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ABSTRACT 

The subject of this thesis is some implications of chiral anomalies 

for chiral Lagrangians. The thesis consists of three parts : 

In the first part, a somewhat heuristic discussion of the topological 

meaning of anomalies is given in the framework recently introduced by 

Alvarez . Its application to the sigma model anomalies is also given. 

In the second part, the incorporation of chiral anomalies into the 

chiral Lagrangian is discussed in a simple manner . The Wess-Zumino 

term and the sigma model anomalies for the effective theory are 

explained. 

Finally in the third part, as an implication of chiral anomalies, the 

chiral soliton model is described. Its relation to QCD in large N is dis­

cussed in detail. Quantization of the soliton is done in the path integral 

formalism. 
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Chapter 1 

Introduction 

The study of chiral anomalies has been very fruitful in the past 

decade in helping our understanding of quantum field theory. The pur­

pose of this thesis is to give a more or less self-contained account of 

chiral anomalies (mainly gauge anomalies) including some of the origi­

nal work done by the author (and collaborators). 

The history of chiral anomalies itself is somewhat anomalous (see p. 

16 7 of [ 1] for this part) . They were first encountered by Steinberger, 

who computed the amplitude of 1r0 -+ 2-y in the pseudo-scalar coupling 

model and the pseudo-vector coupling model [2]. He noticed that only 

the first model gives a nonvanishing answer (which agrees with experi­

ment). A puzzle arises, since one gets one theory from another by using 

the equation of motion. (According to Jackiw [1], this puzzle made 

Steinberger quit theoretical physics!) 

The resolution of the puzzle was given a little later by Schwinger, 

who realized the subtleness of the calculations and introduced a careful 

regularization to get the same answer from the two models [3]. (This is 

explained in the appendix to chapter 2 from a modern point of view.) 

Schwinger's work had been forgotten for a long time until Adler [ 4] 

and Bell and Jackiw [5] rediscovered the puzzle of Steinberger. This 
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time chiral anomalies entered the mainstream of theoretical physics . 

The general form of the anomalies was soon calculated by Bardeen [6 ]. 

Chiral anomalies in the chiral Lagrangian were discussed by Wess and 

Zurnino, who then gave a consistency condition for the gauged chiral 

Lagrangian [7]. 

One of the most interesting applications of chiral anomalies has 

been made by 't Hooft [8]. He discussed that the anomaly is a low 

energy phenomenon and that both fundamental and phenomenological 

theories should have the same anomaly. This condition has been found 

useful to determine the patterns of chiral symmetry breaking for some 

ferrnionic theories [9 ]. 

In the past two or three years, we have seen many progresses in two 

aspects of chiral anomalies : the structure of anomalies and the incor­

poration of anomalies into the chiral Lagrangian. These are the sub­

jects of this thesis . The organization of the thesis is given below. In 

chapter 2, an overview of chiral anomalies is given, followed by a 

pedagogical account of the topological meaning of the gauge anomalies. 

Nonlinear sigma model anomalies are also explained. In chapter 3, a 

systematic way to introduce chiral anomalies into the chiral Lagrangian 

and the general effective theory is explained. In chapter 4, we discuss 

the chiral soliton model as an example of the implications of chiral 

anomalies . The path integral quantization of the soliton is shown to give 

a quantization of the Wess-Zumino term. The relation of the model to 

QCD in large N is discussed in detail. Some of the predictions from the 
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chiral soliton model are described in the last section. Finally we con­

clude the thesis in chapter 5. 
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Chapter 2 

Chiral Anomalies 

2-1. Overview of Chiral Anomalies 

In quantum field theory, "anomaly" means a violation of a classical 

symmetry due to quantum effects. Chiral symmetry is a symmetry of 

chiral fermions, left and right handed. Anomalies in chiral symmetry 

are called chiral anomalies [ 1]. 

As a concrete example, let us consider quantum chromodynamics 

(QCD, SU(3) gauge theory) with three massless flavors, u , d and s. The 

Lagrangian is given by 

(2 .1) 

where 1/18 = (u8 
, d 8 

, sa)T, (a = 1 ,2,3). g is the QCD coupling constant, . 
F JW is the field strength of the gluon field and D~ is the covariant deriva­

tive . The Lagrangian (2.1) is invariant under the transformation 

(2 .2) 

where L E U(3)1 , R E U(3)R are global and act on flavors. There are 

three types of chiral anomalies, all of which appear in QCD: 
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(i) U( 1 )A anomaly 

(ii) perturbative gauge anomaly 

(iii) SU(2) anomaly 

The in variance of the Lagrangian (2.1) under the transformation 

(2.2) implies that the currents defined by 

(2.3) 

where T6 are generators of U(3), are conserved: 

(2.4) 

In fact due to one-loop quantum effects, the subgroup U(l )A is broken: 

(2.5) 

where 

(2.6) 

This is called the U(l)A anomaly [1]. One of the interesting applications 

of this phenomenon is the resolution of the U(l) problem [2]. The actual 

chiral symmetry of QCD is G = SU(3k x SU(3)R x U( 1 )v and there 

appear eight Goldstone bosons upon the spontaneous breaking of G to 

H = SU(3)v x U(l)v [3]. 

Let us introduce the external gauge fields AL , AR(antihermitian) : 

(2.7) 
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Let the corresponding effective action be r[AL , AR]. In order to define a 

gauge theory of G, it is necessary to have a gauge invariance of f . 

The perturbative gauge anomaly is a noninvariance of f under an 

infinitesimal gauge transformation. The infinitesimal change of f (for 

arbitrary G) has been explicitly evaluated by Bardeen [ 4]: 

where gL = 1 + vL I gR = 1 + vR are infinitesimal gauge transformations, 

and 

(2.9) 

Differential forms are used for notational convenience [5]. The anomaly 

only comes from one-loop diagrams. (2 .8) is unremovable by a local 

counter term (i.e . a polynomial of AL I AR) ii and only if 

(2 .10) 

where Ta are generators of G. This leaves only U(l) and SU(n>2) poten-

tially anomalous [6]. In the case of QCD the perturbative gauge anomaly 

forbids us to gauge the entire G but it is still possible to gauge any ano­

maly free subgroup of G, for example, U(3)y . 

What about SU(2)L? There is no perturbative anomaly. However, 

this does not guarantee the gauge invariance of the effective action r. 
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This is because there is a class of SU(2) gauge transformations which 

cannot be reached continuously from the identity, as can been seen 

from 

(2 .11) 

In section 4, it will be shown that under these nontrivial gauge transfor­

mations, eif changes its sign. This is called the SU{2) anomaly, first 

found by Witten [7]. This sign ambiguity forbids the gauging of SU(2)L. 

Although we will not discuss it in the following sections, it should be 

mentioned that the gauge anomaly (the perturbative gauge anomaly and 

the SU(2) anomaly) can be also seen in the Hamiltonian formalism (in 

the A0 = 0 gauge) [8,9]. The physical states are defined by the Gauss 

equation 

(2 .12) 

where 

(2.13) 

Ei,a is the canonical momentum conjugate to Af. The gauge anomaly 

arises as impossibility of defining the physical states by (2.12). In the 

case of the perturbative anomaly, the integrability of (2 .12) breaks 

down even locally. For the SU(2) anomaly the integrability condition 

breaks down only globally [9]. 
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2-2 . The Topological .Meaning of the Gauge Anomalies 

In this section a formalism is developed to understand the topologi­

cal meaning of the gauge anomalies . It will be very useful for nonlinear 

sigma model anomalies, discussed in the next section. The topological 

meaning of the gauge anomalies has been discussed in [10]. In the fol­

lowing, a technique which was first introduced into physics literature by . 

Alvarez is used [ 11]. 

Let us consider a fermionic theory with a chiral symmetry G. The 

external gauge field A is introduced. Let the fermion functional integral 

be P[A]. Then the effective action r[A] can be formally defined by 

P[A] = e1I1AJ (2 .14) 

The purpose of this section is to examine a necessary condition to have 

a gauge invariant P[A]. 

Some definitions follow. Let A (4) be the space of all possible gauge 

field configurations in the space-time, and G(4) be the space of all gauge 

transformations. Then a point in the coset space C = A(4); c<4) 

corresponds to a gauge equivalent class of gauge fields. 

The space C has a nontrivial topology although A <4) has a trivial 

one . Let ~Ua~ be a covering of C. In Ua, each point is represented by a 

gauge field Aa(x) . It is assumed that only one gauge field is necessary to 

cover the entire space-time, i.e. the instanton number of the gauge 

field is zero . In Ua n U~ , there is a relationship 

(2 .15) 
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where we note that the exterior derivative d is taken with respect to x, 

the coordinates of the space-time. Under the gauge transformation 

(2.15), the fermion integral changes by a phase : 

(2 .16) 

To see this, note that IP 1
2 corresponds to the functional integral of the 

corresponding theory obtained by replacing the left-handed fermions by 

Dirac fermions. It can be regularized in a gauge invariant way by the 

Pauli-Villars regulator [12]. Hence the gauge noninvariance always 

arises in the phase. 

In A (4 ), there are configurations for which P[A] vanishes . This gives 

singularities in r[A], so it is not well defined globally in A(4) .(fl) There­

fore, we only discuss P[A] and f[A] is not considered in this section. 

In Ua n U~ n U7 , there are two additional relations : 

P[A~] = eii',- P[~] 

P[~] = eii'i'Cl P[Aa] 

Combining (2.16), (2 .17) and (2 .18), we find 

which implies 

(fl) However, the gauge variation I.1Aa] - l1A,] is always well defined. 

(2.17) 

(2.18) 

(2.19) 
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(or)a,87 = ra,8 + rll7 + r7Cl = 2rma,87 I na,87 E z . (2.20) 

The set fnap7 ~ contains information necessary to understand the topo­

logical meaning of the anomaly . 

Now suppose that the fermion functional integral P[A] can be made 

gauge invariant by a counter term rpa . Namely, if we redefine the fer­

mion integral by 

(2 .21) 

then in Ua n Up , 

P'[Aa] = P'[Ap] (2 .22) 

and P' is defined globally on C. From (2 .16), (2 .22) implies that 

(2.23) 

This gives 

(2 .24) 

(2.23) or equivalently (2.24) is a necessary condition for defining P glo­

bally on C(i.e . the gauge invariance of P). 

There is a well established procedure to get a closed two-form in C 

which contains the same amount of information as fnap7 ~. It goes as fol­

lows . First we take an exterior derivative of fap inC, dcfap . Since 
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(2 .25) 

there is a one-form T a defined on each patch Ua, which satisfies 

(2 .26) 

This is due to an analogue of Poincanfs lemma for differential forms in 

Rn .<f2) Take an exterior derivative of Ta, dcTa . This is globally defined 

on C, since in Ua n U~, 

(2.27) 

from (2 .26) . Let us call dcTa as F. This is obviously a closed form 

(dcF = 0) . The above procedure can be summarized in the "lic-tac-toe 

box"[ll ]: 

0 

F 

0 

(f2) Let Po. be a partition of unity ( ~Po. = 1 , 0 ~Po.~ 1 , Po.= 0 outside Ua). Then 
• 

Ta = tp'dcra~ . 
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It has been shown that a necessary condition for the gauge 

independence of P[A] is (2 .23) or equivalently (2.24) . What is the 

corresponding condition for F? (2.23) implies that 

(2.28) 

This determines T a as 

(2.29) 

where T is a globally defined one-form. This gives 

(2 .30) 

namely F is an exact form. Similarly it can be shown that if F is an 

exact form, fap can be written as (2 .23).(f3) Therefore, for the gauge 

invariance of P[A], F is necessary to be exact. This is equivalent to 

(2.31) 

where Y is an arbitrary two-dimensional surface without boundary in C. 

NOW let us 0 btain the explicit formulae for F ' T a and raP· For this 

purpose, we introduce a connection A on C x M .(M is the space-time .) 

A one-form Aa is defined on each patch Ua x M. In (Ua n Up)xM, 

(f3) For this to be true, it is necessary that the cover !Ual be a good cover, i.e. 
any multiple intersection of Ua can be contractible to a point. 

(2.32) 
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If y represents coordinates of C, Aa can be symbolically written as 

(2.33) 

i.e. its restriction to M gives the ordinary gauge field Aa. Let g be a 

function on CxM, taking a value in G. It depends on parameters, with 

respect to which an exterior derivative dG can be taken. We define 

(2.34a) 

(2.34b) 

The following formulae are well known in physics literature [5]: 

(2.35a) 

(2.35b) 

where 

(2.36a) 

(2.36b) 

The trace is taken in the representation of the fermions considered. We 

note that using (2 .36b), Bardeen's formula (2.8) is written as 

f[A 1 + v] - r[A] = jM c.ll{A,v) . (2.37) 
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We are now ready to construct F, Ta and fa~ · fa~ can be obtained 

as a line integral over (2 .37). Let L be a line in G(4) which connects the 

identity and g~a · (f4) Then 

ra~ = ~JM c.>.{(AI I g-1dGg) 

= ~JM c.>J(A.; I g-1dGg) (2.38) 

In the second line, the integral over M is meant to pick up only forms 

proportional to the volume form of M. The difference between A§ and A; 
is g-1dcg from (2.34a). which gives a term vanishing upon the integral 

over M. 

Next take an exterior derivative of fa~· 

dcf a~ = fr_JM dc.c.>J(A; , g- 1dGg) 

= ~JM (d + dc)c.>J 

= J;_/y - dGwl 

= JM w5(Afl) - JM w5(Aa) (2.39) 

Note that de commutes with integrals . In the second line, the integral of 

dw.{ over M gives zero. To go from the second line to the third line, 

(2.35b) is used. (2 .39) implies 

(f4) 7l'o( G<4l) = n,.(G) = 0 is assumed. 
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modulo a global form. Finally F is obtained: 

where (2.35a) is used. 

= _i_2 lM tr F! 
247T 

(2 .40) 

(2.41) 

It is known [10] that (2.41) gives a nontrivial closed form only for 

SU(n>2) if and only if 

(2.42) 

This agrees with the result of perturbation theory (2 .1 0) . In the case of 

U(1), (2 .41) vanishes . However, in perturbation theory there is a gauge 

anomaly . This discrepancy comes from the requirement of quantum 

field theory that the counter term rpa in (2 .21) be a local (in space-time) 

function of Aa. Although there exists cpa which gives a gauge invariant 

P[Aa]. it is not a local function of the gauge field.(f5 ) The SU(2) anomaly 

cannot be seen from the differential form F. The anomaly appears as a 

sign ambiguity of P and this cannot be incorporated into F. A simple 

derivation of the SU(2) anomaly will be given in section 4 . 

(f5) However, it has recently been shown that there is a topological obstruction 
even for U(l) if the gauge field has a twist over the space-time [13]. 
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2-3. Nonlinear Sigma Model Anomalies 

In this section, we digress to the nonlinear sigma model anomalies 

which have been recently discussed by Moore and Nelson [14]. The for-

malism developed in the previous section is directly applicable to this 

case . 

We start with a brief account of the nonlinear sigma models [ 14]. 

Consider an arbitrary manifold N. It is covered by patches ~Ua~ · The 

scalar field y?(x) takes values on N, i.e. 9' is a map from the space-time M 

to N. For simplicity we assume that ¥?(M) is entirely in Ua if it intersects 

with Ua. At each point 9' of N there is a k-dimensional vector space V 'P . 

The fermion field '\V(x) is an element of V fl(x) . A connection is given on N. 

On each patch Ua, a kxk matrix valued one-form ®a is defined . In 

Ua n U~, ea and e~ are related by 

(2.43) 

In the background field ¥?(X) contained in Ua, the Lagrangian of the 

fermion is given by 

(2 .44) 

where y?6 are local coordinates of Nand ea = ea I ad~a . In Ua n Up. the 

Lagrangian can be also given as 

(2.45) 
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From (2.43), Lp can be obtained from La by the change of variables : 

(2.46) 

The structure of the theory is identical to the one of the gauge theory if 

we substitute the gauge potential Aa by 

a a 
A = ® 2.!L.... dx#J. 

a a. a ox#J. (2.4 7) 

Let the fermion functional integral of La be P a · Likewise for the gauge 

theories, Pais in general dependent on which patch we use : 

(2.48) 

Let C be the space of all possible space-time configurations of ~(x) . 

The question is whether the fermion functional can be redefined on C. 

The necessary condition for the gauge theories was given by (2.31) and 

(2.41 ). The corresponding condition for nonlinear sigma models is 

r r i tr f3 = o 
JyJy 24n2 

(2.49) 

where Y is an arbitrary two-dimensional closed surface in C. F is 

defined as follows: 

(2.50a) 

(2.50b) 
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where d is an exterior derivative in the space-time and yi are coordi-

nates of C. The condition (2.49) has been obtained in [14], where some 

interesting examples are also discussed. 

2-4. The SU(2) Anomaly 

In this last section of chapter 2, we derive the SU(2) anomaly in a 

simple way [ 15]. 

We consider SU(2)L gauge theory with a doublet of left-handed fer-

miens . Let the corresponding functional integral be P 2 [A], where A is an 

external SU(2)L gauge field. By adding an SU(2)L singlet, a triplet of 

SU(3)L can be formed. The functional integral of the SU(3)L theory is 

defined to be P 3 [A'], where A' is an external SU(3)L gauge field. If A' is 

restricted to an SU(2)L gauge field, the SU(2k singlet is free, and it 

does not contribute to P3 . This implies 

(2.51) 

for any SU(2)L gauge field A. Let g(x) be a nontrivial element of 

7r4 (SU(2)). Since 7r4 (SU(3)) = 0, Ag can be obtained from A by repeating 

infinitesimal SU(3) gauge transformations. Let g(s)ESU(3) be an inter­

polation between g(O) = 1 and g(1) =g. Then recalling that the pertur-

bative anomaly is given by (2 .38), we find 
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(2 .52) 

The above calculation can be done explicitly for a particular g(x): 

(2.53) 

where ~0 (x) is an element of SU(2) with wrapping number 1 and Rt 

denotes a rotation around the z-axis by 2nt. The calculation (2.52) will 

be necessary to determine the statistics of a chiral soliton in section 4-

4 and the calculation is done in Appendix 1 to chapter 4 . 
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Chapter 3 

Chiral Anomalies in the Chiral Lagrangian 

3-1. The Chiral Lagrangian 

Quantum chromodynamics (QCD) is a theory based upon the SU(3) 

gauge symmetry. In the limit of massless u, d and s quarks, the theory 

possesses the chiral symmetry G = SU(3)LxSU(3)RxU(l)v (U(l)A is bro-

ken by the anomaly) . At the scale A xSB"' 1 GeV, the symmetry G dynami­

cally breaks down to its subgroup H = SU(3)yxU(l)y . As a conse-

quence, an octet of Goldstone bosons(pions, kaons,eta) arise [ 1]. 

The chiral Lagrangian [2] describes an effective theory for the 

interactions of the Goldstone bosons, which are incorporated into an 

SU(3) matrix ~(x) : 

where 

M= 

2· M ~(x) = exp[-1f -] 

1To _!]_ 

vl2 +vis 
1T+ 

1T -
1To _!]_ 

-vlz+v6 

K- !(0 

(3 .1) 

K+ 

(3.2) 

_vfzTI 
3 
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f is the pio.n decay constant("-' 134 MeV) . 

The chiral Lagrangian is constructed such that it is consistent with 

the symmetry G and parity and charge conjugation. The field M is a 

nonlinear realization of G, and only His linearly represented [3]. Under 

G, I; transforms as 

(3 .3) 

where L and R are global SU(3) matrices . L is invariant under U(l)y. 

The most general Lagrangian invariant under (3 .3) is written as 

(3.4) 

Here higher order derivative terms are suppressed. 

The Lagrangian (3.4) is constructed so that it correctly describes 

the low energy interactions of the Goldstone bosons. It has been found 

useful in quantitative analyses of meson scattering , meson weak decays, 

etc. [ 4]. 

3-2. Chiral Anomalies in QCD 

Let us imagine that a set of external gauge fields AL, AR are intra-

duced for G0 = SU(3) LX SU(3)R . The Lagrangian is written as 
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where 1/18
· = (u8 

, d 8 
, sll.)T (a = 1,2,3). The first term is a kinetic term 

for the gluons. D.u is a QCD covariant derivative. A~·R are antiherrnitian 

matrices . 

The effective action is defined as follows: 

(3.6) 

eii' is the vacuum to vacuum amplitude in the presence of the external 

gauge fields AL , AR . 

r. defined by (3.6) is not invariant under the gauge transformations 

of AL , AR . The change of r under the infinitesimal gauge transforrna-

tions gL = 1 + vL , gR = 1 + vR is given as follows [5]: 

r[A l+vL A l+vR]- r[A A ] 
L • R L • R 

(3.7) 

where Ag = g-1(A + d)g (cf. eqn. (2.8)). The form notation has been 

used for simplicity. N is the number of colors . For QCD, N = 3. 

If the scale of the space-time variations of AL and AR is large corn­

pared to A~s18 , the effective theory is valid. Therefore, the transforma­

tion property (3.7) must be possessed by the chiral Lagrangian. A sirn-

ple re~lacement of aJJ. by aJJ. + A.uL + AJJ.R will not do. It gives a gauge 

invariant Lagrangian. Unlike ferrnions, scalar fields do not induce any 
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chiral anomaly. Whatever gauge noninvariance the chiral Lagrangian 

has, it must be explicitly introduced at the classical level. 

The "incorporation" of chiral anomalies into the chiral Lagrangian 

is the subject of the next section. 

3-3. The Construction of the Wess-Zumino Term 

The goal here is to construct a functional r[E,A1,AR] which has the 

required anomalous transformation property (3.7). 

First let us consider an effective action r 1['E,A1,AR] for the theory 

defined by 

11 = i 1/!7J..L8J..L'Ijl- m(~L~}lj;R + ~REt1/!L) 

+ i1/IL7J..LAJ;jL + i'lj;R-yJ..LA'f;'I/IR . , (3.8) 

where 1/1 = (u , d, s)T does not carry the color quantum number, but it 

transforms in the same way as the quark fields under G. The gauge 

noninvariance of N r 1 is also given by (3.7). Somehow the anomalous 

part of rl should be extracted. 

There is a trick to achieve this. It is a generalization of the resolu­

tion of the famous puzzle of the n° decay first encountered by Stein­

berger [6] (see Appendix). 

We introduce the following change of variables: 

(3.9) 
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The Lagrangian (3 .8) changes to 

(3 .10) 

Under G0 , the field At transforms in the same way as the field AR : 

(3 .11) 

Therefore, the corresponding effective action r2 of ~ can be made 

gauge invariant by adding a counter term [5]: 

(3.12) 

where F = dA + A2 . 

The two theories defined by (3.8) and (3 .1 0) are of course ine­

quivalent due to the Jacobian eiW of the change of variables (3.9) [7]: 

(3.13) 

Since r2 + ~r is gauge invariant, the functional defined by 

rw-z .= w- ~r (3 .14) 

has the same transformation property as rl . r w-z is called the 

(gauged) Wess-Zumino term [8,9]. W can be readily evaluated by 

integrating Bardeen's formula (3.7) [10]: 
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(3 .15) 

where l:s interpolates between l:0 = 1 and l:1 = l: . 

The construction of the effective theory can now be stated as fol-

lows. First we replace aJ.I. by the covariant derivative aJ.I. + AJ.I.L + AJ.J.R in 

the ordinary chiral Lagrangian (3.4) . Add gauge invariant terms which 

vanish when FL = FR = 0. Finally add N fw-z given by (3 .14) . Now we 

note that r w-z is nonvanishing even for the vanishing gauge fields (f) : 

(3 .16) 

This is the ordinary Wess-Zurnino term. Some of the implications of this 

term are the subjects of the next chapter. 

(f) This is not really surprising. As has been discussed in [9], the ordinary chiral 
Lagrangian without the Wess-Zumino term has a redundant conservation rule, i.e . 
the conservation of the number of mesons modulo two . This is broken by the 
Wess-Zumino term which contains, e .g. the KKmrn vertex. 
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3-4. Generalization of the Wess-Zumino Term 

The construction of the Wess-Zurnino term discussed in the previous 

section can be easily generalized to any effective theory [ 11]. 

Let us start with a summary of the ge~eral effective theory [3]. The 

modern notation adopted here is from the reference [12]. Let G be a 

group of chiral symmetries possessed by the fundamental ferrnionic 

theory . Suppose G breaks down dynamically to H at a low energy scale. 

For each generator of the broken part of G, there is a Goldstone boson 

[ 1]. 

The Goldstone boson fields ~(x) take values on the coset space M = 

G/H. Mathematically speaking ~ is a map from the space-time to M. In 

general M cannot be covered by only one coordinate patch. Let fUa~ be 

a covering of M. It is assumed that if the image of the space-time under 

rp intersects with Ua . it lies entirely in U~ . This is for the sake of sim­

plicity, since otherwise we need to use several patches to cover the 

whole configuration of rp(x). 

In each Ua , a point rp of M is represented by a group element sa(rp) 

of G. In each Ua11Up, there is a relation 

(3.17) 

where hpa(rp) E: H, since both sa and Sp belong to the same equivalence 

class. This coordinate transformation (3.17) will be important in the 

next section. Only one patch Ua is necessary for the discussions of this 

section and the suffix ex will be omitted hereafter. 
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An element g of G induces a transformation of the Goldstone boson 

field r.p : 

(3.18) 

A matter field 1/1 transforms as 

(3.19) 

DH is a representation rna trix of H. A connection on M is given by 

s- 1 a~siH ( IH means a projection into the algebra of H) which transforms 

under (3.18) as 

(3.20) 

The covariant derivative of 1j; can be defi11ed using the connection: 

(3 .21) 

The covariant derivative of s is given by 

(3 .22) 

which transforms covariantly under (3 .18): 

(3 .23) 

The effective Lagrangian can be constructed out of 1/1 , D~'f/1, s and D~s 

such that it is invariant under the G transformations. 
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The f1,1ndamental fermionic theory has chiral anomalies associated 

with the group G. Let the external gauge field for G be A~-'-. The effective 

action r[A] is not gauge invariant in general. 

It is demanded that the effective Lagrangian have the same 

transformation property as r[A]. The noninvariance of the Lagrangian 

is given at the classical level, since the scalar fields cannot produce 

anomalies due to quantum effects . 

The most straightforward way to gauge the effective Lagrangian 

~fl'(1i', D~-'-'\ll , s I D~-'-s) is as follows. The covariant derivative DJ.J.'\ll is 

replaced by 

(3.24) 

and the covariant derivative of sis redefined by 

(3.25) 

The effective Lagrangian Lefl'('\l! , D~ , s I D!s) thus constructed is 

gauge invariant under G. The puzzle arises again if we notice that the 

transformation of A~IH is the same as the H-gauge field. Therefore, Lefl' 

can only produce the H-anornaly but not the whole G-anomaly. A sys­

tematic construction of the term, called the generalized Wess-Zurnino 

term, which provides the rest of the G-anomaly is discussed in the 

remaining part of this section. 

Let us consider a free theory with the same fermion contents as the 

fundamental theory . The Lagrangian is 
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(3 .26) 

where the G-gauge field AJJ. is introduced. Its effective action f 0 [A] o bvi-

ously has the same anomaly as the effective action of the original 

theory r(A]. X linearly represents G via a representation matrix DG . A 

nonlinear realization of G of the type (3 .19) can be obtained from X by a 

change of variables: 

(3 .27) 

In terms of 1/J, the Lagrangian is written as 

(3.28) 

where A~= s-1(AJJ. + aJJ.)s . The Jacobian of (3 .27) gives a counter term 

.6.1 = (3 .29) 

where sp interpolates s 0 = 1 and s 1 = s . The trace is taken in the 

representation DG . The two theories defined by Lo and 1 1 + .6.1 are 

equivalent. The Lagrangian 1 1 only provides the H-anomaly , since A~ 

transforms as a H-gauge field . The rest of the G-anomaly is given expli-

citly by .6.1. We note that .6.1 can be written as 

(3.30) 

This expression will be very helpful in the next section. 
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Now the 't Hooft anomaly matching condition should be recalled 

[13]. Both the fundamental and the low energy theories have the exact 

chiral symmetry H. The anomaly matching condition states that the 

chiral ferrnions of the low energy theory must give the same H-anomaly 

as the fundamental theory. This amounts to the fact that the massless 

fermion is the only source of the anomaly. The Goldstone bosons, for 

example, which are linear representations of H cannot induce any H­

anomaly [14]. 

Whatever phenomenological ferrnions \f we have, they must have the 

same H-anomaly as 1/1 given by (3.27). This is the consequence of the 't 

Hooft anomaly matching condition. Therefore, as far as the anomaly is 

concerned, 11 in (3.28) is equivalent to 

(3 .31) 

As a conclusion, the most general effective Lagrangian which has the 

same transformation property as r[A] is given by 

(3.32) 
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3-5. Absence of Nonlinear Sigma Model Anomalies 

The nonlinear sigma model anomalies have been discussed in sec­

tion 3 of chapter 2 . It has been shown in [12] that the theory defined by 

(3.32) does not suffer from nonlinear sigma model anomalies . We end 

this chapter with this short section by rederiving the result of [ 12]. 

Let us suppose that the field configuration ~(x) of the Goldstone 

bosons is entirely in UanUp. Then there are two possible ways of writ­

ing down the Lagrangian: 

La= i~a?'~(o~ +A;~~)~ a+ r[A]- I'(A811
] , (3 .33a) 

Lp = i~ p7~(a~ + A'tf)~ p + r[A] - r[A8
'] , (3 .33b) 

where only the terms relevant to the G-anomaly have been kept. Recall 

that r[A] is the effective action for the fundamental theory. The ques­

tion to ask is if the two theories defined by La , Lp are equivalent. 

The first term of (3.33b) is obtained from the first term of (3 .33a) by 

the change of variables : 

(3 .34) 

This induces a counter term due to the H-anomaly. Because of the 't 

Hooft anomaly matching condition, the counter term can be written in 

terms of the H-anomaly of the fundamental theory: 

(3.35) 
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Therefore, La is equivalent to 

(3.36) 

This is precisely equal to Lp. proving th~t La and Lp are equivalent. 

Thus, there is no nonlinear sigma model anomaly associated with the 

coordinate transformation from sa to Sp . 

The above result can be also seen from the condition (2.49) derived 

in the previous chapter. We denote the trace in the representation DH 

by trH and the trace in DG by trG . Then for 

- -1 A=s (d+dc)siH (3 .37) 

we :find 

(3.38) 

by the 't Hooft condition. Now we notice that both A in (3.37) and 

A' = s-1(d + dc)s give connections on Cx(space-time) with the gauge 

group G. For A', the corresponding F' vanishes. The difference between 

trG F3 and trG F'3 = 0 is an exact form [15]: 

where 

- - -1 At= A+ t{s (d + dc)s)G;H , (3.40a) 

. - - -2 
Ft = (d + dc)At_ + +At (3 .40b) 
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Since the integral in (3.39) is a global form, trG F3 is exact. Therefore, 

the two-form F defined by 

(3 .41) 

(see (2.41)) is exact, and there is no anomaly. 
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Appendix. The Puzzle of rr0 --+ 2)' Decay 

The interaction of rr0 and u, d quarks can be described in two ways. 

Theory 1 (pseudo-scalar coupling) 

Theory 2 (pseudo-vector coupling) 

Here 1/18 = (u8 
I d 8 )T (a = 1 1 2 1 3) I Q = diag(; , - ~ ). 11 gives the 

rr0 --+ 2')' decay from the graph: 

u,d y 

... -... -~ 

y 

Fig. rr0 --+ 21 decay 

The amplitude is 
ie2V 2 o R 

...:;___ __ 1T l:~11at-F J.'.IIF afJ . However, in the massless 
32rr2f 

limit of 1r0 , the decay amplitude due to 12 is zero . This is because the 
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loop of a massive quark does not give any singularity to cancel the 

momentum of TI0 from BJ.L1To . 

The puzzle arises [6] when we notice that L2 can be obtained from 

L1 by the change of a variable: 

(A.3) 

The resolution to this puzzle is the anomaly in the transformation (A.3). 

The corresponding Jacobian gives a counter term 

ilL= (A.4) 

L1 and~ + ilL are now physically equivalent. 
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Chapter 4 

The Chiral Soliton Model 

4-1. Solitons in the Chiral Lagra~ian 

Consider the chiral Lagrangian for QCD with massless u, d and s 

quarks . There are an infinite number of possible higher order terms. A 

particular example of the chiral Lagrangian is given by 

(4 .1) 

It was first noticed by Skyrme (in the case of two flavors) [1] that (4.1) 

has a soliton solution: 

~0 (5t) = exp[if(r)A] (4.2) 

. ri 
where ii. = A1 

- • The function f of radius vanishes at the origin and 
r 

goes to 7T at infinity . Since ~0 approaches -1 at infinity, ~0 has a finite 

energy. ~0 represents a nontrivial element of TT3(SU(3)) = Z and its 

wrapping number is 1: 

(4 .3) 

Here we note that the higher derivative terms are necessary in (4.1) in 
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order to stabilize the classical solution. (This is known as Derrick's 

theorem [2].) 

Skyrme tried to model a baryon as a soliton of the Lagrangian (4.1). 

The justification of his idea in the framework of QCD is the subject of the 

next section. 

4-2. Baryons in Large N QCD 

The picture of a baryon being a soliton emerges from QCD in the 

limit of large N (N being the number of colors). In order to understand 

this statement, a brief summary of the ~ expansions for QCD is neces­

sary . 

As has been discussed by 't Hooft and Witten [3,4],· the most natural 

expansion parameter of QCD is ~ . The gauge coupling constant is 

scaled such that 

g2N = constant (4.4) 

Thereby the self-energy graphs of a gluon have a smooth limit as N ..... CXl. 

For the meson interactions, the power counting can be done simply by 

drawing Feynman diagrams . It can been shown that the leading contri­

butions come from the so-called planar diagrams . There are two impor­

tant conclusions: 

(a) The meson masses and mass splittings are of order 1. 
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(b) The n-meson interactions are suppressed by --1-­
.l (n-2) 

N2 

These can be incorporated into the chiral Lagrangian by determining 

the N dependence of the parameters as follows: 

All parameters a 1,a2 , ... in the parenthesis are independent of N. The N 

dependence is factored out. The properties (a), (b) are reproduced 

immediately from (4.5), if we substitute 

(4.6) 

where the normalization of the meson field 7T is independent of N . 

What about baryons? This is more subtle, since we cannot use 

diagrams for the power counting. The baryon contains N quarks and 

the mass is of order N. The Feynman diagrams which represent the 

corrections to the amplitudes involve powers of N, and they do not pro-

vide a convergent series. 

Witten got around this difficulty by introducing the Hartree-Fock 

approximation for the baryon which is a system of N quarks [4]. The 

approximation amounts to a mean field theory, and it gets better as N 

becomes larger. (The corrections are suppressed by ~ .) For large N, 

each quark feels a common potential field of order 1. The important 

conclusions are as follows: 
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(c) The baryon masses are of order N. The baryon mass splittings are 

of order 1. 

(d) The baryon size is of order 1. 

(e) The baryon-meson scattering amplitudes are of order 1. 

The excited baryons can be obtained by putting some of the quarks into 

excited states . Since the excited energies of the quarks are of order 1, 

the mass splittings are of order 1. The size of the baryon is determined 

by the size of the quark wave function, which is set by the common 

potential of order 1. (e) implies that for a baryon the interactions with 

1 mesons are suppressed by N , but the effects of a baryon on mesons 

are of order 1. 

Does a soliton of the Lagrangian (4 .5) have the properties (c), (d) 

and (e)? First we note that the classical solution of (4 .5) is independent 

of N. Therefore, the size of the soliton is .of order 1 and (d) is satisfied. 

The baryon masses are obviously of order N. The mass splittings of the 

baryons are of order 1 as we shall see later when we discuss the baryon 

mass spectrum (section 6). Therefore, (c) is satisfied. The quadratic 

term in the normalized meson field in (4 .5) is independent of N, however, 

it depends on the classical soliton solution. Therefore, the scattering 

amplitude of a meson from a soliton is of order 1. (e) is satisfied. 

In this section we have seen that the baryons in the large N QCD 

have the same N dependence as the solitons of the chiral Lagrangian. 
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4-3. Baryon Number of the Soliton 

The justification of the soliton being a baryon will be complete if we 

derive its baryon number [5,6]. 

Let us consider QCD with N colors first . One sensible way to define 

the baryon number is to introduce an external field B~ coupled to the 

1 -
quark current N 'ljry~ . Calculate the effective action r [B]. The 

or 
baryon current can be defined as oB , and the baryon number is 

~ 

defined as the space integral over the time component of the baryon 

current. 

This definition can be introduced to the effective theory which is 

required to provide the same effective action r[B] if the momentum of 

B~ is small compared to AxsB . In the chiral Lagrangian, at first glance 

there does not seem to be anything to wh_ich the field B~ can be coupled. 

The field I: is a singlet under U{l)v. However, the requirement that r 

should have the correct anomaly content demands the appearance of 

B~ in f. For simplicity let us consider the two-flavor case . The whole 

chiral symmetry is G = SU{2)LxSU(2)RxU(l)v and the only anomalies 

are of mixed types : SU{2)[ ·U(l)y and SU{2)~ ·U(l)y. Again for the sake 

of simplicity only the SU(2)[ ·U(l )v anomaly will be considered. The 

anomalous transformation property of r is given by 

r[Ai+vL, B +de]- r[AL I B] 
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The corre-sponding Wess-Zumino term can be calculated as follows : 

This implies that in the absence of A1 , the baryon number current is 

given by 

(4.9) 

This expression has also been obtained by Goldstone and Wilczek by a 

one-loop calculation [7]. From (4.3), it is seen that the wrapping 

number coincides with the baryon number . 

We have seen that the coupling of the field BJ.I. is uniquely deter­

mined by the anomaly.(fl) The formula (4.9) is correct as long as the 

spatial variations of the soliton solution are smooth compared to Axls. 
(Or equivalently it is valid as long as the chiral Lagrangian makes 

sense.) 

The reasoning which led to (4 .9) can be applied to an arbitrary 

number of flavors . 

(fl) The gauge invariant terms of the form (B)3v- BvBJ') x (gauge invariantsyu' 
can be added to the Lagrangian. But they do not contribute to the total charge. 
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4-4. Statistics of the Soliton 

Is the soliton a boson or a fermion? This was first examined by Wit­

ten who looked at the amplitude for the soliton under a 2rr rotation [8]. 

The soliton is a boson or a fermion according as the amplitude is ± 1. 

Consider the three-flavor case . When the field 'L changes adiabati­

cally, only the Wess-Zumino term gives a nonvanishing contribution 

besides an inessential constant term in the Lagrangian. This is because 

the Wess-Zumino term is linear in the time derivative while the rest of 

the terms in the Lagrangian involve at least two time derivatives . 

Therefore, it is the Wess-Zumino term only which determines the statis­

tics of the soliton. This is somewhat puzzling, since the Wess-Zumino 

term is a consequence of the chiral anomaly, and it has . al a first 

glance, nothing to do with the rotational symmetry of the soliton. The 

resolution to this puzzle is given by the observation that 

(4.10) 

where Rt denotes a rotation around the z-axis by 2rrt. (4 .10) is a conse­

quence of the symmetry of the classical solution 1:0 given in (4.2) . 1:0 is 

invariant under simultaneous rotations in spin and isospin. Thus this 

symmetry gives a connection between the chiral symmetry and the 

rotational property of the soliton. 

Now consider a field configuration: 

(4.11) 
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The baryon number of this configuration is zero . 'L corresponds to a 

series of events . At t = 0, a pair of a soliton and an antisoliton is 

created. Between t = 0 and t = 1, only the soliton is rotated by angle 

27Tt . Finally at t = 1, the pair is annihilated. The Wess-Zumino term for 

this process is calculated in Appendix 1: 

N fw-z['L(x,t)] = N1r (4.12) 

Therefore, the corresponding amplitude is (-1)N. and the soliton is a 

fermion or a boson depending on whether N is odd or even. This agrees 

with the quark model in which a baryon is made of N ferrnions(quarks). 

The above argument does not simply apply to the two-flavor case . 

There is no Wess-Zumino term. However, this does not imply that the 

soliton is a boson. The reason for this is essentially that 

(4.13) 

The field configurations which have zero baryon number can be 

classified by 7T4(SU(2)). The nontrivial 7T4 implies that there are two 

classes of configurations which cannot be smoothly deformed from one 

another . In the functional integral over the field I:, it is possible to mul­

tiply a weight -1 for the nontrivial configurations .(f2) 

For SU(2), (4.11) belongs to the nontrivial class of 7T4 (SU(2)) . 

Therefore, the soliton is a fermion or a boson depending on whether or 

(f2) rr,(SU(2)) = Zz restricts this weight to be ± 1 due to the cluster property. 
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not we multiply the extra weight -1 [8]. 

In fact a further argument can show that it is necessary to multiply 

the weight -1 [9]. Let r Qco[AL I AR] be the effective action of QCD with 

two flavors. As has been discussed in section 2-4 (the SU(2) anomaly), 

under a nontrivial gauge transformation g the effective action changes: 

exp[ir Qco[Af , AR]] = - exp[ir Qco[AL , AR]] (4.14) 

Let rchiral[I: I ALI AR] be the space-time integral of the gauged chiral 

Lagrangian. The eqn. (4.14) implies that we must have 

(4.15) 

However, rchiral is invariant under any gauge transformations, including 

the nontrivial g : 

(4 .16) 

The equations (4.15) and (4.16) look contradictory but this can be 

reconciled in the following way. When we quantize the field I: using the 

path integral, the integral over the field configurations consists of two 

parts, the integral over I: belonging to the trivial element of rr4(SU(2)) 

and the one over I: belonging to the nontrivial element of rr4 (SU(2)). 

The factor -1 in (4.15) can be introduced by hand, since I: and gi: belong 

to different elements of the homotopy group . This implies that for non­

trivial configurations we are forced to multiply the weight -1 in order to 

recover the SU(2) anomaly. 
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4-5. The Path Integral Quantization of the Soliton 

The purpose of this section is to construct the wave functions of the 

baryons, ignoring meson excitations [ 1 0]. In this approximation, the 

configuration of l: can be parametrized by the collective coordinates as 

follows : 

l:(x , t) = A(t)L:0(x)At(t) . (4.17) 

where A E SU(3). For a static A, l: is another classical solution with the 

same value l: = -1 at spatial infinity. The transformation property of A 

is given as follows : 

A--. VA Rt (4.18) 

A multiplication of an SU(3) matrix V from the left of A corresponds to 

an SU{3)y transformation. A multiplication of an SU(2) matrix Rt from 

the right is a spatial rotation of the soliton. 

We should note that in fact A lives in the coset space 

M = SU{3)/ U(l), since A(t) and A{t)ei,(t)A& gives the same t{x,t) . The 

Lagrangian must be also invariant under the A.8 rotation. Therefore, up 

to second derivatives in time, the general form of the Lagrangian , 

invariant under (4 .18), is 

(4 .19) 
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where the generators are normalized so that tr Ta.Tb = c5ab_ The last 

term is the Wess-Zumino term. N is the number of colors. In order to 

derive this form, we have imposed the periodic boundary condition on 

the field 'E. A(p,t) is an interpolating field of A(t) which satisfies 

A(l,t) = A(t) (4 .20) 

The periodic boundary condition on 'E implies: 

(4 .21) 

Therefore, A(p,t) is a map from a two dimensional disc toM. 

In general it is necessary to have many patches ~Ua~ to cover the 

manifold M. In each Ua , a point of M is represented by an element Aa of 

SU(3). In UanUp , there is a relation: 

(4.22) 

In UanUpnU
7

, there are two other relations similar to (4 .22) . By com­

bining the three relations together, the following consistency condition 

is obtained: 

(4.23) 

where na.p
7 

is an integer. The Wess-Zumino term can be simplified as fol-

lows: 
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(4 .24) 

The total time derivative term can be discarded, since it does not affect 

the equation of motion. The Lagrangian is now written as 

(4.25) 

We now discard the periodic boundary condition (4.21) we imposed 

before . The Lagrangian (4.25) is certainly unambiguous as far as the 

trajectory of A(t) stays in a particular patch Ua. The question is 

whether it is well defined globally on M. The procedure to test this is 

originally due to Alvarez [11]. 

Consider a path starting from U4 and ending in Up : 

u~ 

Fig . 1 A path from Ua to Up . 

The quadratic term in (4 .25) is globally defined, so only the Wess-Zurnino 
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term needs be considered. A natural choice for the action in this case 

would be 

(4.26) 

It is also possible to take another point r in Dan Up: 

(4 .27) 

The difference is 

r 

= N J d1/lpa q 

(4.28) 

where (4.22) has been used. Therefore, the action 

(4.29) 

is independent of q . Now is this r well defined globally? Not quite. An 

ambiguity arises from a triple intersection: 
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U,g 

Fig. 2 A triple intersection. 

There are two ways to write down the action: 

(4.30a) 

(4.30b) 

The difference between these two expressions is a constant from (4.23): 

(4.31) 
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At the classical level this constant is totally harmless . However, for 

quantum mechanics eir must be single-valued . It is a weight for each 

path in the path integral. Therefore, we conclude that N must be an 

integer . In this particular case N is the number of colors, and this 

quantization condition is satisfied. 

A wave function of a baryon is a collection of wave functions 

bfla(Aa)l defined on patches . The time evolution of the wave functions is 

given by the path integral: 

(4.32) 

where the integral is over all the paths from Ap to Aa in the coset space 

M. Ap is also integrated over . In order that (4 .32) be well defined, a cer­

tain relation between 1f'a and 1/lp must be imposed. Let us consider a 

path starting from the intersection U4 nUp . 

Fig . 3 A path starting from U4 n Up . 

If the point p is regarded as belonging to Ua , the action is 
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(4.33) 

Its contribution to the path integral can be written symbolically as 

(4.34) 

If pis regarded as belonging to Up , the action is 

(4.35) 

This gives 

(4.36) 

1/lp(Ap(q)) must be independent of how we look at p . The two expressions 

(4.34) and (4.36) are equivalent if and only if we impose the consistency 

condition 

(4.37) 

This condition provides a rule of pasting together the wave functions 1/la 

and 1/lp . Thus for the entire SU(3) space the wave function 

'lf;(A)(A E: SU(3)) can be defined. It satisfies 

(4.38) 

In the path integral, all possible paths in the whole SU(3) space are 

taken into account. The weight of a path is determined by the action 
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+ i ~ 
6 

jtr AtdAT8 (4 .39) 

A path in SU(3)/U(l) given in the left-hand side of Fig. 4 is now replaced 

by a path in SU(3) : 

U(I)L A~) 

'A -')...--' . a 

SU(3)/U( I) 
Ua U,a 

=> 

Fig. 4 Replacement of a path. 

The extra path between Aa and All does not contribute to the first two 

terms . The third term gives N 1/lfla I reproducing (4.29) . 

4-6. Derivation of the Schrodinger Equation 

In this section we will derive the Schrodinger equation from the 

path integral [12] and find the energy eigenmodes. The path integral 

formula for the time evolution of the wave function is 

,P(A~t) = J \.JdB]eif 1J;(B~O) I 

pal=-
(4.40) 

where the integral is taken over all paths connecting B at t = 0 and A at 

tin the SU(3) space . The integral is also taken over B. The action f is 
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given by (4 .39) . Let us suppose t = £ is infinitesimally small. Then the 

paths which give dominant contributions to the path integral do not 

fluctuate much around A . Therefore, the following local coordinates 

are useful: 

(4.41) 

The path integral (4.40) can be approximated as 

1 3 X M 7 X N 
1/I(A,t) = -C J IT dxa exp[i£( rn

2 
I; ( .2.. )2 + -

2 
I; ( .2.. )2 + _ 1_ x8)] 

a a=l t a=4 t V6 

(4.42) 

where C is a normalization constant. The integral over x8 can be dis-

carded, since it only forces the condition (4 .38) on the wave function . 

Therefore, in (4.42) x 8 can be put to zero. As a result of the integral, we 

find 

-· 1 3 ~ 1 7 ~ 1/I(A.£) -1/I(A,O) - lt[ -
2 

l: 2 (A,O) + ZM l: 2 (A,O)] 
m a = 1 OXa a = 4 OXa 

(4.43) 

It is convenient to introduce the operators which generate right multi-

plications : 

(4 .44a) 
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(4 .44b) 

From (4 .43), the Hamiltonian can be written in terms of Ra as follows: 

(4 .45) 

In fact the Hamiltonian should have a constant term E0 of order N (the 

energy of the classical solution) which is omitted from (4.45). 

The baryon wave function is given by 

'lj;(A) = l D~(A) 
V dirn(p) 

(4.46) 

where (p) is an irreducible representation of SU(3) which has a state b 

with the right hypercharge ~ [10 ]. It is required by (4 .38). The SU(2) 

quantum numbers of b correspond to spin. therefore: 

. N 
b = (J , -Jz , 3 ) (4.4 7) 

a is the SU(3)v quantum numbers: 

a= (I, 13 • Y) (4.48) 

Let us examine the mass spectrum for each J. The Hamiltonian 

(4.45) can be rewritten as follows : 
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1 1 1 N2 = (--- )J(J + 1) +- C2(p)--
m M M 12M ' 

(4.49) 

where C2(p) is the quadratic Casimir invariant of the representation (p) . 

If (p) = (p,q), 

Cz(p,q) = .l (p2 + 3p + pq + 3q + q2) . 
3 

(4 .50) 

For each J, the lowest energy states belong to the representation 

(2J , ~ - J) given by the Young tableau below [13]: 

~-J 2J 
rt ----A~---..\F A \ 

I··· · · ·· ···········I I···· ···I 
2 ............. ··2 

Fig. 5 Young tableau for the lowest energy baryons . 

The numbers are put in to show the state b given by (4.47) ( Jz is taken 

to be -J ). From (4.49) and (4 .50), the energy of this multiplet is calcu-

lated as 

E = ~ J(J + 1) + ~ (4 .51) 

It should be noted that m and M are of order N. Therefore, the mass 

splittings of the various spin multiplets are of order ~ . 
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What about excited states? In general the excited states are given 

by the representation N (2(J - s) + r , z - (J - s) + r) where 

0 ~ s ~ r , 2J . The corresponding Young tableau is given below: (Again 

the state b is shown.) 

r N --J 
2 2J r-s 

' ,.., v-----•--.... ,~ 

2···2 2················2 3···3 

s 

Fig . 6 Young tableau for excited states . 

The energy of this multiplet is 

E = _!_ J(J + 1) + .lL (1 + r) + _!_ (r2 + 2r + Jr- s(r + 1 + 2J- s)) 
m 2M M 

(4 .52) 

The change of energy due to s is only of order ~ , while r gives th~ 

mass splittings of order 1, which is expected from the ~ expansions of 

QCD (section 2) . 

N- 1 ) Finally let us look at the lowest energy multiplet. (p) = (1 , 
2 

with J = ~ . For N = 3, this is the familiar JP = ( ~ )+octet. The states 
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are shown in Fig . 7. The states which survive at N = 3 are given names 

accordingly. Modulo a normalization constant the wave functions of this 

multiplet are given as follows : 

1/I(A) = D(I ~ Y) n (p)(A) 1 for· J =­
z 2 

1 for J =--z 2 

(4 .53a) 

(4.53b) 
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y 
N 

n 30 p 0 

r- o I 0 
0 r• 

0 0 0 0 

' ' I I 
I I 

' ' !3 ' ' 

••••••••• • 0 0••••••••0 

A =-. 
0 

' ' ' I 

0•• •••••• 0 0 

y 

N --I 3 . ao 
• 

0 

t 
I 
I 

I I --N--6 2 
0 0 •••••••• 0 

N-1 
I-= 4 

Fig . 7 Baryons with J = ..!.. 2 . 
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4-7. Powet Counting in ~ 

One advantage of the chiral soliton model over other phenomena-

logical models like the nonrelativistic quark model [14] is that it pro-

vides a systematic expansion in ~ for a matrix element. 

Suppose we are interested in some physical observable , say, a weak 

decay amplitude. The same operator which gives the weak decays of the 

mesons also gives the weak decays of the baryons. TheN dependence of 

the operator can be written as follows: 

(4.54) 

The constant involves an appropriate powers of N. The operators 

f 1 , f2 , · · · are local functions of 1: and they do not possess any N 

dependence . The form of (4.54) can be determined by counting powers 

of N for the relevant Feynman diagrams . f2 , f3 , . .. all come from non-

planar diagrams . If we want to obtain matrix elements for a baryon, the 

same operator (4.54) should be evaluated. Neglecting the meson 

fluctuations, which will be considered later, (4.54) is written as 

(4.55) 

f 1 in general involves terms with many derivatives. Now note that 

tJ0A = i [H , A] 
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(4 .56) 

Since both m and M are of order N, (4.56) implies that the time deriva-

tive of A is suppressed by a power of ~ . For large N, the heavy soliton 

rotates very slowly. Therefore , from each time derivative, one power of 

~ is obtained. In order to calculate a matrix element to leading order 

in ~ (we call this a semiclassical approximation), only the operators 

with no time derivative need be considered. The operators with time 

derivatives give contributions to the matrix element suppressed by 

1 powers of N . Some of the calculations in the semiclassical approxima-

tion are shown in the next section (15, 16]. If we wish to go to the next 

order in ~ , it is necessar y to consider all possible operators with a 

time derivative. This has been done for some observables in [17]. 

Two remarks are in order: 

1. In fact R8 has off-diagonal matrix elements of order V N . Namely, 

the matrix elements of R8 between the states with the right hypercharge 

different by unity are of order V N . We can see this from the fact that 

7 
I; (R8

)
2 is of order N. Therefore, the power counting given above is 

a=l 

too naive . However in Appendix 3 , it is shown that this naive counting is 
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actually correct. 

2 . The meson fluctuations are another source of corrections to the 

matrix elements . The amplitude of emission or absorption of a meson is 

suppressed by J N . (This is because the pion decay constant f is of 

order V N .) The emitted meson must be absorbed, so the corrections 

1 
due to mesons are suppressed by powers of N . The meson interactions 

give corrections to the coefficients of the operators in (4 .55) . Namely 

they induce operators f2 , f3 , · · · • Therefore, the power counting is 

not affected by them. 

4-8. The ~ Ratios in the Semiclassical Approximation 

Let us consider operators belonging to the octet representation of 

SU(3)y. Since we are interested in evaluating the matrix elements to 

leading order in ~ , only operators with no time derivative need be con-

sidered. If the operator is a scalar , there is a unique expression: 

(4 .57) 

If it is a vector, 

(4.58) 

Both operators transform in the correct way under SU(3)y and the 
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spatial rotation. They are also invariant under 

(4.59) 

which is required due to the invariance of 'E under (4 .59). 

For N = 3, the matrix elements of (4 .57) and (4.58) for the baryon 

octet can be incorporated by the following expressions : 

where the spinor field B is given by 

B= 

-­... -

p 

n 

(4 .60) 

(4.61) 

(4 .62) 

Therefore, the ~ ratios can be predicted from the chiral soliton model 

in the semiclassical limit [ 16]. 

The matrix elements of (4.57) can be calculated in terms of the 

Cle bsch-Gordan coefficients [ 18 ]: 
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- [8 8 8](8 8 8) + [8 8 8'][8 8 8') 
- a Bi Br lA n n a Bi Br A n n (4.63) 

Here the baryons with spin up are considered. By comparing (4.63) with 

the matrix elements of (4 .60), we find 

(4.64a) 

Similarly we find 

Fy 5 
-=-
Dy 9 

(4.64b) 

There are several interesting octet operators in nature . The Hamil-

tonian for the nonleptonic decays (in s-wave) of the hyperons is a scalar 

operator in the octet. Therefore, the ~ ratio is predicted to be-~ . A 

least squares fit to the experimental data for the seven decay modes 

[19] gives ~ "'-2.3. The predicted value is 30% off the observed value . 

The Hamiltonian for the semileptonic decays of the hyperons has 

the current-current form: 

Hb.s = -l = const JP.JJ.L · ~-
• j.J. lepton (4 .65) 

Here J j.J. is a V - A current. Since the vector SU(3) is conserved, the 

matrix element of the vector current is known. The time component of 

the axial part of JE can be ignored for nonrelativistic hyperons. The 

. 1 t f JP h F 5 . th . 1 . l . t · A l t ax1a par o 1 as D = g m e sermc asslCa approx1ma Ion. eas 
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squares fit to the experimental data [ 19] gives ~ "' .51. The predicted 

value has an excellent agreement with it. 

Since the electromagnetic charge 

. 2 1 1 2 --v-Q = d1ag ( 3 , - 3 , - 3 ) = 3 ys + Y 2 y3 (4.65) 

is a generator of SU(3), the magnetic moment can be written as 

JJ .. = - I 2 o.a + ....; 2 o.3 
r-1 v 3 1 1 (4.67) 

The ~ ratio is again ~ which agrees reasonably with the observed 

ratio .7 obtained by a least squares fit to the data [19 ]. 

In the above examples, the semiclassical approximation gives rea-

sonably good predictions to the ~ ratios. However, the approximation 

does not always work well. The semiclassical approximations for the 

mass splitting of the baryon octet [ 10] and the parton distribution func-

tion [20] are known to give predictions quite far from the observed 

values. The accuracy of the semiclassical approximation varies depend-

ing on what we calculate. This implies that in the real world N = 3 seems 

to be somewhat too small for the semiclassical approximation to be uni-

formly valid. 
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Appendix 1. Calculation of the lfess-Zumino Term 

The Wess-Zumino term for the rotating soliton (4 .11) is considered 

in this appendix. The calculation is originally due to Witten [6]. 

Since the classical solution ~0 commutes with A.a. 

~0(Rtx) = o e-int o ~0 (x) o eint o 

Choose 

and define 

0 0 1 0 0 1 

r 1 o o r1 o 
= 0 e-2nit 0 ~o(x) 0 e2Trit 

0 

0 
0 0 e-2mt 0 0 e-2nit 

r1 o o 

A(t • p) = 0 pe-2nit ~ 
0 _ vf 1 _ p2 pe2nit 

~(x . t. p) = At(t . p)l:0(x)A(t. p)~J(x) 

The Wess-Zurnino term is calculated as follows: 

(A 1.1) 

(A1 .2) 

(A1 .3) 
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=1T (A 1.4) 
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Appendix 2. Notation 

A brief summary of the notation which is originally due to de Swart 

[17] is given in this appendix. 

Let (p) be an irreducible representation of SU(3). Each state of (p) 

is uniquely specified by three quantum numbers (I , 13 , Y), the magni­

tude of isospin, the isospin third component and the hypercharge. The 

D-function is defined by 

For the adjoint representation, this implies 

The generators of left. right multiplications are defined by 

(La, A] =- TaA , (La, Lb] = -iV 2 fabcLc , 

(Ra, A] =- TaA , [Ra, Rb] = -iV 2 fabcRc 

Consider the following octet operators : 

(A2 .1) 

(A2 .2) 

(A2 .3) 

(A2.4) 

(A2 .5) 

This has the quantum numbers of Ta with respect to the left 

multiplication(SU(3)y) . The commutation relation 

(A2 .6) 
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implies, for example, that oi:· increases the eigenvalue of LI:
0 

by ...J 2 . 

The D-functions satisfy 

LI:
0 

D(r bY)fJ(p)(A) = D(I IsY)fJ(p)(-T3A) = V 2 13 D(I IsY)fJ(p)(A) , (A2 .7a) 

LA D(I r,Y)~(p) = D(I I,Y)~(pl(- T8A) = -v ~ Y D(I I,Y)~(p)(A) .(A2 . ?b) 

The analogous formulae for the right multiplication are 

RI:
0 

Da(I hY)(p)(A) = Da(I IsY)(p)(- A T3) = V 2 l3Da(I IsY)(p)(A),(A2 .8a) 

RA Da(I hY)(p)(A) = Da(I r,Y)(p)( -A T8) = -v ~ Y Da(I I,Y)(p)(A) . 

(A2 .8b) 
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Appendix 3. Matrix Elements of Time Derivative Operators 

First consider an example of an operator with one time derivative : 

(A3 .1) 

This operator is a scalar belonging to the octet of SU(3)y . It is invari­

ant under the T8 rotations. Its matrix element in the lowest energy mul-

tiplet (p) = (1 , N; 1 ) is calculated as follows : 

7 
< I'I'3Y' J = - l_ I " D (Sb)Rb I I I3Y J = - l_ > 

'Z 2 LJ a 'Z 2 
b = 1 

(A3 .2) 

N 
The matrix elements of Rb give (Tb)p7 . p has the hypercharge 3 . If 1 

has the hypercharge 1£ - 1, the rna trix element is of order V N . All 
3 

nonvanishing elements are 

_1_ Tl+i2 = 1 V2 pn 

- ~- Tp"'O = _l_ VN- 1 - 1 - T4 +iB = _l_ VN + 3 
-y 2 iJ 2 ' V 2 pA 2 

(A3 .3) 



_!_ t6+j7 = -- I N - 1 
2 pi: v 2 
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. (B ') The Cle bsch-Gordan coeffic1ents b j ~ are of order 1 if 1 has the 

hypercharge li_ and of order Nl if 1 has the hypercharg ·~ li_ - 1. 
3 3 

(p)x(B) contains two irreducible representations (p 1) and (p2 ) 

equivalent to (p) . The relevant Clebsch-Gordan coefficients are given 

below: 

where 

[
8 P Pt·P2] = 0 V n (5n + 16)c p ~0 p J 2 

[
8 p P1·P2] = _- / 2 c , 3nV n + 2 
pA p V N+2 1 

[
8 P P1•P2] = o V2n (5n + 16)c n L:+ p , 2 

c = -.J 3(n + 2) 
1 5n + 16 

1 
, c2 = --;================ , n = 

V 6n(n + 2)(n + 4)(5n + 16) 

. 1 
As a result, the matnx elements of (A3.1) are of order N . 

(A3 .4) 

N-1 
2 
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This result can be generalized easily . In general, higher time 

derivative opera tors are written as 

(A3 .5) 

where t is a constant of order 1. The invariance under the T8 rotations 

imposes that 0 carry zero right hypercharge. If R81 
· · · R8

k carries 

YR = m, then the state {3 must carry YR =- rn. When we evaluate the 

matrix elements of 0 between the two states with the same right hyper-

charge , the power counting goes as follows . The state 

(A3 .6) 

has the right hypercharge Y R + m and its amplitude is propo1·tional to 

m 

N 2 due to the off-diagonal elements of R8
. The matrix elements of Da,B 

between the states with the right hypercharge YR and YR +mare, how-

ever, suppressed by N 
_..m. 

2 due to the off-diagonal Cle bsch-Gordan 

coefficients . Therefore, the matrix elements of 0 are of order _l_ . 
Nk 
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Chapter 5 

Conclusion 

Recently it has been discovered that anomalies have a rich topolog-

ical structure . This was the subject of chapter 2 . We have derived (or 

rederived) many previous results in a simpler manner. 

What makes the study of anomalies so interesting is their nontrivial 

physical implications . As described in chapter 1, the calculation of the 

1r0 ~ 2{ decay amplitude initiated the study of anomalies . This is still 

the clearest example of the implications of chiral anomalies. 

In chapter 3, we have described how to incorporate chiral 

anomalies into chiral Lagrangians. This incorporation gave us another 

implication of chiral anomalies, namely, the chiral soliton model, which 

was the subject of chapter 4. We have seen how essential anomalies are 

in determining the spin and statistics of a soliton . 

One feature which makes the chiral soliton model special is that it 

gives a systematic expansion of physical quantities in ~ . This is unlike 

other phenomenological models , e .g . the nonrelativistic quark model. 

The expansion in ~ was explained in sections 4-2 and 7. A semiclassi-

cal approximation was introduced as a calculation to leading order in 

1 N . Unfortunately the semiclassical approximation did not turn out to 
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be very successful. 

Historically anomalies have been a source of new physics . Other 

implications of anomalies should be looked for in the future . 




