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ABSTRACT 

Theoretical investigations of the dynamic behavior of some impor

tant fluid-structure systems are conducted to seek a better understand

ing of: 1) the hydrodynamic pressures generated in the fluid as a result 

of both the rigid body and the vibrational motions of the structure, and 

2) the effects of the fluid on the dynamic properties of the structure 

as well as on its response to earthquake ground motions. 

Explicit formulas are presented for the hydrodynamic pressures 

generated in fluid domains having boundaries which can be approximated 

by simple geometries. Such domains may be reservoirs behind dams, or 

around intake towers, water around bridge piers or liquids stored in 

circular cy!'indrical tanks. The formulas are used to calculate the 

hydrodynamic pressures analytically and the results are exhibited in a 

form showing the pressure dependence on the various parameters of the 

problem. 

The fluid~structure interaction problems of long straight walls, 

having uniform rectangular sections, and long straight gravity dams, 

having uniform triangular sections, are investigated. The natural fre

quencies of vibration and the associated mode shapes are found in the · 

former case, through a fully analytical approach for both the structure 

and the fluid domains, and in the latter, by discretizing the dam into 

finite elements and treating the reservoir as a continuum by boundary 

solution techniques. A method is presented for computing the earthquake 
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response of both structures, based on superposition of their free vibra

tional modes. 

The problems of limited length dam or wall-reservoir systems are 

investigated. The natural frequencies of the structure and the 

corresponding mode shapes are found by the Rayleigh-Ritz method. This 

method is also used to obtain the frequency domain response of the 

structure to all three components of the ground motion. The validity of 

the two dimensional approximation, often made in the analysis of gravity 

dams, and the effect of the length to height ratio on the dynamic 

properties and response of the structure are studied. 

Time domain responses to arbitrary earthquake ground motions are 

evaluated by superposing the frequency domain responses, to individual 

Fourier components of the excitation, through the Fourier Integral. For 

efficiency of computation, a fast Fourier analysis is used for both the 

forward transform of the ground excitation and the inverse transform of 

the Fourier Integral. 
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CHAPTER I 

IN1RODUCTION 

1.1. Dynamic Analyses of Fluid-Structure Systems 

The possible failure of dams retaining large quantities of water 

presents a hazard for life and property during earthquakes. In addi

tion, the structural damage to the dams themselves may pose a consider

able economic loss. The safety of other important structures, such as 

intake towers and liquid storage tanks, is also of importance. This has 

focused considerable attention on the dynamic analyses of these fluid

structure systems. 

During an earthquake, the shaking of the ground imparts movement to 

structures which in turn stresses the structural elements. When the 

structure is in contact with a volume of fluid, it experiences addi

tional forces from the fluid. The horizontal motion of the ground does 

not impart significant movement to the fluid so the structure must move 

bodily toward and away from the fluid thus experiencing dynamic fluid 

pressures. The structure may also experience additional pressures 

resulting from modifications to its deformational motion. In general, 

fluid interaction can have a significant effect on the dynamic 

properties of a structure as well as on its response to earthquake 

ground motion. 

Until recently, most work on fluid-structure systems has been 

concerned with two uncoupled problems: 1) the hydrodynamic pressures on 

a structure, assuming it to be rigid, and 2) the response of the 



- 2 -

structure, assuming it to be flexible, to the combined action of its 

internal inertia forces and the pressures as found from problem (1). 

Thus, the earthquake response of those systems was usually obtained by 

first assuming the structure to be rigid and finding the pressures 

generated by its rigid motion, then assuming it to be flexible, applying 

those pressures together with the inertia forces to it and calculating 

its dynamic response. But the problem is more complex than this. For 

example, consider a dam-reservoir system. During an earthquake, both 

the rigid body and the vibrational motions of the dam generate 

hydrodynamic pressures in the reservoir and the deformations of the dam 

are in turn affected by those pressures which act on its upstream face. 

Thus this is a closed cycle of action and reaction, and to adequately 

represent this cycle, the formulation of the problem must include the 

fluid-structure interaction. 

To simplify the approach to the complete problem, the fluid

structure system is sub~ivided into two subsystems, namely the structure 

domain and the fluid domain. By doing this, it is possible to deal with 

two separate problems: 1) the response of the structure to known 

loadings, and 2) the pressures generated in the fluid domain due to 

known motions of its boundaries. The final step is to couple the solu

tions of those two problems along the interface boundary. 

The problem of the structure response to known loadings is fully 

understood and any difficulty arising from the geometry of the structure 

could be overcome by using the finite element method. 
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Regarding the second problem. the fluid is usually found bounded by 

irregular boundaries. If the fluid domain is finite, the finite element 

method can be used. However, this is a relatively expensive approach. 

If the fluid domain is infinite, a finite element treatment will not be 

satisfactory unless some sort of non-reflecting boundary is 

incorporated. On the other hand, an analytical solution for the fluid 

domain is generally possible only if its boundaries can be approximated 

as having simple geometries. The second approach is computationally 

advantageous over the first. In addition, the explicit expressions 

obtained for the hydrodynamic pressures can be easily studied to throw 

light on the nature of these earthquake generated loads. which in turn 

should help engineers achieve better design analyses of the structures. 

1.2. Outline of the Present Study 

The present study develops methods to analyze the dynamic behavior 

of fluid-structure systems. The study is carried out in three phases: 

1) an extensive analysis· of the hydrodynamic pressures generated in some 

simplified fluid domains, 2) a detailed theoretical treatment of long 

gravity dam-reservoir systems, and 3) a detailed analysis of short dam 

or wall-reservoir systems. 

A necessary first phase is to understand the nature of earthquake 

generated hydrodynamic pressures. A detailed collection of existing and 

developed formulas for pressures generated in simplified fluid domains 

is presented. Emphasis is placed on the case of reservoirs behind 

gravity dams. The formulas obtained are used to calculate the 



- 4 -

hydrodynamic pressures for selected numerical values of the different 

parameters involved in the problem. These parameters are: 1) the 

specified motion of the dam, 2) the frequency of vibration, 3) the dam 

dimensions, and 4) the water compressibility. The results are exhibited 

in a form that shows the pressure dependence on these various parame-

ters. 

The second phase of study is devoted to the analysis of a 

simplified problem; namely, that of a wall or dam-reservoir system. The 

problem is reduced to one in two dimensions by assuming the structure to 

be long compared to its height. Under the assumption of incompressible 

water, the natural frequencies of vibration and associated mode shapes 

are found, and the effect of the reservoir on their values is 

investigated·. The structure is modeled by three different theories: 1) 

pure shear theory. 2) Bernoulli-Euler bending theory, and 3) Timoshenko 

shear-bending theory. The structure is treated analytically in case of 

a rectangular section wall, while discretized into finite elements in 

case of'a triangular section gravity dam. In both cases, the water in 

the reservoir is treated as a continuum and the expressions obtained in 

phase one are used. In each case, a method is presented to compute the 

earthquake response of the structure, based on superposition of its free 

vibrational modes. 

The third phase of this study focuses on the effect of the length 

to height ratio on the dynamic behavior of limited length wall-reservoir 

systems. The wall is modeled first by a shear plate theory and then by 

a bending plate theory. Neglecting water compressibility, the natural 
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frequencies and mode shapes are found using the Rayleigh-Ritz method. 

The effect of the length to height ratio on the dynamic properties is 

studied. The Rayleigh-Ritz method is used again to obtain frequency 

domain responses to harmonic ground motions. The effects of the pres

ence of the reservoir, the water compressibility and the fluid-structure 

interaction on those responses are illustrated. The frequency domain 

responses are used to evaluate time domain responses to arbitrary 

earthquake ground motions through the use of the Fourier Integral. The 

efficiency of computation is increased by using a fast Fourier analysis 

for both the forward transform of the ground excitation and the inverse 

transform of the Fourier Integral. 

1.3. Organization 

This thesis is divided into six chapters. Chapter I has the 

introduction. Chapters II, III and IV correspond to the three phases of 

the study, while Chapter V includes numerical examples of time domain 

responses to some existing earthquake ground motions. The summary and 

conclusions are given in Chapter VI. Each chapter is further divided 

into several sections and subsections. Each chapter, and many of the 

sections, has an individual introduction which gives a brief account of 

the historical development of the particular subject under investiga

tion. Each chapter is written in a self-contained manner, and may be 

read more or less independently of the others. The letter symbols are 

defined where they are first introduced in the text and they are also 
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summarized in alphabetical order in the "NOTATION" section. Many 

references have been included so that the reader may obtain a more 

complete discussion of the various phases of the total subject. 
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CHAYfER II 

HYDRODYNAMIC PR~SURES ON VIBRATING STRUCTURES 

A necessary first step in analyzing the seismic response of fluid

structure systems is the knowledge of the hydrodynamic pressures 

generated in the fluid domain due to motions of its boundaries. 

In real life systems, the fluid domains usually have irregular 

boundaries of complicated geometries. Although possible, a finite ele

ment treatment of finite fluid domains is relatively expensive because 

of the large number of elements required. The use of the finite element 

method for domains of infinite extent requires special techniques. A 

different approach is sought in which the fluid domain is assumed to 

have regular boundaries of simplified geometries. In many cases, this 

approximation is acceptable and may be shown not to introduce consider

able errors. This assumption enables the treatment of the fluid domain 

as a continuum and an analytical solution of the problem may be 

obtained. This approach has the advantage of drastically reducing the 

cost of computing. In addition, the explicit expressions derived for 

the hydrodynamic pressure can be easily studied to throw light on the 

behavior of these earthquake generated loads. 

The purpose of this chapter is to establish the basic equations 

which govern the dynamic pressure generated in the fluid and to develop 

analytical solutions to these equations for some simplified fluid 

domains . 
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In the first section, the fundamental assumptions regarding the 

fluid are stated, the equations governing the hydrodynamic pressure are 

given, and general solutions to those equations are presented. In each 

of the subsequent sections, the general solution for the pressure is 

specialized for a particular fluid domain. Each section starts with a 

brief introduction which gives a historical background about the 

subject. This is followed by a discussion of the assumptions made about 

the domain boundaries. Next, the formulas for the pressures generated 

by specific motions of the boundaries are presented. Finally, each 

section ends with detailed numerical examples illustrating the pressure 

dependence on the various parameters. In addition, solutions for the 

pressures generated in some other simplified fluid domains are listed in 

the "Appendi,xn section at the end of the chapter. 

2.1. Gov~ing Equations and General Solutions 

This section contains the basic equations which govern the 

hydrodynamic pressure, a'nd their general solutions. 

2.1.1. Fundamental Assumptions 

In a consideration of the different factors affecting the motion of 

the fluid, the following conventional assumptions are made: 

i) The fluid is homogeneous, inviscid and linearly compressible. 

ii) The flow field is irrotational. 

iii) No sources, sinks or cavities are anywhere in the flow field. 

iv) The displacements and their spatial derivatives are small. 
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2.1.2. Governing Equations 

According to the assumptions made about the fluid, the hydrodynamic 

pressure p(x,y,z,t), in excess of the hydrostatic pressure, is governed 

by: 

= 
(2.1) 

where 

= 
(2.2) 

is the three dimensional Laplace operator in cartesian coordinates 

c = "Vk/pR, is the velocity of sound in the fluid, k is the bulk 

modulus of elasticity of the fluid, and pR, its mass density. Equation 

2.1 is the three dimensional wave equation governing the hydrodynamic 

pressure in a linearly compressible fluid. 

If the fluid is assumed to be incompressible, one should regard k, 

and hence c, as infinite. This will change Eq. 2.1 into: 

= 0 (2.3) 

which is the three dimensional Laplace equation governing the 

hydrodynamic pressure in an incompressible fluid. 

2.1.3. General Solutions 

The solution p(x,y,z,t) of the wave equation, Eq. 2.1, can be 

obtained by the method of separation of variables. Thus a solution is 

sought of the form: 
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p(x,y, z,t) = X(x) • Y(y) • Z(z) • T(t) (2 .4) 

Two possible solutions of the wave equation can be stated as follows: 

p(x,y,z,t) = [cl exp (&x) + c2 exp (-&x) 1 

. 
[c3 sin (~y) + C4 (~y)] cos 

. 
[cs sin ( T\ z) + c6 cos (T\Z)] 

. 
cc, ( i't' t) + c8 exp (-i't't)] exp (2.S) 

in which 

and = 2 2 2 
(~ + T\ ) - ('t'/c) 

or 

p(x,y,z,t) = Cc1 exp ( i&x) + c2 exp (-i&x)] 

• Cc 3 sin (~y) + c4 cos (~y)] 

• [cs sin (T\z) + c6 cos (T\z)] 

• [ c 
7 

exp ( i 't' t ) + c 8 exp ( - i 't' t ) ] 
(2.6) 

in which 

and = 2 2 2 ('t'/c) - (~ + T\ ). 

In the above equations, the c . 's and c.'s are constant coeffi-
1 1 

cients, &,&,~.T\ and 't' are separation constants. 

The general solution of the Laplace equation, Eq. 2.3, can be 

obtained directly from the solutions of the wave equation, given above, 
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by letting c ~ ~. In this case. we have only the form given by 

Eq. 2.5. with & replaced byµ, where µ2 
= ~2 + ~2 • and the time 

dependent function T(t) is unspecified. Thus: 

p(x,y,z,t) = Cc 1 exp (µx) + c2 exp (-µx)] 

• Cc 3 sin (~y) + c4 cos (~y)] 

• Cc 5 sin (~z) + c6 cos (~z)] • T(t) 

2.2. Infinitely Long Gravity Dams or Walls 

(2.7) 

H.M. Westergaard [1] was the first to analyze the hydrodynamic 

pressures generated in reservoirs behind concrete gravity dams. He 

obtained a solution for the pressure resulting from a harmonic horizon

tal ground motion. It is based on the following assumptions: 1) the 

reservoir is of constant depth and of infinite extent in the upstream 

direction, 2) the effect of waves at the free surface is negligible, 

3) the water is linearly compressible, and 4) the dam is rigid, 

infinitely long, and has a vertical upstream face. The validity of 

those assumptions has been studied by many investigators and only a 

brief discussion is given here. 

For reservoirs of finite extent, H.A. Brahtz and C.H. Heilbron [2] 

showed that the effect of length is negligible (the pressure increase is 

less than 5% as compared to the infinite reservoir case) when the length 

to depth ratio is greater than two, in the case of a reservoir of fixed 

far end, and when this ratio is greater than three, in the case where 

the far end is moving with the ground. These conclusions were supported 

by the experimental results of L.M. Hoskins and L.S. Jacobsen [3]. The 
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effect of reservoir length was also investigated by J.I. Bustamante 

et al. [4], but for a wider range of frequencies of excitation. The 

conclusion was that the length may be of some importance only in the 

case of high dams. Thus, the assumption of an infinite reservoir is 

reasonable, especially since actual reservoirs usually extend to large 

distances. 

The assumption of a constant depth reservoir also seems reasonable 

since most reservoir bottoms are of small slopes, particularly over a 

distance, just upstream the dam, extending at least few times the dam 

height. 

J.I. Bustamante et al. [4] give estimates for the error introduced 

by ignoring the surface waves, as a function of the reservoir depth and 

the frequency of excitation. Based on this work, one concludes that the 

effect of those waves can be neglected with little loss of accuracy. 

Although H.M. Westergaard [1] included the compressibility of water 

in his study, S. Kotsubo [5] showed that this solution is valid only for 

frequen~ies of excitation less than the fundamental natural frequency of 

the reservoir. J.I.Bustamante et al. [4] and A.K. Chopra [6] studied 

the effect of water compressibility, the former in case of harmonic 

ground motion, the latter in case of earthquake ground motion. They 

showed that the solution becomes independent of the excitation frequency 

when compressibility is neglected, and the resulting errors in the time 

history of the total force acting on the dam may be significant except 

possibly for reservoirs of depth 100 ft or less. 
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In practice. gravity dams have upstream faces which are almost 

vertical over the full height or over the major part of it. Based on 

the works of C.N. Zangar [7] and A.T. Chwang [8]. the pressure distribu

tion for a dam with a vertical upstream face is only slightly different 

from that of a dam with very steeply sloping face (0 to s0 off verti

cal). Thus. assuming the upstream face to be vertical is a very accept

able assumption. 

Earthquake loads cause even the most rigid structures to deform. 

When the structure is a dam. additional hydrodynamic pressures are 

generated as a result of this deformation. This was first accounted for 

by H.A. Brahtz and C.H. Heilbron [2]. They assumed the deformation 

shape of the upstream face of the dam to be a straight line and 

calculated t~e excess in pressure due to this deformation. The ground 

motion was harmonic with frequency less than the fundamental frequency 

of the reservoir. Similar results were obtained by J.I. Bustamante et 

al. [4], for a wider frequency range and for both a linear and a 

parabolic deformation shape. A.K.Chopra [9] took the deformation shape 

to be the fundamental mode shape as determined by the finite element 

method and computed those additional pressures in the case of earthquake 

ground motion. 

The discussion of the assumption that the dam is infinitely long 

will be deferred to the next section. in which the pressure for the case 

of limited length dams is investigated. 
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Under the same assumptions made by H.M. Westergaard [1], except 

that the effect of surface waves is included, A.K.Chopra [6] gave formu-

las for the pressure generated by vertical ground motion, both harmonic 

and earthquake. He showed that, as in the case of horizontal excita-

tion, the wave motion at the free surface may be neglected without 

introducing significant errors. 

In the following, solutions for the pressures generated in 

reservoirs behind infinitely long gravity dams are given for three types 

of motions at the reservoir boundaries: 1) vibrational motion of the 

dam, 2) longitudinal ground motion (normal to the dam), and 3) vertical 

ground motion. In each case, the boundary conditions are first stated, 

and then the corresponding expression for the pressure is given and 

briefly discussed. 

2.2.1. Geometry of the Problem 

An xyz cartesian coordinate system is chosen such that the xy-plane 

is horizontal, coinciding with the bottom of the reservoir, and the 

yz-plan~ is vertical, coinciding with the undeflected upstream face of 

the dam. The x-axis points into the reservoir, the y-axis runs along 

the heel of the dam, while the z-axis points upward, as shown in 

Fig. 2.1. 

The water in the reservoir occupies the domain D where 

D = { ( x, y, z) I 0 s x < Q), -a> < y < Q), 0 s z s Ht } 

Ht is the constant depth of the reservoir. 
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By assuming the dam to be infinitely long in the y-direction, the 

problem becomes one in two dimensions in which the pressure is 

independent of they-coordinate, i.e. p = p(x,z,t). 

2.2.2. Vibrational Motion 

In this case, the dam is assumed to vibrate harmonically such that 

the deformation of its upstream face, u(z,t), is given by: 

u(z,t) = A • T(~)· exp (iwt) (2.8) 

where A is the maximum amplitude of vibration, T(i) is a given function 

of z such that If Cl) = 1, H is the dam height, i = Fi and w is the 

circular frequency of vibration (see Fig. 2.2). 

The boundary conditions are as follows: 

i) the pressure is bounded as x ~ =, and only waves travelling 

away from the dam can exist, i.e., 

p(=,z,t) < = (2.9) 

ii~ the effect of waves at the free surface of the reservoir 

( z = Ht) is neglected, i.e., 

p(x,Ht 1 t) = 0 

iii) the vertical motion of the water at the bottom of the 

reservoir (z = 0) vanishes, i.e., 

(2.10) 

(2.11) 

iv) the horizontal motion of the water at the upstream face of 

the dam (x = 0) is the same as the deformation of the face, 

i • e • I 
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(2 .12) 

Applying these boundary conditions to the general solutions given 

in Eqs. 2.5 and 2.6, one obtains the following expression for the 

hydrodynamic pressure: 

where 

= 

p(x,z,t) = -2pt HtA w 
2 exp 

{ vi 1mo . . [ -1 

m=l &mO 

~ = 
(2~1)7t 

2 

(iwt) 

. ( ·& x )· ( z) exp -1 mO Ht cos ~ H,e, 

m = 1,2 ,3, ••• 

&mO = Ht~ (w/c)2 - (11m/Ht)2 

&mO = Ht~ <11m/Ht)2 - (w/c)2 

m = 1,2, ••• ,~-1 

m=nu·~+l, ••• 

smallest m for which (11m/Bt) > (w/c) 

m = 1,2 ,3, ••• 

(2.13) 

(2.14) 

} (2.15) 

(2.16) 

Examination of Eq. 2.13 yields: 

i) The hydrodynamic pressure becomes unbounded as the excitation 

frequency approaches a value that makes &mO or &mO vanish. 

These particular values define the natural frequencies of the 

reservoir, and are given by: 
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= 
(2i-1) 1LC 

2 H.e, 
i = 1.2.3 •••• (2.17) 

The fundamental natural frequency of a reservoir of 

depth Ht is then given by: 

= (2.18) 

ii) When the excitation frequency is less than the fundamental 

frequency of the reservoir. ~ takes the value 1, and the 

first series in Eq. 2.13 vanishes. r 
When w is larger than w1• 

~ will be larger than 1, and both series will be present. 

iii) The first series represents a part of the pressure which, for 

a fixed time, is oscillatory and non-decaying in the 

x~direction. The second series represents a non-oscillatory 

decaying part. 

iv) The first part of the pressure is a wave travelling in the 

positive x-direction, while the second is a standing wave. 

v) The second part of the pressure is in-phase with the excita-

tion, while the first has, in general, an in-phase and an 

out-of-phase component. 

If the water is assumed to be incompressible, a solution for the 

pressure can be obtained without requiring the motion of the dam to be 

harmonic in time as given in Eq. 2.8. In this case, the boundary condi-

tions, Eqs. 2.9 - 2.12, together with the general solution, Eq. 2.7. 

leads to: 
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p(x,z,t) = 2 p J f. JmO • exp(-11 Hx )· cos(~ Hz)) 
R, l DFl ~ m R, R_ (2 .19) 

where 

Jn> = °t u(z,t) • cos('\. Bz1,) dz ; m 1,2 ,3, ••• 
(2 .20) 

In particular, for harmonic motion as given in Eq. 2.8, Eq. 2.19 

becomes: 

p(x,z,t) = -2 p HnA w
2 J [ Imo • e~pf-11 Hx )· cos(~; ))exp (iwt) 

R, 7v l DFl ~ \ m R, £ (2 .21) 

The above equation is clearly the limit, as c -7 =, of Eq. 2.13. 

Examination of Eq. 2.21 yields: 

i) For a fixed amplitude of crest acceleration, the pressure is 

independent of the frequency of excitation. 

ii) There is no resonance in the reservoir at any frequency. 

iii) For a fixed time, the pressure is non-oscillatory and 

decaying in the positive x-direction. 

iv) The generated pressure is in-phase with the excitation. 

2.2.3. Long.!!udinal Ground Mption 

In this case, the dam is assumed to be rigid. A harmonic ground 

motion u (t), along the x-axis, is applied to the dam base, such that: 
g 

u (t) = u • exp (iwt) 
g g 

where u is the amplitude of motion, as shown in Fig. 2.3. 
g 

(2.22) 
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The boundary conditions will be the same as those of the previous 

case, except that the one given by Eq. 2.12 is replaced by: 

The solution will be a 

replaced by u and 'f(i);;; 1. g 

p (x,z,t) -2 pt Ht u8 
2 

= (I) 
gx 

+ 

= u (t) 
g 

special case of Eq. 2.13, in which 

The pressure will be given by: 

exp ( iwt) 

• ( .;- x )· (, z ) exp -1umO Ht cos\~m Ht 

(2.23} 

A is 

(2 .24) 

where p is' the hydrodynamic pressure generated by a ground motion in gx 

the x-direction. 

For incompressible water, u(z,t) in Eq. 2.20 is replaced by u (t}, 
g 

which reduces Eq. 2.19 to: 

= Hx ) • cos f Tl,, 8z ) l 
t \ (2 ~25) 

For a harmonic motion, as given by Eq. 2.22, the above equation becomes: 
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(2.26) 

which is the limit of Eq. 2.24 as c ~ ~. 

the conclusions given in page 17. in case of compressible water, 

and those given in page 19 for incompressible water. are also applicable 

here. 

2.2.4. Vertical Ground Motion 

In this case. a harmonic vertical ground motion w (t) is applied to 
g 

the base of the rigid dam. as well as to the reservoir bottom. such that 

w (t) = w • exp (iwt) 
g g 

where w is the amplitude of motion. as shown in Fig. 2.4. 
g 

The problem in this case is further independent of the 

x-coordinate, i.e •• p = p(z.t). The boundary conditions are: 

p(II~,-t) = 0 

= w (t) 
g 

(2.27) 

(2 .28) 

(2.29) 

Applying those two conditions to the general solution. one obtains: 

Pgz(z.t) = -p H w 
l l g 

2{sin [ ! Hi(1 - i;)]} 
w exp 

.!!! H • cos(.!!! H ) c l c l 

(iwt) 

(2.30) 

where p is the hydrodynamic pressure generated by a ground motion in gz 

the z-direction. 
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Examination of Eq. 2.30 yields: 

i) The hydrodynamic pressure becomes unbounded as w approaches a 

value that make cos (: HR,)=o. These values are given by: 

.!!! H 
c R, 

= (2i-l)TC 
2 , i = 1,2,3, ••• which are the same natural 

frequencies of the reservoir given by Eq. 2.17. 

ii) Since the pressure is independent of the x-coordinate, then 

for a fixed time, it is non-oscillatory and non-decaying. 

iii) Depending on the sign of the denominator, which depends on 

the value of w, the pressure may be in-phase or in opposite-

phase with the excitation. 

For incompressible water, the governing equation for the pressure 

will be a special case of Eq. 2.3, and is given by: 

= 0 
(2 .31) 

which has a general solntion of the form: 

p(z,t) = (2.32) 

where c5 and c6 are constant coefficients to be determined. The above 

equation, together with the boundary conditions, Eqs. 2.28 and 2.29, 

leads to: 

(2.33) 

For a harmonic motion as given by Eq. 2.27, Eq. 2.33 becomes: 
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pgz(z,t) = 

which again is obtainable from Eq. 2.30 by letting c go tom 

Examination of Eq. 2.34 reveals that: 

(2 .34) 

i) For a fixed amplitude of ground motion, the generated pres-

sure is frequency independent. 

ii) No resonance of pressure occurs. 

iii) For a fixed time, the pressure is non-oscillatory and non

decaying. 

iv) The pressure is in-phase or in opposite-phase with the exci

tation. 

v) The pressure distribution on the face of the dam is linear. 

2.2.5. Numerical Examples 

The hydrodynamic pressure, as given by Eq. 2.13 (or Eq. 2.24), 

depends on several parameters. Excluding the density pi and the bulk 

modulus of elasticity k of the water, which are rather constant, these 

parameters are: 

i) The depth of the reservoir, Hi. 

ii) The maximum amplitude of dam acceleration, Afil2. 

iii) The excitation frequency, (I). 

iv) The prescribed vibrational shape, 'f(~). 
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The hydrodynamic pressure. when normalized by the maximum 

hydrostatic pressure p = p g H • where g is the acceleration of 
s i ~ 

gravity. turns out to be independent of Hi• Equation 2.13 (or Eq. 2.24) 

also shows it directly proportional to the amplitude of crest accelera-

ti on. 

The dependence on the fourth parameter is studied by determining 

the distribution of the normalized hydrodynamic pressure, acting on the 

upstream face of the dam, which results from different prescribed vibra-

tional shapes. Equation 2.24 is used for the case of rigid motion, 

while Eq. 2.13 is used with the following prescribed vibrational shapes: 

1) 'P(i) = sin('lj i) j = 1.2 
} (2 .35) 

where ~2j-12n 
'lj = 2 

2) 'P(i) = Aj(i)I A. (1) ; j = 1.2 

l J 

where 

in which y. are roots of: 
J (2.36) 

and 

sin (y.) + sinh (y.) 
d. = 

J cos 
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It is observed that these shapes are nothing but the free lateral vibra-

tional shapes of a cantilever shear beam, and a cantilever bending beam, 

re spe cti vely. 

Taking the unit weight of water ptg = 62.4 pcf, its bulk modulus 

k = 3 X 105 psi, and Aw2 = g, the pressures generated in the reservoir, 

when the dam is assumed to move rigidly or to deform according to the 

prescribed shapes given by Eqs. 2.35 and 2.36, are calculated for two 

values of the normalized forcing frequency of vibration;= w/w~. The 

results are normalized by the maximum hydrostatic pressure p and 
s 

plotted in Figs. 2.5 and 2.6, when j in Eqs. 2.35 and 2.36 is 1 and 2, 

respectively. For w = 0.7 < 1.0, the pressure is in-phase with the 

excitation, while for w = 1.5 > 1.0, it has an in-phase (real, dashed 

line) and an out-of-phase (imaginary, solid line) component. In the 

latter case, the absolute pressure is also plotted (dotted line). 

The dependence on the excitation frequency is better shown by 

calculating the total hydrodynamic force acting on the dam, 

H r p ( 0 , z, t ) dz = 

for a wide range of frequency. Figure 2.7 shows the real and imaginary 

components of the hydrodynamic force, normalized by the total 

hydrostatic force p = 1/2 p,t g 
2 function of w, for the of H,t , as a case s 

a rigid motion. The absolute value of the normalized force is shown in 

Fig. 2.8 for the rigid motion as well as for the first mode of both the 

shear and bending deformations. 
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The compressibility of water was taken into consideration in all 

the previous calculations. Neglecting water compressibility, Eq. 2.25 

is used to compute the pressures resulting from a rigid motion, and the 

absolute normalized force is plotted in Fig. 2.9 as a horizontal dashed 

line, indicating the pressure independence of the forcing frequency. 

The force, for compressible water, is given by a solid line, and a 

comparison reveals the error committed by neglecting water 

compressibility. 

2.3. Limited Length Gravity Dams or Walls 

In analyzing the hydrodynamic pressure generated in reservoirs 

behind gravity dams, most work to date has considered the dam to be 

infinitely long, an assumption which simplifies the problem to one in 

two dimensions. This would be expected to be satisfactory for dams of 

length B, relatively large as compared to the height H. Judgment and 

intuition would indicate that a two dimensional solution would err 

considerably for a system with relatively small B/H. This conclusion is 

supported by the results of a vibration experiment done by 

A. Selby and R.T. Severn [10] on a wall of B/H = 2, storing a body of 

water. A quick review of the existing gravity dams in the United 

States, as given by T.W. Mermel [11], reveals that a considerable number 

have small B/H ratio. Thus, it is important to develop solutions for 

the pressure in those cases so that the significance of the B/H ratio 

could be evaluated. 
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In the following, a reservoir of width B is considered and expres-

sions for the pressures generated by four different boundary motions are 

developed. Those formulas are next used to evaluate the pressures for 

selected numerical values of the different parameters involved. 

2.3.1. Geometry of the Problem 

In addition to the assumptions made in the previous section, the 

reservoir is assumed to have uniform rectangular cross-section of width 

B, i.e., the banks are vertical, parallel and extend to infinity normal 

to the upstream face of the dam. 

As before, an xyz cartesian coordinates system is chosen such that 

the xy-plane coincides with the horizontal reservoir bottom, the 

yz-plane coincides with the vertical upstream dam face, and the xz-plane 

coincides with the vertical left bank of the reservoir. The x-axis 

points into the reservoir, the y-axis runs along the heel of the dam, 

and the z-axis points upward, as shown in Fig. 2.10. 

The water in the reservoir occupies the domain D, where 

• D = {<x.y,z)I 0 ~ x < m, 0 ~ y ~ B. 0 ~ z ~ nl} 
Unlike the case of infinitely long dams, the problem under 

consideration is a three dimensional one, in which p = p(x,y,z,t). 

2.3.2. Vibrational Motion 

In this case, the dam is assumed to vibrate harmonically such that 

the deformation of its upstream face, u(y,z,t), is given by: 

u(y,z,t) = (2.37) 
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where here '(i·i)is a given function of y and z whose maximum equals 1. 

This is illustrated in Fig. 2.11. 

The boundary conditions are as follows: 

i) the pressure is bounded as x -> m, and only waves travelling 

away from the dam can exist, i.e., 

p(m,y,z,t) < m (2.38) 

ii) the effect of waves at the free surface of the reservoir 

( z = Hi) is neglected, i.e., 

p(x,y,Hi1 t) = 0 

iii) the vertical motion of the water at the bottom of the 

reservoir (z = 0) vanishes, i.e., 

wi(x,y,0,t) = 0 

(2.39) 

(2.40) 

iv) the horizontal transverse motion of the water at the left 

bank of the reservoir (y = 0) vanishes, i.e., 

(2.41) 

v)• the horizontal transverse motion of the water at the right 

bank of the reservoir (y = B) vanishes, i.e., 

vi (x,B, z, t) = 0 (2.42) 

vi) the horizontal longitudinal motion of the water at the 

upstream face of the dam (x = 0) is the same as the motion of 

the face, i.e., 

u~(O,y,z,t) = u(y,z,t) (2.43) 
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Applying these conditions to the general solutions, Eqs. 2.5 and 

2.6, one obtains: 

p(x,y,z,t) = -4 p HA w2 exp (iwt) 
,e. £, 

where 

& mn 

m = n 

~n 

llm 

8 n 

= 

= 

= 

= 

CD CD 

+ [ [ 
n=O UFm 

n 

n 7f ; 

~2m-l}n 
2 

{' i 

•HR,~ (~n/B)2 + 

smallest m, for a 

8
1

~n exp(-omnHx). cos(~n~)· cosfl\n.;)j 
n mn .Q, ' \ .Q, (2 .44) 

n = 0,1,2, ••• 

m =1,2,3, ••• 

(n = 0) 
(n I- 0) 

(~m/H.Q,)2 - (w/c)2 

given n, satisfying: 

m = 1,2, ••• ,m -1 
n 

m = m ,m +1, ••• n n 

(2.45) 

(2.46) 

[ (~n/B)2 + (~m/B.Q,)2 ] > (w/c) 2 

I = 
_1_ °t I '(i•i)• cos~n i)• cos(11,. u:)dy dz 

mn B HR, (2.47) 
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From Eqs. 2.46, it is clear that the natural frequencies of the 

reservoir are given by: 

r 
(I) • • 

lJ 
; i = 0,1, ••. and j = 1,2 •••• (2.48} 

The fundamental frequency of the reservoir, which corresponds to 

i = 0 and j = 1, is then w~ = nc/2Hi, same as that of the two dimen-

sional reservoir. Conclusions, similar to those given on page 17, are 

applicable here. 

For an incompressible fluid, one obtains: 

p(x,y,z,t) 

where 

4p JO) CJ) 

= --t-1~0 b1 
J mn 

In particular, for harmonic motion, Eq. 2.49 becomes: 

2 p(x,y,z,t) = - 4 pi Hi Aw exp (iwt} 

(2.49} 

(2.50} 

(2.51} 
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Again. the same conclusions given on page 19 are applicable here. 

2.3.3. Longitudinal Ground Motion 

Here, the dam is assumed to be rigid, and a harmonic ground motion, 

as given by Eq. 2.22, is applied to its base (see Fig. 2.12). 

The boundary conditions being the same as those of the previous 

case, the solution is obtained from Eq. 2.44 by replacing A by u and 
g 

taking'(~·~)= 1. In this case. Eq. 2.47 yields 

I = mn 

= 

(-l)m+l 

llm 

0 

(n O) 

(n :/: 0) 

l 
J 

(2.53) 

Hence, the expression for the pressure reduces to exactly the one 

given by Eq. 2 .24. 

Similarly for an incompressible fluid, the pressure is given by 

Eq. 2.25. 

2.3.4 •• Transverse Ground Motion 

In this case, a harmonic horizontal transverse ground motion is 

applied to the dam and the reservoir boundaries. The dam is assumed 

rigid and the banks are assumed to move together, with a motion given 

by: 

v (t) 
g = v g • exp Ciwt) 

where v is the amplitude of bank motion, as shown in Fig. 2.13. g 

(2.54) 
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The problem is independent of the x-coordinate, i.e., p p(y,z,t). 

The boundary conditions are: 

p (y,HR,, t) 

wt (y,0,t) 

VR, (0,z,t) 

vR, (B,z,t) 

= 0 

= 0 

= v (t) 
g 

= v (t) 
g 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

where the last two conditions simply state that the transverse water 

motion at the reservoir banks is identical to the motion prescribed to 

the banks. 

An expression for the hydrodynamic pressure can be obtained in the 

form: 

(2 .59) 

where all variables are as defined before. 
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By examining the above equation, it is concluded that: 

i) The hydrodynamic pressure remains bounded as the excitation 

frequency approaches a natural frequency of the reservoir, as 

defined in Eq. 2.48, with i = O. This is true because the 

expression has a limiting value as &mo or &mO -1 co. In 

particular, the following limits exist: 

lim 

and (2.60) 

lim sinh [ &m0(f-y)/ Ht ] 

5m0 -1 ° 5m0 
ii) The pressure, however, becomes infinite as w approaches a 

value which makes cos (B &mO I 2 Ht), in the denominator of 

the first ser.ies, vanish. Those values are found to be: 

; k,m = 1,2 ,3 
(2 .61) 

which are the same ones given by Eq. 2.48, with odd values of 

i. 

iii) The first series vanishes for w < w~. Thus no pressure 

r singularity occurs over the range 0 ~ w ~ w1 • 
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iv) The pressure is either in-phase or in opposite-phase with the 

exci ta ti on. 

For an incompressible fluid, the solution is obtained as the limit 

of Eq. 2.59 as c -> m, and is given by: 

p (y,z,t) gy 
2 I m (-1 ) m+l = 2 p H ; w exp ( iwt) • [ -

2
-__..__......._ ___ _ 

t t g DFl 'lm cosh (BTtm/ 2 Hi) 

and it is clear that resonance does not occur in this case. 

(2.62) 

The problem in case of transverse ground motion is equivalent to 

that of an infinitely long rigid dam, with finite length reservoir, 

subject to longitudinal ground motion. The solution was given by 

P.W. Werner and K. J. Sundquist [12] for compressible fluids, and by 

L.M. Hoskins and L.S. Jacobsen [3] for incompressible fluids. 

2.3.S. Vertical Ground Motion 

Al~hough this case has a three dimensional geometry, the pressure 

turns out to be independent of the x and y coordinates. The problem 

reduces exactly to the one given in section 2.2.4. The solution for the 

hydrodynamic pressure will be given by Eq. 2.30 for compressible water, 

and by Eq. 2.33 (or Eq. 2.34) for incompressible water. 

2.3.6. Numerical Examples 

In addition to the parameters given in page 24, Eq. 2.44 shows that 

the hydrodynamic pressure is further dependent on the length of the dam 

B. The normalized pressure will in turn be clependent on the ratio B/H. 
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The hydrodynamic pressure acting on the upstream dam face is 

calculated. using Eq. 2.44. for prescribed vibrational shapes: 

'(
y A) - IY)• (A) B•H - yi\B zj H i.j = 1.2 (2.63) 

where 

1) for shear deformations: 

= (2i-l)n 
l\j 2 

} (2.64) 

2) for bending deformations: 

where 

in which a. are roots of: cos (a.)cosh (a . ) = 1 

and c. 
1 

1 1 1 

cos (a.) - cosh (a.) 
1 1 

'· is such that B.C'}f.) is maximum. 
1 1 1 

*Z . (_Hz ) = A. (-Hz ) I A • ( 1) 
J J J 

where Aj(~)is as given in Eqs. 2.36. 

l 

(2.65) 
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These shapes are the first four mode shapes, two symmetric and two 

antisymmetric, of a shear and a bending plate, respectively. 

For a full reservoir and a dam of B/H = 2, the pressure was 

calculated at 121 equidistant points covering the left half of the dam 

face, for lwl2 
= g and w = 0.7. The vibrational shapes and the resulting 

pressures are shown in Figs. 2.14 and 2.15. For each case, the pressure 

values plotted were scaled by their maximum value (shown by a solid 

arrow). These maximas, and their locations (i, ~)· are given in 

Table 2 .1. 

Prescribed 
1st 2nd 3rd I 4th I 

Shape 
Maximum 

0 .381 0.259 0.446 0.280 Shear Pressure 
Deformations I Location (0.5,0.6) (0.2,0.6) (0.5,0.3) (0.2,0.3) 

Maximum 
0.197 0.137 0.273 0.170 Bending Pressure 

Deformations 
. Location (0.5,0.6) (0.25,0.6) (0.5,0.4) (0.25,0.4) 

. 

TABLE 2.1. Maximum Normalized Pressure and its Location 

The pressure distribution was also calculated for dams of B/H 

ranging between 1.0 and 10.0, for the same vibrational shapes given 

before. The absolute maximum pressure acting on the dam as well as the 

maximum pressure at the left bank are given in Tables 2.2 and 2.3 for 

the shear and the bending vibrational shapes, respectively. It is 

noticed that the absolute maximum pressure increases in value as B/H 
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increases. Also, a comparison between the maximum value and the value 

at the bank shows a large variation in the pressure along any horizontal 

plane, as opposed to a constant value for the case of an infinitely long 

dam. This is also clear from Figs. 2.14 and 2.15. 

~ 1.0 2.0 3.0 5.0 10.0 

1st 0.174 0 .197 0.212 0 .229 0 .246 
Absolute 2nd 0.093 0.137 0.165 0 .197 0 .231 
Maximum 3rd 0.243 0 .273 0.295 0.327 0 .359 Pressure 

4th 0.106 0.170 0.213 0.266 0 .329 
Maximum 1st 0 .101 0.088 0 .073 0.048 0.020 
Pressure 2nd 0.052 0.059 0.067 0.067 0.040 
at Left 3rd 0.163 0.137 0.112 0 .073 0.030 

Bank 4th 0 .063 0.092 0.108 0 .104 0 .061 

TABLE 2 .2. Maximum Normalized Pressure (Shear Deformations) 

~I 
I I I I I 

I I 
- 1.0 2.0 3.0 5.0 10 .o 

d . p 

Absolute 
1st 0.174 0 .197 0.212 0.229 0 .246 I 

Maximum 2nd 0.093 0.137 0.165 0 .197 0.231 

Pressure 3rd 0.243 0.273 0.295 0.327 0.359 
4th 0.106 0.170 0.213 0.266 0.329 

Maximum 1st 0 .101 0.088 0 .073 0.048 0 .020 
Pressure 2nd 0.052 0.059 0.067 0.067 0.040 
at Left 3rd 0.163 0.137 0.112 0 .073 0 .030 

Bank 4th 0.063 0.092 0 .108 0 .104 0 .061 

TABLE 2.3. Maximum Normalized Pressure (Bending Deformations) 
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Fig. 2.14 Hydrodynamic Pressure Distribution (Shear Deformation) 
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The effect of B/H is better illustrated in Figs. 2.16 and 2.17, in 

which the distribution of pressure at the mid-span of the dam, is plot

ted for various B/H ratios. This is done for the first and third vibra

tional shapes. in shear (Fig. 2.16), and in bending (Fig. 2.17). 

The absolute value of the total hydrodynamic force, normalized by 

the hydrostatic, acting on the left half of a dam of B/H = 2.0 forced to 

deform according to the first and second of the prescribed shapes 

mentioned before, is plotted in Figs. 2.18a and 2.18b, respectively, as 

a function of the normalized frequency w. The response shown is for a 

shear deformation. The bending case will be similar, but with smaller 

values. 

Although the problem of a limited length gravity dam is three 

dimensional, the hydrodynamic pressure generated by longitudinal and by 

vertical ground motions turns out to be independent of the position 

along the dam length. For transverse ground motions, a case suppressed 

in infinitely long dams ·problem, the generated pressure is maximum at 

the banks and decreases to zero at the middle of the dam. Figure 2.19 

shows the distribution of pressure along the vertical line y = 0, for 

the three components of ground motion for both incompressible and 

compressible water assumptions. The motion is assumed to be harmonic of 

frequency (normalized) w = 0.7. In addition, the absolute total force 

responses are plotted in Fig. 2.20. 
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2.4. Appendix 

In this section, analytical solutions for the hydrodynamic pres-

sures generated in some other simplified fluid domains ·are presented. 

These are: 

i) Liquids stored in circular cylindrical tanks. 

ii) Water around circular cylindrical intake towers or bridge 

piers. 

iii) Reservoirs behind arch dams whose upstream faces are segments 

of circular cylinders. 

In all cases, the assumptions made in section 2.1.1. about the 

fluid are also made here, so that the pressure is governed by the wave 

equation, Eq. 2.1. However, it is convenient to use a cylindrical 

coordinate frame, in which the Laplace operator is given by: 

= L+.L_a_+.L~+L 
ar2 r ar r2 ae2 a z2 (2.66) 

On!y solutions for the case of compressible fluids are presented. 

For incompressible fluids, the solutions can be obtained as limiting 

cases of the first set, by letting the sound velocity c ~ ~. 

In cylindrical coordinates, two possible solutions for the wave 

equation are: 
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• [c3 sin (~e) + c4 cos (~e>] 

· [cs sin (~z) + c6 cos (~z)] 

• [c7 exp (i~t) + cg exp (-i~t)] (2.67) 

2 2 2 2 2 in which ~ > (~/c) , & = ~ - (~/c) , and I~ and K~ are the modified 

Bessel's functions of order~ of the first and second kinds, 

respectively, or 

. ~s sin (~z) + c6 cos (~z)] 

• [c 7 exp (i~t) + cg exp (-i~t)] (2.6g) 

in which ~2 < (~/c) 2 , &2 = (~/c) 2 - ~2 • and J~ and Y~ are the Bessel's 

functions of order ~ of the first and second kinds, respectively. 

Equation 2.6g can be put in a second form as: 



- 57 -

p(r,0,z,t) = [ ;1 
H(l) (or) + c2 H~2 ) C°&r) ] 

f3 

. [ C3 sin c13e> + C4 cos c13e> ] 

. [ C5 sin (11z) + c6 cos (11z) ] 

. [ C7 exp ( i-ct) + c8 exp (-i-ct) ] (2 .69) 

where H~l) and H~2 ) are the Hankel's functions (Bessel's functions of 

the third kind) of order f3 [13]. In the above equations, the c . 's and 
1 

ci's are constant coefficients, &, &, f3, 11• and -c are separation 

constants. 

In the following subsections, these general solutions will be spe-

cialized for particular fluid domains. In all cases, the effect of 

surface waves are neglected. 

2.4.1. Circular Cylindrical Tanks 

The tank geometry a.nd the coordinate system are illustrated in 

Fig. 2.21. 

2.4.1.1. Vibrational Motion 

Let the wall of the flexible tank vibrate according to : 

u(e,z,t) =A cos (n0) • T(i)• exp (iwt) n = 0,1,2, • • • 
(2.70) 
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(r,8,z) 

z 

(a) Sectional Elevation 

(b) Plan View 

Fig. 2.21 Tank Geometry and Coordinate System 
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The solution is then given by: 

p(r,&,z,t) = cos ( n&) • exp ( iwt) 

J' (& n mO 

where m0 , 1\n• 6m0 and Imo are given by Eqs. 2.14 through 2.16. 

2.4.1.2. Horizontal Ground Motion 

Here, the wall of the rigid tank moves according to: 

u(e,z,t) = u <t> cos ce> 
g 

= u cos Ce) exp (iwt) 
g 

The solution is given by Eq. 2.71, with n = 1, T(i)= 1 and A= 

(2.71) 

(2.72) 

u • 
g 

Other versions of the above solutions, as well as solutions for the 

case of incompressible fluid are given in [12,14-16]. 

2.4.2. Circular Cylindr1cal Intake Towers or Bridge Piers 

The geometry and the coordinate system are as those illustrated in 

Fig. 2.21 except that the fluid is now at the outside of the cylinder. 

2.4.2.1. Vibrational Motion 

The deformational motion is given by Eq. 2.70, and the solution for 

the pressure is given by: 



- 60 -

p(r,e.z.t) 2 
= 2 pR.,HR.,Aw cos (n0) •exp (iwt) 

(2) (- r )· (. z) 
H~)l' Hn 6m0 B 1 cos \"m H1 

+ 

2.4.2.2. Horizontal Ground Motion 

For a rigid structure, the motion is given by Eq. 2.72 and the 

(
z -

solution is given by Eq. 2.73 with n = 1, T -)= 1 and A= u H g. 

Other versions of the above solutions, as well as solutions for the 

cases of incompressible fluid are given in [12,15,17-19]. 

2.4.3. Simple Arch Dams 

The geometry and the coordinate system are illustrated in 

Fig. 2 .22. 

2.4.3.1. Vibrational Motion 

Let the radial motion of the upstream face of the dam be: 

u(0,z,t) = A • '(0° . i)• exp (iwt) 
0 (2 . 74) 
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Fig. 2.22 Arch Dam Geometry and Coordinate System 
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The solution is obtained in the form: 

co co 

+ [ [ 
n=O m=m 

n 

I mn 

I mn 
e & 0 n m 

(2. 75) 

where mn, en, ~n and "1m are as defined in Eqs. 2.45, &mO and &mo are 

given by Eqs. 2.15, and I is given by Eq. 2.47 with y and B replaced mn 

bye and eo, respectively. 

2.4.3.2. Longitudinal and Transverse Ground Motions 

In these cases, exact solutions exist only when e 0 
7T 

= 2' and are 

given in [20,21]. 

Finally, for the case of vertical ground motion, the solution turns 

out to be the same for all three fluid domains. It is independent of 

the r and e coordinates and is given by Eq. 2.30. 
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CHAPTER III 

FLUID-S1RUCTURE INTERACTION FOR LONG WALLS OR DAMS 

3.1. Introduction 

During an earthquake, a dam will move bodily into and away from the 

water in the reservoir and in addition the dam will vibrate. Both 

motions will generate hydrodynamic pressures in the water. Those pres

sures will act on the upstream face of the dam and in turn affect its 

deformation. Thus, an interaction between the dam and the reservoir 

exists. This should be included in the formulation of the problem of 

the dynamic response of the dam to earthquake ground motions. 

In the analysis of dam-reservoir systems, investigators initially 

neglected the structural deformations of the dam and assumed it to be 

rigid [1,4-8]. This completely suppresses any interaction effects. The 

hydrodynamic pressure on the rigid dam was obtained and converted into 

an added mass of fluid which is then assumed to move with the dam [1,8]. 

The added mass concept was shown to be valid only when water com

pressibility is neglected [5,6]. 

The first attempt to account for the dam flexibility was made by 

H.A. Brahtz and C.H. Heilbron [2]. Using a linear deflected shape and 

an iterative procedure, they calculated the response of the coupled 

system. J.I. Bustamante et al. [4] prescribed a parabolic deformation 

shape and their solution showed clearly the effects of flexibility on 

the generated pressures. A.K. Chopra [9,22,23] used a parabolic shape 

fitted to the first mode of vibration of the dam with empty reservoir. 
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This approach was generalized by P. Chakrabarti and A.K. Chopra [24-26] 

to include additional mode shapes. W.D.L. Finn and E. Varoglu [27,28] 

provided an analytical solution to the problem when the dam has 

rectangular cross-section. For dams having general cross-sections, 

W.D.L. Finn and E. Varoglu [29] used a finite element formulation for 

the dam only and presented a solution based on their previous analytical 

approach. 

In the analyses mentioned above [9,22-29], the water com

pressibility was included, leading to frequency dependent hydrodynamic 

pressure and dam response. The response to earthquake ground motion is 

obtained by using Fourier analysis techniques requiring the determina

tion of the system transfer function. The latter is obtained by 

calculating the response of the dam to harmonic ground motion over a 

range of excitation frequencies. This requires some computational 

effort. Analyses [9,22-26 ,29] used two dimensional finite elements for 

the triangular cross-section dam, while [27,28] used a bending theory 

for the'rectangular cross-section plate. 

For reservoirs of relatively small depth, the water compressibility 

may be neglected, leading to frequency independent hydrodynamic pres

sure. In the following sections, the problem of long dams of walls 

retaining incompressible water are analysed. Two cases are considered: 

1) rectangular section, and 2) triangular or trapezoidal section. The 

natural frequencies of vibration of the whole system, and the associated 

mode shapes are found by treating the dam analytically in the first 

case, and by finite elements in the second. In both cases, the water is 
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treated analytically by boundary solution techniques. The dam is 

modeled either by a shear dr by a bending theory. When using finite 

element, a shear-bending theory is also used. In each of the two cases 

considered, a method is presented to compute the earthquake response of 

the dam, based on superposition of its free vibrational modes. 

In all previous investigations [14-21], only the case of forced 

vibration was studied. Moreover, the analysis was done in the frequency 

domain, thus being relatively expensive with regard to computer time. 

The main advantage of the present method of analysis over previous 

approaches is that it is carried out in the time domain. This allows 

the study of the free vibration case, the direct outcomes of which are 

the natural frequencies and mode shapes. In addition, the modal 

analysis procedure can be used for the calculation of the structural 

response to earthquake ground motion. Also, for rectangular section 

walls, the analytical analysis is extended to the shear theory model, 

applicable to walls with relatively large thicknesses. The extension to 

a shea~bending model, although a bit complicated, is obtainable in a 

straightforward manner. Finally, the use of one dimensional beam ele

ments, when the dam is modeled by finite elements, reduces considerably 

the number of degrees of freedom as compared to the two dimensional ele

ments used in the previous investigations, thus resulting in substantial 

savings in computing effort. 
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3.2. Rectangular Cross-Section: Analytical Solution 

Let the dam under consideration be assumed to have a rectangular 

cross-section as shown in Fig. 3.1. Since the dam is infinitely long, 

its deformation u(z,t) will be a function of the z-coordinate only and 

time. The assumptions made in Chapter II, regarding the reservoir 

boundaries and the water are also made here, so that the formulas 

obtained there for the hyrodynamic pressure will be used here directly. 

3.2.1. Free Vibration 

Consider first the case in which the dam is assumed to vibrate 

freely with no ground motion applied to its base, see Fig. 3.1. The 

analysis leads to the determination of the natural frequencies of the 

dam-reservoir system, as well as the corresponding mode shapes of vibra

tion. In the following sections, the structural deformations of the dam 

are modeled by two different theories,namely: 1) pure shear theory, and 

2) pure bending theory. 

3.2.1.1. Shear Theory 

According to the assumptions underlying this theory, the dam 

deflection is purely due to shearing deformations, and any bending 

effects are completely neglected in the analysis. 

Although vibrating freely with no ground motion applied to its 

base, the dam will be acted upon by the hydrodynamic pressure generated 

by its deflection. The equation of motion governing the dam vibration 

is given by: 
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2 2 
pd a u(z,t) _ Gd a u(z,t) = -p(z,t) 

at2 az2 
; 

(3.la) 

= 0 
(3.lb) 

where p is the mass density of the dam material, G its shear modulus, d 

is the dam constant thickness, and p(z,t) is the hydrodynamic pressure 

acting on the upstream face of the dam. p(z,t) is obtained from 

Eq. 2.19 by setting x = 0, and is given by: 

p(z,t) = 2p J [ .!_ 
R, lm=1 ~ u(z,t) ·cos (11,,, n:) ·dz] cos (11,,, n:)) 

For free vibration, the dam displacement is expressed as: 

u(z,t) 

(3.2) 

(3.3) 

where '(~) is some nondimensional function of z/H such that ,(1) = 1, 

A is the amplitude of motion of the dam crest, and w is the frequency of 

vibration. 

Substituting Eqs. 3.2 and 3.3 into Eq. 3.1 and rearranging, one 

obtains: 
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'f>"(~) + a2cp(~) - ~ • Q2 { f cos ( 11m~) 
= 

p d DFl llm 

[ l TW cos d~]) -
(Tim~) 0 S ~ .{ H 

= 0 

where the ( , ) denotes differentiation w.r.t. the argument, 

~ = z/H , ~ = z/Ht , H = HR/H , p = p/pt, d = d/H 

(~)2 
-

2 • .....JL.. . -z 
a = (I) 

G/k 

v k/i>t w/(w~)f , 
r 7TC and c w = (wl)f=2H = 

The solution of Eq. 3.4a is given by: 

Q) J.. 
<pl(~) = c1 cos (a~) + c2 sin (a~) + 2 [ (cl am + c2bm) 

_m_ 
1-J.. 

m=l 

where c1 and c2 are constants; 

b 
m 

= (a~) cos (11 ~) d~; 
m 

m 

( 3 .4 a) 

(3.4b) 

and 

(3.5) 

cos (Tl ~) m 

(3 .6a) 

(3.7a) 



and 

J. = 
m 
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2 

"P 'de <11 tii> 2 
- a

2 l <11 tii> m m (3.7b) 

Notice that the solution given in Eq. 3.Sa is not valid when J. = 1 or 
m 

when (11 /H) = a. For those two limiting cases, we have the following 
m 

forms: 

TI<~> 

11. /H=a: 
1 

= 

c
1

[ cos 

CD 

+ 2 [ 
m=l 
m;f i 

CD 

+ 2 [ 
m=l 
~i 

Eq. 3.4b has solution: 

(a~) - (a/bi) sin (a~)] + c2 cos <11.~) 
1 

J. 

cl [a - (a/bi)bm] 
_m_ 

cos ( 11 ~) m 1-J. m m 
( 3 .6b) 

sin sin (a~) 

(3.6c) 

= c1 cos (a~) + c2 sin (a~) (3.8) 
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Thus, for the general case of a reservoir partly filled with water to a 

height Ht < H, the displacement of the dam is given by: 

= 
(3.9) 

This solution has, in general, 4 unknown constants c
1

, c
2

, c
1

, and c
2

• 

Correspondingly, there are 4 conditions to satisfy: 

i) the dam displacement vanishes at z = 0, i.e., 

u ( z, t) I z=O = 0 , ~ 

cpI(O) 0 (3.lOa) 

ii) the shear force vanishes at z = H, i.e., 

Gd au< z, t > I = o ~ 
az z=H ' 

( 3 .lOb) 

iip the displacement at z =HR.is the same when determined from 

either Eq. 3.6 or Eq. 3.8, ~ 

TI <ii> = (3.lOc) 

iv) the shear force at z = HR.is the same when calculated from both 

sides, ~ 

(3.lOd) 

Let us consider a particular case in which the reservoir is 

completely full of water to a height Ht= H. In this case, the vibra

tion of the dam is governed by Eq. 3.4a whose solution is given by 
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Eq. 3.6. However, in these two equations Hand ~ are replaced by 1 and 

~. respectively. Clearly, the solution given by Eq. 3.8, as well as the 

3rd and 4th conditions are suppressed, and we are left with two 

constants c1 and c2 together with the 1st and 2nd boundary conditions, 

Eqs. 3.lOa and 3.lOb. By applying those two conditions, one ends up 

with two linear homogeneous algebraic equations for c1 and c2 , of the 

form: 

where 

+ 

+ 

CX> 

Aii = 1 + 2 \ 
rfF1 

= 

a 
m 

A. __ m_ 

1-A. 
m 

= 0 

0 

CX> 

~1 = -a sin (a) -2 \ (-l)m+l • a 
rfF1 m 

CX> 

= a • cos (a) -2 \ (-l)m+l • b rfF1 m 

} 

'llm 

(3.11) 

A. __ m_ 

1-A. 
m 

-
A.m 

• 11 • 
m 1-A. 

m 

l 
(3.12) 

The coefficients A .. are functions of the frequency of vibrations w. 
lJ 

For nontrivial solution of the system of Eq. 3.11, the determinant of 

coefficients should vanish. This condition provides the frequency 

equation which is solved numerically for the natural frequencies of the 
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dam-reservoir. Once these are found, the associated mode shapes will be 

given by: 

TC~) c1 { cos (a~) + Cc 2/c 1) sin (a~) 

(3.13) 

where the ratio Cc 2/c1) is determined from either of Eqs. 3.11. 

Orthogonality 

Consider two mode shapes,.(~) and,.(~), corresponding to two 
1 J 

distinct natural frequencies wi and wj, respectively. 

that the following orthogonality relation holds: 

where 

and 

a. = 
1 

3.2.1.2. Bending Theory 

= 

= 

= 

0 

a. 
1 

; i~ j 

; i= j 

It could be shown 

(3.14) 

(3.15) 

(3.16) 

Here, the dam deflection is governed by the Bernoulli-Euler 

flexural deformations theory, in which shear distortions are neglected. 
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The transverse vibration of the dam is governed by the following 

differential equation: 

-p(z,t) 
(3.17a) 12(1-\)) 2 

= 0 
(3.17b) 

where p, d and p(z,t) are as defined in the previous section, E is the 

Young's modulus of elasticity of the dam material and\) is its Poisson's 

ratio. 

Using Eqs. 3.2 and 3.3 together with Eq. 3.17 and arranging: 

'''''<~> - a
4 T<~> = ..2..ll. a 4 

p d 

= 0 

cos ( ll ~) m 

where ~ .~ ,H, p and d are as defined before and 

0'4 = 3(~)2 • -::?- . -;;:i 
d E/k 

(3.18a) 

( 3 .18b) 
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a m 

b m 

c m 

d 
m 

= 

= 

= 

A. = 
m 
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l cos (a~) 
. cos ( 11 ~) • d~ 

m 

l sin ( O'~) • cos ( 11 ~) • d~ 
m 

l cosh (a~) • cos ( 11 ~) • d~ 
m ( 3 .19) 

<11 ~) • d~ 
m 

4 

- 4 4 -
p d [ ( 11 I H) - a l ( 11 I H) 

m m 

Now. depending on the value of w (and hence a), the solution of 

Eq. 3.18a is given by one of the following forms: 

a) A. +1 and <11 /H)Fa for all m: m m 

= c1 cos (a~) + c2 sin (a~) + c3 cosh (a~) + c4 sinh (a~) 

a> 

+ 2 ~1 (clam+ c2bm + c3cm + c4dm) • 
A. 

_m_ 
1-A. 

m 
cos <11 ~) 

m 

(3.20a) 



b} i.. .=1: 
_1_ 

,1(~} c1 [cos (CJ~} 
a. 

= ~. 

d. 
1 

+ c2 [sin (CJ~} 

+ c3 [co sh (CJ~} 
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sinh (CJ~} l 
b. 

(CJ~} l .-1 . sinh 
d. 

1 

c . 
• sinh (CJ~} l .-1 

d. 
1 

i.. 
_m_ 
1-i.. 

m 
cos 

(3.20b} 



c) 11./H = a: 
1 
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= c1 cos (a~) + c2 sin (a~) + c3 cosh (a~) + c4 sinh (a~) 

+ cos <11 ~) 
m 

• (clai + c2bi + c3ci + c4di) • 
- 4a ~ • sin (a~) 

1 + 8p d a 
(3.20c) 

where c1 , c2 , c3 and c4 are constants. 

Eq. 3.18b has the following solution: 

= 

where c1 , c2 , c3 and c4 are also constant coefficients. 

Thus, in general, the displacement of the dam will be given by 

Eq. 3 .9 which contains, .in this case, 8 unknown constants. However 

eight conditions must now be satisfied: 

• the displacement and slope vanish at z = o. 

• the bending moment and shear force vanish at z = H 

• the displacement, slope, moment and shear at z = Hi matches 

when either calculate from below or above the water surface. 

Again, if the case of a full reservoir is considered, only the solution 

given by Eq. 3.20 will be present. The eight constants are reduced to 

only four and the boundary conditions left may be stated as follows: 



These conditions lead to a system of four linear homogeneous algebraic 

equations for c1 , c2 , c3 and c4 , which can be put in a matrix form as 

shown in Fig. 3.2. For nontrivial solution, the determinant of the 

coefficients matrix is set equal to zero, which gives the frequency 

equation for the dam-reservoir system. The natural frequencies and the 

corresponding mode shapes are determined as outlined in the previous 

section. These mode shapes satisfy the general orthogonality relation 

given by Eq. 3.14. 

3.2.1.3. Numerical Examples 

In the following examples, the free lateral vibrations of 

dam-reservoir systems are analyzed using the method of analysis 

discussed earlier. The effects of the water in the reservoir on the 

natural.frequencies and mode shapes of the dam are explored. 

Example 1. Shear Theory 

The method of analysis discussed in section 3.2.1.1 is applied to 

determine the natural frequencies of vibration and the associated mode 

shapes of a dam-reservoir system, for two cases: 1) empty reservoir, and 

2) totally full reservoir. The dam is assumed to be made of concrete 

whose properties are: E = S x 10
6 

p.s.i., ~=0.17, G=2 (l~~) 
6 

= 2 .14 x 10 
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p.s.i. and r =pg = 155 p.c.f. The properties of the water are: k = 3 x 

105 p. s. i. and r = pig = 62.4 p.c.f. 
i 

The dam has a rectangular section, with thickness to height ratio, 

d, of 0.4. Since the frequencies obtained are normalized by the funda-

mental frequency of the full reservoir, their values are independent of 

the actual height of the dam. 

The computed natural frequencies, for both the empty and the full 

reservoir cases, are presented in table 3.1. It is clear that the 

frequencies are reduced in value due to the presence of the water. The 

corresponding mode shapes, which are clearly affected by the water, are 

displayed in Fig. 3.3. 

Frequency 1st 2nd 3rd 

Empty Reservoir 1.69 5.13 8.69 

Full Reservoir 1.45 4.46 8.09 

TABLE 3.1. Normalized Natural Frequencies 

Example 2. Bending Theory 

The dam considered in this example has the same proportions and 

properties of concrete as that of the previous example, but the analysis 

of section 3.2.1.2 is used instead. 
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The normalized natural frequencies of the dam, with empty or full 

reservoir, are presented in table 3.2, while the corresponding mode 

shapes are shown in Fig. 3.4. 

I Frequency 1st 2nd 3rd 

I 
I Empty Reservoir 0 .68 4.26 11.92 
I 
I I Full Reservoir 0.61 3.73 11.00 

TABLE 3.2. Normalized Natural Frequencies 

3.2.2. Forced Vibration: Harmonic Ground Motion 

Let us now consider the case in which the dam is forced into motion 

by a ground displacement applied to its base. The dam will move, as a 

rigid body, with the same specified ground motion, and in addition will 

vibrate, as shown in Fig. 3.5. For a harmonic ground motion, the 

analysis leads to the dam response in the frequency domain. This 

clearly shows the dam-reservoir interaction effects on the hydrodynamic 

pressures generated, and on the dam response. Again, two different 

theories modeling the structural deformations of the dam are considered. 

3.2.2.1. Shear Theory 

In addition to the inertia forces resulting from its motion, the 

dam will be acted upon by the hydrodynamic pressures generated by both 
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its rigid plus its deformational motions. The differential equation 

governing the dam vibration is written as: 

Pd 
a2u(z,t) _ Gd a2u(z,t) = 

at2 az2 -pd ug(t) -pg(z,t) - p(z,t) ; 

= -pd u (t) 
g 

0 ~ z ~ HQ 
(3.23a) 

H ~ z ~ H 
Q (3.23b) 

where p, G and d are as defined before, u (t) is the applied ground 
g 

acceleration, and p (z,t) is the hydrodynamic pressure acting on the 
g 

upstream face of the dam, and resulting from the rigid motion. This is 

obtained from Eq. 2.25 by putting x = 0, and is given by: 

= 

(3.24) 

p(z,t) is the pressure resulting from the dam deflection and is given by 

Eq. 3.2. 

Let the ground acceleration be harmonic in time, thus having the 

form: 

u (t) = a • exp (iwt) 
g g (3.25) 

where a is the amplitude of the acceleration and w is the frequency of 
g 

oscillation. 

Since the system is linear and time invariant and the excitation is 

steady-state simple harmonic motion, the response is also steady-state 

simple harmonic motion of the same frequency. Thus, the dam deflection 

response may be expressed as: 
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u(z,t) = A• U(~) •exp (iwt) 
(3.26) 

where A is the amplitude of crest motion, and U(~) is the nondimensional 

deflection shape of the dam. 

Substituting from Eqs. 3.2, 3.24, 3.25 and 3.26 into eq. 3.23, and 

rearranging, yields: 

U"(~) + a 2 U(~) = 
{ 

co cos (l\ ~) 
~ a2 Ji --l\m-"""m __ 

- co 

+~ [ 
p d m=l 

2 
= .a_ 

A 

U(~) • cos (l\ ~) 
m 

0 ~ ~ i H 

(3.27a) 

H ~ ~ i 1 

(3.27b) 

where ~. ~. H, p, d, and a are as defined previously, and A is the 

amplitude of crest acceleration normalized by the amplitude of ground 

acceleqltion, i.e.: 

A = 
2 

(A w ) I a 
g 

Eq. 3.27a has one of the following solutions: 

(3.28) 



a) A. I= 1 and m 

UI(~) = 

b) A.. = 1: 
1 

UI(~) = 

- 87 -

( 11 I H) I= a for all m: 
m 

c1 cos (a~) + c2 sin 

co 

+ 2 
l1 

[ cos (a~) 
a. 

cl 
J. 
b, 

1 

co 

+ 2 [ 
m=l 
~i 

(a~) + 1/ A 

(cl am +c2bm) 

sin (a~) l 
A. 

_m_ 
1-A. 

m 

c) 11i/H=a: 

= c
1 

cos (a~) + c2 sin (a~) 

~ cos ( 11 ~) 1-A. m m 

+ c2 cos <11.~> 
1 

cos ( 11 ~) 
m 

1 4(clai + c2bi) 
+ - - (a~) sin (a~) 

A 1 + 4p da 

co 

+ 2 [ 
m=l 
~i 

(3 .29a) 

+ l/A 

(3.29b) 

(3.29c) 

where c1 , c2 are constants, a, b and A. are as defined by Eq. 3.7. 
m m m 

Eq. 3.27b has the solution: 

= sin (a~) + ! 
A ( 3 .30) 
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Now, the deflection of the dam is given by: 

U( e> = u1 <e> o ~ e .s. H 

} 
(3.31) 

= UII( e> H ~ e .S. 1 

Unlike the case of free vibration, the parameter a is known, since 

the excitation frequency w is prescribed. Thus, the four conditions 

given in Eq. 3.10 will completely determine the four unknown constants 

c 1 , c2 , c1 and c2 • 

For a completely full reservoir, the solution given by Eq. 3.29 

will be valid over 0 ~ e .S. 1, and we are left with only two constants, 

c1 and c2 , to be determined by applying the two conditions, Eqs. 3.lOa 

and 3.lOb. Thus, we end up with two linear inhomogeneous algebraic 

equations of the form: 

) (3.32) 

where ~1 • Ai_ 2 • Azl and Az2 are given by Eqs. 3.12. Once c1 and c2 are 

determined, by solving the system of Eqs. 3.32, the displacement 

response of the dam is obtained by substituting these values in the 

proper equation of Eqs. 3.29. 
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3.2.2.2. Bending Theory 

When the dam deformations are modeled by the bending theory, the 

differential equation for the forced vibration of the dam is written as: 

2 - 3 4 
pd a u(z,t) + E£. a u(z,t) = 

at2 12 az4 

= -pd u (t) 
g 

For harmonic ground motion, the above equations become: 

- ~ [ 1 

- CD {-llm+l 
cos <~i>] +~ [ 0 .s c ~ H 2 

p d m=l ~ 

4 
= SL H .s c ~ 1 

A 

where U(C) is as defined in Eq. 3.26. 

The solutions for these equations is given by: 

;H i C i 1 

O.Sz.SH 
(3.3fa) 

H .S z i H 
Q (3.33b) 

(3.34a) 

( 3 .34b) 

} (3.35) 

Where ' 1 <c> and ' 11 <c> are the solutions of the free vibration problem 

obtained previously, and are given by Eqs. 3.20 and 3.21, respectively. 



- 90 -

Finally for the case of a full reservoir, the remaining four 

constants c1 , c2 • c3 and c4 are determined using the approach outlined 

in the previous section, leading to the complete solution of the dam 

displacement response. 

3.2.2~3. Numerical Examples 

In this section, the dynamic response of dam-reservoir systems to 

harmonic ground excitations is analysed using the approach developed in 

the previous two sections. The effects of the presence of water on the 

frequency domain response of the dam, on the hydrodynamic pressure 

distribution, and on the total force acting on the dam are explored. 

Consider a concrete dam having dimensions and materials properties 

the same as those given in section 3.2.1.3. The dynamic response of the 

dam, to harmonic ground motion, is evaluated for two cases: 1) empty 

reservoir, and 2) totally full reservoir. The crest acceleration, 

normalized by the ground acceleration, is computed for excitation 

frequencies in the range· 0 to 6 times the fundamental full-reservoir 

frequency. The amplitude of this normalized acceleration is given by: 

= 
ag (3.36) 

I where A is given by Eq. 3.28, and U (1) is found from either Eqs. 3.31 

or Eqs. 3.35. 

The calculated response for both the shear and bending theories is 

presented in Fig. 3.6. The effect of the reservoir is shown to shift 

the peaks of the response curve to the left as expected. 
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When normalized with the maximum hydrostatic pressure, the 

hydrodynamic pressure acting on the upstream face of the dam and 

resulting from the combined rigid and vibrational motions, will be of 

the form: 

p(z,t) 

where 

= 
a 

2 _A 
g 

I m 

(-l}m+l 
2 
~ 

A I __ m 

llm 
(iwt) 

(3.37) 

( 3 .3 8) 

Eq. 3.37 is used to calculate the pressure distribution along the dam 

height, for ground motion of amplitude a = lg, and normalized excita
g 

tion frequencies w = 0.7 and 1.5. The results are displayed in 

Fig. 3.7 for both the shear and bending theories. For comparison, the 

pressure due to a rigid motion alone is also presented. It is clear 

that the pressure distribution changes completely when the dam flexibil

ity is included in the analysis. 

Finally, by integrating the pressure over the dam height, one 

obtains the total hydrodynamic force which acts on a unit length of the 

dam. This force, when normalized by the total hydrostatic force, is 

given by: 

P(t) = 4~{f [~-
g DFl 11 

m 

_<-_l_>_m+_:_!_A_· _I=m ] } exp (i~t) 
(3.39) 
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The amplitude of this normalized total force is plotted in Fig. 3.8. 

This can be compared with the force on a rigid dam given by the dotted 

line. 

3.2.3. Response to Earthquake Ground Motion 

The earthquake response of a dam is obtained by solving its 

equation of motion, Eq. 3.23 for a dam modeled by the shear theory or 

Eq. 3.33 when the bending theory is used. In the analysis given below, 

only dams modeled by the shear theory and retaining completely full 

reservoirs are discussed. The analysis, when the bending theory is 

used, is quite similar in nature. i~so, the generalization for the case 

of partly filled reservoir is straightforward. 

Two different analysis procedures are available; these are commonly 

known as the time domain analysis and the frequency domain analysis. 

3.2.3.1. Time Domain Analysis 

The mode superposition method [30,31] is used. This method, appli-

cable only if the response is within the linear range, is generally 

efficient to use with earthquake type excitations because the response 

is essentially given by the first few modes of vibration, the contribu-

tions of the higher modes to the total response being small. 

The first step in the mode superposition analysis procedure is to 

obtain the natural frequencies (w.) of the danrreservoir system and the 
1 

associated mode shapes <T.>. This is done as discussed in section 
1 

3.2.1.1. 
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Next. the dam deformation is expressed as a linear combination of 

the first N modes. as follows: 

u(z.t) 

where u.(t) are the generalized modal coordinates. 
1 

(3.40) 

Substituting into the equation of motion and using the orthogona-

lity condition eventually yields: 

2 
u .(t) + w. u.(t) = 

J J J 
:i • u ( t) 
a. g 

J 

where 

CD 

+ _L [ 
p d m=l 

and a. is as given by Eq. 3.16. 
J 

j = 1.2 •••• ,N 

(-l)mi-l Ij 
mO 

2 
'llm 

Therefore, Eq. 3.23 reduces to N independent differential 

(3.41) 

(3.42) 

equations, Eq. 3.41. Introducing damping into these equations, they may 

be rewritten as: 

• • • 2 
u.(t) + 2~.w. u.(t) + w. u.(t) 

J J J J J J 
= ; j=l ,2, ••• ,N (3.43) 

where~. are the modal dampings and b. = f./a. are the modal participa-
J J J J 

tion factors. 

The generalized coordinates u.(t) can be found by employing either 
J 

the convolution integral or a step-by-step integration scheme. A brief 

description of each method is given below. 
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1) Convolution Integral: 

In this method, one first finds the response to an impulse 

u (t) = &(t), where &(t) is the Dirac delta function. This g 

response is readily obtained [32], Eq. 3.43 being the equation of 

motion of a single degree of freedom system, and has the form: 

u. ( t) 
J 

= _ b. •exp (-~.w.t) • sin(w. ~ 1-'t~ t) 
(I) j ~ 1-t~ J J J J ( 3 • 4 4) 

The response to arbitrary ground motion u (t) can now be 
g 

obtained through the convolution integral: 

u. ( t) = t u. ( t-·r) • u ( i:) • di: 
J ~ J g 

2) Step by Step Integration: 

(3.45) 

The integration scheme used in [33] is discussed hereafter. 

For u (t) given by a segmentally linear function, for 
g 

t(f) ~ t ~ t(i+l), Eq. 3.43 becomes: 

u. + 2~.w.u. + w~u. 
J J J J J J 

= [ 
.. ( i) 

-b. u 
J g 

(3.46) 



where Liu 
g 

··0+1) ·-ci) 
= u - u 

g g 
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and At 

The solution of Eq. 3.46 at time t 

terms of that at t = t(i) by: 

(i) 

[A(~. w. At)] {uj } + 
J• J• "Ci) 

u. 
J 

constant. 

( i+l) = t can be expressed in 

• "( i) 

[B(~. w. At,b.)] { ug } 
J• J• J ·-ci+l) 

ug (3.47) 

Therefore, if the generalized coordinate u.(t) and its time derivative 
J 

( i) 
u.(t) are known at t , then the complete time history can be computed 

J 

by a step by step application of Eq. 3.47. The advantage of this method 

lies in the fact that for a constant time interval At, the matrices [A] 

and [B] depend only on~. w.and bJ., and are constant during the calcula
J• J 

tion of the response. 

Using either method, the procedure of finding u.(t) is repeated for 
J 

all j between 1 and N. ·The dam deformation u(z,t) is then calculated 
' 

from Eq. 3.40. Once this is done, the stresses in the dam, the base 

force and moment resultants, and the hydrodynamic pressures can be 

evaluated. 

3.2.3.2. Frequency Domain Analysis 

An alternative approach to obtain the response of the dam to earth-

quake ground motion, is to work in the frequency domain. The response 

is found by superposition of the responses to individual Fourier 

components of the excitation, through the Fourier integral. 
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The first step in the analysis procedure is to obtain the dam 

response to steady-state simple harmonic motion of the form 

u (t) =exp (iwt). This is done as discussed in section 3.2.2.1, and 
g 

the response is given by: 

u(z,t) = A • U(z,w) • exp (iwt) (3 .48) 

where U(z,w) is given by Eqs. 3.29. 

Next, the Fourier transform U (w) of the ground excitation u (t) 
g g 

is obtained through: 

U (w) 
g 

CX> •• J u (t) • exp (-iwt) • dt 
-CX> g (3 .49) 

The dam response u (z,t), to the excitation u (t), is then given 
g 

by: 

u(z,t) 
CX> 

..l.. s 
2lt 

-CX> 

U( z,w) • U (w) • exp ( iwt) • dw 
g 

3.3. Triangular Cross-Section: Finite Element Solution 

(3.50) 

In this case, the dam under consideration is assumed to have a 

triangular cross-section, as shown in Fig. 3.9. However, the analysis 

can be applied to dams of arbitrary cross-sectional shape provided the 

upstream face is vertical. 

The finite element method is now recognized as an effective 

discretization procedure which is applicable to a variety of engineering 

problems. It provides a convenient and reliable idealization of the 

system and is particularly effective in digital-computer analyses. In 
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the following analysis, the dam is modeled by finite elements, while the 

reservoir is still treated as a continuum, since the dam has a vertical 

upstream face. Thus, the analytical solution for the hydrodynamic pres-

sure, given in Chapter II, are also used here. 

3.3.1. Free Vibration 

In this section, the partial differential equation governing the 

free vibration of a dam, retaining a partly filled reservoir, is 

discretized and converted into a matrix equation of motion. This leads 

to a generalized matrix eigenvalue problem, which is solved for the 

natural frequencies of vibration and the associated mode shapes. In 

addition to considering the dam behaving according to both the pure 

shear and the pure bending theories, a combined shear-bending theory is 

also presented. 

3.3.1.1. Shear Theory 

When the pure shear theory described previously is used, the vibra-

tion of a dam, whose thickness varies along its height, is governed by 

the fol1owing differential equation: 

where 

p(z,t) 

2 
p d(z) a u(z,t) _ j_ [ G d(z) ou(z,t) ] = -p(z,t) 

ot2 oz dz 

=2pf[ i1 m=l 

= 0 

cos (l'lui 
l\m 

(3.51) 

(3.52) 
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The associated boundary conditions have been discussed previously. 

and are stated as: 

[u(z,t)]z=O = 0 (3.53a) 

[ G d(z) a u(z,t) ] = 0 
az z=H (3.53b) 

Equations 3 .51 and 3 .53 constitute the "Strong" formula ti on of the 

problem under consideration. 

Define H~(O,H) as the space of piecewise continuous functions, 

which are defined over the domain 0 s z s H. are square integrable over 

the same domain, have square integrable first derivatives, and vanish at 

z = 0. 
1 Thus a function v(z) belonging to H0 (0,H) satisfies: 

I [v(z)]
2 

dz < m ; v(O) = 0 
(3.54) 

Now, the "Weak-Galerkin" formulation is obtained from the "Strong" 

formulation by multiplyfog Eq. 3.51 by v(z) € ~· integrating over the 

dam height, performing an integration by parts on the second term and 

using the second boundary condition and the properties of v(z). The 

"Weak" formulation may be stated as: 

I P d(•) vi•> ~(•,t) d• + I G d(•) v.<•> •.<z,t)dz 

= ( z. t) cos (11 Hz ) dz\ 
m i I <3.55> 
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Discretizing the dam into an appropriate number of finite elements, 

interconnected only at their ends (nodes) as shown in Fig. 3.lOa, 

Eq. 3.55 is written as: 

NH h 
• ·e - -
u (z,t)dz + L [ G d(-;:) v:(~) 

e=l 

e -u (z,t) dz 
z 

co (NW h ) + 2 p9,, [ .!_ [ f Ve(-;-) cos (1Lm H~) d;: 
m=l 11m e=l ~ \ -x, 

0 
(3.56) 

where e is the element number, NH is the total number of elements of 

which NW elements are below the water surface, h is the element length, 
e 

and z is the local z-coordinate, as shown in Fig. 3.lOb. 

e - e -
v (z) and u (z,t) are v(z) and u(z,t) expressed in the local z-

coordinate. 

Define the vector of nodal displacements {r(t)} , and a constant 
e 

vector {q} as: 
e 

{r(t)} 
e 

e - e -
then u (z,t) and v (z) can be expressed as: 

e -
u (z,t) = {N(-;:)}T {r(t)} 

e 
; 

e -
v ( z) 

(3.57) 

= {q}! {N(z)} 
(3 .58) 
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where {N(z)} is the vector of shape or interpolation functions, the ele-

ments of which are given by: 

= 1-z/h 
e ~ (z) = z/h 

e 

Substituting from Eqs. 3.58 into Eq. 3.56, the matrix equations of 

(3.59) 

motion are eventually obtained. However, for simplicity, each term is 

considered separately. 

The Dam Mass Matrix 

Considering the first term in Eq. 3.56, substituting from Eqs. 3.58 

and rearranging, one obtains: 

where [Md]e is the element mass matrix defined as: 

which after performing t'he necessary integrations yields: 

[Md]e = [ 
1/3 
1/6 

where d is the average thickness of element e. e 

1/6] 
1/ 3 

(3.60) 

(3.61) 

(3.62) 

The R.H.S. of Eq. 3.60 is assembled by a process based on the nodal 

compatibility. By matching the displacements at the nodes, the masses 

are added at these locations. Thus, the overall mass matrix of the dam 

will be: 

(3.63) 
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By defining overall nodal displacement and constant vectors as: 

NH NH 
{R(t)) = [ 

e=l 
{r(t)) 

e and {Q) = L {q) e 
e=l 

(3.64) 

Equation 3.60 is expressed as: 

e - • ·e - -d(z) v (z) u (z,t)dz = 

(3 .65) 

The Dam Stiffness Matrix 

Going through the same steps, the second term in Eq. 3.56 eventu-

ally yields: 

e - e - -G d(z) v (z) u (z,t)dz = 
z z (3.66) 

where [Kd] is the overall stiffness matrix, obtained by superposing the 

element stiffness matrices [Kd]e defined as: 

h 

[Kd]e = [ G d(z){N ( z) } {N ( ~) ) T dz z z (3.67) 

Equation 3.67 yields: 

G d 

[~1 ~11 [Kd]e = 
__ e 

h e (3.68) 

The Added Mass Matrix 

Substituting from Eqs. 3.58 into the third term of Eq. 3.56, 

yields: 



AM = 2 
( 

h 
CX> NW 

p [ .!... [ 
.Q,m==l 11m e=l [ 

Defining the vector F(m) 

e -
v ( z) 

as: 

Equation 3.69 can be written as: 
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NW 
= L {f(m)} 

e=l e 

where [M.Q,] is the overall added mass matrix, defined as: 

(3 .69) 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

Substituting from Eqs. 3.59 into Eq. 3.70, the elements of the 

vector 

f (m) = 1 

f(m) = 2 

{f(m)} are obtained as: 
e 

[ 1 ( '•-1) 1 ( ze-1) 
he - 'Ym sin rm ~ + - cos 'Y -- -

2 m h 
'Y e m 

h [ 1 ( 'e-1~ .!... 
sin (rm ~ :)+ -

1
! cos rm~+ e 'Ym 

where r = 11 h /H.Q,. m m e 

.!... 
cos ~m ::)] 2 

'Ym (3.74a) 

.!... 
cos(rm ::)] 2 

'Ym (3.74b) 
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The Matrix Equations of Motion 

Substituting from Eqs. 3.65, 3.66 and 3.72 into Eq. 3.56, leads to: 

(3.75) 

which is the matrix equation governing the free vibration of the dam

reservoir system. 

The dam mass and stiffness matrices are symmetric, banded and 

positive definite matrices, while the added mass matrix is symmetric, 

not banded and has zero elements corresponding to the nodes located 

above the water surface. After deleting the column and row correspond

ing to the fixed node at the dam base, the general forms of these 

matrices are shown schematically in Fig. 3.11; only the hatched blocks 

are non-zero elements. 

The Eigenvalue Problem 

The matrix equation for the free lateral undamped vibration of the 

dam is given by: 

(M] {R} + (K] {R} = {0} (3.76) 

where 

(M] = [Md] + [MQ,] and [K] = [Kd] 

By writing the solution of Eq. 3.76 in the familiar form: 

{R( t)} = {cl} exp ( iwt) i = Fi (3.77) 

and substituting Eq. 3.77 into Eq. 3.76 [leaving out the common factor 

exp(iwt)], the following equation is obtained: 
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[ -w2 
[M] + [K] ] {d} = {0} 

(3.78) 

where {d} is the vector of the displacement amplitudes of vibration 

(which does not change with time), and w is the natural circular 

frequency. 

A non-trivial solution of Eq. 3.78 is possible only if the 

determinant of the coefficients vanishes, i.e., 

11 CKJ - w
2 CMJ 11 = o (3.79) 

Expanding the determinant will give an algebraic equation of NHth 

2 degree in the frequency parameter w for a system having NH elements. 

Because of the positive definitiveness of [M] and [K], the 

2 2 2 eigenvalues w1 ,w2 , ••• ,wNH are real and positive quantities; Eq. 3.78 

provides nonzero solution vectors {d}. (eigenvectors) for each 
1 

eigenvalue 2 
(I) •• 

1 

3 .3 .1.2 • Bending Theory . 
The differential equation governing the free vibration of a 

variable thickness dam, modeled by the pure bending theory, is as 

follows: 

d < > a 
2 

u < z, t > + L [ E CJ..tl a 
2 

u < z. t >] = -p < z, t > 
p z 2 2 12 !lz2 at az u 

where p(z,t) is given by Eq. 3.52. 

(3.80) 

The boundary conditions, associated with this equation, have been 

discussed before, and may be stated as follows: 
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[u(z,t)]z=O = 0 (3.81a) 

(3.81b) 

(3.81c) 

(3.81d) 

Define H~0 (0,H) as the space of continuous functions defined over 

the domain 0 ~ z ~ H and having piecewise continuous first derivatives. 

Each function in ~O' as well as its first and second derivatives, are 

square integrable over the domain. In addition, each function and its 

first derivative vanish at z = O. Thus, a function v(z) belonging to 

~O satisfies: 

I [v(z)J 2 dz ( m 

v(O) = 0 

' [v (z)]
2 

dz < 0 ~ zz 

v (0) = 0 
z 

Multiplying Eq. 3.80 by v(z) € ~0 (0,H), integrating over the 

(3.82) 

domain, performing an integration by parts twice on the second term, and 

using the boundary conditions Eqs. 3.81c and 3.81d as well as the 

properties of v(z). one obtains the "Weak" form: 



- 112 -

(3.83) 

When the dam is discretized into NH finite elements, NW of which 

are below the water surface, Eq. 3.83 can be written as: 

where 

ment 

NH h 

~1 [ p d(-;-) 

a> 

+ 2 po L 
7v m=l 

~~ (rl h[ v0 (~) cos("m ~)d~) 

~1 h[ ;;·(~.t) ···("m ~) d~ = 0 
e - e -

z, h , v (z) and u (z,t) are as defined previously. 
e 

(3.84) 

The displace-

e - e -u (z,t) and the variational function v (z) can be expressed as: 

e ·- t (Ni(-;-) u~(t) 
A 

ue.(t)) u (z,t) = + N. ( z) 
1 1 Zl 

1=1 ' 

(3.85) 

e - t (N.(-;) 
e A Ve.) v ( z) = v. + N. ( z) 

J=l J J J ZJ 
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where uie(t) are the nodal displacements, ue.(t) are the slopes at the 
Zl 

A -
nodes, v~ and ve. are constants. 

J ZJ 
N.(z) and N.(z) are the shape func-

1 1 

tions, chosen cubic Hermitian polynomials to assure slope continuity at 

the nodes. 

Define the vector of generalized nodal displacement as: 

{r(t)} 
e 

e = {u
1
(t) 

and a constant vector as: 

= 
e 

he vzl 

and the vector of shape functions as: 

{N(z)} = = 

I -2 -3) r~ - 3 .z..... + 2 .z..... 
h2 h3 

e e 

~-2 -i -3) .Z..... + L 
h2 h3 

e e 

Thus, Eqs. 3.85 can be now expressed by the same form given in 

Eqs. 3 .58. 

(3 .86a) 

(3.86b) 

(3.86c) 
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The overall mass and stiffness matrices of the dam are obtained by 

substituting from Eq. 3.58 into the first and second terms of Eq. 3.84, 

respectively . They are expressed as the assemblage of the individual 

element mass and stiffness matrices, which are given by: 

13 .!.!... .2... -13 
35 210 70 420 

h .!.!... _1_ .1L -1 

= [ {N(;-))T 
210 105 420 140 (3.87) 

[Md]e p d ( z) {N( z)) dz = p d h 
.2... .1L 13 -11 e e 
70 420 35 210 

-13 -1 -11 _1_ 
420 140 210 105 

and 

r2 
6 -12 

~J h 3 - "E d
3 

6 4 -6 (3.88) 
[Kd]e = [ 

"E !L.W. {N 
- T -

12 h~ - 12 
( z)) {N ( z)) dz = 

-6 12 12 zz zz 

e 6 2 -6 4 j L 

The overall added mass matrix is as defined in Eq. 3.73 in which the 

vector { f(m)) 
e' defined by Eq. 3.70, has elements: 



f (m) 
2 

= 

= 

= 
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[ 
(

1 6). ( ze-1) 12 ( ze-1) h - - + - sin y -- + - cos y --
e y 3 mh 4 mh 

m ym e ym e 

(3.89a) 

(3.89b) 

h [ _§__ sin (r ze-1)- 12 
e 3 m h 4 

rm e rm 

(3.89c) 
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= 

(3.89d) 

Having obtained the overall mass, stiffness and added mass 

matrices, Eq. 3.83 is reduced to a matrix equation of motion of the form 

given by Eq. 3.75. The matrices involved have the same properties as 

discussed in the previous section; however, their size is 2 NH rather 

than NH, since we have two generalized nodal displacements associated 

with each node. The generalized eigenvalue problem, as given by 

Eq. 3.78, is obtained and solved for the natural frequencies and mode 

shapes •• 

3.3.1.3. Shear-Bending Theory 

In this section, an analysis, more accurate than those described in 

the previous two sections, is discussed. In addition to the pure 

bending deformations, the deflection due to shear as well as the effect 

of rotary inertia are taken into account. This problem was first 

investigated by S. Timoshenko [34] who obtained a single differential 

equation for the vibration of beams, involving only the total (bending + 

shear) deflection. However, the boundary conditions associated with 
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this equation were not easy to define. Later, R. A. Anderson [35] and 

J. Miklowitz [36] used another formulation of the Timoshenko theory, in 

which they dealt with two coupled differential equations in the two 

separate bending and shear deflections. The studies mentioned involve 

only prismatic beams of uniform cross-section. In the following, 

"Strong" formulation of the transverse free vibration problem of a 

variable section plate (dam) is presented and the finite element matrix 

equation of motion developed in a manner analogous to the one used in 

the previous two sections. 

According to the Timoshenko theory, the slope of the deflection 

curves depends not only on the rotation of cross-sections, but also on 

the shearing deformations. If d denotes the slope of the deflection 

curve when shear is neglected, and ~ denotes the angle of shear at the 

neutral axis in the same cross-section, then the total slope is: 

au 
az = 

Thus, of the three variables, u, d and ~. only two can vary 

(3.90) 

independently, while the third is determined from Eq. 3.90. Choosing u, 

the total deflection, and d, the slope due to bending only, as our two 

variables, the two coupled differential equations governing the 

transverse vibration of a variable thickness dam can be written in the 

following form: 
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2 
1- [Gd{z)(ou~zz,t) - d(z,t>)] p d( z) 0 u(z,t) 

= - p(z,t) 
ot2 oz 

(3.91) 

3 2 
[ E ~ od(z,t) ] a.:itl 0 i~ Za t} 1-p 12 ot2 oz 12 oz 

(3.92) 

where p(z,t) is given by Eq. 3.52. 

Now, the boundary conditions associated with Eqs. 3.91 and 3.92 can 

be expressed in terms of the variables u(z,t) and d(z,t) as follows: 

i) the total deflection at the dam base vanishes, i.e. , 

[u(z,t)]z=O = 0 (3.93a) 

ii) the slope, due to bending only, vanishes at the dam base, 

i.e., 

[d(z,t)]z=O = 0 (3.93b) 

iii) the bending moment at the dam crest vanishes, i.e., 

[ E~od<zat)] = 0 
12 oz z=H (3.93c) 

iv) the shear force at the dam crest vanishes, i.e., 

(3.93d) 

Equations 3.91, 3.92 and 3.93 constitute the "Strong" formulation. 

The "Weak" formulation is obtained by multiplying Eqs. 91 and 92 by 

variation functions v(z) and O(z) e ~(O,H), respectively, adding, 

integrating over the dam height and performing the necessary 
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integrations by parts. The final form will be: 

Ip d(z) v(z) u(z,t)dz +I G d(z) vz(z) uz(z,t)dz 

-I G d(z) vz(z) d(z,t)dz 

+ I B a:~·) o.(z) •.<z.t)dz 

d(z) O(z) u (z,t)dz 
z 

d(z) O(z) d(z,t)dz 0 
(3.94) 
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By discretizing the dam, Eq. 3.94 takes the form: 

NH h [ r 
e-1 ~ 

e -u (z,t) = 

e - e - -
d(z) n (z) " (z,t)dz 

; 

e -v ( z) 

= 0 

T -
= {q} {N(z)} 

e 

T -
= { q} {S( z)) 

e 

(3.95) 

(3.96) 
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where 

e e u1 (t) vl 

he cl~ ( t) h ne 
e 1 

{r(t)} = { q} = e e e e u2 (t) V2 

he cl; ( t) h ne 
e 2 

(3.97) 

0 
N1 ( z) 1 -

0 
h Nl ( z) 

e 
{N( z)} = {S(z)} = 

~ (z) 
0 

1 -
0 h N2 ( z) 

e 

where u~(t) and d~(t) are the nodal displacements and slopes, 
1 1 

e e respectively, v. and n. are constants, and N.(z) are the same shape 
1 1 1 

functions given by Eq. 3·.59. 

The matrix equations of motion can be obtained by substituting from 

Eqs. 3.96 into Eq. 3.95. However, for the sake of clarity, the mass, 

stiffness and added mass matrices will be developed separately. 

The Dam Mass Matrix 

The overall mass matrix of the dam is obtained, from the sum of the 

first and fifth terms of Eq. 3.95, as the assemblage of the element mass 

matrices, which are given by: 



[Md]e = hnp d ( z) {N( z)} 

which yields: 

[Md]e = p d e 

The Dam Stiffness Matrix 
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- T d3(~) 
{N(z)} + p 

12 

1 
3 

0 

h e 1 
6 

0 

0 

_L (de r 
36 h e 

0 

_L (de)2 
72 h 

e 

{S( z)} {S(~)} T ] d; 

1 
6 

0 

1 
3 

0 

0 

_L (de y 
72 h e 

0 

_L (de)2 
36 h 

e 

(3 . 98) 

(3 . 99) 

The element stiffness matrices, which upon assemblage produce the 

overall stiffness matrix, are generated from the remaining terms of 

Eq. 3.95, excluding the fourth term. It is given by: 

h 

[Kd]e = [ [Gd(-;:) ( {Nz(-;:)}{Nz(-;:)}T 

( 3 .100) 

A term by term integration of the above equation yields: 



G d 
[Kd]e = 

__ e 
h e 

where 

!<- = 

The Added Mass Matrix 
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1 ! 
2 

! (t + 11 2 

-1 ! 
2 

! (~ - ~) 2 

.L E(de)2 
12 G h 

e 

-1 ! 
2 

! (~ - I< 2 
(3 .101) 

1 ! 
2 

! ~+~ 2 

(3.102) 

The fourth term of Eq. 3.95 will furnish the overall added mass 

matrix in the same form given by Eq. 3.73, in which the first and third 

elements of {f(m)) are given by Eqs. 3.74a and 3.74b. respectively. 
e 

while the second and fourth terms are zero. 

The matrix equation of motion can now be written and solved exactly 

as discussed in the preceding two sections. 

3.3.1.4~ Numerical Examples 

The method developed in the previous three sections is used to 

compute the natural frequencies of vibration and the corresponding mode 

shapes of a concrete dam having a triangular cross-section. Three 

different computer programs, one for each of the three theories used to 

model the dam. have been written in accordance with the method mentioned 

above. Each program develops the appropriate element mass and stiffness 

matrices, constructs the added mass matrix. and extracts the eigenvalues 

(natural frequencies) and the eigenv~ctors (mode shapes). for two 
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different cases: (1) dam with empty reservoir, and (2) dam with a 

completely full reservoir. 

The dam examined has a vertical upstream face, and a 0.8:1 sloping 

downstream face. The properties of concrete and water are as given in 

sectiQn 3.2.1.3. The first three frequencies, normalized w.r.t. the 

fundamental frequency of the reservoir, are listed in Table 3.3, for 

empty and for full reservoir, for the three different theories 

considered. The corresponding mode shapes are displayed in 

Figs. 3.12-3.14. 

I 
I Freq. 

Shear Theory Bending Theory Shear-Bending 
Empty I Full Empty I Full Empty I Full 

1st I 2.59 I 2.04 1.99 I 1.57 1.60 I 1.26 I 
I I I I 

2nd 5.95 5.18 4.86 4.23 3.72 3.21 

3rd 9.41 8.56 8.23 7 .45 6.28 5.73 

TABLE 3.3. Normalized Natural Frequencies 

3.3.2. Response to Earthquake Ground Motion 

In this section, a method for analyzing the earthquake response of 

dams of arbitrary cross-sections is presented. The method is based on 

superposition of the free lateral vibrational modes obtained by a finite 

element approach. A procedure for computing the natural modes of vibra-

tion was given in preceding sections. 
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The analysis is done in two steps: 1) the effective load resulting 

from the prescribed ground motion is evaluated and entered, as a force 

vector, in the R.H.S. of the matrix equation of motion, and 2) a modal 

analysis is used to reduce this matrix equation into a set of equations, 

each of which can be independently solved. 

3.3.2.1. The Effective Force Vector 

When a ground acceleration u (t), in the direction normal to the 
g 

dam axis, is applied to the base of the dam, its resulting total dis-

placement will be the sum of two components: (1) the relative (or defor-

mational) displacement u(z,t), and (2) the rigid body displacement which 

equals the ground displacement ug(t). 

The external forces acting on the dam due to ground motion u (t) 
g 

include: 

i) the distributed inertia force of the dam, which is given by 

p d(z) u (t) 
g (3.103) 

ii) the hydrodynamic pressure on the upstream face of the dam, 

due to its rigid motion. 

given by Eq. 3.24. 

This is denoted by p (z,t) and 
g 

iii) the hydrodynamic pressure on the upstream face of the dam, 

due to its relative displacement. This is denoted by p(z,t) 

and given by Eq. 3.2. 
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Now, the differential equation governing the dam motion in the case 

under consideration can be obtained by inserting the first and second 

components of the external force, with minus sign, into the R.H.S. of 

the equation governing the free vibration of the dam, namely Eqs. 3.51, 

3.80 and 3.91 for the cases of shear, bending and shear-bending 

theories, respectively. It is noted that the third component is readily 

incorporated in the free vibration equation. 

The effective force vector to be entered in the R.H.S. of the 

matrix equation of motion, Eq. 3.76, is obtained from the first and 

second force components as follows: 

a) Inertia Force 

Multiplying the term in Eq. 3.103 by the variational function 

v(z) and integrating between 0 and H, one obtains: 

I v(z) pd(z) ~·,Ct) dz 

Di~cretiz ing and carrying on the process, the above equation 

yields: 

(3.104) 

where {Q} is given by Eq. 3.64, and 

(3 .105) 

in which 



b) Hydrodynamic Force 
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= 

h 
e J pd(~) {N(z)}dz 

Multiplying Eq. 3.24 by v(z) and integrating, one gets: 

( 3 .106) 

which, upon discretization and carrying on the process, eventually 

leads to: 

where 

(2) m (-l)m-1-1 ( ) 
{L } = 2p HQ, L - 2 {F m } 

Q, m=l 'llm 

with {F(m)} as defined in Eq. 3.71. 

Now, the effective force vector can be defined as: 

= - {L} u (t) 
g 

(3.107) 

(3.108) 

Finally, the matrix equation which governs the earthquake response 

of the undamped dam-reservoir system is obtained by inserting the 

effective force vector, Eq. 3.108, into the R.H.S. of Eq. 3.76, result-

ing in: 

[M] {R} + [K] {R} = - {L} u (t) 
g (3.109) 
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3.3.2.2. Modal Analysis 

Eq. 3.109 can be solved directly by the step-by-step numerical 

integration method [37). However. as discussed previously. it is more 

efficient to use modal superposition to evaluate the earthquake response 

of linear structures. Let 

{R(t)} = [<J>] {Y(t)} (3 .110) 

where [<J>] is a rectangular matrix of order NXJ which contains the modal 

displacement vectors associated with the lowest J natural frequencies. N 

is the number of degrees of freedom. and {Y(t)} is the modal amplitude 

vector. 

Substituting from Eq. 3.110 into Eq. 3.109 and premultiplying by 

[<J>]T • one obtains: 

[M*] {Y} + [K*] {Y} = - {L*} u (t) 
g (3.111) 

where [M*] and [K*] are the generalized mass and stiffness matrices. 

respectively. of order ~ X J; and {L•} ug(t) is the generalized force 

vector of order J X 1. 

Because of the orthogonality conditions of the natural modes, 

namely. 

{dJ! [M] {d}. = {d}Ti [K) {d}. = 0 
1 J J 

( i :/: j) 
(3 .112) 

the generalized mass and stiffness matrices are diagonal. Furthermore, 

the diagonal terms of the generalized stiffness matrix can be written 

as: 
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K* .. 
JJ 

= w~ M* .. = w~ {</} ~ [M] {</} . 
J JJ J J J 

; j = 1,2, ••• ,J (3.113) 

Therefore, Eq. 3.111 reduces to J independent differential equations for 

the unknowns Y.(t) 
J 

2 
Y. + w. Y. 

J J J 

L*. • • 
= _ __J_ u (t) 

M* . . g 
JJ 

j = 1,2, ••• ,J 
(3.114) 

Introducing damping into Eq. 3.114, one can rewrite such equation as 

fol lows: 

• 2 
Y. + 2~.w.Y. + w. Y. = -b. u (t) 

J JJJ J J Jg 
; j = 1,2, ••• ,J 

(3 .115) 

where b. = L*./M* .. are the modal participation factors. Eq. 3.115 is 
J J JJ 

identical to Eq. 3.43, and its solution can be found by using either the 

convolution integral or the step-by-step integration, both discussed in 

section 3.2.3.1. 



- 133 -

CHAPI'ER IV 

FLUID-STRUCTURE INTERACTION FOR SHORT DAMS OR WALLS 

4.1. Introduction 

In analytically analyzing the dynamic response of concrete gravity 

dams, most work to date has considered the dam to be infinitely long, an 

assumption which simplifies the problem to one in two dimensions. This 

would be expected to be satisfactory for dams of length B, relatively 

large as compared to their height H. Judgment and intuition would 

indicate that a two dimensional solution would err considerably for a 

system with relatively small B/H. This conclusion is supported by the 

results of a vibration experiment done by A. Selby and R.T. Severn [10] 

on a wall of B/H = 2.0, storing a body of water. A quick review of the 

gravity dams existing in the United States, as given by T.W. Mermel 

[11], reveals that a considerable number have small B/H ratios. Thus, 

it is important to develop a procedure for the dynamic analysis of short 

length ~ams or walls so ·that the significance of the B/H ratio can be 

evaluated. 

A free vibration analysis of the dam-reservoir system is carried 

out neglecting water compressibility, with the dam modeled by both the 

shear theory and the bending theory. The natural frequencies and the 

associated mode shapes are found using the Rayleigh-Ritz method. The 

effects of the presence of the water and of the B/H ratio, on these 

dynamic properties are studied. 
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A forced vibration analysis is carried out, in which the Assumed

Modes method is used to obtain the dam response to all three components 

of the ground motion. Taking water compressibility into consideration, 

and assuming harmonic ground motions, frequency domain responses of the 

dam are obtained. The effects of the reservoir presence, the water com

pressibility, the dam-reservoir interaction, and the B/H ratio on these 

responses are illustrated. 

4.2. Free Vibration 

Consider a dam of rectangular cross-section and of finite length, 

as shown in Fig. 4.1. In this case, the dam deformation u(y,z,t) will 

be a function of the y and z coordinates, and time. With assumptions 

about the water and the reservoir boundaries made as in Chapter II, one 

may use here the formulas derived previously for the hydrodynamic pres-

sure. 

Assuming the dam to vibrate freely with no ground motion applied to 

its base, its natural frequencies and mode shapes are determined under 

an incompressible water assumption. The structural deformations of the 

dam are modeled by two different theories: 1) a pure shear theory, and 

2) a pure bending theory. 

4.2.1. Shear Theory 

Neglecting any bending effects and considering only shear deforma

tions, the differential equation governing the lateral (out-of-plane) 

vibration of the dam is written as follows: 



-135-

z 

(a) Sectional Elevation 

y 

\ \ 
\ 

\ \ 
\ ' I I 

to oo 

u(y,z,t) B 

I 
I 

I I 
I I 
I I 

x 
(b) Plan View 

Fig. 4.1 Dam-Reservoir and Coordinate System 
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2 
pd a u ( y' z ' t ) - Gd efl- u ( y, z , t ) 

at2 
= -p(y, z, t) 

(4.1) 

= 0 H~ z ~ H · 
} 

where p, G and d are as defined previously, u(y,z,t,) is the horizontal 

out-of-plane displacement of the dam, and efl- is the Laplace operator in 

two dimensions, defined as: 

= 
(4.2) 

p(y,z,t) is obtained from Eq. 2.49 by setting x = 0, and is given by: 

p(y,z,t) = 
( 4 .3) 

Equation 4.1 is solved approximately by using the Rayleigh-Ritz 

method [38] in which the dam deformation is expressed as a linear combi-

nation of N admissible functions, as follows: 

u(y,z,t) = [ [ e. V. ( ~.~)] exp (iwt) 
J=l J J (4.4) 

where the f. are known functions of the spatial coordinates satisfying 
J 

only the geometric boundary conditions, and ej are unknown coefficients 

to be determined. 

Substituting Eqs. 4.3 and 4.4 into Eq. 4.1, constructing and 

minimizing the Rayleigh's quotient, one eventually obtains an eigenvalue 

problem of the form: 

0 (4.5) 
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where w is the frequency of vibration, {E} is the vector of unknown 

coefficients ej, and [K] , [Md] and [M£ ] are the stiffness, mass and 

added mass matrices, the elements of which are given by: 

where 

k .. -G d I I l'i i2 'j dydz lJ 

(md) .. lJ 

(m o) .• 
x, lJ 

= 
p d I I l' i lj dydz 

~ ~ ~ 4 B L L 
n=O m=l 

Solution of Eq. 4.5 yields the natural frequencies w. and the 
1 

eigenvectors {E(i)}. The associated mode shapes are given by: 

(4.6) 

(4.7) 

(4 . 8) 

(4.9) 

(4 .10) 

4.2.2. Bending Theory 

In this case, the governing equation is stated as: 

a2 
u(y,z,t) + Ed

3 
-A ( ) ( ) pd v · u y,z,t = -p y,z,t 

at2 12<1-~2 > 

= 0 

where p,E.~ and d are as defined previously, and 
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(4.12) 

and p(y,z,t) as given by Eq. 4.3. 

Using the Rayleigh-Ritz method, an eigenvalue problem similar to 

the one given in Eq. 4.5 is obtained. The elements of the mass and 

added mass matrices are defined as in Eqs. 4.7 and 4.8, while the ele-

ments of the stiffness matrix are given by: 

k .. = 
lJ 

4.2.3. Numerical Examples 

dydz 
(4.13) 

The method of analysis described in the previous two sections is 

applied to a dam whose thickness to height ratio and material properties 

are as given in section 3.2.1.3. The four prescribed shapes given by 

Eq. 2.63, and illustrated in Figs. 2.14 and 2.15 for the shear and bend-

ing deformations, respectively, are used as admissible functions. 

The natural frequencies of a dam having a B/H ratio of 2.0 are 

calculated for both an empty and a full reservoir. The results, normal-

ized by the fundamental frequency of the full reservoir, are presented 

in Tables 4.1 and 4.2, for the shear and bending theories, respectively. 

I Frequency 

I Empty Reservoir 

I 1st 
I 
12 .39 

12 .07 

2nd 

3.79 

3 .39 

3rd 4th 

5 .35 6 .11 

4.75 5.56 

TABLE 4.1. Normalized Natural Frequencies (Shear) 
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'Empty Reservoir 

IFnll Reservoir 
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I 1st 

11.22 
11.11 

I 2nd 
I 
13 .03 

12 .83 

3rd 

4.72 

4.18 

I 4th 
I 
16 .15 

15 .58 
TABLE 4.2. Normalized Natural Frequencies (Bending) 

The effect of the length to height ratio is studied by computing 

the normalized natural frequencies of dams having a B/H ratio ranging 

between 1.0 and 10.0. For an empty reservoir, these values are given in 

Table 4.3. It is observed that the frequencies increase as B/H 

decreases. This is better illustrated in Fig. 4.2, where the 1st and 

2nd dam frequencies are plotted versus B/H, for both the shear and bend-

ing theories. For a shear model, the fundamental frequency of a dam 

having a B/H of 2.0 is 41% larger than that of an infinitely long dam. 

When B/H = 5.0, the increase is only 7.7%. For a bending model, a B/H = 

2.0 dam has a fundamental frequency which is 82% larger than that of an 

infinitely long dam. The increase is 1.5% when B/H = 5 .O. 

B/H 1.0 2.0 3.0 I 5.o I 10 .o I IX) I 
I 1 Shear 1st 3.79 2 .39 2.04 1.82 1. 73 1.69 

Theory 2nd 6 .11 3.79 2.82 2.17 1.82 -

Bending 1st 4.36 1.22 0.79 0.68 0.67 0.67 

Theory 2nd 6.96 3.03 1.42 0.77 0 .68 -

TABLE 4.3. Normalized Natural Frequencies (Empty Reservoir) 
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0.0 2.0 4.0 6.0 8.0 10.0 B/H 
(b) Bending Theory 

Fig. 4.2 Effect of B/H on Natural Frequencies 
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4.3. Forced Vibration: Harmonic Ground Motion 

In this section, the problem of a dam forced into motion by a 

ground displacement applied to its base, is studied. All three compo-

nents of ground motion are considered. These are: 1) longitudinal com-

ponent (in the upstream-downstream direction), 2) transverse component 

(in the cross-stream direction), and 3) vertical component. Only the 

case of dams modeled by the shear theory is presented. The analysis, 

for the case of bending theory, is exactly the same except that the 

stiffness term of the equation of motion should be changed as discussed 

in the free vibration problem. This leads to a different definition of 

the elements of the stiffness matrix arising in the resulting matrix 

equation of motion. The water compressibility is taken into considera-

tion. The applied ground motion is assumed to be harmonic, thus the 

analysis leads to the dam response in the frequency domain. 

Approximate solutions to the governing differential equations are 

obtained through the use of the Assumed-Modes method [39]. This method 

is the extension, to the forced vibration case, of the Rayleigh-Ritz 

method discussed in conjunction with the free vibration problem. 

4.3.1. Longitudinal Ground Motion 

Let the dam be subjected to a ground acceleration u (t) in the 
g 

upstream-downstream direction. The differential equation governing its 
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deformation is given by: 

2 
Pd 

a u(y,z,t) ...:2 ( ) - Gdv-u y,z,t = 
at2 

= -pd u ( t) 
g 

0 ~ z ~ H.Q, } (4.14) 

H .Q,~ z ~ H 

where p(y,z,t) and p (z,t) are the hydrodynamic pressures resulting gx 

from the vibrational and rigid motions of the dam, respectively . For 

harmonic excitation as given by Eq. 3.25, these are frequency dependent 

and are obtained from Eqs. 2.44 and 2.24 by setting x = O. 

Expressing the dam deformation in the form given by Eq. 4.4, 

substituting into Eq. 4.14, multiplying by f. (j = 1,2, ••• N), and 
J 

integrating over the dam face, one ends up with the following matrix 

equation of motion: 

(4.15) 

where the elements of the mass and stiffness matrices, [Md] and [K], are 

as defined in the previous section, and {E} is the vector of the 

generalized coordinate displacements ej. [M .Q,] is the frequency 

dependent added mass matrix, whose elements are given by: 

(m 0 ) • • 
A- 1J e 

n 
0 mn 

CX> CX> 

[ [ 
n=O DFm 

n (4.16) 

in which Ii is as given by Eq . 4.9. {FI} is the inertia load vector, 
mn 
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whose elements are given by: 

(4.17) 

{Fx) is the frequency dependent added load vector, the elements of which 

are defined as: 

{ 
11\)-1 (-l)m+l Ij CD (-l)m+l Ij 

} x 

J:1 
mo [ mO 

f j = 2 p 9, H9, a g -i + 
llm&mO m=mo l\m&mO 

(4.18) 

in which 

Ij =t I 'j cos ( ttm\) dydz mo (4.19) 

4 .3 .2. Transverse Ground Motion 

Consider the case in which the dam-reservoir system is subjected to 

a cross-stream ground acceleration v (t). For harmonic motion, this is g 

expressed as: 

· v ( t) = a • exp ( irot) 
g g (4.20) 

The dam motion will be governed by Eq. 4.14, with the inertia term 

on the R.H.S. dropped, and p (z,t) replaced by p (y,z,t), which is the gx gy 

hydrodynamic pressures acting on the dam, assumed as rigid, due to the 

motion of the reservoir banks. This is obtained from Eq. 2.59, by 

- 2 
replacing (-v ro ) by a • 

g g 

When applied to the governing differential equation, the Assumed-

Modes method will yield the following matrix equation: 
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(4.21) 

The L.H.S. is exactly the same as in Eq. 4.15, while{FY} is the added 

load vector, whose elements are: 

{
mo-1 

f~ = 2Pn Hna } 
J x, x, g m';;]_ 

(-l)m+l J~} 
1\m &mO 

(4.22) 

sin [&mo(~ -y) /Ht ] • cos ( 1\~) dydz } 

(4.23) 

• sinh [&mO(~ -y)/Ht ] • cos (11m ~)dydz 

4.3.3. Vertical Ground Motion 

Let a harmonic vertical ground acceleration of the form: 

w (t) =a • exp(iwt) g g (4 .24) 

be applied to the dam-reservoir system. The equation of motion is 

obtained from Eq. 4 .4 by. dropping the inertia term, and replacing 

- 2 
The latter is given by Eq. 2.30, with (-wgw ) 

replaced by a • g 
The resulting matrix equation is then: 

( 4 .2 5) 

in which the added force vector{Fz}has elements: 

(4.26) 
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A solution of Eq. 4.15 (or 4.21 or 4.25) for all values of excita-

tion frequency w would give the frequency domain response for the e.'s 
J 

which. upon substitution into Eq. 4.4. would yield the dam displacement 

response. 4.3.4. Numerical Examples 

The method of analysis developed above is applied to a limited 

length dam modeled by the shear theory. The dam has a thickness to 

height ration of 0.4. and its material properties are as chosen in 

section 3.2.1.3. The four admissible functions used in the free vibra-

tion analysis, section 4.2.3 •• are also used here. 

To study the effects of presence of the water. water com-

pressibility. and dam-reservoir interaction on the response of the dam, 

five different cases are considered: 

Case ( 1) : empty reservoir. 

Case (2) : full reservoir. compressibility neglected. interaction neglected. 

Case ( 3) : full reservoir. compressibility neglected. interaction included. 

Case (4) : full reservoir. compressibility included. interaction neglected. 

Case ( 5) : full reservoir. compressibility included. interaction included. 

For longitudinal ground motion. the dam response in each case is 

obtained by solving Eq. 4.15, after a proper specialization: In case 

(1). the added mass matrix [Mi l and the added load vector {Fx} are 

dropped; In cases (2) and (3), the water compressibility is neglected 

in calculating the elements of [Mil and {Fx}. with [Mil dropped in case 

(2) and kept in case (3); Cases (4) and (5) are analogous to cases (2) 

and (3). but with compressibility considered. Clearly. case (1) does 
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not exist for both the transverse and vertical motion cases in which the 

hydrodynamic pressure is the only loading on the dam. 

A structural damping has been incorporated into the problem by 

adding the term (iw[C]) to the L.H.S. of the matrix equations of motion. 

The damping matrix [C] is chosen as: 

(4.26) 

where a and ~ are determined such that the fraction of critical damping 

~ in the first two symmetric or antisymmetric modes be the same. A 

value of'?;= 3% is taken, based on the results of the vibration test 

performed by D. Rea, C.Y. Liaw and A.K. Chopra [40]. 

For a dam of B/H = 2.0, the frequency domain responses of the 

generalized coordinate e.'s are obtained for all five cases. The crest 
j 

acceleration, at mid-span for longitudinal and vertical excitations and 

at quarter-span for transverse excitation, is then computed and plotted 

in Figs. 4.3, 4.4 and 4.5 for the x,y and z components of ground motion, 

respectively. .Part (a) ·of each figure is for incompressible water, 

while part (b) is for compressible water. The ordinate of each plot is 

for the absolute value of the crest acceleration, normalized by the 

amplitude of ground acceleration, while the abcissa is for the excita-

tion frequency, normalized by the fundamental frequency of the 

reservoir. 

By examining Fig. 4.3. it is concluded that: 

i) When the water compressibility is neglected, the effect of 

water is, with interaction neglected, to increase the response 
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without any shift in the resonant frequencies. With interac

tion included, the resonant frequencies are reduced, with 

smaller increase in the response. 

ii) When water compressibility is included, and interaction 

neglected, the response is affected locally at excitation fre

quencies close to the natural frequencies of the reservoir, 

becoming unbounded at exactly these frequencies. When 

interaction is included, the response changes completely, the 

effect of radiation damping being incorporated. 

The level of contribution to the response, of each component 

of ground motion, is best illustrated by plotting the crest 

acceleration response, to all three components, on the same plot as 

shown in Fig. 4.6. It is concluded that the vertical component 

contribution is about 18% of the longitudinal component contribu

tion. The transverse component produces, at the quarter-span, an 

acceleration which.is roughly 1% of what the longitudinal component 

produces at mid-span (response values at w = 2.2). 

The effect of B/H is studied by computing the crest accelera

tion responses of dams having different B/H ratios. The responses 

to longitudinal ground motion, of dams with B/H = 1.0, 2.0, 3.0 and 

5.0, are plotted in Fig. 4.7. For B/H = 2.0 and 5.0, response to 

transverse and vertical excitation are given in Figs. 4.8 and 4.9, 

respectively. It is clear how the change in B/H affects the 

frequency domain response, both in value and shape, which in turn 
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would result in a change in the response to earthquake ground 

motion. This will be discussed in the next chapter. 



- 156 -

CHAPTER V 

EARTHQUAKE RESPONSE OF SHORT DAMS OR WALLS 

5.1 Introduction 

In the previous chapter, the effects of the length to height ratio 

(B/H) on the dynamic properties, and on the frequency domain response of 

short dams or walls, have been studied. It has been shown that a change 

in B/H results in a change in the values of the resonant frequencies of 

the dam-reservoir system, which in turn results in changes in the 

transfer functions of the system response to all three components of 

ground motion. In addition, the response to the transverse component, a 

feature pertinent only to dams of finite length, has been established. 

In this chapter, the previously obtained transfer functions are 

used to compute time domain responses to arbitrary ground motions. The 

structural response is obtained using the frequency domain analysis out

lined in section 3.2.3.2. The efficiency of computation is increased by 

using a. Fast Fourier Transform algorithm [41), especially suited for 

structural dynamics, for both the forward transform of the ground exci

tation and the inverse transform of the Fourier Integral. 

Using all three components of the ground motion recorded at the 

abutment of Pacoima Dam during the San Fernando earthquake of 

February 9, 1971, crest acceleration and displacement responses of dams 

with different B/H ratios are evaluated in order to: 1) establish the 

effect of B/H on the earthquake response of short dams, and 2) to 
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investigate the significance of the transverse and vertical components, 

as compared to the longitudinal, on the dam response. 

In addition, the time histories of the hydrodynamic pressure at 

points lying on the upstream face of the dam, along the vertical line at 

mid-span, are evaluated and the possibility of cavitation is 

investigated. 

5.2. Inclusion of Flexibility of Reservoir Boundaries 

In the response analysis of short dams, carried out in Chater IV, 

the problem was reduced to solving the three matrix equations given by 

Eqs. 4.15, 4.21, and 4.24 for ground excitation in the longitudinal, 

transverse and vertical directions, respectively. In those equations, 

the frequency dependent added mass matrix [M i l arises from the hydro-

dynamic pressure generated by the vibrational motion of the dam, while 

the frequency dependent added load vectors {Fx}. {FY} and {Fz} result 

from the pressures caused by the x, y and z components of the ground 

motion., Those pressures, and consequently the elements of [Mi l. {Fx}. 

{FY} and {Fz}, were shown to be unbounded at excitation frequencies 

equal to the resonant frequencies of the reservoir, r 
(I) • 

n 
In the 

neighborhood of r 
(I) • 

n 
[M i l and {Fx} are controlled by the term 

response to longitudinal ground motion is bounded at excitation fre-

quencies equal to wr because the ratios of the terms of {Fx} to the 
n 
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terms of [Mil approach finite values. On the contrary, dam responses to 

transverse and vertical ground motions are unbounded at those fre-

quencies. However, the Fourier Analysis procedure for computing 

responses to arbitrary ground motions is, in principle, applicable 

because the transfer function approaches infinity, as w -7 wr. at a slow 
n 

enough rate so that the areas under the undounded peaks are finite. 

This requires a special technique of numerical integration having a 

variable frequency step, thus eliminating the use of the efficient Fast 

Fourier Transform algorithm. 

Unbounded responses are due to unbounded hydrodynamic pressures 

resulting from the unrealistic assumption of rigid reservoir boundaries. 

In actuality, these boundaries are flexible, thus allowing some energy 

loss by radiation through the boundaries, which results in bounded 

responses at the reservoir frequencies. 

In this section, the formulas derived in Chapter II for the hydro-

dynamic.pressures, under the assumption of rigid reservoir boundaries. 

are modified according to a flexible boundary model similar to the one 

used by J.F. Hall and A.K. Chopra [42]. This model provides some fluid-

boundary interaction, which allows the absorption of a part of the 

incident energy associated with a pressure wave striking the reservoir 

boundary. At the fluid-boundary interface, the boundary condition stat-

ing proportionality between the pressure normal to the boundary and the 

normal component of acceleration is still valid. However, these 

accelerations cannot be specified as in the rigid boundaries case 
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because they depend on the fluid-boundary interaction. The actual 

acceleration is then composed of a free-field part and a part caused by 

interaction. 

5.2.1. Vibrational Motion 

Let the geometry of the dam-reservoir system be as described in 

section 3.2.1. Using the flexible boundaries model mentioned above, the 

boundary conditions given by Eqs. 2.40, 2.41 and 2.42 are replaced 

respectively by: 

pQ, wQ, (x,y,0,t) = -iwq p(x,y,0,t) 

pQ, vQ, (x,0,z,t) = -iwq p(x,0,z,t) 

VQ, ( x I Bl 2 I z I t) = 0 

p(x,B/2,z,t) = 0 

(symmetric dam motion) 

(antisymmetric dam motion) 

where q is a damping coefficient defined as: 

q = 

. 

1-a l __ r 

c l+a 
r 

(5 .1) 

(5.2) 

(5.3a) 

(5.3b) 

(5.4) 

in which a is the reflection coefficient of the hydrodynamic pressure 
r 

wave at the fluid-boundary interface, and c in the sound velocity in the 

fluid. The conditions given by Eqs. 2.38, 2.39 and 2.43 remain 

unchanged. 
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With the new set of boundary conditions, Eq. 2.44 changes to: 

p(x,y,z,t) 2 
= -4p H /.JJ) exp (iwt) 

,Q, ,Q, 

where · 

~ are the complex valued roots of: 
n 

exp ( i~ ) 
n 

= ( ~ n - V) I ( ~ n + V) 

n = 1,2, ••• 

(symmetric) 

exp ( i~ ) 
n 

(V - ~ ) I (V + ~ ) (antisymmetric) 
n n 

and 

~ are the complex roots of: 
m 

v wqB 

;m = 1,2, ••• 

= (W - ~ ) I (W + ~ ) 
m m 

The coefficients & , I , A and B are defined as: mn mn n m 

(5.5) 

(5.6) 

(5.7a) 

(5.7b) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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(5.14) 

(5.15) 

5.2.2. Longitudinal Ground Motion 

In this case, the dam is assumed to be rigid, and the prescribed 

motion is given by Eq. 2.22. The solution is a special case of Eq. 5.5 

in which A is replaced by ug and '(ii·~)= 1. Unlike the case of rigid 

reservoir boundaries, the pressure is now dependent on the y-coordinate 

as well. 

5.2.3. Transverse Ground Motion 

Under the flexible boundaries assumption, the boundary condition 

given by Eq. 2.55 remains unchanged, while those given by Eqs. 2.56, 

2.57 and 2.58 are replaced by: 

Pi w9, (y,0,t) = -iwq p(y,0,t) (5.16) 

p v (0,z,t) = p v {t) - iwq p(O,z,t) 
9, 9, 9, g (5.17) 

p(B/2,z,t) = 0 (5 .18) 

where v {t) is now a free-field ground motion acting on the left bank of 
g 

the reservoir, and assumed of the form given by Eq. 2.54. 

The hydrodynamic pressure generated in this case is given by the 

expression: 
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( 5 .19) 

where . 

I = .1... ~ Z ( i) dz 
m H2 ~ m \ (5.20) 

omO = HQ, ~ (T1m!H2)
2 

- (w/c)
2 

(5.21) 

and zm(~), Tim' Wand Bm are as defined by Eqs. 5.9, 5.10, 5 .11 and 

5.15, respectively . 

5.2.4. Vertical Ground Motion 

When the flexibility of the reservoir boundaries is included in the 

analysis, the pressure becomes dependent on the y--coofdinate. The 

boundary conditions are now stated as : 

p ( y, H Q,' t ) = 0 

p w (y,O,t) = p w (t) - iwq p(y,0,t) 
Q,Q, Q, g 

P. v (0,z,t) = -iwq p(O,z,t) 
Q, Q, 

VQ, (B/2,z , t) = 0 

(5.22) 

(5.23) 

(5 .24) 

(5.25) 

where w (t) is a free-field vertical ground motion at the reservoir 
g 

bottom, given by Eq. 2.27. 

Application of these conditions to the general solution for the 

pressure yields: 



p (y,z,t) gz 

where 
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2 • In • Y n ( i) · sin l Tlm ( 1 - f;}j ) 
An[ flncos (fln) + iW sin (fln) ] 

In = ~I Yn(i)dz 

Tln = H,Q, ~ (w/c)2 - (f3n/B)2 

(5.26) 

(5.27) 

(5.28) 

and Yn(i)• f3n' Wand An are as defined by Eqs. 5.6, 5.7a, 5.11 and 5.14, 

respectively. 

5.2.5. Numerical Examples 

The expressions derived above for the hydrodynamic pressure are 

used to compute the elements of the added mass matrix and added load 

vectors arising in the matrix equations of motion governing the forced 

vibratipns of a finite length dam. The dam has a B/H ratio of 2.0, and 

a thickness and material properties as chosen before. Frequency domain 

responses to all three components of ground motion are evaluated and 

plotted (dashed line) in Fig. 5.1. On the same plots, the responses 

obtained previously under a rigid boundaries assumption are displayed by 

solid lines. 

For longitudinal ground motion (Fig. 5.la), it is observed that the 

radiation damping associated with the fluid-boundary interaction reduces 

the response amplitudes, the reductions being .primarily in the 
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Fig. 5.1 Crest Acceleration Response (Harmonic Ground Motion) 
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vicinities of the resonant frequencies of the reservoir. For transverse 

and vertical ground motions (Fig. 5.1, b and . c), the dam responses at 

excitation frequencies equal to wr, which are unbounded when the 
n 

boundaries are assumed rigid, are reduced to bounded values. This is a 

consequence of the pressures being bounded functions of excitation 

frequency when fluid-boundary interaction is included. 

5.3. Earthquake Responses of Dams 

In this section, the crest acceleration and displacement responses 

of dams to existing earthquake ground motions are evaluated. All dams 

considered thereafter have rectangular cross-sections, are 300 ft high 

and 120 ft thick. They are all made of concrete whose properties are as 

given previously in section 3.2.1.3. The only variable is the B/H 

ratio. 

The ground accelerations applied to the dam-reservoir system in the 

longitudinal, transvers~ and vertical directions are the N-S, E-W and 

verticai components of the motion recorded at the abutment of Pacoima 

Dam, during the San Fernando earthquake of February 9, 1971. Only the 

first 12 seconds of the record are used. These are plotted in Fig. 5.2, 

while their Fourier transforms, obtained through the use of a Fast 

Fourier Transform algorithm [41], are plotted in Fig. 5.3. 

Transfer functions of relative crest acceleration, for dams of 

varying B/H, are plotted in Fig. 5.4. These are computed at mid-span 

for the x and z components of ground motion, and at quarter-span for the 

y-component. Earthquake responses of absolute crest acceleration are 
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obtained by evaluating the Fourier Integrals using the FFI' algorithm 

mentioned above. These are plotted in Figs. 5.5, 5.6 and 5.7. It is 

observed that: 

1) While the change in B/H affects the transfer functions in the 

sense of shifting the resonant frequencies, with small varia

tions in the maximum values (less than 10%), it affects the 

peak absolute acceleration response to longitudinal motion by 

as much as 20% for B/H = 2.0, and 42% for B/H = 1.0 as compared 

to B/H = 5.0. For transverse and vertical motions, the peak 

response decreases respectively by 51% and 43%, when B/H 

changes from 5.0 to 2.0. 

2) For B/H = 2.0, the transverse component produces, a quarter

span peak acceleration which is 3.6% of what the longitudinal 

component produces at mid-span. The vertical component 

contribution is 23% of the longitudinal. For B/H = 5.0, the 

values are 6% and 32%, respectively. 

Transfer functions and earthquake responses of relative crest dis

placement are given in Figs. 5.8 through 5.11. The effect of B/H on the 

peak displacement response is displayed in Table 5.1, which contains the 

peak values for all B/H ratios considered and all three components of 

ground motion. The difference (in percentage) from the peak response 

when B/H = 5.0 is given in parentheses. The effect of B/H on displace

ment response is shown to be greater than on acceleration. 
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B/H Longitudinal Transverse Vertical 
Ground Motion Ground Motion Ground Motion 

1.0 0.32(82) - -
2.0 0.94(47) 0.04(71) 0.38(61) 
3.0 1.53(14) - -
5.0 1.78(0) 0.14(0) 0.97(0) 

TABLE 5.1. Peak Crest Displacement (cm) 

As mentioned at the beginning of section 2.2. the validity of 

neglecting the effect of gravity waves at the reservoir surface has been 

examined and established by J.I. Bustamante et al. [4], in case of 

longitudinal ground motion, and by A.K. Chopra [6], in case of vertical 

ground motion. 

When an infinitely long reservoir of finite width is acted upon by 

a transverse ground motion. the water behaves exactly as in the case of 

a fluid contained in a rigid rectangular tank. Thus, gravity sloshing 

modes at the free surface are excited and additional hydrodynamic pres-

sure generated. The effect of these gravity waves has been neglected in 

obtaining the expression for the pressure generated by transverse ground 

motion (see section 2.3.4). and this is validated hereafter. 

The problem of sloshing of liquids contained in rectangular tanks 

has been investigated by M.A. Haroun [43]. The natural frequencies of 

sloshing are given by: 

(5.29) 

where ~ is the height of liquid and B is the tank length in the direc-

tion of motion. For Hi = 300 ft and B = 600 ft. the above equation 

yields f 1 = 0.063 Hz and f 10 = 0.285 Hz, which are well below the 
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fundamental frequency of the 300 ft high, 120 ft thick and 600 ft long 

dam. The higher sloshing modes, which correspond to frequencies lying 

within the range of the dam frequencies, will have very small participa-

tion factors and hence are of negligible effect. 

The maximum height of sloshing can be obtained from [43] as: 

CD s 
= 4B [ an 

n2 g n=l ( 2n--1) 2 (5.30) 

where S is the spectral acceleration corresponding to w • an n 

Considering only the first ten sloshing modes, with S as obtained an 

from the response spectrum of the E-W component of Pacoima Dam record 

[44], Eq. 5 .30 yields: ITt I = 1.69 ft, which is about 0 .55% of the max 

reservoir depth. Thus, the sloshing effects are shown to be negligible 

without introducing considerable errors in the analysis of dam 

responses, to transverse ground motion. 

5.4. Hydrodynamic Pressure Response 

Wh~n the total absolute pressure (hydrodynamic plus hydrostatic and 

atmospheric) at any point in the reservoir becomes negative, cavitation 

takes place because water cannot sustain tension. To examine this pos-

sibility, the hydrodynamic pressure response to the longitudinal compo-

nent of ground motion, applied to a dam of B/H = 5.0, is evaluated. The 

pressure is calculated at ten equidistant points lying on the upstream 

dam face, along the vertical line at mid-span. At any of these points, 

the time history of the hydrodynamic pressure is computed and normalized 
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by the sum of the atmospheric and hydrodynamic pressure at that point. 

The results are shown in Fig. 5.12. 

Clearly, for the example under consideration, cavitation occurs at 

all the points except at the one just below the water surface. This is 

because the absolute value of the normalized pressure exceeds 1.0 at 

those points. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Analytical expressions are developed for the hydrodynamic pressures 

generated, in reservoirs behind short dams or walls, by the vibrational 

motion of the structure and by all three components of ground motion. 

The water compressibility is taken into consideration and solutions of 

the three dimensional wave equation are obtained under both rigid and 

flexible boundaries assumptions. 

Inclusion of water compressibility leads to a frequency dependent 

pressure. In the rigid case, the pressure becomes unbounded at excita

tion frequency equal to the natural frequencies of the reservoir. In 

the flexible case, some fluid-boundary interaction takes place leading 

to a damping boundary condition at the reservoir floor and sides. This 

allows some energy dissipation, making the pressure finite at all 

frequencies. It is observed that the reduction in the pressure response 

due to ~adiation damping is primarily in the vicinities of the resonant 

frequencies of the reservoir. 

Contrary to the two-dimensional case of infinitely long dams, the 

pressure is found to vary along the dam length, and to depend on the 

length to height ratio of the dam, with values at mid-span approaching 

those of the 2-D case, as B/H becomes large. In addition, pressures are 

also generated by the transverse component of ground motion, a feature 

pertinent to the 3-D case only. When the reservoir boundaries are 

assumed rigid, the pressure arising from longitudinal and vertical 
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motions is independent of the y-coordinate, and identical to those 

obtained under the 2-D assumption. 

Dynamic analyses of long dams retaining incompressible water are 

carried out in the time domain. Dams with rectangular cross-sections 

are treated analytically, while dams with variable thicknesses are 

discretized into finite elements. In both cases, the water is treated 

as a continuum by boundary solution techniques. The dam is modeled 

either by a shear or a bending theory. The natural frequencies of the 

system, and the associated mode shapes are determined from a free vibra

tion analysis. The effect of the presence of water is equivalent to an 

added mass, thus reducing the resonant frequencies. The mode shapes are 

also altered, especially the higher ones. A method is also presented to 

compute the earthquake response of the dam, based on superposition of 

its free vibrational modes. 

An analysis procedure, based on the Rayleigh-Ritz method, is 

developed for the dynamic response of short dam-reservoir systems. The 

dam is modeled by both shear and bending theories. The water is treated 

as a continuum, and the model can account for water compressibility and 

can approximately account for fluid-boundary interaction. The dam foun

dation is assumed rigid. 

Neglecting water compressibility, the natural frequencies and mode 

shapes are obtained through a free vibration analysis. The effects of 

the dam being of finite length are as follows: 
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1) Antisymmetric modes of vibration are developed, in addition to 

the symmetric pattern. 

2) Compared to the case of infinitely long dams, the natural 

frequencies of the structure increase as its length to height 

ratio decreases. For the shear mo~el, the increase in the fun

damental frequency is less than 8~ for B/H > S.O. The increase 

is as high as 42~ when B/H = 2.0. The trend is the same for 

the bending model. 

Including water compressibility and fluid-boundary interaction, a 

forced vibration analysis is carried out in the frequency domain, and 

the dam response to all three components of a harmonic ground motion is 

obtained. 

that: 

Examining the crest acceleration transfer functions, it is deduced 

1) When water compressibility is neglected, the hydrodynamic 

effects are equivalent to an added mass and added load which 

reduce the resonant frequencies of the system and increase the 

resonant amplitudes. 

2) When water compressibility is considered, the added mass and 

added load vary with excitation frequency the same way the 

hydrodynamic pressures do. 

3) Under the assumption of rigid boundaries, the response to 

longitudinal ground motion can be very large at excitation 

frequencies equal to the resonant frequencies of the reservoir. 
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The responses to transverse and vertical motions are unbounded 

at those frequencies. These very large or unbounded responses 

are reduced significantly when the boundaries are assumed 

flexible. 

4) The transverse component contributes a very small amount to the 

crest acceleration response, as compared to the longitudinal 

component contribution. The vertical component contributes a 

fair amount. 

S) A decrease in B/H increases the resonant frequencies of the 

system and alters the resonant amplitudes. 

Acceleration, displacement and hydrodynamic pressure responses to 

earthquake ground motions are obtained through the use of the Fourier 

Integral and a special Fast Fourier Transform algorithm. Based on the 

results of the example of Chapter V, in which the N-S, E-W and vertical 

components of the Pacoima dam accelerogram records are used as the 

longitudinal, transvers~ and vertical components of the ground motion 
. 

applied to the dam, and with compressibility of water and flexibility of 

the reservoir boundaries considered, it is observed that: 

1) For longitudinal ground motion, a decrease in B/H from S.O to 

2.0, and from S.O to 1.0, reduces the peak crest acceleration 

by 20~ and 42~, respectively, and reduces the peak crest dis-

placement by 47~ and 82%, respectively. This indicates that 

the two-dimensional analysis, currently used by designers, 
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could greatly overestimate the response, if used for dams with 

relatively small lengths. 

2) Depending on B/H, the peak crest acceleration due to vertical 

ground motion is about 20 ~ 3S'li of that due to longitudinal 

motion. The vertical motion produces a peak crest displacement 

in the range of 40 ~ SS'li of what the longitudinal motion 

produces. This indicates that both components are of compar

able level of importance. 

3) The transverse component of ground motion produces, at quarter

span, peak crest acceleration and displacement which are less 

than 8% of what the longitudinal motion produces at mid-span. 

This indicates that the effect of the antisymmetrical modes is 

insignificant. 

4) For a strong ground shaking such as the Pacoima Dam record 

(1.17g peak acceleration), cavitation of water occurs on the 

upstream face ~f the dam, at mid-span. 

Lo~al variations in the spectral content of a given earthquake may 

cause significant variations in the peak response due to earthquake 

excitation when the parameters of the dam are varied. Likewise, 

different earthquakes may result in different response behaviors of a 

given dam. Although the previous observations are based on results for 

a particular dam and a single earthquake, it is believed that the trends 

in the response would generally be the same for other earthquakes. 
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To summarize the most important conclusions: 

1) The two dimensional solution, currently used for the analysis 

of gravity dams, would err considerably if applied to a dam 

whose length is less than four to five times its height. In 

such cases, a three dimensional model must be used, and this 

could result in substantial savings in the dam cost. 

2) The antisymmetrical modes have little effect on the dam 

response, and the contribution of the transverse component of 

ground motion can be neglected without introducing a consider

able error. 

3) The level of importance of the vertical component of ground 

motion is comparable to that of the longitudinal component, and 

should be included in the analysis of dam responses to 

earthquake ground motion. 

4) The possibility of water cavitation taking place at the 

upstream face, when the dam is subject to severe ground shak

ing, has been established. 

As areas of further study, the generalization of the method of 

analysis to dams of variable thickness, modeled by a combined shear

bending theory, is straightforward. The model could also be improved to 

account for interaction between the dam and foundation. Further work is 

needed to investigate the stress response as well as the damage on the 

upstream face of the dam due to cavitation. 
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It is hoped that this study contributes to a better understanding 

of the dynamic behavior of gravity dams, and will help engineers to 

achieve a safer and more economical design of such important structures. 
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NOTATION 

The letter symbols are defined where they are first introduced in 

the text, and they are summarized herein in alphabetical order. 

A 

A 

AM 

a 
g 

a m 

B 

B 
m 

[C] 

c 

c m 

Maximum amplitude of dam motion, Eq. 2.8. 

Normalized crest acceleration, Eq. 3.28. 

Functions defined by Eq. 2.36. 

Coefficients defined by Eq. 3.12. 

Coefficients defined by Eq. 5.14. 

Added mass term, Eq. 3.69. 

Amplitude of ground acceleration. 

Coefficients defined by Eq. 3.16. 

Coefficients defined by Eq. 3. 7a. 

Length of dam. 

Functi.ons defined by Eq. 2 .65. 

Coefficients defined by Eq. 5.15. 

Modal participation factors, Eq. 3.43. 

Coefficients defined by Eq. 3.7a. 

Damping ma tr ix. 

Velocity of sound in the fluid, Eq. 2.1. 

Constant coefficients, Eqs. 2.5 and 2.6, respectively. 

Coefficients defined by Eq. 2.65. 

Coefficients defined by Eq. 3.19. 



D 

d 

d 

d 
e 

E 

{E} 

E 

e 

{FI} 

{ F ( m) } { f ( m) } 
, e 

f. 
J 

fl 
j 

x f~, fz f j, j 

G 

g 

H 
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Domain occupied by the water in the reservoir. 

Thickness of dam. 

Normalized dam thickness, d/H. 

Average thickness of element e. 

Coefficients defined by Eq. 2.36. 

Coefficients defined by Eq. 3.19. 

Modulus of elasticity of dam material. 

Vector of generalized coordinate displacements, 
Eq. 4.5. 

E/(1-\)2) 

Element number in the finite element mesh. 

Coefficients or generalized coordinate displace
ments, Eq. 4 .4. 

Inertia load vector, Eq. 4.15. 

Vectors defined by Eqs. 3.71 and 3.70, respec
tively. 

Added load vectors for ground motions in x, y 
·and z directions, Eqs. 4 .15, 4 .21 and 4 .25, 
respectively. 

Coefficient defined by Eq.3.42. 

Elements of {F1}, Eq. 4.17. 

Elements of {Fx}, {FY} and {Fz}, Eqs. 4.18, 4.22 
and 4.25, respectively. 

Shear modulus of dam material. 

Acceleration of gravity. 

Height of dam. 



H 

H
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[K*] 
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k 
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{i(l)} 
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Normalized water depth, Hi/H. 

Depth of water in the reservoir. 

Spaces of variational functions. 

Hankel's functions of order ~. Eq. 2.69. 

Length of element e. 

Integrals defined by Eqs. 3.38 (or 5.70) and 
5.27, respectively. 

Integrals defined by Eqs. 2.16, 2.47, 3.15 and 
4.9, respectively. 

Modified Bessel's function of order ~ of the 
first kind, Eq. 2.67. 

~ Eq. 2.5 

Integrals defined by Eqs. 2.20, 2.50 and 4.23, 
respectively. 

Bessel's function of order ~ of the first kind, 
Eq. 2 .68. 

Modified Bessel's function of order~ of the 
second kind, Eq. 2.67. 

Dam stiffness matrix, Eqs. 3.76 and 3.66, 
respectiv.ely. 

Generalized stiffness matrix, Eq. 3.11. 

Element stiffness matrix, Eq. 3.67. 

Bulk modulus of elasticity of the fluid. 

Vectors defined by Eqs. 3.108, 3.105 and 3.107. 

Vector defined by Eq. 3.106. 
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NH 

NW 

{N( z)} 
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p 

{Q} 
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Total mass, dam mass and added mass matrices, 
Eqs. 3.76, 3.63 and 3.73, respectively. 

Generalized mass matrix, Eq. 3.111. 

Element mass matrix, Eq. 3.61. 

Constants defined by Eq. 2.15 and 2.46, 
respectively. 

Number of degrees of freedom. 

Total number of finite elements 

Number of elements below water surface. 

Vector of interpolation functions, Eq. 3.58. 

Total hydrodynamic and hydrostatic forces, 
respectively. 

Normalized hydrodynamic force, Pd/Ps, Eq. 3.39. 

Effective force vector, Eq. 3.108. 

Hydrodynamic and hydrostatic pressures, 
respectively. 

Normalized hydrodynamic pressure, p/p , Eq. 3.37. s 

Hydrodynamic pressures due to x, y and z com
ponents of ground motion, Eqs. 2.25, 2.59 and 2.30, 
respectively. 

Constant vector, Eq. 3.64. 

Damping coefficient, Eq. 5.4. 

Constant vector, Eq. 3.57. 

Radius of tank, intake tower or arch dam. 

Overall nodal displacement vector, Eq. 3.64. 

Radial coordinate of the cylindrical coordinate 
system. 
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Vector of nodal displacements, Eq. 3.57. 

Vector of interpolation functions,Eq. 3.97. 

Separation of variable function, Eq. 2.4. 

Time, Eq. 2 .1. 

Dam deformations, Eqs. 3.26, 3.29 and 3.30, 
respectively. 

Functions given by Eq. 3.44. 

Dam displacement. 

Generalized nodal coordinates, Eq. 3.40. 

Components of ground motion in the x, y and z 
directions, Eqs. 2.22, 2.54 and 2.27, 
respectively. 

Amplitudes of the components of ground motion, 
Eqs. 2.22, 2.54 and 2.27, respectively. 

Water particle displacements in the x, y and z 
directions, respectively. 

u and v when expressed in local coordinates. 

Elements of vectors {r(t)}e and {q}e, 
respectively. 

Constant defined by Eq. 5.8. 

Variational function. 

Constant defined by Eq. 5.11. 

Separation of variables functions, Eq. 2.4. 

Deformation shapes, Eqs. 2.64 and 2.65. 

Functions defined by Eq. 5.6. 
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Bessel;s function of order p of the second kind, Eq. 2.68. 

Elements of vector {Y(t)}, Eq. 3.115. 

Vector of modal amplitudes, Eq. 3.110. 

Deformation shapes, Eqs. 2.64 and 2.65. 

Functions defined by Eq. 5.9. 

Cartesian coordinates, Eq. 2.5. 

Local z-coordinate. 

Coefficient defined by Eq. 3.5. 

Coefficients defined by Eq. 2.65. 

Reflection coefficient, Eq. 5.4. 

Separation constant, Eq. 2.5, also shear angle, 
Eq. 3.90. 

Coefficients defined by Eq. 2.45. 

Coefficients defined by Eq. 2.36. 

Coefficients defined by Eq. 3.74. 

Separation constants, Eqs. 2.5 and 2.6, 
respectively. 

Coefficients defined by Eq. 2 .15. 

Coefficients defined by Eq. 2 .46. 

Coefficients defined by Eq. 2.45. 

Modal damping. 

Separation constant, Eq. 2.5. 

Coefficients defined by Eq. 2 .14. 
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Circumferential coordinate of the cylindrical 
coordinate system. 

Central angle of arch dam. 

Constant defined by Eq. 3.102. 

Coefficient defined by Eq. 3.7b or Eq. 3.19. 

Separation constant, Eq. 2.7. 

Coefficients defined by Eq. 2.51. 

Poisson's ratio of dam material. 

Normalized z-coordinates, Eq. 3.5. 

Mass density of the dam material and the fluid. 

Normalized mass density, p/pi. 

Coefficient defined by Eq. 3.19. 

Separation constant, Eq. 2.4. 

Matrix of modal displacement vectors, Eq. 3.110. 

Slope of deflection, Eq. 3.90 • 

. d expressed in local coordinates. 

Constants defined in Eq. 3.97. 

Vector of displacement amplitudes, Eq. 3.77. 

Vibrational shapes, Eq. 2.63. 

Admissible functions, Eq. 4.4. 

Deformation shapes of the dam, Eqs. 2.8 and 

2.37, respectively. 

Dam deformations, Eqs. 3.3, 3.6 (or 3.20) and 
3.8 (or 3.21), respectively. 
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Variational function. 

0 expressed in local coordinates. 

Constants defined in Eq. 3.97. 

Circular frequency of vibration. 

Normalized frequency w/w~. 

Natural frequencies of the dam. 

Natural frequencies of the reservoir, 

Eqs. 2.17 and 2.48, respectively. 

Fundamental frequency of the full reservoir. 

Laplace operator, Eq. 2.1. 

Operator defined by Eq. 4.12. 

Differentiation w.r.t. time. 

Differentiation w.r.t. argument. 
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