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ABSTRACT

This thesis is concerned with the earthquake response of light
equipment in structures. The motion of the ground during an earthquake
is represented as a stochastic process in order to reflect uncertainty
in the prediction of such motion. A number of different stochastic
earthquake models are considered, and analytical methods are described
for these models.

The response of equipment in a structure to stochastic ground
motion is derived, in the case of a single—degree—of—-freedom secondary
system (equipment) attached to a single—degree—of—-freedom structure.
The distribution of the envelope of the secondary system displacement is
obtained for general transient ground motion. Closed form expressions
are computed for the transient response to stationary ground motion.

The effect of the interaction of equipment with the structure is
described by the introduction of an equivalent non—interacting system.
However, this method applies only to classically damped systems.

The results are applied in a simple way to the problem of the
computation of floor spectra. It is found that the ground spectrum is
amplified in a simple way, except near resonance, where special

considerations must be addressed.
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CHAPTER I

INTRODUCTION

A problem which has received increased attention recently is the
design of secondary systems to withstand seismic loads. A secondary
system may be a piece of equipment or a structure which is distinguished
from the supporting primary structure. Secondary systems are usually
characterized by a mass which is small in comparison with the mass of
the structure on which they are supported. Frequently, such
substructures are essential for the safety of the occupants of the
primary structure and may have even greater importance. This is true
especially in the design of crucial facilities such as a nuclear reac-
tor.

The motion of a secondary system during an earthquake is influenced
primarily by resonance effects between the equipment and the primary
structure. In order to account for these effects, the dynamic response
of the system must be modeled.

In this thesis, the dynamic response of secondary systems to
earthquakes is considered. The first step in such an analysis is the
modeling of earthquake ground motion. The use of a stochastic process
to model ground motion is widely accepted. In Chapter II, a firm basis
for stochastic modeling of ground motion is given.

The transient nature of an earthquake is an essential feature, but
is often neglected or disguised by the use of stationary earthquake

models. In Chapter II, transient earthquake models are discussed, and



methods of spectral analysis for transient models are described. A
convenient way to characterize transient ground motion is by its evolu-
tionary power spectral density, a generalization of the power spectral
density for a stationary random process. In order to calibrate model
parameters for a specific earthquake, however, a more restricted model
must be selected. Two different models, the modulated stationary
process, and the ffltered, modulated white noise process, are discussed
in Chapter II. Some considerations in the numerical simulation of
ground motion are also discussed.

The response of a secondary system to transient ground motion is
considered in Chapter III. In order to simplify the analysis, both the
primary structure and the secondary system are modeled as single—degree—
of-freedom linear oscillators. An understanding of this system is
essential to the understanding of more complicated systems. The ground
motion is characterized by its evolutionary power spectral demnsity, in
order to allow for a gemeral stochastic model.

Initially, the effect of the secondary system on the primary system
is assumed to be negligible. The response quantity considered in Sec-—
tion 3.2 is the time—varying envelope of the relative displacement of
the secondary system. The use of the envelope is advantageous when the
response fails to be narrow—band, since it is certain to be nearly
Rayleigh distributed. (It is known to be such for a statiomary

process.) [36]



The mean square value of the envelope as a function of time is
derived as the convolution in time of the evolutionary power spectral
density of the ground motion with a known function, which depends on the
parameters of the system. In the special case of ground motion which is
a finite portion of a stationary process, the mean square envelope is
derived in closed form. Simulation studies indicate the validity of the
equations.

The effect of interaction is considered in Section 3.4. It is
found that a simple transformation allows an interacting system to be
described in terms of an equivalent non—interacting system. This
approach is valid only if the system parameters are such that the two-—
degree—of—-freedom primary/secondary system is classically damped.

In Chapter IV, the results of Chapter III are applied to the compu-
tation of floor response spectra. A simple approximation is shown to
give good results except very near resonance. Near resonance, the
approximation may be improved considerably by accounting for the
increased narrow-bandedness of the system response.

References to previous work in stochastic modeling and the analysis
of secondary systems may be found in the body of the thesis. Chapter II
is primarily a synthesis of current practice and theory in a coherent
form. Chapter III presents new results on the envelope of a secondary
system. The goal of Chapter IV is a critical analysis of some basic
assumptions sometimes used in floor spectrum calculations. A simple

system is chosen in order to evaluate the validity of these assumptionms.



CHAPTER II

STOCHASTIC MODELS OF EARTHQUAKE GROUND MOTION

2.1 Introduction

In this chapter, stochastic models of strong ground motion are
discnssed. The development of earthquake models is of obvious impor-
tance in the design and evaluation of engineering structures. A realis-
tic model of ground motion, together with an accurate model of struc-
tural response, allows the structure to be subjected to earthquake
forces in advance of the actual destructive event.

In theory, the earthquake process is deterministic. If the state
of stress, material properties, location of fractures, etc., were known
throughout a region, and tectonic processes were completely understood,
then the ground motion z(t) at a given site would be known in advance.
Of course, such complete information will never be available, so engi-—
neers and seismologists must accept a level of uncertainty. One
objective of earthquake research is to reduce this uncertainty.

A useful earthquake model will incorporate as much knowledge as
possible of the state of the earth and the physical processes involved,
and at the same time will account for the uncertainty that remains. At
present, models tend to be formulated as deterministic processes at
lower frequencies, and as stochastic processes at higher frequencies.

(The breakpoint seems to be at periods of several seconds.) The reason



for this dichotomy may be seen by exploring the sensitivity of measured
ground motion to uncertainty in knowledge about the state of the earth.

Long period waves are generated primarily by large—scale source
mechanisms, such as average rupture velocity and stress drop. Varia-
tions in stress and material properties produce variations in long
period waves only throﬁgh spatial averages. Similarly, long period
waves respond primarily to large—scale averages of material properties
as they propagate from source to site. Thus, low frequency recordings
at the site are relatively insensitive to local variations in the state
of the earth. Source models and earth models seem to be sufficiently
accurate at present to allow deterministic modeling at these frequen—
cies.

High frequency recordings, which are of most significance to many
engineering structures, are much more sensitive to local variations.
High frequency energy is generated at the source primarily by local
stress concentrations. These waves are strongly affected by variations
in material properties on the scale of the wavelengths involved. Thus,
it is seen that prediction of high frequency ground motion requires
detailed knowledge of the state of the earth.

A stochastic model is appropriate to this situation in much the
same way that probabilistic models apply to errors in measurements of
physical quantities. Although the actual earthquake process is
understood to be deterministic, it is replaced by a stochastic process
in order to reflect the uncertainty of our knowledge. The present state

of knowledge is embodied in theoretical descriptions of the earthquake
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process, including some understanding of the effects of soil behavior at
the site, together with ground motion from past events recorded on
strong-motion and teleseismic instruments.

Consider, in principle, the ensemble of earth states and tectomic
conditions which are consistent with currently available information.
Each member of the ensemble will have averaged properties which agree
with models developed from long period data and theoretical studies.
Samples from the ensemble will differ, however, on a smaller scale.
Each sample will therefore give rise to a different prediction of the
strong ground motion at a particular site. These differences will be
much more pronounced at high frequencies than at low frequencies. The
resulting ensemble of predicted ground motion will represent a stochas-
tic process. The low frequency part of the motion, though a stochastic
process, exhibits enough consistency throughout the ensemble to be well
described as a deterministic function.

It should be reiterated that the actual earthquake process is
deterministic. However, variations in the source and earth properties
—— on a scale which significantly affects ground motion —— cannot be
distinguished with currently available data. Thus, an appropriate model
for strong motion must be described as an ensemble of records, based on
an ensemble of earth states, any of which must be considered equally
likely. The stochastic model is therefore seen to be a mechanism for
reflecting uncertainty. This motivation for using stochastic processes
in strong-motion modeling leads to methodologies already in use. How-

ever, such methods are typically motivated by observation of the



"random’” appearance of recorded accelerograms. The motivation given
here may be of more value in clarifying the nature of the ensemble which
underlies the random processes involved.

A stochastic earthquake model is defined by specifying the nature
of the ensemble of potential ground motions. In principle, this may be
accompl ished by producing an ensemble of earth states, and deducing the
resul ting ensemble of ground motions. In practice, such a procedure is
impossible for two reasons. For one thing, 'current knowledge’” is not
packaged in mathematical form to allow the ensemble of possible states
to be produced. Secondly, the generation of ground motion for a suffi-
ciently detailed source and earth model would be computationally infea-—
sible. Thus, the stochastic ground motion must be constructed on some
other basis.

There are several conflicting objectives in the selection of a
stochastic model. Primarily, the model should realistically reflect the
features of an actual earthquake. These features include the frequency
content of the ground motion (which may vary with time) and the duration
of shaking. At the same time, it should be possible to calibrate the
parameters of the model to observed data with reasomable accuracy.
Otherwise, the model will be of no practical value. The more parameters
there are in the model, the more difficult the calibration process will
become. Yet, if insufficient parameters are included, the model cannot
be expected to be realistic. Finally, the model should be mathemati-
cally tractable. For analytical work, this means the mathematical

description should be relatively simple, and operations such as



filtering of the motion should not be overly involved. For numerical
work, it is desirable that an efficient scheme for generating an ensem—

ble of ground motion records be available.

2.2 Review of Stochastic Models

As strong-motion records have accumulated over the past 50 years, a
number of stochastic models have been proposed. Most of these models
fall into a few broad categories. A brief review of these models is

presented here.

2.2.1 Stationary Models

One of the simplest of random processes is a zero—mean, Gaussian
stationary process. Because stationary processes are convenient and
well-understood, much effort has gone into attempts to model earthquakes
as stationary processes. Clearly, such a model can only be used to
represent the central high—intensity part of a strong-motion record. It
cannot be expected to model short—-duration earthquakes, or the buildup
or tail of the ground motion.

In 1947, Housner [14] suggested a model which was essentially white
noise —— a large number of impulses arriving at random times. Others
used the white noise model [15,18] to investigate structural behavior in
earthquakes.

As more data became available, it was possible to propose non—white
stationary models with frequency content matching observed records.

Housner [16] used a superposition of ome—cycle sine pulses arriving at



random times, with the average number of pulses depending on frequency.
Tajimi [17] proposed a computationally simple form for the power spec—
tral density of a stationary model.

Thg primary motivation for the use of a stationary model is the
high level of development of the theory of stationary processes. A
zero—mean, Gaussian stationary process u(t) is completely determined by

its autocorrelation function, defined as

R(t) = <u(t)u(t+t)> (2.1)
R(t) is independent of t because u(t) is statiomary. Equivalently, the
process may be specified by its power spectral density

S(u) = ﬁ fR(r)e_i“’"dr (2.2)

The autocorrelation may be recovered from the power spectral density by

Fourier inversion.

@

R(zx) = jsm)ei""‘dw (2.3)
Setting t=0,
@) = [ Swde (2.4)

-0

Hence, S(w) may be interpreted as a frequency decomposition of the total

energy.
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Clearly, a stationary model allows complete freedom in specifica-—
tion of the frequency content of the earthquake. However, this fre—
quency content must be consistent throughout the earthquake. Also, the
duration of the ground motion is not explicitly included in the model,
and must be artificially accounted for. This has often been done by
considering a finite portion of the statiomnary process. For long-
duration earthquakes, the beginning and ending phases may be expected to
be unimportant. The effect of ignoring these phases is not clear, how-—

ever, especially in the case of medium— and short-duration earthquakes.

2.2.2 Modulated Stationary Models

The transient nature of the earthquake process may be modeled
explicitly by modulating a stationary .process with a deterministic func-—
tion of time. If the modulating function is reasonably smooth, it will
not significantly affect the frequency content of the resulting record.
Thus, standard methods may be used to generate the stationary part of
the model. The envelope is gemnerally chosen empirically.

The stationary model of Section 2.2.1 is actually a special case of
a modulated stationary process. A finite segment of statiomary ground
motion is produced by an envelope which has a "boxcar’” shape. It seems
preferable to explicitly include the modulating function in the model,
even in this simple case.

Several forms of envelopes have been proposed. Jennings, Housner,
and Tsai [19] used an envelope composed of a quadratic buildup phase, a

constant phase, and an exponentially decaying tail. Shinozuka [20]
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proposed the form
e(t) = A(F—at— e_ﬂt> (B>a>0) (2.5)
Saragoni and Hart [21] suggested an envelope of the form
o(t) = At% Pt (2.6)

In general, envelopes are chosen with only a few parameters to be
estimated, such as intensity, duration, and buildup time.

Modulated stationary processes produce artificial accelerograms
which resemble strong-motion records. The parameters of the model are
the stationary frequency content and the modulating function. This type
of model is therefore able to represent the major features of strong-
motion —— average frequency content, intensity, and duration. It is
unable to reproduce time-varying frequency content. A general charac-—
teristic of strong—motion records is a shift from higher frequencies to
lower frequencies toward the end of the record. This is probably of
secondary importance for many structures, but may be significant for

yieldirg structures.

2.2.3 Filtered, Modulated White Noise Models

Modulated stationary processes are used in modeling primarily
because of their computational convenience. One drawback in their use
is the lack of physical significance of the envelope. A model which has
a more solid basis physically is the filtered, modulated white noise

(FMWN) process. A FMWN is defined to be the result of passing
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deterministically modulated Gaussian white noise through a linear, time—
invariant filter. As in the case of a modulated stationary process, the
parameters available are the modulating function and the frequency
characteristics of the filter. The two processes are distinguished by
the order in which the operations of filtering and modulation are
performed. Since a stationary process may be conceived as filtered
white noise, a modulated stationary process is expressible as white
noise which is first filtered, then modulated. A FMWN process is white
noise which is first modulated, then filtered.

A FMWN model visualizes the earthquake process as a white noise
"source’” which is deterministically modulated, and then filtered by the
transmission path. (Actually, the filter characteristics are determined
in part by source properties as well as the transmission path.) The
envelope in this case is associated with the source mechanism. Although
this logic is plausible, the model does not directly allow for random-—
ness in either the transmission path or the envelope. If variations in
the path produce only phase changes in the arriving waves, these may be
absorbed effectively into the phase of the white noise. Amplitude
effects due to transmission path variations are not allowed in the
model, however, since thg path is assumed to be deterministic.

In spite of the assumed lack of randomness in the amplitude magnif-
ication characteristics of the transmission path, the FMWN model remains
a reasonable compromise between physical authenticity and computatiomal
or mathematical convenience. It has the same parameters as a modulated

stationary process model, and is rather more plausible on physical
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grounds. The artificial records produced by the model exhibit a slight
frequency shift with time due to transient behavior of the filter, but
it is unlikely that this is related to the actual phenomenon observed in
strong—motion records.

A FMWN process is defined mathematically as

t
u(t) = fh(t—r) 8(t)w(t)dr (2.7)

—@

where 6(t) is the deterministic envelope, h(t) is the impulse response
of the filter, and w(t) is white noise with power spectral density equal

to unity. By comparison, a modulated stationary process may be written

as

t
u(t) = 6(t) fh(t—t)w(‘t:)dt (2.8)

-

In this case, 6(t) is the envelope, and
2
S(w) = [H(w)I (2.9)

is the power spectral demnsity of the stationary process, where

@

H(w) = J'h(t)e_i‘”t dt (2.10)
0

H(w) is the transfer function of the filter.



- 14 -

If the filter characteristics and envelope functions are identical,
the difference between a modulated stationary process and FMWN process
may be seen to depend on the smoothmness of 6(t). If 6(t) is very flat,
then it may essentially be assumed constant in equation (2.7) for the
FMWN process, and taken out of the integral, resulting in a modulated
stationary process. Thus, for earthquakes with a long section of quasi-—
stationary motion, both models will have similar characteristics. The
differences will appear in the beginning and tail of the record. The
two models are thus in greatest contrast in the modeling of shorter
duration earthquakes.

Shinozuka and Sato [20] performed numerical simulation of a long
duration earthquake using both models, and found the two indistinguish-—
able for their choice of 6(t) and h(t). Boore [10] has used a FMWN
model successfully in reproducing peak velocity, Wood—-Anderson response,
and response spectra of strong-motion records over a wide range of dura-

tions.

2.3 Spectral Analysis of Transient Stochastic Processes

For purposes of characterizing and calibrating stochastic models,
it is desirable to use frequency domain analytical methods. The power
spectral density is a powerful tool in the analysis of stationary random
processes because it completely defines the process while describing the
frequency decomposition of the total emergy. In this section, a number
of frequency domain descriptions are discussed which apply to tramsient

stochastic processes.
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2.3.1 Fourier Analysis

One advantage of transient models (such as modulated stationary
models and FMWN models) over stationary models is the possibility of
direct Fourier amalysis, without having to resort to delicate limiting
arguments. If the sample functions of a transient model are u(t), then
each will possess a Fourier transform

@

U = 5= [ u) e ™ at (2.11)
2n
0
Taken as an ensemble, U(w) represents a complex random process. If u(t)
is Gaussian, then the real and imaginary parts of U(w) will be Gaussian
also. If u(t) is zero—mean, then so is U(w).
The amplitude spectrum of u(t), defined for each sample as [U(w)l,

is a common measure of the frequency content of an earthquake. The root-

mean—square (RMS) amplitude spectrum, defined as
2
Alw) = LI (2.12)

measures, in an average sense, the frequency content in a given model.
The RMS amplitude spectrum is an imperfect description of the process,
since variation of frequency content with time is lost when the phase is
ignored.

For a modulated stationary process, defined in equation (2.8), it

may be seen that
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© t
M) = ﬁ [ o) [ nte-vwlerde o *Fat
= [ wo e"i“"zi [ nt)o(+tre tat  de
bid
e 0

Since w(t) is Gaussian white noise, it follows that
w(t)> =0
<w(t1)w(t2)> = 2n8(t1-t2)

Therefore, if é(t) is any complex—valued function,

b bb
A [wd@acl® = [ [ e wlz,)>dc)d*(x))ar T,
a a a
b

27 f ld('c)l2 dt

a

This formula may be applied to equation (2.14) to yield

@ @ 2
oy |?y = 2 f j'h(t)e(ﬁt)e"i“’t at| de
2n
—& 0

Applying Parseval’'s formula, this integral may be expressed as

<]

<|U(w)|2> = J‘ l@(w,w')lz do’

-

where

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Plo,w’') = ;% J. e—iw'r f h(t)O(r+t)e_imtdt dt (2.20)
—_ 0
_ f h(t)e—i(m—m')t 1 J 9(r+t)e~im'(t+t)dtdt
27
0 -
= H(w-0')6(n') (2.21)

H(w) is defined in equation (2.10), and

@

_ 1 —iot
o) = - J'e(t)e dt (2.22)

—®

Therefore, combining equations (2.9), (2.19), and (2.21), the RMS

ampl itude spectrum of a modulated stationary process is found to be

@

AW = | [ sw-enlew)]? e’ (2.23)
where S(w) is the power spectral density of the underlying statiomnary
process.

The RMS amplitude spectrum of a FMWN process is much simpler to
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From equation (2.7), it may be seen that

obtain.
o t
Uw = 3= [ [ be-oe@wxdr o “tat (2.24)
bis
—® —o®
@ @
= | wo zie(r)e'”"t [ nvre™%at ¢ ae (2.25)
n
- 0
[ wo) {35 0(x)e ™" H(w) | ar (2.26)
Applying the formula of equation (2.17) in this case leads to
2 2 1 2
dv@ 1™ = 18I 5= [ 6(v) ac (2.27)
Therefore, for a FMWN process,
@©
Alw) = [H(W)I Zi [ o*()ae (2.28)
n
—®

applied to the integral in

Altermatively, Parseval’s formula may be

equation (2.28) to give

Aw) = |H<w)|\/j low) 1 du (2.29)

A comparison may be made between equation (2.23) for a modulated
Denote the

stationary process and equation (2.29) for a FMWN process.
Since S(w) = |H(w)|2, it may

former by Al(w) and the latter by Az(m).
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be seen that

Af(m = fA;(w—w')r(w') dug? (2.30)
where
5 2
#la*) [e(wr) | (2.31)

@©

[ 1o 120"
-
2 ; z 2 .
Al(w) is therefore a weighted average of Az(w). If there exists a Aw
for which r(w) << 1 for lwl > Aw, and Az(w) varies slowly as o changes

by Aw, then it may be asserted that

Al(m) a Az(m) (2.32)

The general conditions for this assertion are that 6(t) vary slowly, and
that A(w) be smooth.

Fourier analysis is more delicate for stationary processes, since
the sample functions do not possess Fourier transforms. Some insight is
provided by considering a stationary process to be the limit of a FMWN

process, as 6(t) —> 1. [For example, 8(t) may be taken as e—altl, with
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a-90+.] From equation (2.26),

T(6)T*(w,))> = Hlw )B*(0,) j j (T Iwlty)>
-i(w,T,~0.T.)
'%eul)e(cz)e Lk AR ax dr, (2.33)
4n
® -i(w,-w,)T
= H(w)E* (o)) i jez(r)e & e (2.34)

Letting 6(t) -1, the integral in equation (2.34) approaches S(wl—mz).

Thus, in a limiting sense, for a stationary process
* = —
<U(w1)U (w2)> S(wl)ﬁ(w1 w2) (2.35)

For the FMWN process, Fourier inversion of equation (2.11) gives

@

alt) = IU(m)ei“‘t d (2.36)

-
In the limiting case of a stationary process, equation (2.36), together
with equation (2.35), motivates the spectral representation of a sta-
tionary process as

@©

alt) = jn(w)ei"’t dZ () (2.37)

—®

In equation (2.37), H(w) is the transfer function describing the fre—

quency content of u(t), and dZ(w) is a complex orthogonal process such
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that

AdZ(w)> = 0 (2.38)

(dZ(w))dZ*(w,)> = 8(w -w,) do (2.39)

The power spectral density of u(t) may be recovered directly from the

spectral representation as
2
S(w) = [H(wI (2.9)

2.3.2 Response Spectrum

A frequently used measure of the spectral content of strong
ground motion is the response spectrum. The response spectrum arises in
structural engineering through the consideration of a linear oscillator
with viscous damping. Let u(t) be the ground acceleration. Define x(t)
by the differential equation

x +2Qugx + 0y = ult) (2.40)
£(0) = x(0) = 0 (2.41)

x(t) is the relative displacement of a linear, viscously damped oscilla—

tor with undamped natural frequency o and fraction of critical damping

0,
T, in response to ground motion u(t). Studying the response of such

oscillators as a function of frequency is one means of assessing the

frequency content of u(t).
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For a deterministic u(t), the response spectrum is defined as a
function of T and w, as

SD(I,wO) = max |x(t)l (2.42)
0{t<(=

where x(t) is the oscillator response defined by equations (2.40)-
(2.41). Response spectra are routinely reported for strong-motion
recordings. The utility of the response spectrum is due to the fact
that it gives directly the maximum response of a structure to an earth-
quake, which is of primary importance in assessing its safety. The
response of many structures is well described either by equation (2.40)
or as a linear combination of such oscillators.

Because of the utility of the response spectrum description of an
earthquake, a common practice is the prescription of earthquake excita-
tion in terms of the anticipated response spectrum. If a stochastic
model is used to characterize an earthquake, an extension to the
deterministic response spectrum is necessary. If u(t) is a stochastic
process, then the oscillator response x(t) will be a stochastic process
as well, The mean response spectrum may be defined as

¢8D(T0)> = < max [x(t) > (2.43)
0t (e

The mean response spectrum indicates the maximum displacement attained
by the oscillator, on the average.
A common design question is whether a given structure will safely

sustain the ground motion of an earthquake. For a stochastic earthquake
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model, which reflects uncertainty, such a question must be answered in
probabilistic terms. Far more important than the mean response is a
level which, with some probability, will not be exceeded. The design
spectrum for a level of confidence p is defined to be that value

RS(Z,mO;p) for which
Prob sn("(,mo) < RS(’(,mO;p) = p (2.44)

For example, an oscillator with frequency 9 and damping z will have

maximum response of no more than RS((,m 0.9) for 90% of the sample

05
earthquakes u(t).

The problem of actually computing the design spectrum for a given
stochastic model is extremely difficult, even for the simplest models.
Most analytical work has focused on the closely related first passage
problem in random vibration, which seeks the distribution of the time at
which a stationary process first exceeds a given level. The form of
first passage problem which relates most closely to the determination of
the design spectrum is the so—called stationary—-start, type—-D problem
[22]. If x(t) is a zero—mean stationary process, it is desired to find
W(t), the probability that in an interval of length t, |x(t)| does not

exceed a barrier level b.

For large t, it may be argued heuristically that

—-at

W(t) ~ Ae (2.45)

for some A,a. Attention is often focused on the limiting decay rate a.

A number of approximations to o have been proposed. A conservative
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estimate results from assuming that excursions above the barrier level

occur independently. This assumption leads to the Poisson estimate

|c‘
[ )

3
0 ® e (2.46)

where VO is the mean rate of zero—upcrossings by x(t), and

P = s (2.47)

Vanmarcke [23] developed a semi—empirical formula for o which takes into
account the dependence between barrier crossings.

The design spectrum may be computed from an estimate of a by assum—
ing: (i) that equation (2.45) holds even for small t; and (ii) that the
response at all times is quasi—stationary. Such assumptions motivate

the assertion that

@

- f a(t)de

Probilztt)] €5 for 0eisl = o O (2.48)

where a(t) is the limiting decay rate corresponding to the quasi-—
stationary response at time t. Note that A has been set equal to unity
because of the certainty of safety at t=0. The design spectrum value,
defined in equation (2.44), is seen to be that value of b for which

©

[atmrar = - 10gp (2.49)
0
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This value must be determined iteratively.

The above methodology has been used by Corotis [25] to compute
first—passage probabilities for a zero—start type-D problem, reportedly
with good results. In a design spectrum computation using a modulated
stationary process, Mason [24] reported reasonable agreement with simu-
lation results for § = 0.02, if the earthquake duration was at least ten
periods of the oscillator. Presumably, smaller values of the damping
coefficient would require longer durations to achieve the quasi-
stationarity required by this method.

In view of the assumptions made in reaching this approximation, the
results achieved are surprisingly good. However, more systematic study
of the range of validity of the approximation is probably needed. The
most reliable check is provided by Monte Carlo simulation.

Although response spectrum methods are widely used, their limita-
tions are also recognized. As a description of ground motion, the
response spectrum is incomplete. Any number of models may be proposed
which will match a given design spectrum, with great variation in dura-
tion and intensity. The application of response spectrum information to
multiple—degree—of—freedom structures introduces significant unknown
errors, since the response spectrum does not include the time at which
the peaks occur.

Trifunac [9] proposed an extemnsion to the response spectrum which
addresses both of these limitations. He defined the response envelope
spectrum (RES) A((,wo,t) of a deterministic u(t) to be the envelope of

the oscillator response x(t) in equation (2.40). The envelope of x(t)
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may be defined in a number of ways. For numerical computation,
A(z,wo,t) may be set equal to |x(t)| at the extrema of x(t), and
interpolated linearly between these values. The RES of u(t) contains
its standard response spectrum, since

SD(I,mO) = max A(T,0
0 t(=

0,t) (2.50)

Knowledge of the RES of an earthquake record would allow more precise
modal combination for multiple—degree—of—-freedom structures.
Furthermore, for a zero—mean, broad-band Gaussian model, the mean square
RES, <A2(z,w,t)>, is closely related to the evolutionary power spectral
density (defined in the following section), as seen in equation (3.16).
Thus, the mean square RES of such a model provides a complete descrip—
tion of the process.

The practical value of the RES is limited by the difficulties
involved in plotting A(T,w,t). For a fixed level of damping, A(T,0,t)
must be visualized as a surface over the (w,t) planme. Another
difficulty arises when the RES is extended to stochastic models. The
mean square RES is easily obtained, but is not simply related to the
design spectrum, or even to the mean or mean square response spectrum of

the model.

2.3.3 Evolutionary Power Spectral Density

By far the most useful spectral description of a stationary ran-
dom process is the power spectral density. A widely accepted extemnsion

of the power spectral demnsity to nonstationary processes is due to
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Priestley [6]. Recall that a stationary zero—mean Gaussian random

process u(t) may be represented as

@

w(e) = [ Hwe' @) (2.37)

-
where H(w) is deterministic, and dZ(w) is an orthogonal process by equa-—
tions (2.38) and (2.39). The stationarity of u(t) is seen to be due to
the "stationarity” of the elements H(m)elmt dZ(w) of which it is

composed. A nonstationary process may be generated from the spectral

representation

@

alt) = fu(m,t)ei‘”t daZ () (2.51)

—®

Here dZ(w) is as before, but H(w,t) may vary with time. The evolution-
ary power spectral density (EPSD) of such a process is defined [by anal-

ogy with equation (2.9)] to be
2
S(w,t) = [H(o,t)l (2.52)

If u(t) is defined by equation (2.51), its autocorrelation function
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is

R(tl.tz) <u(t1)u(t2)>

@®

| j H* (0.t ) H(o,, t,)e

—® —@

ilw,t,—0

2tp701ty)

<dZ*(w1)dZ(m2)>

® io(t,~t,)
= f H*(w,tl)H(m.tz)e do

-0

There is no simple transformation between R(tl’tz) and S(o,t).

putting ty =t =t in equation (2.55) gives
@
@) = [ s,tde

-

(2.53)

(2.54)

(2.55)

However,

(2.56)

The EPSD therefore retains an interpretation as a frequency decomposi-—

tion of the total emergy in u(t).

Equation (2.55) can be simplified in some cases. If for some At,

R(tl'tZ) is negligible for |t1—t2| > At, and H(w,t) varies little as t
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varies by At, then
® io(t,~t,)
*®
I H (m.tl)H(wztz)e do

—

(u(tl)u(t2)>

. im(tz—tl)
f B (0, t,) H(o, t)e do (2.57)

1

—@

® iw(t,—t,)
= I S(w,tl)e %5 dow (2.58)

—®
The conditions for equation (2.58) to hold are that S(w,t) be slowly
varying with time and broad-band in frequency. These conditions are
generally appropriate for earthquake models.

For a stationary process, the power spectral density constitutes a
complete description of the process. In general, the EPSD of a nonsta-—
tionary process is not a complete description of the process, since the
crucial quantity R(tl,tz) depends on the phase of H(w,t) in equation
(2.55). The EPSD specifies the magnitude, but not the phase, of H(w,t).
However, in the special case of a broad-band process, equation (2.58)
holds, and S(w,t) completely prescribes the process u(t), in an approxi-
mate semnse.

The EPSD of a modulated stationary process may be found by using
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the spectral representation of white noise,

wit) = Iei“’t aZ () (2.59)

Substituting this representation into equation (2.8) and interchanging

the order of integration gives

© t
we) = [ o) | Kt=ede ™ go 42l (2.60)
= | et) Hw =08 o (2.61)
Thus, the EPSD of u(t) is seen to be
Ste,t) = 0°08) [Hw) > (2.62)

Because of the form of equation (2.62), a modulated stationary process

is sometimes referred to as a separable process.

In the case of a filtered, modulated white noise process, substitu-
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tion of equation (2.59) into equation (2.7) yields

® t
alt) = f [ nt-vr0(x)e™" dv dz(w) (2.63)
= [ [ao oft—=<ia % dr & Hiled (2.64)

—o 0

Thus, for a FMWN process,

2
@©
Stw,t) = | [ m(x)e(t-r)e” ™% 4z (2.65)
0
Alternatively, equation (2.65) may be written
2
[e0)
S,t) = | [ Hw+e)ew)e™  du’ (2.66)

where H(w) and 6(w) are defined in equations (2.10) and (2.23),
respectively. Note that equation (2.65) reduces to equation (2.62) for
a modulated stationary process if ©(t) is essentially constant over the
decay time of h(t).

Because of the generality of the representation of equation (2.51),
it would seem reasonable to propose an earthquake model based on this
representation. Certainly, equation (2.51) is capable of representing
such earthquake phenomena as frequency variation with time. However, a
model which allowed complete freedom in S(w,t) would be practically

impossible to calibrate to actual data. Whereas both a modulated
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stationary process and a FMWN process have H(w) and 6(t) as parameters,
a general nonstationary model would have S(w,t) as a parameter to be
calibrated. The uncertainty in estimating S(w,t) would more than offset
the added generality of the model. Nevertheless, since both a modulated
stationary model and a FMWN model may be represented by equation (2.51),

this model will be used to represent a general stochastic model.

2.4 Calibration of Stochastic Models

A modulated stationary process or FMWN process provides the frame-
work for a stochastic model of earthquake ground motion. At some point,
however, the parameters in a model must be set to some values in order
for the model to predict actual ground motion. A number of approaches
to the calibration problem are summarized in this section.

The frequency content of stationary models has often been
determined empirically from observation of strong—motion records. Based
on spectral analysis of several records and a simple model of local soil

properties, Kanai [26] and Tajimi [17] proposed the form

o+ 42022
g g g

0 (W2 = w12 4 4022
g g8

S(w) = S (2.67)
for the power spectral density of ground acceleration. The parameters
Ig and mg are sometimes related to properties of the soil at the record-

ing site.
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Of ten, the design spectrum for a site is estimated empirically from
response spectra obtained at similar sites. It is common to prescribe
earthquake forces entirely by empirical design spectra. In turn, models
are sometimes calibrated to these design spectra. The approximate
methods mentioned in Section 2.3.2 allow a stationary model of given
duration to be calibrated to a design spectrum. Mason [24] outlined a
method for calibrating a modulated stationary model to a smooth design
spectrum, when 6(t) is assumed to be known in advance.

Recently, digital signal processing techniques have been applied to
single accelerograms in an attempt to estimate the parameters of a FMWN
model consistent with the record. Nau and others [7] described a method
for determining the white noise envelope 6(t), and filter characteris—
tics H(w) (in the form of an auto-regressive, moving average filter),
directly from a given record. In fact, some time variation of the
filter characteristics was included in the model, making it somewhat
more flexible than the FMWN process described previously. These
estimated parameters can then be used with digitally simulated white
noise to producc an ensemble of records similar to the original record.

All of the above methods of calibration rely essentially on
observation and analysis of strong motion records. Models may also be
calibrated from theoretical considerations. Trifunac [13] proposed a
model based on the assumption that the near field ground motion is
dominated by surface waves. He used experimentally determined surface
wave dispersion curves for the Imperial Valley region of Califormnia to

predict local ground motion, with limited success.
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Boore [10] calibrated a FMWN model to Brune'’s theoretical amplitude
spectra [27]. The parameters of the spectrum were related to the

seismic moment M using empirically determined relationships. The

0’
duration and intensity of the envelope 6(t) were also related to MO.
The resulting model has been shown to reproduce many of the characteris—
tics of strong-—motion records, including peak velocity, Wood—Anderson
instrument response, and response spectra.

It should be noted that modulated stationary models are well suited
to response spectrum calibration, because of the presence of the sta-

tionary process. FMWN models are well suited to amplitude spectrum

calibration, because of the simplicity of equation (2.28).

2.5 Numerical Simulation of Ground Motion

An important objective of stochastic modeling is the gemeration of
an ensemble of sample records which is consistent with a given model.
One consideration in choosing a model is the ease with which sample
records can be generated numerically. These sample records are used in
analysis of various aspects of earthquake ground motion, including
dynamic structural response.

The spectral representation of many stochastic processes gives rise

to several standard numerical methods. Consider the process defined by

ee]

u(t) = J H(w,t) ei

—@

Ut i) (2.68)

Let the interval (—«,») be divided into a finite or infinite number of
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intervals, each centered at wn, of width Awn. If the intervals are

sufficiently small, equation (2.68) may be approximated as

w(t) = ) Hlw,t) U (t)
n

where

o HAw
n n
U (t) = f g dZ (w)
n
0_—YAw
n n
Recall that
WAZ(w)> = 0
<dZ(w1)dZ*(m2)> = S(ml-wz)dw

Un(t) is seen to be a complex—valued, stationary random process,

U (t)> = 0

n

* =

<Um(t1)UIl (t2)> 0
KU (t)U *(t+t)> = R (1)

n n n

where
2 —-iw T
R (r) = < sinYAw 7t e
n T n

—iw T
The term e S may be accounted for by letting

if m#n

(2.69)

(2.70)

(2.38)

(2.39)

with

£2.73)

(2.72)

(2.73)

(2.74)
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—i(mnt+dn)
U (t) = V. (t) e (2.75)
n n
where Vn(t) is a stationary process, and the dn are independent random
variables, uniformly distributed on [0,2n]. The dn are also assumed to
be independent of the Vn(t). It may be seen that equations (2.71) and

(2.72) are satisfied, and

—-iw T
U (£)U *(t+t)> = e 1 <V (£)V *(t+t)> (2.76)
n n n n
Therefore Vn(t) must satisfy only
Y (£)V *(t+0)> = 2 sin oA = (2.77)
n n T n

The numerical approximation to equation (2.51) now takes the form

—iw t+d )
w(t) =z ) Hw_,t) e v_(t) (2.78)
n

where the dn are independent and uniform on [0,2n], and the Vn(t)
satisfy equation (2.77). It is now possible to examine some common
impl ementations of this result.

For Awnt << 1, equation (2.77) reduces to
KV (£)V_*(t+T)> = Aw (2.79)
n n n

The approximation

V(t) = _[Aw (2.80)
n n

will be adequate over a time interval T <K Zi—' Over larger time
n
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intervals, equation (2.80) will introduce too much correlation into

u(t). This approximation gives

-i(wnt+dn)
u(t) = ) H(w_, t) }Amn B (2.81)
n

and is seen to be reasonable, provided Awn <X %, where T is the duration
of the simulation. Note that u(t) in equation (2.81) is not Gaussian.
If the number of terms is large, however, the Central Limit Theorem
guarantees that u(t) will be nearly Gaussian. Altermatively, Vn(t) may
be taken as a random constant whose value is normally distributed with

zero mean, and with variance Awn. Then, u(t) will be Gaussian.

If u(t) is statiomary, then
H(w,t) = H(w) (2.82)
and equation (2.81) may be rewritten as

u(t) = 2: S(w_ )Aw cos (0 t+d ') (2.83)
= n’" n n  n

where the real part of u(t) has been taken, and
d ' = ¢ + arg [H(w )] (2.84)
n n n

That is, the phase of H(w) has been absorbed into dn. The dn’ may be
generated as uniform on [0,2n]. In the nonstationary case, the

corresponding expression is
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u(t) = ) [S(w,t)Ae_ cos [0 t+d +6 (t)] (2.85)
= n n n n n

where
8 (t) = arg [H(ow ,t)] (2.86)
n n

The nonstationary simulation depends critically on the phase of H(w,t),
since the phase is time—dependent. Since a description of the process
by its evolutionary power spectral density does not include phase infor—

mation, Gn(t) is unknown. Normally, it is taken to be independent of

u(t) = }: S(o ,t)Aw  cos [ t+d '] (2.87)
5 n n n n

This assumption is probably justified when S(w,t) is smooth and broad-

time, so that

band, since equation (2.58) indicates that the phase is unimportant in
this case. The implications of this simplification are unclear, how—
ever, for more general nonstationary processes.

In the case of a modulated stationary process, the stationary
process is first generated, and the envelope is then applied. The sta-
tionary part, v(t), may be produced by the technique described above, or
by a variety of other methods unique to stationary processes. For exzam-

ple, a method proposed by Shinozuka [28] is

cos (w

<
=
I
>
-
g ™=

kt+a$k) (2.88)

where dk are independent random variables, uniformly distributed on
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[0,2nt]; and w, are independent random variables distributed according to

the probability density function

_ S(w)
plw) = S(w (2.89)

<]

[ swnae’

-—Q0

The normalizing constant A is found to be given by

@

£ = L[ swde (2.90)
The process described by equation (2.88) has power spectral density
exactly equal to S(w), and is Gaussian in the limit as N—=, It is
unclear how large N must be to give good results. Also, the realization
of the Wy is problematical.

Another method for generating a stationmary v(t) is matching of the

parameters of an auto—regressive, moving average (ARMA) digital filter

to the desired frequency characteristics. The output values,

v, = v(nAt) (2.91)
are given recursively by
p q
voo= ) ay ot ) bw (2.92)
k=1 k=1

where W, are independent, normally distributed random variables with

mean zero, and variance unity. The filter parameters ay and bk are
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chosen to give a "best fit” to the desired characteristics of v(t).
This technique has been used successfully in the modeling of ocean waves
[29]. It is generally very efficient, since no transcendental functionms
need to be evaluated.

The generation of a FMWN process may be accomplished by carrying
out the filtering in the frequency domain. A time series corresponding
to 6(t)w(t) is produced as a sequence of scaled, normally distributed
random variables. The discrete Fourier Transform of this sequence
(computed by the FFT algorithm) is then multiplied by H(w). The
transformed result gives the desired record.

Of ten, it is not the ground motion itself that is of interest, but
rather its effect on a structure. Considerable savings in computation

time are sometimes possible in this case.
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CHAPTER III

RESPONSE STATISTICS OF SECONDARY SYSTEMS

3.1 Introduction

In complex engineering structures, one is frequently concerned with
the dynamic response of a piece of equipment attached to a heavy struc—
ture. When the mass of the equipment is much less than the mass of the
structure, the former is often referred to as a secondary system.
Although the secondary system is small, its survival in an earthquake is
often essential, and a dynamic analysis is called for.

The general problem of the analysis of secondary systems has
received increasing attention recently, as it has become clear that
special considerations must be addressed. Although it is relatively
easy to write a solution for the dynamic response of a complete
primary/secondary system, it is more difficult to illuminate the
principal features contained in the solution. Simplification of the
numerical computations involved is also important for practical applica-
tion.

Penzien and Chopra [31] showed that the response of a single-—
degree—of-freedom secondary system attached to a multiple—degree—of-
freedom, classically damped structure could be approximated as a combi-
nation of two—degree—of—-freedom systems (one for each mode of the struc-
ture). This approximation breaks down if some natural frequencies of
the structure are closely spaced. Based on the same assumption, Biggs

and Roesset [30] proposed an empirical rule for obtaining the floor
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spectrum directly from the response spectrum of the ground motion. (The
floor spectrum is defined as the response spectrum corresponding to the
motion of a point in the structure in response to an earthquake.)

Several researchers have investigated the response of secondary
systems to stochastic ground motion. Primarily, attention has been
focused on obtaining the stationary response of a primary/secondary
system to stationary excitation. It may be argued that this will
represent the resfonse to a long duration earthquake with a nearly
stationary segment.

Singh [32] attempted to simplify the computation of the statiomary
mean square response of a single—degree—of—freedom secondary system
attached to a multiple—-degree—of—freedom primary system. His results
were valid if the secondary system’s natural frequency was not near a
natural frequency of the primary system. Expressions for the case of
exact tuning were later obtained [33].

Igusa and Der Kiureghian [12] used perturbation methods to simplify
expressions for the stationary response statistics of a multiple—degree-
of-freedom secondary system attached arbitrarily to a multiple—degree—
of-freedom primary system. Their results include the effect of interac-
tion, which is often neglected.

Very little work has been done on the response of secondary systems
to transient ground motion. Chakravorty and Vammarcke [34] obtained the
mean square relative displacement of a single—degree—of-freedom
secondary system attached to a single—degree—of—-freedom primary system,

in response to suddenly applied white noise. Vanmarcke [35] suggested a
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procedure for obtaining the floor spectrum in a multiple—degree—of—
freedom structure, using an approximation for the time-varying response
of a two—degree—of—freedom system to stationary ground motion.

The approach taken in this thesis leads to a general expression for
the time—varying statistics of the envelope of the response of a
secondary system to ground motion represented as a general stochastic
process. The primary system and secondary system are each represented
as single—degree—of—-freedom systems as in Figure 3.1. The results
derived here may be combined, as in reference [31], to approximate the

behavior of a more complicated primary system.

3.2 Review of Primary System Response

As a first step in analyzing the response of a secondary system,
this section reviews some features of the response of the primary system
in the absence of a secondary system. If interaction effects are
ignored, then the results presented herein will describe the motion of
the primary system even with a light secondary system attached.

There are many approaches to analyzing the response of a single-—
degree—of—-freedom linear oscillator to stochastic excitation. The
approach chosen here is analogous to that used for the secondary system
in the following section. Only a few results will be obtained which
will be useful later.

The relative displacement x(t) of the primary system is described

by the equation
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% % P x dibx = =zlE) (3.1)
Ilmlx w;x = -z .
x(0) = x(0) = 0 (3.2)
where —z(t) is a zero—mean Gaussian stochastic process described by the
evolutionary power spectral density S(w,t) (defined in Section 2.3.1).
z(t) is the absolute ground displacement.

The response x(t) to any ground motion z(t) may be written as the

Duhammel integral

£ 1 —zlml(t—r) .
2t = =g sin o (t-1) [-z(0)] dt (3.3)
wdl d1
0
where Wyq T 9y l—zi . This integral may be decomposed in harmonics of
the frequency wyq 28
x(t) = xl(t) cos w  t + xz(t) sin wgqt (3.4)
where
t
-Q, o, (t-T) o
x, (t) = - f 1 e zl L sin o, ,tl-z(7)] d=x (3.5)
1 031 d1l
0
t
-Q, 0, (t-T) o
x2(t) = j 1 e zl L cos w, tl-z(T)] dr (3.6)
wdl d1
0

For structural systems, Il will generally be small, and the
response x(t) will have the appearance of a harmonic wave of frequency

941 which is modulated by a slowly varying envelope. Thus
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x(t) = al(t) cos [md t + dl(t)] (3.7)

1

where al(t) and dl(t) are nearly constant over a period 2n/w al(t)

a1’

may be interpreted as half the mechanical energy in the oscillator.

Equation (3.7) may be decomposed in the form of equation (3.4) to give
xl(t) = al(t) cos dl(t) (3.8)
xz(t) = —al(t) sin dl(t) {3.2)

From these equations, the envelope al(t) may be expressed as

ai(t) = xi(t) +x§(t> (3.10)
tt
_ I f 1 —zlwl(Zt—tl—tz)
2
0 0 “d1
cos mdl(rl—tz)[—z(rl)][—z('cz)]d'cld'c2 (3.11)

Equation (3.11) expresses the stochastic process al(t) in terms of the
stochastic process —z(t). Its utility arises from the fact that it

linearly relates ai(t) to the cross product [—z(tl)][~z(rz)].
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Taking the ensemble average of ai(t) gives

tt
(2t-t,-T,)
2 1 e i %3
<a1(t)> = 2 f f e
“d1 0 0
cos mdl( 1 12)<[ z(t Y1I- z(r )])dr dr (3.12)

Recall that for broad-band ground motion,

@

1w(t2—t1)

Tzt D12t D = | Su,te d (2.58)

—Q

Substituting equation (2.58) into equation (3.12) and interchanging the

order of integration gives

t ©
1¢ (t-t,)
2 1 1 1
ar(t)> = —— jf e S(w,7) (0, t)dudt,  (3.13)
Y41 0 -o
where
t
T ot .
1 iwt
E(w,t) = f e cos w, T e dt (3.14)
0
But £(w,t) is sharply peaked at o = 9417 and
[ tw,t) do = 2n (3.15)

-0

Thus, taking S(w,t) as nearly comnstant over the peak of &,
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7
2 191 (t— -ty )

o J' S(wg,,7,)d7 (3.16)
®41 0

1

<ai(t)>

This result is identical to that obtained by Spanos [5], except that o

1
is replaced here by ®q1°
The complete distribution of al(t) can be deduced from equation
(3.16), since the distribution is known to be approximately Rayleigh.
The probability density of al(t) is
aZ
¥
, o (t)
pl(a;t) = 3 3 (3.17)
o, (t)
Thus
2 2
<a1(t)> = j a pl(a t)da
0
2
= 261(t) (3.18)
The density of al(t) is therefore given by equation (3.17), with
" v 191 (t-s)
cl(t) = S(wdl,s)ds (3.19)

O ey

In particular,
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o}

<a1(t)> f apl(a;t)da

0

,f% o, (t) (3.20)

3.3 Secondary System Envelope Statistics vs. Time

In this section, the statistics of the envelope of the response of
the secondary system are derived in terms of the evolutionary power
spectral density of the ground motion. Initially, the effect of the
secondary system on the primary system will be neglected to simplify the
analysis. Interaction effects will be considered separately in the fol-
lowing section.

The envelope of the secondary system response will be shown to have
statistics expressible in a form very similar to those of the primary
system. In particular, the mean square value of the envelope as a func-
tion of time is shown to be the convolution of a known function of time
with the evolutionary power spectral density of the ground acceleration.

The statistics of the secondary system envelope are derived in
closed form in the case of a suddenly applied stationary ground motion,
and in the case of stationary ground motion of finite duration. The

results are verified by simulation studies.

3.3.1 Integral Form of Secondary Envelope

The relative displacement y(t) of a non—interacting secondary

system is govermed by the equation



y + 2(2w2y + wiy = -z(t) - x(t) (3.21)

g(0) = (0) = 0 (3.22)

where z(t) is the absolute ground displacement and x(t) is the relative
displacement of the primary system.
The right—hand side of equation (3.21) may be expressed more simply

by using equation (3.1) for the primary system.

¥ s . 5

-z — %X = ZZlmlx + mlx
w w2 a,(t) cos [w,.t + d, (t)] (3.23)
= dl 1 d1 1 :

where equation (3.7) has been used together with the assumption that
11 <¢ 1. The error introduced by this assumption is negligible in view
of subsequent simplifications. Now y(t) may be expressed in terms of

the Duhammel integral representation

t
-Q 0, (t-T)
y(t) = j % e 12 . sin wdz(t—r) wzl al(r) cos [wdlt+d1(r)]dr (3.24)
d2
0

2
where de = w2 1—(2.

It will be assumed that y(t) has the appearance of a harmonic
oscillation with slowly varying amplitude, and possibly slowly varying

frequency. That is,

y(t) = a2(t) cos [w*(t)t + dz(t)] (3.25)

where az(t), w*(t), and dz(t) are slowly varying random functions of
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time. The envelope az(t) is of most interest for analysis purposes.

The representative frequency w*(t) would be important for an analysis of
fatigue of the secondary structure. The following analysis will produce
results for a2(t) which are independent of the value of w*(t).

Equation (3.24) exhibits two characteristic frequencies, ®41 and

© However, one of these frequencies may dominate the other. Equa-

d2-

tions (3.1) and (3.21) are characterized by the transfer function

1 21{ ® w + wi
Hy(m) = (3.26)

2 2 ; » g
(mz—w ) + 2112w2w (w1 ) ) * 21§1w1m

which gives the steady—state amplitude of y(t) in response to excitation

of the form

el = g (3.27)

Hy(m) is characterized by peaks near w, and vw,. If Il and 12 are small,

1 2
H (0) = : - L (3.28)
211“1 (m ) + 21(2m1m2
2
. 0, + 2iz w0
H (0,) ~ —t ! L (3.29)
y 2

2(2m§ (wi ) + 2111w1m2

If 0, << 0y then it may be verified that IHy(wl)l K |Hy(w2)|.

Similarly, if o, < ®

1 5 then |Hy(m2)| << |Hy(m1)|. Thus, when the two

frequencies are well separated, the response of the secondary system is
dominated by the lower frequency, although a small amount of the higher

frequency is still present.
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Equation (3.24) will first be decomposed in harmonics of ®41° This

procedure may be expected to yield good results for 0y < W since the

frequency o will certainly be present in y(t) in this case. The

d1

decomposition takes the form

y(t) = yl(t) cos i t + yz(t) sin w44t (3.30)
where
t
1 —zzwz(t—r) 2
yl(t) = f e sin mdz(t—r) ©iq al(r)
d2
0
cos [wdl(t—r) + dl(r)]dt (3.31)
t
1 —zzwz(t—t) ”
y2(t) = I o B sin mdz(t-t) ©4q al(t)
d2
0
sin [mdl(t—r) + dl(r)]dr (3.32)

If equation (3.25) is decomposed in a similar way, it may be seen that

yl(t) az(t) cos[o*(t)t — o, t + dz(t)] (3.33)

d1

yz(t) a2(t) sinlo*(t)t - ot + dz(t)] (3.34)

d1
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Thus,
2 2 2
az(t) = yl(t) + yé(t) (3.35)
t t
= I I £ 38 eﬂzzmz(Zt_tl—tz) sin 0w, (t-t,) sin 0w, ,(t-t,)
2 d2 1 d2 2
00 “a2
S ) de,d (3.36)
w4 ¥ryoT,) dride, .
where
X(tl,tz) = al(tl)al(rz) cos [mdl(rl—rz) + dl(vl) - 61(12)] (3.37)

The function X(tl,rz) is a random function which depends only on
the primary response x(t). X(tl,rz) can in turn be written in terms of
the ground motion z(t) by using the random functioms xl(t) and x2(t)

defined in equations (3.8) and (3.9). It may be verified that
X(tl’tZ) = [xl(tl)xl(tZ) + x2(t1)x2(t2)] cos w4 (tl_tZ)

+ [xl(tz)xz(tl) - x (t,)x,(t,)] sin w

1 ()2, (8, a1 (tl—tz) (3.38)
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Using equations (3.5) and (3.6),

(tl)xl(tz) + xz(tl)xz(tz)

ty £

J' IL Zlml(t *+t,~T,-T,)
0 O

2
Y41

cos mdl( 1 12)[ z(t )1[- z(r )lde drz (3.39)

x (t)x,(t,) - x (t,)x,(t,)

1"72°7°2°"1 171772772
t, t
1 72
I J_ _l_ 1wl(t1+t2 1 12)
2
0o 0 “d1

sin mdl(rl 12)[ z(r )1[- z(r )lde dtz (3.40)

Thus,

t, t

1 2

. _l_ (lm (t1+t -ty 2)

X(tl’t2) = f j ) cos wdl( 1- 2 rl+12)

0 0 d

[~2(t) ][~z (x,) ldx,dv, (3.41)

Equations (3.36) and (3.41) express ai(t) as a four—fold integral

involving the random function [—z(rl)][-z(tz)].
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A similar calculation may be made in the case that 0y < U In

this case, it will always be appropriate to decompose equations (3.24)

and (3.25) in harmonics of W4p° This leads to the expression

t t
a2(t) f I — e—zzmz(Zt i 2) cos w.,(t,—T,)
2 d2 "1 "2
oo‘”z
A A
x(tl)x(vz)drldr2 (3.42)
where
A "
x(t) = Zlelx(t) + wix(t) (3.43)

A
From equation (3.3), x(t) may be expressed in terms of the ground exci-

tation as

t
A -G 0, (t-7) ' g ¢a
x(t) = j 6 sin o, (t-7) + cos o, (t-t) J[-z(x)ldr (3.44)
wdl dl
0

3.3.2 Closed Form Solution for <a§(t)>

The equations derived above provide a complete description of the
stochastic process a2(t) in terms of the ground acceleration ;}t). In
principle, the probability distribution of a2(t) could be derived. How-
ever, only the second moment (a;(t)) is readily computed from these

equationms.

Consider first the case w, { ®

1 £ 0, Taking ensemble averages in equa-—

tions (3.36) and (3.41) gives
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tt 4
<a2(t)> f f _Ql —zzw 2 1 2) sin 0,,(t-t ) sin o ,(t-T,)
2 d2 1 d2 2
oo“’z
<h(rl,tz)>dtldr2 (3.45)
where
T, T
1 "2
191 (v, +t )
, _ 1 I
<k(1:1.1:2)> = I J. 2 cos mdl( 1” 2‘t::’,+‘r:)
0 0 d
<[- z(r )1I[- z(r )1>dx dt4 (3.46)
For broad-band ground motion,
53 - ® iw(t2~t1)
-zt )12t N> = [ SCo,t)e do (2.58)

-

Substituting equation (2.58) into equation (3.46) and interchanging the

order of integration yields

T
1
z CH (v, +T
. _ 1 1¥%27%3)
H(T,,7,)> -j - f S(0,75)&(1,,7,,75,0)dudr, (3.47)
0 "’d1 i

where
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2
[ - io(t,-t,)
» 171°4 _ 4 "3
&(tl,rz.rs.m) = j e cos mdl(tl Ty 13+r4)e dt4 (3.48)
0
But &(rl,tz,ts,w) is sharply peaked at 00 44 and
© 2nezlm113 cos v, (vt ,-t,) if 0<v <t
dli "1 "2 32
I §(tl,t2,t3,w)dw = 0 otherwise (348
—©

If S(w,r3) is assumed to be nearly constant over the peak of &, then

equation (3.47) may be simplified as
min(rl,tz)

¢ _ 2n ”
<l(11,r2)> = f e cos wdl(r1 12)

(3.50)
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Substitution of equation (3.50) into equation (3.45) leads to the

three—fold integral

& £ min(rl,tz)
<82(t)> _ f I I an Ilml(r +T,-27, ) —12w2(2t—11—r2)
2 mZ
00 0 d2

cos wdl( 1 72) sin 0y (t—rl)

sin mdz(t—rz)S(mdl,r3)dr3dt2drl

Because the integrand is symmetric in T and Ty

T, T
& 3 o, (T, +t 21 )

<a§(t)> =
(1)

O ey ot

d2

cos mdl( 1 12) sin 04 (t~rl)

sin mdz(t—rz)S(wdl,t3)d13d12dt1

where the integration is over Ty < T only.

f f 1 o Gyt :(2‘”2(“"’1“2
0 0

)

(3.51)

(3.52)
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Interchanging the order of integration in equation (3.52),

t t t
o, (t, +t Zt )
2 _ 1 S (v,
<a2(t)> = f S(mdl,ts) 2 f I e
0 d2 13 12
—Zzwz(Zt-rl—rz) . )
e cos (l)dl 1 ’52
sin mdz(t-tl) sin mdz(t—tz)drld'c2 drs (3.53)
t—
& 3 » 2 191 (2t-— 2r3—11 r2')
[IEICEN [ ] e
0 “’dz 0 0
. ]
Z2w2(tl +12 ) b ez )
e cos w,, (7, ',
. ' 5 ' ’ '
sin o ,7," sin 0,7, drl drz d'c3 (3.54)
where Tl' = t—rl, rz’ = t—rz. The term in brackets is a function of
t-t, only, so equation (3.54) may be written
t
2
<ay(t)> = [ u (t-s) S(oy,,s) ds (3.55)
0

where
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T

2 t 2
- 4nwy 2( 10yt f J, . T 0178,0,) (447,)
Hq 2
Y42 00
cos “dz(’1 12) sin ©49%4 sin wdzrzdrldrz (3.56)

Equation (3.56) is analogous to equation (3.16) for the second moment of

the primary system envelope. For the primary system, ul(t) is replaced
2n 8”211“’1t

The case where w, { w, is treated in much the same way. Beginning

2 1

with equations (3.42) and (3.44), it may be shown that

t
@l(£)> = [ u,(t=s)S(u, ) ds (3.57)
2 2 az, :
0
where
2 t T2
o - 4nwy —ZZ 10, t I J, e(zzwz-zlwl)(11+12)
Hy 2
“d2 00

sin (3.58)

cos o .(t,~t,) sin o a1

d2'"1 "3 ar’

tsz dt

1 2

The similarity of equations (3.56) and (3.58) indicates that a

general expression may be written which will be applicable to all wg and

© Let the subscript "a"” refer to the system with the lower frequency,

9°
so that
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w, = min (ml,mz) (3.59)

and Za is the corresponding damping coefficient. Similarly, let the
subscript "b" refer to the system with the higher frequency. Then equa-—

tions (3.55)-(3.58) may be generalized as

t
<a2(t)> = f p(t-s)S(w ,s)ds (3.60)
2 a’ .
0
where
2 t "2
) - 4no e—ZZamat j J_ e(zawa—zbwb)(rl+12)
# 2

Y42 00

T, sin w, T, dt,dT (3.61)

cos (11—12) sin ©4p%1 ib*2 147,

da

Note that in equation (3.60) it has been assumed that

S(w, ,t) = S(w ,t) (3.62)
da a

since S(w,t) is smooth.

The convolving function u(t) may be obtained in closed form. Let

<

= wab - zama (3.63)

Aw

2 2
- )
\/(wdb wda) + \ (3.64)

Note that Aw#0 unless 0, =0, and zl=12' The closed form expression for

p(t) when Aw=0 must be computed separately. For Aw#0, it may be shown
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that
" 2
“d1
2
wd2 2 _Zzamat
p(t) = 2 2 > deb e
(Aw) [(mdaﬂndb) 7]
—Zwa t
b 2 2 2 2 y
+ e [deb + (wda—wdb+\) ) (1-cos debt) + 2\)wdb sin debt]
- o t
+ 2w e Ia‘”a wab) (w, —w,.) cos (v, +0__ )t — V sin (0, +0 )t
db [ iz "4n 45 da®ap
- (wda+mdb) cos (wda—mdb)t + V) sin (wda—wdb)t] (3.65a)
For Aw=0, the corresponding result is
—2( o, t
u(t) = me R 1/zt2 e t sin 2w, t + L (1 - cos 2w, ,t)| (3.65b)
2u)d1 dl 4w2 d1

d1



- 63 -

Finally, note from equation (3.61) that

2nw2 —21 o t Et V(e )
() = —4 [fe 172 (t,~c,)
n 2 cos v, (7,-7,
“a2 00
sin wg, T, sin 0 T, drldrz (3.66)
by symmetry in T and Tye Hence, expanding cos 9ia (T Ty 2) yields
2
2 t
(t) = Zﬂmdl e Zzawat f e—Vr cos w, T sin w_, tdT
K 2 da db
“a2 0
2
t
-Vt .
+ I e sin 0, T sin o dt (3.67)
0

Thus, it may be seen that p(t)>0.

In summary, the second moment (ai(t)) is seen to be expressible as
a convolution of the evolutionary power spectral density S(w,t) of the
ground acceleration ;}t) with the non—negative p(t), given in closed
form in equations (3.65). In order to obtain the probability distribu-
tion function of a2(t), moments of all orders must be computed. How—
ever, it is reasonable to suppose that the secondary envelope a2(t) is
nearly Rayleigh distributed, as is the primary system. The Rayleigh
distribution arises as the distribution of the peaks of a narrow-band

random process. Since the Rayleigh distribution has only a single

parameter, it is determined completely by its second moment. Specifi-
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cally, the probability density of az(t) will be assumed to be

a2
¥,
Gz(t)
a 2
pz(a) = 3 e
(t)
%2
where
-cg(t) . ’/z<a§(t)>

In particular, the mean value of the envelope will be

,/—2’1 o, (t)
vz,/n<a§(t>>

3.3.3 Response to Finite Duration Statiomary Ground Motion

<a2(t))

(3.68)

(3.69)

(3.70)

{3,.71)

One application of the above results is to the case where the

ground acceleration is derived from a stationary process which is

modulated by a boxcar function of time. The evolutionary power spectral

density of the ground acceleration will be taken as

So(w) 0£t<T

S(a,t) = 0 otherwise

So(w) is the power spectral density of the underlying stationary

process, and T is the duration of shaking.

(3.72)

Substitution of equation (3.72) into equation (3.60) for t>0 leads

to
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2 _
<a1(t)> = So(wa) p(t) (3.73)
where
( t
I p(s)ds 0<t<T
) 0
p(t) = t (3.74)
J u(s)ds t>T
P
Let
t
p*(t) = [ u(s)ds (£30) (3.75)
0
Then
p*(t) 0<t<T
p(t) p*(t)—p* (t-T) £5T (3.76)

p*(t) describes the buildup of the secondary response from rest to
stationarity, when T is made arbitrarily large.

The integral in equation (3.75) may be carried out in closed form.
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For Aw#0,
n 2
Y41
2 2
md2 mdb Zzaw t
prie) = 2 Tt | T \7®
(Aw) [(wda+mdb) 7] aa
2 2
e R 20, upt
2zhwb

2 2 .2
* <—mdb(wda—wdb+v )+ WG o0,

) e—2”§bmbt

20

db
* T o +T o) 240, +0.)> [Z(Zamamdb—zbmbmda)
awa zbwb da db

l—e—(zawa+zbwb)t os (v, +w, )t
€0s 19492"%ap

cos Zmdbt

sin Zmdb t ]
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_ (m2— 2) _(za(’)a%‘zl:omb)t in ( ” )t
a %p)¢ sin (0, +o..

deb

T T e e e, o) [Z(Zawawdb+zbwbmda)
aa zb b da db

_e_(zawa+zbwb)t

1 cos (mdawmdb)t
= + t
+ (wz—mz)e (zama wab) sin (w, —0. )t (3.77a)
a b da db :
For Aw=0,
-2T, 0, t
. _ _n= _ 222 11
p*(t) 733 [1 (1+2(1w1t+211m1t )e
G
ﬂ —ZIlwlt
+ 1 -e
2%, 0,0
11741
-2T, 0, t
_n _ 194
-3 1941 (zlwd1+m1md1t)e cos delt
Ay Uy

-2 w, t
1
+ [(%r(i)wl - Ilmit]e zl sin 20t
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-2 mlt

S | _
3m2 2 [lel(l e cos delt)
1%d1

—Zlelt
+ 04 € sin delt] (3.77b)

These formidable expressions may be simplified considerably by

enforcing the assumption that Zl,z2<<1. To order zi (i=1,2), for Aw#O0,

equation (3.77a) becomes

2 2 2 2
. uCH 0y —ZIamat oy —Zwabt
p*(t) 2 2 21T (1 - e ) + T (1 - e )
(Aw) m2(m +o, ) a’a Ibmb
a b
) Zwb
2 2
(wa_wb) +u)za.mla(zzi-’-z19)
(T o +C w )t
[Z(Iaw§+zbw§) 1-e 2 Zb 5 cos (ma—wb)t
(T o +C w )t
+ (wz—wz)e =G zb b sin (0 -w )t] (3.78a)
a b a b

The oscillating terms in equation (3.78a) are significant only if w1:w2.
It may be seen that the terms in equation (3.77a) which oscillate
rapidly are of order zi and may be neglected. This is convenient, since

these terms would have been inappropriate for the slowly varying

envelope defined as az(t).
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If Aw=0, then equation (3.78a) is indeterminate. The corresponding

simplification of equation (3.77b) for this case gives

-2T, 0, t
. " m _ 233 171
p*(t) = 3.3 [1 <1+2"(1m1t+2‘(,1m1t e (3.78b)
1

Note that in equations (3.65), the approximation

- 2 > 2
Aw = \/ (0 =0y))" + wlmz(zl 12) (3.79)
is correct to order (i.

If T is large, the system will eventually achieve statiomarity.

Equations (3.73) and (3.76) indicate that at statiomarity

<32> = p*(cc) S

rLIT—. (ma) (3.80)

0

The stationary variance of the displacement of a secondary system driven

by white noise may be shown to be [4]

4 3
’ nSO 0, + o (I /12) + A
SR 3 2 2 (3.81)
bt Zgw (w-w) + A
2 172

where

A = 4o 1@ [1112(w1+w ) + o 1® ((1+z2)] (3.82)

SO is the constant power spectral density of the ground acceleration.

If the secondary response is narrow—band, then at stationarity



y(t) = a2(t) cos [w*t + d(t)] (3.83)

where az(t) and d(t) may be assumed to be independent, and w* is the

dominant frequency. Then

2 2
{y > Ya <32>s (3.84)

stat ~ tat

Equations (3.84) and (3.81) lead to an approximation for <a§>stat
based on an assumption of narrow-bandedness. A comparison shows
asymptotic agreement as m2/m1 — 0, as wz/ml — 1, and as wz/wl - =,
In these cases, the assumption of narrow—bandedness is valid. For
intermediate values of mz/ml, however, y(t) has a bimodal behavior.
Figures 3.2 and 3.3 show a comparison of the actual stationary response
and that predicted by the narrow-bandedness assumption. It may be seen

that the narrow-bandedness assumption underestimates the mean square

envelope.

3.3.4 Comparison of Results to Simulation Studies

In order to verify the results of this section, a series of
numerical simulations was performed. The ground motion was taken io be
white noise modulated by a boxcar of finite duration T. The number of

parameters may be reduced by letting

g = wt (3.85)
J/
soz 2 )
x(t) /2 x(&) (3.86)
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Fig. 3.2 Comparison of stationary mean square secondary envelope

(solid) with narrow-band prediction (dashed). Z; = 0,05,
tz = 0,01,0.035,0,10,
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Fig. 3.3 Comparison of stationary mean square secondary envelope
(solid) with narrow-band prediction (dashed), g1 = 0,01,
Ty = 0:01,0,05,0.10,
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¥z
S0

R

A
y(t) y(&) (3.87)

where S0 is the intensity of the white noise. The equations of motiomn

may then be written in dimensionless form as

A A A
x" + 2(1;' +x = 06(&)w(E) (3.88)
A A
T2y + %5 = e(ow® - T (3.89)
A A A A
x(0) = x'(0) = y(0) = y'(0) = 0 (3.90)
where
B = /o (3.91)
1 if 0¢&w, T
0(g) = 0 otherwise (el

w(t) is white noise with unit power spectral density. The parameters to
be varied are seen to be 11, 12, wz/wl, and wlT.

The simulations were performed using the algorithm described in the
Appendix. During each simulated earthquake, the amplitude was set equal
ly(t)l at the peaks of y, and interpolated linearly for all other t.
This assumes that |y(t)| coincides with the envelope at each peak, which
may not be true when y(t) is strongly bimodal.

The average value of a2(t) over 250 samples is shown in Figures 3.4
and 3.5 for various values of the parameters. The theoretical mean

envelope value is shown for comparison. In general, the theory gives
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conservative results., The difference is most pronounced at higher lev-—
els of damping and away from resonance, when the bimodality of y(t) is
greatest.

The intensity of response may be characterized by the maximum
achieved by the mean value of the envelope. Figures 3.6 and 3.7 show a

comparison of simulated and theoretical values for max
0<{t(=

<a2(t)>, plot-

ted as a function of wz/ml for fixed duration. Figures 3.8 and 3.9 show
the same comparison as a function of duration for fixed wz/wl. In both
cases, the theoretical values correspond closely to those obtained by

simulation.

3.3.5 Probability Distributions of a1§t2 and aZLL)

It has been assumed that al(t) and a2(t) are approximately
Rayleigh distributed. This assumption is reasonable, since the
distribution of the peaks of a stationary zero—mean Gaussian process can
be shown to approach a Rayleigh distribution as the process becomes more
and more narrow-banded [1]. In this section, the actual distributions
of al(t) and a2(t) are discussed.

Equation (3.11) for the primary system and equations (3.36) and
(3.41) for the secondary system are of the form

f, (t Ty2Ty ) [- z(r Y1[- z(r )]dr dt (3.93)

2

-]

O Sy

For the primary system,



=75~

40 -

30

20

10
w24a,> o
12
S ;’T =0.8
o -
30
20 L
10
1 1 I N 2 l 1 1 1 1 { _ 1 | 1 1
%9 5 19 is
at
2n

Fig., 3.4a Comparison of mean secondary envelope (dashed) with
simulation (solid). g = Z2 = 0,05, w;T = 207



-76=

40

30

20

10

«24a,> o
E;l/Z
0

Fig. 3.4b Comparison of mean secondary envelope (dashed) with
simulation (solid)., g; = g2 = 0.05, wi1T = 207



40

30 -

20 ~

10 -

0 1 1 1 1 | 1 1 1 1 | 1 g i ‘

b} S 10 15

wlt
2m

Fig. 3.4c Comparison of mean secondary envelope (dashed) with

simulation (solid).

Z;l = L2 = 0.05, (.le

20T



~78~

soo - %?1: =O.5
400 -
300
200 i~
100 -
w?/2<82> 0 3 1 1 | 1 | 1 { 1
172
S,
“2 -
S00 ~ ;-)T =0.8
400 B~
300 =
200 ~
100 ~
g [l | 1 | 1 i g i 1
0 10 20 ﬂl 30 410
2

Fig, 3.5a Comparison of mean secondary envelope (dashed) with
simulation (solid), &1 = 2 = 0,01, w;T = 807w



500 227 "0
400 |-
3go |
200 |-

3 ] L ] ] ]
.211. 30 10 50

27

Fig. 3.5b Comparison of mean secondary envelope (dashed) with
simulation (solid), Z; = s = 0.01, wT = 80m



Sao

400

300

400

300

200

100

Fig. 3+5¢

“2
T =|,5
|
_; o @ ﬁ 1 1 : T o
l0 20 ot 30 410 S0
s 4l
2n

Comparison of mean secondary envelope (dashed) with
simulation (solid). &1 = Z2 = 0.01, w1T = 80m



il o

wp /)

Fig., 3.6 Comparison of max <as(t)> with simulation (circles)
O< t<e
Ci1 = C2 = 0,05, wi1T = 20w

.



=82~

S00

AW

SJ?

100

SO e \K

0.5 .o 1

Fig. 3.7 Comparison of max <az(t)> with simulation (circles).
O<t<ee
Zi = L2 = 0,01, wiT = 80m



=83

S0

(3]
e

40

30

AW

20

10

Fig. 3.8 Comparison of max <az(t)> with simulation (circles)
Og <o
Z1 = G2 = 0,05, wz2/w1 = 0.9



150

wfilios

B (0]
100
a2
@) <@
EBI/Z
0
S0
0 4 | L | L | L | {
0 10 20 30 40 50
ol
2n
Fig. 3.9 Comparison of max <a2(t)> with simulation (circles)

Og <
Zi1 = Z2 = 0,01, w2/w1 = 0,9



- 85 -

-G, o, (2t-t_-t,)
_ % 175 _
fl(t’tl’tz) = e cos mdl(t1 t2) (3.94)

€
[=1
=

For the secondary system, if 0y < w,, equations (3.36) and (3.41) may be

combined, and the order of integration changed to show that

2
k& 941 1m1(11+12 1 2 —12w2(2t—11—12)
fz(t,t ,t) f I w—— e
t &
cos mdl( 1 t2 rl+12) sin 04 (t—tl) sin wdz(t—rZ)drldtz (3.95)

A similar expression may be derived for w2<w1. Note that both f1 and f

2
are symmetric in t1 and t2.

If ;kt) is broad-band with a smoothly varying spectrum, then the
excitation terms may be approximated by white noise with time-varying
intensity S(wl,t). It has been seen that the primary and secondary
system response may be approximated as the response to white noise.

With this motivation, consider the random variable

[ [ stepmpwizwin,) dujdz, (3.96)

where w(t) is Gaussian white noise with power spectral density equal to

unity. The random variable Y will represent the random variable ai(t)

if

gt ,t,) = fi(t,tl.tz)\/S(ml,tl)S(wl,tz) (3.97)

The integral in equation (3.96) may be discretized as



N N
Y = )} } g (AKX X (3.98)
j=1 k=1
where
A = t/N (3.99)
(j+1)A
X, = j w(t) dt (3.100)
J
A

Equation (3.98) will provide a good approximation to Y if A is small
compared with the scale of fluctuations of g(tl,tz). The Xj (j=1,...,n)
are independent, normally distributed random variables with mean zero
and variance 2n/A.

The distribution of the quadratic form in equation (3.98) is most
easily expressed in terms of its characteristic function. Let the prob-

ability density of Y be pY(y). Its characteristic function dY(E) is

then defined to be

ieY

dg (&) = <e'h (3.101)
= | pY(y)eigy i (3.102)

If dY(é) is known, then Py(y) may be recovered by Fourier inversion as

- -ify
py(y) = 32 [} dy(E)e de (3.103)
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It can be shown [2] that if U is a vector of N independent,

normally distributed random variables with zero mean and unit variance,
and A is a real, symmetric NXN matrix, then the characteristic function

of the distribution of Z=UTAU is

~ o~

%

d,(8) = [det (I - 2iEA)] (3.104)

where I is the NXN identity matrix and det( ) denotes the determinant of

the matrix. Equivalently,

N
(&) = II (1 - 2ip.¢)
Z =1 j

= (3.105)

where uj are the eigenvalues of A.
By analogy with equation (3.105), the distribution of Y in equation

(3.98) is seen to be

d(e) = 1 [1 - (4nA)ip,£] 2 (3.106)
j=1 4

where uj are the eigenvalues of the matrix G whose entries are
[G]ij = g(iA, jA) (3.107)

This result may be expressed in terms of the continuous function
g(tl.tz) by considering the limit as N—«, It may be seen that dY(ﬁ)

approaches the limit
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-]

dy(9) = M (1 - aning) ™" (3.108)
=1 ?

where Xj are the eigenvalues of g(tl,tz). Strictly speaking, xj are the

discrete values of A for which the equation
t

L) = [ gt t)d(t)dt, = Ad(t) (3.109)
0

possesses non—trivial solutions dj(t). g(tl,tz) is real, symmetric, and
ol 5 L . : ; s 2
positive definite [since it assigns a positive value a, for any w(t)].

Thus Lt has only positive real eigenvalues which may be ordered [3]
ll 2 XZ 2 l3 2 20 (3.110)

Equation (3.108) expresses dY(E) in terms of these eigenvalues. pY(y)
may then be recovered from equation (3.103).

Note that Ki will vary with t, so the distribution of ai(t) will
depend on t. Clearly, the result derived here is of theoretical rather
than practical importance. For practical purposes, the Rayleigh

approximation seems to give reasonably accurate results.

3.4 Interaction Effects

So far, it has been assumed that the mass of the secondary system
is negligible in comparison with the mass of the primary system, so that
the response of the primary system is unaffected by the presence of the
secondary system. This assumption simplifies the analysis considerably

by reducing the combined system to two chained single-degree—of—freedom
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systems.

As the mass ratio increases, the non—interaction approximation
becomes progressively worse, particularly if wl:wz. Ignoring interac-—
tion effects generally leads to conservative estimates of system
response, since the secondary system will actually absorb energy from
the primary system. However, in some cases (especially near resonance),
the assumption of non—interaction leads to gross overestimates of system
response.

In this section, the effect of primary/secondary interaction is
examined. A particularly simple method of analysis is developed for a

classically damped system.

3.4.1 Equivalent Non—Interacting System (Classical Damping)

The equations of motion for the two—degree—of—freedom

primary/secondary system, including interaction effects, are:

x + ZZlmlx + mix % e(ZIzwzy + wiy) = -z (3.111)

9% . 2 v

y+2(2w2y tw,y = -z 7X (3.112)
x(0) = x(0) = y(0) = y(0) = 0 (3.113)

where e=m2/m1 is the mass ratio.

Introduce the change of variables

xe(t) = x(t) - 6y(t) (3.114)
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T
ye(t) = Yo y(t)

where 6 is a constant to be determined.

become

x + 2(1+e)"§ wix o+ (1+0) 0’z
e 17e

+ 2(1+0) [0 0, - <— 5 e> Lo, |y,

5 s 5 _ =a
+ (1+9)[9w1 <1+6 + e> wz]ye = z

. % 1 . 1 2 s e

Ve = 2 1+6 ~C2m2ye + 1+6 27 ~ S
xe(O) = xe(O) = ye(O) = ye(O) = 0

Suppose it is possible to choose 6 so that

e“glml - <——+ g>"(2m =

2 ) 2
Gml - < I:a + e> wz = 0

Then,

(3.111)-(3.113), with e=0. In other words,

(3.120) can be satisfied, then X, and y, as defined in equations

(3.115)

Then equations (3.111)-(3.113)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

equations (3.116)-(3.118) reduce to the same form as equations

if equations (3.119) and

(3.114)-(3.115) satisfy the equations of motion of the non—interacting

primary/secondary system

’
e 4 211 o | Xe &

(3.121)
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Vo * 25,00,y + (0,)y, = -z -x_ (3,122)
xe(O) = xe(O) = ye(O) = ye(O) = 0 (3.123)
where
"(1' = \/1+e "cl (3.124a)
w ' = \'f1+e 0 (3.124b)
o T (3.124¢)
(2 - 1+ "(2 b
ro= L (3.1244)
Wy = 1+6 2 .
Since
y(t) = (1+0) y_(t) (3.125)

the actual (interacting) secondary envelope is obtained as (1+8) times
the secondary envelope of the equivalent non—interacting system of equa-
tions (3.121)-(3.123), with system parameters modified as in equations
(3.124). Thus, the results already obtained for non—interacting systems
can be carried over to the interacting system simply by modifying the
system parameters and scaling the response.

Unfortunately, the simul taneous solution of equations (3.119)-

(3.120) requires
'1—2 = — (3.126)

This is exactly the condition that the original two—degree—of-freedom
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system be classically damped. Because of the simplicity of the above
approach, it will be assumed temporarily that the system is classically
damped, to guarantee the existence of an equivalent non—interacting
system.

If equation (3.126) holds, two roots to equatiomns (3.119)-(3.120)

are available:

¥a
2 3 A 2

6 = %|(1+e) m—z 1) £ {3 (1+e) m—2—1 oz — (3.127)

There are therefore two equivalent non—interacting systems. It is
natural to choose 6 so that 8 50 as ¢ >0. Then, it may be seen from
equations (3.114)-(3.115) that the equivalent non—interacting system

approaches the actual system as ¢ >0. This leads to

Ya
2 2 . 2

o ] ® [0}
' 2 2
6 = %21 (1+e) -2 -1! + sgn (wz—wz)‘% (14e)| == ) -1 + ¢ — (3.128)
® 1 2 ® ®
1 } 1 1
where the positive square root is taken.

Figure 3.10 shows 6 as a function of the mass ratio g, for several
values of wz/ml. It may be seen that © is positive when W, < Wy, and
negative when W, > W

The jump in 6 at wy = 04 corresponds to a bifurcation in the choice

of the equivalent system. The solution will be continuous, however. If

0 is small, then equations (3.124) give
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Jian [ 1
’ — | ——
2 e wl 1+6 m2

o e

€

|
g
I

(o —mz) + 0

1

(3.129)

+0(6%) (3.130)

Thus, the natural frequencies of the equivalent non—interacting system

are more widely spaced than those of the original system. This effect

is most prominent near resonance, where a slight '"detuning’” may have a

large influence on the response. By comparison,

the changes in damping

and the scaling of y(t) are much less significant.

Near resonance, for small &, equation (3.130) simplifies to

The width of the resonance peak is of order

effect may be neglected if

lel <« Zl

At perfect resonance, equation (3.128) gives

6 = :t\/_? [1 + 0(e)]

Thus, interaction may be neglected if

g <K zi

19

(3.131)

so the interaction

(3.132)

(3.133)

(3.134)

Note that the restriction to classical damping requires Zl o= zz when

w, T

1 2°
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Away from resonance, the detuning is less significant, so equation
(3.134) remains a conservative criterion. If 11 = 12 = 0.05, this
requires that the secondary system’s mass be much less than 1/400 of the

primary system’s mass for interaction effects to be ignored.

3.4.2 Non—-Classically Damped Systems

If the two—degree—of—freedom system is not classically damped,
the above analysis does not apply. In this case, there seems to be mno
simplification of the interacting system, and the complete system must
be considered.

The stationary analysis of Igusa and Der Kiureghian [12] indicates

that the effects of interaction may be neglected if

g << ‘(1”(2 (3.135)

In any event, the assumption of non—interaction gives conservative

results when ¢ is small.
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CHAPTER IV

APPLICATION TO FLOOR RESPONSE SPECTRA

4.1 Introduction

An important application of stochastic analysis techniques for
secondary sytems is the development of floor response spectra. These
spectra serve the same function in the design of secondary systems as
the ground response spectrum does for primary systems.

A floor response spectrum is defined for a given ground motion
record, primary structure, and attachment point within the structure.
Let y(t) be the relative displacement of a single—degree—of—freedom
oscillator with negligible mass, which is attached at the specified
point, with natural frequency w and damping z. Then the floor response
spectrum value for this oscillator is defined as

SDZ(I,w) = max |y(t)l (4.1)
0Lt(=

While the ground response spectrum depends only on the ground motion,
the floor response spectrum also depends on the primary structure. It
is a convenient representation of the combined effect of earthquake and
structure on a range of secondary systems.

If the ground motion is modeled as a stochastic process, then y(t)
will also be stochastic. An extension may be made to the floor response
spectrum in the same way as for the ground response spectrum. The mean

floor response spectrum is simply
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8D, (T,w)> = < max ly()I> (4.2)
0<t<w

Alternatively, the design floor spectrum may be defined for a confidence

level p as that level FS(T,w;p) for which
Prob {snz(z,m) < FS(T,u;p)} = p (4.3)

Knowledge of the design floor spectrum for the point at which a
secondary system is to be attached greatly simplifies the design
problem. The floor spectrum contains the essential information about
the primary structure which is needed for evaluation of the safety of
proposed secondary systems. Most importantly, the design of the
secondary system may proceed without further resort to dynamic analysis
of the primary system.

A number of methods have been proposed for the approximate computa-
tion of floor spectra. In nearly every case, the design ground spectrum
is assumed known. Biggs and Roesset [30] developed an approximate rela-—
tionship between the ground spectrum and the floor spectrum, based on a
semi—empirical amplification curve. The curve was defined for a single—
degree—of-freedom primary system, then extended to multiple—degree—of-
freedom structures by a root—sum—squares rule.

Singh [32,33] and Vanmarcke [35] took similar approaches to floor
spectrum computation. The RMS acceleration of the secondary system in
response to stationmary ground motion was computed. (Singh obtained the
stationary response, while Vanmarcke took an approximation to the

transient response.) This value was expressed in terms of the RMS
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acceleration of the ground and each mode of the primary system. Assum-—
ing the ground spectrum to be a constant multiple of the RMS accelera—
tion of the appropriate oscillator allowed the floor spectrum to be
expressed in terms of ground spectrum values.

In this chapter, some simple approximations for the computation of
design floor spectra are discussed. In order to clarify the nature of
the approximations involved, a single—degree—of—freedom primary system

is considered.

4.2 Simple Analytical Approximation for Floor Design Spectra

Consider a primary system which may be modeled as a single—degree—

of—-freedom oscillator with damping and natural frequency o For the
y

1°
calculation of the floor spectrum for such a primary system, a secondary
system with arbitrary damping 12 and natural frequency Wy is attached as
in Figure 3.1. If the primary structure has more than one degree of
freedom, the present analysis will apply to each of the modes of the
primary system.

The analytical difficulties which arise in regard to design floor
spectra are similar to those associated with ground response spectra.
Although the time—varying distribution of the secondary system response
may be developed (as, for example, in Chapter 3), the determination of

the maximum response over a period of time is a much more formidable

problem.
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It may first be recognized that the amplitude of response is an
important value which scales the corresponding maximum response. The
maximum response will occur most probably when the amplitude tends to be

largest. With this motivation, define the dimensionless peak factor

r(’cl;wl,’czxwz) by

(T ,0.,%,,0,) = max ly(t)] / max <a,(t)> (4.4)
1 12 . 0 t(= 0{t(= -

where y(t) is the relative displacement of the secondary system, and
az(t) is its envelope, as defined in Chapter 3. The peak factor depends
explicitly on the primary and secondary system parameters, and also
depends implicitly on the nature of the ground motion. Note that
r((l,ml,KZ,wz) is a stochastic function. It should be noted that other
measures of the intensity of y(t) could be used in place of

max <a,(t)>. For example, the maximum RMS displacement of y,
0{t<(=

max <y2(t)>, could be used. In order to be generally applicable, the
0t (=

measure must be appropriate for transient ground motion. The maximum
mean envelope is used here because expressions are available from
Chapter 3 for this quantity.

A closely related function is the peak factor for the maximum
primary response. Let

rl("cl,wl) = max Ix(t)| / max <a  (£)> (4.5)
0{t(= 0t (=

where x(t) is the relative displacement of the primary system, and al(t)

is its envelope. rl(tl,wl) depends implicitly on the nature of the
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ground motion. Although Il and w, are fixed parameters of the primary
system being considered, the function rl(z,w) may be defined for all
and o in terms of the response of corresponding primary systems.

Since (al(t)> and (az(t)> are known for gemeral stochastic ground
motion, the determination of the peak factors is the crucial analytical
challenge in the development of ground response spectra and floor spec-—
tra. The ground spectrum is expressible in terms of rl(z,w), and the
floor spectrum is expressible in terms of r(zl’wl’zZ'wZ)'

If the ground motion is broad-band, the two peak factors r, and r

1

will be related. In Section 3.3.1, it was shown that if 0q and 0,
differ greatly, the lower frequency dominates the secondary response.

If w2<<w1, the primary system essentially transmits the ground motion
unchanged in the frequency range of the secondary system. Thus, if
m2<<w1, the secondary system responds as if it were on the ground. That

is,
r(zl,wl,z2,w2) = rl(zz,mz) if w,<<0y (4.6)
If w2>>w1, the secondary system responds quasi—statically to the primary

system, so that

y(t) = - x(t) (4.7)

8|8
ISR

In this case, therefore, y differs from x only by a scale factor, which

is removed in the definition of the peak factor. Thus,
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r(zl.ml,z2.w2) = rl(zl'ml) if 0,20, (4.8)

Hereafter, all spectra will be assumed to be mean spectra, in order
to simplify notation. A similar analysis may be carried out in the case
of spectra defined by a confidence value p. Assume temporarily that the
mean ground response spectrum is known for all I and w, and that the
corresponding stochastic model is known. Then <r1(z,m)> may be computed
as the ratio of the mean ground spectrum to the maximum mean primary
envelope, as

<r1(z,w)> = <SD(T,0)> / max <a1(t;z,w)> (4.9)
0{t<(=

where al(t;l,m) is the envelope of the oscillator with natural frequency
», and damping I. Equation (4.4) allows the mean floor spectrum to be
expressed as

<sn2(tz,w2>> = <r(ll,m1,(2,m2)> o?:fm <a, (t)> (4.10)

Combining equations (4.9) and (4.10) with equations (4.6) and (4.8)

gives the following limiting vaiues for the mean floor spectrum:

max <a,(t)>
0<{t<(=

- , i A3
<SD2(12,m2)> A —— (t:lz,w 3 <sn("(2 wy)> if w0y (4.11)
0<t¢o T .

max <az(t)>
0<t<
i 33
—— (tsll.w1>> <sn((1,m1)> if w >0, (4.12)
Bitts

IR

<sn2(12,m2)>

Note that in both cases az(t) refers to the envelope of the secondary
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system attached to the actual primary system. The quantity al(t;z,w)
refers to the envelope of a fictitious single—degree—of—-freedom system

attached to the ground.

Equations (4.11) and (4.12) may be combined as

max <a,(t)>
0<{t(=

<s1)2(’(2,m2)> = max <a (00> <sn("§e,we)> (4.13)
0<t < 1 e e

where le and w, are "equivalent” damping and frequency values exhibited
by the secondary system values. These parameters take on the extreme

values

(zz,wz) if m2<<m1

(Ze'we) - (tl,wl) if 0,220, (4-14]

For intermediate values of Y equation (4.13) may hold in an approxi-
mate sense, if Ie and 0, are chosen appropriately. The problem of
determining the floor spectrum then reduces to the choice of ze and 0,
identification of <SD(Ie,me)> from the ground spectrum, and computation
of the amplification factor in equations (4.13) (the term in brackets)
from the stochastic model.

The choice of w, may be made on the basis of the transfer function
of the primary/secondary system. Recall that
Zizlwlm + m2

Xt = 1 1 (3.26)
y

2 2 . 2 2 ’
(wz—m ) + 21(2w2w (wl—m ) + 21zlm2m

If ©q and w, are reasonably separated, there will be peaks at 0y and %
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Near m=w1, if Zl,z2<<1,

m2
1 1
H (w) = 2 2 2 2 (4.15)
y (w,—w (0,-0") + Zizlw ®
21 1 1
Near m=w2,
m2
H (o) = 1 1 (4.16)
y - (wz—wz) + 2i( 0.0 (mz—mZ)
2 z2 2 172
Thus, the area under the peak at 0y is approximately
m1+Aw 4
nw
2 1
a, = I8 ()% = s , (4.17)
v, Ao (0y=)” 2T 0]
Similarly,
m2+Aw m4
1
A, = j lHy(m)lzdm ~ "3 T (4.18)
w,~Aw 20, (wiu,
The ratio of the two areas is
o e
- = (4.19)
A 3
L [0
It seems appropriate to choose W, as 0 OT Wy, depending on which part

of Hy(w) is dominant. This leads to the result
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0y if 0, > i; 0y
Loe = z 1/3 (4.20)
» |2
(.02 1 (1)2 '(2 (!)1

The choice of Ie probably has less influence on the resulting pre-

diction than o, A simple choice for Ze is

T 1/3
[% if 0,y > i N

T = (4.21)

"(2 if ngz—z e

Note that equations (4.20) and (4.21) have the correct limiting behavior

given by equation (4.14).

4.3 Comparison of Approximate Theory to Simulation Studies

A series of simulations was performed to test the ability of equa-
tion (4.13) to predict actual floor spectra. The ground motion was
chosen to be white noise modulated by a boxcar envelope. There were a
number of reasons for this selection. An extremely efficient algorithm
for computing the response of a linear system to modulated white noise
is described in the Appendix. The use of this algorithm made possible a
greater number of simulations. The use of a boxcar envelope is
convenient, since closed form expressions are available in Chapter 3 for
the mean envelope in this case. Also, as explained in Section 3.3 .4,

the number of parameters to be varied in the study may be reduced to
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four: Il’ (2, mz/wl, and mlT, where T is the duration of shaking.

A preliminary step was the estimation of the ground spectrum to be
used in equation (4.13). For each set of parameters considered, from
100 to 400 sample ground motions were generated. The maximum oscillator
response to each motion was computed, and these maxima were averaged to
estimate the corresponding ground spectrum value. In all cases, the
sample standard deviation of the estimate was from 1% to 4% of the sam-
ple mean. A smooth spectrum was produced by interpolating logarithmi-
cally between the sample points. The resulting spectra are shown in
Figure 4.1.

The algorithm described in the Appendix made computation of the
ground spectra very efficient. On a PRIME 500 computer, it was possible
to simulate approximately 75 cycles of oscillator response to enveloped
white noise per second of real time. The time step was taken to be one-—
fifth of a period, and peak values were determined by cubic interpola-
tion, using the displacement and derivative at each time step.

Three sets of parameters were considered for floor spectrum simula-
tions: i) 11 = 0.05, 12 =0.05, o,T = 20m; ii) 11 =0.05, T, =0.01,

T = 40n; iii) 11 = 0,01, Zz = 0.01, o,T = 80n. The average floor

g
spectrum was found as a function of mz/wl. In each case, the theoreti-
cal value of <a2(t)> was obtained from equations (3.71), (3.73), (3.76),
and (3.78), with S(w) = SO‘ The value of <a1(t;ze.we)> was computed
from equations (3.19) and (3.20). Equation (4.13) was then used to

predict the floor spectra. Figures 4.2, 4.3 and 4.4 show a comparison

of the simulated floor spectra with the prediction. The dashed curves
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were obtained by putting ze = zl and w, = o in equation (4.13). The

1
solid curves result if ze = Z2 and w, = 0.

The simplified theory accurately predicts the floor spectra except
near resonance, where it overestimates the response by 20% to 40%. The
limiting behavior predicted by equation (4.14) is observed in the simu—
lations. The choice of 0, in equation (4.20) is not well tested by
these simulations. In the one case where Zl#zz, Figure 4.3 indicates
that w, = w, more accurately predicts the floor spectrum for the entire
range of w0, considered. Equation (4.20) would select 0, = 0 for
mz/ml > 1.7 in this case.

The failure of the simple theory to predict the resonance peak of
the floor spectrum may be attributed to the choice of (e. When wy and
w, are well separated, the secondary system behaves essentially as a
single—degree—of—-freedom oscillator on the ground, with the appropriate
frequency and damping. At resonance, however, the two resonance peaks
at wy and wz'in Hy(w) coalesce into one peak, which is then sharper than
either separate peak. A reduction of Ie near resonance would reflect
the narrowing of the resonance peak.

In order to study the effect of Ze on the height of the floor
spectrum peak, values of the ground spectrum were obtained for several
values of damping. These values were used in equation (4.13) for the
floor spectra. The values of the predicted floor spectra at resonance
are shown in Figure 4.5 as a function of Ze, for the three sets of

parameters. In gemeral, it is seen that a reductiomn of Ie results in a

lower predicted floor spectrum value. This tendency reflects the fact
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that as damping decreases, the maximum response increases more slowly
than the mean amplitude, at least for the small damping levels

considered here. The empirical result

T, = 445, (4.22)

gives good results at resonance for the three cases considered, but it

is not necessarily justified theoretically.

4.4 Further Approximations for Floor Spectrum Computation

The approximate theory developed in Section 4.2 depends on a
knowledge of both the ground spectrum and the stochastic model of ground
motion which leads to that spectrum. Normally, earthquakes are
prescribed by the design ground spectrum,Awithout reference to a
stochastic model. In this case, a stochastic model may be inferred from
the ground spectrum. The resulting model will not be unique. Mason
[24] described an approximate procedure for determining a modulated sta-
tionary process which is consistent with a given spectrum. The modulat-
ing function may be specified arbitrarily, indicating the non—uniqueness
of the inversion procedure.

The stochastic model is needed to compute the amplification factor
in equation (4.13). It may be hoped that the amplification factor is
not strongly dependent on the particular choice of model. In fact, the
computationally difficult inversion of the ground spectrum is sometimes
ignored, and a stochastic model is used which is not necessarily

consistent with the given ground response spectrum.
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If the stochastic model used for the computation of the amplifica-
tion factor is not required to relate to the ground spectrum, it is
possible to choose a model which simplifies the computation of the fac-
tor. For example, a long—duration stationaryvmodel may be chosen, and

the amplification factor approximated as

<SDZ(’C?,’“’2)> - stat (4.23)
SD(T ,0 )> ~ 2 :
e’ e <x>
stat
where (x2> is the stationary variance of the equivalent linear

stat

oscillator. Equation (4.23) becomes particularly simple if the ground
motion is white noise. However, the cumulative effect of these simplif-
ications may be considerable. An investigation of this approximation is
beyond the scope of the present work.

The dependence of the amplification factor on the stochastic model
may be seen in part by varying the duration of a boxcar—modulated white
noise model. Figures 4.6, 4.7 and 4.8 show the dependence of the
amplification factor on duration for the three sets of parameters
considered in this study, at resonmance. In all three cases, there is a
significant dependence on duration until the primary/secondary system
essentially reaches stationarity. Thus, if a shorter duration model is
appropriate, amplification factors derived from a stationary model may

introduce large errors into the calculation.



AMPLIFICATION FACTOR

-114-

4.0
3.0 -

1 | l 1 L L A l 1 H J A 1 A L )
oL 1o 20

Fig. 4.6 Amplification factor vs, duration for €1=52=0,05, wi=w2,
g =0,05,
e



AMPLIFICATION FACTOR

-115-

5.0
3.0 0- B | R &
w T/2n

Fig. 4.7 Amplification factor vs. duration for €1=0,05, z2=0.01,
W1=W2 Ce=0.0lo



-116-~

20.0

1
(@)

=

(&)

<

[V

=2

o

E 15,0

O

e

o

=

<<

i [ L ] 1 I 4 | L
w!T/Zn

Fig. 4.8 Amplification factor vs, duration for 7;=7,=0,01, wi=wy,
¢z =0.01.
e

100



= 117 —

4.5 Summary and Discussion

In this chapter, the results of Chapter 3 have been applied in a
simple way to the calculation of floor spectra. The use of the mean
envelope is not necessarily superior to the use of the time—varying RMS
value of y. However, this chapter presents only omne potential applica-—
tion of the envelope statistics derived in Chapter 3.

Simulation studies have demonstrated that a simple formula is
adequate for predicting floor spectra, except near resonance, where the
predicted spectra are overly conservative by up to 40%. This conserva—
tism may be reduced by more realistic selection of equivalent damping
near resonance.

It is possible that simpler formulas may be adequate for the pre-
diction of floor spectra in some special cases. An examination of these
simplifications was deemed beyond the scope of the present investiga-—
tion. The formula developed in this chapter is applicable to very

general stochastic models of ground motion.
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CHAPTER V

SUMMARY AND CONCLUSIONS

In Chapter II, stochastic models of earthquake ground motion were
discussed. Although an earthquake is, in principle, a deterministic
process, a level of uncertainty must be accepted when predicting strong
ground motion. This uncertainty is incorporated in the randomness of
the stochastic model.

While an ideal stochastic model may be based on an ensemble of
potential earth conditions, this is not practical. However, it is
possible to define reasonably simple models of ground motion which may
be expected to contain the essential features of uncertain earthquakes.
In Section 2.2, the modulated stationary process and the filtered,
modul ated white noise process were suggested as potential models. In
Section 2.3, methods of analysis were described for tramsient stochastic
earthquake models. Of particular importance is the evolutionary power
spectral density, which both defines and characterizes a nonstatiomary
stochastic process.

In Section 2.4, the problem of the calibration of a stochastic
model to actual data was addressed. It was seen that modulated station-
ary models are well suited to calibration by response spectrum.
Filtered, modulated white noise models are especially convenient when it
is desired to match a given Fourier amplitude spectrum.

Some aspects of numerical simulation of ground motion were con—

sidered in Section 2.5. The spectral representation of a nonstatiomary



= 119 =

process was used to develop numerical methods for simulation of a
general model. Modulated stationary processes and filtered, modulated
white noise processes may be simulated more efficiently.

Chapter III was concerned with the response of a secondary system
to ground motion of the type described in Chapter II. Attention was
focused on the envelope of the displacement of the secondary system. In
Section 3.2, the envelope of the primary system was derived. A similar
method was used in Section 3.3 to obtain the time—varying distribution
of the secondary envelope. It was found that for both the primary and
secondary systems, the mean square envelope, as a function of time, is
given by the convolution of a known function with the evolutionary power
spectral density of the ground acceleration. The convolving function
for the secondary system is given in Section 3.3.2.

The special case of boxcar—modulated statiomary ground motion was
considered in Section 3.3.3. The distribution of the secondary envelope
was obtained in closed form. A number of simulations were performed in
Section 3.3.4. These simulations indicate that the results give a
conservative measure of the system response, but not overly so. The
envelope tends to be most conservative when the system has a strongly
bimodal behavior.

In Section 3.4, the question of the effect of interaction was
addressed. A particularly simple method of accounting for interaction
effects was described for a system which is classically damped. In this
case, it is possible to define an equivalent non—interacting system

which may be analyzed by the previous methods. It was shown that the
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dominant effect of interaction is an effective detuning of the system,
which has special significance if the system was tuned to begin with.
For a detuned system, the effect of interaction was seen to be small.

One application of the non—interacting results from Chapter III was
considered in Chapter IV. There, the problem of the computation of
floor spectra was considered. In Section 4.2, it was postulated that
the effect of the structure on the spectrum was mainly contained in the
amplification of the envelope of response. An approximation was
developed which was highly accurate except at resonance. This method
requires a knowledge of both the ground spectrum and the stochastic
model for the ground motion. A suggestion was made for improvement of
the approximation near resonance. It was assumed that the original
method failed at resonance because it ignored the narrowing of the reso-
nance peak of the secondary system transfer functionm.

Even simpler methods were discussgd in Section 4.4. These methods
involve a number of untested assumptions. An evaluation of the validity
of these assumptions could be the focus of another investigation.

It is concluded that stochastic modeling of earthquakes leads to
analytically tractable solutions for the response of secondary systems.
It is therefore feasible to undertake a dynamic analysis of the seismic
loads on a secondary system using a realistic earthquake model. Before
the results of this thesis can be used practically, they would have to
be extended to multi—-degree—of—freedom primary structures. If the

frequencies of the structure are separated, this could be carried out by
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modal analysis [31]. The emphasis of the present work was on developing

a clearer understanding of the simple system.
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APPENDIX

EFFICIENT NUMERICAL SIMULATION OF A VECTOR MARKOV PROCESS

Consider the n-dimensional vector process X(t) defined by

~

X(t) = AX(t) + ro(t)w(t) (A.1)

~

X(0) = & (A.2)

where A is a constant nXn matrix, r and ¢ are constant n-vectors, 6(t)

~ ~

is a deterministic function, and w(t) is a stationary Gaussian white

: : 5 : t
noise process with unit power spectral demsity. X(t) represents an n

~

order Markov process.

If X(t) is known for some t, then the solution at any later time

~

may be written

At
X(t+At) = QADX(t) + [ Q(At-T) 8 (t+r) w(t+r)de (A.3)
- : T

where Q(t) is the fundamental matrix solution. Q(t) satisfies the

matrix equation

at) = Aa(t) (A.4)

Qo) = I (A.5)
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In a numerical simulation,

the process X(t) is evaluated at discrete

time intervals. Hence, let

X = X(kAt) (k=0,1,2,...) (A.6)
Nk ~
From equation (A.3), it may be seen that
X = Q(At)X + Y (A.T)
~k+1 ~k ~k
where
At
Y = [ Q(At-v)r0(kAt+o) w(kAt+r)de (A.8)
~k ~
0

The random vectors Y are normally distributed.

From equation (A.8), it
~k
may be seen that
<Y > = 0 (A.9)
~k
At At
T T.T :
AY = [ Q(At-t,)rr Q" (At=r,) QUjAt+T, )0 (kAt+r))
I 0 0
<w(jAt+rl)w(kAt+12)>dtld12 (A.10)
0 if jk
= At (A.11)

2n [ @(at-v) rr'Q" (At-1) 6 (kAt+r) de i 3=k
i -
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Thus, the Y are seen to be independent, normally distributed random
~k

vectors with zero mean, and covariance matrices

At
XY = 2n [ aat-v) rrlacat-r) 6 (kat+o) dx (A.12)
0

Suppose 6(t) may be approximated by a piecewise constant function

of the form

A
8(t) =~ 6(t) = 6([t/At] At) (A.13)

A
where [x] denotes the largest integer <{x. In order for 8(t) to be a
reasonable approximation to 6(t), At must be chosen sufficiently small.

Then, equation (A.12) may be simplified as

At
XY = 2707 (kAt) i Qiz) eeoble) de (A.14)

The problem of generating a sequence X which is consistent with
~k

X(t) is now reduced to the problem of generating independent normally

~

distributed random vectors Y which have the properties of equations
~k

(A.9) and (A.14). Then, X may be generated through the recursive rela-
~k

tionship of equation (A.7), with the initial condition

X = ¢ (A.15)
~0 ~



A convenient method for

a matrix C for which

Then, if Z is a vector of n independent,

~

CcC
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generating the random vectors Y is
~k

At
2n J. Q(t)rrThT(t) dt
d e

variables with zero mean and unit variance,

Y
~k

= 0(kAt) C Z

will have the desired properties. This is because

and

for k=0,1,2,..

., where

= BX + 6(kAt) C Z
~k ~k

to find

(A.16)

normally distributed random

(A.17)

(A.18)

(A.19)

(A.15)

(A.20)
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B = Q(At) (A.21)
At

e’ = 2n [ et (o) e (A.16)
O ~~

Thus, if B and C are known, the computation required at each time step
is:

1. Generation of n new unit normal variables;

2. Two nXn matrix—-vector multiplications;

3. Addition of two vectors.
Furthermore, the method provides statistically correct sample functions

X regardless of the size of the time step.
~k

The computation of the matrices B and C need be done once only for

a given (A, r) combination. Any numerical or analytical scheme may be

~

used to solve equations (A.4) and (A.5) for Q(At). The integral on the
right—hand side of (A.16) may be evaluated numerically as the solution
Q(t) is developed for 0{t{At. Since this integral is seen to be a
symmetric and positive definite matrix, it may be factored by Gaussian
elimination (without need for row exchanges) into the form LDLT, where L
is lower triangular, and D is diagonal. Then, C is taken to be the

lower triangular matrix

c = Lp? (A.22)

where ﬁ% is easily generated. The initial computation of B and C may be

time—consuming, but in comparison with the time required for the genera-



= 133 -

tion of a large number of samples of X(t), the extra time is negligible.

~

The advantage of the present technique over traditional numerical
simulation methods lies primarily in the ability to lengthen the time
step At. Currently, a standard method for the generation of white noise
is to let w(t) be approximated by a piecewise constant function. For
kAt < t < (k+1)At, w(t) is taken to be Wk, a zero—mean normally

distributed random variable with variance wn/At. The power spectral

density of such an approximation is

S(w) = —2— (1 - cos wAt) (A.23)
(wAt)
It may be verified that
0.95 < S(w)< 1 for 0 < wAt € 0.78 (A.24)
0.9 < S(w) £ 0.95 for 0.78 < wAt £ 1.12 (A.25)

Thus, to simulate the response of a narrow-band oscillator of frequency

w,, At is often taken to be T/50 or even T/100, where T = 2n/w0, the

OJ
natural period of the oscillator. This small time step is necessary to

ensure that the excitation is sufficiently "white'” over the necessary

range of frequencies. At each time step, w(t) is generated, and X is
~k+1

computed by a numerical scheme based on equation (A.1).
In the present scheme, w(t) is never computed. The time step At is

constrained only by the following considerations:
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1. At must be small enough to resolve 6(t).

2. At must be small enough to monitor the features of X(t) which are

~

being observed.
For example, if the peaks of a narrow-band oscillator are being
observed, it is possible to choose At so that only five data points per
period are computed. (The interpolation of the peak value must be
carried out with care with this broad time step.) This results in a
speed—up of an order of magnitude over standard simulation techniques,

while maintaining exactly the white noise nature of the excitation.



