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Abstract

We construct an eigenvalue problem by confining many-body system
to a bounded domain with the boundary condition that the wave function
vanishes. By changing the boundary, however, the eigenvalues of the
energy can be varied continuously. The D-matrix is defined for a series of
bounded problems with the same value for the ground state energy. The
D-matrix is related to the S-matrix, enabling us to calculate the the S-
matrix at a given energy. The Schrodinger equation for the system is
transformed to a diffusion equation by regarding time as imaginary. Ini-
tial ensemble, representing an approximate wave function, is evolved,
through Monte Carlo simulation of random walks and branching, to the
ground state ensemble. The limitations of investigation are: 1. Ingoing
and outgoing channels have two fragments. 2. The interaction between
the fragments is negligible outside the boundary mentioned above. 3.

The particles are bosons or we know the zeros of the wave function.

First we consider the scattering of a particle by a potential, which is
equivalent to the two-body problem, in one dimension. Here we use the
Poschl-Teller potential for which the exact solution is known. We use this
case to investigate a new sampling method and study of various parame-
ters. Next we consider three particles in one dimension. Here we take
interaction to be a potential well, where at least one of the interactions is

attractive so that a two-body bound state is possible.
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1. Introduction

As the number of particles in a system increases, the exact solution -
by which we mean some analytical scheme for exact calculations - of the
Schrodinger equation of the system is no longer possible and we have to
resort to approximate analytical methods or numerical calculations. If
the number of particles is very large we can resort to the methods of sta-
tistical physics. In the physics of nuclei, as well as atomic and molecular
physics - rather, chemistry - we have to deal with few-body problems,
where the number of particles is too large to deal with analytically but
not large enough to consider the methods of statistical physics. Solution
to the quantum mechanical three-body problem has been given by
Fadeev (Fa61, Fa65) and this scheme has been used for calculations
(Pa80, Pa81, Pa84). The four-body problem has been cast into a scheme
closely analogous to Fadeev's scheme for three particles (Gr67, Ya87).
But this is complicated enough and as yet no attempt has been made to
use this for calculations. Systems with still more particles are difficult to

handle analytically.

Thus we have to resort to numerical methods such as numerical vari-
ational calculus, finite difference schemes and Monte Carlo methods. In
variational methods one has to evaluate 3N dimensional integrals, N
being the number of particles in the system. Here, if the integrals are
evaluated by finite difference, the computation time increases as n3V

where n is number of divisions along each of the coordinates. We can

evaluate these integrals by a Monte Carlo technique but this we consider
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as a Monte Carlo method. Finite difference relaxation schemes, in addi-
tion to the above scaling factor of computation time, need to be relaxed.
Since a finer spatial grid requires a still finer iterative step (Is66), which
scales as the inverse square of the spatial division, the number of steps
for relaxation scales as m? The computation time in Monte Carlo
methods, however, scales as 3NN, where N, is the size of the ensemble.
Thus Monte Carlo methods are particularly efficient as the number of
particles increases. This efficiency is due to the natural ability, through

importance sampling, of Monte Carlo methods to give importance to the

regions where the wave function is large.

Mcnte Carlo methods in statistical physics have been investigated
extensively and have yielded many new results (Bi79, Bi84). Even in clas-
sical statistical physics new results have come to light. For example, a
new phase with a short range order in simple classical solids - rather,
glass - has been discovered (Ab80). The miethod has also been used in
bound state problems in atomic (An75, An76, An80, An81, Re82) and
nuclear physics. Investigations of Monte Carlo methods in scattering
problems, however, are virtually nonexistent. The difficulty in a scatter-
ing problem is that we have to deal with the complex amplitudes and the
unbounded space. This problem, however, has been solved, for the
scattering in two-fragment channels and short range potentials, by Koo-
nin and Alhassid (Al84), by connecting the scattering matrix (S-matrix) to
the D-matrix, which is obtained by solving a series of artificially created
eigenvalue problems. The problem of scattering of a particle by a poten-
tial, which is equivalent to the two-body problem, has been analyzed in
the above work. Here we consider application of the formalism developed

in (Al84) to the three-body problem. The motivation behind this,
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however, has been to solve the problems with larger number of particles.

The general problem of calculating the S-matrix for a many-body sys-
tem is not a possible task. Here we define the problem under considera-
tion by summarizing the limitations on the investigation. Though we will
not be dealing with more than three particles we shall talk in general
terms so that the motivation behind the investigation is constantly in
mind.

Fragments : If there are attractive potentials a many-body system
can compose itself into many fragments. Here we consider channels,
ingoing as well as outgoing, with two fragments. However, these frag-
ments could exchange some of the particles; i.e, we consider re-
arrangement processes. In each of the channels o, the Hamiltonian for
the system can then be decomposed as follows :

H :ha+£§—+Va 1.1

2o
where h, is the internal Hamiltonian leading to the bound state of the
fragments, the second term is the kinetic energy due to relative motion,
with the reduced mass w,, of the fragments, and V, is the potential
between the fragments. The internal wave functions of the fragments will
be assumed to be known. However, in practice we may use approximate

eigenfunctions.

Interactions : Firstly, we consider only two-body potentials. Next,
we shall assume that if the fragments are at a distance greater than d,
the interaction V, between them is negligible. This is a reasonable
approximation if the potential decays fast. Since the nuclear potentials

decay exponentially with a characteristic length of the order of a fermi,
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this is a good approximation in nuclear physics. Comparatively we may
not be as well off with regard to the physics of atoms and molecules. If
the screening of the long range potential (viz. coulomb potential) is ade-
quate, that is, the bonds are covalent rather than ionic, the accuracy will

be good.

Boson/Fermion : As discussed in Chapter-3 the method of solution
is not straight forward unless we know the zeros of the wave function. We
will be limiting ourselves to the cases where we know the zeros. Though
we may be able to deal with some fermion problems, especially if the spa-
tial wave function is totally symmetric, we will generally be limited to the

bosonic systems.

Angular Momentum : Computationally we will be dealing with one-
dimensional cases; the formalism, however, is applicable to three dimen-
sions as well. In the one-dimensional case we have no angular momentum
to deal with. The three-dimensional problem is complicated by the angu-
lar momentum. The eigenfunctions of the angular momentum are the
Legendre’s polynomials. So we know the zeros of the wave function and,
in principle, we have no problem; however, it is cumbersome in practice

and we shall restrict ourselves to s-wave scattering.

First, a brief description of the method. As mentioned above, first we
have to reduce the problem to a finite region. This is accomplished, fol-
lowing Koonin and Alhassid (A184), by the method analogous to Wigner and
Eisenbud formalism (Wi47). If the fragments are far apart, then we can
consider them to be free and we can solve the problem in the exterior
region. The region where V, is important may be enclosed by a finite
region, the interior region. If we prescribe a boundary condition on the

interior region, then the problem in the interior region transforms to an
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eigenvalue problem. With various choices of the interior region but
always enclosing the interaction region, and boundary conditions, we can
change the eigenvalue of the Hamiltonian for the interior problem. Next
we define a matrix, the D-matrix, which is calculated from the solution to
the interior region. Since we know the boundary condition we can match
the interior solution to the exterior solution and obtain the relation
between the S-matrix and the D-matrix and thereby calculate the S-

matrix.

Next we have to choose a method of solution to the interior problem.
We use PIMC, the Path Integral Monte Carlo (Ko84). For a review of vari-
ous other Monte Carlo methods see Binder (Bi79). As will be observed
later, in analyzing the scattering phenomenon, we not only need accurate
value of the energy but need accurate information about the wave func-
tion itself. The variational methods, and therefore variational Monte
Carlo, though they give good results for the energy of the eigenvalue
problem, are not adequate in giving the information about the wave func-
‘. ‘tion. Therefore, it is probably essential that we choose PIMC or GFMC
(Green’s Function Monte Carlo). These two methods are very similar and
without further justification we choose PIMC.

Next we give a brief description of the contents of the chapters to fol-
low.
In Chapter-2 we define the D-matrix, which is to be calculated from
ﬂle eigenvalue problem, confined to the interior region, and give the rela-
~ tion between the S-matrix and the D-matrix. In Sections-2.1 to 2.3 we fol-
low Koonin and Alhassid; we, however, derive the expressions for the one-

dimensional case while Koonin and Alhassid consider the three-

:'_ dimensional case. Section-2.1 defines the scattering matrix through its
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relation to the solution in the asymptotic region, which we call the exte-
rior, where the interaction is assumed to be negligible or absent. To
obtain the S-matrix we must relate the solution in the exterior region to
the solution in the interior to be computed by the Monte Carlo simula-
tion. Section-2.2 defines the D-matrix for a given interior region with a
prescribed boundary condition; herein we relate the S-matrix with the D-
matrix. In Section-2.3 we derive the integral expressions, which can be

readily evaluated with the Monte Carlo, for the elements of the D-matrix.

While in Chapter-2 we considered the theoretical aspects leading to
the formulation of the problem amenable to the Monte Carlo technique,
in Chapter-3 we discuss the algorithms for the computation. Section-3.1
discusses the Path Integral Monte Carlo method to obtain the ground
state of the Schrodinger equation. Here, the transformation of the
Schrodinger equation to a diffusion equation, simulation of the resultant
diffusion equation by random walks and branching, and the importance
sampling method due to Kalos, are discussed. In Section-3.2 we give a
brief outline of the computational procedure and in subsequent sections,
give details of some of the algorithms. To simulate the diffusion equation
we need an ensemble of points representing the wave function. To begin
with we have to have an approximate ensemble which is evolved to obtain
a more accurate ensemble. In Section-3.3 we describe an algorithm used
to initialize the approximate ensemble. This ensemble is then evolved
through the diffusion equation by simulation via random walks and
branching. While propagating the ensemble we must take care of the
local balance, the algorithm for which is the topic of Section-3.4. As the
ensemble propagates in time, the size of the ensemble drifts due to the

branching process. It is necessary to keep the size of the ensemble
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relatively stable. In Section-3.5 we describe the procedure to restore the

ensemble.

Chapter-4 considers various parameters in the algorithm and investi-
gates the possibility of optimization and use of these parameters. In
Section-4.1, for the benefit of the reader who skipped Chapter-3, we
recapitulate the procedure described in detail in Chapter-3; this recapit-
ulates various parameters to be investigated. The evolution of the
ensemble gives rise to a sequence of ensembles which are correlated.
Therefore, we have to account for this correlation in estimating the error.
In Section-4.2 we describe the procedure followed to account for the
correlation. To account for the correlation we need to calculate the
correlation length such that if we sample the ensemble at this interval
the sampled ensembles will be independent. In Appendix-3 we give a new
method to calculate the correlation length. This method is based on a
computer experiment and therefore is -empirical. Since the initial
ensemble is approximate it takes some time for the system to relax and
we should discard the ensembles during the relaxation time. Appendix-3
also presents a method to find the relaxation time. The procedures
developed in Appendix-3 are illustrated in Section-4.3 through an exam-
ple. In Sections-4.3 and 4.4 we consider the scattering of a particle by a
potential which has been treated in (Al84). In Section-4.4 we examine the
effects of various parameters on the error and thereby conclude the

optimum values and uses of these parameters.

In Chapter-5 we analyze the three-body problem, with two-body
interaction potential, in one dimension. There are three characteristi-
cally different cases depending on the type of interaction between

different pairs. Section-5.1 discusses some general features of the
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problem. In Section-5.2 we consider the case where one pair (say particle
1 and 3) has attractive potential while interaction between the other two
pairs is repulsive. This has only one two-fragment mode and two channels
are possible. We restrict our analysis to the antisymmetric channel. The
second possibility is that interaction between one pair (again particle 1
and 3) is repulsive while the other two pairs interact through an attrac-
tive potential and we have two two-fragment modes. We consider this
case in Sections-5.3 and 5.4. Once again in Section-5.3 we restrict the
analysis to the antisymmetric combination. Sections-5.2 and 5.3 solve
only half the problem and for full solution one has to solve symmetric
combination. We can, however, solve the full problem in a single simula-
tion. This is presented in Section-5.4. Analysis of the case where all
three pairs of interaction are attractive, giving three two-fragment

modes, is similar and we do not consider this case. !

Lastly, in Chapter-6 we give a summary and make some concluding

remarks.

In the appendices at the end of the thesis we give some of the details
of side issues. Appendix-1 gives explicit expressions for the three-body
problem. In Appendix-2 we list the algorithms for random number gen-
erators used in the simulation. Appendix-3 discusses the methods we use
to determine the correlation time and the equilibration time. In
Appendix-4 we give a test of the program by comparing the Monte Carlo

results with the results from a finite difference relaxation scheme.

1 Of course, the case with all pairs of particles with repulsive interacticn is not
within the limitation of the two-fragment channels since here it is impcssible to
form a two-body bound state.



Appendix: Units

We shall use two sets of conventions with regard to the units, one for the
analytical expressions and another in the numerical calculations. First,

for the analytical part, predominantly used in Chapters-2 and 3, we use,
A=1.0 ;andm = 1.0. 1.2

We may, however, keep A and m explicitly in some of the expressions if

this clarifies the physical significance.

Next the computations are performed in the following units. 2

Length Fermi(fm)
Energy MeV
Time 107*3Sec.

Phase Radians(Rad)

In these units we have
#=0.65822 ; and #2/ m, =41.47 1.3

where my, is the mass of the proton. Since mass, m, of the particle and £
enter the Schrodinger equation in the combination of #°/m we may
express the mass in terms of the proton mass and use the second expres-

sion in Eq.-1.3 for normalization.

2. These are the units usually used in nuclear physics. For further details see
Se82.
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2. The D-Matrix and Its Relation to the S-Matrix

2.1 The Scattering Matrix

Although we will be restricting ourselves, as far as the numerical cal-
culations are concerned, to the three-body problem, the computer pro-
gram has many general features necessary for the many-body case.
Therefore, the notation followed below is general. Appendix-1 gives some
details of the three-body case explicitly. Here we follow the one-
dimensional case. The formulae for the three-dimensional case are avail-
able elsewhere (Al84). The development below and subsequent sections

follow Alhassid and Koonin (A184).

We consider, as already mentioned, the case where outgoing as well
as ingoing channels have two composite fragments. Therefore, we decom-

pose the Hamiltonian into various components as,

Pg

H=he+ 22+ 7V, 2.1.1

a

where hg=hl+hZ is the internal Hamiltonian for the channel «, and
hfx, A=1, 2 are the internal Hamiltonian of each of the fragments. p, is
the momentum due to the relative motion of the fragments with the
reduced mass p, Since we may disregard the motion of the center of
mass of the system, we have, with the notation } 4 for the sum over the
particles belonging to the fragment A and )}z for the sum over the parti-

cles not belonging to the fragment 4,
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2

i 1
ha =%y 27;1_ + 2—2,4 Vij _.1.2
Pa = 21Pi — 22P; 2.1.3
o = (X1m) (P ) 54 4
4 Yamy Y emy o
1
Va = 2—2T2§ V-,;'j 2.1.5

where we have considered only two-body forces V, ;, between the particle

Jr
v and 7.

Let us now examine the contribution to the energy and the wave
function due to different components of the Hamiltonian. Let ¥* be the

solution corresponding to the ingoing channel a, with energy £. Then by

definition we have
H¥*z,t) = E¥%(z,t). 2.1.6

The internal energy e4 and the eigenfunction n# for each fragments is

given by

hind = eszms, 2.1.7

while the total internal energy e,=ed +e2 and the internal eigenfunction

Na=Tan4 satisfy
holla = €alla 2.1.8

In the asymptotic region, if the channel potential V, vanishes for r,>d,,
the solution for the relative motion of the fragments will be a plane wave

with the wave number &k, given by,
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ko= [zlu'a(E—'ea)]half‘ 2.1.9

For an ingoing channel a there will be outgoing components in chan-

nel «, as well as in channels f#a. These asymptotic states are given by,

Lim¥® = %—[emp(—ikara)—saaezp (T oT o) 1Mo 2.1.10

->00
Tﬂ

for the channel a and for f#a,

L’Lm‘l’“ = %{ka/ kﬁ}%Sﬁaexp (’Lkﬂrﬁ)nbeta 2 1.11
Tgoo

Next we define the wave functions ¥4 in the asymptotic regions as,

Lim¥y?® = ¢ & 1.
where,
Y(r) = —;—{(SQﬁexp(—ilcar)—[lca/ kﬁ]%Sﬂaexp (thgr)]. 2.1.13

The coeflicients S,g in the above formula define the S-matrix. Next we

define the diagonal matrices,

[exp (%T)]ap:6aﬁem (ik4r); and [E%]aﬁ:5apkﬁalf' 2.1.14

Now the scattering solution can be written as,

-~

V= %{exp (—ikr)—ezp (ikr )k #SEA 2.1.15

where ¥£ is the element of ¥ in row a and column 8. In three dimensions
we have angular momentum and hence must consider the spin indices.

We could, however, interpret «,8 as general indices including the spin and
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therefore no generality is lost. We shall, however, confine ourselves to the

zero angular momentum case with spinless bosons.

2.2 The D-Matrix and Its relation to the S-Mairix

As will be discussed in Section-3.1, in Path Integral Monte Carlo the
wave function is interpreted as the probability density, and the Schrod-
inger equation is simulated by propagating an ensemble representative of
the wave function. If we wish to simulate the diffusion by random walks
and branching of the ensemble, it is necessary that the domain be small
for an efficient numerical calculation. The scattering states ¥4, however,
are complex and, in addition, they cover an infinite domain. Therefore,
straightforward application of the method is not possible. Following Koo-
nin and Alhassid (Al84), however, we can define another matrix, the D-
matrix, which is computable by Monte Carlo and is related to the S-
matrix. In this section we define the D-matrix and establish the relation
between the D-matrix and the S-matrix. In the next section integral
expressions for the elements of the D-matrix, convenient in Monte Carlo

calculations, will be given.

First we make an assumption that in each channel a, for r >d,, the
potential V, between the two fragments vanishes. In practice, however,
we will have to analyze the cases where V, is negligible for r,>d,. Next,

at K,>d,, we impose a boundary condition,
Yo/ Palr =k, = fa R.2.1

where ¢, are the solutions to the problem with the above boundary condi-
tion. Now the solutions to the Schrodinger equation have a discrete set of

eigenvalues E,; te.,
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Hol = Epog. 2.2.2

Though the spectrum of the E, is discrete, they are functions of
fo and K, By varying the values of f, and K, we can vary E, con-
tinuously. Solution to the ground state of the above discrete eigenvalue
problem can be readily calculated by the method of Section-3.1. Since
we will be restricting ourselves to the wavefunctions without any nodes
and to the cases F,>d,, we will be confined to the values of energy below
an upper bound. In principle we will not be restricted by a lower bound
on the energy. However, if we wish to have an efficient method we have to
confine ourselves to smaller values of K, by varying the value of f,. Here
we restrict ourselves to the boundary condition ¢,=0. This will put a

practical limit on the lowest energy we can handle efficiently.

To see how the above solution in the interior region is related to the

scattering solution, consider the Schrodinger equation,
H$* = Fdc 2.2.3

with the condition that ¢ vanishes at rﬁ=R3 in all the channels f#a, «
being the incoming channel. That is, if gog‘ are the asymptotic wavefunc-

tions of the relative motion, then
¢f(rg=R§) =0; for Ba. 224

This defines the problem uniquely if we fix the energy to be E. If we
impose a boundary condition on channel a the energy spectrum will
become discrete. However, we can adjust the value of R =R} such that

the ground state energy is E.

Next we define the D-matrix through the asymptotic form of ¢g as
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follows,
pa = -’i—coslca(ra—l?g) + Dgasink ,(r,—R2) 225
and
¢§ = Dpasinkg(rg—Rg) ; fo 226

or in a matrix form, analogous to the case of scattering states '@
® = klcosk (r—R%)+Dsink (r —R9). 227

The elements Dg, depend on the response of the interior region to the
incoming wave. The elements of the D-matrix are to be calculated by a
Monte Carlo method through the integral expression for them to be given
in the next section. Now for a given energy E, and therefore k,, ¢& can
be made to vanish at Rl #RQ where R? is the point at which we make ¢f
corresponding to an incoming channel 8 vanish. From the above asymp-

totic formulae we obtain for the elements of D-matrix,

Doy = —cotk (R} —RD) 2.2.8
ka
D = 1—&0&‘ :  B#a 29 0
o ,Cﬁ a'rﬁ 7'#=Rg ' : W

For a given energy E there are N independent solutions corresponding to
each incoming channel a. These independent eigenfunctions ¢§ form a
complete set of eigenfunctions at this energy. Therefore, we can obtain
the scattering solutions ¥§ by superposition of gg. In matrix notation we

have,

v =9B 2310
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where the matrix B is to be found by comparison of asymptotic forms of
{(7 and . This also establishes the relation between the D-matrix and the

S-matrix. These relations are (Al84),

B = (—ik '+ D) lexp (—ikR°) 2.2.11
and,
S = —exp (—ikR°) i@&eszp (—ikR%). 2.2.12
1+ik D%

The S-matrix is unitary. From this it follows that the D-matrix is real and
symmetric and has N(N + 1)/2 independent elements. As described in
the next section, these can be calculated by Monte Carlo simulation in
the interior region defined by r,<R} and rﬁs}?g, the wavefunction van-

ishing on the boundary.

2.3 Integral Expressions for the D-Matrix

First we state an integral identity proved by Alhassid and Koonin
(Al84). As already mentioned before, here we follow the one-dimensional
case, while in (Al84) a three-dimensional case is considered. In the
appendix, at the end of the section, we point out the changes necessary
to convert the formulae to the three-dimensional case. Let ¢ and y be
translationally invariant many-body wavefunctions. Asymptotic forms of

these in all channels § are,
X > Xg(Tg)ng 2.3.1
¢ - Gﬂp("‘ﬂ)ﬂp- 2.3.2

Let K be the total kinetic energy operator and lbe the range of motion of
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the center of mass. Then,

.09 Oxg
{Xﬂ 67_; ] BTg ]rﬁ=}?ﬁ R.3.3

. . F2
Kd — ®Kx']dl = —IT
SIx X'] e

where the integration is over the domain r,</,. Below we use this iden-

tity to get the integral expressions for the elements of the D-matrix.

First consider the diagonal elements D,,. The Eq-2.2.8 shows that we
can calculate D4, once we have the value of the energy. We impose the
boundary condition that the solution vanish on r,=R} and'rﬂ:Ré’ with
p#a. Let & be the eigenfunction of the complete Hamiltonian H=K+V

with energy F'; 1.e.,
Hd = Ed. 2.3.4

Let x be the eigenfunction of the partial hamiltonian Hy=K+V, with

energy Fo which is soluble. That is,

Now the right hand side of the identity (2.3.3) is zero and we can readily

obtain,

[x(v—vo)ddL |

AE:E—EOZ I(I,dl
X

2.3.6

We can use y for the importance sampling and readily obtain the value of
the energy by Monte Carlo. We can therefore calculate k£, for the relative
motion to obtain D,, given by,

Deag = ——El—cotlca(}?& ~R9). 237
a
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Next we take up the off-diagonal elements Dg, Here we take $=9¢,
the solution corresponding to incoming channel a. We choose x to consist

of only the asymptotic component in channel g given by,
Xf = xgng 2.3.8

where, xg are arbitrary functions of 74 Here the integration region is
given by rﬁSRg for f#a and r,<F.. Since ®* vanishes on the boundary

we get, for f#a,
2
f [P Kd*—02KxFldl = -gLTﬁzkﬁDﬁax;(Rg) 2.3.9

and for 8 = «,

h2

JOeKS -8l = S P IR, 2310
We also have,
Kd% = (E-V),; 2.3.11
and,
KxP = [(eg=V+Vg)+KglxP 2.3.12

where Kp is kinetic energy due to the relative motion in the channel g.
Now dividing the expression for f#a by the expression for f=a we get the

integral expression for the off -diagonal elements to be,

7 Xa(Ra) <(E-eg—Vs—Kg)Xgng>
tok gsink o(RE—RQ) xg(R§) <(E—eq=Va=KyXaMa>

Dﬁa:— 2.3.13

where <...> indicates average over the distribution ®*. Here we have
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assumed that the internal wavefunction for the fragments are known. In
practice, however, we may have to use approximate solutions. Now these
integral expressions can be evaluated by Monte Carlo. The three dimen-

sional expression for Dg,, derived in (Al84) is the same as above if we take

the form of xf as K;&— Next we have to choose the functions xg. This
8

choice is governed by the particular problem at hand. Below we consider

some cases of interest.

First consider the problem of scattering of a particle by a potential
V(x). Here we have two channels: 1. The particle on the left hand side of
the potential, 2. The particle on the right hand side of the potential. The
problem is equivalent to the two-body problem and the internal wave
functions can be dispensed with. We introduce the nodes at z=a and
z=b. We consider the particle impinging from the left. We choose
x1=z—b and x,=z—c and recover the result of (Al84).!

noo= 1 <(E-V(z—a)>
"7 ksink <(E-V)(z—b)>

2.3.14

In each channel we will have waves coming from the left or from the
right. We can superpose these solutions to get symmetric or antisym-
metric combinations. The wavefunctions for the symmetric and antisym-
metric combinations are orthogonal to each other and do not mix since
the Hamiltonian does not have a parity mixing term. We may therefore
solve the complete problem by solving the symmetric and antisymmetric
cases separately. Here we impose nodes at |r,|=R} for the channel «

and at ]'rﬁl=}?g in all other channels. Of course, for antisymmetric

1. The treatment of this case in (Al84) is scmewhat different, however, but one
can cast this in terms of the D-matrix formalism and compare the results.
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combinations there will be an additional node at r,=0. Here we choose

xg=constant in all the channels. This gives,

,u,akﬁsim’ca(}?,} —RS) UNE=ep—Vlia>

Dﬁaz"" 2.3.15

Lastly, for all 8 we consider 74<0 and 75>0 as two separate channels
analogous to the first case considered above. Here we choose nodes at
R} and —R? along r,, and at :’::Rg along rg. To calculate Dg, we choose

the functions xg and x, to be,
Xa=(Ta+R3) 2.3.16

Then the expression for Dg, is given by,

Ig (RA+RQ) <(E—eg—Vg)(rgtRIIng> S

Dg,=— - 2.
PO pgkpsink (RE+RY)  2RY  <(E—eq—Vo)(ra+R)ne>
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3. Path Integral Monte Carlo (PIMC)

3.1 Monte Carlo Solution of the Schrodinger Equation

There are several ways of applying Monte Carlo methods (Ce79) to
estimate the expectation values of operators for many-body quantum
mechanical systems. First, consider the Variational Monte Carlo. The
Schrodinger equation for a stationary state is an eigenvalue problem. We
can recast this as a problem of minimizing the expectation value of the
Hamiltonian with subsidiary conditions. As is well known, the subsidiary
conditions are orthonormality conditions for the eigenfunctions. Here we
construct an ansatz for the wave functions with unknown parameters and
determine the parameters which minimize the energy. A Monte Carlo
technique is then used to estimate the integrals involved. This method,
however, gives an approximate result irrespective of the statistics. More-
over, the variational techniques are not particularly good in obtaining the

accurate wavefunction.

Another approach is the Green's Function Monte Carlo (GFMC). Here
the iterative process of obtaining the ground state wave function from an
initial approximate wave function is cast as an integral equation involving
the Green's function of the time independent Schrodinger equation.
Therefore, in principle, we need to know the exact Green’s function of the
system. We may, however, approximate the Green's function and from
successively better approximations extrapolate to the exact Green's

function.
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Here we follow yet another method (Re82). The Schrodinger equation
is transformed into a diffusion equation, which henceforth will be
referred to as the Schrodinger-diffusion equation, by regarding time as
imaginary. Then the path of the ensemble representing an approximate
wave function is calculated to obtain the representative ensemble of the
ground state wave function through Monte Carlo solution of the diffusion
equation. Here the estimator for the energy is unbiased and the errors
are due to limitations on computer time, and truncation of the space and
the potential, if the potential range is infinite, these errors being com-
mon with the methods mentioned above. We now describe this method in

a greater detail.

Let EgEEs..... be the eigenvalues of the Hamiltonian and
Ug Uy, Us..... be the respective eigenfunctions. Then any function, in par-
ticular the initial approximate wave function, satisfying the boundary

conditions of the system can be decomposed into these eigenfunctions as,

V(t=0,z) = 3 a, U, (z). 3.1.1

n=0

At any other time ¢ the initial wave function evolves to,

Y(t,z) = ), e, Up(z)exp(—iE,t). 312

n=0

Here and elsewhere, in equations, we set A=1. Now if we shift the energy
levels by Fy and consider the equation in the imaginary time 7=-if we

get,

Y(r,z) = Y a,U,(z)exp[—T(E,—Ey)]. 3.1.3

n=0
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We see that the components corresponding to all the energy levels except
the ground state are damped and, if the initial wave function is not in the

space normal to the ground state, we have,

Lim¥(7,z) = agUp(x). 3.1.4

T—+c0

Thus the evolution of the wave function in imaginary time domain leads to
the ground state wave function.! This is the basis of the Path Integral

Monte Carlo (PIMC) or Diffusion Monte Carlo.

To see how the evolution is to be simulated by Monte Carlo, consider

the Schrodinger-diffusion equation for a many body system.

0¥ (z, 1) _ [ £2

\vz4 -
p — +Ep—V(z)]¥(z,7) 3.1.5

Here z represents all the coordinates and V(z) is the potential. Further,
we have shifted the energy by an arbitrary value of £y. Fj is the value we
want to determine and therefore we must use a trial value which should
be updated as the calculations proceed. This does not change the possi-
ble accuracy of the methed since, for large values of 7, components other
than ground state will be damped. But an energy shift other than £, will
contribute to the driit of the ensemble size. This can be remedied by
updating the ensemble if the drift is undesirable. If the term Ep—V(z)

were to be absent, Eq-3.1.5 is simply a diffusion equation in a hyperspace
2
with a diffusion constant ngli;;_' As is well known (Ch43, Wa54), this can

1. If we chose the initial wave function orthogonal to the ground state we reach
the first excited state in the limit. This suggests a method to deal with higher en-
ergy levels. In treatment via Monte Carlo, however, we must ensure that the
representative ensemble does not have any compconent of the ground state at
each iteration step.
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be simulated by a random walk of an ensemble of "particles” in the
hyperspace. The Ep—V(z) term gives rise to rate of change in the popu-
lation of the ensemble, as can be seen if this were to be the only term on
the right-hand side of Eq-3.1.5. A population of N after an interval of ét
changes by 6 N=(Ep—V)Nét. This can be simulated by branching, that is,
creating a replica or destroying the old member with probability
(Ep—V)d7, creating if the term is positive and destroying if the term is

negative.

In quantum mechanics the wave function is the amplitude and the
square of the amplitude gives the probability density. The value of the
amplitude, therefore, can be either positive or negative. As a matter of
fact, it could be complex, though there is no loss of generality in assum-
ing the eigenfunctions of stationary states to be real valued. The Monte
Carlo simulation of the diffusion equation by random walks treats the
wave function as a probability function and must therefore be positive. If
the wave function has regions of negative values, however, we can simu-
late this by changing the sign of the whole wave function which is
equivalent to changing the phase of the amplitude by a constant. This
allows us to solve the equation separately in positive and negative
regions. If we know the zeros of the wave function this would be straight
forward, but the problem is we generally do not know the zeros. Though
one can do this by trial and error, an elegant solution to this is not
known. This gives rise to a serious problem in treatment of the fermions
since the wave function must be antisymmetric on exchange of two iden-
tical fermions. If the antisymmetry is forced on the spatial part of the
wave function, there will be regions of negative amplitudes. As already

mentioned in the introduction, we here consider the cases in which the
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amplitude is positive throughout or we know the zeros from cother con-
siderations such as symmetry of the problem.

Next consider the ground state expectation value of the operator 4

in coordinate representation,

U A U dx
cas = 4 V@A) Uo(z) By
S Ugz) |%da
which has an unbiased estimator,
= . 1 &
A = L’Lm'—"z Uo(xi)A(xi) Uo(mi) 317
N-= N /2

where z; are chosen from the uniform distribution in the range of

integration and Uy(z) is normalized to,
S1Uo(z)|%dz = 1. . 3.1.8

It may be observed, however, that the contribution to the integral is not
of equal importance over the range of integral. For example, if Ug(z) is
zero at some point, sampling at this point does not contribute at all.
Thus sampling according to the importance of the contribution to the
integrals may have to be resorted to. This suggests that it may be possi-
ble to choose z; from a weighted distribution to improve the efficiency.
To investigate this we may recast the expression 3.1.6 for the expectation

value as follows.

S1vr@) P o ))|2 (z) Uolz)dz
CA> = 349

f| Uo (z)|%dz

Now if we sample z; with weight UTZ(x), we will have higher contribution
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from the points where the value of Ur(z) is higher. We may now be able
to adjust Up(z) such that efficiency is maximized; 7.e., the variance is
minimized. However the function which minimizes the variance - actually
the variance becomes zero - turns out to be Up(z). But this is a Catch-22
situation, since this is exactly what we want to solve for. All is not lost,
however. We learn that if we sample z; from a distribution nearer to the
actual distribution we will improve the efficiency significantly. We may
use for Ur(z) an approximate solution to the problem which is obtainable
analytically or otherwise. At least we can make some guess from the
qualitative analysis of the system. This procedure is called Importance
Sampling, where sampling is weighted so that the points of greater
importance are sampled more frequently. This is the procedure followed
in Variational Monte Carlo where Ug(z) is also approximated by Ur(z).

The unbiased estimator in that case is,
- .. 1K
A = Lim-==Y Ul (z;)A(z;) Up(z;). 3.1.10
N~ N2

While the above method of importance sampling is applicable in cal-
culating integrals by Monte Carlo, we want to use importance sampling to
solve a differential equation. The solution to the Schrodinger-diffusion
equation gives the distribution of ensemble with density Uy(z). But we
wish to have the distribution according to |Ug(z)|? This suggests that
we may be able to improve the efficiency if we were to find a distribution
closer to | Ug(z)|?. So, following Kalos (Ka74), we consider the function

$(z,7) defined by,

®(z,7) = Up(z)¥(z,T). 3.1.11
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The equation for the evolution of ®(z,7) is,

0%(z,7) _ DV (z,7) — [EL(z)—Ep)®(x,7) — DV-[®(z,7)F,(z)] 3.1.12

ot
where,
HUT(I)
E,(z) = ————— 3.1.13
and
ZVUT(.'E)
Fq( 1= Up(z) 3.1.14

Here we make several observations :

Comparing with the equation for the Brownian motion (Ch43, Wa54) in
the presence of a drift, we see that Fj (z) is the quantum analog of the
classical force responsible for the drift. In the regions of small value of
Uyp this force is large. This drives away the ensemble members from this
region, thereby hastening the approach to equilibrium. Thus, while in
calculation of the integrals the efficiency is increased by sampling the
points of importance more often; here the efficiency is improved by

accelerating the equilibration process.

E;(z) is the energy calculated using the trial function Uy. We may
here observe that the branching now depends on £;—FE7p rather than on
Ep—V(z). This is rather convenient since, even if the potential is singular
at points, we can get rid of the singularity in the £; by an appropriate
choice of the trial function and, as a matter of factb, for true wave func-
tion, this is just a constant, E, everywhere. This will reduce the drift in

the ensemble size. The asymptotic solution for &(z,7) is,
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éiz;@(x,'r) = Up(z)Up(z)exp [—T(Eo—ET)]. 3.1.15

This suggests that we may take the value of the Fy as the ground state
energy once the ensemble stabilizes. A good estimate of the stability of
the ensemble requires a large ensemble. Further, it is also necessary
that the value of E7 be the same over many iterations. For the above
reasons the method is not particularly efficient. However, the average

value of the Ej, is also an unbiased estimate of £}

Finally some comments on the choice of the trial function. The best
trial function is Uy(z). So we should choose trial function from the best
analytic approximation we can make. We should incorporate all the quali-
tative features such as symmetry property, curvature, cusp behavior and
boundary conditions. If the potential is singular we can analyze the local
behavior of the Schrodinger equation and remove this singularity from
the £;. This then can be continued in the far region appropriately.

Choice of Ur(z) should be such that the E; has smooth behavior. ®

3.2 An Outline of the Procedure

In this section we give a broad outline of the computational pro-
cedure and in subsequent sections we give the details of important algo-
rithms. A reader not interested in the details of the algorithms should be
able to jump, we hope without loss of continuity, to Chapter-4 at the end

of this section.

2. If we were to disregard the evolution of ¥(Z,T) and assume Ur(z) as the
wave function we recover the variational Monte Carle. This indicates that PIMC is
an imprevement over the variational Monte Carlo.
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a. Fix the values of Rg for all open channels such that the interac-

tion between the fragments is negligible for rg=FR.

b. Next we choose a particular channel a. Choose a value for
Rl=RQ. The Monte Carlo calculations are to be performed inside the
region rpsz’?ﬁ, where Ra=R& for channel «a, and R5=R,§’ for B#a. The

boundary condition is that the wave function has a node at the boundary.

c. Next choose the trial wave function Ur. Further, we should know
the internal wave functions 74 and internal energy eg for all the values of
g. If we do not know the internal wave function we may construct an
ansatz with some parameters and determine these parameters such that

the energy is minimized. Thus we also obtain the internal energy.

d. We now initialize the ensemble. This ensemble must be as good a
representative of the true wave function as possible. Here we have two
different alternatives. Firstly, we may have no information other than
the approximate wave function UT.' Here we initialize the ensemble which
is representative of Up. Section-3.3 gives the details of the algorithm for
this case. We will also have an opportunity to determine the effects of
various parameters. When we vary the parameters, the ensemble with
previous parameters could be a better representative of true wave func-
tion in contrast to the one generated by using Up, if the change in the
parameters is small. Here we will use the ensemble from the previous

rumn, thereby reducing the relaxation time.

e. Now consider the mth (the value of m is set to 1 at the begin-
ning) configuration of the ensemble. We propagate the configuration by
simulation of the diffusion equation by the random walks in the presence
of the quantum force F,. That is, we find the position of the particles in

the configuration at 7+67 given their position at v. However, we cannot
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accept the motion every time for the following reason. The probability
for a configuration at x to move to ' is to be properly balanced by the
probability to move from z' to . To accomplish this we need to know the
exact Green’s function for the Schrodinger-diffusion equation. Since we
do not know the exact Green's function we are forced to use an approxi-
mate Green’s function, which is exact as d7 approaches zero. Due to
inaccuracy in the Green's function the proper balance of motion between
z and 7' is not maintained. The algorithm to evolve the position of the
member and the method to ensure the detailed balance are described in

Section-3.4.

f. Next we consider the branching. As described in Section-3.1, in
addition to the random walks, we need to take into account the change in
population of the ensemble. This change in the population, however,
could be fractional. The fractional part of the change is treated as the
probability to generate a new member; this is known as branching. In
addition to branching we must also discard the configuration if it reaches
outside the region defined by r,<Fg. In Section-3.5 we give the algorithm

for the above.

g. We now increase the value of the m by unity and the steps e and {
are repeated for all the configurations. Thus we obtain the ensemble at a
time 7+6T1 from the ensemble at 7. Once we obtain the new position of
the configurations; we can calculate the contribution to the expectation
values of the energy, numerators and denominators of the D-matrix ele-
ments and thereby obtain an estimate of the D-matrix elements at a par-
ticular time. It may be noted, however, that we are calculating the ele-
ments Dg, with a fixed; i.e., we get a row a of the D-matrix. We have to

choose a different value of a in step-b to calculate another row.
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h. As the ensemble evolves the size of the ensemble drifts. We must
take care that the ensemble does not become too large or too small.
Therefore, we must restore the size of the ensemble to a desirable value.
We prescribe the upper limit, Ny, and the lower limit, Nz, and randomly
destroy required number of members or create new members, as
required, through random selection from the existing ensemble. In
Section-3.5 we discuss the details of the algorithm for restoring the

ensemble size.

i. Now we go back to the step-e and repeat the steps-e »h and thus

integrate the diffusion equation with an integration step oT.

j. The value of the energy depends on the choice of the value of £} .
By varying the value of R} we obtain the D-matrix elements at different
energy. If, however, we wish to obtain the D-matrix at a particular
energy, we must iterate steps-b6»1. Our aim being general investigation

we calculate the D-matrix at different energ'ies and store the information.

k. As mentioned before the steps-b »j give a particular row of the
D-matrix. To calculate other rows of the D-matrix we must repeat the
steps b »7 with all the possible choices of a. To calculate the S-matrix at
a particular energy we need the D-matrix at that energy. In general,
choice of R} in different channels to give the same energy is to be done
by trial, but if we store the D-matrix for many closely spaced energies we
can approximate the D-matrix for intermediate energies by interpolation.
Once we obtain the D-matrix the calculation of the S-matrix, using the

equation-2.3.12, is simple.

The above calculation gives us a sequence of values of the D-matrix
element with an interval of 67. Taking an average over this sequence is

equivalent to summing over many ensembles. However, we have to pay



-32 -

attention to two aspects in estimating the values. Firstly, since we may
be initializing the ensemble approximately we should not sample the cal-
culation at the beginning. We must disregard some initial integration
steps so that the system has approximately reached the equilibrium.
Secondly, the sequence of ensembles obtained during the evolution is
correlated. We, however, must average over uncorrelated ensembles.

These two aspects are considered in Chapter-4.

3.3 Initialization of the Ensemble

Here we explain the procedure to initialize the ensemble which is
representative of the t;"ial function Ujp. The probability density,
corresponding to the wave wave function Uy, is given by | Uy |% There are
several methods of constructing an ensemble with a given distribution

(Ha64). Below we describe the algorithm used in the calculations herein.

We choose the first configuration arbitrarily, although it is advanta-
geous to choose this such that the probability density for the
configuration is significant. Now suppose that we have chosen m
configurations. We denote the coordinates of the conﬁguration by z(m),
Choose the trial coordinates for the (m+1)th configuration from the uni-
form distribution in the region. The relative probability for the accep-
tance of (m+1)th configuration in comparison to mth configuration is

given by,

| Up(zm+D)I?
T Uplzt™)E

3.3.1

P, is the conditional probability for choosing the trial configuration

given that mth has been chosen. Thus we should accept the trial
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coordinates for the (m+1){h configuration with the probability Z,.
Hence, if F.>1.0 we should accept the coordinates. If P.<1.0, however,
we generate a random number K, with the uniform distribution in the
range (0,1.0) and accept the coordinates if P,.<R. If P,>R we choose a
new set of coordinates and repeat the test for the acceptance. Some-
times it may happen that the number of trials required is too large. We
restrict ourselves to a maximum number of trials, after which we accept
the coordinates even if the test fails. There is not much lost in the above
restriction since this is not the ensemble we ultimately want but only the
initialization, and it will be evolved to the desired ensemble. We choose
the maximum number of trials as five. The adequacy of this number can
be seen from the average number of trials required to generate a

configuration, which was about three.

3.4 The Detailed Balance and Evolution of the Ensemble

The Eq.-3.1.12, the Schrodinger-diffusion equation, determines how
$(z,7), defined in 3.1.11 evolves. If G(z',x), the Green’s function, is the
solution to Eq.3.2.12 with the boundary condition G(z',z)=6(z—x'), then

we can write the solution to ®(z,7) in integral form as,
d(z ,7+6T) = fG(x' ,Z,07)dx ®(x,7). 3.4.1

G(z',x) gives the transition probability for the particle at £ to move to z'
in time 67. In general, the exact solution to G(z',z,67) is not known, how-
ever, and therefore we must resort to an approximate soluticn. If the
local energy Ej(z) and quantum force F; are assumed constant during

the integration time 67, we get an approximate solution to G as,
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G(z,x') = Nyezp ([—(z' —z—DFy 61)%]/ 4D 67) 3.4.2
where,

N, = (4nDé7)~Me/ 2exp (—67[EL (x)+Ey (' )]/ 2—E7) 3.4.3

where, N is the number of configurations in the ensemble and d is the
dimensionality of the space. The above approximation becomes exact in
the limit 67-»0. The Green’'s function above constitutes two parts, the
Gaussian part and the normalization constant, ;. The normalization con-
stant is different than the regular normalization for the Gaussian. The
extra factor in N, accounts for the change in the population of the
ensemble. This part is to be used for the branching, 2.e., creation and

annihilation of the member as it is moved.

The Gaussian part of the Green's function shows that the particle j,

of the configuration m, moves from z to z' given by,
:z:'}m) = :x:j("‘)+D(Fq)j OT+X. 3.4.4

The second term above is the drift due to the quantum force F; and x is
Gaussian random number with zero mean and variance 2Dd7. We must,
however, pay attention to the detailed balance before accepting the
movement. That is, we should compare the transition from z-»z' with the
transition ' »x. For this purpose we define,

Uf(z')G(z »z)

Wz, = - 3.4.5
(=2) = D))

If the Green’s functions in the above expression are exact, the value
W(x',x) is unity. But the Green's function we use in the computation is

approximate due to the finite integration step. Therefore, we need to
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modify the Green's function such that it restores the detailed balance. If

we replace the Green’s function in the Eq.3.4.5 by A(z,z')G(z ,z'), where
Az’ ) = min(1.0,W(z' ,x)), 3.4.6

then the effective W(z',z) is unity. This is incorporated in the calculation
by accepting the movement of the configuration with probability 4(z',z).
That is, if the value of W(z',z)=1.0, we accept the move. If W(z' ,z)<1.0
then we generate a random number between 0 and 1.0 and accept the

move if the random number is less than W(z',z).

3.5 Branching and Restoration of the Ensemble

The part of the normalization factor N,, of the equation 3.4.2, is the
usual normalization of the Gaussian distribution. The remaining factor

gives the multiplicity of the configuration. The multiplicity part of A} is,
M = exp[—67([Er(z)+E.(z' )]/ 2—Ep)]. 3.5.1

After the evolution of the configuration we have to retain M copies.
However, M has an integer part M, and a iractional part M,. First con-
sider the case M>1.0. The integral part is handled by creating M;,, —1 new
copies. The fractional part is treated as the probability of creating a new
copy. This is accomplished by generating a random number between 0.0
and 1.0 and creating a new copy if the random number is less than Mg,.
If M<1.0, however, we treat this as the probability of survival of the
configuration. Once again we generate a random number between 0.0 and

1.0 and destroy the configuration if the random number is greater than

M.
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If the size of the ensemble, N,, drifts too far, we restore N, to the
desired value, Ng. If the ensemble crosses a prescribed upper bound,

Ny, extra configurations are deleted by random selection as follows.
Algorithm-A
Al. Generate a random number 7, in range 0 to 1.0. Define S=
integer part of (1+7,/N,).
AZ2. Generate a random number 75 Define /= integer part of
(1+72N,).
A3. Redefine S=(S+1)mqn,
A4. Delete the configuration S by repacking the ensemble by setting
all the configurations >S5S to (i —1)th configuration. Set N,=N,—1.
A5. Repeat steps A3 and A4 until N,=N,

If the ensemble crosses the lower bound, #;, then we create a required
number of configurations by randomly selecting from the existing ensem-
ble as below.
Algorithm-B
B1l. Generate a random number 7r; in range 0 to 1.0. Define S=
integer part of (1+7,N,).
B2. Generate a random number 75 Define /= integer part of
(14+75N,).
B3. Check whether [ is a prime relative to Ng, i.e., (Ng)moq.7=0. If the

check fails go back to the step B2. Otherwise proceed to B4.
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B4. Redefine S=(S+/)moan, -

BS. Create a new configuration by copying the SthA configuration and
adding it to the end of the list.

B6. Repeat steps B4 and B5 to create Nyg—N, new configurations.
B7. Now set N, =N,

In steps A1, A2, Bl and B2, presence of unity in expressions for S and [ is
to ensure that they are not zero. Here we may remark that, while ran-
dom destruction of the configurations, beside changing the size, does not
change the distribution of the ensemble, the creation of new
configurations essentially upsets the distribution. In algorithm B it is
important to check that / is relative prime with respect to N,. If this is
disregarded then there is possibility of repetitions among the newly
created configurations. This will create, as was observed, imbalance in

the distribution of the ensemble.
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4. Error Estimation and Computational Parameters of
the Algorithm

4.1 Parameters Artificial to the Algorithm
First let us recapitulate the procedure:

We initialize an ensemble of size N,, either from a previous run or gen-
erating anew a representative of initial wave function Uy, the function for

importance sampling.

We also initialize Ep, the shift in the energy. The value of Ep can be
obtained either from a previous Monte Carlo calculation of an approxi-
mately similar system, a variational estimate, or an analytic approxima-
tion. In any case we can set this to be zero if any guess is difficult. An
inaccurate value of £y, however, will require a longer relaxation time.

The energy shift Ey is updated at an interval of Ny steps.!

Now the evolution of the ensemble is calculated with an integration step
0T1. The energy, which is the expectation value of the Hamiltonian of the
system, is calculated for this ensemble. The expectation values of other

operators necessary to calculte Dg, are also calculated.

As the ensemble evolves, N, drifts. If the ensemble reaches the upper
limit Ny or the lower limit N, it is updated to Ny as described in
Section-3.5, by destroying the configurations selected at random or

creating new members through a random selection from the existing

1. The new value cf E'T is taken to be half of the old value, plus half of the mean
of the expectation value of the Hamiltonian during Ny iterations.
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ensemble.

The inegration is carried out for an adequate number of steps and expec-
tation values at each of the iteration are calculated. Initial Np iterations
are discarded to allow the the system to relax from the initial condition.
How this number is determined is discussed in Appendix-3. The average

over the rest of iterations is taken as the estimate.

To calculate the error we calculate the second moment about the aver-
age. The consecutive ensembles during the evolution are correlated and
in estimating the error they cannot be treated as independent. We have
to take into account the correlation "length"” Ng at which the ensembles

become uncorrelated. This is discussed in greater detail in Section-4.2

In addition to the above, the problem in an infinite domain is reduced
to a finite domain which gives rise to truncation of the potential if the
range is infinite. The error due to the truncation of the potential can not
be dealt within the Monte Carlo methoed, however, and we have to resort
to analytical methods for an estimate of this error. The error due to the
finite time step can be reduced by extrapolating to infinitesimal time
step from the results at several different time steps. We will not deal
with the truncation aspect mentioned above. We will, however, for some
illustrative cases, extrapolate to the infinitesimal time step through a

linear least square fit.

In subsequent sections of this chapter we study other parameters
viz: Np and Ng, Ny and Ep, Ny, Ng and Ny, in a greater detail. Np and Ng
are parameters characteristic of the system. NpdT is the time required
for the system to relax to the ground state from the initial condition and
will depend on how well we can initialize the ensemble and how much the

ensemble gets destabilized by updates while restoring the size. NgdT is
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the time required for the random walk part of the diffusion to wash out
the effects of the quantum force F;. All the other parameters listed
above are artificial to the algorithm. These parameters do not affect the
theoretical possibility of improving the accuracy, which is only limited by
the computer time available. Nevertheless we can investigate whether
they can be optimized or used to obtain other information about the sys-
tem. This is the subject matter of this chapter. We propose to use the
information, experimentally found here for a simple soluble example, in
subsequent cases where we seek to solve the problems which are other-

wise difficult or impossible to solve.

42 FError Estimation

An accurate estimate of the expectation value of an operator
requires a large ensemble. Alternately we may increase the accuracy by
averaging over many independent ensembles which together form a large
ensemble. These ensembles can be obtained from the iterations in
Diffusion Monte Carlo after the system has relaxed. While we need
independent ensembles for the purpose, the series of ensembles obtained
in the Diffusion Monte Carlo are correlated. Therefore we cannot esti-
mate the error on the basis of the ensembles considered as independent.
This can be readily seen from the fact that by reducing the integration
step we increase the number of ensembles and if we estimate on the
basis of all the ensembles we artificially reduce the standard error

without averaging over many independent ensembles.

If the ensembles are sampled at a sufficient interval, Ng, they will be
uncorrelated. We can then find the error based on the ensembles sam-

pled at an interval Ng. One way to determine Ng is to examine the
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correlation of the energy, assuming that the uncorrelated energy implies
uncorrelated ensembles. The correlation coefficient, Cyj , is calculated
by shifting the series by n units and calculating the correlation between
the overlapping N—n points. That is, we define Cy , as,

N-n

2 €i€i+n

CN,n = N = N—m 42.1
[2 feilz]%[ 2 |9i|2]%
i=n i=1

where e;=FE;—FE. Now, for example, consider Figure-3. Notice that at
n=56 Cy, has first minimum. We then take Ng to be 56. Blindly taking
Ng as n at the first minimum of Cy ,, however, could lead to an errone-
ous result. For example, consider the series of points obtained from
sin(wT). Therefore, it is necessary to make sure that Cy, remains low

and oscillates about zero randomly.

In Appendix-3 we give a new method, based on computer experi-
ments, to define Ng. The method is based on comparison between
random- rather, pseudo-random - numbers and the series of energy sam-
pled at an interval. Though a theoretical analysis is lacking we hope that
this method does not have some of the drawbacks of the previous
method. In Appendix-3 we have argued that the new method is useful in
determining the relaxation time and analyzing metastable cases. In the
next section we illustrate the method through an example. First we make

some remarks on how we use the sampling interval.

By shifting the starting point for the sampling we can get Ng
different samples. They are all equivalent; i.e., we may start sampling at

any point after the equilibration point. Therefore we may take the mean

over all the values; we may not, however, treat them as independent in
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determining the standard error. We could follow one of the following

three schemes.

1. Out of Ng samples we get by shifting the starting point, we may
just consider one of the samples and find the average and the stan-

dard error based on this one sample. Here much information is lost.

2. We may quote the mean value based on all the iterations and also

average the standard error over all Ng samples.

3. We could find the mean and standard error based on all the itera-
tions and renormalize the standard error for the correlation between

the consecutive ensembles by multiplying it by (¥ 5)%.

We shall follow the the third scheme.

4.3 Example: Scattering of a Particle by a Potential

In this section we illustrate, through an example, the methods of
Appendix-3. Here we give a detailed account which will be suppressed in
the later description, where we give only the results of a similar analysis.
Below, we analyze the calculation of the phase shift for the scattering of a
particle, of mass m, by a potential V(z). As is well known, this is
equivalent to the two-body scattering if we replace the mass m and coor-
dinate z of the particle by the reduced mass and relative coordinate for
the two-body system. Of course, the interaction between the particle is
the same as the potential. This example will also be used to investigate
the effect of various parameters, listed in Section-4.1, in subsequent sec-

tions of this chapter.

We choose the potential to be Poschl-Teller (Po33); that is,

. Vo
[cosh(z/ zg)]?

4.3.1
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We confine the particle to the region |z |<e and calculate the energy.
The wave function is forced to have a node at the boundary |z |=a. A

trial wave function appropriate for this case is,
Ur=sin(nz/a). 4.3.2

The relation between the energy £ and the wave number k in the asymp-

totic region is,
k=(2mkE / R3)%. 433
The phase shift is then given by,

0

ph:ﬂ —ak . 4.3.4

This problem is analyzed in Koonin and Alhassid (Al84). There the
problem is interpreted as solution to the radial Schrodinger equation for
zero angular momentum state in three dimensions. We may also inter-
pret this as the antisymmetric combination of incoming waves from both
the directions in one dimension. From the above investigation, Table-4 is
reproduced, wherein, along with the Monte Carlo results, exact values of
the phase shift (Ca67) and these values corrected for the truncation are
listed.

We choose the following values of the physical parameters, !

zy=2.0fm, Vp=—8.0MeV, m=m, and o =5.0fm. 4.3.5

A choice of other parameters for the computation is,

1 For the units used in the computation see the appendix at the end of Chapter-1.
my is the proton mass.
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Ep =0, 67=0.001x10"®3sec,

No=100; Ny=110; N,=90 . 438

Though calculations were carried out for 7,000 iterations, in the fol-
lowing we consider a window of 5,000 iterations; the purpose of this will be
clear by the end of this section. First we discuss two other methods,
which we wish to compare with the method of Section-4.2, of finding the

sampling interval

First let us consider the method followed in Koonin and Alhassid
(Al84) or other similar Monte Carlo works. We examine the correlation
coefficient Cy,, defined by the Eq.-4.2.1. We determine the value of n
such that the correlation coefficient, Cy,, approaches zero or has a
minimum in the neighborhood of zero. We take this value of n as the
sampling interval. Figure-3 shows a plot for Cy,, where first 700 itera-
tions, corresponding to relaxation time, were discarded and next 5,000
iterations were used. The number 700 above has been used from the
analysis to follow later. From Figure-3 we find that Ng=56. Similarly we
determine the sampling interval, Ng, by disregarding 0, 800, 300 and 1000

initial iterations. The table below gives the results.

Iterations Discarded Sampling Interval

0 65

700 56

800 58
900 59 (53)
1000 59 (53)

For the first three cases we find that the correlation coefficient
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approaches zero but does not cross zero for a long time. The value of
Cyn, however, remains low. Therefore, we choose the value of n at the
first minimum of Cy,. However, for the last two cases Cy , crosses zero
before reaching the minimum. Here we give, within the brackets, the
value of n at the zero crossing. Clearly, for a consistency we should
determine the sampling interval on the basis of the first minimum. We
also note the decrease in the sampling interval after the system has

relaxed.

Another method we tried, before the discovery of the method of
Appendix-3, was to examine the Fourier power spectrum, defined in
Appendix-3, of the series. Figure-4 shows the power spectrum for the
series, 5000 iterations long, starting at iteration 700. Once again we nor-
malize such that the range for 7 is unity. We observe that the amplitude
is negligible beyond a certain frequency f max. To calculate the sampling
interval note that the power spectrum (Fig-1) for the random numbers,
the sampling interval for which is obviously one, becomes negligible at a
frequency of about 0.5N, and we can obtain the sampling interval,
Ny~N/2f nax- Therefore, we take 5000/ 2f . @s the sampling interval
for the energy series. The rationale behind this is that if we take the
sampling interval less than the above, there will be no frequencies with
significant amplitude to change the value from one sampling point to the
next. > When f ,,.,=2500, the case of random series, we get the sampling
interval of 1, which we should expect. Similarly to the first method we

determine the sampling interval for various cases tabulated below.

2. For a stationary continuous signal of finite duration the best estimate of the
average is obtained by sampling at twice the maximum frequency (Ba88).
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Iterations Discarded fmex Sampling Interval

0 66 38
700 66 38
800 66 38
800 66 38

1000 66 38

The Figure-4 and Figure-1 show some uncertainity in determining the
value of f ... We also note firstly, the value of Ng is lower compared to

the first method and secondly, there is no effect due iterations discarded.

Next we consider the method of Section-4.2 which we propose to use
in future. First we disregard the relaxation time, to which we shall come
back later, and consider the first 5,000 iterations. For convenience we

define,
ﬂzrﬁl/N 4.3.7

where 7, is defined in Appendix-3.2 Instead of doing a binary search,
which we describe later, in Figure-5a we plot the value of ¥ for the sam-
pling interval of 10 through 60. We have, for reference, drawn a horizon-
tal line at ¥ =0.60. For Ng>42 we see that 9¥>0.60 most of the time and
fluctuates between 0.6 and 0.66. This fluctuation will depend on the
length of the sample. Here we note that the standard error for ¥ is about

0.01 and therefore expect this fluctuation. Below Ng <40 we notice that 4,

3. For a given seriese of length NV, 71 is defined such that,

mg -

Y Cin=10

n=1
and 77ty is the average of T over the Ng series, obtained by sampling at an in-
terval Ng, by shifting the starting peint. For more details refer to Appendix-3.
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on the average, increases. We also see that the fluctuation is smaller for
smaller Ng. This is because the sampled series is correlated. Therefore,

we conclude that the sampling interval should be 42+2.

It is not necessary to calculate for a large range of Ng. We may sys-
tematically search for a good candidate for Ng. This may proceed as a
binary search as follows. We start with Ng=64 or 128 and search until we
encounter m,;/ N about 0.60 (this number depends on the standard error
and we take this three times the standard error away from 0.63). Due to
fluctuations in ¥ we may not reach the correct value of Ng every time.
For example, from Figure-5a we see that we may end up at Ng=31. We
examine the neighborhood of this value of Ng and find that the value of ¥
does not remain high for Ng>31. Therefore, we conclude that the large
value of ¥ at Ng=31 is due to fluctuation and we therefore reject this
value. On the other hand suppose we come across Ng®40 and examine
the neighborhood. We find that below Ng=40 ¥ increases as Ng increases,
and above Ng=40 ¥ remains high, albeit with some fluctuaticn. From this

local analysis we conclude that the sampling interval is approximately

42+2.

So far we have disregarded the fact that initial iterations are during
the relaxation period of the system. Now we apply the method of
Appendix-3 to determine the relaxation time. To determine the relaxa-
tion time we examine Table-5 where we list the iterations at which the
ensemble is updated. We notice that the interval between the updates is
increasing in the beginning. After iteration 824, however, this interval
fluctuates. We also observe that beyond this the ensemble drifts towards
both the limits. From this we guess that the relaxation time is some-

where between 215 and 824 iterations. Although we could start sampling
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at iteration 824, which may be rather prudent, we wish to check this
further and if possible improve the guess. Table-6 lists the sampling
interval against the iterations discarded. The sampling interval
decreases as the starting point is moved up until 700, after which it
remains constant. As exemplified by the Figures-5b & 5S¢, which
correspond to discards of 700 and 1000, the precision is better compared
to Figure-5a for which no iterations have been discarded. For a finer look
at the case of Figure-5b we give the Table-7 where values of ¥ and the
standard error are tabulated against the sampling interval. The fluctua-
tion in the value of the ¥ beyond Ng=31 is clear. The fluctuation is due to
lack of correlation in the sampled series. This fluctuation by itself is a
good indicator of the right sampling interval and is independent of the
distribution of energy. Figures 5a, 5b and 5c¢ show that the precision with
which we can determine Ng improves beyond the relaxation point. The
improvement of the precision beyond relaxation seems to be true in gen-

eral. Thus we arrive at the result N;=700 and Ng=31.

Now let us compare the three methods described above. We see that
the first two methods are conservative in comparison to the third. In the
first case the reason is that due to finiteness of the series we should
expect the correlation to be nonzero even for a good representative of a
random series. Therefore, probably we should not wait until the correla-
tion approaches a minimum or zero. We should rather be satisfied if the
correlation comes to the level of maximas at the far right of Figure-3.
The method definitely fails if we consider a time series E(t)=sin(wt)
which has a correlation function, C(7)=cos(wT). Thus in addition to the
correlation approaching zero we have to make sure that the correlation

remains small throughout and has some fluctuation. The proposed
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method, however, does not have any trouble handling a general situation.

The examination of Figure-4 shows that, besides some ambiguity in
locating the point beyond which we consider the amplitude negligible, we
also see that the amplitude persists, albeit small. These two factors
make the Fourier spectrum method conservative. We may note, however,
that the relaxation time has no effect on the sampling interval. This is
due to the fact that we rely on the high frequency behavior to determine
S max- The relaxation time, however, is large and affects only the low fre-

quency behavior.

In the third method we take care of the detailed behavior of the
correlation and use all the information we have. Therefore, we should
expect, besides the error due to the finiteness of the series which is com-
mon to other two methods, to get a more precise answer. The method is
more sensitive to the relaxation time. We can make it more sensitive to
the relaxation time by considering a smaller window; this will, of course,
increase the error due to the finiteness of the series, which will further

enhance the effects of the relaxation.

We may yet have a reservation about the method we propose since we
are comparing the average over a set of uncorrelated series with that of a
set of series which are correlated. That is, the corresponding members
of two series obtained from a single shift are correlated. In Table-8a we
give the values of m; we get for different starting points with the sam-
pling interval of 120, the first 700 iterations being discarded. In Table-9
we compare the distribution of m, for this case with the case of random
series given in Table-1, along with the Gaussian distribution. In Table-8b
we summarize the properties of m; for the above two cases. These two

distributions are the same within the expected error for the finite size
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sample. The point is that, if we were to find m; for many samples
obtained by restarting the problem with different seeds for the random
number generators, their distribution would be the same as that of the
samples obtained from shifting the starting point and therefore we con-

clude that either average is useful in determining the value of 72 ;.

4.4 Effects of Various Parameters

Now we wish to examine the effects of various parameters on the
accuracy of the Monte Carlo calculations. The physical problem we con-
sider is the same as in Section-4.3. The relation between the energy and
the phase shift, given by the Eq.-4.3.4, is straightforward; therefore, we
quote only the value of the energy. The value of the energy is to be com-
pared with its value in Table-4 for the appropriate value of the parameter
a which is 5.0 fm. In Table-10a we list the results of Monte Carlo simula-
tions with different values of the parameters with the same integration
step 67=0.001x107%3sec. Table-10b gives the results of the Monte Carlo
simulation, for one of the cases from the Table-10a, with various integra-

tion steps. Now we discuss these results.

Parameters Ny, Ngand Ny,

We remind the reader that NjandNy are lower and upper bounds on the
ensemble and that the ensemble is restored to Ny if it goes out of
bounds. The table below, extracted from Table-10a, gives the results for
the variation of these parameters with all the other parameters fixed.
The number of iterations was 7000 with an integration step

67=0.001x10"%3sec.
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Table-A
No N, Ny Ng Ng E OF
MeV MeV
100 95 105 400 29 5.40205 0.01093
100 90 110 700 32 5.37471 0.01290
100 85 115 1300 35 5.39177 0.01476

100 80 120 inadequate limits.

From the above table we cbserve that the relaxation time, sampling
interval and the standard error increase as we allow larger deviations.
The reason for this is that the ensemble is destabilized every time it is
restored and stability needs to be restored. This is especially true when
we update it from the lower bound by duplicating some configuration. As
we allow larger deviations the destabilization is larger as the table above
shows. In the last case the ensemble did not acquire adequate stability
and we have discarded this case completely. The values of the Np in the
table above, and quoted in future, are only approximate, say within 100 to
200 iteration steps, the error being on the conservative side. Therefore,

any regularity in these values must not be taken too seriously.

Next we change the nominal size, Ny, of the ensemble. Below we

extract the relevant data from Table-10a.
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Table-B

No N, Ny Np Ng E O0F
MeV MeV
200 185 205 800 27 5.371i72 0.00873
200 190 210 400 35 5.38246 0.00947
200 180 220 800 36 5.37480 0.00972

Here we observe that the standard error in the energy is reduced.
This should be expected since error in calculation should roughly follow
the inverse square-root of the ensemble size. Further, we see that the
error does not change much as we change the bounds on the ensemble.
We also see that the relaxation time has a minimum. The reason for this
optimum is as follows. If the bounds are too small we tend to update the
ensemble from the unstable one and new members will introduce further
instability. That is, if the ensemble is not the equilibrium ensemble, it is
better to let it change before we begin updating. If, however, we let the
ensemble drift too much, then the updating (especially creating from the
existing ensemble) introduces an error in the composition of the ensem-
ble. Further, we see that the relaxation time does not depend on the
ensemble size as is clear from comparing the first two cases of Table-A
with the last two cases of Table-B above. The time for computation to the
relaxation, however, is proportional to the ensemble size. Hence, we can
improve the efficiency by starting with a lower number of configuration

and doubling this once the relaxation has occurred.

Next consider the detection of the equilibration point. Since with

larger deviations the drift of the ensemble to the bounds takes many
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iterations it becomes difficult to determine whether the system has
relaxed by looking at the intervals between updates of the ensemble. For
example, for the last case from Table-A above the first update occurred
after 827 iterations. The closer bounds, however, give rise to a different
difficulty. Here it was found that the ensemble reaches these bounds
quite frequently even after the equilibrium, and the detection of the

equilibration point becomes rather difficult.

From the above discussion and observations it seems adequate that
the ensemble be allowed to drift about 5% from the nominal value. The
nominal size of the ensemble, if lower, will reduce the computation time
during the relaxation, and if higher then the standard error is less depen-

dent on the bounds on the ensemble.

Parameters, £y and Ny

The importance of choosing Er close to the exact value of the energy is
clear. By itself the choice of £y is not sufficient, however, since this must
be accompanied by an accurate representative ensemble. If the ensem-
ble is not a good representative, subsequent updates will introduce inac-
curacy in Ep. If the ensemble is a good representative, then the updating
will make Ep approach the true value quickly unless the initialization of
Ep is really far off. Thus it is important that both the ensemble and Ep
be initialized accurately. Instead of initializing from the trial wave func-
tion Uy, we may sometimes be able to use the ensemble and Z7 from a

previous calculation, if the problem is close to the one we already calcu-

lated.

Next let us consider Ny, the interval at which the value of Ep is

renewed. The expectation value of the Hamiltonian calculated on the
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basis of a finite ensemble will fluctuate about the true value of the
energy. Therefore, Ep will fluctuate if we were to renew it after every
iteration. The inaccurate £y will give rise to excessive drift in the ensem-
ble. These fluctuations could give rise to instability in the calculation.
The fluctuation will reduce if we update it on the basis of an average over
several iterations. To investigate the effect of Ny, we calculate with
different values of Ny, with all other parameters the same. Table-C, once
again extracted from Table-10, shows the results. For the table below we
have chosen Ny=105, Ny=100 and N;=95 according to the prescription
given above. To examine the efficiency we must compare the computa-
tion of the same duration, which is accomplished by keeping the number
of iterations, chosen to be 7000, the same. Once again the integration

step 67 is 0.001x10—-R3sec.

Table-C

Ny Np Ns E oF
MeV MeV

10 400 30 5.368640 0.01254
20 400 29 5.40205 0.01083
25 400 37 5.38762 0.01320
30 400 83 5.38%44 0.01995
35 400 65 5.39194 0.01806
40 400 35 5.38882 0.01344

First we observe that the relaxation time Np does not change
significantly. We expect this since Ny is small in comparison to Ngp. How-

ever, Ng as well as the standard error in £ exhibits significant variations.
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A part of the change in the standard error is due to the change in the Ng.
A part of the change, however, is due to the change in the dynamics due

to the variation in Nyp.

A question to be answered is whether the reduction in Ng is desir-
able. A large value of Ng indicates a stronger correlation between con-
secutive ensembles during the evolution. One reason for the correlation
is that the ensemble evolves according to an equation, viz. the
Schrodinger-diffusion equation. Too weak a correlation could mean that
we are not following the governing equation accurately; i.e., 8T is too
large. Therefore, we may conclude that we must choose Ny such that Ng
is maximum. Another reason for stronger correlation, however, is using
the same value of E7; i.e., change in the value of E7 introduces some ran-
domness. We want the mean value of £y to be the same as the real value
of the energy. We must choose Ny such that the standard deviation in £y
is minimum. This will lead to minimum standard error in the energy. If
we observe the standard error in £ we see that the error is minimum for
Np=20. We should be careful before concluding and see how the calcula-
tions compare with different seeds for the random number generator. In
the table below we compare the Ny=20 case for different seeds for the

random number generator.
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Table-D

Seed Np

2194817532.000 400
456327659848.0 400
639627100283.0 400

Ng

29
29
31

E
MeV
5.40205
5.38649
5.37804

OF
MeV
0.01083
0.01233
0.01286

From the data above it is difficult to see that there is an optimum value

of Ny. We note that Ns has a maximum. However, the maximum for Ng

is not yet understood. Nevertheless, we must be cautious in selecting Nyp.

Integration Step 67

The computations are done with a finite integration step. Therefore, we

must verify that the change in the integration step does not alter the

result significantly. Table-E, which is same as Table-10b, gives the result

of the calculation with various integration steps.



Table-E

oT L N; Np Ns S E OF

10x10™%3sec MeV MeV
0.00100 7000 20 400 32 175 5.41989 0.01707
0.00100 14000 20 400 38 357 5.38759 0.00937
0.00075 10000 20 400 48 200 5.37993 0.01408
0.00050 10000 30 600 88 107 5.37471 0.01290
0.00050 10000 40 800 87 105 5.40599 0.01829
0.00025 10000 20 800 49 195 5.37981 0.01231

67=0.001 and 0.0005 cases have been calculated with different seeds. The
second case has been calculated for a longer run. Next we find the value
F in the limit 67-0.0 by a linear least square fit (Be69); i.e., we do a
least-square fit to the equation E(67)=A+Bdé71. From this extrapolation
we get E(0)=5.37403+0.0061 MeV. This is in good agreement with the
exact value, £'=5.3732MeV, and the Monte Carlo result, £=5.3752+0.0054
MeV, from (Al84).
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5. Three-Body Problem: One-Dimensional Case

5.1 Preliminary Remarks

In this chapter we consider the scattering of a three-body system in
one dimension with a two-body interaction.! We choose all the three parti-

cles to be of mass m and the potential between particles © and 7, V(7,5),

to be,
V(i.5) = V(G 6) = Vg f (z-2;) 5.1.1
where,
| Vi 1=V
and,

This is a square well if V, is negative, and a square barrier if V} is positive.

The formulation of the scheme, as described in Chapter-2, assumes
that ingoing and outgoing channels contain two fragments. Therefore, at
least one pair of particles should be able to form a bound state. There

always exists a bound state for a particle in a potential well. ® Hence it is

1. Appendix-1 gives nctation and some useful information for this system.
2. Astandard problem in any text ocn Quantum Mechanics, for example (La77).
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sufficient that one of the V;; is negative. If the potential well is deep
then several bound states exist. We shall, however, confine ourselves to
the depths with a single bound state. The two-body binding energy, e, =e,
depends on the parameters m, Vy and aq. If, however, the dimensionless

mVOQOZ

72 is invariant,3 then the solutions for various cases can

number @=

be obtained by appropriate scaling of a single solution.

The wave function for the ground state, which is to be used for the

internal wave function, n,=7, is given by,
n = Acos(k 1z ); x<og 5.1.2
= Beap (—kplz |); z=2a,
where,
k,=|2M (e +Vy)/H2|% and kp=|2Me/HZ|%,

where z is the relative coordinate of the pair and ¥ is the reduced mass;
ie., M=m/2. From the continuity of the wave function and its slope at
r=aq, we can express B in terms of A and determine the binding energy
e. The constant 4 can be determined by normalization of the wave func-

tion.

Next we need to estimate the range, d, = d, of interacticn between
two fragments. We may define the effective potential, V(&), between the
fragments at a distance K apart, by convoluting the interaction between

the constituents with the square of the internal wave function.* Fig-7

3. A in the dimensionless number, Q is a universal constant. Variation of the in-
tegration step, however, can be construed as a variation inf. and we may estimate
the appropriate integration step 67 by replacingﬁ by VO(ST.

4. The mathematical expressicn, Eq.-5.2.1, is given in Secticn-5.2.
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shows the effective potential for one of the cases. The concept of
effective potential, though inadequate at short distances, is quite
appropriate for the purpose of defining d, since here we need only the
long distance behavior. Presently, let us define d as the distance at
which the effective potential reduces to 0.01Vy. °® Table-11 gives the bind-
ing energy e and the range d for the various values of the parameters m,
Vo and aq. As to be expected, d increases as ag increases, and decreases

as m and Vj increase.

Now, depending on the nature of forces we have three cases defined

below.

Case-1: V3 negative; Vy3and V;, positive. Here we have one

two-fragment mode.

Case-@: V3 positive; Vg3 and V5, negative. Now we have two

two-fragment meodes.
Case-3: All V;; negative with three two-fragment modes.

For each two-fragment mode we have two channels depending on the sign
of 7g. Figure-8 shows this explicitly for Case-2 above. However, we may
superpose these channels to give symmetric or antisymmetric combina-
tions. As discussed in Section-2.3, due to absence of parity mixing term
in the Hamiltonian the above two combinations do not mix. Therefore,
the symmetric and antisymmetric combinations can then be regarded as
two channels and can be solved independently. To solve the problem

completely we have to solve both symmetric and antisymmetric cases

5. We must keep in mind, however, that the general criterion for the definiticn of
d is, that the effective potential should be small in comparison to the kinetic en-
ergy. If the kinetic energy turns out tc be low then we must redefine d and
chocse new values cf Ra .
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independently and this could be inefficient. However, two methods of

solving the problem can be used for program verification.

In subsequent sections we will consider the following three cases.
Case-I: Case-1, Antisymmetric Channel.
Case-II: Case-2, Antisymmetric Channel.
Case-IIl: Case-2, Two Channels in Each Mode.

Finally, we note that the program was checked for bugs as well as for
accuracy by comparing the Monte Carlo calculations with the results of a
finite difference relaxation scheme for a three-body system. We give the
details in Appendix-4. Tables 12a and 12b summarize the results of these

calculations.

5.2 Case-I: Case-1, Antisymmetric Channel

Here only the pair 1 and 3 can form a bound state. Now if the total
energy, F, is negative the only possible mode is 2.! If, however, E is posi-
tive the disintegration channel (channel 4) is also a possibility.? But for
the positive energies close to zero, we expect the likelihood of disintegra-
tion to be negligible. Therefore, we may be able to extend the analysis,
based on the two-fragment assumption, into continuum without serious

error. This aspect will be examined.

For low energy scattering we may disregard the internal structure of
the composite fragment and make an approximation that the two frag-
ments interact through an effective potential defined below. Let us
1. We have chosen the signs of VLJ purely for computational convenience. With
the above choice, if the particle indices add to an even number, then the interac-

tion is negative. Channels are named after the unbound particle (see Appendix-1).
2. However, we can always assume that the ingoing channel is two-fragment.
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define the relative coordinate r=z;—z3 and the channel coordinate
R=z5,—(z,+z3)/ 2. Let the eigenfunction for the bound fragment be n(r).

Then we define the effective potential as,
V(R)=[1V(2,3)+V(2,1)]|n(r)|%dr. 5.2.1

To integrate the above we impose the condition, z;+zs+x3=0, which is
equivalent to choosing the reference frame in which the center of mass is
at rest. Of course, F and r can be taken as the generalized coordinates.
Fig-7 shows the effective potential for a sample case. This effective
potential gives us an idea of the range of interaction between the frag-

ments.

First we analyze the problem as an approximate two-body problem
with interaction V(R). Then we simulate the three-bedy problem and

compare the results. We choose the parameters as follows, °

2,=2.0fm, m=3.0m,;, and V,=8.0MeV. 8.2.2.

Referring to Table-11, we confirm that there is only one two-body bound

state, and note

e=—5.06995MeV and d~4.34im.

3. We will, as mentioned above, generally restrict ourselves to the values of VO to

give only cne two-body bound state. However, we shall examine one case with two

two-body bound states fer the energy near the second level. Fer this we take
’Ozzol\IeV with cther parameters unchanged.
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A. Two-Body Approximation

We further reduce the system to the problem of scattering of a parti-
cle by a potential. The mass of the fragments are m and 2m; hence, the
reduced mass is 2m /3. Thus we consider the problem, similar to the
problem in Chapter-4, of scattering of a particle of mass u=2m/ 3 by the

potential V(R). Asin Chapter-4, we calculate the phase shift.

The nodes are set at |R|=a and the system is simulated, inside the
region |R |<a, by the Monte Carlo. Once again, as in Section-4.3, the trial

function Uy is taken as,

Up = sin(ﬂ—R). 523
a
Clearly the energy we calculate is the channel kinetic energy £}; and
the total energy £, to be compared with the three-body Monte Carlo cal-
culation, is given by EF=F,+e. The phase shift, for the kinetic energy £},
is,

5 % 5.2.4

oh =T—ka ; where k=]

k
2

RLE;
A

Table-13 gives the results of the present approximation for various
values of the parameter a. With Ny=105, Ny=100 and N;,=105, all the
runs were for 7000 iterations. For a particular case of 2=10.0{m, the low
energy case where the results are likely to be accurate, we have calcu-
lated with various integration steps. Here we extrapclate the results, by
the linear least square fit, to the infinitesimal integration step. Within
the two-body approximation, with the results of the last chapter and
(Al84) in mind, the results are likely to be accurate. However, these

results are to be compared with the three-body Monte Carlo. Therefore,



_64_

presently we defer the discussion of the results and describe the three-

body Monte Carlo.

B. The Three-Body Monte Carlo

We have to choose an appropriate trial wave function. As already
mentioned, only one two-fragment channel is possible. We have to force a
node on the channel coordinate, R, and keep the boundary conditions
along the other coordinate open. However, the internal eigenfunction
7(r) is negligible for large values of 7. Hence we may introduce a cut-off

along this coordinate. That is, we impose a node at r=r;. We choose

70=10.0im and note that 77((100)) =0.0046. Since n(r) is an even function of

7, the trial wave function must also be an even function of r. Thz trial
function appropriate for the analysis of the phase shift is, 4

Up = sin(ﬁ—)cos('ﬁ). 5.2.5

a TO

The energy calculated here is the total energy E and the kinetic energy is
given by, E.=F-e. The phase shift can then be calculated using the
equation 5.2.4. Table-14 lists the results of Monte Carlo calculations for
various values of a. Once again we take Ny=105,Ng=100 and N;=95 and

the number of iterations is 7000.

As mentioned above we also analyze a case with two two-body bound
states. Here we take Vpy=20MeV with all other parameters unchanged. All
4. Abetter trial function would have been,

Up=sin( Ea{—?—)n (r).

Then the wave function dces nct vanish at finite 7 which actually is the case.
Therefore we have some systematic error, giving higher value for the energy.
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of the above is valid for this case as well. In Table-16 we list the results.

Discussion

Table-13 gives the results of the two-body approximation for various
values of a. For a=10.0fm the results with various integration steps are
given. For a=7.0im three simulations with different seeds are listed.
Since the three-body Monte Carlo results are not going to be accurate for
the disintegration channel and moreover the two-body approximation is
likely to be inaccurate for large E, it is not useful to consider @ lower

than 6.0 fm.

Table-14 gives the results of the three-body Monte Carlo simulation.
As the parameter @ reduces it was found, as should be expected, that a
smaller integration step was necessary. For three more cases with o =
4.5, 5.0, 5.5 fm and 67=0.0005 x10723 Sec the instability was found and
therefore we have not listed the results.® But examination of the table
shows that the energy for the last two cases could very well be positive.
For the positive energy there is possibility of disintegration. Though it
may be reasonable to expect good results, if the probability for the disin-
tegration is low, it is to be noted that dimensionality of the phase space is
increased when we go from the two-fragment region to the three-
fragment region. This may be the reason for the instability, though we
cannot make a definitive conclusion without a closer examination near

the transition region.

5. The instability can be detected, as described in Section-4.2, by observing the

frequency of updating the ensemble. Moreover, since the ensemble has difficulty
in reaching the equilibrium, the ensemble crosses cnly one of the bounds.
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In Table-15 we have summarized the comparison between the two-
body approximation and the three-body Monte Carlo calculaticn. In this
table E; and 6y refer to the two-body approximation and £sand 63

refer to the three-body Monte Carlo.

First consider the behavior of the energy. We notice that for a given
value of @, E'o>F5. This is to be expected. The two-body approximation is
equivalent to assuming part of the wave function (e.g., two-body bound
state eigenfunction n) and then find the best solution to the Schrodinger
equation. As is well known, solving the Schrodinger equation is equivalent
to a variational problem where the energy is minimized. Therefore, we
will get lower energies for the simulation of the exact case as compared
to the simulation of the two-body approximation. As we reduce a the
inaccuracy of the two-body approximation increases which is to be
expected. For @=10.0 fm we have extrapolated the results to §7=0 for

both the methods. Here we have,
Fs = —-3.50774+0.00838MeV and E3=—3.6614+0.02365MeV.

As far as the energy is concerned, keeping in mind the error in ths esti-

mates, the results can be considered satisfactory.

Though, for a large a, two-body approximation gives reasonably good
results for £, we are, however, interested in the calculation of the phase
shift at a given energy rather than energy at given a. Therefore, we
should determine e for a given energy. The two-body approximation will
give larger a for given E. From the equation for the phase shift we con-
clude that the two-body approximation will give a lower phase shift. Next,
we note, in contrast to the two-body scattering, what is important in the

calculation of the phase shift is kinetic energy rather than the total
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energy. Moreover, we find the phase shift as a difference from m rather
than from zero. Therefore, we need a much more accurate estimate of 7
to calculate the phase shift. Thus, a small error in the total energy gives
rise to a large error in the phase shift as can be seen from Table-15. For

example,
at E ~ —3.50 MeV, Spp2 ® —0.75 radians and 0pp3 ® —.54radions .

Hence we conclude that, though the two-body approximation determines,
for a large a, the value of energy for a given e reasonably well, the esti-

mate of the phase shift at a given energy is not adequate.

Table-16 gives the results where we have two two-body bound states.
As the energy approaches the bound state value we find that the algo-
rithm becomes unstable. Though we have attempted to examine the
results with smaller integration, it is of course possible that we should
use a still smaller integration step. We, -however, found that for the
values of a less than 5fm it was difficult to get a reasonable sampling
interval. Even for a=4.9 fm, which differs from 5 very slightly, we find
the instability, while for @ =5.0fm the convergence is clear. Since this
raised some doubt about the run at @=5.0fm, another run, though only
for 3000 iterations long, was made with a different seed for the randem
number generator. The result is satisfactory as can be seen from Table-
16. Therefore, we conclude that the calculations probably do break down

as the energy approaches the higher bound state from below.
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5.3 Case-1I: Case-2, Antisymmetric Channels

Here the particle 2 could form a two-body bound fragment either
with particle 1 or 3. This does not, however, necessarily lead to two
modess. We may consider two cases. Firstly, we have the situation where
the particles 1 and 3 are identical. Now we cannot distinguish between
the two modes and therefore we have only one mode. Next, we may con-
sider the particles to be distinguishable. In this case we have two modes.
On one hand, the first case may be analyzed directly to give the phase
shift. We may, however, superpose the scattering states of the latter case
to get the solution for the indistinguishable case. The extent of agree-
ment between the two alternative ways of treating the case of identical

particles will give some indication of the accuracy of the method.

Once again if the total energy is negative, the only possibility is the
two-fragment channels. We may, however, find that £F<e, from which we
may conclude occurrence of the three-body bound state. We choose the

parameters to be,
a,=2.0fm, m=2m:,, and V,=10.0MeV. 5.3.1
With the above parameters there is only one two-body bound state with
e =—5.96385MeV; wu=4my,/ 3. 5.3.2

If we define the range of interaction between the fragment on the basis of
effective potential defined in Section-5.2, however, we would be making a
mistake. The effective potential so defined is zero. If we examine the
physical situation more carefully, we see that in reality the unbound par-
ticle will polarize the composite fragment. For example, the particle 1 in

the vicinity of the fragment (2,3) will attract the particle 2 and repel the
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particle 3.1 Therefore, we define the range on the basis of Table-12, calcu-
lated on the basis of situation in Case-1, and for the above choice of

parameters d~4.50 fm.

C. Particles 1 and 3 Identical

First consider channel coordinates r; and 73 as the generalized coor-
dinates. The wave function must be symmetric in both the coordinates
and must vanish on the boundary at 7;=a and r3=c. The trial function
Ur must satisfy the above criterion and, in addition asymptotically be in

appropriate channels. We choose Uy as,
Up = sin(nry/ a)sin(nrs/ a). 5.9.3

We see that the first two criteria are satisfied. To see the asymptotic
behavior clearly we write Ur as a function of the generalized coordinates

7, and r!. Then we have,
Ur = sin(nr/ a)sin(nr,/ 2a )cos(3nrl/ 4a) 5.3.4
+sin(nr,/ a)cos (nr,/ 2a)sin(3nrl/ 4a).

Channel-1 is characterized by large values of r; and small values of 7.
For such a situation we see that the trial function has characteristics
similar to the characteristic of the wave function if the interaction

between the fragments is zero. The phase shift is now given by,

Opn =m—ka 5.3.5

1. The polarization is not possible for Case-1 and Case-3 since the particles of the
two-bedy fragment are symmetric with respect to the unbound particle.
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AR

k=] 1%, and E,=F—e.

Table-17 gives the results. We defer the discussion of the results to a

later time..

D. Particles 1 and 3 Distinguishable

As mentioned above, we have two possible channels. Instead of calcu-
lating S-matrix for a spectrum of energy it would be more interesting to
calculate the S-matrix at a given energy and calculate the phase shift for
the Case-C above by superposing the solutions for different channels,

regarding these channels to be indistinguishable.

Next we need to find the expression for the phase shift in terms of
the elements of S-matrix. First consider the one channel case. Here if

the incoming wave function is given by ¥, then the scattering solution is,

¢sct =¢_Sl,17r//'~ 5.3.6

Then the relation between the phase shift, 6, and the S-matrix ? is given

by,

We, however, have two channels if the particles are distinguishable. If the

incoming wave function in Channel-1 is ¥, then the scattering solution is

Vet =¥1—S1.1%1—S2,1¥s. 5.3.8

2. Here the matrix is one-dimensional.
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But we cannot distinguish between the two channels and therefore we

consider the superposition of ¥, and ¥;. Then we can write,

Vsct 211/"(51,1”'"51,2)”9'/' 0.3.8

where,
1
v= 5 (Vitve).
Now comparing with equation 5.3.7 we get,

S1.1+S12=exp (2i6,,). 5.3.10

This has an obvious generalization to many channels which are indistin-

guishable if appropriate particles are considered identical.

Next we must choose the trial function such that it has nodes in both
the channels. We will consider the incoming channel to be 1. Now we

take the trial function as
Urp=sin (nr/ a)cos (nrsg/ 2b). §.3.11

Here R2=b6 and £{=c and we have nodes at 7;=a and r3=b. The expres-
sion for Dy, relevant for this case is given by Eq-2.3.15. Though we must
choose @ and b less than d, we may vary both the parameters. Rewriting
Uy above as a function of 7; and 7! we can see that it has desired proper-

ties in Channel-1.

At low energy we expect the error to be large compared to the
kinetic energy. At energies above zero the approximation is likely to be
inadequate. Therefore, we simulate for three different cases: one at low
energy, one at high energy and one at medium energy. Table-13 gives the

results of the calculation.
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Discussion

As mentioned above Table-17 gives the results for the indistinguish-
able case, 1.e., the case C above. All the runs are for 7000 iterations. The
parameters for ensemble size are, Ny=105, Np=100, and N;,=85. As the
parameters @ and b are reduced it is necessary to reduce the integration
step. A larger error in the estimate of the energy as a gets larger is due
to the same size of the ensemble representing the wavefunction over
larger space. Though the error in the estimation of energy does not vary
by much, the error in the phase shift increases as the energy reduces. As
repeated frequently, this is due to the fact that the error with respect to

the kinetic energy gets larger.

Table-18 gives the results for the case with distinguishable channels.
Evaluation of the expression for D, Eq.-2.3.15, needs the value of the
energy. Hence it is convenient to evaluate <7n,> and <V7,> for all a and
calculate the D-matrix elements at the end using the average value of E.
Another procedure is to calculate the part of D-matrix elements involving
<ngs> and <Vn,> at each iteration. The latter method is less accurate.
In estimating the error, however, it is difficult to determine the error in
D-matrix from the error in <7n,> and <V7,> since these estimatzss are
correlated.® The error estimates are based on the calculation via the
second method. We see that the errors are larger at a lower energy. A
part of this is due to the higher relative error in the kinetic energy. But
there is also some contribution due to the larger error in the estimates
<n> and <V7>. A close look at the derivation shows that off-diagonal D-

matrix elements are based on the derivatives of the wave function at the

3. Two methods give the results within this error estimate. However, it is clear
that the first method will give better estimates of D-matrix elements.
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boundary between the interior and exterior regions. As the region gets
larger the estimate of parameters at the boundary becomes less accu-

rate. This is clearly shown by the error in the ofi-diagonal elements.

Instead of giving the S-matrix elements we have listed the phase
shift, obtained by superposition, for the indistinguishable case. These
phase shifts are to be compared with the ones given in Table-17. The fifth
case from Table-17, £=—3.64872 MeV, and the third case from Table-18,
E=-3.47844 Mev, are very close in energy and within the error estimates
could be regarded as identical. The phase shifts for these two cases are
marginally consistent with the error estimate. We, however, need much
better statistics to make a final conclusion. Though we have to take into
account the extrapolation to the infinitesimal time step, we note that the
integration steps for above two cases are identical. The interior region,

however, is different and extrapolation to 07=0 could be different.

5.4 Case-1II: Case-2, Two Channels in Each Mode

Possible fragmentation modes are same as for Case-Il. Similarly, as
in Case-II, we can consider the particles 1 and 3 either to be identical or
distinguishable. For the distiguishable case we have four channels which
are depicted graphically in Figure-8. If the particles are identical we can-
not distinguish between channels 1 (1) and 3 (3). As in Case-II, we can
obtain the solution to the identical particle case by superposing the chan-
nels 1 (1) and 3 (3). This gives relation between the S-Matrix elements for
these two cases. Omnce again the extent of agreement between the two
alternative ways of treating the case of identical particles will give some
indication of the accuracy of the method and verification of the algoc-

rithm.
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Once again, if the total energy is negative, the only possibility is the
two-fragment modes and, if £<e, we may conclude that a three-body
bound state can be formed. We choose the parameters the same as in

Case-~ll; Le.,
20=2.0fm, m=2m, and Vy=10.0MeV. 54.1

With the above parameters there is only one two-particle bound state

with

e=—5.86385MeV, u=4m;,/3 and d~4.53Im. 5.4.2

E. Particles 1 and 3 Identical

Here we have two channels designated by 1 and 1. The scattering

solution is of the form,
Yi=ezp (ir,)-Syezp (—iry) + 7173 5.4.3
and

Yi=—S1,ezp(—ir;) + 7-73

We set the nodes at r;=a, r;=b, r3=c and r3=b. We take the trial

wave function Uy to be,

m(r,—b)
(a—b)

TT(TS—b) ,

. 5.4.4
(@=b) -

sin|

Up=sin|

The above nodes define the parameters I, for the interior region and we

have,



-75-

The off-diagonal element of the D-Matrix, Dil, is given by the Eq.-2.3.16.

Therefore, two elements of the D-Matrix to be calculated are given by,
Dl_lz-]t—cotk(a—b), 5.4.5

and,

B 1 <(E—e—=V)(r;—a)n>
W1 ksink(a—b) <(E—e=V,)(r;=b)n>

Table-19 gives the results of the calculation. The number of iterations for
all the cases is 7500 of which initial 500 were discarded. Once again we
choose Np=105, N=100 and N;,=100. The integration step is
0.0002x107%3Sec for all the cases.

F. Particles 1 and 3 Distinguishable

As already mentioned we have four channels shown in Figure-8.
Without loss of generality we take the incoming wave to be ezp (ir;). The

four channels are: back scattering,
Yi=exp (i]crl—Sl'lezjo (—ikr,), 5.4.6
transmission,
Yi=—S7,ezp (iry) 5.4.7
rearrangement back scattering,
Y3=—S31ezp (—irg) 5.4.8
and rearrangement transmission,

Ya3=—S3 ezp (irg). 5.4.9
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As mentioned above we can obtain the results for the identical particles

case by superposition. This gives the following two identities,
(S1,1)iane. =(S1,1+ 53 1)aist. 5.4.10
(ST.I)idnt- :(ST.1+S§,1)dist. 5.4.11

where the subscripts idnt. and dist. refer to Case-E and Case-F, respec-
tively.

We set the nodes, at 7;=a, 7;=b, r3=b and r3=-b, defining the inte-
rior region. The trial wave function is taken to be,

m(r,—b) Tsin m(rg—b) .
(a=b) - 26

Urp=sin|

The nodes define the parameters Ry as, R{=a, R{=—b, R{=b, R{=-b
and £2=b. From this we obtain the D-Matrix elements using the exres-

sion 2.3.186 as,

D1,1=——It—cotlc(a—b), 5.4.13
-and,
1 <(E—-e—V))(r;—a)n;>

DT-lzksinlc(a-b) (E-e=Vi)(ri=bn,>

1 (a—b) <(E—e—Vg)(rs—b)ns>
ksink(a—b) R2b <(E—e-V)(r;—b)n;>

D3,1:D§,1:

Table-20 gives the results of computation for one case. The nodes for this
case are chosen such that the value of the energy is in the range covered
by the indistinguishable particle case so that we can examine the identi-

ties 5.4.10 and 5.4.11 by interpolation if necessary. The integration step
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is 0.0002x10™sec. The ensemble size parameters are Ny=105, Ny=100
and N;=85. 14000 iterations were carried out, of which the initial 500

were discarded.

Discussion

Table-19 gives the results for Case-E above. We note that the esti-
mates for the energy are close to the internal energy for the two-body
bound state. Thus the kinetic energy is low and the error estimates for
the energy are significant. We alsc note that the lower the energy the
higher the error in the estimate. The error in the real imaginary parts of
the scattering amplitudes is also quite large. The errors for the last case
in Table-19 are quite large and therefore the results may be completely

disregarded.

Table-20 gives the results for Case-F where particles are considered
distinguishable. Once again the errors are large. The value of the energy
for this case is very close to the energy for the second case in Table-19.
In fact, considering the magnitude of the error, we may regard the
energy to be identical and compare the identities 5.4.10 and 5.4.11.

Below we give the various terms of these identities.

(S1,1+53,1),,=—0.24187—40.11920 5.4.10a
(Sz1+Sa1,,=0.42568—0.86376 5.4.11a
(51,1, =—(0-175653£0663)—4(0.11457+0.0493) 5.4.10b

(S2,1),4, =(0.53445+0.0865)—1(0.81880+0.0964) 5.4.11b



-’?8_

The sources of error are numerous. Firstly, we have considered that
the second case in Table-19 and the case in Table-20 are at the same
energy. This may not be the case considering the error in the estimates
of the energy. The quantities in 5.4.10a and 5.4.11a are sums of two quan-
tities with considerable error. These two quantities, however, are not
independent and estimate of the error in the sum is difficult and there-
fore we have not quoted any error. But the error, however, is at least of
the order of error in one of the quantities summed. The magnitude of
this error is of the order of the error for the quantities in 5.4.10b and
5.4.11b. With all these errors in mind we may regard that the identities
5.4.10 and 5.4.11 are satisfied. For a definite conclusion, however, consid-
erable amount of computation will be necessary. The identities 5.4.10
and 5.4.11 should be valid in principle and any discripancy will be a com-
ment on the computer program ! and the accuracy of the Monte Carlo

results.

Contrasting the values of energy for the cases in Section-4.3 with the
cases in Section-4.4 we notice that we have low energies for the latter.
Here, the way we get information about the antisymmetric channel is by
by distorting the symmetric channel slightly. Another way would be to
distort the node structure of the antisymmetric channel, keeping the
three nodes to get the information about the symmetric channel. For a
completely antisymmetric case we know the location of the nodes. How-

ever, the relative location of three nodes for a distorted case is not known

1. We could assume that these two cases are at an identical energy. Then we
could consider the two results as independent and average the quantities in
5.4.10a-b, and, 5.4.11a-b and compare these quantities with the average. Then we
can censider the results as more satisfactory. In a computer work, hewever, cne
has a tendency to step when the results are satisfactery and one must guard
against such a tendency.
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a priori. But, if we could solve the problem of location of nodes elegantly,
then we could treat the situations with higher energy by distorting the
antisymmetric case. This would be useful in calculating the scattering
matrix at higher energy. If the middle node falls outside the range of
interaction, then we need to consider the region between the two nodes
covering the interaction (which amounts to the distorted symmetric

case) since in the other region we can consider the fragments as free.
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6. Summary and Conclusions

Our main purpose was to calculate the scattering matrix for a many-
body system, restricted to two-fragment channels, by Monte Carlo simu-
lation. We use the Path Integral Monte Carlo (PIMC) or the Diffusion
Monte Carlo. We have confined the investigation to a three-body system,
with a two-body interaction, in one dimension. The interaction between a
pair is either a square well or a square barrier. The parameters of the
square well have been chosen, except for one case, such that there is only
one two-body bound state. Depending on the nature of the interactions,
one, two, or all three pairs of particles can form a two-body bound state,

thus giving three different cases.

In each of the disintegration modés we have two channels
corresponding to the unbound particle on the left and on the right of the
bound fragment. These two channels can be superposed to get a sym-
metric and an antisymmetric wave function. The symmetric and
antisymmetric wave functions can be construed as an alternative
definition of channels. However, the decomposition into symmetric and
antisymmetric channels are indepedent if the Hamiltonian does not have
a parity mixing term. The complete problem can now be solved by simu-
lating the symmetric and the antisymmetric channels separately. Here
the nodes are symmetric about r,=0. We can, however, solve the com-
plete problem in one simulation by choosing the asymmetric node struc-
ture. Though the first method is inefficient in comparison to the latter

method, we have two ways of solving the same problem by Monte Carlo.
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This can be used as the program verification tool. We have not done this
in this work, however, but we have used another method of verification to

be discussed later.

If only one pair of particles can form a two-body bound state we have
only one two-fragment mode. In this case we have studied the problem in
two different ways: 1) Two-body Monte Carlo approximation, where the
composite and a free particle are considered to interact through an
effective potential and 2) Three-body Monte Carlo. Here we have
restricted ourselves to the antisymmetric channel. The two-body approx-
imation, as to be expected, is in good agreement with the three-body
Monte Carlo at low energies. Though the value of the energy calculated
with the same boundary condition, that is, the node at a point along the
channel coordinate, is in good agreement, the phase shiit does not agree
as well. This is not paradoxical if we remember that we should compare
the error with the kinetic energy. We also investigated the situation with
total positive energy, which corresponds to the opening of the disintegra-
tion channel (i.e., the three-fragment channel). If the energy is low we
should expect the small amplitudes for scattering into the disintegration
channel. Here, it seems plausible that we should be able to disregard the
three-fragment channel. We, however, find that the Monte Carlo calcula-
tions do not give good results and, if the simulation can be continued into
the continuum at all, it is in a narrow region. We have also analyzed the
case with two two-body bound states. The aim was to find how well the
calculations proceed as the energy reaches the value near the second
bound state. Once again we find that, if we go near the second energy
level, the calculations break down. Though the evidence is not

overwhelming, it seems that possibility of another energy level as well as
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the continuum of energy level is detrimental to the calculation if the

energy is larger than these levels.

Next we choose the interaction such that the two pairs of particles
can form a two-body bound state. Once again we restrict ourselves to the
antisymmetric channel. We may, however, choose the distinguishability
of the particles. Thus, if the particles are considered distinguishable, we
have the possibility of two channels. However, if the particles are identi-
cal (we confine ourselves to the bosons) then we have one channel. We
can, however, obtain the solution to the indistinguishable cases by super-
posing the solutions to the distinguishable cases. Thus we can simmulate
the one-channel case in two different ways. We may choose the trial func-
tion symmetrical in all the channels and treat the problem as one-
channel case, or we may treat it as a multichannel case and superpose
the solutions to construct the one-channel case. We have calculated the
phase shift for the one-channel case in these two different ways. Though
the accuracy of the calculation needs to be improved with better statis-
tics and extrapolation to the infinitesimal integration step, the results
are satisfactory within the error. However, the principle is clearly true
and provides a good check within the Monte Carlo calculations. This is
quite desirable when the problems cannot be treated otherwise. Even for
the distinguishable particles this check can be used as another program

verification tool.

Next we solve the above problem in full by choosing an antisym-
metric node structure. Now if the particles are distinguishable, we have
four channels. If the particles are identical, however, we have two chan-
nels. As before we can solve the identical particle case in the two ways

mentioned above. This gives us the relation between the S-matrix
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elements for distinguishable and nondistinguishable cases. We have
simulated these two cases and compared the results. Though the statisti-
cal error remains to be improved for a definite conclusion, the results are

consistent with the error estimates.

Besides the above we have also given (in Appendix-3) a sampling
method and studied the effects of various artificial parameters in the
algorithm. This is of general interest in solutions of diffusion equations
via the Monte Carlo technique. The sampling interval obviously reflects
the correlation between consecutive values of the energy, which consti-
tute a time series, during iteration. Since during relaxation the system
tends to the ground state, there is a stronger correlation. Therefore, we
get a larger sampling interval if we do not exclude the part of the series
during relaxation. Moreover, once beyond the relaxation point we have
better precision in determining the sampling interval. Hence we can use
the behavior of the sampling interval in conjunction with the drift in the
ensemble size to detect the equilibration point. The methods given here

could be of use in analysis of metastable systems.

As the ensemble drifts it is necessary to restore it to a nominal value.
There is an optimum value of allowable drift. For the example we studied
this was about 5%. Once established, this has been used throughout.
Monitoring the restoration process is useful in detection of the equilibra-
tion point as well as the stability with regard to the integration step.
Since the initial ensemble is approximate, the drift is large and the res-
toration frequency is large. Besides, at the beginning the ensemble drifts
to only one of the bound since the distribution of the ensemble is skewed.
These two characteristics and the behavior of the sampling interval are

useful in the detection of the equilibration point.
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A smaller integration step obviously gives a large sampling interval.
A large sampling interval, however, is not always due to a small integra-
tion step. If the integration step is large then the configurations with
high local energy are readily destroyed, which reduces the fluctuation in
the energy. This, though, gives rise to a large sampling interval, and,
however is accompanied by a large drift of the ensemble size, indicated
by frequent restoration. Another observable is that the drift is skewed to
one of the bounds, usually the lower bound. Thus the sampling interval
and the drift of ensemble size are useful in determining the adequacy of

the integration step.

Ideal reference energy is the exact energy for the system. Since we
do not know the exact energy, we have to use the value based on the
simulation itself which needs to be updated at certain intervals. The
interval at which we update the reference energy has a definite effect, at
least for the example we considered, on the correlation exemplified by
the maxima in the sampling interval, the significance of which is not
clear. The example we studied does not indicate any instability and the
region of the small sampling interval seems adequate and reduces the
estimate of the standard error. A large sampling interval sometimes
indicated a change in frequency of the update of reference energy. How-

ever this was not useful in fixing the parameters in the subsequent cases.

Further study of multichannel scattering may be along the following
lines. We have here used the exact eigenfunction for the two-body bound
state. For practically interesting cases, however, we will not have this
information. Therefore, it would be of interest to investigate the sensi-
tivity of the results to small changes in the two-body eigenfunction.

Study of a realistic model would also be of interest. The case of the
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Fermion remains to be solved. The fixed node treatment used in calcula-
tion of bound state energy, however, is likely to be inaccurate since in
scattering calculations the wave function is of importance, while in calcu-
lation of bound state energy the exact wave function is not as important.
The real problem is to get away from the fixed node treatment. One way
to accomplish this is to estimate the "pressure' in each of the regions
between the nodes and to determine how they should move. This is possi-
bly an ideal problem for the concurrent processors where each of the
regions is analyzed by different processors for some time and the nodes
are moved after a large number of iterations. The geometry for more

than three particles, however, complicates the matter.

The sampling method we have used is based on an empirical study.
One may abstract a mathematical problem from this: Given a finite series
of numbers, which is stationary albeit with some correlation, we want to
sample this series at a given interval such that the sampled series is the
best representative of random number sequence. A theorem giving the
estimates of the error will be of use in science and engineering and possi-

bly in economics.
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Appendix 1. Three-Body Problem: Notation

The description below is for the one-dimensional case. The extension to

three dimensions is straight-forward.

The Hamiltonian.

The Hamiltonian, in each of the channel a, may be written as,
H=Hy+V, +V* Al

where Hg is kinetic energy, V, is the interaction potential between the
fragments and V* is the internal potential responsible for the binding

energy of the fragments.

Convention for numbering the channels.

Fragmentation Mode Channel Number
0 Three particles dissociated: 0
1 Two fragments;2 and 3 bound: 11
2 Two fragments;1 and 3 bound: 2 2
3 Two fragments;2 and 1 bound: 33
4 Three particles bound state: 4

A general treatment of the scattering requires that the configurations of
positive and negative values of r, be considered as separate channels. If
such is the case we will designate the channel with negative values of 7,

by &. It is also convinient to define rz;=—r,. Now we give expressions for
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some of the parameters for Channel-1. The parameters for Channels-2

and 3 can be obtained by cyclic exchange among indices 1, 2 and 3.

The channel potential V! and internal potential V; are given by,
V1=V1,2+ V1'3; VI: V2,3. Al.2

Channel coordinate r; and corresponding internal coordinate r! are given

by,
T1=Z1—(mazatmszs)/ (Mmatmyg) A13
rl=z,—z4
p1=(m1)(matms)/ (my+met+ms). Al.4

If m;=ms=ms=m the above expressions reduce to,
r=x,—(xs+zx3)/ 2 A15
and,
m1=2m/ 3. A16
The motion of the center of mass may be excluded with the condition,
z,+zot+z3=0. A1

Since we can take r;and r! as generalized coordinates, it is useful to

express the similar coordinates in other channels in terms of 7, and r1.

r2=——é—(r1+27'1); TZ:‘%‘(ZN—&"I) AL.B

T3=—'%-(T1—2T1); rsz—%@r +3rh).
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A useful transformation

Due to condition Al.7 we need two independent coordinates to describe
the system. In Appendix-4 we check the Monte Carlo algorithm by com-
paring with a calculation by a relaxation techmnique. There, due to the
simplicity of the geometry, it is convenient to use the channel coordinate
7:=X and 7,=Y as the independent coordinates. Figure-6 shows the
region ;<a in the X-Y coordinate sytem. For the case m;=my=msz=m

we have the coordinates of the particles given by,

z,=2%, z;=2L and zy=—2(x+1)/3. AL9

Then with the two-body potential V;;=V(|z;—z;|) the Hamiltonian

transforms to,

_é?_ 3 [62 + g2 il ]
2 2m ‘ax? 37?2 axay"

H=

+ V(|2(X=Y)/3|) + V(|4X/342Y/3|) + V(|2X/3+4Y/3]|). A1.10
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Appendix-2. Random Number Generators

Here we list the random number generators used in the simulation.
16807, 2147483647 and 2147483648 are machine dependent numbers. The
computer we used was VAX with 32 bit words. The choice of the above

constants is to give maximum cycle for the random number generator

(Hab5).

Uniformly Distributed Random Numbers
REAL*8 FUNCTION RANDM(dseed)
DOUBLE PRECISION dseed,dRp31p,dRp31

DATA dRp31m,dRp31/2147483647.00,2147483711.D0/

dseed = DMOD(16807.D0*dseed,d2p31m)
RANDM = dseed/d2p31

END

Gaussian Distributed Random Numbers
REAL*8 FUNCTION RANDG(dseed)

IMPLICIT REAL*8 (A-H,0-Z)



- 90 -
DATA
sqrt2,d2p31m,d2pn31/1.414214D0,2147483647.D0,2147483648.D0/
DATA al,a2,a3/-.5751703D0,-1.896513D0,-.5496261D-1/

DATA b0,b1,b2,b3/-.113773D0,-3.293474D0,-2.374996D0,-1.187515D0/
DATA c0,c1,c2,c3/-.1148666D0,-.1314774D0,-.2368201D0,.5073975D-1/
DATA d0,d1,d2/-44.27977D0,21.98546D0,-7.586103D0/

DATA e0,e1,e2,e3/-.5668422D-1,.3937021D0,-.3166501D0,.6208963D-1/
DATA £0,i1,12/-6.266786D0,4.666263D0,-2.962883D0/

DATA g0,g1,82,23/.1851159D-3,-.2028152D-2,-.1498384D0,.1078639D-1/

DATA hO,h1,h2/.9952875D-1,.5211733D0,-.6888301D-1/

100 CONTINUE
dseed = DMOD(16807.D0*dseed,d2p31m)
RANDG = dseed/d2pn31
x = 1.0D0 - 2*RANDG

IF( .NOT.(x.GT.-1.D0 .AND. x.LT.1.D0)) GO TO 100

sigma = DSIGN (1.D0,x)
z = DABS(X)

IF( z.LE. 0.85D0)GO TO 400

a=1D0-2z
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b=z
w = DSQRT(-DLOG(a + a*b))

IF( w.LT.2.5D0)GO TO 300

IF( w.LT.4.0D0)GO TO 200

wi= 1.0D0/w

sn = (( g3*wi+gl)*wi+gl)*wi

sd = (( wi+ h2)*wi + h1)*wi +h0
f =w+w*(g0+ sn/sd)

GO TO 500

200 CONTINUE
sn = ((e3*w + e2)*w + el)*w
sd = (( w+ I2)*w + f1)*w + 0
f =w+ w*(e0 + sn/sd)

GO TO 500

300 CONTINUE
sn = ((c3*w + c2)*w + cl)*w
sn=((w+d)*w + d1)*w + d0

f =w+ w*(cO + sn/sd)
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GO TO 500

400 CONTINUE
7o = 7%

f =z + z*(b0 + al*z2/(bl+z2+a2/(b2+2z2+a3/(b3+z2))))
500 CONTINUE
y = sigma*{

RANDG = SQRTZ*y

END
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Appendix-3. The Sampling Method and Detection of
Equilibration Point

The Sampling Method

We have a time series of expectation values of energy and we wish to
sample this series at an interval such that we get a random series, i.e., an
uncorrelated series. This sampling interval can be defined to be the
correlation length. One way to find the sampling interval is to compare
the sample against a sample of pseudo random numbers, generated on
the computer, of the same size and distribution. Therefore, we want to
know the distribution of the energy values. We expect the distribution to
be the Gaussian about the mean.! This is borne out by the statistical tests
of many series of energy and we illustrate one such example in Table-1.

The energy series is for the example to be described in Section-4.3

Next we consider a method of comparison between the samples from
the time series and the samples of Gaussian distributed random
numbers, which will be referred to as the random number samples in
here. For this purpose we define a Fourier integral, F(«), and a correla-
tion coefficient, Cy ,, for a finite series of length N. Let Z; be the value of
the energy at time 7; with an average E. Leteg; =F;—F. Then we define a

Fourier integral for this as,

N-1
F(w) = 3, fd'r(a.i+bi1')exp(—iw'r) A3.1
=1

1=

1. The reascon for this is that the energy is mean over large number of
configuraticrs.
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where,

€:'T; = Bi g1 T e, q1—8;
— St ti+1 ‘i LY _ i+l 7
a;, = N b= —m——

i .
Ti+17 T4 Ti+17 T4

The power spectrum of the series is defined as,
P(w) = |F(w) ]2 A3.2

The correlation coefficient , Cy, , is calculated by shifting the series by
n units and calculating the correlation between the overlapping N-—n

points. That is, we define Cy , as,

N-n
2 €i€i+n
Cin = ———— . A3.3
[Y e 1BTAL Y, Je; |30%
i=n i=1

Figure-1 shows the power spectrum and the correlation coefficient, Cy .,

for a randormn sample of size 200. Here we remark:
a. The time scale is normalized such that 75=1.0.
b. We observe that the power spectrum has significant value to about
a frequency of 100, which is half the frequency of the sample points.

c. We can assert that the tail of the correlation coefficient curve is
equivalent to the one we will obtain from a smaller sample except for
n =0. For n=0, Cy,=1.0.

d. As the sample size reduces Cy, becomes significant and varies
violently.

From Fig-2 we see that the direct use of the above quantities is
difficult due to fluctuations, which are particularly large for small sample

size. Secondly, it is not a particular sequence of random number we
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should be comparing but rather an average property of such samples.
What we need is a measure which is averaged over many random samples.

Below we define such a measure.

We consider a random sample of size N , and calculate Cy,, as
defined by Eq.-4.2.4 by shifting the sample by n. As defined above, Cy , is
calculated on the basis of only the overlapping part of the sample. Now
we define,

m
QN.m = Zlcﬁ,n- A3.4
n=

We find the value m=m; where the value of @y, = 1, interpolating if
necessary. * Next we wish to average m, over an adequate number of
samples to get an estimate of 7;. For this purpose we generated 20,000
Gaussian distributed random numbers and constructed as many samples
of a particular size as possible by taking consecutive random numbers,
with no intersection between any two samples. For example, for size 50,
sample one has 1 through 50 numbers, sample two 51 through 100
numbers....... etc, which give 400 samples. In Table-2 we give the values
m, for all the samples of size 50.° Table-3 summarizes the results for the
sizes 50 through 1000 at an interval of 50. From Table-3 we see that the
relative standard error depends on N times S, which is approximately

20,000.

Table-3 suggests a linear fit with or without a constant term,

m, =a + bN A3.5

2 If QN,m, is chesen larger than 1 then 7 will be undefined for some samples.
3. We here note that 7, has Gaussian distribution based on a test detailed in
Table-7.
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gives,

o =0.5820 and b =0.6183,

while,
m,; = bN; gives b = 0.6220. A3.6

If we compare the above in light of the standard error it is quite appropri-

ate to assume that the linear relation m;=b6N is adequate.*

We find the sampling interval as follows. We guess an approximate
sampling interval by observing the correlation coefficient for the time
series or we may arbitrarily start with Ng=64. If the sampling interval is
inadequate, this will be clear from the fact that the &y, quickly
approaches unity. Obviously it is not adequate to consider only one sam-
ple. However, by changing the starting point for the sampling, we get Ng
different samples and average the value of' ' m; over these samples. For
uncorrelated samples we expect the value of m; between 0.60N an 0.66N
if the standard error is about 0.01N, which we expect. It is clear that too
large a sampling interval will satisfy the criterion. However, we wish to
determine the least value of the sampling interval that will satisfy the cri-
terion. This can be done by a binary search starting from Ng= 128 or 64.
Computationally, however, it is efficient to start irom a larger value and
go down than start from the smaller value and move upwards. Once we

approach a candidate for the sampling interval, we check in the

4. In the continuum limit, i.e., N> 7 and n.—{, if we consider a continuocus sta-
ticnary Gaussian random process of length T, then the ccrrelation, C(T,t) with a
shift of £, defined analcgous to Cy 5, is (Pa85),

1

|C(T.t)|? = 7= and M, 0.63235N.
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neighborhood. If the candidate is right, then below we will see m/ N
decreasing and above we find 72,/ N constant. However, there will be
fluctuations and we have to consider this as average behavior. We defer
further discussicn to Section-4.4 where we illustrate the method through

an example.

Detection of the Equilibration Point

Since the initial ensemble is a representative of an approximate
wave function, we have to wait for the system to relax before we begin
sampling. Hence we need a procedure to find when the system
approaches the equilibrium, that is a stationary stochastic process, albeit
with some correlation. The time, or iteration number Np, at which the
system has relaxed to the ground state, of course, with some fluctuations,
we refer to as the equilibration point. One way to do this is to determine
the characteristic time of the the system and thereby guess at the relax-
ation time. That is, we say that the relaxation time is some multiple of
the characteristic time and discard the iteration during this time.
Besides the uncertainities involved in such a procedure, it may be that
the system has many characteristic times. To estimate the relaxation
time cne has to evaluate the relative importance of various time scales.
Though this may be simple in some cases, it may not be so in general.
Some systems may have metastable regions which may give rise to
further complications. Therefore, it may be worthwhile to find a method
of detecting the relaxation time within the Monte Carlo simulation. Below

we describe such a method.

As the iterations proceed, the size of the ensemble N, drifts due to

replication or deletion of the configurations. As discussed in Section-2.1,
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if the local energy is larger than the reference energy Ey, then there is a
chance that the configuration will be destroyed. If the local energy is
smaller than the reference energy; however, new replicas of the
configuration are created. This, of course, changes the reference energy
for the later iterations and also gives rise to the drift of the ensemble
size. In the beginning when the ensemble is representative of the approx-
imate wave function, this drift will be large. If the system is relaxed, how-
ever, the reference energy will fluctuate about the ground state energy.
Also the probabilities for replication and deletion will become equal.
Therefore, the ensemble size will stabilize and the rate of drift will
reduce. Therefore, while the ensemble reaches the bounds frequently
during relaxation, this frequency will reduce considerably after the relax-
ation has occurred. Another difference is that, while during relaxation
the ensemble will repeatedly reach one of the bounds, for the relaxed
system the ensemble will hit both upper (Ny) and lower (N;) bounds on
its size. If we observe the nature of the drift of the ensemble, which can
be accomplished by monitoring the frequency of the update and type of
bounds crossed, we can get a fair judgement about the relaxation time.
Further, with some experience, this monitoring helps to judge the ade-
quacy of the integration step 07 with regard to the stability of the algo-

rithm, since the larger the d7 the faster is the drift.

All the above statements are true only in a statistical sense. Hence
although the above procedure is reasonably accurate, there are times
when ambiguities are present. There is a chance that the ensemble will
hit the same bound repeatedly even after relaxation. Sometimes the
update may create new members where they will be readily destroyed.

This gives rise to some variation of the frequency of updates.
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Nevertheless, we can guess that at certain points the stationary state

may have been reached. This can be further verified as described below.

During relaxation there is a stronger correlation between one itera-
tion to another since both of them try to drive the system toward the sta-
tionary state; some fluctuations, however, will persist. Now if we were to
determine the sampling interval including relaxation time, then the sam-
pling interval will be larger compared to the sampling interval based on
the iterations after relaxation. Once the system has reached the station-
ary point, however, the sampling interval, determined by the method of
Section-4.2, will approach a relatively constant value. We can use this in
conjunction with the nature and the rate of drift of the ensemble size to

judge whether the system has relaxed.

Although we will not have an opportunity for its use, we make a brief
remark on the possibility of treating the system with a metastable state.
The metastable state is characterized by a very slow drift towards the
stable state. The drift could be assumed linear. ® In the case of a stable
state we consider the deviations from the mean. Now we consider the
deviations from the assumed linear relation. The correlation will be least
when the assumed slope is adequate. Consequently, the sampling interval
will be minimum. This requires good precision, and therefore a long run

time, in determining the sampling interval.

5. This assumptiocn is not essential and further generalization is straight forward.
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Appendix 4. A Test of the Algorithm

Here we use the X-Y coordinate system defined in Appendix-1. To
test the alogorithm for the three-particle case we consider the problem
below. We consider a system of three identical particles(bosons) in one
dimension with two-body interaction potential which we take to be

square-wells of depth V; and width s. We choose the parameters to be,
m=my, ; Vp=8.0MeV and 2,=1.0fm. A4.1

We choose the boundaries of the system to be K,=a2=5.0. At the boun-
dary the wave function is forced to vanish. We wish to find the lowest

energy state with the above conditions.

The Monte Carlo Solution

This problem can readily be solved by the Monte Carlo algorithm used

in this work. We choose the trial wave function to be,
Up=cos (mX/ 2a)cos (nY/2a)cos (m(X+Y)/ Zaj. A42

We choose o = 5 fm. The Monte Carlo results for various integration steps

are given in Table-12b



-101 -

The Relaxation Solution

We divide the region in a grid of size Az=Ay =10.0/ N,. Consider a
grid point at 7 along the X-axis and j along the Y-axis. Let Ui_j('r) be the
value of the wave function at the grid point (%,7) at time 7. A wave func-

tion W evolves, regarding the time as imaginary, as,

where the Hamiltonian H, is given by equation A1.9. As usual we can

incorporate an energy shift £y through the transformation

U-ezp(—1ET)U. A4.5
Then the equation for U is,
oU
bY _ (g — i 6
- (H-En)U A4

Integrating the equation-A4.6 by finite difference, with an integration step

oT, we get,
U(t+6T)~ (1—(H — Ep)6T)U(T). A4y

Using equation A4.7 we can integrate the wave function to give the ground
state. We need to define the differential operator in the Hamiltonian as a
finite difference operator. The operator corresponding to five-point

operator V5 (Da74) we define as,

0Usj _ Uinj+ Ui —RU;
d = Ly Ly R, A4.8
8X? AX?

an.j U‘i,j+l+ Lri,j—l—gUi.j
aY? AY?
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0Usj _ UivrjnrtUimj1=Uinjo1= Uiy i
8z dy 4AXAY )

Here we make the following remarks on the relaxation calculation.
a. We initialize U; ; with Uy given by equation A4.2.
b. For Epr we use the expectation value of the Hamiltonian with

current values of the U ;, given by,

Jo

LU Hi 5 Us 5

ET: 2¥) B - A4.9

This will give the value of the energy at the end of the calculation once

the ground state is reached.

c. After relaxing the relaxation we renormalize the values of U; ;. If
this is not done the values of U;; can drift to low values since Ep is

different than the ground state energy.

d. For a given value of AX the value of 67 is not arbitrary. The value
of 67 must be lower than the critical value and above this the relaxation
procedure is not stable. Moreover there is an optimmum value of 67 for
which the relaxation procedure is fastest. We find this optimum value for

a coarse size and then scale this for use for a finer grid by

Sre=07[AX /7 AX]°. A4.10

e. Table-12a gives the results for various grid sizes. We extrapolate to

07=0 through a linear least-square fit.
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The Results:

Finite Difference Relaxation:
1. Linear Extrapolation: E =-3.11312 MeV
2. Quadratic Extrapolation: E = -3.09789 MeV
Path Integral Monte Carlo: E =-3.06766 MeV +0.033

Referring to Table-11 two-body binding energy is: e = -1.23553 MeV.

Since F is less than e there is a three-particle bound state.
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Table-1 ( 4 pages)

Comparison between exact Gaussian distribution, Gaussian distributed
pseudo-random numbers generated on the computer and the distribution
of the values of the energy in a Monte Carlo simulation. 7 is the distance
from the mean in units of variance. The numbers tabulated against r are
the fraction of the number of events within a distance of r from the
mean. The second column is the theoretical value given by Rerf(r). The
third column is for 5000 computer-generated Gaussian distributed
pseudo-random numbers. The fourth column is for 5000 energy values
where to take care of transients we have discarded 2000 initial iterations
out of 7000. In the last column we list the standard error for the sample

size of 5000.

P Exact Pseudo-random Energy St. error
0.05 0.03988 0.0390 0.0406 0.00277
0.10 0.07966 0.0722 0.0840  0.00383
0.15 0.118924 0.1132 0.1242  0.00458
0.20 0.15852 0.1486 0.1646  0.00517
0.25 0.17942 0.1950 0.2068  0.00543
0.30 0.23582 0.2320 0.2441 0.00600
0.35 0.27366 0.2774 0.2827  0.00831
0.40 0.31084 0.3146 0.3211 0.00655
0.45 0.34728 0.3552 0.3581 0.00673

0.50 0.38728 0.3874 0.3855 0.00589



Table-1 (continued)

p
0.55

0.60
0.65
0.70
0.75

0.80
0.85
0.0
0.95

1.00

1.05
1.10
1.15
1.20
1.25

1.30
1.35
1.40
1.45
1.50

Exact
0.41768
0.45150
0.48430
0.51608
0.54674

0.57628
0.60468
0.63188
0.65788
0.68268

0.70628
0.72866
0.74986
0.76986
0.78870

0.80640
0.82298
0.83848
0.85294
0.86638

= 108~

Pseudo-random
0.4230
0.4570
0.4902
0.5194
0.5448

0.5744
0.6012
0.6328
0.6616
0.6856

0.7088
0.7292
0.7504
0.7706
0.7924

0.6084
0.8210
0.8388
0.8530
0.8638

Energy
0.4325
0.4659
0.4885
0.5257
0.5551

0.5883
0.6171
0.6467
0.6705
0.6841

0.7163
0.7337
0.7544
0.7744
0.7906

0.8064
0.8246
0.8372
0.8528
0.8710

St. error
0.00690
0.00704
0.00707
0.00707
0.00704

0.00898
0.00591
0.00382
0.005671
0.00558

0.00644
0.00629
0.0061%
0.00385
0.00577

0.00559
0.00540
0.00220
0.00501
0.00481



Table-1 (continued)

p
1.55

1.60
1.65
1.70
1.75

1.80
1.85
1.80
1.85
2.00

2.05
2.10
2.15
2.20
2.25

2.30
2.35
2.40
2.45

2.50

Exact
0.87886
0.89040
0.60106
0.91086
0.91988

0.92814
0.83568
0.94256
0.94881
0.95450

0.95964
0.96428
0.96844
0.97220
0.97556

0.97856
0.88122
0.98360
0.88572
0.88758
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Pseudo-random
0.8820
0.8932
0.8040
0.9134
0.9214

0.9304
0.9352
0.9428
0.9490
0.9540

0.9590
0.9634
0.9688
0.9718
0.9742

0.9776
0.9796
0.9826
0.9842
0.9856

Energy
0.8822
0.8840
0.8032
0.8098
0.9168

0.9242
0.9320
0.9386
0.9440
0.9496

0.9552
0.9600
0.9644
0.9696
0.9738

0.8756
0.9790
0.9798
0.9822
0.8850

St. error
0.00461
0.00442
0.00422
0.00403
0.00384

0.00365
0.00347
0.00328
0.00312
0.00295

0.00278
0.00262
0.00247
0.00232
0.00218

0.00205
0.00192
0.00180
0.00168

0.0C197



Table-1 (continued)

p
2.55
2.60
2.65
2.70

2.75

2.80
2.85
2.90
2.95

3.00

Exact
0.98922
0.89068
0.89194
0.89308
0.88404

0.99488
0.99562
0.99626
0.99682
0.88730

= 119 -

Pseudo-random
0.8864
0.9886
0.8812
0.9922
0.9934

0.9946
0.8830
0.9962
0.9964
0.9972

Energy
0.9868
0.9880
0.9894
0.8906
0.9920

0.9932
0.2938
0.9948
0.99854
0.9856

St. error
0.00146
0.00136
0.00126
0.00117
0.00108

0.00101
0.00083
0.00086
0.00080
0.00073




Table-2 ( 3 pages)

The values of m; for the Gaussian distributed random numbers were cal-
culated by
numbers (Gaussian distributed). 20,000 numbers were generated with the
seed 53183710303.00 . For the sample size of 50, 400 samples were used
using 50 consecutive random numbers. Following are the values of m for
these samples. The distribution of m, is Gaussian about the mean, 7z, as

is shown in Table-7. Without listing m, for other sample sizes, the results

simulation,

are sumrmarized in Table-3.

s 411 =

using

34.20
25.91
28.99
38.21
29.81

33.25
31.60
30.21
25.10
36.07

33.75
30.10
38.22
36.65
36.31

38.64
26.71
30.12
22.78
37.70

34.46
21.93
23.70
20.59
30.18

32.38
35.20
29.50
29.91
38.29

26.09
33.74
21.87
30.34
31.62

33.21
22.02
32.40
40.17
34.80

30.16
R27.34
27.51
29.13
29.30

31.15
32.64
_27.41
19.86

23.71

34.24
34.76
30.72
27.74
36.01

33.46
30.38
32.89
31.29
33.78

25.70
34.58
35.42
29.16
24.92

29.41
35.11
30.65
_27.45
26.06

32.53
33.75
30.38
35.67
28.05

31.72
30.66
20.93
29.60
35.28

27.92
33.70
38.37
23.41
30.08

37.94
32.83
28.90
34.31
25.84

30.14
24.54
34.37
23.50
30.57

31.06
29.23
34.90
28.13
38.74

31.20
27.99
34.93
31.53
30.34

computer-generated pseudo-random

23.47
32.96
41.44
31.79
23.18

33.52
34.15
29.72
32.36
31.41



Table-2 ( continued )

31.22
30.96
28.31
25.98
37.20

33.36
21.57
32.30
30.02

35.39

37.20
36.56
37.89
29.96
28.39

27.43
33.06
28. 7D
30.95
29.08

30.09
33.37
30.40
28.21
28.55

35.47
22.84
36.10
25.27
32.38

32.03
36.56
36.46
_27.74
35.22

28.70
£8.91
31.58
34.33

33.85

23.99
31.93
33.70
26.79
32.39

31.71
24.03
33.92
29.13
37.37

32.34
33.13
32.26
32.74
24.70

32.67
35.23
33.68
22.04
32.20
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31.55
32.83
31.08
34.18
35.10

34.67
34.05
35.25
22.04
27.06

34.26
36.10
36.83
37.97
32.47

33.46
23.12
29.12
31.66
29.71

27.03
37.35
31.02
22.71
16.12

33.93
35.28
33.28
37.25
31.81

27.30
30.22
30.39
30.33
28.74

35.63
40.25
22.31
34.19
38.69

30.82
29.49
31.87
37.13
34.88

39.25
34.45
27.24
24.84

33.49

31.79
29.72
30.46
22.02
34.19

21.96
21.46
30.90
33.70
32.26

34.34
21.88
31.22

39.88-

31.88

28.12
39.89
27.84
29.45
25.56

33.11
22.60
27.01
36.26
31.82

29.51
28.65
29.83
22.41
24.89

16.80
35.43
30.97
32.36
30.32



Table-2 ( continued )

33.04
21.72
37.64
30.08
27.86

32.02
33.36
21.85
33.86
24.44

37.94
21.95
35.59
35.84

37.45

34.66
42.23
32.84
23.42
35.67

35.91
33.64
23.31
28.11
34.20

26.56
32.52
37.95
31.91
38.65

35.36
34.31
33.12
34.92
32.61

31.76
20.27
28.36
34.50
29.06

22.87
34.28
34.97
30.36
22.10

=113~

27.21
34.31
34.82
36.28
29.90

29.48
34.02
32.34
33.06
38.59

33.72
27.98
32.55
29.42
34.49

_27.65
37.14
21.21
26.99
28.84

35.67
32.78
37.35
23.11
22.56

31.01
22.39
35.23
30.97
_4.76

32.07
26.32
34.24
29.11
2. 77

34.34
21.60
35.43
36.12
35.92

30.00
27.50
38.19
35.49
38.26

29.71
27.09
39.16
30.40
19.20

31.93
28.20
28.08
23.24
34.22

_24.72
.99
34.84

[oy]
al
(o)}
(&)

v
e
©
©

29.58
36.26
26.45
31.79
33.10

28.06
23.68
33.27
23.67
34.61

23.62
30.58
28.34
32.86
26.66
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Table-3 (2 pages)

A Monte Carlo simulation to calculate 7, for the Gaussian distributed
pseudo-random numbers. 20,000 numbers were generated with the seed
0319371303.00. S samples with size N were selected from these numbers,
taking N consecutive numbers in each of the samples. o is the standard

deviation for m,. The standard error is calculated as o/ S%

N S ey o st. error M/ N
o0 400 31.00 4.77 0.239 0.62001
100 200 61.77 8.12 0.575 0.61775
150 133 94.186 11.55 1.002 0.62772
200 100 126.31 11.19 1.119 0.63157
250 80 15538 12.44 1.390 0.62151

300 66 185.17 1571 1.935 0.61721
350 57 215.34 17.71 2.345 0.61526
400 50 252.31 18.82 2.661 0.63076
450 44 27549 1745 2.630 0.61221
500 40 31549 13.69 2.164 0.63098

550 36 347.18 R23.16 3.859 0.63124
600 33 383.05 19.50 3.394 0.63841
650 30 412.28 25.50 4.654 0.63427
700 28  444.03 23.47 4.436 0.63433

750 26 479.49 2742 9.377 0.63931



Table-3 ( continued )

N
800
850
900
950
1000

25
23
i
21
20

511.32
539.12
571.08
611.64
641.64

115~

o
22.64
23.88
20.17
28.83
24.52

st. error
4.527
4.978
4.299
6.291
5.480

mqy/ N
0.63915
0.63427
0.63423
0.64372
0.64164
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Table-4

Comparison between the exact (ex), Monte Carlo (MC) and variational
(var) calculation of the energy E and phase shift § for a one-dimensional
scattering problem. The potential is Poschl-Teller defined in Eq. (4.3.3) of
Section-4.4 for Uy=—8MeVandzy=2fermi. The parameter & defines the
"box"" boundary where the wave function is forced to have a node. The
exact phase shifts are calculated both by solving the Calogeroc equation
(CaB?) and from the exact value of E using Eq. 4.4.4. The former values
are the true values, while the latter ones (shown in the parentheses) will
coincide with these only when V(r) is negligible for r>&. This table is

reproduced from (Al184).

R(fm) 5.0 7.5 10.0 20.0
E,.(MeV) 53732 21238  1.1453  0.2991

Eyc(MeV) 5.3752 21238  1.1404  0.3011
+0.0054 +0.0073  +0.005  +0.004

Eor (MeV) 0.4993 2.3176 1.3410 0.3951

6,,(rad)  0.6014  0.7416  0.7912  0.7390

(0.5962) (0.7414) (0.7913) (0.7395)

Syc(rad) 05959  0.7426  0.7964  0.7310
+0.0013 +0.0041 +0.0051 +0.016

6,or(rad)  0.5665  0.6341  0.5984  0.381
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Table-5 (2 pages)

The values of iteration at which the ensemble is updated are listed. The
upper limit of 90 and lower limit of 110 were imposed on the ensemble.
The ensemble was updated to 100 whenever the above bounds were
crossed. The data below pertain to the case discussed in Section-4.3.
From the table we may guess that the stationary point is reached

between iterations 214 and 824.

Iteration Interval Updated from

16 16 90
45 39 90
215 170 90
824 609 110
1376 948 90
1724 348 890
2006 282 80
2115 146 90
2533 378 90
2673 140 80
3512 839 80
4741 1229 110
4909 168 110
4858 49 110

5252 294 110
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( Table-5 continued )

Iteration Interval Updated from

5368 116 110
9400 32 110
5681 281 110
5731 o0 90
6130 399 110
6270 140 90
6383 113 110

6829 446 89
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Table-6

The table below is for the case discussed in Section-4.4 . The sampling
interval is tabulated against the number of initial iterations discarded.
From the table we conclude that the stationary point is reached after

about 700 iterations.

Iterations discarded Sampling interval

0 42 2
100 42 +2
200 39 +2
300 37 =2
400 38 =2
000 35 =1
600 35 +1
700 31 +1
800 31 +1
800 31 +1

1000 31 1
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Table-7 ( 3 pages )

The table below gives the values of m;/ N for various sampling intervals
for the example in Section-4.4 . The table is for Case-b in Figure-6 where
the first 700 iterations have been discarded. The error in the last column
is the standard error in 7/ N. The striking feature is the fluctuation in

the value beyond the sampling interval of 31. The theoretical asymptotic

value of M/ N as N-»«is 0.6325 .

Sampling Interval
11
12
13
14
15
16
17
18
19
20

21
22
23
24
29

/N
0.26280
0.32250
0.37093
0.40914
0.43385
0.47336
0.48519
0.50359
0.52326
0.53726

0.55895
0.56119
0.55392
0.58744
0.60039

Error
0.01107
0.00943
0.01875
0.01026
0.00852
0.01457
0.00907
0.00979
0.01162
0.01335

0.012904
0.00838
0.01654
0.01343

0.01283
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Table-7 continued

Sampling Interval
26
_7
28
29
30

31
32
33
34
35
36
37
38
39
40

41
42
43
44
45

m/ N
0.56880
0.60336
0.59846
0.59435
0.61015

0.65100
0.63205
0.60602
0.62215
0.63808
0.62174
0.65721
0.65637
0.65141
0.62639

0.62214
0.67225
0.64066
0.65086
0.60869

Error
0.01324
0.00885
0.01220
0.00803

0.00777

0.00924
0.00869
0.01138
0.01377
0.00803
0.01176
0.01035
0.00974
0.00608
0.01005

0.00742
0.00638
0.01223
0.00805

0.01144
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Table-7 continued

Sampling Interval
48
47
48
49
50

o1
52
o3
o4
95
56
a7
58
o9
60

/N
0.64814
0.64715
0.63809
0.64311
0.65939

0.61469
0.63628
0.63588
0.60011
0.65487
0.61787
0.63243
0.64093
0.66597
0.67873

Error
0.00885
0.00914
0.00782
0.01182
0.01153

0.00970
0.00880
0.00858
0.01044
0.00675
0.00809
0.01101
0.00994
0.00808
0.00858




Table-8a.

The values of m; for the sampling of a time series of energy. The initial
700 iterations are discarded so that the system has relaxed. The sam-
pling interval, however, is taken as 120 iterations enabling us to obtain
120 different samples of size 50. This enables us to compare the distribu-

tion of m, for this series with that of the pseudo-random series, recorded

in Table-2.

28.91
31.03
36.62
34.36
34.25

36.96
35.50
24.35
29.49
24.57

22.18
34.16
25.40
27.83

27.33

34.595
24.87
31.71
34.64
32.81

_27.47
35.99
26.46
29.97
29.88

22.02
30.69
27.81
28.81
30.20

34.55
28.52
32.65
34.28
33.87

31.38
35.96
29.79
31.08
24.78

21.37
32.04
26.62
28.86
32.19

ol 125

37.08
31.56
32.97
31.48
36.00

38.33
36.33
29.49
29.52
_27.15

29.84
32.33
27.15
20.27
32.00

34.78
30.59
34.93
31.61
33.69

37.95
35.40
29.14
29.97
24.35

31.07
20.14
25.28
22.47
28.68

32.25
32.78
34.23
33.14

37.35

38.71
30.75
23.27
27.30
32.18

31.89
16.23
25.96
27.54

32.12

30.32
34.31
34.46
31.73
35.41

38.19
29.90
29.74
23.36
22.94

32.31
17.85
30.99
28.07
30.79

32.33
34.22
34.22
31.94

37.11

37.49
ed.21
27.58
20.91
R22.42

32.38
24.29
31.43
22.88
32.80
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Table-8b

This table summarizes the comparison between Table-2 and Table-8a. In
Table-9 the distribution is compared in more detail. Note the closeness

of the variance o.

Gaussian Random Numbers Energy Time Series

N 50 50

o) 400 120
o 31.00 30.41

o 4771 4.84
St. error 0.239 0.423
my/ N 0.620 0.608

St. error/N 0.00477 0.0085
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Table-9 ( 4 pages )

The table below compares the 'distribution for m; for a Gaussian pseudo-
random series and the time series for the energy obtained in the
Diffusion Monte Carlo for the example in Section-4.4 . p is the distance
from the average in the units of variance . As in Table-1 the fraction of
events within this distance is tabulated. The second column is the exact
value for the Gaussian distribution. The third column is the distribution
of m,, listed in Table-1 , for the samples from the pseudo-random series.
The last column is for the samples of energy values sampled at an inter-
val of 120 for which values of m; are listed in Table-8a. While comparing
we should note that, while the number of events considered for column

three is 400, this value is 120 for column four.

p Gauss.  Mjpandom): ™Mi(energy)
0.05 0.03988 0.0300 0.0333
0.10 0.07966 0.0500 0.0750
0.15 0.11924 0.0975 0.1417
0.20 0.15852 0.1550 0.1687
025 0.17942 0.1825 0.2083
0.30  0.23582 0.2300 0.2500
0.35° 0.27366 0.2625 0.3000
0.40 0.31084 0.3075 0.3417
0.45 0.34728 0.3400 0.3917

0.50 0.38728 0.3700 0.4000



Table-9 continued

0.55
0.60
0.65
0.70
0.75

0.80
0.85
0.90
0.95
1.00

1.05
1.10
1.15
1.20
1.25

1.30
1.35
1.40
1.45

1.50

Gauss.
0.41768
0.45150
0.48430
0.51608
0.54674

0.57628
0.60468
0.63188
0.65788
0.68268

0.70628
0.72866
0.74986
0.76986
0.78870

0.80640
0.82298
0.83848
0.85294
0.86638

= 1286 -

M 1(randomn )
0.3875
0.4325
0.4700
0.5200

0.5500

0.8775
0.6100
0.6400
0.6675
0.6875

0.7000
0.7225
0.7400
0.7500
0.7625

0.7725
0.7930
0.8150
0.8225
0.8330

M 1 (energy)

0.4333
0.46867
0.4917
0.5167
0.5500

0.5500
0.6187
0.6583
0.6750
0.6917

0.6917
0.7167
0.7333
0.7417
0.7750

0.7917
0.8250
0.8250
0.8417
0.8500



Table-9 continued

1.55
1.60
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