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ABSTRACT 

This thesis is concerned with the earthquake response of light 

equipment in structures. The motion of the ground during an earthquake 

is represented as a stochastic process in order to reflect uncertainty 

in the prediction of such motion. A number of different stochastic 

earthquake models are considered, and analytical methods are described 

for these models. 

The response of equipment in a structure to stochastic ground 

motion is derived, in the case of a single-degree-of-freedom secondary 

system (equipment) attached to a single-degree-of-freedom structure. 

The distribution of the envelope of the secondary system displacement is 

obtained for general transient ground motion. Closed form expressions 

are computed for the transient response to stationary ground motion. 

The effect of the interaction of equipment with the structure is 

described by the introduction of an equivalent non-interacting system. 

However, this method applies only to classically damped systems. 

The results are applied in a simple way to the problem of the 

computation of floor spectra. It is found that the ground spectrum is 

amplified in a simple way, except near resonance, where special 

considerations must be addressed. 
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CHAPTER I 

INTRODUCI'ION 

A problem which has received increased attention recently is the 

design of secondary systems to withstand seismic loads. A secondary 

system may be a piece of equipment or a structure which is distinguished 

from the supporting primary structure. Secondary systems are usually 

characterized by a mass which is small in comparison with the mass of 

the structure on which they are supported. Frequently, such 

substructures are essential for the safety of the occupants of the 

primary structure and may have even greater importance. This is true 

especially in the design of crucial facilities such as a nuclear reac

tor. 

The motion of a secondary system during an earthquake is influenced 

primarily by resonance effects between the equipment and the primary 

structure. In order to account for these effects, the dynamic response 

of the system must be modeled. 

In this thesis, the dynamic response of secondary systems to 

earthquakes is considered. The first step in such an analysis is the 

modeling of earthquake ground motion. The use of a stochastic process 

to model ground motion is widely accepted. In Chapter II, a firm basis 

for stochastic modeling of ground motion is given. 

The transient nature of an earthquake is an essential feature, but 

is often neglected or disguised by the use of stationary earthquake 

models. In Chapter II, transient earthquake models are discussed, and 
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methods of spectral analysis for transient models are described. A 

convenient way to characterize transient ground motion is by its evolu

tionary power spectral density, a generalization of the power spectral 

density for a stationary random process. In order to calibrate model 

parameters for a specific earthquake, however, a more restricted model 

must be selected. Two different models, the modulated stationary 

process, and the Ifltered, modulated white noise process, are discussed 

in Chapter II. Some considerations in the numerical simulation of 

ground motion are also discussed. 

The response of a secondary system to transient ground motion is 

considered in Chapter III. In order to simplify the analysis, both the 

primary structure and the secondary system are modeled as single-degree

of-freedom linear oscillators. An understanding of this system is 

essential to the understanding of more complicated systems. The ground 

motion is characterized by its evolutionary power spectral density, in 

order to allow for a general stochastic model. 

Initially, the effect of the secondary system on the primary system 

is assumed to be negligible. The response quantity considered in Sec

tion 3.2 is the time-varying envelope of the relative displacement of 

the secondary system. The use of the envelope is advantageous when the 

response fails to be narrow-band, since it is certain to be nearly 

Rayleigh distributed. 

process.) [36] 

(It is known to be such for a stationary 
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The mean square value of the envelope as a function of time is 

derived as the convolution in time of the evolutionary power spectral 

density of the ground motion with a known function, which depends on the 

parameters of the system. In the special case of ground motion which is 

a finite portion of a stationary process, the mean square envelope is 

derived in closed form. Simulation studies indicate the validity of the 

equations. 

The effect of interaction is considered in Section 3.4. It is 

found that a simple transformation allows an interacting system to be 

described in terms of an equivalent non-interacting system. This 

approach is valid only if the system parameters are such that the two

degree-of-freedom primary/secondary system is classically damped. 

In Chapter IV, the results of Chapter III are applied to the compu

tation of floor response spectra. A simple approximation is shown to 

give good results except very near resonance. Near resonance, the 

approximation may be improved considerably by accounting for the 

increased narrow-handedness of the system response. 

References to previous work in stochastic modeling and the analysis 

of secondary systems may be found in the body of the thesis. Chapter II 

is primarily a synthesis of current practice and theory in a coherent 

form. Chapter III presents new results on the envelope of a secondary 

system. The goal of Chapter IV is a critical analysis of some basic 

assumptions sometimes used in floor spectrum calculations. A simple 

system is chosen in order to evaluate the validity of these assumptions. 
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CHAPTER II 

STOCHASTIC MODELS OF EARTHQUAKE GROUND MOTION 

2.1 Introduction 

In this chapter, stochastic models of strong ground motion are 

discussed. The development of earthquake models is of obvious impor

tance in the design and evaluation of engineering structures. A realis

tic model of ground motion, together with an accurate model of struc

tural response, allows the structure to be subjected to earthquake 

forces in advance of the actual destructive event. 

In theory, the earthquake process is deterministic. If the state 

of stress, material properties, location of fractures, etc., were known 

throughout a region, and tectonic processes were completely understood, 

then the ground motion z(t) at a given site would be known in advance. 

Of course, such complete information will never be available, so engi

neers and seismologists must accept a level of uncertainty. One 

objective of earthquake research is to reduce this uncertainty. 

A useful earthquake model will incorporate as much knowledge as 

possible of the state of the earth and the physical processes involved, 

and at the same time will account for the uncertainty that remains. At 

present, models tend to be formulated as deterministic processes at 

lower frequencies, and as stochastic processes at higher frequencies. 

(The breakpoint seems to be at periods of several seconds.) The reason 
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for this dichotomy may be seen by exploring the sensitivity of measured 

ground motion to uncertainty in knowledge about the state of the earth. 

Long period waves are generated primarily by large-scale source 

mechanisms, such as average rupture velocity and stress drop. Varia

tions in stress and material properties produce variations in long 

period waves only through spatial averages. Similarly, long period 

waves respond primarily to large-scale averages of material properties 

as they propagate from source to site. Thus, low frequency recordings 

at the site are relatively insensitive to local variations in the state 

of the earth. Source models and earth models seem to be sufficiently 

accurate at present to allow deterministic modeling at these frequen-

cies. 

High frequency recordings, which are of most significance to many 

engineering structures, are much more sensitive to local variations. 

High frequency energy is generated at the source primarily by local 

stress concentrations. The se waves are strongly affected by variations 

in material properties on the scale of the wavelengths involved. Thus, 

it is seen that prediction of high frequency ground motion requires 

detailed knowledge of the state of the earth. 

A stochastic model is appropriate to this situation in much the 

same way that probabilistic models apply to errors in measurements of 

physical quantities. Although the actual earthquake process is 

understood to be deterministic, it is replaced by a stochastic process 

in order to reflect the uncertainty of our knowledge. The present state 

of knowledge is embodied in theoretical descriptions of the earthquake 
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process. including some understanding of the effects of soil behavior at 

the site, together with ground motion from past events recorded on 

strong-motion and teleseismic instruments. 

Consider. in principle, the ensemble of earth states and tectonic 

conditions which are consistent with currently available information. 

Each member of the ensemble will have averaged properties which agree 

with models developed from long period data and theoretical studies. 

Samples from the ensemble will differ, however, on a smaller scale. 

Each sample will therefore give rise to a different prediction of the 

strong ground motion at a particular site. These differences will be 

much more pronounced at high frequencies than at low frequencies. The 

resulting ensemble of predicted ground motion will represent a stochas

tic process. The low frequency part of the motion, though a stochastic 

process, exhibits enough consistency throughout the ensemble to be well 

described as a deterministic function. 

It should be reiterated that the actual earthquake process is 

deterministic. However, variations in the source and earth properties 

-- on a scale which significantly affects gr ound motion-- cannot be 

distinguished with currently available data. Thus, an appropriate model 

for strong motion must be described as an ensemble of records, based on 

an ensemble of earth states, any of which must be considered equally 

likely. The stochastic model is therefore seen to be a mechanism for 

reflecting uncertainty. This motivation for using stochastic processes 

in strong-motion modeling leads to methodologies al r eady in use. How

ever, such methods are typically motivated by observation of the 
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"random" appearance of recorded accelerograms. The motivation given 

here may be of more value in clarifying the nature of the ensemble which 

underlies the random processes involved. 

A stochastic earthquake model is defined by specifying the nature 

of the ensemble of potential ground motions. In principle, this may be 

accomplished by producing an ensemble of earth states, and deducing the 

resulting ensemble of ground motions. In practice, such a procedure is 

impossible for two reasons. For one thing, "current knowledge" is not 

packaged in mathematical form to allow the ensemble of possible states 

to be produced. Secondly, the generation of ground motion for a suffi

ciently detailed source and earth model would be computationally infea

sible. Thus, the stochastic ground motion must be constructed on some 

other basis. 

There are several conflicting objectives in the selection of a 

stochastic model. Primarily, the model should realistically reflect the 

features of an actual earthquake. These features include the frequency 

content of the ground motion (which may vary with time) and the duration 

of shaking. At the same time, it should be possible to calibrate the 

parameters of the model to observed data with reasonable accuracy. 

Otherwise, the model will be of no practical value. The more parameters 

there are in the model, the more difficult the calibration process will 

become. Yet, if insufficient parameters are included, the model cannot 

be expected to be realistic. Finally, the model should be mathemati

cally tractable. For analytical work, this means the mathematical 

description should be relatively simple, and operations such as 
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filtering of the motion should not be overly involved. For numerical 

work, it is desirable that an efficient scheme for generating an ensem

ble of ground motion records be available. 

2.2 Review of Stochastic Models 

As strong-motion records have accumulated over the past 50 years, a 

number of stochastic models have been proposed. Most of these models 

fall into a few broad categories. A brief review of these models is 

presented here. 

2.2.1 Stationary Models 

One of the simplest of random processes is a zero-mean, Gaussian 

stationary process. Because stationary processes are convenient and 

well-understood, much effort has gone into attempts to model earthquakes 

as stationary processes. Clearly, such a model can only be used to 

represent the central high-intensity part of a strong-motion record. It 

cannot be expected to model short-duration earthquakes, or the buildup 

or tail of the ground motion. 

In 1947, Housner [14] suggested a model which was essentially white 

noise -- a large number of impulses arriving at random times. Others 

used the white noise model [15,18] to investigate structural behavior in 

earthquakes. 

As more data became available, it was possible to propose non-white 

stationary models with frequency content matching observed records. 

Housner [16] used a superposition of one-cycle sine pulses arriving at 
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random times, with the average number of pulses depending on frequency. 

Tajimi [17] proposed a computationally simple form for the power spec-

tral density of a stationary model. 

The primary motivation for the use of a stationary model is the 

high level of development of the theory of stationary processes. A 

zero-mean, Gaussian stationary process u(t) is completely determined by 

its autocorrelation function, defined as 

(u(t)u(t+'t')) (2.1) 

R('t') is independent of t because u(t) is stationary. Equivalently, the 

process may be specified by its power spectral density 

S(w) ....!... 
2n 

CD 

(2.2) 

The autocorrelation may be recovered from the power spectral density by 

Fourier inversion. 

CD 

( 2.3) 

-CD 

Setting 't'=O, 

CD 

J S(w)dw (2.4) 

-CD 

Hence, S(w) may be interpreted as a frequency decomposition of the total 

energy. 
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Clearly, a stationary model allows complete freedom in specifica

tion of the frequency content of the earthquake. However, this fre

quency content must be consistent throughout the earthquake. Also, the 

duration of the ground motion is not explicitly included in the model, 

and must be artificially accounted for. This has often been done by 

considering a finite portion of the stationary process. For long

duration earthquakes, the beginning and ending phases may be expected to 

be unimportant. The effect of ignoring these phases is not clear, how

ever, especially in the case of medium- and short-duration earthquakes. 

2.2.2 Modulated Stationary Models 

The transient. nature of the earthquake process may be modeled 

explicitly by modulating a stationary .process with a deterministic func

tion of time. If the modulating function is reasonably smooth, it will 

not significantly affect the frequency content of the resulting record. 

Thus, standard methods may be used to generate the stationary part of 

the model. The envelope is generally chosen empirically. 

The stationary model of Section 2.2.1 is actually a special case of 

a modulated stationary process. A finite segment of stationary ground 

motion is produced by an envelope which has a "boxcar" shape. It seems 

preferable to explicitly include the modulating function in the model, 

even in this simple case. 

Several forms of envelopes have been proposed. Jennings, Housner, 

and Tsai [19] used an envelope composed of a quadratic buildup phase, a 

constant phase, and an exponentially decaying tail. Shinozuka [20] 
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proposed the form 

9( t) (
-at A e - (jDa>O) (2.5) 

Saragoni and Hart [21] suggested an envelope of the form 

9(t) (2.6) 

In general, envelopes are chosen with only a few parameters to be 

estimated, such as intensity, duration, and buildup time. 

Modulated stationary processes produce artificial accelerograms 

which resemble strong-motion records. The parameters of the model are 

the stationary frequency content and the modulating function. This type 

of model is therefore able to represent the major features of strong-

motion average frequency content, intensity, and duration. It is 

unable to reproduce time-varying frequency content. A general charac-

teristic of strong-motion records is a shift from higher frequencies to 

lower frequencies toward the end of the record. This is probably of 

secondary importance for many structures, but may be significant for 

yielding structures. 

2.2.3 Filtered, Modulated White Noise Models 

Modulated stationary processes are used in modeling primarily 

because of their computational convenience. One drawback in their use 

is the lack of physical significance of the envelope. A model which has 

a more solid basis physically is the filtered, modulated white noise 

(FMWN) process. A FMWN is defined to be the result of passing 
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deterministically modulated Gaussian white noise through a linear, time

invariant filter. As in the case of a modulated stationary process, the 

parameters available are the modulating function and the frequency 

characteristics of the filter. The two processes are distinguished by 

the order in which the operations of filtering and modulation are 

performed. Since a stationary process may be conceived as filtered 

white noise, a modulated stationary process is expressible as white 

noise which is first filtered, then modulated. A FMWN process is white 

noise which is first modulated, then filtered. 

A FMWN model visualizes the earthquake process as a white noise 

"source" which is deterministically modulated, and then filtered by the 

transmission path. (Actually, the filter characteristics are determined 

in part by source properties as well as the transmission path.) The 

envelope in this case is associated with the source mechanism. Although 

this logic is plausible, the model does not directly allow for random

ness in either the transmission path or the envelope. If variations in 

the path produce only phase changes in the arriving waves, these may be 

absorbed effectively in.to the phase of the white noise. Amplitude 

effects due to transmission path variations are not allowed in the 

model, however, since the path is assumed to be deterministic. 

In spite of the assumed lack of randomness in the amplitude magnif

ication characteristics of the transmission path, the FMWN model remains 

a reasonable compromise between physical authenticity and computational 

or mathematical convenience. It has the same parameters as a modulated 

stationary process model, and is rather more plausible on physical 
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grounds. The artificial records produced by the model exhibit a slight 

frequency shift with time due to transient behavior of the filter, but 

it is unlikely that this is related to the actual phenomenon observed in 

strong-motion records. 

A FMWN process is defined mathematically as 

t 

u(t) J h(t-·t) 9(·t:)w('t')d't' (2.7) 

-co 

where 9(t) is the deterministic envelope, h(t) is the impulse response 

of the filter, and w(t) is white noise with power spectral density equal 

to unity. By comparison, a modulated stationary process may be written 

as 

t 

u(t) e < t > f h < t -'t' > w < 't' > d 't' 

-co 

In this case, 9(t) is the envelope, and 

S(w) 

is the power spectral density of the stationary process, where 

H(w) 

co 

J h( t) e- iwt dt 

0 

H(w) is the transfer function of the filter. 

(2.8) 

(2.9) 

(2.10) 
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If the filter characteristics and envelope functions are identical, 

the difference between a modulated stationary process and FMWN process 

may be seen to depend on the smoothness of 9(t). If 9(t) is very flat, 

then it may essentially be assumed constant in equation (2.7) for the 

FMWN process, and taken out of the integral, resulting in a modulated 

stationary process. Thus, for earthquakes with a long section of quasi

stationary motion, both models will have similar characteristics. The 

differences will appear in the beginning and tail of the record. The 

two models are thus in greatest contrast in the modeling of shorter 

duration earthquakes. 

Shinozuka and Sato [20] performed numerical simulation of a long 

duration earthquake using both models, and found the two indistinguish

able for their choice of 9(t) and h(t). Boore [10] has used a FMVN 

model successfully in reproducing peak velocity, Wood-Anderson response, 

and response spectra of strong-motion records over a wide range of dura

tions. 

2.3 Spectral Analysis of Transient Stochastic Processes 

For purposes of characterizing and calibrating stochastic models, 

it is desirable to use frequency domain analytical methods. The power 

spectral density is a powerful tool in the analysis of stationary random 

processes because it completely defines the process while describing the 

frequency decomposition of the total energy. In this section, a number 

of frequency domain descriptions are discussed which apply to transient 

stochastic processes. 
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2.3.1 Fourier Analysis 

One advantage of transient models (such as modulated stationary 

models and FMWN models) over stationary models is the possibility of 

direct Fourier analysis, without having to resort to delicate limiting 

arguments. If the sample functions of a transient model are u(t), then 

each will possess a Fourier transform 

U(w) J u(t) e-iwt dt 

0 

(2.11) 

Taken as an ensemble, U(w) represents a complex random process. If u(t) 

is Gaussian, then the real and imaginary parts of U(w) will be Gaussian 

also. If u(t) is zero-mean, then so is U(w). 

The amplitude spectrum of u(t), defined for each sample as IU(w)l, 

is a common measure of the frequency content of an earthquake. The root-

mean-square (RMS) amplitude spectrum, defined as 

A(w) (2.12) 

measures, in an average sense, the frequency content in a given model. 

The RMS amplitude spectrum is an imperfect description of the process, 

since variation of frequency content with time is lost when the phase is 

ignored. 

For a modulated stationary process, defined in equation (2.8), it 

may be seen that 
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(X) t 

u<w> f 9(t) 

-co -co 

Since w(t) is Gaussian white noise, it follows that 

(w(t)> 0 

Therefore, if 0(t) is any complex-valued function, 

b b b 

<I J w( 't') d('t) d·rl
2 > ff (w('t'1)w('t'2))d('t'1)d*('t'2)d't'1't'2 

a a a 

b 

21T f 2 
lei< 't') I d't' 

a 

This formula may be applied to equation (2.14) to yield 

...!.. 
21T 

2 
(X) (X) 

f J h(t)9('t'+t)e-iwt dt d't' 

-CD 0 

Applying Parseval' s formula, this integral may be expressed as 

J l~(w,w') 12 
dw' 

- CD 

where 

(2.13) 

(2.14) 

(2 . 15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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(X) (X) 

<P(w,w') ..1... f -iw''t f h(t)e('t+t)e-iwtdt d't 27T 
e 

-<D 0 

(X) (X) 

f h ( t ) e- i ( w-w' ) t ..1... f 9('t+t)e-iw'('t+t)d'tdt 
27T 

0 -(X) 

H(w-w' )9-(w') 

H(w) is defined in equation (2.10), and 

9-(w) ..1... 
27t 

(X) 

J 9 ( t ) e- iwt d t 

-(X) 

Therefore, combining equations (2.9), (2.19), and (2.21), the RMS 

(2.20) 

(2.21) 

(2.22) 

amplitude spectrum of a modulated stationary process is found to be 

(X) 

A(w) J S ( w-w ' ) I&( w ' ) 12 
dw ' (2.23) 

-(X) 

where S(w) is the power spectral density of the underlying stationary 

process. 

The RMS amplitude spectrum of a FMWN process is much simpler to 
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obtain. From equation (2. 7), it may be seen that 

CD t 

U(w) f f 
-oo -Q) 

fco { 1 -iwt 
w( ·t') 

2
7T 9( ·de 

-co 

1 -iwt 
CD { } !co w(~) 2 7T 9(~)e H(w) d~ 

Applying the formula of equation (2.17) in this case leads to 

Therefore, for a FMWN process, 

A(w) IH(w) I ...1. 
27T 

CD 

-co 

CD 

-CD 

(2 .24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

Alte~natively, Parseval's formula may be applied to the integral in 

equation (2.28) to give 

CD 

A(w) IH(w) I J l&(w) 1
2 

dw (2 .29) 

-co 

A comparison may be made between equation (2.23) for a modulated 

stationary process and equation (2.29) for a FMWN process. Denote the 

former by A
1 

(w) and the latter by A2 (w). Since S(w) = IH(w) 1
2

, it may 
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be seen that 

J A;(w-w')r(w') dw' (2.30) 

-CD 

where 

r (w') 
<D 

(2.31) 

-CD 

A~(w) is therefore a weighted average of A;(w). If there exists a Aw 

for which r(w) « 1 for lwl > Aw, and A
2

(w) varies slowly as w changes 

by Aw, then it may be asserted that 

( 2 .32) 

The general conditions for this assertion are that 9(t) vary slowly, and 

that A(w) be smooth. 

Fourier analysis is more delicate for stationary processes, since 

the sample functions do not possess Fourier transforms. Some insight is 

provided by considering a stationary process to be the limit of a FMWN 

-alt I . 
process, as 9(t) --71. [For example, 9(t) may be taken as e , w1th 
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+ 
a --70 • ] From eq ua ti on ( 2 .26) , 

co co 

-CD -co 

(2.33) 

(2.34) 

-co 

Letting e(t) --71, the integral in equation (2.34) approaches o(w
1

-w
2
). 

Thus, in a limiting sense, for a stationary process 

(2.35) 

For the FMWN process, Fourier inversion of equation (2.11) gives 

co 

u( t) J U(w)e iwt dw ( 2 .3 6) 

-co 

In the limiting case of a stationary process, equation (2.36), together 

with equation (2.35), motivates the spectral representation of a sta-

tionary process as 

co 

u( t) J H ( w) e i wt dZ ( w) (2.37) 

-co 

In equation (2.37), H(w) is the transfer function describing the fre-

quency content of u(t), and dZ(w) is a complex orthogonal process such 
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that 

(dZ(w)) 0 ( 2.3 8) 

(2.39) 

The power spectral density of u(t) may be recovered directly from the 

spectral representation as 

S(w) (2.9) 

2.3.2 Response Spectrum 

A frequently used measure of the spectral content of strong 

ground motion is the response spectrum . The response spectrum arises in 

structural engineering through the consideration of a linear oscillator 

with viscous damping. Let u(t) be the ground acceleration. Define x(t) 

by the differential equation 

u(t) (2.40) 

x(O) X ( 0) 0 (2.41) 

x(t) is the relative displacement of a linear, viscously damped oscilla-

tor with undamped natural frequency w
0

, and fraction of critical damping 

~. in response to ground motion u(t). Studying the response of such 

oscillators as a function of frequency is one means of assessing the 

frequency content of u(t). 
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For a deterministic u(t), the response spectrum is defined as a 

function of ~ and w
0 

as 

max lx (t) I 
O~t(a> 

where x(t) is the oscillator response defined by equations (2.40)-

(2.41). Response spectra are routinely reported for strong-motion 

(2.42) 

recordings. The utility of the response spectrum is due to the fact 

that it gives directly the maximum response of a structure to an earth-

quake, which is of primary importance in assessing its safety. The 

response of many structures is well described either by equation (2.40) 

or as a linear combination of such oscillators. 

Because of the utility of the response spectrum description of an 

earthquake, a common practice is the prescription of earthquake excita-

tion in terms of the anticipated response spectrum. If a stochastic 

model is used to characterize an earthquake, an extension to the 

deterministic response spectrum is necessary. If u(t) is a stochastic 

process, then the oscillator response x(t) will be a stochastic process 

as well. The mean response spectrum may be defined as 

< max I x ( t ) I ) 
O~t(CD 

(2.43) 

The mean response spectrum indicates the maximum displacement attained 

by the oscillator, on the average. 

A common design question is whether a given structure will safely 

sustain the ground motion of an earthquake. For a stochastic earthquake 
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model, which reflects uncertainty, such a question must be answered in 

probabilistic terms. Far more important than the mean response is a 

level which, with some probability, will not be exceeded. The design 

spectrum for a level of confidence p is defined to be that value 

RS(~,w0;p) for which 

(2.44) 

For example, an oscillator with frequency w
0 

and damping \ will have 

maximum response of no more than RS(\,w
0
;0.9) for 90% of the sample 

earthquakes u(t). 

The problem of actually computing the design spectrum for a given 

stochastic model is extremely difficult, even for the simplest models. 

Most analytica~ work has focused on the closely related first passage 

problem in random vibration, which seeks the distribution of the time at 

which a stationary process first exceeds a given level. The form of 

first passage problem which relates most closely to the determination of 

the design spectrum is the so-called stationary-start, type-D problem 

[22]. If x(t) is a zero-mean stationary process, it is desired to find 

W(t), the probability that in an interval of length t, lx(t)l does not 

exceed a barrier level b. 

For large t, it may be argued heuristically that 

W(t) - Ae-at (2.45) 

for some A,a. Attention is often focused on the limiting decay rate a. 

A number of approximations to a have been proposed. A conservative 
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estimate results from assuming that excursions above the barrier level 

occur independently. This assumption leads to the Poisson estimate 

a 

where ~O is the mean rate of zero-upcrossings by x(t), and 

2 
cr 

(2.46) 

(2.47) 

Vanmarcke [23] developed a semi-empirical formula for a which takes into 

account the dependence between barrier crossings. 

The design spectrum may be computed from an estimate of a by assum-

ing: (i) that equation (2.45) holds even for small t; and (ii) that the 

response at all times is quasi-stationary. Such assumptions motivate 

the assertion that 

Prob{ lx(t) I ~ b for O~t (co} e 

co 

- J a(·dd't' 

0 

where a('t') is the limiting decay rate corresponding to the quasi-

(2.48) 

stationary response at time t. Note that A has been set equal to unity 

because of the certainty of safety at t=O. The design spectrum value, 

defined in equation (2.44), is seen to be that value of b for which 

co 

J a('t')d't' 

0 

- log p ( 2 .49) 
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This value must be determined iteratively. 

The above methodology has been used by Corotis [25] to compute 

first-passage probabilities for a zero-start type-D problem, reportedly 

with good results. In a design spectrum computation using a modulated 

stationary process, Mason [24] reported reasonable agreement with simu

lation results for\= 0.02, if the earthquake duration was at least ten 

periods of the oscillator. Presumably, smaller values of the damping 

coefficient would require longer durations to achieve the quasi

stationarity required by this method. 

In view of the assumptions made in reaching this approximation, the 

results achieved are surprisingly good. However, more systematic study 

of the range of validity of the approximation is probably needed. The 

most reliable check is provided by Monte Carlo simulation. 

Although response spectrum methods are widely used, their limita

tions are also recognized. As a description of ground motion, the 

response spectrum is incomplete. Any number of models may be proposed 

which will match a given design spectrum, with great variation in dura

tion and intensity. The application of response spectrum information to 

multiple-degree-of-freedom structures introduces significant unknown 

errors, since the response spectrum does not include the time at which 

the peaks occur. 

Trifunac [9] proposed an extension to the response spectrum which 

addresses both of these limitations. He defined the response envelope 

spectrum (RES) A(\,w
0
,t) of a deterministic u(t) to be the envelope of 

the oscillator response x(t) in equation (2.40). The envelope of x(t) 
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may be defined in a number of ways. For numerical computation, 

A(~,w0 ,t) may be set equal to lx(t)l at the extrema of x(t), and 

interpolated linearly between these values. The RES of u(t) contains 

its standard response spectrum, since 

max A(~.w0 ,t) 
O~t<~ 

(2.50) 

Knowledge of the RES of an earthquake record would allow more precise 

modal combination for multiple-degree-of-freedom structures. 

Furthermore, for a zero-mean, broad-band Gaussian model, the mean square 

RES, <A2 (~,w,t)), is closely related to the evolutionary power spectral 

density (defined in the following section), as seen in equation (3.16). 

Thus, the mean square RES of such a model provides a complete descrip-

tion of the process. 

The practical value of the RES is limited by the difficulties 

involved in plotting A(~,w,t). For a fixed level of damping, A(~,w.t) 

must be visualized as a surface over the (w,t) plane. Another 

difficulty arises when the RES is extended to stochastic models. The 

mean square RES is easily obtained, but is not simply related to the 

design spectrum, or even to the mean or mean square response spectrum of 

the model. 

2.3.3 Evolutionary Power Spectral Density 

By far the most useful spectral description of a stationary ran-

dom process is the power spectral density. A widely accepted extension 

of the power spectral density to nonstationary processes is due to 
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Priestley [6]. Recall that a stationary zero-mean Gaussian random 

process u(t) may be represented as 

u(t) J H(w)e iwt dZ (w) (2.37) 

-co 

where H(w) is determinis~ic, and dZ(w) is an orthogonal process by equa-

tions (2.38) and (2.39). The stationarity of u(t) is seen to be due to 

the "stationarity" of the elements H(w)eiwt dZ(w) of which it is 

composed. A nonstationary process may be generated from the spectral 

representation 

co 

u(t) f iwt H(w, t)e dZ (w) (2.51) 

-co 

Here dZ(w) is as before, but H(w, t) may vary with time. The evolution-

ary power spectral density (EPSD) of such a process is defined [by anal-

ogy with equation (2.9)] to be 

S(w, t) 
2 

IH(w,t)l ( 2 .52) 

If u(t) is defined by equation (2.51), its autocorrelation function 
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is 

(2.53) 

CD CD 

f f 
-m -co 

(2.54) 

(2.55) 

-CD 

There is no simple transformation between R(t
1
,t

2
) and S(w,t). However, 

putting t
1 

= t
2 

= t in equation (2.55) gives 

CD 

J S(w, t) dw (2 . 56) 

-CD 

The EPSD therefore retains an interpretation as a frequency decomposi-

tion of the total energy in u(t). 

Equation (2.55) can be simplified in some cases. If for some At, 

R(t
1
,t

2
) is negligible for lt

1
-t

2
1 L. At, and H(w,t) varies little as t 
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varies by ~t, then 

(X) 

<u(t
1

)u(t
2

)> f H* (w, t
1

) H(w
2 

t
2

) e 
iw(t

2
-t

1
) 

dw 

-<X> 

(X) 

f H*(w,t
1

)H(w,t
1

)e 
iw(t

2
-t

1
) 

dw (2.57) 

-(X) 

(X) 

f S ( w, t
1

) e 
iw( t

2 
-t

1
) 

dw (2.58) 

-(X) 

The conditions for equation (2.58) to hold are that S(w,t) be slowly 

varying with time and broad-band in frequency. These conditions are 

generally appropriate for earthquake models. 

For a stationary process, the power spectral density constitutes a 

complete description of the process. In general, the EPSD of a nonsta-

tionary process is not a complete description of the process, since the 

crucial quantity R(t
1
,t

2
) depends on the phase of H(w,t) in equation 

(2.55). The EPSD specifies the magnitude, but not the phase, of H(w,t). 

However, in the special case of a broad-band process, equation (2.58) 

holds, and S(w,t) completely prescribes the process u(t), in an approxi-

mate sense. 

The EPSD of a modulated stationary process may be found by using 
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the spectral representation of white noise, 

w(t) J eiwt dZ(w) (2.59) 

Substituting this representation into equation (2.8) and interchanging 

the order of integration gives 

00 t 

u( t) f 9( t) f h( t-·t) e iw-c d-e dZ(w) ( 2 .60) 

-oo -oo 

00 

f 9(t) H(w) iwt dZ (w) e (2 . 61) 

-oo 

Thus, the EPSD of u(t) is seen to be 

S(w,t) (2.62) 

Because of the form of equation (2.62), a modulated stationary process 

is sometimes referred to as a separable process. 

In the case of a filtered, modulated white noise process, substitu-
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tion of equation (2.59) into equation (2.7) yields 

CD t 

u( t) f f -w't 
h(t-'t)9('t)e d't dZ(w) (2.63) 

-Q) -co 

CD CD 

f f e iwt dZ (w) ( 2 .64) 

-CD 0 

Thus, for a FMWN process, 

2 
CD 

S(w, t) (2.65) 

0 

Alternatively, equation (2.65) may be written 

2 
00 

S(w,t) f iw't 
H(w+w')&(w')e dw' (2.66) 

- 00 

where H(w) and &(w) are defined in equations (2.10) and (2.23), 

respectively. Note that equation (2.65) reduces to equation (2.62) for 

a modulated stationary process if 9(t) is essentially constant over the 

de cay time of h( t) . 

Because of the generality of the representation of equation (2.51), 

it would seem reasonable to propose an earthquake model based on this 

representation. Certainly, equation (2.51) is capable of representing 

such earthquake phenomena as frequency variation with time. However, a 

model which allowed complete freedom in S(w,t) would be practically 

impossible to calibrate to actual data. Whereas both a modulated 
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stationary process and a FMWN process have H(w) and e(t) as parameters, 

a general nonstationary model would have S(w,t) as a parameter to be 

calibrated. The uncertainty in estimating S(w,t) would more than offset 

the added generality of the model. Nevertheless, since both a modulated 

stationary model and a FMWN model may be represented by equation (2.51), 

this model will be used to represent a general stochastic model. 

2.4 Calibration of Stochastic Models 

A modulated stationary process or FMWN process provides the frame-

work for a stochastic model of earthquake ground motion. At some point, 

however, the parameters in a model must be set to some values in order 

for the model to predict actual ground motion. A number of approaches 

to the calibration problem are summarized in this section. 

The frequency content of stationary models has often been 

determined empirically from observation of strong-motion records. Based 

on spectral analysis of several records and a simple model of local soil 

properties, Kanai [26] and Tajimi [17] proposed the form 

S(w) 

4 472 2 2 w + ~ w w g g g 

2)2 472 2 2 - w + \ w w 
g g 

(2.67) 

for the power spectral density of ground acceleration. The parameters 

~ and w are sometimes related to properties of the soil at the record-
g g 

ing site. 
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Often, the design spectrum for a site is estimated empirically from 

response spectra obtained at similar sites. It is common to prescribe 

earthquake forces entirely by empirical design spectra. In turn, models 

are sometimes calibrated to these design spectra. The approximate 

methods mentioned in Section 2.3.2 allow a stationary model of given 

duration to be calibrated to a design spectrum. Mason [24] outlined a 

method for calibrating a modulated stationary model to a smooth design 

spectrum, when 9(t) is assumed to be known in advance. 

Recently, digital signal processing techniques have been applied to 

single accelerograms in an attempt to estimate the parameters of a FMWN 

model consistent with the record. Nau and others [7] described a method 

for determining the white noise envelope 9(t), and filter characteris

tics H(w) (in the form of an auto-regressive, moving average filter), 

directly from a given record. In fact, some time variation of the 

filter characteristics was included in the model, making it somewhat 

more flexible than the FMWN process described previously. These 

estimated parameters can then be used with digitally simulated white 

noise to produ ce an ensemble of records similar to the original record. 

All of the above methods of calibration rely essentially on 

observation and analysis of strong motion records . Models may also be 

calibrated from theoretical considerations. Trifunac [13] proposed a 

model based on the assumption that the near field ground motion is 

dominated by surface waves. He used experimentally determined surface 

wave dispersion curves for the Imperial Valley region of California to 

predict local ground motion, with limited success. 
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Boore [10] calibrated a FMWN model to Brune's theoretical amplitude 

spectra [27]. The parameters of the spectrum were related to the 

seismic moment M0 , using empirically determined relationships. The 

duration and intensity of the envelope 9(t) were also related to M
0

. 

The resulting model has been shown to reproduce many of the characteris-

tics of strong-motion records, including peak velocity, Wood-Anderson 

instrument response, and response spectra. 

It should be noted that modulated stationary models are well suited 

to response spectrum calibration, because of the presence of the sta-

tionary process. FMWN models are well suited to amplitude spectrum 

calibration, because of the simplicity of equation (2.28). 

2.5 Numerical Simulation of Ground Motion 

An important objective of stochastic modeling is the generation of 

an ensemble of sample records which is consistent with a given model. 

One consideration in choosing a model is the ease with which sample 

records can be generated numerically. These sample records are used in 

analysis of various aspects of earthquake ground motion, including 

dynamic structural response. 

The spectral representation of many stochastic processes gives rise 

to several standard numerical methods. Consider the process defined by 

CD 

u(t) f iwt 
H(w,t) e dZ(w) (2.68) 

-CD 

Let the interval (-CD,CD) be divided into a finite or infinite number of 
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intervals, each centered at w , of width dw • If the intervals are 
n n 

sufficiently small, equation (2.68) may be approximated as 

where 

Recall that 

(dZ(w)) 

u(t) 

u ( t) 
n 

0 

\ H(w ,t) U (t) 
L n n 
n 

w -tl/'Jilw 
n n 

f 
w -l/'Jilw 

n n 

e iwt dZ (w) 

(2.69) 

(2.70) 

(2.38) 

(2.39) 

U (t) is seen to be a complex-valued, stationary random process, with 
n 

where 

The term e 
-iw 't 

n 

<U (t)) 
n 

0 

0 if ~n 

<U ( t ) U * ( t +d > R (,;) 
n n 

R ('t) 
n 

n 

-iw 't 

~ sin l/'Jilw 't e n 
't n 

may be accounted for by letting 

(2.?:!.) 

(2.72) 

(2.73) 

(2.74) 



u (t) 
n 
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V (t) e 
n 

-i(w t+0 ) 
n n (2.75) 

where V (t) is a stationary process, and the 0 are independent random 
n n 

variables, uniformly distributed on [0,2n]. The 0 are also assumed to 
n 

be independent of the V (t). It may be seen that equations (2.71) and 
n 

(2.72) are satisfied, and 

-iw 't' 
<U ( t ) u * ( t+'t' ) ) n <V (t)V *(t+'t')) e (2.76) 

n n n n 

Therefore v ( t) must satisfy only 
n 

<V ( t) V * ( t+'t') > 2 
sin 1/-z!J..w 't' (2.77) 

n n 't' n 

The numerical approximation to equation (2.51) now takes the form 

-i(w t+0 ) 
u( t) L H(wn' t) e n n v (t) 

n 
( 2. 7 8) 

n 

where the 0 are independent and uniform on [0,2n], and the V (t) 
n n 

satisfy equation (2.77). It is now possible to examine some common 

implementations of this result. 

For dw 't' << 1, equation (2.77) reduces to 
n 

The approximation 

<V (t)V *(t+'t')) 
n n 

v ( t) 
n 

d(J) 
n 

'11 b d t t' 1' nterval T << -
1

-Wl e a equa e over a 1me dw · 
n 

(2.79) 

(2.80) 

Over larger time 
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intervals, equation (2.80) will introduce too much correlation into 

u(t). This approximation gives 

u(t) 
~ -i(w t+~ ) 

~ H(wn,t)\jAwn e n n (2.81) 

and is seen to be reasonable, provided Aw 
n 

1 « T' where T is the duration 

of the simulation. Note that u(t) in equation (2.81) is not Gaussian. 

If the number of terms is large, however, the Central Limit Theorem 

guarantees that u(t) will be nearly Gaussian. Alternatively, V (t) may 
n 

be taken as a random constant whose value is normally distributed with 

zero mean, and with variance Aw . Then, u(t) will be Gaussian. 
n 

If u(t) is stationary, then 

H(w, t) H(w) 

and equation (2.81) may be rewritten as 

u(t) cos (w t+~ ') 
n n 

where the real part of u(t) has been taken, and 

d , 
n 

0 + arg [H(w )] 
n n 

(2.82) 

(2.83) 

(2.84) 

That is, the phase of H(w) has been absorbed into 0 . The 0 ' may be 
n n 

generated as uniform on [0,2rr]. In the nonstationary case, the 

corresponding expression is 



u(t) 

where 

9 ( t) 
n 
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cos [w t+~ +9 (t)] 
n n n 

arg [H(w , t)] 
n 

(2.85) 

(2.86) 

The nonstationary simulation depends critically on the phase of H(w,t), 

since the phase is time-dependent. Since a description of the process 

by its evolutionary power spectral density does not include phase infor-

mation, 9 (t) is unknown. Normally, it is taken to be independent of 
n 

time, so that 

u( t) cos [w t+~ '] (2.87) 
n n 

This assumption is probably justified when S(w,t) is smooth and broad-

band, since equation (2.58) indicates that the phase is unimportant in 

this case. The implications of this simplification are unclear, how-

ever, for more general nonstationary processes. 

In the case of a modulated stationary process, the stationary 

pr.ocess is first generated, and the envelope is then applied. The sta-

tionary part, v(t), may be produced by the technique described above, or 

by a variety of other methods unique to stationary processes. For exam-

ple, a method proposed by Shinozuka [28] is 

v(t) (2.88) 

where 0k are independent random variables, uniformly distributed on 
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[0,2n]; and wk are independent random variables distributed according to 

the probability density function 

p(w) 
S(w) 

(2.89) 
Q) 

J S(w')dw' 

The normalizing constant A is found to be given by 

Q) 

~ J S(w)dw (2.90) 

The process described by equation (2.88) has power spectral density 

exactly equal to S(w), and is Gaussian in the limit as N~a>. It is 

unclear how large N must be to give good results. Also, the realization 

of the wk is problematical. 

Another method for generating a stationary v(t) is matching of the 

parameters of an auto-regressive, moving average (ARMA) digital filter 

to the desired frequency characteristics. The output values, 

v v(nM) ( 2 .91) 
n 

are given recursively by 

p q 

v [ akv n-k + [ bkwn-k n 
(2.92) 

k=l k=l 

where wk are independent, normally distributed random variables with 

mean zero, and variance unity. The filter parameters ak and bk are 
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chosen to give a "best fit" to the desired characteristics of v(t). 

This technique has been used successfully in the modeling of ocean waves 

[29]. It is generally very efficient, since no transcendental functions 

need to be evaluated. 

The generation of a FMWN process may be accomplished by carrying 

out the filtering in the frequency domain. A time series corresponding 

to 9(t)w(t) is produced as a sequence of scaled, normally distributed 

random variables. The discrete Fourier Transform of this sequence 

(computed by the FFT algorithm) is then multiplied by H(w). The 

transformed result gives the desired record. 

Often, it is not the ground motion itself that is of interest, but 

rather its effect on a structure. Considerable savings in computation 

time are sometimes possible in this case. 
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CHAPTER III 

RESPONSE STATISTICS OF SECONDARY SYSTEMS 

3.1 Introduction 

In complex engineering structures, one is frequently concerned with 

the dynamic response of a piece of equipment attached to a heavy struc

ture. When the mass of the equipment is much less than the mass of the 

structure, the former is often referred to as a secondary system. 

Although the secondary system is small, its survival in an earthquake is 

often essential, and a dynamic analysis is called for. 

The general problem of the analysis of secondary systems has 

received increasing attention recently, as it has become clear that 

special considerations must be addressed. Although it is relatively 

easy to write a solution for the dynamic response of a complete 

primary/secondary system, it is more difficult to illuminate the 

principal features contained in the solution. Simplification of the 

numerical computations involved is also important for practical applica

tion. 

Penzien and Chopra [31] showed that the response of a single

degree-of-freedom secondary system attached to a multiple-degree-of

freedom, classically damped structure could be approximated as a combi

nation of two-degree-of-freedom systems (one for each mode of the struc

ture). This approximation breaks down if some natural frequencies of 

the structure are closely spaced. Based on the same assumption, Biggs 

and Roesset [30] proposed an empirical rule for obtaining the floor 
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spectrum directly from the response spectrum of the ground motion. (The 

floor spectrum is defined as the response spectrum corresponding to the 

motion of a point in the structure in response to an earthquake.) 

Several researchers have investigated the response of secondary 

systems to stochastic ground motion. Primarily, attention has been 

focused on obtaining the stationary response of a primary/secondary 

system to stationary excitation. It may be argued that this will 

represent the response to a long duration earthquake with a nearly 

stationary segment. 

Singh [32] attempted to simplify the computation of the stationary 

mean square response of a single-degree-of-freedom secondary system 

attached to a multiple-degree-of-freedom primary system. His results 

were valid if the secondary system's natural frequency was not near a 

natural frequency of the primary system. Expressions for the case of 

exact tuning were later obtained [33]. 

lgusa and Der Kiureghian [12] used perturbation methods to simplify 

expressions for the stationary response statistics of a multiple-degree

of-freedom secondary system attached arbitrarily to a multiple-degre e

of-freedom primary system. Their results include the effect of interac

tion , which is often neglected. 

Very little work has been done on the response of secondary systems 

to transient ground motion. Chakravorty and Vanmarcke [34] obtaine d the 

mean square relative displacement of a single-degree-of-freedom 

secondary system attached to a single-degree-of-freedom primary system, 

in response to suddenly applied white noise. Vanmarcke [35] suggested a 



- 43 -

procedure for obtaining the floor spectrum in a multiple-degree-of

freedom structure, using an approximation for the time-varying response 

of a two-degree-of-freedom system to stationary ground motion. 

The approach taken in this thesis leads to a general expression for 

the time-varying statistics of the envelope of the response of a 

secondary system to ground motion represented as a general stochastic 

process. The primary system and secondary system are each represented 

as single-degree-of-freedom systems as in Figure 3.1. The results 

derived here may be combined, as in reference [31], to approximate the 

behavior of a more complicated primary system. 

3.2 Review of Primary System Response 

As a first step in analyzing the response of a secondary system, 

this section reviews some features of the response of the primary system 

in the absence of a secondary system. If interaction effects are 

ignored, then the results presented herein will describe the motion of 

the primary system even with a light secondary system attached. 

There are many approaches to analyzing the response of a single

degree-of-freedom linear oscillator to stochastic excitation. The 

approach chosen here is analogous to that used for the secondary system 

in the following section. Only a few results will be obtained which 

will be useful later. 

The relative displacement x(t) of the primary system is described 

by the equation 
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}( 

Fig. 3.1 Single-degree-of-freedom secondary system attached 
to single-degree-of-freedom primary system 
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-z(t) (3 . 1) 

x(O) x(O) 0 (3.2) 

where -z(t) is a zero-mean Gaussian stochastic process described by the 

evolutionary power spectral density S(w,t) (defined in Section 2 . 3.1). 

z(t) is the absolute ground displacement . 

The response x(t) to any ground motion z(t) may be written as the 

Duhammel integral 

X ( t) 

the frequency wd
1 

as 

X ( t) 

where 

t 

f _1_ 

(l)d1 
0 

e 
_?' (I) ( t-·t) 
~1 1 

(3.3) 

This integral may be decomposed in harmonics of 

(3 . 4) 

t 

f (3.5) 

0 

t 

f cos (3.6) 

0 

For structural systems, ~1 will generally be small, and the 

response x(t) will have the appearance of a harmonic wave of frequency 

wd
1 

which is modulated by a slowly varying envelope. Thus 
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x(t) (3.7) 

where a1 ( t) and 01 ( t) are nearly constant over a period 2rr /w dl" a1 ( t) 

may be interpreted as half the mechanical energy in the oscillator. 

Equation (3.7) may be decomposed in the form of equation (3.4) to give 

From these equations, the envelope a
1

(t) may be expressed as 

t t 

s s+ 
0 0 wd1 

-~1w1( 2 t-'t'1-'t'2) 
e 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Equation (3.11) expresses the stochastic process a
1

(t) in terms of the 

stochastic pr~cess -z(t). Its utility arises from the fact that it 

2 
linearly relates a

1
(t) to the cross product [-z('t'

1
)][-z('t'2 )l. 
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2 
Taking the ensemble average of a

1
(t) gives 

2 <a
1
(t)) 

t t 

+ f f 
(J)d1 0 0 

-~1w1( 2 t-'t1-'t2) 
e 

Recall that for broad-band ground motion, 

-CD 

(3.12) 

( 2.5 8) 

Substituting equation (2.58) into equation (3.12) and interchanging the 

order of integration gives 

where 

2 <a
1
(t)) 

_1_ 
2 

(J)d1 

~ (w, t) 

t CD 

f f 
0 -CD 

But ~(w,t) is sharply peaked at w = wd1 , and 

CD 

J ~ ( w, t) dw 27! 

-CD 

Thus, taking S(w,t) as nearly constant over the peak of ~. 

(3.13) 

(3.14) 

(3.15) 



2 <a
1

(t)> 
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(3.16) 

This result is identical to that obtained by Spanos [5), except that w
1 

is replaced here by wd
1

• 

The complete distribution of a
1

(t) can be deduced from equation 

(3.16), since the distribution is known to be approximately Rayleigh. 

The probability density of a
1 

(t) is 

Thus 

p
1

(a;t) 

2 <a
1
(t)) 

_a_ 
2 

a
1
(t) 

CXl 

e 

2 
a ....3/z -2--

a1(t) 

f a
2 

p1 (a; t)da 

0 

The density of a
1

(t) is therefore given by equation (3.17), with 

e 

In pa rti cul ar, 

-i7 w (t-s) 
~1 1 

S(wd1 ,s)ds 

(3.17) 

(3.18) 

(3.19) 
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ClO 

J ap1 (a;t)da 

0 

3.3 Secondary System Envelope Statistics vs. Time 

(3.20) 

In this section, the statistics of the envelope of the response of 

the secondary system are derived in terms of the evolutionary power 

spectral density of the ground motion. Initially, the effect of the 

secondary system on the primary system will be neglected to simplify the 

analysis. Interaction effects will be considered separately in the fol-

lowing section. 

The envelope of the secondary system response will be shown to have 

statistics expressible in a form very similar to those of the primary 

system. In particular, the mean square value of the envelope as a func-

tion of time is shown to be the convolution of a known function of time 

with the evolutionary power spectral density of the ground acceleration. 

The statistics of the secondary system envelope are der b ·ed in 

closed form in the case of a suddenly applied stationary ground motion, 

and in the case of stationary ground motion of finite duration. The 

results are verified by simulation studies. 

3.3.1 Integral Form of Secondary Envelope 

The relative displacement y(t) of a non-interacting secondary 

system is governed by the equation 
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-z(t) - x(t) (3.21) 

y(O) y(O) 0 (3.22) 

where z(t) is the absolute ground displacement and x(t) is the relative 

displacement of the primary system. 

The right-hand side of equation (3.21) may be expressed more simply 

by using equation (3.1) for the primary system. 

-z - x 

(3 . 23) 

where equation (3 . 7) has been used together with the assumption that 

~1 << 1 . The error introduced by this assumption is negligible in view 

of subsequent simplifications. Now y(t) may be expressed in terms of 

the Duhammel integral representation 

y(t) 

t 

f _1_ 

wd2 
0 

-7 w (t-'t') 
"2 2 . 

e s1n 

where wd2 = w2~ 1-~. 
It will be assumed that y(t) has the appearance of a harmonic 

oscillation with slowly varying amplitude, and possibly slowly varying 

frequency. That is, 

y(t) (3.25) 

where a
2
(t), w* (t) , and d

2
(t) are slowly varying random functions of 
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time. The envelope a
2

{t) is of most interest for analysis purposes. 

The representative frequency w*(t) would be important for an analysis of 

fatigue of the secondary structure. The following analysis will produce 

results for a
2

(t) which are independent of the value of w*(t). 

Equation (3.24) exhibits two characteristic frequencies, wdl and 

wd2 • However, one of these frequencies may dominate the other. Equa-

tions (3.1) and (3.21) are characterized by the transfer function 

H (w) 
y 

1 
(3.26) 

which gives the steady-state amplitude of y(t) in response to excitation 

of the form 

-z(t) 

H (w) is characterized by peaks near 
y 

Hy(w1 ) - __ i_ 

2 
2\w1 

wl 

iwt 
e 

and 

2 2 
(w2-wl) 

(3.27) 

w2. If \ and ~ are small, 

1 
(3.28) 

+ 2 i~w1w2 

( 3 .29) 

If w
2 

« w
1

, then it may be verified that IHY(w1 ) I « IHY(w2 ) I. 

Similarly, if w
1 

« w
2

, then IHY(w
2

) I « IHY(w1 ) I. Thus, when the two 

frequencies are well separated, the response of the secondary system is 

domina ted by the lower frequency, although a small amount of the higher 

frequency is still present. 
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Equation (3.24) will first be decomposed in harmonics of wd1 • This 

procedure may be expected to yield good results for w1 ~ w2 , since the 

frequency wd1 will certainly be present in y(t) in this case. The 

decomposition takes the form 

y(t) (3 .30) 

where 

t 
-~w2 (t-·d f _1_ 

sin wd2 (t-·d 
2 

a1 ( .-) e wd1 
wd2 

0 

cos [wd1 (t-.-) + 01 (.-)]d.- (3.31) 

t 
-~w2 (t-.-) 

f _1_ 
sin wd2(t-.-) 

2 
a1 ( .-) e wd1 

wd2 
0 

(3.32) 

If equation (3.25) is decomposed in a similar way, it may be seen that 

(3.33) 

(3 .34) 
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Thus, 

(3.35) 

( 3 .36) 

where 

(3.37) 

The function X(~ 1 ,~ 2 ) is a random function which depends only on 

the primary response x(t). X(~ 1 ,~ 2 ) can in turn be written in terms of 

the ground motion z(t) by using the random functions x
1

(t) and x
2
(t) 

defined in equations (3.8) and (3.9). It may be verified that 

(3.38) 
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Using equations (3.5) and (3.6), 

( 3 .39) 

(3.40) 

Thus, 

(3.41) 

2 
Equations (3.36) and (3.41) express a

2
(t) as a four-fold integral 

involving the random function [-z<~ 1 >l [-z<~2 >l. 
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A similar calculation may be made in the case that w
2 

< w
1

• In 

this case, it will always be appropriate to decompose equations (3.24) 

and (3.25) in harmonics of wd
2

. This leads to the expression 

where 

"' 

t t 

f f 
0 0 

"' x(t) 

(3.42) 

(3.43) 

From equation (3.3), x(t) may be expressed in terms of the ground exci-

tation as 

"' x( t) 

3.3 .2 
2 

Closed Form Solution for <a
2
(t)) 

(3.44) 

The equations derived above provide a complete description of the 

stochastic process a
2

(t) in terms of the ground acceleration z(t). In 

principle, the probability distribution of a
2

(t) could be derived. How-

2 
ever, only the second moment <a

2
(t)) is readily computed from these 

equations. 

Consider first the case w
1 

~ w
2

. Taking ensemble averages in equa-

tions (3.36) and (3.41) gives 



- 56 -

t t 4 

J J w~l 
0 0 wd2 

(3.45) 

where 

(3.46) 

For broad-band ground motion, 

( 2 .58) 

-<D 

Substituting equation (2.58) into equation (3.46) and interchanging the 

order of integration yields 

where 
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( 3 .4 8) 

Q) 

otherwise 
(3.49) 

-co 

If S(w,~ 3 ) is assumed to be nearly constant over the peak of ~~ then 

equation (3.47) may be simplified as 

(3.50) 
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Substitution of equation (3.50) into equation (3 .4 5) leads to the 

three-fold integral 

f f f 
-7 Ill (2t-'t' -'t' ) 

"22 1 2 
e 

0 0 0 

(3.51) 

Because the integrand is symmetric in 't'1 and 't'2, 

t 't'1 't'2 2 
-~1w1('t'1+"t"2-2't'3) -~w (2t-'t' -'t' ) 

2 f f f 
41lwd1 2 1 2 

<a
2

(t)> 2 e e 

0 0 0 (l)d2 

(3 .52) 

where the integration is over 't' 2 < 't'l only . 
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Interchanging the order of integration in equation (3.52), 

-~lwl(~1~2-2 t3) 
e 

~ I 

2 

f 
0 

(3.53) 

-~lw1( 2 t-2~3-~1·-~2') 
e 

(3.54) 

where ~ 1 • = t-~ 1 , ~ 2 • = t-~2 . The term in brackets is a function of 

t-~ 3 only, so equation (3.54) may be written 

where 

t 

J ~1 (t-s) S(wd1 ,s) ds 

0 

(3.55) 
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fl1(t) 

(3.56) 

Equation (3.56) is analogous to equation (3.16) for the second moment of 

the primary system envelope. For the primary system, fl
1
(t) is replaced 

2 -2~1(1)1 t 
by ___1!._ e 

2 
(l)d1 

The case where w
2 

( w
1 

is treated in much the same way. Beginning 

with equations (3.42) and (3.44), it may be shown that 

t 
2 

<a
2

(t)> f fl2 (t-s)S(wd2 ,s) ds (3.57) 

0 

where 

2 
-2~1w 1 t 

t 't'2 
(~2w2-~1w1)('t'1+'t'2) 

fl2(t) 
41Twd1 

f f 2 e e 

(l)d2 0 0 

The similarity of equations (3.56) and (3.58) indicates that a 

general expression may be written which will be applicable to all w1 and 

w2 . Let the subscript "a" refer to the system with the lower frequency, 

so that 



(!) 

a 
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(3.59) 

and ~ is the corresponding damping coefficient. Similarly, let the 
a 

subscript "b" refer to the system with the higher frequency. Then equa-

tions (3.55)-(3.58) may be generalized as 

t 
2 f J.dt-s)S(w , s)ds <a
2

(t)> 
a 

0 

where 

2 
-2~ (!) t 

t 't'2 
(~a w a-\ wb) ( 't' 1 +t 2) 

fl(t) 
47twdl a a f f 2 e e 

(l)d2 0 0 

Note that in equation (3.60) it has been assumed that 

S(wda't) 

since S(w, t) is smooth. 

S(w , t) 
a 

(3.60) 

(3.61) 

(3.62) 

The convolving function fl(t) may be obtained in closed form. Let 

~ \wb - ~awa (3.63) 

~w ~(wdb-wda)2 + ~2 (3.64) 

Note that ~wfoO unless w1=w2 and ~1=~. The closed form expression for 

fl(t) when ~w=O must be computed separately. For ~wfoO, it may be shown 



that 

f..l(t) 
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-2\ w t 
a a 

e 

For Aw=O, the corresponding result is 

f..l(t) 

sin 
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Finally, note from equation (3.61) that 

11 ( t ) 

-2~ (!) t t t 
e a a J J -'V ( '1:1 +'t:2) 

e cos wda (,;1-,:2) 

0 0 

(3.66) 

by symmetry in 1:1 and 1:2 • Hence, expanding cos wda(,;
1

-,;
2

) yields 

2 

[l 
2 

2rrwd1 
-2~ (!) t -\),; 

oodb <d<l f.l(t) 
a a 

sin 2 
e e cos wda't 

(l)d2 

+ [ l -\),; 
sin sin d{ (3.67) e wda't (!)db 

Thus, it may be seen that f.L(t)LO. 

In summary, the second moment <a;(t)) is seen to be expressible as 

a convolution of the evolutionary power spectral density S(w,t) of the 

ground acceleration z(t) with the non-negative f.l(t), given in closed 

form in equations (3.65). In order to obtain the probability distribu-

tion function of a
2
(t), moments of all orders must be computed. How

ever, it is reasonable to suppose that the secondary envelope a2 (t) is 

nearly Rayleigh distributed, as is the primary system. The Rayleigh 

distribution arises as the distribution of the peaks of a narrow-band 

random process. Since the Rayleigh distribution has only a single 

parameter, it is determined completely by its second moment. Specifi-
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cally, the probability density of a
2

(t) will be assumed to be 

p
2

(a) e 

where 

2 
a -l/z -2--

0'2 ( t) 

In particular, the mean value of the envelope will be 

-H 0'2(t) 

'lz~1f (a; ( t) > 

3 . 3.3 Response to Finite Duration Stationary Ground Motion 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

One application of the above results is to the case where the 

ground acceleration is derived from a stationary process which is 

modulated by a boxcar function of time. The evolutionary power spectral 

density of the ground acceleration will be taken as 

ostsT 
S(w,t) 

otherwise 
( 3 . 72) 

s
0

(w) is the power spectral density of the underlying stationary 

process, and T is the duration of shaking. 

Substitution of equation (3 . 72) into equation (3.60) for t2.0 leads 

to 



where 

Let 

Then 
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2 <a
1 

(t)) 

p(t) 

p*(t) 

p(t) = { 

t 

f (.ds)ds 

0 

t 

f f.!(s)ds 

t-T 

t 

J f.!(s)ds 

0 

p*(t) 

p*(t)-p*(t-T) 

O~t~T 

t2.T 

(t2.0) 

O~t~T 

t>T 

p*(t) describes the buildup of the secondary response from rest to 

stationarity, when T is made arbitrarily large. 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

The integral in equation (3.75) may be carried out in closed form. 



For !!.wP.O, 

p*(t) 

+ _1_ 
2 

2wb 
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l 
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(3.77a) 

For Aw=O, 

p*(t) 
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(3.77b) 

These formidable expressions may be simplified considerably by 

enforcing the assumption that ~~~<<1. 

equation (3.77a) becomes 

To order'"\. (i=1,2), for llwf=O, 
1 

p*(t) 

2 2 
-2\ w t w +wb a a a 

(1 - e ) + 2\~ 

(3.78a) 

The oscillating terms in equation (3.78a) are significant only if w1:w2 . 

It may be seen that the terms in equation (3.77a) which oscillate 

rapidly are of order '"\. and may be neglected. This is convenient, since 
1 

these terms would have been inapp:ropriate for the slowly varying 

envelope defined as a
2
(t). 
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If ~w=O, then equation (3.78a) is indeterminate. The corresponding 

simplification of equation (3.77b) for this case gives 

Note that in equations (3.65), the approximation 

is correct to order~ .. 
1 

(3.78b) 

(3.79) 

If T is large, the system will eventually achieve stationarity. 

Equations (3.73) and (3.76) indicate that at stationarity 

2 
<a2) t s at 

p*(oo) S (w ) 
0 a 

(3.80) 

The stationary variance of the displacement of a secondary system driven 

by white noise may be shown to be [4] 

2 
<y ) stat (3.81) 

where 

A (3.82) 

s
0 

is the constant power spectral density of the ground acceleration. 

If the secondary response is narrow-band, then at stationarity 



- 70 -

y( t) a
2

(t) cos [w*t + 0(t)] (3.83) 

where a2 (t) and 4(t) may be assumed to be independent, and w* is the 

dominant frequency. Then 

2 
<y ) stat (3.84) 

Equations (3.84) and (3.81) lead to an approximation for <a
2
2 > t 

s at 

based on an assumption of narrow-handedness. A comparison shows 

In these cases, the assumption of narrow-bandedne ss is valid. For 

intermediate values of w2/w1 , however, y(t) has a bimodal behavior. 

Figures 3.2 and 3.3 show a comparison of the actual stationary response 

and that predicted by the narrow-handedness assumption. It may be seen 

that the narrow-handedness assumption underestimates the mean square 

envelope. 

3.3.4 Comparison of Results to Simulation Studies 

In order to verify the results of this section, a series of 

numerical simulations was performed. The ground motion was taken t o be 

white noise modulated by a boxcar of finite duration T. The number of 

parameters may be reduced by letting 

(3.85) 

x(t) (3.86) 
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Figo 3.2 Comparison of stationary mean square secondary envelope 
(solid) with narrow-band prediction (dashed)o s1 = 0,05, 
s2 = 0.01,0.05,0.10. 
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Fig. 3.3 Comparison of stationary mean square secondary envelope 
(solid) with narrow-band prediction (dashed). sl = 0.01, 
s2 = O.Ol,O.OS,O.lO. 
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y(t) (3.87) 

where s
0 

is the intensity of the white noise . The equations of motion 

may then be written in dimensionless form as 

"' "' "' x" + 2\
1

x• + x 9(~)w(~) (3.88) 

"' "' 2"' "' y" + 2\f3y' + j3 y 9(~)w(~) - x" (3 . 89) 

"' "' "' "' x(O) X 1 
( 0) y(O) y' ( 0) 0 (3 . 90) 

where 

j3 w2/wl (3.91) 

{ : if O~~~wl T 

9(~) = otherwise 
(3.92) 

w(t) is white noise with unit power spectral density. The parameters to 

The simulations were performed using the algorithm described in the 

Appendix. During each simulated earthquake, the amplitude was set equal 

ly(t)l at the peaks of y, and interpolated linearly for all other t. 

This assumes that ly(t)l coincides with the envelope at each peak, which 

may not be true when y(t) is strongly bimodal . 

The average value of a
2

(t) over 250 samples is shown in Figures 3.4 

and 3.5 for various values of the parameters . The theoretical mean 

envelope value is shown for comparison. In generaL the theory gives 
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conservative results. The difference is most pronounced at higher lev-

els of damping and away from resonance, when the bimodality of y(t) is 

greatest. 

The intensity of response may be characterized by the maximum 

achieved by the mean value of the envelope. Figures 3.6 and 3.7 show a 

comparison of simulated and theoretical values for max <a
2
(t)), plot

O~t<~ 

ted as a function of w
2

/w
1 

for fixed duration. Figures 3.8 and 3.9 show 

the same comparison as a function of duration for fixed w
2

/w
1

• In both 

cases, the theoretical values correspond closely to those obtained by 

simulation. 

3.3.5 Probability Distributions of a
1

(t) and a
2
i11 

It has been assumed that a
1

(t) and a
2

(t) are approximately 

Rayleigh distributed. This assumption is reasonable, since the 

distribution of the peaks of a stationary zero-mean Gaussian process can 

be shown to approach a Rayleigh distribution as the process becomes more 

and more narrow-banded [1]. In this section, the actual distributions 

of a
1 

(t) and a
2

(t) are discussed. 

Equation (3.11) for the primary system and equations (3.36) and 

(3.41) for the secondary system are of the form 

2 
a. 

1 

t t 

f f fi(t,~1.~2)[-z(~1)][-z(~2)]d~1d~2 
0 0 

For the primary system, 

(3.93) 
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Fig. 3.4a Comparison of mean secondary envelope (dashed ) with 
simulation (solid). S l = s2 = 0.05, w1T = 20TI 
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Fig. 3.4b Comparison of mean secondary envelope (dashed ) with 
simulation (solid ) . s l = s 2 = 0,05, w1T • 20n 
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Fig. 3.4c Comparison of mean secondary envelope (dashed) with 
simulation (solid). Sl = s2 = 0.05, w1T = 20TI 
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Fig. 3.5a Comparison of mean secondary envelope (dashed) with 
simulation (solid). t;1 = sz = 0.01, w1T = 80TI 
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Fig. 3.5b Comparison of mean secondary envelope (dashed) with 
simulation (solid). S l = s2 = OcOl, WtT = 80n 
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Figu 3.5c Comparison of mean s econdary envelope (dashed) wi th 
simulation (solid). t: t = /;; 2 = 0.01, Wt T = 80TI 
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Fig. 3.6 Comparison of max <a2(t)> with simulation (circles). 
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Sl = S2 = o.os, WiT = 20TI 
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Fig. 3.7 Comparison of max <a2Ct)> with simulation (circles). 
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Sl = S2 = 0.01, WiT = 80TI 
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Fig . 3.8 Comparison of max <az(t)> with simulation (circles) 
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(3.94) 

For the secondary system, if w
1 

~ w
2

, equations (3.36) and (3.41) may be 

combined, and the order of integration changed to show that 

t t 

f f 
-~1w1(~1~2-t1-t2) 

e e 
-7 w (2t-~ -~ ) 

"2 2 1 2 

(3.95) 

A similar expression may be derived for w
2 

<w
1

• Note that both f
1 

and f
2 

are symmetric in t
1 

and t
2

. 

If z(t) is broad-band with a smoothly varying spectrum, then the 

excitation terms may be approximated by white noise with time-varying 

intensity S(w
1
,t). It has been seen that the primary and secondary 

system response may be approximated as the response to white noise. 

With this motivation, consider the random variable 

y 

t t 

J J g(~1'~2)w(~1)w(~2) d~1d~2 
0 0 

(3.96) 

where w(t) is Gaussian white noise with power spectral density equal to 

unity. 

if 

2 
The random variable Y will represent the random variable a.(t) 

1 

(3.97) 

The integral in equation (3.96) may be discretized as 



y 

where 

X. 
J 
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N N 

L L g(jA,k.A)XjXlc 

j=1 k=1 

t/N 

(j+1)A 

J w( ·t) d-e 

jA 

(3 . 98) 

(3.99) 

(3.100) 

Equation (3.98) will provide a good approximation to Y if A is small 

compared with the scale of fluctuations of g(t
1
,t

2
). The X. ( j=1, ... , n) 

J 

are independent, normally distributed random variables with mean zero 

and variance 2rr/A. 

The distribution of the quadratic form in equation (3.98) is most 

easily expressed in terms of its characteristic function. Let the prob-

ability density of Y be Py(y). Its characteristic function 0y(~) is 

then defined to be 

(3 . 101) 

(3.102) 

-oo 

If 0y(~) is known, then pY(y) may be recovered by Fourier inversion as 

Py(y) ( 3 .103) 
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It can be shown [2] that if U is a vector of N independent , 

normally distributed random variables with zero mean and unit variance, 

and A is a real, symmetric NXN matrix, then the characteristic function 

of the distribution of Z=UTAU is 

[de t (I - 2 i~A)] -Jfz (3 .104) 

where I is the NXN identity matrix and det( ) denotes the determinant of 

the matrix. Equivalently, 

N 
n 
j=1 

where ~. are the eigenvalues of A. 
J 

(3.105) 

By analogy with equation (3.105), the distribution of Yin equation 

(3 .98) is seen to be 

N 
II 
j=1 

where ~ . are the eigenvalues of the matrix G whose entries are 
J 

[G] . . 
1J 

(3.106) 

(3.107) 

This result may be expressed in terms of the continuous function 

g(t
1
,t

2
) by considering the limit as N--700 • It may be seen that 0y(~) 

approaches the limit 
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co 

II 
j=l 

(3 .108) 

where A.j are the eigenvalues of g(t
1
,t

2
). Strictly speaking, A.. are the 

J 

discrete values of A. for which the equation 

t 

f g(tl,t2)d(t2)dt2 

0 

(3.109) 

possesses non-trivial solutions rJj(t). g(t
1
,t

2 ) is real, symmetric, and 

2 
positive definite [since it assigns a positive value a. for any w(t)]. 

1 

Thus Lt has only positive real eigenvalues which may be ordered [3] 

A. LA. LA. L ••• LO (3.110) 
1 2 3 

Equation (3.108) expresses fiy(~) in terms of these eigenvalues. Py(y) 

may then be recovered from equation (3.103). 

Note that A.. will vary with t, so the distribution of a. (t) will 
1 1 

depend on t. Clearly, the result derived here is of theoretical rather 

than practical importance. For practical purposes, the Rayleigh 

approximation seems to give reasonably accurate results. 

3.4 Interaction Effects 

So far, it has been assumed that the mass of the secondary system 

is negligible in comparison with the mass of the primary system, so that 

the response of the primary system is unaffected by the presence of the 

secondary system. This assumption simplifies the analysis considerably 

by reducing the combined system to two chained single-degree-of-freedom 
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systems. 

As the mass ratio increases, the non-interaction approximation 

becomes progressively worse, particularly if w
1
:w

2
• Ignoring interac-

tion effects generally leads to conservative estimates of system 

response, since the secondary system will actually absorb energy from 

the primary system. However, in some cases (especially near resonance), 

the assumption of non-interaction leads to gross overestimates of system 

response. 

In this section, the effect of primary/secondary interaction is 

examined. A particularly simple method of analysis is developed for a 

classically damped system. 

3.4.1 Equivalent Non-Interacting System (Classical Damping) 

The equations of motion for the two-degree-of-freedom 

primary/secondary system, including interaction effects, are: 

-z -x 

X ( 0) X ( 0) y(O) y(O) 

where e=m
2

/m
1 

is the mass ratio. 

Introduce the change of variables 

X (t) 
e 

X ( t) - 9y( t) 

-z 

0 

(3.111) 

( 3 .112) 

(3.113) 

(3.114) 
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1 
1+G y(t) (3 .115) 

where 9 is a constant to be determined. Then equations (3.111)-(3.113) 

become 

y e + 2 

X ( 0) 
e 

_ 1_ 
1+G 

X ( 0) 
e 

_1 _ 
1+G 

y (0) = y (0) 
e e 

Suppose it is possible to choose 9 so that 

-z (3.116) 

-z- x (3.117) 
e 

0 (3.118) 

(3.119) 

(3.120) 

Then, equations (3.116)-(3.118) reduce to the same form as equations 

(3.111)-(3.113), with e=O. In other words, if equations (3.119) and 

(3.120) can be satisfied, then xe and ye as defined in equations 

(3.114)-(3.115) satisfy the equations of motion of the non-interacting 

primary/secondary system 

. 2 
x + 2~ 'w 'x + (w

1
') xe 

e 1 1 e 
-z ( 3 .121) 
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. 2 
ye + 2~'w 'y + (w2') ye -z -x (3 .122) 

. 2 e e 

X (0) X (0) y (0) y ( 0) 0 (3.123) 
e e e e 

where 

'\' 1 F+i \1 ( 3 .124a) 

(I) , 

1 V1+9 (1)1 (3.124b) 

~· ~ 1~ ~ ( 3 .124c) 

(I) , 

2 ~ 1~ (1)2 (3.124d) 

Since 

y( t) (1+9) y (t) (3.125) 
e 

the actual (interacting) secondary envelope is obtained as (1+9) times 

the secondary envelope of the equivalent non-interacting system of equa-

tions (3.121)-(3.123), with system parameters modified as in equations 

(3.124). Thus, the results already obtained for non-interacting systems 

can be carried over to the interacting system simply by modifying the 

system parameters and scaling the response. 

Unfortunately, the simultaneous solution of equations (3.119)-

(3.120) requires 

(3.126) 

This is exactly the condition that the original two-degree-of-freedom 
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system be classically damped. Because of the simplicity of the above 

approach, it will be assumed temporarily that the system is classically 

damped, to guarantee the existence of an equivalent non-interacting 

system. 

If equation (3.126) holds, two roots to equations (3.119)-(3.120) 

are available: 

There are therefore two equivalent non-interacting systems. It is 

natural to choose e so that e ~0 as e ~0. Then, it may be seen from 

equations (3.114)-(3.115) that the equivalent non-interacting system 

approaches the actual system as e ~0. This leads to 

e = lfz[( 1+e) 
w1 

(3 .128) 

where the positive square root is taken. 

Figure 3.10 shows 9 as a function of the mass ratio e, for several 

values of w
2

/w
1

. It may be seen that 9 is positive when w2 < w
1

, and 

negative when w
2 

> w
1

• 

The jump in e at w2 w
1 

corresponds to a bifurcation in the choice 

of the equivalent system. The solution will be continuous, however. If 

e is small, then equations (3.124) give 
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(I) , - (I) , 

1 2 

001+00 2 2 
+O(e > 

2 

( 3 .129) 

(3.130) 

Thus, the natural frequencies of the equivalent non-interacting system 

are more widely spaced than those of the original system. This effect 

is most prominent near resonance, where a slight "detuning" may have a 

large influence on the response. By comparison, the changes in damping 

and the scaling of y(t) are much less significant. 

Near resonance, for small 9, equation (3.130) simplifies to 

(I) , - (I) , 

1 2 (3.131) 

The width of the resonance peak is of order ~1 w 1 , so the interaction 

effect may be neglected if 

lei « \ (3.132) 

At perfect resonance, equation (3.128) gives 

±.y; [1 + O(e)] (3.133) 

Thus, interaction may be neglected if 

(3.134) 

Note that the restriction to classical damping requires ~1 ~when 
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Away from resonance, the detuning is less significant, so equation 

(3.134) remains a conservative criterion. If~ = ~ = 0.05, this 

requires that the secondary system's mass be much less than 1/400 of the 

primary system's mass for interaction effects to be ignored. 

3.4.2 Non-Classically Damped Systems 

If the two-degree-of-freedom system is not classically damped, 

the above analysis does not apply. In this case, there seems to be no 

simplification of the interacting system, and the complete system must 

be considered. 

The stationary analysis of Igusa and Der Kiureghian [12] indicates 

that the effects of interaction may be neglected if 

(3.135) 

In any event, the assumption of non-interaction gives conservative 

results when e is small. 
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CHAPfER IV 

APPLICATION TO FLOOR RESPONSE SPECTRA 

4.1 Introduction 

An important application of stochastic analysis techniques for 

secondary sytems is the development of floor response spectra. These 

spectra serve the same function in the design of secondary systems as 

the ground response spectrum does for primary systems. 

A floor response spectrum is defined for a given ground motion 

record, primary structure, and attachment point within the structure. 

Let y(t) be the relative displacement of a single- degree-of-freedom 

oscillator with negligible mass, which is attached at the specified 

point, with natural frequency w and damping ~. Then the floor response 

spectrum value for this oscillator is defined as 

max ly( t) I 
O~t(oo 

(4.1) 

While the ground response spectrum depends only on the ground motion, 

the floor response spectrum also depends on the primary structure. It 

is a convenient representation of the combined effect of earthquake and 

structure on a range of secondary systems. 

If the ground motion is modeled as a stochastic process, then y(t) 

will also be stochastic. An extension may be made to the floor rasponse 

spectrum in the same way as for the ground response spectrum. The mean 

floor response spectrum is simply 
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< max ly(t)l> 
O~t(oo 

(4.2) 

Alternatively, the design floor spectrum may be defined for a confidence 

level p as that level FS(~,w;p) for which 

Prob {SD2 (~,w) ~ FS(~,w;p)} p (4.3) 

Knowledge of the design floor spectrum for the point at which a 

secondary system is to be attached greatly simplifies the design 

problem. The floor spectrum contains the essential information about 

the primary structure which is needed for evaluation of the safety of 

proposed secondary systems. Most importantly, the design of the 

secondary system may proceed without further resort to dynamic analysis 

of the primary system. 

A number of methods have been proposed for the approximate computa-

tion of floor spectra. In nearly every case, the design ground spectrum 

is assumed known. Biggs and Roesset [30] developed an approximate rela-

tionship between the ground spectrum and the floor spectrum, based on a 

semi-empirical amplification curve. The curve was defined for a single-

degree-of-freedom primary system, then extended to multiple-degree-of-

freedom structures by a root-sum-squares rule. 

Singh [32,33] and Vanmarcke [35] took similar approaches to floor 

spectrum computation. The RMS acceleration of the secondary system in 

response to stationary ground motion was computed. (Singh obtained the 

stationary response, while Vanmarcke took an approximation to the 

transient response.) This value was expressed in terms of the RMS 
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acceleration of the ground and each mode of the primary system. Assum

ing the ground spectrum to be a constant multiple of the RMS accelera

tion of the appropriate oscillator allowed the floor spectrum to be 

expressed in terms of ground spectrum values. 

In this chapter, some simple approximations for the computation of 

design floor spectra are discussed. In order to clarify the nature of 

the approximations involved, a single-degree-of-freedom primary system 

is considered. 

4 . 2 Simple Analytical Approximation for Floor Design Spectra 

Consider a primary system which may be modeled as a single-degree

of-freedom oscillator with damping~ and natural frequency w
1

. For the 

calculation of the floor spectrum for such a primary system, a secondary 

system with arbitrary damping~ and natural frequency w
2 

is attached as 

in Figure 3.1. If the primary structure has more than one degree of 

freedom, the present analysis will apply to each of the modes of the 

primary system. 

The analytical difficulties which arise in regard to design floor 

spectra are similar to those associated with ground response spectra. 

Although the time-varying distribution of the secondary system response 

may be developed (as, for example, in Chapter 3), the determination of 

the maximum response over a period of time is a much more formidable 

problem. 
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It may first be recognized that the amplitude of response is an 

important value which scales the corresponding maximum response. The 

maximum response will occur most probably when the amplitude tends to be 

largest. With this motivation, define the dimensionless peak factor 

max 
O~t(oo 

ly(t)l I max <a
2

(t)) 
O~t(oo 

(4.4) 

where y(t) is the relative displacement of the secondary system, and 

a
2

(t) is its envelope, as defined in Chapter 3. The peak factor depends 

explicitly on the primary and secondary system parameters, and also 

depends implicitly on the nature of the ground motion. Note that 

r(~1 ,w1 ,~,w2 ) is a stochastic function. It should be noted that other 

measures of the intensity of y(t) could be used in place of 

max <a
2
(t)). For example, the maximum RMS displacement of y, 

O~t(oo 

2 
max <y (t)), could be used. In order to be generally applicable, the 

O~t(oo 

measure must be appropriate for transient ground motion. The maximum 

mean envelope is used here because expressions are available from 

Chapter 3 for this quantity. 

A closely related function is the peak factor for the maximum 

primary response. Let 

max 
O~t(oo 

lx(t)l I max <a
1

(t)) 
O~t(oo 

(4.5) 

where x(t) is the relative displacement of the primary system, and a
1

(t) 

is its envelope. r1 <~1 ,w1 ) depends implicitly on the nature of the 
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ground motion. Although ~1 and w
1 

are fixed parameters of the primary 

system being considered, the function r1 (~.w) may be defined for all~ 

and w in terms of the response of corresponding primary systems. 

Since <a1 (t)) and <a2 (t)) are known for general stochastic ground 

motion, the determination of the peak factors is the crucial analytical 

challenge in the development of ground response spectra and floor spec-

tra. The ground spectrum is expressible in terms of r
1 
(~.w), and the 

floor spectrum is expressible in terms of r(~,w1 .~.w2 ). 

If the ground motion is broad-band, the two peak factors r
1 

and r 

will be related. In Section 3.3.1, it was shown that if w
1 

and w2 

differ greatly, the lower frequency dominates the secondary response. 

If w2 <<w1 , the primary system essentially transmits the ground motion 

unchanged in the frequency range of the secondary system. Thus, if 

w
2

<<w
1

, the secondary system responds as if it were on the ground. That 

is. 

(4.6) 

If w
2

>>w
1

, the secondary system responds quasi-statically to the primary 

system, so that 

y( t) x( t) (4.7) 

In this case, therefore, y differs from x only by a scale factor, which 

is removed in the definition of the peak factor. Thus, 
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(4.8) 

Hereafter, all spectra will be assumed to be mean spectra, in order 

to simplify notation. A similar analysis may be carried out in the case 

of spectra defined by a confidence value p. Assume temporarily that the 

mean ground response spectrum is known for all ~ and w, and that the 

corresponding stochastic model is known. Then <r1 (~,w)) may be computed 

as the ratio of the mean ground spectrum to the maximum mean primary 

envelope, as 

(SD(~,w)) / max <a 1 (t;~.w)) 
O~t<"' 

(4.9) 

where a1 (t;~,w) is the envelope of the oscillator with natural frequency 

w, and damping ~. Equation (4.4) allows the mean floor spectrum to be 

expressed as 

(4.10) 

Combining equations (4.9) and (4.10) with equations (4.6) and (4.8) 

gives the following limiting v alues for the mean floor spectrum: 

max <a2 (t)> 
O~t("' 

max <a
2
(t)) 

O~t<"' 

(4.11) 

(4.12) 

Note that in both cases a
2

(t) refers to the envelope of the secondary 
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system attached to the actual primary system. The quantity a
1 
(t;~,w) 

refers to the envelope of a fictitious single-degree-of-freedom system 

attached to the ground. 

Equations (4.11) and (4.12) may be combined as 

ma:!,_t(m 

[ 

max <a 2 (t)) ] 

(4.13) 

where~ and w are "equivalent" damping and frequency values exhibited 
e e 

by the secondary system values. These parameters take on the extreme 

values 

if 

(~ • w ) 
e e 

(4.14) 
if 

For intermediate values of w
2

, equation (4.13) may hold in an approxi-

mate sense, if ~ and w are chosen appropriately. 
e e 

The problem of 

determining the floor spectrum then reduces to the choice of ~ and w , 
e e 

identification of <SD(~ ,w )> from the ground spectrum, and computation 
e e 

of the amplification factor in equations (4.13 ) (the term in brackets) 

from the stochastic model. 

The choice of w may be made on the basis of the transfer function 
e 

of the primary/secondary system. Recall that 

H (w) 
y 

1 (3.26) 

If w
1 

and w
2 

are reasonably separated, there will be peaks at w
1 

and w2 . 
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Near w=w1 , if ~,~((1, 

Near w=w
2

, 

H (w) 
y 

H (w) 
y 

1 

1 

Thus, the area under the peak at w1 is 

A1 

Similarly, 

w1 +~w 

f 
w -~w 1 

f 
w -~w 

2 

2 IH (w) I dw 
y 

2 IH (w) I dw 
y 

The ratio of the two areas is 

approximately 

1 
2 2 2 

(w2-w1) 

(4.15) 

(4.16) 

4 
~ 

3 
2~w1 

(4.17) 

(4.18) 

(4.19) 

It seems appropriate to choose we as w1 or w2 , depending on which part 

of H (w) is dominant. This leads to the result 
y 



- 104 -

(\t3 w1 if (1)2 > \ w1 

w 

(~lr3 
(4.20) 

e 

(1)2 if (1)2 ~ \ w1 

The choice of\ probably has less influence on the resultin~ pre
e 

diction than w • A simple choice for \ is 
e e 

if 

(4.21) 

if 

Note that equations (4.20) and (4.21) have the correct limiting behavior 

given by equation (4 .14) . 

4.3 Comparison of Approximate Theory to Simulation Studies 

A series of simulations was performed to test the ability of equa-

tion (4.13) to predict actual floor spectra. The ground motion was 

chosen to be white noise modulated by a boxcar envelope. There were a 

number of reasons for this selection. An extremely efficient algorithm 

for computing the response of a linear system to modulated white noise 

is described in the Appendix. The use of this algorithm made possible a 

greater number of simulations. The use of a boxcar envelope is 

convenient, since closed form expressions are available in Chapter 3 for 

the mean envelope in this case. Also, as explained in Section 3.3.4, 

the number of parameters to be varied in the study may be reduced to 
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four: \
1

, ~~ w
2

/w
1

, and w
1

T, where Tis the duration of shaking. 

A preliminary step was the estimation of the ground spectrum to be 

used in equation (4.13). For each set of parameters considered, from 

100 to 400 sample ground motions were generated. The maximum oscillator 

response to each motion was computed, and these maxima were averaged to 

estimate the corresponding ground spectrum value. In all cases, the 

sample standard deviation of the estimate was from 1% to 4% of the sam-

ple mean. A smooth spectrum was produced by interpolating logarithmi-

cally between the sample points. The resulting spectra are shown in 

Figure 4 .1. 

The algorithm described in the Appendix made computation of the 

ground spectra very efficient. On a PRIME 500 computer, it was possible 

to simulate approximately 75 cycles of oscillator response to enveloped 

white noise per second of real time. The time step was taken to be one-

fifth of a period, and peak values were determined by cubic interpola-

tion, using the displacement and derivative at each time step. 

Three sets of parameters were considered for floor spectrum simula-

tions: i) \
1 

= 0.05, ~ = 0.05, w
1

T = 20n; ii) ~ = 0.05, ~ = 0.01, 

w
1

T = 40n; iii) ~ = 0.01, ~ = 0.01, w
1

T = 80n. The average floor 

spectrum was found as a function of w
2

/w
1

. In each case, the theoreti-

cal value of <a
2

(t)> was obtained from equations (3.71), (3.73), (3.76), 

and (3.78), with S(w) = s
0

. The value of <a
1
(t;\ ,w )) was computed 

e e 

from equations (3.19) and (3.20). Equation (4.13) was then used to 

predict the floor spectra. Figures 4.2, 4.3 and 4.4 show a comparison 

of the simulated floor spectra with the prediction. The dashed curves 
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Fig. 4.1 Mean ground spectrum for boxcar-modulated white noise. 
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(C) s=0.05, wlT=40TI; 
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were obtained by putting \e =~and we= w1 in equation (4.13). The 

solid curves result if \e = ~ and we w2 • 

The simplified theory accurately predicts the floor spectra except 

near resonance, where it overestimates the response by 20% to 40%. The 

limiting behavior predicted by equation (4.14) is observed in the simu-

lations. The choice of w in equation (4.20) is not well tested by 
e 

these simulations. In the one case where \1~~. Figure 4.3 indicates 

that we = w
2 

more accurately predicts the floor spectrum for the entire 

range of w
2 

considered. Equation (4.20) would select we = w
1 

for 

w
2

/w
1 

> 1.7 in this case. 

The failure of the simple theory to predict the resonance peak of 

the floor spectrum may be attributed to the choice of \e. When w
1 

and 

w
2 

are well separated, the secondary system behaves essentially as a 

single-degree-of-freedom oscillator on the ground, with the appropriate 

frequency and damping. At resonance, however, the two resonance peaks 

at w
1 

and w
2 

in Hy(w) coalesce into one peak, which is then sharper than 

either separate peak. A reduction of \ near resonance would reflect 
e 

the narrowing of the resonance peak. 

In order to study the effect of \ on the height of the floor 
e 

spectrum peak, values of the ground spectrum were obtained for several 

values of damping. These values were used in equation (4.13) for the 

floor spectra. The values of the predicted floor spectra at resonance 

are shown in Figure 4.5 as a function of\. for the three sets of 
e 

parameters. In general, it is seen that a reduction of \ results in a 
e 

lower predicted floor spectrum value. This tendency reflects the fact 
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that as damping decreases, the maximum response increases more slowly 

than the mean amplitude, at least for the small damping levels 

considered here. The empirical result 

(4.22) 

gives good results at resonance for the three cases considered, but it 

is not necessarily justified theoretically. 

4.4 Further Approximations for Floor Spectrum Computation 

The approximate theory developed in Section 4.2 depends on a 

knowledge of both the ground spectrum and the stochastic model of ground 

motion which leads to that spectrum. Normally, earthquakes are 

prescribed by the design ground spectrum, without reference to a 

stochastic model. In this case, a stochastic model may be inferred from 

the ground spectrum. The resulting model will not be unique. Mason 

[24] described an approximate procedure for determining a modulated sta

tionary process which is consistent with a given spectrum. The modulat

ing function may be specified arbitrarily, indicating the non-uniqueness 

of the inversion procedure. 

The stochastic model is needed to compute the amp! if ica tion factor 

in equation (4.13). It may be hoped that the amplification factor is 

not strongly dependent on the particular choice of model. In fact, the 

computationally difficult inversion of the ground spectrum is sometimes 

ignored, and a stochastic model is used which is not necessarily 

consistent with the given ground response spectrum. 
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If the stochastic model used for the computation of the amplifica-

tion factor is not required to relate to the ground spectrum, it is 

possible to choose a model which simplifies the computation of the fac-

tor. For example, a long-duration stationary model may be chosen, and 

the amplification factor approximated as 

<SD2 (~,w2 )> 
<SD(~ , w ) > 

e e 

2 
<y >stat 

2 
<x >stat 

2 
where <x >stat is the stationary variance of the equivalent linear 

(4.23) 

oscillator. Equation (4.23) becomes particularly simple if the ground 

motion is white noise. However, the cumulative effect of these simplif-

ications may be considerable. An investigation of this approximation is 

beyond the scope of the present work. 

The dependence of the amplification factor on the stochastic model 

may be seen in part by varying the duration of a boxcar-modulated white 

noise model. Figures 4.6, 4.7 and 4.8 show the dependence of the 

amplification factor on duration for the three sets of parameters 

considered in this study, at resonance. In all three cases, there is a 

significant dependence on duration until the primary/secondary system 

essentially reaches stationarity. Thus, if a shorter duration model is 

appropriate, amplification factors derived from a stationary model may 

introduce large errors into the calculation. 
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4.5 Summary and Discussion 

In this chapter, the results of Chapter 3 have been applied in a 

simple way to the calculation of floor spectra. The use of the mean 

envelope is not necessarily superior to the use of the time-varying RMS 

value of y. However, this chapter presents only one potential applica

tion of the envelope statistics derived in Chapter 3. 

Simulation studies have demonstrated that a simple formula is 

adequate for predicting floor spectra, except near resonance, where the 

predicted spectra are overly conservative by up to 40%. This conserva

tism may be reduced by more realistic selection of equivalent damping 

near resonance. 

It is possible that simpler formulas may be adequate for the pre

diction of floor spectra in some special cases. An examination of these 

simp! ifications was deemed beyond the scope of the present investiga

tion. The formula developed in this chapter is applicable to very 

general stochastic models of ground motion. 



- 118 -

CHAPI'ER V 

SUMMARY AND CONCLUSIONS 

In Chapter II, stochastic models of earthquake ground motion were 

discussed. Although an earthquake is, in principle, a deterministic 

process, a level of uncertainty must be accepted when predicting strong 

ground motion. This uncertainty is incorporated in the randomness of 

the stochastic model. 

While an ideal stochastic model may be based on an ensemble of 

potential earth conditions, this is not practical. However, it is 

possible to define reasonably simple models of ground motion which may 

be expected to contain the essential features of uncertain earthquakes. 

In Section 2.2, the modulated stationary process and the filtered, 

modulated white noise process were suggested as potential models. In 

Section 2.3, methods of analysis were described for transient stochastic 

earthquake models. Of particular importance is the evolutionary power 

spectral density, which both defines and characterizes a nonstationary 

stochastic process. 

In Section 2.4, the problem of the calibration of a stochastic 

model to actual data was addressed. It was seen that modulated station

ary models are well suited to calibration by response spectrum. 

Filtered, modulated white noise models are especially convenient when it 

is desired to match a given Fourier amplitude spectrum. 

Some aspects of numerical simulation of ground motion were con

sidered in Section 2.5. The spectral representation of a nonstationary 
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process was used to develop numerical methods for simulation of a 

general model. Modulated stationary processes and filtered, modulated 

white noise processes may be simulated more efficiently. 

Chapter III was concerned with the response of a secondary system 

to ground motion of the type described in Chapter II. Attention was 

focused on the envelope of the displacement of the secondary system. In 

Section 3.2, the envelope of the primary system was derived. A similar 

method was used in Section 3.3 to obtain the time-varying distribution 

of the secondary envelope. It was found that for both the primary and 

secondary systems, the mean square envelope, as a function of time, is 

given by the convolution of a known function with the evolutionary power 

spectral density of the ground acceleration. The convolving function 

for the secondary system is given in Section 3.3.2. 

The special case of boxcar-modulated stationary ground motion was 

considered in Section 3.3.3. The distribution of the secondary envelope 

was obtained in closed form. A number of simulations were performed in 

Section 3.3.4. These simulations indicate that the results give a 

conservative measure of the system response, but not overly so. The 

envelope tends to be most conservative when the system has a strongly 

bimodal behavior. 

In Section 3.4, the question of the effect of interaction was 

addressed. A particularly simple method of accounting for interaction 

effects was described for a system which is classically damped. In this 

case, it is possible to define an equivalent non-interacting system 

which may be analyzed by the previous methods. It was shown that the 
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dominant effect of interaction is an effective detuning of the system, 

which has special significance if the system was tuned to begin with. 

For a detuned system, the effect of interaction was seen to be small. 

One application of the non-interacting results from Chapter III was 

considered in Chapter IV. There, the problem of the computation of 

floor spectra was considered. In Section 4.2, it was postulated that 

the effect of the structure on the spectrum was mainly contained in the 

amplification of the envelope of response. An approximation was 

developed which was highly accurate except at resonance. This method 

requires a knowledge of both the ground spectrum and the stochastic 

model for the ground motion. A suggestion was made for improvement of 

the approximation near resonance. It was assumed that the original 

method f~iled at resonance because it ignored the narrowing of the reso

nance peak of the secondary system transfer function. 

Even simpler methods were discussed in Section 4.4. These methods 

involve a number of untested assumptions. An evaluation of the validity 

of these assumptions could be the focus of another investigation. 

It is concluded that stochastic modeling of earthquakes leads to 

analytically tractable solutions for the response of secondary systems. 

It is therefore feasible to undertake a dynamic analysis of the seismic 

loads on a secondary system using a realistic earthquake model. Before 

the results of this thesis can be used practically, they would have to 

be extended to multi-degree-of-freedom primary structures. If the 

frequencies of the structure are separated, this could be carried out by 
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modal analysis [31]. The emphasis of the present work was on developing 

a clearer understanding of the simple system. 
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APPENDIX 

EFFICIENT NUMERICAL SIMULATION OF A VECTOR MARKOV PROCESS 

Consider the n-dimensional vector process X(t) defined by 

X( t) AX(t) + rG(t)w(t) (A.l) 

X( 0) (A . 2) 

where A is a constant nXn matrix, r and ~ are constant n-vectors, 9(t) 

is a deterministic function, and w(t) is a stationary Gaussian white 

noise process with unit power spectral density. X( t) 
th 

represents an n 

order Markov process. 

If X(t) is known for some t, then the solution at any later time 

may be written 

X(t+LH) 

At 

Q (At ) X ( t ) + f Q (At -'t' ) r9 ( t+'t' ) w ( t +'t' ) d 't' 

0 

where Q(t) is the fundamental matrix solution. Q(t) satisfies the 

matrix equation 

Q( t) AQ ( t) 

Q( 0) I 

(A. 3) 

(A. 4) 

(A. 5) 
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In a numerical simulation, the process X(t) is evaluated at discrete 

time intervals. Hence, let 

X(k.i\t) (k=O,l,2, ••• ) 

From equation (A.3), it may be seen that 

where 

.1\t 

J Q ( .1\ t-·t') rG ( k.i\t+'t') w( k.i\t +'t') d 't' 

0 

(A. 6) 

(A. 7) 

(A. 8) 

The random vectors Y are normally distributed. From equation (A.8), it 
-k 

may be seen that 

0 

.1\t .1\t 

f f Q(.i\t-'t'l)::TQT(.i\t-'t'2)Q(j.i\t+'t'l)e(k.i\t+'t'2) 

0 0 

0 

.1\t 

2rr f Q (.1\t-'t') rrTQT (.1\t-'t') e
2 

( k.i\t+'t') d 't' 

0 

if j:Fk 

if j=k 

(A. 9) 

(A.lO) 

(A.ll) 
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Thus, the Y are seen to be independent, normally distributed random 
-k 

vectors with zero mean, and covariance matrices 

L\t 

2rr J Q (L\t--r) rrTQ ( L\t--r) e2 (kL\t+-r) d -r 

0 

(A.12) 

Suppose e(t) may be approximated by a piecewise constant function 

of the form 

e(t) 
A 
e(t) e< [t/L\t 1 • L\t) (A.13) 

A 
where [x] denotes the largest integer ~x. In order for e(t) to be a 

reasonable approximation to e(t), L\t must be chosen sufficiently small. 

Then, equation (A.12) may be simplified as 

L\t 

2rre2 (kL\t) J Q(-r)rrTQ(-r)d-r 

0 

(A.14) 

The problem of generating a sequence X which is consistent with 
-k 

X(t) is now reduced to the problem of generating independent normally 

distributed random vectors Y which have the properties of equations 
-k 

(A.9) and (A.14). Then, X may be generated through the recursive rela
-k 

tionship of equation (A.7), with the initial condition 

X 
-o 

(A.15) 
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A convenient method for generating the random vectors Y is to find 
-k 

a matrix C for which 

~t 

27T J Q(·t) rrTQT('t') d't' 

0 

(A.16) 

Then, if Z is a vector of n independent, normally distributed random 

variables with zero mean and unit variance, 

9(k~t) c z 

will have the desired properties. This is because 

and 

<Z> 0 

I 

The procedure for generating X may be summarized as follows: 
-k 

1. X 
-o 

2. X 
-k+1 

BX + 9(k~t) C Z 

for k=0,1,2, ... , where 

(A.17) 

(A.18) 

(A.19) 

(A.15) 

(A.20) 
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Q(At) 

At 

2n f Q('drrTQT('t') d't' 

0 

(A.21) 

(A.16) 

Thus, if B and C are known, the computation required at each time step 

is: 

1. Generation of n new unit normal variables; 

2. Two nXn matrix-vector multiplications; 

3. Addition of two vectors. 

Furthermore, the method provides statistically correct sample functions 

X regardless of the size of the time step. 
-k 

The computation of the matrices B and C need be done once only for 

a given (A,r) combination. Any numerical or analytical scheme may be 

used to solve equations (A.4) and (A.5) for Q(At). The integral on the 

right-hand side of (A.16) may be evaluated numerically as the solution 

Q(t) is developed for O~t~At. Since this integral is seen to be a 

symmetric and positive definite matrix, it may be factored by Gaussian 

elimination (without need for row exchanges) into the form LDL T, where L 

is lower triangular, and D is diagonal. Then, C is taken to be the 

lower triangular matrix 

c (A.22) 

where D¥2 is easily generated. The initial computation of B and C may be 

time-consuming, but in comparison with the time required for the genera-
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tion of a large number of samples of X(t), the extra time is negligible. 

The advantage of the present technique over traditional numerical 

simulation methods lies primarily in the ability to lengthen the time 

step at. Currently, a standard method for the generation of white noise 

is to let w(t) be approximated by a piecewise constant function. For 

kat ~ t < (k+1)at, w(t) is taken to be Wk, a zero-mean normally 

distributed random variable with variance wn/at. The power spectral 

density of such an approximation is 

S(w) 2 
( 1 - c 0 s wa t ) 

(wat)
2 

(A. 23) 

It may be verified that 

0.95 ~ S(w)~ 1 for o ~ wat ~ 0.78 (A.24) 

0.9 ~ S(w) ~ 0.95 for 0.78 ~ wat ~ 1.12 (A.25) 

Thus, to simulate the response of a narrow-band oscillator of frequency 

w
0

, at is often taken to be T/50 or even T/100, where T = 2n/w
0

, the 

natural period of the oscillator. This small time step is necessary to 

ensure that the excitation is sufficiently "white" over the necessary 

range of frequencies. At each time step, w(t) is generated, and X is 
-k+1 

computed by a numerical scheme based on equation (A.1). 

In the present scheme, w(t) is never computed. The time step at is 

constrained only by the following considerations: 
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1. dt must be small enough to resolve 9(t). 

2. dt must be small enough to monitor the features of X(t) which are 

being observed. 

For example, if the peaks of a narrow-band oscillator are being 

observed, it is possible to choose dt so that only five data points per 

period are computed. (The interpolation of the peak value must be 

carried out with care with this broad time step.) This results in a 

speed-up of an order of magnitude over standard simulation techniques, 

while maintaining exactly the white noise nature of the excitation. 


