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ABSTRAcr 

This thesis investigates the rigid body motions of skew bridges, 

concentrating on the in-plane translational and rotational displacements 

of the bridge deck ioouced by impact between the deck and the abutments. 

Experience in the San Fernando Earthquake of February 9, 1971 

demonstrates that this feature is particularly important for skew 

bridges. 

A simple model, in which the bridge deck is represented by a rigid 

rod restricted by column and abutment springs is examined first. This 

model illustrates the mechanism by which in-plane rotational vibrations 

is triggered after the closure of the gap between the bridge deck and 

the abutment. It also shows that the force-deflection relations of the 

columns and the abutments are particularly important features for the 

response of the bridge. Methods for the exact and approximate estimation 

of the elastic stiffness of elastically founded, tapered bridge columns 

with octagonal cross section are presented next. The methods are applied 

to a bridge used later as an example. In addition, the yielding of the 

columns is examined and the force-deflection relations for bending about 

two orthogonal axes are estimated. 

The abutments are treated as rigid bodies and the soil embankments 

as Winkler Foundations with elastic spring constants increasing 

with depth. For the examination of the yielding of soil the Rankine 

theory is used. Based on these assumptions an approximate force­

deflection relation for the abutments is constructed. 

The response of a more complicated bridge model applied to a bridge 

near Riverside, California is examined at the end of the thesis and 

examples of the results are given. This model, in which the bridge deck 
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is still represented as a rigid rod, has three in-plane degrees of 

freedom: two orthogonal displacements and a rotation, and is capable of 

capturing many of the more important features of the nonlinear, yielding 

response of skew bridges during strong earthquake shaking. 
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CHAPTER 1 

INI'ROOOCTION 

1.1 PACXGOOUND QN niE SEISMIC RESPONSE ~ HIGHWAY BR!DGES 

The 1971 San Fernando Earthquake revealed the vulnerability of 

highway bridges to earthquake loadings and, thus, presented a major 

turning point in the development of research on the seismic response of 

freeway structures. Actually, prior to the San Fernando Earthquake, very 

little damage was observed worldwide to reinforced concrete bridges as a 

direct result of earthquake shaking. According to Imbsen, Nutt and 

Penzien (Ref. 2) the damage to bridges prior to the San Fernando 

Earthquake had been caused by: 

( i) Tilting, settlement and overturning of stbstructures, 

(ii) Displacerrent of supports and ancoor bolt breakage, and 

(iii) Settlement of approach fills and wingwall damage. 

More specifically, in california from 1933 until 1971, eleven separate 

earthquakes ranging in magnitude from 5.4 to 7. 7 on the Richter scale 

affected approximately l,(XX) bridges. However, none of these bridges was 

close to the area of intense shaking and the total amount of damage was 

about $100,(XX). In the case of the San Fernando Earthquake, many bridges 

were located within the zone of the intense shaking and the resulting 

damage was approximately $6,500,(XX) for this earthquake alone (Ref. 3). 

As a result of the San Fernando Earthquake, there has been an 

increased public awarness of the seriousness of the earthquake hazard to 

highway bridges. A reflection of this concern was the recognition of the 

need for extensive research in order to provide engineers with 

information about designing highway bridges that are more earthquake 

resistant. Thus, immediately following the San Fernando Earthquake, 
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research efforts were initiated to develop new seismic design criteria 

taking into account the vibrational properties of the bridge elements 

and the soil (Ref. 4). The result of these efforts was the formation of 

the basis for a new national seismic bridge design code (Ref. 4). In 

addition, ptblication of many research results provided explanations for 

the observed behavior of individual bridges during earthquakes 

(especially the San Fernando Earthquake) or predicted the seismic 

response of particular bridges (Refs. 2 and 8). 

These research efforts paved the way for significant advances 

during the last decade in the design and construction of seismic 

resistant bridges. However, in view of the complexity of the problem, 

significant gaps still remain in the understanding of the vibrational 

response of highway structures; and numerous aspects of the problem 

remain still unexplored. The solution of these problems requires the 

continuation of both analytical and experimental research. 

1.2 srATEMENr OF THE PROBLEM 

One of the observations from damage to freeway structures caused by 

the San Fernando earthquake was that several moderate span bridges with 

relatively large skew angles showed a tendency to rotate in a horizontal 

plane in a direction that increased their skewness (Refs. 5, 6, and 7). 

The same behavior was later observed during the recent Coalinga 

Earthquake of May 1983. In the San Fernando Earthquake this 

susceptibility of skewed bridges to rotational displacements caused, in 

some cases, severe damage to columns and abutments. The damage to 

bridges was relatively minor during the Coalinga Earthquake. 

It has been concluded (Ref. 5) that this rotation was a direct 

result of the interaction between the structure and the approach fill, 
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and it was suggested that research on this phenomenon was required. This 

is the subject of this thesis which has as its purpose the investigation 

of the in-plane rotational vibrations of short span skew highway 

bridges, including the effects of interaction with the abutments. 

1.3 EXAMPLES QE SKEW BRIDGES WHICH SHOWED ROTATION Qr THEIR DECKS 

DURIN:; ROCENr EARTHOOAKES 

Some of the bridges that were highly susceptible to in-plane, 

rotational displacements and which suffered extensive damage during the 

San Fernando Earthquake include the following. 

a. The San Fernando RQgQ Overhead (Refs. 5 and 6) The two San 

Fernando Road Overhead bridges, part of the Golden State-Foothill 

Freeway interchange, are seven-span skew structures that carry the 

Golden State Freeway over the San Fernando Road and the Southern Pacific 

Railroad. The central spans over the railroad were constructed of both 

steel and precast prestressed concrete girders. The other spans are of 

reinforced concrete box construction. The structure suffered collapse of 

the simply-supported steel girder spans. It seems probable that the 

steel girders fell from their steel bearings and then, with the onset of 

large horizontal deformation, the girder spm rotated in a horizontal 

plane by the pounding at skew joints until some of the girders slipped 

free from the piers. In Fig. l.la one can see the permanent set of the 

bridge in the directon of increasing skewness. 

b. Northbound Truck Route Undercrossing (Refs. 5 and 6) This 

bridge, which is also part of the Golden State-Foothill Freeway 

interchange is a three-span continuous concrete box bridge approximately 

225 feet long. It has large angles of skewness at each abutment. The 

bridge rotated in a horizontal plane about the western end resulting in 
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FIG. l. l GAMAGE ID HIGffi~Y BRILGES DUE TO RGrATiuN 
OF THEIR DECKS DURING THE SAN FERNANro 
EARrHQJAKE 
a. San Fernando Road Overhead 
b. Foothill Blvd. Undercrossing 
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riG. l. 2 DAMZ\GE TO HIGHWAY BRirx:;ES DUE TO ROTATION 
OF THEIR DECKS DURING THE SAl.'l FERNANDO 

&\~~~I QUAKE 
northbound ':2ruck Route Undercrossing 



6 

FIG. l. 3 DA '1AGE TO HIGHVVAY BRIIX;E DUE TO R0rATICN 
OF IT0 DECK DU~ING THE 19 83 COALINGA 
Et"\ ~-1 i'' 2:.JNZE 
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a large permanent displacement of the superstructure at the eastern 

abutment and severe bending failures at the tops of the columns in the 

eastern pier. Pictures of the damage to this bridge are shown in Fig. 

1.2. 

c. Foothill Boulevard Undercrossing (Refs. 5 and 6) This 

structure, which is part of the Foothill Freeway Bridges, is a pair of 

four-span continuous reinforced concrete box girder skewed bridges. The 

bridge rotated in the horizontal plane, and a permanent offset of about 

four inches in the direction of increasing skewness was observed at the 

abutments. The damage to the columns of this bridge is shown in 

Fig. l.lb. It appeared that the bridge rotated at about the third 

column, which did not suffer extensive damage. 

Damage of a similar nature, but much less intense, occurred during 

the 1983 Coalinga, california earthquake. Fig 1.3 shows the rotation of 

the skew bridge where Interstate 5 crosses the railroad near Coalinga 

(The bridge is marked 5.FRE all). The bridge experienced a rotational 

deflection of about one inch, which was accompanied by minor spalling of 

the reinforced concrete railing wall. 

1. 4 ORGANIZATION OF THE THESIS 

This thesis has been divided into six chapters. Chapter 1 is a 

general introduction with a brief history of the research on the seismic 

response of bridges and a statement of the problem to be studied in the 

thesis. Chapter 2 presents the examination of a simple model for the 

rigid body motions of skew bridges. The relatively stiff bridge deck is 

modeled as a rigid body. The identification of the important parameters 

and their effects on the response of the model are the principal 

features of this chapter. Two of the most important elements in the 
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nonlinear response of skew bridges are believed to be the bridge columns 

and the abutments. Chapters 3 and 4 present methods for the estimation 

of the yielding force-deflection relations for the bridge columns and 

abutments, respectively. Examples of the applications of the methods are 

included in both chapters. Chapter 5 introduces a more detailed model in 

the dynamics of skew bridges. The model includes the nonlinear effect of 

the abutments, expansion gaps, yielding of the columns, and elastometic 

pads. This chapter also presents some examples of the earthquake 

response of a mathematical model based on the Nichols Road Overcrossing 

(Bridge #56-725 near Riverside, California). Chapter 6 includes a 

summary of the thesis and some cooclusions based on the research. 

Mathematical notations have been defined where they first appear, 

while some formulas and details of the solutions of some examples appear 

in the appendices. 



9 

CHAPTER 2 

A SIMPLE MOOEL FOR THE RIGID OODY RarATIONS OF SKEW BRIDGES 

2.1 INTRODUCTiON 

The purpose of this chapter is to develop and analyze a simple 

model which captures the basic features of the complicated rigid body 

motions of a skew bridge. 

In the first part of the chapter, the possible distortions of a 

bridge deck are described. Then a simple model of a skew bridge is 

proposed and the simplified assumptions on which the model is based are 

discussed. Following next is the derivation of the equations of motion 

of the model along with the identification and discussion of the 

important :p3.rameters. Finally, the kinematic mechanism of the model is 

described, the effects of several parameters on the dynamic response of 

the model are examined, and some conclusions are drawn concerning more 

detailed modeling of skew bridges. 

2.2 rvuriONS AND DISIDRTIONS 0C A BRIDGE ~ 

Basically, there are six principal types of motion of a bridge deck 

relative to the ground of concern here; these are shown in Fig. 2.1 and 

include: 

a. Rigid body lonjitudinal translation during which the deck 

translates longitudinally as a rigid body, 

b. Rigid body lateral translation where the deck translates 

laterall y as a rigid body, 

c. Rigid body rotation about a vertical axis during which the deck 

rotates in its own plane, 
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LATERAL TRANSLATION 

I 
ROTATION 
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LONGITUDINAL TRANSLATION 

.. 

VERTICAL FLEX URE TORSION 

t 

'FIG. 2.1 POSSIBLE TYPES OF DISTORTION OF A BRIDGE DECK 
RElATIVE TO THE GROUND 
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d. Vertical flexure during which the deck bends in a vertical 

plane, 

e. Lateral flexure in which the deck bems in its plane, and 

f. Tbrsional distortion during which the deck is twisted about an 

axis parallel to the centerline of the roadway. 

2.3 !BE MODEL 

The most basic assumption on which the model is based is the 

rigidity of the bridge deck. Thus, the deck is represented as a one­

dimensional rigid bar having the mass and length of the real deck. 

Consequently, the model is capable of capturing only rigid body motions 

a, band c. Motions d, e and f will be neglected. 

For simplicity, the model is assumed to be undamped; and the only 

lateral resisting mechanisms taken into account are the bridge piers and 

the abutments. 

Each set of piers is idealized by two linearly elastic springs. 

One spring is directed in the longitudinal direction and resists 

distortions of type a and one spring is directed in the lateral 

direction and resists distortions of type b. The two springs are 

assumed to have equal stiffness, k, which can be estimated from the 

properties of the piers. 

It is also assumed that there are two sets of piers symmetrically 

located with respect to the center of mass of the deck. Thus, the 
" resulting model is symmetric with respect to both the longitudinal axis, 

X, and the lateral axis, Y. The inclusion of only two sets of piers in 

the model restricts it to the case of moderate span bridges. The 

rotational resistance of the model comes from the moments of the pier 
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FIG. 2.2 SIMPLIFIED MODEL OF A SKEW BRIDGE 
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springs generated by rotation about the center of mass of the deck. No 

other form of rotational resistal'X!e is included. 

Each abutment is represented by a gap in the longitudinal 

direction, which, in practice, is used to allow thermal expansion of the 

bridge deck and a linearly elastic spring of stiffness kab also oriented 

in the longitudinal direction. The values of the length of the gap and 

the stiffness of the spring are the same for both abutments, so symmetry 

is preserved. The contact between the deck and the abutments is assumed 

to be frictionless. Finally, the bridge is assumed to be skew at angle 

e with respect to the longitudinal direction. The model is illustrated 

in Fig. 2.2. 

SUmmarizing the above assumptions, we can see that, basically, the 

model is a rigid bar supported by springs with a gap at each end where 

springs modeling the abutment are located. The model has considerable 

symmetry, but the skewness of the deck with respect to the abutments 

means that longitudinal motion large enough to close the abutment gaps 

will induce rotation. 

2.4 EXCITATION - GFPMETRY AW. FORCES Of. .Tim MODEL 

To simplify the equations of motion, we assume that the only 

excitation is ground motion directed along the longitudinal x-axis. 

This assumption, combined with the symmetry of the model, leads to 

motion of the center of mass only along the X-axis. All the other 

points of the deck can move in the Y direction only as a result of 

rotation in the X, Y plane if such rotation occurs. Therefore, the model 

has two degrees of freedom: longitudinal translation and rotation in 

the X, Y plane. 
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The geometry needed for the model includes expressions for the 

displacements of points 1, 2, 3, and 4 of the deck as functions of X and 

¢ . These expressions are presented in detail in Fig. 2.3. The 

equations were derived based on the assumption of small displacements 

and small angles of rotation (sin ¢ = ¢, cos ¢ = 1). The displacements 

of every point are measured with respect to the initial position of the 

point with positive displacements occurring in the positive direction of 

the corresponding coordinate axis. 

The forces which are exerted on the deck during its motion come 

from the piers, the abutment, and the inertia of the deck itself. The 

forces of the piers and the abutments are calculated as the reactions of 

linearly elastic springs. It should be pointed out that abutment forces 

at points 3 and 4 of the deck occur only when the left or right gaps, 

respectively, are closed. To account for this, coefficients b3 and b4 

are introduced into the equations. These coefficients take the values of 

1 or 0 depending on the closure of the gaps. The forces which act on 

the deck are given in detail in Fig. 2.4. 

2.5 EQUATIONS QE MariON 

The equations of motion are derived using Newton's second law 

written about the center of gravity. 

L: Fx=mX 

L: M = I¢ 

(2.1) 

(2.2) 

From (2.1) and the expression of the forces provided in Fig. 2.4, one 

gets: 
.. . . 

-fx,l -fx ,2 -fab,4 -fab,3 -mxG = mx or 

-k (x + 11 sin 8¢ ) -k (x - 11 sin 8¢ ) -b4kab (x - 1 sin 8¢ - a) 

-b3kab (x + 1 sin 8¢ + a) - m% = mX (2.3) 
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From equation (2.3), one can find the first equation of motion. 

2k + (b3 + b4)kab b3 - b4 
X +-------------------X+--------- kab lSine¢ 

m m 

b3 - b4 
+ --------- kab a = - XG 

m 

Similarly, equation (2.2) gives: 

(2.4) 

-fx,111sin( e + ¢) + fy,l l 1cos( e + ¢) + fx, 2 11sin( e + ¢) -

fy, 2 11cos( e + ¢) + fab, 4 l sin( e + ¢) - fab, 3 l sin( e + ¢) = I ¢ 

or 

-k(x + l1sin e¢) l1 (sin e + ¢cos e)-kl 1cos e¢1 1 (cos e - ¢sin e) + 

+k ( x - 1 1 sin e ¢) 1 1 (sin e + ¢cos e) -k 11 cos e ¢ (cos e - ¢ sin e) + 

+b4kab(x -lsine¢ - a)l (sin e + ¢cos e) -

-b3kab (x + 1 sin e¢ + a) 1 (sine + ¢ cos e) = I ¢ (2.5) 

From (2.5), after carrying out the algebra and neglecting the second 

order terms, one finds the second equation of notion: 

1 
¢ + 

I 

Let 

1 
2k1fcos2e J ~ + ---(b3 - b4)kab 1sinex + 

I 

1 
+ ---(b4 + b3)kabalsine = o 

I 

k 
w 2 = --­

X 
m 

(2.7) 

(Note that the small amplitude frequency of the rod is 

(2.6) 
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Let y be the nondimensional ratio of the abutment stiffness kab to the 

pier stiffness k: 

kab = y k (2.8) 

Note also that the mass moment of inertia, I, of the node modeling the 

deck is given by: 

I=--- (2.9) 
3 

The corrbination of (2.4), (2.6), (2. 7), (2.8), (2.9) gives: 

X+ [2 + (b3 + b4) y ] ~ + (b3 - b4) y sinew~¢ + 

(b3 - b4 ) yaw~ = ~ (2.10) 

where b 3 and b4 are defined in Fig. 2.4. In order to find the response 
., 

of t he model to a given ground input acceleration XG, the system of 

nonlinear coupled differential equation (2.10), (2.11) has to be solved. 

For this purpose, a computer program was written using the method of 

Runge-Kutta Gill for solving the equation. 

2. 6 PARAMm'ERS 0C IMPORI'AOCE 

The nost important parameters involved in the rrodel are: 

a. .'The Angle Qf Skewness Since the primary purpose is to 

investigate the response of skew bridges, it is clearly important to 
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understand how variations in 8 affect the response of the model. In 

application, the values of 8 are usually between 10° and fiJ0 • 

b. The. Abutment Stiffness ~ As mentioned in the intrcrluction of 

the thesis, the behavior of skew bridges during strong earthquake 

shaking is believed to be strongly controlled by the interaction between 

the bridge deck and the approach fill. The abutment stiffness models 

the reaction of the soil upon the bridge deck after the gap closes. 

Consequently, it will be very important to understand its influence on 

the response of the model. 

There is no generally accepted method for calculating the value of 

the abutment stiffness. However, the geometry of most bridges indicates 

that the abutment stiffness is higher than the stiffness of an 

individual bridge column. Thus, the factor y which relates kab to the 

pier stiffness is taken to be greater than one (values of y = 1, y = 2, 

y = 5, y = 10 will be examined). 

c. The. Abutment Ggp_ .a This is the other parameter of the model 

which is related to the degree of interaction between the da:::k and the 

soil. Larger gaps imply less contact between the deck and the abutment 

springs. Consequently, the degree of interaction between the bridge 

deck and the soil will decrease with an increase in the gap. The gap at 

the abutment is intended to allow thermal expansion of the bridge deck. 

When the gap exists, its size is typically 1 to 2 inches. 

d. ~Location Qf ~Columns The distance 11 defines the position of 

the columns with respect to the center of the deck (see Fig. 2.2). It 

will be useful to examine cases in which the columns are located near 

the center of mass of the deck and cases in which the columns are close 

to the ends of the deck. In actuality, there are bridges with columns 
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located very close to the center of the bridge deck (11 approaches 

zero). However, in the model under consideration, the only rotational 

resistance of the deck results from the resisting moments of the pier 

springs with respect to its center of mass. Therefore, it would be 

unrealistic to examine values of 11 too close to zero as the deck would 

have almost zero torsional resistance. 

e. The Small Amplitude Longitudinal Fregyeocy Several tests on bridges 

have indicated that the small amplitude, longitudinal frequency of small 

span bridges is within the range of 2 to 5Hz (Ref. 36). Since, in this 

model, structural elements of the bridge other than the piers are 

neglected, it is reasonable to consider a small value for the frequency. 

Thus, a representative value of 2Hz was chosen. (This value corresponds 

to w = 8.89 rad/sec). X 

~ ~ Input Excitation It is expected that the character of the 

excitation will affect the response of the model so that no general 

conclusions about earthquake response can be drawn unless the response 

to many ground motions is examined. However, since the purpose of this 

chapter is essentially to illustrate the nature of the problem, in the 

following paragraphs only the response of the model to one particular 

excitation will be analyzed. The excitation consists of the 10 most 

important seconds of the Imperial Valley earthquake of October 15, 1979 

(Imperial County Services Building Free-Field Site N 02 E). 

2. 7 EXAMPLE Qr RESOONSE 

Assume that the following values are assigned to the parameters of 

the Irodel. 

1 = 40m, 11 = 12m, 8 = 40°, a = 0.025m, y = 2, w x = 8.89 rad/sec 
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At the beginning of the response to the ground motion, the model 

behaves like a simple degree of freedom oscillator excited along the X­

direction. The gaps at both ends of the rod remain open and no 

rotational vibrations are triggered since the moments of all the 

restoring forces which act on the deck cancel. So, since ¢ = 0, the 

displacements of the center of mass and of points 3 and 4 are identical. 

The first impact between the deck and the abutment springs takes 

place at the left errl (point 3) at about 4.2 seconds from the beginning 

of the excitation (see Fig. 2.6b). Since the moment of the reaction 

force of the left abutment spring is not counterbalanced by the moment 

of any other force, rotational vibrations are induced and the deck 

starts rotating in a positive direction (see Fig. 2.7a), which is in 

agreement with the direction of the moment from the left abutment. The 

impact between the deck and the left abutment spring ends when the 

displacement x3 becomes larger than -o.025m. But, soon after that, the 

right gap closes; and an impact between the deck and the right abutment 

springs occurs, which lasts until the displacement x4 becomes smaller 

than 0.025m (Fig. 2.6b). In this way, several impacts between the deck 

and either the left or the right abutment occur. In the example, all 

the impacts occur when the displacements x3 or x4 exceed the 

corresponding dotted lines (see Fig. 2.6b and Fig. 2.7a). Between two 

consecutive impacts, no abutment force is acting on the rod since both 

gaps are o~ned. 

The consequences of the rotational vibrations induced by the 

irrpacts are: 

(i) Coupling between the longitudinal translation X and the 

rotation ¢ occurs; and, as a result, the displacements x3 and x4 start 
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differing from each other and from the displacement X of the center of 

mass. In fact, a positive rotation of the deck will result in 

additional positive and negative displacements of the points 3 and 4, 

respectively. This can be seen in Fig. 2.6b and Fig. 2.7a and can be 

explained by the relation between x3 , X, ¢ and x4 , X, cp shown in 

Fig. 2.3. 

(ii) The ends of the deck move in the Y-direction after the first 

closure of the gap. However, due to the symmetry of the model, the 

center of mass of the rod does not move in theY-direction even after 

rotational vibrations are triggered. 

2.8 EFFECTS 0C THE VARIATION 0C THE PARAMETERS 

2.8.1 Rod With Restoring Springs Close to the Center of Mass 

Assume that the total length of the bridge deck is BOrn (1 = 40rn) 

and that the columns are located at a distance 11 = Brn from the center 

of mass of the deck. This results in a ratio 1 1~ = 0.2, which is 

thought to be a representative value for the case of columns located 

close to the center of mass of the deck. 

2.8.1.1. Effects of the Angle of Skewness 

To investigate the effects of the variation of the angle of 

skewness, the other parameters are fixed: y = 2, a = 0.025rn, 

w x = 8.89 rad/sec. The range of skewness is taken to be between 8 = 0 

and 8 = 60; and the response of the model to values of 8 = 0, 5°, 

10°, 20°, 40°, and 60° is investigated. 

I n Figs. 2.9 - 2.11, the rotational responses of the model to the 

1979 El Centro excitation for several values of the initial angle of 

skewness are shown. From these figures, the following conclusions can 
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be drawn: 

a. The response is more sensitive to initial changes in the angle 

of skewness (from 0 to 10°) than to later ones (from 40° to 60°). This 

can also be seen in Fig. 2.12. 

b. The overall appearance of the response depends upon the 

frequency of the impacts between the deck and the abutment springs and 

upon the rotational frequency of the deck. One can observe that the 

deck rotates primarily in the positive direction. Particularly for 8 = 

5° and 10°, no negative rotation occurs. This happens because the deck 

hits the abutment springs before its rotation becomes negative. 

c. The maximum rotational response has a tendency to increase with 

an increase in the angle of skewness. 

d. As shown in Fig. 2.13, the response of the center of mass is 

not substantially affected by variations of the angle of skewness. 

2. 8 .1. 2. Effects Qf the Abutment Stiffness 

To investigate the effects of the abutment stiffness, the response 

of the model for various values of the parameter Y has to be examined. 

The values of Y considered are: Y = 1, Y = 2, Y = 5, Y = 10. The 

values of wx and a remain fixed at 8.89 rad/sec and 0.025m, 

respectively; while, for purposes of further investigation of the 

effects of the angle of skewness on the coupling between the X and 

cp motions, two values of 8 will be examined: 8 = 10° and 8 = 40°. 

Thus, the cases under consideration are: 

~l 

8 = 10° 

wx=8.89 

a = 0.025 

y = 1,2,5,10 

~l 

8 = 40° 

W X = 8.89 

a = 0.025 

y = 1,2,5,10 
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Figs. 2.14 ·- 2.17 show the responses of the model in case 1, while 

Figs. 2.18 - 2.21 soow the responses of the model in case 2. From these 

figures, as well as from Fig. 2.22 and 2.23, one can see that: 

a. The maximum displacement along the X -axis of the center of mass 

of the rod decreases with an increase in y; 

b. The rraxinurn rotation of the rod increases with y ; 

c. The obviously different overall appearance of the responses in 

the two cases reveals once more the effect of the initial angle of 

skewness on the coupling between the translational and rotational 

rrotions. 

2.8.1.3 Effects Qf the Abutment ~ 

For the investigation of the effects of the gap on the response of 

the model, the values of e, y, and wx will remain fixed at 40°, 5 and 

8.89 rad/sec, res{:eetively. As was mentioned earlier, the typical range 

of actual gaps is 0-2" (0-5cm). But, for purposes of better 

understanding of the role of the gap, values outside of that range will 

also be examined. 

In Fig. 2.24, the response of the deck when the gap is open (i.e. 

the deck never hits the abutment springs) is shown. In this case, the 

deck behaves like a single degree of freedom oscillator excited in the 

X-direction; there is no rotational motion. The maximum displacement 

of the rod in the X-direction when the gap is open is slightly over 

0.09m. So, if the gap is 0.09m, the deck lightly hits the abutment 

springs; and the induced rotational vibrations are not strong 

(Fig. 2.27b). Ih Figs. 2.25 - 2.30, one can see the rotational response 

of the deck for several values of the gap. From these figures, as well 

as from Figs. 2.31 and 2.32, the following conclusions can be drawn: 
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a. The duration of the rotational motions increases as the gap 

decreases because of earlier impact between the deck and the abutment 

springs; 

b. The maxinum rotation decreases as the gap width, a, increases; 

c. The maximum displacement in the X-direction of the center of 

mass of the bridge increases as a increases. This was expected since 

the bigger the gap, the smaller the reaction force of the abutment 

spring. 

2. 8. 2. ~ ~ Widely-Spaced Colunns 

In the preceding paragraphs, the effects of variations of the 

initial angle of skewness, the abutment stiffness, and the gap were 

examined for a case in which the columns were located relatively close 

to the center of mass of the deck. Because the purpose of the chapter 

is primarily to illustrate the general nature of the response of the 

skew bridges, it was decided not to repeat the same calculations for the 

case in which the columns were located relatively far away from the 

center of mass. 

It will be useful, however, to examine the effects of the location 

of the restoring springs of the columns on the response of the model. 

To do this, the values of 11;1 = 1 (restoring springs at the ends of 

the deck) and 1111 = 0.6 (intermediate position of the restoring 

springs) are examined with values of a, y and wx fixed at 0.025, 5, and 

8.89, respectively. The responses of the model for the two values of 

the ratio 1111 are shown in Figs. 2.33 - 2.36. Comparing results for 

these values of 1111 with those for the initially examined value of 

1 1;1 = 0.2, one can draw the following conclusions about the effects 

of the location of the restoring springs. 
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a. As expected, the period of the rotational vibrations of the 

dock increases as the restoring springs approach the center of mass. On 

the other hand, if 11/1 = 1, the rotational response exhibits relatively 

high frequencies. In a real bridge, these frequencies could cause 

substantial flexural deformations (which are neglected in the present 

analysis) in the plane of rotation. 

b. The maximum rotation of the deck decreases as the restoring 

springs approach the ends of the deck. Again, this change is 

anticipated because of the increased rotational resistance. 

c. Changes in 1111 result in changes of the dynamic 

characteristics of the system as reflected in changes in the degree of 

coupling bet~en the X-¢ notions and in the appearance of the responses. 

2. 9 GENERAL COOCWSIONS MID_ RE11ARKS 

In the preceding paragraphs, some s~ial corx::lusions were drawn 

concerning the kinematic mechanisms of the model and its response to an 

accelerogram from the 1979 Imperial Valley earthquake. In this section, 

some general conclusions concerning the behavior of the model are 

presented. 

a. The model which was examined in this chapter is capable of 

illustrating the kinematics of planar, rigid body rotation of the decks 

of skew bridges including the interaction between the deck and the 

abutment. Therefore, it can be used as a basis for more detailed 

rrodeling of the earthquake response of skew bridges. 

b. The model, in the form in which it was developed in this 

chapter, cannot capture the details of the rigid body response of skew 

bridges since many simplifications were made (perfect symmetry was 
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assumed; all the springs were considered linearly elastic; the 

rotational resistance of the columns was ignored; and any pads were 

completely neglected). Therefore, the results which were found are only 

qualitative. 

c. In spite of the simplifications that have been made, the model 

exhibited a complicated behavior, particularly because of the coupling 

between the X and ~ motions which occur after impact between the deck 

and the abutnent springs. 

d. Most of the parameters of the model seem to be easily 

identifiable from the geometric and material properties of the bridge. 

A notable exception is the abutment stiffness. In this case, there is 

no standard method for determining the required force-deflection 

behavior. Under these circumstances, it is important to know how 

sensitive the results are to estimates of the abutment stiffness. Table 

2.1 was made based on the results of section 8.1.2 in order to compare 

the change in Y with the corresponding changes in the maximum rotation 

and the maximum translation of the center of mass. From this table, one 

can see that , in most cases, the percentage of change of the parameters 

of response X and ~ is substantially less than the corresponding 

percentages of change of Y • Tl'us, taking into consideration the other 

simplifications of the model, one can conclude that a reasonable, 

simplified method will be accurate enough for the estimation of the 

abutment stiffness. 
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TABLE 2.1 

Comparison of changes of relative abutment stiffness, Y' with the 

changes of naxinurn rotation, <P , and naxinurn translation, X. 

~· -------------~----------~·---------~------------

Change of y 
~-----~----- ------ ~------------~---------------~----------------

Change Change of Change of 
8 From To of y Max inurn Max inurn 

(%) Rotation, <P Translation, X 
(%) (%) 

-----~------ --------~·----------~---------------~--------------
10 1 2 100 3.8 14 

10 1 5 400 138 14 

10 1 10 800 137 25 

10 2 5 150 72 0 

10 2 10 400 71 13 

10 5 10 100 0 13 

40 1 2 100 80 0 

40 1 5 400 79 3.5 

40 1 10 ~ 140 24 

40 2 5 150 0 3.5 

40 2 10 400 38 24 

40 5 10 100 37 22 
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CHAPIER 3 

EIASI'IC SI'IFFNESS OF BRIDGE COL~S WI'm PARAOOLIC FIARES 

3 .1 INI'ROOUCTION 

As was shown in Chapter 2, one of the most important parameters of 

the simple bridge model is the elastic column stiffness, defined as the 

force required to deflect the top of the column by a unit displacement. 

In that chapter, the analysis was elastic; and, therefore, the elastic 

stiffness of the bridge columns alone was sufficient. However, for a 

more complicated model in which the yielding of the columns will play an 

important role, a complete force-deflection relation for the columns 

will be required including both elastic and .[X)Stelastic stiffnesses. It 

is believed to be important for the subsequent analysis to have 

characterizations of the force-deflection relations in both directions 

of bending. 

In order to represent the nonlinear force-deflection relation in a 

given direction, the following parameters are needed. 

a. ~ initial elastic stiffness For the estimation of the 

initial column stiffness three things are important: 

(i) The types of deformations which are taken into account, 

(ii) The conditions at the two ends of the columns (boundary 

corrlitions), and 

(iii} The geometry of the bridge columns. 

In the case of a typical bridge column, the length to depth ratio is 

large; and, therefore, the bending deformations are large compared to 

toose caused by shear. Consequently, the shearing deformations can be 

neglected; and the columns can be modeled as beam-columns using 

Bernoulli-Euler beam theory. As far as the boundary conditions of the 
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column beams are concerned, it is reasonable to assume that the column 

is built into the bridge deck at the upper end and has rotational and 

translational springs at the bottom which account for the effects of the 

soil. If the foundation conditions are such that these springs can be 

considered to be infinitely large, then the resulting model of the 

bridge column is a bending beam built in at both ends. Finally, the 

geometry depends on the particular column. Columns with uniform cross 

sections simplify the solution of the problem; whereas, columns with 

variable cross sections make it more difficult. 

b. The yielding levels The ultimate capacity of a concrete column 

at a given point depends primarily on the cross sectional properties 

(geometric and reinforcement) of the column at that point and can be 

estimated by standard methods (Ref. 47). 

c. The postelastic stiffness This is the stiffness of the column 

after its first yielding at the bottom or top cross section. It can be 

evaluated from the same beam model by properly readjusting the boundary 

conditions. 

The purpose of this chapter is to provide a method for calculating 

the required force-deflection diagrams of a bridge column. The analysis 

focuses on the case of columns with parabolic flares at their tops since 

the bridge which will be used as an illustrative model (Nichols Road 

Overcrossing - Riverside County, California) has this type of columns. 

Although a reasonably accurate method would be enough for the purposes 

of modeling followed in this research, it was found during the analysis 

of the problem that an exact solution for the initial elastic stiffness 

of the parabolically flared columns could be provided. Thus, the 

presentation of this chapter was expanded in order to include this 
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solution. The solution is presented in the secorrl part of the chapter 

following an introduction in which the basic points of Bernouilli-Euler 

bending beam theory are presented. In the third part of the chapter, an 

alternate solution of the same problem is provided. This solution is 

approximate, but it is more general in the sense that it can treat 

columns with any type of flare. This solution is based on the represen-

tation of the flare by a sequence of beams of uniform cross section. 

Finally, the application of the two methods to the case of the columns 

of the Nichols Road Overcrossing is presented. Also, in the last part 

of the chapter, the yielding of the columns in the two directions is 

examined. 

3. 2 ECXJATIONS AND OOUNDARY CONDITIONS fQR A BERIDULLI -EULER BEAM 

Consider the beam shown in Fig. 3.1. The governing equations for 

the static case are: 

d2 d2w(z) 
----(EI(Z)------) = 0 
dz 2 dz 2 

d2w (z) 
M(Z) = EI(Z)-------­

dZ2 

dM(Z) 
Q(Z) = - ------

dZ 

where: 

(3.la) 

(3.lb) (3 .1) 

(3.lc) 

E is the modulus of elasticity of the material of the beam; 

I(Z) is the moment of inertia of the cross section of the beam 

which, for the general case, is a function of Z; 

W ~ ), M(Z), and Q(Z) are the displacement, bending moment, and 

shear force, respectively. 

In the case of a beam of uniform cross section (I (Z) = constant), the 
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above equations reduce to: 

d'\v(z) 
---- = 0 

dz4 

d2.w(z) 
M(Z) = EI----­

dz2 

dM(Z) 
Q(Z) =- ---­

dZ 
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(3. 2a) 

(3. 2b) (3. 2) 

(3. 2c) 

In addition to the governing differential equations, the specification 

of boundary conditions is required. For the case of a bridge column, 

the rrnst coJlT[On boundary corrlitions are shown in Table 3.1. 

3. 3 STIFFNESS 0C A BRIOOE COLUMN mlli OCTAOONAL cross SECTION ~ 

PARAOOLIC FLARE AT WE mE_ Am FOUNDATION SPRitNS AT. ~ rorroM 

3.3.1 Egyations Qf ~ Tapered Column with Foundation SPrings 

Consider the tapered bridge column shown in Fig. 3.2. The column 

is fixed at the top; at the bottom, it has torsional foundation springs 

kzx and kzy resisting rotation in the z-x and Z-Y planes, respectively, 

and translational foundation springs k£ and k'& resisting displacements 

in the X and Y directions, respectively. 

This column can be considered as consisting of two beams. Beam 1 

with length h1 has a uniform cross section and, consequently, a constant 

moment of inertia while beam 2 with length h2 has a variable cross 

section; consequently, its moment of inertia is a function of the 

position of the cross section. The system of the two beams along with 

the coordinate systems used in the analysis is shown in Fig. 3.2. 

Estimation Qf the stiffness ~ in-plane bending 

Assume that a unit displacement X~ = 1 along the X-axis is imposed 

at the top of the column. Then the equations of each of the two beams 
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TABLE 3 .1 C(JtM)N OOUIDARY CONDITIONS FOR BRIDGE COLlMNS 

Type of 
Boundary 

Fixed 

end 

Pinned 
Eottorn 
end with 
oorizontal 
and 
torsional 
springs 

Pinned 

end 

Sketch of 
Boundary 

IT 

are the following: 

~ 1. (see for!Tlllas 3. 2) 

a4wl (Zl) 
-------- = 0 

azf 

Boundary Conditions 

QW(Z)1end = 0 (displacement= O) 

[W' (Z)1eoo = 0 (slo~ = O) 

d2.w(z) 
[EI (Z) -~z2 ---1 end = kr [W' (Z) 1 errl 

d d2w(Z) 
[----(EI (Z)-----) 1 d = -kh[W(Z) 1errl 

dZ dz2 en 

[W(Z)]end = 0 (displacement= O) 

d2.w (Z) 
[EI (Z)------] nd = 0 (rrorrent = O) 

dz2 e 

(3.3) 

The solution of (3.3) has the general for.m: 

Wl(Zl) = Af + BfZl + CfZf + DfZf (3.4) 

By using (3.4), (3.2b) and (3.2c) one gets: 

*For an arbitrary Xt 1 l,the expressions for the displacement, shearing 
forces, and bending rrorrents should be nultiplied by Xt. 
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dWl(Zl) 
---- = Bf + 2CfZl + 3DfZf (3.5) 

dz1 

Mf(Z1) = Eif(2Cf + 6DfZl) (3.6) 

Qi(z1) = -6EifDf (3.7) 

In the above equations, the superscript "Y" denotes berrling about the Y-

axis. 

~ l (see formulas 3.1) 

(3 .8) 

Equation (3.8) can be solved by using the method of variation of 

parameters (Ref. 45). The solution has the final form: 

z2 f A~ B~z2 
w2 (z2) = D~ + C~z 2 + ---- (y--- + -y----)dz2 

E I2(Z2) I2(Z2) 

-_:_ f (--~rl __ + - :~~--)dz2 
E I2(Z2) I2(Z2) 

(3. 9) 

By combining (3.9), (3.lb) and (3.lc), one gets: 

y y 

_!!l2~~~- = c~ + -~ Jc--/3.- + - :~~--Jdz2 
dZ2 E I2(Z2) I2(Z2) 

(3 .10) 

(3.11) 

(3.12) 

From equation (3.12) and the definition of the stiffness of the 

column, it is obvious that the unknown stiffness is the coefficient -B~. 

Boundary conditions (see Table 3.1) 

Beam 1: 
y d3w1 (Z1 ) I 

(i) Eil------- I 
dzf lzl=O 

I 
= - k~1 (Z1 ) I 

lzl=O 
(3.13) 



69 

From (3.13) and (3.4) to (3.7), one gets: 

6EifDf = -k~Al 

Using (3.15) and (3.4) to (3.7) yields: 

2Eiycy = k~Bf 

Beam 2: (i) w2 (h2) = 1 

Combining (3.17) and (3.9) gives: 

y y · h2 J A~ B~Z2 
o2 + C2h2 + ----[ (-------- + --------)dZ2] 

E I~(Z2) I~(Z2) Z2=h2 

l [J {--~t- + --~~~--)dZ2] = 1 
E I~ (Z2) I~ (Z2) Z2=h2 

dW2(Z2) 
(ii) --------­

dZ2 

From (3.19) and (3.10): 

= 0 

= 0 

Conditions Qf continuity gt_ ~ connection Qf the. beams 

(3.14) 

(3 .15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3. Z>) 

At the connection between Beam 1 and Beam 2, the following 

continuity conditions must be satisfied: 

(i) Continuity of displacerrents: 

(3. 21) 

Applying (3.4), (3.9) and (3.21) produces: 
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Y Yh . Yh2 Yh3 _ 
A1 + Bl 1 + Cl 1 + 0 1 1 -

(ii) Continuity of slopes: 

= ---------

Using (3.5) and (3.10), (3.23) becomes: 

Bf + 2Cfhl + 3Dfhf = 

y y 

c~ + _:_ IJ(--y~~--- + --~~:~--)dz2 J 
E I 2 ( Z 2) I 2 ( Z 2 ) Z 2=0 

(iii) Continuity of moments: 

Combining (3.25) with (3.6) and (3.11) gives: 

Eif(2Cf + 6Dfhl) =A~ (3.26) 

(iv) Cbntinuity of shears: 

Using (3.7) and (3.12), (3.27) reduces to 

6EifDf = B~ 

(3. 27) 

(3. 28) 

(3.22) 

(3. 23) 

(3. 24) 

(3. 25) 

Equations (3.14), (3.16), (3.18), (3.20), (3.22), (3.24), (3.26) and 

(3.28) form a system of eight equations in the eight unknowns Af, ••• , 

y y y . n1 and A2, ••• , n2• After making the necessary algebra1.c manipulations 

and the st.Dsti tutions defined by equation (3.29) below, the system takes 

the final form (3.30) (see page 72). 
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(3. 29a) 

(3. 29b) 

(3. 29c) 

(3. 29) 

I 1 z2 Ly I = [ ---~--- dZ 2] 3 
lh I~(Z2 ) Z2=h2 

2 

I J z2 Ly I = [ ____ 3 ___ dZ2] 
3 

Ia I2(Z2) Z2=0 
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It is obvious that, in order to solve the system (3.30), the 

indefinite integrals Ly, L~, and Lj have to be evaluated. 

Estimation Qf the stiffness fQL out-of-plane bending 

Following a similar procedure, one finds that the problem is 

rErluced again to the evaluation of the integrals L!, L~, and L~, which 

are defined by the relations (3.31) and the solution of the system 

(3.32) (Nbte that the superscript X denotes bending about the X-axis). 

L~ =j-~z2 
I2(Z2) 

(3.3la) 

(3.3lb) (3.31) 

(3 .3lc) 

3.3.2 General expressions fQ£ ~ Geometric Prqperties Qf ~ 

Parabolic Flare Qf ~ Column ~ Octagonal Cross Section 

Consider the parabolic flare of the bridge column of total length 

h2 as shown in Fig. 3.3. From this figure, it is clear that the 

dimension which varies parabolically as a function of the position of 

the cross section is r1· Thus: 

z~ 
rl = --

4k 
(3. 33) 

where k is the constant in the equation of the parabolic flare, which 

can be determined from the value of r1 at the top of the cross section 

(r~): 

h~ 
k = --

4rt 
(3 .34) 
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Also, the following geometric relations can be easily derived from Fig. 

3.3: 

z~ 
r = c + 2r1 = c + 2 ----

4k 
(3. 35) 

Moment of inertia for bending about the Y-axis: 

2 
z2 3 

(c + 2---- + 2a) b 
4k 

= --------------------- -
12 

a 4 a 2 a c z~ 
2 4[---- + ---- (--- + --- + ----) ] (3. 36) 

36 2 3 2 4k 

Morrent of inertia for bending about the X-axis: 

z~ 
b3(c + 2---- + 2a) 

4k 
= --------------------- -

12 

a4 a2 a b - 2a 
2 4[---- + ---- (--- + --------) ] (3. 37) 

36 2 3 2 

After carrying out all the necessary algebra, the general expressions 

for the moments of inertia reduce to: 

(3.38a) 

1 
(3.38b) 



where: 
b 

ai = -----
96k3 

77 

(c + 2a)b a2 
a~ = -------- - -----

16k2 8k2 

(c + 2a) 2b a2 a c 
ay = ---------- - ---(-- + ---) ' 3 

8k k 3 2 

(c + 2a) 3b a4 
a! = ------------ - ---- -

12 9 

2 a c 2 
2a (--- + ---) 

3 2 

1"\/x -
'""'1 -

24k 

Cb3 ab3 a4 a b 2a 2 - 2 
a~ = ---- + ----- - ---- - 2a (--- + --------) 

12 6 9 3 2 

(3.38c) 

(3. 38) 

(3.38d) 

3.3.3 Evaluation Qf tre Integrals Ll.L L!_,_ ~ L! in the~ Qf .a 

Parabolic Flare ~ Octagonal Cross Section 

Combining the relations (3.29a) to (3.29c) with (3.38a), the 

integrals to be evaluated can be expressed by the following general 

relations: 

(3. 39a) 

(3. 39b) (3.39) 

(3.39c) 

To evaluate the integrals, the roots of the denominator must be 

examined. 

Consider the equation: 
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a Y a Y a Y 
y y 6 2 4 3 2 4 

I2(Z2) = a l(Z2 + ----z2 + ---- z2 + ----) = o 
a Y a Y a Y 

1 1 1 

(3 .40) 

By making the substitution z~ = 8 in (3.40) and noting that ail= O, one 

gets: 

P(8) (3.41) 

The analytic expressions of the roots of (3.41) are given by the 

following relations (Ref. 47): 

Roots 

a Y 
2 

81 = A + B - -----
3aY 

1 

i"'f3 
82 = - 1/2 (A + B) + -----(A - B) 

2 

iv; 
83 = - 1/2 (A + B) - -----(A -B) 

2 

where: 

2 3 
A 1.1 --- + ---
4 27 

2 3 
A A 
--- + ----
4 27 

a Y 
2 - -----

3aY 
1 

3af 

y yy y 

A = _: __ [2(-~~) 3 - 9-~~~~-- + 27-~~--] 
~ ~ (~)2 ~ 1 1 1 

1 aj aY 
1.1 = --- [3----- (--~-)2] 

3 oJ ay 

(3. 42a) 

(3.42b) (3.42) 

(3.42c) 

(3.43) 

From relations (3.42) and (3.43), it follows that there are three cases 
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for the roots of _{3.41): 

2 2 
A ll ---+--->0, (3.41) has one real root and two 
4 27 

conjugate complex roots. 

2 3 
A ll -- + -- = 0 , (3.41) has three real roots; two, at 
4 27 

least, equal. 

2 3 

~ (iii) A ll ---+---<0, (3.41) has three real, unequal roots. 
4 27 

It is important to note that, in all three cases, the real root(s) 

of (3.41) have to be negative , because, if Si is a positive real root 

of (3.41), then z i = Si > 0 will be a positive real root of (3.40); 

this, however, has no physical meaning since the moment of inertia must 

be positive. 

a~ 
Let s1 =A+ B- ---be the real root of (3.41). Jay 

Since s1 < 0, one can write: 

where: (3. 44) 

a~ y:; lA + B - --- I = ISll 3ay 

Then, the moment of inertia I~(Z 2 ) can be written as a product of a 
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quatric and a quadratic polynomial in the following way: 

I~ (Z2) = ai (Z~ + tt) (LZ~ + KZ~ + M) (3 .45) 

The coefficients L, K, and M can be evaluated easily by equating the 

coefficients of the same order terms in equations (3. 38a) and (3 .45): 

L = 1 

(3. 46) 

Consider now the polynomial R(Z 2) = z~ + KZ~ + M, which, by the 

transformation z~ = s, can be written as: R(S) = s2 + KS + M. ret 6 = 

K2 - 4M be the discriminant of R(S). Since Case (i) is being examined, 

the polynomial R(S) has two complex conjugate roots; and, therefore, 

6 < 0. The two roots of R(S) are given by the relations 

S2 = a + i B 

s3 = a - i s 

K 
a =---, 

2 

-4 
B = ----

2 

(3.47) 

Using polar coordinates, the roots can be expressed as follows: 

- n < ¢ < n (principal argument) 

a B a B 
cos ¢2 = 0 - , sin ¢2 = --p- , cos ¢3 = --p- , sin ¢3 = - - 0 
S2 = p(cos¢2 + i sin¢2) = p (cos¢ + i sin¢) 

s3 = p{cos¢3 + i sin¢3) = p (cos¢ - i sin¢) 

(3.48) 

By using the polar representation of s2 and s3 , one can find the four 
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roots of R(Z 2) from applicaton of the relation for the nth root of a 

corrplex nurrber. 

Wn = r (cos 8 + i sin 8) 

where 

' ry-1 8 + 2k 1T 8 + 2k 1T 
wn =v r (cos-----+ i sin-----) (k = 0,1, ••• ,n-1) 

n n 

This gives: 

= f [cos-.P- + i sin-.P-1 
2 2 

<1> +2 1T <t> +2 1T 
z~ = s2 -i> z2 2 = ,fp' [cos------ + i sin------] = 

, vf.J 2 2 

<t> <t> -y; [cos--- + i sin---] 
2 2 

<t> <t> 
z2, 3 =~[cos---- i sin---] 

2 2 

- <1> + 2 TI - <1> + 2 TI 
z2,4 =~[cos---------+ i sin--------] = 

2 2 

-l{P' <t> <t> 
[cos--- - i sin---] 

2 2 

(3.49) 

(3. 50) 

With this result, the polynomial R(Z 2) can be written as the product of 

four first order polyno~als as follows: 
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R(Z2) = (Z2 - Z2,1) (Z2 - z2,3) (Z2 - Z2,2) (Z2 - z2,4) or 

cp cp 
R(Z2) = [Z2 - ~(cos---+ i sin---)] 

2 2 

_r cp cp .,r cp cp 
rz2 -yp (cos--- - i sin---) l rz2 +vP (cos--- + i sin---)] 

2 2 2 2 

cp cp 
[Z2 +"{r) (cos--- - i sin---)] 

2 2 
(3. 51) 

After carrying out the algebra in (3.51), one can express the polynomial 

R(Z 2) as a product of two irreducible quadratic polynomials with real 

coefficients: 

2 ,C' cp 2 ,/:' cp 
R(Z 2) = (Z 2 - 2z2yP cos--- + P) (Z 2 + 2z2vP cos--- + P) 

2 2 
(3. 52) 

Combining equations (3.45) and (3.52), the moment of inertia can be 

factored into three irreducible quadratic factors with real 

coefficients: 

2 ... c cp 
(Z 2 + 2z2 yP cos--- + p) 

2 
(3. 53) 
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Consider now the fraction: 

1 
= ------ = 

1 
= ------------------------------------------ (3.54) 

The above fraction can be broken into partial fractions as follows 

(Ref. 48): 

1 x1z2 + x2 x3z2 + x4 
= ----(----------- + --------------- + 

a'f z~ + tf z~ - 2Zi~ cos-~- + p 
2 

x5z2 + x6 
----------------------) 
z~ + 2z2~ cos-~- + p 

2 

(3. 55) 

By combining (3.54) and (3.55) and equating coefficients, one produces 

the system of equations shown in (3.56). The solution of this system 

determines the coefficients x1 , x2, ... , x6• Therefore, the expression 

of F(Z 2) as a sum of partial fractions [see (3.55)] is completely 

defined by solving the system (3.56). Next, return to the integrals Ly, 
L~, an~ L~. By combining relations (3.39) and (3.55), the following 



1 0 

0 1 

2 ¢ 
2 (1-2cos ---) 0 
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2 P(1-2cos ---) 
2 
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2{P' cos---

2 
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expressions for the above integrals can be obtained. 

where: 

Hl = J---=----dZ2 
z2 + t2 2 1 

Hs = J ------=----------dZ2 

z~ + 2z2,P cos-!- + P 
2 

H6 = J -------~------dZ2 
z~ + 2zW'cos-!- + P 

2 

(3. 57) 

(3.58) 



J 
' 2 z2 

H = -----dZ2 
7 z2 + t2 

2 1 

86 

(3. 58) 
cont. 

These integrals can all be evaluated using standard integral tables. 

1 z2 
H1 = --- arctg 

tl tl 

1 

cp 

z2- -fcos---
2 

H3 = ------------- arctg -------------

(l-cos2-! -) ¥ (l-cos2_!_)' 
2 2 

(3. 59) 
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1 2 f <P H4 = --l n(z2 - 2z2 p cos-- + p) + 
2 2 

cos--
2 

------ arctg -----~;­

p (1-cos ---) 
2 

<P "f cos--- + z2 
1 2 

H5 = \!----------;-~ arctg -~~----------;--~-­
P (l~os2-;-> P (l--cos2-;-> 

1 2 fc <P H6 = -- l n (z 2 + 2z2 p cos--- + p) -
2 2 

<P 
cos---

2 

<P . <P 

H8 = z2 + -f' cos--- 1 n (Z~ - 2z2f cos--- + P) + 
2 2 

2 ¢ 
2pcos --- - p 

2 
--------------- arctg 

2 <P 
p {1-cos ---) 

2 

<P 
p (1-cos2---) 

2 

<P ,c <P 
Hg = z2 -f' cos--- l n (Z~ + 2z2 VP cos--- + P) + 

2 2 

(3.59) 
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2pcos2-;- - p z2 + ~cos-;-
____________ arctg ----------

¢ ¢ 
p (l-cos2---) p (l-cos2---) 

2 2 

2 2 
z2 tl 2 2 

Hl = ---- - ---- l n (Z 2 + t 1 ) 0 
2 2 

z2 ¢ 
H11 = -~- + 2~~cos---z2 + 

2 V'tJ ' 2 

2 ¢ 
4pcos --- - p 

2 . ¢ 
-------------- l n (Z~ - 2z2 .. ~cos--- + p) + 

2 y ~ ' 2 

- fcos-'!_ + z2 
¢ 2 ¢ 1 2 

cos---(4 Pcos --- 3p)---------- arctg --------------
2 2 ,/ ¢ I ll ¢ 

vl-cos2-;- vp (l-cos2-;-) 

z2 ¢ 
H12 = -~-- 2~cos---z2 + 

2 2 

2 ¢ 
4PCOS --- - P 

--------=----- ln(Z~ + 2Z2~cos-~- + P) -
2 2 

fcos-~- + z2 
¢ 2 ¢ 1 2 

cos---(4pcos --- - 3p)------------ arctg -------------

2 2 0 -cos2-;_' . 0 (l-cos2-;-) 

(3.59) 
cont. 

Combination of relations (3.59), (3.58), (3.57) results in the 

determination of the elements of the coefficient matrix in the system 

(3.30). 
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~ (iii) 

Let s1 , s2 , and s3 be the three unequal roots of (3.41). Since all 

of the are negative, one can write: 

sl = - tf 

s2 = - t~ 

s3 = - t~ 

(3 .60) 

Then, the moment of inertia I~ (Z 2) can be factorized in the following 

way: 

I~(Z 2) = ay(z1 + tf)(Z~ + t~)(Z~ + t~) (3.61) 

The steps that have to be followed after the factorization of I~(z 2) are 

quite similar to the ones followed in Case (i). The fraction F(Z 2) = 

1 
-y-- has to be broken into partial fractions, which will result in 

I2(Z2) 

expressions for the integrals Lf, L~, and Lj in terms of integrals like 

H1 , H2 , and H7 • 

3.3.4 Evaluation .Qf .the Integrals .Ll4. L!4. _god Llin .the~ .Qf .a 

Parabolic Flare ~ Octagonal Cross Section 

Combining relations (3.3la) to (3.3lc) with (3.38b), one can see 

that the integrals to be evaluated can be expressed by the following 

general relations: 

J Z2 
L~ = --------dZ2 

a Xz2 + a X 1 2 2 

J 
z2 

L~ = -------dZ2 
a Xz2 + a X 

1 2 2 

(3.62a) 

(3.62b) 

(3 .62c) 

The above integrals can be evaluated easily: 

(3. 62) 



1 1 
LX = --- ---- arctg 1 

aX ix 1 2 
aX 

1 ff X 
1 

1 1 2 a~ 
L~ = --- -- l n (Z2 + ----) 

ax 2 ax 1 1 

90 

(3. 63) 

It should be clear from the above analysis that the method presented can 

be used for any column with variable cross section provided that the 

moments of inertia can be expressed by equations (3.38a) and (3.38b). 

3. 3. 5 Summary Qf the Basic Steps for .the. Analytic Evaluation Qf .t.he. 

Stiffness 

Because of the extent of the previous analysis, it seems 

appropriate to summarize the steps needed to apply the results to a 

particular case. 

a. Bending about tile Y-axis -~ JjJ_ 

1. Find t 1 , K, and M from formulas (3.44) and (3.46), respectively. 

2. Find a , S, p , and ¢ by using relations (3.47) and (3.48). 

3. calculate the elerrents of the rratrix in system (3.56); solve the 

system and find the coefficients x1 , x2, ••• , x6• 

4. By using equation (3 .59) , evaluate the integrals H1 , ••• , Hg at the 

required points (z2 = O, Z2 = h2). 
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5. Use fornula (.3.57) to evaluate Lf, L~, and Lj at the requirErl points 

(z2 = o, z2 = h2). 

6 • calculate the elements of the na tr ix in system ( 3 • 30) and solve it. 

The value of -B~ is the desired stiffness. 

b. Bending about the. X -axis 

1. By using equation (3.63), evaluate the integrals Lt, L~, and L~ at 

the required points (Z2 = o, Z2 = h2). 

2. calculate the elements of the natrix in the system (3.32) and solve 

it. The value of -~ is the required stiffness. 

3. 4 APPOOXIMATE ESTIMATION Q£ THE Sl'IFFNESS Of: A TAPERED COLUMN 

The analysis in this section is intended to provide an alternative 

approach to the problem of finding the elastic stiffness of a tapered 

column. The approach is less accurate but more general than that 

developed in the previous section. 

Consider again the column shown in Fig. 3.2. This column can be 

approxinated by a sequence of bending beams, each one having a constant 

moment of inertia equal to the average moment of the corresponding 

section of the column. This representation of the column is shown in 

Fig. 3.4. 

3.4.1 Estimation Qfthe. Stiffness~ Sending About the. Y~irection 

Assume that a unit displacement xt = 1 along the X-axis is imposed 

at the top of the column. The deflection of the kth beam is governed by 

the equation: 

(3 .64) 

The solution of (3.64) has the general form: 
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FIG. 3.4 APPROXIMATE REPRESENI'ATION OF A TAPERED COLUMN 
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wkczk) = ~ + ~zk + c~z~ + ~z~ (3 .65) 

By using (3.4), (3.2b), and (3.2c), one gets: 

(3. 66) 

(3.67) 

(3. 68) 

The response of each beam is fully described by four coefficients. 

Considering all the n beams, the total number of the unknown 

coefficients is 4n. The equations required to estimate the 4n unknowns 

arise from the boundary conditions and the conditions of continuity at 

the connections between the beams. 

Boundary conditions 

Beam 1: 
d3w1 (Z1) I I 

(i) Eii--------- I = -k~l (Z1) I 
dzy I z1 = o I z1 = o 

or 6EI1D1 = -k~l (3.69) 

I 
Beam n: (i) Wn (Zn) I = 1 or 

IZn = hn 

(3. 71) 
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I 
{ii) I =O or 

IZn = hn 

{3. 72) 

Eguations .Q:f. continuity at.~ connection between ~ k.t.h gnd k.t.h ± ~ 

beams 

I 
{i) Wk {Zk) I 

I Zk=hJ< 

{ii) 

I 
= wk+l {Zk+l) I 

IZk+l=O 

= -----·------

I 
= MR+l {Zk+l) I 

I zk+l=O 

I 
= ~+1 {Zk+l) I 

IZk+l=O 

or 

{3. 73) 

I 
I or 
IZk+l=O 

{3. 74) 

or 

{3. 75) 

or 

{3. 76) 

By writing equations similar to equations {3.73) to {3.76) for the 

n-1 connections between two consecutive beams, one can find a set of 

4{n-l) equations which, combined with the four boundary conditions, 

leads to a system of 4n equations with 4n unknown coefficients. This 

system has the following general form: 



kx 0 0 6EIY 0 0 0 0 ... 0 0 . .. 0 0 0 0 Afl 10 h 1 

0 -kzx 
r 2EIY 

1 0 0 0 0 0 ... 0 0 . .. 0 0 0 0 Bfl 10 

0 0 0 0 0 0 0 0 ... 0 0 . .. 1 tn ~ ~ Cfl 11 

0 0 0 0 0 0 0 0 ... 0 0 . .. 0 1 2tn 3~ Dfl 10 

1 h1 h2 h3 -1 0 0 0 ... 0 0 . .. 0 0 0 0 A~ I 10 1 1 

0 1 2h1 3h2 0 -1 0 0 ... 0 0 . .. 0 0 0 0 B~~ 0 1 
= 

I \.0 

c~ I V1 
0 0 2EIY 6Eifh1 0 0 -2EI~ 0 ... 0 0 . .. 0 0 0 0 0 1 

0 0 0 Ely 0 0 0 -EI~ ... 0 0 . .. 0 0 0 0 D~ I 10 1 
. . 

.......................................................... -1 0 0 0 11~1 10 

.......................................................... 0 -1 0 0 ~I 10 

.......................................................... 0 0 -2EIY 
n 0 cY I n 10 

.......................................................... 0 0 0 -EIY oY I 10 n n 

(3. 77) 
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By solving the above system, the unknown coefficients can be determined. 

The unknown stiffness will be given by the product 6ErKo~ (see equation 

3.68). 

3.4.2 Estimation Qf the Stiffness fQ£ Bending About the X-Direction 

The procedure which has to be followed in this case is exactly like 

that just described with superscript Y replaced by superscript X. 

3.5 EXAMPLE 

Consider the concrete column shown in Fig. 3.5. The dimensions 

are those of the columns of the Nichols Road Overcrossing (bridge No. 

56-725) located in Riverside County, California. This column has a 

uniform cross section up to a height of 4.85m followed by a parabolic 

flare which has a total length of 3.66m. Based on the drawings of Fig. 

3.5, the following values can be assigned to the geometric parameters of 

the problem: 

h1 = 4.85m, 

a = 0.36m, 

rr = 0.605m, 

h2 = 3.66m 

c = 0.5m, b = 1.22 

k = 5.5 

The value of E = 2.4 X 106 t/m2 will be used for the modulus of 

elasticity of the concrete. The soil is considered to be stiff and with 

properties taken from Table B.2 of Appendix B. The values of the soil-

springs can be estimated by the formulas provided in Table B.l of 

Appendix B. Using the footings of the example, the following values of 

the soil springs are obtained: 

k£ = kfi = 4.85 X 105 t/m 

kzx = kzy = 5.87 x 106 tm/rad r r 

From formulas (3.38c) and (3.38d), the coefficients ai, ... , 
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I~ • • 
0.36 0.5 0.36 

A - A 
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I~ ..,I 

0 ·.36m . ..., 
C- C 

0.36 m 

0.5 m 

0.36 m 

0.36 m 

0.5 m 

0.36 m 

4 .26m 

FIG. 3.5 DIMENSIONS OF THE EXAMPLE COWMN (NICIDLS ROAD OVER­
CROSS!~, RIVERSIDE COUNI'Y, CALIFORNIA) 



a~ can be found:* 

ay = 7.638 X 10-S 

aj = 3.255 X 10-2 

at = 1.376 X 10-2 
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a~ = 2.540 X lo-3 

aa = 1.473 X 10-l 

a~ = 1.473 X 10-l 

So, the moments of inertia of the parabolic flare have the following 

forms: 

I~(z 2 ) = 7.638xlo-5z~ + 2.540xlo-3z~ + 3.255xlo-2z~ + 1.473xlo-l 

I~(z2 > = 1.376xlo-2z~ + 1.473xlo-l for o ~ z2 ~ 3.66 

3.5.1 Analytical Solution Qf the Problem 

(i) Stiffness ~ bending about the Y-direction 

From formula (3.41), one finds: 

:\ = -74.0 fJ = 58.2 

:\ 2 fl 3 
Note that -- + --- = 8688 > 0; therefore, case (i) applies. 

4 27 

Following the steps outlined in part a of section 3.3.5 yields: 

1. s1 = -9.9, tl = 3.1, K = 23.4, M = 195.6 

2. a = -11.7, B = 7.7 

p = 14.0, ¢ = 146.8 

3. The system (3.56) becomes: 

1 0 1 0 1 0 xl 0 

0 1 2.1 1 -2.1 1 x2 0 

24.4 0 23.4 2.1 23.4 -2.1 x3 0 
= 

0 23.4 21 23.4 -21.1 23.4 x4 0 

195.5 0 137.9 21.1 137.9 -21.1 Xs 0 

0 195.5 0 137.9 0 137.9 x6 1 

*Intermediate results presented in this example are given to four 
significant figures while final results are rounded to three 
significant figures. 
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Solving the above system produces the following values for the 

x1 = o x4 = -o.oo8677 

x2 = o.ol735 x5 = -o.ooooo12 

x3 = 0.0000012 x6 = -o.008677 

4. TABLE 3.2: VALUES OF INrEGRAIS AT z2 = 0, z2 = 3.66rn 

Hl 0 0.27 

H2 1.14 1.57 

H3 -o.o8 0.17 

H4 1.23 1.67 

H5 0.08 0.26 

H6 1.23 1.50 

H7 0 0.95 

H8 3.77 4.8 

H9 -3.77 -3.16 

H1o -11.28 -8.81 

H11 -9.17 -6.44 

H12 -9.17 -7.59 
----------------- ------------------ --------------------

5. 
Ly 

I 
Ly 

I 
I =0 I = 13.25 1 
1z2 = 0 

1 
IZ2 = 3.66 

Ly 
I 

L~ 
I 

I = -19.97 I = -3.60 2 
IZ2 = 0 IZ2 = 3.66 

Ly 
I 

= -5.38xlo-7 Ly 
I 

I I = 30.82 3 
IZ2 = 0 

3 
IZ2 = 3.60 



6. The system ( 3. 30) becotres: 

'4.85x105 0 0 2.116x1o6 0 0 0 0 I I Ay I 10 

0 -5.87x1o6 7.05x1o5 0 0 0 0 0 By I 
1 10 

0 0 0 0 21.7x1o-6 -18.33x1o-6 3.66 1 cY I 1 11 

0 0 0 0 5.52x1o-6 -1.sax1o-6 1 0 of I o 

A~ I = 01 
~ 

-8.31x1o-6 
0 

1 4.85 23.52 114.084 0 0 -1 0 

0 1 9.7 70.56 0 8.31x1o-6 -1 0 B~ I 10 

0 0 7.05x105 10.25x1o6 -1 0 0 0 I lc~ 1 10 

0 0 0 -2.116x1o6 0 1 0 0 I In~ 1 10 
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Solution of the above system of equations gives the unknown 

coefficients: 

Af = 0.023 

Bf = 0.007 

cy = o.006 

oy = -o.oo5 

A~ = -15934.8 

B~ = -11344.94 

c~ = o.o11 

D~ = 0.878 

The stiffness of the column is equal to the absolute value of B~, 

ky = 11340 t/m (3. 78) 

Stiffness fQr bending about the X-direction 

LX 
I 

LX 
I 

1. I =0 I = 18.7 1 
lo 

1 
13.66 

LX 
I 

LX 
I 

I = 86.17 I = 115.7 2 
lo 

2 
13.66 

LX 
I 

LX 
I 

I =0 I = 65.95 3 
lo 

3 
•13.66 



2. The system (3.32) becones: 

4.85x1o5 0 0 2.119x1o6 0 0 0 0 AX I 1 10 

0 -5.87x1o6 7.05x1o5 0 0 0 0 0 s11 10 

0 0 0 0 -19.68x1o-6 148.9x1o-6 3.66 1 c!l 11 

0 0 0 0 7.78x1o-6 48.19x1o-6 1 0 n!l 10 

1 4.85 23.5225 114.1 35.9x1o-6 0 0 -1 A~ I IO . 
1--' 
0 
N 

0 1 9.7 70.57 0 -35.9x1o-6 -1 0 ~I lo 

0 0 7 .05x1o5 10.27x1o6 -1 0 0 0 ~I 11 

0 0 0 -2.11x106 0 1 0 0 ~I 10 



Solution of the above system gives: 

At = 0.0173 

Bt = 0.0055 

di = 0.0457 

or = -o.oo4 

The stiffness in this case is: 

kx = 8360 t/m 
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3.5.2 Aggroximate Solution Qf tba Problem 

A~ = -8497.361 

~ = -8360.965 

~ = 0.47 

~ = 0.3611 

(3. 78) 

To illustrate the use of the approximate method for determination 

of the stiffness, the simple case in which the parabolic flare is 

represented by a simple beam of uniform cross section is chosen. Thus, 

the total number of beams involved is n = 2. The geometric parameters 

of each beam are shown in Fig. 3.6. 

Bending about Y-axis 

For n = 2, the system (3.77) takes the following general for.m: 

kx h 0 0 6EIY 1 0 0 0 0 Ay 
1 0 

0 -kzx 2EIY 1 0 0 0 0 0 By 
1 0 

0 0 0 0 1 h2 h2 h3 2 cY 
1 1 

0 0 0 0 0 1 2h2 3h2 
2 nY 

1 = 0 

1 hl h2 h3 1 -1 0 0 0 Ay 
2 0 

0 1 2hl 3h2 
1 0 -1 0 0 By 

2 0 

0 0 2EIY y 0 0 -2EI~ 0 cY 0 1 6EI1h1 2 

0 0 0 EIY 1 0 0 0 -EI~ nY 2 0 

Substituting the numerical values of the parameters, 



4.85x1o5 0 0 21.19x1o5 0 0 0 0 r AI I 
10 

0 -5.87x1o6 7.05x1o5 0 0 0 0 0 Bf I 10 

0 0 0 0 1 3.66 13.4 49.003 I I ci 1 I 1 

0 0 0 0 0 1 7.32 40.18 I I oY 10 1 

= 
1 4.85 23.52 114.08 -1 0 0 0 I I Ay 

2 10 

0 1 9.7 70.57 0 -1 0 0 I I By 
01 

j--J 2 0 
~ 

0 0 7.05x105 102. 7x1o5 0 0 -1.88x1o6 0 cY 2 0 

0 0 0 3.53x1o5 0 0 0 -o.943x1o6 D~j 10 

(3. 77a) 
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Solution of the above system gives: 

Ay = 0.023 

By = 0.006 

cr = 0.052 
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A~ = 0.687 

B~ = 0.1447 

c~ = -o.oo9 

Dy = -Q .00524 D~ = -Q .002 

From equation (3.65), it is seen that the stiffness for bending about 

the Y-axis is: 

ky = 6EI~ I D~ I = 11124 t/m 

Bending aboUt X-axis 

In this case the system to be solved is given by system (3. 77b) 

which has the solution: 

A! = 0.0167 

st = 0.005 

di = 0.044 

nt = -0.0038 

A~ = 0.64 

~ = 0.1620 

~ = -o.oo8 

~ = -0.0026 

The stiffness of the column for bending about the X-axis is: 

(3.79) 

I I 
kx = 6EI~ 1 ~ 1 = 8124 t/m (3.80) 

I I 

Comparison of the results obtained from the analytical method with toose 

found from the approximate analysis shows very good agreement. This is 

despite the fact that in the approximate method the flare was 

represented by just one uniform beam. This close agreement is 

encouraging for applications of the more general approximate metOOd. It 

is realized, of course, that in other cases more individual beams may be 

required to approximate the flare satisfactorily. 

3.5.3 Yielding Q.f the. Column along the.~ Directions .Qf Bending 

In order to characterize the force-deflection relations of the 

columns for the nonlinear analysis, it is necessary to approximate the 



4.85x1o5 0 0 21.19x1o5 0 0 0 0 

1 
I Af I 10 

0 -5.87x1o6 7.05x1o5 0 0 0 0 0 I st I 10 

0 0 0 0 1 3.66 13.4 49.001 ctl I 1 

0 0 0 0 0 1 7.32 40.18 ntl 10 

1 4.85 23.52 114.084 -1 0 0 0 Ax 2 0 

~ 
1--' 0 1 9.7 70.5675 0 -1 0 0 0 0 
-.J 

0 0 7.05x1o5 102.7x1o5 0 0 -10.47x1o5 0 ~I 10 

0 0 0 3.53x1o5 0 0 0 -5.23x1o5 ~J LO 
(3. 77b) 
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yielding and failure of the columns in both the X and Y directions. To 

make the analysis of the yielding as simple as possible, the following 

assumptions are adopted: 

(1) The ultimate shear strength and the ultimate torsional 

strength are so large that they can be considered infinite; 

(2) The column is under a constant axial force from the weight of 

the bridge deck; and 

(3) The ultimate bending moments of a cross section are determined 

from the axial stress distribution present on the cross section under 

ultinate corrlitions and are independent of the shear stresses. 

The method by which the ultimate bending moments are determined is 

outlined in Appendix A. 

The steel reinforcement and the axial load acting on the column are 

shown in Fig. 3. 7. The properties of steel and concrete used are shown 

in Table 3.3. 

TABLE 3. 3: PROPERTIES OF COOCRETE & srEEL REINFORCEMENr 

Description Value 

Concrete Modulus of Elasticity Ec = 3,390,000 psi = 2.4xlo6 t/m2 

Concrete Yielding Stress f~ = 3,500 psi = 2460 t/m2 

Concrete Yielding Deformation 

Steel Modulus of Elasticity 

Steel Yielding Stress fs = 50,000 psi = 3.5153.5 t/m2 

Steel Yielding Deformation Es = 0.00172 
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#II total 24 

a. Bottom cross- section 
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b. Top cross- section 

8x 16 total 12 

c. Compressive force due to the 
weight of the deck 

FIG. 3. 7 CROSS SOCTIONS OF THE REINFORCED COLlliN 
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3.5.3.1 Estimation Qf the ultimate bending moments 

The ultimate bending moments in the two directions of bending for 

the bottom and the top cross section are given in Table 3.4. The method 

by which they were found is briefly descr~ in Appendix A. 

TABLE 3. 4: ULTIMATE MCJttENr CAPlCI'IY 

-----------r--·---------- ------
Cross Section Bending about Y -axis Bending about X -axis 

----------+-------------
Bottom 1315 trn 1315 trn 

-+---------------

Top 1699 trn 3029 trn ____ ........ ____________ _ 

3.5.3.2 Construction Qf the force-deflection diagrams ~bending 

From equations (3.6) and (3.11) and the analogous ones governing 

bending about the X direction, the solutions of the systems (3.30) and 

(3.32) and the values of the ultimate moment capacities, the force­

deflection relations for loading at the top of the columns can be 

constructed. The force-deflection relations include an elastic portion 

and changes in slope corresponding to yielding at the bottom and at the 

top cross sections. An analysis of the deflection needed to cause 

yielding at the top and the bottom cross section indicates that the 

column first yields at the bottom. Furthermore, considering the fact 

that after yielding at the bottom no extra moments can be assumed by the 

bottom cross section, the stiffness of the columns after the yielding at 

the bottom was found to be: kx = 2269.65 t/m. This stiffness remains 

in effect until the top of the column yields producing a mechanism. 
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FIG. 3. 8 FORCE-DEFLECTION DIAGRAMS FOR IDADING AT THE TOP OF 
THE COLu.ffi 
a. Bending about Y-axis 
b. Bending about X-axis 
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Based on this analysis, the force-deflection diagram for bending about 

the X and Y axes were found to be as shown in Figs. 3.9a and 3.9b, 

respectively. 
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CHAPTER 4 

ESTIMATION OF THE ECUIVAIENr ABUIMENI' BriTFNESS 

4.1 INTRODUCTION 

As was shown in chapter 2, one of the most important parameters for 

the development of a model which will capture the basic features of the 

rigid body motions of a skew bridge is the abutment stiffness, kab. The 

calculation of a precise value of the abutment stiffness would involve 

very difficult calculations since an accurate representation of the 

abutment-soil system would be very complicated involving complex three­

dimensional geometry, many degrees of freedom, and the nonlinear 

constitutive relations for the properties of the soil. But, as was 

discussed in chapter 2, a reasonable estimate of the abutment stiffness 

is sufficient for constructing a simple model for the rigid body motions 

of a skew bridge. Thus, the purpose of this chapter is the development 

of a simplified method by which one can find an approximate value of the 

abutment stiffness, kab. 

The presentation is divided into three sections. In the first 

section, some fundamental concepts of soil mechanics and abutment design 

are presented briefly; in the second, the simplifying assumptions are 

given; and, in the third, the statement of the simplified problem and 

its solution are provided. 

The solution is divided into two parts. In the first part, the 

soil is modelled as a Winkler foundation with springs that are either 

constant or which vary linearly with depth. In the second part, the 

soil is represented by n discrete springs with independently determined 

constants. The soil springs are considered to be linearly elastic, but 

the soils on the left and right sides of the abutment are allowed to 
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yield. The yielding criterion used for the soils is given in the 

section containing the basic assumptions of the analysis. The final 

result for each case treated is an approximate elasto-plastic force­

deflection relation for the abutment-soil system. 

4. 2 PRELIMINARY cmx:;EPTS 

4.2.1 AbUtments 

The abutments of a bridge support the ends of the span and retain 

the earth behind them. For highway bridges, there are several types of 

abutments depending on the material of construction (plain concrete, 

reinforced concrete, stone) and on their function (full height abutment, 

stub or semi -stub abutment, open abutment). The metmd which follows 

deals with abutments whose profile can be approximated by the two­

dimensional configuration shown in Fig. 4.1. 

4.2.2 Geostatic Stresses in ~Soil 

Generally, the pattern of stresses in soil, even those caused by 

its own weight, is very complicated. However, there is a common 

situation in which the weight of the soil gives rise to a simple state 

of stress: when the ground surface is horizontal and the soil is 

laterally homogeneous. In this case, the stresses are called geostatic 

stresses; and the vertical and h::>r izontal planes are pr incip:3.l planes 

since no shear stresses act on them. The vertical geostatic stresses at 

any depth are given by: 

(4 .1) 

where y is the unit weight of the soil (assumed to be constant with 

depth and Z is the depth. The ratio of horizontal to vertical stress is 

expressed by a factor, called the coefficient Qf lateral stress and 
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denoted by K: 

a h 
K = ----

a v 
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(4. 2) 

In the s:p:cial case where there is no lateral strain in the ground, soil 

mechanicians employ the term coefficient Qf lateral stress at ~ and 

use the symbol K0 • Depending on the soil, K0 can be greater or less 

than one. For typical sand deposits K0 varies between 0.4 and 0.5. The 

geostatic stresses are shown in Fig. 4.2. 

4.2.3 Rankine Theory 

The Rankine theory is one of two classical theories of earth 

pressure (the other one is due to Coulomb). Rankine theory is based on 

the Mohr-coulomb yielding criterion which is summarized in Fig. 4.3. In 

this figure, a1 and a2 = a3 are the principal stresses; and the 

cohesion of the soil is denoted by c. 

Consider a semi-infinite mass of soil with a horizontal surface and 

having a vertical boundary formed by a frictionless wall extending to a 

semi-infinite depth (see Fig. 4.4a). The soil is assumed to be 

isotropic and homogeneous. Let av and ah be vertical and horizontal 

stresses, respectively, upon a soil element at depth Z. If there is now 

a movement of the wall away from the soil, the value of a h decreases as 

the soil expands outwards. If the expansion is large enough, a h 

decreases to a minimum value aa such that a state of plastic equilibrium 

develops. The stress aa is called the active stress and is the minor 

prinicipal stress in the Mohr's circle. The state of the soil when a h = 

aa is called the Active Rankine State (see Fig. 4.4). If, on the other 

hand, the wall is moved against the soil, there will be a lateral 
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compression of the soil and the value of oh will increase until another 

state of plastic equilibrium is reached. The maximum value of oh, in 

this case, denoted by op, is called passive stress and is the maximum 

principal stress in the Mohr's circle. The corresponding state is 

called the Passive Rankine State. Relative to the Rankine states in 

Fig. 4.4, the following relations can be derived: 

oa = KA YZ- 2c~ (4. 3) 

(4.4) 

where KA and Kp, the active and passive pressure coefficients, 

respectively, are 

1 - sin ¢ 
KA = ----------

1 + sin ¢ 

1 + sin ¢ 
K = ---------

p 1 - sin ¢ 

4.2.4 Active Thrust and Passive Resistance 

(4. 5) 

(4. 6) 

Equations (4.3) and (4.4) show that the active and passive stresses 

increase linearly with depth as indicated in Fig. 4.4b. When the 

cohesion c is zero, triangular distributions are obtained in each case. 

When c is greater than zero, the value of oa is zero at a particular 

depth Z0 • From equation (4.3) with oa = 0: 

2c 
(4. 7) 

This implies that, in the active case, the soil is in a state of tension 
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between the surface and depth Z0 • But, in soils, cracks are likely to 

develop within the tension zones; and the tensile stresses acting on 

the wall are commonly neglected. The force per unit width of the wall 

due to the active stress distribution is referred to as total active 

thrust (PA). For a \ertical wall of height 

1 

PA { o adz = 1/2 KA y (1 2 - z;} - 2cYK;! (1 - z0 } (4. 8) 

zo 

The force due to the passive stress distribution is called the total 

passive resistance (Pp). For a vertical wall of height 1, the passive 

resistance per unit width is: 

1 

Pp = J opdZ = 1/2 ~ y 1 
2 + 2c"f;'1 (4. 9) 

0 

The active and passive stress distributions are shown in Fig. 4.5a. 

4.3 BASIC ASS~ONS 

The approach presented below is based on the following simplifying 

assurrpt ions: 

(a) The problems to be solved are static; consequently, no 

inertia forces are included in the analysis; 

(b) The abutment is assumed to behave as a uniform, rigid plate, 

i.e., deformations due to bending and shear are neglected; 

(c) When elastic, the soil is assumed to behave as a Winkler 

foundation . 

Thus, the pressure, p, exerted by the ground at a point, is assumed to 

depend only on the displacement, W, of that point through a proportion-
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ality factor kw. 

(4.10) 

The factor kw is called the horizontal subgrade reaction coefficient. 

In the first part of the analysis, kw is assumed to vary linearly with 

depth according to the relation: 

z 
kw = I"lw--- + ko ( 4.11) 

1 

where 1 is the total height of the soil deposit (which for the deposit 

on the right of the abutment is equal to the height of the abutment), Z 

is the depth and nw and k
0 

are constants. Equation (4.11) includes roth 

a uniform subgrade coefficient (nw = 0) and triangular distribution of 

resistance with depth (k0 = 0), which are the two most frequently used 

expressions for the factor kw. The resistance of the soil at the bottom 

of the abutment is modelled by a torsional spring which resists the 

rigid body rotation of the abutment. 

The contact between the abutment and the soil is assumed to be 

frictionless. 

(d) When no force or displacement is imposed on the soil by the 

bridge, the system of the soil and the abutment is in equilibrium under 

the initially applied forces (weight and geostatic forces). Thus, in 

the analysis, only the equilibrium of the forces applied beyond the 

initial equilibrium state will be examined. 

(e) A soil deposit is considered to yield if the total compressive 

force imposed on that deposit equals either its active thrust or its 

passive resistance. It will be assumed that when the total compressive 

force is be t ween these two values, the soil deposit will behave 
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elastically. The above "yielding criterion" is global in nature and 

does not take into account that the state of stress at yielding of each 

soil element will, in actuality, depend on its depth. But, for the 

purpose of the analysis, it is considered to be an acceptable 

assunption. 

(f) A soil deposit cannot assume tensile stresses. The deposit is 

said to be "tensioned" only in the sense that its initial compressive 

stresses are decreased. The maximum level of the decrease is s~ified 

by (e). 

4 • 4 ESI'IMATION OF THE ECXJIVALENI' A13U'IMENI' SI'IFFNESS 

4. 4.1 Statement .Qf the Problem 

The problem to be solved can be briefly summarized as follows: Let 

Wa be the deflection imposed by the bridge deck on the soil through the 

abutment and let Pt equal the reaction of the soil on the bridge. The 

problem is to find an equivalent nonlinear stiffness kab such that 

Pt = kab a 

4. 4. 2 Solution .Qf the. Problem in the ~ of Winkler Foundation 

Consider a strip of the abutment of unit width loaded by load P per 

unit width applied at a distance a from the top (see Fig. 4.6a). Let 

the displaced position of the abutment be that shown in Fig. 4.6b, and 

let W0 and w1 be the displacements of the top and bottom of the 

abutment, respectively. If W(Z 1) is the displacement at a depth z1 , 

then: 

(4 .13) 

cp = 
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The stress . between the soil and the abutment can be expressed as a 

function of depth as follows: 

0 ~ z1 ~ l (on the right side 
of the abutrrent) 

(on the left side 
of the abutment) 

( 4.14) 

By substituting W (Z1) from (4.13) and kw (Z) from Fig. 4.6a, one gets 

from equation (4.14): 

zl 
+ w1k0 ] ---- + k w 

l 0 0 

r1w 2 
pl (Zl) = (Wl - Wo) ---------- zl + 

1 ( l - d) 

ko r1w ¥ 
[W (- ---- + ------- + ----------) + 0 

l l- d l(l- d) 

ko ¥ ¥ 
Wl(----- ----------) ]Zl + W (k - -------) 

l 1 ( 1 - d) 
0 0 

1 - d 

The equation of force equilibrium requires that: 

l 1 

P =J Pr(Z1 )dz1 +Jp1(z1 )dZ1 

0 d 

From the equation of rrorrents about z1 = ·1 : 

1 1 

(4.16) 

P(l - a) = J Pr (Z1) ( - z1 )dz1 + J pl (Z1) ( - z1 )dz1 + k,p<l> 

0 d 

( 4.15) 

(4.17) 
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From (4.16), (4.17) and (4.15), one gets: 

where: 

p = ROWO + R1W1 

P ( 1 - a) = T0W0 + Tl W1 

} (4.18) 

I1w 1 (11w - ko)l I1w ( 13 - d3) 
R = - ----- + ------------ + k 1 - ------------- + 0 

3 2 ° 31(1 -d) 

12 - d2 ko I1w nJ1 
+ --------- (- ---- + ------- + ----------) + 

2 1 1 - d 1 ( 1 - d) 

nJ1 
(k

0
- -------) (1- d) 

1 - d 

I1w 1 1 I1w ( 13 - d3 ) 
R1 = ----- + k --- + ------------- + 

3 ° 2 31(1- d) 

ko nJ1 12 - d2 
(---- - ----------) ---------

1 1 ( 1 - d) 2 

I1w 12 12 ko 12 
T = - ------ + (f1w - k ) ---- + ------ + 0 

12 ° 6 2 

I1w 14 - d4 13 - d3 
-------(--------- - ---------) + 

1 - d 4 3 

ko I1w nJ1 1 2 - d2 1 3 - d3 
(- ---- + ------- + ----------) (1 ---------- ---------) + 

1 1 - d 1 ( 1 - d) 2 3 

nJ1 1 2 - d2 
(k - -------) (1(1- d) - ---------) 0 

1 - d 2 

f1w12 ko 12 nw 13- d3 14- d4 
Tl = ------ + ------ + ------- (--------- - ---------) + 

12 6 1 - d 3 4 

k0 nJ1 1 2 - d2 1 3 - d3 k 
+ (---- - ----------) ( --------- - ---------) - -~-

1 1 ( 1 - d) 2 3 1 

( 4 .19) 
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Solving equation (4.18) for the displacements gives: 

where: 

W0 = PA
0 

w1 =PAl 

R1 ( 1 - a) - T1 
Ao = ------------

RlTo - 1\,Tl 

R
0 

( 1 - a) - T
0 

Al = ----------------

From equations (4.20) and (4.13) 

For z1 = a, equation 4.21 gives: 

wa 
p = ----------------

Ao - Al 
A0 ------- a 

1 

( 4. 20) 

( 4. 21) 

( 4. 22) 

The total force Pt is found by multiplying by the· foundation width, b. 

b 
Pt = ----------------~a 

Ao - Al 
A0 - --------- a 

1 

So, the desired stiffness coefficient is 

b 
kab = ------------------ ( 4. 23) 

Au- A1 
A - --------- a 

0 1 

Equation (4.23) provides an expression for the equivalent abutment 

stiffness when the soil behaves elastically. It should be noted that 

the expression for kab also applies for the special cases when 

kw = ~Z/1 or kw = k, by setting ko = 0 or nw = 0, respectively. 
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4. 4. 3 Yielding Qf. regions Qf. the. .blQ .SQll deposits 

As shown in Fig. 4.6, in the general case each soil deposit is 

divided into two regions: region 1, which in both deposits is 

compressed by the abutment, and region 2, which in both deposits is in 

tension as defined earlier. The distance s, which defines the point of 

zero displacenent, can be found from equations 4.13 and 4.20: 

Ao 
s = 1 ------- ( 4. 24) 

Aa- A1 

Based on the yielding criterion (e) which was stated in section 4.3, the 

displacement wa, which causes yielding of each of the four reg ions, can 

be estimated as follows. 

4.4.3.1 Yielding Qf the. regions Qf deposit ~ 

(i) Region l. (in corrpression) 

a. Initial force (due to geostatic stresses only): 

s 

P0 , 11 = K0Jcrv(Z1)dz1 = l/2 K0ys2 

0 

or from equation (4.24) 

( 4. 25) 

b. Force irrposed by the rotion of the abutnent: 

s 

P,ll =f Pr(Zl)dZl 

0 
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and from equations 4.15 and 4.17 

where: 

( 4. 26) 

c. Total Passive Resistance: 

Pp,ll = 1/2 ~ y s2 + 2c ~ s = 

Ao "'C' 
(1/2 ~ y 1 -------- + 2cv~ ) 

Aa- A1 
(4.27) 

According to the yielding criterion followed in this analysis, this 

region will yield when: 

(4.28) 

From (4.28), the displacement Wa, required to cause yielding of this 

region, is found to be: 

1 A0 A0 .,~ 
W~,ll = --- [ 1-------(1/2 ~y 1------- + 2cyl)>) -

a 1 Aa - A1 Aa - A1 

(4. 29) 

(ii) Region l ( in tension) 
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a. Initial force (due to geostatic stresses only) 

1 

Po,l2 = Ko~ crv(Zl)dZl = 1/2 Ko (12 - s2) 

s 

and from equation 4.24 

b. Force irrposed by the notion of the abutrrent: 

where: 

kab 
. a2 = ----1 { (A1 

b 

1 

P,l2 ~ Pr(Zl)dZl 

s 

c. Active Thrust: 

From equation (4.7): 

2c 
z~ = ---­Y{K; 

or 

(4 .31) 

(4 .30) 

2 

Depending on the value of z~, the active thrust can be estimated as 
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follows: 

1. If z~ > 1 PA,l2 = 0 (4 .32) 

2. If s < z~ < 1 

( 4. 33) 

3. If z~ < s or 

s 

( 4. 34) 

This region will yield when: 

( 4. 35) 

From (4.35), the displacement Wa required to cause yielding of this 

region is found to be: 

If z~ > 1 : 

If s < z~ < 1 

If z~ < s: 

2c~ 

1 ~ 
wY 12 = - --- l/2K y12 (1 - --------) a, o 2 

a2 (Ao - Al) 

1 2 
= -----[1/2 KA ( 12 - Z~ ) -

a 2 

(4.36) 
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4.3.3.2 Yie1diog -Qf the regions Qf deposit 2 

(i) Region ~ (in conpression) 

a. Initial force (due to geostatic stresses only): 

1 

Po,21 = Ko Jy (Z1 - d)dZ1 

s 

= 1/2 K0y[(1- d) 2 - (s- d)2] = 

1/2 K
0

y [ (l - d) 2 - (1 _ _!_o __ - d) 2] 

Aq- A1 

b. Force irrposed by the notion of the abutneot: 

1 

p ,21 = -I pl (Z1)dZ1 

s 

(4.37) 

I'lw 13 - s3 ko I'lw ¥ 
= -{(W1 -wo) --------- -------- + [Wo(- ---- + ----- + ---------

1 ( 1 - d) 3 1 1 - d 1 ( 1 - d) 

ko ¥ 12 - s2 ¥ 
+ w1 (---- - -------)] ----- + w (k - -----) ( 1 - s)} or 

1 1 (l - d) 2 ° 0 
1 - d 

where: 

kab flw1 ~ 
(31 = - --- { (A1 - Aq) -------(1 - -------) 

b 3 (l - d) (Aq - A1 ) 3 

ko I'lw ¥ 
+ [A (- --- - ----- + ---------) + 0 

1 l - d 1 ( 1 - d) 

k0 y 1 ~ 
+ A1 ( --- - -------) ] -- (1 - ---------) 

1 1 ( 1 - d) 2 (Aq ~ A1) 2 

( 4. 38) 

¥ Ao 
+ A

0
(k

0 
------) (1 - -------) 
1 - d A0 - A1 
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c. Total Passive Resistarx::e: 

Pp,2l = 1/2 !)> y[ ( 1 - d) 2 - (s - d) 21 + 2c~ ( 1 - s) = 

2 Aa 2 .l-1 Aa 
1/2 !)> y[ ( 1 - d) - ( 1 ------ - d) 1 + 2cvl)> 1 (1 - -------) 

Aa-~ Aa-~ 
( 4. 39) 

This region will yield when: 

Po,21 + P,21 = Pp,21 (4 .40) 

From (4.40), one can find the displacement Wa required to cause yielding 

of this region: 

W~ -
a,21 -

1 ~ 2 
----{1/2 y [ ( 1 - d) 2 - ( 1 ---- - d) ] (!), - K

0
) 

s1 Aa - A1 

+ 2d/Kn 1 (1 - --~-----)} p Aa- A1 

Region l (in tension) 

a. Initial force (due to geostatic stresses only) 

s 

Po,22 = Ko J y(Zl - d)dZl = 

d 

~ 2 1/2 K0 ( 1 -------- - d) 
~- Al 

b. Force inposed by the rrotion of the abut:Irent: 

(4.41) 

(4.42) 
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s 

P,22 = -Jf ~ (Zl)dZl = 

d 

l'lw s3 - d3 ko l'lw ¥ 
- { (Wl - Wo) ------- ------ + [Wo(- ---- + ---- + ------) + 

1 ( 1 - d) 3 1 1 - d 1 (1 - d) 

ko JVl s2 - d2 JVl 
w1 (-- - --------)] ------- + w (k - -----) (s - d)} or 

1 1 (1 - d) 2 ° 0 
1 - d 

where: 
3 

3 Ao 3 
1 --------- - d 

kab l'lw (Aa - Al)3 
S 2 = - ---{ (A1 - A ) -------- -------------------

b 
0 

1 (1 - d) 3 

ko l'lw ¥ 
+ [Ao(- ---- + ------ + ---------) + 

1 1 - d 1 ( 1 - d) (4.43) 

2 
2 Ao 2 

1 ---------2 - d 
ko JVl <Aa- Al) 

Al (---- - ------)] ------------------ + 
1 1 ( 1 - d) 2 

¥ Ao 
A

0
(k

0
- ----) (1 ---------d) 

1 - d A0 - A1 

c. Active Thrust 

Following the same procedure as followed for the estimation of the 

active thrust of region 2 of deposit 1, one finds: 

2c 
Z~=----+d 

y~ 
(4. 44) 



135 

If Z~ > s PA, 22 = 0 (4.45) 

Ao 2 2 
= 1/2 KAy [ ( 1 ------ - d) - (Z~ - d) ] -

Aa- A1 

.r Ao 
2djKA ( 1 ------ - Z~ ( 4. 46) 

Ao -Al 

Region 2 of deposit 2 will yield when: 

Po,22 + P,22 = PA,22 (4.47) 

From (4.47) the displacement required to cause yielding of this region 

is found to be: 

If z~ > s 
1 

wY 22 = - --- 1/2 K a, o 
s2 

Aa 2 
(1 -------- - d) 

Ao - Al 

If d < z~ < s: w~, 22 = 

1 Aa 2 
----{1/2 KA [ ( 1 -------- - d) (Z~ - d) 2 

62 Ao - Al 

(4.48) 

.,c-' Ao Aa 2 
-2cyKA ( 1 -------- - Z~) - 1/2 K0 y ( 1 -------- - d) 

Aa - A1 Aa - A1 

It is obvious that the region which requires the smallest 

displacement Wa in order to yield will yield first. After a region has 

yielded, it stops contributing additional force to the resistance to the 
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abutment motion. Consequently, after the yielding of a region, a 

redistribution of stresses and displacements will take place and a new 

problem has to be solved in order to find the new expression for the 

equivalent abutment stiffness. Therefore, the whole problem can be 

divided into phases. The end of one phase and the beginning of the next 

one are marked by the yielding of a soil region. The stress and 

displacement conditions at the beginning of a phase can be found from 

the stress and displacement conditions at the end of the previous phase. 

The general picture of the problem during any phase is shown in 

Fig. 4.7. By varying the lengths 11 , 12, 13 , 14, one can achieve the 

situtation in any phase (e.g., the combination 11 = 0, 12 = 0, 13 = d, 

14 = 1 results in phase 1, which has been already examined). So by 

finding the expression for the abutment stiffness in this general case, 

one can estimate the abutment stiffness during any phase. 

4.4.4 Estimation Qf the Eguivalent Abutment Stiffness .in the. General 

a. Displacerrent equation: 

wo - wl 
W(Z) = W0 - --------- Z, 

1 

wo- wl 
¢ = --------- (4.49) 

where W0 and w1 are the displacements at the top and the bottom of the 

abutment, respectively. 

b. Distribution of pressure 

Pr(Z) = W(Z)~(Z) 

p (Z) = W(Z)~(Z) 
1 

or 

11 ~ Z ~ 1 2 (on the right side of the abutrrent) 

1 3 ~ Z ~ 1 4 (on the left side of the abutnent) 
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k~ ~ ~11 k~ ~11 
[W (- --- + -- + ----) + w1 (--- - ---) ]Z + 0 1 1 12 1 12 

~11 
W (kr - ----) 

0 0 l 
11 ~ Z ~ 12 (on the right side) 

Pl (Zl = (Wl - Wol - llw ___ z2 + 
1 (1 - 13) 

k6 ~ ~13 
[Wo(- --- + ------ + --------) 

1 1 - 1 3 l (l - 1 3) 

1 1 
ko l'lw13 

+ w1 (---- - -----) ]Z 
1 1 (1 - 13) 

1 
1 l'lw13 + w (k - ------) 

0 0 1-13 
13 ~ z ~14 (on the left side) 

c. Equation of force equilibrium 

k~ ~ ~ 11 k~ ~ 11 1 ~ - 1 f 
[W (- ---- + ---- + -----) + Wl(---- -----)] --------- + 0 

1 1 12 1 12 2 

~ 1~-11 
+ (Wl - Wo) --------- -------

1(1-13) 3 

~11 
wo (k~ - ----) (1 2 - 11) 

1 

1 1 
ko l1w l1w 13 

+ wo (- --- + ------ ---------) + 
1 1 - 1 3 1 (1 - 1 3) 

kb ~13 1 ~ - 11 
wl (--- - ------) 1 ---- + 

1 1 (l - 1 3) 2 

( 4. 50) 
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nJ 13 
+ w (k 1- --------) (14- 13) 

0 0 1 - 13 

or 

~ 1~-1y ~ 1i-1j 
p = [- --2- --------- - ----------- -------- + 

1 3 1 0 - 13) 3 

k~ ~ ~ 11 1 ~ - 1 f 
(- --- + --- + ----) -------- + 

1 1 12 2 

k~ ~ ~ 13 1 ~ - 1 ~ 
(- ---- + ------- + ----------) ------- + 

1 1 - 13 1( 1 - 13) 2 

r ~11 1 ~13 
(ko- --1---) (12- 11) + (ko- --------) (14- 13)]Wo + 

1 - 13 

~ 1~ - ly ~ 1i - 1j 
[---- --------- + ---------- --------- + 

12 3 1(1- 13) 3 

k~ ~11 1~ - 1f k~ ~13 
(----- ------) --------- + (----- ---------)]Wl 

1 12 2 1 1(1 - 13) 

d. Equation of rorrent equilibrium: 

12 14 

P(l- a) =I Pr(Z) (1- Z)dZ +J p 1(z) (1 

11 13 

~ 1~ - 1I 
= (W 1 - W o) --- --------- + 

1 3 

- Z)dZ + k ¢ 
¢ 

k~ ~ ~11 k~ ~11 
[W (- ---- + ---- + ------) + Wl(----- ------)] 0 

1 1 12 1 12 

( 4. 51) 

2 
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k~ · ~ . ~ 11 k~ ~ 11 1 ~ - 1 r 
[w {- -- + --- + ----) + w1 {--- - ----) 1 ------ -

0 l 1 12 1 12 3 

I1w 11 1 ~ - lf ~ 1 ~ - 1 ~ 
- -----) -------- + {W1 - Wo) -------- ------ + 

1 2 1 - 13 3 

kJ ~ ~13 
[Wo{- --- + ------- + -----------) + 

1 1- 13 1{1- 13) 

kJ ~13 
w1 {---- -----------)] 

l l{ 1 - 13) 

2 2 
1 4 - 13 
-------- + 

2 

k~ ~ ~13 
[Wo{- ---- + -------- + -----------) + 

1 - 13 1 { 1 - 13) 

k~ ~13 1~ - 1~ 
W1{----- -----------)]----------

1 1{ 1 - 13) 3 

1 2 2 
l'lw13 14- 13 

w {k - -------)---------
0 0 1 - 13 2 

or 

P ( 1 - a) 
~ 1~ - 1y 1~ - 1f 

= [----{- --------- + ---------) + 
1 3 41 

l 
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k~ ~ · ~ 11 1 ~ - 1t 1 ~ - 1 I 
(- -- + --- + ----) ( ------- - -----) + 

1 1 12 2 3 

~ 11 1 ~ - 1 f 
- -----) ( 1 (12 - 11) - -------) + 

1 2 

nJ 1a-1~ 11-1~ 
------(- ------- + -----) + 
1 - 13 3 4 

k~ nJ nJ 13 1 t -1 ~ 1 ~ - 1 ~ 
(- ---- + ------- + ---------) ( ------- - ------) + 

1 1 - 13 1 ( 1 - 13) 2 3 

1 nJ13 1t -1~ k (4.52) 
(ko - ----~--) (l (l 4 - 1 3) - --------> + _j2__ lWo + 

1 - 13 2 l 

~ 1~ - 1I l ~ - 1 f 
[----(--------- - ---------) + 

1 3 4 1 

k~ ~ 11 1~ - 1f 1 ~ - 1 I 
(---- - ------) ( -------- - --------) + 

1 12 2 3 

"r\, 1~-1~ 11-1~ 
--------(--------- - --------) + 
1 -13 3 4 

k~ l1w 13 1 t -1 ~ 1 ~ - 1 ~ 
(---- - ----------) ( 1 -------- - --------) 

1 1 ( 1 - 1 3) 2 3 

e. Expressions for W0 , w1 

Ra ( 1 - a) - T0 
A1 = ---------------

l\,T1 - R1To 

r 13 1 3 1 1 3 1 3 k r r nw 2-1 11w 4-3 o nw 
R = - --- -------- - ------- --------- - --- + ---

0 1 2 3 1 (1 - 13) 3 1 1 
. . . 

( 4. 53) 
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~11 k~ . ~ ~ 13 
+ ----- - ---- + ------ + -------- + 

1 2 1 1 - 1 3 1 ( 1 - 1 3) 

nw ~ nw 13 
- ---) (12 - 11) + (ko - ----) (14 - 13) 

1 1 - 1 3 

r 3 3 1 3 3 kr r nw 1 2 - 11 nw 1 4 - 1 3 o nw 11 
R1 = --- ---- + -------- ------ + --- - ----

2 3 1 (1 - 13) 3 1 12 

k~ ~ 13 
+ ---- - ----------

1 1 (1 - 13) 

~ . 1~-1I 1~-1f 
To = ----(- ------ + -------) + 

1 3 4 1 

k~ n& ~1 1 1 ~ - 1 f 1 ~ - 1 I 
(- --- + ---- + ------) ( -------- - -------) + 

1 1 12 2 3 

nw11 
- -----) (1 (1 2 - 1 ) 

1 1 

12 12 2 - 1 

2 

1 3 3 4 4 nw 14 - 13 14 - 13 
+ -------- (- -------- + ---------) + 

1 - 13 3 41 

kb ~ ~13 1~- 1~ 1~- 1~ 
(- ---- + -------- + -----------) (1 --------- - ---------) 

1 1 - 13 1 (1 - 13) 2 3 

1 2 . 2 

+ (k~- -~---) (1 (14 - 13) - ~~~-) + -~ 
1 - 13 2 1 

~ 1~ - 1I 1~ - 1f 
Tl = -~--(----;---- - ---~~----) + 

k~ ~1 1 1 ~ - 1 t 1 ~ - 1 I 
(---- - ----) (1 --------- - --------) + 

1 12 2 3 

~ 1~ - 1~ 1i - 1~ 
-------(------- - --------) + 

1 - 13 3 4 

. . 

• 
• 

( 4. 53) 
cont. 
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kb ~ 1 3 . 1 ~ - 1 ~ 1 ~ - 1 j k 
(---- - -----) ( 1 ------- - ------) - --~-

1 1 (1 - 13) 2 3 

f. Expression for the equivalent abutrrent stiffness: 

b 
kab = ----------------

Aa- A1 
A - --------- a 

0 1 

J (4.53) 
cont. 

( 4. 54) 

Equations (4.54) and 4.53) provide expressions for the equivalent 

abutment stiffness in the general case. In order to estimate the 

progressive yielding of the soil, one should follow a procedure similar 

to that followed in the case of phase 1 paying special attention to the 

identification of the proper initial conditions at each phase change. 

Since the initial conditions change from phase to phase, no general 

forrulas can be provided as far as the general case is concerned. 

4.5 EXAMPLE 

Consider the abutment shown in Fig. 3.8a. This is a section of one 

of the abutments of the Nichols Road Overcrossing. The model to find 

the stiffness of this abutment is shown in Fig. 3.8b. The height of 

deposit 2 in the model is the average height of the deposit on the left 

hand side of the abutment. The values of the soil springs were 

estimated based on the properties of stiff soil (Appendix B). 

The solution of the problem can be divided into five phases. The 

intermediate and final results required for the estimation of the 

abutment stiffness in each phase are shown in Table 4. 7. This table 

also shows the soil region that yields at the end of each phase and the 

displacement which is required for its yielding. More specifically, 

examination of the yielding in the first phase prcrluced the following 

values of yielding displacements. 
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p 
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3.96 
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8. 

FIG. 4. 8 Nl:MERICAL EXAMPLE OF MDELI~ OF ABUIMENr S-riFFNESS 
a. Abutment of Nicools Road OVercrossing 
b. Model 



Phase 

1 

2 

3 

4 

5 

TABLE 4. 7: RESULTS OF EXAMPLE 4. 5 

Soil Properties 

k~ kb ~ ~ 
(t/rn2) (t/rn2) (t/rn2) (t/rn2 

Height of Deposits 

k¢ I 1 I 2 
(rn) (rn) 

3 I 4 
(rn) (rn) 

Ao 

Estirration of 
Abut:Irent Stiffness 

Al kab 

(t/rn) 

Examination of 
Yielding 

--
Required Critical 

S IYielding Region 
Displace- --------

(rn) lment R* D* 
Wa (rn) 

135 1412.511412.5131101 0 l3.9613.2313.9619.lxl0-4 4.6xlo-5121676 13.761 0.005 2 2 

135 1412.511412.5131101 o 13.9613.7613.961 9xlo-4 l-3.7xlo-5121636 13.8 2 2 

135 11240.711412.511412.513110 9xlo-4 l3.77xlo-5121636 13.8 0.073 2 1 

135 9xlo-4 4xlo-5 121632 13.8 0.013 1 1 

0 3xlo-3 12526.41----1 0.52 

R* Region 
D* Deposit 

1-' 
~ 
V1 
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FIG. 4.9 THE FIVE PHASES OF THE EXAMPLE 
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Region 1, Deposit 1: wa,ll = 0.092Jn 

Region 2, Deposit 1: w2 ,12 = 0.0658m 

Region 1, Deposit 2: w2,21 = o.s3m 
Region 2, Deposit 2: w2, 22 = O.OOSlm 

From these values, it is clear that Region 2 of Deposit 2 will yield 

first. The examination of yielding in the other phases is similar. 

From the results shown in Table 4.1, it is obvious that, during 

Phase 5, there is active soil only on the left side of the abutment 

(Reg ion 1 :.. Deposit 2). The yielding of the soil in this phase is of no 

practical importance since a total displacement of about 0.53m is 

required to cause yielding. The pictures of the soil deposits during 

the five phases are shown in Fig. 4.9. 

The force deflection diagram is shown in Fig. 4.10. It is this 

diagram that would be used in calculating the earthquake response of the 

bridge. 

4. 6 OOLQTION 0C THE PROBLEM IN THE ~ 0C Diocru;rE SPRIN:iS 

Assume that the deposit on the right side of the abutment is 

divided in nr segments, while the deposit on the left side is divided in 

n 1 segments. The depths of the segments on either side can be arbitrary 

and unequal. In the analysis, a soil spring is placed at the middle of 

each segment of every deposit; the springs represent the resistance of 

the segments to lateral movement of the abutment. The values of the 

spring stiffnesses can be assigned arbitrarily or estimated from soil 

properties. 

Consider now the ith segment of the right deposit. Let the middle 

point of this segment be located at a distance z~ from the top of the 
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abutment, and let the length of the segment be 8 z~ (see Fig. 4.11). 

Suppose that the spring constant of this segment is k~,r' then the 

resisting force of the segment will be: 

( 4. 55) 

The rrorrent of the force f~ about the bottom of the abutrrent will be: 

(4.56) 

In the above relations, W~ is the displacement of the abutment at depth 

z~ it can be expressed as a function of the displacements w0 and w1 

from the relation (4.49). Thus: 

wo - wl . 
wi = w - ---------z1 (4.57) r o 

1 
r 

Similarly, for the jth segment of the left deposit, one gets: 

( 4. 58) 

( 4 .59) 

(4.60) 

Next, application of the force equilibrium gives: 

( 4. 61) 

Combination of (4.55), (4.57), (4.58), (4.60), and (4.61) produces 

nr . . wo - wl . n 1 . . wo- wl . 
P = 2: ~ oz 1 (w - -------z1 ) + 2: ~ ozJ (W - -------zJ) 

i=l 'r r o 1 r j=l r1 1 o 1 1 

or 
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nr . . . 1 nr . . . n 1 . 
P = ( l: k 1 6 Z 1 - --- l: k 1 6 Z 1 Z 1 + l: k J 6 Z j . 

1
. w ,r r 

1 
. 

1 
w ,r r r . 

1 
w ,1 1 

1= 1= ]= 

( 4. 62) 
1 n 1 . . . 1 nr n 1 - --- L: ~ 6zJzJ)w + ---( L: ki zi6zi + L: kj zj6Zj)w 
1 j=l , 1 1 o j=l ·~ ,r r r j=l ·~ ,1 1 1 1 

Similarly, the equation of rronent equilibrium gives: 

P ( 1 - a) = ~r mi + ~ 1 mj 
i=l r j=l 1 

( 4. 63) 

From (4.58), one gets: 

. 2 
nr . . (Z~) . 

P ( 1 - a) = . [ l: k 1 [ 1 - 2Z 1 + ------]6 Z 1 
. 

1 
"'W ,r r 

1 
r 

1= 

. 2 
n 1 . . (Z1) . k~ 

+ L: k~ ,1 [ 1 - 2zJ + ------- ]6 zJ + -~- ]W0 + 
j=l 1 1 1 

nr . . . z~ n 1 . . . z~ k~ 
[ L: 6 z1k1 z1 (1 - ----) + L: 6 zJkJ zJ (1 - ----) - --~- Jw1 i = 1 r· ~' r r 1 j = 1 1 w r1 1 1 1 

(4.64) 

Solution of the system of equations (4.57) and (4.59) provides the 

following expressions for wo' wl: 

W - PA o - ·u 

% ( 1 - a) - T0 
Al = ----------

%Tl - RlTo 

(4.65) 

1 nr . . . n 1 . . . 
---[I k1 6 z1z1 + l: kwJ ,

1 
6 zJ

1
zJ

1
J . 

1 
w,r r r . 

1 1 1= ]= 
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R
1 

= __:_ [~r ~ci zio zi + ~ 1 ~cj ztl) zj J 
. 1 ·-w' r r r . 1 ·-w '1 1- 1 1 1= ]= 

. 2 
nr . . (Z~) . 

T = L: Jc
1 [1 - 2Z1r + -----]cS zr1 + o . 1 ·-w ,r 1 

1= 

. 2 
n 1 . . (Zf) . krh 
L: kJ [1 - 2zJ + ------- ]ozJ + ---'t-
j=l w '1 1 1 1 1 

nr . . . z~ 
T1 = L: cS Z1 Jc 1 z1 (1- ----) + . 

1 
r·-w ,r r 

1= 1 

n 1 . . z4 krh 
L: cS z.Jkw zJ (1 - ----) - -'t:.-
j=l -I '1 . 1 l 

( 4. 65) 
cont. 

Finally, the equivalent abutment stiffness is given by the relation 

(4.54). 

The discrete formulation is particularly convenient for evaluation 

by small computers and programmable calculations. 
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CHAPTER 5 

A Dm'AILED MOOEL FOR THE INVESriG\TION OF THE RIGID JD)Y MOTIONS OF 
SKEW BRIDGES 

5 .1 INrRODUCTION 

In chapter 2, a model was proposed to illustrate some of the 

dynamic features shown by skew bridges. The model was kept as simple as 

possible consistent with its purpose to explain the kinematic 

mechanisms, which induce planar vibrations of skew bridges subjected to 

strong earthquake shaking. The model was used also to investigate the 

effects of some parroreters on the rigid body motions of a skew bridge. 

The model was successful for these purposes, but the approximations 

which were made did not allow a clear representation of the rigid body 

motions of skew bridges. For this purpose, a more accurate and complex 

model is required. 

In this chapter, a more detailed model for the representation of 

skew bridges is presented and examined. The principles on which the 

model is based are similar to the ones for the model of chapter 2. 

However, in the new model the resistance of the pads is taken into 

consideration along with translational and rotational damping. Also, the 

restoring elements of the bridge are allowed to yield and the model is 

not restricted to the symmetric case. Finally, the new model has three 

degrees of freedom which permits excitation along the Y direction to be 

considered. Lateral excitation is not of major concern if the bridge is 

symmetric or nearly so, but it may be important in other applications of 

the model. 

In the first part of the chapter, the model is presented and 

explained and the equations of motions are derived. In the second part, 
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a particular bridge is modeled to illustrate the use of the procedure. 

The parameters of the model are estimated and several cases of input 

excitation are examined. Earthquake motions of different strengths are 

used to illustrate different features of the model. 

5. 2 lEE ftDDEL 

Since the purpose of the model is to capture the most important 

features of the rigid body motion of a skew bridge, the deck of the 

bridge is represented as a one dimensional rigid bar having the inertial 

and geometric properties of the real bridge deck. The resisting 

mechanisms of the model are the following (see Fig. 5.1). 

a. l1le bridge piers, located~ points L.. ~~distances 1 ~.and 

~ respectively, .fr.Qm the. center Qf ~ Qf the ~ 

Each pier is represented by: 

(i) Two elastic bilinear hysteretic springs oriented along the X 

and Y directions, 

(ii) Two viscous dampers oriented along the X andY direction, 

and 

(iii) One rotational spring resisting the planar rigid body 

rotations of the bridge deck. 

b. l1le_ elastomeric pads, located .at .the tliQ .eMs. Qf ~bridge 

~ (points 3.dl.. 

Similar to the modeling of the bridge piers, each pad is represented by 

translational elastic-linearly plastic springs, viscous dampers and one 

rotational spring. 

c. ~ bridge abutments located .at the ~ .eMs. Qf the ~ 

(points .J.dl 

Each abutment is represented by: 
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FIG. 5.1 RESisri~ MOCHANig.tS OF THE M<DEL 
a. Piers 
b. Elastorneric· Pads 
c. Abutnents 
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(sin {) t cf> cos {) ) 

a. 

I (cos {)-cps in ) 
,... ..., 

f~,YP 

, M ._ 
3p f2 f c 

3x,p 
3x,p 

3 
~ fab,x 

II (sin 0+ cp cos(}) 

b. 

c. 

I (cos{) -<Psin{))l f~ YP ,... ~., ' 

+ t4,yp 

T {)) .__ 
I (sin fJT<P co f k fc &l M4 p 4,xp 4,xp 

FIG. 5.3 FORCES ACTiNG ON THE MODEL 
a. Pier Forces 
b. Pad Forces 
c. Abutment Forces 
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(i) Three .elastic-bilinear hysteretic springs (One of these is 

directed along the X direction and is used to model the resistance of 

the abutment itself and two are directed along the Y direction to model 

the resistance of the wing walls.) and 

(ii) Three gaps, each one corresponding to an abutment spring. 

(Therefore, each spring gets activated when the corresponding gap 

closes, i.e., when impact occurs between the bridge deck and the 

spring). 

The resisting mechanisms of the model are shown in Fig. 5.1. The 

geometry of the model (which is similar to the geometry of the model 

developed in chapter 2) and the forces which act on it, are shown in 

Figs. 5.2 and 5.3, respectively. One can easily see that the model has 

three degrees of freedom: X, Y, and¢· The displacements of all the 

points of the deck are e~ressible as functions of these degrees of 

freedom (see Fig. 5.2). 

5.3 FORCES 

The forces acting on the model and their moments about the center 

of mass of the deck are given by the following expressions. 

5.3.1 Column Forces 

( i) Column .Qt. point ~ 

1. f~,x = klXXl = klXX + klX 11sin8¢ 

Morrent: m~ ,X = (klXX + klX 11 sin 8¢)1 1 (sin 8 + ¢cos 8) = 

klX11sinex + klX1fsin2e¢* 
• • • 

2. ft,x = clXxl = clXx + clX 11 sine¢ 
. • 2 . 2 • 

Morrent: my ,X = clX 11 Sll18X + clX 11 sm 8¢ 

(5 .1) 

(5. 2) 

(5.3) 

(5.4) 

* In the final expressions of the moments the second order terms are 
neglected. 
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3. f~,Y = k1yY1 = k1yY - k1y 11cos8¢ 

Moment: ~,Y = k1y 1coseY - k1ylfcos28¢ 

4• tl,Y = c1YY1 = c1yY - c1Y11cos8¢ 

Mornent: 

(ii) Co1unn at point l 

1. f~,x = k2Xx2 = k2XX - kzx1 2sin8¢ 

Mornent: ~x = kzx 12sin8X - kzx 1 ~sin2 8¢ 
c • • . • 

2. f 2,x = c2Xx2 = c2XX - Czx 12s1n 8¢ 

M t c 1 . 8. 12 . 2 8~ orren : m2 ,X = czx 2sm X - czx 2sm '¥ 

3. f~,Y = k2yY2 = k2YY + k2Y1 2cos8¢ 

Moment: ~,Y = k 2,y1 2cos8Y + k2 ,y1~cos2 8¢ 

Morrent: 

5.3.2 Pad Forces 

(i) Pads at point l 

1. f~ ,px = k~xx + k~x sin 8¢ 

Morrent: ~ ,pX = k~x 1 sin8X + k~x 12
sin

2 
8¢ 

c • . • 
2. f 3 ,pX = C~XX + C~X 1 Sln 8¢ 

Morrent: m~ ,px = c~x 1 sin8X + c~x 12
sin 8¢ 

3. f~ ,pY = k~yY - k~y 1 cos 8¢ 

Mornent: ~,pY = k~y1cos8Y- k~y1 2cos2 8¢ 

4. f~,pY = c~yY - c~y1cos8¢ 
Morrent: m~,pY = c~y1cos8Y- c~y1 2cos2 8¢ 

(ii) Pads at point A 

(5. 5) 

(5.6) 

(5. 7) 

(5.8) 

(5. 9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5 .17) 

(5.18) 

(5.19) 

(5. 20) 

(5. 21) 

(5.22) 

(5. 23) 

(5.24) 

(5. 25) 

(5.26) 
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2. ~,px ~ cixx - cix lsine¢ 

Morrent: rn~ ,pX = cix lsinex - cix 12sin2 e¢ 

3. f~ ,pY = k~yY + k~y lcos 8¢ 

Morrent: ~,pY = k~y lcos8Y + k~y 12cos2 8¢ 

4. ~,pY = c~yY + c~y lcos e¢ 

Morrent: rn~,pY = ciy lcos8Y + c~y 12cos2 e¢ 

5.3.3 Abutment Forces 

( i) Abutment .at .4. 

f 4 _ 4 kX 4 X 4 X 4 1 • ab,X - bx ab,4 - bX kab,4 lsin e¢ - bX kab,4 ax 

where: 

{ 

o if x4 < a~ 

~= 
1 if x4 > a~ 

Morrent: ~._ = h.4kX lsinex - h.4kX 12sin2 8¢ ---ao,X ~x ab,4 ~x ab,4 

h.4 kx a 4 1 sin e - h.4 kx a 4 lcos 8¢ ~x ab,4 X ~x ab,4 X 

2. f~,Y = t4 k~,4 Y + t4 k~,4 lcose¢ - sign4 t4 k~, 4 ay 

where: 

{ 

1 if Y4 > ay or Y4 < 0 and IY4 1 > ay 

t4= 
0 in all other cases 

sign4 = 

Morrent: 

(5. 27) 

(5. 28) 

(5. 29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

sign4 t4 k~b,4 ay 1 cose + sign4 lsin e t4 k~b,4 ay ¢ (5.36) 

(ii) AbUtment~ J. 

1. f~,x = ~ k~, 3 x + ~ k~,3 sin e¢+~ k~,3 a~ 
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where: 

~= ( 
0 in all other cases 

Morrent: rr2~- = h.~ kx 1 sinex + h.~ kx 1 2sin2ecp + --CID ,X ~x ab, 3 ~x ab, 3 

h.~ kx a3 1sine +h.~ kx a3 1cos8¢ ~ ab,3 X ~x ab,3 X 

2. f~,Y = ~ k~, 3 Y - ~ k~, 3 lcos8¢ - sign3 ~ k~, 3 ay 

where: 

in all other cases 

1 if y3 > ay 

sign 3 = { 

-1 if Y3 < 0 and IY3 1 > ay 
3 - 3 y 1 3 y 12 2 Morrent: mab,Y - bY kab, 3 coseY - bY kab, 3 cos ecp -

sign3 ~ k~, 3 ay 1cose + sign3 ~ k~, 3 ay 1sinecp 

5. 4 EQUATIONS QE. roT! ON 

(5. 37) 

(5.38) 

(5. 39) 

(5. 40) 

Writing Newton's second law for each one of the three degrees of 

freedom, one gets: 

L:Fx = rnX 

L:Fy = rrfi 

L:M = r¢' 

(5.41) 

(5.42) 

(5.43) 

where: L: Fx is the sum of all the forces along the X direction; L: Fy is 

the sum of all the forces along the Y direction; and L: M is the sum of 

all the moments aboot the center of mass of the bridge deck. Combining 

the above relations with the expressions for the forces of the model 

(Equations 5.1 through 5.40), the following expressions for the 
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equations of rcoti.on are obtained: 
.. . .. 
X + A1X + A~ + A3Y + A4Y + As¢ + A6¢ + A7 = -XG 

Y + B1Y + B2Y + B3x + B4x + Bs¢ + B6¢ + ~ = -YG 

¢ + c1¢ + C2<P + C3X + c4x + CsY + c6Y + c7 = 0 

(S. 44) 

where XG, YG are the translational components of ground accelerations 

(rotational accelerations are not considered in the analysis). The 

coefficients in the above equations are defined by the following 

relations: 

clX + c2X + c~x + c~ 
Al = -----------------------

m 

k p p 4 X 3 X 
lX + k2X + k3x + kilx + bX kab,4 + bX kab,3 

A2 = ----------------------------------------------
m 

clX 11 sine - c2X 1 2sine + c~ x1 sine - c~ x1 sine 
As = --------------------------------------------------

m 

(klXll- k2Xl 2)sine 
A6= -------------------- + 

m 

p p 4 X 3 X)· (k3X - k~ - bX kab,4 + bX kab,3 1 sme 

m 

~4 kx a4+ ~~ kx a3 
...,X ab,4 X .... X ab,3 X 

A7 = ----------------------------
m 

m 

(S.4S) 

(S.46) 

(S.47) 

(S.48) 

( s .4 9) 

(S. 50) 

(S.Sl) 

(S.S2) 
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' p p 4 y 3 y 
k1y + k2Y + k3y + kZJ:y + by kab,4 + t>y kab,3 

B2 = -------------------------------------------------
m 

(c2Y12- c1y1 1 )cose + (ciy- c~y)1cose 
B5 = ----------------------------------------

m 

(k2Y1 2 - k1y1 1 )cose 
B6 = --------------------- + 

m 

p p 4 y 3 y 1 
(kZJ:y - k3Y + bY kab,4 - bY kab,3) cose 

m 

sign4 t4 k~, 4 ay + sign3 ~ k~,3 ay 
~ = ---------------------------------------

m 

(clX1 f+ c2Xl ~)sin2 e + (clp lf+ c2Yl ~)cos2 e 
cl = ------------------------------------------- + 

I 

(c~x + cix) 12sin2 e + (c~y + ciy) 12cos2 e c 
----------------------------------------- + -~-

I I 

(klX1 f+ k2Xl ~)sin2 e + (k1y1 f + k2y1 ~)cos2 e 
c2 = -------------------------------------------- + 

I 

(k~x + kix)l 2sin2 e + (k~y + kiy)l 2cos2 e 
----------------------------------------- + 

I 

(h..~ kx + h..~ kx ) 1 2sin2e --x ab,4 --x ab,3 
---------------------------- + 

I 

(h..~ kx a4+ h..~ kx a3 )1 cose --x ab,4 X --x ab,3 X 
--------------------------------- + 

I 

(5.53) 

(5. 54) 

(5.55) 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

(5.60) 
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(~4 ky ·+ ~~ ky )1 2cos2e 
-y ab , 4 -y ab , 3 

------------------------------- + 
I 

(sign4 ~ k~, 4 - sign3 bf k~,3 )ay lsine 
-------------------------------------------

I 

(clX 11 - c2X 12) sin + (c~x - c~x) 1 sine 
c3 = -----------------------------------------

I 

(klX1 1 - k2Xl 2)sine 
c4 = --------------------- + 

I 

(k~x - kix - t4 k~, 4 + ~ k~, 3 ) lsine 

I 

(c2Y1 2 - c1y11)cos e + (c~y- c~y) 1cos e 
c5 = ----------------------------------------

I 

(k2Y1 2 - k1yl1)cos e 
c6 = --------------------- + 

I 

I? p 4 y 3 y 1 
(k~y - k3Y + bY kab,4 - bY kab,3) cos e 

I 

(~4 kx a4 + ~~ kx a3 )l sin e -x ab,4 x -x ab,3 X 
c7 = ---------------------------------- + 

I 

(sign4 ~ k~,4 - sign3 bf k~, 3 )ay lcos e 
-------------------------------------------

I 

5.5 EXAMPLE OF REPOONSE 

(5. 60) 
cont. 

(5.61) 

(5. 62) 

(5.63) 

(5. 64) 

(5. 65) 

The model presented in the preceding section is used to investigate 

the rigid body motions of Nichols Road Overcrossing, Bridge #56-725, 

located at Riverside, California. In Fig. 5.4, simplified drawings of 

the bridge deck and its cross section are soown. The bridge has a total 
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19 . 8m 

0 .17m ., L_DD 1. 

DOD~ 
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'~ "0.2m 4m 1.98m 
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C . 

FIG. 5.4 . SIMPLIFIED DRAWIN:;S OF NICIDLS ROAD OVERCROSSING 
a. Top View 
b. Side View 
c. Deck Section 
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length of 91.4m, is skew at an angle of 20°, and has a set of two 

columns located 0.63m left of the center of mass of the deck. Simplified 

drawings of the bridge columns and abutments are shown in Figs. 3.5 and 

4.8, respectively. 

5.5.1 Estimation Qf the Parameters 

The values of the parameters of the model used in this example were 

estimated as follows. 

a. Translational stiffness Qf ~ columns The method for 

estimating the elastic stiffness of the columns was presented in detail 

in chapter 2. In that chapter, the method was applied to the columns of 

the Nichols Road OVercrossing and the results, including the complete 

force-deflection diagrams for bending of each column in the X and Y 

directions, were presented in Fig. 3.8. It should be mentioned that in 

the construction of the force-deflection diagrams of each column it was 

assumed that bending in the X and Y direction was independent. This 

assumption is acceptable for the longitudinal excitation of bridges with 

columns located closely to the center of mass of the bridge since, in 

this case, there is no significant movement of the columns in the Y 

direction. Consequently, the bending of the columns is dominated by 

their movement in the X direction. 

b. Torsional stiffness Qf ~ column In view of the complicated 

cross section of the columns, the exact estimation of the torsional 

stiffness of each column (which is small compared to the torsional 

resistance arising from the bending of the columns during the rotation 

of the deck) would involve the solution of a very difficult elasticity 

problem. So, the torsional stiffness of each column was estimated 

approximately. For this puqpose, the column was first approximated by a 
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column of ·a uniform, rectangular cross section. To do this, first the 

averaje octagonal cross section was fourrl by averaging each dimension of 

the cross section over the column height; then an equivalent cross 

section was estimated based on equivalency of areas and in equivalency 

of the depth to width ratio. The equivalent rectangular cross section 

was fourrl to have dimensions 2a x 2b where a = 0.65m and b = 0.56m. 

The torsional stiffness of each column was then found by applying 

the well-known formulas (Ref. 44) 

KG 
k = ----

L 
(5.66) 

3 16 b b4 
K = ab [---- - 3.36---(1- ------)] 

3 a 12a4 

These two equations describe the torsional stiffness of a beam of length 

L, rectangular cross section 2a x 2b and shear modulus G (see 

Fig. 5.5a). The torsional stiffness of each column was found to be: 

k = 3.525xl0 trn/rad (5. 67) 

c. Torsional stiffness of the ~ of column Consider the system 

of two bridge columns shown in Fig. 5.5b. Suppose that the bridge deck 

rotates rigidly by a small angle ¢. Then, the total restoring moment of 

the system of the two columns is: 

M¢ = 2(k¢ + r 2kx)¢ (5.68) 

Hence, the total torsional stiffness of the system of two columns is: 

(5.69) 

For this particular bridge, the distance r is equal to 3.2m. 

d. Abutment stiffness-~ The method for the estimation of the 

force-deflection diagram for the abutments was presented in detail in 
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Chapter 4. ·In the example presented in that chapter, the abutments of 

the bridge under consideration were used. The nonlinear force-deflection 

diagram (after closure of the gap) is shown in Fig. 4.10. The value of 

the abutment gap for this particular bridge is 0.025m. 

e. Viscous damping coefficients god inertial properties Since the 

columns are located very near the middle of the bridge deck, it was 

assumed that, before impact between the deck and the abutments occurs, 

the vibrations of the bridge in the X, Y and ¢ directions are uncoupled. 

Damping coefficients were determined by estimates of the modal damping 

in the three uncoupled modes and were then used throughout the seismic 

excitation of the model. For most of the numerical examples, values of 

five percent were used for the modal damping (Refs. 15 and 17). The 

formulas used for the estimation of the translational and rotational 

damping coefficients are: 

ex 2sxH 

Cy = 2 ~y~ 
c = 2 ~¢v;.r; 

(5. 70) 

where ~X, ~Y and ~¢ are the damping ratios in the three directions of 

motions, k~, ki, k~ are the values of the total stiffness in the 

direction of motion, and M and I are the mass and the moment of 

inertia of the bridge deck, respectively. Using yc = 2.4 t/m3 for the 

unit weight of reinforced concrete and the basic geometry of the bridge 

(see Fig. 5.4) the mass and the moment of inertia were found to be: 

M = 157.7 
tsec~ 

----, I = 110 ,CXX> -----­
m rad 

Finally, the translational damping coefficients were distributed to the 

columns and the pads according to their relative stiffnesses. The values 
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of the damping coefficients are given in Table 5.1. 

Table 5.1 Translational damping coefficient (tsec/m) 

Direction Colunns Pads 

X 165.1 25.8 per pad 

--
y 136.07 28.8 per pad 

---------
The total rotational damping coefficient was found to be = 

128100 tmsec/rad. 

f. £ad stiffness For the estimation of the pad stiffness, each 

pad was assumed to be under a condition of pure shear (Ref.l9). The 

model of each pad, on which the estimation of its stiffness was based, 

is shown in Fig. 5.6a. From this figure one can see that 

u 
L = Gy = G--­

h 

ab 
from which k = G-­

h 
(5.71) 

where u is the displacement of the pad in a given direction and k is the 

pad stiffness in this direction. The bridge under consideration has 

five elastomeric pads at each end. Each pad measures 0.7lm x 0.36m. The 

shear modulus G was given a representative value of G = 150 psi = 105.4 

t/m. From this value and equation 5.71, the elastic stiffness of each 

pad was found to be equal to 708.9 t/m. So, the total elastic pad 

stiffness in both directions X and Y is: 

~ = 3545 t/m (5. 72) 
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System 
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Each pad was assumed to behave as an elastic-perfectly plastic element. 

The yielding levels were approximated by assuming a friction coefficient 

of 0.3 (values between 0.3 - 0.5 are usually used) (Ref. 19). The dead 

load of the bridge deck exerted on the five pads at each end was found 

to be equal to 472.6t. (To find this the deck was assumed to be a 

continuous two span beam with supports at the end and the middle.) Tb..ts, 

the force-deflection diagram for the pad system at each errl in both the 

X and Y directions is that shown in Fig. 5.6c. When the force exerted by 

the bridge deck on the pads in either the X or Y directions becomes 

greater than 141.8t, the deck is assumed to start sliding on the pcrls. 

5. 5. 2 cases Examined 

The response of the model was examined for several different input 

excitations and for different values of key parameters in order to 

illustrate the features of the model and to obtain a picture of how the 

response is affected by these changes. There were three principal goals 

of this part of the study: 

(i) To examine cases in which the response of the bridge was 

elastic, 

(ii) To show the ability of the model to handle cases in which 

structural elements of the bridge (columns, pcrls, abutments) yield, and 

(iii) Tb explore the corrlitions under which the abutments may show 

significant yielding, under the yielding criterion which were adopted in 

chapter 4 (Section 4.3e). 

In what follows in this section, some representative cases are shown. 

For each case, the input excitation and the structural parameters used 

(if different from the ones estimated in 5.5.1) are described; and the 

response is presented with figures and a brief description. Only a few 
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calculations were performed, and the limited conclusions that can be 

made are included in the general conclusions and remarks presented in 

chapter 6. 

~ ~: The model was excited along the X direction by the ten 

most important secorrls of the record from the Imperial Valley Earthquake 

of October 15, 1979 (Imperial County Services Building, Free-Field Site 

N 02° E). The accelerogram is shown in Fig. 2.5. In the rest of this 

chapter, it is called Excitation 1. The parameters of the bridge are 

those presented in 5.5.1. As it can be seen in Figs. 5.7-5.11, the 

bridge responds completely in the elastic range. The weak rotational 

vibrations which are triggered before the impact between the d~k and 

the abutment are a result of the slight asymmetry of the bridge. The 

columns are located slightly to the left of the center of mass of the 

deck. From Fig. 5.8a, one can see that the first impact between the 

d~k and the abutment takes place at the left end (point 3) at about 4. 7 

s~orrls from the beginning of the excitation. The moment of the reaction 

force of the abutment about the center of mass of the rod irrluces strong 

rotational vibrations, the magnitude of which is substantially stronger 

than the magnitude of the rotational vibrations irrluced by the asymmetry 

of the bridge (see Fig. 5.7b). In Fig. 5.9 the movements of the ends of 

the deck in the Y direction are shown. These movements are a direct 

effect of the rotational vibration of the deck since no excitation in 

theY direction is considered. In Figs. 5.10a and 5.10b, respectively, 

the force-deflection responses of the bridge columns and the elastomeric 

pads at the left end of the bridge are shown; while Figs. 5.lla and 

5.llb show the force-deflection responses of the two abutments. These 

figures reveal that all the structural components of the bridge respond 
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within the elastic range and that the level of the magnitude of the 

abutment reaction forces is very low due to the fact that the contact 

between the deck and the abutments is weak. 

~ 2.: In this second example, the model was excited along the X 

direction by the twenty most important secorrls of the E - W component of 

the Imperial Valley earthquake of May 18, 1940. The accelerogram of 

this motion (Excitation 2) is shown in Fig. 5.12. The response of the 

model is shown in Figs. 5.13-5.17. From Figs. 5.14a and 5.14b, one can 

see that, in this case, the first impact between the deck and the 

abutments occurs at the right abutment about 2.0 seconds after the 

beginning of the excitation. At that point, significant rotational 

vibrations are induced. Although the gaps are closed more often than in 

Case 1, the results shown in Figs. 5.13-5.17 are similar to those of 

Case 1. In particular, the response of the bridge remains elastic. 

~ l: Next, the model was excited along the X direction by the 

accelerogram of Excitation 1 scaled by a factor of 4. Scaling the 

record by this amount produces an extremely strong motion with peak 

accelerations of over 2g. Such intense shaking is not necessarily 

realistic but is required to excite the model into the fully nonlinear 

yielding range of response. The parameters of the model are those 

presented in 5.5.1. The response is shown in Figs. 5.18-5.21. One can 

see that, as expected, the vibrations of the bridge were much stronger 

than in Cases 1 and 2. The bridge columns significantly exceed their 

yield level, while significant sliding at the pads also occurs (see Fig. 

5.21). Actually, yielding of the columns and the pads occurred in the 

cases of Excitation 1 scaled by factors of 2 and 3; but the case of 

scaling by 4 is presented since the yielding was more intense. The 
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abutment force has increased significantly but still remains in the 

elastic range (see Fig. 5.22). 

~ .i: The model was excited along the X direction by the same 

excitation as in Case 3. However, in this case, it was assumed that the 

bridge was not skew (8 = 0) and that the stiffness of the columns was 

equal to half of the stiffness estimated in 5.5.1. The primary reason 

for these assumptions was to create conditions which would favor the 

occurrence of yielding in the soil deposits behind the abutments. By 

reducing the stiffness of the deck by half, its longitudinal vibrations 

under the same earthquake excitation become significantly larger. Also, 

making the initial angle of skewness equal to zero eliminates rotational 

vibrations which tend to reduce the movements in the longitudinal 

direction. Under these conditions, the impacts between the deck and the 

abutments will be much more intense. The response of the bridge in this 

case is shown in Figs. 5.23 and 5.24. The displacements along the X 

direction and the yielding of the columns are larger than in the 

previous cases, and it can be observed that the soil deposit behind the 

right abutment yields slightly. It should be noted that the yielding of 

the soil deposit at the right abutment increases the gap between the 

deck and the abutment. The new gap will be equal to the original gap 

plus the permanent set of the soil deposit. 

~ ~= The only difference between Cases 4 and 5 is that in 

Case 5 the bridge is assumed to be without pads. (It is possible that 

at such a high excitation level the pads will not play a significant 

role.) . The response is shown in Figs. 5.25 and 5.26. One can see that 

both abutments yield, while the displacement in the X direction becomes 

even greater. Yielding of the abutments also occurred at a lower 
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excitation level .(Excitation 1 scaled by 3) when the bridge was assumed 

straight and the pads were not present. 

Finally, to check the capability of the model to handle 

simultaneous excitations along the X and Y directions, cases of 

concurrent earthquake excitations were examined. From the results, it 

was concluded that the computer programs were found to be working 

effectively in this case. However, the response is not presented and 

discussed because excitation along the Y direction induces significant 

displacements of the bridge columns in the Y direction making the 

assumption of indeperrlence between the berrling of the columns about the 

X and Y-axes unrealistic. 
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CHAPTER 6 

SrnMARY AND CO:ocLUSIONS 

This study investigates the effects of the rigid body motions of 

the deck of short-span skew bridges focusing on the mechanism that 

causes in-plane rotational vibrations of the deck during strong 

earthquake motion. A study of the damage to bridges during 

earthquakes, particularly the San Fernando event of February 9, 1971, 

reveals the triggering of rigid body rotations of the bridge deck as a 

result of the interaction between the deck and the abutments. In many 

cases, this kind of behavior caused permanent rotation with attendant 

damage to the bridge columns and abutments. Some examples of bridges 

which experienced this type of damage are described in Chapter 1 

following a brief description of the history of the seismic response of 

higl'May bridges. 

As a first approach to the problem, a simple bridge model is 

proposed in Chapter 2. In this model, the deck is represented as a 

rigid rod skewed at an angle e with res~t to the horizontal direction 

and restricted by linearly elastic columns and abutment springs. The 

abutments are located at a distance a from the ends of the rod, which 

represents the gap usually present for thermal expansion of the deck. 

The basic conclusion of Chapter 2 is that the simple model examined is 

capable of illustrating the basic features of the kinematics of planar 

rigid body rotation of the decks of skew bridges, including the 

interaction between the deck and the abutment, and can, therefore, be 

used as a basis for more detailed modeling of the response of skew 

bridges. The examination of the effects of the parameters on the 

response of the simple model presented in Chapter 2 reveals that a 
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reasonably accurate estimation of the abutment and the column 

stiffnesses will be important for a more realistic, and necessarily more 

corrpl ica ted, rrodel. 

Chapter 3 presents methods for the estimation of the elastic 

stiffness of a bridge column with a parabolic flare including the 

effects of translational and rotational compliance of the base. This 

type of column is frequently used in the design of bridges. Although 

such accuracy is not required for the principal purposes of the present 

study, an exact method (according to the Euler-Bernoulli beam theory) is 

presented for the determination of the column stiffness. This result 

could be useful in other problems in which a more accurate estimation of 

the stiffness of this type of column is necessary. Additionally, an 

approximate method for the estimation of the stiffness is presented; it 

can be used with columns of any type of geometry. The chapter con:ludes 

with an example in which the stiffnesses of the columns of the Nichols 

Road OVercrossing (Bridge No. 56-725 near Riverside, California) in the 

two directions of bending is estimated by both methods. Also, the 

complete force-deflection diagram is constructed for each direction. 

In Chapter 4, a method for the estimation of the force-deflection 

relation of the abutments is presented. The abutments are represented 

as rigid blocks bearing against linearly elastic, Winkler-type soil 

springs with moduli varying linearly with depth. For the examination of 

the yielding of the soil, a global yielding criterion based on the 

Rankine Theory of active thrust and passive resistance is adopted. The 

problem is also solved for the case of discrete foundation springs; 

this approach is more general in the sense that it can handle arbitrary 

variations of the effective modulus of the soil. Finally, at the end of 
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the chapter, an example is solved in which the abutments of the Nichols 

Road OVercrossing are examined. 

In Chapter 5, a more detailed model for the rigid body motions of 

the deck of skew bridges is proposed. This model has three degrees of 

freedom (displacements in the X andY directions, rigid body in-plane 

rotation, and other resisting mechanisms are taken into account) in 

addition to the translational resistance of the columns and abutments. 

These mechanisms include the rotational resistance of columns, the 

effects of the elastomeric pads, and viscous damping. Furthermore, the 

model is capable of approximating the nonlinear yielding behavior of the 

columns, pads, and abutments. It stnlld be noted that the model itself 

and the computer program which solves the three second order coupled 

differential equations of motion are presented in a general form so that 

they can accormodate any fonn of the force-deflection relationship of the 

columns, pads, and abutments. To achieve this, the resisting force of 

each of the above mechanisms in the direction of a displacement r is 

represented by the general formula: 

F(r) = k(r)r 

where k(r) is the generalized stiffness. In this particular study, 

simple bilinear hysteretic or elasto-plastic force-deflection relations 

are enployed for the colwms, pads, and abutments. 

At the end of Chapter 5, an example of response is given in which 

the values of the model parameters are assigned based on the properties 

of the Nichols Road Overcrossing. Different input excitations and 

different values of key parameters are examined in order to show the 

capabilities of the model and gain insight into the response of this 

particular bridge. From the response of the model in these cases, 
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presented in section 5.5.2, one can draw the following conclusions and 

general remarks. 

a. As expected, the planar rigid body rotations of the deck are 

induced primarily as a result of the skewness of the deck and the impact 

between the deck and the abutrrent. Thus, after the closure of either of 

the gaps bet~en the ends of the deck and the abutirents, impact forces 

are created; the rrorrent of these forces about the center of rrass of the 

deck induces rotational vibrations and couples the equations of motion. 

Minor rotational vibrations can also be induced by the non-symmetric 

position of the columns with respect to the center of mass of the deck. 

b. The irrpact between the deck and the abutments is dominated by 

the excitations and resfX)nse in the X direction. The rrodel, though, can 

handle the general case in which each abutment is represented by gaps 

and springs in two directions (see Fig. 5.l.c) so that the impact 

between the deck and the wing walls resulting from the rootion of the 

ends in the Y direction could also be investigated. However, it is 

believed that this type of interaction between the deck and the wing 

walls will not be very important for the rotational motion of the bridge 

deck for two reasons. 

(i) The gap in the Y direction is usually large and so it is less 

likely to close. 

(ii) Even if it does close, the reaction of the wing wall appears, 

from in-field observations, to be small compared to rotational forces in 

the X direction. So, although the inpact can result in wing wall danage 

(see below), ·it will not contribute significantly to restraining the 

deck rootion. 

c. Due to the rotation of the deck, significant displacerrents of 
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its errls iri the Y direction occur, which explains some of the darrage to 

skew bridges after the San Fernando earthquake (displacement of 

superstructures at the abutments in the transverse direction, falling of 

superstructure from elastorneric pads, and darraged wing walls). These 

displacements are, of course, rragnified by excitation in the transverse 

direction, which indicates that mechanisms resisting the rrovement of the 

deck in the transverse direction are necessary. 

d. All the structural corrponents of the bridge examined seem to 

behave in the elastic range in cases 1 and 2 (see section 5.5. 2). 

However, under the intense ground motions of case 3, the columns and the 

pads show significant yielding caused primarily by the longitudinal 

rrotion. It should also be mentioned that, although in this study the 

torsional resistance of the columns was assumed to be elastic, extensive 

rotation of the deck could cause significant shear failures to the 

columns. This problem needs further investigation. 

e. The contribution of the abutments to the response of the deck 

seems to be very important for the following reasons. 

(i) It is the ircpact between the deck and the abutments that 

causes the rotation of the deck. 

(ii) The approximate method of the estimation of the abutment 

stiffness presented in Chapter 4 reveals that the abutments contribute 

significantly to resisting the longitudinal motions of the bridge. For 

the example studied, the comparatively stiff soil prcrluced estirrated 

abutment stiffness twice that of the individual columns. So, one can 

easily see that the abutment restraint is predominant for the 

longitudinal vibrations of the deck especially in the case of stiff 

soils. This point deserves special attention because a more detailed 
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investigation could lead to an appropriate lowering of the seismic 

design loading for small bridges where structural restraint is dominated 

by the abutments. 

As items of further research on this topic, it is recommended that 

the contribution of the abutment mass, which is neglected in this 

investigation, be considered along with more detailed examination of the 

resistance of abutments. Specifically, it is suggested that research be 

undertaken to determine accurate force-deflection and energy dissipation 

characteristics under cyclic loading for various representative abutment 

types. An understanding of this complicated problem will contribute 

significantly to the general understanding of the seismic response of 

bridges. 

It is also suggested that further investigation be made to model 

more accurately the impact between the bridge deck and the abutments. 

In this thesis, it was assumed that the contact is concentrated at one 

point (the middle of the bridge deck); however, this approximation 

might not be sufficient for a detailed modeling of skew bridges since, 

in actuality, the point of contact between the deck and the abutment is 

changing, which indicates that the width of the deck might be a factor 

for its in-plane rotational vibration. 

f. Yielding of the abutments, as examined in this study, is based 

on a global yielding criterion and only occurred when the deck pushed 

sufficiently hard against the abutment. In the example, yielding of the 

abutments required not only a very strong excitation in the X direction 

but also simultaneous reduction of the values of the column or pad 

stiffness. Only then, did the deck move enough to push the abutment to 

the yielding point (see cases 4 and 5 in section 5.5.2). 
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Therefore, -under realistic assumptions about the strength of 

shaking and the strength of the various elements, it is not expected 

that the abutment soils will yield for this type of bridge. It should 

also be noted that the yielding criterion used prevents this model from 

explaining the local yielding (cracks at the soil) which is commonly 

observed after earthquakes. It is believed that modeling this 

phenomenon would require a more detailed model of the soil-abutment 

system. 

Finally, based on the conclusions and remarks of this 

investigation, a detailed instrumentation of small skew bridges is 

suggested in order to acquire the experimental data required for a more 

detailed investigation of the rigid body rotational vibrations which are 

induced by the impact of the deck with the abutments. Bridges with 

simple geometry, like the one examined in Chapter 5, are particularly 

recommended for an appropriate instrumentation. For this particular 

bridge, such an instrumentation should include the installation of at 

least three pairs of accelerometers: one at the middle of the bridge 

and one at each end. This location of accelerometers could provide 

recordings of the motions of the bridge deck at the middle and the two 

errls along the two directions, X and Y. Based on these recordings, the 

rotation of the bridge deck would be confirmed and investigated 

experirrentally. 
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APPENDIX A 

ESI'IMATION OF ULTIMATE lEND!~ M<JtiENl'S 

1. ESTIMATION 0C niE ULTIMATE BENOiro MJMENrS IN THE Y-DIREX:TION 

The balanced condition (Ref. 46 ) is examined first. The forces 

taken by the reinforcement bars in this condition are shown in Table 

A.l. The total force taken by the reinforcement steel is equal to: Cs 

= 402.0lt. The force taken by the concrete is Cc = 1339.3t. Adding, 

the ultimate capacity of the cross section in the balanced condition is 

1741.35. This is bigger than the compressive force which acts on the 

cross section (Pc = 965t). Therefore, the capacity of the cross section 

is controlled by the tension in the reinforcement steel. By using the 

trial and error method, the width of the compression zone, which 

corresponds to a total compressive force clos to Pc = 965t, is found to 

be xb= 0.59lm. In fact, the above value of Xb corresponds to an 

ultimate capacity in compression of Pu = Cs + Cc = -51.33 + 1010.18 = 

959.46 = 965t. The forces taken by the reinforcement bars when Xb = 

0.591 are shown in Table A.2 while the value of the compressive force 

taken by the concrete, along with its point of application, are shown in 

Fig. A.la. For this distribution of forces, the ultimate moment 

capacity can be found: 

Mu,l = 1315 trn. 

(The subscript 1 denotes the bottom cross section.) 

~ Cross Section 

Examination of the balanced corrlition smws again that the capacity 

of the cross section is controlled by tension in the reinforcement 

steel. Following the same procedure used in the case of the bottom 

cross section, one finds that a value of Xb = 0.922 gives an ultimate 
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capacity in compression of Pu = Cs + Cc = -784.762 + 1730.92 = 946t 

which is close to the compressive force of 965t. Table A.3 and Fig. 

A.lb show the forces taken by the reinforcement bars and the con:rete, 

respectively, when Xb = 0.922. The ultimate moment capacity in this 

case is found to be: 

Mu ,2 = 3029.30 trn. 

2. ENALQAT!ON 0C THE ULTIMATE BENDiu; roMEN.r IN~ X-DIROCTION 

Bottom Cross Section 

Due to the symmetry of the bottom cross section, its ultimate 

moment capacity for bending about the X-direction will be the same as 

theY-direction, i.e., 

M 1 = 1315 trn. ·u, 

Top Cross Section 

Choosing Xb = 0.43 gives and ultimate capacity in compression of Pu 

= Cs + Cc = -623.85 + 1586.63 = 962.78 ::. 965t. Table A.4 and Fig. A.lc 

show the forces of the reinforcement bars and the concrete, 

respectively. The ultirrate norrent capacity in this case is: 

~,2 = 1699 trn. 
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Bottom re iforcement 

a . Bottom cross-section, bending about Y axis 
Ec=0.003 

I , 
0 .85 fc 

1.98m 

b. Top cross-sect ion, bending about X axis 
Ec=0.003 

Cc=l730.92t 

Cc= 1586.63 t 

I 

0 .954m 0 .85fc 

c. Top cross section, bending about X axis 

FIG. A. 1 ~GNITUDE AND POSITION OF CONCRErE FORCES 
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----------------------
TABLE A.1: SI'RESSES OF REINFORCEMENr PARS IN BMM\CED CONDITION 
-------- -------
Position of bar Area Stress Force 

(Distance from the 
(rn2) 

Deformation 
t/rn2 top of the cross (t) 

section 
------------- --------- --------- ----

0.0508 2,013x1o-3 2. 79x1o-3 35153.5 70.764 

0.1438 4,026x1o-3 2.7x1o-3 35153.5 141.53 

0.2368 4,026x1o-3 2.043x1o-3 35153.5 141.53 

0.3298 4,026x1o-3 1,667x1o-3 33340 134.22 

0.4228 4,026x1o-3 1,291x1o-3 258~ 103.95 

0.5158 4,026x1o-3 o.91x1o-3 182JO 73.27 

0.6088 4,026x1o-3 o.54x1o-3 10~ 43.48 

0.7018 4,026x1o-3 o.1644x1o-3 3288 13.23 

0.7948 4,026x1o-3 -o.21x1o-3 -4A)() -16.90 

0.8878 4,026x1o-3 -o.587x1o-3 11740 -47.26 

0.9808 4,026x1o-3 -o.96x1o-3 19XXJ -77.3 

1.0738 4,026x1o-3 -1.338x1o-3 26760 -107.73 

1.1668 2.013x1o-3 -1.714x1o-3 35153.5 -70.764 

------------------ ----------- ------------ ----------- -------

'IOTAL FORCE 402.01t 
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---------------------- ------------------
TABLE A.2: BENDING AIDur Y-AXIS--HJI'I'(lt1 CROSS SOCTION 

STRESSES OF THE REINFORCEMENI' BARS WHEN Xb = 0.591rn 
------ ------- ----

Position of bar Area Stress Force 
j (Distance from the 

(rn2) 
Deforrration 

t/rn2 
I 

top of the cross (t) 
i 

section 
~------------- ----------- ----- --------
I 
I 

0.0508 2,013x1o-3 2.74x1o-3 35153.5 70.764 

0.1438 4,026x1o-3 2,27x1o-3 35153.5 141.53 

0.2368 4,026x1o-3 1.79x1o-3 35153.5 141.53 

0.3298 4,026x1o-3 1.325x1o-3 26517.76 107.61 

0.4228 4,026x1o-3 0.85x1o-3 17076.14 69.3 

0.5158 4,026x1o-3 o.38x1o-3 7634.51 30.98 

0.6088 4,026x1o-3 -o.09x1o-3 -1807.1 -7.33 

0.7018 4,026x1o-3 -o. 502x10-3 -11248.73 -45.647 

0.7948 4,026x1o-3 -1.034x1o-3 -~6~.35 -83.96 

0.8878 4,026x1o-3 -1.5x1o-3 -30131.97 -122.275 

0.9808 4,026x1o-3 -1. 97x1o-3 -35153.5 -141.53 

1.0738 4,026x1o-3 -2.45x1o-3 -35153.5 -141.53 

1.1668 2.013x1o-3 -1.714x1o-3 -35153.5 -70.765 

------------------ --------- --------------- ---------- --------
'IDTAL FORCE -51.33 
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TABLE A.3: BENDING AIDur Y-AXIS-~P CROSS SOCTION 

srRESSES OF REINFOOCEMENr BARS WHEN Xb = 0.922 
-

Position of bar Area Stress Force 
(Distance from the 

(m2) 
Defornation 

t/m2 top of the cross (t) 
section 

--------- ------
0.0508 0.001019 2.836x1o-3 35153.5 35.82 

0.2522 0.001019 2.18x1o-3 35153.5 35.82 

0.4536 0.001019 1.53x1o-3 30735.48 31.3194 

0.655 0.00302 o.887x1o-3 17741.93 53.58 

0. 748 0.004058 o.587x1o-3 11741.93 47.64 

0.841 0.004058 o.287x1o-3 5741.93 23.30 

0.934 0.004058 -o.o129x1o-3 -258.064 -1.047 

1.027 0.004058 -o.313x1o-3 -6258.064 -25.4 

1.1248 0.004058 -o.613x1o-3 12258.064 -49.74 

1.2178 0.004058 -o.~x1o-3 18064.51 -73.3058 

1.306 0.004058 -1.213x1o-3 24258.064 -98.44 

1.399 0.004058 -1.513x1o-3 30258.064 -122.78 

1.4928 0.004058 -1.81x1o-3 35153.5 -142.65 

1.585 0.004058 -2.113x1o-3 35153.5 -142.65 

1.678 0.004058 -2.41x1o-3 35153.5 -142.65 

1.777 0.00302 -2.73x1o-3 35153.5 -106.12 

1.9744 0.001019 -3.37x1o-3 35153.5 -35.82 

2.1758 0.001019 -4.018x1o-3 35153.5 -35.82 

2.3772 0.001019 -4.67x1o-3 35153.5 -35.82 

------------ -------- -------- - ----
'!UrAL FORCE -784.761 
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------
TABLE A.4: BENDING AIDur X-AXIS---'IDP CROSS SECI'ION 

srRESSES OF REINFORCEMENr BARS WHEN Xb = 0.43 
-------- ------- ------ ----
Position of bar Area Stress Force 

(Distance from the 
(m2) 

Defornation 
t/m2 top of the cross (t) 

section 
--------- ----- ----

0.0508 0.00303224 2.64x1o-3 35153.5 106.59 

0.144 0.004058 1.99x1o-3 35153.5 142.653 

0.2372 0.004058 1.345x1o-3 26902.32 109.17 

0.3304 0.004058 o.7x1o-3 13897.67 56.4 

0.4236 0.004058 0.0446x1o-3 893.023 3.623 

0.5168 0.004058 -o.60x1o-3 12111.62 -49.149 

0.61 0.004058 -1.255x1o-3 25116.28 -101.92 

0.7032 0.004058 -1.~x1o-3 35153.5 -142.~ 

0.7964 0.004058 -2.5x1o-3 35153.5 -142.65 

0.8896 0.004058 -3.2x1o-3 35153.5 -142.65 

0.9828 0.004058 -3.8x1o-3 35153.5 -142.65 

1.076 0.004058 -4.5x1o-3 35153.5 -142.65 

1.1692 0.00303224 -5.15x1o-3 35153.5 -106.59 

0.1903 0.001019 1.67x1o-3 33446.51 34.093 

0.3298 0.001019 o.7x1o-3 13981.4 14.25 

0.5158 0.001019 -o.6x1o-3 11972.09 -12.2 

0.7018 0.001019 -1.89x1o-3 35153.5 -35.83 

0.8878 0.001019 -3.19x1o-3 35153.5 -35.83 

1.0273 0.001019 -4.16x1o-3 35153.5 -35.83 

----------- ------ ------- ----
'IDI'AL FORCE -623.85 
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APPENDIX B 

EVALUATION OF FOt.JNJ:lATION SPRING CONsrAN!'S AND SOIL PROPERTIES 

1. EVALUATION 0C FOUNDATION SPRlNJ CONSTANI'S 

The values of the foundation springs can be estimated by the 

formulas shown in Table B.l (Ref. 41). These formulas are applicable to 

rectangular foundations, and values of the coefficients appearing in 

these formulas are given in Fig. B.l (Ref. 41). 

2. miL PROPERTIES 

The properties of stiff soil, which were used in the example of 

Chapter 4, are shown in Table B.2 (personal communication with Professor 

R.F. Scott and Ref. 42). 

SPRING CONsrAN!'S FOR RIGID RECI'ANGUIAR BASE RESI'ING 
ON ELASTIC HALF-SPACE 

Motion 

Vertical 

Horizontal 

Rocking 

Spring Constant 

G 
kz = ----- Bz(BL)l/2 

1 - w 

G 
k = ----- BrhBL2 

cp 1 - w '¥ 
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Fig. B.l · SPRI~ CON8rANI' COEFFICIENrS FOR ROCTANGJIAR 
FOUNDATIONS (Ref. 42) 

TABLE B. 2 PROPERriES OF sriFF SOIL 

Poisson Ratio ( v ) 0.45 

Shear Wave Velocity (Vs) 15CX) f/sec = 457 m/sec 

Unit Weight (ys) 125 p/f3 = 2 t/m3 

Friction Angle (¢) 400 

Cohesion (c) 0 - l(X)() p/f2 = 0 - 4.88 t/m2 

40 t/f3 = 1412 t/m3 I1w (Ref. 43, pg. 259) 
Subgrade 
Constants 

ko (Ref. 43, pg. 251) 3.8 t/f3 = 135 t/m3 

-----------------------------------
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3. E.VALUATION or: lW mRSroNAL m SPRiro Nr .nm OOTrrJtt 

~ !HE ABU'IMENI'S 

The torsional soil spring at the bottom of the abutments, kcp, can 

be approximately evaluated as follows. Let c be the total width of the 

abutment base. Suppose that the base rotates as shown in Fig. B.2. 

Then, the total rronent about point A will be: 

where 

M = Jc p(X)XdX 

0 

p(X) = kX 

(B.l) 

(B. 2) 

The value of k is assumed to be equal to the value of the horizontal 

subgrade reaction coefficient of the bottom of the abutment. Thus, 

or 

z I 
k = kw + rlw---1 

l ll=Z 

Combining (B.l), (B.2), and (B.3) yields 

(B. 3) 

(B.4) 



From (B.4), one gets: 

c3 
k = (kw + Ilw) ---

3 

A 

c 

FIG. B. 2 EVALUl\TION OF THE 'IDRSIONAL SOIL SPRI~ 
AT THE BJ.r.rClt1 OF THE ABUIMENI'S 


