e-widths were calculated from the least square Gaussian 

curves fitted to the transverse time-averaged velocity and concentration 

profiles that are shown in Appendix A. All other jet parameters that 

will be presented in the following sections are calculated from the data 

in Tables 4.1.1, 4.1.2 and 4.1.3 and the data presented in Appendix B 

and are shown in Tables 4.1.4 and 4.1.5. 

4.2 Calculation of the turbulence parameters 

From the time signal y(=,t) of a parameter measured in a turbulent 

steady flow at a point x the time averaged value y(x) of y(x,t) is 

111 

y(x)=lim1 y(x,t)dt 
- i-1-00 -

0 

(4.2.1) 

tor a continuous time signal or 

N 

y(x):1/N LY(_!,ti)=y
1 

C,!) ; Yi (_!)=Y(_!, \) (4.2.2) 

io::l 

tor a discrete signal where 
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LIST OF CALCULATIONS 

FOR TABLES 4.1.4 and 4.1.5 

WD R o:::­e \I 

c b ] l/2 ( JillU.o __£_ ~ ) 
P g C0 -2 
a w 

c 

ll(z) "" l;(z.)2'1Trdr = nW b 2 
c w 

0 

J
c:o '!Tw2b2 

m(z) "" 

0 

~;?2nrdr = ~ w 

l
<;O - - 2 2 

'TTWcCcA bw 
111 "" 

0

w c 2nrdr = 
1 + A. 2 

J.

b(z) 

HT c w'c' 2nrdr 

0 b(z) 

~(z) • J[ WOT 2nrdr (numerical integration) 

(numerical integration) 

b(z) • edge of jet 



~ Q M B QC. R. R(:r:) J.I(Z) II(Z) I'M RT ~~.r<z) ~ 
~' e.- ca., cm'22b Clll' em- ca1 ppb ' ca" ~ sec 11ec1. sec3 sec sec sec 2 sec sec aec2 

111'01 ,..eo 13.1J] 102.09 9T.OIJ 1326.28 111JO.I5 o.IJOT1 O.T091J 516.13 1338.3. 115117.96 232.T 180.00 
DP05 8.57 10.65 "'·'' T6.91t 103].05 1356.00 o. 1866 0.7359 285.95 700.59 1155.05 158.!1 93 ••• 
DPOB 38.-- 10.65 36.10 911.25 10'3.70 678.00 1.1683 il.T298 1171.31 1060.116 912.19 n1.3 232.90 
DP09 19.29 21.08 t'1.1111 186.55 20116.88 13112.00 0.5903 0.7310 623.13 1832.00 2169.06 315.6 550.05 
UP tO 31.31t 9o95 31.55 88.10 955.75 633.80 1.21198 330.70 179.62 125.1T 
DP11 29.211 10.65 36.10 911.25 10it3.70 678.00 1.1683 O.T136 ,30.110 1011.1tiJ 990.28 125.1 223.30 DP12 SIJ.21J 111.13 63.61 216.82 1382.61 900.00 1.1586 0.7187 1309.50' 3602.1t5 1't95o9S 276.9 T06o3T 
arts 0.97 20.73 973.17 22.113 20IJ5.1t9 3520.05 0.0181 0.2,32 300.68 1068.911 2228.51 125.0 165.011 
DP16 1.22 211.55 1365.23 26.57 2377.30 11169.25 0.0153 0.3015 531.611 1511.73 2659.83 220.1 2111.02 
DP1f o.89 15.51 5lt5.15 16.79 IIJT5.86 2631J.59 o.o21J1 0.2698 160.09 520.31 15" ... 110.2 59.65 
DP18 1.93 11J.12 IJ51.82 15.28 1330.89 2398.50 0.0265 o.IJ378 338.03 603.39 1306.30 1IJ5.2 83 •• 3 DP19 1.511 111.12 '51.82 9.72 1390.23 2398.50 0.0212 0.11089 316.115- 5119.811 1692.118 13To3 69.7' DP20 1.35 21.08 1006.12 111.50 2057.69 3579.tlt 0.01112 0.3790 639.95 1192.87 211115.69 1711.0 152.!i'& DP21 1.26 111.12 '51.82 9.72 13119.25 2398.50 0.0212 0.3185 271.00 5-'3.611 13tll.11 160.8 13·'" DP22 1.51 17.60 701.56 12.11 170T.'JO 2988.75 0.0110 10.62 252.0 
IIP23 5.1J9 111.12 •51.e2 11.911 1378.92 2398.50 0.06UI o.621J3 501.31 12TIJ.12 ,.-76.50 221.1 239·90 DP211 3.68 n.12 IJ51.82 81.911 1361.9T 2398.50 0.06111 19.11T 126.1 \C 

IJI DP25 T.25 1.11 116.,7 ,1.60 6B6.S.. 1217.77 0.1209 O.T1T2 252.55 530.36 862.52 78.2 118.80 
IIPZT 0.5T 21.08 1006.03 •• 15 2060.71 3579.00 0.0016 n.76 190.6 
DP28 0.116 11.60 701.56 ] • .-& 1697.32 2988.75 0.0091 0.1350 270.9' Tfi5.1J2 1H0.21' 127.3 to&.&&· 
DP29 0.83 21.08 1006.03 •• 15 2036.53 3579.00 0.0016 0.2658 809.61J 1356.1- 3580.36 26 •• , 18T.TT• 
IIP30 0.79 17.60 701.56 '3.116 1665.115 29!8.75 0.0091 0.2131 1178.09 836.66 1931.09 1TT.2 108.63 
DP31 38.13 5.78 21.211' 63.10 569.57 589.00 0.7379 0.8!32 522.79 10115.58 910.61 113.9 196.52 
IIP32 23.20 7.17 111.92 76.82 917.111 730.62 0.5893 t.-.115 126.1 
IIP33 11.71 111.12 162.66 151.31' 1799-98 11139.12 0.2992 0.6119 1108.38 1321.211 2128.T2 2116.!1 193.99 
DP31J 25.11 10.65 92.115 1111.08 13116.'t 1085.00 0.3968 0.1011 685.,3 161J5.05 13110.19 19'to5 226.86-
DP35 17.02 T.1T .-1.92· 76.82 925.30 730.62 0.5893 0.76118 219.95 538.88 981.71 99.1 "·33 DP36 11.611 11J.12 162.57 U.ll3 1393.112 tiJ]8.75 0.1622 0.6715 1611.38 369.87 tllot.U 112.2 U.92 
DP37 2.88 10.65 256.76 33.50" 10311.17 1808.10 o.06oo 0.11798 180.70 '71t.31J 1066.118 87.2 .11 • .-3 
!IP38 2.56 111.12 1151.79 IJIJ.U 1372.52 2398.,2 o.o1152 0.5613 301.30 723.13 1507.16 159.3 106.89 
DP39 81.28 TofT 16.37 113.112 11J92.90 '56.6o 2.3191 0.7686 821t.52 1T31.1t9 11126.711 230.2 1119o30 
IIP'D s.-.95 10.65 36.10 168.,3 2209.88 678.00 1.5618 0.6987 653.,.- 1699.21 1785.02 266.5 315.611 
DP-'1 61t.TO 8.70 ,2.86 137.611 1821.111 738.75 0.9310 1236.55 2920.12 '52.53 !IPU 51.93 9.12 117 .OT 11JII.23 1895.19 n.-.1s o.B881J 110D.31t 2697.50 ,09.112 
DPIJ3 311.85 1.91 1111.91J 1110.93 1859.87 756.115 0.9092 O.T866 617.511 1505.27 11182.31 3211.0 305.85 
DPIIII 51.,5 9.18 lt7.7B 1'5-32 1905.83 780.00 0.8818 0.6629 885.31 2357-59 198-'.31 299.2 317.72 DPIJ5 61.88 T.tT lt1.92 172.58 11131.35 730.62 0.8833 0.7060 832.50 2206.13 1363.52 250.5 '"·11 !IP-'6 32.38 1.11 lt1.95 179.85 1785.91t 730.87 0.9012 0.72'9 1171.22 1590.39 2370.02 219.6 199.01J !IPII7 117.96 7.31 lt3.5T 183.30 1813.57 711-'.87 o.8s.-3 0.6896 576.05 15811.15 "'16.07 219.2 300.33 

Table 4.1.4. Calculated flow parameters from data in Tables 4.1.1 and 4.1.2 and Appendix B for the 
EXP series of experiments. 
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z 
Re Q M B Ro p(z) m(z) z 

R(z)_ ·ID.r(z) D ~ 
Ctn3 emit em" em3 emit emit 
sec 2 

sec 11 sec sec2 sec2 sec 

1BL05 89.U 6093.0 311.99 2171.8 2.97 0.0030 1008.6 29211.9 0.3021 0.0868 '113.9 
RLOT 67.20 51211.0 29.112 1960.3 ).85 o.oo1111 717.5 2511.2 0.3356 0.0903 355.6 
VBL10 86.53 6213.9 35.68 2882.9 7.03 0.00115 805.7 21170.1 0.11369 0.1185 1191.1 
VBL11 103.06 73611.3 112.29 110119.1 12.13 0.00116 1130.0 3170.9 0.5306 0.1679 626.5 
VEL13 IIJI.66 11276.1 211.55 1365.2 6.115 0.0015 3911.5 1558.3 0.37911 0.1161 222.2 
VBL15 80.66 6698.11 38.117 3350.0 10.11 0.00118 1012.3 3669.9 O.JI3711 0.1218 562.3 
VBL17 110.00 851111.9 ll9.07 51151.6 13.79 0.0039 1570.9 5301.8 o.JI830 0.1315 903.2 
VEL19 85.00 7303.8 111.911 3982.9 1JI.72 0.0051 9JI2.3 3533.6 0.11879 0.1290 7118.1 
VEL21 60.00 11881.8 28.03 1779.3 7.29 0.0066 la98.7 1825.3 o.JIII39 0.1162 2811.3 
VBL23 35.00 3125.9 17.95 729.5 5.1l9 0.0111 177.3 629.7 0 • .11381 0.13211 92.7 \0 

Q\ 

PAP12 65.00 11760.7 21.311 1692.2 5.25 0.0058 396.0 1216.11 0 • .11230 0.1128 2115.6 
PAP13 85.00 85111.6 118.90 51112.9 13.611 0.0039 1110.6 ll359.11 0.3732 0.1132 689.8 
PlP16 211.33 21159.9 111.12 1151.8 1.55 0.0085 121.7 1120.0 0.2323 0.0898 57.5 
PAP17 50.00 51126.9 31.16 2198.9 2.1. 0.00311 1159.11 1975.8 0.1929 0.0593 312.1 
PAP20 100.00 10936.9 62.81 89)0.7 2.70 0.0012 17119.9 7699-7 0.13116 0.0398 1579.8 
PAP21 10.00 7303.8 .111.911 3982.9 1.80 0.0018 B58.e 3521.2 0.1410 0.0435 655.9 
PAP30 88.00 10815.3 62.11 8733 •• 9.31 0.0022 1592.~ 8757.6 0.2229 0.0586 1253.8 
PAP32 51.00 6092.7 311.99 2771.5 5.211 0.00110 507 •• 2663.8 0.2293 0.0613 1125 •• 

Table 4.1.5. Calculated flow parameters from data in Table 4.1.3 and Appendix B for the VEL and 
PAP series of experiments. 
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~ = sampling time in seconds 

N = total number of samples during ~ seconds 

N/~ = sampling rate (samples/sec) 
~ 

ti = N i, i = 1,2,3, ••• N. 

For a discrete signal the variance y' 2 (~) of y(~,t1 ) is calculated 

as 

(4.2.3) 

and the correlation Yi(~)y2(~) of the deviations Yi(x) and Yi{~) from 

the mean of two flow parameters y1 C~,t1) and y2C~,t1 ) measured 

simultaneously at point x 

(4.2.4) 

In the present experimental work from the discrete time signals of 

velocities w and u and concentration c at the point (r,z) of the flow 

wi{r,z)=w(r,z,t
1
), 'l(r,z)=w1Cr,z,t1) and c1(r,z)=c(r,z,t

1
), 1=1,2, ••• N, 

one has 

- w
1
(r,z) w = 

u = u1 
(r,z) 

0 = o1
(r,z) 

wt2 :wi_(r,z)- w2(r,z) 

\iiT :ui (r,z) - ii2(r,z) 

072 =ci(r,z) ·c2 Cr,z) 

(w•u•) = wi(r,z)ui(r,z)- w(r,z)u(r,z) 

(w'c') = wi(r,z)ci(r,z)- w(r,z)c(r,z) 

(4.2.5) 
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and 

(u•c•) = ui(r,z)ci(r,z)- u(r,z)c(riz) 

t~r the total number or samples N at a point (r,z) of the flow, where 

w•,u• and c' are the deviations from the mean values w, u and c. 

4.3 Velocity measurements in jets 

4.3.1 Centerline velocity decay 

The experimental results presented in this section correspond to 

experiments VEL and PAP-series in Table 4.1.3 and EXP-series from Table 

4.1.4 for z/lM <1. The velocity at the jet exit W normalized by the 

mean velocity w at the jet axis has been plotted versus the 
c 

dimensionless distance from the jet origin z/D in Figure 4.3.1. The 

turbulence, axial and radial intensities of velocity at the jet axis 

normalized by w have been plotted in the same figure versus z/D. Following 
c 

the dimensional arguments in Chapter 1 

(4.3.1) 

The constants c
1
wand c

2
wwere calculated from the least square fit to the 

data and found to be 0.149 and 2.56 respectively. The virtual origin of 

the jet is located at 2.56 diameters upstream. For z/D<4D data points 

show the tendency to move the jet virtual origin further upstream as 

shown in Figure 4.3.1. This agrees with the observation reported by 

Wygnanski and Fiedler (1969) of the existence or two apparent virtual 

origins for the mean longitudinal velocities at the jet centerline, for 

distances smaller or larger than 40 jet diameters. Figure 4.3.1 also 

shows that the rms values of w and u at the jet axis normalized by 

w are 
c 
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Figure 4.3.1. Non-dimensional velocity distribution along the 
jet axis plotted against non-dimensional distance 
from jet origin. Decay of the mean velocity, axial 
and radial turbulent intensities. 
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mean st.dev max min 

~ /w 0.231 0.0209 0.273 0.197 (4.3.2) c c 

~ /w 0.151 0.0150 0.173 0.118 (4.3.3) c c 

constant along the jet axis. Wygnanski and Fiedler (1969) reported that 

the axial and radial turbulent velocities become constant after about ~0 

and 70 jet diameters respectively. The mean velocity at the jet axis is 

measured to be larger than that reported by various authors (see Table 

1.~.1). The Reynolds numbers used in the present investigation varied 

from 2460 to 10900. These are fairly low compared to ones of other 

authors; for example Wygnanski and Fiedler (1969) used Reynolds numbers 

of order of 10 5 • Therefore the flow in the present investigation 

probably was not fully developed and.higher mean velocities should be 

expected. The normalized turbulent intensities~ /w and W /W by 
c c c c 

the mean velocity at the centerline of the jet are lower than those 

measured by other authors (see table 1.4.2). This is attributed to 

higher mean velocities measured around the jet axis and to th5 fact that 

the flow was not fully developed. All authors in Table 1.4.2 reported 

the radial turbulent velocities to be smaller than the axial ones, 

except Antonia et al (1979) and Gibson (1963) who measured the axial and 

radial turbulent velocities to be the same.· Rosler and Bankoff 

(1963) measured higher turbulent velocities in water than in air at the 

jet axis using the same Reynolds number for both air and water 

experiments. 

The maximum and minimum values of w at the jet axis normalized by 

w have been plotted in Figure 4.3.2. They are found 
c 
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max we/we 1.828 

min we/we 0.2~1 

102 

st.dev. 

0.1236 

0.0700 

max 

2.1#30 

0.384 

min 

1.636 

0.056. 

to have constant values for all z/D's. The maximum velocity along the 

jet axis was measured to be twice w and the minimum was measured to be 
c 

small but always positive. Thus reverse flow is not expected to appear 

around the jet axis. 

~.3.2 Width of a momentum jet 

The width of a jet at a distance z trom the origin was calculated 

from its Gaussian mean velocity distribution 

to be 

w = ii exp(-kr 2 ) 
c 

b =1//k. w 

(4.3.4) 

(4.3.5) 

From all jet experiments the calculated b 1 s normalized by the jet 
w 

diameter D have been plotted in Figure 4.3.3 versus z/D. A straight 

line least square fit to the data leads to 

b /D = 0.104(z/D + 2.58). 
w 

(4.3.6) 

Equation (4.3.6) predicts a virtual origin at 2.58 diameters upstreams 

ot the jet. ~he slope of the jet growth bw /z was calculated to be 

equal to 0.109 and therefore N 

~w ~ O.l09z ; bw/z = 1/N 7 b1/z1 (i•l •• ,N) (4.3.7) 

value in agreement with 0.107, the average value of many authors 
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oaloulated and suggested by Fischer et al (1979). The discrepancy of 

the data points in Figure ~.3.3 should be attributed to the ~act that no 

measurements were performed with the same initial jet parameters (except 

tor the jet diameter D). 

4.3.3 Mean and turbulent velocity profiles in jets 

The mean and turbulent velocity characteristics measured in a 

momentum jet will be presented in this paragraph. Mean velocities, rms 

values and correlations are normalized by the mean velocity at the jet 

axis. The radial distances trom the jet axis are normalized by the 

distance z from the jet origin. The dimensionless mean and rms 

velocities have been plotted separately for z/D<SO and z/D>SO that 

correspond to transition and self-similar regions respectively, 

according to Wygnanski and Fiedler (1969). 

The normalized mean velocities have been plotted versus r/z in 

Figures 4.3.4 and 4.3.5 ~or z/D>SO and z/D<SO respectively. The least 

square Gaussian ~it to the data was round slightly different in each 

case. For z/D>SO these data are in good agreement with Wygnanski an 

Fiedler's (measured values). 

The normalized axial and radial turbulent velocities have been 

plotted in Figures 4.3.6, 4.3.7, 4.3.8 and 4.3.9 for large and small 

z/D's versus r/z. Host or the investigators (see Table 1.4.2) measured 

the axial and radial normalized turbulent velocities to be 0.26 - 0.30 

and 0.17 ~ 0.25 respectively. The present investigation shows lower 

values tor the reasons explained in the previous section. The 

normalized turbulent intensity profiles are found to be 1.8 times wider 

than the mean velocity profile. The values around the jet centerline 
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Figure 4.3.4. Non-dimensional mean axial velocity profile for a turbulent 
jet plotted against non-dimensional distance from jet axis, 
z/D ~ 50. 
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Figure 4.3.8. Profile of the intensity of turbulent fluctuations of the 
radial velocity across a turbulent jet, z/D ~ 50. 
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varied from 0.20 to 0.25 for the axial and from 0.13 tO 0.18 for the 

radial turbulent velocities. 

In Figures 4.3.10 and 4.3.11 the normalized turbulent shear 

stresses have been plotted versus r/z, for z/D>SO and z/D<50 

respectively. The discrepancy of the data for z/D<SO and the existence 

of very low turbulent shear stresses proves that the flow is not 

self-similar in this region. After 50 jet diameters the maximum 

normalized shear stesses are found to be approximately 0.012 which is 

less than that reported by Wygnanski and Fiedler (1969) 0.0165, Hosler 

and Bankoff (1963) 0.018 for air and 0.0165 for water, Abbiss et al 

(1975) 0.022 and the very high value 0.035 reported by Antonia et al 

(1975). 

Finally the maximum observed velocity normalized by w has been 
c 

plotted versus r/z in Figure (4.3.12). This is the maximum value 

observed over the sampling period which did not exceed 150 seconds. The 

maximum value is almost twice the mean centerline velocity for small 

r/z. No results from other authors exist for comparison in the 

available literature. 

4.3.4 On the mass and momentum conservation in jets 

The momentum flux per unit mass (specific momentum flux) at a 

distance z trom the jet origin is 

_{b(z) 
m(z) ]_ (w

2 +Wi"T )2 n rdr. 

0 

(4.3.8) 

Following List (1982),~ is assumed to follow a Gaussian distribution 

vith 1/e width 1.6 times the mean velocity vidth, b , 
w 
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~ w• 2 = 0.230W exp[-0.386{r/z)2 ] • 
c 

m(z) = ~ b2 w2 (1 + (0.231)) 
2 w c 0.336 

= 1.138 l!. b2 v2 

2 w c 

and the contribution or turbulence adds approximately 14% to the 

specific momentum flux of the jet that is calculated trom the mean 

velocities. 

The calculated momentum flux from the mean velocity profile 

(4.3.9) 

(4.3.10) 

normalized by the initial jet momentum flux H has been plotted versus 

z/D in Figure 4.3.13. The averaged value was found 

mean st.dev. min 

m(z)/M 0.96 0.131 1.281 0.72 (4. 3.11) 

and therefore 

m(z)/M = 0.96 + 0.138 = 1.098 (4.3.12) 

which is slightly higher than the initial jet momentum flux. According 

to Kotsov1nos(1978), assuming that the tank behaves as a closed system 

(no momentum loss from the overflow), the excess momentum flux is 

balanced by the momentum flux of the induced circulation in the tank. 

Actually, negative mean velocities were measured at radial ·distances 
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r/z>0.30. 

The normalized adveotive mass fl~ due to the mean flow with the 

jet initial mass flux Q bas been plotted in Figure ~.3.14 versus z/D. 

Following dimensional arguments made in section 1.3, the least square 

straight line fit to the data is 

.l:!i& ... o.2a~c ~ + 3.3) Q D (4.3.13) 

with the virtual origin located 3.3 jet diameters upstreama. Albertson 

et al. (1950) and Rioou and Spalding (1961) reported a value of 0.32 

Fischer et al (1979) suggest an average value 0.282 which is in 

agreement with the predicted value above. 
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4.4 Velocity measurements in plumes 

~.4.1 Velocities along a plume axis 

A character.istic length scale l was defined by equation (1.3.1)as 
M 

for jets driven initially by both, buoyancy and momentum. Following 

dimensional analysis (Table 1.3.1) and equations (4.3.2) and (4.3.3) the 

dimensionless groups for the mean and turbulent velocities at the 

centerline 

v'M v'M 
wcz • ·~w~2· z • 

(4.4.1) 

have been plotted in Figure 4.4.1 versus the dimensionless distance from 

the jet origin z/1 • For a jet, 
M 

yf1 ;-z = ai "" constant 
c 

(4.4.2) 

following Table 1.3.1. From equations (1.3.2a) and (4.3.1) it can be 

~ seen that 

c = ( 2/ rn )a' 
lw 1 (4.4.3) 

and therefore for clw=0.149 

ai = 0.132 (4.4.3a) 

In the same manner, since the turbulent intensities were round to be 

constant along tbe jet axis, equations (4.3.2,), (4.3.3) and (4.4.1) 

give 
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axis of a buoyant jet plotted against the non­
dimensional distance from jet origin. Decay of 
the mean velocity, axial and radial turbulent 
intensities. 
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_..;..;.11;.;;.._ "" 0. 8 7 4 

~z c . 

(4.4.4) 

at the axis of a jet, that is also shown in Figure ~.4.1 for z/lM <1. 

For large values of z/lM , ~/we z is proportional to 

(zllM )-2/3 (plume case, equation (1.3.7b)). From Figure 4.4.1 it is 

obvious that for z/lM >5 

M ( z )-2/3 -o::b'-
- 1 l_ w z tl 

(4.4.5) 

c 

where bi was calculated to be 0.26. From this point on it should be 

noted that an initially momentum driven flow with a small initial 

buoyancy flux B, will become a plume after about 5 characteristic 

lengths 1M • It can also be seen from Figure 4.4.1 that the turbulent 

intensities along the plume axis decay as (zllM )-"'-/ 3
• From Figures 

4.4.3 and 4.4.4 the turbulent intensities at the plume c.enterline were 

found to be 

'Vw~ 2 = 0.23wc and 'Vu~ 2 = 0.15wc. 

Substitute w from (4.4.6) into (4.4.5) to obtain c 

vii!~ z) .. 1.13(z/lM )-2
/

3 

and 

The mean velocity at the plume centerline can be ~so written as 

(4.4.6) 

(4.4.7) 

(4.4.8) 
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(4.4.9) 

trom equations (1.3.7a) and (1.3.7b). This value is in agreement with 

the value b E3.4 reported by George et al (1977). Rouse et al (1952) 
1 

reported b c4.7 that corresponds to velocities that can be observed in 
1 

the transition region 1<z/l <5. 
M 

4.4.2 Profiles of mean velocity, turbulent intensities and WTUT 

correlation in plumes 

The mean azial velocity normalized byw has been plotted in Figure 
c 

4.4.2 versus r/z. There is substantial scatter to the data since 

z/1M vari~s from 8 (not fully developed plume) to about 80 where the 

plume is tully developed. Different size jet diameters and initial 

density differences were used so that no virtual origin tor the plume 

case could be obtained. A least square Gaussian fit to the data is 

w = w exp[-80(r/z) 2] 
c 

the same as the one obtained tor z/D>SO tor the case or a jet. 

(4.4.10) 

In Figures 4.4.3, 4.4.4 and 4.4.5 the normalized root mean square 

... turbulent azial and radial velooi ties and shear stresses have been 

plotted versus r/z. The normalized profiles or the rms azial and radial 

velocities are similar to the ones obtained in a jet case shown in 

Figures 4.3.6 and 4.3.8. The values measured at the plume centerline 

are tound to be 0.23 and 0.15 tor the axial and radial turbulent 

velocities, which are smaller than 0.28 reported by George et al (1977) 

and Nakagome and Hirata (1976). 
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The normalized turbulent shear stresses w*u 1~ plotted versus r/z 

in Figure 4.4.5 have maximum values varying from 0.008 to 0.017 with an 

average value or 0.13. They compare well with those obtained for jets 

(Figure 4.3.10). 

4.4.3 Width of a plume 

The 1/e mean velocity plume width bw normalized by ~ has been 

plotted versus z/4M in Figure 4.4.6 f9r all experiments. The region 

z/~ <1 corresponds to momentum driven jets and z/~1 >1 corresponds to 

buoyancy driven plumes. The reason that the plume width was normalized 

by ~ rather than by the plume diameter D is that the initial diameter 

is not the relevant length scale for plumes. A least square fit to the 

data tor all z/1 implies 
M 

b /l =0.10B(z/l ) 0 • 995 

w M M (4.4.11) 

where the exponent 0.995 is very close to the value of 1.0 predicted by 

dimensional analysis. Nonlinearity is involved due to the different 

spreading angles for jets and plumes. For the plume case (z/~>5) a 

least square fit to the data implies 

(4.4.12) 

and it becomes obvious that a jet will grow with a smaller angle for 

z/~>5. 
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Figure 4.4.5. Shear stress distribution across a turbulent plume. 
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-.5 Concentration measurements in jets 

-.5.1 Centerline concentration decay- width of a jet 

The reciprocal of the mean concentration on the jet axis, normalized 

by the initial jet concentration has been plotted versus the dimensionless 

distance from the jet origin z/D in Figure 4.5.1. A least square linear 

fit to the data is found to be 

c 
-E. =0.157(.!. +4.35) (4.5.1) 
- D c c 

with a virtual origin at 4.35 diameters upstream. The normalized root 

mean square turbulent concentration at the jet axis bas been plotted 

versus z/D in the same figure. It shows a constant average_value 

~) = 0.216 c c . c (4.5.2) 

tor z/D varying from 33 to 98. The mean concentration along the axis of 

the jet is quite higher than the values reported by other authors shown 

in Table 1.4.2. More specifically Becker et ~-(1967), Forstall and 

Gaylord (1955), Grandmaison~.!!.· (1977), Kiser (1963) and Birch _ll.!!_ • 

(1978) report the values of the constant of proportionality c
1

c in the 

region between 0.185 and 0.25 for the equation 

c 
0 

-c 
c 

The turbulent intensities predicted by the authors mentioned above are 
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Figure 4.5.1. Non-dimensional concentration 
distribution along the jet axis 
plotted against non-dimensional 
distance from jet origin. Decay 
of mean and rms concentrations. 

JET CONCENTAATlON VlDTH 
aor-------r------T-~~~~-------

15 -b /D = O.l39(z/D- 2.51) 
c 

40 10 
z/D 

10 100 

Figure 4.5.2. Non-dimensional concentration 
1/e-width of a turbulent jet 
plotted against non-dimensional 
distance from jet orifice. 



130 

in agreement witb the ones measured in the present investigation. The 

concentration width be of the jet normalized by the jet diameter D has 

been plotted versus z/D in Figure ~.5.2. A least square tit to the data 

leads to 

b 
De : 0.139(~ -2.51) (4.5.3) 

which predicts a virtual origin at 2.51 jet diameters downstream. The 

value ot the constant of proportionality varies tor the different 

authors mentioned above from 0.101 up to 0.1~0. Fischer et al (1979) 

suggest a mean value 0.127 tor a jet. 

~.5.2 Jet mean and turbulent concentration profiles 

The mean and root mean square turbulent concentrations normalized 

by the mean centerline concentration have been plotted versus r/z in 

Figures ~.5.3 and ~.5.~ for various dimensionless distances 

z/D trom the jet origin. A least square Gaussian fit to the mean 

concentration profile gives 

c/cc c exp[-55(r/z) 2 ] (4.5.4) 

which implies a much wider than the mean velocity profile. The root 

mean square concentration fluctuation profile has a peak value 0.25 at 

about r/z:O.OB and a value of 0.22 at the jet axis, results that are in 

agreement with those predicted by the various authors mentioned 

pre~iously (see also Table 1.~.2). 
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~.6 Concentration measurements in plumes 

~.6.1 Mean and turbulent concentrations at the plume axis 

The normalized mean centerline concentration 

.!.9... with 
zvii 

c 
s ... __£ 

c 
c 

(4.6.1) 

has been plotted against z/lM in Figure ~.6.1. Following dimensional 

arguments, the constants a• and b' from equations (1.3.6b) and (1.3.10b) 

in Table 1.3.1 are determined to be 0.07 and 0.1~7 for z/lM >S (plumes} 

and z/1M<1 (jets). The mean centerline concentration along the jet axis 

was discussed previously in section 4.5.1. For the mean concentrations 

at a plume centerline Rouse et ~·(1952) reported b4 =0.091, Zimin and 

Frik (1977) measured b4 :0.142 and Papanicolaou and List {1983) 

b4 :0.090. Fischer !i a1·{1979) suggest b4 =0.11, a value reported by 

George £!_ a1. ( 1977) • The mean concentrations measured along the plume 

axis in the present work are higher than those reported by all other 

authors. For the root mean square turbulent concentration fluctuations 

at the plume axis as normalized 

s•n c 
.:::.....:s. with S' ""--0~- (4.6.2) 

zM ~ 
c 

have also been plotted in Figure 4.6.1. These data indicate 

S'Qiz{M:0.681 for z/lM <1 (4.6.2a) 

and 
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S•Qiz~0.1BO(z/~ )2
/ 3 for z/~ >5 

in the plume regime. 

4.6.2 Mean and rma concentration profiles 

(4.6.3) 

The mean concentration and root mean square turbulent fluctuation 

profiles normalized by the mean concentration at the plume centerline, 

have been plotted in Figures 4.6.2 and 4.6.3 respectively. A least 

square Gaussian fit to the mean concentrations indicates 

c = c exp[-80(r/z) 2 ] 
c 

(4.6.4) 

and the value of the constant in the exponent (80) is in agreement with 

values reported by Zimin and Frik (1977) and Papanicolaou and List 

( 1983). George et !l· ( 1977), Nakagome and Hirata ( 1976) and Rouse .tl. M: 

.(1952) reported lower value indicating wider concentration profiles. 

The rms concentration fluctuations vary from 0.35 to 0.45 with a mean 

value 0.40. The values also reported by Nakagome and Hirata (1976), 

George et ~.(1977) and Papanicolaou and List (1983) are found to be 

close to 0.40.The peaks observed in the turbulent concentration profiles 

tor jets appear to ooalesae in plumes, result found also by Kotsovinos 

(1975) in plane plumes. 

4.6.3 Plume width 

The normalized 1/e concentration width be by lM has been plotted 

versus z/lM in Figure 4.6.4 tor both, jets and plumes. A least square 

tit to all data points leads to the relation 

(4.6.5) 
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where the exponent 0.99~ is close to the expected value of 1.0. For the 

plumes (zllM >5) the data tit implies 

(4.6.5a) 

tbat a plume growth appears to be slightly slower than for jets. 

However,the exponent is again very close to unity. 

With these data a comparison is possible between the concentration 

and velooityprofile growth rate. Although all the experimenters have 

observed that for jets the concentration profile is wider tban the 

velocity profile, some plume investigators find be less than bw (see for 

example George et al.(1977) and Nakagome and Hirata (1976)). The --
results of the present investigation indicate that b >b for both jets 

c w 
and plumes. This is shown by the equations (4.3.7), (~.4.12), (~.5.3) 

and (4.6.5) and also in the comparison plot in Figure ~.6.5 where 

b /l and b /1 are plotted versus z/1 • 
w M c M M 

an average value 

). = b /b = 1.194 
c w 

These data appear to give 
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Figure 4.6.4. Non-dimensional concentration 1/e-width cf a 
turbulent buoyant jet plotted against z/~. 
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~-7 Turbulent ~ass flux in jets and plumes 

~.7.1 Introduction 

It was mentioned in section 1.2 of the introductory chapter that 

the contribution of the turbulent mass flux term to the total mass 

transport of a tracer by the jet has generally been neglected, on the 

basis that it was small compared to the mean adveotive flux i.e. 

If we define 

H o = QC o 

to be the initial flux of a tracer carried by the jet fluid at the jet 

exit then at a transverse section to the jet axis, downstream of the jet 

origin, continuity implies that 

[b(z) Jb(z) 

H0 = QC 0 = J. we 2 7T r dr= W c 2 7T r dr + 

0 0 

b(z) i ii'OT 2n r dr 

0 

where HM and HT are the contributions to tbe tracer transport by the 

mean jet flow and the turbulence. Kotsovinos (1975) reported HT /H
0 

to 

vary from 6J in a jet oase to 40J in a plume for the two - di~ensional 

case, a value that is much higher than those reported by George et al 
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(1977) and Nakagome and Hirata (1976). Kotsovinos (1975)measured w'c' 

and for the 2-D plume case around the centerline he found 

Ramaprian and Chandrasekhara (1983) •repeatedn Kotsovinos' 2-D buoyant 

jet experiment and predicted that the maximum normalized w' c '/w c c c did 

not exceed the value 0.05. Antonia et al (1975) and Chevray and Tutu 

(1977)measured the constant in the equation above to be 0.022 to 0.028 

at the jet axis and 0.03 to 0.04 at the peaks. George et~ (1977) 

reported the constant to be 0.07 and Nakagome and Hirata (1976) 

determined a value of 0.04 around the plume axis. 

4.7.2 Turbulent mass fluxes in jets and plumes 

The turbulent flux of a tracer (Rhodamine 6G in the present case) 

transported by the jet can be calculated from the radial distribution of 

w'c'aa 

The normalized velocity - concentration correlations w1 c 1 and u'c' 

by the mean velocity and concentration at the jet axis, have been 

plotted versus r/z in Figures 4.7.1, 4.7.2, 4.7.3 and 4.7.4 for both 

jets and plumes. Figures 4.7.1 and 4.7.2 show the radial distributions 

of w'c' and u'o' in a jet, and Figures 4.7.3 and 4.7.4 these 

distributions in a plume. From Figures 4.7.1 and 4.7.2 the centerline 

and peak values of the w - o and u - o correlations for a jet were 
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measured and found 

centerline peak value 

0.020 0.02~ 

~--u c /we oc o.ooo 0.010 

For a plume thew- c and u- c correlations shown in Figures ~.7.2 

and 4.7.3 take peak and centerline values 

centerline 

0.030-0.040 

o.ooo 

peak value 

0.040-0.050 

0.015-0.025 

From the measured values above it is expected that the turbulent 

tracer mass flux is bigger in a plume than in a Jet. For the case of 

the jet the average values of w'c'measured are smaller than those 

reported by Antonia ~ al (1975) and Cbevray and Tutu (1978). List 

(1980) used the results reported by the above authors to calculate the 

total longitudinal tracer mass tux of a tracer by a jet. He assumed 

Gaussian distribution for the w'o' with a maximum 0.03 to 0.04 at the 

jet axis and width twice the 1/e width of the jet, and round that 1~% of 

the heat flux is carried by the turbulence. 

In Figure 4.7.5 the measured HTnormalized by the initial tracer 

flux is plotted versus z/lM • It is shown clearly in this figure that 

for a jet the turbulent mass flux of a tracer is 6 - 14 J of the total 

while for a plume it becomes 15- 20 % of the total (open symbols). 

Therefore the calculations in Chapter 1 based on the assumption that 
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w'c'<<w o need reevaluation. The assumption appears questionable 

especially in the plume case where the observed values H~ /H
0 

can be as 

high as 20%. In consideration of these results it is important to 

discuss the closure 

In the present experiment both HM and HM +HT were found to exceed H
0 

for 

almost all d~ta points except the low estimates as shown in Figure 

· ~.7.6. This means that the mean concentration and probably the 

turbulent fluxes are overestimated. This may be a systematic error in 

that a comparison of the mean conce~tration values measured by other 

authors and the results of the present investigation showed that the 

measured concentrations were higher. An investigation of this can be 

perfor.med using some preliminary results based on temperature 

measurements by Papanicolaou and List (1983) (see Appendix A),which 
used the same jet, as follows. The mean centerline dilution is given 

as 

_]g_ = 0,165 (Jets) 
~.,u 

c:n 2/s 
and ~ = 0,090 ~ (Plumes) 

zvM ~ 

Using these concentration decay rates in the computation of 
- 0.147-
c1 = 0 • 165 c = O.B90c ; jets 

- 0.070-c1= o:o9o c = 0. 777c ; plumes 

and keeping H T as computed previously the sum 

H1 -- H1 H o l-1+ T 
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is round to take values close to QC0 • This is shown in Figure ~.7.7 

1 where the sum or the corrected H M and uncorrected H T normalized by 

QC
0
has been plotted versus z/lM • The discrepancy in the data points is 

due to the discrepancy or the normalized mean velocities and 

concentrations along the jet axis and the widths b and b shown in w c 

Figures ~.~.1 1 ~.6.1 1 ~.~.6 and 4.6.~ respectively and used for the 

calculation or HM. 
Using the mean velocity profiles in Figures 4.3.4 and 4.~.2 for a 

jet and a plume respectively and the velocity decay along the axis in 

Figure ~.4.1, and from Figures 1, 2(a) and 2(b) in Appendix A one bas 

J
CD 1T Q c 

0 

w c ZTird r = ....,.( o-.-l-3_2.,....)(~D~.-1..,.;6~~)....,(-=-a~0+~7~5~) 

and 

J
a> TIQC 

~ = o 'W c 2nrdr = ""'!'c'="o.-=o~g-=o-=-) "!"':co=-.-=z'="6~=-.:)-:(~a'='O+~s::-::o:-:-) 

= 0.93 Q C (JET) 
0 

= 0.839 QC (PLUME). 
0 

Bence it is confirmed that the turbulent tracer flux varies from about 

7% in jets to about 16% in plumes which is observed in Figure 4.7.5. 

This would suggest that the error is involved in the measurements 

of the mean concentration. It may well result from an increase in the 

background light intensity seen by the laser fluorescence system and 

resulting from internal reflections and scattering of laser light from 

the intense beam used to induce the fluorescence. The nature of the 

experimental set--up i.e. existence of particles in both jet and ambient 

fluid that scatter laser light in all directions can cause fluorescence 

or Rhodamine 6G dye in the vicinity of the laser beam that is detected 

by the photodiode biasing the output signal. Absorbtion of Rhodamine 6G 
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dye by the particles crossing the probe volume may also result an 

increment in the fluorescence from tbe dye dissolved in the fluid of the 

probe volume. 

4.8 Dilution in vertical round buoyant jets 

Fischer et al (1979) defined tbe constants of proportionality in 

the dilution rormulae in Table 1.3.1 based on existing data of various 

investigators. For simple plumes they defined the constants of 

proportionality ror velocity and concentration decay from the work of 

Rouse et al (1952) and George et a1(1977). As mentioned in sections 4.3 

and 4.5 a plume becomes self similar for z/lM >5; tbis is shown clearly 

in Figures 4.4.1 and 4.6.1. For z/lM >5 the dimensionless mean 

velocities and concentrations on the plume axis, as defined by the 

equations (4.4.2) and (4.6.1), are proportional to (z/lM f 2
/

3 and 

(z/lM) 2 13 respectively, as anticipated by the dimensional arguments. 

It is believed that Rouse et al.(1952) probably measured in the 

transition region 1<z/1M <5, or may have measured the velocities 

inaccurately. Furthermore since all plume parameters derived by prior 

investigations from data up to 20 initial diameters it is likely that 

the plumes had not become self similar. For these reasons some of the 

basic parameters discussed in sections 1.2 and 1.3 will be redefined 

from the data obtained in the present investigation. 

4.8.1 The plume Richardson number 

The looal Richardson number for a buoyant jet is defined as 

1-1B1/2 
=.:...;..;..~ 

M5/4 
R(z) (4.8.1) 
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where ll, m and f3 are the local estimates or the mass, momentum and 

buoyancy fluxes respectively. Substituting the local mean velocity and 

concentration profiles 

w = w exp[-(r/b 
c w 

)2 ] (4.8.2) 

0 = c exp[-(r/b )2 J c c (4.8.3) 

with 

>..=b /b. 
c w 

(4.8.5) 

and 

(l! p) (z)/(6 p) = c /C (4. B. 5) 
c 0 c 0 

into the equations (1.2.6), (1.2.7) and (1.2.8) equation (4.8.1.) can be 

rewritten as 

R(z) = 4¥2n A (g o 
[ 

~ 2 (lip) 

1 + A2 Pa 
(4.8.6) 

The local jet Richardson number R(z) as computed from equation (4.8.6) 

has been plotted versus z/lM in Figure 4.8.1. The+ symbols correspond 

to >.. = b /b calculated exactly from simultaneous velocity and 
c w 

concentration measurements. The 6 symbols in the jet region 

correspond to values of R(z) calculated from velocity measurements only 

(experiments PAP and VEL series) using A= 1.2 and Cfcc = 0.157z/D from 

equation (4.5.1). 

For z/1 <<1 (jets) 
M 

m(z) = constant 
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~(z) = 0.2842(z/D) 

B(z) = constant 

and therefore 

R(z) rv Z/lM (4.8.7) 

which is also shown in figure 4.8.1. For z/lM >>1 (plumes) substituting 

equations (1.3.8a) and (1.3.9a) into (4.8.1) 

R(z) = constant = RP (4.8.8) 

where R is defined as the plume Richardson number. From Figure 4.8.1 
p 

and for z/lM >5 one can notice that R(z) is invariant with z/lM , and 

the calculated value was found 

(4.8.8a) 

significantly higher than RP = 0.557 proposed by Fischer et al (1979). 

This experimentally observed constant Richardson number for z/~ beyond 

5, is further evidence that plume - like behavior exists for large 

z/lH. 

4.8.2 Jet/plume width parameter 

From equation (1.3.11) the plume width parameter defined as 

C : ffn"b /Z 
p w (4.8.9) 

has been plotted versus z/lM in Figure 4.8.2. Its value is supposed 
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constant, since from equations (4.3.5) and (4.4.12) it is clear that 

b/z ~constant for both jets and plumes.From Figure 4.8 .2 

mean 

c 0.271 
p 

st.dev~ 

0.022 

max 

0.326 0.233 (4.8.9a) 

This value of c =0.271 is higher than the 0.25 recommended by Fischer 
p 

et al (1979). 

The estimates for H and o calculated in this section were used to 
p p 

calculate the dimensionless dilution ~ and dimensionless elevation 

~defined in equations (1.3.13) and (1.3.14) as 

(4.8.10) 

In Figure 4.8.3 ~has been plotted versus ~.and is shown clearly that 

the theoretical predictions 

-
)..1 = ~;, ~;<1 

ll = ~ s/a , l; >1 

are in a remarkably good agreement with the results of the present 

investigation. 
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4.9 Entrainment, ~s and momentum balance in a round vertical turbulent 

buoyant jet 

~.9.1 Entrainment coefficients 

In this section tbe entrainment coefficient implied by the present 

data will be calculated for both jets and plumes. Substituting directly 

the estimates for the mean velocities at the centerline and the widths 

b tor both jets and plumes into the equation w 

one bas: 

(a) For jets W/w = 0.149z/D and b = 0.109z and therefore c w 

2a. = 0.109; a.= 0.0545. 
J J 

(b) For plumes we =3.85B 1 1 3 z- 11~and bw = 0.105z and therefore 

2a =5/3(0.105); a = 0.0875. 
p p 

The value a =0.0545 is in agreement with the suggested 0.0535 by 
p 

Fischer!! al.(1979) for jets but their suggested value 0.0833 for 

plumes based on the data of Bouse et !1-(1952) is lower than that 

obtained here. 

(4.9.1) 

4.9.2 Mass and momentum balance in round vertical buoyant jets 

The local mass flux ~(z) and momentum flux m(z) at a distance z 

from the jet origin were calculated trom the mean velocity profiles. 

The normalized p(z) has been plotted versus z/~ in Figure 4.9.1. For 
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MASS FLUX IN JETS AND PLUMES 
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Figure 4.9.1. Volume flux in a turbulent buoyant 
jet plotted against non-dimensional 
distance z/~ from jet origin. 



162 

z/lM <1 in section ~.3.~ the normalized mean mass flux was found 

*= 0.284 ~ (4.9.2) 

and is shown to be proportional to z (slope 1:1). For z/lM >5 

(4.9.3) 

where bj was estimated to be 0.140 from a least square fit to the data, 

and it is lower than 0.150 suggested by Fischer et al (1979). 

The local mean momentum flux for a jet was calculated in section 

11.3.11 and round 

m(z)/M = 0.96. 

In Figure 11.9.2 m(z)/M has been plotted as a constant (zero slope) 

versus z/1 11 • For z/~>5 dimensional arguments lead to 

- = b' -m ( z )It/~ 
~1 2 .R.M 

(4.9.4) 

(4.9.5) 

The constant of proportionality b2 was calculated from a least 

square fit to the data for z/1 M >5 and found 

' b2=0.290 

lower than the value 0.35 that Fischer et al. (1979) suggest. 
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Figure 4.9.2. Momentum flux in a turbulent buoyant jet plotted 
against non-dimensional distance z/~M from jet 
origin. 
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It would be of importance to estimate the contribution of the 

turbulence to the momentum flux transported by the mean flow at some 

distance z from the jet origin. In Figure 4.9 .. 3 the ratio mT (z)/m(z) 

has been plotted versus z/lM where 

f
b(z) 

"T(z) ~ 

0 

wiT 2•rdr. 

It is shown clearly that the turbulent momentum flux is fairly constant 

with z/lMand approximately equal to about 15%m(z) close to the estimate 

14% obtained in section 4.3 .. 4 for the jet regime. This was expected 

because of the similarities in the mean velocity profiles and intensity 

of the turbulent axial velocity in both jets and plumes. This is a 

further evidence to the fact that the turbulent tracer transport should 

be of ot•der or 1 OJ to 20% discussed in section 4. 7 or the present 

chapter .. 
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5. SUMMARY, DISCUSSION, CONCLUSIONS 

The present experimental work is an investigation of the growth 

laws, velocity and concentration decay laws, and turbulence properties 

of round vertical buoyant jets. All three flow regimes, a jet (momentum 

driven), a plume (buoyancy driven) and the transition from jets to 

plumes were investigated. The results obtained have been applied to a 

reevaluation of the basic assumptions used in analysis and have 

practical applications in problems of technical fluid mechanics. The 

measurement techniques developed can be usefully applied in other 

experiments that involve turbulent shear flows. 

5.1 Instrumentation 

A novel experimental measuring technique was introduced for the 

experimental task of this project. A two reference beam laser - Doppler 

velocimeter that allowed measurements of the longitudinal and radial 

velocity components was combined with a laser - induced fluorescence 

, measuring device for simultaneous measurement of the concentration of a 

Rhodamine 6G dye. The advantages of the technique are: (i) The flow 

field was not disturbed as in probe - based techniques. (ii) Turbulent 

transport of tracer mass (Rhodamine 6G dye), and therefore the buoyancy 

tlux of the motion could be obtained from direct simultaneous 

measurement of the velocity and concentration at the same point of the 

flow field and (iii) The instrument sensitivity allowed measurements at 
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many jet diameters downstream frc··=·J the flow origin, thus in the region 

where the flou became self similar. 

The only restriction that limited the measurements to 110 jet and 

80 plume diameters downstream was the tank aspect ratio (tank width/jet 

diameter), which in the present experiment varied from 75 (plumes) to 

about 155 (jets). Thus tor axial distances greater than 100 jet 

diameters the recirculation in the tank affected both velocimetry and 

concentration measurements. More specifically, nonlinearities in the 

jet growth would occur that affected the self similarity or the mean and 

turbulence transverse profiles or velocity and concentration. The 

initial jet concentrations of Rhodamine 6G dye used varied from 100 to 

250 ppb in order to obtain mean concentrations many diameters downstream 

that would provide sufficiently accurate measurement of the 

concentration. The sensitivity in the fluorescence measurement was 0.1 

ppb. The initial jet concentration or Hhodamine 6G dye did not affect 

the initial buoyancy input to the jet. This is the great advantage or 

the technique versus temperature or salt concentration measurements 

especially in the case of a momentum jet. Use of temperature or 

salinity for concentration measurements in jets applies two limitations 

(i) the concentration (temperature) cannot be measured accurately enough 

beyond 40 or 50 jet diameters due to the rate of decay of salt 

concentration or excess temperature with distance from the flow origin 

and (ii) the initial high buoyancy input to the jet resulted in plume 

formation at a few jet diameters downstream. 
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5.2 Jet growth and decay of the mean velocity and concentration 

5.2.1 Width or a buoyant jet 

Equations (~.4.11) and (~.6.5) showed clearly the non- linear 

behavior of the jet growth for both bw and be if the jet is initially 

driven by both momentum and buoyancy. From equations (~.3.7) and 

(4.4.12), and (4.5.3) and (4.6.5a) it becomes clear that the spreading 

angle of a plume is smaller than that of a jet for both mean velocity 

and concentration. This is an indication that the buoyancy disperses 

transverse to the jet axis slower than the momentum. If at some point 

of the flow field of a plume a volume of fluid of high concentration and 

therefore buoyancy is existing, then the local buoyancy force acts as a 

driving mechanism which accelerates this local fluid volume. This 

mechanism explains the higher concentration fluctuations apparent in the 

plume regime. 

For both jets and plumes the mean concentration profile appeared to 

be wider than the mean velocity profile, contrary to what George et al 

(1977) and Nakagome and Hirata (1976) have reported. Their results were 

obtained at only 12 and 16 diameters downstream where the flow was 

clearly not fully developed. 

The ratio A=bc lbw has not been found to be constant in all jet, 

plume and transition regimes. From equations (4.3.7) and (4.5.3) 

A=1.275 for a jet and from equations (4.4.12) and (4.6.5a) A=1.067 for 

a plume. An average value of A=1.194 has been derived from equations 

(4.4.11) and (4.6.5). In the following paragraph a plume definition 

will be introduced and its self similarity will be discussed. 
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5.2.2 Velocity and concentration decay in a buoyant jet 

Figures 4.4.1 and 4.6.1 show tbe decay of the normalized mean and 

turbulent intensities decay for the velocity and concentration 

respectively along the axis of a buoyant jet versus the normalized 

distance from the jet origin z/lM • Equations (1.3.2b), (1.3.6b), 

(1.3.7b) and (1.3.10b) in Table 1.3.1 and these figures show clearly the 

jet - like or the plume - like behavior of a jet. More specifically, 

for a jet IM/wcz=oonstant and SQ/z ~constant, S=C
0

/Cc • Figures 

4.4.1 and 4.6.1 show this for z/4M <1. The same figures tor a plume 

,--- 2!3 r.. 213 show that ~Miwcz ~(z/lM )- and SQ/z ~M ~(z/~ ) tor z/~ >S. 

Therefore, regardless of the initial jet diameter, and for a known 

initial jet buoyancy length scale ~ , one has that 

if z/lM <1, jet - like flow 

if z/lM >s, plume - like flow and 

if 1<z/1M <S, transition from jets to plumes. 

Jets with a slight initial buoyancy after 5 characteristic lengths 

lM therefore •forgetn their origin and follow the plume laws as derived 

from dimensional arguments in Section 1.3. 

5.2.3 Turbulence properties 

The normalized rms values of w, u and c plotted versus z/lM follow 

the same decay laws as their corresponding mean values.This is shown 

clearly in Figures 4.4.1 and 4.6.1. The only difference between the 

mean and rms decay is the transition from jets to plumes is gradual for 

the mean values and abrupt for the rms values. The slope of the 

asymptotic power laws for z/lM <1 and z/lM >5 changes abruptly from 0 to 

-2/3 for the rms velocities around z/1M =3, and from 0 to 2/3 for the 

rms concentrations at about z/lM =8. This explains the fact that while 
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the normalized rms velocities do not vary from jets to plumes, the 

normalized rms concentration on the flow axis varies from 0.22 (jets) to 

o.~o (plumes). By contrast the turbulence intensity or the velocity 

flow field is the same for jets and plumes. The normalized rms velocity 

profiles show a maximum longitudinal value of 0.23 and 0.15 for the 

radial velocity component at the jet axis. The rms normalized 

concentration profile in jets is ~uite different from plumes. In jets 

it is much wider than the profile or the rms aXial velocity as shown in 

Figure 5.2.1. The centerline value is 0.22 and the maximum value 0.26 

occurs at about r/z=0.10. In plumes the rms concentration profile is 

flat around the centerline with a maximum value or approximately 0.40, 

almost twice the jet centerline value of the rms concentration. 

Furthermore it is not much wider than the rms axial velocity profile as 

shown in Figure 5.2.2. From the above observations it is apparent that 

a passive contaminant is dispersed laterally much faster in momentum 

driven jets than in plumes. Also lateral spreading of the momentum flux 

is less than the spreading of the mean and rms concentration or a 

passive contaminant in momentum driven jets. In plumes the lateral 

spreading of the mean and turbulence intensities is very much the same 

tor both velocities and concentrations but the relative intensity of the 

turbulent fluctuations of a passive contaminant is greater. 

The self similarity in a jet can be observed in Figure 4.3.1 and 

vas discussed in section 4.3.1 of chapter~. The normalized turbulent 

shear stress profiles are not self similar in jets, as is shown in 

Figures 4.3.10 and ~.3.11. For 25(z/D<SO the maximum value or the 

normalized shear stress varied from 0.003 to about 0.01. For z/D>SO it 

became constant with an average value or 0.013. For a plume for z/lM >5 



JET• TURBULENCE INTENSITIES OF w • c 
o.s~------r-,------T-1 ------~,------~,-------,,------~,~----~,r-----~ 

• a EXP15 z/0•47 .87 

•v EXPt9 z/0•64.80 

0.4 .. eo EXP20 z/0•84.93 -
4-<~ EXP29 z/0•98 .t J 

13 tot~- EXPJO z/0•77 .47 
' ~Q.Jf-

-

o.u- -.... v 
D 0 p. 

D 

• -<~p. 
0 

a ~ 
Q I I I I I I I 
-Lo-.~s~---o~.-4------~o~.~J------~o~.2~-----o~.-,------o~----~o~.~1-----o~.~2~--~o.J 

r/z 

Figure 5.2.1. Profiles of the intensity of turbulent fluctuations 
across a turbulent jet. 
(a) Closed symbols, concentration. 
(b) Open symbols, axial velocity. 
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the normalized turbulence shear stress profile was self similar. This 

also proves that a plume can be assumed to become self similar after 

about 5 characteristic lengths l M • 

5.2.4 Turbulent flux or a tracer (or buoyancy) 

It is shown clearly from Tables 1.4.1 and 1.4.2 that the jet 

parameters defined experimentally are round to be different by various 

investigators. This is true for the jet growth laws and mean and 

turbulence decay properties. Plume investigators have not reported 

consistent results concerning the plume growth and the decay or the mean 

and turbulence velocities ard concentrations (see ror example Rouse et 

al (1952), Nakagome and Hirata (1976) and George et al (1977)). 

Therefore an attempt to derive the contribution of the turbulence to the 

transport or a tracer by the jet 

b(z) 

H T = QC 
0 

- J~ic2Trrdr 
0 

would probably lead to inaccurate estimates of the tracer transported by 

the jet turbulence for the case where w and c are chosen from different 

investigations with different experimental set - ups and initial jet 

conditions. In Tables 1.4.1 and 1.4.2 the reported mean values of 

velocity and concentration (temperature) along the jet axis are quite 

different for different experimental investigations. In the present 

investigation the fraction of the tracer transported by the jet 

turbulence was calculated as 

b(z) 

HT = J w'c'2Trrdr 
0 
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from the profile of w•c• which was measured directly. It was found to 

vary from 6% to 14% or the total (initial tracer transport) for a jet 

and from 15% to 20% for a plume. Kotsovinos (1975) reported much higher 

values for the 2-D plume (40%) and it is believed that tbe turbulent 

beat tranfer was overestimated. The longitudinal rms velocities 

measured by Kotsovinos (1975) were found to be much higher in the plume 

regime than those in a jet, something that was not observed in the 

present experiment. It is believed that the changes in the refractive 

index due to temperature fluctuations increased the noise level of the 

velocity signal resulting in higher turbulence velocities and therefore 

higher velocity - temperature correlations. 

The turbulence transport term w•ci therefore cannot be neglected in 

the integration of the time averaged equations of motion and energy, 

especially in plumes where relatively high values were measured. In 

Section 4.3.4 it was also shown that neglecting the contribution of the 

axial turbulence intensities in the momentum flux equation 

underestimated by about 15% the momentum flux calculated from the mean 

velocity profile. 

5.2.5 The mass and momentum balance in a buoyant jet 

In Section 4.9.2 the constants to the equations (1.3.8a) and 

(1.3.9a) were estimated to be b
2
•:0.290 and b

3
':0.140 respectively for 

the momentum and the mass transported by a plume. Substituting the 

equations (1.3.8a) and (1.3.9a) into the expressions for the plume 

Richardson number and the plume growth coefficient 
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_sf~i 1/2 
respectively one dete~ines the relations RP =b3b2 and cp =b3/b2 

Substituting b2 and b
3 

into these relations one finds that RP =0.658 

c =0.260. The value c =0.260 is in agreement with the measured 
p p 

average growth parameter c =0.271 for jets, plumes and transition. 
p 

plume Richardson number is lower than the value 0.716 estimated in 

Section 4.8.1. It was mentioned before that the mean concentrations 

and 

The 

were overestimated for both, jets and plumes. Again using the results 

of the preliminary work by Papanicolaou and List (1983) from temperature 

measurements in plumes i.e. SQ/zlif:0.09 instead of 0.07 one has that 

Rp= (0.716) (g:~~)~= 0.631 

a value that agrees with that above. Again dimensional arguments and 

Figure 4.8.1 show that the plume Richarson number takes a constant value 

for z/lM >5. Thus it is obvious that a buoyant jet becomes plume for 

2/lM >5 or when the local Richardson number takes a limiting value of 

about 0.630. 

At this point some remarks have to be made about the definition or 

a plume. If the buoyancy length scale is chosen to be 1 =D, where D is 
M 

the initial plume diruneter, then the initial Richardson number R
0 

of the 

plume becomes R =1. Bence the local plume Richardson number has to 
0 

decay continuously in the initial plume regime until the limiting value 

0.63 is reached. High initial Richardson numbers (R0>0.630) could cause 

instability of the flow at the jet exit resulting in ambient fluid 

entrainment through the jet orifice that would adjust the initial 

Richardson number to its limiting value 0.630 by reducing the effective 

jet diameter (increasing the jet exit velocity). This flow pattern was 
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observed in the laboratory when a disturbance was introduced to a jet 

with initial Richardson number close to unity. 

Finally the jet and plume entrainment coefficients were found to be 

0.0545 and 0.0875 respectively. Their ratio a /a. = 1.635 = 5/3 as 
p J 

mentioned in Section 1.2 of the introduction. All the results are 

summarized in Table 5.2.1. 

5.3 Conclusions 

The main conclusion from this investigation is that the nature of 

flows in jets and plumes is quite different because of the different 

nature of the forces which act upon the fluid. A jet is maintained by 

continuous input of momentum flux and a plume by continuous input of 

buoyancy flux at its origin. This difference explains why the decay of 

the mean and turbulence characteristics of the jet flow field is quite 

different in these two flow patterns. However the shape, growth and 

transverse profiles of the mean and turbulence parameters are quite 

similar for both jets and p~umes. 

The dimensional arguments made in section 1.3 of the present work 

were verified experimentally. It was shown that a jet becomes self-

similar after certain initial diameters downstream as found in the past 

by Wygnanski and Fiedler (1969) and Birch et al. (1978). Velocity and 

·· concentration measurements were performed in the plume flow field up to 

about 80 characteristic plume diameters (z/~). A plume became self 

similar after it had reached a limiting constant value of the local 

Richardson number 0.630, or for z/~>5. A rigorous definition of the 

plume regime was given. This was not based upon the initial plume 

diameter which is eventually lost by the plume, but upon a length scale 

defined by a ratio of the initial buoyancy and momentum input. It was 
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JET AND PLUME P~ffiTERS 

Parameter JETS PLUMES 

z <1 >5 
~ 

1M 0.132 0.260(z/~)- 2 / 3 

w z 
c 

/:ff 1,: 

0.230 0.230 
we 

~ c 
0.150 - 0.150 

We 

w•u• 
0.015 0.016 max--

-2 
We 

bw(z) 0.109 z 0.105 z 

measured corrected measured corrected 
s g 0.147 0.165 2./3 2/3 

zhi o.o7({) 0.09(1:? 
'-f.i 

.0 c 
'Cc 

0.220 0.400 

b (z) 0.139 z 0.112 z 
c 

b 
;>-,. 

c 1.275 1.067 .. -
b w 

Table 5.2.1. Summary of the measured jet and plume parameters in the 
present experimental investigation. 
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JET AND PLUME PARAMETERS (continued) 

Parameter JETS PLUMES 

w'c' centerline peak centerline peak 
-- 0.020 0.024 0.030-0.040 0.040-0.050 \<1 c c c 

u'c' centerline peak centerline peak 

we o.oo c c 0.010 o.oo 0.015-0.025 

Jw'c'2nrdr 6% - 14% 15% - 20% 

Q Co use 7% use 16% 

l!ill z z Bl/a ;a 
Q 0.284 D or 0.252 1 0.140Qz

5 

Q 

4/3 
m(z) 0.960 0.290 (-z) 

H 1M 

n!.r (z) 
0.150 0.150 ro(z) 

c. ' c c. = 0.252 Cp "' 0.260 
J p J 

c 0.271 

measured corrected 
R(z) z 0.286 -1- 0.716 0.631 M 

a a. = 0.0545 a = 0.0875 e J p 

Table 5.2.1 (continued). 
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also shown that for both jets and plumes the mean concentration profile 

was consistently wider than the mean velocity profile, and that the 

growth rates were slightly lower in the plume case. 

Previous mathematical models describing turbulent plume motion 

have assumed a constant entrainment coefficient and have neglected the 

contribution of turbulence to the longitudinal transport of momentum 

and tracer in the averaged integrated equations of motion. The results 

of this investigation have shown that the entrainment coefficient for 

a plume is very close to 5/3 times as great as that for a jet, indicating 

that some allowance for jet-to-plume transition should be made in the 

description of buoyant jets. The measurements of turbulent fluxes of 

momentum and tracer indicate that an allowance in plumes of 10% for 

turbulent transport of momentum, and 20% for turbulent transport of 

tracer are reasonable. Future mathematical models of the evolution of 

mean transport in buoyant jets should therefore consider the longitudinal 

transport terms w'c' and w' 2 in the equations of motion. 

A table of recommended formulae for the asymptotic behavior of 

jets and plumes has been developed. These formulae, which describe the 

evolution of the dilution, velocity, mean concentration and relative 

root-mean square turbulence quantities, should be useful in practical 

applications of the results to engineering problems related to the 

design of wastewater and other disposal systems that depend upon jet and 

plume induced dilutions. 

The experimental work performed has indicated that it is possible 

to measure turbulent fluxes of momentum and tracers using a technique 

combining laser-Doppler velocimetry with laser-induced fluorescence 

based concentration measurements. However, it is apparent that the 
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laser-induced fluorescence technique needs further refinement in that 

the system employed here clearly overestimated the mean concentration 

of fluorescing tracer. The cause of this error, which was corrected 

for in the presentation of the results, appears to lie in excess light 

collected by the receiving optics from scattering centers within the 

flow field other than at the focal point of the laser-Doppler beams. 

It seems likely also that this overestimation may have been contributed 

to by the adsorption of fluorescing dye onto the small organic scattering 

particles suspended in the flow and necessary for operation of the 

laser-Doppler system. Future investigators using these techniques 

should carefully evaluate the above sources of possible error. 
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STATISTICAL AND SPECTRAL PROPERTIES OF A 

HEATED ROUND TURBULENT BOUYANT JET 

P. Papanicolaou and E.J. List* 

Presented at the ASCE Engineering ~lechanics Specialty Conference, 
Purdue University, West Lafayette, Indiana, 23-25 May 1983. 

A round vertical heated water jet discharging into a body of water 

of uniform density is the subject of the present experimental work. Interest 

is centered on the description of a tracer (temperature) which is trans-

ported by the jet fluid, and in particular the jet growth laws, temperature 

decay laws and turbulent spectral properties. Temperatures were measured 

using fast response thermistor probes (characteristic time was found to 

be0.014 seconds) up to 40 jet diameters downstream from the jet orifice. 

The Reynolds number at the exit of the jet varied from 3700 to 17000. 

The flow patterns examined were: (a) pure momentum jet, dirven by contin-

uous addition of momentum at the source, (b) pure plume, where the flow 

was mainly driven by the buoyancy due to the density difference between 

the jet and ambient fluid, and (c) buoyant jet were the flow was in transi­

tion from jet. to plume. These flows are characterized by the ratio of the 

axial distance from the jet orifice z to a length scale ~=M3 / 4 /B1 / 2 where M is 

the specific momentum flux of the iet and B the specific buoyancy flux. 

The relationships of the mean, rms and maximum temperature to the 

dimensionless distance z/~ are shown in Figure 1. If S=~T /~T is the 
0 c 

mean dilution along the jet centerline then dimensional arguments lead 

*W. M. Keck Laboratory of Hydraulics and Water Resources, California 
Institute of Technology, Pasadena, CA 91125. 
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to SQ/(zM1 / 2 ) =constant with z/~1«1 (momentum dominant) or to 

SQ/(z 513B1 f 3 ) =constant with z/~>>1 (buoyancy dominant). For z/~<<1 

Figure 1 shows that for jet-like flow SQ/(zM1 / 2 )=0.165, while for z/~>>5 

(plume-like behavior) SQ/(z 5
/

3 B1
/

3 )=0.090. Fischer et al. [7] give the 

values 0.175 and 0.106, respectively. In the region 1<z/~<5 there is a 

transition from momentum jets to plumes. Therefore knowledge of the initial 

B and M at the jet orifice enables one to predict how the flow pattern 

changes with z. From Figure 1 it can also be seen that the minimum and 

11rms11 dilutions follow the same trend as the mean. For the pure jet case 

the mean temperature profile AT/AT (Figure 2(a)) is found to be c 

AT/AT =exp[-75(r/z) 2
]. The turbulent intensities (Figure 2(b)) /(AT 1 )

2 /6T 
c c 

have a value of 0.15 to 0.18 on the centerline and a peak value of 0.20 

to 0.25 at r/z=0.07. These results are in agreement with those found by 

Antonia et al. [2] and [3], Becker et al. [4], Birch et al. [5], Chevray 

and Tutu [6] and Shaughnessy and Morton [12]. For the pure plume case 

(Figures 3(a) and 3(b)) AT/AT =exp[-80(r/z) 2
] while the turbulent intensities c 

have a maximum value of 0.40 at the centerline. These results agree with 

those given by Zimin and Frik [13] and George, Alpert and Tamanini [8]. 

The 1/e (0.37) widths are found to be 0.127 and 0.111 for jets and plumes 

respectively, results which agree with the averages given by Fischer et al. 

£.71. 
The probability density function (pdf) of temperature fluctuations 

for both jets and plumes were calculated and plotted versus (T-T )/AT a c 

for all radial positions r/z, as is shown in Figures 4(a) and 4(b). 

Exponential curves can be fitted in both cases for r/z=O.O to 0.1. 

However, in the region r/z>O.l the distributions become asymmetrical 

indicating a highly intermittent region. At the jet boundaries the pdf 
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approaches the form of a delta function. Typical power spectra estimates 

are shown in Figures S(a) and S(b), for r/z=O.OO and 0.05 respectively, at 

an axial distance z/D=53.33 and for z/~=1.52 (buoyant jet region). In 

both figures it is. made clear that for frequencies 1 to 10Hz the turbulence 

intensity decays following the -5/3 logarithmic law with the frequency, while 

for higher frequencies a -3 slope is apparent. Furthermore, the spectral 

power decays by two orders of magnitude in the region from 1 to 10 Hz. 

The similarity of the two spectra is a further indication that the intermit-

tency has to be the same for O.O<r/z<O.OS. 
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Figure 4. Probability density functions: (a) across a jet, (b) across a plume. 
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APPENDIX B 

DATA 

The data tables and figures in this Appendix correspond to the 

experiments EXP series, VEL series and PAP series shown in tables 4.1.1, 

4.1.2 and 4.1.3 of Chapter 4. All the data used for the non-dimensional 

profiles of the normalized time-averaged mean values, turbulence 

intensities and cross-correlations for velocities w and u and concentra-

tion c versus r/z, have also been plotted in dimensional form. They are 

shown in the same page with the data table of the corresponding experiment. 

The radial distance r has been calculated from the reference distance X 

as r = X -X, where X corresponds to the jet centerline and has to be 

defined somehow. The description of the headings of the tabulated data is 

X = relative reference location of the point of measurement 

(em) 

W = w (em/sec) 

WP =I w' 2 (em/sec) 

UP =/u 42 (em/sec) 

WPUP = w'u' (cm2/sec2 ) 

MAX W =max w (em/sec) 

MIN W =min w (em/sec) 

c c c (ppb) 

CP .,.R? (ppb) 

WPCP ... WTCT (ppb em/sec) 

UPCP = u'c' (ppb em/sec) 
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The initial jet parameters for all the experiment~, such as, W, z, 

D, (6p/p ) g and C
0 

are given in tables 4.1.1 and 4.1.3 of €hapter 4. 
a o 



206 

.. .. 

EXP01 

X w WP UP WPOP c CP WPCP UPCP 

70.000 0.335 0.278 0.355 0.003 0.558 0.659 0.03~ 0.059 
72.000 1.190 0.705 0.439 -0.063 1.711 1.353 0.461 0.186 
74.000 2.520 0.960 0.566 -0.152 3.364 2.007 1.049 0.388 
76.000 3.539 1.079 0.703 -0.221 4.770 2.239 1.190 0.1172 
78.000 4.444 1.170 0.795 -0.023 5.814 2.379 1.509 0.107 
80.000 5.171 1.091 0.7111 0.086 6.370 2.264 ,.,59 -0.132 
82.000 4.225 1.076 0.720 0.190 5.165 2.125 0.991 -0.443 
84.000 2.487 1.153 0.639 0.261 2.838 1.817 0.990 -0.436 
86.000 1.048 0.736 0.533 0.166 1.212 1.148 0.379 -0.259 
88.000 0.1161 0.1197 0.385 0.013 0.605 0.748 0.196 -0.090 

8 
PLUME• ~ElOClTlES E~POI.OAT z /I"~ 14.80 

---i=5.180e~p[-.OJ!Sr~] 
0 ;;; 
It ..fr'"T 
A~ 

6 . . ... .... 
" ., ... ..... 
E 

" ... " -
f: 
~ 2 

: 

~ If 
)I )I It It 

It 
A A A b 6 A 

h; + + + + 
t + + 

-10 -5 
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EXP01 

X w VP tJP VPOP c CP WPCP UPCP 

70 .. 000 0.335 0.278 0.355 0.003 0.558 0.659 0.034 0.059 

72.000 1.190 0.705 o.li39 -0.063 1.711 1.353 0.1161 0.188 

74.000 2.520 0.960 0.566 .. o.1s2 3.364 2.007 1.049 0.388 

76.000 3.539 1.079 0.703 .. Q.221 11.770 2.239 1.190 O.Ji72 

78.000 11.444 1.170 0.795 .. o.023 5.814 2.379 1.509 0.107 

80.000 5.171 1.091 0.741 0.086 6.370 2.264 1.159 -0.132 

82.000 J&.225 1.076 0.720 0.190 5.165 2.125 0.991 -0.443 

84.000 2.487 1.153 0.639 0.261 2.838 1.817 0.990 .. o.436 

86.000 1.048 0 .. 736 0.533 0.166 1 .. 212 1.1118 0.379 ... o.259 

88.000 0.461 0.497 0.385 0.013 0.605 0.748 0.196 -0.090 

f~ .. 
r: 
4 If 

If If • 
A 

k.l 6 6 6 
6 A 

6 + + 
0 

.. + 
+ + .. .. 
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EXPOS 

l w WP OP WPUP c CP WPCP UPCP 

?2.000 0.!&29 0.351 0.289 -0.007 1.429 1.180 o. 171 0.054 

'14.000 0.907 0.676 0.421 -0.082 2.224 1.723 0.394 0.228 

76.000 2.300 1.145 0.550 -0.188 4.268 2.638 1.688 0.530 

78.000 4.692 0.989 0.635 -o.oss 7.498 2.697 . 1.115 0.232 

80.000 4.497 1.069 0.651 0.098 6.892 2.636 1.350 -0.270 

82.000 3.066 1.043 0.593 0.172 4.565 2.392 1.176 -0.543 

84.000 1.226 0.865 0.549 0.142 1.942 2.046 1.0113 -0.478 

86.000 0.187 0.269 0.279 o.oo6 0.494 0.942 0.110 -0.069 

88.000 0.059 0.149 0.1ll9 -0.002 -0.049 0.121 -0.004 -0.006 

-' ~ 
Ill .... 
e 
c. .... 

k 
~ 2 

~ II 

" II • 
6 6 6 6 

l• 
+ + + + 

+ + 
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EIP05 

X w WP UP WPUP c CP WPCP OPCP 

72.000 o.ll2S 0.351 0.289 -0.007 1.1129 1.180 0.171 0.05!! 
74.000 . 0.907 0.676 0.1121 -0.082 2.22!! 1.723 0.394 0.228 
76.000 2.300 1.1115 0.550 -0.188 11.268 2.638 1.688 0.530 
?8.000 !&.692 0.989 0.635 -0.058 7.1&98 2.697 1.115 0.232 
8o.ooo l&.ll97 1.069 0.651 0.098 6.892 2.636 1.350 -0.270 
82.000 3.066 1.043 0.593 0.172 4.565 2.392 1.176 -0.543 
84.000 1.226 0.865 0.549 0.142 1.942 2.046 1.043 -O.l!78 
86.000 0.187 0.269 0.279 0.006 . O.ll94 0.942 0.110 -0.069 
88.000 0.059 0.1119 0.149 .. o.oo2 -0.049 o. 121 .. o.ooll -0.006 

II II II 

A A 6 

+ 
t + 

+ .. .. 
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EXPOS 

X w WP UP WPOP c CP VPCP UPCP 

10.000 0.560 0.519 0.333 -0.054 0.658 0.564 0.155 0.048 

12.500 1.529 0.7ll3 0.423 -0.071 1.373 0.993 0.332 0.119 
. 75.000 3.073 0.926 0.614 -0.184 2.592 1.303 0.6!14 0.322 

77.500 .tJ.419 0.967 0.643 -o.oeo 3.774 1.4117 0.727 0.139 
80.000 4.117 1.025 0.616 0.155 3.392 1.346 0.649 -0.180 
82.500 2.8111 1.066 0.587 0.258 2.521 1.271 0.779 -0.306 
85.000 2.170 0.892 0.635 0.250 1.657 1.066 0.528 -0.283 
87.500 0.810 0.690 0.~34 0.123 0.729 0.713 0.265 -0.133 
go.ooo 0.077 0.180 0.191 -0.002 0.295 0.243 o.ooo -0.004 

6 
z/ln"'3&.26 

-w"'4. SOOo x p[-. DJOOr.tJ 
D W 
.. .fF"! 
A~ 
+ • u ... 

c.. 

" 
4 ., 

..... 
e 
u -
r: 2 

~ It lC w lC 

~ 
A A A A 

A 

0 + + + , .. + + + 
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EXPOS 

X w WP UP VPUP c CP VPCP UPCP 

?0.000 0.560 0.519 0.333 -o.o5~ 0.658 0.56~ 0.155 0.048 
?2.500 1.529 0.743 0.423 -0.071 1.373 0.993 0.332 0.119 
75.000 3.073 0.926 0.61~ -0.184 2.592 1.303 0.644 0.322 
77.500 .11.419 0.967 0.643 -0.080 3.774 1.11~7 0.727 0.139 
80.000 4.117 1.025 0.616 0.155 3-392 1.3~6 0.649 -0.180 
82.500 2.841 1.066 0.587 0.258 2.521 1.271 0.779 -0.306 
85.000 2.170 0.892 0.635 0.250 1.657 1.066 0.528 -0.283 
87.500 0.810 0.690 0.434 0.123 0.729 0.713 0.265 -0.133 
90.000 0.077 0.180 0.191 .-0.002 0.295 0.243 o.ooo -o.oo!i 

4 
z/ln'=38. 26 

- c"3· 49Je x p[-. 0208r~J 1:1 
1:1 f 
'W ...(§""! 
4 jjT? 

J t ~ 

k 2 . 
~~ ~ 

~ 
" 

lC 
~ 

' ,.; A llo 
A 4 

b 
6 i' A 

J. • + -t 

t • 
+ + 

·1 I 

-20 -IS -10 -5 IS 20 
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IIP09 

X v VP UP VPUP c CP WPCP UPCP 

70.000 1.203 0.818 o.-6o -0.110 1.177 0.997 0.328 0.153 
72.500 2.299 1.108 0.635 -0.254 2.257 1.497 0.906 0.388 
75.000 3.749 1.234 0.713 -0.178 3.582 1.932 1.241 0.388 
77.500 5.885 1.210 0.868 -0.149 5.888 2.114 1.345 0.379 
80.000 5.322 1.1175 0.8211 0.319 5 • .1190 2.222 1.890 -0.470 
82.500 4.367 1.11511 0.832 0.4115 4.484 2.122 1.622 -0.651 
85.000 2.093 1.099 0.602 0.2111 2.116 1.528 0.949 -0.407 
87.500 1.006 0.833 0.519 0.136 1.149 1o085 0.441 -0.211 
go.ooo 0.034 0.275 0.286 -o.ooe 0.420 0.400 0.003 -0.007 

Br-----r-----r-~iE~L~OrCI~T~IE~S~EXrP~0~9·~D~AT~z~/D~~~2~9·~0;D ____ ~----~ 
-w"s. aaoc JC p[- .Q296r2 J 

... 
CJ ., 
1'1 ..... 
E 
CJ 

6 

- <t 

k 
~ 2 

~ 

0 ; 

"~ 
"' Jij"'7 
+ W""'U' 

,. 01---------
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BIP09 

X w VP 'DP VPOP c CP VPCP UPCP 

?0.000 1.203 0.818 0.460 -0.110 1.177 0.997 0.328 0.153 
72.500 2.299 1.108 0.635 -0.254 2.257 1.1197 0.906 0.388 
75.000 3.749 1.234 0.713 -0.178 3.582 1.932 1.241 0.388 
77.500 5.885 1.210 0.868 -0.149 s.8aa 2.114 1.345 0.379 
80.000 5.322 1.475 0.82.11 0.319 5.1190 2.222 1.890 -0.470 
92.500 4.367 1.454 0.832 0.445 Ja.Ja84 2.122 1.622 -0.651 
85.000 2.093 1.099 0.602 0.241 2.116 1.528 0.949 -0.407 
87.500 1.006 0.833 0.519 0.136 1.149 1.085 0.441 -0.211 
go.ooo 0.034 0.275 0.286 -o.ooe 0.420 0.400 0.003 -0.007 

01-------
t 

+ .. 



X 

71.000 
73.000 
75.000 
77.000 
79.000 
81.000 
83.000 
85.000 
87.000 

-u 4 
"' , ..... 
E 
c.• .... 

f: 2 

~ 

w WP 

0.583 0.156 
0.1196 0.!186 
1.6114 0.827 
2.772 1.025 
.1&.715 1.036 
11.251 1.099 
2.974 1.151 
1.525 0.868 
0 • .1!12 0.588 

~ or-----------~ I. 

-IS 

214 

EIP10 

UP WPUP c CP WPCP UPCP 

0.193 0.003 0.0113 0.322 -0.0111 0.003 
0.3511 -0.019 0.1113 0.781 0.217 0.055 
0.5011 -0.096 1.616 1.341 0.598 0.236 
0.610 -0.132 2.710 1.739 0.987 0.240 
0.731 -0.052 .1&.709 1.918 1.053 0.135 
0.7311 0.095 11.136 1.775 1.069 -0.212 
0.658 0.296 2.723 1.749 1.100 -0.394 
0.503 0.178 1.060 1.208 0.619 -0.284 
0.398 0.090 -0.064 0.848 0.258 -0.148 

Ill Ill IC IC 

• + + 
+ + + 

IS 20 



X 

71.000 
73.000 
75.000 
77.000 
79.000 
81.000 
83.000 
85.000 
87.000 
89.000 

-~ .. 
S) .... 
F .. ... 

f: 2 

~ 

w WP 

0.353 0.1&71 
1.190 0.900 
2.1111 1.115 
3.5111 1.162 
.IJ.589 1.071 
.IJ.373 1.077 
3.245 1.046 
1.987 0.930. 
0.859 0.683 
0.212 0.327 

~ 01-----­.,. 
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BIP11 

UP WPUP c CP WPCP tJPCP 

0.349 -0.020 0.572 0.719 0.200 0.053 
O • .IJ3ll -0.133 1.221 1.2911 0.670 0.2111 
0.532 -0.214 1.994 1.1&89 0.6811 0.304 
0.617 -0.128 3.663 1.918 1.088 0.284 
0.654 -o.oso .IJ.672 2.019 1.105 0.171 
0.669 0.1.1JB 4.148 1.913 0.994 -0.255 
0.666 0.253 2.901 1.759 1.009 -0.4~5 

o.51l2 0.220 1.616 1.422 0.627 -0.30'=: 
0.422 0.095 0.584 0.937 0.347 -0.207 
0.264 0.019 0.111 0.495 0.046 -0.037 

t + + 
+ + + + 
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EXP11 

X w VP UP WPUP c CP VPCP UPCP 

71.000 0.353 0 .. ~71 0.3!49 -0.020 0.572 0.719 0.200 0.053 
73.000 1.190 0 .. 900 0.43!! -0.133 1.221 1.29!! 0.670 0.214 
?5.000 2.114 1.115 0.532 -0.214 1.994 1.489 0.684 0.304 
77.000 3.541 1.162 0.617 -0 .. 128 3 .. 663 1.918 1.088 0.284 
'19.000 4.589 1.071 0.65!! -0.050 JJ.6?2 2.019 1.105 0.171 
81.000 11.373 1.077 0.669 0.148 Ja. 148 1.913 0.994 -0.255 
83.000 3.245 1.046 0.666 0.253 2.901 1.759 1.009 -0.445 
85.000 1.987 0.930 0.542 0.220 1.616 1.422 0.627 -0.302 
87.000 0.859 0.683 0.422 0.095 0.584 0.937 0.347 -0.207 
89.000 0.212 0.327 0.264 0.019 0.111 0.1195 0.046 -0.037 

lC 
II 

It ,. 
4 4 4 4 

+ + + 
+ + + • 

10 
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BIP12 

X w WP UP VPDP c CP WPCP UPCP 

64.000 0.364 0.1116 o.Jao6 -0.018 0.132 0.349 0.079 0.035 
68.000 0.802 0.895 o.Ja77 -0.106 0.302 0.381 0.215 0.053 
71.000 2.657 1.351 0.645 -0.460 0.831 0.656 0.519 0.201 
7-4.000 3.616 1.Ja09 0.713 -0.363 1.292 0.731 0.661 0.196 
77.000 5.016 1.320 0.779 -0.136 1.817 0.734 0.601 0.113 
80.000 4.978 1.295 0.829 0.115 1.8!17 0.736 0.57-4 -0.054 
83.500 4.009 1.175 0.824 0.392 1.633 0.621 0.370 -0.205 
87.000 3.092 1.231 0.745 0.327 1.311 0.596 0.366 -0.167 
90.500 1.219 0.783 o.Ja73 0.160 0.823 0.357 0.172 -0.095 
94.000 0.200 0.422 0.313 0.025 0.635 0.166 0.027 -o.011 

JET• iELDCITIES EXPJ2.DAT z/ln~S4.JO 
Br-----r-----.-~~~~~~~~~~~~----~--~ 

·-'W .. s. S02e l(pc-.ot32r 2 l 
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BIP12 

X 

64.000 
68.000 
71.000 
74.000 
11.000 
80.000 
83.500 
87.000 
90.500 
94.000 

v VP UP 

0.364 o.Jn6 o.llo6 
0.802 0.895 0.477 
2.657 1.351 0.645 
3.616 1.409 0.713 
5.016 1.320 0.779 
ll.978 1.295 0.829 
4.009 1.175 0.824 
3.092 1.23' 0.745 
1.219 O.T83 0.473 
0.200 0.422 0.313 

-c .. ,. 878c x pr-. 008Sr 2 ] 

D C 
"' fC'Tr A~ 

3 ... ~ 

VPUP 

-0.018 
-0.106 
-0.460 
-0.363 
-0.136 

0.115 
0.392 
0.327 
0.160 
0.025 

c CP WPCP UPCP 

0.132 0.349 0.079 0.035 
0.302 0.381 0.215 0.053 
0.831 0.656 0.519 0.201 
1.292 0.731 0.661 0.196 
1.817 0.734 0.601 0.113 
1.847 0.736 0.574 -0.054 
1.633 0.621 0.370 -0.205 
1.311 0.596 0.366 -0.167 
0.823 0.357 0.172 -0.095 
0.635 0.166 0.027 -0.011 
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BIP15 

X w VP UP 

72.000 0.060 0.178 0.240 
13-500 0.621 0.656 0.456 

.• 75.000 1.459 1.028 0.667 
76.500 3-097 1.253 0.754 
77-500 4.453 1.368 0.915 
78.500 5.843 1.414 1.023 
79.500 6.917 1.436 1.014 
ao.5oo 6.450 1.35!1 0.990 
81.500 5.280 1.456 0.959 
82.500 11.035 1.391 0.905 
83.500 2.632 1.210 0.8!10 
85.000 1.072 0.777 0.530 
86.500 0.283 0.398 0.404 
88.000 -0.039 0.181 0.235 

-w=-7.110e xpC-.074Jr 2 l 
n ii 

~ 

u ., ., 
' E 

" ... 

~= 
~ 
~ 

2 

'I ./r"" 
~--~ 

-·~ 

WPOP 

0.001 
-0.073 
-0.230 
-0.1ll2 
-0.199 
-0.214 
-0.063 
0.108 
0.339 
0.296 
0.292 
0.0!16 
0.033 

-0.004 

c 

0.599 
2.013 
4.07!1 
6.951 
8.873 

10.621 
12.022 
11.242 
10.275 
8.758 
6.563 
3.971 
2.172 
1.129 

1• + + + 
0 + 

+ + + + + 

CP VPCP UPCP 

0.920 -0.021 0 .. 01!1 
1.99!1 0.710 0.216 
2.792 1.560 0.687 
2.81!1 1.350 0.617 
2.7!13 1.522 0.650 
2.567 1.461 0.546 
2.325 1.371 0.279 
2.491 1.358 -0.251 
2.577 1.711 -0.671 
2.7414 1.841 -0.788 
2.781 1.5ll5 -0.732 
2.087 0.585 -0.238 
1.820 0.258 -0.198 
0.363 -0.010 0.002 

20 
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BIP15 

X w VP UP VPUP c CP WPCP UPCP 

'12.000 0 .. 060 0.178 0.240 0.001 0.599 0.920 -0.021 0.014 
73.500 0.621 0.656 0,.!158 -0.073 2.013 1.994 0.710 0.216 
75.000 1.!159 1.028 0.687 -0.230 !1.074 2.792 1.560 0.687 
76.500 3.097 1.253 0.7511 -0.1!12 6.951 2.814 1.350 0.617 
77.500 !1.453 1.368 0.915 -0.199 8.873 2.743 1.522 0.650 
78.500 5.843 1.414 1.023 -0.214 10.621 2.567 1.461 0.546 
79.500 6.917 1.436 1.01!1 -0.063 12.022 2.325 1.371 0.279 
80.500 6.450 1.354 0.990 0.108 11.242 2.491 1.358 -0.251 
81.500 5.280 1.456 0.959 0.339 10.275 2.577 1.711 -0.671 
82.500 !1.035 1.391 0.905 0.296 8.758 2.744 1.841 -0.788 
83.500 2.632 1.210 0.840 0.292 6.563 2.781 1.545 -0.732 
85.000 1.072 0.777 0.530 0.048 3.971 2.087 0.585 -0.238 
86.500 0.283 0.398 o • .tto4 0.033 2.172 1.820 0.258 -0.198 
88.000 -0.039 0.181 0.235 -0.004 1.129 0.363 -0.010 0.002 

JET1 CONCENTR. EXPJS.OAT z/0~47.87 

X 
)( II " II 

II 
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444t.4 4 

01--------
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+ t t 
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BXP16 

X w WP UP VPUP 

68.000 0.073 0.131 0.192 -o.ooo 
70.000 0.206 0.341 0.342 -0.005 
72.000 0.877 0.671 0.469 -0.062 
74.000 2.178 1.048 0.658 -0.200 
76.000 3.555 1.095 0.775 -0.208 
80.000 5.5115 1.207 0.914 0.1114 
82.000 4.Ja54 1.239 0.864 0.236 
84.000 3.010 1.109 0.753 0.253 
86.000 1.470 0.924 0.659 0.243 
88.000 0.837 0.630 0.528 0.097 
90.000 0.065 0.289 0.271 0.024 
92.000 -0.044 0.151 0.264 -0.004 

-ii=5.687e xp[~. OJ36r 2 J 
D w 

r: 2 

~ 

" ...r;-r:r 
~ 1ij~'T' 

t~ 

~ O!l---,..-1. :t + 

c CP WPCP UPCP 

0.229 0.090 -0.001 -o.ooo 
1.370 1.348 0.055 0.04ll 
2.279 1.720 0.618 0.2117 
4.697 2.128 1.082 0.535 
6.237 1.992 1.061 0.531 
8.131 1.889 1.188 .. o.122 
6.815 1.817 1.021 ·0.342 
5.282 2.060 1.136 ·0.537 
3.083 2.000 1.087 -0.561 
1.884 1.620 0.483 -0.198 
0.756 0.704 0.039 -0.061 
0.624 0.408 -0.019 -0.009 

+ + + + 
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EXP16 

1 w WP UP WPDP c CP WPCP UPCP 

68.000 0.073 0.131 0.192 -o.ooo 0.229 0.090 -0.001 -o.ooo 
?0.000 0.206 0 .. 3111 0.342 -o.oos 1.370 1.348 0.055 0.044 
?2.000 0.877 0.671 0.469 -0.062 2.279 1.720 0.618 0.247 
74.000 2.178 1.048 0.658 -0.200 4.697 2.128 1.082 0.535 
76.000 3.555 1.095 0.775 -0.208 6.237 1.992 1.061 0.531 
80.000 5.545 1.207 0.914 0.144 8.131 1.889 1.188 -0.122 
82.000 .11.454 1.239 0.864 0.236 6.815 1.817 1.021 -0.3112 
821.000 3.010 1.109 0.753 0.253 5.282 2.060 1.138 -0.537 
86.000 1.IJ70 0.924 0.659 0.243 3.083 2.000 1.087 -0.561 
88.000 0.837 0.630 0.528 0.097 1.864 1.620 0.483 -0.198 
go.ooo 0.065 0.289 0.271 0.024 0.756 0.704 0.039 -0.061 
92.000 -0.044 0.151 0.2611 -o.ooll 0.624 o.lloB -0.019 -0.009 
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BXP17 

X w WP UP VPOP c CP VPCP UPCP 

74.000 0.205 0.135 0.161 -0.005 0.987 0.910 0.035 0.025 
15.000 0.310 0.259 0.239 -0.003 1.602 1.350 0.1111 0.075 
76.000 0.890 0.570 0.1154 -0.040 4.574 3.126 0.810 0.313 
77.000 2.227 1.066 0.641 -0.102 8.205 3.696 2.358 0.571 
'18.000 4.282 1.1.112 0.841 -0.116 12.80!& 3.726 1.913 0.758 
'19.000 6.058 1.286 0.947 -o.o58 15.958 3.280 2.016 0.394 
80.000 6.509 1.276 1.003 0.101 16.643 3.271 2.029 -o. 137 
81.000 5.611 1.334 0.962 0.269 15.540 3.582 2.522 -0.813 
82.000 3-899 1.193 0.878 0.208 12.364 3.897 2.233 -0.949 
83.000 1.79!& 1.007 0.672 o.UB 7.316 3.558 1.732 -0.639 
Bll.OOC 0.481 0.499 o.ll111 1).037 3.042 2.566 0.637 -0.325 
85.000 0.149 0.195 0.2118 o.ooJJ 1.194 1.793 0.031 -0.019 
86.000 -0.029 0.115 0.177 -0.001 0.319 0.811 -o.oog -0.032 

IET1 YELOClllES EXP17.QAT z/0=32.80 
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EIP17 

X w VP UP WPUP c CP VPCP UPCP 

711.000 0.205 0.135 0.161 -o.oo5 0.987 0.910 0.035 0.025 
75.000 0.310 0.259 0.239 -0 .. 003 1.602 1.350 0.1111 0.075 
76.000 o.890 0.570 0.~54 -0.040 4.574 3.126 0.810 0.313 
77.000 2.227 1.066 o.6111 -0.102 8.205 3.696 2.358 0.571 
78.000 ·4.282 1.1112 0.841 -0.116 12.804 3.726 1.913 0.758 
79.000 6.058 1.286 0.9~7 -o.o58 15 .. 958 3.280 2.016 0.394 
80.000 6.509 1.276 1.003 0.101 16.6113 3.271 2.029 -0.137 
81.000 5.611 1.334 .0.962 0.269 15.5110 3.582 2.522 -0.813 
82.000 . 3-899 1.193 0.878 0.208 12.364 3.897 2.233 -0 .. 9!!9 
63.000 1.7911 1.007 0.672 0.148 7.316 3.558 1.732 -0.639 
84.000 0.481 0.499 0.414 0.037 3.042 2.566 0.637 -0.325 
85.000 0.149 0.195 0.248 0.004 1.1911 1.793 0.031 -0.079 
86.000 -0 .• 029 0.115 0.177 -0.001 0.319 0.811 -0.009 -0.032 

JET1 rONCENTR. FXPJ7.0AT z/D~JS,JJ 
20~----r-----r-----.-----.-----~----~----.---~ 
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BIP18 

X w WP UP VPUP c CP WPCP UPCP 

?0.000 0.170 0.099 0.182 -0.001 0.018 0.157 -o.ooli -0.002 

?1.500 0.367 0.294 0.245 -0.014 1.032 1.1126 0.294 0.106 

?3.000 1.703 0.562 0.430 -0.065 11.290 1.987 0.545 0.285 

75.000 2.105 0.639 0.116?. -0.057 14.915 2.100 o·.671 0.304 

?7.000 2.562 0.705 0.528 -0.097 5.988 2.168 0.762 0.351 

78.500 3.200 0.750 0.569 -0.053 7.310 1.956 0.625 0.251 

80.000 3.661 0.778 0.567 -0.050 7.539 1.898 0.745 0.100 

82.000 3.358 0.676 0.576 0.072 7-233 1.870 O.ll46 -0.166 

84.000 1.914 0.633 0.1491 0.077 4.598 1.916 o.5o8 -0.303 

86.000 0.852 0.566 0.413 0.063 2.182 1.990 0.678 -0.301 
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X 

TO.ODO 
71.500 
73.000 
75.000 
17.000 
78.500 
eo.ooo 
82.000 
84.000 
86.000 

1:~ 4 

t:~ 
~ 2 

IZ. 

w WP 

0.170 0.099 
0.367 0.294 
1.703 0.562 
2.105 0.639 
2.562 0.705 
3.200 0.750 
3.661 0.778 
3.358 0.676 
1.914 0.633 
0.852 0.566 

01-------
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EIP1B 

UP WPOP 

0.182 -0.001 
0.245 -0.014 
0.430 ...0.065 
0.462 -0.057 
0.528 -0.097 
0.569 -0.053 
0.567 -o.o5o 
0.576 0.072 
o.J&91 0.077 
0.413 0.063 

0 

I< I< 

A t. t. A 
+ + + + 

-5 0 
,. ( (' 1111 

c CP WPCP UPCP 

0.018 0.157 -0.004 ... Q.002 
1.032 1.426 0.294 0.106 
4.290 1.987 0.545 0.285 
11.915 2.100 0.671 0.304 
5.988 2.168 0.762 0.351 
7-310 1.956 0.625 0.251 
7.539 1.8gB 0.745 0.100 
7.233 1.870 o.J&46 -0.166 
J&.598 1.916 0.508 -0.303 
2.182 1.990 0.678 -0.301 
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~ A A 

t t 
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BXP19 

X w WP UP WPlJP c CP VPCP UPCP 

70.000 0.108 0.118 0.155 -0.001 0.356 0.345 -0.006 0.007 
72.000 0.400 0.374 0.242 -0.022 2.304 1.699 0.254 0.070 
74.000 1.024 0.517 0.383 -0.067 ll.593 2.545 0.523 0.320 
76.000 2.233 0.718 0.486 -0.071 7.142 2.872 0.996 0.426 
78.000 3.164 0.715 0.535 -0.053 9.202 2.362 0.711 0.324 
so.ooo 3.1175 0.736 0.532 0.014 9.717 2.209 0.705 -0.036 
82.000 2.908 0.724 0.510 0.080 8.239 2.509 0.690 -0.268 
84.000 1.569 0.685 0.470 0.105 5.472 2.562 0.788 -0.481 
86.000 0.747 0.1190 0.358 0.049 2.864 2.338 0.1155 -0.223 
88.000 0.331 0.311 0.307 -0.007 1.601 1.818 0.172 -0.109 
90.000 0.082 0.131 0.205 -0.003 0.237 0.935 -0.002 -0.005 

JET• VELOCITIES EXP19.0AT z/0~64.80 
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BXP19 

X w WP UP WPUP c CP WPCP' UPCP 

?0.000 0.108 0.118 0.155 -0.001 0.356 0.345 -0.006 0.007 
72.000 0.400 0.374 0.2~2 -0.022 2.304 1.699 0.254 0.070 
74.000 1.024 0.517 0.383 -0.067 Ja.593 2.545 0.523 0.320 
76.000 2.233 0.716 0.486 -o.071 7.142 2.872 0.996 0.426 
?8.000 3.164 0.?15 0.535 -0.053 9.202 2.362 0.711 0.324 
80.000 3.475 0.736 0.532 0.014 9.?17 2.209 0.705 -0.036 
82.000 2.908 0.724 0.510 0.080 8.239 2.509 0.690 -0.268 
84.000 1.569 0.685 0.470 0.105 5.1172 2.562 0.788 -0.481 
86.000 0.747 0.490 0.358 0.049 2.864 2.336 0.455 -0.223 
88.000 0.331 0.311 0.307 -0.007 1.601 1.818 0.172 -0.109 
go.ooo 0.082 0.131 0.205 -0.003 0.237 0.935 -0.002 -0.005 
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BIP20 

X v VP UP WPUP c CP VPCP UPCP 

67.500 0.195 0.213 0.222 -o.oos 0.625 0.974 0.079 0.059 
70.000 0.!162 0.361 0.315 -0.016 1.724 1.!172 0.18!1 0.115 
72.500 0.995 0.520 0.!142 -0.066 2.74!1 1.6119 0.39!1 0.235 
75.000 2.1155 0.817 0.502 -o.oea 5.234 1.728 0.603 0.239 
77.500 3.182 0.936 0.572 -0.156 5.748 1.885 0.886 0.376 
80.000 3.728 0.882 0.628 o.oos 6.753 1.477 0.506 0.072 
82.500 3.26!1 0.811 0.573 0.086 6.281 1.647 0.558 -0.254 
85.000 2.103 0.750 0.557 0.171 4.296 1.652 0.372 -0.298 
87.500 1 • .1145 0.540 0.445 0.073 3.-'149 1 • .1193 0.322 -0.173 
90.000 0.597 0.484 0.380 0.070 , .'191 1.210 0.217 -0.130 
92.500 0.243 0.2115 0.319 -0.013 0.702 1.042 0.124 .. o.o32 

..... 
CJ 

"' I) .... 
E 
CJ ._ 

f: 2 

~ 
~ 

I )C 
)C 

)C 

" 
! t. t. A A 

I; 
0 + + + + t + 

+ 



230 

IIP20 

X " VP UP VPUP c CP VPCP 'OPCP 

67.500 0.195 0.213 0.222 -o.oo5 0.625 0.974 0.079 0.059 
?0.000 0.1162 0.361 0.315 -0.016 1.?211 1.1172 0.184 0.115 
?2.500 0.995 0.520 0.1142 -0.066 2.?411 1.649 0.394 0.235 
75.000 2.1155 0.817 0.502 -0.088 5.234 1.728 0.603 0.239 
77-500 3.182 0.936 0.572 -0.156 5.?118 1.885 0.886 0.376 
80.000 3.728 0.882 0.628 o.oo8 6.753 1.477 0.506 0.072 
82.500 3.264 0.811 0.573 0.086 6.281 1.647 0.558 -0.254 
B5.ooo 2.103 0.750 0.557 0.171 ll.296 1.652 0.372 -0.298 
87.500 1.1145 0.5110 0.445 0.073 3.1149 1.1193 0.322 -0.173 
go.ooo 0.597 o.ll84 0.380 0.070 1.791 1.210 0.217 -0.130 
92.500 0.2ll3 0.245 0.319 -0.013 0.702 1.042 0.12.14 -0.032 

JET• rONCENTR. FXP20.0AT z/0=84.93 
Br-----r-----.-----.-----.-~--~~~~----~--~ 
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X 

71.500 
73.000 
74.500 
76.000 
77.500 
79.000 
80.500 
82.000 
83.500 
85.000 
86.500 

... 
u 
4l , 
~ 3 
u -· 

0 

w 
0.610 
1.087 
2.018 
2.608 
3.194 
JJ.012 
3.322 
2.164 
1.200 
0.364 
0.019 

231 

EXP21 

VP UP WPUP 

0.1183 0.333 -0.01111 
0.603 0.407 -0.073 
0.691 0.479 -0.112 
0.710 0.553 -0.078 
0.825 0.606 -0.068 
0.834 0.638 0.039 
0.925 0.581 0.094 
0.929 0.585 0.156 
0.839 0.521 0.133 
0.411 0.277 0.023 
0.179 0.259 -0.004 

c CP WPCP UPCP 

2.905 2.355 0.636 0.259 
4.590 2.638 0.670 0.333 
6.990 2.523 0.772 0.395 
7.832 2.773 0.962 0.512 
8.450 2.591 1.057 0.368 
9.569 2.352 0.858 o.ooo 
8.285 2.741 1.117 -0.338 
6.109 2.710 1.281 -0.588 
11.286 2.751 1.135 -0.501 
1.320 1.841 0.406 -0.107 
0.537 0.696 -0.031 -0.028 
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EXP21 

X w WP UP WPOP c CP WPCP UPCP 

71.500 0.610 0.1183 0.333 -o.o1l4 2.905 2.355 0.636 0.259 
73.000 1.087 0.603 0 • .1107 -0.073 Ja.590 2.638 0.670 0.333 
7ll.SOO 2.018 0.691 0.~79 -0.112 6.990 2.523 0.772 0.395 
76.000 2.608 0.710 0.553 -0.078 7.832 2.713 0.962 0.512 
77.500 3.194 0.825 0.606 -0.068 8.1150 2.591 1.057 0.368 
79.000 11.012 0.834 0.638 0.039 9.569 2.352 0.858 o.ooo 
80.500 3.322' 0.925 0.581 0.094 8.285 2.741 1.117 -0.338 
82.000 2.164 0.929 0.585 0.156 6.109 2.710 1.281 -0.588 
83.500 1.200 0.839 0.521 0.133 11.286 2.751 1.135 -0.501 
85.000 0.364 0 .ll11 0.277 0.023 1.320 1.841 0.406 -o.107 
86.500 0.019 0.179 0.259 -o.ooli 0.537 0.696 -0.031 -0.028 
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EIP23 

I w WP UP WPOP c CP WPCP tJPCP 

67.500 0.092 0.11!1 0.182 -0.002 0.255 0.081 -o.ooo o.ooo 
70.000 0.1174 0.513 0.351 -0.030 0.577 0.620 0.203 0.073 
72.000 1.211 0.743 0.518 -0.111 1 .. 521 1.110 0.!192 0.212 
74.000 1.627 1.003 0.557 -0.113 2.090 1.1120 0.8.141 0.261 
76.000 3.358 1.058 0 .. 667 -0.244 3.73R 1.683 1.058 0.419 
78.000 4.5112 1.009 . 0.697 -0.109 1&.793 1.693 0.957 0.269 
eo.ooo 5.023 1.048 0.734 0.048 5.250 1.595 0.879 -0.067 
82.000 .IJ .. 450 1.01ll 0.721 0.182 .11.512 1.492 0.789 -0.296 
84.000 3.116 1.007 0.690 0.222 3.292 1.434 0.722 -0.380 
86.000 1.733 0.945 0.599 0.248 1.776 1.21li 0.703 -0.301 
88.000 1.048 0.771 0.521 0.157 • 1.189 0.965 0.418 -0.191 
go.ooo 0.059 0.281 0.302 0.016 0.1122 0.475 0.046 -0.044 
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BIP23 

X w WP UP WPOP c CP WPCP UPCP 

67.500 0.092 0.114 0.182 -0.002 0.255 0.081 -o.ooo o.ooo 
70.000 0.474 0.513 0.351 -0.030 0.577 0.620 0.203 0.073 
72.000 1.211 0.743 0.518 -0.111 1.521 1.110 0.492 0.212 
74.000 1.627 1.003 0.557 -0.113 2.090 1.ll20 0.841 0.261 
76.000 3-358 1.058 0.667 -0.244 3.738 1.683 1.058 0.419 
78.000 4.542 1.009 0.697 -0.109 11.793 1.693 0.957 0.269 

, 80.000 5.023 1.048 0-734 0.048 5.250 1.595 0.879 -0.067 
82.000 4.450 1.014 0.721 0.182 .4.512 1.492 0.789 -0.296 
84.000 3.116 1.007 0.690 0.222 3.292 1.4311 0.722 -0.380 
86.000 1.733 0.945 0.599 0.248 1.776 1.214 0.703 -0.301 
88.000 1.048 0.771 0.521 0.157 1.189 0.965 O.ll18 -0.191 
90.000 0.059 0.281 0.302 0.016 0.422 0.475 0.046 -0.0411 
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EXP25 

I w WP UP WPOP c CP WPCP UPCP 

69.000 0.471 0.287 0.267 -0.020 0.730 0.573 0.067 0.037 
70.500 0.945 0.337 0.282 -0.013 1.213 0.981 0.112 0.022 
72.100 1.626 0.621 0.477 -0.092 2.392 1.614 0.502 0.197 
73.500 1.765 0.665 0.480 -0.043 2.520 1.865 0.636 0.224 
75.000 3.058 0.841 0.567 -0.081 4.662 2.228 0.980 . 0.268 
76.500 3.933 0.833 0.635 -0.010 5.706 2.227 . 0.868 0.162 
78.000 4.002 0.868 0.648 0.092 6.030 2.181 0.838 -0.120 
79.500 3.229 1.0511 0.625 0.147 11.948 2.275 1.253 -0.325 
81.000 1.679 0.795 0.550 0.146 2.926 1.855 0.777 -0.331 
82.500 0.860 0.628 o.Jno 0.067 1.688 1.333 0.459 -0.138 
84.000 0.840 0.522 0.392 0.064 1.419 1.161 0.279 -0.161 
85.500 0.728 0.3117 0.354 0.038 0.909 0.672 0.091 -0.072 
87.000 0.1111 0.155 0.182 0.001 0.258 0.340 0.012 -0.010 



X 

72.000 
70.000 
?4.000 
76.000 
79.000 
80.500 
82.000 
83.500 
85.000 
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nP28 

v WP UP 

0.663 0.361 0.338 
0.17.1J 0.156 0.207 
1.8'17 0.770 0.528 
3.9.1J2 1.175 0.795 
5.302 1.324 0.825 
.11.430 1.180 0.788 
2.545 1.003 0.621 
0.935 0.637 0.437 
0.150 0.291 0.288 
0 .. 031 0.128 . 0.198 

·-iii•S. 650c X p r-. 0655r 1 J 
D W 
• .&""'_ 
~ "/ij'T 
.~ 

VPUP 

-0.023 
-0.003 
-0.070 
-0.200. 

0.150 
0.187 
0.140 
0.079 
0.006 

-0.001 

• 

1• 01--------Y 

-10 

c CP VPCP UPCP 

2.700 1.885 0.210 0.122 
0.359 0.1131 -0.004 0.006 
5.588 2.570 0.772 0.349 
9.639 2.889 1.643 0.808 

11.422 2.611 1.676 -0.303 
9.823 2.613 1.301 -0.525 
6.928 2.626 1.043 -0.408 
3.757 2.170 0.602 -0.259 
1.292 1.722 0.109 -0.047 
0.052 0.210 -0.005 -o.oo5 

s 
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BIP28 

X w WP UP WPUP c CP VPCP UPCP 

72.000 0.663 0.361 0.338 -0.023 2.700 1.885 0.210 0.122 
70.000 0.174 0.156 0.207 -0.003 0.359 0.431 -0.004 0.006 
711.000 1.877 0.770 0.528 -0.070 5.588 2.570 0.772 0.349 
76.000 3.942 1.175 0.795 -0.200 9.639 2.889 1.643 0.808 
79.000 5.302 1.324 0.825 0.150 11.422 2.611 1.676 -0.303 
80.500 Ja • .li30 1.180 0.788 0.187 9 .. 823 2.613 1.301 -0.525 
82.000 2.545 1.,003 0.621 0.140 6.928 2.626 1.0113 -0.~08 

83.500 0.935 0.637 0.437 0.079 3.757 2.170 0.602 .. 0.259 
85.000 0.150 0.291 0.288 0.006 1.292 1.722 0.109 .. o.047 
86.500 0.031 0.128 0.198 -0.001 0.052 0.210 -0.005 .. Q.005 
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X 

64.000 
67 .. 000 
70.000 
?3.000 
76.000 
79.000 
82.000 
85.000 
88.000 
91.000 
911.000 

-"' t) ., 
';! 3 
Ll .... 

0 

w 

0.1139 
0.705 
1.745 
2.685 
3.302 
3.108 
2.!126 
1.453 
1.001 
0.332 
0.178 
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BIP29 

WP UP VPUP 

0.240 0.300 -0.014 
0.526 0.349 -0.077 
0.665 0.4.117 -0.140 
0.693 0.515 -0.09.0 
0.702 0.554 -0.035 
0.708 0.598 0.134 
0.753 0.530 0.124 
0.5.1!2 0 • .1!11 0.069 
0.576 0 • .1122 0.107 
0.246 0.229 0.015 
0.130 0.203 -o.oo5 

c CP VPCP UPCP 

1.388 0.842 0.095 0.084 
2.791 1.395 0.1136 0.183 
11.7~4 1.667 0.512 0.294 
6.463 1.713 0 .. 585 0.300 
7.183 1 • .1119 0.!108 0.064 
6.686 1.471 0.!183 -0.244 
5.813 1.557 0.!192 -0.297 
4.238 1.552 0.437 -0.233 
3.236 1.589 0 • .1151 -0.311 
2.103 1.068 -0.018 0.004 
0.682 0.810 0.019 o.oos 

') .... ~ 
+ +--



239 

BIP29 

X w VP UP VPUP c CP WPCP UPCP 

64.000 0.439 0.240 0.300 -0.014 1.388 0.842 0.095 0.084 
67.000 0.705 0.526 0.349 -0.077 2.791 1.395 0.436 0.183 
70.000 1.745 0.665 0.447 -0.140 11.7li4 1.667 0.512 0.294 
73.000 2.685 0.693 0.515 -0.090 6.!J63 1.713 0.585 0.300 
76.000 3.302 0.702 0.554 -0.035 7.183 1.419 0.408 0.064 
79.000 3.108 0.708 0.598 0.134 6.686 1.471 0.483 -0.244 
82.000 2.426 0.753 0.530 0.124 5.813 1.557 O.!J92 -0.297 
85.000 1.!J53 0.542 0.411 0.069 .11.238 1.552 0.437 -0.233 
88.000 1.001 0.576 0.1122 0.107 3.236 1.589 0.451 -0.311 
91.000 0.332 0.2116 0.229 0.015 2.103 1.068 -0.018 0.004 
94.000 0.178 0.130 0.203 -o.oo5 0.682 0.810 0.019 0.005 

lET• rONCENTR. fXP29.0AT z/0~98.13 

8------~·----~----~----~----~----~----~--~ 
r~7.3l2exp[-.0085r 2 ) 

ll c 
,.~ 
~ W"""'C' 

6 + C'U"' 

.. 

,. 

A 
+ 

)C " 

A t. 
+ + 

lC 

A 

+ 

,. lC lC lC 

A A t. A 

• .. + + + 



X 

66.000 
68.000 
70.000 
72.000 
74.000 
76.000 
78.000 
80.000 
82.000 
84.000 
86.000 
88.000 
9o.ooo 
92.000 

..... 
tJ ... ... .... 
E 
u ._ 

v 

0.084 
0.136 
0.587 
1.112 
1.932 
2.881 
3.507 
3.274 
2.545 
1.755 
1.037 
0.1129 
0.2!11 
0.059 

240 

EXP30 

WP UF VPDP 

0.100 0.163 -0.001 
0.230 0.239 -o.ooo 
0.342 0.288 -0.013 
0.563 o.Ji29 -0.078 
0.744 o.-95 -0.096 
0.697 0.554 -0.060 
0.658 0.553 -0.016 
0.710 0.556 0.090 
0.764 0.552 0.150 
0.663 0.516 0.115 
0.506 0.401 0.071 
0.325 0.279 0.041 
0 .. 233 0.213 0.018 
0.126 0.145 0.001 

c CP VPCP UPCP 

1.030 0.863 -0.032 -0.002 
1.Ji26 1.297 0.077 o.o96 
3.985 1.507 0.180 0.030 
5.122 1.656 0.1102 0.271 
6.564 1.607 0.448 0.2!19 
7.646 1.812 0.619 0.243 
8.177 1.783 0.537 0.044 
7.519 1.780 0.552 -0.199 
6.173 1.782 0.593 -0.374 
.11.417 1.939 0.642 -0.386 
2.664 1.675 0.1134 -0.202 
1.487 1.681 0.203 -o. 121 
1 .. 090 0.989 0.084 -0.024 
1.178 0.801 -0.013 -0 .. 020 

+ + + + 

20 



X w WP 

66.000 0.084 0.100 
68.000 0.136 0.230 
70.000 0.587 0.342 
72.000 1.112 0.563 
74.000 1.932 0.7411 
76.000 2.881 0.697 
78.000 3.507 0.658 
8o.ooo 3.274 0.710 
82.000 2.545 0.764 
84.000 1.755 0.663 
86.000 1.037 0.506 
88.000 0.429 0.325 
go.ooo 0.241 0.233 
92.000 0.059 0.126 

ol----

241 

EXP30 

UP WPUP 

0.163 -0.001 
0.239 -o.ooo 
0.288 -0.013 
0.429 -0.078 
o.-495 -0.096 
0.554 -0.060 
0.553 -0.016 
0.556 o.ogo 
0.552 0.150 
0.516 0.115 
o.11o1 0.071 
0.279 o.o1n 
0.213 0.018 
0.145 0.001 

It )I 
II X II 

A 6 6 A 
+ + 

+ 

c CP VPCP UPCP 

1.030 0.863 -0.032 -0.002 
1.1126 1.297 0.077 0.096 
3.985 1.507 0.180 0.030 
5.122 1.656 0.402 0.271 
6.564 1.607 0.448 0.249 
7.646 1.812 0.619 0.243 
8.177 1.783 0.537 0.044 
7.519 1.780 0.552 -0.199 
6.173 1.782 0.593 -0.374 
4.1117 1.939 0.642 -0.386 
2.664 1.675 0.434 -0.202 
1.487 1.681 0.203 -0.121 
1.090 0.989 0.084 -0.024 
1.178 0.801 -0.013 -0.020 

It It 



:X 

68.000 
70.000 
72.000 
74.000 
76.000 
78.000 
80.000 
82.000 
84.000 
86.000 
88.000 

-u ., ., 
..... 
E 
t) -

v VP 

0.661 0.1&69 
0.921 0.600 
1.722 0.828 
2.913 0.971 
3.629 0.980 
3.998 0.806 
3.534 0.848 
2.753 O.B2.!J 
1.6li3 0.727 
1.3112 0.702 
0.6.!J7 0.1181 

242 

BXP31 

UP VPUP 

0.1141 -0.047 
0.381 -0.059 
0.494 -0.127 
0.569 -0.191& 
0.627 -D.148 
0.635 -0.021 
0.563 0.132 
0.540 0.173 
0.488 0.1311 
0.443 0.115 
0.359 0.039 

IC Ill 

• IC 

4 4 A 
4 

• t 
t + 

c CP VPCP UPCP 

0.684 0.774 0.200 0.091 
0.797 0.7.lJ3 0.238 0.092 

.1.597 1.141 0.506 0.145 
2.783 1.518 0.826 0.322 
3.222 1.433 0.737 0.2117 
3.124 1.382 0.5116 -0.002 
2.790 1.311 0.512 -0.154 
1.933 1.080 0.418 -0.202 
0.970 0.830 0.326 -0.121 
0.671 0.639 0.222 -0.100 
0.414 0.1175 0.061 -0.034 

,. 
IC 

4 A 

+ + + + 

-•-~2~0-----~,s~----~,o~---.~s-----o~----~s----~----~----~ 
r lrm) 
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BJP31 

:X v 1IP UP WPOP c CP VPCP UPCP 

68.000 0.661 0.1169 0.441 -0.047 0.684 0.774' 0.200 0.091 

?0.000 0.921 0.600 0.381 -0.059 0.797 0.743 0.238 0.092 

?2.000 1.?22 0.828 0.494 -0.127 1.597 1.141 0.506 0., !15 

74.000 2.913 0.971 0.569 -0.194 2.783 1.518 0.826 0.322 
76.000 3.629 0.980 0.627 -0.148 3.222 1.433 0.737 0 .. 2!17 

78.000 3·998 0.806 0.635 -0.021 3.124 1.382 0.546 -0.002 
80.000 3-534 o.BliB 0.563 0.132 2.790 1.311 0.512 -0.154 
82.000 2.753 o.B21l 0.540 0.173 1.933 1.080 o.!J18 -0.202 
811.000 1.643 0.727 0.486 0.134 0.970 0.830 0.326 -0.121 
86.000 1.342 0.702 0.443 0.115 0.671 0.639 0.222 -o. 100 

88.000 0.647 0.1181 0.359 0.039 0.1114 0.475 0.061 -0.034 

f~ 2 . 
f: " lC )( 

)C 

~ I 
'lC )C 

6 
4 

Ju 
A A A 

+ 6 
A 

A • • + 
+ 

+ + + + 

I ' -IS -10 -s 0 s 10 IS 20 
r Cc m~ 
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EIP33 

I w WP UP WPUP c CP WPCP UPCP 

70.000 0.188 0.157 0.222 0.007 0.1136 0.326 -0.011 0.01!1 
'12.000 0.750 0.692 0.!123 -0.060 1.295 1.355 0.505 0.190 
'111.000 2.399 1.138 0.660 -0.119 3.991 2.1108 1.343 0.493 
?6.000 Ji.757 1.331 0.821 -0.255 7.Ji28 3.053 2.348 0.797 
?8.000 6.356 1.209 0.967 0 .. 002 9-531 3.051 1.860 0.286 
80.000 5.863 1.236 0.887 0 .. 165 8.884 3.121 2.093 -0.561 
82.000 3.305 1.163 0.804 0.297 5.212 2.556 1.513 -0.709 
84.000 1.326 0.977 0.618 0.190 2.1127 1.936 1.210 -0.1187 
86.000 0.292 0.298 0.316 -0.001 0.859 o.gsa 0.032 -0.067 
88.000 0.1112 0.100 0.121 o.ooo 0.383 0.157 -o.oo4 -0.001 

6 -u 
I) ., 

...... 
E 
u - • 
f: 
~ 2 

~ 
X 

X X .. X 

A 6 6 6 A 

1• D + + + + 
+ 

0 5 .o IS 20 
r (c m) 



245 

EIP33 

X w WP UP WPUP c CP WPCP OPCP 

70.000 0.188 0.157 0.222 0.001 O.JJ36 0.326 -0.011 0.014 
72.000 0.150 0.692 0.423 -0.060 1.295 1.355 0.505 0.190 
74.000 2.399 1.138 0.660 -0.119 3.991 2.408 1.343 0.493 
76.000 JJ.757 1.331 0.821 -0.255 7.428 3.053 2.348 0.797 
78.000 6.356 1.209 0.967 0.002 9.531 3.051 1.860 0.286 
80.000 5.863 1.236 0.887 0.165 8.884 3.121 2.093 -0.561 
82.000 3.305 1.163 0.804 0.297 5.212 2 .. 556 1.513 -0.709 
8~.000 1.326 0.977 0.618 0.190 2.!127 1.936 1.210 -0.487 
86.000 0.292 0.298 0.316 -0.001 0.859 0.958 0.032 -0.067 
88.000 0.142 0.100 0.121 o.ooo 0.383 0.157 -0.004 -0.001 

7.5 

IC M IC 

4 4 

A A 

+ 

01--------- + 

+ + + 

0 5 10 I 5 20 
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BIP34 

X w WP UP VPUP c CP WPCP UPCP 

66.000 0.217 0.322 0.235 -0.012 -0.166 0.3114 0.060 0.023 
69.000 0.825 0.5311 o • .11o1 -0.057 0.399 0.715 0.174 0.117 
72.000 2.301 0.833 0.609 -0.162 1.394 1.080 0 • .1126 0.286 
75.000 3.482 1.097 0.652 -0.118 2.724 1.257 0.743 0.252 
77.000 11.685 0.9117 0.737 -0.138 3.672 1.384 0.692 0.208 
79.000 .11.632 1.027 0.743 0.066 3-769 1.384 0.732 -0.078 
81.000 3.940 1.017 0.829 0.269 2.911 1.384 0.792 -0.325 
83.000 3.274 1.053 0.650 0.277 2.607 1.243 0.750 -0.287 
85.000 2.525 1.0115 0.656 0.305 1.979 1.085 0.667 -0.289 
87.000 1 • .1130 0.8311 0.578 0.185 1.254 0.812 0.373 -0.178 
89.000 0.368 0.242 0.284 -0.0011 0.547 0.432 0.018 -0.026 
91.000 0.107 0.152 0.2211 0.001 0.377 0.226 0.003 -o.ooa 



X 

72.000 
73.000 
711.000 
75.000 
76.000 
77.000 
78.000 
79.000 
ao.ooo 
81.500 
83.000 
8Jf.500 
86.000 

-'-.. ., 
~ 3 
u -

0 

247 

EXP35 

w WP UP WPUP 

0.227 0.177 0.223 o.oos 
0.512 0.355 0.313 -0.010 
0.883 0.555 0.431 -0 .. 023 
1.420 0.748 0.540 -0.027 
3.210 1.019 0.658 -0.167 
.11.381 1.123 0.728 -0.157 
4.692 1.136 0.728 -0.085 
11.919 1.086 0.7Jf5 0.163 
4.242 1.286 0.870 0.209 
2.660 1.046 0.706 0.171 
0.698 0.635 0.487 0.076 
0.253 0.301 0.298 0.001 
0.055 0.139 0.198 -0.001 

-w"'4.900e Kp[-.0700r~l 
D ii 
,.~ 
b '/jjfT 
... ~ 

c 

0.417 
0.869 
1.545 
2.533 
5.465 
?.689 
8.193 
8.779 
7.533 
4.947 
1.814 
0.578 
0.084 

... + ... + 

5 

CP WPCP UPCP 

0.617 0.028 0.028 
1.190 0.230 0.050 
1.589 0.348 0.140 
2.174 0.782 0.324 
3.066 1.745 0.545 
3.606 2.030 0.609 
3.681 2.301 0.518 
3.416 1.822 -0.327 
3.613 2.696 -0.542 
2.999 1.634 -0.519 
1.914 0.542 -0.222 
0.764 0.009 -0.020 
0.178 -o.ooa -0.006 



248 

EXP35 

X w WP UP VPOP c CP WPCP UPCP 

72.000 0.227 0.177 0.223 o.oos o.JJ17 0.617 0.028 0.028 
73.000 0.512 0.355 0.313 -0.010 0.869 1.190 0.230 0.050 
74.000 0.883 0.555 o.JJ31 -0.023 1.545 1.589 0.348 0.140 
75.000 1.JJ20 0.748 0.540 -0.027 2.533 2.174 0.782 0.324 
76.000 3.210 1.019 0.658 -0.167 5.465 3.066 1.745 0.545 
77.000 11.381 1.123 0.728 -0.157 7.689 3.606 2.030 0.609 
78.000 JJ.692 1.136 0.728 -0.085 8.193 3.681 2.301 0.518 
79.000 4.919 1.086 0.745 0.163 8.779 3.416 1.822 -0.327 
eo.ooo JJ.2!J2 1.286 0.870 0.209 7.533 3.613 2.696 -0.542 
81.500 2.660 1.046 0.706 0.171 .IJ.947 2 .. 999 1.634 -0.519 
83.000 0.698 0.635 0.1187 0.076 1.814 1.914 0.542 -0.222 
84.500 0.253 0.301 0.298 0.001 0.578 0.764 0.009 -0.020 
86.000 0.055 0.139 0.198 -0.001 o.o8ll 0.178 -o.ooa -0.006 

4 

0 
... + + + 
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EIP36 

X w VP UP WPUP c CP VPCP DPCP 

70.000 0.396 0.106 0.172 -0.001 0.282 0.1173 o.oo9 0.016 
71.500 0.353 . 0.132 0.191 -0.002 0.6116 1.065 0.062 0.032 
73.000 0.655 0.1158 0.359 -0.016 2.299 2.JJ36 0.4117 0.284 
74.500 1.823 0.684 0.556 -0.083 5.790 3.563 1.392 0.643 
76.000 2.992 0.832 0.599 -0.075 9.895 .11.533 1.628 0.707 
77.500 .IJ.387 0.904 0.685 -0.052 13.816 Jl.542 1.822 0.547 
79.000 Jl.377 1.022 0.683 0.098 13.889 5.058 2.723 -0.422 
80.500 3.101 0.816 0.616 0.096 10.593 .11.505 1.609 -0.618 
82.000 1.143 0.811 . 0.504 0.128 lf.494 3.845 1.696 -0.662 
83.500 0.256 0.295 0.288 0.010 1.411 2.003 0.175 -0.121 
85.000 0.138 0.113 0.156 -o.001 0.317 0.167 -0.003 -0.003 
78.500 4.456 0.972 0.668 0.082 15.521 4.920 2 • .liJJ5 -0.293 

EXP37 

X 1-! WP UP WPDP c CP WPCP UPCP 

71.000 0.214 0.096 0.130 -0.001 0.171 0.139 -0.002 -0.001 
72.500 0.331 o. 191 0.185 -0.000 o • .\53 0.571 0.055 0.012 
74.000 0.826 0.337 0.345 0.001 1.500 1.591 0.201 -0.027 
75.500 2.147 0.883 0.555 -0.126 3.943 3.018 1.689 0.564 
77.000 .tJ.035 0.967 0.700 -0.097 8.230 3.284 1.604 0.602 
78.500 5.205 0.918 0.716 0.001 10.1112 3.096 1.1157 0.091 
80.000 4.218 1.006 0.719 0.180 8.855 3 • .1J64 ;.962 -0.598 
81.500 2.302 0.949 0.619 0.182 lf.724 3.359 1.774 -0.634 
83.000 1.120 0.685 o.ll65 0.120 1.910 2.486 0.875 -0.364 
84.500 0.507 0.335 0.335 0.005 o.8oo 1.207 0.141 -0.112 
86.000 0.313 0.106 0.184 -0.004 0.200 0.269 -0.012 -0.020 

EXP38 

X w WP UP VPUP c CP WPCP UPCP 

70.000 0.523 0.502 0.353 -0.081 1.060 1.508 0.538 0.2711 
72.000 0.852 0.497 0.393 -0.044 1.952 1.842 0 • .1143 0.190 
7it.OOO 2.697 0.900 0.636 -0.110 5.642 2.621 1.168 0.583 
75.500 2.984 0.966 0.655 -0.129 5.884 2.718 1.1lll7 0.511 
n.ooo Ja.520 0.955 0.705 -o.o66 8 • .1186 2.1464 1.066 0.179 
78.500 li.S.IIB 0.937 0.700 0.138 8 • .1185 2.355 1.050 ... 0.308 
eo.ooo 3-774 1.0.112 0.699 0.213 7.189 2.696 1.641 -0.600 
81.500 2.16.11 0.938 0.626 0.196 Ja.ll63 2.729 1 • .1148 -0.737 
83.000 0.891 0.630 0 • .1109 0.053 2.383 1.787 0.650 -0.204 

. 84.500 0.515. O.IPIO 0.3.112 0.053 1.427 1.413 0.365 -0.148 
86.000 0.073 0.2.114 0.226 0.013 0.389 0.691 0.058 -0.032 



250 

EXP39 

X w WP UP VPUP 

65.500 0.339 o.J&92 0.344 0.012 

69.000 1.048 0.702 o.J&90 -0.078 

72.000 2.1163 0.879 0.561 -0.171 

75.000 3.1l58 1.063 0.657 -o.143 

78.000 4.155 1.137 0.7211 -0.117 
81.000 3o575 1.046 0.632 0.043 

84.000 2.588 1.050 0.635 0.211 

87.000 1.211 0.818 o.J&gB 0.129 
go.ooo 0.519 0.625 0.447 0.049 

93.000 0.083 0.257 0.228 -o.oo4 

5 
-w"4. 200e lC pr-. OIGOrlJ 
n V 

··~ .6~ 
... ~ ... 

" ll , 
..... 
E 
(. .... 

~= 2 

~ 
~ 

1 .. " 
X 

A 
4 A 

1• 
0 • + + + 

-I I 

-20 -15 -10 -5 

c CP 

-0.203 0.792 
0.554 0.827 
1.859 1.392 
2.773 1.611 
3.301 1.680 
2.'133 1.533 
1.884 1.133 
1.096 0.866 
0.649 0 • .1117 
0.323 0.076 

X X 

A A 
A 

+ 
+ + 

10 

VPCP 

0.052 
0.257 
0.760 
0.991 
1.192 
0.787 
0.658 
0.2110 
0.206 

-o.ooo 

I 

15 

UPCP 

0.028 
0.117 
0.346 
0.325 
0.177 

-0.073 
-0.235 
-0.127 
-0.0144 
-0.004 

20 
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EIP39 

X w WP UP VPUP c CP WPCP UPCP 

65.500 0.339 0.1192 0.3114 0.012 -0.203 0.792 0.052 0.028 
69 .. 000 1.048 0.702 0.1190 -0.078 0.554 0.827 o·.2s1 0.117 
72.000 2.463 0.879 0.561 -0.171 1.859 1.392 0.760 0.346 
75.000 3.458 1.063 0.657 -0.1113 2.773 1.611 0.991 0.325 
78.000 11.155 1.137 0.724 -0.117 3.301 1.680 1.192 0.177 
81.000 3.575 1.046 0.632 0.043 2.733 1.533 0.787 -0.073 
84 .. 000 2.588 1.050 0.635 0.211 1.884 1.133 0.658 -0.235 
87.000 1.211 0.818 0.498 0.129 1.096 0.866 0.240 -0.127 
go.ooo 0.519 0.625 0.447 0.049 0.649 0.417 0.206 -0.044 
93.000 0.083 0.257 0.228 -0.004 0.323 0.078 -o.ooo -0.004 

D + 
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BIP40 

X w VP UP VPOP c CP WPCP UPCP 

66.000 0.016 0.308 0.289 -0.011 0.312 0.287 0.016 0.006 
69.000 0.610 0.577 0.1121 -o.oso 0.957 0.967 0.280 0.118 
72.000 2.183 0.979 0.598 -0.127 2.340 1.528 0.730 0.319 
75.000 3.758 1.077 0.696 -0.075 3.655 1.822 0.897 0.279 
78.000 11.851 1.197 0.787 -0.022 11.581 1.965 1.346 0.007 
81.000 11 • .1187 1.116 0.780 0.042 11.318 1.877 1.009 -0.150 
84.000 2.251 1.333 0.676 0.331 2.452 1.511 1.257 -0.409 
87.000 1.1146 1.077 0.580 0.232 1.802 1.155 0.712 -0.314 
9o.ooo 0.330 0.1189 0.436 0.041 1.083 o.B50 0.070 -0.131 
93.000 0.133 0.376 0.258 0.050 0.597 o.2.ll5 0.048 .-0.029 

6 
PLUME• /ELOCITIES EXP40.DAT z /In"' 54.71 
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EXP40 

X w VP UP VPUP c CP VPCP UPCP 

66.000 0.016 0.308 0.289 -0.011 0.312 0.287 0.016 0.006 

6g.OOD 0.610 0.577 0.421 -0.050 0.957 0.967 0.280 0.118 

72.000 2.183 0.979 0.598 -0.127 2.340 1.528 0.730 0.319 

75.000 3.758 1 .. 077 0.696 -0.0'75 3.655 1.822 0.897 0.279 

78.000 ~.851 1.197 0.787 -0.022 4.581 1.965 1.346 0.007 

81.000 ~.487 1.116 0.780 0.042 .11 .. 318 1.877 1.009 -0.150 

84.000 2.251 1.333 0.676 0.331 2.452 1.511 1.257 -o.JJ09 

87.000 1.446 1.077 0.580 0.232 1.802 1.155 0.712 -0.314 

go.ooo 0.330 0.1189 0.436 ·o.oln 1.083 0.850 0.070 -0.131 

93.000 0.133 0.376 0.258 0.050 0.597 0.245 0.048 -0.029 
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EIP41 

I. w WP UP WPUP 

60.000 0.111 0.178 0.191 0.003 
614.000 0.385 0.394 0.350 -0.035 
68.000 0.969 0.687 0.472 -0.043 
72.000 2.896 1.103 0.667 -0.289 
75.000 3.684 0.965 0.638 -0.108 
78.000 4.723 0.921 0.757 0.001 
81.000 4.114 0.987 0.629 0.152 
85.000 2.685 0.8148 0.597 0.155 
89.000 1.437 0.721 0.553 0.209 
93.000 0.318 0.355 0.328 0.029 

.... 
C.· ., 
" .... 
E 
t 
~ 

k 2 

~ 
X 

~ 
I • " 6 6 6. 

.~ 

+ + + 
+ 

-5 

c 

0.033. 
0.343 
0.764 
1.776 
3.072 
3.953 
3.756 
2.880 
2.112 
1.597 

• II 

6 6 

-+ -+ 

CP 

0.081 
0.593 
0.888 
1.200 
1.135 
1.238 
1.14!1 
0.921 
0.681 
0.311 

• 
6 

+ 

VPCP 

-0.004 
0.116 
0.259 
0.830 
0.559 
0.5116 
0.626 
0.372 
0.252 
0.028 

10 IS 

UPCP 

0.001 
0.043 
0.154 
0.306 
0.210 
0.039 

-0.150 
-0.178 
-0.194 
-0.048 
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EIP42 

X w VP UP VPDP c CP WPCP UPCP 

64.000 0.159 0.158 0.214 0.002 -0.034 0.123 -0.006 0.005 
68.000 0.826 0.698 o.llo6 -0.040 0.763 1.058 0.337 0.11J4 
72.000 2.634 1.078 0.715 -0 .. 372 2.587 1.812 1.220 0.564 
75.000 !1.197 1.015 0.632 -o.o11e !1.610 1.982 1.029 0.260 
78.000 !1.776 1.123 0.779 -0.047 !1.989 2.057 1.253 0.118 
81.000 .ta.390 1.283 0.690 0.262 !1.333 1.975 1.1187 -0.339 
811.000 2.793 1.204 0.653 0.363 3.038 1.838 1.334 -0.547 
87.000 1.682 0.857 0.555 0.162 2.006 1.211 0.1169 -0.295 
90.000 0.848 0.600 0.432 0.034 1.318 0.810 0.165 -0.115 
93.000 0.223 0.342 0.288 0.023 0.895 0.306 0.034 -0.021 
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BJP43 

X v VP UP VPUP c CP VPCP UPCP 

67.000 0.233 0.158 0.218 0.004 0.107 0.190 -o.oo8 o.ooe 
70.000 Or.755 0.898 o.Ja87 -0.133 1.079 1.507 0.919 0.304 
73.000 2.335 1.077 0.681 -0.211 3.044 2.158 1.139 0.502 
76.000 Jl.741 1.213 0.876 -o.134 6.191 2.722 1.760 0.367 
78.000 4.874 1.072 0.790 0.013 5.997 2.624 1.1167 -0.041 
80.000 Jl.513 1.267 0.8111 0.260 5.555 2.767 2.039 -0.646 
83.000 2.872 1.278 0.72!1 0.1170 3.1211 2.166 1.732 -0.628 
86.000 0.938 0.861 0.576 0.201 1.175 1.544 0.737 -0.361 
89.000 0.284 0.1128 0.378 0.042 0.478 0.700 0.134 -0.087 
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EIP44 

I w WP UP VPUP c CP WPCP DPCP 

65.000 0.283 0.318 0.327 o.oo8 -0.634 0.713 0.122 0.038 
68.000 1.238 0.774 O • .IP19 -0.098 0.070 1.029 0.344 0.177 
71.000 2.132 0.848 0.507 -o.119 0.866 1.259 0.619 0.206 
74.000 3.575 1.336 0.679 -0.318 2.426 1.789 1.409 0.467 
76.000 4.664 1.076 0.716 -0.091 3.561 1.714 0.925 0.127 
78.000 5.005 1.121 0.711 -0.056 3.671 1.792 1.126 0.083 
80.000 .11.703 1.029 0.755 0.179 3.355 1.715 0.873 -0.272 
83.000 3-732 0.985 0.752 0.203 2.454 1.571 0.814 -0.!151 
86.000 1.726 0.963 0.552 0.215 1.089 1.211 0.650 -0.295 
89.000 0.317 0.!152 0.366 0.022 0.056 0.544 0.043 -0.042 



X 

65.000 
68.000 
?1.000 
74.000 
76.000 
78.000 
80.000 
83.000 
86.000 
89.000 

-u 4 ., ., 
...... 
e 
u -
~~ 
• 2 

~ 
~ 
I• 

w liP 

0.519 0.571 
0.852 0.731 
1.950 O.BO!I 
3-391 1.299 
.IJ.479 1.261 
5.258 1.122 
5.150 1.251 
3.661 1.248 
2.1119 1.150 
1.1116 0.979 

" 4 

+ + 

258 

!XP45 

tJP VPUP c CP WPCP UPCP 

0.351 -0.051 0.196 0.292 0.094 0.030 
0.437 -0.084 0.1193 0.803 0.323 0.139 
0.611 -0.1511 0.908 0.728 ,0.181 0.132 
0.753 -0.423 1.957 1.174 0.902 0.415 
0.738 -0.238 2.1199 1.165 0.780 0.231 
0.766 0.061 2.884 1.096 0.533 0.028 
0.760 0.173 2.827 1.101 0.692 -0.180 
0.758 0.435 1.933 1.0IJ8 0.784 .. o.362 
0.688 0.1117 1.239 0.783 0.1183 -0.290 
0.632 0.341 0.860 0.628 0.411 -0.212 

II .. " II 
II 

6 6 6 6 4 4 
+ + 

+ 

.. + 
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EXP45 

X w WP UP VPUP c CP VPCP UPCP 

65.000 0.519 0.571 0.351 -0.051 0.196 0.292 o.ogll 0.030 
68.000 0.852 0.731 0.!137 -O.OBll 0.!193 0.803 0.323 0.139 
71.000 1.950 o.8oll 0.611 -0.1Slj 0.908 0.728 0.181 0.132 
74.000 3.391 1.299 0.753 -0.!123 1.957 1.17lj 0.902 0.415 
76.000 !l.li79 1.261 0.738 -0.238 2.1199 1.165 0.780 0.231 
78.000 5.258 1.122 0.766 0.061 2.884 1.096 0.533 0.028 
80.000 5.150 1.251 0.760 0.173 2.827 1.101 0.692 -0.180 
83.000 3.661 1.248 0.758 O.li35 1.933 1.048 0.784 -0.362 
86.000 2.149 1.150 0.688 0.1117 1.239 0.783 0.483 -0.290 
89.000 1.146 0.979 0.632 0.3ll1 0.860 0.628 0.411 -0.212 

4 

-c=2.9SOe ICp[ .OJ6Dr 2 ] 
., !" 

·~ A ~ 
3 + 'C"'U"" 

f: 2-. 
r~ 
II 

~ 
,. ,. .. lC lC 

A 

I~ 
t. t. t. 

6 6 + 

• + 
0 ... 

+ + • + 

I 
-20 -s 10 15 20 



X 

70.000 
71.500 
'73.000 
7.11.500 
76.000 
77-500 
78.500 
79-500 
81.000 
82.500 
84.000 
85.500 
87.000 

-tJ 
ll 
1'1 

..... 
E 
c. 
.. 4 

k 
~ 2 

~ ,; 
0 

v l:IT' 

0.212 0.207 
1.570 0.923 
2.995 1.167 
-'1.135 1.260 
5.708 1.285 
6.172 1.243 

. 6.2119 1.304 
5.752 1.375 
.11.699 1.330 
2.667 1.349 
0.606 0.736 
0.402 0.617 
0.105 0.207 

260 

BIP46 

UP VPtJP 

0.230 .;..o.oos 
0.564 -0.124 
0.693 ... 0.301 
0.'724 -0.259 
0.848 -0.219 
0.912 -0.034 
0.943 0.092 
0.9116 0.257 
0.815 0.287 
0.'740 0.3110 
o • .IJ91 0.093 
0.375 0.049 
0.193 -o.ooo 

D 
)( 

,. )( IC IC IC 

4 1:. I:. I:. A 
A 

+ + 
+ + 

+ + + 

c CP VPCP UPCP 

0.483 0.211 -0.017 0.010 
2.343 2.057 0.617 0.370 
.11.204 2.611 1.389 0.718 
6.083 3.145 1.785 0.655 
8.315 3.370 2.315 0.599 
9.346 3.596 2.119 0.319 
9.303 3.464 2.089 -0.255 
8 • .1J83 3.611 2 • .1J86 -0.538 
7.075 3.268 2.113 -0.747 
11.152 2.901 1.995 -0.877 
1.677 1.757 0.368 -0.315 
0.866 1.429 0.435 -0.156 
0.191 0.142 -0.009 -0.002 

A A 

+ + 
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IIP46 

X v VP UP VPDP c CP VPCP tiPCP 

70.000 0.212 0.207 0.230 -0.005 0.483 0.211 -0.017 0.010 
71.500 1.570 0.923 0.564 -0.124 2.343 2.057 0.617 0.370 
73.000 2.995 1.167 0.693 -0.301 11.204 2.611 1.389 0.718 
74.500 .IJ.135 1.260 0.72l& -0.259 6.083 3.1115 1.785 0.655 
76.000 5.708 1.285 0.848 -0.219 8.3.15 3-370 2.315 0.599 
77.500 6.172 1.243 0.912 -0.034 9.346 3.596 2.119 0.319 
78 .. 500 6.249 1.304 0.943 0.092 9.303 3.1164 2.089 -0.255 
79.500 5.752 1.375 0.946 0.257 8.-83 3.611 2.1J86 -0.538 
81.000 11.699 1.330 0.815 0.287 7.075 3.268 2.113 -0.747 
82.500 2.667 1.349 0.740 0.340 .IJ.152 2.901 1.995 -0.877 
84.000 0.606 0.736 0.491 0.093 1.677 1.757 0.368 -0.315 
85.500 0.402 0.617 0.375 0.049 0.866 1.429 0.435 -0 .. 156 
87.000 0.105 0.207 0.193 -0.000 0.191 0.142 -0.009 -0.002 
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EXP47 

X w WP UP VPUP c CP WPCP lJPCP 

66.000 0.099 0.324 0.316 -0.0211 0.019 0.300 -0.025~ -0.021 
68.000 0.052 0.264 0.311 0.019 0.071 0.532 0.009 0.056 
70.000 1.166 0.912 . 0.516 -o .12l! o.B6l! 1.137 0.651 0.241 
72.000 2.411 1.233 0.623 -0.215 1.893 1.449 1.036 0.336 
74.000 3.597 1.233 0.770 -0.276 3.041 1.875 1.22.1J 0.580 
76.000 4.951 1.305 0.810 -0.123 .11.529 2.043 1.440 0.319 
78.000 5.334 1.274 0.868 0.221 4.589 2.012 1.191 -0.167 
80.000 5.021 1.247 0.773 0.133 4.375 1.939 1.114 -0.190 
82.000 3.041 1.510 0.765 0.391 2.608 1.742 1.103 -0.480 
84.000 1.664 1.061 o.6.1J8 0.328 0.972 1.255 0.776 -0.349 
86.000 0.712 0.893 0.590 0.138 0.528 1.056 0.337 -0.232 
88.000 0.449 0.466 0.452 0.045 0.043 0.832 0.135 -0.061 
go.ooo 0.004 0.345 0.217 -0.009 -0.346 0.102 -0.002 -0.002 

PLUME' iELOClTlES EXP~7.DAT z/lnR47.9B 
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BXPJI7 

X w WP UP WPUP c CP WPCP tJPCP 

66,000 0.099 0.324 0.316 -0.0211 0.019 0.300 -0.025 -0.021 
68.000 0.052 0,264 0.311 0.019 0.071 0.532 0,009 0.056 
70.000 1.166 0.912 0.516 -0.124 0.864 1.137 0.651 0.241 
72.000 2.1111 1.233 0.623 -0 .. 215 1.893 1.JIJJ9 1.036 0.336 
74.000 3.597 1.233 0.770 -0.276 3.041 1.875 1.224 0.560 
76.000 JJ.951 1.305 0.810 -0.123 JJ.529 2.043 1.440 0.319 
78.000 5.3311 1.274 0.866 0.221 4.589 2.012 1.191 -0.167 
80.000 5.021 1.247 0.773 0.133 4.375 1.939 1.114 -0.190 
82.000 3.0JI1 1.510 0.765 0.391 2.608 1.7JI2 1.103 -0.1180 
811.000 1.664 1.061 0.646 0.328 0.972 1.255 0.776 -0.349 
86.000 0.712 0.893 0.590 0.138 0.528 ·1.056 0.337 -0.232 
88.000 0.449 0.466 0.452 0.045 o.oli3 0.832 0.135 -0.061 
90.000 0.004 0.3115 0.217 -0.009 -0.3116 0.102 -0.002 -0.002 
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66.000 
67.500 
69.000 
70.500 
72.000 
73.500 
75.000 
76.500 
77.500 
78.500 
79.500 
80.500 
81.500 
82.500 
83.500 
Bll.500 
85.500 
86.500 
87.500 
88.500 

Ia Ol----

w MAIW 

0.255 3.267 
0.1177 2.973 
0.396 3.139 
1.D7ll 5.936 
2.204 6.090 
3.037 7.165 
3-975 8.550 
5.036 9.967 
5.405 10.2115 
5.433 10.399 
5.809 11.397 
.ll.gg6 9.859 
ll • .IJ31 8.710 
4.108 8.6!16 
3.207 7.9011 
3-477 8.051 
2.999 7.231 
2.133 6.090 
1.478 5.696 
1.305 4.153 

-10 -5 

264 

VEL OS 

MINW WP UP VPUP 

-0.669 0 • .1149 o .. 5UI 0.108 
-0.851 0.511 O .. ll56 0.066 
-0.629 0.430 0.385 0.0211 
-O.JlOB 0.8110 0.557 0.177 
-0.669 1.211 0.716 0.386 

0.287 1.272 0.753 0.285 
0.248 1.ll09 0.783 0.252 
0.680 1.367 0.791 0.195 
1.261 1.368 0.931 0.120 
0.874 1.517 0.929 -0.126 
0.268 1.388 0.885 -0.113 
1.241 1.254 0.860 -0.257 
0.189 1.511 0.787 -0.180 
0.5113 1.315 0.802 -0.312 

-0.188 1 • .1135 0.789 -0.386 
0.425 1.158 0.781 -0.156 

-0.009 1.204 0.751 -0.088 
-0.148 1.109 0.724 -0.020 
-D.II08 0.984 0.547 -0.173 
-0.168 0.822 0.576 -0.1119 

0 5 I 0 15 20 
r Ccml 
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Col 
ID ., 

...... 
e 
" .... 

r: . 
~ 2 
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X v 

'10.000 0.588 
'11.550 0.863 
73.000 2.077 
74.500 3.651 
76.000 5.225 
?7.500 6 • .-3~ 
78.500 6.990 
79.500 6.901 
80.500 6.507 
81.500 5.617 
83.000 4.040 
84.600 2.697 
86.000 1.!141& 
87.500 0.709 
sg.ooo o.JJ13 

•• 0._ ___ _ 

265 

VEL07 

MAXW HINW WP 

4.638 -1.329 0.559 
3.557 -0.819 0.557 
6.310 -0.576 1.0811 
8.996 -o.134 1.1J56 

10 • .1197 0.796 1.548 
12.122 0.3114 1.6.119. 
13.981 1.820 1.'108 
12.562 1.3110 1.569 
12.078 1.533 1.1171 
11.046 1.301 1.573 
12.308 0.218 1 • .1133 
7.832 -0.299 1 • .11111 
6.099 -0.923 0.946 
3.568 -0.8.1;2 0.5'12 
3-331 -1.065 0.384 

X X X X X X X X X 

66666666 
6 6 
+ + + + + 

+ + 
+ + + 

UP 'VPUP 

o.Ji~9 0.061 
o.soo 0.066 
0.652 0.2511 
0.889 0.421 
0.978 0.393 
1.007 0.317 
1.069 0.324 
0.984 -0.017 
1.011 -0.0113 
0.951 -0.365 
0.895 -0.393 
0.728 -0.436 
0.612 -0.161 
0.1164 -o.oso 
0.366 -0.029 

20 
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VEL10 

X w HAX 'i MIN W 

66.000 o.ooa 3 • .1J22 -0.882 
68.000 0.224 10.116' -0.741 
70.000 1.0511 8.351 -0 • .1&99 
72.000 1.1142 11.911 -0.741 
74.000 2.723 11.316 0.178 
76.000 4.600 12.352 0.767 
77.550 5.489 11.734 0.611 
79.000 5.627 10.131 1.058 
ao.ooo 5.912 12.293 1.135 
81.000 5.1ll3 10.193 0.942 
82.500 4.671 13.133 0.158 
84.000 3.989 8.431 -0.219 
85.550 2.285 ?.718 -0.060 
87.000 1 • .1J10 6.573 -0.379 
88.500 1.137 Ja.677 -0.1159 
go.ooo 0.74Ji 3.983 -0.079 
91.500 0.367 3.349 -0.379 
9;).000 0.411 1 .. 251 -0.199 

-w•6. 1 Jl e xp[-.Q2J9r2J 
D W 
,.~ ., ·rurr 
+ "i"Tu· 

w w w W X W 

6 666 6 6 
+ + + 

+ + + 

WP UP WPUP 

0.219 0.304 -0.007 
0.349 0.386 0.027 
0.971 0.567 0.208 
0.902 0.645 0.184 
1.369 0.776 o.ll89 
1.383 0.878 0.1166 
1.1193 0.996 0.352 
1.385 0.967 -0.158 
1.!187 0.934 -0.093 
1.375 0.931 -0.131 
1.454 0.905 -0.189 
1.500 0.835 -0.365 
1.162 0.717 -0.240 
0.868 0.566 -0.165 
0.791 0.527 -0.150 
o.ll69 0.4511 -0.038 
0.205 0.305 0.002 
0.194 0.337 -o.ooa 

• W 

• 6 6 6 

+ + + + 
+ 
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VEL11 

X v MAXW MIN W WP UP WPUP 

64.000 0.333 3.631 -0.388 0 .. 599 0.1178 0.155 
66.000 0 .. 779 3-776 -0.609 0.593 0.1188 0.125 
68.000 o .. eso 11.028 -0.548 0.655 0.558 0.077 
'JO.OOO 1.1131 6.1l96 -o.268 1.203 0.661 0.376 
72.000 2.915 y.676 0.169 1.196 0.793 0.1117 
7.11.000 3.756 g.o411 0.189 1.506 0.870 0.569 
77.500 5.366 12.1130 1.087 1.513 0.977 0.300 
79.000 5.612 12.226 1.068 1.1187 0.963 0.102 
eo.5oo 5.100 10.1175 0.894 1.1153 0.913 -0.128 
82.000 5.062 10.1190 0.189 1.1100 0.943 -0.217 
83.500 3.907 9.375 0.2118 1.511 0.932 -o.595 
85.000 2.9.116 7.807 -0.208 1.401 0.775 -0.233 
86.500 1.514 5.299 -0.288 1.161 0.6110 -0.227 
88.000 0.834 3.377 -1.299 0.713 0.576 -0.106 
89.500 1.187 11.615 -1.319 0.850 0.588 -0.170 
91.500 0.738 4.1191 -0.'150 0.839 0.619 -0.231 
93.500 0.327 2.267 -o.649 0.382 0.391 -o.oo8 
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· VEL13 

X v MAIW MINV WP UP VPUP 

72 .. 000 -0.170 0 .. 762 -1.520 0.242 0 .. 251. o.ooa 
73.000 0.341 Ja.673 -1.233 0 .. 576 o.Jt62 0.057 
74.000 0.895 4.655 -0.705 0.731 0.552 o.oao 
75.000 2.5411 10.265 -0.263 1.305 0.783 0.3.111 
76.000 3.613 g.47ll -0.0211 1.420 0.9311 0.455 
77.000 5.111 11.431 0.371 1.807 0.966 0.593 
78.000 6.340 12.725 1.188 1.863 1.092 0.609 
79.000 7-9118 15.033 2.812 1.756 1.157 0.402 
80.000 7.859 14.218 2.719 1.820 1.176 -0.222 
81.000 6.727 12.667 1.553 1.728 1.085 -0.286 
82.000 4.783 11.877 0.606 1.636 0.958 -0.501 
83.000 3.27.11 8.699 -0.988 1.239 0.824 -0.290 
84.000 2.143 6.636 -0.928 1.109 0.705 -0.211 
85.000 1.265 4.954 -o.685 0.779 0.621 -0.072 
86.000 0.602 3.198 -0.604 0.443 0.390 -o .. 020 
87.000 0.369 2.103 -o.725 0.259 0.314 -0.012 
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VEL15 

X w MAXW KIHW WP UP WPUP 

70.000 1.062 5.299 -0.629 0 .. ?12 0.570 0.134 
73.000 2.923 9.563 0.189 1.ll45 0.895 0.663 
74.500 .11.310 g.407 -o.288 1.1165 1.021 0.602 
76.000 5.538 10.840 0.699 1.549 1.049 0.530 
77.500 6.606 11 .. 990 1.852 1.636 1.158 0.550 
?8.500 ?.220 12.1174 2.733 1.599 1.155 0.372 
79.500 ?.186 12.269 2.004 1.621 1.159 -0.038 
80.500 7.018 12 ... 59 2.267 1.662 1.210 -0.095 
82.000 6.101 12.138 1.068 1.774 1.051 -0.351 
83.500 .11.931 9.921 0.699 1.585 1.117 -0.450 
85.000 3.1164 8.822 0.601 1.506 o.go6 -0.542 
88.000 1.295 5.524 -0.548 0.939 0 .. 629 -0.190 
91.000 0.~09 3.631 -0.831 0.317 0.397 -o.oog 
92.5UO 0 .. 258 0.932 -0.609 0.214 0.322 -0.001 
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X w MAX W 

63.000 0.378 0.889 
65.000 0.255 2.135 
67.000 1.402 5.215 
69.000 2.356 7.721 
72.000 3.518 9.016 
73.500 11.1119 9.607 
75.000 5.868 11.126 
76.500 6.391 11.323 
78 .. 000 6.642 12.874 
79.500 6.429 13.746 
81.000 6.6118 11.1189 
83.000 5.398 10 .. 375 
85.000 11.029 9.464 
87.000 3.056 7.905 
89.000 2.209 7.115 
91.000 1.058 JJ.819 
93-000 0.995 ll.674 
95.000 0.107 1.685 
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VEL17 

MINW 

-0.643 
-0.935 
-0.498 
-0.003 
0.017 
0.506 
1.6115 
0.809 
2.329 
1.1128 
2.1125 
1.269 
0.486 
0.283 

-o.003 
-1.270 
-1.777 
-o.aog 

JC X 
lJI JC 

4 A A A 

+ + + 
+ 

VP UP WPDP 

0.206 0.375 0.005 
0.283 0.391 0.020 
0.843 0.591 0.165 
1.111 0.703 0,.287 
1.415 0.983 0.661 
1.571 1.012 0.589 
1.556 1.108 0.451 
1.818 1.228 0 .. 354 
1.582 1.226 0.217 
1.768 1.141 o.ooa 
1.585 1.067 -0.402 
1.569 1.090 -0.450 
1.527 0.963 -0.603 
1.240 0.881 -0.447 
1.2.1J2 0.802 -0.336 
0.813 0.737 -0.180 
0.883 0.638 -0.128 
0.273 0.433 -0.031 
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VEL19 

X v HAXW MINW WP UP WPUP 

68.000 0.105 1.355 -1.305 0.31Ii 0.509 0.008 
70.000 1.1ll8 !1.62ll -0.990 0.897 0.676 0.206 
72.000 2 • .1J26 7.186 -0.470 1.366 0.864 O • .IJ56 
7ll.OOO 3.804 9.783 -0.078 1.605 1.043 0.724 
76.000 5.288 12 .• 012 0.695 1.819 1.201 0.930 
77.500 6.891 13.020 1.355 1.735 1.146 0.316 
78.550 T.ll27 14.196 2.043 1.660 1.208 0.1.1J8 
79-500 .,.053 12.556 1.375 1.810 1.159 0.089 
80.500 7.179 13 • .IJ77 2.968 1.590 1.156 -0.150 
82.000 6.291 12.160 0.634 1.789 1.153 -o.267 
83.500 !1.502 11.2314 0.167 1.726 1.058 -0.675 
85.000 3-57ll 8.987 -o.719 1.290 0.933 -0.3116 
86.500 2.713 7.957 -0.823 1 • .1199 0.937 -0.670 
88.000 1.986 7.ll23 -O • .IJ70 1.3011 0.837 -0.466 
89.500 0.889 5.415 -0.7110 0.762 0.608 0.009 
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'VEL21 

I w HAXW MIN W WP UP 

70.000 -0.033 0.813 -0.896 0.157 0.209 
71.000 0.188 2.263 -0.875 0.328 0.355 
72.000 0.833 J&.865 -0.6614 0.717 0.513 
73.000 1.349 5.777 -1.621 1.000 0.620 
74.000 2.309 7.208 -0.327 1.309 0.681 
75.000 3.068 8.1167 -0.1111 1.400 0.802 
76.000 3.656 9.505 0.485 1.417 0.826 
77.000 5.223 11.109 0.443 1.558 0.856 
78.000 6.690 11 .. 785 2.045 1.571 0.916 
79.000 6.981 12.644 2.736 1.553 1.032 
80.000 7.307 12.435 1.504 1.631 0.970 
81.000 5.949 11.294 1.504 1.573 0.901 
82.000 4.812 10.812 -0.097 1.589 0.890 
83.000 3.650 9.828 -0.685 1.455 0.758 
84.000 2.06!1 7.570 -0.685 1.388 0.751 
85.000 1.676 6.350 -0.369 0.995 0.543 
86.vvCi 1.265 5.633 -0.706 0.834 0.569 
87.000 0.575 2.989 -0.706 0.513 0.446 
88.000 0.519 2.814 -1.343 0.510 0.414 
89.ooo 0.178 0 .. 875 -0.769 0.156 0.273 
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-o.ooo 
0.005 
0.067 
0.203 
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0.411 
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-0.038 
-0.042 
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?JI.500 
'15.500 
?6.500 
77.500 
?8.500 
'19.500 
80.500 
81.500 
82.500 
83.500 
84.500 
85.500 

w 

0.319 
1.300 
2.535 
ll.ll39 
6.266 
'1.099 
6.021 
.11.000 
2.222 
1.042 
0.288 
0.061 
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VEL23 

MAIW MIRV 

3.11114 -0.987 
6.517 ..0.565 
'1·901 -o.670 

10.296 0.312 
11.205 1.011 
12.853 2.512 
12.317 0.7ll5 
10 • .1123 0.312 
.,.354 -0.987 
.11.615 -0.670 
2.630 -0.945 
1.898 -0.839 

0 
r Ccm> 

VP UP WPUP 

0.5117 0.1130 0.040 
0.8411 0.513 0.032 
1.331 0.662 0.115 
1.522 0.751 0.125 
1.682 0.814 0.104 
1.597 0.843 0.054 
1.'129 0.822 -0.055 
1.489 0.716 -o.ooll 
1.173 0.565 -0.003 
0.797 0.1133 -0.022 
o.ll17 0.328 -o.oo6 
0.199 0.219 -0.006 
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68.000 
70.000 
72.000 
7.IJ.OOO 
76.000 
78.000 
79.000 
80.000 
82.000 
84.000 
86.000 
88.000 
90.000 

w MAIW 

0.097 1.507 
0.020 1.338 
0.629 ll.796 
1.859 6.911 
3.761 8.210 
5.991 11.122 

. 6.143 11.131 
5.9~5 11.131 
JJ.241 8.610 
1.998 6.639 
0.736 3.9119 
0.172 2.032 
0.006 1.462 

274 

PAP12 

MINW VP UP WPUP 

-1.237 0.117 0.181 -0.001 
-1.466 0.136 0.187 -0.001 
-1.104 0.740 0.359 0.058 
-0.556 1.175 0.703 0.393 
-0.686 1.475 0.779 0.395 
2.154 1.478 0.892 0.357 
1.259 1.492 0.905 0.010 
1.574 1.507 0.930 0.0911 
0.251 1.532 0.795 -0.226 

-0.889 1.010 0.614 -0.128 
-0.7311 0.683 0.427 -0.028 
-1.491 0.4211 0.2511 -0.039 
-1.345 0.111 0.107 0.001 
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PAP13 

X w MAXW MINW WP UP WPUP 

66.000 0.1911 2.618 -2.153 0.363 0.338 0.020 
68.000 0.576 3.207 -1.710 0.581 0.589 0.070 
10.000 0.713 5.577 -0.663 0.877 0.573 . 0.170 
72.000 2.752 8.590 -1.032 1.490 o.9ll5 0.657 
1li.OOO 3.7.1J8 9.198 -0.028 1.602 o.980 0.618 
76.000 6.453 13.12JI 1.776 1.8112 1.288 0.793 
78.000 7.330 15.739 0.735 1.956 1.313 0.415 
79.000 7.838 13.932 1.977 1.718 1.115 0.181 
81.000 6.822 12.904 1.798 1.802 1.229 -0.244 
83.000 5.662 12.166 0.390 2.028 1.077 -0.562 
85.000 4.022 10 • .IJ27 0.286 1.671 1.056 -0.1137 
87.000 2.ll77 9.015 -0.734 1.657 1.112 -0.927 
89.000 0.627 5.865 -1.588 0.910 0.658 -0.093 
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P!P16 

1 w MAX W MIN W 1lP tJp VPOP 

75.000 0.266 2.810 -2.229 0.313 0.219 0.006 
76.000 o.goll --373 -2.229 0.592 0.401 0.032 
77.000 2.617 9.870 -1.286 1.308 0.766 0.194 
78.000 5.1.116 13.179 1.000 1.581 o.gso 0.099 
79.000 6.872 12.637 1.185 1.762 1.021 0.108 
80.000 6.115 12.228 0.938 1.711 0.928 -0.087 
81.000 3.223 8.582 -1 • .1150 1.355 0.782 -0.061 
82.000 1.328 5.480 -2.062 0.910 0.489 -0.037 
83.000 0.595 3.801 -1.863 0.508 0.350 -0.014 
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PAP17 

X v HUll MINW WP UP WPOP 

87.000 0.271 1.885 -1.863 0.2119 0.2112 0.004 
85.000 0.993 6.301 -1.631 0.899 0.552 -0.083 
83.000 3.883 12.110 -1.270 2.040 1.039 -0 • .1189 
81.000 6.828 13.873 0.8111 2.105 1.3la5 -0.662 
80.000 8.382 16.108 1.399 2.123 1.373 -0.118 
79.000 8.535 15.062 1.11115 2.351 1.1137 0.370 
78.000 8.061 111.908 0.876 2.191 1.369 0.670 
77.000 6.316 13.179 0.1112 2.123 1.2611 0.780 
76.000 .11.178 ~0.230 -0.670 1.876 1.275 0.717 
711.500 1 • .1161 6 • .1163 -2.633 1.192 0.789 0.229 
73.000 0.687 5.507 -2.229 0.686 0 • .1143 0.086 
71.500 0.233 2.261 -2.1114 0.277 0.335 -0.011 
70.000 0.2119 2.618 -2.1148 0.214 0.137 o.ooo 
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PAP20 

J w MAXW HINW WP UP WPUP 

71.000 3.096 10.519 -1.294 1.795 1.153 0.943 
?4.000 6.088 13.566 -0.228 2.230 1.1J39 1.165 
77.000 8.707 16.112 1.532 2.2!14 1.535 0.669 
79.000 8.666 16.1177 2 •. 059 2.133 1.527 0.160 
81.000 8.477 15.383 1.200 2.223 1.455 -0.194 
84.000 5.573 12.5214 -1.124 2.006 1.390 -0.552 
87.000 3.107 10.050 -0.787 1.729 0.931 -0.380 
go.ooo 2.048 7.326 -1.9!19 1.399 0.860 -0.442 
93.000 0.530 3.519 -2.154 0.531 0.567 0.065 
96.000 0.323 2.747 -2.202 0.286 0.230 -O.OQ1 
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PAP?.1 

% v MAIW MIN W WP UP WPUP 

68.000 0.308 3.245 -2.377 0.361 0.236 0.002 
71.000 1.260 7.713 -2.393 1.071 0.780 0.242 
7li.OOO 3.388 11.704 -0.742 1.727 1.055 0.426 
77.000 ?.120 13.590 -1.1164 2.086 1.328 0.662 
79.000 8.170 16.618 2.579 1.913 1.421 -0.036 
81.000 6.886 1.11.000 -0.393 2.088 1.380 -0.281 
83.000 4.363 11.986 -2.617 1.857 1.041 -0.487 
86.000 1.388 7.113 -2.940 1.309 0.682 -0.183 
89.000 0.751 6 .. 197 -2.778 0.705 0.418 -0.081 
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PAP30 

J: w KAXW KIN W WP UP WPUP 

66.000 0.181 1 •. 164 -2.030 0.333 0.1121 o.ooo 
69.000 1.773 7.'(66 -0.894 1.161 0.785 0.257 
72.000 11.567 111.682 -1.324 1.979 1.290 0.850 
75.000 8.372 17.239 2.001 2.387 1.585 1.183 
77.000 10.320 21.210 2.580 2.5119 1.616 1.040 
79.000 10 • .IJ98 18.621 3.596 2.517 1.581 -0.125 
81.000 9.565 18.944 2.429 2.734 1.1183 ..0.896 
84.000 5.620 111.816 0.723 2.276 1.440 -1.103 
87.000 2.816 10.J&63 -0.467 1.577 0.970 -0.568 
go.ooo 1.112 6.359 -1.726 1.081 0.790 -0.216 
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PAP32 

X v MAX V MIN V VP 1JP VPUP 

71.000 0.057 2.639 -.11.867 0.378 0 • .11111 -0.001 
73.000 1.225 ?.81&0 -3.057 1.312 0.910 0.111.11 
75.000 ll.229 12.725 -1.257 1.91&0 1.219 0.?62 
?7.000 7.988 111.605 1.132 2.,175 1.5116 0.?95 
?8.000 9.745 17.520 2.759 2.169 1.572 0.572 
?9.000 9.944 1?.228 3.297 2.232 1.593 0.032 
80.500 7.881 17.186 0.880 2.511 1.1131 ..0.708 
82.500 .11.314 12.086 -0.17ll 1.972 1.217 -o.664 
84.500 1.329 6.327 -1.190 1.064 0.715 ..0.153 
86.500 0.300 Ja.178 -1.058 0.426 0.1101 -o.ooo 
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PAP32 

X w MAX W MIN W WP UP VPUP 

71.000 0.057 2.639 -!1.867 0.378 o.J&1.11 -0.001 
73.000 1.225 '7.8ll0 -3.057 1.312 0.910 O • .IU4 
75.000 !1.229 12.725 -1.257 1.9ll0 1.219 0.762 
"17.000 7.988 11&.605 1.132 2.,175 1.5116 0.795 
78.000 9.745 17.520 2.759 2.169 1.572 0.572 
79.000 9.944 17.228 3.297 2.232 1.593 0.032 
80.500 7.881 17.186 0.880 2.511 1 • .1131 ..0.708 
82.500 'l.314 12.086 -0.174 1.972 1.217 -o.664 
84.500 1.329 6.327 -1.190 1.064 0.715 ..0.153 
86.500 0.300 !1.178 -1.058 0.1&26 o.J&o1 -o.ooo 
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