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ABSTRACT

This thesis investigates the rigid body motions of skew bridges,
concentrating on the in-plane translational and rotational displacements
of the bridge deck induced by impact between the deck and the abutments.
Experience in the San Fernando Earthquake of February 9, 1971
demonstrates that this feature is particularly important for skew
bridges.

A simple model, in which the bridge deck is represented by a rigid
rod restricted by column and abutment springs is examined first. This
model illustrates the mechanism by which in-plane rotational vibrations
is triggered after the closure of the gap between the bridge deck and
the abutment. It also shows that the force-deflection relations of the
columns and the abutments are particularly important features for the
response of the bridge. Methods for the exact and approximate estimation
of the elastic stiffness of elastically founded, tapered bridge columns
with octagonal cross section are presented next. The methods are applied
to a bridge used later as an example. In addition, the yielding of the
columns is examined and the force-deflection relations for bending about
two orthogonal axes are estimated.

The abutments are treated as rigid bodies and the soil embankments
as Winkler Foundations with elastic spring constants increasing
with depth. For the examination of the yielding of soil the Rankine
theory is used. Based on these assumptions an approximate force-
deflection relation for the abutments is constructed.

The response of a more complicated bridge model applied to a bridge
near Riverside, California is examined at the end of the thesis and

examples of the results are given. This model, in which the bridge deck
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is still represented as a rigid rod, has three in-plane degrees of
freedom: two orthogonal displacements and a rotation, and is capable of
capturing many of the more important features of the nonlinear, yielding

response of skew bridges during strong earthquake shaking.
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CHAPTER 1

INTRODUCTION

1.1 PBACKGROUND ON THE SEISMIC RESPONSE OF HIGHWAY BRIDGES

The 1971 San Fernando Earthquake revealed the vulnerability of
highway bridges to earthquake loadings and, thus, presented a major
turning point in the development of research on the seismic response’of
freeway structures. Actually, prior to the San Fernando Earthquake, very
little damage was observed worldwide to reinforced concrete bridges as a
direct result of earthquake shaking. According to Imbsen, Nutt and
Penzien (Ref. 2) the damage to bridges prior to the San Fernando
Earthquake had been caused by:

(i) Tilting, settlement and overturning of substructures,
(ii) Displacement of supports and anchor bolt breakage, and

(iii) Settlement of approach fills and wingwall damage.
More specifically, in California from 1933 until 1971, eleven separate
earthquakes ranging in magnitude from 5.4 to 7.7 on the Richter scale
affected approximately 1,000 bridges. However, none of these bridges was
close to the area of intense shaking and the total amount of damage was
about $100,000. In the case of the San Fernando Earthquake, many bridges
were located within the zone of the intense shaking and the resulting
damage was approximately $6,500,000 for this earthquake alone (Ref. 3).

As a result of the San Fernando Earthquake, there has been an
increased public awarness of the seriousness of the earthquake hazard to
highway bridges. A reflection of this concern was the recognition of the
need for extensive research in order to provide engineers with
information about designing highway bridges that are more earthquake

resistant. Thus, immediately following the San Fernando Earthquake,
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research efforts were initiated to develop new seismic design criteria
taking into account the vibrational properties of the bridge elements
and the soil (Ref. 4). The result of these efforts was the formation of
the basis for a new national seismic bridge design code (Ref. 4). In
addition, publication of many research results provided explanations for
the observed behavior of individual bridges during earthquakes
(especially the San Fernando Earthquake) or predicted the seismic
response of particular bridges (Refs. 2 and 8).

These research efforts paved the way for significant advances
during the last decade in the design and construction of seismic
resistant bridges. However, in view of the complexity of the problem,
significant gaps still remain in the understanding of the vibrational
response of highway structures; and numerous aspects of the problem
remain still unexplored. The solution of these problems requires the
continuation of both analytical and experimental research.

1.2 STATEMENT OF THE PROBLEM

One of the observations from damage to freeway structures caused by
the San Fernando earthquake was that seweral moderate span bridges with
relatively large skew angles showed a tendency to rotate in a horizontal
plane in a direction that increased their skewness (Refs. 5, 6, and 7).
The same behavior was later observed during the recent Coalinga
Earthquake of May 1983. In the San Fernando Earthquake this
susceptibility of skewed bridges to rotational displacements caused, in
some cases, severe damage to columns and abutments. The damage to
bridges was relatively minor during the Coalinga Earthquake.

It has been concluded (Ref. 5) that this rotation was a direct

result of the interaction between the structure and the approach fill,
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and it was'suggested that research on this phenomenon was required. This
is the subject of this thesis which has as its purpose the investigation
of the in-plane rotational vibrations of short span skew highway
bridges, including the effects of interaction with the abutments.
1.3 EXAMPLES QOF SKEW BRIDGES WHICH SHOWED ROTATION OF THEIR DECKS

DURING RECENT EARTHOUAKES

Some of the bridges that were highly susceptible to in-plane,
rotational displacements and which suffered extensive damage during the
San Fernando Earthquake include the following.

a. The San Fernando Road Overhead (Refs. 5 and 6) The two San
Fernando Road Overhead bridges, part of the Golden State-Foothill
Freeway interchange, are seven-span skew structures that carry the
Golden State Freeway over the San Femando Road and the Southern Pacific
Railroad. The central spans over the railroad were constructed of both
steel and precast prestressed concrete girders. The other spans are of
reinforced concrete box construction. The structure suffered collapse of
the simply-supported steel girder spans. It seems probable that the
steel girders fell from their steel bearings and then, with the onset of
large horizontal deformation, the girder span rotated in a horizontal
plane by the pounding at skew joints until some of the girders slipped
free from the piers. In Fig. l.1a one can see the permanent set of the
bridge in the directon of increasing skewness.

b. Northbound Truck Route Undercrossing (Refs. 5 and 6) This
bridge, which is also part of the Golden State-Foothill Freeway
interchange is a three-span continuous concrete box bridge approximately
225 feet long. It has large angles of skewness at each abutment. The

bridge rotated in a horizontal plane about the western end resulting in



FIG. 1.1 LAMAGE TO HIGHWAY BRIDGES DUE TO ROTATION
OF THEIR DECKS DURING THE SAN FERNANDO
EARTHQUAKE
a. San Fernando Road Overhead
b. Foothill Blvd. Undercrossing
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r'IG. 1.2 DAMAGE TO HIGHWAY BRIDGES DUE TO ROTATION
OF THEIR DECKS DURING THE SAN FERNANDO
EAXTIOUAKE
lorthbound Truck Route Undercrossing



FIG. 1.3 DAVAGE TO HIGHWAY BRIDGE DUE TO ROTATION
OF ITS DECK DURING THE 1983 COALINGA
EAR)JARE
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a large permanent displacement of the superstructure at the eastern
abutment and severe bending failures at the tops of the columns in the
eastern pier. Pictures of the damage to this bridge are shown in Fig.
1.2,

C. Foothill Boulevard Undercrossing (Refs. 5 and 6) This
structure, which is part of the Foothill Freeway Bridges, is a pair of
four-span continuous reinforced concrete box girder skewed bridges. The
bridge rotated in the horizontal plane, and a permanent offset of about
four inches in the direction of increasing skewness was observed at the
abutments. The damage to the columns of this bridge is shown in
Fig. 1l.1b. It appeared that the bridge rotated at about the third
column, which did not suffer extensive damage.

Damage of a similar nature, but much less intense, occurred during
the 1983 Coalinga, California earthquake. Fig 1.3 shows the rotation of
the skew bridge where Interstate 5 crosses the railroad near Coalinga
(The bridge is marked 5.FRE 8&). The bridge experienced a rotational
deflection of about one inch, which was accompanied by minor spalling of
the reinforced concrete railing wall.

1.4 ORGANIZATION OF THE THESIS

This thesis has been divided into six chapters. Chapter 1 is a
general introduction with a brief history of the research on the seismic
response of bridges and a statement of the problem to be studied in the
thesis. Chapter 2 presents the examination of a simple model for the
rigid body motions of skew bridges. The relatively stiff bridge deck is
modeled as a rigid body. The identification of the important parameters
and their effects on the response of the model are the principal

features of this chapter. Two of the most important elements in the
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nonlinear response of skew bridges are believed to be the bridge columns
and the abutments. Chapters 3 and 4 present methods for the estimation
of the yielding force-deflection relations for the bridge columns and
abutments, respectively. Examples of the applications of the methods are
included in both chapters. Chapter 5 introduces a more detailed model in
the dynamics of skew bridges. The model includes the nonlinear effect of
the abutments, expansion gaps, yielding of the columns, and elastometic
pads. This chapter also presents some examples of the earthquake
response of a mathematical model based on the Nichols Road Overcrossing
(Bridge #56-725 near Riverside, California). Chapter 6 includes a
summary of the thesis and some conclusions based on the research.
Mathematical notations have been defined where they first appear,
while some formulas and details of the solutions of some examples appear

in the appendices.
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CHAPTER 2

A SIMPLE MODEL FOR THE RIGID BODY ROTATIONS OF SKEW BRIDGES

2.1 INTRODUCTION

The purpose of this chapter is to develop and analyze a simple
model which captures the basic features of the complicated rigid body
motions of a skew bridge.

In the first part of the chapter, the possible distortions of a
bridge deck are described. Then a simple model of a skew bridge is
proposed and the simplified assumptions on which the model is based are
discussed. Following next is the derivation of the equations of motion
of the model along with the identification and discussion of the
important parameters. Finally, the kinematic mechanism of the model is
described, the effects of several parameters on the dynamic response of
the model are examined, and some conclusions are drawn concerning more

detailed modeling of skew bridges.

2.2 MOTIONS AND DISTORTIONS OF A BRIDGE DECK

Basically, there are six principal types of motion of a bridge deck
relative to the ground of concern here; these are shown in Fig. 2.1 and
include:

a. Rigid body 1longitudinal translation during which the deck
translates longitudinally as a rigid body,

b. Rigid body lateral translation where the deck translates
laterally as a rigid body,

c. Rigid body rotation about a vertical axis during which the deck

rotates in its own plane,
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FIG. 2.1 POSSIBLE TYPES OF DISTORTION OF A BRIDGE DECK
REILATIVE TO THE GROUND
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d. Vertical flexure during which the deck bends in a vertical
plane,

e. Lateral flexure in which the deck bends in its plane, and

f. Torsional distortion during which the deck is twisted about an

axis parallel to the centerline of the roadway.

2.3 THE MODEL

The most basic assumption on which the model is based is the
rigidity of the bridge deck. Thus, the deck is represented as a one-
dimensional rigid bar having the mass and length of the real deck.
Consequently, the model is capable of capturing only rigid body motions
a, band c. Motions d, e and £ will be neglected.

For simplicity, the model is assumed to be undamped; and the only
lateral resisting mechanisms taken into account are the bridge piers and
the abutments.

Each set of piers is idealized by two linearly elastic springs.
One spring is directed in the longitudinal direction and resists
distortions of type a and one spring is directed in the lateral
direction and resists distortions of type b. The two springs are
assumed to have equal stiffness, k, which can be estimated from the
properties of the piers.

It is also assumed that there are two sets of piers symmetrically
located with respect to the center of mass of the deck. Thus, the
resulting model is symmetric with respect to both the ‘longitudinal axis,
X, and the lateral axis, Y. The inclusion of only two sets of piers in
the model restricts it to the case of moderate span bridges. The

rotational resistance of the model comes from the moments of the pier
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FIG. 2.2 SIMPLIFIED MODEL OF A SKEW BRIDGE
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springs generated by rotation about the center of mass of the deck. No
other form of rotational resistance is included.

Each abutment is represented by a gap in the longitudinal
direction, which, in practice, is used to allow thermal expansion of the
bridge deck and a linearly elastic spring of stiffness kap also oriented
in the longitudinal direction. The values of the length of the gap and
the stiffness of the spring are the same for both abutments, so symmetry
is preserved. The contact between the deck and the abutments is assumed
to be frictionless. Finally, the bridge is assumed to be skew at angle
8 with respect to the longitudinal direction. The model is illustrated
in Fig. 2.2.

Summarizing the above assumptions, we can see that, basically, the
model is a rigid bar supported by springs with a gap at each end where
springs modeling the abutment are located. The model has considerable
symmetry, but the skewness of the deck with respect to the abutments
means that longitudinal motion large enough to close the abutment gaps

will induce rotation.

2.4 EXCITATION - GEOMETRY AND FORCES OF THE MODEL

To simplify the equations of motion, we assume that the only
excitation is ground motion directed along the longitudinal X-axis.
This assumption, combined with the symmetry of the model, leads to
motion of the center of mass only along the X-axis. All the other
points of the deck can move in the Y direction only as a result of
rotation in the X, Y plane if such rotation occurs. Therefore, the model
has two degrees of freedom: longitudinal translation and rotation in

the X, Y plane.
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The geometry needed for the model includes expressions for the
displacements of points 1, 2, 3, and 4 of the deck as functions of X and
¢. These expressions are presented in detail in Fig. 2.3. The
equations were derived based on the assumption of small displacements
and small angles of rotation (sin¢ = ¢, cos¢= 1). The displacements
of every point are measured with respect to the initial position of the
point with positive displacements occurring in the positive direction of
the corresponding coordinate axis.

The forces which are exerted on the deck during its motion come
from the piers, the abutment, and the inertia of the deck itself. The
forces of the piers and the abutments are calculated as the reactions of
linearly elastic springs. It should be pointed out that abutment forces
at points 3 and 4 of the deck occur only when the left or right gaps,
respectively, are closed. To account for this, coefficients by and by
are introduced into the equations. These coefficients take the values of
1 or O depending on the closure of the gaps. The forces which act on

the deck are given in detail in Fig. 2.4.

2.5 EQUATIONS QOF MOTION
The equations of motion are derived using Newton's second law
written about the center of gravity.
LFy =m¥X (2.1)
IM = I} (2.2)
From (2.1) and the expression of the forces provided in Fig. 2.4, one
gets:
“fx,1 £x ,2 ~fap,4 ~fap,3 g =mk  or
—k(x + 1; sin6¢) —k(x = 1y sin6¢) —b4kab(x - 1sin 6¢ = a)

b3k (x + Isinge + a) - mxg = mK (2.3)
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From equation (2.3), one can find the first equation of motion.

2k + (b3 + b4)kab b3 = b4
X + X F =——————— kab ]sin@@
m m
by - b
3 4
4 ———— kab a:-XG (2.4)
m

Similarly, equation (2.2) gives:

—fy,1115in(8 + ¢) + £y,1 11008(6 + ¢) + £4 > 13sin(8 + ¢)

fy'2 1lcos(e + ¢) + fab,4 1sin(6 + ¢) - fab,3 1sin(8 + ¢) = I¢
or
—k (x + 1ysin6¢) 1y(sine + ¢pcoss)k1ycos6¢ly (coss - ¢sine) +
HKix - ]lsin6q>)1 1(sin® + ¢cosB)—k1ycosbp(cosd - ¢sind) +
ok (x - 1sing¢- a)l (sin6 + ¢cosf) -
b3k (x +1sin6g + a)1(sing + ¢pcos @) = I¢ (2.5)

From (2.5), after carrying out the algebra and neglecting the second

order terms, one finds the second equation of motion:

1
o + [2k12s5in26 + k12(bg + by)sinZet(by + by)k ] cossa +
22 !
2k17cos“8lo + ———(b3 - bylky, 1sinéX +
I
1
+ -—'(b4 + b3)kaba]sme =0 (2.6)
I
k
Let w)% = —— (2.7)
m

(Note that the small amplitude frequency of the rod is
P

2k
£, ’—’N;— =V5'uk)
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Let y be the nondimensional ratio of the abutment stiffness k,, to the

pier stiffness k:
kab = YK (2.8)
Note also that the mass moment of inertia, I, of the node modeling the
deck is given by:
m12

I =-——- {(2.9)
3

The combination of (2.4), (2.6), (2.7), (2.8), (2.9) gives:

X + [2+ (b + by)y] X + (bg - by)y sinewZy +
(b - by)yaw? = Xg (2.10)
1 a

y 1. .
6+ 16 -5 sin®o + 3y(by + by)sinZs + 3y(bg + by) e
'f
+6 =3 cos?6]wdy + 3(b3 - by)y - w2X

a

+ 3(by + by)y —— sing? = (2.11)
1

where by and b, are defined in Fig. 2.4. In order to find the response
of the model to a given ground input acceleration iG' the system of
nonlinear coupled differential equation (2.10), (2.11) has to be solved.

For this purpose, a computer program was written using the method of

Runge-Kutta Gill for solving the equation.

2.6 PARAMETERS OF IMPORTANCE

The most important parameters involved in the model are:

a. The Angle of Skewness Since the primary purpose is to

investigate the response of skew bridges, it is clearly important to
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understand how variations in 6 affect the response of the model. In
application, the values of § are usually between 10° and 60°.

b. The Abutment Stiffness ]ggb As mentioned in the introduction of
the thesis, the behavior of skew bridges during strong earthquake
shaking is believed to be strongly controlled by the interaction between
the bridge deck and the approach fill. The abutment stiffness models
the reaction of the soil upon the bridge deck after the gap closes.
Consequently, it will be very important to understand its influence on
the response of the model.

There is no generally accepted method for calculating the value of
the abutment stiffness. However, the geometry of most bridges indicates
that the abutment stiffness is higher than the stiffness of an
individual bridge column. Thus, the factor y which relates kab to the
pier stiffness is taken to be greater than one (values of y =1, y = 2,
v =5,v = 10 will be examined).

c. The Abutment Gap a This is the other parameter of the model
which is related to the degree of interaction between the deck and the
soil. Larger gaps imply less contact between the deck and the abutment
springs. Consequently, the degree of interaction between the bridge
deck and the soil will decrease with an increase in the gap. The gap at |
the abutment is intended to allow thermal expansion of the bridge deck.
When the gap exists, its size is typically 1 to 2 inches.

d. The Location of the Columns The distance 1; defines the position of
the columns with respect to the center of the deck (see Fig. 2.2). It
will be useful to examine cases in which the columns are located near
the center of mass of the deck and cases in which the columns are close

to the ends of the deck. In actuality, there are bridges with columns
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located véry close to the center of the bridge deck (17 approaches
zero). However, in the model under consideration, the only rotational
resistance of the deck results from the resisting moments of the pier
springs with respect to its center of mass. Therefore, it would be
unrealistic to examine values of 1; too close to zero as the deck would
have almost zero torsional resistance.

e. The Small Amplitude Longitudinal Frequency Several tests on bridges
have indicated that the small amplitude, longitudinal frequency of small
span bridges is within the range of 2 to 5H, (Ref. 36). Since, in this
model, structural elements of the bridge other than the piers are
neglected, it is reasonable to consider a small value for the frequency.
Thus, a representative value of 2H, was chosen. (This value corresponds
to wy = 8.89 rad/sec).

f. The Input Excitation It is expected that the character of the

excitation will affect the response of the model so that no general
conclusions about earthquake response can be drawn unless the response
to many ground motions is examined. However, since the purpose of this
chapter is essentially to illustrate the nature of the problem, in the
following paragraphs only the response of the model to one particular
excitation will be analyzed. The excitation consists of the 10 most
important seconds of the Imperial Valley earthquake of October 15, 1979

(Imperial County Services Building Free-Field Site N 02 E).

2.7 EXAMPLE OF RESPONSE

Assume that the following values are assigned to the parameters of

the model.

1 =40m, 1; = 12m, 6 = 40°%, a = 0.025m, Y = 2, w, = 8.89 rad/sec
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At the beginning of the response to the ground motion, the model
behaves like a simple degree of freedom oscillator excited along the X-
direction. The gaps at both ends of the rod remain open and no
rotational vibrations are triggered since the moments of all the
restoring forces which act on the deck cancel. So, since ¢ = 0, the
displacements of the center of mass and of points 3 and 4 are identical.

The first impact between the deck and the abutment springs takes
place at the left end (point 3) at about 4.2 seconds from the beginning
of the excitation (see Fig. 2.6b). Since the moment of the reaction
force of the left abutment spring is not counterbalanced by the moment
of any other force, rotational vibrations are induced and the deck
starts rotating in a positive direction (see Fig. 2.7a), which is in
agreement with the direction of the moment from the left abutment. The
impact between the deck and the left abutment spring ends when the
displacement X3 becomes larger than -0.025m. But, soon after that, the
right gap closes; and an impact between the deck and the right abutment
springs occurs, which lasts until the displacement X, becomes smaller
than 0.025m (Fig. 2.6b). In this way, several impacts between the deck
and either the left or the right abutment occur. In the example, all
the impacts occur when the displacements X3 or X, exceed the
corresponding dotted lines (see Fig. 2.6b and Fig. 2.7a). Between two
consecutive impacts, no abutment force is acting on the rod since both
gaps are opened.

The consequences of the rotational vibrations induced by the
impacts are:

(i) Coupling between the longitudinal translation X and the

rotation ¢ occurs; and, as a result, the displacements X3 and X, start
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differing from each other and from the displacement X of the center of
mass. In fact, a positive rotation of the deck will result in
additional positive and negative displacements of the points 3 and 4,
respectively. This can be seen in Fig. 2.6b and Fig. 2.7a and can be
explained by the relation between X3, X, 9 and Xpr X¢ 0 shown in
Fig. 2.3.

(ii) The ends of the deck move in the Y-direction after the first
closure of the gap. However, due to the symmetry of the model, the
center of mass of the rod does not move in the Y-direction even after

rotational vibrations are triggered.
2.8 EFFECTS OF THE VARIATION OF THE PARAMETERS

2.8.1 Rod With Restoring Springs Close to the Center of Mass

Assume that the total length of the bridge deck is 80m (I = 40m)
and that the columns are located at a distance 17 = 8m from the center
of mass of the deck. This results in a ratio 11/1 = 0.2, which is
thought to be a representative value for the case of columns located
close to the center of mass of the deck.
2.8.1.1. Effects of the Angle of Skewness

To investigate the effects of the variation of the angle of
skewness, the other parameters are fixed: y = 2, a = 0.025m,
Wy = 8.89 rad/sec. The range of skewness is taken to be between ¢ =0
and 6 = 60; and the response of the model to values of 8 =0, 59,
10°, 20°, 40°, and 60° is investigated.

In Figs. 2.9 - 2.11, the rotational responses of the model to the
1979 E1 Centro excitation for several values of the initial angle of

skewness are shown. From these figures, the following conclusions can
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be drawn:

a. The response is more sensitive to initial changes in the angle
of skewness (from O to 10°) than to later ones (from 40° to 60°). This
can also be seen in Fig. 2.12.

b. The overall appearance of the response depends upon the
frequency of the impacts between the deck and the abutment springs and
upon the rotational frequency of the deck. One can observe that the
deck rotates primarily in the positive direction. Particularly for o =
59 and 10°, no negative rotation occurs. This happens because the deck
hits the abutment springs before its rotation becomes negative.

c. The maximum rotational response has a tendency to increase with
an increase in the angle of skewness.

d. As shown in Fig. 2.13, the response of the center of mass is
not substantially affected by variations of the angle of skewness.
2.8.1.2. Effects of the Abutment Stiffness

To investigate the effects of the abutment stiffness, the response
of the model for various values of the parameter Y has to be examined.
The values of Y considered are: Y =1, Y =2,Y =5, Y =10. The

values of w, and a remain fixed at 8.89 rad/sec and 0.025m,

X
respectively; while, for purposes of further investigation of the
effects of the angle of skewness on the coupling between the X and
¢ motions, two values of 6 will be examined: 6 = 10° and 8 = 40°.

Thus, the cases under consideration are:

Case 1 Case 2
6 = 10° 6 = 40°
wy =889 Yy =1,2,510 w, = 8.89 Yy =1,2,5,10

a = 0.025 a = 0.025
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Figs. 2.14 - 2.17 show the responses of the model in case 1, while
Figs. 2.18 - 2.21 show the responses of the model in case 2. From these
figures, as well as from Fig. 2.22 and 2.23, one can see that:

a. The maximum displacement along the X-axis of the center of mass
of the rod decreases with an increase in v;

b. The maximum rotation of the rod increases with v;

c. The obviously different owerall appearance of the responses in
the two cases reveals once more the effect of the initial angle of
skewness on the coupling between the translational and rotational
motions.
2.8.1.3 Effects of the Abutment Gap

For the investigation of the effects of the gap on the response of
the model, the values of ©, v, and w, will remain fixed at 40°, 5 and
8.89 rad/sec, respectively. As was mentioned earlier, the typical range
of actual gaps is 0-2" (0-5cm). But, for purposes of better
understanding of the role of the gap, values outside of that range will
also be examined.

In Fig. 2.24, the response of the deck when the gap is open (i.e.
the deck never hits the abutment springs) is shown. In this case, the
deck behaves like a single degree of freedom oscillator excited in the
X—direction; there is no rotational motion. The maximum displacement
of the rod in the X-direction when the gap is open is slightly over
0.09m. So, if the gap is 0.09m, the deck lightly hits the abutment
springs; and the induced rotational vibrations are not strong
(Fig. 2.27b). In Figs. 2.25 - 2.30, one can see the rotational response
of the deck for several values of the gap. From these figures, as well

as from Figs. 2.31 and 2.32, the following conclusions can be drawn:
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a. The duration of the rotational motions increases as the gap
decreases because of earlier impact between the deck and the abutment
springs;

b. The maximum rotation decreases as the gap width, a, increases;

c. The maximum displacement in the X-direction of the center of
mass of the bridge increases as a increases. This was expected since
the bigger the gap, the smaller the reaction force of the abutment
spring.

2.8.2. Deck with Widely-Spaced Colums

Ih the preceding paragraphs, the effects of variations of the
initial angle of skewness, the abutment stiffness, and the gap were
examined for a case in which the columns were located relatively close
to the center of mass of the deck. Because the purpose of the chapter
is primarily to illustrate the general nature of the response of the
skew bridges, it was decided not to repeat the same calculations for the
case in which the columns were located relatively far away from the
center of mass.

It will be useful, however, to examine the effects of the location
of the restoring springs of the columns on the response of the model.
To do this, the values of 11/1 =1 (restoring springs at the ends of
the deck) and 11/1 = 0.6 (intermediate position of the restoring
springs) are examined with values of a, vy and w, fixed at 0.025, 5, and
8.89, respectively. The responses of the model for the two values of
the ratio 1;/1 are shown in Figs. 2.33 - 2.36. Comparing results for
these values of 11/1 with those for the initially examined value of
11/1 = 0.2, one can draw the following conclusions about the effects

of the location of the restoring springs.
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a. As expected, the period of the rotational vibrations of the
deck increases as the restoring springs approach the center of mass. On
the other hand, if 17/1 =1, the rotational response exhibits relatively
high frequencies. In a real bridge, these frequencies could cause
substantial flexural deformations (which are neglected in the present
analysis) in the plane of rotation.

b. The maximum rotation of the deck decreases as the restoring
springs approach the ends of the deck. Again, this change is
anticipated because of the increased rotational resistance.

c. Changes in 13/1 result in changes of the dynamic
characteristics of the system as reflected in changes in the degree of

coupling between the X-¢ motions and in the appearance of the responses.

2.9 GENERAL CONCLUSIONS AND REMARKS

In the preceding paragraphs, some special conclusions were drawn
concerning the kinematic mechanisms of the model and its response to an
accelerogram from the 1979 Imperial Valley earthquake. In this section,
some general conclusions concerning the behavior of the model are
presented.

a. The model which was examined in this chapter is capable of
illustrating the kinematics of planar, rigid body rotation of the decks
of skew bridges including the interaction between the deck and the
abutment. Therefore, it can be used as a basis for more detailed
modeling of the earthquake response of skew bridges.

b. The model, in the form in which it was developed in this
chapter, cannot capture the details of the rigid body response of skew

bridges since many simplifications were made (perfect symmetry was
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assumed; all the springs were considered linearly elastic; the
rotational resistance of the columns was ignored; and any pads were
completely neglected). Therefore, the results which were found are only
qualitative.

c. In spite of the simplifications that have been made, the model
exhibited a complicated behavior, particularly because of the coupling
between the X and ¢ motions which occur after impact between the deck
and the abutment springs.

d. Most of the parameters of the model seem to be easily
identifiable from the geometric and material properties of the bridge.
A notable exception is the abutment stiffness. In this case, there is
no standard method for determining the required force-deflection
behavior. Under these circumstances, it is important to know how
sensitive the results are to estimates of the abutment stiffness. Table
2.1 was made based on the results of section 8.1.2 in order to compare
the change in Y with the corresponding changes in the maximum rotation
and the maximum translation of the center of mass. From this table, one
can see that , in most cases, the percentage of change of the parameters
of response X and ¢ is substantially less than the corresponding
percentages of change of Y . Thus, taking into consideration the other
simplifications of the model, one can conclude that a reasonable,
simplified method will be accurate enough for the estimation of the

abutment stiffness.



60

TABLE 2.1
Comparison of changes of relative abutment stiffness, Yo with the

changes of maximum rotation, ¢r and maximum translation, X.

Change of ¥
Change Change of Change of
9 From To of v Maximum Maximum
(%) Rotation, ¢ Translation, X
(%) (%)
10 1 2 100 3.8 14
10 1 5 400 138 14
10 1 10 800 137 25
10 : 5 150 72 0]
10 2 10 400 71 13
10 5 10 100 0] 13
40 1 2 100 80 0
40 1 5 400 79 3.5
40 1 10 900 140 24
40 2 5 150 0] 3.5
40 2 10 400 38 24
40 5 10 100 37 22
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CHAPTER 3

ELASTIC STIFFNESS OF BRIDGE COLUMNS WITH PARABOLIC FIARES

3.1 INTRODUCTION

As was shown in Chapter 2, one of the most important parameters of
the simple bridge model is the elastic column stiffness, defined as the
force required to deflect the top of the column by a unit displacement.
In that chapter, the analysis was elastic; and, therefore, the elastic
stiffness of the bridge columns alone was sufficient. However, for a
more complicated model in which the yielding of the columns will play an
important role, a complete force-deflection relation for the columns
will be required including both elastic and postelastic stiffnesses. It
is believed to be important for the subsequent analysis to have
characterizations of the force-deflection relations in both directions
of bending.

In order to represent the nonlinear force-deflection relation in a
given direction, the following parameters are needed.

a. The initial elastic stiffness For the estimation of the
initial column stiffness three things are important:

(i) The types of deformations which are taken into account,

(ii) The conditions at the two ends of the columns (boundary
corditions), and

(iii) The geometry of the bridge columns.
In the case of a typical bridge column, the length to depth ratio is
large; and, therefore, the bending deformations are large compared to
those caused by shear. Consequently, the shearing deformations can be
neglected; and the columns can be modeled as beam-columns using

Bernoulli-Euler beam theory. As far as the boundary conditions of the
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column beams are concerned, it is reasonable to assume that the column
is built into the bridge deck at the upper end and has rotational and
translational springs at the bottom which account for the effects of the
soil. If the foundation conditions are such that these springs can be
considered to be infinitely large, then the resulting model of the
bridge column is a bending beam built in at both ends. Finally, the
geometry depends on the particular column. Columns with uniform cross
sections simplify the solution of the problem; whereas, columns with
variable cross sections make it more difficult.

b. The yielding levels The ultimate capacity of a concrete column
at a given point depends primarily on the cross sectional properties
(geometric and reinforcement) of the column at that point and can be
estimated by standard methods (Ref. 47).

c. The postelastic stiffness This is the stiffness of the column
after its first yielding at the bottom or top cross section. It can be
evaluated from the same beam model by properly readjusting the boundary
conditions.

The purpose of this chapter is to provide a method for calculating
the required force—deflection diagrams of a bridge column. The analysis
focuses on the case of columns with parabolic flares at their tops since
the bridge which will be used as an illustrative model (Nichols Road
Overcrossing - Riverside County, California) has this type of columns.
Although a reasonably accurate method would be enough for the purposes
of modeling followed in this research, it was found during the analysis
of the problem that an exact solution for the initial elastic stiffness
of the parabolically flared columns could be provided. Thus, the

presentation of this chapter was expanded in order to include this
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solution. The solution is presented in the second part of the chapter
following an introduction in which the basic points of Bernouilli-Euler
bending beam theory are presented. In the third part of the chapter, an
alternate solution of the same problem is provided. This solution is
approximate, but it is more general in the sense that it can treat
columns with any type of flare. This solution is based on the represen-
tation of the flare by a sequence of beams of uniform cross section.
Finally, the application of the two methods to the case of the columns
of the Nichols Road Overcrossing is presented. Also, in the last part
of the chapter, the yielding of the columns in the two directions is
examined.
3.2 EQUATIONS AND BOUNDARY CONDITIONS FOR A BERNQULLI-EULER BEAM

Consider the beam shown in Fig. 3.1. The governing equations for

the static case are:

32 A% (z) ]
————(EI (Z2)————=—- ) =0 (3.1a)
az? az?
A% (z)
M(Z) = EI(Z)-——=—o (3.1b) (3.1)
az?
am(z)
Q(Z) = = =———— (3.1c)
az

where:

E is the modulus of elasticity of the material of the beam;

I(Z) is the moment of inertia of the cross section of the beam
which, for the general case, is a function of Z;

W(Z), M(Z), and Q(Z) are the displacement, bending moment, and
shear force, respectively.

In the case of a beam of uniform cross section (I(Z) = constant), the
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above equations reduce to:

a4w(z)
e =0 (3.2a)
az4

3% (z)

M(Z) = EI-—>— (3.2b) ((3.2)
az
aM ()

Q(z) = - - (3.20) j
az

In addition to the governing differential equations, the specification
of boundary conditions is required. For the case of a bridge column,
the most common boundary conditions are shown in Table 3.1.

3.3 STIFFNESS OF A BRIDGE QOLUMN WITH OCTAGONAL CROSS SECTION AND

PARABOLIC FLARE AT THE TOP AND FOUNDATION SPRINGS AT THE BOTTOM
3.3.1 Equations of a Tapered Columm with Foundation Springs

Consider the tapered bridge column shown in Fig. 3.2. The column
is fixed at the top; at the bottom, it has torsional foundation springs
kZX ang k%Y resisting rotation in the Z-X and Z-Y planes, respectively,
and translational foundation springs kﬁ and k},‘; resisting displacements
in the X and Y directions, respectively.

This column can be considered as consisting of two beams. Beam 1
with length hy has a uniform cross section and, consequently, a constant
moment of inertia while beam 2 with length h) has a variable cross
section; consequently, its moment of inertia is a function of the
position of the cross section. The system of the two beams along with
the coordinate systems used in the analysis is shown in Fig. 3.2.

Assume that a unit displacement X: = 1 along the X-axis is imposed

at the top of the column. Then the equations of each of the two beams
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TABLE 3.1 COMMON BOUNDARY CONDITIONS FOR BRIDGE COLUMNS

Type of Sketch of Boundary Conditions
Boundary Boundary

[W(Z)]end = O (displacement = 0)

Fixed
end
W' (2)lgpg = O (slope = O)
Pinned a% (z)
Bottom [BI{2) ~~—r———] =k, [W'(2)]
end with y a2 M T end
horizontal h
and
torsional Ky d d2w (Z)
springs [“"(EI(Z)"_'E"')]end = -kh[W(Z)]end
dz daz
[W(Z)]end = 0 (displacement = 0)
Pinned
end dZW(Z)
[EI(Z)"-"E““]end = 0 (moment = 0O)
dz
are the following:
Beam 1 (see formulas 3.2)
iy (z)
B =0 (3.3)
dzy

The solution of (3.3) has the general form:

- aY Y Y2 Y3

By using (3.4), (3.2b) and (3.2c) one gets:

*For an arbitrary X, # 1,the expressions for the displacement, shearing
forces, and bending moments should be multiplied by Xg.
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Wy (21)

12

——=——=— = BY + 2c¥z; + 3p¥z? (3.5)
dz,

MY (z7) = Erf (¢t + 6p¥z)) (3.6)

of (z) = -6ETiD{ (3.7)

In the above equations, the superscript "Y" denotes bending about the Y-
axis.

Beam 2 (see formulas 3.1)

2

a a%i, (2-)

— (1} (25)—2=52—) = 0 (3.8)
de ‘ de

Equation (3.8) can be solved by using the method of variation of

parameters (Ref. 45). The solution has the final form:

Y Y
oy v Z2 A2 B2Z2
W2(22) = D2 + szz + ( + )dZ2

E ¥ (2,) 1% (%)
1 7-A% BYz2
- ——f( Y2A2 + Y2 2 -)az, (3.9)
E 12 (2,) 13 (2,)

By combining (3.9), (3.1b) and (3.1lc), one gets:

Y Y
AW~ (Z+) 1 A BLZ
AL 242
________ = v — [ Z_ . —=—=-)az, (3.10)
de E I2(Z2) I2(Zz)
M5 (z,) = A + Bz, (3.11)
Q%(ZZ) - _% (3.12)

From equation (3.12) and the definition of the stiffness of the
column, it is obvious that the unknown stiffness is the coefficient —B%.
Boundary conditions (see Table 3.1)

awy (z7) |

I
Beam 1: (i) EIY-——z—— | = - kW, (z7) | (3.13)
dzy IZ]_=O IZ]_=O
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From (3.13) and (3.4) to (3.7), one gets:

6EIIDY = -k¥A; (3.14)
awy (z7) | aw, (27) |
(1) EIf--—tz— | kBl (3.15)
S PR dzy g0
1 1
Using (3.15) and (3.4) to (3.7) yields:
2E1¥CY = kZXp¥ (3.16)
Beam 2: (i) Wy(hy) =1 (3.17)
Combining (3.17) and (3.9) gives:
- hy LY BYZ,
D + Clh, + -———.Jr( Z + - )dz,] -
E I2(Zz) I2(Z2) Zz=h2
Y y ()
1 ZoA% B3%5
-— [j( 7 t - )dz,] =1 (3.18)
E 12(22) I2(Z2) Z2=h2
dw, (25) |
2142
(ii) ———=————- l =0 (3.19)
dz l
2
Zo=hj
From (3.19) and (3.10):
Y Y
1 A B2
2 242
c3 + —- [f( = b )dz,] =0 (3.20)
E Iz(Zz) Iz(Zz) Z2=h2
Conditions of continuity at the connection of the beams

At the connection between Beam 1 and Beam 2,

continuity conditions must be satisfied:
(i) Continuity of displacements:

| |
Wy (Z3) : = Wy(23) I

Applying (3.4), (3.9) and (3.21) produces:

the following

(3.21)
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¥ A4 L Y2 Y3 _
Al + Blhl + Clhl + Dlhl =
2

1 Z,A% Bz
Dj - — [U[} Y2A2 + Y2 2 )dz,] (3.22)
E I5(25) 15(2Z5) Z5=0

(ii) Continuity of slopes:

aw, (Z¢) | aw, (Z5) |
1771 . 48 (3.23)

Using (3.5) and (3.10), (3.23) becomes:
Y )4 Y2 _
By + 2C{h; + 3D7hy =

Y Y

1 A B57Z

Yt o [ [ (et 4 22 yaz) (3.24)

2 = = 2
E I2(Z2) I2(Zz) Z2=O

(iii) Continuity of moments:

l I
M{(zl): = M%(zz): (3.25)

Combining (3.25) with (3.6) and (3.11) gives:

T (2c¥ + ép{h)) = A% (3.26)
(iv) Continuity of shears:

Q{(zl): = Q%(Zg)i (3.27)
Using (3.7) and (3.12), (3.27) reduces to

I = Y
6EIID = BY (3.28)

Equations (3.14), (3.16), (3.18), (3.20), (3.22), (3.24), (3.26) and
(3.28) form a system of eight equations in the eight unknowns Ai{, o
Df and A%, ssip D%. After making the necessary algebraic manipulations
and the substitutions defined by equation (3.29) below, the system takes

the final form (3.30) (see page 72).



1
—————— a2
2
1% (25)
z
2
————=—- 3z
13(2,)
2tez
23
——————— — dz
2
1% (25)

|

2
23
————2-—- dzy)
I5(2Z5)

Zz=h2

Z9=0

71

(3.29a)

(3.29b)

(3.29¢)

(3.29)
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o |

0 6EID 0 0
2611 © 0 0
. Y Y 1 Y Y
0 0 — (LY, -1¥lh) —mL3h -1¥h)
21ln, ~I2lh, = (ntafh = Iglh
Loy Loy
0 0o -—= L3l — p 4
1 2
E b, E b,
1 1
2 3 Y Y
hy by —— Lo —13lo
2 Loy Loy
2h 3h - — LY ~ e TR
1 1 . Mlo . 2lo
Y Y

0 -1} 0 1
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It is obvious that, in order to solve the system (3.30), the
indefinite integrals L{, L%, and L% have to be evaluated.

Following a similar procedure, one finds that the problem is
reduced again to the evaluation of the integrals E%, L§, and L§, which
are defined by the relations (3.31) and the solution of the system

(3.32) (Note that the superscript X denotes bending about the X-axis).

1 3
X = | ~——-—dz, (3.3la)
. f 13 (27)
43
I =f———--——dz2 (3.31b) b (3.31)
13(z,)
23
X =f —————-dz, (3.31c)
Ié(Zz)

3.3.2 General Expressions for the Geometric Properties of the
Parabolic Flare of the Column with Octagonal Cross Section
Consider the parabolic flare of the bridge column of total length

hy as shown in Fig. 3.3. From this figure, it is clear that the

dimension which varies parabolically as a function of the position of

the cross section is rj. Thus:

4k

ry (3.33)

where k is the constant in the equation of the parabolic flare, which
can be determined from the value of r; at the top of the cross section
(rE):

(3.34)
4r%

k
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Also, the following geometric relations can be easily derived from Fig.
3.3:
72

2
r=c+ 2r1 =Cc + 2 ——— (3.35)
4k

Moment of inertia for bending about the Y-axis:

72
2 3
(c + 2=——— + 2a)°b
¢ 4k
I5(Z25) = -
2442 12
a4 a2 a c Z% 5
A= & === [=m 4 ——— 4 ===} (3.36)
36 2 3 2 4k

Moment of inertia for bending about the X-axis:

b3(c + 2-——>- + 2a)
. 4k
3(2,) = -
2(23 1o
a4 a2 a b - 2a 2
R )] (3.37)
36 2 3 2

After carrying out all the necessary algebra, the general expressions

for the moments of inertia reduce to:

]
Q
]
[a5]
o)

13(z,) & + o¥z8 + o¥z2 + of (3.38a)

15(z5) = £23 + (3.380)



b (c + 2a)b a2
where: u% = ———==; u% = ~
96k3 16k 2 gk 2
(c + 2a)2b a2 a e
af = ———————— - = (— + —) , (3.38¢)
8k k 3 2
(c + 2a)3b a4 . c . b (3.38)
oy = - - 284 (— + ——)
12 9 3 2 j
b3 ]
X
A = ————
. 24k
(3.38d)
cb3 ab3 a4 a b - 2a
O(‘)é = + - -~ 2a2 (___ + __________)2 J
12 6 9 3 2 /
3.3.3 Evaluation of the ln;gggalg.LiL AQEL gnd.Lé_ig.Lhe.gggg of a

Parabolic Flare with Octagonal Cross Section
Combining the relations (3.29a) to (3.29c) with (3.38a), the

integrals to be evaluated can be expressed by the following general

relations:
.
1
Y
¥ = az, (3.3%)
1 f ung + .JL%Z% + a%Z% + uz
Z3
LY =f =iy (3.3%) (3.39)
ofz§ + adzd + o325 + of

72
¥ = E 4z (3.39¢c)
3 Y Y, 2 2 .

To evaluate the integrals, the roots of the denominator must be

-

examined.

Consider the equation:
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OLY OCY OLY
Y, .6 24,3 .2 4
I2(Z2) = O‘]_(Zz + ¥ Z2 + v Zz E "‘?—) =0 (3.40)
o) 6 a
1 1 1
By making the substitution Z% = S in (3.40) and noting that oc% ~0, one
gets:
Y Y Y
3 OL2 2 OL3 OL4
P(S) = S° + S4 + S + =0 (3.41)
oY of oY

The analytic expressions of the roots of (3.41) are given by the

following relations (Ref. 47):

Roots
u%
Sl =A+B - —-——— (3.42a)
Y
399
ivgﬂ u%
Sg = - 1/2 (A + B) + ——— (A - B) - ———- (3.42b) (3.42)
2 3@%
. Y
l{ QL2
S3 =-1/2 (A + B) = ———— (A -B) = ——— (3.42c)
Y
2 30Ll
where:

- - (3.43)
1 o a0 o
k= [2fyd = g 32 b B
R SR I
Y b4
1 . a3 ) 9
o s et = = ey
3 o1 oq

From relations (3.42) and (3.43), it follows that there are three cases
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for the roots of (3.41):

2 2
Case (i) S >0, (3.41) has one real root and two
4 27
conjugate complex roots.
)\2 3
Case (ii) ——— i o o, (3.41) has three real roots; two, at
4 27
least, equal.
)\2 3
Case (iii) -——+ Lo <o ’ (3.41) has three real, unequal roots.
4 27

It is important to note that, in all three cases, the real root(s)
of (3.41) have to be negative, because, 1if S; is a positive real root
of (3.41), then Zz ; = S; > O will be a positive real root of (3.40);
this, however, has no physical meaning since the moment of inertia must

be positive.

Case (i)
o3
et S; =A + B - S be the real root of (3.41).
3
1

Since 5 < O, one can write:

oY
sl=A+B—-—3——=—t%
S
where: (3.44)

R

o
— 2 —
ty=\/A+B-—2|= \/lsll
307

Then, the moment of inertia I%(Zz) can be written as a product of a
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quatric and a quadratic polynomial in the following way:
14(25) = o¥ (23 + t2) 1z} + k23 + W) (3.45)
The coefficients L, K, and M can be evaluated easily by equating the

coefficients of the same order terms in equations (3.38a) and (3.45):

L=1
) Y Y
K = —;§— (OL2 + Otlsl) (3'46)
1
M=- @X__
- Y
5101

Consider now the polynomial R(Zj;) = Zg + K222 + M, which, by the

transformation Z% = S, can be written as: R(S) = 82 + KS + M. Let A =
K2 - 4M be the discriminant of R(S). Since Case (i) is being examined,
the polynomial R(S) has two complex conjugate roots; and, therefore,

A < O. The two roots of R(S) are given by the relations

82=OL+ 16
S = a-1iR
3 (3.47)
K -4
g S =, B
2 2

Using polar coordinates, the roots can be expressed as follows:

= ISyl = Is3] =\fo? + 82

0=
$ =g = = 03 -1 < ¢ <m (principal argument)

a B Q B8
Cos ¢y = ral sin ¢o = I cos ¢3 = I sin ¢35 = - Y (3.48)
Sy = p(cosdy + 1 sin¢2) = p(cosp + 1 sing)
S3 = p(cosgz + i singz) = p(cosp = i sing)

By using the polar representation of S; and S3, one can find the four
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roots of R(Z,) from applicaton of the relation for the n-" root of a
complex number.
W, = r(cosf + i sin®)
where (3.49)
8+ 2k 6+ 2k
W,=\y r (cos==———-—-— + i sin-—————-)(k =0,1,...,n-1)
n n
This gives:
<
¢ P
V/ = [cos—== + i sin——-
o+ 2T b+ 2T
Z% =85)=>4{23,2 = v;[cos—-;—-—— +1i sin—-—;————] =
¢ ¢
L - v; [cos——- + i sin——-]
2 2
» (3.50)
¢ ¢
-
Z = \lo [cos—=- - 1 sin——-]
4e3 T 2 2
-¢ + 27T -o+ 2
Z% = Sy~ ) Zy 4 = VO—[cos-—-—--z-———— + i sm———;————] =
¢ ¢
=¥p [cos— = 1 sin—1]
| 2 2

-

With this result, the polynomial R(Z5) can be written as the product of

four first order polynomials as follows:
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R(Zp) = (Zp = Z3,1) (2 = 23 3) (23 = Zp 2) (23 = Zp 4) oOr

¢ ¢
R(Z,) = (25 - '\/;(cos—--— + i sin——-)]
2 2

o) o) o) o)
[Zo -'\/J—‘(cos——- - i sin=-—)] [22 +\/>_1(cos——— + i sin-—)]
2 2 2 2

¢ o]
(25 P (cos—- - i sin-—)] (3.51)

2 2
After carrying out the algebra in (3.51), one can express the polynomial
R(Z;) as a product of two irreducible quadratic polynomials with real

coefficients:

¢ ¢
R(Z9) = (Z% = 222\/0_‘005—5— + 0 (Z% + 222\/;'cos-£— + 0) (3.52)

Combining equations (3.45) and (3.52), the moment of inertia can be
factored into three irreducible quadratic factors with real

coefficients:

¢
13(2,) = of (23 + t2) (25 - ZZéV&?cos—E- + 0)

¢
(23 + 222Vé?cos—£- + 0 (3.53)
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Consider now the fraction:

1
F(Zy) = —— =
I3 (23)

1
= (3.54)

¢ ¢
oS (23 + td) (23 - 222‘\/p>-‘cos——— +0) (23 + 2z2\/;cos——— + o)
2 2

The above fraction can be broken into partial fractions as follows

(Ref. 48):
1 X122 + X2 X3Z2 + X4
F(Zz) = ( o +
0
o 73 +t2 73 - 2zzvé1cos--— T
2
(3.55)
X5Z2 + X6 )
2 o)
z5 + 2Z2\/;cos—-- + 0
2

By combining (3.54) and (3.55) and equating coefficients, one produces
the system of equations shown in (3.56). The solution of this system
determines the coefficients X1r X1 eeer Xge Therefore, the expression
of F(Zy) as a sum of partial fractions [see (3.55)] is completely
defined by solving the system (3.56). Next, return to the integrals LY,

L%, and L%. By combining relations (3.39) and (3.55), the following



0
2 (1—2cosz———)
2

9 )
2P(1-2cos“——-)
2

2

p+ T

¢
Zt%\/o_‘ cos-;—

pt

P COS——

1

1

¢

2\/0_‘ cos—(f—
2

2
P+ tf
2t .
1 COB—~—=
. 2
ot%

¢
t% + p —2"/;3-‘ cos—-

)
—2t2 0 cos——— t2 +
1 2 1

2
ot

0 okt

=

78



85

expressions for the above integrals can be obtained.

1
Y _
“1
v 1
L2 = ‘7—(X1H7 + X2H2 + X3H8 + X4H4 + X5H9 + XGHG)
“1
. 1
1
where:

-4z,

- 222v[ﬂcos——— + 0

- 27Z5\/0 cos——= + ©
2
2

H5 ; :dzz
Z2 + 2Z2 cos——— + P

2

42

He ~dz,

Z2 + 2Z§V/ﬁcos—-~ + 0

)=
f
J

7

(3.57)

(3.58)
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Z2

2

H8 =f —de
¢

z% - 222 pzcos—g— + p
2
23
0
Z% + 222\%;205——— + 0
2 J

(3.58)
cont.

These integrals can all be evaluated using standard integral tables.

1 Zo
H; = -——= arctg -—-
ty £y
1
Hy = -— 1,(25 + t2)
2
¢
Z~ — /0 COS———
2
1 Veos,
Hy = > arctg
(1-cos?---) (1-cos2-—)

(3.59)
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1 2 ®
Hy = -;—1n(22 - 222\/;505-;— +0) +

¥ ¢
cos~— iy - véﬁcos---
2

arctg

2
9 3
1-cos?-—~ o (1-cos2-—-)
2 2
0
\ﬁ?cos-—- + 2,

2

1
Hg = arctg

. 2 (i) L 2 (b R
o (1-cos“—-) p (1-cos“—-)
. 2

1 5 b
He = — 1n (2% + 2Z5+/pcos—— + p) -
6 9 2 p 3

¢

¢
CcoS=—= \ﬁ?cos——— + 2,
2

2
arctg
¢ T
\/g—:_;;;g:::’ \vé (l—cosz———)
2 2

Z3
Hy = 2y - t; arctg ———-
£

¢

¢ »
Zz +VQ'1COS";— 1n(Z% - 2Z2Jp—‘cos___ + O) +

H
8
2

g 7 ¢
2pcos®—— - p JVéﬂcos——— + 2y
2 2
1arctg

¢ R
b (1-cos?-—-) Vé(l—cosz—--)
. 2

¢

)
H9 = Z2 —V‘;COS—E— 1n(Z% + 2Z2\/S:COS-;— + o) +

(3.59)
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¢
6] 22 + \/;‘cos---
2

arctg

¢
Wvé(l—cosz-——)
2

1 ¢ L
\/p (l—cosz--—)
2

25 tF
Hyg = ——- - —- 1n(z% + t9)
2 2
2
H i + 2 ’ Z5 +
= - 0 COsS———
11 5 5 2
o)
4pcosz—-— = P
2 ¢
1n(Z% = 2Zyyfocos——— + p) +
2 2
o)
-\/ﬁ—;cos—-— + 2y
¢ 5 o) 1 2
cos——(4fcos — - 3p) arctg
2 2 5 ¢ o
l-cos“—— 0 (l-cosz--—)
2 2
23 ¢
Hig = —= - ZVD-'cos———Z +
12 2 5 2
o)
4ocosz——- - P
2 )
Tn(Z% + 2Z2 pcos——— + p) -
2 2
o)
'\/p:‘cos——- + 29
o) 5 o) 1 2
cos——(4pcos“—— - 3p) arctg -
2 2 0 ¢
l—cosz—-- o (1-cos2——-)
2 2
Combination of relations (3.59), (3.58),

determination of the elements of the coefficient matrix in the system

(3.30).

(3.59)
cont.

(3.57) results in the
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Let S;, Sy, and S3 be the three unequal roots of (3.41). Since all
of the are negative, one can write:
S) = -t
2 (3.60)

n
N
|
|
o
[\

Sy = - t3
Then, the moment of inertia I%(Zz) can be factorized in the following
way:
132y = ¥@f + tHhEd + t9) (23 + t3) (3.61)
The steps that have to be followed after the factorization of I%(zz) are
quite similar to the ones followed in Case (i). The fraction F(Z,) =

1
-—————— has to be broken into partial fractions, which will result in

13 (25)
expressions for the integrals L{, L%, and L% in terms of integrals like
Hy, Hy, and Hy.
3.3.4 Evaluation of the Integrals I, L. and ¥ in the Case of a
Parabolic Flare with Octagonal Cross Section
Combining relations (3.31a) to (3.31c) with (3.38b), one can see
that the integrals to be evaluated can be expressed by the following

general relations:

1
24 =f——— —dz, (3.62a)

Z
X _ 2
122 + %%
X 22
5 = | 55— 9% (3.62¢)
0723 + 9%

The above integrals can be evaluated easily:
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1 1 Z,
X = —— ———— arctg ~———=———
1

(3.63)

1 1 o
2
¥ = X n(z3 + -
a1 o1
< 1 1|8 7,
L3 = Z2 =

It should be clear from the above analysis that the method presented can
be used for any column with variable cross section provided that the
moments of inertia can be expressed by equations (3.38a) and (3.38b).
3.3.5 Summary of the Basic Steps for the Analytic Evaluation of the
Stiffness

Because of the extent of the previous analysis, it seems
appropriate to summarize the steps needed to apply the results to a
particular case.

a. Bending about the Y-axis - Case (i)
1. Find ty, K, and M from formulas (3.44) and (3.46), respectively.
2. Find o, B, o, and ¢ by using relations (3.47) and (3.48).
3. Calculate the elements of the matrix in system (3.56); solve the
system and find the coefficients Xy, Xo, «..y Xg-
4. By using equation (3.59), evaluate the integrals Hy, ..., Hg at the

required points (Z, = 0, Zy = hy).
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5. Use formula (3.57) to evaluate L{, L%, and L% at the required points

(Zg = 0, Zy = hy).
6. Calculate the elements of the matrix in system (3.30) and solwve it.
The value of -B% is the desired stiffness.

b. Bending about the X-axis
1. By using equation (3.63), evaluate the integrals L)l(, L)2(, and L§ at
the required points (25 = 0, Zy = hp).
2. Calculate the elements of the matrix in the system (3.32) and solwve

it. The value of -B)é is the required stiffness.

3.4 APPROXIMATE ESTIMATION OF THE STIFFNESS OF A TAPERED COLUMN

The analysis in this section is intended to provide an alternative

approach to the problem of finding the elastic stiffness of a tapered
column. The approach is less accurate but more general than that
developed in the previous section.

Consider again the column shown in Fig. 3.2. This column can be
approximated by a sequence of bending beams, each one having a constant
moment of inertia equal to the average moment of the corresponding
section of the column. This representation of the column is shown in
Fig. 3.4.

3.4.1 Estimation of the Stiffness for Bending About the Y-Direction

Assume that a unit displacement xt =1 along the X-axis is imposed
at the top of the column. The deflection of the kth beam is governed by
the equation:

atw, (z,)

———————— = () (3.64)
azg

The solution of (3.64) has the general form:
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FIG. 3.4 APPROXIMATE REPRESENTATION OF A TAPERED COLUMN
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We (Z) =AY + Bfz, + Clz + iz} (3.65)
By using (3.4), (3.2b), and (3.2c), one gets:

dwy (Zy)

__.;;_-_. = BY + 2oz, + 3p{zf (3.66)
k

Mf (z) = EIf (2} + 6Dfzy) (3.67)

O (7)) = - 6EI{D} (3.68)

The response of each beam is fully described by four coefficients.
Considering all the n beams, the total number of the unknown
coefficients is 4n. The equations required to estimate the 4n unknowns
arise from the boundary conditions and the conditions of continuity at

the connections between the beams.

Boundary conditions
. v a¥y (21) | % l
Beam 1: (i) EIl_--—-g-—_ | = _kh l(zl) |
dzy 12y =0 1z2y =0
or 6EI1D] = —k§Aq (3.69)
d%ﬁml) I awp (z7) |
i1y Elfy————= = koo
dZ]2_ lZl = az; 12 = 0
or ZEIlC]_ = k%xBl (3.70)
|
Beam n: (i) W,(Z,) | =1 or
I

AL + Bih, + CEh2 + D¥h3 = 1 (3.71)
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aip (Z2p) |
(i) -t | =0 or
dzp |2 = by
B, + 2C h, + 3D;h2 = 0 (3.72)
Equations of continuity at the connection between the kER and k0 + 1
beams
l l
(1) W (Zg) | = We41 (Zg41) ' or
2= %410
Af + Bty + Cfhg + Dfhg = Ay (3.73)
. W (Zg) | AW 41 (Z+1) [
(i) = | - | or
dzy  1Zg=hy AZk 41 1Zk+1=0
B + 2y + D = B (.74
l I
|2 =y |2k 410
2ETECE + 6EIfnDE = 2EI¥ 1CELq (3.75)
I |
(iv) Qf(z) | = Of 41 (Zgyy) | or
|2 =hy 12410
EIfDf = EIf ,1Df 4, (3.76)

By writing equations similar to equations (3.73) to (3.76) for the
n-1 connections between two consecutive beams, one can find a set of
4 (n-1) equations which, combined with the four boundary conditions,
leads to a system of 4n equations with 4n unknown coefficients. This

system has the following general form:
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By solving the above system, the unknown coefficients can be determined.
The unknown stiffness will be given by the product 6EI§D% (see equation
3.68).
3.4.2 Estimation of the Stiffness for Bending About the X-Direction

The procedure which has to be followed in this case is exactly like
that just described with superscript Y replaced by superscript X.
3.5 EXAMPLE

Consider the concrete column shown in Fig. 3.5. The dimensions
are those of the columns of the Nichols Road Overcrossing (bridge No.
56-725) located in Riverside County, California. This column has a
uniform cross section up to a height of 4.85m followed by a parabolic
flare which has a total length of 3.66m. Based on the drawings of Fig.
3.5, the following values can be assigned to the geometric parameters of

the problem:

hy = 4.85m, hy = 3.66m
a = 0.36m, c =0.5m, b=1.22
r} = 0.605m, I; = 0.147n? k = 5.5

The value of E = 2.4 X lO6 t/m2 will be used for the modulus of
elasticity of the concrete. The soil is considered to be stiff and with
properties taken from Table B.2 of Appendix B. The values of the soil-
springs can be estimated by the formulas provided in Table B.l of
Appendix B. Using the footings of the example, the following values of
the soil springs are obtained:

kf = k{ = 4.85 X 10° t/m

kZX = kZ¥ = 5.87 X 100 tm/rad

From formulas (3.38c) and (3.38d), the coefficients d%,..” aZ and<x§,
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FIG. 3.5 DIMENSIONS OF THE EXAMPILE COLUMN (NICHOLS ROAD OVER-
CROSSING, RIVERSIDE COUNTY, CALIFORNIA)
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Ot)é can be found:*
o = 7.638 X 107 o = 2.540 x 1073
of = 3.255 X 1072 of = 1.473 x 1071
091( = 1.376 X 1072 oa}z( =1.473x 107}

So, the moments of inertia of the parabolic flare have the following

forms:
13(29) = 7.638x107°28 + 2.540x107324 + 3.255x107%23 + 1.473x107}
15(25) = 1.376x107223 + 1.473x10"1  for 0 < 2, < 3.66

3.5.1 Analytical Solution of the Problem
(1) Stiffness for bending about the Y-direction

From formula (3.41), one finds:

A = -74.0 u = 58.2
A2 u3
Note that ——— + -—- = 8688 > 0; therefore, case (i) applies.
4 27

Following the steps outlined in part a of section 3.3.5 yields:

lo Sl = —9.9’ tl = 3.1’ K = 23.4, M = 195.6

]

2. o =-11.7, 3 =7.7

14.0, ¢ = 146.8

©
1

3. The system (3.56) becomes:

1 0 1 0 1 0 1 [x] 0]
0 1 2.1 1 2.1 1 %5 0
24.4 0 23.4 2.1 234 -2.1 Xy 0
0 23.4 21 23.4 2.1 23.4 x| |0
195.5 0 137.9 21.1  137.9 -21.1 8 0

E 195.5 0 137.9 0 137.9 | | %] 1]

*Intermediate results presented in this example are given to four
significant figures while final results are rounded to three
significant figures.
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Solving the above system produces the following values for the

coefficients X1r X9r eeey Xg:t

X; =0 X4 = -0.008677
X5 = 0.01735 Xg = -0.0000012
X3 = 0.0000012 Xg = —0.008677
4, TABLE 3.2: VALUES OF INTEGRALS AT 2y =0, 2y = 3.66m
Integral At Z5 =0 At Z, = 3.66
Hy 0 027
Hy 1.14 1.57
Hy -0.08 0.17
Hy 1.23 1.67
Hg 0.08 0.26
Hg 1.23 1.50
Ho 0 0.95
Hg 3. 77 4.8
Hg =3.77 -3.16
Hio -11.28 -8.81
Hll "9.17 _6.44
Hyo -9.17 -7.59
5. | I
Ly | =0 Ly | = 13.25
lZZ =0 |Zz = 3.66
Y | Y l
Ly | = -19.97 L | = -3.60
2 2
|Z2=O |Z2=3.66
Y l =7 Y !
L3y | = -5.38x10 L3 | = 30.82
I



6. The system (3.30) becomes:

4.85x105 0 0

0 -5.87x10%  7.05x10°
0 0 0

0 0 0

1 4.85 23.52

0 1 9.7

o) 0 7.05x10°
0 0 0

2.116x10%

114.084
70.56
10.25x10%

-2.116x10°

0
21.7x1076
5.52x107°

-8.31x107°

0
-18.33x10°%

-1.50x10°%

8.31x107®

3.66

00T
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Solution of the above system of equations gives the unknown

coefficients:
A =0.023 A = -15934.8
BY =0.007 BS = -11344.94
ct = 0.006 c% = 0.071
¥ = -0.005 D} = 0.878

The stiffness of the column is equal to the absolute value of B%,
kY = 11340 t/m (3.78)

|
1. ¥ =o0 X | =18.7
o 3.66
x | x |
¥ | =86.17 ¥ | = 115.7
lo 13,66
X X !
L3 =0 L3 | = 65.95
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The system (3.32) becomes:

-
4.85x10°

0

-5.87x10°

4.85

7.05%10°

23.5225
9.7

7.05x10°

2.119x10°

114.1
70.57
10.27x10°

-2.11x10°

o

o

-19.68x10°%

7.78x10°6

35.9x107°

0
148.9x10°

48.19x10°

o o]
o o
3.66 1

1 o
o =1
=<1 o
0 o
o o

nSBe

AP

I
N2

20T
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Solution of the above system gives:

2% = 0.0173
B = 0.0055
c¥ = 0.0457
pf = -0.004
The stiffness in this case is:
kX = 8360 t/m
3.5.2 Approximate Solution of the Problem

To illustrate the use of the approximate method for determination
of the stiffness, the simple case in which the parabolic flare is
represented by a simple beam of uniform cross section is chosen.

the total number of beams involved is n

of each beam are shown in Fig. 3.6.

Bending about Y-axis

A% = -8497.361
B = -8360.965
% = 0.47

D¥ = 0.3611
(3.78)

2. The geometric parameters

For n = 2, the system (3.77) takes the following general form:

| kg o 0 611 0 O
o k& 21 o 0o 0
o o 0 0 1 by
o o 0 0 o 1
1 h W N3 -1 0
o 1 2h;  3n¢ o -1
o o 261¥  6EI¥h; O O

Lo o 0 ET} o o

-E1%

Substituting the numerical values of the parameters,

Thus,

© O O O o




[ 4.85x10°

4.85

0

7.05x10°

23,52
9.7

7.05x10°

21.19x10°

114.08
70.57
102.7x10°

3.53x10°

O O
O O
1 3.66
o 1
-1 O
o -1
O O
O O

13.4

7.32

-1.88x10°

49.003

40.18

0

-0.943x106

-

B

o

A A

(3.77a)

vOT
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FIG. 3.6 REPRESENTATION OF THE COLUMN BY TWO BENDING BEAMS OF

UNIFORM CROSS SECTION
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Solution of the above system gives:

A =0.023 A% = 0.687

B = 0.006 BS = 0.1447
c¥ = 0.052 c3 = -0.009
DY = -0.00524 D§ = -0.002

From equation (3.65), it is seen that the stiffness for bending about
the Y-axis is:

k¥ = 6EI% | DY | = 11124 t/m (3.79)
Bending about X-axis
In this case the system to be solwed is given by system (3.77b)

which has the solution:

A} = 0.0167 2% = 0.64

BY = 0.005 BS = 0.1620
c} = 0.044 c% = -0.008
Df = -0.0038 D¥ = -0.0026

The stiffness of the column for bending about the X-axis is:
l I

kX = 6EI% ; D% : = 8124 t/m (3.80)
Comparison of the results obtained from the analytical method with those
found from the approximate analysis shows wvery good agreement. This is
despite the fact that in the approximate method the flare was
represented by just one uniform beam. This close agreement is
encouraging for applications of the more general approximate method. It
is realized, of course, that in other cases more individual beams may be
required to approximate the flare satisfactorily.
3.5.3 Yielding of the Column along the Two Directions of Bending

In order to characterize the force-deflection relations of the

columns for the nonlinear analysis, it is necessary to approximate the



[ 4.85%10°

o

4.85

0]

7.05x10°

23.52
9.7
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yielding and failure of the columns in both the X and Y directions. To

make the analysis of the yielding as simple as possible, the following
assumptions are adopted:

(1) The ultimate shear strength and the ultimate torsional
strength are so large that they can be considered infinite;

(2) The column is under a constant axial force from the weight of
the bridge deck; and

(3) The ultimate bending moments of a cross section are determined
from the axial stress distribution present on the cross section under
ultimate conditions and are independent of the shear stresses.
The method by which the ultimate bending moments are determined is
outlined in Appendix A.

The steel reinforcement and the axial load acting on the column are
shown in Fig. 3.7. The properties of steel and concrete used are shown

in Table 3.3.

TABLE 3.3: PROPERTIES OF CONCRETE & STEEL REINFORCEMENT

Description Value

Concrete Modulus of Elasticity E. = 3,390,000 psi = 2.4xlO6 t/m2

Concrete Yielding Stress fé = 3,500 psi = 2460 t/m2
Concrete Yielding Deformation E. = 0.003
Steel Modulus of Elasticity Eg = 29x10° psi = 20x10° t/m2

Steel Yielding Stress f4 = 50,000 psi = 3.5153.5 t/m?

Steel Yielding Deformation = 0.00172

o)
n
|
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a. Bottom cross -section

8x |l -total 4

8x |6 total |2

b. Top cross- section

Pp= 965 t

7/

c. Compressive force due to the
weight of the deck

FIG. 3.7 CROSS SECTIONS OF THE REINFORCED COLUMN
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3.5.3.1 Estimation of the ultimate bending moments

The ultimate bending moments in the two directions of bending for
the bottom and the top cross section are given in Table 3.4. The method

by which they were found is briefly described in Appendix A.

TABLE 3.4: ULTIMATE MOMENT CAPACITY

Cross Section Bending about Y-axis Bending about X-axis

Bottom 1315 tm 1315 tm

Top 1699 tm 3029 tm
3.5.3.2 Construction of the force-deflection diagrams for bending

From equations (3.6) and (3.11) and the analogous ones governing
bending about the X direction, the solutions of the systems (3.30) and
(3.32) and the values of the ultimate moment capacities, the force-
deflection relations for loading at the top of the columns can be
constructed. The force-deflection relations include an elastic portion
and changes in slope corresponding to yielding at the bottom and at the
top cross sections. An analysis of the deflection needed to cause
yielding at the top and the bottom cross section indicates that the
column first yields at the bottom. Furthermore, considering the fact
that after yielding at the bottom no extra moments can be assumed by the
bottom cross section, the stiffness of the columns after the yielding at
the bottom was found to be: k¥ = 2269.65 t/m. This stiffness remains

in effect until the top of the column yields producing a mechanism.
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FIG. 3.8 FORCE-DEFLECTION DIAGRAMS FOR LOADING AT THE TOP OF
THE COLUMN
a. Bending about Y-axis
b. Bending about X-axis
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Based on this analysis, the force-deflection diagram for bending about

the X and Y axes were found to be as shown in Figs. 3.9a and 3.9Db,

respectively.
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CHAPTER 4

ESTIMATION OF THE EQUIVALENT ABUIMENT STIFFNESS

4.1 INTRODUCTION

As was shown in chapter 2, one of the most important parameters for
the development of a model which will capture the basic features of the
rigid body motions of a skew bridge is the abutment stiffness, kg . The
calculation of a precise value of the abutment stiffness would involve
very difficult calculations since an accurate representation of the
abutment-soil syste<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>