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ABSTRACT 

Mammalian histogenesis is a sophisticated process of coordinated changes of cellular 

composition governed by selective gene expression. This thesis focuses on the systematic 

application of modern RNA-seq methods to histogenesis processes in developing mouse 

embryos. Most of the work presented here is conducted as part of the ENCODE 

(ENCyclopedia Of DNA Elements) Project. Chapter 1 introduces the current advances of 

transcriptome studies on tissue development. Chapter 2 discusses a large-scale study on 

the whole-tissue transcriptome of 12 embryonic tissues at up to 8 timepoints and 5 

additional perinatal tissues. Coherent themes of biological function and underlying 

regulatory mechanisms are revealed from the large-scale analysis. Chapter 3 presents a 

high-resolution single-cell RNA-seq study focused on the developing forelimb of the 

mouse embryo. This approach enables the assignment of differential genes to 

corresponding lineages and provides an even more accurate picture of RNA level patterns 

and regulatory modes. Finally, whole-tissue and single-cell methods are compared, 

contrasted, and integrated in Chapter 4 to extrapolate from the main discoveries of this 

thesis. 
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1 
C h a p t e r  1  

CURRENT ADVANCES IN TRANSCRIPTOME STUDIES 

Abstract 

In the past decade, second-generation sequencing has spurred a wave of more 

comprehensive and quantitative transcriptome assays. New technologies enabled accurate 

transcript counting with new isoform discovery, pushed sensitivity limitation towards 

single-cell standard, increased throughput to up to tens of thousands of cells per 

experiment, and are moving towards in situ measurement with comparable sensitivity and 

resolution. In this chapter, I am going to introduce the current advances in the field of 

transcriptomics with a focus on the application on development.  

1.1 Introduction 

The mammalian genome is estimated to contain more than 40,000 genes, responsible for 

the full variety of structures and functions in every cell of a tissue throughout the life of 

the animal. Each cell selectively expresses a subset of genes that defines its identity and 

function. To read out gene expression profiles, polyadenylated RNAs have been widely 

used as indicators of genome output. Thanks to their well-defined and coherent 

biochemical property, massive parallel quantification had been achieved as early as 1995 

using microarray probe hybridization1. Although this method provided easy measurement 

for known transcripts, it was bounded by prior knowledge, could not discover novel 

sequences, and had trouble detecting splice isoforms and other more subtle sequence 

variations of RNAs.  



 

 

2 
Sequencing-based methods have been independently developed to characterize 

transcripts without prior knowledge2,3,4. A breakthrough was achieved that was especially 

important for the complex transcriptomes of large mammalian genomes5,6. RNA-seq, 

which is based on sequencing cDNA, provided the ability to discover new transcripts, 

and higher sensitivity to detect rare but meaningful transcripts from low amounts of input 

material. This triggered a revolution in transcriptome quantification7 and helped prompt 

the trend to convert “omics” and screening studies into a count-by-sequencing problem8 

that could be routinely solved across virtually all organisms. 

The technology boundary was further pushed to achieve single-cell resolution. This 

required optimizations in library construction9,10 and manipulation of microfluidics11,12,13 

to enable increasingly large-scale single-cell readout. High-throughput single-cell 

measurements provide the power to deconvolute tissue complexity. A subset of these 

methods can also take on more demanding questions about the differences among similar 

cells of a given “type”. With the ever-advancing technologies, numerous studies have 



 

 

3 
been carried out to understand tissue development at whole-tissue14,15,16,17 and single-

cell levels18,19,20,21,22,23,24.  

I am going to briefly introduce the development and most pertinent characteristics of 

current transcriptome methods and their application to tissue development, the subject of 

this thesis. 

1.2 The molecular biology and bioinformatics of mRNA quantification 

mRNA is a good proxy for gene expression due to the ease to transfer its sequence 

information into double-stranded DNAs for second-generation sequencing and its 

reasonable correlation with protein-abundance25. However, the majority of intracellular 

RNAs are ribosomal RNAs (rRNAs) that do not serve as templates for translation. To 

enrich signals, microarray-based methods cherry-picked known transcripts one by one 

through probe hybridization. Sequencing-based methods mainly use two different types 

of strategies to focus the sequencing resources on the RNAs of interest (typically aiming 

for mature mRNAs and lncRNAs). The first strategy is to remove ribosomal RNAs by 

probe hybridization before downstream library construction26. This method (variously 

called total RNA-seq26 or Ribo-minus RNA-seq27) not only captures mature mRNAs but 

also other non-polyA RNAs such as histone mRNAs and immature RNAs28. Meanwhile, 

short RNAs such as snoRNAs, miRNAs, and tRNAs can also remain and still consume 

the majority of the reads. A pre-selection based on the sizes of intact total RNAs29 is 

usually required before library construction to combat this problem. The relative success 

of these biochemical enrichments varies with protocol details and execution and is not 

equally reproducible for all practitioners and for all starting materials. These issues bring 
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extra technical factors that influence variation and subsequent quantifications. The 

second approach is to positively select polyA RNA either by Oligo(dT) selection5 or 

Oligo(dT) priming30. This method focuses on polyA RNA only and has been the more 

widely used choice for mRNA sequencing. In the following part of this chapter, the word 

“RNA-seq” will only refer to the latter strategy. 

RNA-seq makes use of second-generation sequencing methods to dilute cDNA libraries 

and count the sequencing reads derived that match the sequences of each gene. Unlike 

DNA mapping, RNAs may contain splice sites so that a read can “jump” over intron 

regions, adding to the difficulty of quantification. Methods that can map junction-

spanning reads31,32 and those that compare mapped coordinates with transcript 

annotations33,34 have been developed and improved35,36,37. More recently, alignment-free 

methods directly look for reads that can match known transcript sequences without 

mapping to the whole genome and guessing how transcripts are spliced38,39. This recent 

kind of fast methods essentially works as “artificial microarrays” as they only look for 

counts of known transcripts, except that their “probes” have much lower cross-

hybridization confusion than to the microarray’s physical probes. On the other hand, for 

unknown transcript and isoform discovery, RNA-seq data can be fruitfully used to detect 

and reconstruct novel transcript structures to add to existing annotations for 

quantification of new isoforms40,41,42. 

Contemporary RNA-seq is a stochastic sampling process that does not give absolute copy 

numbers of transcripts, although well-executed spike-in controls can help with 
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calibration43. Normalization is required to correct for different sequencing depth when 

comparing between samples and to correct for transcript lengths when comparing 

between transcripts. Therefore, read counts are usually divided by sequencing depth and 

transcript length and adjusted in orders of magnitude to yield RPKM (reads per kilobase 

of exon model per million mapped reads) or FPKM (fragments per kilobase of transcript 

per million mapped reads) values5. However, in the past years, other metrics were 

proposed such as RPM (reads per million mapped reads) /CPM (counts per million) 44 

and TPM (transcripts per million) 45 aimed at using units that can sum to a constant 

within every sample to try to achieve more faithful estimation of real physical 

parameters, which may not be as good as they claimed.  

It has been a long journey to figure out what the most physiologically meaningful metric 

is for RNA. RT-qPCR methods used putative “house-keeping” genes as controls to get 

relative abundance46,47. However, as I learn more and survey a wider range of cell types 

and cell states, the notion of a very stable and reliable RNA level per cell has broken 

down. To my knowledge now, there is no house-keeping gene or gene set whose 

transcript abundance may be constant48, and this is even more true at single-cell level. 

This means that historic studies need to be viewed with the knowledge that the amount of 

a housekeeping standard transcript is really a sampled distribution that is probably quite 

good for comparing multiple samples of a given tissue or cell type, but nevertheless is 

likely to have systematic issues across different tissues, cell types, and genotypes. Unlike 

qPCR, RNA-seq normalizes its signal against a whole-cell sum that is likely to be more 

robust. RPM/CPM divides the read count by sequencing depth and is thus proportional to 
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the mass of each transcript among different transcripts in the same sample, while 

FPKM and TPM consider transcript length and therefore are both proportional to the 

molar concentration and copy number of each transcript among different transcripts in 

the same sample. On the other hand, when comparing the same transcript among 

different samples, which is what RNA-seq is mostly aimed to do, CPM and FPKM for 

the same transcript would go hand-in-hand (if CPM of a transcript in Sample A is higher 

than that in Sample B, FPKM in A would also be higher than that of Sample B), both 

reflecting relative mass of that transcript, while TPM measures relative molar 

concentration. Therefore, comparing these units across samples depends on how a 

biologist defines the “fraction” (of mass or counts). It is not yet sure what is a more 

meaningful parameter for gene expression measurement as a predictor of protein output, 

since the mass (and thus length) of each transcript may be related to how much 

translational machinery it can take if longer transcripts can bind and use more ribosomes. 

But we also know that rates of ribosome loading and translational pauses (or lack thereof) 

vary for certain messages and entire systems, meaning that there are exceptions to overall 

length/loading generalization. On the other hand, relative molar concentration would be a 

better estimator if we believe all the transcripts share more or less the same translation 

rate per copy. We cannot know for sure which proposal is the ideal normalization method 

merely based on computation legitimacy without knowing how cells biochemically 
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interpret “concentration”. One experimental effort to better estimate gene expression 

using transcriptomic approach is to profile ribosomes on transcripts49. 

Another important task for RNA quantification, and the most central one presently in the 

areas of developmental biology, is differential RNA level analysis. To compare gene 

expressions between two samples, multiple computational methods have been developed, 

and negative binomial model-based algorithms proved to be able to capture read-count 

over dispersion compared to Poisson models50,51. However, due to the fact that 

biologically meaningful RNA levels often differ by orders of magnitudes and that their 

estimated abundance follows log-normal distribution, it has also become a common 

practice in the wider community to use t-test and ANOVA on log-transformed FPKM or 

TPM values.  

 Log-transformed FPKM values have also been frequently used when multiple samples 

get compared and grouped. Principal component analysis52 (PCA) has been widely used 

to find “components” of co-expressed modules, classify samples, and reduce 

dimensionality to understand the main features of the data collection. Similarly used 

methods also include clustering analyses53,54,55 and numerous other methods56,57,58,59 for 

data mining among large-scale datasets. A more recent method60,61 has been combining 

PCA and CCA (canonical correlation analysis)62 to explain data structures based on 

metadata and was able to sensitively find new insights. 
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Applying RNA-seq quantification approaches to multiple samples have already showed 

off its power to quantitatively and comprehensively define the development of individual 

tissues. By comparing different tissues at different developmental stages, tissue-specific, 

age-dependent, and ubiquitous gene expression patterns have been revealed17,63,64,65,66,67. 

These studies formed some initial pictures of the structure of mouse transcriptome. 

Pervouchine et al. discovered that up to 40% of evolutionarily conserved genes are 

relatively constant across cell types in the mouse genome17. Lin et al.66 did a joint RNA-

seq analysis of human and mouse tissues and discovered that gene expression profiles are 

more dominated by tissue type instead of organism identity. Among these dominant 

tissue-specific signatures, those of testes, brain, liver, muscle, and kidney were the most 

prominent in terms of the number of tissue-specific genes. A similar conclusion was 

derived by Söllner et al.68 independently. Additionally, in the latter study, thymus and 

pancreas turned out to be the top two outliers separated from other tissues and their PCA 

plot showed that the brain and liver mark the two extremes of the top principle 

component among mouse tissues in their collection. These discoveries show that the 

hierarchical mouse transcriptome contains dominant structures that can be reproducibly 

identified, as well as minor features that may be under-emphasized in different degrees 

due to different experimental and computational setup.  

However, there has not been a large-scale systematic study of multiple samples spanning 

multiple time points assayed in the same way in embryonic mice to gain insights on gene 

regulation. To achieve this, on one hand, a larger-scale study at high depth elevates 

sensitivity and captures fine features of transcriptome for downstream studies; on the 
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other hand, emerging single-cell technology brings new possibilities to mine more 

deeply into the complexity of a given tissue development. 

1.3 Single-cell resolution 

Measuring the single-cell transcriptome has long been a goal for developmental 

biologists69,70. Improvement in RNA-seq library construction made it possible to measure 

a large number of transcripts in the same cell with reasonable sensitivity9,10. It was 

discovered that gene expression variations among single cells is largely attributed to 

intrinsic biological variations rather than merely technical stochasticity71. Integration of 

mRNA-seq library construction with FACS sorting72, microfluidics11,13,12, pool-split 

barcoding73, and microwell handling74,75 further increased the throughput of single-cell 

RNA-seq assays. These methods come in two major categories: full-length profiling or 3’ 

tagging76. Full-length profiling methods such as MARS-seq72 and C1 Fluidigm SMART-

seq assays11 provide good coverage over longer transcripts and thus have higher isoform 

resolution. Gene expression levels are usually measured in FPKM or TPM units. 3’ 

tagging methods such as inDrop13, Drop-seq12, Seq-well74, and Microwell-Seq75 use 3’ 

terminal sequence of transcripts as an anchor point for mRNA capture and gene 

identification. Although this method cannot resolve splice isoforms, it is easy to perform 

on beads that can greatly scale up parallel reactions and increase sample size at the 

sacrifice of per-cell quality. This class of methods usually quantifies RNA in digital 

counts. 

Unlike traditional “whole-tissue” RNA-seq methods, single-cell RNA-seq meets the 

challenges, in variable degrees, of low input material and low signal-to-noise ratio. One 
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of the sources of noise in classical RNA-seq comes from differential PCR 

amplification when multiple PCR cycles are involved, which are part of the standard 

methods. To solve this problem, two major approaches have been developed. One way is 

to trace the original cDNA fragment by introducing a short random polymer DNA tag 

called unique molecular identifier (UMI)77 during reverse transcription. This method 

keeps an ID of each individual starter cDNA fragment and helps collapsing PCR 

duplicates that have the same tag. UMI-based methods have been a routine and generally 

effective part of droplet-based 3’ tagging methods except for occasional PCR-based 

errors that can produce nucleotide substitution and indels in the UMIs78. Another 

approach is to eliminate PCR-based exponential amplification steps. One such example is 

CEL-seq79,80, which linearly amplifies cDNA sequences to minimize over-amplification 

noise and has demonstrated its power to build a cell atlas for early Caenorhabditis 

elegans embryo development. 

As single-cell RNA-seq is gradually improved and democratized, development biology 

has been experiencing more cell type-level discoveries. So far, single-cell RNA-seq has 

been used most to discover novel cell types23,24, compare and contrast cell 

compositions75,81, and increasingly, to track cell lineage during migration82, 

differentiation83, and regeneration19 in embryos and tissues.  

The ability to infer cell lineage maps based on large numbers of single-cell snapshots of 

gene expression is especially intriguing for development biologists. Taking advantage of 

the fact that cell types can be robustly defined by a shallow sequencing84 and that a large 
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sampling experiment usually captures cells at “intermediate” states in a lineage, 

multiple computational approaches have been developed to infer lineage relationships 

between cells based on their pair-wise similarity. A first group of methods such as 

Monocle85,86 and Waterfall87 reduces transcriptome dimensionality and then constructs a 

minimum spanning tree to define the backbone of the trajectory tree before filling in 

details with individual cells. A second group of methods such as Wanderlust88 and 

Wishbone89 uses k-nearest neighbor (knn) graphs to link similar cells together and then 

smoothen out a shortest path with or without bifurcation allowed. Unlike these methods, 

a more recent algorithm goes on a different path. This algorithm called RNA velocity90 

implements the idea that unspliced pre-mRNAs foreshadow cell fate transition91 utilizing 

the fact that these pre-mRNA sequences are present in the single-cell RNA-seq10 due to 

mis-priming. Therefore, based on these hitchhiked pre-mRNAs, RNA velocity algorithm 

constructs a hypothetical “extrapolated state” linked to each of the single cells. It not only 

predicts the direction a cell is moving in but also estimates how fast the transition will be. 

It would be interesting to compare these lineage inference algorithms among themselves 

and against experimental lineage tracing methods92,93 for evaluation. 

In terms of its application to embryo development, single-cell RNA-seq has so far been 

used to construct large-scale cell-type maps in multiple tissues by at least two 

independent teams81,75. Both of them were able to find distinct cell types, common or 

biased, between different organs. Single-cell RNA-seq has also been coupled with a 

lineage-tracing method to construct a lineage map of the zebrafish embryo83. 

Interestingly, this study discovered that a computationally inferred “lineage map” based 
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on cell states is not necessarily overlapping with the real lineage history83, which raises 

the question about what a “lineage map” really means. The power of single-cell RNA-seq 

to define cell types has also been used to infer regulatory codes. Buenrostro et al.94 

integrated single-cell RNA-seq and single-cell ATAC-seq of the same sample and were 

able to match their subpopulations. By matching gene expression profiles with chromatin 

accessibility, they were able to infer transcription factors that potentially regulate cell 

state maintenance and transition. As more and more single-cell characterization studies 

are done, the structure of cell type-specific gene expression and regulation would become 

increasingly clear. 

1.4 New directions 

Transcriptome studies have evolved rapidly in the past decade, from whole-tissue to 

single-cell and from low-throughput to high-throughput. Their evolution is still going on. 

Tissue development is a coordinated process where cells interact with each other in a 

limited space with carefully tuned distribution of chemical cues and mechanical 

parameters. Spatial information that RNA-seq can acquire is usually limited by the 

minimal dissection size of a tissue. Although laser-assisted microdissection techniques 

may accurately extract samples or cells at a defined spatial coordinate on a tissue95,96, 

they cannot be done in both a precise and high-throughput way. Therefore, multiple 

teams have been developing high-throughput versions of single-cell RNA-seq that 

maintain spatial information. One established method is called “spatial transcriptomics” 

that aligns an array of barcoded reverse transcription primers against histological sections 

to record two-dimensional spatial coordinates followed by linear amplification and 
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library construction97. This method achieves a resolution at 100um (10-20 cells) but 

can be further deconvoluted by single-cell RNA-seq from a comparable sample98. New 

ways of introducing spatial barcodes before downstream RNA sequencing may give rise 

to better spatial transcriptomic methods. Recent prototypes of “probe hybridization”-

based methods such as seqFISH99 and MERFISH100 show that spatial patterns of up to 

1000 RNA species can be visualized with single-cell resolution. Intron seqFISH further 

demonstrated its polyA-independent advantage by labeling more than 10,000 nascent 

transcripts to study transcription dynamics101. Another hybridization-based method was 

recently introduced as “STARmap”, which used in situ sequencing to amplify signals and 

claimed to be able to read out spatial transcriptome of 3D intact tissues102. These imaging 

methods may hold great promise for single-cell spatial transcriptomics and may be 

integrated with tissue clearing103,104, super resolution microscopy105,106 and expansion 

microscopy107 for additional benefits. However, the methods mentioned above all depend 

on careful experimental setup, such as the choice of probes to label specific marker 

genes. Further efforts are still needed to transparentize, simplify, and standardize detailed 

protocols of existing methods for broader applications.  

Although spatial transcriptome can be probed by hybridization, complex isoform 

specificity is hardly achieved, nor can short-read RNA-seq. But development of long-

read sequencing methods such as nanopore108 and PacBio109 makes it possible to quantify 

transcripts with clear isoform specificity combined with full-length RNA-seq and single-

cell RNA-seq methods. Long-read methods may also reveal allelic information when 

applied to human samples. 
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Transcriptomic measurements can also be integrated with other assays in the same cell 

to bona fide link transcription to other aspects of cellular physiology. Efforts are been 

made for single-cell RNA-seq to incorporate information of genomic DNA110,111,112,113, 

chromatin accessibility114, protein abundance115,116,117,118, perturbation119,120,121,122,83, and 

DNA methylation123. More multi-omics single-cell approaches will be or are already 

being developed. 

With existing technology getting stabilized and new approaches emerging, large-scale 

transcriptome data integration and cell type taxonomy construction were made possible. 

Projects like the Human Cell Atlas124 have thus been initiated, benefiting from existing 

technology and in turn spurring new technology. Through collaborative efforts and 

integrative analyses, transcriptomics studies in tissue development would rise to a new 

level.  
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C h a p t e r  2  

GLOBAL ANALYSIS OF WHOLE-TISSUE MOUSE EMBRYOGENESIS 
TIMECOURSE 

Abstract 

Mammalian development is driven by selective gene expression and cell population 

coordination. To understand the dynamic modules of the gene regulatory network 

governing histogenesis during embryo development, I present here a collection of 

embryonic mouse transcriptome using the whole-tissue RNA sequencing method (RNA-

seq). Transcript diversity and dynamics were explored in 12 tissues from E10.5 to birth. 

Five additional tissues at P0 were added to facilitate comparative analysis. Overall, 

among the 24,832 genes expressed, 63% were strongly differential, revealing strong 

temporal and tissue-specific components with underlying cell-proliferation, characteristic 

function, specialized function, and body-axis signatures. These differential genes formed 

34 major co-expression clusters with known or novel functions and putative promoter 

regulatory codes. Interestingly, the remaining ubiquitous genes were associated with 

potential post-transcriptional regulations in addition to their promoter signature. This 

study not only presents a broad view of mouse embryonic development as part of the 

ENCODE project but also provides a processed data framework for users to integrate 

their own input. 

2.1 Introduction 

Hierarchical transcription programs unfold to regulate mammalian development through 

a dynamic transcriptome125. Although modern methods are able to read out the whole 



 

 

16 
transcriptome with reasonable sensitivity, existing studies126,17,127 were done only for 

selected cell lineages and subsets of tissues in the developing mouse with minimal 

temporal resolution. Efforts to assemble multiple sources of data and analyze a broad 

developmental atlas is precluded by different methodological details between studies. 

Here I report a systematic matrix of polyA-RNA-seq data that includes 12 tissues from 

E10.5 to P0 (Figure 2.1) and covers much of organogenesis and histogenesis. By 

comparing the transcriptome profiles along time axis and across tissue identity space, 

finer details on gene-regulatory network structures and mechanisms can be revealed. 

 

Figure 2.1: Tissues collected for whole-tissue RNA-seq assay. (A) Mouse embryo stages 
selected for RNA-seq. (B) Embryonic tissues assayed at E10.5 and E15.5 as examples to 

A 
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be illustrated using the color key labeled on the right. Craniofacial: craniofacial 
prominence. 

 

2.2 Results 

2.2.1 Overall structure of the high dimensional transcriptome 

As expected, the vast majority of protein-coding genes (84%) were significantly 

expressed (Figure 2.2), compared to a smaller fraction of lincRNAs (44%) and a minority 

of “other” annotated genes (26%) including many pseudogene, antisense, and small 

RNAs. This is probably due to the fact that protein-coding genes are better annotated 

while non-coding RNAs, especially those in “other” categories, are more likely to be 

mingled with pseudogenes and repetitive sequences. Current sequencing technology 

usually cannot perfectly quantify pseudogenes and repetitive sequences due to their lack 

of unique sequence information and the size limit of sequencing read length. lincRNAs 

stand in the middle of the spectrum, probably because they are longer and better 

characterized than, but not cleanly separated from, the “other” category. Additionally, 

A B 
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lincRNAs and pseudogenes can be dynamically converted to each other during 

evolution128, further blurring their boundary.  

 

Figure 2.2: Number of genes detected by class. (A) percentages of ubiquitous, 
differential, and undetected genes in each of the three categories: PC (Protein-coding 
genes), lincRNA (long intergenic noncoding RNA), and others. (B) Percentages of PC, 
lincRNA, and other genes in detected and undetected categories. 

The detected transcriptome can be further divided into two parts: ubiquitous and 

differential. The highly differential character of the transcriptome comes from 15,644 

genes that differed by over 10-fold between at least two samples in the matrix, while 
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9085 genes were more uniformly expressed, forming the foundation of ubiquitous 

housekeeping activities and structures (Figure 2.3). 

 

Figure 2.3: Hierarchical clustering of ubiquitous genes. Tissue identities and stages are 
labeled at the top using the color codes from Figure 2.1. 

To understand the main themes of the transcriptome, I conducted Principle Component 

Analysis (PCA) for these whole-tissue data. Overarching organizational themes of this 

mouse developmental transcriptome are tissue identity and developmental time, 

visualized as color hue and intensity shown in Figure 2.4A. The top three principle 

components separated tissues into roughly three domains: hematopoietic (liver, spleen, 

and thymus) domain, neurogenic (all three brain regions and neural tube) domain, and a 

third domain with all the remaining tissues in it. These domains were mainly separated by 

PC1 and PC2, both of which were strongly associated with hematopoiesis and blood 

log2(FPKM+1)
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component based on Gene Ontology (GO) analysis of top 100 loading genes (Table 

2.1). Notably, the negative top-loading genes of PC1 were enriched with those associated 

with blood component, while the positive top-loading genes of PC1 yielded neurogenesis 

terms (Table 2.1). This indicates that the contrast between hematopoiesis and 

neurogenesis is the most outstanding feature in the differential transcriptome, confirmed 

by an independent t-SNE projection (Figure 2.4B). Interestingly, multiple tissues emanate 

from a “hub” and form “branches” (labeled with arrows in Figure 2.4A) and descend 

toward the negative direction of PC3 (to be discussed later in this chapter) with decreased 

similarity to each other, representing a gradual enhancement of their unique signatures. 

 

 

Figure 2.4: Whole-tissue transcriptome viewed at reduced dimensionality. Each tissue is 
labeled using the color code in Figure 2.1. The dimensions are respectively (A) the first 
three Principal Components from PCA and (B) the two axes of t-SNE two-dimensional 
plane. 

PC Negative loading P-value Positive loading P-value 
1 Blood microparticle 2e-22 Neuron part 2e-22 
2 Embryonic morphogenesis 4e-22 Blood microparticle 3e-35 
3 Extracellular region part 3e-20 Mitotic cell cycle process 3e-13 

B A 
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4 Digestive system process 1e-10 Contractile fiber part 1e-40 
5 Intestinal epithelial cell differentiation 5e-9 Skeletal muscle contraction 3e-12 
6 Muscle system process 3e-21 Apical plasma membrane 6e-14 
7 Neuron fate commitment 3e-11 A/P patern specification 2e-33 
8 Embryonic limb morphogenesis 1e-11 Hemoglobin complex 4e-14 
9 A/P pattern specification 7e-11 Lung development 3e-8 
10 Cerebral cortex neuron differentiation 1e-15 A/P pattern specification 5e-11 
11 A/P pattern specification 5e-37 Neuron differentiation 7e-11 
12 Urea cycle 1e-5 Cornified envelope 1e-11 
13 Embryonic forelimb morphogenesis 8e-9 NA >1e-5 
14 Striated muscle contraction 7e-7 Alpha-amylase activity 2e-9 
15 Embryonic morphogenesis 1e-11 A/P pattern specification 7e-22 
16 Contractile fiber part 8e-7 Monooxygenase activity 6e-20 
17 Neuron differentiation 1e-10 Blood microparticle 2e-22 
18 Alpha-amylase activity 2e-9 Intermediate filament 2e-9 
19 Monooxygenase activity 9e-11 Regionalization 3e-25 
20 Midbrain development 2e-12 A/P pattern specification 3e-17 

 

Table 2.1: Representative GO terms for top-loading genes of each PC for whole-tissue 
RNA-seq analysis. Negative PC’s are on the left panel and positive on right. 
Representative GO terms are listed in the corresponding boxes. 

In order to better understand the dynamics and specificity of the differential genes, I 

performed hierarchical analysis, identifying altogether 34 major clusters of co-expressed 

genes (Figure 2.5). These clusters mostly showed enriched biological themes based on 

Gene Ontology analysis of their gene members (Figure 2.6). Notably, most of these 

clusters have a trend of increasing abundance of genes, and upward genes are less likely 

to be shared among multiple tissues compared to downward genes. This pattern favors 

the model that embryonic histogenesis is mainly driven by differential activation of genes 

instead of differential repression of already active genes. 

For validation purposes, I compared PCA with hierarchical clustering results by mapping 

PC scores (Figure 2.5C) and loadings (Figure 2.5B) onto the gene-by-sample matrix. 

Indeed, the two largest clusters (Cluster 10 and Cluster 34) respectively load to the 

negative and positive ends of PC1, which aligns with the contrast between hematopoiesis 
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and neurogenesis. In fact, nearly 1/5 (~5000 genes) of the expressed transcriptome 

defines this axis, perhaps reflecting the elaborate branching cell lineages that produce, 

within this timeframe, exceptionally large repertoires of distinctive neuronal and 

hematopoietic cell types. Not surprisingly, their feature tissues show negative (thymus, 

spleen, and liver for Cluster 10) and positive (brain regions and neural tube for Cluster 

34) scores for PC1. Other PCs and clusters also showed a high degree of relatedness, 

robustly reflecting the underlying modular nature of the transcriptome. 
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Figure 2.5: Hierarchical clustering of differential genes. (A) Gene expression profiles 
across tissues. Normalized log2 FPKM values are represented by the colormap (bottom), 
and tissue names are labeled on top: Thy, thymus; Spl, spleen; Lvr, liver; Hrt, heart; Mus, 

A B 
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skeletal muscle; Bld, bladder; Adr, adrenal gland; Kdn, kidney; Lng, lung; Stm, 
stomach; Int, intestine; Lmb, limb; Fac, craniofacial prominence; Fb, forebrain; Mb, 
midbrain; Hb, hindbrain; Nt, Neural tube. (B) PC loading coefficients of each gene in 
panel A. Normalized coefficients are shown using a heatmap with color scheme labeled 
in panel A. (C) PC scores of each sample in Panel A. Normalized coefficients are shown 
using a heatmap with color scheme labeled in panel A. Representative Gene Ontology 
terms are labeled on the right for negative and positive directions. 

 

Figure 2.6: Schematic view of cluster relationships. Rectangle boxes represent the 34 
major clusters, each of which contains more than 30 members. The text in each box 
labels the dominant features for each of these clusters based on Gene Ontology, tissue 
specificity, and gene class. The boxes in blue represent clusters with genes that mainly 
increase over time, while pink boxes are the opposite and green are constant; lavender 
indicates an unknown trend due to lack of time-course data; yellow boxes are genes 
without obvious dominant trends and are likely due to technical issues of the assays. The 
remaining dynamic genes fall into minor clusters with fewer than 30 genes per cluster, 
labeled as hexagons with the cluster size inside them. 
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To rule out the possibility that the global structure is highly biased towards the choice 

of tissue I have (there are way more brain samples than digestive tissue, for example), I 

performed similar analyses, but with brain tissues down-sampled (only midbrains kept). 

The results were barely changed: PC1 was still about hematopoiesis vs. neurogenesis, 

which was still contributed by a large number of genes enriched in their corresponding 

tissues (Figure 2.7). The fine structures revealed by individual clusters were also 

consistent with the original analysis, which is going to be discussed in the next section. 

 

 

Figure 2.7: Validation of global transcriptomic structures by down-sampling. Results of 
hierarchical clustering (A) and PCA projection (B) of whole transcriptome with 
forebrains, hindbrains, and neural tubes removed are shown. Color codes follow those of 
Figure 2.1. 
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2.2.2 Diverse biological insights from co-expression clusters  

Hierarchical clustering produced 34 major clusters with different tissue specificity and 

temporal patterns, summarized in Figure 2.6. Each of them has its own unique expression 

patterns, enriched Gene Ontology terms, and complexities.  

 

Figure 2.8: Cluster 1 from hierarchical clustering analysis. Sample identities are labeled 
at the top with the code specified in Figure 2.1. 

Cluster 1 (Figure 2.8) has prominent increasing transcript abundance in limb and 

craniofacial prominence. Over one third of the genes in this cluster are genes coding 

keratin and keratin-associated proteins, with top GO terms “intermediate filament” 

(p=3.7e-34) and “hair cycle” (p=2.4e-7), pointing to development of skin and hair. This 

T S Lvr Hrt M B A Kdn Lng Stm Int Lmb Fac Fb Mb Hb Nt
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group of genes may be those specifically expressed in the skins of limb and 

craniofacial prominence that increase their proportion during development. 

  

Figure 2.9: Cluster 2 from hierarchical clustering analysis. Sample identities are labeled 
at the top with the code specified in Figure 2.1. 

Cluster 2 (Figure 2.9) has prominent expression in skeletal muscle and an increasing 

trajectory in limb and craniofacial prominence. It contains multiple muscle regulators like 

Myod1 and Myog. Its top GO terms include “muscle system process” (4.5e-18) and 

“contractile fiber part” (9.9e-14). The increasing expression in limb and craniofacial 

prominence is likely due to differentiation of muscle precursors and to increasing relative 

muscle mass as a fraction of the total tissue. In addition to the dominant muscle-limb-face 

feature, there are two clades with different patterns that illustrate the informational 
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leverage that comes from the absence of expression in a more pure P0 dissected tissue 

(here muscle).  

The clade of 13 genes labeled in blue has increasing expression in limb and craniofacial 

prominence but not in the P0 pure skeletal muscle sample. Among the 13 genes, five 

(Dcstamp, Mmp13, Bglap, Ifitm5 and Ibsp) are associated in prior work with 

osteogenesis. Another clade of 13 genes labeled in purple is biased for limb alone, and 

not cranioface. It includes four major urinary protein (MUP) genes at low but detectable 

abundance. The mouse genome has 21 annotated Mup genes in a 2Mb cluster on 

Chromosome 4. Although none have human orthologs, members of the family have 

known functions in mouse chemical communication and nutrient metabolism129. A recent 

study reported dramatic and unexpected upregulation of Mup1 in mouse embryos when 

Shox2130, a transcription factor regulating proximal bone formation in limbs, is mutated. 

This raises the possibility that MUPs in this limb cluster play a role in limb development. 

Technical issues were also identified: sporadic samples of adrenal gland, kidney, lung, 

stomach, hindbrain, and neural tube from this mouse embryo series show slight 

enrichments for genes from this cluster, implying variable minor tissue contamination 

during dissection. 
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Figure 2.10: Cluster 3 from hierarchical clustering analysis. Sample identities are labeled 
at the top with the code specified in Figure 2.1. 

Most genes in Cluster 3 (Figure 2.10) have high and constant levels of expression in the 

heart. Roughly half of them also have substantial expression in skeletal muscle-

containing samples, suggesting a program of genes shared by cardiac muscle and skeletal 

muscle. GO terms are mainly about muscle, including “contractile fiber part” (p=8.9e-47) 

and “regulation of heart contraction” (p=4.3e-21). Genes coding DMD, alpha-actins, 

Desmin, Leiomodins, myosin peptides, and troponins were found in this cluster. The 

clade in the upper half of the heatmap has narrow dark red bars, which indicate single 

replicate enrichment. This group of genes contains mostly pseudogenes. This may 

represent the limit of current sequencing methodology in quantifying the non-unique part 

of the transcriptome. 
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Figure 2.11: Cluster 4 from hierarchical clustering analysis. Sample identities are labeled 
at the top with the code specified in Figure 2.1. 

Genes in Cluster 4 (Figure 2.11) show differing degrees of bladder-specific expression, 

which may result from a bladder-specific cell type that has a unique transcriptome 

signature. GO analysis produced no terms. A possible reason is that the mouse bladder 

has not been extensively studied. Under-annotation may compromise the statistical power 

of GO analysis in this case. 
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Figure 2.12: Cluster 5 from hierarchical clustering analysis. Sample identities are labeled 
at the top with the code specified in Figure 2.1. 

Genes in Cluster 5 (Figure 2.12) are very prominently expressed in the thymus, and most 

have minimal expression in other tissues. Highly expressed genes also have positive 

signals in several non-thymus samples (at least 4 heart samples, 2 lung samples, and one 

neural tube sample), with atypical irreproducibility between replicates. A candidate 

explanation is a batch-specific contamination of thymus-proximate tissues with thymus 

during dissection. While this kind of contamination does not greatly alter global QC 

scores, it is readily detectable in this clustering analysis. GO analysis revealed enrichment 

in later stage maturing immune components, especially T-cell terms. Top terms include 

“immune system process” (p=1.8e-18) and “regulation of T-cell activation” (p=3.0e-13). 

Roughly one quarter of the genes are T-cell receptor components (alpha chain, gamma 
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chain, and delta chain). Interestingly, the two recombinases Rag1 and Rag2 are also in 

this cluster, indicating a TCR VDJ theme for this cluster. 

 
Figure 2.13: Cluster 6 from hierarchical clustering analysis. Sample identities are labeled 
at the top with the code specified in Figure 2.1. 

The unifying theme of Cluster 6 (Figure 2.13) is high expression in the adrenal gland. 

Top GO terms include “hormone biosynthetic process” (p=1.5e-7) and “hormone 

metabolic process” (p=7.3e-7). More specifically, Cyp11b1, Cyp21a1, and Cyp11b2 

contribute to the term “mineralocorticoid biosynthetic process” (p=2.8e-7). These 

cytochrome P450 genes are involved in biosynthesis of aldosterone which, unlike many 

other hormones, is produced only in the adrenal gland. However, all of Cyp11b1, 

Cyp21a1, and Cyp11b2 mentioned above have detectable expression signals in E15.5 and 

E16.5 samples of kidney. Their presence at E15.5 and E16.5 stages and absence in E14.5 
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and P0 may be due to the fact that E15.5 and E16.5 samples were pooled dissections, 

while E14.5 and P0 samples were dissected from individual embryos by another lab, 

which were more contamination-free. The reason why other adrenal genes did not show 

up in those contaminated kidney samples is probably that those genes do not have as high 

abundance as these. 

 

Figure 2.14: Cluster 7 from hierarchical clustering analysis. Sample identities are labeled 
at the top with the code specified in Figure 2.1. 

Cluster 7 (Figure 2.14) has a theme of kidney-specific expression, where transcript 

abundances increase over time. Roughly 40% of these genes are also expressed in the 

liver, again with increasing trajectories, plus some smaller subclades that are shared with 

gut or lung samples. Top GO terms of this cluster include transporter-related categories 
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such as “sodium ion transport” (p=2.0e-14) and “anion transport” (p=4.7e-9) and 

structural terms like “apical plasma membrane”. Therefore, this cluster seems to be 

dominated by genes responsible for transporter machinery and epithelial cell organization 

in the kidney. The clade of 72 genes labeled in purple contains genes enriched in both the 

liver and kidney. The top enriched GO terms for this group are for amino acid catabolic 

processes performed in both the liver and kidney (“organic acid metabolic process” 

(p=7.7e-12), “fatty acid metabolic process” (p=1.2e-7), and “alpha-amino acid catabolic 

process” (p=1.5e-6). 20 of these genes are enriched in kidney proximal tubule brush 

border cells, while 7 are enriched in hepatocytes131. 

 

Figure 2.15: Cluster 8 from hierarchical clustering analysis. Sample identities are labeled 
at the top with the code specified in Figure 2.1. 
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The genes in Cluster 8 (Figure 2.15) have increasing expression patterns in almost all 

tissues, although the kinetics of increase differ. Top enriched GO terms include 

“inflammatory response” (p=1.0e-6) and “extracellular exosome” (p=1.5e-5). There are 

two major clades. The clade labeled in purple is consistent with genes marking the 

immune system, whose levels are highest in the thymus and spleen, but also include 

expression in the hematopoietic fetal liver. Subsets of these genes increase at later times 

in other tissues. GO analysis called terms including “regulation of T cell activation” 

(p=8.8e-5) and “inflammatory response” (p=2.2e-5). The second major clade, labeled in 

blue, is dominated by increasing expression in liver and gut tissues. Top GO terms 

included “extracellular exosome” (p=3.3e-9) for unknown reasons. This group of genes 

also highly overlaps with limb macrophage marker genes (defined in Chapter 3). 

 

Normalized	
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Figure 2.16: Cluster 9 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

The genes in Cluster 9 (Figure 2.16) have the highest enrichment by far in the spleen and 

on the P0 liver (but not at earlier times). Moderate abundance is also seen in the adrenal 

gland and lung. There is minimal but detectable expression in all other tissues at P0, but 

very little at all times before birth. GO analysis did not yield significantly enriched terms, 

but more than half of the genes in this cluster are immunoglobulin components (kappa 

and lambda light chain variables, heavy chain variables, and constant regions), consistent 

with B-cell maturation, appearing in the liver, spleen, and in lesser proportions the lung 

and other lymphatic-containing dissections. 

 

Figure 2.17: Cluster 10 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 
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Over 60% of the genes in Cluster 10 (Figure 2.17) are preferentially expressed in the 

liver, lower in CNS tissues, and variously detected in other tissues. The RNA abundances 

mainly increase with time, but with differing kinetics. Top GO terms of Cluster 10 

include the immune system, such as “immune system process” (p=4.8e-101) and 

“regulation of immune system process” (p=2.0e-62). The additional prominence of many 

genes in the P0 thymus and/or spleen, along with other non-CNS tissues, points to the 

lymphatic system.  

 

In addition to the main immune theme, four clades with distinctions emerged. The one 

containing 267 genes labeled in purple are most enriched in the liver, as well as the 

stomach and intestine, increasing over time. Its top GO terms focus on lipids, including 

“lipid metabolic process” (p=3.8e-13) and “lipid transport” (p=4.1e-11), pointing to 

metabolic functions shared by hepatocytes and gut tissues. 

The clade of 200 genes labeled in pink contains genes enriched in the spleen and liver 

only and points to erythropoiesis. Its top GO terms are mainly related to maturing red 

blood cells, such as “tetrapyrrole biosynthetic process” (p=1.2e-20) and “erythrocyte 

development” (p=3.9e-10). DNA motif analysis (to be discussed in detail in 2.2.5) of 

promoters in this clade revealed a significant enrichment of Tal1:Gata1, a known pair of 

regulators essential for hematopoiesis. 

Members of the clade of 91 genes labeled in blue are mainly expressed in the late-stage 

liver and adrenal gland. Top GO terms include “monooxygenase activity” (p=1.1e-31), 
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“steroid hydroxylase activity” (1.7e-20) and “steroid metabolic process” (p=5.3e-9). 

More than a quarter of these are protein-coding components of cytochrome P450, which 

are involved in steroid and drug metabolism. Additionally, six sulfotransferase genes are 

also in this group. Sulfotransferase plays an important role in the metabolism of drugs, 

hormones, and bile acids. 

Lastly, the clade of 155 genes labeled in yellow shows more constant levels through time 

in the liver, with additional expression detected in the adrenal gland, kidney, stomach, 

and intestine. Its top GO terms include “blood coagulation” (1.7e-29) and “alpha-amino 

acid metabolic process” (3.1e-12), with six coagulation factors, six complement factors, 

fibrinogens, and regulators (protein C and serpins)found in this clade. 

 

Figure 2.18: Cluster 11 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 
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Genes in Cluster 11 (Figure 2.18) are most highly expressed in the intestine and are 

also enriched in the stomach, with sharing of genes with the kidney or CNS tissues. E14.5 

and P0 timepoints show lower expression for multiple clades, which likely reflects 

systematic dissection differences at the boundaries between the two gut tissues. Top GO 

terms are mainly about intestine structure, including “brush border” (p=2.3e-11) and 

“brush border membrane” (p=3.1e-9). Interestingly, out of 16 genes contributing to the 

term “brush border”, 8 are in the small clade of 43 genes labeled in purple. This clade 

also has prominent increasing expression in the kidney, representing a shared program of 

brush border genes between the kidney and intestine. Other terms include “sodium ion 

transport” (p=1.0e-6), “digestive system process” (p=1.0e-6), and “alpha-amylase 

activity” (p=1.8e-6). Additionally, several gut hormones or peptides are found in this 
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group, such as cholecystokinin, gastrin, vasoactive intestinal polypeptide, ghrelin, 

glucagon, and insulin genes.  

 

Figure 2.19: Cluster 12 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Most genes in Cluster 12 (Figure 2.19) are expressed widely and with an increasing trend, 

except in the liver, where most of the cluster is depleted at all times. The most prominent 

secondary theme is strong up-regulation at birth in multiple organs. Although no GO 

terms were significantly enriched, this cluster, and sub clusters within, are candidates for 

novel DNA sequence motif-derivation or for correlated microRNA signatures that could 

mediate the birth transition pattern and/or the liver suppression pattern. 
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Figure 2.20: Cluster 13 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Gene expressions in Cluster 13 (Figure 2.20) are mostly enriched in the lung, especially 

at later stages. Partly because of the small cluster size, Gene Ontology did not provide 

highly significant terms. However, 4 surfactant-associated proteins contributing to the 

term “multi-vesicular body” (p=4.3e-6) are included in this cluster, indicating a possible 

link to Type II alveolar cells in the lung. 
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Figure 2.21: Cluster 14 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Cluster 14 (Figure 2.21) contains genes that are highly expressed in the stomach. Most 

are also highly expressed in limb and craniofacial prominence at very late stages. About a 

quarter of them are expressed in the P0 bladder as well. The top GO terms are “cornified 

envelope” (p=6.7e-26) , “keratinization” (p=1.7e-27), “epidermis development”, and 

“keratinocyte differentiation” (p=1.6e-16). The cornified envelope is composed of a layer 

of dead cells found in the skin epidermis and forestomach for protection against the 

environment. Its major components include loricrin, filaggrin, involucrin, keratins, and 

small proline-rich protein (SPR) genes that are all found in this cluster, together with the 

genes required for generating the cornified envelope, such as transglutaminase, cystatin, 

and envoplakin.  

Normalized	
log2	FPKM N=341

T S Lvr Hrt M B A Kdn Lng Stm Int Lmb Fac Fb Mb Hb Nt



 

 

43 

 

Figure 2.22: Cluster 15 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Genes in Cluster 15 (Figure 2.22) are coherently enriched in specific samples, but they do 

not reproduce between replicates or among related tissues. Almost all genes in this cluster 

are known pseudogenes or protein-coding genes with low mappability. These low-

mappability genes’ top-abundance mappable counterparts (their corresponding protein-

coding genes or paralogs) do not display similarly variable enrichment, which argues that 

the differences are not due to the obvious source of biological variation (data not shown). 
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Figure 2.23: Cluster 16 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

The broad theme of Cluster 16 (Figure 2.23) is expression in most tissues and organs, 

with the exception of the CNS and liver, both of which show little expression. Over the 

developmental time course, most members increase in limb and craniofacial prominence 

but are relatively invariant or decreasing in other tissues. The top GO terms of Cluster 16 

are dominated by extracellular matrix (ECM) components, such as “extracellular matrix” 

(p=8.7e-58), “extracellular region part” (p=6.0e-42), and ‘’basement membrane” (p=4.4e-
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34). Other significant terms include “regulation of cell migration” (p=8.0e-26), 

“angiogenesis” (p=1.1e-25), and “cell junction” (p=2.3e-18).  

This cluster contains two major clades, highlighted in purple and blue, that share 

expression in the bladder, kidney, lung, stomach, intestine, limb, and craniofacial 

prominence. The blue clade is distinct in also showing strong expression in the heart. 

Their GO terms identify different biases. The purple clade features “occluding junction” 

(p=7.6e-9) in addition to ECM terms, while “angiogenesis” is absent. The blue clade 

includes most of the Cluster 16-themed terms, but also emphasizes “anchoring junction” 

(p=7.3e-19) and particularly “adherens junction” (p=3.0e-18), consistent with 

epithelial/endothelial cell junction formation and tube morphogenesis. Thus the purple 

clade focuses on tight junctions that consist of an epithelial barrier and molecular gate 

between a cell mass and the environment, while the blue clade concentrates on 

angiogenesis and adherens junctions that link cells together and also carry cadherin 

receptors important for tissue morphogenesis. 
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Figure 2.24: Cluster 17 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Cluster 17 (Figure 2.24) is divided into two major clades. The upper clade, similar to 

cluster 15, is coherently enriched in a few individual samples that do not replicate, nor do 

they reproduce among related tissues. Apart from these individual samples, the pattern is 

noisy across developmental time. This pattern does not correspond to any known 

dissection or global quality issue. Also similar to Cluster 15, no GO term enrichment was 

found. The lower clade contains genes that are widely expressed among different tissues 
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that are also systematically depleted in the E11.5 and E14.5 samples. This reflects 

known batch effects at tissue collection/dissection steps. 

 

Figure 2.25: Cluster 18 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Most genes in Cluster 18 (Figure 2.25) are enriched in the craniofacial prominence at 

early stages but not later. Its top GO terms mainly concern eye development, including 

“structural constituent of eye lens” (p=1.6e-17) and “eye development” (p=1.1e-15). 

Genes include crystallins, retinoic acid-metabolizing enzymes (Cyp26a1 and Cyp26c1), 

lens membrane protein (Lim2), melanin regulators (Tyrp1, Tyr and Pmel), and one 

developmental regulator (Vax2). The dissection plan for cranioface was to exclude the 

eyes, but at earlier stages it appears not to have been fully successful. The expression 

pattern and Gene Ontology of Cluster 18 genes in the early craniofacial prominence 
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samples (E10.5, E11.5 and E12.5) including sharp transitions between adjacent 

timepoints, are likely due to imperfect removal of early eyes. Sporadic enrichment of 

these genes in later stage craniofacial prominence samples (E16.5) is likely due to a few 

imperfect dissections in a large embryo pool. 

 

Figure 2.26: Cluster 19 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Genes in Cluster 19 (Figure 2.26) are mostly enriched in the bladder, kidney, limb, and 

neural tube. Within these tissues, expression levels are relatively constant over 

developmental time. The lower half of this cluster contains 5’ Hox genes (9-13) and 

lincRNAs localized in the 5’ region of Hox clusters (Hotair and Hottip). Genes with 

names beginning with “Gm” that are clustered together with Hox genes are also localized 

in 5’ Hox gene regions, suggesting shared transcriptional regulatory elements or RNA 
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precursors. Among these Hox-cluster genes, there are distinctions, with 5’ Hox 

expression being more abundant in posterior tissues (e.g. bladder, kidney, and intestine), 

consistent with previous findings. As the time course begins at E10.5, I could not follow 

the well-known upregulation sequence of Hox genes which displays “temporal co-

linearity”, except for a gradual increase in Hoxc12 and Hoxc13 in the limb, which 

represents the distal ends of limbs and whose upregulation pattern is late enough to be 

captured in our time window. In E14.5 neural tube samples, the 5’ most Hox genes 

Hox11-13 are missing-because that batch of embryo dissections did not include the 

posterior tip of the tube.  

Four major urinary protein (MUP) genes are enriched in the limb, similar to the MUP 

paralogs in Cluster 2. However, unlike those in Cluster 2, they are also enriched in early 

neural tube samples. Further studies are needed to understand their functions. 
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Figure 2.27: Cluster 20 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Overall, genes in Cluster 20 (Figure 2.27) are prominently absent from the liver at all 

stages and are absent or strongly reduced at P0 in most tissues having P0 data. The top 

~1/3 of the cluster contributes little to the two major themes derived from expression and 

GO. It contains mainly pseudogenes and lncRNAs. In the limb, craniofacial prominence, 

and brain, depletion of some of these genes is evident at E11.5 and E14.5 similar to 

Cluster 17, and possibly related to the batch effect discussed before. In the remaining 

bottom 2/3, there is considerable substructure among expressing tissues due to the two 

major biological themes: the first GO enrichment theme is tissue morphogenesis and 

development, such as “skeletal system morphogenesis” (p=3.3e-13), “branching 
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morphogenesis of an epithelial tube” (p=5.5e-12), “sensory organ development” 

(p=7.7e-11), “odontogenesis” (p=1.3e-10), “gland development” (4.5e-10), “ossification” 

(p=9.1e-10), “limb morphogenesis” (p=2.1e-9), and “kidney development” (6.1e-9); the 

second GO theme is Wnt signaling, such as “regulation of Wnt signaling pathway” (8.2e-

12), “Wnt signaling pathway” (2.0e-10), and “Wnt-protein binding” (3.2e-10). Although 

this cluster called terms covering a variety of different aspects of development 

demonstrated in the first theme, the driving genes are often shared among multiple terms 

referring to different tissues. This likely reflects the broad usage of these signaling 

pathways in patterning and morphogenesis. Moreover, roughly a quarter of the genes 

contributing to any morphogenesis-theme terms also contributes to the Wnt theme. Other 

morphogenesis-theme genes that do not currently contribute to the Wnt GO terms, such 

as Irx3, Runx2, TWIST, Bmp4, Tbx1, and Tbx3 have been independently associated with 

this signaling system. This is consistent with the current appreciation that Wnt signaling 

plays an important and widely distributed role in different individual anlage, including 

stem cell renewal132. 

The clade of genes colored in purple are highly enriched in kidney and moderately 

enriched in limb and craniofacial prominence. The themes are suggested by Gene 

Ontology with terms “skeletal system morphogenesis” (p=1.2e-6) and “branching 

morphogenesis of an epithelial tube” (2.3e-6). These terms of this clade are consistent 

with the overall theme of this big cluster, but the distinct gene expression pattern suggests 

intensive usage of this subprogram of genes in the kidney. The clade of genes labeled in 

blue has prominent enrichment in limbs and craniofacial prominence and is lower but still 
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detectable and decreasing in other tissues. The top GO terms are similar to those called 

from the whole cluster, but with much enhanced significance for “embryonic skeletal 

system morphogenesis” (p=1.8e-15) and “cartilage development” (p=1.5e-9). 

 

Figure 2.28: Cluster 21 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Genes in Cluster 21 (Figure 2.28) are expressed in all the fetal tissues and decrease over 

time in most. At P0, the majority are expressed in the thymus and spleen but are notably 

depleted elsewhere. Top GO terms are mainly about cell division and nucleus 

components, such as “chromosomal part” (p=1.2e-93) and “cell cycle process” (p=1.6e-

87) consistent with genes involved in executing the cell cycle, especially components of 

the chromosome and its associated proteins. The global decrease in RNA levels from 
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these genes over time is consistent with shifting from fast growing proliferating cells to 

more differentiated ones. Fetal hemoglobins are also found in this cluster, such as Hbb-

bh1, Hbb-y, and Hba-x.  

 

Figure 2.29: Cluster 22 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Genes in Cluster 22 (Figure 2.29) show distinct enrichment at E11.5 and E14.5 stages in 

some tissues, and they do so reproducibly among the replicates. Most of these genes are 

pseudogenes and low-mappability protein-coding genes. They are similar to the batch-

effect heavy clades in Cluster 17 and Cluster 20 but display the inverse pattern trend. 

They may be artifacts from a similar type of batch effect. 
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Figure 2.30: Cluster 23 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Cluster 23 (Figure 2.30) contains genes most prominently expressed at early times in 

CNS tissues. They are also depleted preferentially at E16.5 in many other tissues. Unlike 

the candidate batch effects of clusters like 15, 17, and 22 that are heavily enriched in 

pseudogenes, this cluster is not explained by annotated pseudogenes. There was no 

significant GO enrichment, and batch effect might be a cause of the expression pattern. 
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Figure 2.31: Cluster 24 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1 

Genes in Cluster 24 (Figure 2.31) are widely expressed and are preferentially higher in 

the CNS regions and/or in the developing liver. Most, but not all, increase during 

development of these tissues. Top Gene Ontology terms are dominated by lipid 

metabolism, such as “lipid metabolic process” (p=2.7e-13) and “cholesterol biosynthetic 

process” (p=1.7e-11). Interestingly, all of the nine genes contributing to the term 

“cholesterol biosynthetic process” are localized in a tiny clade of 23 genes labeled in 

purple. These 23 genes are all very abundant and highly correlated among themselves. 

Further research may contribute to the shared metabolic mechanisms between liver and 

CNS tissues. 
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Figure 2.32: Cluster 25 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

More than half of the genes in Cluster 25 (Figure 2.32) are consistently and highly 

enriched in the hindbrain and neural tube plus the stomach, intestine and adrenal gland. 

The Kidney and lung also express distinct subsets of these genes. This cluster contains 

most of the 3’ Hox genes, almost all located in the two clades labeled in purple and blue. 

The purple clade consists of the 3’ most Hox genes and genes sitting in the 3’ end of Hox 

gene clusters, while the blue clade is made of Hox genes and non-Hox genes in the center 

(less 3’ but not 5’) of Hox clusters. The purple-clade genes are expressed in the lung 

while the blue ones are mostly not. This is probably because the lung is relatively anterior 

to other endoderm tissues assayed, which correspond to the 3’ end of the endoderm Hox 

A/P axis. For the genes outside the Hox gene clades combined, Gene Ontology generated 
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terms related to the neural system, such as “neuron differentiation” (p=1.4e-7), 

focusing on “enteric nervous system development” (p=2.4e-7). In E14.5 neural tube 

samples, some genes are more depleted compared to E13.5 and E15.5. I think this might 

result from a dissection protocol detail that produced shorter spinal cords and depleted 

the 3’-most Hox expressing tissue. 

 

Figure 2.33: Cluster 26 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Genes in Cluster 26 (Figure 2.33) are mostly enriched in the forebrain at late stages. Avp 

and Oxt encode neuropeptides synthesized in the hypothalamus that regulate complex 

maternal and sexual behaviors133. They are clustered together within 6kb on chromosome 

2. It would be interesting to further study the relationship between these two genes and 

others in this cluster. 
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Figure 2.34: Cluster 27 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Cluster 27 (Figure 2.34) contains genes highly enriched in the kidney. Most are also 

expressed in the brain and neural tube at later stages but less abundantly than in kidney. 

Pax2, Pax8, and their target Gata3134 are found in this cluster, which specify the nephric 

lineage and regulate branching morphogenesis in the developing kidney. Pax2 and Pax8 

are also reported to specify GABAergic and glycinergic neuronal fates135, partly 

explaining expression in the hindbrain and neural tube. It is possible that this cluster 

concerns two independent cell fate specification and morphogenesis programs that use 

overlapping regulatory factor sets, such as Pax2, Pax8, and Gata3.  
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Figure 2.35: Cluster 28 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Genes in Cluster 28 (Figure 2.35) are expressed in many tissues, but with lung and 

craniofacial prominence being highest, followed by CNS regions. Almost all increase 

over time, but with differing kinetics in different tissues and brain regions. Most of the 

significant GO terms are about ciliogenesis, such as “cilium movement” (p=1.4e-19), 

“cilium” (1.2e-17), and “outer dynein arm assembly” (1.5e-14). The contributing genes 

include components of dynein arms and radial spokes, genes coding for assembly 

machinery such as dynein docking complex and the tubulin modifying enzyme, and the 

nexin-dynein regulatory complex. Two known cilium regulators, Foxj1 and Mcidas136, 

are also in this cluster. The cilium is a fundamental structure, with primary cilia being 

ubiquitous while secondary and sensory cilia having more specialized distributions›137 
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that correspond well with the pattern for the majority of genes in Cluster 28. The 

pattern can be explained by the emergence of airway cilia in the lung, the airways of the 

craniofacial prominence, and the ependymal cilia of the CNS. 

 

Figure 2.36: Cluster 29 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Most genes in Cluster 29 (Figure 2.36), a relatively small cluster, are distinguished by 

highest expression in the thymus, but more than half are also expressed substantially in 

the brain or in the face/limb or in the kidney/lung and gut. Gene Ontology failed to 

identify a significantly enriched term for this group, probably due to small sample size. 
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Figure 2.37: Cluster 30 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Cluster 30 (Figure 2.37) contains genes expressed most prominently in the heart and/or 

CNS samples, with the admixture among the tissues varying across different clades. Top 

enriched GO terms mainly identify transport of metal ions, such as “metal ion transport” 

(p=4.1e-8), “metal ion transmembrane transporter activity” (p=1.3e-7), and “potassium 

ion transmembrane transporter activity” (p=2.0e-7).  
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Figure 2.38: Cluster 31 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Genes in Cluster 31 (Figure 2.38) are mainly enriched in the brain and neural tube, with 

different regionalization for sub-clusters, plus facial prominence (perhaps partly driven 

by cross-contamination of face with forebrain dissection at early times). More than a third 

of the genes in this cluster are transcription factors (“sequence-specific DNA binding”, 

p=1.0e-26), most of which also contribute to the GO term “neuron differentiation” 

(p=4.4e-18). It is likely that this group of genes is involved in neuron maturation, such as 

Dlx1, Dlx2138, as well as Helt, which specifies GABAergic neuron differentiation139. 

Genes responsible for cerebral cortex GABAergic interneuron migration (Lhx6140, 

Arx141, and Fezf2142) are also found in this cluster. 
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Figure 2.39: Cluster 32 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Genes in Cluster 32 (Figure 2.39) are expressed in nearly all the tissues with increasing 

trajectories over time, with the notable exception of the liver where they are expressed at 

very low levels and then decrease. This cluster contributes to the global separation of the 

CNS (where expression is strongest) from the developing liver. Gene Ontology offered 

little specific annotation, except “positive regulation of adenylate cyclase activity” 

(p=1.7e-5). 
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Figure 2.40: Cluster 32 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 

Genes in the large Cluster 33 (Figure 2.40) are expressed in most tissues prior to P0, 

except liver. CNS, face, and limb are by far the most prominent. Most of these genes are 

time-course variant. Time courses in different tissues display distinctive trajectories, with 

decreasing courses being more common, unlike most other major clusters. Thus, genes in 

this cluster vanish very early in the liver; decrease monotonically in the kidney, lung, 

stomach, and intestine; and remain constant early and slightly decrease at later stages in 

the heart, craniofacial prominence, and limb. Gene Ontology enrichment produced three 

major themes. First, 159 genes (16%) encode DNA binding proteins - especially 

transcription factors - contributing to “DNA binding” (p=1.7e-17) and “RNA 

biosynthetic process” (p=7.5e-14). Zinc finger presumptive repressors143 are especially 
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prominent (Figure 2.47C). Second, this cluster contains genes regulating different 

aspects of morphogenetic processes, with enrichment in the term “embryonic 

morphogenesis” (p=1.9e-12). This is similar to Cluster 20, which also has a broadly 

decreasing pattern, though it features an emphasis on the Wnt pathway that does not 

apply to Cluster 33. Finally, significant overlaps of Cluster 33 with cell projection-related 

genes are called by terms “cell projection organization” (p=1.3e-15), “cilium assembly” 

(p=1.9e-14), “neuron projection guidance” (p=4.4e-11), and “regulation of nervous 

system development” (p=4.2e-12). This cluster of genes is different from the cilium-

related Cluster 28 in expression dynamics, showing opposite temporal trajectories that 

argue strongly for distinct regulation. Further studies would be desired to dissect this 

complex cluster. 

 

Figure 2.41: Cluster 34 from hierarchical clustering analysis. Sample identities are 
labeled at the top with the code specified in Figure 2.1. 
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The theme of Cluster 34 (Figure 2.41) is expression in all four CNS tissues, with a 

dominant upward temporal pattern. While most increase over time, they do so with 

varying kinetics among subclades and between brain regions. Gene Ontology revealed 

enrichment for a large number of neuron-identity and structure terms associated with 

neuronal differentiation and maturation, with the most dominant ones being “synapse” 

(p=1.0e-93), “neuron projection” (p=6.9e-55), “behavior” (p=2.3e-42), and “regulation of 

nervous system development” (p=2.9e-34). Apart from the central neuronal theme, 

subclades (colored purple, blue, and pink) differ from each other and from the major 

neural cluster. All three are significantly enriched with transcription factors and neural 

development regulators, and they display diverse tissue patterns relative to each other. 

The small purple clade at the top (next to the blue clade but too small to see clearly) 

features genes enriched caudally in neural tube and hindbrain. The blue clade below it is 

enriched in the midbrain and significantly but less so in the hindbrain and neural tube, 

with overall downward trajectories. The pink clade near the bottom features genes 

expressed earliest in all four CNS regions, diminishing in later stages.  

2.2.3 Additional implications from other expression patterns  

Although most of the genes are categorized as members of major clusters, 441 of 15747 

differential genes cannot join any major clusters due to their eccentric expression patterns 

and thus join smaller clusters. Two models may explain this phenomenon. First, these 

transcripts may be produced due to stochasticity either from random transcription or 

unknown technical issues in library construction or quantification. Indeed, there are a lot 

of genes without biologically meaningful names in minor clusters, implying that they 
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might be biological or technical noise that never robustly showed insightful patterns in 

existing studies. Secondly, these genes may actually have functions but they do not have 

a multi-target regulator to bring in other co-regulated targets into the group (unlike 

Cluster 28 in which Foxj1 regulates multiple cilium-related genes to join that cluster). 

One interesting minor cluster between Cluster 26 and Cluster 27 contains three beta-

defensins in it (Figure 2.42). Defb9, Defb10, and Defb 11 are prominently expressed in 

the hindbrain and are also detectable in the forebrain. A previous study found Defb10 and 

Defb11 expressed in adult and neonate brains but barely in other tissues like kidney, 

while Defb9 was found present in adult hippocampus144. Defb11 was also predicted to be 

related to Alzheimer’s disease145 and was believed to be positively regulated by Tau, a 

neuronal phosphoprotein responsible for neurofibrillary tangles formation146. Although 

mouse beta defensins had gone through their own recent evolutionary changes144, it 

would still be interesting and promising to study how human beta defensins contribute to 

Alzheimer’s disease in human brains147. 

 

Figure 2.42: Genes between Cluster 26 and Cluster 27 from hierarchical clustering 
analysis. Sample identities are labeled at the top with the code specified in Figure 2.1. 
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In addition to these differential genes in or out of major clusters, 9085 genes were 

more uniformly expressed (Figure 2.3) across identity and temporal domains, which 

account for 36.6% of genes detected in this study. Although this is relatively lower than 

in most other studies, I believe it is because the data collection here covered many 

distinct developmental processes and cell types so that many more differential features 

were captured. Even so, ENCODE3’s collection of mouse tissue samples is not complete 

either, meaning that more differential features might be discovered in the future. Our 

current estimation of the percentage of ubiquitous genes is only an upper-bound for the 

real fraction. Genes currently viewed as ubiquitous in our annotation may turn out to be 

highly enriched or depleted in a different tissue that was not assayed by ENCODE3. One 

such example might be mouse testis, since most of the orthologs of human testis-specific 

genes16 were not prominently detected in ENCODE3 mouse samples (Figure 2.43). 
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Figure 2.43: Mouse orthologs of human testis-specific genes. Sample identities are 
labeled at the top with the code specified in Figure 2.1. The heatmap shows Log2-
transformed FPKM values based on the color scheme on the left. 

Another notable feature of the ubiquitous genes I defined in this thesis is that they 

generally have a downward trend in terms of abundance (Figure 2.3), although the fold-

change threshold was set to be symmetric. This indicates a systematic drift in their 

measurements. In fact, as mentioned before and visualized in Figure 2.6, much more 

differential gene clusters show increasing patterns than those with decreasing patterns. 

Therefore, the transcriptome might become more dominated by differential genes that are 

tuned up at later time points (Figure 2.43A) in terms of relative abundance. It is possible 

that overall more differential genes get transcribed as development progresses such that 

ubiquitous genes just simply get diluted. As a control, when constructing RNA-seq 

libraries, a constant amount of spike RNAs was added to total RNAs at a fixed ratio. If 

the dilution hypothesis is true, the spike fraction would have a similar decreasing pattern. 

However, it has a different pattern (Figure 2.43B). Tracing the quantification of 

individual spike level also failed to explain the decreasing trend of ubiquitous genes (data 

not shown). Therefore, the ubiquitous genes are probably not constant. They gradually 

decrease in multiple tissues. In fact, they also show weak tissue-specificities such as a 

slightly higher level of mitochondria genes in the heart and a slightly higher level of 

metabolism-related genes in the liver (data not shown). This challenges the existing view 

of ubiquitous genes which treats them as constantly expressed house-keeping units and 

thus calibration references. In fact, “house-keeping” genes may also have biases and 

drifts because there is no clear border between “house-keeping” jobs and specialized jobs 
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for a protein to do. But with the stringent 10-fold threshold defining differential genes 

in this thesis, the analyses of differential transcriptome should be minimally related to 

house-keeping functions. 

 

Figure 2.44: Proportions of reads for genes and spikes. (A) The ratio of reads mapped to 
differential genes over both ubiquitous and differential is visualized as a vertical bar in 
blue while the yellow part represents the remaining ubiquitous genes’ reads. Tissue 
identities on x-axis are labeled at the bottom, using the color code in Figure 2.1. (B) The 
fraction of reads mapped to spikes among all the mapped reads is visualized as a vertical 
bar in blue while the yellow part represents the part of reads mapped to endogenous 
genes. Tissue identities on x-axis are matching those in (A). 

2.2.4 Sources of technical artifacts. 

In session 2.2.2, I briefly mentioned various artifacts due to dissection protocols, which 

can be summarized into six types, namely, muscle contamination (Figure 2.9), thymus 

contamination (Figure 2.12), incomplete removal of adrenal gland from kidney (Figure 
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2.13), differences in gut tissues’ anatomical definition between labs (Figure 2.18), 

failure to remove the eyes from craniofacial prominence (Figure 2.25), and differences in 

neural tube dissection between labs (Figure 2.26 and Figure 2.32). In our ENCODE3 

meetings, our lab was the only one that could identify these six types of artifacts, while 

labs producing chromatin data and DNA methylation data could not. This might reflect 

the superior sensitivity of RNA measurements compared to DNA and chromatin-based 

measurements where contamination signals could be diluted by numerous other nuclei 

with negative signals. This is because a contaminating cell may carry a large number of 

transcripts for a gene but can only carry two copies of DNA for it. Another explanation is 

that RNAs are much better annotated, so it is easier to explain strange patterns, while 

DNA loci are poorly understood, especially those in intergenic regions. But, my finding 

of experiment-based artifacts does provide important information for analyses of 

chromatin and DNA methylation data of the matching samples to reach careful 

conclusions.  

A second group of artifacts are specific to either certain replicates in certain tissues 

(Figure 2.10, 1.22, and 1.24) or certain developmental time points (also correlated with 

production time) in certain tissues (Figure 2.24, 1.27, 1.29, and 1.30). These artifacts 

usually come in the form of inconsistent levels of pseudogenes and other low-mappability 

genes. Computational choreography (how the codes and their dependencies were run and 

whether the computational environment was consistent) combined with data quality 
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difference might be one reason, but the real cause is still unknown despite my efforts to 

try to figure it out before this thesis was due.  

A third group of inconsistencies comes from the fact that tissues at E14.5 and P0 were 

dissected from individual embryos instead of pooled embryos by Wold lab, for numerous 

logistic reasons. That created a new layer of information: sex. Although it was difficult to 

determine the gender of early embryos, sex-specific genes still contain that information. 

Using Xist148 and Ddx3y149 as gender markers, I found that pooled samples always 

contained both genders while individual embryos always had a single clear gender 

(Figure 2.44).  

 

 

Figure 2.45: Inferred genders. (A) The FPKM values of Ddx3y and Xist in each sample 
are shown on the scatter plot at log scale with a linear model shown as a curved line. Data 
points sitting on X-axis are females while those on Y-axis are males. The remaining dots 
are mixed pools. (B) The gender of each sample is labeled using different colors (pink, 
female; blue, male; lavender, both). ID’s of each individual embryo at E14.5 and P0 are 
filled in the corresponding boxes. 
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To further get a global view of batch effects, I used a principal component analysis – 

canonical correlation analysis (PCA-CCA) approach61,60, to find a parsimonious 

relationship between major principal components and metadata. Developmental stages, 

tissue identities, gender identity based on gender-exclusive genes, and putative thymus 

contaminated samples defined by thymus-exclusive genes were marked down using 

Boolean variables (1 or 0). Scores of the top 20 principal components of log-transformed 

transcript FPKM values together with the Boolean variables were used for canonical 

correlation analysis (CCA). The results were summarized in Figure 2.46.  

Similar to previous PCA results, CCA still ranks the contrast between liver and brains as 

the most important component (Figure 2.46A). In fact, PC1 strongly negatively 

contributes to the top 1 canonical variable (U1) (Figure 2.46C), reflecting a differential 

blood component.  

Among the top canonical variables, the third pair corresponds to a batch effect specific to 

E11.5 and E14.5 samples across multiple tissues (Figure 2.46A and B). Based on the 

gene expression patterns of high loading genes on both ends of the V score spectrum, I 

identified a clear depletion pattern at both E11.5 and E14.5, corresponding to Cluster 17, 

which is likely a product of the early dissection batch effect. In fact, 16 of the top 100 

negative loading genes are from Cluster 17 (P = 4.7e-13, Fold Enrichment = 11.75). 

Probably because the E14.5 specificity variable is also linked to the gender identity 
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variables that compromise the former, this batch effect isn’t profound in terms of 

E14.5 loadings. 

Among our ENCODE mouse tissue samples, subsets of heart, lung, and neural tube 

samples have shown thymus-specific genes expressed probably due to contamination. In 

my CCA, the fifth and eighth pairs have strong loadings from the variable labeling 

thymus contamination in Figure 2.46B. Among all the tissue identity variables, thymus 

identity is the only outlier that stands out in both pairs of canonical variables, confirming 

that contamination is not likely from another tissue, but instead, thymus. In fact, a large 

number of T cell receptor fragments are found in negative loading genes of U5 and 

positive loading genes of U8, corresponding to negative loading of thymus identity and 

thymus-contamination variables to V5 and positive loading of them to V8. Since tissues 

at E14.5 and P0 for RNA-seq assay were dissected from individual embryos instead of 

pools for samples at other timepoints, potential biases from gender and quality may be 

present in the samples. These biases are associated with the two variables labeling “male” 

and “female”. I observed that both “male” and “female” variables highly and almost 

equally contribute to the sixth pair of canonical variables (Figure 2.46B). It is also 

evident that U6 shows high scores in samples at E14.5 and P0 (Figure 2.46A).  
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Figure 2.46: Canonical correlation analysis of whole-tissue RNA-seq samples. 
Principal component scores of log-transformed gene expressions and metadata 
information are used as two sets of variables for canonical correlation analysis. (A) 
Horizontally normalized scores of the set of canonical variables (U scores) corresponding 
to principal components are plotted based on the color scale shown on the right. Columns 
indicate tissue and stage identities matching the color code in Fig. 1.1. (B) Vertically 
normalized loadings of each metadata variable for their corresponding canonical 
variables (Vi) are plotted based on the color scale shown on the left. (C) Vertically 
normalized loadings of each PC for their corresponding canonical variables (Ui) are 
plotted based on the color scale shown on the right. 

After scanning through the top loading genes for U6, I identified a strong depletion of 

negatively loading genes. Interestingly, these genes are highly enriched in blood-related 

GO terms, indicating that the individual embryo dissections (from Wold lab) may have 

carried over a smaller amount of blood than the pool dissections.  

Among the 18 pairs of canonical variables that have high correlations (Correlation 

coefficient >0.7), the 18th pair showed a strong difference between the loadings of 

“male” and “female” variables (Figure 2.45B). By checking the high loading genes to 

each end, I noticed that male-specific genes (Eif2s3y, Ddx3y, etc.) and female-specific 

genes (Xist, Tsix, etc.) are respectively contributing to two opposite sides of the 

canonical variable. However, since the magnitude of loadings quickly drops off as I go 

down the list of the high-loading genes, and since the “male” and “female” variables are 

only contributing to the weakest pair (18th) of variables that sits at the edge of our 

detection range, I regard gender bias as very minimal and only limited to a small set of 

genes. In fact, the 18th pair is highly contributed by PC 16, which features gender 

identity. 
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Overall, the technical artifacts mainly come from dissection issues and unknown 

inconsistent quantifications of low-mappability genes. Gender difference in individual 

dissects is a very minor factor, and it only affects a small number of genes. 

2.2.5. Mechanisms of transcriptional regulations of differential genes 

Transcription factors play a very important role in the regulation of transcription. Based 

on animalTFDB 2.0150, there are altogether 1485 transcription factors. These transcription 

factors also show tissue identity and temporal specificity, similar to but not necessarily in 

the same way as the global gene pattern (Figure 2.46A and B compared to Figure 2.4B 

and Figure 2.5A). Different families of transcription factors do not share the same 

distribution across differential gene clusters. Cluster 33 (Figure 2.40), which is associated 

with embryonic morphogenesis and neuron projection, is the cluster most significantly 

enriched with transcription factors, especially C2H2 zinc finger proteins. The biological 

function of many of these zinc finger factors are still poorly understood. Homeobox 

transcription factors are not only significantly enriched in Hox gene clusters (Cluster 19 

and Cluster 25, Figure 2.26 and Figure 2.32) but also in clusters associated with eye 

development (Cluster 18, Figure 2.25) and neuron differentiation (Cluster 31, Figure 

2.38). This may relate to their general role of axis definition and tissue regionalization, 

and imply more specialized roles of Homeobox factors. IRF factors are enriched in 

Cluster 10 that features liver expression and hematopoiesis. E2F factors are highly 

enriched in the cell-cycle associated cluster (Cluster 21). This is a family known to 
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regulate cell proliferations. Motif analysis to be mentioned later also confirmed this 

relationship.  

Patterns of RNA co-expression are caused, at least in part, by transcriptional co-

regulation. To systematically evaluate how transcription factor (TF) bindings affect gene 

expression patterns, I focused an initial global exploration on proximal promoters 

(500bp) by testing each cluster for enrichment of all 718 known consensus TF binding 

motifs (Figure 2.47A) from CIS-BP database. 
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Figure 2.47: Transcription factor expressions in the whole-tissue RNA-seq data. (A) 
PCA projection of transcription factor expression profiles. (B) One-way hierarchical 
clustering of transcription factor expressions in whole-tissue data. Tissue identities are 
labeled with color codes in Fig. 1.1. (C) Counts of transcription factors from each family 
in individual whole-tissue expression clusters. Colors indicate corrected p-values from 
hypergeometric test. 
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Figure 2.48: DNA Motif analysis of expression cluster proximal regulatory regions. (A) 
Flowchart of the analysis. TSS upstream sequences for each cluster were used to derive 
enriched motifs. (B) Bloom graph summary of unique and shared enrichment. Motifs and 
gene cluster identities are labeled as nodes. Enrichment is visualized as connecting lines 
between a motif and a gene cluster whose thickness indicates significance. Motifs 
enriched in more than one cluster are highlighted in gray instead of yellow. The sizes of 
gene cluster nodes represent the numbers of genes in the corresponding clusters.  

The results were organized as a bloom graph, with patterns of motif-sharing between 

clusters shown as connected, shaded TF nodes or pedals (Figure 2.47B). Thus, one 

“flower” represents the collection of putative regulators of a single cluster. 307 motifs 

were significantly enriched in at least one cluster, including biologically sensible TF 

themes for both large and small gene clusters: fetal liver Cluster 10 (Figure 2.17) has 
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hematopoietic (GATA, Tal and IRF), hepatic (HNF4a, and Prox1), and bile duct 

factors (HNF6, HNF1b, Sox9); the highly specific Rfx factor family belongs to its cilium 

cluster (Cluster 28, Figure 2.35); and the E2F family is prominent in the previously 

discussed cell cycle-theme Cluster 21 (Figure 2.28). 

The bloom graph also showed large-scale patterns: the prominent separation of 

neurogenesis (Cluster 34) from hematopoiesis (Cluster 10) seen at the RNA level (Figure 

2.5) emerged independently with separation of their respective motif use. The most 

extensive code-sharing was centered on brain-specific Cluster 34, which radiates out 

shared motifs (shaded nodes) into numerous other clusters that contain genes expressed in 

both CNS and other tissues. A possible explanation for this CNS-centric pattern is that 

the involved TFs (and/or their paralogs) were recruited into new networks during 

evolution to support neuronal diversity. Finally, the ubiquitous-expression cluster 

produced by far the strongest motif enrichments in the entire transcriptome, mostly 

caused by ETS family motifs (Figure 2.48B and Figure 2.49D). ETS motif enrichment 

and occupancy has been associated previously with human housekeeping genes151, along 

with several other factors whose motifs are also enriched here, though to lesser extent 

(e.g. ZFX and CRE). 

To understand how ETS proteins are correlated with ubiquitous gene expression levels, I 

filtered out low abundance and high variance genes and divided the rest into three groups 

(high, medium, and low) by their abundances (Figure 2.49A). Surprisingly, these three 

abundance groups showed a similar degree of significance of ETS motif enrichment 
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(Figure 2.49D). It is possible that ETS proteins are only involved in activating or 

maintaining the ubiquitous expression pattern but do not fine-tune the absolute levels of 

each gene. In fact, when compared against GRO-seq data of C2C12 cells quantified in a 

similar way, these three groups of ubiquitous genes no longer have obvious differences in 

transcription rate (Figure 2.49B) compared to their mRNA abundances (Figure 2.49A). 

Notably, mRNA abundances of these genes are negatively related to their 3’ UTR length 

(Figure 2.49C). It is likely that transcripts with longer 3’ UTRs naturally harbor more 

binding sites for RNA degradation apparatus, such as RNAi pathway components and 

other inhibitory proteins, resulting in lower abundance of mature mRNAs (Figure 2.49B). 
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Figure 2.49: Comparison between three groups of ubiquitous genes. Poly-A RNA-seq 
measurements of skeletal muscle (A), C2C12 GRO-seq data (B), and average 3’UTR 
length (C), are compared among three groups defined by their abundance measured by 
RNA-seq in the cumulative distribution function plots. (D) Significance of ETS motif 
enrichment in the promoters of ubiquitous genes.  
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Figure 2.50: Validation of 3’ UTR-mediated post-transcriptional regulatory 
mechanism in multiple samples. (A) Comparisons of 3’UTR length, GRO-seq, Bru-seq, 
and polyA RNA-seq assays among multiple different samples. Correlation scores 
between each pair of measurements on the columns and rows are visualized as a heatmap. 
In the corresponding cell of the comparison, a scatter plot is provided for the pair in 
comparison. On the diagonal, lined up are histograms of each individual measurement. 
(B) A model is proposed that longer 3’UTR may harbor more binding sites for RNA-
decay apparatus, leading to lower abundance at steady states. 

To test reproducibility of this phenomenon, I included more samples of RNA-seq, GRO-

seq152,153, and even Bru-seq154 for comparison. mRNA abundances of ubiquitous genes 

are more consistent across different samples than compared to transcription rate 

measurements (GRO-seq and Bru-seq) and are always negatively associated with 3’ UTR 

lengths, which are independent of transcription rate measurements (Figure 2.50A). These 

observations indicate that although transcription factors may set the ubiquitously 

expressed patterns of these groups of genes, the steady-state level of mature messenger 

RNAs are fine-tuned by their 3’ UTR-associated post-transcriptional regulation and slight 

modulation of transcription rate, independently. 

Another way to explore regulatory mechanisms for differential genes is to integrate 

histone mark distribution over differential gene clusters. Therefore, I processed histone 

mark ChIP-seq data from ENCODE155 and calculated their average enrichment over the 

promoters of the 34 differential gene clusters. This analysis checked average signal 

profiles of 8 different histone marks (H3K4me1, H3K4me2, H3K4me3, H3K9ac, 

H3K9me3, H3K27ac1, H3K27me3, and H3K36me3) in 12 tissues at up to 7 stages 

(E10.5 was removed due to inconsistent ChIP-seq protocol) against the promoters of all 

34 clusters. In addition to expected and known trends weakly identified, I discovered a 
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strong decreasing trend of H3K27me3, a well-known repressive chromatin mark, 

which anti-correlates with the up-regulated levels of RNA in the CNS-specific cluster, 

namely, Cluster 34 (Figure 2.41). This strong anticorrelation (decrease in H3K27me3 

signal and increase in RNA abundance) is not seen in other tissues with other gene 

clusters (Figure 2.51A and E), such as liver (Figure 2.51D), despite their similar RNA 

trajectories. I previously saw that the DNA binding motif for REST156/NRSF157, a known 

zinc-finger repressor of neuronal genes that decreases in brains (Figure 2.51C), is highly 

enriched in Cluster 34 (Figure 2.48B). It is likely that REST binds and represses the 

promoters of genes in Cluster 34. 
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Figure 2.51: CNS-specific genes are associated with Rest binding and de-repression. 
(A) H3K27me3 fold-decrease and RNA fold-change. Each bar represents a cluster of 
genes in a tissue type. The height represents RNA increase fold between the earliest and 
latest time points, while the colors represent H3K27me3 ChIP signal fold decrease. The 
arrows point to the strongest decrease of H3K27me3 that happens in Cluster 34 in brain 
samples. (B) NRSF target enrichment in individual clusters. Corrected P values are 
calculated based on Hypergeometric tests. (C) Abundance of NRSF mRNA in forebrain. 
(D-F) Averaged H3K27me3 profiles near promoter regions for liver ChIP-seq signals 
over Cluster 10 genes (D), forebrain ChIP-seq signals over Cluster 34 genes (E), and 
forebrain ChIP-seq signals over REST-targeted genes in Cluster 34 (F). 

Indeed, from ChIP-seq data in another study158, Cluster 34 is much more significantly 

enriched with REST-occupied genes than other clusters (Figure 2.51B). Analysis of 

REST/NRSF-occupied promoters showed even greater early-time H3K27me3 signal 

(Figure 2.51F). This in vivo brain result contrasts with an embryonic stem cell study in 

which no H3K27me3 enrichment was found at REST locations159 , but agrees with a 

culture-based neural progenitor study160. Although the genes in Cluster 34 that are not 

direct REST targets might be indirectly regulated by REST, it is possible that other 

repressors also play an important role in regulating CNS-specific genes. Additional 

repressive contributions might be mediated by other downward repressors such as Snai2, 

whose expression pattern is highly similar to Rest (they sit in the same clade of three 

genes in Cluster 16), possibly through a tandem negative feed-forward mechanism 

mediated by Mir124a161,162,163,164. 

2.3 Discussions 

The mouse fetal poly-A RNA matrix captured themes of histogenesis at multiple levels of 

organization. At the whole-embryo level, universal temporal RNA signatures were 

evident, while at the individual tissue level, complex expression signatures arose from 
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shifting proportions of constituent cell lineages, with each lineage maturing at its own 

pace toward cytodifferentiation. Although using whole-tissue embryo data alone cannot 

directly deconvolute cell type and lineage contributions to the whole-tissue 

transcriptome, I was still able to parse the transcriptome by comparing and contrasting 

expression profiles of different tissues at a wide range of stages assayed by the same 

protocol. My analyses separated transcriptome into ubiquitous and differential parts, the 

latter of which was further annotated into 34 major co-expression clusters. These 34 

clusters not only showed consistent ontology themes but also demonstrated interesting 

promoter regulatory codes. Ubiquitous genes possess coherent promoter codes, but post-

transcriptional regulation seems to secondarily modulate mRNA levels. Finally, 

integrating chromatin ChIP-seq data with cluster annotation highlighted a unique de-

repression mechanism of CNS-specific genes that are possibly mediated by the repressor 

REST/NRSF.  

Based on transcription “output” measurements, this whole-tissue RNA-seq study uses a 

divide-and-conquer strategy to parse the transcriptome and to further gain insights on 

their regulation, guiding follow-up experiments for deeper understanding of the genome. 

Although this study tries to make the most of the whole-tissue resource and to indirectly 

infer cellular events, it will miss a lot of interesting details hidden in certain cell 
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populations with weak saliency or low abundance. In the following chapter, I am going 

to discuss my single-cell study of tissue development. 

2.4 Materials and methods 

2.4.1 Whole-tissue RNA-Seq from mouse embryo tissues 

Pulverized pooled mouse embryo tissue replicates from timepoints E10.5, E11.5, E12.5, 

E13.5 E15.5, and E16.5 were received from the Ren lab which supplied these tissues for 

the entire mouse development project155. E14.5 and P0 tissues were dissected from single 

animals at Caltech. Replicate tissue samples were lysed and extracted using the Ambion 

mirVana protocol (AM1560). Residual genomic DNA was removed using the Ambion 

Turbo DNA-free kit (AM1907). Total RNA was quantified with Qubit, and RIN values 

were collected with the BioAnalyzer Pico RNA kit (5067-1513). The median RIN value 

was 9.7 (CV=4.4%). Each cDNA library was built using 10 ng total RNA spiked with 

ERCC spikes (AM4456740) diluted 1:5,000 in UltraPure H2O (InVitrogen 10977023) 

containing carrier tRNA (AM7119) at 100 ng/uL, RNAse inhibitor (Clontech 2313A) at 1 

units/uL and DTT (Promega P1171) at 1mM. cDNA was reverse transcribed and 

amplified according to the protocol in the SMARTer UltraLow RNA kit for Illumina 

(634935) using Clontech SMARTScribe reverse transcriptase (639536), and TSO, dT 

priming, and amplification primers from the Smart-seq2 protocol30 . The first strand 

product was cleaned up on Ampure XP beads, and then amplified using the Clontech 

Advantage 2 PCR kit (639207) with 13 PCR cycles and an extension time of 12 minutes. 

After a second round of Ampure XP cleanup, the amplified cDNA was quantified on 

Qubit and the size distribution was checked with the HS DNA BioAnalyzer kit (5067-
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4626). cDNA libraries were then tagmented using the Illumina/Nextera DNA prep kit 

(FC 121-1030) with index tags from Illumina (FC 121-1031), cleaned up with Ampure 

XP beads, quantified on Qubit, and sized with the Agilent HS DNA kit. Libraries were 

sequenced on the Illumina HiSeq 2500 as 100 bp single-end reads to 30M aligned reads 

depth. Inclusion for ENCODE submission required replicate concordance scores by 

Spearman correlation of FPKM values > 0.9. 

2.4.2 Reads mapping and quantification 

All the whole-tissue RNA-seq data were processed through the standard ENCODE 

pipeline (https://www.encodeproject.org/pipelines/ENCPL002LSE/).Downstream 

analyses were mainly done using MATLAB scripts 

(https://github.com/brianpenghe/MATLAB-genomics).  

 

2.4.3 Whole-Tissue RNA-seq quality control, PCA, CCA, and Hierarchical 

clustering 

tRNA genes and genes covered by fewer than 10 reads in all tissues were removed. PCA 

was performed over the log2-transformed FPKM values with 0.1 added as pseudo-counts. 

CCA was performed on the top 20 PCs’ and Boolean variables for tissue identities, 

thymus contamination, gender identities and stages (17 + 1 + 2 + 8 variables). Dynamic 

genes were defined as those with at least 10-fold difference (otherwise defined as flat, or 

ubiquitous) in FPKM values between the most and least abundant RNA samples. 

Dynamic genes and ubiquitous genes are further categorized into different classes based 

on gene types (protein-coding, lincRNA, etc.) annotated by GENCODE M4. One-way 

and two-way hierarchical clustering were done using Pearson correlation coefficient and 
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average linkage. Clusters were defined by traversing from the root of the tree towards 

the leaves and splitting out clades with different tissue dominance and GO terms, 

recognized manually, until no more major clusters could be split out. Clades with at least 

30 nodes were defined as major clusters. 

2.4.4 Motif analysis 

The analysis of transcription factor recognition motifs was carried out using version 

4.11.2 of the MEME-SUITE165. Motifs annotated in the CIS-BP database4 

(http://cisbp.ccbr.utoronto.ca/) were used to evaluate motif enrichment around the TSSs 

(500bp stream) of each cluster of similarly expressed genes; enrichment was scored by 

the AME program in the MEME-SUITE165. The analysis was carried out twice based on 

UCSC mm10 refFlat and GENCODE M4 separately, and only motifs with corrected p-

values smaller than 0.01 in both analyses were called significant.  

2.4.5 Ubiquitous gene analysis 

Among the genes defined ubiquitous by the whole-tissue RNA-seq analysis, those with 

log2(FPKM+0.1) values no higher than 2 were removed. The 3000 genes with smallest 

sample variance were equally assigned into high, medium, and low groups based on their 

average FPKM values.  

GRO-seq and Bru-seq reads were mapped and quantified using the ENCODE standard 

pipeline for computational consistency. Average 3’ UTR lengths for each gene were 
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extracted from GENCODE M4 annotation. The log2(FPKM+0.1) values and log10(3’ 

UTR length) were used for comparisons.  

2.4.6 Histone modification analysis 

Histone modification ChIP-seq data were processed using the ENCODE ChIP-seq 

pipeline (https://www.encodeproject.org/pipelines/ENCPL220NBH/) and Log2 fold 

change for ChIP-seq samples over input controls were calculated and plotted using 

Deeptools2.4.1166 (https://github.com/fidelram/deepTools/tree/2.4.1). To summarize fold 

decrease of histone modification signals in a specific sample among a specific cluster of 

genes, a 4kb window enclosing TSS at the center was used and average log2 fold change 

against input samples were calculated. The fold decrease was the difference between the 

fold changes of the earliest and latest timepoint. Rest target overlap p value was 

calculated based on hypergeometric test using iQNP Rest ChIP-seq target list158. 

 

2.4.7 Gene Ontology Analysis 

FuncAssociate167 3.0 (http://llama.mshri.on.ca/funcassociate/ ) was used at its default 

settings for terms calling. 
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C h a p t e r  3  

SINGLE-CELL TRANSCRIPTOMIC STUDY OF EMBRYONIC FORELIMB 

Abstract 

Mammalian tissue development is a complex process coordinating dynamic changes in 

multiple cell lineages. These cell lineages differ in their own ways of differentiation, 

migration, and turnover pace. To understand mechanisms of these processes, I present 

here a single-cell transcriptomic study of mouse embryonic forelimb from E10.5 to 

beyond E13.5. Based on the most variable features of the transcriptome, major cell 

lineages were identified and tracked, whose differential transcription factor networks 

highlighted both gradual and Boolean transitions between stages. My result presents the 

first high-resolution transcriptome atlas of the developing forelimb and provides new 

insights in regulation of cell state transition in limb development. 

3.1 Introduction 

The mouse forelimb is a classic model to study tissue development. It is composed of 

multiple cell lineages including muscle, skin, skeletal, endothelial, and immune lineages. 

Its rich existing knowledge base and ease to dissect make it an ideal tissue to perform 

modern high-throughput high-dimensional transcriptom measurements. Single-cell 

transcriptome data can identify constituent cell-types and states that comprise a complex 

tissue168,21,169,170. For embryogenesis, scRNA-seq further promises to address long-

standing questions about the number of transcription states that comprise a given 

developmental lineage and the nature of transitions between stages. Finally, scRNA-seq 



 

 

93 
data offer a critical input for gene network modeling by unambiguously assigning to an 

individual cell (or defined cell group) its transcription factor repertoire and candidate 

downstream target genes. Major contemporary methods of scRNA-seq have 

complementary strengths for these purposes, with some assaying modest numbers of cells 

at relatively high transcript detection efficiency and RNA isoform coverage, while others 

capture larger cell numbers at lower transcript detection efficiency and without isoform 

or promoter use information81. I present an analysis of ENCODE single-cell RNA-seq 

resource of the former type for the developing limb. These data identified and parsed 

major known limb cell lineages and stages within them, revealed how relative 

contributions change over developmental time, and enabled inference of corresponding 

differential TF networks. 

3.2 Results 

3.2.1 Resident and immigrating cell types identified 

The whole-tissue transcriptome analysis implied three biological themes of histogenesis 

that could be further illuminated by high quality single cell data: 1) cell lineage 

specification and progression to differentiation, 2) immigration of new cell types, and 3) 

differential proliferation and/or cell death between cell types (Figure 3.1). To capture 

their transcriptome signatures and assemble underlying regulatory networks, our lab 

produced 920 high-quality single-cell transcriptome profiles distributed from E10.5 to 

E15 beyond (Figure 3.3A). Fluidigm C1 single-cell platform was chosen to maximize 

compatibility with whole-tissue data by using the same RNA-seq biochemistry, 

sequencing to relatively high depth (~ 1 million reads per cell) to support transcript 
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detection (Figure 3.2B and C) and coverage. In aggregate, we detected 17,987 protein 

coding and 1562 lincRNAs, of which 98% and 90% respectively overlap with the limb 

whole-tissue RNA-seq time-course (Figure 3.2). 

 

Figure 3.1: Three principles underlying dynamic regulation of gene expressions in whole 
tissues. Tissues at earlier stages are the circles on the left while later ones are on the right. 
Smaller shapes represent cells and those in the same color belong to the same type.  

To separate putative cell types, I selected the top 1500 high dispersion (variance divided 

by mean of log2-transformed FPKM values) genes and only kept protein-coding genes 

coded in the nucleus (rather than the mitochondrium). Two-way clustering of these 1269 

remaining genes across all cells (Figure 3.3B) identified 11 cell types of different origins: 

the chondrogenic/osteogenic lineages and the resident limb mesenchyme from which they 

arise, the independently immigrating myogenic, monocyte/macrophage, endothelial, and 

neural crest lineages. Only a few epithelial cells were sampled due to our intentional 

removal during tissue dissection (see 3.4 Materials and Methods). Cell identity 

assignments were based on GO enrichment analysis and the developmental literature for 
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marker genes (Figure 3.4F) of each lineage. In addition to these marker genes, genes 

involved in proximal-distal patterning of the limb (Hox genes), cell-cycle regulation 

(such as Ccnb1), and cell signaling (such as Pdgfa and Pdgfra) were also found to be 

heterogeneously expressed in the forelimb. 

 

 

Figure 3.2 Quality metrics of whole-tissue RNA-seq and single-cell RNA-seq. (A) 
Numbers of protein-coding genes and lincRNAs detected in ENCODE whole limb RNA-
seq and single-cell forelimb RNA-seq data. (B) Average single molecule capture 
probability (psmc) in single-cell limb experiments. (C) Quantification of spike-in 
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controls. The heatmap shows the RNA-seq FPKM values of spike-in transcripts. Each 
row represents a spike-in transcript and each column represents one cell. Superimposed 
on the heatmap is a cumulative curve (magenta) of detection rate for each spike-in 
transcript. 50% and 90% detection rates are highlighted by white vertical bars on the plot. 
On the right are the expected number of copies of transcripts of the spike-in controls 
matching the rows on the left panel.  

Multiple replicates confirmed the reproducibility of cell type classifications (Figure 

3.3B). Additionally, an initial 10x Genomics platform was used to do 3’-transcript 

counting assays. Around 50,000 cells were sequenced, and the result was very similar 

(Figure 3.4A). 

 

Figure 3.3 Single cell analysis reveals multiple subpopulations bearing distinct gene 
signatures. (A) Limb development schematic. Arrow indicates immigrating lineages that 
enter the resident limb bud mesenchyme. (B) Hierarchical clustering of single-cells 
(horizontal axis) and genes (vertical) performed based on the highest dispersion genes 
(n=1269). Corresponding tissue batch IDs are labeled below the heatmap with different 
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colors representing time points using the same color code applied in (D). (C) Cell type 
composition is plotted as a time series with time as x-axis and percentages as y-axis. The 
color code corresponds to highlighted cell clusters in (B) and gives provisional cell 
identity (see text). (D) Individual cells are laid out on 2D t-SNE planes, with the 
embryonic stages of tissue origin (left) and cell cluster membership color-coded from 
(B). (E) Monocle lineage inference. (F) Normalized log-transformed expression levels of 
selected genes are visualized as heatmaps on the t-SNE plane. 

The only differences are probably the additional clusters seen in 10X data. An additional 

muscle cell cluster with exclusive Myot expression was split out from the Muscle 3 

cluster (Figure 3.4B) that was not clearly seen in C1 data, probably due to under-

sampling of late time points after e14 in C1 experiments. Indeed 4 cells in C1 collection 

showed Myot expression but ended up in Muscle 3 cluster probably due to low cell 

number. Epithelial cell type splitted into two clusters in 10X data while equivalent cells 

in C1 dataset only formed one cluster. A possible explanation is that the ectoderm could 

not be well removed at later stages and that under-sampling of it in C1 experiments made 

it hard to identify. Even so, the epithelial cluster of C1 data still contains both 

subpopulations. Finally, red blood cells formed a new cluster on 10X t-SNE plot. Gene 

signatures of these cells were only seen in 4 cells in C1 data labeled as different cell 

types. This means that C1 experiments could not perfectly isolate and capture red blood 

cells unless they stuck to other cells. Cell size and shape might have been the underlying 

reason. In all, cell-type classification by C1 data was well reproduced by 10X 3’ tagging.  
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Figure 3.4 3’-transcript tagging method reveals discrete cell types. (A) Individual cells 
visualized on 2D t-SNE planes. Colors represent cell types. (B) Counts of Myot 
transcripts. Normalized log-transformed Myot counts are visualized using the color 
scheme on the right. Cell coordinates on the 2D t-SNE plane are the same as (A). 

3.2.2 Developmental lineage progression and gradients of cell-signature salience 

Using algorithms such as t-SNE (Figure 3.3D) and Monocle 2 (Figure 3.3E), major 

developmental trajectories of the limb are highlighted. Early stage samples (E10.5-11.5) 

are dominated by resident limb mesenchymal cells and early muscle precursors (eMPC) 

(Mesenchyme1 and Muscle1 cell clusters); while at later timepoints, immature 

chondrocytes, perichondrial cells, myoblasts (MB), and early myocytes (eMC) (Muscle 2 

and Muscle 3 cell clusters, respectively) emerge (Figure 3.3C). After E14.5, perichondrial 

cells dominate the chondrogenic/osteogenic lineage while myocytes increasingly 

represent the myogenic lineage (Figure 4C and 3D), although they are likely under-
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represented because they fuse into large multinucleate myotubes that are not 

successfully recovered into the single cell format. 

Overall, the inferred lineage relationships were consistent with classical and genetic 

knockout and modern tracing studies. For example, early myogenic progenitors enter the 

limb bud from adjacent axial somites, requiring the TF Pax3 for cell migration171,172,173, 

and Pax3 emerged as the strongest differential gene defining the Muscle1 cell cluster 

(p=4.7e-12 by t-test). Together, Monocle and t-SNE defined a tri-partite myogenic 

progression (Figure 3.3D and 3.3E), whose subdivision was informed by 1) sharply 

cluster-restricted genes (Figure 3.6A) that split stages (e.g. regulators Pax3, Pax7, Msc, 

Myog) and by 2) pan-lineage and multi-cluster regulators that joined stages together (e.g. 

Pitx2/Pitx3, Myod1) (Fig. 3.6A and B). These results confirm at single-cell resolution the 

prior microarray results from FACS analysis of GFP targeted muscle precursor 

cells174,175. My model with respect to myogenesis shares some overall characteristics with 

one constructed for in vitro differentiation of human adult muscle85, but it differs 

substantially in the stages represented and in many pertinent regulators, reflecting both 

known and newly highlighted differences between adult in vitro and embryo in vivo 

systems. The EMP to macrophage relationship is also clearly evident in the data. 

Skeletogenesis is also prominent, comprising the largest lineage fraction. Condensation, 

ongoing expansion, and differentiation into cartilage and bone are the primary fate of the 

resident limb mesenchyme176,177. It is represented here in the global models that focus on 

putative chondrocytes and perichondrial cells, though the lineage structure is less clearly 



 

 

100 
partitioned and ordered than myogenesis. Substantially deeper cell sampling will 

likely be needed to develop strong lineage models. 

Although cell type and lineage classification can be done based on their most prominent 

and specific gene expression signatures, a spectrum of different salience was observed. In 

the limb system, cell-specific signatures increased in complexity as lineages progressed 

(Figure 3.5). More mature types (e.g. Muscle 3 or Macrophage) were easier to define and 

detect because their highly salient signatures discriminated both inter- and intra-lineage 

distinctions (Figure 3.5). However, early cell types and progenitors (Muscle1, EMP, and 

Mesenchyme1) displayed lower salience, with very few progenitor-unique genes 

compared to their more differentiated counterparts. Defining such progenitor types was 

bolstered by their early, and sometimes very low-level, expression of multi-stage and 

pan-lineage genes (Figure 3.5B). 

 

    
Figure 3.5 Cell-type relationships and salience. (A) Spearman coefficients between 
different single-cells. Spearman coefficients were calculated from high-dispersion genes 
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and are visualized by a heatmap. Colored dendrograms from Figure 3.3B are used to 
label cell types. (B) Boolean markers (not expressed elsewhere) for single and combined 
cell type(s). Genes specifically enriched in one or selected combinations of multiple cell 
types are included. Normalized log-transformed FPKM values are visualized as 
heatmaps. 

3.2.3 Lineage networks integrate Boolean versus quantitative regulators 

Differentially expressed TF sets for each major cell type and stage were extracted and 

their known protein and genetic relations used to organize them into interaction networks 

(Figure 3.6A and C). In the myogenic lineage, some regulators show strong contrast 

between the cell cluster stages. Pax3 uniquely marked muscle precursor identity 

(Muscle1) (Figure 3.6B and F) and is replaced by Pax7 which is positive only in the 

intermediate myoblast-like cell state and then turns off (Figure 3.3F). Myog and Zbtb18 

are turned on late in differentiating myocytes (Muscle 3)(Figure 3.6B and F). In contrast 

to these stark Boolean regulators, more gradual quantitative regulators like Pitx3, Hes6, 

Myod1, and Ybx3 can be detected early in precursor cells and ramp up gradually through 

later stages, while Hmgb3 and Hmga1 are gradually reduced (Fig. 3.6A). Boolean-type 

TF switches were also found in the progression from the EMP state to the pre-

macrophage state82, with Gata1 high in EMPs and undetectable in pre-macrophage cells, 
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whereas Emr1 showed the opposite pattern, and Runx1 joined the two cell stages 

while discriminating them from others in the limb. 

 

Figure 3.6 Differentially expressed transcription factors. (A) Heatmap of expression 
levels of the differentially expressed transcription factors. Cell identities labeled on top 
match those in Figure 3.3B. (B) Distributions of expression levels in distinct muscle 
states. (C) STRING networks of three muscle states based on enriched differential 
transcription factors. 

The distinction between Boolean and quantitative regulators cannot be seen in a whole-

tissue time course because the average profiles of both Boolean and quantitative 
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actually do have different transition patterns. It is possible that downstream targets of 

quantitative regulators have intrinsic thresholds to translate quantitative regulator 

concentration into discrete ways of actions and thus lead to discrete cell fates. More work 

is demanded to better understand this already complex network since Boolean and 

quantitative factors do not act independently but actually interact with each other based 

on STRING database178 (Figure 3.6C). 

3.3 Discussions 

While the large-scale whole-tissue RNA-seq measures the average profile of mixed cell 

types that go through differentiation, migration, and unsynchronized turn-over, I 

demonstrated the power of single-cell RNA-seq analysis that directly decomposed much 

of this complexity by separating multiple cell lineages and stages for limb development, 

revealing distinct graded versus Boolean patterns of TF change along individual lineage 

axes. Lessons about complexity and salience of gene signatures at different 

developmental stages were also learned from this limb single-cell data, which can be 

useful for future experiment design and data interpretation.  

3.4 Materials and methods 

3.4.1 Single-cell transcriptome measurements using the Fluidigm C1 

One pair of embryonic forelimbs from a single mouse was used at each timepoint (E10.5, 

E11.5, E12.5, and E13.5). After dissection from the carcass, limbs were incubated in a 50 

uL droplet of a 10% collagenase solution (Worthington LS004202) for 5 minutes at 

37 ℃. The limbs were then visualized under a dissecting scope and the ectoderm was 

removed manually with a pair of #5 Dumont forceps. The mesenchymal core of the limb 
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bud was then transferred to a 200 uL droplet of Accumax (AM105), and the dish was 

reincubated for 15 minutes at room temperature. The cells were then manually triturated 

once with a P200 tip to suspend them, and pipetted into 500 uLs of DMEM + 10% FBS. 

Limb cells were spun at 500g for 5 minutes at 4℃, resuspended in 500 uLs fresh DMEM 

+ 10% FBS, and passed over a 20 micron mesh (Miltenyi 130-101-812). They were then 

counted and diluted in DMEM + 10% FBS to achieve a final concentration of 250,000 

cells/mL. 12 uLs of this suspension was added to 8 uLs of Fluidigm Cell Suspension 

Reagent for loading on the Fluidigm IFC (10-17 micron size). Cells were then visually 

inventoried for doublets and empty chambers, and returned to the C1 for lysis, reverse 

transcription, and amplification using the SMART-Seq v4 protocol. Lysis buffer: 8.6 uLs 

water, 1 uLs C1 loading buffer, 2.4 uLs Smart-seq2 oligo(dT) primer (10mM), 2.4 uLs 

Clontech 10mM dNTPs, 2 uLs ERCC spikes (AM4456740) (diluted 1:40,000 in 

UltraPure H2O (InVitrogen 10977023) containing carrier tRNA (AM7119) at 200 pg/uL, 

RNAse inhibitor (Clontech 2313A) at 1 units/uL and DTT (Promega P1171) at 1mM), 

0.5 uLs 100mM DTT, 2.6 uLs Clontech single-cell reaction buffer. Reverse transcription 

reaction: 5.6 uLs Clontech 10X transcription buffer, 0.6 uLs C1 loading buffer, 5.6 uLs 

Smart-seq2 TSO (10mM), 0.4. uLs Clontech RNAse inhibitor, 2.8 uLs Clontech 

SMARTScribe. PCR reaction: 4.4 uLs water, 4.5 uLs C1 loading buffer, 75.2 uLs 

Clontech SeqAmp buffer, 3 uLs Smart-seq2 amplification primers (10 mM) and 2.9 uLs 

Clontech SeqAmp polymerase. 

Amplified cDNA samples were diluted in 10 uLs of C1 DNA dilution reagent, and a 1 uL 

aliquot of each was quantified on Qubit. 11 samples from the IFC were selected for 
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BioAnalyzer sizing based on yield and chamber occupancy. An aliquot of the cDNA 

libraries was diluted to 0.1 – 0.3 ng/uL using C1 Harvest reagent, and the libraries were 

then tagmented using the Nextera XT DNA sample prep kit (FC 131-1096) and Nextera 

XT indices (FC 131-1002). After tagmentation and amplification, libraries were pooled, 

cleaned up twice with Ampure XP beads (0.9X volume), quantified on Qubit, and sized 

on the BioAnalyzer using the HS DNA kit. The libraries were sequenced as 50 bp single 

reads to a depth of about 1M aligned reads. 

3.4.2 Reads mapping and quantification 

Single-cell C1 RNA-seq data were processed through the standard ENCODE pipeline 

(https://www.encodeproject.org/pipelines/ENCPL002LSE/). Single-cell 10X data were 

processed by Cell Ranger (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger). Downstream analyses were 

mainly done using MATLAB scripts (https://github.com/brianpenghe/MATLAB-

genomics).  

3.4.3 Cell-type and lineage-specific marker genes identification. 

To identify cell types, 1500 genes with highest dispersion (variance over mean) of log-

transformed FPKM values were selected, and only nuclear protein-coding genes were 

kept. Then these cells were hierarchically clustered using Spearman correlation. Cell 

clusters were then manually picked based on enriched genes. Marker genes were defined 

as those that were significantly enriched against background cell type (Mesenchyme 2) 

based on one-tailed t-test (p < 0.00001) using log-transformed FPKM values. Genes with 

larger than 3 fold enrichment compared to any other group-average FPKM values were 
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removed due to low effect size. I did this analysis for each of the cell type other than 

the background cell type and for combinations of related cell types (Muscle 1+Muscle 2, 

Muscle 2+Muscle 3, Muscle1-3, Chondrocyte+Perichondrium, EMP+Macrophage). 

Mesenchyme 2 markers were defined to be those with more than 3 fold enrichment 

compared to any other group.  
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C h a p t e r  4  

INTEGRATING ENCODE WHOLE-TISSUE DATA AND SINGLE-CELL RNA 
PROFILES 

Abstract 

The mammalian genome undergoes robust regulation during development in a cell type-

specific manner. Here I present analyses combining single-cell information with 

ENCODE whole-tissue measurements to gain insights on cell type-specific gene 

signatures and regulatory architecture. Single-cell measurements captured a lot of 

features that whole-tissue measurements could not discover even with large-scale 

combinatorics. Whole-tissue data combined with single-cell RNA-seq also parsed 

chromatin signatures contributed by high-salience cell types and provided valuable maps 

of candidate cis-regulatory elements. This chapter demonstrates the broader use of single-

cell data for deeper mining of regulatory mechanisms. 

4.1 Introduction 

The mammalian genome undergoes robust regulation during development. Numerous 

high-throughput biochemical assays have been developed in the past decade to 

characterize the input and output of the dynamic genome, most of which are limited to 

whole-tissue level without single-cell resolution. One exception is RNA-seq, which has 

been advanced to robust high-throughput and automated fashions with single-cell 

resolution and has been widely used and understood in recent years. To comment on the 

advantage of using single-cell RNA-seq measurements compared to traditional whole-
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tissue RNA-seq methods, and to leverage the ENCODE resources, I am providing 

integrative analyses of single-cell RNA-seq data and ENCODE whole-tissue data. 

  

4.2 Results 

4.2.1 Single-cell limb signatures parse whole-tissue limb cell compositions 

 
Since the whole-tissue RNA-seq data in Chapter 2 and single-cell RNA-seq C1 data in 

Chapter 3 were both generated using protocols based on SMART-seq210, a direct 

comparison between them would be reasonable. Due to the fact that ENCODE limb 

samples contain both the forelimb and hindlimb and do not match our single-cell data 

which were derived only from forelimb, our lab also built whole-forelimb RNA-seq data 

to assess the difference. 

Using the high-dispersion nuclear protein-coding genes derived in Chapter 3 as an input, 

CIBERSORT179, a method for estimating cell composition of complex tissues, was able 

to infer the fraction of each known cell type in the mixed-cell tissues (Figure 4.1). In 

Chapter 3, I talked about the fact that late-stage muscle cells might be under-represented 

in single-cell data because they tend to fuse into large multinucleate myotubes that are 

hard to dissociate. 

 

A B 
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Figure 4.1 Cell composition of limb tissues inferred by CIBERSORT. (A) Forelimb 
whole-tissue cell composition inferred from single-cell signatures. X-axis denotes 
development stages while the height along Y-axis represents percentage of cells for 
certain cell types. (B) Cell composition of ENCODE mixed limb tissues inferred from 
single-cell signatures visualized in a similar way to (A). 

That might partially explain the drop in empirical fraction of myoblast and myocyte 

(Figure 3.3C). However, based on CIBERSORT estimation, even in whole-tissue data 

myoblast and myocyte also drop after E13.5 (Figure 4.1). This implies that the decrease 

fraction of mature cell types in late-stage forelimb tissue may not be an artifact of single-

cell isolation protocol but is probably due to differential turn-over rate between lineages. 

Muscle lineage propagation may not catch up with the rapid production of cell types in 

other lineages, such as perichondrial cells from mesenchyme differentiation. Therefore, 

the relative abundance of muscles cells gradually decreases, although the absolute 

quantity is probably increasing as the forelimb grows bigger. 

Based on CIBERSORT’s estimation, the single-cell dataset has roughly the same 

stoichiometry of cell types compared to the forelimb whole-tissue dataset, indicating 
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good sampling of major types of cells. The only discrepancy lies in minor cell type 

identification, especially those with weak gene signature salience (Muscle 1 and EMP 

cells). Those cell types do not have enough exclusive marker genes (Figure 3.5B) for 

recognition of their presence and have only a small number of samples (cells).  

Furthermore, I performed a similar analysis for ENCODE mixed limb RNA-seq data. 

Overall, mixed forelimbs and hindlimbs did not show a dramatically different 

composition. Major differences include a higher percentage of “Epithelial” and 

“Mesenchyme 1” cells at late stages for ENCODE mixed dissections, partially due to 

their different dissection method. 

 

Overall, using independent single-cell data, the cell composition of a tissue can be 

estimated from its whole-tissue RNA profile. But it has to be kept in mind that, although 

transcripts from individual cells are always extracted and processed together for whole-

tissue assays, which assumes that a linear average of them are finally sampled in the 

whole-tissue RNA-seq library, the library construction process amplifies them with 

exponential noise, random dropout, and other types of biases, making it hard to robustly 

infer cell composition, especially for low-salience cell types. 

4.2.2 Local versus global identities 

 
Although limb tissue has a unique structure and function compared to other parts of the 

body, its cell types as building blocks are mostly also seen in other tissues. This implies 

that if enough RNA-seq data from different tissues at different stages have been 



 

 

111 
collected, by comparing them to each other, it might be possible to identify a lot of 

cell type-signatures as minimal modules. That has been the goal of the study in Chapter 

2. Indeed multiple modules were identified. These modules contain genes with similar 

expression patterns, corresponding to collinearity patterns in the high dimensional space, 

which can thus be transformed by PCA to capture major features (principal components). 

To understand whether the single-cell limb gene signatures were already identified in the 

whole-tissue data, I mapped the marker genes of each cell type onto the differential 

cluster map of whole-tissue data, and plotted the distribution of their coordinates on the 

map as violin plots (Figure 4.2). Marker genes of EMP and macrophage cells mainly 

concentrate on Cluster 10, which features hematopoiesis. Although these cells have a low 

fraction in the limb tissue, they have a large number of prominent markers and broad 

distribution across multiple tissues. Therefore, whole-tissue RNA-seq data already 

identified Cluster 10 to represent this signature. Similarly but less prominent, Muscle 3 

signature overlaps with Cluster 2 (skeletal muscle) and Cluster 3 (cardiac muscle) 

featuring myogenesis, while the perichondrial signature overlaps with Cluster 16 

featuring the extracellular matrix. Interestingly, this analysis also captured the fact that 

Mesenchyme 1, Muscle 1, and EMP cells as progenitor cell types have a slight overlap 

with Cluster 21 which represents cell cycle regulation, consistent with their active 

proliferating feature. However, none of the low-salience cell types had their cell type-

exclusive signature discovered by the whole-tissue cluster analysis. Their marker genes 

are usually dispersed across multiple clusters due to the fact of the multi-tasking nature of 

many of these genes, that is, they also have a variety of expression and functional 
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features in other tissues and thus get assigned to different places. An independent 

CCA was also performed to look for linear combinations of whole-tissue profiles that can 

explain cell type-specific signatures in the limb, but did not find any evidence for low-

salience signatures. 

 

 
 
Figure 4.2 Cell type-specific markers mapped onto the bulk clustergram. Cell type-
specific markers mapped onto whole-tissue clustergram. Each cell type has its markers 
positioned at corresponding y-axis position on the right, aligned with genes in the whole-
tissue clustergram on the left. The distributions of these positions are smoothed into 
violin plots for better visualization. 

These analyses show that single-cell RNA-seq has irreplaceable power to find features of 

certain cell populations that cannot be recognized by whole-tissue measurements, due to 

representation and salience issues. It also showed that defining a “marker gene” or a 

multi-gene cell-type signature is inevitably context dependent. Context ambiguity also 
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affected cell-type markers first defined elsewhere. For example, fate mapping studies 

have shown that some early mesenchyme, including a subset of Myf5 expressing cells, 

become fat rather than muscle180, but expression of a prominent brown fat discriminator 

from that study (Prdm16) was widespread across all cell types in the developing limb 

context (data not shown). 

4.2.3 scRNA-seq data deconvolve candidate cis-regulatory elements by cell type 

 
The ENCODE histone mark, chromatin accessibility, and DNA methylation data provide 

rich biochemical signatures from which candidate cis-acting regulatory elements (cCRE) 

have been computationally inferred at the whole-tissue level181,182. However, the resulting 

cCREs are, for each tissue, an unresolved admixture of chromatin from all cell types of 

the tissue. To begin to parse cis-elements by cell type, as illustrated by the diagram in 

Figure 4.3, I merged limb DNase hypersensitive sites (DHSs) from ENCODE as 

candidate regulatory elements, associated each of them with the nearest promoter of an 

expressed gene, and then integrated them with a whole-tissue epigenomic regulatory state 

model181,182 (IDEAS, see Methods) to identify active elements. Finally, the active 

elements that associate with cell type or lineage-specific marker genes were extracted. 

Overall, I was able to assign 4631 candidate active and poised elements to individual 

limb cell types and lineages. It was encouraging that DHS and chromatin marks from 

whole limb tissue had the sensitivity to identify known validated enhancers specific for 

cell clusters comprising less than 10% of the starting tissue (notably Muscle 3 and 

Macrophage, Figure 4.4A and C). Previously validated cCREs were affiliated with these 

and other cell types (Figure 4.4A and B). Of 405 cell-type and lineage-specific genes, 
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385 (95%) had at least one affiliated active or poised element (median 6 elements per 

gene), and all limb lineages and clusters had detectable elements. Modeling cell-

type/state-preferential cCRE in this way should now be possible for any ENCODE matrix 

tissue with the addition of its corresponding sc-RNA data and its integration with IDEAS 

or other epigenomic state models. 

 
 
Figure 4.3 Assigning candidate cis-regulatory elements to cell types. Three types of data 
on the left are used to derive the final model of cell-type cCREs on the right. Arrows 
represent data processing flow. 
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Figure 4.4 Representative cell type-specific cis-regulatory elements. (A) 
Computationally predicted limb myocyte cCREs. Active or bivalent cCREs are labeled 
with horizontal black bars on top, the cell-type specific (exclusive) ones of which are 
labeled in purple below. IDEAS states are shown below the cCREs bars. Red represents 
active promoters. Orange represents active distal enhancers. Blue and purple represent 
inactive regions. Mixed colors represent intermediate states. Bulk DNase and RNA-seq 
data tracks as well aggregated single-cell RNA-seq data tracks are shown at the bottom. 
An image of enhancer assay result of an element overlapping Mu3 is shown on the right, 
taken from a published paper by Yee et al183. (B) Skeletal enhancers (Ca1-3) shown with 
in vivo enhancer validation from the VISTA resource for Ca3 
(https://enhancer.lbl.gov/frnt_page_n.shtml) at the Sox5 locus. (C) The C1qb locus that is 
macrophage-specific. Three cCREs (Lb1-3) for limb-specific expression of this 
macrophage gene were identified. The contrasting promoter proximal element (Lv1) is 
active in liver and has a corresponding DHS profile.  

4.3 Discussions 

Whole-tissue biochemical measurements present a high degree of complexity that arises 

from shifting cell composition and unsynchronized maturation pace. Single-cell RNA-seq 

proved to be able to not only separate cell type-specific gene signatures that whole-tissue 

data could not identify, but also assess the composition of known cell types in whole-

tissue data. This latter power will be even more profound when the cell atlas of individual 

tissues are complete. Before single-cell epigenomic assays are ready for reliable and wide 

use, single-cell RNA-seq measurements could be integrated with whole-tissue 

measurements to infer the most prominent cell type-specific and lineage-specific 

regulatory codes. My analyses demonstrate how a simple integration algorithm can infer 

regulatory mechanisms at cell-type level and show the power of single-cell RNA-seq 

profiling beyond measuring RNA itself. 
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4.4 Materials and methods 

4.4.1 Bulk forelimb RNA-Seq from mouse embryo tissues 

Forelimbs were individually dissected and processed using exactly the same protocol as 

in 2.4.1. 

4.4.2 Comparing whole-tissue RNA-seq and single-cell RNA-seq. 

Filtered top 1500 high-dispersion nuclear protein coding genes (See 3.4.3) were used as 

input for CIBERSORT179 to compare against whole limb RNA-seq data. To compare 

marker genes defined from 3.4.3 against ENCODE whole-tissue RNA-seq clusters, 

marker genes defined for each cell type were matched to the ordered heatmap of the 

whole-tissue clustergram (Figure 2.5A). For better visualization, I not only showed 

individual locations as horizontal bars but also borrowed violin plots to show smoothed 

distribution of these marker genes. 

4.4.3 IDEAS states 

The IDEAS epigenetic states on the ENCODE3 mouse developmental data were 

generated by the IDEAS software181,182 using 10 epigenetic marks: H3K27ac, 

H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me3, ATAC-

Seq, and DNAse methylation data. We first converted the raw data in each sample to –

log10 p-values using a Negative Binomial model. The mean and variance parameters of 

the model for each sample were calculated using the bottom 99% of the data. We then 

adjusted the mean parameters at each genomic position from the input data to account for 

local genomic variations. Specifically, we downloaded the input data for each tissue (see 

list of data sets), and we calculated rolling means per genomic position using a 20kb 

window centered at the position, for both signals and the input. The ratio between the two 

means at each position was multiplied to the overall mean estimate of the sample, and we 
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normalized the ratios across the genome to have mean 1. We treated the –log10 p-

value as input data for IDEAS, capped at 16, and we ran the program in its default 

setting. The output from IDEAS is a set of genome tracks to display in the genome 

browser, where each epigenetic state is assigned a color as a weighted mixture of colors 

pre-assigned by the program to each epigenetic mark. The IDEAS segmentation can be 

accessed by the Hub link (http://bx.psu.edu/~yuzhang/me66/hub_me66n_org.txt). 
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