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Abstract

We present a measurement of R(D(∗)) = B(B → D(∗)τντ )/B(B → D(∗)`ν`) using semilep-
tonic tagging and hadronic τ decays on the 433 fb−1 of data collected at the Υ (4S) resonance
using the BABAR detector at the PEP-II collider. We obtain a high statistics data sample
using loose selection criteria. The signal is extracted by performing a 2-dimensional fit of the
component densities to the kernel density estimate of the data, which is made computation-
ally tractable by algorithmic improvements and speedups provided by graphics processing
units. We obtain two distinct central values based on the model used to represent the BB
background densities: R(D) = 0.231±0.028±0.028 and R(D∗) = 0.127±0.019±0.031 with
a correlation of 0.06 and R(D) = 1.454± 0.028± 0.028 and R(D∗) = 1.507± 0.019± 0.031
with a correlation of 0.06. The region encompassed by the two results are consistent with
both the Standard Model prediction and the world average.
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Chapter 1

Introduction

The layout of this thesis can be broken down into two parts: the first is a description of the
background in which we clearly define the objective of this analysis. The second consists
of exposition into how the measurement, including uncertainty estimation, was carried out,
and a discussion of the results.

The first part starts in Chapter 1, where we discuss the framework in which the mea-
surement takes place. It is meant to be a high-level overview of the topic for a general
audience. In Chapter 2, we delve deeper into the theory behind our current understanding
of the quantities of interest, R(D(∗)), which results in their theoretical prediction values. In
Chapter 3, we review the BABAR detector and the hardware that collected the data used in
this analysis.

1.1 Background

The ultimate goal of the field of particle physics is to completely specify the laws of physics
that determine the characteristics and interactions of the elementary particles, commonly
referred to as the Theory of Everything (TOE). A particle is elementary, or fundamental, if
it is not composed of any other particles1. In a sense, they are the building blocks of larger
particles and atoms, and in turn of molecules and the universe.

One might be tempted to think that if we completely understand the laws that govern
these elementary particles, that we have in a sense, ‘solved’ physics. This is a way of
thinking called reductionism, and as described by Anderson [1], it does not account for the
emergent phenomena that occur when we widen our field of view. As a particle physicist,
one is entitled to feel a certain pride about investigations of the most fundamental aspect of
nature, but would be foolish to let that pride blind oneself from the advancements in other
fields of physics.

1.1.1 The Standard Model

The Standard Model (SM) can be thought of as our best attempt at unifying every in-
teraction besides gravity. The keyword being ‘best’, as we know certain limitations of the
current version of SM, one being the subject of this thesis, the prediction of R(D(∗)), but
others include the matter-antimatter asymmetry and gravity. The SM, if it were the true
description of nature, should be able to give us the correct predictions of all experimentally
verifiable quantities involving elementary particles. On the other hand, the fact that the SM
disagrees with some experimental evidence does not mean that all hope is lost. In fact, the
SM is able to explain most observations remarkably well, and gives us great confidence that

1This statement, along with many others throughout the thesis, should be followed by the words “as far
as we know”.
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we are heading in the right direction. The SM, like all other models, can be iterated upon to
improve its correctness, which involves great communication between the experimentalists
and the theorists.

The current version of the Standard Model can actually be written down as a single
equation, but that would not be very informative. In addition, the SM is a field theory,
meaning it treats particles as quantum fields. However, for the sake of clarity, we can view
the particles of SM as classical particles and the SM as a collection of such particles, and
defer the relevant formalisms to later chapters.

The elementary particles can be divided into two groups: fermions, which consists of
quarks u, d, s, c, b, t and leptons e, µ, τ, νe, νµ, ντ , and bosons, γ, g,W±, Z0,
H0. The bosons are often referred to as force-carrier particles, as all interactions of fermions
can be described as exchanges of such particles. Some particles, such as the leptons, are
stable particles happy to be by themselves while others such as the quarks are always found in
a bound-state with other quarks. This is crucial because it determines what we can observe.
More specifically, we always observe quarks in pairs (mesons) or triplets (baryons). Some
examples of composite particles that are relevant to this analysis are the π, ρ,K, Υ,B,D
mesons.

As one can see, all particles are represented by a symbol, which is sometimes stylized
with a bar ( ), superscripts (∗,∗∗ ,+ ,− ,0), or subscripts (e.g. µ,S). In most cases, Greek
letters with different annotations in fact represent different particles, but since they are
minor variations of each other, they can be represented by the same letter. For example, π+

and π− make up a particle-antiparticle pair, representing particles with different charges,
whereas π0 and π0 are actually the same particle (it is its own antiparticle). Still, all three
particles are considered to be π-mesons since they all consist of a quark-antiquark pair of u
and d quarks.

1.1.2 Decay rate and branching fraction

In order to verify the SM, we need to first establish which predictions are measurable and
which are not. One of the most commonly measured quantity is the decay rate Γ of a
particle, which can be thought of as the inverse of its lifetime τ . For instance, the electron,
being a stable particle, has in theory an infinite lifetime, and consequently a decay rate of
zero2.

Let us be a bit more specific and ask given a particle X, what is its decay rate if we
restrict the possible output to be only particles A and B? This is equivalent to asking
what is the branching fraction of the decay mode X → AB? In other words, what is the
probability of X decaying into AB given that it decays? The main task of this thesis is
to measure the branching fractions B(B → D(∗)τντ ), where D(∗) denotes D and D∗ in the
sense that we are measuring two quantities, B → Dτντ and B → D∗τντ . These branching
fractions in turn will be used to calculate R(D(∗)).

The predictions of the branching fractions of interest are calculated using the theories
of electroweak (EW) and quantum chromodynamics (QCD). EW theory describes the in-
teractions mediated by the γ, Z0, and W± bosons, while QCD describes the interactions
between quarks and gluons (g). There are many ways within QCD to calculate the same
quantity, the differences being the assumptions made in each method. This allows for differ-
ing approximations of the same quantity. The approach taken to calculate the most precise
predictions B(B → D(∗)τντ )will be the topic of Chapter 2.

The fact that we are estimating the probability of something should give hints on how
the measurement can be performed. The idea is simple: suppose we observe n number of B
mesons, and m of them decay into our mode of interest. It follows that our estimate of the
branching fraction is m/n, with a statistical uncertainty that depends on m and n. To give
you a sense of n, the BABAR experiment collected 471 million BB pairs.

2Measuring the lifetimes of stable particles such as e and p is an active area of research.
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1.1.3 Particle accelerators and detectors

Just like many ideas in science, the concept of the measurement is simple but the execution
is difficult. In the context of our measurement, where do we find these B mesons, and how
do we identify them and the decay products D(∗), τ , and ντ? The short answer is that we
produce B’s by colliding particles at a very high energy and identify particles by studying
their behavior when propagating through our detector. While the engineering innovation
that must occur to build such accelerators and detectors takes great effort, as an analyst
of the dataset, the bottleneck lies in the fact that it is impossible to identify the particles
correctly every single time. Indeed, the neutrinos ν cannot even be directly detected in our
experiment, we only hypothesize their existence for each event based on the missing energy.
The accelerator and the detector for the BABAR experiment will be discussed further in
Chapter 3.

1.2 Analysis objective

As stated above, the main objective of this analysis is to measure B(B → D(∗)τντ ), which
will be then used to calculate the quantity

R(D(∗)) =
B(B → D(∗)τντ )

B(B → D(∗)`ν`)
, (1.1)

where l denotes e or µ. Rather than measuring both the numerator and the denominator,
we will only measure the numerator, and use the world-average value for the denominator
as its precision is already quite good. This allows us to tune our analysis to maximize the
sensitivity to the numerator.

1.2.1 Discrepancy between theory and experiment

The most precise predictions of R(D(∗)) as of writing are [2]:

R(D)SM = 0.299± 0.003,

R(D∗)SM = 0.258± 0.005. (1.2)

While the world average of previous measurements are:

R(D)exp = 0.407± 0.039± 0.024,

R(D∗)exp = 0.306± 0.013± 0.007. (1.3)

These imply 2.3(3.0)σ discrepancies3 between the prediction and the measurement of
R(D)(R(D∗)), and a combined discrepancy of 3.78σ.

In the field of experimental high energy physics, we assign arbitrary thresholds to indicate
the statistical power of the discoveries. For example, a 3σ result is referred to as an evidence
of the discrepancy, whereas a 5σ result is called a discovery, and is the threshold where
physicists can comfortably state that the discrepancy is indeed real.

We can summarize the goal of this analysis as simply providing another data point
contributing to the world average. That is inherently different from saying our goal is
to push the discrepancy into the discovery territory, since as analysts we should not bias
ourselves by searching for the discrepancy as if it is real. In fact, the results of this analysis
could turn out to be consistent with the Standard Model predictions and decrease the
discrepancy.

3σ denotes the deviation of the observations when compared to the prediction assuming the prediction
is correct.
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1.2.2 Previous measurements

There have been six previous measurements, two of which measured both R(D(∗)) and the
other four only measured R(D∗). They are shown in Figure 1.1 and Table 1.1.

0.2 0.3 0.4 0.5 0.6
R(D)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
(D

*) BaBar, PRL109,101802(2012)
Belle, PRD92,072014(2015)
LHCb, PRL115,111803(2015)
Belle, PRD94,072007(2016)
Belle, PRL118,211801(2017)
LHCb, PRL120,171802(2018)
Average

Average of SM predictions

 = 1.0 contours2χ∆

 0.003±R(D) = 0.299 
 0.005±R(D*) = 0.258 

HFLAV

Summer 2018

) = 74%2χP(

σ4

σ2

HFLAV
Summer 2018

Figure 1.1: Visual summary of recent results [2].

R(D) R(D∗)
BABAR 2013 [3] 0.440± 0.058± 0.042 0.332± 0.024± 0.018
Belle 2015 [4] 0.375± 0.064± 0.026 0.293± 0.038± 0.015
LHCb 2015 [5] - 0.336± 0.027± 0.03
Belle 2016 [6] - 0.302± 0.030± 0.011
Belle 2017 [7] - 0.270± 0.035+0.028

−0.025

LHCb 2018 [8] - 0.291± 0.019± 0.029
Average (HFLAV Summer 2018) 0.407± 0.039± 0.024 0.306± 0.013± 0.007
Standard Model [2] 0.299± 0.003 0.258± 0.005

Table 1.1: Experimental results.

Much of the work of this thesis overlaps with that of Daniel Chao’s thesis [9] since this
measurement was a collaboration between the author and him. The major difference between
[9] and the results shown in this thesis is the attempt to reduce the observed discrepancies
between the simulation and the detector data.
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Chapter 2

Phenomenology

In this chapter, we discuss the theory behind the predictions shown in (1.2). More specif-
ically, we will assume that the reader has a basic understanding of quantum field theory
and is familiar with concepts such as Feynman diagrams, Fermi’s golden rule, and gamma
matrices.

The topic of interest greatly depends on the theory behind the semileptonic quark tran-
sition b→ c`ν with ` = e, µ, τ , which will be used in the prediction of B(B → D(∗)`ν`). This
becomes clear when we examine the Feynman diagram shown in Fig. 2.1: the spectator
quark d, which was initially bound with the b quark to make up the B meson, simply binds
with the decay product c quark which we detect as a D meson. Thus, the most interesting
part of the decay indeed is the b→ c`ν.

Figure 2.1: Feynman diagram of the B → D(∗)`ν`.

The most precise predictions above are actually naive averages (i.e. they do not take
correlations into account) of four separate results. Looking at the individual results, we
can see that there are two fundamentally different approaches: heavy quark effective theory
(HQET) calculations and lattice QCD calculations. We will focus on the HQET predictions,
and in turn on how the branching fractions are parametrized and what contributes to the
theoretical uncertainties.

2.1 The physical picture

The initial state of the system is a single B meson containing a heavy quark Q and a light
antiquark q. Let p be the momentum of the meson in the laboratory frame. At time t = t0,
Q decays into a W and another heavy quark Q′, where the W decays into a pair of leptons
`ν and Q′ hadronizes with q to produce a new meson with momentum p′, in this case a
D(∗).

This simple description of the system does not take into account the complex interactions
between Q and q through gluons and the self-interactions of the gluons themselves, whose
strength of interaction is of order ΛQCD ∼ 220 MeV. This makes the calculation of observ-
ables such as the decay rate from first principles intractable. This secondary sub-system is
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aptly referred to as the brown muck, and our goal becomes that of providing quantitative
description of the interaction between the brown muck and Q. Nevertheless, we are still able
to derive the expressions of the decay rates in terms of form factors which are functions of p
and p′. But it is precisely the parameterization of these form factors that become intractable
and require additional assumptions about the system.

2.2 QCD, ΛQCD, and the heavy quark symmetry

The recipe for calculations of R(D(∗)) is as follows: using the QCD part of the SM La-
grangian LSM, we define the amplitude of the decay. To allow for predictions of physical
observables, we define an effective theory based on the heavy quark symmetry [10], which is
the symmetry of the effective Lagrangian Leff in the limit mQ →∞, where Q indicates the
heavy quark, c or b. In other words, when the masses of the heavy quarks are much larger
than the energy scale of the interaction, the heavy quarks can be treated as a static source
of color.

Note that the heavy quark symmetry is not a symmetry of LSM, which means that the
validity of the predictions from the heavy quark effective theory (HQET) depends on the
kinematic region and only appropriate for mQ � ΛQCD. The reader is directed towards the
excellent overview of this topic by Neubert [11].

Once we have parameterized the amplitude, the expressions of the branching fractions
are straight-forward application of Fermi’s golden rule. It is then we input the measured
values of the form factors along with QCD constants for the SM prediction of R(D(∗)).

2.3 Standard Model amplitudes

There are two vertices in the Feynman diagram above: the brown muck and a vertex between
the W and the lepton pairs. They correspond to the following quark and leptonic currents
[12]:

Jµν` ≡ ψνγ
µ
(
1− γ5

)
ψ`, Jµcb ≡ ψcγ

µ
(
1− γ5

)
ψb, (2.1)

and the Lagrangian of such a system is

L = −GF√
2
|Vcb|J†µν` Jcbµ + h.c., (2.2)

where GF is the Fermi coupling constant the and Vcb is the CKM matrix element between
c and b quarks.

The idea is to start in the rest frame of the B and define the appropriate kinematic
variables and polarization vectors for the hadronic current, then boost into the rest frame
of the virtual W to account for the leptonic current. See Fig. 2.2 for the definitions of
kinematic variables in both frames of reference.

Figure 2.2: B → D(∗)`ν` seen from a) W ∗ rest frame and b) B rest frame. [12]
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Let M = D or D∗ and define the following kinematic variables in the rest frame of B:

pµB = (mB , 0, 0, 0), pµM = (EM , 0, 0, pM ), qµ ≡ pB − pM = (q0, 0, 0,−pM ). (2.3)

Defining Q± ≡ (mB ±mM )
2 − q2 gives us the following relationships:

2mBEM = m2
B +m2

M − q2, 2mBpM =
√
Q+Q−, 2mBq

0 = m2
B −m2

M + q2,

and the following variable:
x ≡ p`·B /m2

B = mBE`. (2.4)

Note that q2 and x are Lorentz invariant.
Using the variables defined above, the amplitudes of the scattering processes are:

Mλ`
λM

(q2, x) =
GF√

2
Vcb
∑
λW

ηλWL
λ`
λW
HλM
λW

. (2.5)

To specify the exact form of the hadronic and leptonic amplitudes, let λ be the particle
helicities, ε(q, λ) be the polarization vectors, and ηλ be the metric. For example, for M = D
we have λM = 0, whereas for M = D∗ we have λM ∈ {−1, 0, 1}. Helicities of the virtual W
λW ∈ {−1, 0, 1, s}, where s is the zero helicity state in the case of pseudoscalar M = D.

This gives the following relationship of the metric tensor given η± = η0 = −ηs = 1:

− gµν =
∑
λW

ηλW ε
µ
W ε
∗ν
W . (2.6)

The hadronic (B →MW ∗)1 and leptonic (W ∗ → `ν) amplitudes can be expressed as

HλM
λW

(
q2
)
≡ ε∗Wµ

〈M (pM , λM )|Jµcb|B (pB̄)〉

LλMλW
(
q2, x

)
≡ εWµ〈`− (p`, λ`) ν (pν)|J†µ`ν |0〉, (2.7)

where the polarzation vectors are

ε(q,±)µ = ∓1

2
(0, 1,∓i, 0), ε(q, 0)µ =

1

q2
(pM , 0, 0,−q0), ε(q, s)µ =

1√
q2
qµ. (2.8)

2.3.1 Leptonic amplitudes

In the rest frame of W ∗, (2.8) becomes:

ε(q,±)µ = ∓1

2
(0, 1,±i, 0), ε(q, 0)µ =

1

q2
(0, 0, 0,−1), ε(q, s)µ =

1√
q2
qµ = (1, 0, 0, 0).

(2.9)
Then the leptonic amplitudes for the pseudoscalar case M = D are

L−±(q2, x) = 2
√
q2vd± L−0 (q2, x) = −2

√
q2vd0, L−s (q2, x) = 0, (2.10)

while for M = D∗ we have

L+
±(q2, x) = ±

√
2m`vd0, L+

0 (q2, x) =
√

2m`v(d+ − d−), L+
s (q2, x) = −2m`v,

(2.11)
where

v =

√
1−

m2
`

q2
, d± =

1 + cos θ`√
2

, d0 = sin θ`. (2.12)

1The ∗ references the virtuality of W .
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2.3.2 Hadronic amplitudes

The matrix elements of interest for the B →M transitions are

〈D|V µcb|B〉, 〈D∗|V µcb|B〉, 〈D∗|Aµcb|B〉. (2.13)

It turns out that these three matrix elements can be fully described by six form factors,
all functions of q2: f±(q2) and fi(q

2), i = 1, 2, 3, 4.
This results in the following amplitudes for the case of M = D:

Hs
0(q2) = f+(q2)

√
Q+Q−√
q2

,

Hs
s (q2) = f+(q2)

m2
B −m2

M√
q2

+ f−(q2)
√
q2, (2.14)

and for the case of M = D∗:

H±± (q2) = f2(q2)∓ f1(q2)
√
Q+Q−,

H0
0 (q2) = − 1

2mM

√
q2

{
(m2

B −m2
M − q2)f2(q2) +Q+Q−f3(q2)

}
,

H0
s (q2) = −

√
Q+Q−

2mM

√
q2

{
f2(q2) + (m2

B −m2
M )f3(q2) + q2f4(q2)

}
. (2.15)

2.3.3 Form factor parametrization

Notice that up to this point, we have not made any approximation based on heavy quark
symmetry. It turns out that in the heavy quark limit, the amplitudes can be reduced to
depend on a single function ξ(q2), commonly referred to as the Isgur-Wise function [10].

We will now proceed with the most commonly used form factor parameterization model
called CLN, short for Caprini-Lellouch-Neubert [13]. The idea is to use the dispersion
constraints introduced by the heavy quark symmetry to expand the form factors about the
zero-recoil point (v = v′).

To do this, we first introduce a new variable w = v · v′, which is related to the Lorentz
invariant quantity q2 by

q2 = m2
B +m2

M − 2mBmMw. (2.16)

This allows us to replace any function f(q2) with a function g(w) with the zero-recoil point
being w = 1.

2.3.4 Form factor parametrization for M = D

Rewriting (2.14) as functions of w gives us:

Hs
0(w) =

√
mBmD

mB +mD√
q2(w)

√
w2 − 1V1(w),

Hs
s (w) =

√
mBmD

mB +mD√
q2(w)

(w + 1)S1(w), (2.17)

where S1(w) is also commonly called G(w) in literature.
The CLN model uses dispersion relations to expand the form factors above in terms of

z(w) =
√
w+1−

√
2√

w+1+
√

2
:

V1(w)

V1(1)
= 1− 8ρ2

1z + (51ρ2
1 − 10)z2 − (262ρ2

1 − 84)z3 +O(z4)

S1(w)

V1(w)
= (1 + ∆(w)), (2.18)
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where ∆(w) = −0.019 + 0.041(w − 1)− 0.015(w − 1)2 +O(w3).
We see that the amplitudes only depend on two parameters, whose experimental values

are [14]:
V1(1) = 1.054± 0.004± 0.008, ρ1 = 1.128± 0.024± 0.023. (2.19)

It is worth noting that the numerical value of V1(1) does not matter in the measurement of
R(D), since it cancels out in the fraction, leaving ρ1 as the only relevant parameter when
estimating the effects of form factor uncertainties when using the CLN parametrization
scheme.

2.3.5 Form factor parametrization for M = D∗

Rewriting (2.15) in terms of w gives us:

H±± (w) = (mB +mD∗)A1(w)∓ 2mB |p|
mB +mD∗

V (w),

H0
0 (w) =

1

2mD∗
√
q2

[
(m2

B −m2
D∗ − q2)(mB +mD∗)A1(w)− 4m2

B |p|2

mB +mD∗
A2(w)

]
,

H0
s (w) =

2mB |p|√
q2

A0(w), (2.20)

where p is the momentum of D∗ in the rest frame of B (pM in (2.3)).
It is customary to represent the four form factors V,A0, A1, A2 in terms of the following

form factor ratios:

R0(w) = r
A0(w)

hA1
(w)

,

R1(w) = r
V (w)

hA1
(w)

,

R2(w) = r
A2(w)

hA1
(w)

, (2.21)

where r = 2
√
mBmD∗/(mB +mD∗) and

hA1
(w) = A1(w)

1

r

2

w + 1
. (2.22)

The expansions of these form factors are:

hA1
(w)

hA1(1)
= 1− 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3 +O(z4),

R0(w) = R0(1)− 0.11(w − 1) + 0.01(w − 1)2 +O(w3),

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2 +O(w3),

R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2 +O(w3), (2.23)

leading us to conclude that there are five free parameters, whose experimental values are
[2]:

F(1) ≡ hA1(1) = 0.906± 0.013,

ρ2 = 1.205± 0.015± 0.021,

R0(1) = 1.14± 0.07,

R1(1) = 1.404± 0.032,

R2(1) = 0.854± 0.020. (2.24)
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2.4 Standard Model prediction of R(D(∗))

2.4.1 Decay rates

Fermi’s golden rule gives us the recipe to calculate the differential decay rate given the
scattering amplitude from (2.5):

dΓ =
1

2mB

∑
λ`λM

|Mλ`
λM
|2dΦ3, (2.25)

with

dΦ3 =
(q2 −m2

`)
√
Q+Q−

256π3m2
Bq

2
dq2d cos θ`, (2.26)

where θ` is the angle between ` and B in the rest frame of B.
Integrating over θ` gives us the q2 spectra of the decay rate [15]:

dΓ

dq2
=

(
1− m2

`

q2

)2(
(|H+

+ |2 + |H−− |2 + |H0
0 |2)

(
1 +

m2
`

2q2

)
+

3

2

m2
`

q2
|H0

s |2
)
. (2.27)

Finally, we calculate the branching fractions by integrating (2.27) over the valid q2 region:
m2
` ≤ q2 ≤ (mB −mM )2, and input the best known values for the various constants and

form factors.

2.4.2 Predicted values of R(D(∗))

While the above recipe of plugging in the best values of parameters into the expressions
gives us an answer, the most precise predictions are calculated a bit differently [16].

The authors of [16] use the information regarding the form factors from lattice QCD
calculations, QCD sum rules, and experimental data (from the Belle experiment) to perform
a global fit. This results in a highly constrained fit with low statistical uncertainty.

2.4.3 Theoretical explanations and implications

As with any possible source new physics, the discrepancy of R(D(∗)) has been a very active
area of theoretical research. Some of the reasons for a strong theoretical and experiment
interests are the fact that the process B → D(∗)τν` is a tree-level process and that the
amount of discrepancy seems to be large (∼ 30%).

If the discrepancy between the prediction and the measurement of R(D(∗)) is confirmed
to be real (i.e. a 5σ deviation between the two), it would be an example of the violation
of lepton universality. In the current version of the SM, the three generations of leptons
are assumed to have identical behaviors besides the effects due to the differing masses.
This characteristic of the leptons is denoted as lepton universality and its violation would
have profound new physics implications, which can differ based on the amount of violation
observed.

One of such implications is discussed in the initial BABAR measurement of R(D(∗)) from
2013 [3], where the analysts focused on the evidence towards a charged Higgs boson of a
two-Higgs doublet model [17, 18]. Other new physics possibilities include leptoquarks and
composite fermions [19].
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Chapter 3

PEP-II and BABAR

In this chapter, we review the hardware that comprises the BABAR detector and the sur-
rounding environment. At a high level, the electron and positron beams are designed such
that they collide at the center of the detector. The energies of the beams are tuned to the
mass of the Υ (4S), which decays into a BB pair more than 95% of the time [14]. The B
mesons subsequently decay into charged or neutral particles, which are detected by special-
ized subsystems. The responses of the subsystems are simply hits in the detector which only
records the magnitude of the hit (i.e. energy of the particle that passed through the system).
It is the job of the offline system to perform the track- and cluster-finding using the hits for
the purpose of particle identification, or PID. The track-level information is the abstraction
of this data to be used by analysts who perform event reconstruction and extract relevant
kinematic features.

The content of this chapter is as follows: first we review the accelerator facility that pro-
duces the electron-positron beams at the specified energy. Next, we review the components
of the BABAR detector. Lastly, we briefly discuss the trigger system. Much of the material
presented is taken from [20] and [21].

3.1 The PEP-II accelerator

Figure 3.1: PEP-II

PEP-II was an e+e− storage ring system located at the Stanford Linear Accelerator
Center (SLAC) in Menlo Park, CA. The origin of the electrons is a Ti-sapphire laser that
feeds the linear accelerator while the positrons are produced by colliding a part of the
electron beam with a titanium target. When the beams are accelerated to the specified
energies, they are each injected into the two storage rings of PEP-II (one for e+ and another
for e−). An interesting historical note is that its predecessor PEP was designed to search
for the top quark at 29 GeV (the top quark is measured to have a mass of 172 GeV).

The key design feature of the PEP-II is the asymmetry between the energies of the
electron beam (9 GeV) and the positron beam (3.1 GeV). This turned out to be a great
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decision in improving the identifiability of B mesons due to their significant momenta.
In addition to running the accelerator at the peak of the Υ (4S) resonance (on-peak),

the BABAR experiment also collected data just below the peak (off-peak) by reducing the
electron beam energy down to 8.9 GeV. This dataset provided invaluable information on
handling the background in many analyses.

3.2 The BABAR detector

Figure 3.2: The BABAR detector.

The BABAR detector consists of six major subsystems: Silicon Vertex Tracker (SVT),
Drift Chamber (DCH), Detector of Internally Reflected Cherenkov light (DIRC), CsI Elec-
tromagnetic Calorimeter (EMC), the superconducting coil, and Instrumented Flux Return
(IFR).

In order to discuss the design choices for the detector, it is useful to understand how the
design requirements were determined. The BABAR experiment was motivated by a singular
physics goal: to measure the CP asymmetry in neutral B decays. Most, if not all, design
choices of the detector are results of the balancing between meeting the specified physics
sensitivity while staying under the budget acquired prior to the construction.

3.2.1 Charged particle tracking: SVT and DCH

Figure 3.3: Silicon vertex tracker.

The SVT is the innermost component of the detector; its primary purpose is to recon-
struct the decay vertices of the BB pair by tracking the positions and angles of the charged
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particles close to the interaction point. It also has a secondary purpose of tracking low-
energy particles that are otherwise missed by the outer components. Physically, it consists
of 340 silicon microstrip detectors with a total of 150000 readout channels.

Figure 3.4: Drift chamber.

The SVT is surrounded by a cylindrical chamber filled with helium-isobutane, the DCH.
Its primary purpose is to measure the momenta of charged particles passing through the
detector, along with the dE/dx information. In addition, it also provides triggering infor-
mation to the Level 1 trigger system.

3.2.2 DIRC

Figure 3.5: The DIRC.

The DIRC is designed to provide excellent identification of kaons, and secondarily that
of muons. The ability to distinguish kaons from pions greatly increases the precision of
many analyses performed using the BABAR data. Physically, the DIRC uses fused synthetic
silica as the scintillator with photomultiplier tubes sensing the Cherenkov light.

3.2.3 Electromagnetic calorimeter

The primary purpose of the electromagnetic calorimeter is to detect, with excellent energy
and angular resolution, the various charged and neutral particles that result from the de-
cays of B mesons. The particles interact with the thallium-doped cesium iodide (CsI(Tl))
crystals, producing photoelectrons that are detected by photodiodes.

The readout system requires careful calibration at regular interval throughout its lifetime
due to the degradation of the crystals and the hardware from high exposure to radiation.
This was carried out using a neutron generator producing 6.1 MeV photons.
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Figure 3.6: The EMC.

3.2.4 Superconducting coil

Figure 3.7: The superconducting coil.

The above subsystems, SVT, DCH, DIRC, and EMC, together define the inner detector
which is in a 1.5T magnetic field produced by a superconducting solenoid. The magnetic
field enables identification and quantification of energies and momenta for charged particles.

3.2.5 Instrumented flux return

Figure 3.8: The IFR.

The outer detector, IFR, is designed to identify muons and aid the EMC in neutral
hadron identification. It is a clever re-use of the iron yoke used for the superconducting
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coil by attaching resistive plate counters (RPC) to the iron plates. The RPCs in the barrel
section of the IFR were replaced by limited streamer tubes in 2004 due to the degradation
of the RPC efficiency.

3.3 Trigger system

Figure 3.9: The superconducting coil.

The trigger system at BABAR consists of two levels: Level 1 (L1) and Level 3 (L3). The
L1 trigger is a hardware trigger built into the front-end electronics of the detector.

The design goal of the L1 trigger is to remove as much beam background as possible
by enforcing various energy and track/cluster requirements at a rate of 2 kHz with only
an 11 µs delay. In comparison, the L3 trigger is a software trigger designed for maximum
sensitivity towards physics-relevant events.

18



Chapter 4

Analysis Strategy

4.1 Overview

In this chapter, we present the analysis strategy for measuring R(D(∗)), and how the picture
of viewing this as a counting experiment becomes complex. Much of the of the statistical
derivations and the descriptions of design choices is taken from [9], which was the Ph.D.
thesis of an analyst of this project.

Let us restate the basic idea of the analysis: since we are interested in the probability
of a B decaying into D(∗)τhν, it would seem sufficient to simply count the fraction of B’s
in our sample that decays in our mode of interest conditioned on the probability that these
B’s make into our data sample. In essence, this is the analysis strategy: First we need
the proportion of the decays of interest and second we need the efficiency of these decays
making into our dataset in the first place. Let us proceed by examining the key tasks that
we must perform. To simplify the picture, let us consider the case when our data is just a
single event corresponding to a single Υ (4S) and subsequently a single BB pair.

The first task is to identify whether these two B mesons decay into our modes of interest.
At this point, the data simply consists of tracks and clusters for which we have only educated
guesses of their true identities. Furthermore, heavy particles such as the B only live for a
very short time and thus leave behind very short tracks that could be smaller than the
resolution of our detector. It turns out that we essentially only have information about the
final state particles, which are:

e±, µ±, π±,K±,KL, p, n, γ, and ν.

What makes this even more complicated is the fact that particle identification algo-
rithms can misidentify particle species, and tracks can be missed by the pattern recognition
algorithm. Nonetheless, given what we have, we can attempt to reconstruct the decay that
produced the tracks we see. This again is a probabilistic process that can, and often does,
have multiple solutions; there are many decays that could explain a single event. This is
a key challenge in the analysis: how do we pick the best reconstruction candidate that is
most likely to be the truth?

Suppose we are able to pick the best candidate. If the dataset was indeed just a single
event, then we would be done. However, our actual goal is given a large dataset of many
B decays, extract the best estimates of R(D(∗)). The way we will accomplish this is by
projecting every event into a space that maximizes the difference between the signal and
background events. In this space, we can learn the probability densities of the events which
can be used to extract the proportion of signal events from the overall distribution of data.

The secret weapon that enables this strategy is the simulated data. The simulated data
is generated using the Monte Carlo method and is commonly referred to as simply the MC.
The inputs to the simulation include the detector specifications and the physics parameters
that govern the decay probabilities. The form factors described in Chapter 2 are examples of
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physics parameters. The advantage of simulated data is that we actually know the truth that
generated the data we see in our fictional detector. This means that we can, for instance,
train a supervised classifier that picks the best candidate for us. Due to the fact that the
simulated data has known deficiencies, we also attempt to use new learning algorithms from
the field of computer vision called unsupervised domain adaptation. While they are not
used in the extraction of the final result, the description of our exploration can be found in
Appendix A.

Simulated data also gives us a way to avoid experimentalist’s bias, or data snooping.
If we work directly with the detector data when constructing the analysis strategy, we
inevitably tweak some parts of the analysis based on what we see in the data.

However, the MC has its own disadvantages. They stem from the fact that no simulation
can ever be perfect. We quantify the apparent differences between the simulation and
detector data in the form of systematic uncertainties.

4.2 Event types and estimation of R(D(∗))

Measuring R(D(∗)) requires the measurement of four different branching fractions: B(B →
D(∗)`ν`) and B(B → D(∗)τντ ). Since B(B → D(∗)`ν`) are well known, this analysis focuses
on measuring B(B → D(∗)τντ ). This is a decision made by the analysts, and other measure-
ments have measured all four with the advantage of possible cancellation of some systematic
uncertainties.

It is clear that we actually have two types of signal events based on whether there is
a D or a D∗. Furthermore, it turns out to be a good idea to partition the background
events into three separate categories, which allows us to better probe the deficiencies of
their simulation.

Does some B decay as
B → D(∗)τν, τ → hadron?

Does some B decay as
B → Dτν?

Is this a BB event?

Does some B decay as
B → D∗∗`ν?

ContDτh D∗τh

D∗∗SL Comb

yes no

yes noyes no

yes no

Figure 4.1: The leaves of this decision tree define a partitioning of BABAR events.

The logic of event type categorization is that of a decision tree as shown in Figure 4.1.
Consider the probability space of all possible outcomes of a collision event in the BABAR

detector. Let Ei for i ∈ C = {Dτh, D∗τh, D∗∗SL,Comb,Cont} denote partition of the
probability space, meaning that any observed event must fall under one of these categories.
D∗∗SL denotes events with semileptonic decays involving a D∗∗, Comb denotes the com-
binatoric BB events, and Cont denotes the events from the continuum (i.e. e+e− → qq
rather than e+e− → Υ (4S)).
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Let

P = P [EDτh |EBB ] ,

Q = P [ED∗τh |EBB ] ,

p = B(B → Dτν)× B(τ → hadrons),

q = B(B → D∗τν)× B(τ → hadrons), (4.1)

where EBB refers to union of all event types except cont. Now, we use the above to derive
the following relationship:

P = p2 + 2p(1− p)
=⇒ p = 1−

√
1− P , (4.2)

hence

B(B → Dτν) =
1−
√

1− P
B(τ → hadrons)

. (4.3)

Similarly,

Q = q2 + 2q(1− p− q)

=⇒ q = (1− p)

(
1−

√
1− Q

(1− p)2

)
, (4.4)

gives us

B(B → D∗τν) =
1− p

B(τ → hadrons)

(
1−

√
1− Q

(1− p)2

)
. (4.5)

(4.3) and (4.5) tell us that the problem of estimating R(D(∗)) reduces to estimating
P
[
ED(∗)τh |EBB

]
since all other parameters can be taken from the literature [14, 2]:

B(B → D`ν`) = P
[
B → D`ν`|B = B±

]
P
[
B = B±

]
+ P

[
B → D`ν`|B = B0

]
P
[
B = B0

]
= 0.487× B(B0 → D0`ν`) + 0.513× B(B+ → D+`ν`)

= (2.22± 0.10)%, (4.6)

B(B → D∗`ν`) = P
[
B → D∗`ν`|B = B±

]
P
[
B = B±

]
+ P

[
B → D∗`ν`|B = B0

]
P
[
B = B0

]
= 0.487× B(B0 → D∗0`ν`) + 0.513× B(B+ → D∗+`ν`)

= (5.13± 0.11)%, (4.7)

B(τ → hadrons) = 1− B(τ → eν̄eντ )− B(τ → µν̄µντ )

− B(τ → eν̄eντγ)− B(τ → µν̄µντγ)

= (63± 0.18)%, (4.8)
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where we have used the following values:

B(B0 → D0`ν`) = (2.13± 0.095)%

B(B+ → D+`ν`) = (2.30± 0.10)%

B(B0 → D∗0`ν`) = (4.93± 0.11)%

B(B+ → D∗+`ν`) = (5.31± 0.12)%

B(τ− → eν̄eντ ) = (17.83± 0.04)%

B(τ− → eν̄eντγ) = (1.75± 0.18)%

B(τ− → µν̄µντ ) = (17.41± 0.04)%

B(τ− → µν̄µντ ) = (0.0036± 0.0004)%. (4.9)

4.3 Estimating P
[
ED(∗)τh|EBB

]
In order to discuss the probability of observing a certain event type in the dataset, we need
to account for the process that reduces all events collected at BABAR to our dataset. This
filtering is necessary due to the large amount of irrelevant events that exist in the raw data
along with the need for computational tractability. Let F be such filter and U be the set of
outcomes that pass the filter.

We can then write the efficiency and sample proportions as

εi ≡ P [Ui|Ei] =
|Ui|
|Ei|

, (4.10)

pi ≡ P [Ui|U ] =
|Ui|
|U |

, (4.11)

which gives

P [Esig|EBB ] =
|Esig|
|EBB |

=
psig|U |
εsig|EBB |

, (4.12)

where sig refers to Dτh, D
∗τh.

Each variable in (4.12) can be estimated as follows: p̂sig is the proportion of the signal
event types in our dataset, ε̂sig is the proportion of signal events that passes F , |U | is simply
the number of events in our dataset N , and |EBB | is the total number of events before the
filter NBB .

This gives the following estimate of P [ED∗τh |EBB ]:

P̂ [ED∗τh |EBB ] =
p̂D(∗)τhN

ε̂D(∗)τhNBB
. (4.13)

The only remaining obstacles are how to construct the optimal filter F and how to best
estimate p̂D(∗)τh and ε̂D(∗)τh , which will be the focus of the rest of the chapter.

4.4 Data filtering

In high energy physics experiments, it is not unusual to see the same experiment reporting
multiple measurements of the same quantity. These measurements are considered to be
independent for the purpose of calculating the world average. This independence relies
entirely on the construction of F for each measurement that ensures the datasets do not
overlap.

The distinction of this analysis from the previous BABAR measurement [3] is the method
of tagging used (semileptonic vs. hadronic) and the reconstruction method of the τ (τh vs.
τ`).
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The tagging, or B tagging, method is a clever tool used to study B physics. The idea is
that since the Υ (4S) produces BB pairs, we first attempt to reconstruct a single Btag, called
the tagging B, and assign all other tracks in the event for the purpose of reconstructing the
signal Bsig, in this case B → D(∗)τντ . Thus semileptonic tagging refers to reconstructing
Btag by looking for semileptonic decays of B.

The decay modes that we use to reconstruct the τ on the signal side are hadronic decays
of the τ , as opposed to the leptonic decays of the τ .

The exact modes used in the reconstruction will be discussed in Chapter 5.

4.5 Estimating p̂sig

Consider the probability density of our dataset in some variable space z, i.e. f(z). We can
think of f as being made up of its five component densities. More formally,

f(z) =
∑
j∈C

P[Uj ]f(z|Uj)

=
∑
j∈C

pjfj(z), (4.14)

where fj(z) = f(z|Uj).
Suppose we know the conditional, or component, densities fj(z). Then, we can proceed

to extract the maximum likelihood estimator of p̂sig by solving the following optimization
problem:

minimize
p∈R|C|

−
N∑
i=1

log

∑
j∈C

pjfj(zi)


subject to

∑
j∈C

pj = 1.

(4.15)

Note that there is no non-negativity constraints on the pj , meaning the proportions are
allowed to be negative.

4.5.1 Feature engineering and density estimation

The dataset can be thought of as a n ×m matrix X, corresponding to n data points with
m features describing each point. A probability density of such dataset would be an m-
dimensional density. Beyond the concerns of curse of dimensionality1 and computational
efficiency, there is a statistical reason for trying to keep m as small as we can [9], pushing
us to learn a mapping Rm → R|z|. It turns out that by seeking z that best satisfies the
following heuristics, we minimize Var[p̂sig]:

1. Low dimensionality.

2. Continuous.

3. Large difference between signal and background densities.

This analysis will proceed by using a 2-dimensional z = (z1, z2):

• z1 = s1(X), where s1 is a regression function trained to separate signal events from
background events.

• z2 = s2(X), where s2 is a regression function trained to separate Dτh and D∗τh.

1Curse of dimensionality refers to the effect where the number of data points required to train a model
with sufficient power increases as the dimensionality of the feature set increases. Thus given a fixed size
data sample, more features are not necessarily better.
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We can then proceed to learn the 2-dimensional densities f(z) and fj(z) using kernel
density estimation.

It should be noted that training s1 and s2 by construction requires the use of simulated
data as the training set. In fact, the conditional densities fj(z) are also learned using the
MC, and the only place we use the detector data is to learn f(z) when performing the
maximum likelihood estimation.

4.6 Estimating ε̂sig

Estimating the signal efficiencies is much more straightforward.
We have

εi = P [Ui|Ei] =
P [Ui ∩ Ei]

P [Ei]
=

P [Ui]

P [Ei]

=
P [Ui|EBB ]P [EBB ] + P

[
Ui|EcBB

]
P
[
Ec
BB

]
P [Ei]

=
P [Ui|EBB ]P [EBB ]

P [Ei]
(4.16)

and

P [Ei|EBB ] =
P [Ei ∩ EBB ]

P [EBB ]
=

P [Ei]

P [EBB ]
(4.17)

⇒ P [Ei] = P [Ei|EBB ]P [EBB ] . (4.18)

Combining the two results, we get

εi =
P [Ui|EBB ]

P [Ei|EBB ]
for i = Dτh, D

∗τh. (4.19)

As with the density estimation, (4.19) cannot be estimated using detector data as we do
not know their true event types. Thus we estimate the signal efficiencies using simulation
and quantify their degree of disagreement with the detector data in the form of systematic
uncertainties.
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Chapter 5

Data Collection

In this chapter, we delve into the details of the criteria of the data filter F , which includes
the reconstruction criteria. We also tabulate the resulting simulated and detector datasets.

In the following sections, the MC and the detector data are treated on equal footing
with regards to reconstruction and the term data will be used for both with no ambiguity.

5.1 Data filtering

5.1.1 Event pre-screen

The first part of the filter is a set of broad selection criteria; broad in the sense that only
the events that we can very confidently classify as background will not pass. These criteria
are collectively referred to as event pre-screening, and are:

• Size of ChargedTracks ≤ 14: Number of charged particle candidates must be no
greater than 14.

• Size of GoodPhotonsLoose ≤ 10: Number of photon candidates must be no greater
than 10.

• −2 ≤ Qtotal ≤ 2: Total charge of the event must be between -2 and 2.

• Apply tag filter BGFMultiHadron: Require at least 3 charged tracks in the event and
require the second Fox-Wolfram moment of the event R2 < 0.98.

• Apply tag filter TagL3: Require L3 trigger in the DCH and the EMC.

The terms in the teletype font are jargon specific to the BABAR analysis framework.

5.1.2 Event reconstruction

The events that pass the pre-screen are used to reconstruct the Btag and Bsig. Recall that
initially each event is simply a set of tracks of final state particles. The idea is to recursively
group these tracks until we have a possible candidate for the Υ (4S).

The most suitable data structure to represent the reconstruction is a directed acyclic
graph (DAG) with multiple roots. The roots are the Υ (4S) candidates, the leaves are the
final state particles, and the intermediate nodes represent the particle hypotheses. Indeed,
the terms candidates and hypotheses are the most appropriate, as these are abstractions
of the possible explanations of the events. Note that we do not gauge which candidate is
the most likely within an event, only its validity. The edges of the graph indicate mother-
daughter relations such that for nodes u, v, a directed edge (u, v) exists if v is a decay
product of u.
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In order to construct particle hypotheses, we choose a set of valid decay modes far
smaller than the set of all possible decay modes. The primary condition for choosing the
reconstruction modes is the branching fraction; it is a balance between covering as many
modes as possible while keeping the size of the reconstruction graph manageable. The
secondary condition is the cleanliness of the modes. For example, the mode D0 → K−π+

is a must-include in our set of decay modes: the small number of daughter particles and
their ease of identification satisfy the cleanliness condition, on top of being the dominant D
decay mode. On the other hand, decays such as D0 → K−π+π−π+π0 are not included due
to its high multiplicity of pions.

Within the BABAR framework, the reconstruction can be defined by explicitly writing
down the modes or using pre-built lists.

Starting from the final state particles, the decay modes used in reconstruction are:

1. Final state particle lists.

• Electrons: eCombinedSuperLoose — Electron candidates that pass at least one of
the three electron PID selector algorithms that make up eCombinedSuperLoose.

• Muons: muCombinedVeryLooseFakeRate — Muon candidates that pass at least
one of the three muon PID selector algorithms that make up the list. “Fake rate”
refers to the optimization of the algorithms to lower misidentification of pions as
muons at the cost of lower efficiency.

• Pions: ChargedTracks and GoodTracksVeryLoose — Charged pions candidates
that satisfy the (loose) kinematic criteria to be a “good” track such as being close
to the beam center.

• Kaons: KCombinedSuperLoose — Kaon candidates that pass at least one of the
four Kaon PID selector algorithms that make up the list.

• Photons: GoodPhotonLoose with 0.01 ≤ Lat ≤ 0.6 — Photon candidates from
the EMC hits with minimum energy of 0.03 GeV and lateral moment between
0.01 and 0.6. Lateral moment is a ratio quantifying the spread of the hits in the
EMC.

2. Light meson lists.

• π0: pi0AllDefault and pi0SoftDefaultMass — Using the photon list above,
reconstruct π0 → γγ with the mass of the pion candidate constrained to be
between [0.115, 0.15] GeV.

• ρ+ → π+π0: The π+ is refined such that it cannot be a member eKMTight or
muBDTVeryTight. It is also required to have mass between [0.45, 1.09] GeV and
a χ2 of at least 0.001.

• KS : KsTight — Reconstruct KS → π+π− with χ2 of at least 0.001.

3. D meson lists. All reconstructed D mesons without π0 daughters are required to have
masses within 0.06 GeV of the PDG value. For those with π0 daughters, the masses
must be within 0.1 GeV of the PDG value.

• D+ → K−π+π+.

• D0 → K−π+.

• D0 → K−π+π0.

• D0 → K−π+π−π+.

4. D∗ meson lists. The soft pions used are required to have a center of mass 3-momentum
magnitude of at most 400 MeV. Charged pions are refined from GoodTracksVeryLoose

while neutral pions are refined from pi0SoftDefaultMass. Soft photons are refined
from GoodPhotonLoose, but are required to have Lat ≤ 0.8 and center of mass energy
of at least 100 MeV and 3-momentum magnitude of at most 400 MeV.
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• D∗0 → D0π0. Require ∆m to be within [0.135, 0.175] GeV.

• D∗0 → D0γ. Require ∆m to be within [0.13, 0.155] GeV.

• D∗+ → D0π+. Require ∆m to be within [0.135, 0.165] GeV.

• D∗+ → D+π0. Require ∆m to be within [0.13, 0.15] GeV.

5. Btag meson list. Masses are required to be at most 5.2791 GeV, and the χ2 must be
at least 0.001. Furthermore, cos θBY must be between [−5, 1.0].

• B+ → D0e+.

• B+ → D0µ+.

• B0 → D−e+.

• B0 → D−µ+.

• B+ → D∗0e+.

• B+ → D∗0µ+.

• B0 → D∗−e+.

• B0 → D∗−µ+.

6. Bsig meson list. Masses are required to be at most 5.2791 GeV, and the χ2 must be
at least 0.001.

• B+ → D0π+.

• B+ → D0ρ+.

• B0 → D−π+.

• B0 → D−ρ+.

• B+ → D∗0π+.

• B+ → D∗0ρ+.

• B0 → D∗−π+.

• B0 → D∗−ρ+.

7. Υ (4S) → BtagBsig. The B daughters must conserve charge, and B’s are allowed to
mix. The daughters cannot have overlapping final states.

Figure 5.1 shows an example of the reconstruction graph. In the case that the graph is
empty, the event is simply discarded.

5.2 Data collection

The BABAR experiment collected 433 fb−1, or 471 million BB pairs, at the Υ (4S) resonance
over 6 runs from 1999 to 2008. The integrated luminosity over time can be seen in Figure
5.2.

For simulated events, the total number of generated events exceeds that of the detector
data by a factor of 2 or 3 depending on the run.

5.2.1 Detector data

Tables 5.1 and 5.2 show the names of the processed data samples that are used to perform
this analysis. The off-peak data is collected just below the Υ (4S) resonance by reducing the
energy of the electron beam from 9 GeV to 8.9 GeV as discussed in Chapter 3.
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Figure 5.1: Example of event reconstruction.

Figure 5.2: Integrated luminosity recorded at the BABAR experiment through its lifetime.

5.2.2 Simulated data

The simulated data consists of two types: generic MC and signal MC.
The generic MC seeks to represent the data collected in the detector by faithfully gen-

erating the possible results of the e+e− collisions. The generic MC itself consists of two
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Collider Dataset Name Luminosity (pb−1) NBB(104)

AllEventsSkim-Run1-OnPeak-R24a1 20372± 91 2256± 14
AllEventsSkim-Run2-OnPeak-R24a1 61300± 257 6844± 41
AllEventsSkim-Run3-OnPeak-R24a1 32300± 132 3576± 22
AllEventsSkim-Run4-OnPeak-R24a1 99600± 418 11143± 67
AllEventsSkim-Run5-OnPeak-R24a1 132400± 582 14762± 89
AllEventsSkim-Run6-OnPeak-R24a1 78300± 352 8519± 51

Total 424300± 854 47100± 132

Table 5.1: Detector on-peak datasets. NBB is the estimated number of BB pairs contained
in the specified dataset; it includes both neutral and charged B pairs.

Collider Dataset Name Luminosity (pb−1) Weight

AllEventsSkim-Run1-OffPeak-R24a1 2564.0± 12.1 7.95
AllEventsSkim-Run2-OffPeak-R24a1 6869.1± 30.2 8.93
AllEventsSkim-Run3-OffPeak-R24a1 2443.6± 10.5 13.21
AllEventsSkim-Run4-OffPeak-R24a1 10016.0± 43.1 9.95
AllEventsSkim-Run5-OffPeak-R24a1 14276.8± 67.1 9.27
AllEventsSkim-Run6-OffPeak-R24a1 7752.6± 36.4 10.10

Total 43922.0± 94.1 9.66

Table 5.2: Detector off-peak datasets. Weight is the factor by which the size of the corre-
sponding on-peak dataset exceeds that of the given off-peak dataset.

parts: BB and continuum. The generic BB MC, which includes both charged and neutral
B pairs, emulates the case when the Υ (4S) is produced. On the other hand, the continuum
MC represents e+e− → qq events where q ∈ {u, d, s, c}.

In order to mix the various types of generic MC in the right proportions, the number of
events must be weighted by its probability to occur in the detector. This is accomplished by
taking the cross sections σ of each component into account through the following formula:

wi = L σi
Ni
, (5.1)

where the i represents the component, e.g. B0B0, L is the integrated detector data lumi-
nosity, and Ni is the number of generated events for component i. The cross sections used
in this analysis are shown in Table 5.3 and the components of the generic MC dataset are
listed in Table 5.4.

The signal MC data is generated by forcing every Υ (4S) to decay into BB that subse-
quently decay into our signal modes. More specifically, it is the case in which one B, the tag
B, decays semileptonically and the other into D(∗)τhντ . This dataset is crucial for training
the supervised classifiers, as the number of signal events in the generic MC is small. The

SP Mode Mode type Cross section (pb)

1235 B+B− 525.0
1237 B0B0 525.0
1005 cc 1300.0
998 uds 2090.0

Table 5.3: Cross sections used to convert the sizes generic simulated data to the equivalent
on-peak dataset.
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Simulated Dataset Name Mode Type Collisions Generated Weight

SP-1235-AllEventsSkim-Run1-R24a1 B+B− 34878000 0.306
SP-1235-AllEventsSkim-Run2-R24a1 B+B− 105561000 0.305
SP-1235-AllEventsSkim-Run3-R24a1 B+B− 56035000 0.303
SP-1235-AllEventsSkim-Run4-R24a1 B+B− 166784000 0.314
SP-1235-AllEventsSkim-Run5-R24a1 B+B− 215168000 0.323
SP-1235-AllEventsSkim-Run6-R24a1 B+B− 130336000 0.316

SP-1237-AllEventsSkim-Run1-R24a1 B0B0 34941000 0.306
SP-1237-AllEventsSkim-Run2-R24a1 B0B0 104188000 0.308
SP-1237-AllEventsSkim-Run3-R24a1 B0B0 57888000 0.292
SP-1237-AllEventsSkim-Run4-R24a1 B0B0 169801000 0.307
SP-1237-AllEventsSkim-Run5-R24a1 B0B0 215953000 0.321
SP-1237-AllEventsSkim-Run6-R24a1 B0B0 135224000 0.304
SP-1005-AllEventsSkim-Run1-R24a1 cc 55254000 0.479
SP-1005-AllEventsSkim-Run2-R24a1 cc 164722000 0.483
SP-1005-AllEventsSkim-Run3-R24a1 cc 88321000 0.475
SP-1005-AllEventsSkim-Run4-R24a1 cc 267308000 0.484
SP-1005-AllEventsSkim-Run5-R24a1 cc 344275000 0.499
SP-1005-AllEventsSkim-Run6-R24a1 cc 208664000 0.488
SP-998-AllEventsSkim-Run1-R24a1 uds 176404000 0.241
SP-998-AllEventsSkim-Run2-R24a1 uds 525504000 0.243
SP-998-AllEventsSkim-Run3-R24a1 uds 276381000 0.244
SP-998-AllEventsSkim-Run4-R24a1 uds 845899000 0.246
SP-998-AllEventsSkim-Run5-R24a1 uds 1110944000 0.249
SP-998-AllEventsSkim-Run6-R24a1 uds 655152000 0.250

Table 5.4: Generic simulated data. Weight is the factor by which the size of the correspond-
ing on-peak dataset exceeds that of the given simulated dataset calculating using (5.1).
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Simulated Dataset Name Mode Type Collisions Generated

SP-11444-Run1-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 694000
SP-11444-Run2-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 2044000
SP-11444-Run3-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 1152000
SP-11444-Run4-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 3347000
SP-11444-Run5-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 4546000
SP-11444-Run6-R24 B0 → D(∗)`ν, B0 → Dτ(had)ν 2732000

SP-11445-Run1-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 644000
SP-11445-Run2-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 1937000
SP-11445-Run3-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 955000
SP-11445-Run4-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 3207000
SP-11445-Run5-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 4627000
SP-11445-Run6-R24 B0 → D(∗)`ν, B0 → D∗τ(had)ν 2349000

SP-11446-Run1-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 651000
SP-11446-Run2-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 1919000
SP-11446-Run3-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 1025000
SP-11446-Run4-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 3402000
SP-11446-Run5-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 4276000
SP-11446-Run6-R24 B+ → D(∗)`ν, B− → Dτ(had)ν 2685000

SP-11447-Run1-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 750000
SP-11447-Run2-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 1702000
SP-11447-Run3-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 901000
SP-11447-Run4-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 3120000
SP-11447-Run5-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 4637000
SP-11447-Run6-R24 B+ → D(∗)`ν, B− → D∗τ(had)ν 2505000

Table 5.5: Simulated signal data.

components of the signal MC dataset are listed in Table 5.5. Since this dataset does not
attempt to emulate the detector data, we do not calculate any weights.
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Chapter 6

Candidate Selection

In Chapter 4, we briefly mentioned the idea of viewing our dataset as a matrix X where the
columns represent the features. The features can be of two types: event level and candidate
level. Event level features are those that apply to the event as a whole and are shared by
all candidates of the event, whereas candidate level features are unique to each candidate.

The features of each event will be used to train the two regressors s1 and s2. It is
entirely feasible to feed them the event level features and the candidate level features of
all candidates for each event. While this method would take advantage of the possible
information provided by many candidates, it has significant disadvantages. The key concept
is the curse of dimensionality previously discussed; the number of training data required
for a sufficiently powerful regressor increases along with the dimensionality of the dataset.
Furthermore, it is likely that the features among the candidates within an event show large
correlation, which means that we would not be introducing any new information. For these
reasons, we perform a best candidate selection where we discard all candidate level features
except that of the best candidate.1

6.1 Truth matching

The criteria for a candidate being the best one is clear: if the reconstruction graph of a
candidate matches exactly that of the truth, that is our best candidate. Thus the algorithm
should seek to choose the candidate that is the most likely to match the truth, which is
available for us in MC. In short, the binary label of whether a candidate is truth matched
is the training data input to the best candidate selector.

The truth matching process is described in detail in [9]. The setting of the problem is
as follows: we have two rooted DAG’s, the reconstructed graph and the truth graph. The
two graphs match if one is subgraph isomorphic to the other. In other words, if there exists
a bijective mapping between the vertices and edges of the two graphs.

6.1.1 Software tools

The graphs are stored as adjacency lists in a PostgreSQL instance. The workflow is as
follows:

1. Download data from database as a CSV file.

2. For each candidate in every event, perform truth matching. Label as 0 if not truth
matched, 1 if truth matched.

3. Upload truth matching result into a new table in the database.

1Best candidate selection can be thought of as a dimensionality reduction process.
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The truth matching software is written in C++ using the Boost Graph Library [22] that
runs in linear O(V +E) time, where V is the number of vertices of the graph and E is the
number of edges of the graph.

6.1.2 Results

Figures 6.1a and 6.1b show example input graphs for truth matching. The MC truth graphs
are pruned from the original graphs by removal of disconnected components, decay products
of final state particles, and particle irrelevant to the truth matching process (i.e. neutrinos).
Figure 6.1c shows the output of the truth matching process, which was able to find a
candidate that was truth matched.

6.2 Best candidate selection

The best candidate selector is a random forest classifier [23] that outputs the probability of
a given candidate being truth matched. We use the scikit-learn implementation [24].

6.2.1 Training sample

Since we are the most interested in selecting the correct candidate for the signal events, we
use the signal MC candidates labeled by the truth matched outcomes as the training set.
In other words, we are optimizing for the recall of our selection. This is a choice made by
the analysts, and one can argue for using a classifier trained to choose the best candidate
regardless of its event type.

The training sample consists of 600k signal MC events, each represented by the following
set of features:

mmiss2prime, eextra, tag lp3, tag cosby, tag costhetadl, tag dmass, tag deltam,
tag costhetadsoft, tag softp3magcm, sig hp3, sig cosby, sig costhetadtau,
sig vtxb, sig dmass, sig deltam, sig costhetadsoft, sig softp3magcm, sig hmass,
sig vtxh, tag isbdstar, sig isbdstar, tag dmode, tag dstarmode, sig dmode,
sig dstarmode.

The descriptions of each feature can be found in Chapter 7.
Figure 6.2 shows the distribution of each feature for the two classes.

6.2.2 Model selection

We first standardize the data by centering and scaling the numerical features. The categor-
ical features are one-hot encoded. The parameters of the random forest classifier are grid
searched to minimize the five-fold cross validation error.

The best performing hyperparameters are the default settings with the number of trees,
n estimators, set to 1000.

6.2.3 Results

To quantify the performance of the best candidate selector, we define the following recall
metric: out of the total possible truth matchable candidates, how many does our classifier
predict as truth matched?

To establish a baseline, we use the conventional method of best candidate selection used
in BABAR analyses: choose the candidate with the minimum value of Eextra. Lower Eextra
translates to how well the reconstruction was performed and is a good indicator of the
quality of a candidate.

Table 6.1 shows the results for the baseline selector and the random forest selector and
demonstrates the superiority of the supervised classifier.
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Figure 6.1: Truth matching example (cont.).

minimum Eextra maximum candidate score

total possible 6643 6643
number chosen 4597 5916

recall 0.69 0.89

Table 6.1: “Total possible” is the number of collision events that have a matched candidate
that can be chosen. “Number chosen” is the number of those collision events that the
specified criteria was able to correctly identify as the matched candidate. “Recall” is simply
the ratio between the rows above.
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Figure 6.2: Density functions of features used in best candidate selection.
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Figure 6.2: Density functions of features used in best candidate selection (cont.).
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Figure 6.2: Density functions of features used in best candidate selection (cont.).
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Figure 6.2: Density functions of features used in best candidate selection (cont.).
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Figure 6.2: Density functions of features used in best candidate selection (cont.).
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Figure 6.2: Density functions of features used in best candidate selection (cont.).
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Figure 6.2: Density functions of features used in best candidate selection (cont.).
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Figure 6.2: Density functions of features used in best candidate selection (cont.).
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Figure 6.2: Density functions of features used in best candidate selection (cont.).
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Chapter 7

Feature Exploration

In this chapter we describe the features that make up the design matrix X. The candidate
level features will now consist of those of the best candidate, which is determined by the
candidate with the highest score predicted by the best candidate selector.

By visualizing our dataset in projections to each feature dimension, we can get a sense of
how well the simulation agrees with the physical intuition for each event type. For example,
we expect the M2

miss distributions of the signal events to be centered at higher values than
those of the background events due to the neutrinos.

In addition, we also explore 1% of the detector data that has been reserved for this
purpose. While the statistics of this sample is low, we can qualitatively compare MC
and detector data to detect any significant mismodeling with the understanding that some
deviations are expected.

7.1 Feature description

The feature names and their descriptions are as follows:

• nΥ (ny): Number of Υ (4S) candidates.

• Ntrack (ntracks): Number of GoodTracksVeryLoose.

• R2 All (r2all): Second Fox-Wolfram moment.

• Candidate Score (cand score): Candidate score from chapter 6.

• M2
miss (mmiss2): Missing mass squared.

• Adjusted M2
miss (mmiss2prime): Adjusted missing mass squared.

• Eextra (eextra): Leftover photon energy.

• cos θT (costhetat): Cosine of the thrust angle between the Btag and the rest of the
event.

• |~ptag` | (tag lp3): 3-momentum magnitude of the Btag’s lepton.

• cos θtagBY (tag cosby): Cosine of the angle between the 3-momentum of the Btag and
the 3-momentum sum of its D and lepton daughters.

• cos θtagD` (tag costhetadl): Cosine of the angle between the 3-momenta of the D and
the lepton daughter of the Btag.

• mtag
D (tag dmass): Mass of the Btag’s D meson daughter.
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• ∆mtag (tag deltam): ∆m of the Btag’s D
∗ meson daughter if it exists.

• cos θtagDsoft (tag costhetadsoft): Cosine of the angle between the D∗ mesons’ daugh-
ters.

• |~ptagsoft| (tag softp3magcm): 3-momentum magnitude of the D∗’s soft daughter.

• |~psigh | (sig hp3): 3-momentum magnitude of the Bsig’s hadron daughter.

• cos θsigBY (sig cosby): Cosine of the angle between the 3-momentum of the Bsig and
the 3-momentum sum of its D and lepton daughters.

• cos θsigDτ (sig costhetadtau): Cosine of the angle between the 3-momentum of the
Bsig and the 3-momentum sum of its D and hadron daughters.

• χ2
sigB (sig vtxb): χ2 of the Bsig’s vertex fit.

• msig
D (sig dmass): Mass of the Bsig’s D meson daughter.

• ∆msig (sig deltam): ∆m of the Bsig’s D
∗ meson daughter if it exists.

• cos θsigDsoft (sig costhetadsoft): Cosine of the angle between the D∗ mesons’ daugh-
ters.

• |~psigsoft| (sig softp3magcm): 3-momentum magnitude of the D∗’s soft daughter.

• msig
h (sig hmass): Mass of the Bsig’s hadron daughter, if it exists.

• χ2
sigh (sig vtxh): χ2 of the Bsig’s composite hadron daughter, if it exists.

• tag D mode (tag dmode): The mode in which the Btag’s D daughter is reconstructed.

• tag D∗ mode (tag dstarmode): The mode in which the Btag’s D
∗ daughter is recon-

structed.

• sig D mode (sig dmode): The mode in which the Bsig’s D daughter is reconstructed.

• sig D∗ mode (sig dstarmode): The mode in which the Bsig’s D
∗ daughter is recon-

structed.

• tag ` electron PID (tag l epid): Btag’s lepton daughter’s electron PID level.

• tag ` muon PID (tag l mupid): Btag’s lepton daughter’s muon PID level.

• sig h electron PID (sig h epid): Bsig’s hadron daughter’s electron PID level.

• sig h muon PID, (sig h mupid): Bsig’s hadron daughter’s muon PID level.

• Is Btag → D∗? (tag isbdstar): Flag to indicate whether Btag is reconstructed as a
semileptonic D∗ decay.

• Is Bsig → D∗? (sig isbdstar): Flag to indicate whether Bsig is reconstructed as a
semileptonic D∗ decay.

7.2 Event type densities of features

Figure 7.1 shows the densities of each event type for all features used in this analysis. We
do not observe any features that exhibit characteristics that contrast with our physical
intuitions.
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Figure 7.1: Feature density functions for each event type.
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Figure 7.1: Feature density functions for each event type (cont.).
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Figure 7.1: Feature density functions for each event type (cont.).
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Figure 7.1: Feature density functions for each event type (cont.).
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Figure 7.1: Feature density functions for each event type (cont.).
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Figure 7.1: Feature density functions for each event type (cont.).
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Figure 7.1: Feature density functions for each event type (cont.).

53



1 0 1 2 3 4
tag D *  mode

0.0

0.2

0.4

0.6

0.8

1.0 D h

D *
h

D * * SL
Comb
Cont

(v) Btag D
∗ mode.

2 0 2 4 6 8 10 12 14 16
sig D mode

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
D h

D *
h

D * * SL
Comb
Cont

(w) Bsig D mode.

1 0 1 2 3 4
sig D *  mode

0.0

0.2

0.4

0.6

0.8

1.0 D h

D *
h

D * * SL
Comb
Cont

(x) Bsig D
∗ mode.

Figure 7.1: Feature density functions for each event type (cont.).
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Figure 7.1: Feature density functions for each event type (cont.).
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Figure 7.1: Feature density functions for each event type (cont.).
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Figure 7.1: Feature density functions for each event type (cont.).

57



0.2 0.0 0.2 0.4 0.6 0.8 1.0
Is Bsig D * ?

0

1

2

3

4

5

6

7

8 D h

D *
h

D * * SL
Comb
Cont

(ah) Does Bsig → D∗?

0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Candidate Score

0

10

20

30

40

50
D h

D *
h

D * * SL
Comb
Cont

(ai) Score of the best candidate.

Figure 7.1: Feature density functions for each event type (cont.).
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7.3 Simulation fidelity

The reserved detector data can be used directly without any re-weighting. However, we
present the 4% of the generic MC used for exploration with the following adjustments:

1. Replace the continuum component with the off-peak data.

2. Re-weight the branching fractions of the most frequently occurring B decay modes to
the most recent PDG and HFLAV values. This will be discussed in more detail in
section 11.3.

In addition, we also re-weight the branching fraction of the B semileptonic D∗∗ modes
under two scenarios to show the impact of its branching fraction uncertainty on the overall
normalization. More specifically, we apply correction factors of 0.8 and 0.4 to the branching
fractions, which is quite reasonable given the large uncertainties of these branching fractions.
The intent is to compare the overall shapes of the densities rather than the normalizations.

Figure 7.2 shows the comparisons between data and MC for each feature.
Aside from the uncertainty in the MC normalization, we note that the overall shapes of

each feature agree reasonably well.
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Figure 7.2: Comparisons between data and MC for each event type.
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Figure 7.2: Comparisons between data and MC for each event type (cont.).
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Figure 7.2: Comparisons between data and MC for each event type (cont.).
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Figure 7.2: Comparisons between data and MC for each event type (cont.).

63



1.0 0.5 0.0 0.5 1.0
sig_costhetadtau

0

100

200

300

400

500

600

Co
un

ts

MC with Offpeak
BF/FF/D** Corrected MC 0.8
BF/FF/D** Corrected MC 0.4
Data

1.0 0.5 0.0 0.5 1.0
sig_costhetadtau

0.4

0.2

0.0

0.2

0.4

Da
ta 

- M
C(

0.
8)

 / 
Da

ta

(m) cos θsigDτ .

0.0 0.2 0.4 0.6 0.8 1.0
sig_vtxb

0

1000

2000

3000

4000

5000

6000

Co
un

ts

MC with Offpeak
BF/FF/D** Corrected MC 0.8
BF/FF/D** Corrected MC 0.4
Data

0.0 0.2 0.4 0.6 0.8 1.0
sig_vtxb

0.4

0.2

0.0

0.2

0.4

Da
ta 

- M
C(

0.
8)

 / 
Da

ta

(n) χ2
sigB .

1.75 1.80 1.85 1.90 1.95
sig_dmass

0

50

100

150

200

250

300

350

400

Co
un

ts

MC with Offpeak
BF/FF/D** Corrected MC 0.8
BF/FF/D** Corrected MC 0.4
Data

1.75 1.80 1.85 1.90 1.95
sig_dmass

0.4

0.2

0.0

0.2

0.4

Da
ta 

- M
C(

0.
8)

 / 
Da

ta

(o) msig
D

Figure 7.2: Comparisons between data and MC for each event type (cont.).
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Figure 7.2: Comparisons between data and MC for each event type (cont.).
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Figure 7.2: Comparisons between data and MC for each event type (cont.).
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Figure 7.2: Comparisons between data and MC for each event type (cont.).
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Figure 7.2: Comparisons between data and MC for each event type (cont.).
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Figure 7.2: Comparisons between data and MC for each event type (cont.).
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Figure 7.2: Comparisons between data and MC for each event type (cont.).
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Figure 7.2: Comparisons between data and MC for each event type (cont.).
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Chapter 8

Signal Detection

In this chapter we construct the regressors s1 and s2 that reduce the feature set into two
representative statistics Z1 and Z2.

8.1 Signal detector

s1 is the signal detector that is trained to separate the signal event types, Dτh and D∗τh,
from the background event types, D∗∗SL, Comb, and Cont.

8.1.1 Training sample

The training sample consists of 85k events from the generic MC. The data is preprocessed
by the standard centering (mean subtraction), scaling (set variance to 1), and one-hot
encoding1 of categorical features. Each event is given a label of 0 if it is a background event
type and 1 if it is a signal event type based on the MC truth. The difficulty of learning on
this dataset stems mostly from its inherent noise and the class imbalance. While the noise
is a characteristic of the data that has no great solution, the class imbalance (ratio of signal
to background events is 3%) is rectified somewhat by up-sampling the smaller class.

8.1.2 Model selection

Implementations of common machine learning algorithms are widely available and conve-
nient to use. These algorithms range from logistic regression and tree-based models to more
complex deep learning algorithms. Model selection also entails choosing the best set of hy-
perparameters given an algorithm. Thus, the same algorithm with different hyperparameters
must be considered as different models in this context.

The criteria for choosing the best model are two-fold: first, the model must attain a
low cross validation error for the given metric, area-under-curve or AUC. Second, we seek
to choose the simplest model among those that perform well. The second condition is
inspired by Occam’s razor, which states that typically the simplest solution is the best.
More quantitatively, this is telling us to choose the model with smaller variance at the
possible cost of larger bias.

The algorithms that we explore are: logistic regression, random forest, support vector
machine (SVM), gradient boosted decision tree (GBDT), and multilayer perceptron (MLP).

1One-hot encoding transforms categorical features into numerical bit states, making them suitable for
learning.
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Figure 8.1: ROC curve for the Z1 learners.

8.1.3 Results

The final model chosen is logistic regression with the `2 regularization strength C = 100.
The performance of select models is shown in Figure 8.1, where eextra and mmiss2 refer to
the case where we use a single observable to classify the events. The three top performing
models, logistic regression, random forest, and gradient boosted decision trees (GBDT),
all result in similar performances, but the logistic regression model is chosen due to its
simplicity. We also note that the univariate model using Eextra perform no better than
random guessing, displaying the power of multivariate methods.

Figure 8.2 shows the learning curve of the logistic regression model, which tells us that
we indeed have a sufficient number of training events.

We also explore the efficacy of various features, which might be useful for dimensionality
reduction had the learning curve indicated a lack of training sample statistics. We calculate
two metrics commonly used in machine learning to quantify feature importance:

1. Pearson correlation coefficient is the correlation between each feature and the output
label. Powerful features tend to have larger correlation with the output label.

2. Mutual information is measurement of the (in)dependence of two random variables, in
this case of a feature and the output label. Empirically, it is calculated for a feature
column X and label column Y with N observations as

MI(X,Y ) =
∑
i∈|X|

∑
j∈|Y |

|Xi ∩ Yj |
N

log
N |Xi ∩ Yj |
|Xi||Yj |

. (8.1)

Figure 8.3 shows the two above metrics for the training dataset.
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Figure 8.2: Learning curve for the logistic regression learner.
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Figure 8.3: Relative importance of each feature for learning Z1.
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Figure 8.4: ROC curve for the Z2 learners.

8.2 D∗τ detector

s2 is the D∗τ detector that is trained to separate the two signal event types. This means
that the performance of s2 when given a background event is not important.

8.2.1 Training sample and model selection

The training sample consists of 85k events from the signal MC. The features are the same as
those used in the signal detector with the addition of the signal detector score. The data is
preprocessed in the same manner as the data for the signal detector. Each event is labeled
0 if it is of type Dτ and 1 if it is of type D∗τ . The model selection methodology of the
signal detector is reused for the D∗τ detector.

8.2.2 Results

Again, the logistic regression algorithm wins out due to its performance and simplicity, with
the `2 regularization parameter C = 1000.

As with the signal detector, we show the performance of select models, the learning curve
of the final model, and the feature importance in Figures 8.4, 8.5, and 8.6, respectively.

8.3 Choosing Z1 and Z2

The scores output by s1 and s2 could be used directly as the representative statistics.
However, we choose to use a transformed version of the statistics:

• Z1 = logit(s1(X)),

• Z2 = logit(s2(X)),
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Figure 8.5: Learning curve for the logistic regression learner.
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Figure 8.6: Relative importance of each feature for learning Z2.
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where the logit function, the inverse of logistic function, is defined as:

logit(x) = log

(
x

1− x

)
. (8.2)

The logit transformation is essentially undoing the activation function of the output layer
in our model, meaning Z1 and Z2 are raw outputs of the hidden layer. This allows the output
scores to not be restricted between 0 and 1, and has a smoothing effect on the distributions.
This is actually quite crucial for the next steps in the analysis which involve estimating
these densities using kernel density estimation, or KDE. The density estimation will be the
topic of the next chapter, but in short, KDE does not perform well for distributions with
sharp peaks, and the logit transformation helps to combat this shortcoming.

Figures 8.7 and 8.8 show the densities of the exploratory samples projected to Z1 and
Z2, respectively, in the same manner as presented in Chapter 7.

77



8 7 6 5 4 3 2 1 0
logit(logre signal score)

0

20000

40000

60000

80000

D h

D *
h

D * * SL
Comb
Cont

(a) Event type stacked histograms.

8 7 6 5 4 3 2 1 0
logre_signal_score_pruned

0

100

200

300

400

500

600

Co
un

ts

MC with Offpeak
BF/FF/D** Corrected MC 0.8
BF/FF/D** Corrected MC 0.4
Data

8 7 6 5 4 3 2 1 0
logre_signal_score_pruned

0.4

0.2

0.0

0.2

0.4

Da
ta 

- M
C(

0.
8)

 / 
Da

ta

(b) Data-Simulation comparison.

12 10 8 6 4 2 0 2
logit(logre signal score)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
D h

D *
h

D * * SL
Comb
Cont

(c) Event type densities. The fluctuations of the signal event type densities
are due to limited statistics.

Figure 8.7: Z1 score.
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Chapter 9

Signal Extraction

In this chapter we discuss how the proportions of the signal event types, p̂sig are estimated.
More specifically, we have to solve the optimization problem posed in (4.15) which we write
down again for convenience:

minimize
p∈R|C|

−
N∑
i=1

log

∑
j∈C

pjfj(zi)


subject to

∑
j∈C

pj = 1,

(9.1)

where

• C: The set of event type categories. They are {Dτh, D∗τh, D∗∗SL, Comb, Cont}.

• N : Total number of events in the test set.

• zi: Observed value of the signal detector score Z = (Z1, Z2) for event i.

• pj : The optimization variable. It represents the proportion of events that belong to
event type j.

• fj : The (conditional) density function of Z of event type j.

It is clear that the test set of interest is the detector data. However, we can also use a
test set reserved from the generic MC. Since the event type proportions of such test set are
known, we use it to validate our methods.

We must know how to perform the following two things in order to proceed:

• Density estimation.

• Maximum likelihood estimation.

The purpose of this chapter is to describe our methods of performing the two above
tasks.

9.1 Maximum likelihood estimation

The estimation of the event type proportions is implemented using the CVXOPT [25] python
package. The variance of the estimate is estimated using the bootstrap method, which is
computed in parallel in the department cluster.
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9.2 Density estimation

The problem of density estimation is as follows: suppose we observe N instances of a random
variable X that follows the probability distribution f . Further suppose that f is unknown.
The task is to estimate f based on the N observations Xi, i = 1, . . . , N .

There are two general approaches to density estimation: parametric and non-parametric.
By introducing assumptions about the distribution, the parametric methods achieve great
computational efficiencies at the cost of the bias from the assumptions. On other hand, non-
parametric methods let the data speak for itself at the cost of being more computationally
intensive.

We will proceed with using non-parametric density estimation methods. For a more
in-depth discussion, see [26].

The most basic non-parametric density estimation method is the histogram method.
Given the range of Xi, we partition the range into m equal partitions or bins. Then we
assign each observed data point into a specific bin. The counts of each bin normalized to
the number of points gives us f̂m.

For a histogram, the only parameter is m, the number of bins. We can then ask how do
we choose m? The answer is to choose m that minimizes a metric that quantifies how well
the histogram describes the true unknown distribution f .

There are many such metrics and heuristics of choosing the optimal m. The metric we
will minimize is the mean integrated squared error, or MISE, which is defined as:

MISE ≡
∫

(f̂m − f)2 =

∫
f̂2
m − 2

∫
f̂mf +

∫
f2. (9.2)

In practice, one can evaluate the integrals by summing over each observed data point.
The histogram method in effect discretizes the probability density, which is typically

known to produce a less accurate estimate of the true density. The method we will use for
density estimation is kernel density estimation, or KDE, which is known to perform better
than the simple histograms. The KDE is also known as the Parzen window method.

The KDE of f is:

f̂(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
, (9.3)

where h is the bandwidth parameter for the kernel function K. Common choices of the
kernel K include the Gaussian, radial basis, and Epanechnikov functions.

As with the histogram method, we have a parameter controlling the smoothness of the
estimate, h. We can choose the h that minimizes the MISE. But in addition, we have the
choice of the kernel.

It turns out [27] that rather than minimizing the MISE directly, we can minimize the
cross validation score, which achieves the same asymptotic accuracy:

CV (h) =

∫
f̂2 − 2N−1

∑
i

f̂−i(xi), (9.4)

where f̂−i(xi) = 1
Nh

∑
i 6=j K

(
xi−xj
h

)
; that is, simply evaluate (9.3) but remove the contri-

bution due to point i.
We use the Epanechnikov function as the kernel K, which has a slight advantage in

theoretical guarantees such as having bounded support.

9.2.1 Implementation of kernel density estimation

We implement the KDE as a custom software library bbrcit kde that takes advantage of
the speedups provided by GPU computation and implements the algorithm that performs
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Figure 9.1: Runtime benchmark. N is the number of training and query points and log is
in base 2. 1M is approximately when logN = 20

KDE in O(n) [28]. We will only provide an overview of the software and the algorithm; the
full details of the algorithm implementation can be found in [9].

The naive algorithm of KDE has a O(n2) time complexity. This can be easily be shown
to be true since we have to evaluate the kernel for all possible pairs of points. The so-called
dual tree algorithm is inspired by the two following observations:

1. K(x)→ 0 as x→∞, meaning the contributions of points far apart is negligible.

2. The above observation leads to the idea of partitioning the space into cells, in which
we calculate the pair-wise contributions for points only in the same cell.

By using a space partitioning scheme such as the kd-tree [29], we can evaluate any query
point xi in O(log n). The dual-tree algorithm takes this a step further and also partitions
the query points, resulting in a linear time algorithm for KDE.

In the implementation of the dual-tree algorithm, we rely on the high-performance par-
allel computation capabilities of graphical processing units (GPU).

The performances of the dual-tree algorithm and the naive algorithm on the CPU and
the GPU are shown in Figure 9.1, which exhibits a factor of 10,000 improvement in speedup
between the naive-CPU case and the dual-tree-GPU case.

9.2.2 Density estimation training sample

The conditional densities fj are learned from the generic MC. This is not the optimal choice
of the training data, as detector data control samples for each event type would result in
much more accurate descriptions of the components.

For each event type sample, we perform the cross validation to choose the best band-
widths.
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Figure 9.2: Kernel density estimates for the Dτ event type.

9.2.3 Results

Figures 9.2, 9.3, 9.4, 9.5, and 9.6 show the estimated densities for each event type. Each
figure contains 4 subfigures ordered from left to right, and then top to bottom. They show
the following:

1. The 2D density estimate fj .

2. The least square cross validation score evaluated over a grid for the purpose of finding
the optimal bandwidth.

3. The 1D marginal density in Z1 along with a histogram of the training points.

4. The 1D marginal density in Z2 along with a histogram of the training points.

The estimated densities all appear to behave as expected.

9.3 Bias correction of extracted signal proportions

A typical analysis in particle physics is performed blind, as is the case here. This means
that the analysis strategy is first performed on the MC in its entirety, as described in this
chapter. It is only when the analysis procedures are locked in that we unblind the data and
perform the actual analysis that will give us the final result.

This implies that we use a test set of simulated data to validate our procedure in extrac-
tion of the p̂i’s. This MC test set is composed of the five event types in proportions that
we believe best describe the truth, in this case based on the Standard Model prediction and
the world average.

83



8 7 6 5 4 3 2 1 0
Z1

2

0

2

4

6

8

Z 2

0.0
3

0.06

0.0
9

0.
12

0.15 0.18

0.210.24

Event type 2

(a) Estimated 2D density. (b) Least square cross validation scores.

8 7 6 5 4 3 2 1 0
Z1

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Event type 2

(c) Marginal density in Z1.

2 0 2 4 6 8
Z2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 event type 2

(d) Marginal density in Z2.

Figure 9.3: Kernel density estimates for the D∗τ event type.
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Figure 9.4: Kernel density estimates for the D∗∗SL event type.
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Figure 9.5: Kernel density estimates for the Comb event type.

86



8 7 6 5 4 3 2 1 0
Z1

2

0

2

4

6

8

Z 2

0.03

0.05

0.08

0.1
0

0.120.15 0.18

0.200.23

Event type 5

(a) Estimated 2D density. (b) Least square cross validation scores.

8 7 6 5 4 3 2 1 0
Z1

0.0

0.1

0.2

0.3

0.4

0.5 Event type 5

(c) Marginal density in Z1.

2 0 2 4 6 8
Z2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 event type 5

(d) Marginal density in Z2.

Figure 9.6: Kernel density estimates for the Cont event type.
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While the result from the MC test set will be discussed in Chapter 10, in this section we
describe a method to correct for the biases in the extracted proportions.

It is helpful to distinguish the three ways simulated data is used in this analysis:

1. Train: A set of events used to build the conditional KDE for each event type.

2. Tuning: A set of events used to estimate the bias due to the choice of bandwidths of
each event type density in construction of KDE’s.

3. Test: A set of events that serves as a data emulation set. The KDE’s will be used as
input fj ’s to extract the event type proportions of this data set.

The bias mentioned above can be explicitly stated as the difference between the extracted
proportions of the test set and the true proportions in which the test set was generated.

Mechanically, the bias correction is implemented in the form of a look-up table. There
have been other methods considered, but we found them to introduce complexity to the
analysis that were deemed to outweigh the benefits.

The bias (lookup-)table is mapped out by 25 test points. The value of each test point,
or the bias at a given test proportion, is determined as follows:

1. Generate 40 samples based on a given proportion from the MC. This is done by
throwing a weighted die that chooses a random event from the MC with replacement.

2. Extract the signal proportions from the 40 test sets using the (fixed) component den-
sities.

3. bias = avg(extracted − true); the statistical uncertainty on the bias is estimated as
the standard deviation among the 40 results.

The resulting bias tables in 3D and contour plots are shown in Figure 9.7.
It is worth noting that the only sources of this bias seem to be the choice of the test

proportions and the choice of bandwidths, as both training and test data are sampled from
a single simulated data set. The look-up table as described above assumes that the biases
only depend on the differences of signal proportions; the effects of the differences between
the background proportions are explored as a systematic uncertainty in Chapter 11.
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Chapter 10

Solving for p̂j and ε̂j on
Simulated Data

In this chapter we validate our analysis strategy on a test set reserved from the generic MC.
This allows us to fine tune and debug any part of the analysis without biasing ourselves
from the answers from the detector data. If the results on the MC appear to be consistent
with our expectations, then we can simply swap the test sets from MC to detector data for
our final answer.

10.1 Solving for p̂j

To obtain the central value of the sample proportion, we simply solve the optimization
problem once. We calculate the standard error of the estimate from solving the same
optimization problem on 1000 bootstrap samples.

The distributions of the bootstrap results are shown in figure 10.2, from which we extract
the statistical uncertainties of the p̂Dτ and p̂D∗τ as 0.0011 and 0.0013 , respectively.

Given that the test set is MC, we know exactly the proportions of each event type.
If we compare our extracted proportions with the true proportions, we see that they do
not agree. This is expected, since maximum likelihood estimates are consistent but can be
biased. Indeed, we can attribute the biases of the extracted signal proportions to the biases
of the KDE’s learned from MC. More specifically, the minimum MISE criteria used for the
bandwidth selection minimizes the sum of both the bias and the variance. As we will see
in Chapter 11, the differences between the extracted and the true proportions are exactly
the biases we need to correct when extracting signal proportions from the detector data.
Figure 10.1 shows the result of this trivial bias correction using the look-up table described
in Section 9.3.

Figure 10.3 shows the marginal distributions when the extracted values of the p̂j ’s are
used to stack the five component densities. Visual inspection shows that the fitting procedure
has been completed successfully. We also do not observe any significant differences between
the densities when stacked with the extracted proportions versus the true proportions.

10.2 Solving for ε̂j

For each signal category j, we estimate the efficiency as follows:

ε̂j =

∑N(j)

i=1 wi∑M(j)

i=1 wi
, (10.1)

where
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• N (j): number of events of event type j that is in the sample that has passed the data
filter F .

• M (j): number of events of event type j that was generated in the simulation.

• wi: the weight of the event based on the luminosity and the cross section.

Applying the formula above, we obtain efficiencies of 0.18% and 0.23% , for the Dτ
and D∗τ categories, respectively. The statistical errors are negligible.
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Figure 10.2: Bootstrapped results for all components.
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Figure 10.3: Stacked event type densities based on the extracted and true proportions.
Black dots are histograms of the MC test set.
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Chapter 11

Systematic Uncertainties

In Chapter 7, we observed slight discrepancies between the simulation and the detector
data. This is very much expected, and in fact it would have been a bit strange to see the
simulation agree exactly with the data.

The purpose of this chapter is to quantify the effects of these differences on the extracted
signal proportions and signal efficiencies, and in turn on the measured R(D(∗)).

We proceed by enumerating all possible ways that we know the simulation can be different
from nature. This certainly is not an exhaustive list, but the goal is to have enough coverage
over all major aspects of the deficiencies from the knowledge that have been accumulated
over many years of experimental particle physics.

The concept of quantifying such uncertainties is simple: given a baseline model as-
sumption, we change a single parameter of the model while keeping all others fixed. The
proportions and efficiencies estimated using the new model can then be used to estimate
the systematic uncertainty associated with that particular parameter.

A summary of the systematic uncertainties is shown at the end of this chapter in Table
11.13.

11.1 Bias correction

One common theme throughout this chapter is the comparison between extracted propor-
tions of datasets generated from different model assumptions. We need to be careful on how
the comparison is performed as there are different sources of bias that exist in the extracted
proportions.

Our analysis so far has distinguished two types of datasets: training and test. The
training data is simulated (i.e. Monte Carlo), and is used to construct the KDE’s. The test
data, which could be simulated or real, is the dataset whose signal proportions we would
like to estimate.

The extracted proportions can be written as:

E[p̂i,j,h0
] = pj + bi,j,h0

, (11.1)

where pj is the true signal proportion of the test set j, h0 is the set of bandwidths used in
construction of the KDE’s, and bi,j,h0

is the overall bias term.
Now we make the assumption that bi,j,h0 can be decomposed into two parts:

bi,j,h0 = bKDE(i, h0) + bsys(i, j) + bother, (11.2)

where the bKDE(i, h0) is the bias of the KDE due to our choice of the bandwidth, and
bsys(i, j) is the contribution to the bias from the fact that model i and j are different.
bother describes the possibilities of other biases that might exist that cannot be attributed
to the other bias terms. It is clear that the purpose of assessing systematic uncertainties is
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estimating bsys(i, j) for various models i and j ∈ {mc.central, detector data}, then quoting
the systematic uncertainty as

∆bsys,i = bsys(i, j)− bsys(mc.central, j)., (11.3)

where mc.central refers to the default simulation model.
The expressions above imply that if we were to naively compare the extracted signal

proportions from two choices of training data, i and i′, then we are not accurately estimating
∆bsys. More specifically, we need to estimate the contribution from the bKDE to the overall
bias.

Consider estimating the signal proportions of dataset of model i using KDE’s constructed
using data points from the same model, i.e. the tuning set. We can say

E[p̂i,i,h0 ] = pi + bKDE(i, h0) (11.4)

since bsys(i, i) = 0.
Since pi is known, we can estimate the KDE bias as

b̂KDE(i, h0) = E[p̂i,i,h0
]− pi, (11.5)

and thus we can estimate the systematic uncertainty as defined in (11.3) as

∆b̂sys = (E[p̂i,j,h0
]− bKDE(i, h0))

− (E[p̂mc.central,j,h0
]− bKDE(mc.central, h0))

= E[p̂i,j,h0
]− E[p̂mc.central,j,h0

]

− (E[p̂i,i,h0
]− E[p̂mc.central,mc.central,h0

])

+ (pi − pmc.central), (11.6)

which reduces to 0 when i = mc.central.
In the following sections, when we consider extracted signal proportions, the reader

can assume them to be bias-corrected proportions, as the procedure to perform the bias
correction is well-determined.

11.2 Form factors

One of the main uncertainties in the model used as the baseline simulation (i.e. mc.central)
stems from the form factors employed in the description of B decays. These form factors
have previously been introduced in the calculation of the Standard Model prediction of
R(D(∗)) in Chapter 2. The models used in the generation of the simulated data in the
BABAR framework are often outdated; either better models have been discovered or the
parameters used in the models have been measured more precisely. Thus we first re-weight
the initial MC data to transform it into the default baseline model.

In the rest of the section, we first describe the models used in the BABAR framework
(i.e. the factory setting). Then, we show how those models were changed for generating the
baseline simulation which we used to extract the central value. Lastly, we enumerate the
various adjustments to the model that quantify theoretical and experimental uncertainties
of the form factors.

It is worth noting that the form factors contribute to the differential decay rate of
B → D(∗)τν` through the angular distributions. This means that form factors influence
the shapes of the component densities fj and consequently p̂j . On the other hand, their
effect on ε̂j falls under the detector effects systematic uncertainties, which will be treated
separately in a later section.

The technique we use to fluctuate the form factor values is re-weighting. Given the
baseline model i and the fluctuated model i′, the recipe to calculate the re-weighting factor
is as follows:

95



1. Define Γi =
∫
dΓi/dx dx as the decay rate for model i, where x represents a set

kinematic variables that the decay rate depends on (e.g. q2). Similarly define Γi′ for
model i′.

2. Given an event and its associated x, the weight is

w(x) =

1
Γi′

dΓi′
dx (x)

1
Γi
dΓi
dx (x)

. (11.7)

3. Apply the weight to all events in the simulated dataset and recalculate the component
densities fj and extracted new proportions p̂i

′

j .

11.2.1 Uncertainties due to B → D(∗)`ν` form factors

The kinematic variables of interest for the B → D(∗)`ν` decay rates are:

• q2 ≡ (pB − pM )2: Momentum transfer from the B meson to the virtual W boson.

• θ`: Angle of the ` in the W ∗ rest frame, see Figure 2.2.

• θV : Angle of the D in the D∗’s rest frame.

• χ: Angle between the decay planes of the W ∗ and the D∗.

We have previously derived the expressions for the relevant differential decay rates. We
also have calculated the explicit branching fraction predictions based on a form factor model
called CLN (see Chapter 2). There exist other form factor models, and in fact, the simulated
data used in the analysis was generated using the ISGW2 and linear q2 model for the case
when M = D and D∗, respectively. The exact settings and the values of the parameters
are:

• Settings used to generate the simulated data (factory setting):

– B → D`ν, ` = e, µ, τ : ISGW2[30].

– B → D∗`ν, ` = e, µ: Linear q2[31]. The parameter settings are

∗ ρ2 = 0.77

∗ R1 = 1.33

∗ R2 = 0.92

– B → D∗τν: ISGW2.

• Settings used to obtain the central value (baseline setting):

– B → D`ν, ` = e, µ, τ : CLN[13]. The parameter settings are

∗ ρ2 = 1.186

∗ V1 = 1.0816

∗ ∆ = 1.0

– B → D∗`ν, ` = e, µ, τ : CLN[13]. The parameter settings are

∗ F1 = 0.921

∗ ρ2 = 1.207

∗ R0 = 1.14

∗ R1 = 1.401

∗ R2 = 0.854

• Settings used to obtain the systematic uncertainty:
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– B → D`ν, ` = e, µ, τ : CLN[13]. The parameter settings are

∗ ρ2 = 1.186± 0.054

∗ V1 = 1.0816

∗ ∆ = 1.0

– B → D∗`ν, ` = e, µ, τ : CLN[13]. The parameter settings are1

∗ F1 = 0.921

∗ ρ2 = 1.207± 0.026

∗ R0 = 1.14

∗ R1 = 1.401± 0.033

∗ R2 = 0.854± 0.02

We can visualize the effects of the various form factor model and parameter assumptions
by plotting the q2 spectra of the differential decay rates. In Figures 11.1 and 11.2, we show
the spectra predicted by the factory setting and the resulting simulated data. The slight
differences in the low q2 region for the light lepton cases can be attributed to the fact that
the ISGW2 model does not take the widths of the B and D resonances into account. If we
fix the respective masses to specific values, the differences disappear.

In Figures 11.3 and 11.4, we compare the spectra of the factory setting and the baseline
setting. In Figures 11.5 and 11.6, we show the spectra for the variations of the B → D`ν
and B → D∗`ν CLN parameters, respectively. The effects of the slight change in the shapes
are assessed as the form factor systematics.

To obtain the systematic uncertainty due to these form factors, we extract the signal
proportions using the data that we re-weight to the systematic settings above. The difference
between the values obtained this way and the central values are then listed as the systematic.
The results are shown in table 11.1 for both MC and detector data test sets.

Signal Type Simulated data Detector data

Dτ 0.0003 0.0005
D∗τ 0.0021 0.0013

Table 11.1: Systematic uncertainties on p̂sig due to B → D(∗) form factors. The first column
is the event type, the second column is the systematic derived from simulated data, while
the last column is the systematic derived from the detector data.

1Note that the variations of the B → D∗`ν form factors were along the principal axis from taking the
correlations into account.
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Figure 11.1: The default generated simulation data overlaid with the purported form factor
model for B → D`ν`.

0 2 4 6 8 10 12
q2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

d
/d

q2  (
de

ns
ity

)

B D * e

(a) B → D∗eνe

0 2 4 6 8 10 12
q2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

d
/d

q2  (
de

ns
ity

)

B D *

(b) B → D∗µνµ

3 4 5 6 7 8 9 10 11
q2

0.00

0.05

0.10

0.15

0.20

0.25

d
/d

q2  (
de

ns
ity

)

B D *

(c) B → D∗τντ

Figure 11.2: The default generated simulation data overlaid with the purported form factor
model for B → D∗`ν`.
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Figure 11.3: The differential decay rates for the B → D form factors considered in this
analysis.
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Figure 11.4: The differential decay rates for the B → D∗ form factors considered in this
analysis.
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Figure 11.5: The differential decay rates for the variations of B → D form factors considered
in this analysis.
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Figure 11.6: The differential decay rates for the variations ofB → D∗ form factors considered
in this analysis. pi, where i = 0, 1, 2, refer to the principal axes of the covariance matrix for
(ρ2, R1, R2) along which the variations are performed.
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Figure 11.7: The differential decay rate spectra for the B → D∗∗ form factors considered in
this analysis.

11.2.2 Uncertainties due to B → D∗∗`ν` form factors

We now quantify the systematic uncertainties due to the form factors describing semileptonic
B decays involving D∗∗. D∗∗ denotes excitations of the ground state D meson, which for
our purposes refer to D∗0 , D1, D

′
1, and D∗2 .

In this case, the relevant kinematic variables x are:

• w = v · v′: v(v′) is the four velocity of the B(D∗∗).

• θ`: Angle of the ` in W ∗’s rest frame.

As with the D(∗) case, the form factor settings are (following BAD 1586):

• Factory setting:

– B → D∗∗`ν, ` = e, µ, τ : ISGW2[30].

• Baseline setting:

– B → D∗∗`ν, ` = e, µ, τ : LLSW B1 [32].

• Systematics setting:

– B → D∗∗`ν, ` = e, µ, τ : LLSW B2 [32].

Figures 11.7 show the q2 spectra of the form factor models listed above.
The resulting systematic uncertainty estimates are shown in Table 11.2.
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Signal Type Simulated data Detector data

Dτ 0.00001 0.0002
D∗τ 0.00003 0.00002

Table 11.2: Systematic uncertainties on p̂sig due to B → D∗∗ form factors. The first column
is the event type, the second column is the systematic derived from simulated data, while
the last column is the systematic derived from the detector data.

11.3 Branching fractions

Branching fractions of various decays that occur in the detector are another set of model
parameters that can cause mismatch between the MC and the data. More specifically, they
influence the results in two ways:

1. The change in the relative abundance of the decays changes the learned f̂j , and in
turn the p̂j .

2. Different decay modes generally have different efficiencies of being detected and passing
the data filter. Thus the change of the relative compositions affects the overall event
type efficiency ε̂j .

The branching fraction factory setting was constructed using the best knowledge at the
time of creation. Since then, the measurements of the branching fractions have improved
considerably and we must incorporate the new knowledge into the simulation. In other
words, we update the central values of the branching fractions and then, as we did with the
form factors, vary the value according to the latest measurement uncertainties.

Since enumerating all possible decays is impractical, we proceed with the following
approach of choosing the important decay modes:

1. B decays: rank the frequencies of B decay modes that occur in a sample of 10000
events. The B decays of interest will be the top k most frequent decays that comprises
of 50% of all decays in our sample.

2. D decays: since the effects of D decay mode branching fractions are secondary to
those of the B decays. We only perform a cross-check of all D decays based on the
representative mode D → Kππ.

Given the modes of interest, we proceed to derive the re-weighting factor as follows:

1. Traverse the truth decay graph and check for modes of interest.

2. For each mode found, assign a weight w = wWA/wDECAY.DEC, where WA refers to the
world average value and DECAY.DEC refers to the factory setting2.

3. The correction for the event is the product of all such computed weights.

In addition, we correct for the asymmetry in production rate of B+ vs. B0 from decays
of Υ (4S) based on the latest value from HFLAV by simply re-weighting the luminosity
weights, which were initially calculated assuming equal production rate.

Let ω+ be the initial luminosity weight of a B± event, which is defined as ω+ =
Ldata/LMC,B+, where L refers to luminosity. Since initially LMC,B+ = 0.5 × LMC,B, where
B refers to both charged and neutral B’s, it is clear that the corrected luminosity weight
for charged and neutral B events should be:

ω′+ =
ω+

2× 0.513
(11.8)

2DECAY.DEC is a file used in EvtGen to store all model parameters
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and
ω′0 =

ω0

2× 0.487
, (11.9)

where the production rate of neutral B’s used is 0.487± 0.0063.
The central values are obtained by applying the correction factor to all simulated events,

then proceeding in the usual manner to obtain p̂sig and ε̂sig.
To quantify systematic uncertainties due to variations in the estimated densities, we

proceed as follows:

1. Decide on a set of variations on the branching fractions, typically based on the standard
deviation of the world average accounting for correlations when necessary.

2. For each event, re-compute the weights due to these variations and re-estimate the
event type densities.

3. Use these densities to extract the result and quote its difference from the central value
as a systematic uncertainty.

To quantify systematic uncertainties due to variations in the signal efficiencies, we pro-
ceed as follows:

1. Decide on a set of variations on the branching fractions.

2. For each event, re-compute the weights due to these variations.

3. Compute the efficiency as usual, this time applying the new weights. Quote the
difference between this and the central value as a systematic uncertainty.

We now show the results of the systematic uncertainties due to branching fractions.

11.3.1 Uncertainties due to varying B branching fractions

The B decay modes of interests are grouped into five classes. The decays within a class
have similar underlying physics process, allowing us to vary the branching fractions of the
entire class at once rather than one at a time.

The five classes are as follows:

• Group A: semileptonic B decays.

• Group B: B decays to strange mesons.

• Group C: B → Dρ.

• Group D: B → D∗a.

• Group E: B → D∗∗`ν and non-resonant B → D`νπ.

The branching fraction variations we consider are listed in Tables 11.3 and 11.4.

3It should be noted that there is indeed an uncertainty on the production rate, which provides another
source of systematic uncertainty on the final result. Nevertheless, since the uncertainty is quite small we do
not include it in our final set of systematics.
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Decay Mode DECAY.DEC Value Corrected Value Correction Uncertainty Group

B+ → D∗0µ+νµ 0.0617 0.0531 0.0012 A4

B+ → D∗0e+νe 0.0617 0.0531 0.0012 A
B+ → D0µ+νµ 0.0224 0.0230 0.0010 A
B+ → D0e+νe 0.0224 0.0230 0.0010 A
B+ → D∗+s D∗0 0.0278 0.0171 0.0024 B
B+ → D+

s D
0 0.0129 0.009 0.0009 B

B+ → D+
s D
∗0 0.0124 0.0082 0.0017 B

B+ → D0ρ+ 0.0134 0.0134 0.0018 C
B+ → D∗0a+

1 0.01597 0.019 0.005 D

B+ → D
0

1e
+νe 0.0056 0.0096 0.001 E

B+ → D
∗0
0 e

+νe 0.0049 0.0044 0.0008 E

B+ → D
∗0
2 e

+νe 0.003 0.003 0.0004 E

B+ → D
′0

1 e
+νe 0.009 0.002 0.0005 E

B+ → D∗−π+e+νe 0.0006 0.006 0.0006 E
B+ → D−π+e+νe 0.0019 0.0042 0.0006 E

B+ → D
0

1µ
+νµ 0.0056 0.0096 0.001 E

B+ → D
∗0
0 µ

+νµ 0.0049 0.0044 0.0008 E

B+ → D
∗0
2 µ

+νµ 0.003 0.003 0.0004 E

B+ → D
′0

1 µ
+νµ 0.009 0.002 0.0005 E

B+ → D∗−π+µ+νµ 0.0006 0.006 0.0006 E
B+ → D−π+µ+νµ 0.0019 0.0042 0.0005 E

B+ → D
0

1τ
+ντ 0.0013 0.001 0.00014 E

B+ → D
∗0
0 τ

+ντ 0.0013 0.0004 0.00015 E

B+ → D
′0

1 τ
+ντ 0.002 0.00012 0.00005 E

B+ → D
∗0
2 τ

+ντ 0.002 0.00021 0.00004 E

Table 11.3: Dominant B+ decay modes of interest.

Uncertainties in p̂j due to variations in f̂j

The resulting systematic uncertainties are listed in Table 11.5.

Uncertainties in ε̂j

The resulting systematic uncertainties are listed in Table 11.6.

11.3.2 Uncertainties due to difference between exclusive and inclu-
sive branching fractions of B → Xc`ν

It is well known [33] that there is a discrepancy of ∼ 1.5% between the inclusive branch-
ing fraction of semileptonic B decays and the sum of exclusive branching fractions. This
motivated a previous BABAR analysis [34] to “fill” the gap with B decays to D∗∗ (Dππ) `ν.

To assess the uncertainty due to the discrepancy, the D∗∗ (Dππ) `ν signal MC samples
generated for the previous analysis are first re-weighted to make up 1.5% of the training
set prior to any reconstruction and data filtering has been applied. Then the records go
through the same pipeline as all the other events and incorporated into the final training
set, which are again re-weighted to keep the total number of training data points the same.
The samples used are summarized in Table 11.7, where we mix the three D∗∗ decays modes
in equal proportions.

4Group A is varied along the principal axis based on correlations used for the world average. Thus two
variations are performed for this group, rather than just one for other groups.
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Decay Mode DECAY.DEC Value Corrected Value Correction Uncertainty Group

B0 → D∗−µ+νµ 0.057 0.0493 0.0011 A
B0 → D∗−e+νe 0.057 0.0493 0.0011 A
B0 → D−µ+νµ 0.0207 0.0213 0.0010 A
B0 → D−e+νe 0.0207 0.0213 0.0010 A
B0 → D∗+s D∗− 0.024 0.0177 0.0014 B
B0 → D+

s D
∗− 0.0126 0.008 0.0011 B

B0 → D∗−D∗0K+ 0.01 0.0106 0.0009 B
B0 → D∗+s D− 0.009 0.0074 0.0016 B
B0 → D+

s D
− 0.009 0.0072 0.0008 B

B0 → D−D∗0K+ 0.0049 0.0035 0.0004 B
B0 → D∗−D∗+K0 0.007 0.0081 0.0007 B
B0 → D+

s1D
− 0.0098 0.0005 0.00014 B

B0 → D+ρ− 0.0077 0.0078 0.0013 C
B0 → D∗+a−1 0.012 0.013 0.0027 D
B0 → D∗−2 e+νe 0.0023 0.0028 0.0004 E

B0 → D
′−
1 e+νe 0.0083 0.0019 0.00046 E

B0 → D∗−0 e+νe 0.0045 0.00408 0.00074 E
B0 → D−1 e

+νe 0.0052 0.0089 0.000911 E
B0 → D∗0π−e+νe 0.0007 0.0048 0.0008 E
B0 → D0π−e+νe 0.002 0.0042 0.0006 E
B0 → D−1 µ

+νµ 0.0052 0.0089 0.000911 E
B0 → D∗−0 µ+νµ 0.0045 0.00408 0.00074 E

B0 → D
′−
1 µ+νµ 0.0083 0.0019 0.00046 E

B0 → D∗−2 µ+νµ 0.0023 0.0028 0.0004 E
B0 → D∗0π−µ+νµ 0.0007 0.0048 0.0008 E
B0 → D0π−µ+νµ 0.002 0.0042 0.0006 E
B0 → D−1 τ

+ντ 0.0013 0.0009 0.00013 E
B0 → D∗−0 τ+ντ 0.0013 0.0003 0.00014 E

B0 → D
′−
1 τ+ντ 0.002 0.00017 0.00005 E

B0 → D∗−2 τ+ντ 0.002 0.00013 0.00004 E

Table 11.4: Dominant B0 decay modes of interest.
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Signal Type BF variation type Simulated data Detector data

Dτ A0 + 1σ -0.00016 0.00021
D∗τ A0 + 1σ 0.00011 0.00029
Dτ A0 − 1σ 0.00021 0.00042
D∗τ A0 − 1σ -0.00015 0.00032
Dτ A1 + 1σ 0.00019 0.00032
D∗τ A1 + 1σ -0.00085 -0.00035
Dτ A1 − 1σ -0.00005 0.00027
D∗τ A1 − 1σ 0.00065 -0.00033
Dτ B +1σ 0.00008 -0.00014
D∗τ B +1σ 0.00004 0.00022
Dτ B −1σ -0.00001 0.00024
D∗τ B −1σ -0.00011 -0.00076
Dτ C +1σ 0.00010 -0.00004
D∗τ C +1σ 0.00009 0.00026
Dτ C −1σ -0.00002 0.00026
D∗τ C −1σ -0.00020 0.00016
Dτ D +1σ 0.00028 0.00037
D∗τ D +1σ 0.00065 0.00063
Dτ D −1σ -0.00015 -0.00031
D∗τ D −1σ -0.00069 -0.00041
Dτ E +1σ -0.00022 -0.00026
D∗τ E +1σ -0.00020 -0.00015
Dτ E −1σ 0.00029 0.00007
D∗τ E −1σ 0.00018 0.00031

Table 11.5: Systematic uncertainties on p̂j due to varying well- determined B decay branch-
ing fractions. The first column is the event type, the second column indicates the kind
of branching fraction variation, the third column is the systematic derived from simulated
data, while the last column is the systematic derived from the detector data. Note that
groups A0 and A1 roughly correspond to D`ν and D∗`ν branching fractions, respectively.

The new dataset with these decays added are then used to assess the change in the
resulting p̂j in the same procedure as the assessments of the B branching fraction systematic
uncertainties: Table 11.8 shows the results.
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Signal Type BF variation type Simulated data (10−5) Detector data (10−5)

Dτ A0 + 1σ 0.1

same as simulation

D∗τ A0 + 1σ 0.3
Dτ A0 − 1σ 0.1
D∗τ A0 − 1σ 0.3
Dτ A1 + 1σ 0.4
D∗τ A1 + 1σ 1.1
Dτ A1 − 1σ 0.4
D∗τ A1 − 1σ 1.1
Dτ B +1σ 0.5
D∗τ B +1σ 0.3
Dτ B −1σ 0.5
D∗τ B −1σ 0.3
Dτ C +1σ 0.3
D∗τ C +1σ 0.3
Dτ C −1σ 0.3
D∗τ C −1σ 0.3
Dτ D +1σ 0.5
D∗τ D +1σ 0.7
Dτ D −1σ 0.5
D∗τ D −1σ 0.8
Dτ E +1σ 1.1
D∗τ E +1σ 2.1
Dτ E −1σ 1.1
D∗τ E −1σ 2.1

Table 11.6: Systematic uncertainties in ε̂j due to varying poorly determined B decay branch-
ing fractions. The first column is the event type, the second column indicates the kind of
branching fraction variation, the third column is the systematic derived from simulated
data, while the last column is the systematic derived from the detector data.

11.3.3 Uncertainties due to D branching fractions

The effects of the branching fractions of D decay modes are also studied. Rather than
performing fluctuations on a set of dominant D decays, we simply perform a cross-check by
making a correction on the most common decay D → Kππ.

More specifically, for each event we multiply a factor of w = wWA/wDECAY.DEC = 0.992 for
every D → Kππ decay. Since the branching fractions of D decays are well-measured, we
deemed fluctuation by its measurement error unnecessary.

Table 11.9 shows the resulting systematic uncertainties on p̂j .

11.4 BB background validation

The form factor and branching fraction uncertainties affect the shapes of the f̂j of all signal
and background event types simultaneously. In many analyses, attempts are made to pin
down the exact shapes of the background densities, which can then be fixed when fitting for
the signal components. The key ingredient for such procedure is control samples. Control
samples are detector data samples that are known to be a very pure sample of a particular
type.

In this analysis, out of the three the background event types, one of them has such
control sample: the off-peak detector data is a control sample for the Cont event type. In
fact, as stated in Chapter 9, f̂Cont is learned from the off-peak data sample.
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Decay Type # event [106] BABAR Dataset Name

B+ → D1(Dππ)`ν 6.642 SP-11459-R24
B0 → D1(Dππ)`ν 7.100 SP-11465-R24
B+ → D1(D∗ππ)`ν 6.480 SP-11460-R24
B0 → D1(D∗ππ)`ν 6.870 SP-11466-R24
B+ → D(2S)(Dππ)`ν 6.776 SP-11461-R24
B0 → D(2S)(Dππ)`ν 6.826 SP-11467-R24
B+ → D(2S)(D∗ππ)`ν 6.530 SP-11462-R24
B0 → D(2S)(D∗ππ)`ν 6.769 SP-11468-R24
B+ → D(2S)∗(Dππ)`ν 6.369 SP-11463-R24
B0 → D(2S)∗(Dππ)`ν 6.552 SP-11469-R24
B+ → D(2S)∗(D∗ππ)`ν 6.425 SP-11464-R24
B0 → D(2S)∗(D∗ππ)`ν 6.616 SP-11470-R24

Table 11.7: Signal MC samples used for assessing the gap between inclusive and sum of
exclusive B → Xc`ν branching fractions.

Signal Type Simulated data Detector data

Dτ 0.00001 0.00010
D∗τ 0.00017 0.00046

Table 11.8: Systematic uncertainties in p̂j due to the discrepancy between inclusive and the
sum of exclusive branching fractions of B decays to Xc`ν. The first column is the event type,
the second column is the systematic derived from simulated data, while the last column is
the systematic derived from the detector data.

The other two background event types, which we will collectively denote as the BB
background, has no direct control sample available from the experiment. We therefore
attempt to bound the possible discrepancies in the BB background density shapes using a
sideband control sample.

The idea is as follows: find a set of selection criteria that filters out most signal events,
leaving us a detector data sample consisting of only background events. This detector
sideband sample consists of three event types, one of which, the continuum, can be fixed as
known. If we subtract out the continuum contribution using the off-peak data, we should
be left with a BB background detector data. We can now compare the this sample with the
sideband sample of the MC BB background to capture the discrepancy. More specifically,
we can learn correction factors for the MC BB background events to make them seem more
like the detector data. The learned correction factors is then used to calculate the systematic
uncertainty.

The above procedure relies on the following assumptions:

A1. The continuum MC and the off-peak data are indistinguishable in distribution.

A2. The signal event types are negligible in the sideband.

A3. The discrepancy in Z1 and Z2 is the same independent of whether an event is in the
sideband or not.

We have verified Assumption A1. by swapping out the continuum MC with the off-peak
data in extraction of the central values, which showed no change. Assumption A2. will be
shown to be valid when we define the sideband region and studying the signal contamination.
Assumption A3. is the only one that we must take in faith, though the collective wisdom
from previous BABAR analyses seems to vouch for its validity.
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Signal Type Simulated data Detector data

Dτ 0.00007 0.00022
D∗τ 0.00003 0.00021

Table 11.9: Systematic uncertainties in p̂j due to corrections to branching fraction of D →
Kππ. The first column is the event type, the second column is the systematic derived from
simulated data, while the last column is the systematic derived from the detector data.

(a) Stacked log counts. (b) Cumulative sum ratios.

Figure 11.8: Sideband sample in Eextra.

11.4.1 Qualitative inspection of sideband sample

The criteria for an event being in the sideband are:

S1. Eextra ≥ 3 GeV.

S2. |~psigh | ≥ 2.3 GeV.

Figures 11.8, and 11.9 show that this sample consists almost entirely of event types BB
and continuum, verifying Assumption A2..

Figure 11.10 shows the Z1 and Z2 comparisons for data points belonging to the sideband;
the comparisons for all features are shown in Appendix C.

11.4.2 Method

The correction factors for the BB background shapes are calculated as follows:

(a) Stacked log counts. (b) Cumulative sum ratios.

Figure 11.9: Sideband sample in |~psigh |.
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(a) Sideband signal score (Z1).
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(b) Sideband D∗τ score (Z2).

Figure 11.10: Sideband comparison for Z1 and Z2. All data points used to produce these
figures belong to the sideband sample. The black points are on-peak detector data, the
pink filled histograms are luminosity-scaled off-peak data, and the yellow and green filled
histograms are the simulated BB background.

1. Let g(z1, z2) be the density function in Z1 and Z2 for the on-peak sideband. By
assumption A2., we can decompose this into two components: the continuum and the
from BB background. We write this as:

g(z1, z2) = (1− pcont)gBB(z1, z2) + pcontgcont(z1, z2). (11.10)

2. Let fBB(z1, z2) be the density function of the sideband MC BB background.

3. Then the correction factors are:

w(z1, z2) =
g(z1, z2)− pcontgcont(z1, z2)

(1− pcont)fBB(z1, z2)
. (11.11)

Each quantity in (11.11) can be estimated as follows:

• Estimate g(z1, z2) using the on-peak sideband sample.

• By Assumptions A1. and A3., estimate gcont(z1, z2) using the off-peak sample (in-
cludes sideband and non-sideband).

• Estimate fBB(z1, z2) using the sideband MC BB background.

• Estimate pcont using its value from the simulation.

By Assumption A3., we use ŵ(z1, z2) to quantify a systematic uncertainty as follows:

1. Apply a weight w(z1, z2) for each simulated BB background data point.

2. Use these weighted points to update the estimated density functions input into the
signal extraction.

3. Quote the difference between the updated optimized value and the central value as
the systematic uncertainty.

11.4.3 Results

The results shown in Table 11.10 are a bit surprising. This particular systematic turns out
to be the most dominant source of error for this analysis by a large factor. The possible
explanations are discussed in further detail in Section 11.8.
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Signal Type Simulated data Detector data

Dτ 0.02188 0.02686
D∗τ 0.10291 0.08394

Table 11.10: Systematic uncertainties on p̂j due possible misrepresentations of f̂j by the
simulated BB background. The first column is the event type, the second column is the
systematic derived from simulated data, while the last column is the systematic derived
from the detector data.

11.5 Detector efficiencies

In this section, we quantify the effects of mismodeling of the detector in simulation. More
specifically, the shortcomings of the simulated detector manifest themselves in our result
during the estimations of ε̂j . We account for such shortcomings for the following two quan-
tities:

1. Tracking efficiency: given a track created by a final state particle in the detector, the
probability of the track being recognized as such.

2. Particle identification (PID) efficiency: given a PID algorithm classifying a particle as
a specific type, the probability of it being correct.

11.5.1 Tracking efficiency

We follow the recipe provided by the tracking group of BABAR, which is to simply bound
the mistakes of the simulated detector by assigning a relative uncertainty of 0.2% per track.
Since this is quantity is per event, we perform a weighted average over each event type
sample to extract its effect on ε̂j as follows:

σtrkε̂j =

∑N(j)

i=1 w
(j)
i n

(j)
i 0.2%∑N(j)

i=1 w
(j)
i

, (11.12)

where N (j) is the number of events of event type j, w
(j)
i is the weight of the event i, and

n
(j)
i is the number of tracks for event i.

This results in a relative uncertainty of 2.3% for ε̂j for both signal event types.

11.5.2 PID efficiency

Similar to the tracking efficiency systematic, we follow the recipe provided by the PID group
which simply assigns 0.7%/1.3%/1.1% relative uncertainty per e/µ/K in an event.

Rather than identifying all such particles in our dataset, the reconstruction criteria for
the signal event types give us a simple way to bound this uncertainty:

• Two light leptons per signal event: one from Btag and the other from having to veto
the leptonic decays of the τ on the signal side. Since me,mµ � ΛQCD, we can average
the electron and the muon case, resulting in 2.0% relative uncertainty per signal event.

• Two K’s per signal event: one from each D(∗), giving us 2.2% relative uncertainty per
signal event.

Thus we assign a relative uncertainty of 4.2% for ε̂j for both signal event types.
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11.6 Systematic uncertainty on the bias correction

The bias correction procedure as outlined in Section 9.3 has an associated systematic uncer-
tainty stemming from our limited knowledge of the background proportions (i.e. pi where
i = D∗∗SL,Comb,Cont).

We start by making the following assumptions:

1. The uncertainties in the background proportions are dominated by branching fraction
measurement uncertainty.

2. Uncertainty of the continuum component proportion is negligible since we use the
off-peak data, which can be assumed to be identical to the continuum component of
the real data.

The systematic uncertainty due to the branching fractions can be quantified as before
by fluctuating the background proportion of D∗∗SL and Comb, and measuring the bias as
before. The changes in the bias from these fluctuations are used as upper bounds of the
systematic uncertainty. The next few sections aim to quantify how much we trust the values
generated by the mc.central model.

11.6.1 Branching fraction uncertainty in background components

To quantify the total uncertainty in the BB background components due to branching
fraction measurement errors, we rank the most common decay modes for each event type.
More specifically, we draw a random sample of 10000 records for each event type, then
categorize each B into one of 9 possible McBTypes, or categories:

• NoB: Not a B decay.

• Dtau: B → Dτν.

• Dstartau: B → D∗τν.

• Dl: B → D`ν.

• Dstarl: B → D∗`ν.

• Dstarstar res: B → D∗∗`ν.

• Dstarstar nonres: B → D∗∗`nπν.

• SL: All other semileptonic decays of B.

• Had: Hadronic decays of B.

Figure 11.11 shows the breakdown of the background event types and Table 11.11 shows
the upper bounds of relative measurement errors for each McBType based on Tables 11.3 and
11.4.

From these values, we can proceed to bound the relative uncertainties on pD∗∗SL and
pComb by considering them as weighted sums of the 9 McBTypes. This results in 6.3% and
5.7% uncertainty on pD∗∗SL and pComb, respectively.

The following recipe is used to assign systematic uncertainties due to the uncertainties
in background proportions:

1. Calculate the biases for a grid of points in true (Dτ , D∗τ) space.

2. For each grid point (i.e. choice of true signal proportions), vary the background
proportions up and down based on the respective uncertainties given above.

5It should be noted that other analyses, for instance [4], assign much more conservative uncertainties on
the branching fractions of B into D∗∗ decay modes, up to 100%.
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(a) Event type 3, D∗∗SL. (b) Event type 4, Comb.

Figure 11.11: Ranking of the McBTypes in 10000 records of event types 3 and 4, or D∗∗SL
and Comb.

McBType Relative Measurement Error

Dl 1%
Dstarl 1%

Dstarstar res 5 15%
Dstarstar nonres 10%

SL 2%
Had 10%

Table 11.11: Summary of relative uncertainties on the most common decay modes in the
background event types.

3. Assign the systematic uncertainty as the maximum differences between the biases
calculated from the four variations and the default bias.

When we performed the above procedure for 25 grid points ranging from (0, 0) to
(0.02, 0.02) in step sizes of 0.005, we found that the systematic uncertainty is rather uniform
as a function of the true proportions. Thus, we assign as the systematic uncertainty that of
the grid point closest to the extracted proportions.

Signal Type Systematic Uncertainty

Dτ 0.00022
D∗τ 0.00054

Table 11.12: Systematic uncertainties on the bias correction. The first column is the event
type, the second column is the systematic uncertainty. There is no differentiating between
simulated and detector data since all estimations are performed in simulation.

11.7 Additional sources of systematic uncertainty

11.7.1 Possible discrepancy of R(D∗∗)

The main motivation behind this analysis is the tension between measured and predicted
value of R(D(∗)) of around 30%. We assess a possible systematic uncertainty arising from
discrepancy in the R(D∗∗) system of a similar magnitude.

We increase the branching fractions of semitauonic decays of B to D∗∗ (i.e. the last

four decays listed in Tables 11.3 and 11.4) by 30%. This results in 0.0002 (0.0003) and

0.0003 (0.0001) uncertainty on p̂Dτ and p̂D∗τ , respectively, for simulated (detector) test

dataset.
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11.8 Summary

Table 11.13 collects all the systematic uncertainties derived in this chapter.

Simulation Detector Data
Dτ D∗τ Dτ D∗τ

p̂ uncertainties

D(∗)τ form factors 0.00029 0.00208 0.00053 0.00133
D∗∗τ form factors 0.00001 0.00003 0.00017 0.00002

Semileptonic D∗∗ branching fractions 0.00029 0.00020 0.00026 0.00031
Semileptonic D(∗) branching fractions 0.00034 0.00079 0.00074 0.00067

Strange decay branching fractions 0.00008 0.00011 0.00024 0.00076
B → D(∗)ρ branching fractions 0.00010 0.00020 0.00026 0.00026
B → D(∗)a1 branching fractions 0.00028 0.00069 0.00037 0.00063
BB background shape validation 0.02188 0.10291 0.02686 0.08394

D decay branching fraction cross-check 0.00007 0.00003 0.00022 0.00021
Gap sample for B → Xc`ν branching fractions 0.00001 0.00017 0.00010 0.00046

Background proportions on bias correction 0.00022 0.00054 same as simulation

ε̂ uncertainties (10−5)

Semileptonic D∗∗ branching fractions 1.1 2.1

same as simulation

Semileptonic D(∗) branching fractions 0.4 1.1
Strange decay branching fractions 0.5 0.3
B → D(∗)ρ branching fractions 0.3 0.3
B → D(∗)a1 branching fractions 0.5 0.8

Tracking efficiency 4.2 5.2
PID efficiency 7.6 9.5

Table 11.13: Summary of systematic uncertainties on p̂j and ε̂j .

First, we note the consistency between the estimations on between MC and detector
data test set. This can be interpreted as a validation of the quality of the simulation.
With the exception of the BB background shape systematic, the sizes of all other system-
atic uncertainties align with the expectations based on the relative sizes of the parameter
fluctuations.

Now, let us discuss the BB background shape systematic a bit more carefully. There
are two points of discussion that arise:

1. Are we sure that the estimation is being performed correctly? Is it possible that some
of the assumptions made in Section 11.4 are false?

2. Is there an alternate way of estimating the systematic without relying on the sideband
sample?

It is possible to attribute the large uncertainty to the limited statistics in the sideband
sample. More specifically, the off-peak sideband sample has very few events. We reject this
possibility by performing the following experiment: estimate the systematic using two off-
peak samples, sideband-only and full-region. We used the full-region of the off-peak sample
by Assumption A3., and if the effect was indeed due to limited statistics, we expect an
increase in the uncertainty with lower sample size. It turns out that we actually observe a
decrease in the systematic, rejecting the hypothesis.

We also reject the possibility of any bugs in the software performing the kernel density
estimation and the calculation of the weights as described in (11.11). This is due to the fact
that in the previous iteration of the analysis [9], this particular systematic was large but
not dominant over other systematics such as those stemming from the branching fraction
uncertainties.

Let us now examine the assumptions. Assumptions A1. and A2. have been demon-
strated to be quite good as previously discussed. Suppose Assumption A3. is false, then
the whole methodology falls apart. In discussions with collaborators and reviewers, we have
not been able to come up with an alternative method that does not rely on the sideband as-
sumption. If we assume it to be true, then we are left with the conclusion that our estimate
is indeed valid, and that in this analysis the extracted signal proportions are very sensitive
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to the fluctuations of the BB background shapes. This notion is very reasonable given that
the two background event types make up 71% of the dataset. Any future analyses should
make great efforts to reduce the relative size of the background, which is an optimization
problem that should also attempt to keep as many signal events as possible. Another al-
ternative is to better separate the background densities from the signal densities, in which
case the relative sizes of the event types matter less.
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Chapter 12

Results and Conclusion

12.1 Results on detector data

As shown in (4.3) and (4.5), the value of R(D(∗)) can be calculated from the estimations of
p̂D(∗)τ and ε̂D(∗)τ using simple arithmetic.

To combine various sources of systematic uncertainties, we assign a correlation of 0 or ±1
between the extracted signal proportions based on the signs of the differences. More specif-
ically, the estimated systematic uncertainties as shown in Table 11.13 are simply absolute
differences of the results from two model assumptions: the baseline model and a fluctuated
model. When comparing just two results, the only possible correlations are 0 and ±1. Once
the covariance matrices of all systematics have been constructed, the sum of all but one
systematic is used to quote the overall systematic uncertainties which can be visualized as
an ellipse in the R(D)−R(D∗) plane.

The one systematic that is not part of the sum is the systematic due to the BB back-
ground shape validation. This particular source of systematic uncertainty differs from all
others in the fact that there is no single parameter that varied. It is a data-driven validation
of the MC using the correction factors for the two BB background density shapes learned
from the sideband detector data.

In this case, drawing an ellipse based on the absolute differences would be misleading.
This is due to the fact that this model parameter is binary modification (correction factors
applied or not applied); we cannot interpret the differences as the half-width of an ellipse
that extends symmetrically in the other direction. A line between the two result is a better
interpretation of the uncertainty on our final result due to this systematic.

Thus, we propose the following way of visualizing our result:

1. Plot an ellipse formed by the central value (model A) and the statistical and all system-
atic uncertainties except that due to the BB background shape validation systematic
(model B).

2. Plot a second ellipse with the same shape (uncertainty) as the first ellipse centered at
the extracted R(D(∗)) assuming model B.

3. Connect the two ellipses by drawing the tangent lines.

The above recipe puts both models in equal footing; neither model is more valid than
the other, it is simply different ways of modeling the BB background densities. In a sense,
we have two significantly different results based on the assumed background model.

Thus, the result of this analysis contains two measurements of R(D(∗)): one extracted
using the baseline model (model A) and one extracted using the model where the BB
background density correction factors have been applied (model B).
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Figure 12.1: Bias correction applied to the extracted signal proportions from the detector
data assuming the baseline model (model A). Errors are statistical only.

12.1.1 p̂D(∗)τ

The extracted signal proportions after bias correction assuming model A are as follows:

p̂Dτ = 0.0051± 0.0011(stat.)± 0.0010(sys.),

p̂D∗τ = 0.0081± 0.0012(stat.)± 0.0018(sys.), (12.1)

ρp̂Dτ ,p̂D∗τ = 0.07, (12.2)

where the statistical component of the correlation is -0.41.
The bias-corrected signal proportions assuming model B are:

p̂Dτ = 0.0320± 0.0011(stat.)± 0.0010(sys.),

p̂D∗τ = 0.0920± 0.0012(stat.)± 0.0018(sys.), (12.3)

ρp̂Dτ ,p̂D∗τ = 0.07, (12.4)

where the uncertainties and the correlation are the same as those when using model A, only
the central value has changed.

Figure 12.1 shows the extracted signal proportions of model A before and after the bias
correction.

12.1.2 ε̂D(∗)τ

The signal type efficiencies are estimated using simulation, and since the BB background
validation shapes do not affect the overall normalization, we have a single result for both
model A and model B:

εDτ = 0.00182± 0.00009(sys.),

εD∗τ = 0.00226± 0.00011(sys.). (12.5)

12.1.3 R(D(∗))

The measurements of R(D(∗)) based on the two model assumptions are:
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• Model A (baseline):

R(D) = 0.231± 0.028± 0.028,

R(D∗) = 0.127± 0.019± 0.031,

ρR(D),R(D∗) = 0.06. (12.6)

• Model B (baseline model with BB background shape correction factors applied):

R(D) = 1.454± 0.028± 0.028,

R(D∗) = 1.507± 0.019± 0.031,

ρR(D),R(D∗) = 0.06, (12.7)

where the uncertainties and the correlation are the same as those extracted using
model A.

Figure 12.2 shows our results when visualized using the recipe from Section 12.1. Given
how our result was constructed, we do not have a way to numerically state our result. One
possible way would be to construct a single ellipse based on the average of the two results
with a confidence contour extending from the model A result to the model B result, but it
would obscure the fact that we have two distinct results based on the method used to model
the BB background density shapes.

While this procedure is somewhat non-traditional, this result is consistent with both
the world average and the SM prediction, and we believe it more faithfully shows the true
uncertainties on this measurement of R(D(∗)).
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(a) SM expectation, world average, and this result. A denotes the
central value of our baseline model and B denotes the central value of
the model with the BB background shape validation factors applied.
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(b) Same as (a), but zoomed into the baseline model (A) result to
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Figure 12.2: Results of this analysis along with the SM expectation, the world average, and
the result of the previous iteration of this analysis in the same channel [9].
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Figure 12.2: Results of this analysis along with the SM expectation, the world average, and
the result of the previous iteration of this analysis in the same channel [9] (Cont.).
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12.2 Conclusion

We perform a measurement of R(D(∗)) using the data collected from the BABAR experiment
with semileptonic tagging and hadronic reconstruction of the τ . The analysis procedure is
tuned to maximize the statistical sensitivity on the dataset in which the signal events are
scarce and noisy. In the first iteration of the analysis, we obtain a result with excellent
statistical precision but also large systematic uncertainties. Moreover, the systematic un-
certainties estimated on the MC are not consistent with those estimated on the detector
data.

We attempt to reduce this discrepancy in the second iteration of the analysis, which is
the topic of this thesis, by improving the reconstruction selection criteria. The result of
this analysis maintains the competitive statistical precision while restoring the consistency
between the systematic uncertainties estimated on the MC and the detector data. The large
size of the systematic uncertainties is dominated by the systematic quantifying the validity
of BB background density shapes, which we classify as a characteristic of the dataset rather
than a shortcoming of the methods.

Any future analyses of similar nature should consider the benefits of our method which
results in large signal yields and higher statistical sensitivity.

In summary, we believe the most notable contributions of this analysis are:

1. Bias correction of extracted results as a function of signal proportions, see Section 9.3.

2. GPU-compatible fast kernel density estimation1.

3. Truth matching algorithm, see Chapter 6.

4. PostgreSQL adapter for ROOT files2.

5. Employing domain adaptation algorithm for MC training set and detector data test
set, see Appendix A.

6. Estimation of background density shapes using sideband data, see Section 11.4.

1https://github.com/dchao34/bbrcit_kde
2https://github.com/jkim-/root2postgres
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Appendix A

Unsupervised Domain
Adaptation

A.1 Introduction

In a standard supervised learning setting, we deal with two types of data: labeled and
unlabeled. The labeled data is typically used for training and validating the model while
the unlabeled data is the test set on which the model will be deployed.

One of the fundamental assumptions is that the two datasets are generated from the
same distribution. It makes logical sense to require a consistency between the training and
the test data. Typically, the data collection for a learning task involves collection of some
initial set of data that is manually labeled by humans. This training set is used to train the
model, and when the learning is complete, any new observations from the same source is
predicted by the model. It is the goal of the model to minimize the error of the predictions
of the test set, or the generalization error.

Let us now focus on the learning task at hand. The training set consists of simulated
labeled data whereas the test set is the detector data. In this case, we do not have any
guarantees of the consistency of the distributions between the two samples. In fact, it is
very unlikely for the simulation to model the truth exactly, and we quantify such differences
in the form of systematic uncertainties.

In this analysis, we use machine learning algorithms for the following three tasks:

1. Score each candidate based on its probability to be truth matched.

2. Score each event based on its probability to be one of the two signal event types.

3. Score each event based on its probability to be the D∗τ event type.

The exact learning algorithm (e.g. random forest, logistic regression) is not important.
Rather, the concern at hand is the ability of each model to generalize to a dataset drawn
from a distribution slightly different from that of the simulation (training set).

The test set, or the detector data, has no labels in all three contexts. For example, given
a reconstructed Υ (4S) candidate of a detector event, we have no way to know whether it is
truth matched or not. It is not a matter of difficulty, it is simply not available to us. This
leads to a situation where we have no way of knowing how well our model is performing in
the test set.

This is a problem that exists for all high energy physics analyses, and we attempt to
learn more robust models that provide performance guarantees on an unlabeled test set that
might differ in distribution to the labeled training set.
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A.2 Unsupervised domain adaptation

The class of unsupervised domain adaptation algorithms is first developed in the context of
computer vision. The standard problem is the digit recognition task with an added com-
plexity: instead of having solid color backgrounds for the digits (MNIST), the backgrounds
random patches from real photos (MNIST-M), where the terms in the parentheses are names
of the standard dataset. This added noise turns out to be a great obstacle for models trained
only on the former dataset.

In other words, we have a labeled training set drawn from the source distribution (digits
with black background) and an unlabeled test set drawn from the target distribution (digits
with colorful background). The term unsupervised refers to the fact that the test set has
no labels.

The similarities between the settings of MNIST-M and our problem is apparent: the
MC represents data drawn from the source distribution and the detector data represents
the data from the target distribution.

We implement two unsupervised domain adaptation algorithms, domain-adversarial neu-
ral network (DANN) [35] and PixelDA [36], and quantify their performances on the test set
based on the reverse validation score, which will be discussed in detail in later sections.

A.2.1 Overview

The central idea of domain adaptation algorithms is learning a common representation of
both source and target domains. DANN learns a mapping of both source and target domains
to a new common representation while PixelDA learns a mapping of the source domain to
the target domain. We will focus on DANN for the rest of the appendix, but it also applies
to PixelDA without much loss in generality.

The feature learning step draws inspiration from the generative adversarial network
(GAN), which is a generative model with two components: the generator that produces
fake data and the discriminator that tries to tell apart the fake data from the real data.
In the domain adaptation setting, the generator transforms both source and target domain
data into the same representation while the discriminator, or domain classifier, attempts to
classify the domain of each transformed point. The training of this step is considered to be
converged when the discriminator always outputs 0.5, i.e. it cannot tell apart the domain
of the transformed points.

It is trivial for the generator to fool the discriminator by throwing away all information.
For example, it can always output 0 regardless of the input, and the discriminator can never
be sure of its origin. Thus, domain adaptation algorithms contain a third component, the
task classifier, that uses the transformed source domain points with labels as the training
set. The idea is that given a new target domain point, after the transformation, the task
classifier can predict its class with the same confidence had it been given a transformed
source domain point.

A.2.2 Domain adversarial neural network

We can now describe the DANN algorithm in a more formal manner. Let xs = (x1,s, x2,s, . . . ,
xns,s) be the ns × d design matrix containing source domain data, for which we have the
corresponding labels ys = (y1,s, y2,s, . . . , yns,s). Similarly define xt to be the target domain
data.

The generator is an autoencoder that learns a function Gf : Rd 7→ Rd that performs
the feature transformation. Let zi = Gf (xi; θf ), where i ∈ {s, t}, denote the output of such
transformation. The transformed data is then used as input for both the domain classifier
Gd(·; θd) and the task classifier Gt(·; θt).

Let z = zs
⋃
zt be the entirety of our data. Gd can be any supervised learning algorithm

that minimizes the loss of z given its domain labels yd = 0 for source domain points and 1
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Figure A.1: Diagram of the DANN algorithm. [35]

for target domain points. The task classifier Gt is also a supervised learning algorithm, but
uses (zs, ys) as its training data instead.

We denote the domain loss and the prediction loss as

Ld(θf , θd) = Ld(Gd(Gf (x)), yd), (A.1)

Lt(θf , θt) = Lt(Gt(Gf (xs)), ys), (A.2)

where L can be any loss function such as the cross-entropy loss.
Then, the overall loss function of the algorithm is

L = Lt − λLd, (A.3)

where λ is a hyperparameter controlling the amount of adaptation. If λ = 0, it is as if we do
not perform any feature transformation; the optimizer solely focuses on the task classifier
performance. On the other hand, as λ becomes large, the domain adaptation will be the
main focus, disregarding the task classifier performance.

The optimal parameters are the saddle point solution to the following optimization
problem:

min
θf ,θt

max
θd
L(xs, xt, ys; θf , θd, θt). (A.4)

Figure A.1 shows the diagram of the DANN algorithm.

A.3 Reverse validation

Given that the test set has no labels, how can we quantify the performance of the task
classifier? This is a problem that the vanilla supervised learning algorithms also face given
the dataset of this analysis. Model parameters selected based on the cross validated metrics
do not provide any theoretical guarantees on the out-of-sample performance.

We use the metric called the reverse validation, which can be calculated as follows [37]:

1. Using the training set, which contains both source and target domain data, train
the model and extract the optimal set of parameters θ, which does not include the
hyperparameters such as learning rate that remains fixed throughout the estimation
of reverse validation.

2. Using the model defined by θ to predict the classes of the target domain portion of
the training set, which gives us a pseudo-label of the target data set (xt, ŷt).

3. Now, swap the roles of the source and target domains: treat (xt, ŷt) as the labeled
source domain data and xs as the unlabeled target domain data.

4. Train a new model with parameters θ′ using the swapped dataset.

5. The reverse validation error is the error of the new model with θ′ predicting on xs,
which has known labels ys.
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(a) The decision boundary contour map of the
task classifier.

(b) The decision boundary contour map of the
domain classifier.

Figure A.2: Results of the DANN algorithm on a toy dataset. Red plus and green minus
signs represent the source domain data and the black dots represent the unlabeled target
domain data.

It is important to note that the reverse validation is a heuristic and has no provable
performance guarantees. In fact, it has been demonstrated that the reverse validation
heuristic can result in suboptimal hyperparameter selection [36]. The ideal method would
be to be able to label some portion of the target domain data, and use it to quantify the
out-of-sample performance. Since such a method is not available for us, we use reverse
validation for the purpose of comparing various sets hyperparameters for model selection,
and do not quote it as a performance metric on the target test set.

A.4 Results and summary

We gauge the performances of our models by comparing the task classifier AUC on a source
domain validation set that was reserved for this purpose from the start. In addition, we
estimate its domain adaptation performance using the p-value from the Kolmogorov-Smirnov
(KS) test on equal-sized source and target domain validation sets under the null hypothesis
that they are both drawn from the same distribution.

Both the DANN and PixelDA algorithms were implemented in Tensorflow and trained
on a NVIDIA 1080Ti GPU. The training of deeper networks such as ours was expected to
be finicky and unstable, but we were eventually able to tune the hyperparameters to result
in training convergence using techniques such as batch normalization and dropout.

We use an artificial dataset (make moons [24]) to validate our algorithm implementations.
The source domain data is generated from two semicircle arcs, each representing a class.
The target domain data is generated from the same arcs but rotated by 30 degrees with the
labels thrown out. Figure A.2 shows the results of the DANN algorithm.

As we can see, the task classifier successfully captures the target domain data even with
no labels. Furthermore, the domain classifier classifies the entire region as the source domain
due to its lack of ability to distinguish the two domains.

The final model showed slightly reduced task classification AUC compared to the simpler
logistic regression model, which was expected due to the loss of information from the feature
transformation. However, the KS test showed evidence that the two validation sets were still
from different distributions, i.e. large p-value. This behavior persisted even at very large
values of λ, leading us to conclude that the domain adaption was not performing well. This
may be due to the lack of power of the KS test for sharply peaked distributions. Another
possible reason would be that the domain adaptation algorithms do not lend well to our
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dataset.
While we were not able to extract a satisfactory result, we have explored the possibility

of applying a new type of learning algorithm in high energy physics applications.
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Appendix B

Consistency Test

In order to validate the analysis procedure, especially the home-brewed software like the
kernel density estimation package, we perform a self-consistency test.

Suppose we have fixed component densities for the five event types and a set of propor-
tions. While the exact values of the proportions and bandwidths used for the KDE’s are
not important, we use the proportions expected from SM prediction.

We can generate test datasets of the same size (N = 8.7 million) as follows:

1. Draw x ∼ unif(0, 1).

2. Determine the event type x correpsonds to based on ~p, then generate a point from the
corresponding event type KDE.

3. Repeat until we have N points.

This effectively removes all possible external discrepancies between the training data,
used to construct the KDE’s, and the test data, from which we attempt to recover its true
proportions.

We generate 300 such test datasets and estimate the signal proportions for all datasets.
Figure B.1 shows the distribution of difference between expected and extracted signal pro-
portions where we observe the clear lack of bias in our estimated signal proportions.

This test also demonstrates the validity of using the bootstrap to estimate the variance
of the extracted signal proportions: the standard deviation estimated based on the sample
variance of the 300 test datasets agree well with the bootstrap estimation of the standard
deviation (Table B.1).

Dτ D∗τ
Bootstrap S.D. 0.000895 0.000812

Sample S.D. 0.000887 0.000826

Table B.1: Validation of bootstrap estimation of the variance by comparison to the sample
variance of the results of the 300 simulated datasets.
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Figure B.1: Distributions of the biases of the extracted signal proportions.
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Appendix C

Sideband comparisons

We show data and simulation comparisons in the sideband region. This is an extension of
the discussion in section 11.4.
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(c) Eextra. Left of the cliff belongs to the sideband sample where |~psigh | >
2.3 GeV.

Figure C.1: Comparisons between data and MC for each event type in the sideband.
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(d) |~psigh |. Similar comments to those for Eeextra apply.
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Figure C.1: Comparisons between data and MC for each event type in the sideband (Cont.).
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Figure C.1: Comparisons between data and MC for each event type in the sideband (Cont.).
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Figure C.1: Comparisons between data and MC for each event type in the sideband (Cont.).
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Figure C.1: Comparisons between data and MC for each event type in the sideband (Cont.).
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Figure C.1: Comparisons between data and MC for each event type in the sideband (Cont.).
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