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ABSTRACT

We have developed a method based upon the Schwinger Variational
Principle to study molecular photoionization and electron molecule scatter-
ing. We obtain exact static-exchange solutions to the equations for the
continuum orbitals within the Hartree-Fock approximation, and from these
we derive cross sections and angular distributions for both of the above
processes. We have applied this method to photoionization of the valence
levels of three different systems.

The first application of this method is in a study of the photoionization
of the wvalence levels of NO. For photoionization of the
50 level we find that the magnitudes of the cross sections for the resulting
b3 and AlT states of NO* are not in the statistical 3:1 ratio and that the
position of the peaks in the shape resonances appear at significantly different
photoelectron kinetic energies. The differences are a reflection of the
sensitivity of the shape resonances to small changes in the exchange
component of the molecular ion potential. We also examined photoionization
of the 2m and 4o levels of NO and found that these levels, along with the
50, exhibit shape resonances in the o continuum.

Vibrationally resolved branching ratios and vibrational state-specific
asymmetry parameters for photoionization of the 50 level of CO are
presented. The agreement between these results and the measured data was
obscured by autoionization peaks superimposed upon the region of the
spectrum in which the experiment was performed. The limited experimental

data which are not obscured by autoionization, agree quite well with our



results.

Finally, a study of the photoionization of the
50 level of CO adsorbed on a nickel surface is reported. Approximating this
system by the linear triatomic molecule NiCO leads to cross sections and
angular distributions which are in good agreement with experimental data.
The use of polarized, highly tunable synchrotron radiation along with
detection at various angles yields far more information than can be obtained
from the photoionization of the same molecule in the gas phase. With this
technique it is possible to determine the adsorbate geometry, resolve partial
channels, and resolve the photoemisison from two degenerate orbitals of
different symmetries, simply by making appropriate choice of the polariza-

tion and collection angles. Examples of these techniques are discussed.



II.

1,

LV,

vi

TABLE OF CONTENTS

Page
INTRODUCTION ceveeeosnnccans 6w R T T 1
. Development of the Schwinger Variational Method
Which is Suitable for Long-Range Potentials «ceececceccenes s 5
A. Introduction ecccesecccses e e s s escs s s et s st st s ss e e e 6
B. Schwinger Variational Principle Applied to
Long-Range Potentials «+eesseeeescecss CENAREENFAS LN S 17
[ M. E. Smith, R. R. Lucchese, and V. McKoy,
Phys. Rev. A 29, 1857 (1984). ]
Photoionization of the Valence Levels of Nitric Oxide «««cee-- 43
A. Introduction scceescees e e s s esescs st essssss et ssse s 4y
B. Studies of the Photoionization Cross Section
of the 21 Level of Nitric Oxide eecvcccccecccccccecenn. 49
[ M. E. Smith, R. R. Lucchese, and V. McKoy,
J. Chem. Phys. 79, 1360 (1983). ]
C. Shape Resonant Features in Photoionization of the
50 and 40 LevelsINNQO scccecccscrccccsccrsesscsconcs 65
[ M. E. Smith, R. R. Lucchese, and V. McKoy,
submitted for publication. ]
A Study of the Vibrational Branching Ratios in the
Photoionization of CO(X! £, v=0) Leading to
COHALL, v=0,1,2) «eevvrs I . 99

A Theoretical Study of Photoemission of the 50
Orbital of Carbon Monoxide Adsorbed on a
Nickelsurface vessecsscense R R R R TS GEssaEEs 120



-1-

INTRODUCTION



The study of molecular photoionization is a rapidly growing area of
current research. Emphasis is no longer placed upon the determinization of
ionization potentials, but rather upon obtaining cross sections, asymmetry
parameters, and vibrational branching ratios, all as functions of the energy of
the incident photon. This field of research is relatively new and owes its
existence to the fact that experimentalists have recently been able to tap in
to the synchrotron radiation which provides a tunable, monochromatic source
of photons. As more and more molecules are being studied by the
experimentalists, efforts by the theoreticians to analyze and explain the
results increase also. The work presented in this thesis describes our attempts
to predict and interpret the results of various photoionization experiments
and thus to learn more about the dynamics of this process. We present the
theory behind our approach to describing this process, and then the application
of this method to the photoionization of the valence orbitals of NO, CO, and
NiCO.

The cross sections obtained from photoionization calculations or
experiments are useful in the modeling of many physical processes.
Atmospheric chemists make use of this information in any model of
atmospheric composition.  Photoionization is a common event in the
interstellar medium, and astrophysicists need reliable cross sections upon
which their models can be based. The closely related process of electron-
molecule scattering is a major feature which must be well characterized
before a reasonable description can be devised for energy transport in plasmas
or electron impact processes in lasers. Also the phenomenon of the shape

resonance, which occurs so often in these situations, is known to induce non-



Franck-Condon behavior in the branching ratios for the final vibrational states
of the system. More recently photoemission studies have played a key role in
probing the nature of adsorbates on metal surfaces, and in an even newer
area, the process of multiphoton ionization of atoms and molecules is rapidly
becoming an important probe of quantum state-specific photoelectron
dynamics. In short, photoionization is a frequent occurrence that needs to be
well understood.

An accurate theoretical determination of cross sections for molecular
photoionization requires considerable effort. Unlike the case of atomic
photoionization, the nonspherical molecular ion induces the coupling of
partial waves in the continuum function. There is also the problem of devising
a method to correctly describe the nonlocal exchange potential in an ab initio
manner. Even the local part of the potential can sometimes be difficult to
describe adequately due to numerical problems which may occur.

In Chapter I of this thesis we present our theoretical method and
discuss the manner in which we address the above problems. We discuss the
merits of our method and compare it to other methods used by researchers
studying similar problems. The remaining chapters are concerned with the
applications of this method to various facets of the photoionization problem.
Chapter II contains the results of a study of the photoionization of the
valence orbitals of nitric oxide, in which we examined the effects of
photoionization from an open-shell molecule. This system provides a rare
opportunity to study the case in which photoionization from a closed-shell
orbital results in the molecular ion which can be in either of two spin states,

depending upon whether the remaining electron is triplet or singlet coupled to



the electron in the original open shell. We examined the cross sections from
these states and found the surprising result that they were not in the 3:1 ratio
that would be expected based upon the multiplicities of the final states.
Chapter III contains the results of a study of the vibrationally resolved cross
sections for the photoionization of the 50 orbital of carbon monoxide. This
channel contains a shape resonance which causes non Franck-Condon
branching ratios for the final vibrational states of the CO* ion. Finally, in
Chapter IV the results of a study on the photoionization of NiCO are
presented. NiCO has been found to be a good approximation for the more
complicated system of CO adsorbed on a Ni surface. We fixed the direction
of the molecule in space and then compared the angular distributions of the
ejected electrons with those obtained experimentally for CO adsorbed on a Ni
surface. For lesser-studied systems, a study of this type would be an ideal
way in which to help determine the angle of bonding between the molecule
and the surface.

This is by no means a complete treatise on the subject of molecular
photoionization. [t is hoped that the many references given at the end of each
chapter will provide information not given here as well as different insights

and different approaches to solutions of problems in this field.
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Development of the Schwinger Variational Method

Which is Suitable for Long-Range Potentials



SECTION A

Introduction



Much effort in chemical research in recent years has been directed
toward understanding molecular photoionization.l,2 This phenomenon is often
observed in physical processes which occur in planetary atmospheres,
plasmas, and the interstellar medium and recently photoionization has come
into considerable use as a probe of the nature of adsorbates on a metal
surface. The material in this chapter describes the specifics of a new
theoretical approach used to predict photoionization cross sections. It is
useful to initially present a brief overview of the basic concepts behind this
theory. It should be noted that much of the theory presented in this chapter
is applicable with only minor modifications to the similar phenomenon of
electron-molecule scattering3 which also occurs in the above processes and is
of central importance in gas lasers and electron energy loss spectroscopy
(EELS).

At first glance the photoionization process seems quite straight-
forward. An incident photon strikes a molecule and if the energy of the
photon is sufficient an electron can be ejected from the molecule. Our work
in this field is directed primarily toward obtaining photoionization cross
sections as a function of the energy of the incident photon. The cross section

for photoionization from an N-electron molecule is given by*

4ﬂ2w

3c

o(E) = < ¥ (e, R ul ¥ (e R) > |2, (1)

where V¥i(r,R) is the initial-state wave function corresponding to the ground
state of the molecule and Vg is the final-state wave function corresponding

to an (N-1)-electron ion and the continuum wave function of the photoelectron.



The coordinate r refers to all N electrons collectively and R is the relative
position vector of the nuclei. The photon-molecule interaction is represented
by the dipole operator u and the factors ¢ and w arethespeedoflightand
photon frequency. The initial state ¥; is easily obtained from standard
electronic structure codes. Thus, all of our efforts are directed toward
obtaining the continuum orbital in the final-state wave function
Y £, We must first develop the equation for ¢k, the one-electron con-
tinuum part of ¥, and then outline a method for the solution of this equation.

The final state wave function in the photoionization process describes
a photoelectron and a molecular ion. We solve SchrBdinger’s equation

with the Hamiltonian

H = Hion + T + vint (2)

where Hj,n is the Hamiltonian of the molecular ion, T is the kinetic energy
operator for the continuum electron, and Vj,t represents the interactions
between the electron and molecular ion. The stationary state solutions of

this Hamiltonian satisfy the time-independent Schr.édinger equation

Y Y
HY =EY . (3)
E E
Note that ‘*’g is an N-particle wave function. The superscript

Y represents the quantum numbers n, v, j, and s which are the electronic,

vibrational, rotational, and spin states of the ion, along with S and Mg which



describe the total spin angular momentum and its Z component.

It is not possible to solve Schrodinger's equation directly for the N-

particle equation ‘i’g. By using the eigenfunction expansion and retaining

only the first term in the expansion, we approximate

‘*’g as

wg = ¢, (r;R) ¢>a(r1,r R) (4)

2,...’rN—1’

where ®2 is an eigenfunction of the ionic Hamiltonian

i is the continuum orbital and a represents the quantum numbers n, v,
j, and s of the ion. We allow vibration and rotation within the framework of

the Born-Oppenheimer approximation and thus write
9% (r,R) = " (r;R)Y)?V(R).

With this form for 8% in Eq. (4), we insert this into Eq. (3), multiply on the
left-hand side by #® and integrate over the electron coordinates
r1,r2,..,FN-1 and the nuclear coordinates R to obtain a single-particle
equation for the continuum orbital ¢y

2

(v2 - 2 V(rsR) + K2)o, (r3R) = 0. (5)
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Here V(r) is equal to the interaction potential Vi,t averaged over the
molecular ion and k2 is related to the energy of the continuum electron by

2

k .

E=E10n+

1
2

The internuclear distance R appears as a parameter now. If we want
information about ¢y for various bond lengths in the ion we simply insert the
appropriate V(r;R) into Eq. (5). The solution of Eq. (5) will provide us with
the information necessary to obtain photoionization cross sections.

Up to this point the discussion of the wave functions has been based
upon the incorrect assumption that the electrons are distinguishable. This
was done to simplify the presentation of the theory. To account for the
indistinguishability of the electrons an antisymmetrized wave function must
be introduced in Eq. (4). This results in a more complicated single-particle
equation

2

(v2 - 2 V(r) + k%o () =

[ 2 Vex(r,r')¢k(r')d3r', (6)

where we have suppressed the parametric dependence of V and
bk on the internuclear distance R. The left-hand side is the same as that in
Eq. (5) but the exchange potential has been introduced on the right-hand side.
The first thing we immediately notice is that it is a nonlocal potential; i.e.,

to know the value of V€X4yp at a single point, we must know the value of
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¢ k(r) everywhere. If the exchange potential could be rendered separable --
that is, made into a function of r times a function of r' -- we could then
obtain a solution of Eq. (6) more readily. We have chosen a separable form
for this exchange potential which was originally proposed by Schwinger.5
Because the body of this chapter concerns an adaptation of this technique, we
will discuss the original theory and its merits next.

Eq. (6) can be rewritten as

2

(ve - = + kz]cbk(r) =

r

f d3r' Ulr,rt) ¢k(r') (7)

where U is equal to twice the sum of V plus V€X with the long-range Coulomb
interaction given by 2/r removed. Using the Coulomb Green's function

defined by®

The solution to Eq. (7) becomes the Lippmann-Schwinger equation®

ol (0) = £,(r) 4

[ &, e, alP ey ute e 880y ()

where fi, is the Coulomb function corresponding to scattering from a point
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charge. The + (-) refers to the outgoing- (incoming-) wave boundary
conditions. The incoming-wave boundary conditions are wused in
photoionization calculations because the final state is a well-defined particle,
not a scattered wave as is the case for outgoing-wave boundary conditions.

We would like to express the kernel in Eq. (8) in a separable form

N
H d3rl G(r,rl) U(rl,rz) = 121 ai(r) Bi(rz). (9)

Insertion of this separable kernel into Eq. (8) gives

N
b (r) = f(r) « izlai(’) < Bl >

which can be manipulated to obtain a closed form solution for

bk

b (r) = £,(r) + T a (r)

Ly )

x ((1 - < Bla >)'l)i.

] < lefk >.

The problem now is how to choose the form for
ajand B; for our separable potential in Eq. (9). The form we chose was

originally proposed by Schwinger5:7

Us(r,r') - .2. < r|U|ai > (U-l]ij < aj|U|r' >
ly)
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Use of this separable potential in Eq. (8) gives the closed form solution

b (r) = £,.(r) + izj <rlaula; > (D7) < & Ul >
’ (10)

where

|2 =<a.|U-UGU|a. >, (11)
1) 1 J

The obvious question to ask is what's so special about the Schwinger separable
potential. There are other separable potentials we could use; why did we
choose this particular form? The answer lies in the connection between this
separable potential and the Schwinger variational principle.

The Schwinger variational expression for the T matrix is8

(+)

gt >t < ¢é-)|U|fk, >

T = < flUle

< ¢£')|U - UGU[¢&T) >. (12)

If we form some trial function for ¢y, say
tr
¢'k = ¢k + 6¢k7

where §dy is some  small change in the true function
¢k, then insertion of (mt(r into Eq. (12) will give a trial T matrix that differs

from the exact T matrix in second order
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¢ 2
ke = Tk + 060"

T

There are no first-order errors and the T matrix is variationally stable. If the

trial function is chosen as a linear combination of basis functions aj

tr
b = ) lrg 2
1

and is inserted into Eq. (12), then by using the fact that the T matrix is

variationally stable we require

for all ¢cj. This results in an expression for cj

c. = 2 (D-[)..

Th ale] f, >
)
where Djj is defined in Eq. (l11). Insertion of ¢;t<r into the Lippmann-

Schwinger equation, Eq. (8), gives

o () = £, (r) + 1< r|GUla; > (D_l)

, < aj[U]fk>.
s )

1]

This is exactly the same form for the wave function which we obtained in Eq.
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(10) where we started from the Schwinger separable potential.

It is even possible to iterate with this method.? This is done by
augmenting the basis set {lap} with the function ¢y obtained previously
and then repeating the calculation. This iterative procedure can be per-
formed until the wave function from the n+15t iteration is no different from
the wave function in the nth iteration.

The work presented in this chapter is a modification of the above
method which yields significantly better results in fewer iterations. It is still
based upon the Schwinger variational principle but the starting point is Eq. (6)
rather than Eq. (7). Because only the exchange potential is nonlocal, it is the
only part of the potential which must be rendered separable; the local part
could be treated exactly by existing methods and thus none of it would be
"lost" in an unnecessary projection onto an incomplete basis. When this
method was implemented we found that iterating became unnecessary in
most cases and our results converged significantly faster. The material in
this chapter describes this method in more detail and presents some results
which illustrate how quickly the method converges. In later chapters, we
present the results of applications of this method to various problems in

molecular photoionization.
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SECTION B

Schwinger Variational Principle Applied

to Long-Range Potentials
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I. INTRODUCTION

In recent years several new approaches!-’ have been developed for
studying the collisions of low-energy electrons with molecules and the related
problem of molecular photoionization. In several of these methods, the use
of discrete basis functions plays an important role. Of specific interest to
the developments in this paper is the Schwinger variational method in which
the trial scattering wave function can, in principle, be expanded exclusively in
a discrete basis. It is known that the expansion of the trial wave function, in
such a basis, e.g., |¥> =Iicj|aj>, in the Schwinger variational principle is

equivalent to the use of a separable potential of the form

Vs(r,r') = .Z'< r|V|ai > (V'l)i

<aj|V|r'> (1)
1,]

j

in the Lippmann-Schwinger equation.6 Clearly the basis functions in Eq. (1)
must span the range of the full potential in order for VS to be an adequate
representation of V. Applications to date have shown that for molecular
targets with no strong long-range potentials,’ e.g., Hp, No*, and C02,8'10 a
discrete basis set approach to the Schwinger variational principle can be very
effective. However, for strongly polar systems, e.g., LiH,
NO+(2¢-1), and CO*(55-1),11-13 jt is difficult to describe the long-range
forces with only discrete basis functions,and we have found that continuum
functions must be included in the trial function so as to obtain the correct
scattering solutions particularly at low energies. For these cases and, more

generally, to have a method which can provide accurate solutions where such
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solutions may be required, we have developed an iterative procedure for
solving the Lippmann-Schwinger equation which is based on the Schwinger
variational principle.2 In this iterative procedure appropriate continuum
functions can be systematically incorporated into the basis set for the trial
scattering function. Criteria for the convergence of this method have been
developed.2

The features discussed above pertain to the Schwinger variational
principle in a form in which the entire scattering potential V, including both
its long- and short-range components, is projected on a basis in the separable
form of Eq. (1). The Schwinger variational principle can be expressed in a
form which assumes that the direct and long-range interactions will be
treated exactly, e.g., by numerical integration, and only the short-range
forces such as exchange effects will be projected onto a discrete basis set as
in Eq. (1).14,15 1f this approach could be implemented efficiently, it could be
expected to be a very effective way of applying the Schwinger method to the
more difficult system such as the scattering of electrons by strongly polar
molecular ions, which often arises in studies of molecular photoionization. In
fact, Rescigno and Oreld have recently developed an approach to electron-
molecule collisions in which exactly this division of the scattering potential
into a long-range direct component and a short-range exchange component is
made but in which the exchange component is approximated by a separable

potential of the form

Ve (Fst') = izj< r|ai > < ai|vexlaj > < ajlr' >, (2)
b
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The results of the application of this approach were impressive.5 Exactly
such a separation of the scattering potential and the subsequent
representation of the exchange component by a basis set expansion of the
form of Eq. (2) have been used extensively and successfully by Schneider and
Collins.3 These results certainly suggest that a similar approach within the
framework of the Schwinger variational method would be very useful.

In this paper we develop an adaptation of the Schwinger variational
principle for long-range potentials in which the static component of the
electron-molecule interaction is treated exactly and the exchange inter-
actions are approximated by the separable potential of the form of Eq. (1).
Most importantly, we will show that the use of a separable potential of this

type leads to variationally stable scattering matrices. The method also

includes an iterative procedure for obtaining the converged scattering
solutions systematically. Moreover, the related photoionization cross
sections can be shown to be variationally stable. The method of solution is
essentially based on the integral equations approach of Sams and Kouri’,16,17
and does not require the Green's function for the static potential.5

In the next section we formulate our adaptation of the Schwinger
potential for long-range potentials and demonstrate that the photoionization
cross sections obtained with these continuum solutions are variationally
stable. In Section IlI we will illustrate various features of our method by
application to the e-NO*+(X1z+) and e-Hy systems. The first example is
chosen as an application of the method to molecular photoionization involving
a strongly polar ion while the second example has been extensively studied by

several methods. The results of these applications, particularly those of the



=2]=

e-NO* system, are very encouraging and show that the procedure converges

rapidly.

II. THEORY
A. Formulation
The Schrodinger equation for electron-molecule scattering in the
static-exchange approximation is

2

(V2 - U + kz)‘{’k(r) -0, (3)

where % U is the static-exchange potential of the target. To this equation we
also add terms containing Lagrange multipliers to impose any desired
orthogonality of the continuum function ¥ | to occupied target orbitals. We
can write Eq. (3) including the auxiliary orthogonality conditions as

2

7% - U+ kDY () = ] A X (0), (4)
1

where, for example, Xj; are the occupied orbitals of some closed-shell
molecular target and Aj are the Lagrange multiplers. These Lagrange
multipliers play an important role in determining the photoelectron
continuum functions in the frozen-core approximation.? By breaking the
scattering potential U into its direct and exchange components, Udjr and

Uey, respectively, Eq. (4) becomes
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where the functions ‘Yﬁ and ¥Xi satisfy the equations

ye _ yd d e
k- kT G Uex\yk

d X;

vl _gdy L gdu vl
1 ex

In Egs. (7) \Pﬁ is the solution for the direct potential, i.e.,

(V2 _ U . kz)Wg -0

dir
and Gd is the Green's function for the static
(V2 - Ugjr + k2 £ ie)-l. The orthogonality of ¥, to

Xi requires that

X
<Xj|‘yk>=<le‘¥§>+§<lewl>ki

(5)

(6)

(7a)

(7b)

(8)

potential, i.e.,

0

the

orbitals

(9)
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and, hence,

= [ e
)\i__zj (A )ij<xj|‘{’k>, (10)
where
"
_ >
Apj = < Xil . (11)

The partial wave K-matrix element associated with solutions of Egs. (6) and

(7) is given by

d e
Ko vem = Koam = & O < ¥ rml Yex! Yiam

> 4+

d X i =1
.2.( < Wkﬂ."xi zors Wkl'mluexl‘y > ) (AT,

where Kgdgum is the K-matrix element for the direct potential and we have
assumed the molecule is linear.

Our objective is to obtain a variationally stable expression of the
Schwinger form for such K-matrix elements. We assume that we have exact
values for the K%g,: and <‘¥f| X > elements which can be obtained from the
solution of Eq. (8). We will discuss our method for solving this equation later.
We obtain a variational estimate of Kgg'yy by constructing variational

estimates of the matrix elements
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Ié}g = < w§,|uex]?f > (13a)
1;?2 - < ws,]uex|wxi >, (13b)
() - oy e >, (13c)
Ig?) ETEE xi|wxj > (13d)

In Egs. (13) we have abbreviated the partial-wave designation. We can use

Egs. (6) and (7) to write the following variational expressions for these four

termslB,lS-zo

(1) d e e d
Iy 1y =<‘¥9,'|Ue |\i’1> +<Y£,|Uex|W£>
- . -
- < ‘{’;,IUe - UexG Ue ]‘{'; > (14a)
“(2) o d X e d
gy = < wz,luexlw > 4 < wl"uexG |xi >
< e lu  -u clu l;xi > (14b)
L' Tex ex ex ?
(3) d d: e X d
g’ =< le‘{'l > + < ijG Uy ¥y > + < ¥ 7lu_ J¥, >
y d ~e
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~

(s d d X
Iij _<Xi]G|xj>+<Xi|GUex|‘{’ >
.
d
+ < ¥ U Gx >

X
S<¥v Hu o -u clu |vX s, (14d)
ex ex ex

Expansion of the trial functions Ye and ¥X in a basis {|011>} and
variation of the expansion parameters leads to the variationally

stable expressions for these elements, i.e.,

3

(1) d -1 d
Ipvg = a2b< Yo lug e, > (D ap < @plUg,lY¥g >, (152)
’
(2) d -1 d
lgrg = a2b< ¥ U la, > (D7) ) < apfu, Golx, >,
’ (15d)
~(3) _ d d -1
g™ = < xgl¥y > + Eb< Xi1GUgla, > (D7)
:
x < a |u _|vd> (15¢)
b' “ex' "% " ?
(8) d d
1Y = <oxlefhg s v 1 <xglet, e,
b
x (DY <o Ju Yy, > (15d)
i ab b! Tex Xj ’
where ( D-1) ab is an element of the inverse of the matrix
d
Dap = < aaIUex = Hap® Uex'ab ~ L L&)
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Use of Eq. (15) in Eq. (12) provides a variationally stable expression for the K

matrix.

Finally, insertion of a separable approximation for Ugy of the form

-1
u = 2 Uex|aa g (UEX ]ab = abIUex (17)

in Eq. (7) yields the wave functions

(0)e _ ,d d -1 d
‘ka, h ‘yk9,+ ) GUexlo‘a > (D )ab < O"oerx“’ka, >

a,b
’ (18a)
(0) Xi d d -1
= =G Xp ¥ E G Uex'aa 5 (D )ab
a,b
x <o fu_ Gy, >, (18b)

which will be shown to be point-by-point variationally stable in Section Ilc.
Substitution of Eq. (18) in Eq. (6) gives a total scattering solution whose
partial wave asymptotic form defines a K matrix identical t¢ that obtained

by using Egs. (15) in Eq. (12).

B. Iterative Procedure

The functions in Eqs. (18) provide approximate solutions of Eq. (3).
In several applications, it can be important to obtain the converged
solutions of Eq. (3). A procedure for doing so begins by augmenting the

initial basis {|g>} with the energy-dependent set of functions S(0) =
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1{1(0) RV (0) sissl (0) defined by the initial solutions of Eqgs. (18). Here
ke ke 2 ke, q

2p is the maximum partial wave retained in the expansion of
\y;(<0). Eqgs. (18) are now solved again with this augmented basis providing a

new, and more accurate, set of solutions s(D) -

lgl) (1) l((l)

{\y zp"kzz’-""*’ . Repetition of this procedure with a new basis

consisting of the set of functions {Iap} andS(l)leadstoamoreconverged

set of solutions S(2) = {\yﬁ)l,\{l;((%)z,...,‘{'y)

. These functions are the
converged solutions of Eq. (3) when the set of s(n+1) functions is equal to the

s5(n) set.2

C. Variational Stability of Photoionization Cross Sections
An important objective of our work is to use these continuum solutions
to obtain molecular photoionization cross sections. The relevant one-

electron matrix element is given by

M= < ¢il“|‘*’k> =<R|‘*'k >, (19)

where ¢ is the orbital from which ionization occurs,
Yk is the photoelectron continuum function, and p is the dipole moment
operator. We now show that our approximate continuum solutions obtained
above provide variationally stable estimates of Eq. (19). For convenience we
keep the same notation as in the preceding section, although in actual
applications to photoionization one must redefine the Green's function and
the scattering potential of Eq. (1) due to the presence of the Coulomb

potential. From Egs. (6), (7), (10), and (19), we obtain
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M= < RlyS > + < RIGIU_ _|¥E >+ T (< RIGYy, >

’

Xi -
+ < RIGdUexIW 1 >) » (A l)ij < lewi > 6 (20)

To obtain a variational expression for the matrix element M, we need, in

3 4)
addition to the variational estimates of Ij, and (lij, given by Egs. (14),

(5) (6)

variational expressions for Ip andlj where

(5) _ d e

Iz = < R|G Uex"yg > (2la)
and

(6) d Xi

I = < RIGU_ | >, (21b)

where we again use a partial-wave designation for the continuum function,

(5) (6)

y€, Variational functionals for 12, and I; can be written as

T(5) d e R d
Ig = 2 Nk Uex“’ > t < ¥ | exl‘yg >
"R d “e
- & y IUeX - UeXG Uexlwz 5 (223)
and
T(e) d.  Xi "R d
R e R A LG P
"R d "X i
- <y 'Uex - UexG Uexl\y > (22b)
where \yR is a variational trial function for \yR and
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v’ - IR + cdu_ yR. (23)
ex
As before, we expand the trial functions \;R, \IIXI, and \;f in the
basis { |ai>} to obtain the variational expressions for
<) L)
Iy and Ii | ie.,
L(5) d =
77 = Y < R|G Ugla, > (D7)
a,b
d
x < ay|Ug, l¥, > (24a)
and
e 3 d iy
Ii - a,b < RiG Uex|aa> (D )a,b
d
< aberxG 'Xi>' (24b)

Use of Egs.(15¢), (15d), and (24) in Eq. (20) leads to a variationally stable
expression for the matrix element M. However, insertion of Eqgs. (18) for
\yf and \yxl directly into Eq. (19) gives the identical expression for this
matrix element, showing that our procedure provides a variationally stable
estimate of M.
_ ~(5) ~6) ,
Finally, we note that Iy and I} are exactly the matrix elements

found in Egs. (18), with <R| replaced by <r|. This indeed confirms that

the wave functions we obtain are variationally stable.
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D. Computational Approach
To evaluate the variational expressions of Egs. (15) and (24) it is
necessary to solve for the partial-wave static solution,

‘i’gz ms and functions of the form

u d

volr) = < r|Gu >, (25)
where |u> may be either Uey|a> or |yxj>. Procedures for evaluating

Uex|a> have been given elsewhere.20 The functions

ngm and yY satisfy the integral equations

d 0 d
\ykﬂ,m = Ska,m + G Udir‘yksz,m (26)
and
u 0 0 u
' :Gu+GUdir\¥ " (27)

respectively, where Sygm is the free-particle solution and GO the free-
particle Green's function. Partial-wave expansions are first made in
Egs. (26) and (27) and the resulting coupled equations then converted to
a set of Volterra integral equations. Volterra integral equations have been
used extensively in related applications5’16’17’21 and techniques for their
numerical solution have been discussed elsewhere.’;17,21 In fact, our
approach is very similar to what has been used recently by Rescigno and
Orel.b First, we consider Eq. (26). The partial-wave function

‘Ygg,’m, defined by the expansion
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¥ am(r) = y Wfl,m(r)Y ,m(?), (28)

is obtained from Eq. (29), i.e.,

(v = (69(m, (29)
where
1 © d ir
Mpdgnp = Sg0g * & g" I3 By 1Up g nbqug 97 (30)

and ¢g2v satisfies the Volterra integral equation

d 1
¢£2,(r) = fﬂ,(r)dlﬂ,' + E}: fz(r)

R'"

x [ g (e UT (eyed, (e )dr

L r B '
™ g"gz(r) fofg'(r YU 22,,( )%"z-(f )ydr
(31)

In Egs. (29) and (30) f; and gy are the Riccati-Bessel and Riccati-
Neumann functions, respectively, and we have suppressed the subscripts k and
m for convenience. It is well known that placing Eq. (30) on a quadrature
mesh provides a noniterative propagation scheme for outward integration of

the equations.!7»2l  The associated K matrix, i.e., ( Kd), is given by
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(x9) = (m)(m,71), (32)
where
1 & pdir
(M)grg = - Eg T080 Vg g wbgug dr (33)

and (M2)g g is given in Eq. (30).

To maintain accuracy, numerical stabilization procedures had to be
carried out at various grid points as the solutions were propagated outward.
These procedures have been described in detail elsewhere.17,21,22

The solution of Eq. (27) is obtained in a similar way by transform-
ing the equation for ¥4 to a Volterra-type integral equation for

¢ Y. In partial-wave form, for each inhomogeneity u, we have

‘{’; = ¢QL'] + 2 ¢9‘2'|Cﬂlva (34)

where, in matrix notation

-1
(&) = (M37)(m,) (35)
with
1 @ d1r
(MB)Qﬂ,l = - (622' * ‘E g".g gl 22||¢Q'u2'| ) (363)
and
1 d1r
M)y = ¢ 1 [y Uy 10 1 dr. (36b)

=



-33-

u
The function ¢g (r) satisfies the integral equation

1 e )
¢;(r) = - Efofz(r<)g2(r>)ug(r')dr'
. 1) t (r) [ g uditel 4o
ko' 08 g P
'y g, (r) [lg uditel qp (37)
k &5 0°g 2P :

Again the usefulness of this equation becomes apparent when it is placed on a
quadrature mesh.

In the numerical integrations we used the ordinary Simpson's rule
cyclically, and then used Simpson's "3/8 rule" for integrals which ended on a
midpoint of an ordinary Simpson's rule quadrature. Knirk23 has shown this
quadrature scheme should be generally more accurate than the overlapped

Simpson's rule or the trapezoidal rule.

III. APPLICATIONS

To illustrate our procedure we first studied the photoionization cross
section for the 21 level of NO leading to the XII+ state of NO*. We
primarily looked at the 2r + ko component of this cross section which is
shape-resonant enhanced.!2,2%,25 We have studied this system recently and
it provides a good example of difficulties which can arise in obtaining the
electronic continuum of strongly polar ions in resonance regions.

The rotationally unresolved, fixed-nuclei photoionization cross

section is given by
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2

g(R) = AT W | < ¥, (r5R) [u|¥, (r;R) >

|2
3c

’ (338)
where p is the dipole moment operator and w the photon frequency. In
Eq. (38) Yi(r,R) is the initial state of the molecule and
¥Ys the final ionized state. For Y¥; we used the self-consistent field (SCF)
wave function and for the (N-1) bound electrons of
¥f we use the ground-state SCF orbitals, i.e., the frozen-core approximation.
The  continuum  orbital is a  solution of the one-particle
Schrodinger equation with the static-exchange potential of this ion. Details
of the SCF basis, quadrature grids, and partial-wave expansions have been
given previously.12 In these studies the dipole moment of the molecular ion
with respect to the center of mass of the system is 1.27D.12 We also assume
the experimental ionization potential of 9.3 eV.

To illustrate the performance of the method and to compare it with
the iterative Schwinger variational approach, we have carried out
calculations with three different initial basis sets. These are given in Table I
and consist of six, twelve, and eighteen Cartesian and spherical Gaussian
functions defined as

n —alr-AIz
e

o(r) & M0 N (x-A ) Hy-a )M(z-A) (39)

and

2
$lr )% Bl Nslr-,fxl”“e“"lr""| Y, (2 ), (40)

2m' "r-A

respectively. There are slight differences in the respective basis sets for the

two methods. We have found that basis functions are needed at the center of



-35-

mass in the iterative Schwinger method to represent the direct component of
the scattering potential. However, in the present method where only the
exchange potential is projected on a basis, higher-order Gaussian functions on
the nuclei are more effective than those at the center of mass.

Our results are given in Table IL There we show some
2y K-matrix elements, the ko eigenphase sums, and the
2m - ko photoionization cross section at a photon energy of 14 eV which
corresponds to the peak of the shape resonance in this channel.lZ At this
photon energy the photoelectron kinetic energy is 4.7 eV. We chose this
example since it is generally more difficult to obtain converged K matrices
and photoionization cross sections in resonant regions than at nonresonant
energies. The results show that, even starting with the very small basis of
six functions, the present method gives essentially the converged results
after one iteration. The Schwinger method, in which the entire potential is
projected onto the basis, gives much poorer results at this level. It is
important to note, however, that with just six basis functions and no iterative
improvement, the present method provides a good estimate of the photo-
ionization cross section. This is a consequence of the variational stability of
these cross sections. At the L2 level, the differences between the two
methods become smaller as the size of the basis sets increases but, as
expected, the present method yields more accurate results. With these larger
basis sets, the differences between these two methods become quite small
once the wave functions are improved iteratively. Away from the resonant
energies in the 27 -+ ko channel and for the nonresonant

2m + km and k& channels, the present method performs extremely well
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providing accurate cross sections at the L2 level with just six basis functions.
For these channels and with these small basis sets, the cross sections
obtained with the Schwinger method would change by as much as 40% with
iteration.

As a next example we obtain some ZZg K-matrix elements and
eigenphase sums for e-Hy at k2 = 0.25 in the static-exchange approximation.
This system is simple and has been extensively studied previously. We chose
this system so as to compare the present method both with the iterative
Schwinger procedureZ and the method of Rescigno and Orel.> Our present
method is very similar to theirs? and differs essentially only in the use of a
different separable representation of the exchange potential, i.e., the use of
Eq. (1) instead of Eq. (2). As we have shown earlier, the use of the separable
potential of the form of Eq. (2) leads to a variationally stable formulation.
For the comparison of these results for this simple system obtained by the
different approaches we do not believe it is necessary to present extensive
numerical details.

For these studies of e-H, we use an SCF target wave function
constructed from a (5s2p) basis discussed previously.Z This basis gives an
SCF energy of -1.1330 a.u. and a quadrupole moment of 0.452 a.u. We chose
two  small  scattering basis sets containing two and four
Og functions, respectively. The basis functions are given in Table III. The
results of these calculations are given in Table IV and show that with only
two basis functions the present method already provides quite accurate K-
matrix elements at the L2 level. With this same basis and without any

iterations the Schwinger method gives much poorer results. With four basis
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functions the differences between these two methods at the L2 level remain
significant. However, after one iteration, the two methods give essentially
the same results. The iterated results in Table IV are almost identical to the
converged K matrices at this energy. For comparison, with their choice of
Eq. (2) for the separable representation of the exchange potential, Rescigno
and Orel’ obtained values for Koo, Kg2, and K22 of -1.490, 0.012, and 0.0148.
These calculations? used the present (552p) SCF basis, i.e.,
7o'g functions, to form the separable representation of the potential. Larger
basis sets in the present method without iterations and in their studies?® can

both provide the converged K matrices directly.

IV. CONCLUSIONS

We have developed an adaptation of the Schwinger variational princi-
ple which is particularly well suited for treating long-range potentials. The
method treats the direct component of the interaction potential exactly by
numerical procedures but assumes a separable representation of the
Schwinger type for the exchange potential. The method includes an iterative
procedure for systematically obtaining converged solutions of the correspond-
ing Lippmann-Schwinger equation. The approach should be particularly useful
in obtaining continuum solutions of strongly polar ions which are required in
related studies of resonant molecular photoionization cross sections. The
method, moreover, provides variationally stable estimates of these photoioni-
zation cross sections. In this regard, applications of the method to the
photoionization of the 27 level of NO gave encouraging results and suggest

that the approach can be quite useful in other related applications.
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TABLE I. Starting Gaussian basis sets for the 2 continuum of the e-NO+(X! £+) system.

Basis Present Method Iterative Schwinger Method
Set Center 2 m n o Center L m n o
I Nucleid 0 0 O 4.0 Nuclei 0 0 0 4.0
0 0 O 0.5 0 0 0 0.5
0 0 l 1.0 0 0 | 1.0
I Nuclei 0 0 O 8.0 Nuclei 0 0 0 8.0
0 0 o0 2.0 0 0 0 2.0
0 0 O 0.5 0 0 0 0.5
0 0 | 1.0 0 0 1 1.0
0 0 | 0.25 0 0 | 0.25
0 0 2 0.5 c.m.b 10 1.0
2 0 1.0
111 Nuclei 0 0 O 8.0 Nuclei 0 0 0 8.0
0 0 O 4.0 0 0 0 4.0
0 0 O 2.0 0 0 0 2.0
0 0 o0 1.0 0 0 0 1.0
0 0 O 0.5 0 0 0 0.5
0 0 1 2.0 0 0 | 1.0
0 0 | 1.0 0 0 | 0.25
0 0 | 0.25 c.m. 1 0 1.0
0 0o 2 0.5 2 0 1.0
3 0 1.0
4 0 1.0

3Basis functions on the nuclei are Cartesian Gaussians. PCenter of mass. Functions here are always spherical
Gaussians.

_Of]—



TABLE II. Comparison of the 2§ K-matrix elements, 0 eigenphase sums, and the 2m+k o photoionization
cross sections at a photoelectron kinetic energy of 4.7 eV for the e-NO* system obtained by the
present method and the iterative Schwinger method.

Basis Set I3 Basis Set Il Basis Set III
L2a IteratedP L2 Iterated L2 Iterated
Kg,2"
0,0 -0.224 0.091 -0.045 0.094 0.069 0.094
0,1 0.625 -0.524 -0.439 -0.526 -0.518 -0.526
l51 31.451 -1.585 -2.467 -1.549 -1.740 -1.546
0,2 0.884 0.534 0.564 0.535 0.536 0.5335
15,2 11.006 -1.154 -1.343 -1.145 -1.177 -1.145
2,2 3.579 -0.529 -0.595 -0.525 -0.553 -0.524
8 SHmS 1.616 -0.498 -0.806 -0.489 -0.576 -0.488
oil 1.336 1.501 1.328 1.509 1.472 1.513
Iterative Schwinger Method
0,0 13.346 -0.273 -0.043 0.103 -0.033 0.096
0,1 14.671 -1.285 -0.397 -0.551 -0.524 -0.534
1,1 16.582 -2.764 -2.729 -1.507 -2.471 -1.521
0,2 -2.554 -0.121 0.603 0.532 0.553 0.535
1,2 -2.901 -1.571 -1.209 -1.135 -1.122 -1.144
2,2 0.564 -0.864 -0.423 -0.524 -0.370 -0.523
§ sum -1.076 -0.853 -0.869 -0.488 -0.748 -0.479
Oj 0.798 0.524 1.239 1.342 1.277 1.524

aDiscrete basis functions only. See Table I. DPOne iteration only. CIn radians. dIn megabarns (1 Mb = 10-18

cm?),

-Ih_
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TABLE II. Starting basis sets for the 2Z,continuum of e-Ho. All functions
are centered on the nuclei. All are Cartesian Gaussian functions
defined in Eq. (39).

Basis Set 2 m n o]
I 0 0 0.5

0 0 1 0.5

II 0 0 0 1.0

0 0 0 0.3

0 0 1 1.0

0 0 1 0.3

TABLE IV. Comparison of the 25, K-matrix elements and eigenphase sums
for e-Hy at k2 = 0.25 a.u.

Basis Present Method [terative Schwinger Method

Set L2 [terated L2 Iterated
I Ky, v

(0,0) -1.721 -1.546 0.690 -1.549

(0,2) 0.019 0.013 -0.028 -0.014

(2,2) 0.014 0.016 0.002 0.016

S sum -1.026 -0.976 0.606 -0.975

II (0,0) -1.598 -1.546 -2.079 -1.545

(0,2) 0.016 0.013 0.004 0.013

(2,2) 0.015 0.016 0.004 0.016

S sum -0.992 -0.976 -1.118 -0.974
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CHAPTER II

Photoionization of the Valence Levels of Nitric Oxide



4y

SECTION A

Introduction
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The photoionization of nitric oxide has been a subject of great interest
in the last few years. From a practical point of view, this topic is of interest
in atmospheric chemistry where NO* is a major component in many
reactions.] NO* is found in the D, E, and F| regions of the ionophere which
extend from roughly 80 to 120 km in altitude. From a theoretical point of
view the photoionization of NO posed new difficulties which were not
encountered in photoionization studies of closed-shell molecules.
Furthermore, existing theoretical and experimental studies for the NO
system are in poor agreement with each other.

To resolve the observed discrepancies between the experimental
results of Southworth et al.2 and the theoretical values of Wallace et al.3 and
Delaney e_t__gl_.,u we applied our theoretical methods?6 based upon the
Schwinger variational principle’ to the photoionization of the valence levels
of NO. We studied the 2w orbital using the Iterative Schwinger Method of
Lucchese g£_§L5 and then for the 40 and 50 orbitals applied anew
adaptation of this method® which is well suited to the study of polar ions with
large dipole moments. The theoretical results of Wallace et_al.3 were
obtained with the Continuum Multiple Scattering Method” which employs a
semi-empirical, muffin tin type of potential and local approximation to the
exchange interaction. Delaney et al.* employed an ab initio method, the
Stieltjes-Tchebycheff Moment Theory, but failed to converge their calcula-
tions and obtained cross sections which oscillated wildly -- a very unphysical
result. The differences between these results and the experiments were so
large that we were prompted to study this system.

In the molecular orbital picture the ground state electronic configura-
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tion of NO is
(16)2(20)2(36) % (40) 2 (50) 2 (1m) * (2m) ! X211,

We considered the following one-electron ionization processes from the

ground state of NO

(21 » ko)2zt (21 » km)2m (21 » k&) 2A

(56 » ka)2n  (5¢ » km)2s*, %37, 2

(4 » ko)2m (40 » ki) 2st, 257, 2a.

Photoionization out of the 27 orbital leads to the XIZ+ ground state of
NO+. However, photoionization out of the 50 (40) orbital can lead to
either the b3 (c3M) or the Alm (Blm) states of NO*, depending upon
whether the remaining electron in the photoionized orbital is triplet or
singlet coupled to the electron in the 2y orbital.

In this chapter we report the first theoretical results for photoioniza-
tion from the 50 orbital of NO in which separate calculations were performed
for the two final states of the molecular ion. We report cross sections for
photoionization leading to the b3 and the AlT states of NO*. We found
the somewhat surprising result that the relative magnitudes of these cross
sections do not exhibit the 3:1 ratio that would be expected based upon
simple spin statistics. We also found that the 55 > kg shape resonance
appeared at different electron kinetic energies in the two calculations. These

results were also observed experimentally. In the previous calculations on this
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system3;% a "spin-averaged" ion was constructed from 3/4 of the
triplet ion and 1/4 of the singlet ion. The scattering calculation was
performed for an electron in the field of this ficticious ion and then the cross
section was partitioned into a 3:1 ratio for the triplet and singlet states. This
approximation inherently forces the 50 + ko shape resonance to occur at
the same electron kinetic energy for the two processes. Thus, this method
leads to cross sections which, by the very nature of the approximation,
cannot exhibit the above-mentioned anomalous properties.

The work presented in this chapter is our attempt to present accurate
static-exchange cross sections for photoionization of the 4g, 55, and 27
orbitals of NO. We found that we differed from many of the theoretical
results previously reported and we discuss the reasons for these differences.
We compare our results to experimental cross sections and find reasonable
agreement between the two. Our multiplet-resolved cross sections for
photoionization from the 5g orbital are presented and their relationship to the

spin-averaged cross sections is discussed.
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SECTION B

Studies of the Photoionization Cross Section

of the 27 Level of Nitric Oxide
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I. INTRODUCTION

Theoretical studies of molecular photoionization, which yield cross
sections and photoelectron angular distributions, can provide an important
probe of molecular electronic structure and dynamics.! With the tunable
continuum provided by synchrotron radiation, the spectral variation of these
cross sections and angular distributions can now be studied over a wide
continuous range of incident photon energy. Such data have already shown
that shape resonances play an important role in molecular photoionization.2

Recently, the photoionization cross sections of nitric oxide have been
measured using both synchrotron radiation3 and the (e, 2e) pseudophoton
technique. The measured cross sections for photoionization out of the
27 level show two resonant-like features at photon energies of 19 and 29 eV with
the feature at 29 eV being very broad. This partial cross section has also been
studied recently by the Stieltjes-Tchebycheff moment theory (STMT)
approach and by the continuum multiple-scattering method (MSM).6 In this
paper, we present photoionization cross sections and asymmetry parameters
for the 27 level of NO which are obtained from the direct solution of the e +
NO+ collisional equations at the static-exchange level. These cross sections
differ significantly from those obtained by the STMT approach; in particular,
the nonresonant 2m + km and 2m - k8 contributions to this partial cross
section do not show the sharp structure seen in the STMT results? at photon
energies between 13 and 17 eV. Our calculated cross sections also suggest
that the broad feature at a photon energy of 29 eV is nonresonant and arises
from the energy dependence of the 2m + km and 2m -+ k¢ dipole matrix

elements. However, this feature is not as pronounced in the calculated cross
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sections as is observed experimentally and, moreover, our cross sections are
smaller than the measured cross sections in this region. At the equilibrium
geometry our calculated cross sections show a o-shape resonance around
14 eV which is about 5 eV below the feature in the measured cross section,
which has been attributed to this shape resonance.3;6 The implication and a

probable explanation of this difference are discussed.

II. THEORY AND CALCULATIONAL DETAILS
The rotationally unresolved, fixed-nuclei photoionization cross section
is given by

2
4 2
oi,f(R) =—;‘C‘” | < ¥, (r,R) | u | ¥ e, R) 2 | <, (1)

where p is the dipole moment operator and w the photon frequency. In
Eq. (1), ¥i(r,R) is the initial state of the molecule and
¥¢(r,R) the final ionized state. For ¥ (r,R) we use the ground state
SCF wave function and for the (N-1) bound electrons of
¥i(r,R) we use the ground state SCF orbitals, i.e., the frozen-core approx-
imation.  The continuum orbital in ¥ ¢(r,R) for the ejected electron is
a solution of the one-particle Schradinger equation with the static-
exchange potential Vy_| of the ion. The continuum orbital satisfies the

equation

2
(- 377+ Vg (r,R) - 5)¥ (r,R) = 0, (2)
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where k2/2 is the kinetic energy of the ejected electron.
The partial wave component of ¥y, Ykgm then satisfies the

Lippmann-Schwinger equation

(-) (=)¢ny (=)
Yem = Pxem * Sc Wygm (3)

where Gé') is the Coulomb Green's function with incoming-wave boundary
conditions, ¢rgm the regular Coulomb function, and U = 2V where V is the
potential of the molecular ion with the Coulomb component removed. We
have recently developed an iterative approach to the solution of the
Lippmann-Schwinger equation which is based on the Schwinger variational
principle.7 Application38’9 have shown that the method is a very effective
approach to electron-molecular ion collisions at energies where partial wave
coupling due to nonspherical potentials and exchange effects are important.
Details have been discussed elsewhere.” In this approach, we first solve the
Lippmann-Schwinger equation by assuming an approximate separable form for

the scattering potential U, i.e.,

U(r,r') = US(r,r") =.2. < r|Ule; >
1y}

x (U-l)ij < aj|U|r‘ >, (4)

where the matrix (U‘l)ij is the inverse of the matrix Ujj=
<ai|U|aj>. The functions aj are initially chosen to be discrete basis

functions such as Cartesian or spherical Gaussian functions. The solution of
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equation (3) for the potential US is simply

wég%m 9 s 1 <rlewle, > @™h

kim cie
l,)

ij

X < ale|¢k2m>, (5)

where the matrix (D‘l)ij is the inverse of the matrix

Dij = <oci|U-UGCU|ocj>. (6)

The solutions qf&m provide the initial estimates of the photoionization
cross sections which are, at this stage, variationally stable. However, these
functions ‘P(kogm are solutions of the Lippmann-Schwinger equation for
separable potential US, and not for the actual scattering potential U. To
obtain more accurate and, if necessary, converged solutions of Eq. (3)
we have developed a method to iteratively improve the solutions of Eq.
(5) ‘{"(&?m. The procedure contains criteria which allow one to determine when
the exact solutions of the scattering problem have been obtained.l0 Such
solutions provide increasingly accurate estimates of both the photoionization
cross section and photoelectron asymmetry parameters.

We have used this procedure to study the photoionization out of the
21 level of NO at the static-exchange frozen-core approximation.8 The target
wave function was constructed from the same (5s,3p,1d) contracted
Cartesian Gaussian basis set as used in the STMT calculations of Ref. 5. The
SCF energy of NO at the ground state equilibrium separation of 2.173 a.u. in

this basis is -129.269 a.u. All matrix elements are evaluated by a single-

center expansion and the radial integrals are computed by Simpson's rule.ll
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To assume convergence we truncated these expansions as follows:

(i) Maximum partial wave retained in the expansion of the scattering

function = gmax = 20.

(i) Maximum partial wave retained in the expansion of the scattering

function in the exchange matrix elements = £ ,ﬁéx = 20

(iif) Maximum partial wave retained in the expansion of 1/rj in the
direct potential (not including the nuclear terms) =
Amax = 20. We always include 2\nax terms in the expansion

of the nuclear potential.

(iv) Maximum partial wave in the expansion of the ith occupied orbital
ex
in the exchange matrix elements = 2 . These values of
B
2 i are chosen so that the orbitals are normalized to better than 0.99

and range from 20 for the lo orbital to 10 for the

I orbital.

This truncation of the partial wave expansions should assure convergence of
the calculated matrix elements and cross sections. For example, reduction of
the expansion parameters to 2max= 16, Amax= l6, Qrﬁgx = 16,
&x ex . .

2i (lo) = 16, and 2j (1) = 6 leads to changes of about 3% in the eigenphase
sum and less than 0.5 eV in the position of the resonance. In the nonresonant

regions this error was considerably smaller. All radial integrands were
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expanded on a grid of 800 points extending out to 64 a.u. The smallest step
size in this grid was 0.0l a.u., which was used out to 2 a.u., and the largest
step size was 0.16 a.u.

The photoionization cross sections reported here were calculated with
continuum wave functions obtained after one or two steps in the iterative
procedure.l0 In general, the cross sections obtained with the uniterated
scattering functions, i.e., the WI?S)Lm of Eq. (5), were accurate to within
2% in the nonresonant regions and to within 15% in the resonance region.
The starting basis sets for these calculations contained a total of 18 Gaussian

functions for the ko and km channels and 17 for the k& channel.

III. RESULTS AND DISCUSSION

Figure 1 shows our calculated results for the
27+ ko, 2m > kmw, and 2w > kS components of the fixed-nuclei (R = 2.173
a.u.) photoionization cross sections for the 2m level of NO. The photon
energy scale assumes an ionization potential of 9.3 eV, The
21 + ko component of the cross section is very clearly enhanced by a shape
resonance centered at about 5 eV of photoelectron kinetic energy. The
calculated eigenphases show a very strong mixing of the p and f waves in this
region. These results also show that the 27 - km and k& cross
sections are non-shape resonant. Their enhancement around a
photon energy of 24 eV is due to the general energy dependence of the dipole
matrix elements for the 2m valence level. The 2m~> km and kS com-
ponents will hence be insensitive to changes in the internuclear

distance.
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Figure 2 shows the 2w -+ ko, km, and k& photoionization cross
sections of Delaney et al.? using six-point Tchebycheff imaging procedure. 12
A comparison of our results in Figure | with those of Figure 2 show that
our 2m +» km and k§ cross sections do not show the sharp structure seen
between 13 and 17 eV in the results of the Tchebycheff imaging procedure.’
Moreover, the general shape of the km and k& cross sections of the imag-
ing procedure’ is substantially different from those of the present calcula-
tions. We note that these calculations are both done at the static-exchange level
using the same molecular ion potential. These results suggest that the sharp
structure in these km and k§ cross sections? is spurious and may, in fact,
be due to the inclusion of insufficient or unconverged moments of the oscillator
strength distribution in these calculations.!3

In Figure 3 we compare our calculated 2m photoionization cross
sections with the experimental results obtained by synchrotron radiation3 and
(e, 2e)% measurements. Figure 3 also includes the cross sections obtained by
the Tchebycheff imaging procedure’ and the continuum multiple scattering
method.6 The multiple scattering cross sections are vibrationally averaged
while the other calculated results are for the nuclei fixed at R = 2.173 a.u.

The shape resonance feature is evident around 14 eV in our calculated
cross section. The experimental data3 extend only down to photon energies
of 16 eV and, moreover, shows a feature at around 18 eV which has been
attributed to the shape-resonant O continuum,3,6 The vibrationally averaged
cross sections of the multiple scattering method do show a weak resonant
feature around 19 eV. Our experience suggests that vibrational averaging of

the fixed-nuclei cross sections for the Vv =0 level will notshift theresonant
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feature from its present position of 14 eV up to around 19 ev.l4 As a
quantitative check we calculated the 2m + ko fixed-nuclei cross sections
at an internuclear distance of 2.003 a.u., the equilibrium value of the ion. As
expected, the resonance feature was broadened and shifted to higher energy
(19 eV) but its peak value was essentially unchanged. Vibrational averaging
of such cross sections will not move the position of the resonance peak
significantly away from its value at the equilibrium internuclear distance of
2.173. Studies of the vibrationally resolved photoionization cross sections
down to 12 eV of photon energy can help clarify the origin of these features.
The role of autoionizing states in this region should also be explored.

Our results show a very broad feature between 20 and 32 eV which is
nonresonant and  simply due to the dependence of the
2m + km and k§ dipole matrix elements on photon energy. The calculated
cross sections do not adequately account for the broad resonance-like feature
observed experimentally around 29 eV. Vibrational averaging is not expected
to have any significant effect on these nonresonant cross sections and a
numerical test carried out at R = 2.003 a.u. confirmed this. We also note
that the cross sections obtained in this energy region by the Tchebycheff
imaging technique’ lie well below the experimental values.3 Moreover, this
feature is also not seen in the continuum multiple scattering results.6 These
results suggest that the broad enhancement of the cross section around 28 eV
could be due to unresolved bands of autoionizing lines converging to a higher
ionic level. Vibrationally resolved studies in this region are clearly needed.

In Figure 4 we compare our calculated photoelectron asymmetry

parameters with the measured values. Although the results account for the
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rise of these parameters with energy, the calculated values are too high.

Measurements of these parameters below 16 eV will be useful in view of the

predicted behavior between 10 and 16 eV.

IV. CONCLUSIONS

The results of these studies show that the broad feature in the
measured cross section for the 2y level of NO around 29 eV is not due to a
shape resonance and that the possible role of autoionization in this region
should be examined. Our results also predict that the shape resonance due to
the g continuum is located around 14 eV which is about 5 eV below the
feature in the measured cross sections which has been attributed to a shape
resonance, ;6 We have also shown that the sharp structure in the
km and k& components of the photoionization cross sections between 13 and
17 eV seen in the Tchebycheff imaging results? is spurious. Extension of the
present measurements to photon energies below 16 eV and vibrationally

resolved studies of these photoionization cross sections are clearly needed.
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FIGURE CAPTIONS

Components of the calculated photoionization cross section for
the 25 level of NO in the present work: (---)

2n » ko, (—) 27 » km, (=-=) 21 » k8.

Components of the calculated photoionization cross section for
the 27 level of NO, from Ref. 5, using the Tchebycheff imaging

technique: (---) 27 » ko, (—) 27 >km, (=-=) 27 »ké.

A comparison of 2m photoionization cross sections in NO: (—)
present fixed-nuclei (R = 2.173 a.u.) results, (---) Tchebycheff
imaging results of Delaney et al. (Ref. 5), (—-—) vibrationally
averaged results of the continuum multiple scattering model (Ref.
6), + synchrotron radiation measurements of Ref. 3,

9 (e, 2e) measurements of Ref. 4,

A comparison of asymmetry parameters for 21 photoionization
of NO: (—) present work using the fixed nuclei
approximation, (---) vibrationally averaged results of the MSM

(Ref. 6), A synchrotron radiation experiments of Ref. 3.
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SECTION C

Shape Resonant Features in the Photoionization Spectrum

of the 50 and 40 Levels of NO
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I. INTRODUCTION

Shape resonances in the ¢ continuum are known to play an important
role in the photoionization of many diatomic and linear polyatomic
molecules.!-3  These resonances and their effects on the cross sections,
angular distributions, and vibrational branching ratios have been extensively
characterized by synchrotron radiation studies.l»% Several approaches to the
calculation of molecular photoionization cross sections have also been used to
carry out related theoretical studies on these resonance processes. These
approaches include the Stieltjes-Tchebycheff Moment Theory method
(STMT),? the Continuum Multiple-Scattering Model (CMSM),6 and several
methods for the direct solution of the Hartree-Fock equations for the
photoelectron continuum orbital.”=12 Although the more general features of
the resonant cross sections obtained by these different methods are similar
for many systems, some physically important trends in the differences
between these various results can be identified. For example, the muffin-tin
approximation and local potential of the CMSM can lead to much larger
vibrational averaging effects and deviations from Franck-Condon behavior
than do normal static-exchange calculations.10,13,14  In some cases the
STMT studies have excessively broadened and even smoothed away pro-
nounced resonance structure seen in calculations which directly use photo-
electron continuum functions.10513  These results suggest a certain sensi-
tivity of shape resonant photoionization cross sections to both the potentials
and techniques used in their determination,

With some exceptions such as 02,15 most systems studied to date have

been closed-shell molecules.ls3:%  The photoionization spectra of such
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molecules show no multiplet structure and,from the point of view of theory,
the molecular ion potential seen by the photoelectron is of a particularly
simple form. For this and other reasons discussed below, the photoioniza-
tion spectra of NO, an open-shell molecule with a
(10)2(20)2(30)2(40)2(50)2(1M*(2mM1, 2T ground state electron configuration,
should be particularly interesting. Ionization of the 27level leadsto
the X1I*+ closed-shell ground ionic state of NO*, whereas
removal of the 50 or 40 electron leads to the b31 and Al terms or
the c31 and BLI terms, respectively. Removal of the 1T electron gives
rise to six terms.l6 Separate synchrotron radiation studies
have determined the cross sections for production of the
X1z+, b31, and <31 states,!7 the c31 and BIT states,!8 and the
b3 and Alll states!? of the NO* ion. These cross sections for photoioniza-
tion of the 2w, 50, and 4o orbitals exhibit the shape resonance feature
expected in the o continuum. Moreover, in their recent measurements, Morin
et al.l9 actually determined multiplet-specific cross sections for the
b3 and AlT ions which show resonant peaks at quite different photo-
electron kinetic energies. This difference in the photoionization cross
section for the two multiplets arises from the different exchange potentials
seen by the photoelectron in the two cases and clearly reflects the sensitivity
of shape-resonant cross sections to the choice of the potential.

Related theoretical studies have shown that the O shape resonance
feature in photoionization of the 27 level is obscured by the large
nonresonant 2T * kT and 2T * k& contributions to this cross section.20-22

Vibrational averaging significantly dampened the resonant component in the
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CMSM cross sections for this level.20 Cross sections obtained with the
Hartree-Fock photoelectron continuum orbitals showed no indication of such
pronounced vibrational effects.22 The overall agreement between these
calculated cross sections and the experimental data, however, is not very
good and, in particular, the broad feature between photon energies of 20 and
40 eV is not accounted for by these models.20-22 The STMT cross sections
for photoionization of the 50 and 40 levels?2l were obtained using a
multiplet-averaged potential for the molecular ion and also showed some
sharply  structured  features similar to those seen in  the
21 results and which are presumably artifacts of their calculation.22,23

In this paper we present photoionization cross sections for production
of the b3II, A1H, c3H, and BT states of NO*, arising from the ionization of
the 50 and 40 orbitals of NO. In our studies we use Hartree-Fock
photoelectron continuum orbitals. For the 50 level we use both multiplet-
specific and multiplet-averaged molecular ion potentials, but for the
4o level only the multiplet-averaged potential is used. The multiplet-
specific and multiplet-averaged potentials lead to significantly different
AlT cross sections reflecting the sensitivity of this resonant cross section to
the nonlocal component of the molecular ion potentials since these two
potentials differ only in their exchange parts. These differences are much
smaller in the b3Il cross sections as would be expected from the 3:1 weighting
of the triplet to singlet states in the multiplet-averaged potential. Although
the overall shapes of the calculated and measured photoionization cross
sections are similar, there are some important differences. For example, the

resonance peak in the calculated b3T cross section occurs at a significantly
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higher energy than is seen experimentally. This discrepancy, however, is
much less pronounced for the AlT cross sections. Photoelectronasymmetry
parameters for both the 50 and 4¢ levels are also discussed.

An outline of this paper is as follows. In the next section we give a
brief outline of our method for obtaining the photoelectron continuum
orbitals. In this section we also discuss the multiplet-specific static-
exchange potentials used in these calculations. We then present the results
of our studies of the photoionization of the 50 and 4o levels of
NO along with a comparison of these results with those of other theoretical

methods and available experimental data.

II. THEORETICAL DEVELOPMENTS
A. Solution of the Equations
The rotationally unresolved, fixed-nuclei, photoionization cross section

is given by

&nzw

|2
3c

| < Wi(r;R)lule(r,R) >

where yu is the dipole moment operator and w is the photon frequency. In
this expression ¥; represents the initial state of the molecule with N bound
electrons and Y¢ the final state with a photoelectron in the electronic
continuum. For ¥;{ we use the Hartree-Fock wave function. For
¥¢ we use the frozen core approximation in which the orbitals containing the
N-1 bound electrons of the ion are constrained to be identical to those of

¥ie The continuum orbital satisfies a one-electron SchrBdinger equation
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of the form

n
(V2 - Uy, - Uy, o+ K26 = ) A x (1)

where the A are Lagrange multipliers which enforce the orthogonality of
¢k to the n occupied orbitals X i, and Udjr and Ugy are twice the local and
nonlocal components of the molecular ion potential. The potential of Eg. (1)
is nonspherical and nonlocal and several methods for solving such equations
have recently been developed.”-12 In this work we solve Eq. (1) for the
photoelectron continuum function ¢ by a method in which the direct
potential Ugj, is treated exactly by numerical integration and the exchange
or nonlocal component is approximated by a separable potential of the

Schwinger form 12

-1
(Uex )ij<aleex (2)

where the a; are chosen to be Cartesian Gaussian functions. This approach to
the solution of these equations for molecular electronic continuum orbitals is
ideally suited to the study of strongly polar molecular ions. The details of
the method have been discussed previously12 and here we present only a brief

review. The solution of Eq. (1) can be written as

X
by = b r LAt 2l
1
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where the functions ¢ﬁ and ¢Xi satisfy the integral equations

e .d d e (4a)
d>k - ¢k + G Uexq)k
and
X. X .
i d d i
b = G )(i + G Uex¢ (4b)
The function ¢,‘Z in Eq. (4a) is the solution for the direct potential, i.e.,
2 2y ,d
(V5 - Uy, + kKD =0 (5)

and Gd is the Green's function for this potential, i.e., (V2 - Udir + k2 *
ie)-1. In the solution of Egs. (4) Ueyx is approximated by the separable form of
Eq. (2). The resulting equations along with Eq. (5) are the expanded in partial
waves and numerically integrated. The solutions obtained are the exact
solutions of Eq. (1), but with Ugy approximated as in Eq. (2). Although these
solutions can be iteratively improved to yield converged solutions of Eq. (1),12
we have found that in general it is not necessary to obtain such solutions and in
these studies we used the solutions of Eq. (1) with a suitable Gaussian basis in
Eq. (2).

Finally, the Hartree-Fock photoionization cross sections obtained with
these photoelectron continuum orbitals can also be shown to be variationally

stable.l2
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B. Computational Details

We have used this procedure to study the photoionization cross
sections and photoelectron angular distributions for the 50 and 4o
orbitals of NO  within the frozen-core approximation. The SCF
wave function for NO was obtained with a { 5s, 3p, ld) basis of con-
tracted Cartesian Gaussian functions. This same basis was used previously by
Delaney Lal.21 in their STMT study of these photoionization cross sections.
At the ground state equilibrium internuclear distance of 2.173 a.u. the SCF
energy in this basis was -129.269 a.u.

The partial wave expansions used in the solution of Egs. (4) and (5)
were truncated at sufficiently high values so as to ensure adequate
convergence of the photoionization cross sections. For example, the
maximum partial wave retained in the expansion of the scattering basis, i.e.,
the aj's of Eq. (2), was 24. This was also the maximum partial wave retained
in both the expansion of the scattering basis in the exchange matrix elements
and in the expansion of l/rij in the direct potential. In the expansion of the
nuclear potential we retained partial waves up to L3¢ = 48. In the
expansion of the target orbitals in the exchange matrix elements, the
maximum partial wave was chosen so that the corresponding orbital
normalization was better than 0.99, e.g., 9,?(: 20 and 10 for the
lo and 2m orbitals, respectively, and the Q,?X for the other orbitals were
between these values.

The Gaussian basis set used in the separable representation of the
p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>