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ABSTRACT

The problem of one-dimensional radiative and conductive heat
transfer in a medium bounded by two infinite parallel walls is treated.
The medium isotropically absorbs, scatters, and emits radiation.
The walls absorb and reflect isotropically, and transmit diffusely.
Thermal conductivity, as well as all radiative properties, are as-
sumed independent of temperature and wavelength. Steady state so-
lutions are sought.

Approximate solutions are developed for the temperature dis-
tribution and the heat transfer rate. The temperature distribution is
expanded in a power series in a dimensionless variable that is a
measure of the ratio of radiative to conductive energy transport. The
~first two terms are retained in the expansion. This allows the radia-
tion integrals that appear in the basic equations to be expressed in a
simple, readily evaluated form. Values for the heat transfer rate and
temperature distribution are computéd and compared with those of
other investigators, and the range of validity of the approximation is
examined.

The problem of two adja.cent-sla.bs with different optical prop-
erties is discussed. The analysis shows the interaction between the
radiative and conductive transport mechanisms and displays the rela-
tive importance of each with changes in temperature. The problem of
a coating of finite optical depth irradiated by an external source is al-
so treated. The results indicate the conditions under which a coating
may be characterized by an emissivity and the conditions under which

it must be described in terms of its conductive and optical properties.
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I. INTRODUCTION

| The study of radiative energy transport had its first important
developments in connection with astrophysics, where an understanding
of the radiation emitted by celestial objects or the portion of radiation
reflected from other emitting bodies was required. More recently, the
ability to describe radiative energy transport has become a necessary
adjunct to accurate astronomical measurements.

Pioneering work in astrophysics was done by Rosselandl, who
treated the energy transport in stars. Through a simplified model, he
showed that radiative transport was several orders of magnitude great-
er than conduction, and further, that the photon mean free path was
much smaller than the diameter of the body. Hence, radiative flux
could be described as a diffusion process, the resulting equation being
known as the Rosseland Approximation.

Several astrophysicists subsequently have treated the problem
of the photon emission from a star. Since the emission comes from a
zone near the surface of a star and not from the surface itself, the in-
tensity is a function of the angle from normal to the surface. As a re-
sult, the intensity observed from the entire disk of a star is the aver-‘
age intensity and must be interpreted correctly. Edding’i:onZ has given
an approximate solution to the intensity distribution and the heat trans-
fer rate; Kourga.noff3 has improved upon the approximate solution and
has presented the exact solution of Cha.ndrasekhar4, Chandrasekhar
has also treated the problem of radiative transport through a semi-
infinite slab which absorbed and scattered radiation, thus enabling one

to take into account in astronomical measurements the effect of an



intervening atmosphere.

The production, scattering, and absorption of neutrons in
atomic piles, nuclear bombs, and atomic instruments is analogous to.
the process of photon transport. But unlike astrophysical problems,
in nuclear engineering the dimensions of the system are often of the
order of a neutron mean free path. This, coupled with the need for
high accuracy in neutron flux calculations, has led to rather sophisti-
cated treatment of the transport equation. Modifications have been
made to the Rosseland approximatidn to include boundary effects 5, and
the Monte Carlo method has beendevelopedto give numerical results6.

In earlier engineering problems involving modest tempera-
tures, conduction was the dominant mode of energy transport in solid
materials. However, recent technological dévelopments in high tem-
perature structures, such as rocket nozzles, gas-cooled nuclear re-
actors, transpiration-cooled surfaces, and ablating surfaces, as well.
as cryogenic systemsbutilizing porous or fibrous insulations, have led
to a need for better understanding of heat transfer with the addition of
radiation as a transport mechanisrﬁ. As a result, heat transfer by

» conduction and radiation simultaneously has become important.

The radiative flux at a point within a medium depends on the
intensity of radiation passing through the point from all directions.
The intensity, in turn, results fr.orn emission, absorption, and scat-
tering throughout the medium plus the flux contributions from bound-
aries. This leads to a representation of the energy absorbed at a
point by an integral over the medium and the bounding surfaces, the

radiative intensity usuélly being };roportional to thé fourth power of
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the temperature. Conduction, on the other hand, is described by a
differential relation. Thus, when both mechanisms are required to
describe the net heat-transfer rate, a nonlinear integro-differential
equation results.

The most extensive and recent work on simultaneous heat
transfer by radiation and conduction has been done by engineers spe-
cifically interested in determining the heat transfer in various media.
Recently, Walther, Dorr, and Eller7 treated the equation as it applies
to heat transfer in hot glass. Numerical methods suitable for digital
computer computations were used. Ha.ma.ker8 treated a scattering
and absorbing medium using a two flux model, where it was assumed
that scattering and absorption occurred only in the forward and backward
directions. In this approximation, the radiative term reduced to two
coupled differential expressions for the forward and backward inten-
sities. This model, first proposed by Schusterg, and extended by
Chen and Churchilllo, was applied to porous insulations by Larkin
and Churchillll. Larkin and Churchill's paper also presented experi-
mental determinations of the forward and backward scattering and ab-
sorption cross section for polystyrenes and various glasses.

Goulard and Croula.rd12 studied a plane layer of stagnant gas
between gray and transparent walls. The problem was greatly simpli-
fied by ignoring the dbsorption and reradiation of emission originating
within the gas.

An extensive review article by Viskanta and Grosh13 covered
the literature in radiant heat transfer through the middle of_19(?3.

The full spectrum of heat transfer mechanisms which interact with
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radiation was surveyed.

In the following sections, the problem of one-dimensional radi-
ative and conductive heat transfer in a medium bounded by two inf.initg
parallel walls is treated. The medium isotropically emits, absorbs,
and scatters radiation. The walls isotropically absorb and reflect,
and transmit diffusively. Thermal conductivity as well as all radia=-
tive properties are independent of temperature and wavelength.

Steady state solutions are sought.
Under these conditions, the general equation becomes
T

O
o(r, )+ S [5(r, apsyir, amt (04, @) |e-1]as-26%, )]
0

T
(o]
l-a
-—Z—.LJ"e”(t,a)Ellt‘Tldt = 0 s
0

where 0 is the dimensionless temperature, To‘ is the total optical
depth between the walls, o is the ratio of the radiative absorption
cross section to the total cross section, N is a dimensionless meas-~
ure of radiative to conductive transport, and the kernel El is a form
. of the exponential integral and will be discussed in greater detail
later. The source functions, S'l' and S'Z' » are contributions to the
radiative flux from the boundaries. It is sufficient to note that the
source functions are integrals over 8' and 84. They are similar in
nature to the other terms on the right hand side and need not be writ- |
ten explicitly.

Severa.i authors have treated the above equation with a variety

of boundary conditions. Rather than describe their contributions at
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this point, it is better to wait until their respective problems are
taken up in the text.

As a particular facet of radiative and cbnductive energy trans-
port is studied in the text, the approaches used by others are de-
scribed. Then the present results are developed, and finally, a com-
parison is made.

In the following pages, an approximate solution to the general
equation is developed in terms of the linear conduction temperature
distribution which allows the radiation integrals to be expressed in a
simple, readily evaluated form and to be tabulated. This is accom-
plished by restricting the range of N for which the solution is useful.
But in this range, wall emissivity, reflectivity, and transmissivity,
and external source strength as well as N enter in a simple way. In
the case of pure absorption, the solution is given as continuous func-
tions of these variables, so that the effect of each can be independently
evaluated. With scattering included, the solution is given as a readily
computed integral over a Green's function.

The treatment is divided into six parts, starting with Section II.
In Section 1I, the radiative transport equations are developed along
with general forms of the source functions. Allowance is made for
external sources, with the result that the general equation describes
a broad spectrum of conditions, including, for instance, a coating of
finite optical thickness irradiated by an extermal source. An exact
solution for the energy transport for pure radiation, from Chandra-
sekhar4, applicable to the general problem with scattering, is also

given.
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Solutions for the temperature distribution for absorption and
conduction, but no scattering, are developed in Section III. The tem-

perature profile is expanded in N, about N = 0, so that

8(t) = GO(T)+N91(T)+... .

The first term in the expansion is the linear temperature profile of
pure conduction, since N equal to zero corresponds to the total ab-
sence of radiative transport. | The next term, Nel , 1s the first order
correction to the temperature profile. It can be computed exactly as
an integral over 86" The result involves three rather complex func-
tions. Two depend solely on 6(0) and To? and the third depends on T
in addition. These functions are tabulated for a wide spectrum of val-
ues of 6(0), fo’ and 7. As previously mentioned, the other parame-
ters, emissivity, reflectivity, transmissivity, external source
strength, and N appear as simple algebraic functions so that 6 is
given as a continuous function of these variables. Thus, the effect of
each parameter on the temperature profile can be independently
studied.

In Section IV, the heat transfer rate for absorption and conduc-j
tion is developed in a similar expansion, and is given in terms of three
functions, two of which appear in the expression for 61 . Again, the
solution is a continuous function of the same parameters as el .

Scattering is included in the temperature distribution in Section
V. The equation no longer reduces to a linear integral equation; de-
rivatives of 6 either appear as boundary conditions or explicitly under
an integral sign. This, plus the addition of the critical parameter, c.,v

prevents using the previous methods, Instead, the integrals over 0
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are shown to be nearly equal to a simple term involving 91 . The re-
sulting approximate equation is a linear integral equation:

To

8'"(7, @) ~ aNOY (7, ) [1-aJ[TY(T, A+ TY(r, a)]+ fe"(t, Q)E; [t-r|at .
0

The functions T'l' and T'é are integrals over 0'". The kernel is diffi-
cult to treat, and so a substitute kernel is used for E1 . With this ap-
proximation, 8 can be fopnd in terms of Green's functions that can be
evaluated numerically. The limiting cases To > 1 and To <<1 are
considered and 6 reduces to a form similar to that for pure absorp~
tion.

The heat transfer rate with scattering is then derived in Sec-
tion VI as an integral of 6'" plus the result for pure absorption. - For
To <1, tiqe result reduces to a simple form.

The last section, Section VII, is concerned with an application
of the previous methods. First, a problem of two adjacent slabs is
studied. Both slabs are assumed to conduct, emit, and absorb. At a
common boundary between them, radiation is diffusely transmitted,
so that the radiative flux from one region appears as an isotropic
source in the other. The diffuse transmission at the interface dis-
tinguishes thé adjacent slab problemvtreated in the text from that of a
single medium with an abrupt optical density cha.nge at an interior
boundary. In the latter, radiation crossing the boundary would retain
its angular dependence and not be diffused.

Solutions are found by first computing the heat transfer across
- each region for assumed values of the interface temperature and then

determining the temperature which makes the heat transfer the same
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in both media. Results are presented for a spectrum of optical depths
in both zones. They show the influence of optical depth on energy
transport in a configuration where the radiative properties vary in spe-
cific regions. In addition; the solution for the particular case of |
identical properties in both regions is compared with the approximate
solution for a single medium of similar properties but without the
diffusing intermediate boundary.

A second application describes effects of an external source
with one boundary transparent and the other opaque. Varying the
source strength leads to the unexpected results that under some cir-
cumstances the heat transfer rate may reach a maximum for pure
scattering,and under others reach a maximum for pure absorption.
Also, the component of the heat transfer rate induced by radiation
can be a strong function of the degree of scattering. If the above sys~
tem is considered to be an emitting coating on an opaque surface, the
results indicate which properties are important to determine its ab-
sorption and heat transfer properties. It is shown that great care
must be taken in assigning an emissivity to the coating. Indeed,
under some circumstances;, the concept of emissivity is not appropri-
ate, and the heat transfer properties become a complex function of
several parameters.

Pertinent integrations, an error analysis, and properties of
the generalized exponential integrals are included as Appendices. In
the error analysis, an upper bound for the absolute error in the ex-
pansions for pure absorption is developed. The results are used to

place limits on the range of N for which the expansions have demon-
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strable validity. The greatest use 1is found as the estimate applies
to the heat transfer rate, since the calculated error bounds tend to
overestimate greatly the actual errors for the temperature profile,
As applied to the heat transfer rate, the form developed is shown to
be useful for relatively large radiative fluxes.

The functions required to compute numerical results for the
heat transfer rate and temperature profile are given in Tables I, 1I,

and III; also included are functions related to the error analysis.
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II. DEVELOPMENT OF THE BASIC EQUATIONS

Basic fo the treatment of simultaneous radiative and conductive
energy transport is the radiative term. Its development requires
several steps. An expression for the radiative intensity at any point
within the medium is needed. Then the result is used in an energy
balance expression in terms of the temperature profile. Finally, the
heat transfer must be expressed in terms of the temperature profile.
In the first part of this section, an expression for the radiative inten-
sity at a point is developed. It is used in the next three parts to
formulate the equation for the temperature profile and the heat trans-
fer rate. In the {fifth part, the pafticular case of pure radiation is
discussed.

The treatment in this section parallels the development of the
intensity given in Cha,ndra,sekha.r4 and Kourganoff3, while the final ex-
pressions for the transport equation are given in a slightly modified
form by Viskanta and Grosh14. The results for pure radiation follow
Heaslet and Warminng. Further details of other authors' concern

with the latter problem are discussed as the problem is taken up.

1. The Intensity

It is convenient to describe the radiative intensity, I\) s in
terms of the amount of radiant energy, dEv , in a specific frequency
interval, (v,v + dv), traveling in directions confined to the solid
angle d{2 about 2 and incident on a surface area ds at a point £ ina
time dt. With 8 the angle between {2 and the normal to ds, dEv

can be expressed in terms of the intensity as
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dE\)(Q, £,t) = I\)(Q’ 4, t)dvdsdQdt ,

or, the intensity is
dE_(Q, 4, t)
I\)(Q’ Lt) = cos Bdydsd{(idt

Thus I\) may vary from point to point and in direction as well.

The intensity can be attenuated by absorption while passing
through matter; it is reduced by conversion into other forms of energy,
including radiation of other frequencies. The change in the intensity
di ~ due to absorption from traveling an infinitesimal distance d{ in a

a )

continuous medium is

dI\)a(Qs 'fu t) = -c\)a(Q! ‘(/)I\)(Q, ’eu t)d'f/ .

The attenuation factor, Gv » is called the macroscopic ab-~
sorption cross section. It is gen:rally a function of frequency, direc-
tion, and position. Similarly, the energy flux in a specific direction
can be reduced by true scattering; that is, scattering of the beam into
new directions without a change of frequency. An expression analo-

gous to the one for absorption describes the change in intensity

caused by scattering, dI\)

S
dIvS(Q, L, t) = -GVS(Q, LR (Q, £, t)dl

Further, 0\) , the macroscopic scattering cross section, can be also
s
a function of direction, position, and frequency.

The total attenuation is the sum of the above two effects:

dl\)(Q’ ‘f/: t) "G\) (Qs L)I\)(Q, '{u t)d"fz-O'\) (Q: {')IV(Q: 'fu t)d'f/

a )

- [UVam’ L)+cvs(0, L)]Iv (Q, 1, t)de
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= -GV (Q: 'f/)l\) (Q: ’L: t)d'fz )
t t
where © is the extinction coefficient and equals the sum of 9, and
t a
o . Obviously, it can be a function of the frequency, position, and

s
direction.

The intensity can be increased by two sources; the emission
from within an element and scattering from all directions into the di-
rection of I\) » For local thermodynamic equilibrium (so that a local
temperature T can be defined), the emission in a direction () can be
written in terms of an emission coefficient j\) . The emission coeffi-

cient is related to the Planck function B\)(T) through 9, by Kirch-
a

hoff's law,

jva(ﬂ,&,ﬂ = Gva(Q,&)BV(T)

where

2hy 3 1

cf2 th/%T-l

B (T) =

In the Planck function, h is Planck's constant, % is Boltzmann's
constant, and c is the velocity of light. Similarly, the intensity scat-
tered into a direction ) is:

- - A ; ' i

j, @4t =0 @05 [P @ e @4, a0,

s s ol

where P\) is the phase function defined as the amount of radiation
coming from a direction ' that is scattered into the direction (1. In

the above expression, P\) is assumed normalized so that

L

i T —
yw va(Q,Q ,4)dQt = 1

Ql
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for all Q. If OV were zero, the scattering would be conservative;
that is, all of th: intensity at a frequency v entering a volume, wheth-
er scattered or passed through unaffected, would leave the volume at
the same frequency. No portion would be converted to other frequen~
cies or otherwise removed.

If the above production and attenuation terms are combined,
the intensity change in a particular direction and at a particular point

can be written as

dr (2, 2, t)

T = -0, (AN (@4t (@ Lk (@ L.t)

t a s
In the following treatment, steady state conditions with local
thermodynamic equilibrium and isotropic scattering and absorption
are assumed,; soO P\) is unity and Kirchhoff's law holds. Thus, §vith
the variable (I suppressed in the cross sections and the time depend-

ence removed throughout:

a1, (0, 4) | %, ‘ '
—Vg— =0, W0k, B (TH—— J3, @ 400
Ql
= ~~0'\)t (JL)I’V(Q, /C)+Fv(4€) (2. 1)
where
g (1)
= Vs Q' 2)dQ? 2. 2)
R0 =0, (B (1) — 5}?1\)( ) (2.

The production terms in the last expression are considered as a

single source function Fv . Since the scattering term and o, are in-
a

dependent of (Q, F\) is also. With O, independent of 2, it is con-

venient to change the independent variable {4 to 'r\) , where
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L .

T (4 a) = jov CALY VAL
'f/' t

Now, in terms of T I\) can be found from (2. 1):

ot e) ot oAt
I(Q,4)=1(Q¢'"e v +ij(&")e v de' . (2. 3)

&l
The function T, is the optical thickness between {4' and 1 at the fre-
quency v. Further, by the choice of signs in the exponents, {4 must
be greater than 4£', with the path of integration a straight line be-

tween {4 and 4°'.

- 2. Statement of the Problem and Reduction of the Intensity

The problem of concern in the following sections is that of two
isotropically emitting, transmitting, and reflecting walls bounding a
uniformly distributed scattering, absorbing, and conducting medium.
All properties, ¢ , 0., and G\) , thermal conductivity, k, as well
as the wall emmis?vity, a:cra.nsmis;ivity, and reflectivity, are assumed
independent of frequency and temperature. Steady state, one-dimen-
sional solutions are sought.

With all properties independent of the frequency, I\) can be in-

tegrated over all v to give the total intensity. From (2. 3),

y @ -T2 & -7 (L")
flv(ﬂ,é)dv = I(Q, &)=J[I\)(Q,£)e +IFV(L“)J; v d4'"]dy
0 0 2
r () RNOL)
=10, Le VY + |F(eM)e V da' (2. 4)
Ll

where I and F stand for, respectively, the total intensity in the di-

rection {1 at £ and the total source function at 4. Since O\’t and
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T, are now independent of v, their subscripts can be dropped. From

the definition of F\) in (2. 2),

o o o ()
F(#)= |F ()dv = |[o (L)B (TH Vs I (Q',4)d0']d
() = Y v = o, N ) v L (20 v
0 o @ Q!
o
= oaB(T)+4—1sr II(Q',L)dQ' , (2. 5)
Ql
where B(T) is the blackbody intensity
r (1)
_ _oT (T
B(T) = ij(T)dv =1 . (2. 6)
0

For the planar case, it is convenient to call T the (dimension-
less) distance from one wall and 6 the angle between the wall normal
and the direction under consideration. The third coordinate, ¢, the
azimuthal angle, need not be specified, since the scalar properties
vary only with T, and hence I varies only with the angle 6. Now
call u the cosine of 8, x the geometrical distance from one wall,

and replace. 7(4, 4') by

4 b'e
dx _ 7 7'
A =J‘O' rf,df,=f —_— T = - — 2.7
e = fo (= fo T T (2.7)
! x!

For convenience, choose u to be positive; +u indicates the intensity
from directions for 0< 8 < 90, so that the termina.tion boundary is
always the plane at Tt = To® Similarly, -p includes only the intensity
from 90 = 9 < 180, and the corresponding boundary plane at 7 = 0.

A diagram of the system is shown in Figure 1. The angle § is meas-
ured from the inward normal of the wall at 7 = 0. The geometrical

 distance between the boundaries is x.



«lb6=-

Figure l. Coordinate System for Two Infinite Parallel
Walls.
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With these definitions and equations (2. 4), (2.5), and (2. 6), the

intensity at any point is given by

T 4 1
-(r =ty o 0Tt) o "
T -1
(0<us<1) (2.8)
T o 0T4(t) o) 1
(-, 7) = I(-u, 0)e " /My j[.;L._ +—S‘J4v1(u', t)ayJe~(T-t//u _dt
ﬂ 2 uo,
¢ -1
(0sp=<1) (2.9)

In the a.bovevexpressions, the azimuthal integration in the contribution
from scattering has been performed. Equations (2. 8) and (2. 9) ex-
press the intensity at an interior point in terms of the material prop-
: erties, the temperature profile, and the influx of radiation from the
boundaries. These expressions will now be used to derive the basic
transport equations. However, it should be noted that the expressions
-are not completely reduced. The boundary intensities I(+u, 'ro) and
I(-4, 0) are composed of external source transmission, emission from
the boundaries themselves, and flux reflected from within. The re-
flected portion, in turn, is made up of the radiation from the interior
as well as the opposite boundary. The final expressions for I(+u, "ro)
and I(-u, 0) are best treated after some fundamental relations for the

. temperature profile throughout the medium are derived.

3. The Temperature Distribution

The transport equation for a conducting medium with a- radia-

tive source, QR » is Poisson's Equation:
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V- (kVT(x)) + Qp = 0. (2. 10)

With the assumption that k is constant and the problem is one dimen-
sional, (2. 10) can be rewritten in terms of T, using (2.7):
2

Ve (K9T(x)) = g’; k;; T(x) = Utz g‘?-z (1) ,
T

so that (2. 10) becomes

2
2 97"T(7) B
O'tk—-—a—q-—z—-+QR = 0 s (2.11)

where QR is the radiative source term and is equal to the net ab-
sorption of radiation at a point. In terms of the intensity, it is the
intensity absorbed minus the emission at a point; using (2. 6) for the.

emission, B(T),

1 1
Qp = |0, I, 7)d0- |o_B(T)dQ = Zﬂcajl(u,q')du_z-,r j’ ortin) o,
0 0 e ]
1
= Zﬂcafl(u, T)du-40a0T4(T)
-1

The last step follows from notingvtha,t T is independent of u. Thus,

(2.11) becomes:

1
tzk 9 T(T) + 270 fl(u,'r)du-éloaoT‘l(rr) =0 |, (2. 12)
ot
-1

or, solving for the integral expression:

]
20Ty % “K 8% (r )

Jﬂu“’f)du - T - 2«0 2
e a oT

(2. 13)

The left hand side can be expressed in terms of the intensities from

the boundaries and the temperature profile by using equations (2. 8)
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and (2. 9) with the integrals over I(u',t) appearing in the equations re-
placed by the right hand side of (2. 13):

1 1

1
fl(u, T)du = fl(-u, T)du + fl(m, )y , (2. 14)
-1 0

where, upon noting that the intensities from the walls, I(-uy, 0) and

I(+u, 'ro) are isotropic and hence independent of u ,

1 1 ~7/u ’1 ; 0T4(t) o‘tosk 32T(t) -(r-t)/u dt
II(*I.J,T)dLJ.= I(~u,0)e du+‘J f[ - Tno, o2 le E-du
00
) (2. 15)
T .4 0,0 k 42

_ -T/u oT(t) 't T(t) -(T-t)/

= I(-u,O)j‘e du+j'[ — 4"0: ]f T- U«
0 0

In the last step, the order of integration has been reversed; this is

possible since T is independent of . Similarly,
1
-(TO—T)/u
j1(+u,7)du = I(+u,'ro)j‘e du +
0 0

‘To 1
ProTe) %% 8211 f ~(t-1)/u du
+;J[ - 41r0a atz 1ie m dt . (2. 16)

The integrals over u are the exponential integrals, En (t}. The
properties of the functions and the forms appearing in (2. 15) and
(2. 16) are discussed in Appendix I (see equation (I-2) in particular).

In terms of the exponential integrals, (2. 15) and (2. 16) can be written:
1 ' T
4 ctcsk 32T(t)

fI(-u,'r)du =I(-u,0)E2(T)+f[OT“(t) i JE (t-t)t (2. 17)
0 a t
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1 To

4 g0 k 42
- oT (t) t's 97T(t)
j'l(+u, midu = I{u, TO)EZ(TO-T)+ f[ T 41r0a 81:2

0 T (2. 18)

]El(t-'r)dt .

and finally, using (2. 14), (2. 17), and (2. 18), the transport equation

(2. 12) becomes:

02 °TUT) 5o [I(-, O)E.,(T)+I(+u, T JE,(T_-7)]
t 81'2 APy Mo 2 Mo T o\ T =T
TO
0.0 k 42
4 t s 8°T(t) 4, .
+Zoaj[cT (t) - o 52 ]Ellt-'rldt-40a0T (tr)=0. (2.19)
0

This equation is expressed more conveniently in dimensionless form.

Let
__T(r) . _
8(T, a) —-TT;F—O')‘ 5 e(’ro, a)=1 (2. 20)
Q= O'a/O't ; l-a = ch/c,c (2. 21)
40T4('ro)
N = TRT(T,) (2.22)
Now (2. 19) becomes
wI(+Ha, 7T )
o(r, o)+ SO gy T O B (7 or))
oT ('ro) oT (To)
.
o]
+ X j[e“(t, a)- 28 guie, o) 1B [t-1|dt-aNoH(r, @) = 0 (2. 23)
0

where the derivatives are with respect to 1. The expression will be
complete once I(-u, 0) and I(+u, To) are evaluated.

The contributions to the intensities from the boundaries arise
from wall emission, internal reflection, and transmitted radiation

from beyond the boundaries. The contribution from scattering and
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conduction appears in the portion of the intensity arising from reflec-
tions at the boundaries. If (2.8) and (2. 9) are evaluated at T = 0 and

To respectively,

T
1
-7 /u 0' oT (t) o ~(T ~t)/u
0 -1 t
and
/ T
-7 [ o oT (t) o] )
I, 0) = It T e © 4 IS _ZEJ (' t)dp'Je t/uﬁqoi .
t
0 -1

Expression (2. 13) can now be used to remove the integrals over u':

.
-1/ ° 4 0,0 k »2 -(t_-t)/
I(-u, 7 ) = I(~u, O)e  © N+Llﬁ[°T1r (6) . e 87T(H) 3o gt

— (2. 24)
41{0a 81:2' M
TO
-1 _[u 0,0 k .2 :
I(+y, 0) = I+, e © +f[ o1 (&) _ t_ws 9 rg(t) Je t/u dt (2. 25)
0 ' a ot H

If the contributions to the radiative flux from external iso-
tropic sources plus wall emission are added to the portion of the in-
coming flux reflected at the wall at 7 = 0, it equals the total flux
radiated, or I(-u,Ol)p integrated over a hemisphere. The factor y is

the component of the unit area in the direction of I(-y, 0). Thus,

™
hemisphere hemisphere hemisphere

(2. 26)

elch (0) tlcT (0)
jl(-u, 0)udQ = ‘J‘[ + }1: ]udﬂ+(1-e-t1) I(+u, 0)udQd .

The term in brackets under the integral sign includes emission from
the boundary as well as flux passing through the wall. The wall has
an emissivity € and a transmissivity t1 . The external source is

at an apparent temperature TX(O). With transmission, the reflectivity
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becomes (l-el-tl). |
Equation (2. 26) can be written in terms of I(+u, 'ro) by sub-
stituting (2. 25) for I(+u, 0) and performing the integration over the

hemisphere, while keeping in mind that I(~u, 0) is independent of u.

T1{-y, 0) = &, 0THO1t;0T H(0)+2(1-¢ |-t )IHu, 7 _)E,(r )+

+ﬁoT4(t) %%k 8° T(t)]E ,6)at) (2. 27)
403. 8t )

Similarly, I(+u, 'ro), the intensity from the opposite wall, can be ex-

pressed in terms of I(-u, 0):

_ 4 4
(4, 7 ) = ech (7 0T ('ro)+2(1-ez-t2)(1(-u, 0)E,(r )+

c o k .2
I[GT (t) - 0 TZ‘“]E (7 -t)t) . (2. 28)
ot

These expressions are reduced to dimensionless form by dividing

(2. 27) and (2. 28) by 0T4(T0) and using the following definitions:

a, =, 6%(0)0t;8 %0) | (2. 29)
a, = e,0%r )t 8 %r ) (2. 30)
ﬁl = 2(1'€ 1"t1) (2- 31)
BZ = 2(1- € 2) (2. 32)
T
o]
Y; = f[e4(t, a) - %L—'l;;'ﬁ 8"'(t, a)JE, (t)dt (2. 33)
.
o B
Yy = j\[94(t, a) - IEZ\:_OL 8"'(t, a)JE, (1 _-t)dt . (2.34)

0
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Now (2. 27) and (2. 28) become

I(+,'r)
) = o by (B )
oT ho) oT(
wl(+u, T )
— = = 0yt p, (R m ()4 y,).
GT‘(TO) oT ( )

Solving for I{-u, 0) and I(+u, 7 ),
} By La Byl Hy +B,v,E (7))

wl(-u, o) > ’ (2. 35)
0T4('ro) 1-B) B E (1)
L T ) 0ptBplag EBalr My pt By Bslr )] (2. 36)

crT‘JE('TO) 1“61132}332”0)

The products of the right hand side of (2. 35) and (2. 36) times EZ(T)

and EZ(’TO-T) are called source functions. They are denoted by S'l'

and Sg: . ]
0L+{3 OLE )+y+ﬁyE('r)
s, @) = 1 2 1 223 E, (1), (2. 37)

1"£3]_BZE3 ('To)
aytByla Eslr My B v Byl )]

1“31f32E32("’o)

]

sy(r, ) E,(ro-1).  (2.38)

With this notation, the primes on Sl and S2 can be treated as the

differential operator with respect to 7. Later, Sl and S2 will be

used when approximate solutions are developed. From Appendix I,

equation (I-5), S1 and S2 are

a;+B;la,E (r )+Yl+[32y2E3(T )]E ) (2. 39)
1-B, B, B, (7,)

1]

S;(7,a)

0 Byl Ealr My, +R v, Eglr )]

1-B B,E, (T )

E4('ro-'r) (2. 40)

S,(r, a)
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where the various terms making up S; and S, are defined in (2. 29)

through (2. 34).

In terms of the source functions, the transport equation (2. 23)

becomes T
o
e'(T, &) + %111- S{(T, a)+s‘2'(~r, oM I64(t, a)E, |t-T [dt-284('r, a)l
0
T
o
= -Léﬁje"(t’ G')Ellt-Tldt s (2- 41)
0

4, The Heat Transfer Rate

The heat transfer rate per unit area, dq is the contribution
from conduction and the next radiative flux crossing a unit area paral-

lel to the boundaries:

qd('r, a) = B—E}—%‘-}({i)- + Zw[jl(m, T)udu-jl(-u, 'r)udu]. (2. 42)
0 0

The expression in brackets is the net radiant flux passing through a
unit area in a positive sense. The first part of the expression is the
radiative flux passing through a unit area in a positive sense, and the
last term is the radiation passing through the opposite side and hence
reduces 9q * With (2. 24) and (2. 25) used for the intensity, a4 be~

comes
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ag(rs @) = ok LBy o laphy, 7 JE,(r _-7)-L(-ys, 0)E 5(7)]

TO
Y [e) 0' k

+2 | [oTHt) - L2 8 T(t)]E (=7 )dt
?r a 31:
I o} o k

-2 | loTHt) - L5 2 T(“ 1E, (r-t)dt (2. 43)
‘(J) a Bt

This expression can be written in dimensionless form, with the di-

mensionless heat transfer rate, q, defined by

(T, )
ql{r, ) _ 94
T T S ERTG C (2. 44)

With this definition and (2. 29) through (2. 34), (2. 43) becomes:

T
(o)

U8 = gr(r, a)+ B8y (r, aprsy(r, a)+je4(t, Q)E, (t-7)at

o T
.
.
fe (t, Q)E, (T-t)dt] - & [je"(t Q)E, (t-r)dt- fe"(t,a)Ez(»r-t)dt]
T 0 (2. 45)

where S'1 and S'2 are the derivatives with respect to T of S1 and SZ
which in turn are defined in (2. 39) and (2. 40). For steady state, q
is independent of T. Nevertheless, the functional form is retained.

It will prove convenient to evaluate q by an appropriate choice of T.

5. The Temperature Distribution and Heat Transfer Rate for Radia-

tion

Before treating the general transport equation with conduction,
the equation and solutions for pure radiative transport should be dis-

cussed. The results for the temperature profile and heat transfer
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rates will prove useful in the following sections.
The equation for the temperature profile can be derived from
(2. 41) by dividing by N and letting k , in the definition of N given in
(2. 22), approach zero. Hence, if all of the other coeff.icients remain
constant, N = oco. This corresponds to a decrease in conductivity so
that radiation dominates. In the limit as N = oo, (2.41) yields

T
(o]

0 = 3[SY(T) + SY(r) + fe‘*mE1 Je-r]at - 20%m)] . (2. 46)
0

As can be seen in (2. 33), (2. 34), (2. 37), and (2. 38), the source func-
tions are independent of ¢, and thus § is also. The solution is a
function of the parameters €1+ €50 1:1 ) tz, and To? 28 well as the
boundary temperatures and external source strengths but not a.
Similarly, the heat transfer ra.té is found from (2. 45). It
must be notea that when this equation is divided by N, and k— 0, q

remains finite:

lim 34— =
k-0 NT, 4O'T4(To)

so that (2. 45) becomes

v
dr o
& - sy sy f e4<t>E2(t-T>dt-je‘*(t)Ez(w-t)dt] . (2. 47)
40T (T _) .
o T 0
Again, S‘l and S’Z as well as 6 (from (2. 46)) are independent of «,
$O gp is not a function of the degree of scattering.

d
Cha.nclrasekha.:t'4 gave an exact expression for R of the form
d

R B (1)
) . T = — (2. 48)
cT (To)—OT (0) 1+ (-e-l- + e_z_ - 2>B0(To)
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for arbitrary diffuse wall emissivities. In Heaslet and Warming's
paperls, the values of Bo as a function of T, Were given to four
figures, and are reproduced in Table I. Expressions for the temper-
ature profile were also given in their paper in graphical form. Typi-
cal profiles will appear later when the solutions of temperature pro-

file with radiation and conduction are developed.



-28-
II. APPROXIMATE SOLUTION FOR THE TEMPERATURE
DISTRIBUTION IN AN ABSORBING AND CONDUCTING MEDIUM

The temperature profile for a medium which absorbs and con-
ducts is treated in this section. The more general problem, allowing
scattering, ié best studied later; the present results apply directly to
the more general problem and are needed in ité solution. In addition,
the absorption problem is itself of interest and has held the attention
of several authors.

Most authors have been primarily interested in the heat trans-
- fer rate; their treatment of the temperature distribution is only an
intermediate step in t.he heat transfer computation. Viskanta and

14, 16 have been somewhat of an exception in that they presented

Grosh
curves for the temperature distribution under several boundary condi-
tions. They approached the problem by starting with the basic equa-
tion (2. 41) with a =1 :

T
o}

9'(1) = -EZES'I'(TH'SE(TH fe4(t)El |t~ |at-20%(r)] (3.1)
0

and, following the method suggested by Lichtenstein17 for treating
such nonlinear integro-differential equations, integrated it twice;

T
(o}

8(t) = A+Br7 - —1\27-[51(7)+Sz(fr)+fe4(t)}33 [t-T [dt] . (3. 2)
0

The constants were removed by evaluating the equation at T = 0 and
To The solution was found by successive iterations. An initial

guess, 60 , for the temperature distribution, was put in the right hand
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side of (3. 2). The resulting expression, numerically evaluated, led
to a new value, 61 » for the temperature profile. This value was
again inserted in the right hand side,and the process repeated until the
successive Gi differed by a sufficiently small amount. The resulting
numerical expression for 8 was considered the solution. Later, in
1963, Viska.nta18 presented a second method. He expanded the term
94 on the right hand side of (3. 1) in a Taylor series about 7. The
integral term could then be evaluated,and the result yielded a non~
linear differential equation in §. He found that the latter method was
more suitable for numerical computations but gave less accurate re-
sults.

Of the other authors who have treated the temperature profile
in order to compute the heat transfer rate, Grief19 has done the most
to delineate the various methods. One approach, first proposed by
LickZI, again reduced (3. 1) to a nonlinear differential equation which
could be treated numerically. He integrated the equation once with
respect to ’r The kernel, Ez, appéa.ring in the result, was approxi-

-3/2 T, which has the same area

mated by a substitute kernel, 3/4 e
and the same first moment as the exact kernel. With this substitution,
the integral term was removed by differentiating the approximate
equation twice and subtracting the result from the approximate equa-

tion. The result is

ol¥kr) - 7 2on(r) - H p*r) =0 . (3. 3)

It is a nonlinear differential equation in § that can be solved numeri-
cally for 8. For very small N (so that conduction dominates), Lick

found it useful to expand 8 in a power series in 7. The coefficients
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were evaluated by substituting the expansion into (3.3). For large
optical depth, Grief ignored the first term in (3.3). This reduced the
equation to a diffusion approximation given by Cesszz. Cess, in turn,
based his formulation on Rosseland's approximation for pure radia-
tion. ! Rosseland suggested that an optically thick medium would dif-
" fuse radiation so that the energy transport equation would be

EVZ(O'T )=0.

This, plus the normal conduction term and the present boundary con-
ditions, led directly to Grief's result; that is,

o Zouir) + 3 (e (T ))

1. The Solution

The present approach expresses the temperature distribution
as an expansion in powers of N about N = 0, The validity of the ex~
pansion is discussed in Appendix IL

Before turning to the solution, it is important to discuss the
expansion parameter, N. From its definition;

40T4('ro)
N = _—TTOtkT T . (3. 4)
N is a measure of the relative magnitude of radiation to condition.
However, care must be taken to interpret its exact meaning. If the
denominator in (3.4) is multiplied and divided by x , the geometrical
distance between the boundaries, N, becomes:

so1¥(r ) 407%r )
N = KT(r ). T(T N :

Gtx(—'i'i) To(—)

The numerator is four times the radiant flux from a black surface at




-31-
temperature T('ro). The denominator is the optical depth times the
conductive heat transfer rate in a slab with a temperature differential,
T(To), and thickness x. The product N'rO is a measure of the rela-
tive magnitudes of the two transport mechanisms. Thus, if T, 18
small, N must be quite large for radiation to be important, and con-
versely, if To is large, even modest N will correspond to large ra-
diative fluxes.

The following result is required to treat the equation for the
temperature profile. Consider an equation of the form
f(t) = A+ Br.
To solve for A and B, the equation can be evaluated at 7 = 0 to give

A , and then at TET, to give B :

A = £(0)
21
B = (T, ) - £0))
so that

£(r) = £(0) + == (E(r ) - £0))
o}

or

£(7) - £(0) - = (f(r ) - £(0)) = O .
o

If a linear operator G, operating on functions of T, is defined by

G((r)) = £(r) - £(0) - =L (£(r ) - £(0)) , (3. 5)
O

it has the effect of replacing the constants A and B by the function

evaluated at the boundaries.

The operator G can be used in the equation for the tempera-

ture profile (3. 2),
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T
(o]

G(8(r)) = - .l_g.[c,(sl(rr )+SZ(T))+f84(t)G(E3|t-TI)dt] : (3.6)
0

This expression has the advantage of eliminating the constants A and
B while not burdening the expression with unnecessary complexity.

If 8 is considered a function of the parameter N, and ex-~
panded about N = 0, that is,

B(t) = 90('1') + Nel('r) toee

and this form is used in (3. 6), the latter becomes

N
G(8 (T HNB (T H...) = - S LGS, (TS, (1)) +
T :
: o
4
+jl(eo(t)+Nel(t)+. . ) G(E, [t-7|)dt]. (3.7)
0
Since, in general, the source functions are functions of 8, let Sli and

SZi correspond to the terms in S1 and S2 multiplied by the ith power

“of N. Then, equating powers of N in (3.7),

G(8 (1)) = 0 ‘ (3.8)
T

8]
G(8,(1)) = ~3[G(S o(THS, (T} vrec‘f(t)c;(E_g!t-ﬂr[)dt] (3. 9)
0

Note that 8(0) and B(TO) are specified, and hence independent of N,

so for i greater than zero,

61(0) = 8,(r ) = 0.

With this result, (3. 8) vields
90(7) = 9(0)4';%; (G(To) - T(O)) (3. 10)
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and
T

o
By(r) = -%[G(slo(v)+szo(fr))+ je:(t)G(E3 |t-7])dt] (3.11)
0

The'relations represent a self-generating sequence for 8.
This is evident from (3. 7). Since N multiplies the entire right hand
side, the highest order of ek that can appear for the ith order term
is k=1i-1, so thai 9.1(1') is a function of ei_l, 91_2, cees GO . Hence,
given 90, 6, can be found; then using 6 62 is determined, and
so on.

The expression for 60 corresponds to the solution for N =0
and is the expected linear conduction temperature profile. Higher
order terms, 61, 62, ..., represent corrections to the temperature
profile for N near zero.

Consider approximating 06 by

B(t) ~ 90(7) + IJBI(T) . (3.12)

With (3. 11), (3.12) can be written as

T
O

8(7) ~ eo(T)-EZ_[G(SIO(T)+SZO(T))+jef(t)G(E3 |t-7])dt] . (3.13)
0

The source functions, SlO and S20 , are computed from (2. 39) and
(2. 40) with 9§ replaced by 90 , and o set equal to unity in Yq and Yy
given in (2. 33) and (2. 34). Writing the integrals which involve 60 in

G(S 1 O) explicitly,
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i

G(S,,(T)
(1oT> . .

o o
a+8; [a2E3(TO)+j‘e:(t)EZ(t)dt+p2E3(To)fe:(t)EZ(To-t)dt]
0 0

G(E ) :
4 2
1 - BB ES(T,) (3. 14)
Similarly,
G(S,(r) = . .
(o) (o]
0.2+[32[a1E3(TO)+j9:(t)EZ(TO-t)dt+ﬁlE3('To)je:(t)EZ(t)dt]
G(E, (r_-7)) 9 9 :
4 z
° 1 - ByByEST,) (3. 15)

Since 60 is a function of T, To? and 6(0) only, the notation

can be simplified by defining the following functions:

Fir, 7)) = -G(E,r)) (3. 16)
T
10
1(r, 7, 0(0)) = Jef(t)G(E3lt-T|)dt , (3. 17)
0
TO
7@, 0(0) = fej(t)Ez(t)dt , (3. 18)
0
.
. O
JZ(TO, 9(0)) = fej(t)Ez(To-t)dt . (3.19)
0

The integrations necessary to compute I, Jl , and JZ are carried out
in Appendix III and appear as linear sums of the exponential functions

E N

IR 8"

Finally, in terms of (3. 13) through (3. 19), the first orde;r ap-

proximation to the temperature distribution is:
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8(r) ~ 8 (1) + N8, (1) = |
) eO(T)+_1\ZI_(°‘1+‘31[“zEs(To)+il+sz3”o”2]FI(T’TO) .
1= BBpE5 () |
. a,+B, [ Eg(t WI 4B, Es(r )Ty ]

1- ‘31‘32E3Z(To)

FI(TO-T,TO)-I(T) .
(3. 20)

The temperature distribution can be computed once the boundary con-
ditions and the material properties are specified. In (3.10), GO(T)
is given, and %ys Qo By and 532 are computed from (2. 29) through
(2.32). The exponential integral E3 is presented in Table I. The
functions J,; and Jz are found in Table II, while F, and I are given
in Table III. In the tables, the variable 8(0) ranges from 0.1 to 0.9
in intervals of 0. 1; 7 goes from 0 to To in intervals of "rO/ZO. 0;
and To equals 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0. In Appendix
I1I, an absolute bound for the error in (3. 20) is developed. The re-
sult, equation (I[-20), tends to overestimate the actual error. How-
ever, the expression is simple in form and indicates when the error
may be large, and in problems with unusual boundary conditions, it
can be used to guarantee the validity of the approximation for suffi-
ciently small N..

Before discussing the physical meaning of F,, I, Jl » and
JZ ; it is necessary to mention some properties of some terms ap-

pearing in them. From Appendix I, equation (I-9),

e T ‘
T >1 all n,

E (1) ~
n

and from (I-4) and (I-6),

E (1) ~ -4n7 r<<1,
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E_(0) = 1fn-1) n>1.

Thus, all En decrease rapidly for T > 1. As a second remark, note
that I, Jl , and J’Z are integrals of Go. As éuch, they are evaluated
using the conductive temperature profile and not the exact temperature
distribution.

The function F,, (3. 16), is a measure of the portion of the
doubly integrated boundary intensities reaching a point 7. The sec~
ond derivative of F1 , i.e.,

Filr,7)) = -E (1),
is the negative of the actual portion. As T or To™T becomes greater
than one, F'l' becomes very small. As seen from the asymptotic
form of En’ for a medium with ’ro>>l, most of the flux comes from
within one optical depth of T, and so Fi‘ main contribution is near
boundaries. Thus, the effect of external sources and wall conditions
is mainly limited to the region within one optical depth of the bound~
aries. Of course, the radiation absorbed in this region can be re-
radiated or conducted into the interior. By this process, the actual
temperature profile is modified by the intensities at the boundaries.

The next function, I, can best be discussed in terms of its
second derivative, I''. The latter appears in the original expression
for the temperature profile, while I is a consequence of the particular
method chosen to treat the equation. The function, I, is the doubly
integrated net flux of radiant energy from the interior medium to a

point, 7, while its second derivative is twice the actual net influx:
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r

[0}
4 4
I'" = Ieo(t)Ellt-ﬂdt - 28 (1) .
0

In this expression, the integral term represents the portion of the
emission at t that reaches 7. The term 904 is the dimensionless
emission from T, and so the entire term is the net influx of radiant
energy from the interior medium. |

The two functions Jl and .]'2 are one-half the flux from the
interior medium to the boundaries at T =0 and 7T = To? respectively.
Since the exponential integrals decrease rapidly for large arguments,
for large optical depths, the main contribution comes from a zone of
about one optical depth in thickness. Thus, for To >>1, .I1 and JZ

depend only on conditions near the boundaries.

2. Examples

As a particular example of the effect of radiation interacting
with conduction, let 8(0) = 0.5 and To = 0.1. This corresponds to a
medium that is optically quite thin, since a beam normal to one wall
is only attenuated by exp(-0.1) in passing between the walls. Thus,
most of the radiation from one boundary interacts with the other with-
out being absorbed by the intervening medium, and the coupling be-
tween radiation and conduction is relatively weak even for modest
values of N. As a consequence, the temperature profile should be
close to that for pure conduction. Figure 2 shows the profile for
various values of N, using the approximation in (3. 20) with €17¢€, =1,
Also included for the same wall conditions is the result for pure ra-

diation from Heaslet and Warming15.': The results show that even for
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Figure 2.

r

The Temperature Distribution.
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N = 200 the temperature profile does not change much. The value

]

N = 200 exceeds the demonstrable usefulness of the linear expansion

il

given in Appendix II. To indicate this, it is included as a dashed line.
Aside from reasoning physically that most of the radiation does not
interact with the interior medium, it must be remembered that the
product N’l'0 is the ratio of radiative transport to conduction. But To
is one-tenth in the case chosen, so N must be relatively large for
radiation to be important.

For arbitrary wall emissivities, the temperature profile varies
in shape. As the emissivities become small, reflections occur caus-
ing the intensities from the opposite boundaries to become similar.
The quantitative effect on 8y for various wall emissivities with €=
€5 is shown in Figure 3. From these results, it is seen that varying
the emissivities changes the magnitude of 61 as well as its shape.

Obviously, the inclusion of high temperature external sources
along with high transmission will affect Gl . Even a modest value of
N may correspond to large changes in the temperature profile, as
well as limit the approximation's range of validity.

Now consider 6(0) = 0.5 and To = 1. 0. The optical depth is
large enough for the intervening medium to absorb a significant por-
tion of the radiation from the boundaries. Since To = 1, N is
order of the ratio of radiative transport to conduction. The results
for various N and black walls are presented in Figure 4. Also in-
cluded is the case of pure radiation.

If the wall emissivities are allowed to vary, the profile

changes shape once again. But the medium close to one wall is
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partially shielded from the other wall by the intervening medium, so
the profile is more dependent on the local wall property,as opposed to
the previous case where the average over both boundaries dominated.
Results for 91 ‘with various wall emissivities (e:1 = ez) are given in
Figure 5.

Finally, with 08(0) = 0.5 and To = 10, the medium is optically
thick. The radiation appears to diffuse,and on the average it is ab-
sorbed and re-emitted many times in traversing the medium. From
the definition of N, it is apparent that N is now one-tenth the ratio of
radiation to conduction, so that even modest N corresponds to large
radiative fluxes. The results for wall emissivities equal to one and
various N are given in Figure 6 along with the pure radiation result.

As expected, the wall emissivity has little effect on 8§ ex-
cept close to the boundary at 7 = To* Near the other, cooler wall,
the radiative intensity is much lower and the wall's emissive proper-
ties are unimportant. In the interior, radiative transport is very
much a diffusion process. Boundary conditions only determine the
radiative influx, but the temperature profile is governed by diffusion.
These characteristics are shown in Figure 7. In the figure, 91 is
given for several wall emissivities, 6(0)= 0.5 and To = 10.

In Figures 2 - 7, 8(0) was taken equal to one-half. Little
qualitative variation would have occurred for other values. The shape
of the temperature profile is mainly dependent on the optical depth
and the flux from the boundaries. The flux, in turn, is determined

by external sources and wall emissivity.
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IV. APPROXIMATE SOLUTION FOR THE HEAT TRANSFER
RATE IN AN ABSORBING AND CONDUCTING MEDIUM
The heat transfer rate in an absorbing and conducting medium
has held the attention of several authors. As mentioned in the previ-
ous section, diverse methods have been employed to find the tempera-
ture distribution from which the heat transfer rate could be computed.

From its definition in equation (2. 45), with a =1, q is given

by .

T

(o) T
_Cl(:_) = 9'(T) + Nz‘ [S'I(T)+S'Z(T)+j‘94(t)E2(t-T)dt' f94(t)E3(T-t)dt].(4. 1)
e 0

It can be seen that computations are complicated by the appearance of
the derivative of 6 as well as integrals over 64a Since the tempera-
ture profile cannot be given in an exact analytical form, 8' and the
integrals must be computed numerically.

The fnethods used to find the temperature distribution have
been discussed in Section III. Relatively little more need be added,
except to note that Lick found q without explicitly solving for 6. His
final approximate equation, (3. 3), can be considered a function of 8'
and, with the substitute kernel, the integrals of 94 do not appear.

An entirely different approach to the heat transfer problem
was made by Einstein23. He chose to uncouple radiation and conduc-
tion and to consider the independent sum of the separate heat transfer
rates as the solution. This formulation has the advantage of reducing
the analysis to a simple algebraic computation in terms of the results
for pure radiation given in (2. 48), and that of condu;:tion. However,

the method is only of value if the wall emissivities are near one
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and the walls are opaque. If these conditions do not exist, a signifi-
cant portion of the radiation is generated or absorbed within the
medium. This contribution is ignored in his formulation.
A comparison of results obtained by the various approaches is
discussed in Part 2 of this section after the present approximate solu-
tion has been developed.

1. The Solution

The form for q given in (4. 1) is inappropriate for the present
approach since the expression for the conduction term involves a de-
rivative of 8, which, in terms of the previously developed approxima-
tion for the temperature distribution, involves the derivative of 61 .
However, if the equation is integrated with respect to T and satisfied
at the endpoints, the term involving 6 is exact, since only 8(0) and
B(To) appear. Carrying out the integration, (4. 1) becomes:

T
O

E% +A=0(r)+ S [s(r)+8,01)+ JP64(t)E3]t-T|dt] .
0

since q is independent of 7. A can be eliminated by first evaluating
the expression at 71 = Ts and then subtracting from it the expression
evaluated at T = 0. This can be done in terms of an operator, G1 s
defined by
G, (#r) = #r ) - £0) . (4. 2)
The expression for q becomes:
T

O
q=G,(B(m)+Z [C—l(Sl('r)+SZ('r))+564(t)G1(E3lt-T | )dt]
0

or
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T

[0}
q = 9(70)-8(0)+l\72—[Gl(sl(¢)+sz(¢)>+ Ie4(t)G1(E3|t-¢ [)dt] . (4. 3)
0

The first two terms are the dimensionless expression for the heat

transfer by pure conduction, 9 >

k[T(r )-T(0)] o, k[T(r )-T(0)] 7
q, = 8(r_)-8(0) = - kT(’fro) 5, - < OtkTo(To) .

(4. 4)

The remaining terms are the modification to q associated with radia-
tion. They include a contribution to conductive transfer as well as
the net radiative flux.

If now 6 appearing in the integral terms is replaced by the

linear profile, 8, q is approximated by
' T

[o]
a~q, + 3 LG (5o (THS,p(r) + jG:Gl(E3|t-T|)dt] : (4. 5)
0

Let the factor multiplied by N be a, » that is,

T
O

1 1 (n4 -
q, = ZGI(Slo(T)+SZO(T)>+2J 8 ()G (E;|t-7])dt . (4. 6)
In addition to the functions ‘Tl and Jz which appeared in the expres-
sion for 61 ,» two new functions, k and GI(E4)’ are required to rep-

resent CIE Let

T T
o (e} .
K('ro, 9(0)) = fe:(t)Gl(E3 |t-'r I Kt = ‘Jef(t)[E3(To—t)—E3(t)]dt . (4. 7)
0 0

The last equality follows from the definition of Gl in (4. 2). The in-
tegration necessary to compute K is performed in Appendix III.

With this notation, and the functions S1 and S2 in (3. 14) and



-49-

(3. 15), q, can be written in a form analogous to 6, :

9 ~ 2

Gy (Eylr ) [“z’af‘(ﬁ‘z“l’51“2)E3(To)+‘325rz'f31J1+51ﬁzE3(70)(J2' |

2
1 - B,B,ET,)
K
+ ¥, (4. 8)
and from (4. 5) and (4. 6),

q ~ q, * Ng_ . (4.9) .

Now q can be computed using (4. 8) and (4. 9); q, is given in (4. 4),
and a;, Q,, B;, and B, in (2. 29) through (2. 32). The functions
G,(E,(r_-7)) and E;(r_) are given in Table I, while J;, J,, and K

are presented in Table Il

2. Compai'is on of Results

In Figures 8, 9, 10, and 11, the present results given by equa-~
tion (4. 9) are compared with those of Lick21, Viskanta and GroshM’ 16.
and Einstein23. Lick's substitute kernel solutions are only available
for wall emissivities equal to unity and 6(0) = 0.1, while Viskanta and
Grosh's iterative values have been presented for several wall emis-
sivities and 8(0) = 0.1 and 0. 5. ZEinstein's resplts for uncoupled radi-~
ation and conduction have been computed using equation (2. 48) for the
radiative term,

Little can be said about the accuracy of the approximate solu-
tions of Lick and Einstein, except to compare them, along with the
‘present results, to the values of Viskanta and Grosh. Viskanta and
Grosh estimate a ma.xi;num error of 0. 5 per cent in their values. De-

viations beyond this value could be considered the error,except that

the error estimate is further complicated by Viskanta's publication of

)
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Figure 8. The Heat Transfer Rate.
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additional results20 which overlap to some extent, but do not agree
with, his earlier values. In general, the differences are of the order
of 1.3 per cent (however, in one case the deviation is 17_per cent).
Where duplications occur, the more recent values have been used.

In Figure 8, the heat transfer rate is given for 6(0) = 0.1,
€ =€, = 0.1, 0.5, and 1.0, and To = 1.0, The comparisons are
extended to N = 100, a value much greater than the bounds placed on
it in the error analysis of Appendix II. The range of N shows the er-
ror trend for the various methods and indicates the range of validity of
the various solutions.

All results are in good agreement for black walls, but as the
emissivity decreases, Einstein's values are low. This is expected,
since with low emissivity, there is strong coupling between radiation
and conduction, and so his simplified form would not be expected to
hold. A similar trend in the error appears in Figures 9 - 11 , where
6(0) = 0.5 and To = 0.1, 1.0, and 10,

Comparison of the present results with the tabulated data of
Viskanta and Grosh shows good agreement for small values of N,
with deviations up to 0. 1 per cent for N = 0.1 and 2.7 per cent with
N =1.0. Forlarger N, a discernable error appears and is up to 10
per cent for N = 10. The error shows the expected pattern of increas-
ing with N and, for a fixed N, increasing with To* The dependence

| on T _ occurs because the product N'rO rather than N is the ratio of
radiation to conduction. Thus, for fixed N, an increase in To, COT-
responds to a proportional increase in the radiative flux. The error

also becomes larger as the wall emissivity decreases. This again is
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expected. With reflections, the source functions depend on 8 so the
heat transfer rate is a more complex function of the actual temperature
profile. Thus, the conduction profile used in the present form for the
source function introduces an additional possibility of error. The ac-
tual computed errors are smaller than those computed using the error
bounds of Appendix II, equation (II-26), especially for moderate to
large optical depths. It should be noted that the error bounds hold in
general, while results for only two values of 8(0) and four wall emis- °
sivities have been compared, Under certain circumstances, then, er-
rors can be expected fo increase beyond those characteristics of the

examples available for comparison.

3. Discussion of the Present Method

The proposed approximation is accurate for a wide range of
N because the contributions from the higher order terms in the ex~
pansion for the temperature profile are generally quite small. To

show the contributions are small, two limiting cases are considered;
that of an optically thir; ('ro << 1) and an optically thick (TO >> 1)
medium,

In an optically thin medium, radiation interacts only slightly
with conduction. The contribution to the radiative flux is mainly due
to radiation passing directly from one boundary to the other. Conduc-
tion is only affected when the radiative intensity is so high that the ra-
diant energy absorbed by the medium measurably modifies the slope

of the temperature profile. Even for this condition, the overall effect

is not very great, since radiation would then dominate and the error
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due to the change in conduction would be relatively small.
How this is manifested in the expression for ¢, equation {4.3),
can be seen by studying the integral term. It will become apparent
that the overall behavior is similar for all of the components; thus,

only consider the term

T T

(o} O
je"?(t)c;l(E3 [t-7])dt ~ f(eo(”*Nel(t)*' . .)4‘(31(1*33 |t-|)at
0 0

T T
[¢] &)
= je:(t)Gl(E?’ |t=7|)dt+N j4ej(t)el(t)Gl(E3 [t-7|)dt+O(N?) .
0 0

The second integral can be written in the form

T T

o ° 8. (t)
Nf493(t)el(t)G1(E3 lt-r | )t = 4Nfej(t)(§;1-m) G, (E,|t-7])at
0 , 0

4Nma,xq_ lell To

< e(oF jeg(t)Gl(E3|t-Tl)dt . (4. 10)
0

The ratio of (4. 10) to the term retained in the expansion for q is just

4N max, Iell
o

6(0) '

But maxTol ell is generally much smaller than 8(0), as can be seen
in Figure 3, so the relative error is not very large even for large N.
Analysis of the other integrals over 64 does not change the conclusion;
the relative error associated with them has exactly the same form.

In an optically thick medium, To is much greater than one.
The radiant flux from the interior is shielded from the boundaries,

and only the flux from a layer about one optical depth in thickness
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reaches the walls. Thus, if the temperature profile is not described
as accurately as possible in the iﬁterior, it should have little effect
on the heat transfer rate as long as the approximation near the walls
is good. Only for large N will the change in the profile be great
enough near the boundaries to materially alter the results and neces-
sitate a more precise description of the temperature profile. Also,
to repeat, N'TO is of the order of magnitude of radiative to conductive
heat transfer. Even small values of N correspond to appreciable
radiative fluxes for an optically thick medium.

The shielding effect described above can be seen in equation
(4. 3). First, from Appendix I, equation (I-9), the exponential integral

can be approximated by

-T
E (1) ~ S— t>1 , alln.
n T

Since the integral kernel multiplying the temperature profile is

G (E |t-T]) = E (r_-t) - E5lt) ,

the contribution to the integral term mainly comes from the values of
the temperature distribution near the boundaries (where it approaches
90 ). Again, the discussion has ignored the contributions from the
source functions. However, they contain a similar kernel; it is ap-
parent that the same considerations will hold for them.

For To the order of one, there will be partial shielding near
the walls, and a portion of the radiative flux from one wall will pass
unattenuated to the opposite wall, A trade off between the dominant
mechanisms of the optically thin and optically thick cases will govern -

the heat transfer properties. It is not apparent physically that the
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results of this interaction will serve to make the approximation ac-
curate. However, the error analysis in Appendix Il shows that the

accuracy does not deteriorate to any great extent for moderate optical

depths.

4. An Example of Coupling Between Radiation and Conduction

Before turning to the scattering problem, a graphic example of
the interaction between radiation and conduction appears in studying
the effect of optical depth and boundary emissivity on q.

To start with, consider €y =€, = 0 and ty=t, = 0. The
boundaries are perfect reflectors, so conduction is the only mode of
energy transport at the walls. For modest optical depths, the radia-
tion produced near one wall is partially absorbed near the other, in-
creasing the energy transport. However, as the optical depth be-~
comes even greater, the radiative transport is retarded by being
absorbed and re~emitted many times in traversing the medium. The
result reduces the heat transfer rate from the corresponding value for
moderate optical depths. Thus, ¢ first increases with To? reaches a
maximum for moderate optical depths, and finally decreases in the
optically thick limit. Results for perfectly reflecting walls and bound-
aries with emissivities other than zero are given in Figure 12 for
Nfro = 2. As expected, with higher wall emissivities, the maxima in
the heat transfer rate shift toward smaller optical depths. For € =
€, > 0.6, the maximum is at To = 0 , since now the boundaries effi-
ciently absorb and emit radiation and the intervening medium can only

serve to resist the radiative transport.
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V. APPROXIMATE SOLUTION FOR THE TEMPERATURE
DISTRIBUTION IN AN ABSORBING, SCATTERING,
AND CONDUCTING MEDIUM
When scattering is included, the character of the general equa-~
tion changes radically. Even if the equation is twice integrated, it no
longer reduces to a nonlinear integral equation in 0, since the de-
rivatives of the function appear. This precludes the straightforward
application of the method suggested by Lichtenstein and used by Vis-
kanta and Grosh in the pure absorption case.
In a recent extension of his earlier work, Viskantazo included
scattering. An iterative procedure was again used, after equation
(2. 41) was rewritten in the form
0"(r, @) = aN[ 8%(r, &) = % C(1, )] ,
T

O
Clr, &) = 2[SY(r, alSy(r, a)t f[ae‘*(t, a)+ 5‘%—9—)]1‘31 |t-r]at]
0

This expression follows directly from (2. 12) and (2. 19), if { is de-
fined as the dimensionless form of the integral over |4 appearing in

(2. 12), and (2. 19) is rewritten in terms of { . An iterative scheme
was carried out over the two coupled equations. However, conver-
gence was quite slow and only limited results were given. Further, no
values for temperature profile suitable for comparison were presented,

as the heat transfer rate was of principal interest.

1. The Solution

In the previous analysis with scattering excluded, an expansion

in N for the temperature profile produced satisfactory results for a
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wide range of N. The temperature profile was shown to vary only
slightly from the conduction results even for relatively large N. With
scattering, then, the temperature profile is again expected to be close
to that of pure conduction, since the inclusion of scattering (while
holding the total optical depth constant) tends to uncouple radiative
effects.

This suggests simplifying the basic equation by ignoring higher
order terms in N, with the hope of more readily treating the simpli~
fied equation. Consider equation (2. 41), and note that if 64 is re-
placed by 9;1, it is integrated twice, and G is used;

T
(o]

ﬁ%{ [G(S;o(THS, ot Ie:(t)G(E3 |t-7])dtl+(1-0)G(T, (1, Q)+ T, (1, a)
0

r
o
+aG(a(r, o)) ~ 152 [0, a)G(E, |t-7 | Jas (5. 1)
0
where
r
1 Byln) )
Tilma) = ~= 5 5520 jple"(t, a)[E, (tHB,E,(r _-t)E (r )]dt ,
17273 0" 0 (5. 2)
; Byt =7) o
Toelrio) = - g =g — 18,01 @ILE, (7 -7 1By B (e} (r )]t .
1¥273 0" 0 (5. 3)
From the analysis for pure absorption,
T
o]

030} = = 3G, (18,5 + 0 HOIG(E, -7 ])ac]
0

so that
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S ]
GG(G(T, C(.) ~ o
aNel(T)+(1-a)G(Tle(T, alT, (fr,oc))+--- Je"(t, cx)G(E |t-r)dt.
(5. 4)

The terms neglected are integrals over

3 2
4N60('r)6a('r, a)+O(N7) ,

where Ga is a function of o and equals 6; when o is unity. Itis
reasonable to assume that ea is always the magnitude of 8, » since
for o less than one, the temperature profile tends toward 80. Also,
there is no physical mechanism to make Ga significantly greater than
6,. Assume, then, that the correction is roughly 81. The error in-
volved in the above approximation is the order of

To

%[G(Sll(T)+521(rr))+f4ej(t)el(t)G1(E3lt-x|)dt] = =8,(r) .
0

For N sufficiently small, the product NZSZ can be neglected com-
pared to NE)l » as with pure absorption. Thus, the result for 8(r,a)
has approximately the same range of validity as the linear expression
for 8(T) in the pure absorption case.

The approximate equation for § can be reduced to a Fredholm
integral equation of the second kind in 8", if (5. 4) is twice differenti-

ated with respect to 7 :

‘T

8"(r, ) ~ aN@ (rH[1-aJ[TY (7, al Ty (T, cL)]+ je"(t, a)E; lt-7]dt .
0 (5. 5)
This, in itself, is not very useful, since the integral kernel is not

readily inverted. The solution kernel is, however, given by Chandra-

sekhar4 as a function of the solution of two coupled linear integral
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equations. The numerical values can be found in Sobouti's analysisZ4.
Unfortunately, the numerical results only yield 8" and must be twice
numerically integrated to give 0.

An alternate approach is the substitute kernel method used by
LickZI. He replaced the difficult kernel by a simpler, approximate
kernel of the general form Ae-BT. The constants A and B were
chosen so that the substitute kernel has some of the characteristics

of the one it replaced.

In the present problem, it is natural to require that A and B

satisfy
O [0.9)
J.El(t)dt = A | e Btat ;
0 0
QO (e o]
thl(t)dt = AJPte-Btdt .
0 0

Thus, the integrals and their first moments are equal. The constants
A and B are found with the aid of equations (I-5) and (I-6) of Appendix

I. The result is

With these values, (5.5) becomes
T

O
g™ (T, @) ~ G.Ne'l'('T)-i'[ l-a][T'l'e('r, oc)+Tge(T, cc)]+(1-on)je”(1;,on)e'2lt',’r ldt .
0 (5. 6)

If this is differentiated twice with respect to 1, the integral expres-

sion remains
T

8 (4)(7,00 A~ aNe(f“)('r H[1l-a] [T(li)(mom T(fg(fr,on)]+4(1-a)fe "(t,a)e '2|'C‘Tl dt.
0 (5. 7)
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(5.7) can be added to (-4) times equation (5. 6),
o*kr,a)- 206 (n o) ~ a6 (r)-200(r) 1+ T1-03 LT r, e T{Er, )
- 4T‘1‘e('r, a) - 4Tge(fr, a)] .

Finally, integrating twice,

0'(7,x)-408(r, @) ~ GNL8Y(r)-40 | (1)+[1-aJ[TY_(r, a}TY (7, )
| -4Tle('r, a) - 4T26(T, G.)]+C'1 +C'2T . (5. 8)

In this equation, 6 is an approximation to the temperature
profile for arbitrary a. A change of variables to

8(r,a) ~ 8_(T)+N ,08(r, a) (5.9)

simplifies the expression. The approximately equals sign is used to
denote that N 19 satisfies (5.8) and hence only approximates the exact
equation, (5.1). With this change of variables, Tle and TZe , de-
fined in (5. 2) and (5. 3),are replaced by Tl -and TZ’. the correspond-

ing functions with 8" replaced by 19" :

.
1 Egm o 0%
T (r,a) = -5 , gl 10"t @B [E, (tHB,E, (1 -t)E (r )]dt,
BB ES (T ) (5. 10)
TO
1 E4(TO-T) o
TZ(T, ﬁ') = "-2—1 EZ ) 18 (t: a)pz[Ez(To_t)-l_ﬁlEz(t)E3(To)]dt .
~BiBES(T )G (5.11)

The substitution also modifies the boundary conditions to 18(0, a) =
18(70, a)=0. If C, and C, are defined by

N[C1+CZT] = C'l + C'ZT + 4&60(T) ,

(5.8), with 8 replaced by 60+N16 , becomes
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18"(7, a)-40 B(r, a) = Ot[e’l'(T)-4el(T)]+[l-CL][T'l'('r, alTH(r, a)-

-4T&(T,a)-4T2(T,a)}+a[C1+CZT] (5. 12)

which is independent of N. Thus, the approximate expression (5. 9)

for the temperature distribution is linear in N as was its pure ab-
sorption count'erpa.rt.l Let
f(r,a) = 8;(r) + —— [T (T, A+ T, (7, a)] (5. 13)
%2 = 40 (5. 14)
so that (5. 12) becomes
le”(Ta (x) - Kz 16('1', @) = G«Efb"(’r, a)"4f('7: a)+ Cl + CZ'TJ °
Again, the operator G, defined in (3. 5), can be used to remove the
constants C1 and CZ
G(;8"(1, @) - %% B(r, 0) = aG(E"(r, ) - 4£(r, &) (5. 15)
The operator does not affect the term containing 16 s since it equals
zeroat T=0 and 7 = To and hence G(le) = 16 .
The function G(le“) contains the unknowns 19”(0, o) and
16"(1'0, @) , which can be removed using the relation (5. 5) with §'"(r,a)

replaced by N 16":
T

18"(7,a) = agf (T H+[1- G][T"%T,a}+T”WT,a)]+ j%'%tGXEllt-Tldt

T
(o}

l-a
= G.f”(’T, G.)+—2—— j‘le”(t, (I)El lt-"rldt .

If this is now evaluated at 7 = 0 and 7 = To

180, a) = af'(0, a) + (1-a)u(0, a), (5. 16)

16”(To,a) = ai"cro,a)+ a-aju(wo,a), (5. 17)



66~
where T

o .
ufr,a) = .;:Ile“(t, OL)Ellt-’rldt .
0

It is evident from the definitions of 'I‘1 and T2 (which are both inte-
grals over 19”) that introducing u(0, &) and u('ro, a) does not increase

the complexity of the expression.

Equation(5. 15) can now be cast in a more convenient form by
replacing the terms involving 1B”(O, a) and l9"(’r0, a) by (5. 16) and
(5.17),

18", a)-n” 10(7, @) = al£'(r, a)-4i(r, a)J+(1-a) (u(0, a)}+

To

+="u(r , a)- u(0, @) Jra(4f(o, a)+;'“; [£(r_, @)-£(0, 0)T) . (5. 18)
Let
glr, o) = 4f(r,0) + =% u(r,q) . (5. 19)

Thus, (5. 18) can be written as

L8"(r, a)-n? 8(r, @) = aff(r, a)-4f(r, arg(o, a)+{:[g(¢0, a)-g(0,0)1) -

This has the solution
T

(e}
18(7, Q) = ccf(”(t, a)-4£(t, a)+g(0, on)+-$;— [g("ro, a)-g(0, a)])Q(t, T, )dt
0

(5. 20)
where G is the Green's function
_ 1 sinh #t sinh u('r—’ro) o< t<rT
He o) = W {sinh T sinh n(t-’ro) T<t< 'ro (521

with %2 = 4a. The expression given for 61 in (5. 20) can be reduced
by integrating by parts twice the term containing f" and carrying out

the integration involving the function g. The result is
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T
o

19(7, a) = af(r, a)-4a(l-a) | £(t, a)G(t, 7, a)dt
0

1

" TsmbAt, ([4“(0»00-5;(0, a)]sinh (T _-7)+

+[4af(To, a)-g('ro, a)]sinh wr) —%(g(o, 0’)+7r1 [g('ro, a)-g(0, a)])
° (5. 22)
This form for 18 is not completely reduced since the functions
f and g contain Tl’ TZ’ and u, which in turn are functions of 16" .
But 16” can be expressed in terms of f and g by substituting the ex-
. pression for 18 in (5. 20) into (5. 18):

T
(&)

1e“('r, a) = alf'"(T, a)-4f(T, on)+4aj[f”(t, a)-4f(t, o) ]G(t, T, a)dt]
0

'é_iﬁ%—;ﬁ_— [g(0, a)sinh M(To-’r)+g('ro, a)sinhyt] . (5. 23)
o

Equation (5. 23) expresses 19” as a linear function of f and g, which
in turn are linear functions of Tl’ TZ’ u(0, ) and u('ro, o). But each

can be expressed as a function of 19”:

T
RS S A j'oe( B, LE, (tHB,E,(r ~t)E (r )1d
T.(t,a) = - = "¢, 0 tH T -t T t
1 2 2 1 -2 272 3
1-p1p2E3 (To) O o 0 (5. 24)
E ( ) "o
1 AL
T,(r,a)= -5 8" (t, )8, [E (T ~tMHBE_(t)E, (T )]dt
2 2 Z 1 2L2 12\
1"31;32E3 (TO) \L\, ° N (5‘ 25)
IT
(o}

u(0, a) = %Jle"(t, Q)E, (t)dt (5. 26)
0
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T
[e)

u(r_, ) = : jle"(t, GE,(r_-tidt . (5. 27)
0

If now (5.23) is used to evaluate (5. 24) through (5. 27), four linear al-
gebraic equations in u(0, @) and u('ro, &) and the integral portions of
T1 and T2 result. By solving these, 19 can be written explicitly, and
so, with (5.22), 8 can be expressed as

6(T, ) ~ 6 (1) + N,8(r,a)

T
o

i

eo('r)+cLNf(fr,a)-4oc(l-o.)N jf(t, a)G(t, 7, a)dt
0

N

- T T ([4@f(0:u«)'g(0,a)]Sinh%('ro-'r)-}-

+[4af(r , a)-g(r o, @) ]sinhur )- 3 (g(0,a) = [g(r ,0)-g(0,0)1) -
° (5. 28)

The functions f and g are defined in (5. 13) and (5. 19). As just men-
tioned, they involve Tl s T2 , u{0,a), and u(’ro, o), which are found
using (5. 24) through (5. 27). Finally, the Green's function, G, is de-
fined in (5. 21).

The form of the solution for § given in (5. 28) is excessively
complex to present results in tabulated form. Nevertheless, all inte-

grations required can be carried out using the functions given in

Tables II and III for 81 .

2. Analysis of the Solution and Further Approximations

The accuracy of (5. 28) depends on the accuracy of the substi-

tute kernel solution for 19 . The only other error comes from ap-
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proximating 64 by 6: in the linearization of the transport equation.
Since the form of the equation Lick treated is similar to the above,
the error in the substitute kernel can be estimated qualitatively by
comparing the results of Lick (for no conduction) with the exact re~
sults of Chandrasekhar. These errors are the order of a few per
cent and so the present results probably have the same general ac-
curacy. |

The complexity of the above result masks the temperature pro-
file characteristics as a function of a. Consider, then, some limiting
cases; the first, an optically thin medium. As before, attenuation of
the radiation by the interior medium can be neglected, and so the
coupling between the radiative field and conduction is proportional to
the absorptivity at each point. In the analysis for pure absorption,
this coupling resulted in a linear change in the temperature profile for
N sufficiently small. In the case at hand, the radiative contribution
will be decreased since the total cross section includes scattering.
The portion absorbed is & times that of pure absorption. Therefore,
the resultant temperature profile should have the form:

8(T, &) ~ eo(¢)+aNel(T) .

This form can also be deduced from the basic equations for 8.

For convenience, consider the expression for 8'"' given in equation

(5.5). Momentarily set T'l'e = T'Z'e = 0. The equation reduces to
T
) o
8"(¢,a)maNe'1'('r)+-l—g-o—nfe”(t, a)Ellt-"r[dt . ' (5. 29)
0

From Appendix I, equation (I-4), for small 1 the asymptotic form of



-70~

El('r) ~ =4n T <1

Thus, the integral is order of 'ro»f;n 'rol 6”[ » and can be neglected com-
pared to 6'1'. Thus, (5.29) is approximately

6'(r,a) ~ aN&y(r) , (5. 30)

or, using the definition 6 ~ 6 +N,0,

18'(rs a) ~ adj(r) . (5. 31)

This form will be used later.
Integrating (5. 30) twice and using the boundary condition that
8(0,a) = 8,(0) and 8(r_, )= 8 (1_),

o(r,a) ~ 8 _(T)+aNg (1), ' (5.32)

- and from (5.31) and 06 ~ 60+N16 s

1807, 0) &~ af (1), (5.33)

which are the expected forms. If TTe and 'I"Z'e had been included,
the result would have been the same, since T'l'e and Tge are com-

posed of integrals of 9"E2('r) and e"EZ( -T). Again appealing to

'r
o
Appendix I, equation (I-7), the asymptotic form of E, is

Ez('r)~1 T<<1,

so that the integrals are order of 'rol el and are negligible compared
to 6.
Now consider To 2> 1. In the region away from the boundaries,
T'l'e and T:Z'e can be again neglected, since the terms contain Ez('r)
-

or EZ(TO-T) and go to zero as %—- for large T, as shown in Appendix

I, equation (I-9). Thus, (5.5) again reduces to
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T
(o]

8'™(T, &) ~ onNe'l'(T)+-15—afe"(t, a)E, [t-r|dt . (5. 34)
0

If 8" is assumed to have the general character of 6'1' » it will be a
slowly varying function of T in the interior. Therefore, the integral

term in (5. 34) can be approximated by

T T

(o] o]
1—;_3 Ie“(t, Q)E, [t-7]dt wig—“ 8" (7, cc)‘JﬁE1 [t-r|dt
0 0
Q0
~ L% onr, a)f E,|t-7]dt = (1-0)8"(r,a) .
-Q0

This is valid since first, the kernel heavily weights the integrand near
T, and second, for large To * and T in the interior, the limits of in-
tegration can be extended from 0, T, to * oo with little loss of ac~-
curacy. If this approximation for the integral term is used in (5. 34),

ad'(r, &) ~ aNBY(T) , (5. 35)
or, integrating twice,

B(t,a) ~ A+B'T+Nel('r) .

This shows that in the interior B8(T, @) assumes a profile within a line-
ar term of the pure absorption profile. The constants A and B can

not be evaluated since the approximation is invalid near the walls.

3. Examples

Numervrical calculations have been made for To = 0.1, 1.0, and
10 ; 6(0)=0.5; e, =€, = 1;and a raﬁge of & to show the character
of 6. Figure 13 shows the first order contribution to 6, i.e., 16,

for To = 0. 1. It is evident that the profile increases nearly linearly
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Figure 13, The First Order Correction to the Tempezrature
" Distribution,
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with @. This can be seen in Figure 14, where the results are re-
plotted as a function of & for various va.luejs of 7. Included as dashed
lines are results from the linear approximation developer earlier in
equation (5. 33),>
10T, @) ~ aBy(T) .

Agreement is quite good and indicates the usefulness at the above ap-
proximation. Figure 15 gives similar results for To = 1.0. Here,
the first order term, 16 » 18 a more complex function of a. Again, the
results are replotted as a function of & in Figure 16. The dashed
curves again give the linear approximation. The representation is not
quitevas accurate as for the optically thin medium. A similar set of
results for To = 10 are given in Figures 17 and 18. For the optically
thick medium, the maximum value of 19 shifts to lower values of 7
as O decreases. In addition, for @ near 0.1 and 9 <T < 10, the
term becomes slightly negative. Thus, the characteristics of 19 have
changed from the previous cases, but the changes are quite subtle. In
Figure 14, the dashed curve shows tha:t the linear approximation is
still of value. However, the curves do deviate from the straight line
for T near Tot This difference will become important in the deriva-
tion of the heat transfer rate; as with pure absorption, the radiative
contribution to q will appear as an integral weighted near the bound-
aries,

Thus, 16 is similar in nature to 61 » the pure absorption re-
sult. The equation for 19 has been reduced to a linear integral equa-~
tion, and even though a final expression has been developed in terms

of the approximate kernel, actual numerical results are more difficult



~T74-

24 — T l B

. € = €,: [0
2.0 — l 2 — equation(5.28)

To = 0.
0=0. - equation (5.33)

6(0)= 0.5

T 20,04
T = 0.02
T=0.01
T = 0,095

a

Figure 14. The First Order Correction to the Temperature
Distribution Replotted as a Function of &.
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to compute than before. However, 16 may be replaced by ael to

describe the temperature distribution for all a.
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VI. APPROXIMATE SOLUTION FOR THE HEAT TRANSFER RATE
OF AN ABSORBING, SCATTERING, AND CONDUCTING MEDIUM

The only study of the heat transfer rate with absorption and
scattering based on the exact equation has been the recent work of
Viskantazo. As mentioned in Section V, he used an iterative proce-
dure to compute the temperature profile, and then found the heat
transfer rate by numerical integration. In Part 3 of this section,
Viskanta's values will be compared with the present solution, and
where possible, exact results. The exact solutions are available for
@ = 0 (which corresponds to pure scattering) since radiation and con-
duction uncouple. The heat transfer is simply the sum of the two

separate modes of energy transport.

1. The Solution

As in the pure absorption solution, g will be expressed as the
sum of conduction and the net radiative flux crossing a unit area paral-
lel to the boundaries.

From Section II, q is given by

T
O

3—‘—};—“-1 = o'(r, )+ 318} (n, apsyr, e [o%6 IE,(eer)as-
’ T

T
T o T
- fe‘j‘(t, a)EZ('r—t)dt]- 12;0% [ fe"(t, oc)EZ(t-rr)dt-hre"(t,a)EZ(-r-t)dt] .
0 T 0 (6. 1)
For the purposes at hand, it is convenient to temporarily follow the
procedure used for pure absorption; that is, integrate (6. 1) with re-

spect to T and evaluate the result at 1 =0 and T = To® In addition, if
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the operator G1 defined in (4. 2) is used, and the heat transfer rate is

is denoted by q(a), (6.1) becomes

T
o

al@) = Gy(B(r.a)) + 316, 6 (rars,(ral [o4e,a1G) (&, t-r |t
0

T
(o]
e j.e"(t, )G, (E, -7 |)at . (6. 2)
0

Again,

1l

Gl(e('r, a)) 6(r _»a) - 6(0, a)

6(70) - 8(0)

=q, - (6. 3)

The second to the last equality holds, because the temperature at both

boundaries is independent of . The last equality is a restatement of

the definition of q -

If only 6: is retained in the integrals over 94, the terms in
brackets in (6. 2) can be split into two portions. Then, S; and S2 can

be written with one portion independeht of &. From (2.39) and (2. 40),

T
(o}

Ez [G;(S; (T, apS, (7, el j94(t, )G, (E, lt=r])dt] ~ Ez (51T WS, (T
0
r

o
+ 122G (1, (r, el T, (1, 0}t 2 fef‘t)Gl‘Ez. |t=r )t
0

y . |
= Nq_ + =G (T, (1, a}+T, (1, 0)) - (6. 4)

Here, a, is the result for o =1 in (4.8), and T and TZe are

le

terms defined in the previous section in (5. 2) and (5. 3).

To the first order in N, (6.2) is
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T
(o]

q~ qC+Nqo+1—(;9—‘ [Gy (T (7 0T, (T, a))--;-je"(t, )Gy (E4 |t-7]at)] .
0 (6. 5)
In the previous section, an approximate solution, Nle" was given for
' ; it can now be usec:l in (6. 5). Again, if Tle and TZe are replaced
by T1 and TZ’ the corresponding functions of 16" defined in (5. 24)

and (5. 25), equation (6. 5) canbe rewritten in terms of q where

.
(o]
q (@) = %9 [Gy(Ty (T, aH T,(r,0)) -—,;—jl'ea"(t,ran)c;l(E3 [t-r|)at] . (6. 6)
0
With (6. 6), (6. 5) becomes
g(a) = 9. + Nqo + Nqs(a) . (6. 7v)

The first two terms on the right hand side are the expression for q
with pure absorption, defined in (4.9). The remaining term, q,: can

be computed with the aid of equations (5. 23) through (5. 27).

2. Examples and Further Approximations
| As with 8, the expression for q masks its character and
limiting forms should be studied. A simple approximation can be de-
veloped for q defined in (6. 6), if the medium is optically thin. For
algebraic simplicity, set T1 and T2 equal to zero and note, from
(5.31), that for T <<1
19"(T,G)Q;G9T(T).

So, from (6. 6), q, can be written:

T

(8]
S -%je'l'(t)Gl(E:,’lt—'r |)at . (6. 8)
0 : v

R
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This is an important result. The integral term is independent of o
and thus, qs/l-cx. must be also. If T, and T, had been retained in
(6. 8), the conclusion would have been the same. Both terms are
multiplied by the critical quantity 1-a/a, and are integrals over 16".

Under these conditions, q, can be readily evaluated. If Q is
identically zero, the heat transfer rate is exactly the sum of the inde-
pendent contribution from conduction, Ay and radiation, NqR , where

q is expressed in terms of dr

R d
ag IRy [UT4(TO)-UT4(O) B_(r,)
To 40T4('r°) 40T4('r0) 1+ (% + El— -2)B_(r_)
| 2
4 B (1)
_r 1-87(0) o''o
SRR L ZB()]' (6-9)
3 (ET E;' ) oo

Within the order of the approximation, 9. + NqR is equal to (6. 7)
with o set equal to zero. Thus
q. t Ngg ~ q_+ Nq_ + Nq (0);
SO |
qs(o) ~ g T 9

But from (6. 8),
T

° q (@)
q (0) = -%J‘e‘l'(t)Gl(E3|t-T|)dt ~ 1o
0
or
q4(®) ~ (1-a)q_(0) ~ (1~aMqp-q ). (6. 10)

Substituting this into (6. 7),

q(a) ~ q. t O.Nq.0 + (I-G.)NqR s (6. 11)
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where again d.+ 9, and qg are defined in (4. 4), (4. 8), and (6.9).
Therefore, with an optically thin medium, q can be approximated by
linear interpolation between the pure absorption and pure scattering
results.

For arbitrary To! g is not a linear function of &, as can be
seen from Figure 19, where q is shown as a function of To for
T =0.1, 1.0, and 10. Nevertheless, for Ty 28 large as one,

o

q is still relatively linear.

3. Comparison of Results

In Figure ZQ, values of the heat transfer rate from Viska,nf:a.20
are compafed with the present substitute kernel results (6. 7) and the
interpolation fc;rmula of equation (6. 11). In the figure, two curves are
" given for 9(0) =0.5, To = 1.0, and N=1 and 10.

All three methods lead to similar results. With To equal to
one, the interpolation form, shown as a solid line, is expected to hold.
The values appear to deviate from Viskanta's by about the same amount
as that of the more complex substitute kernel. At o = 0, the interpola-
tion form is exact, and the errors in the other methods becomé appar-
ent. The second set of results, with N = 1, indicate that the various
solutions are nearly identical. This is mainly due to the small con-
tribution of radiation with N = 1, and the small difference between the
heat transfer rate for pure absorption and pure scattering.

The results show that accuracy is comparable for all values of
‘o, with N= 1.0 and 10 and 7_ equal to unity. However, the limited.

range of the critical parameters N and To does not permit the con-
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clusion that the error will be of this magnitude under more general

conditions.
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VII. TWO ADJACENT SLABS AND EXTERNAIL SOURCE PROBLEMS

1. The Solution to the Two Adjacent Slabs Problem

The basic solution to the general equation can be applied to
physical systems more complex than the one studied to this point. In
particular, the problem of two adjacent, infinite slabs, with different
radiative and conductive properties, can be treated. This problem is
of physical interest and shows the influence of optical depth on energy
transport in situations where the radiative properties vary in specific
regions.

A single medium, with an abrupt change in optical depth, is
distinguished from the present problem by the type of radiative trans-
mission across the interior boundary. In the single medium, the ra-
diation retains its angular dependence, while in the other case, ‘the
radiation is transmitted diffusely. To illustrate the difference, the
heat transfer rate for two adjacent slabs, with identical optical prop-
erties in both regions, is compared with that of a single medium with
similar uniform properties. The results are presented in Part Z.Of
this section.

A diagram of the adjacent slabs configuration is given in Fig-
ure 21. The geometrical thickness and thermal conductivities of both
regions are assumed equal, so that the pure conduction tenp erature
profile is a straight line. With this choice, the influence of radiation
can be readily studied. Properties of the region to the left are de-
noted by a subscript 4 and those to the right by r . The boundaries

at 7, = 0 and 'Tr = Tor are black. The interface is a diffuse trans-

4

mitter. Let GL(O) =0,5, Gr('\'or) =1,0, and e&(TOL);— er(0)= Gi s
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. Figure 21, Diagram of the Two Adjacent Slabs Problem.
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so that the temperature is continuous across the interface and equal
to 91' The purpose of these assumptions is to limit the variables in
the final solutions, rather than to simplify the problem. Reflections
or external sources would not significantly complicate the treatment.
Each region has its own value of N, defined in terms of the

radiative flux emitted at Gr('ror) and the conductive heat transfer rate
across the entire system. Let

0T4('ro )

—FT < L | 7. 1)

or
X

where x is the geometrical distance across the system. This condi-
tion makes the radiative transport for zero optical depth nearly equal
to twice that of pure conduction, as can be seen from the explicit

representation of each:

4 4
ofT Av ) - T, (0)]

q -
Ry
_ 4 4
= 0T (’ror)[l - 0.57]
4
_ 150Trv('ror)
= —T—
and
A %k[Tr(Tor)-TL(O)] 1 kT (7_..)
ch x T2 x *

Also, with (7. 1), N& and Nr are determined, within the optical depth,

in each region;

4 4 3
N =T o) s 19T o) | T To)l 2 s
< Ga&kTL(TO&) Gar* kTr—ﬁor) 2T3(T ) To& !
> = r' or
and '
- 4 4
N =40Tr(Tor) =[_1_] 4 OTr(Tor) - _2
o O'a:rkTrTTor) 2 Car® krI"r(Tor) Tor

2 x
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Once To and Tor 2T chosen, N, and Nr are uniquely defined.

4 1
The solution is found by computing q, and q, 28 functions of
Gi. and satisfying the condition
q,(0;,) = a.(8;) .
This can best be done by assuming several values for 91’ computing
both heat transfer rates from (4. 9), and graphically determining the
intersection of the two curves q&(ei) and qr(ei). The only unusual

feature in the process is developing the expressions for the source

functions. Obviously, S,, is just the contribution from the boundary

1z

consists of the emission from Te ™ Tro reaching

at 7, = 0, but S2

2 4
fegion 4 plué the emission generated within region r. From the dis-
cussion following equation (3. 20), the latter is . Z.Tlr(e.l, Tor)' Simi-
larly, Slr is the sum of the flux from To = 0 -plus the radiation gen-
erated within region £. However, care must be taken to express the
functions J'l > .IZ, and K, appearing in g correctly as functions of

: G(To{,)" Intheﬁ definitions, (3.18), (3.19), and (4. 7), B(TOL) is set
equal to unity. This must be taken into account b}’r multiplying the

functions by 914 and transforming the variable e&(O) to 90{1(0)/9i .

2. Results for Adjacent Slabs

With the above in hand, results are readily computed. As an
example, the value of g8, as a function of Tor is given in Figure 22
for Tob = 0.1, 1.0, and 10. Since T or is the optical depth in the hot-
ter region, it would be expected to play the dominant role in determin-

ing the temperature profile. If it is small, radiation passes directly

to region 4. If the optical depth is large in 4, the flux is absorbed
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near the interface, and is transported by conduction. As a result, ei
"becomes larger to increase the temperature gradient through 4. For
larger Tor’ the radiative flux cannot pass through r as readily; ei
decreases as more and more teniperature drop is required in r.
This trend is evident in the figure. Similarly, if Tod = 1.0, and T or
is very small, a large gradient is required in region £. Again the
gradient decreases as Tor increases. If To = 0.1, the process re-
verses, and little resistance is experienced in 4. However, for
large optical depths in r, the steep gradient required to conduct en-
ergy across the region lowers the interface temperature. Even
through 4 is opt:;Lcally thin, little radiant energy can be generated
near the interface to contribute to the overall heat transfer rate.
Thus, from the figure, 6; is about 0. 72, close to the pure conduc-
tive value of 0. 75; while in the opposite case of large Tol and small
Tor’ 9 is 0.81. In terms of the heat transfer rate, in the configu-

or

ration To <<'1 and 'ror>>1, q is expected to be lower than the oppo-

2

site case of To >> 1, there is less

2 >> 1 and Tor << 1. When Tod,
impedance to radiative transport since region 4 is cool, and most of
the energy is transported by conduction, even if the optical depth is
decreased. In both circumstances, the heat transfer rate is small
because the radiative flux cannot readily pass from one wall to the
other. Results for q as a function of Tor and Tot = 0.1, 1.0, and
10 are given in Figure 23. In addition to the heat transfer property
described above, the curves show the expected features of large q

for both regions optically thin, with q decreasing as either Tog ©F

Tor increase. For both regions optically thick, ¢ is near the pure
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conduction value of 0. 5.

Another interesting comparison can be made between the re-
sults for Tot = Tor and a single medium having the same total optical:
depth and other boundary conditions. The heat transfer rate should
be different in both cases. However, the difference is small. For
Tot = Tor = 0.1, q for the adjacent slabs is 0, 928, while the single
medium result is 0. 915. The values are expected to be close, since
the emission from both boundaries is already diffuse. The interface
only affects the anisotropies in the radiation generated within the me-
dia, which is small since the media are optically thin. For Tot =
Tor = 1.0, the heat transfer rates are 0. 711 for the adjacent slabs
and 0. 703 for the single medium. For greater optical depths, the dif-
ference should be smaller, since radiation would contribute little to
the overall heat transfer process. In addition, the zone is very narrow
where the emission reaching the interface is produced. Thus, it is
nearly at a uniform temperature and the flux is practically isotropic.
As a result, the boundary condition at the interface has little influence
on radiative transport, and hence the heat transfer rate.

The above results show the characteristics of two adjacent
slabs and how optical depth comes into play in such configurations.
Further, the isotropy of the flux across an interface is shown to have
little influence on the heat transfer rate. If no interface is present and
the medium is optically thin, the distribution is nearly isotropic; while
if the medium is optically thick, the distribution is isotropic since the

flux is generated over a narrow zone where the temperature is nearly

constant. Thus, in physical systems; the boundary condition relating
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to the isotropy of the flux is unimportant.

3. Consequences of an External Source

The case of an infinite slab with one boundary partially trans-
| parent and the other opaque merits special attention. Such configura-
tions are found in metal oxide coatings on rocket nozzles and coatings
on leading edges of hypersonic vehicles; often, an external source, in
the form of combustion products or emissions from shock-heated
gases, is present. The interest in this configuration stems from the
two distinct ways the heat transfer rate can be calculated. The con-
ventional approach assigns an emissivity and absorptivity to the coat-
ing and the temperature found by an energy balance equation. The
second method appeals to the procedure of the previous sections.

The purpose here is not to compare directly the two approaches,
but to determine which parameters must be taken into account and to
find when each method is appropriate. The following assumptions are
made. The coating must have-isotropic and homogeneous properties
independent of temperature and wavelength. The boundaries are as-
sumed to reflect, emit, and transmit diffusely. Radiative transport
must be small enough for the analysis of the previous sections to ap-
ply, and finally, steady-state conditions are postulated.

With an external source at one wall and an opaque opposite
boundary, the problem is much more complex than it appears initially.
The absorptivity is a characteristic of the reflective and absorptive
properties of the material and hence independent of the temperature.

On the other hand, the emission and radiative transport are dependent
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on the temperature profile, which in turn depends on the absorption at
each point. Thus, the emission is not a constant but a function of
specific boundary conditions, i.e., e, t,, 8(0), 8 (r ).

For the present analysis to hold, the ratio of radiative to con-
ductive transport must be restricted to a range for which the approxi-
mation in the computation of the emission is suitable, since the tem-
perature profile is approximated by 60, the result for pure conduction.

The importance of the various boundary conditions can best be
analyzed by ignoring scattering initially. Nearly all of the phenomena
occur with or without scattering, and the effects of its inclusion can
be qualitatively predicted. Toward the end, however, some problems
with scattering are included to show some unexpected effects.

One of the most important parameters is optical depth. It de-
termines whether the medium appears semi-infinite or whether bound-
ary conditions at the inner surface are important. As an example,
assume the external source rafiiates as a black body at ex('ro) = 2 and
the inner wall is at 8(0) = 0. 5. Under these conditions, the external
radiative flux is very large, but re-radiation from the inner surface is
quite small. If the outer surface is a perfect transmitter and the in-~
ner surface has an arbitrary emissivity, the optical depth, along with
€4, determines the heat transfer rate.

If the medium is optically thin, radiative interactions with the
internal medium can be neglected and the magnitude of €; becomes
important. At the other extreme of an optically thick medium, nearly
all the radiative flux is absorbed and transported to the inner wall by

conduction, and € does not affect the heat transfer rate. For modest
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optical depths, €1 is important, but part of the radiation is shielded
by the absorbing medium. These effects can be seen in Figure 24,
which shows dg » the radiative term in the heat transfer rate, as a
function of To for 6(0) = 0.5 and various inner wall emissivities.
For €, = 0.6 or less, 9, reaches a maximum for To between zero
and one. Further, for To > 2, the inner wall is effectively shielded
and the emissivity can be arbitrary.

Another important parameter is the transmissivity of the outer
boundary, t2 . It determines the amount of the external radiation
passing through the boundary and available to interact with the inner
wall and the absorbing medium. Thus, its effects are quite predict-
able, and closely follow the previous results if the radiative influx in
the previous computation is reduced in proportion to the transmissivi-
ty. Of course, some internally generated radiation is reflected at the
outer boundary, but its contribution to the overall heat transfer rate is
negligible compared to that of the external source (unless the trans-
mission becomes very small).

The parameters N, 6(0), and ex(fro) can be considered to-
gether. For ex(’ro) greater than 2, the external flux dominates the
other sources of radiation since the radiative intensity goes as Bx s
and so the external flux is at least sixteen times that generated within
the coating. Also, for the present analysis to be of value, N must be
small, so conduction dominates within the medium. Further, the
magnitude of 6(0) is unimportant, because the radiative flux generated
at the inner boundary will be quite small.

If Gx('l'o) is less than two, and especially when it is between
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zero and one, the external flux is the same magnitude as the internally
generated radiation. Then, of course, the size of N, 8(0), and ex('ro)
all become important, the amount dependent on their relative values
and the degree of transmission, emission, and absorption.

The last parameter to consider is o, a measure of the coupling
between radiation and conduction. For very small a, little absorption
takes place,and the heat transfer properties approach that of the sepa-
rate contributions from radiation and conduction. If it is near one,
the properties of the system approach those of pure absorption.

| A particular example of the effects of chaﬁges in a is shown in
Figure 25, where the radiative components, q,*t qs(a), of the heat
transfer are given for an external source of strength ex('ro) = 2 and
three optical depths, To = 0.1, 1.0, and 10. The other boundary con-

ditions 6(0) = 0.5, €, = 1.0, t, = 1.0 are held fixed. Even though 9,

2
is independent of @, both components of the radiative terms are in-
cluded to compare the magnitude of q to the entire radiative term.
Unexpectedly, for large optical depth, the heat transfer rate is
greater for small o and decreases as it approaches one. This means
that scattering is a more efficient transport mechanism than the con-
current processes of absorption and conduction. With the latter, most
of the radiative flux is absorbed near the other boundary and must be
transported by conduction. Of course, if the inner wall emissivity
were much less than one, the radiative flux transported by scattering
would be partially reflected. The heat transfer rate would decrease to

a value less than the amount with pure absorption.

For moderate optical depths, the same reasoning holds. How-
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ever, the radiation is absorbed more uniformly throughout the medi-
um. Steeper gradients exist near the inner wall, which increases the
conductive heat transfer rate. The net result is little difference be-
tween the pure absorption and pure scattering cases.

For very small optical depths and ex('ro) = 2, the radiation
interacts most strongly with the inner boundary and so its properties
determine the heat transfer rate.

If ex('ro) = 0, the radiative flux at To is directed outwards,
and the radiative contribution to g can be negative. A set of results
for a, + qs(a) with ex(’ro) =0 and € = 1.0, t2 =1.0, T, = 0.1,
1.0, and 10, and 0(0) = 0.5 are shown in Figure 26. For To much
less than one, the heat transfer rate is insensitive to & because of
the limited coupling within the medium. However, it is dependent on
the inner wall emissivity if §(0) is large enough to produce a signifi-
cant radiative flux.

For moderate optical depths, q is strongly dependent on «.
When scattering dominates, the only source of radiative flux is the in~
ner wall, which is maintained at a relatively low temperature. Also,
the impedance of the intervening medium cuts down the radiative trans-
port. On the other hand, with @ near one, the radiative flux is gen-
erated throughout the medium (where the temperatures, on the aver-
age, are higher) and results in higher intensities. Aside from being
more intense, the flux produced near the outer walls is not appreciably
attenuated while escaping.

As the optical depth becomes very large, the effects associated

with a moderate thickness still exist, but shielding of inner wall emis-
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sion is so complete that for a near zero the heat transfer rate is
nearly independent of N.

To summarize, the dominant radiative properties of coatings
vary according to the degree of scattering and the strength of external
radiative sources. For very strong sources (and for the present
analysis to hold), conduction must dominate within the medium. The .
radiation contributes to the heat transfer rate in proportion to the
amount that either directly reaches the inner wall and is absorbed, or
is absorbed enough within the medium to increase conductive trans-
port. The degree of transmission determines the radiative flux avail-
able to interact with the medium. Thus, an emissivity may be as-
signed to a coating irradiated by an intense source, only if the emis-
sive properties of the inner wall are taken into account, in optically
thin coatings or coatings with moderate optical depth and low values
of a. For optically thick coatings, the concept of an emissivity is
appropriate,

For weak external sources, optical depth becomes the domi-
nant parameter. In optically thin media, the bulk of the radiative
flux comes from the inner wall, with the amount escaping dependent
on the transmissivity of the outer boundary. For an optically thick
medium, both transmissivity and degree of scattering are important.
Transmissivity again regulates the amount of internally generated
flux which escapes through the outer boundary. The flux intensity at
the outer boundary depends on the temperature where production
takes place, and the impedance the radiative flux experiences travel-

ing to the wall. As an example, a scattering medium does not gen-
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erate flux within the medium but at the relatively cool inner wall.
The flux then must diffuse through the coating to leave the system.
On the other hand, an absorbing medium generates most of its flux in
a relatively high temperature zone near the outer surface. The flux is
more intense, and the emissivity is greater. For moderate optical
depths, all of the above factors combine to make the process a com-
plex function of the various parameters mentioned in connection with
the optically thin and thick cases.

For weak external sources, then, the radiative transport is a
complex function of wall emissivity and transmissivity, as well as
the degree of scattering, the optical depth, and the actual temperature
profile. The practice of assigning an emissivity to such a system is
inappropriate, and an approach similar to the present is required to

accurately describe its transport properties.
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APPENDIX 1. Properties of the Functions Eng_f[_)_

The function E_, for integer n, is a generalization of the ex-

ponential integral, Ei' The conventional definition for Ei is
T
ey
Ei(T) = f—;;— dy .
-0

For convenience, and because the optical depth is always positive, E1

defined by
E/(r) = - Ei(-'r) T>0
(0 0]
e'Y
= P dy (I"l)
T

is used in radiative transport.
A change of variables to x = y/7 in (I-1) reduces the integral

representation of E1 to its conventional form

e e

~-T
y -TX
E (1) = -E(-7) = -I%’— dy = Jf’e
- 00

dx .

With this form, En is defined by

o~ TX
En('r) = f = dx
;X

Before discussing the properties of En’ it is worth noting

another form of the function found in the German and Russian litera-

ture, and also used on occasion by Chandrasekhar4:
1

-Tx
E (1) = fe dx = Jpe-T/“ un—z'du , (1-2)

1 X 0

which results from substituting u-l for x . This form has the ad-
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vantage of being physically meaningful. If |y equals the cosine of an

angle, the term un is then a weight function. It corresponds to an
intensity if n =2, a flux for n =3 and with n = 4 a pressure.
To continue with the properties of the exponential integrals,

if En is integrated by parts,
ool

o TX 1 [e~T%
En('r)= f a—dx = "—ﬁ[xn-l

1 X

ooe-'rx 1 o ,
+T Iﬁn-l dx]= o1 [e -TE, _l('T)]
1 1%

or

-T

(n-l)En('r) = e -En_l('r)

By repeated application of this process,
n-2

(n-1)/E_(1)= (-T)n‘lEl(»r)ﬂ:;"r E (n-2-2) (-7)° .
1=0

Here, En’ is expressed in terms of E1 . This is advantageous, since
E1 » unlike the higher order functions, is tabulated for a wide range of
arguments. Two particular tables are rather extensive: The National
Bureau of Standards Mathematical Tables, NBSMT, '"Tables of Sine,
Cosine, and Exponential Integrals, '' Vols. 1, 5? and 6 {(1940), and the
Harvard University Computation Laboratory Series, Number 21,
""Tables of the Generalized Exponential-Integral Functions, ! (1949),

It remains to consider asymptotic forms. Expansions for En
can be derived which show its character near * = 0 and T =+ 0. Con-

 sider E1 written in the form (I-1)

® -x P _x 1 x

- % - -

El(T)zj%c—dx=J?T{_dx+ —e-}—g——dx T>0 . (I-3)
T 1 T

Integrating the last integral by parts after expanding the exponential
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 term yields

fﬁd}{:j . 203 r}nldx
* x EL
n=0 T

@ n kel
"““”*23(}3: (5 -5 T>0 .

n=1

If this is put in (I-3) and the first term is replaced by El(l) .

n n n
E (1)= ~nt+E (1)+ ,) Z(n T .

n

n=1

It can be shown that

(0 0]

el
E, (1) +_Z (I;,)n. = -y = -.5772156 ,

n=1

where y is Euler's constant. Thus,

00
(_)n—lTn

El('r) = -y-dnT+ (1-4)

nln
n=1

Now look at the definition of En and differentiate it with respect to T.

@ -TX P© -TX
d _ d e _ e _
-d—FEn(T)—‘d—Ff n dx = _‘J" n_ldx—-En_l(T)
1 ¥ 1*
so that
| - -
E (1) = -E__,(r) . | (1-5)
In addition, for n>1
& 1
- 1 _
En (0) = j‘-—n dx = ol n>1 . (1'6)
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Thus, by integrating the expansion for El('r) given in (I-4), and using

the value of En (0) to eliminate the constant of integration,

(0 0]

( )n-l n
EZ(T) = 14 7(y-1+4inT) + ST TasI)
-2
S LR (oL
E3(T) = E-T+—-2—-("Y+f2“&n’r)+ ST (R o2 ’ (1-7)
3

The expansion for El('r) shows that as T~ 0

El('r) ~ -inT , (1-8)

or El has a logarithmic singularity at the origin. Obviously then,
from (I-5), E‘2 has an infinite slope at 1 = 0. These properties show
the rather unique form of the exponential integrals near the origin and
indicate the difficulties associated with using conventional expansions,
such as the method of steepest descent, to approximate them.

The above forms are useful for T near zero. As T approaches

infinity, the functions are exponential in character. This can be seen

by integrating the standard form for En by parts

© . i ® P ik o ©
_ e _ e | ne " 4.-.e_ _nle

E (1) = f n-dx = -—3 l j 5T 9 T T'LJ" neT X
] X X LY TX ] *

Continuing, the a.sympfotic form for En is

-T
e n
En(T)~T[1-?+.”]’ T QO .

Notice that for all n, the dominant term is the same, so that to the

first order,
E ( ) _ (I— ;)
n ] :
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Here,then,is another unusual property of En . For large n, all 7
behave the same to the first order. This means that expansions re-
sulting in sums of En are of limited value, since even for large T
all of the terms must be retained, unless, of course, some multipli-
cative factor in the higher term goes as a negative power of 7.

The expression for En shows that it goes rapidly to zero for.
large arguments. Thus, when these functions appear as integral
kernels and the range of integration is large, local properties will
dominate. As a result, the limits of integration are often unimportant.
This leads to diffusion approximations for large arguments, or the
"optically thick' case.

The expressions and relations developed above were taken es-
sentially from Appendix I of Kourganoff3. In addition to the relations
presented here, he gives detailed references as well as a broad

spectrum to functions associated with the exponential integrals.
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APPENDIX II. Expansion Error Analysis

The error analysis is restricted to pure absorption. In the
more general problem with scattering, errors arise for two sources.
Besides approximating the temperature profile by an expansion in N,
a substitute kernel is used. The latter approximation introduces an
entirely different type of error, which is not easily treated for arbi-
trary degrees of scattering. However, for pure scattering, the exact
solution is available, and a comparison can be made. Grief19 has
done this for a limited number of examples using the substitute kernel
results of Lick21. Grief compared the kernel substitution method
with the Monte Carlo solution and found good agreement. With this
knowledge, and an upper bound for the pure absorption error, it
should be possible to determine the appropriateness of the present ex-
pansion, if not the magnitude of the actual error for arbitrary degrees -
of scattering.

Turning to the pure absorption problem, it was stated in the
text that the temperature profile could be represented by an asymptotic

expansion about N equal to zero. That is,

3T, N) ~ 8_(T)+ N, (T)+. ..

with relationships between the various terms derived from the integral
equation for the temperature profile (with & set equal to unity).
Assume that § and its first k derivatives with respect to N

are continuous for finite N; then, noting

N

o(r, N)-o(1,0) = - g_e_(_ya,x_N_-ﬁdx,

0
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k integrations by parts yield

k To
) K+l k+1
3 -1 k a [ -
b(r, N)-g(r, 0) = » N 2E L X)l + jx UL Ix) gy,
=1 X =0 g 9x
- (IX-1)

The remainder can be considered an error in a k-term approximation
for 6. This means that if a suitable upper bound for the remainder is
é:omputed, an absolute upper bound for the error in the finite term ap-
proximation to the temperature profile can be found. It should be
noted that if derivatives of all orders are continuous, and if the
asymptotic series converges as k — oo, the expansion reduces to the
familiar Taylor series for § about N = 0. However, this approach
requires assuming that §(T, N) is an analytic function of N in the
neighborhood of the origin.

Returning to the problem at hand, the error is estimated by
computing an upper bound for the absolute value of the remainder. In
the text, thekfirst order term in the expansion for § was retained so
an estimate of the maximum magnitude of 828 / 8N2 is required.
Also, an estimate for 89/8N is needed to compute the err(;r in q,

. since only eo was retained in its approximation.

The remainder in (IL-1) is given as a derivative of 8(T, N-x)
integrated over the range 0 < x < N. But the purpose of the approxi-
mations given in the téxt was to express 0 as a linear function of N
and to avoid the computational difficulties of solving for it for arbi-
trary N. Similarly, then, the remainder should be expressed as a
simple function of N if it is to prove useful. Thus, an upper bound

for le(k)('r, N)| which is simple in form is sought. The method used
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, L . 99(r,N)
requires several steps. The first is to find a form for ma.x‘——?ﬁ— l

2
and finally maxl—a—-e—(—T—’Z-l\I—)-I .
ON

Care must be taken in interpreting the me aning of the maxima
of the functions used below. For convenience, the following notation
is used.

|h(r,n )]
means the maximum of the absolute value of h(r,n )} for i'r in the
interval [O,'ro] and n in [0,N]. Also,

|h(T, N)|
refers to T in the intefval Lo, 'r0] for a particular value, N, of the
second argument. Obviously, then,

|h(r, N)| < |h(t,n )],

since on the 1¢£t hand side, the second argument is restricted to the
single value N , while on the right hand side, the variable ranges
from zero to N. Similarly,

¢ |n(r m)] < |g—hir,n )],

since on the left hand side the derivative is computed only at N,
while on the right hand side it is evaluated for n in the interval [0, N]
and then the maximum is taken. These properties will prove useful
in the following pages.

From the text, § satisfies

i
o]

G(8(r, N)) = N[%G(sl+sz)+%f 0*(t, NIG(E, | ¢-7])dt] (1I-2)
0

For com)enience, define an operator L., independent of N, by
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-
0

L(e*(r, N)) = $G(S, (7, N)+S,, (1 N))+5 fe"“(t, N)G(E;[t-r])at.  (1I-3)
0

With this notation, (II-2) can be written
G{8(r, N)) = NL(8*(r, N)) . (11-4)
If this expression is differentiated with respect to N, and it is kept in

mind that 6(0, N) and e('ro, N) are independent of N, it becomes

98(rN) = Lig*r, ND+NgZ Lekr,N) . (-5)

The absolute value with respect to To and N of this equation satisfies

i“—‘““ae(g&n L < jne¥(r, n 0| + ng—f;— Lie*(r, n )] . (11-6)

The last term on the right hand side can be reduced further. Under
quite general conditions,

la(r, n )| <1 OsTs<rT_ all n

This is always true for opaque walls, but for very intense external
radiative sources, enough radiant flux can be absorbed within the -
medium to cause the temperature to reach a maximum between the
boundaries (i. e., some value greater than G(TO)). Then the upper
bound of unity would have to be replaced by ex’ the external source
temperature. In any event, the general approach given below would
hold, but of course, the new bound for 8§ would appear in place of
unity.

The last term in (II-6) is the derivative of L with respect to
n . Since the operator consists, in part, of the source functions Sl
and SZ’ only the portions of these terms which are integrals of 94,

and hence dependent on N, ‘rema.in.' An upper bound can be computed
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by writing I8L/8n l explicitly and separating the result into two
portions:

I L(e%r, n )| =

rr .
B, G(E (1))
f4e3(t, 28n) LA rE (ehp,E,(r )E, (1 -t)]
0 1-p B ES ()
e MEL BE, (1 )E,()]+G(E, [t-T|) d
+ T ~tM T t)]+ t-7|) dt
1“5132E32("' ) 2'' o 173 0" 2 3
< 4H(T )l.?..@.U_’E_)I , (I1-7)
where H satisfies
H(r ) = Hy(r )+ Hy(1 ), (11-8)
and
H(1.) = 3| GIE(r))]
T
ﬁ B LE, (tHB,EL (T JE, (1 -t) 148, [E (T _~tHB E (T )E,(t) at

-0 - 1-51;32]332(70)

BB, +2B. . B,E (1) 1-2E,(T )
= |GE, ()| [—2—22 2 0 2 0 (1r-9)
1-B1BpE5 (Ty)

T
o

Hy(r ) = %le(E_,’]t-'rl) dt (II-10)
0

In the definition of H, 93 has been replaced by unity. Now (II-6) can

be written in terms of H :

!89(7, n )[ < lL(e (T n ))l + 4NH(‘T )‘39(’1', n )l

Solving forlae/an l s
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, 4 '
86(t, n) L{g"(t,n)) 1
| on =] = L1-4H(«r2)Nl N < 4H(t ] (I-11)

The limitation on N insures the right hand side of (II-11) is always

finite and positive.

This procedure can be followed once again to determine an up-

2
per bound for la 0 I . If (II-5) is differentiated with respect to N,

2

8%0(r, N) 3 ., 4 9% _ 4

Sl N) - 5 B pie%r, N+ N 2 Lior, M)
oN ON

Again, taking the absolute value of both sides

2 2
12_8lr, n) 9(72’ n) | < 2159- L(e4(rr,n))l+N|—9—2- L(a¥r,n))| . (I1-12)
on n on

The first term on the right hand side is evaluated in {II-7). The sec-
ond term can be expressed in terms of H by noting that the second

derivative of 94 with respect to n is

2. 4 2 2
979 (T, n) _ 2 906(T,n) 3 970(T,n)
—— = 128 (‘T, n)(..___a_n__..) +40 ("l', n) — .

on on
This is analogous to (II-7), so
2 2 2
9 4 99(T, n) 9 0(T,n).
I‘a;'z L(e*(t,n))| = 4H(To)[3|Tl +|——a—r?-—| .

Thus, (II-12) satisfies

2 2
0 B 90(T, 3 o6(T, 979 T,
128 0) | < gry(r )| 280022 | [1 +2 |28l n) |] +4H(TO)N'———————8( o) |

on n
and
36(']‘, n)
2 8H(T ) |——52—|
9 Q(T, n) ae(T n) 1
| -~ | s — 4H(’rO)N [1 + 3N} ‘] » N <gmpr - H-13)

It remains to consider IL(84)[ in detail, since the first deriv-

ative of 0, and hence the second, are expressed in terms of this func-
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tion. It is convenient to start with its definition given in (II-3). Dif-

ferentiating with respect to N,

5%'1‘(94('“ N)| = la L(e ('r,n))l < 4H(T ){99(7» n)|

The last inequality follows from (II-7). But from (II-11),

iae(w, n)‘ < |Lg%(r,n)]
on T-4H(r N

so that
4
4H(t )| L(s™ (T, n))|
) 4
5 |67 (r, N))| = 1-ZH(¢O)N )

The left hand side can be replaced by

5 4 a8(r )| L(e*(r, n))]
o7 |0 (1, m))| = ISaH(T N : (1-14)

This holds, since if IL(94(T, n))| is increasing with N,

fé% lL(94('r,n))] = 8—81\‘1' |L(94(T,N))|

while if it is constant or decreasing, the left hand side of (II-14) is
zero and the inequality remains valid.

Equation (II-14) is solved by dividing by ]L(64)I and integrat-
ing. The constant of integration is removed by evaluating the function

at N = 0, The result is

(L(e4(T,n))l J—Ile,fT’)lg))L . (I1-15)

The component involving L. on the right hand side is just Iell as
can be seen from the definition in (II-3) with § replaced by 6o° Thus,

(II-15) can be written as
4 [8,(n)]
| L6 (r,n))| s T-_4_H—(-'r;)ﬁ .
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This can be used to place an upper bound on the derivatives of §

given in (II-11) and (1I-13),
ENG

99('7', n) < (II"16)
o (1-4H(r _)N)*
and
2 8H(7 )| 8, (m)] 3N 6, (1)]
0 )
| 9(T2n)| < o’ '"1 Tﬁ(T_m__) (11-17)

n (1—4H(TO)N)3

The last term on the right hand side of (II-17) is much less than one
(for N in the range where the error bound is useful). This will be
demonstrated by first neglecting the term and then later comparing

its magnitude to unity. With this term ignored, (II-16) and (II-17)

can be used to compute an upper bound for |R1| and IRzl , the maxi-
mum possible error corresponding to the termination of the series for

6 at eo and eo+Nelz
Rl(N) - f 96(T, N- x)dxb,

N
6(T) 8,(1)
] 1 ] ] 1 I

IR, (N)] SYRAS WAL
! ar (1-4H(r _)(N-x))* 1-4H(T )N

1

N < ’ (II-18)
4H('ro$

and
N2
R,(N) = [x 20 Nx) g
2 J g
0
0 - f axH(r )| 8,(r)| 4H(r JN*| 8 (7)]|
R,(N dx =
J 14H('ro)(N-x)) | 1-4H(r N

1
N<7J:T'I_('T_07 . (H-19)
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For a moment,. just consider (II-19). The error bound
]Rl l appears in the error analysis for q, and will be used later.
The criterion for retaining 91 in the expansion for § is that
N§, be greater than the remainder RZ' If N‘ ell is used for the mag-
nitude of Nel » N must satisfy
R,(N) < N|o,(r)|,
or, with R, replaced by its upper bound in (II-19),

aH(r JN%| e, (m)]

=T < Njo, ()] .
o
Then
N < 1
1—4H(705N 4H(’ro5
or
1
<
N 8H<’TO>

Of course, for N close to 1/8H, the error computed from (II-19)
will be as large as Nel in the expansion for §. In practice, the use-
ful range for N will be further limited to values giving an acceptable
error as calculated from (II-19). If conditions are such that a smaller
error is expected in a particular problem, or a computation shows
the actual remainder R2 is significantly less than its upper bound, the
range of N can be extended. The intention here is to place a bound
on N for which the expansion is valid and indicate without a detailed
calculation of lell whether the error is likely to be large.

With this result, the final form of the expansion for § given in

the text can be written

1

o(T, N) ~ GO(T)+N91(T) NS_S‘ITI_(_'I'—J
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with an error Ee bounded by the maximum value of R2 from (1I-19),

4:H(TO)NZ [6,(T)]
Egy = T-ZH(7_N .

(I1~20)

This form is dependent on H (which equals H1+H2). The two functions
making up H are given in (II-9) and (II-10) and are independent of N
and eo' However, H1 is a function of To? (51, and ﬁz s while H2
is a function of Tor From the definition of Hl s lee.,

B,+B,+2B. B, E (T Nf1-2E_ (T )
172 1323 o][ Z o) ]IG(E4(T))| ,
1B, B,E, (T )

Hl('ro) = [

it can be seen that only the last term affords any computational diffi-
culty. The value of this term is given in Table III. Also, from the

definition of H1 , the rna.x‘imum value will occur when @1 and ﬁz are
a maximum, that is, when ﬁl = [32 = 2 (which corresponds to totally

reflecting boundaries). In this case,

4+8E3(T0)][1-2E3(T

‘ )
H(7 )= [ — ]IG(E4(T>)I = |GE ()] .

1-4E32('r0)
On the other hand, when pl and ﬁz equal zero (no reflections), H1
is identically zero.

As mentioned, the term I—I2 is only dependent on To?

T
(o]

HZ(TO) = %f’G(EHt-’rl)ldt .
0

It is also given in Table III. With the aid of the table, it becomes
straightforward to compute H, and hence the range of usefulness for
the expansion for §. Further, once 91 is computed, the magnitude

of the error can be found.
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At the beginning of this analysis, it was stated that a complex
term appearing in the expression for |a7‘e/an2] could be neglected.

If this is to hold, the term must be much less than unity for N <

-g-I_T(—l—-)- ; that is,

-
O
N| el('r)]

(1-4}1(70)N)Z

<< 1,

or, using the maximum value of N, N = ﬁf(lq-_‘)' ,
o

lel('r)l
_Z'ﬁ(f?;)_ << 1 .

From the text, in particular Figures 3, 5, and 7, and Table III, it
can be seen that this criterion is satisfied; the term generally is
order of one tenth.

An error estimate, Eq , for the heat transfer rate similar to
E_ can be found. The result includes constants analogous to H1 and

8
Hz. However, the a.nalysi‘s differs slightly, since the expansion for
q retains only 90 in the expansion for 6.
In the text, q was approximated by

q~q, + Nqo . (I1-21)
The exact solution can be written as
q = g+ Ng (N},

where qe(N) is an integral over § and a function of N. The error in
(II-21) is just the difference 9,9, It can be written explicitly in a

form analogous to the right hand side of (II-7):
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.
> G, (E (7))
4 4 1'74
q -q (N)=3{[6 (t)-0(t, N)][ BE(t)[B,E (1 _)-1]
o ‘e 24‘ o (1_13152,&,3(’]_0)2)(1 2 273 o
-pZE'Z(TO-t)[ﬁ1E3(To)-1])+ GI(E3 ]t—'rl )]dt . (11-22)
From (II"]-):
N
o(r, N) = o (i | 2L2han = o (riRr, (0)
0

The last step follows from the definition of Rl given in (II-18). With

this form,

lo%(r, N)-0 2r)| = 402 (1R (N)+60 (TR 2N .. |

or, using the upper bounds for R, given in (II-18), and replacing 93 by

unity,

4 4 4N| 6 (1) N|e,(m)]
lo%(r, N)-0 _(7)] = TTZE( N +6 TZH N +.0. ¢ (1I-23)

If N is sufficiently small, the higher order terms can be treated in a

convenient fashion by choosing N such that

1
N = HEE [,

(II-24)

The ratio of the term retained in (IL-23) to the first neglected is com-

puted by substituting the form for N in (II-24)

N{o(m)] 2

( 4HZ’I' ;N 3
<

NTOLTT 6

)

Similarly, when the remaining two terms are included, the total contri-

bution is less than 1/4, so that (I1I-23) satisfies
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1. 4NJe (r)]  5N[g(1)]
7! T-4H(7 N = I-Z4H(r N

lo%(r, M-8 F(m)| = (1+ (11-25)

With (II-25) substituted in (II-22), Eq(N), the magnitude of the error -

is
5H, (7 IN? |9, (7)) 1
E N) = N|q -q (V)] = T-4H(T_N NS wzlem])

(11-26)

where H, is the maximum value of (IT-22) with 94-9: replaced by
unity and the remaining integrand replaced by its absolute value:

4E3(¢0/2) 6E4('ro/2)
Hy = [E40)-Ey(r,)] [1 ) m}+[E4(O)+E4(TO)][1— I+3E (7 } .

o 4’ o
Values of this function are presented in Table I. The function H is
defined in (II-8) and lell is computed using (3. 20). This approxima-
tion is useful when the maximum error, Eq(N), is less than Nq0 » the
term retained. Approxiﬁating 9, in a form similar to that used for
(q,-4,) »
la | = Hy(r ).

The ratio of Eq to this approximation for Nq0 is

E_(N) 5N|8,(T)]
N T ol ~ TN - (IL-27)

The maximum value of N for which the expla.nsion is appropriate can
be found by setting the left hand side of (II-27) equal to unity. The re-

sult is
1

N = E
4(H(t )+ Zlo,(1)])

so the criterion in (II-24) is sufficient. Thus, the expansion
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1
4~ qC+Nqo N = 4(H7'ro)+2[91('r)]7)

(11-28)

is appropriate for N satisfying the above condition, with the error
bound Eq given in (II-26).

Under quite general conditions, Eq is less than one per cent
of the product Nq0 » if N'r0 < 1, and less than 10 per cent if N’ros 2.
However, for To << 1, the accuracy is greater, with an error of one
per cent for NTO < 20 and 10 per cent for N'ro < 23. These values
show that Eq overestimates the errors for the cases that can be com-
pared with references 14, 16, and 21.

In view of the magnitude of Eq compared to the actual error,
its main use is to predict when the error is likely to be significant.
Also, in circumstances where the problem differs significantly from
the examples given in Figures 8 - 11, where comparisons of various
results were made, an absolute upper limit can be placed on the er-

ror.
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APPENDIX III. Reduction of the Functions of

I, J Jz,andK

1 2

The functions considered in this appendix are those appearing
in the expressions for dg and 61 . From the discussion in the text,
d, the first order expression for the radiative contribution to the heat

transfer rate, is given by
T

O
9o = 3G S (M) + § [0 ()G (E, |t-r at,
0

where

G, (S,,(T)) = "o "o

cxl+:ﬁ‘1 [csz3('ro)+ Jpesz(t)dezEE,(To)fej‘Ez(To_t)dt]
Y 0

[(E (t )-E (0)]
4' o 4 1 - ﬁlﬁzE;(To)

GZ(SZO(T)) = TO TO

a tByle  Ea(r M fG:EZ(TO-t)dt+ﬁl E3(To)fe§E2(t)dt]
0 0

[(E, (0)-E (1 )]
oA L~ 8yBpES(T,)

so that the functions involving integrals over 60 are

T

o
4
jeo (t)EZ(t)dt s
0

JI(TO’ 8(0))

T 000)) = 0 Kt)E, (7 _~tat

Il
oC

T

O
K(r_, 6(0)) = f@:(t)[E3(To-t)-E3(t)]dt .
0
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The functions J'l and ‘TZ also appear in the expression for 91 . In

addition, 91 also contains I, which is dependent on 7T;

T
(o]

I(t, T, 0(0)) = fef(t)(E3 lt-T!-E3(t)—;i~ [E5(T -t)-E5(t)])dt
0

All of the above functions are powers of t times an exponential inte-

gral. They can be integrated by parts to yield representations in

terms of higher order exponential integrals times powers of T.
Rather than proceed directly and integrate each function sepa~-

rately, it is convenient to define two supplemental functions LII: and
k
Mn by
.
k _ k
Ln (r) = 'Jﬂt En('T-t)dt s
0

r
0
k _ k
Mn(w) = Jt En(t—'r)dt .
T
These will prove immediately useful, since the integrals of the origi-

nal functions can be represented as finite sums of them.

Consider Lrll{: integrating by parts,
T
k _ [k
Ln("l') = Jt En('r-t)dt
0

T T
_ .k k-1
=t En+1(T-t)l -kjt En+1('r-t)dt
0
0
IT'
.k k-1
=t EnH(O)-kIt En+l('r—t)dt .
0

If this process is carried out k-1 more times,



-129-

N X ket .
Ln(T) = -—Tﬁ)—— +1+&(0)+( ) I k(T't)dt
1=1 0
K USSR . T
AT B OV RE g (ret) 0
4=0
Note that from (I-6)
Eor142(0) = /L ’
so that
k
4 k-4
k _ (-)kiT
Lylmr =« <t E nan(TH &-L) (o 2) °
1=0

Similarly, MII: can be integrated by parts:

T
(o]

k [k
Mn(T) = I’c En(t-'r)dt
T
-
°© Ok 1
= K -
= -t En+1(t-7) kft En+1(t~'r)dt
s

T
o

k. k k-1
—ToEn+l('ro-'r)+'r En+1(0)+kJ‘t En+1(t-'r)dt .

T

As before, repeating the process k-1 times leads directly to

k-1 To
k _ z : k! k-4 k-4
Mn (r) = W [ En+~t+l(o)-To E +&+l T)]+k' fEn+k(t-T)dt

£=0 pe

k

k 14
_ k! k-4
(k-2)! [ L 7o En+&+l(To—T)] :
4=0

Care must be taken to note that in the last equality, the sum goes
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from 4 =0 to £ = k. Some ambiguity arises in the term with {4 = k
if 7= 0. It mustbe interpreted by returning to the expression on the

 previous line and noting that for 1 = 0
k
k _ k!
M, (0) = % Z k- /c' Eorr1(To)
2=0

Now, return to the original functions and write for ej(t)

4 k
4 _ c(k)t
O8] = 2 7%
k=0
where
o(t )-0(0)7X
) = A g4 k[ o ]
[]
(4=%) Yo To
Then,

T
O

fe:(t)[E3(To-t)-E3(t)]dt

1

K(r_, 6(0))

T
o

4
ZCIS" LB, (r_-t)-E, (t)]dt
=0 0

25‘—1‘# [L(r _)-ME(0)]

4
- L bk

kil
= D Pyt ) DT |
k=0 =0

Similarly,
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T

T (g 0000 = [0 H0IE, (t)as
0
4
_ N ek) kK
-ZT M, (0)
0
4 k-2
Zc(k) "+2 - ZT};‘)*‘ Epeslto)]
k=0
To 4
Iy 0000 = [olem,(r -t = ) e Lk )
0 k=0
- k+1 : (- Ybak-t
= Y et e e Y o
k=0 1=0
and finally,
.
(o)

I(t, 7, 6(0)) - fef(t)(Elt-w ] -E3(t)-:rT; [E;(r ~t)-E,(t)])dt

T

4 T
- %Q(Jpe:(t JE (7 -t)dt+ Ie:(t)E3(t-¢)dt-M;‘(0)
6

k=0 T

T k k
- == (LT )M, (on)

o]

4
_ 2 :c(k) k k k T k k
k=0 ©
The last expressioh has not been completely reduced because of the

resulting algebraic complexity.

With the above expressions, 1, Jl » JZ » and K can be tabu-
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lated as functions To? 0(0) , and T in the case of I . This has been
done for ’TO=0.1 » 0.2, 0.5, 1.0, 2,0, 5.0, and 10.0, 9(0)=

0.1, (0.1), 0.9, and T=0, (TO/ZO) s T, + The results are given
in Tables II and III.
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TABLE II. Values of Jl R J'2 , and K

5 To
0 he1 | 0.2 1 9.5 | 1.01 z.0 1 s.c ] 1c
Jl('ro, 8(0))

v e1C sL1688 L2780 s )4334 « 04544 .03084 <0644 sJ01C2
.2¢] w1911 | .C3163 ) .05C0C | .C5265| .02846 | LC1C4€ | L0C3CT
30| 02198 | LC3661 | 405886 | JCE5CT| oC5CO1 | Cle24 | ~COB4E
250 ] 002570 | 204314 | 07064 | 08107 | 06745 | .03265 | 02011
50| «02054 | 405170 | +08691 | 10235 .09328 | «05692 | 04178
o] 02679 ] 206287 | L10831 | 13391 .13047 | .09520 | J07824
70| Wo4ss2 | L07730 | 413647 «17507 | 18249 | <15246 | .1351¢
.30 205501 | «09575 | 217298 | 22950 | «25332 | 23442 | 21625
ool weo7ez | L11903 ] 21963 J3cc15] .24745 | L24755 | .338¢1

T, (7.96(0))
TIC] ~C2054 ] 203683 ] 0€501L | 14230 | 22150 | -2234¢ ] .401¢C¢
20| .c2292 ) sce313 | 093236 ) 15543 | J22612 | J34€42 | 41024
30| 2551 | c04845 | 10352 16572 Jz227¢ | J2ecsc | J419p2
V40| eC2968 | 405511 | 11566 | «18675 | 427185 | «27572 | .425¢1
50| .03445 | 406345 | 21313C | .2C728 | .29368 | .35224 | .44C2¢€
CEC ] +C4C4G | «0739S | 15021 | 022164 | 421657 | 41CLE | +45117
LTC ] Wca8CE | w8713 | 17346 o26159 | 224627 | L4256e | L4e257
LEC]| JC3757 ] 10343 | 20162 | 426717 ] +26272 | 445Ce7 | 47445
oc | .cos3id 12352 L22658 ) 32671 W42267 | L47356 | J4pece
K(TO,G(O))
W1C| -COLL7 ] .C0410 ] -01G92 | -05CS2 ] ~11C47 | .206C7 ] -2552¢
.2¢| .cc122 | +C0428 | »C1972 | .052C2 | 11477 | 21224 | 206445
c20 | +C0125 | «CO441 | 402022 | oC54€C | o1175¢6 | w2167¢ | J267¢7
.40 JC0127 | JCC446 | oc2057 | wosEz2 | w1151z | w2177z | J2e7C1
.50 | .c0125 | .C044C | +02025 ]| 05434 | .117CS | 21312 | .26CCC
<eCl wcorie !l .coa15 | 015120 L0126 | L11C4z | .2CC41 | .24254)
c7C | «CCL104 | +CC367 | «C168E | +C452S | oCST44 | «1765C | «21263
L8C| .ccc82 | .CcC287 | 01321 | .C2544 | JC7622 | L13786 | 16665
.s5¢| .cocss | .cc1e8 | .co772] Jc2c72 ]| oc4455 | LCECE4 ] L0ST 8
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TABLE III. Values of F1 and I.
/T _To
0 0.1 c.2 | o.5 | 1.c ] z.0 | 5.0 10
Filr7)
«GC . C00CO «.CCOQU LCOCO0 CCCCO +.CCQ00 «CCOOC «0G0CO
LCE | +C0021 | «CO0T6 | 400380 | 401148 | «C23C18 | +CE4LE| 15142
el .CCC2G +.CCl4az2 L0703 «C2C8T .C52C¢E « 12484 «213%4
«15 | .CCO55 | «C019S | «CC975 | «C2645 | oC7C15 | 416465 | .237232
«ecC sCCCES .LC247 «.CllgE 024472 «CEZ54 «1ECTE W 241€E4
.z% | LCCCEC | .CC287 ”.6137677.03897 .CS1CL | J18742 | .22z
e 3( .(C08s | .CC318 1512 «Clzz?2 «CGECZL «1875¢€ «225€7
.35 | .cces6 | Lce341 .01607 04429 | .CSE64 | +183CT| 212327
« 4 +LC1C1 L0357 «ClEEE +C4EZ9 +CGETZ «17526 «lGTEE
45 ] .CC104 | .€C3565 | 01687 | 404532 | LCSETE | L1€514 ] J1€15¢
« = C 2 CC1lC4 .C0365 LClée74 .04446 «.CG212 .15348 «lEB5ES
.35 | C0102 | «CC359 | .0163C | 404277 .C&766 | +14C1€E | ~14555]
«€C «(CCSS L0345 .0155¢4 »C4C24 .CE15¢ s 12E14 «122Cc
c€5 | 4CCCS2 | 4C0324 | LOL45C | oC2722 | .C73S7 | 11144 | J11€582
o 71C .(CC8e ~CC297 01317 «C2346 sCEE4LE «CGEZE «0G6GS ¢
e 12 | o€CCTe | .CQ263 | ,C1157 ) .C2S12 | .C5€CS | .CEQET ) .083¢S
« EC .CCCC5 .CCZZ’ £.00G73 «Cc4z3 «C4ECC «CE4ET +OEEEY
<85 ] 4CCC52 | .CCL76 | .C0T7€2 | 4CLEER | .C2527 | +C4867 | 0455SS
.9 ( «CCC3¢6 L0123 .005H231 «01268 .C23G8 «C3226€¢€ 03233213
«5E «CCC1S +CCQ&5 «CC2TE 1 «CCEES .Clz2zl «ClE4T sO01EEE
el C +CCCCC .CCCOC .LCCCC «CCCCC . CCCCC «CCCCC «CCCCC
S I("T"y q-.o,e ( 0 ) ), v (0 ) P o T B —— e e e s
+CC | «COCCC .CCCOG | .CCOOC «CCCCO .CCCCC «{CCCC «CCCCC
.CE «CCCC2 .CC0O0¢8 «CCO1E |=eCCCI18 [=eCC221 |[—eCCE2T |—a0122E
o1 +CCCCS «CCO1E | 4CCO3E |=eCCC17 {=eCC292 |=eCl€14 |=a024C(CT
P +.(CCCE [-.CCO25 .CCGC68E +CCCC6 .CC507 —.0275C |=—.0351¢
_+2C ] .CCCLL1 | .C0034 | .CCCGT7 | «CCCSL |=eCCES57 |—eC2864 |=04512].
« 25 +LCC1l4 «CC0O44 .CC1l3c .CClcC —eLC524 1=, C227¢ |—0Z372
«3C 2CCC1l8 ) +CCO055 | LCO1IBC | +CC214 |me(C421 1—a(C2231 |—.06C4E
«2E +CCC21 +CCOBSL L0226 eCCZ232 |—e(CC244 |—.C25€8 |—.0C4EE
«4( +.CCC24 LCC0O78 | -C0ZR3 .CC476 «CCC3C |=—eC23€2 |—a0€E2T
P +LCC27 .CC08Es «.CC34C «CCe4C oLC3G2 |—,C28EF |— 06441
_«5C | «CCC3C | oCC101 | «CG39G [ -CCEz2 | +CCE3V |—eC2112 {—.03825
«5E .CCC32 «.CC1l1l1 « 00457 .C1C13 «C1352 1™« C1C22 {—e0D4T7ES
«&C .CCC2E +CC12C .CCHh1lz ClzCét «.C1G1¢ |—.CC321 |—021%¢
&L «CCC37 +CC127 .C0ES53 «Cl3ce€ «£24GS «LZCC4 |—.CCGC2
o 1C .LCC37 .Cl131 .C0591 .ClE36 «C2CER «.C2EEz e 0174732
! LLC037 «CC1l3C +.CC6CH4H «01€75 .C3515 +CET5¢E «04G77
80| aCCC28 | 00C124 | LCO58S | LG1EEL ) 1C2768 | LCT4TT | LOE4ST]
« 35 .(CC3 «CC11C LC053E «+C1E45 .C’77é «C8E3C 11764
« G L .CCLZA .CCORE .LCa2sS «ClzE2 «L226G¢C .C&EET «13748
«G 2 LCCC1l4 +CCO51 LCC257 «CCT7SC L2136 «CE31E «118¢7
1.CC .LCCCC «CCOOD0 LLCCCC +CCCCO +CCCCC +LCCCC «CCCCC
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TABLE III (continued)

-
0
/T, net | 0.2 1 0.5 1 1.c ] 2071 s.01 10
HT,TO,G(OH ; p(0) = 0.2
.CC| -CCO0C]| -CCO00] -CC00G] -cCCCO] -ccCoo] ~cocac| »o00ce
LCE] .CCCC4| +CO0LIL] oC002S| oCCCL4 |—oCCLE2 |=oCOT5€ | 001142
J1C| .ccco7| .cc022| .CCO64| +CCCEC |=eCC285 |—aC142C |—e022CE
_elZ ) +CCC11| «CCO34] oCOLl0OS| «CCICG |—eCC3C2|—eC1GT¢ |—a021€4]
W2C | 4CCC15| +CCO046| oCO152 | oCC193 |meCC266 |=e 02395 [—.02GE2
25| .ccc15) .C0055] .CC204| +0C2C2 |=eCC152 |=uC2622 |—o0462¢
.2¢| .ccc2z| .cco72| .cc2ez2| .ccazs| .ccc4z |-.CzesE |—.08C5¢8
.35 ] wcco27) .cco87| .c0323| .CC552| «CC322 |—.C252C |=.05225
.4C| Jccc3xc| cc100]| .co289| .C0769| CCEB4 |—eCZl21 |—.05114
245 ] «CCC324 ) oCCll41 oCQ455 | o4CCSEZ | «C1125 [=eC145C |—e04€47]
.5¢ | wccoz7| Jcc126| 00521 .C1166| «C1E25 |— CC5C4 |—.027€S
.55 | .CCO4C| +CC137| .CO584 | C1373| .C2165| JCCTL7 |—.02454
6| Jccosz| wccle6| .C063S| C1570] oC27€2| .C2162 |=.CCT726
L5 | JCCC44| .cC152] .CO682| .C1744| <C2355| .C2e7S| 01522
L7C) .cocas ] .CC155) JCOT0S| «C1E77| «C2677| «C5€87| .C42€5
zsl wcccas | .co152) .c071C ] .C1542 | JCazee | .CT467 | o0T72E2]
CEC| .CCC4C ] .CC142| +CC6BC| 01616 | oC4445]| CESTE] 10645
65| .ccozs| Jco124| .cCce07| .Cc1788| .C425C| .CSE27| 13545
.SC ] .cccz7] .cco96) .c0479 | JClaz6| .C2648| .CS4CT| .l4GeE
LS5 ] .CCC15 ] .cCo56| .c0282 | .CO863 | .C2214 | JC6718] 12458
i.cC| .cccce| .ccocoo| .cccco | occcco| .cccec| .cocce| .ceccc
~I(r, 758(0)) 5 T 6(0) = 0.3 —
LCC | .CCOCCU] -CCCOCT -CCCOCT -CCCCO | -CCCEC [ -CccccT -cecec
.CCCO5 | .C0015| +C0C4S | +CCCE4 |=aCCC5G |=aCC577 [—aCCOCT
.cccic| .cco3a| .cc102| .cC152 |—.CCCBZ |—.C1C5C |=.017¢2
.15 .ccc18) Jccoa7| .c0162 | .CCZ€4 ]| oCCC25 |=e01267 |= 02455
o2l | «CCC2C 1 +CCO63 1 €0225 ) «CC4CC | o€C177 | C15GE |—.03011].
25| .cccza | .cco80| .C025S | 40CESG | .CC4CE |=CLECS [=.02377
2| .ccczs ) 0097 .€0372 | .CCT41 | oCCT1E |=aCLl42T | = 0252C
.25 | .CCC34 | oCCL14| +CO45C| oCCS41 | «CLl1CZ |=CLlC44 |=024C7
.40 wcc63s | L0130 200527 ) 01155 ] 01856 |—.CC422 |—030C2
c42 ! .CCC43 ) JCO148| .CCHC4 | 01276 | oC2CT7S | +C042G |=.02275
50| eCCC4E | oCCI58 | oCCOTE | oC1EC4H | oC2647 | oC1541 |—s011€S
.55 | .cccas | LCOLTG| 400741 | «C162C | oC2241 | <C2871 | CO2¢e3
CEC | L0051 +CCLT9 ] «COTS5 | C2C16 | -C2822 | .C425G | 021é2
ces | wccesz| ocuigal| .cce32| Lcz176| <caze2| Jcecec| 04445
L7C | «C0052] JCOLB4| +COR4S | WC228C| oC4E84C| CT782| 071CT
.75 | Jcoosc| Jccire| .ccesel| .c22cs) Jcs125) Lcs282 | .1c021
.éc | .cocse| oco164| Jcoree| Jczzz2 | .c51e1 | c1Céz21 | 12574
L€ | .coc3s| wcci42| Lcos9c| Jc19957 | Wcage35| J1112z | 15412
.s5C| .cce3c| .ccios| .co536 ] .C1565 | Jc4028 | J1CzEZ | 16243
.65 | .cco17| ccos2| Jco311 ! .ccsas | .cescr | .c7141 | 12068
.cc| .ccece .cecooc| .cccec| Jcccce| occcec| occoce| .cceoce
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TABLE III (continued)

-
o _
0.1 0.2 | o0.5 | 1.0 ] 2.0 5.0 10
I(r, T_, 6(0)) ; 8(0) = 0.4
.cc | wccoccel wccooo| .coooo] .ccccol Lcccco | occccc ] Lccecce
CC3 ] CCCCT | «CC0O21 | 400077 ] +CO14G | wCCLCE |=aC0OZ42Z |=aCCA22
L1¢ | wccc13l Lccoa3 | J0C15S ) .CC2C2 | LCCZ8C {=.C0411 |—.CCBTC
L15| LCCC2C | .CC064 | «C024€ | C04E8 | oCC518 |—=aCC44E |=a01221]
L2C | . CCC2& | .CC085 | .CC33€| .CCES2 | .CCB2E |=.CC25€ |=.01445S
025 | 4CC032 | .CC107 | +C042S| 4CCS15 ] «C1201 |-.CCCEE |—.0l4c€
C2C | .CcCc3e| oco125 | .co522| Jc1154 | .cleaz | Jco244 |=-.01312
.35 ] LCCC44 | 4CC14S | «CU6LE| 4C14C3 | oC2146 | 4CCSTT [—oCCGC2
W4C | +CCC45 | «CC168 | oCGTCT| .CLE57) oC27CC| .ClECE |—.0C225
L4310 .C0C54 1 .00185) 4007921 01510 | .€2293 | .c284C | JCCT3C|
L5C | .CCCH& | .CC19S | «CC871 | 2151 | 4C25C7 [ .C4CE4 | 01GSE
<55 | .CCC6L| 4CC211 | 4C0OS37| «C2271 | «C4517 | +C545G | .035€9
LeC ) .cCoe3 ) 00218 .COS8E | L02556 | LC5CS1 | .C6S8E | L0551C
L5 | .CC063 | 4C0221 | 401015 .C2€5C | «C5587 | C858C | 07747
L7C | .cco62 | Lco2le| L cl0le| LC2754 | +C5952 ] J1C128 ] .1C281
.75 | .€CC55 | .CC208 | .C0984 | .C2724 | .C€122 | 11454 .129C3
LEC | cCccsz | .CC19C | +c0s1C | 402573 | +CeCCT7 | o124C€ | .15445
c85 | JCCC45 | 4C0162 | .COTBE | 4C226G | CE5C2 | 12504 | .173¢€2
.GC | oCCC34 ] o0C122 | JCCG60O1 | oC17723 | oC44€E| o112C4 ) 17556
W55 | 4CC015 | .€C06S | .C0244 | JC1C26 | oC2T16 | «CT581 ] 13685
1.¢c | «cocce | wcccoc | .cccce | .ccccof .ccecec | oCCCCC | ocCCCC
— : ._I(T_,,,T,o:ﬁ_(g)),.}w.,.m...“.»._k.,,‘..e.(o,),i 0.5
.cc | .ccocc [ occooo | .cococ| occcco | occccc | occeccc | wocCCCC
.05 ] .ccocs ) .cco3Cc | Jcor18| .CcC253 | JCC366 | oCC322 | 4CG44C
21C | JCCCL1E | +C0059 | 00238 | +CC521 | «CC775 | «CO€Z24 | oCO5€E2
.15 0 cccer ) Jcoose | Lcc256 | .ccec2 | .c1222 | Jccsse | .CCEES
_e2Cl .CcC35 | .CC117 | .C0481 | 01C65 | C1737 | .Cl4aS2] .CC8T2|
L2857 CCcC43 | L CCl44 | LCO60Z2 | LCl366 | .C228G | .C2C47 | 01151
.20 | +C0C5C | +COLTC | +COT2C | 4C17CL | .C2E81 | oC275€ | +ClEEL
.22 ] +CCcC57 ] .CC194 | .c0832| .c2CcC4 | .C25C7 | .C26¢22 | 023¢¢
40 ] .Ccccez] Jco216 .c0937 WC2268 | .C4155 | .C4641 | 02272
W45 ) LCCCEE | 4CU235 | 010 LC2576 | +C4€1C | .C58C5 | .044cCeE
Wa?C,m-CQQFEW_ngéégAn-Cl’l?,-:CZE2§_ +€545C | .CT1C1 | .057SC
W55 1 LCCCTE ] .CC261 | 01176 | +C2C42 | «CEC4S | oCEECL | 07422
WEC L JCCCTE ] CC267 ) 01216 | oC32C4 | oCE5T4 | CSSEC | «053C1
EE ] WCaCTe | WC0267 ) 01232 02269 | LC6684 | J114CE | o114C2
70| .cCcc72 ) JcC260 ) L01214 ] .C22C8 | CT7225 | 412727 .126¢¢
L7 ] Lccces | occ245 ) 01157 .C22C8 | 4C7222 | J13768E | J155¢¢
LEC | LlCGe2 ~.‘cwzl L01054 | 402974 | LCES26 | 414313 J18C4L
LES | LCCO052 | 4C0185 | +CCe9T | .C2576 | «Ce202 | +1266C | 419372
coc| Lcccae | Lo0138 | L0caTe | 01975 | LC4G3C | W121€1) .1€892
.55 1 .cco2i ) .cco77 | .cos81| .C1228 | .C2S41 ] .C8C22| .143CE
1.00| Jccoce | wccooo| Jcoccol occcco | Jcccec | Lccccc ) occocce
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TABLE III (continued)

T / T ) i o)
o Gl C.2 | 0.5 1.C 2.0 | 5.0 1 10
T, T, 0(0)); 8(0) = 0.6
.CC| .¢oou0o | .ccoo0o0 | .cocoo | .ccccol.ccoCco] .CCCCC | LOCOCO
.Cc: ] .ccc12| .co042) J00174| oCC412| JCCT44| .CLISS| J0l82¢
LIC] JCC024 | 4CCO82 | CO345 | JCCE24 | .Cl484 ) 4C2174) 02818
215 ] «CCC36 | «CC121 | «C0512 ) «Cle33 ] oCcz28 | C3CET ] _.035CG|.
W2C| .CCC4e| .Cc0157 ) oCcCoT5 ]| .Cle2¢ ) .C2676 | +C2S75| 041327
.25 ] .CCC56| «CCL92 | .C082S| «C2C21 ] .C272¢&| .C4622 | ,04&(CE
.2C | JCoC65 | Jcoz2a ) JC0974 ) J02411 ) 04454 Jc551C| L0SSE2
G35 CCCT3]| .C0252 | 01108 +C2771 | .C5245 | JCESBE| JCE4ES
.4C | .cccec| .cc277) .01227| .c21Cca| .C55TE] .CBl45 | L0T5E2
245 | 2CCCEE | oCC298 | 01325 .C24C1 | Ce€71 ) CG281 | O0BTEZ2]
.5C| .CC0SC) .Cc0313 ) .01411) .C2653 | .C73CS | .1C€67¢& | ~101¢&¢
LS5 | .€CCS2 | .C0323 | +01467| .C2€48 | .C7864 | o12CCe | J117¢2
EC| .CCCS2 ] JCC326 ) L014G6) .C2S73 | LCE304 ] 12317 .135C1
cE5] JCCOS1| «CC322 | 01461 | .C4CLl3 | +CES8BT| 4145236 | ,1537¢C
L7C| +C0087] +CC310 | «01447] «03S4G | .CBE64 | 415564 ] .173C2
212} <CCCBLJ oC0O2BE | «0135G | +C27€3 | CE472 ) .1€236 | J1G1¢€5
«2C| JCC072 ] .CC256 | 01221 | «C2426 | .C7637] .1€31e| .2C7Ce
L85 | JCCCOC | +CO0213 | +Cl0U24 | oC2622 | JCESE2 | J154€6 | .214(5
«SC| +CCC44 | «COL5T | +COT62 | oC22C8 | 4C543C | 413135 | .2C22¢C
S5 JCCCZ4 | CCOBE| CC424 | «C125C| oC2181 ) oCE484 | 414613
t.cc| ~ccocc) .ccooc| occcoc| .cccco ] Jccccc) occeccc | JocccC
I( ,r, ,.ro,_e ( 0 ),)_...,..;.7,,_‘._,“_,0.. P e ( O ) e o' 7 et o e A b s e <+ ama s i s

¢ .cccoc | wcccool .ccooa| .cccco | ~cccce | .cccce | .cccce
LC3| oCCC17 ] .C0058 | C0251 | .CCE33 ] .C1278 ) «C245C | C3G47
10| .cc033| Joci12 ! .co4sc] LC1226 ) JC2462 ) LC4386 | J0EOTL
i3] JC0048 ] +CC163 | JCOTLE | -ClEC8 | +C2576 ] 4C5978 | 07458
0201 #CCC6L Y oCC21C 1 oC0927 | «Cc347 ) +C4E2E | oCT2ES | JOEE4LZ]
W25 | JCCOT72| +CC254 | 01122 ] .C2E€51 ] C5618| .C8684| .0S524
.3C | .CC0B4 | .CC292 | 01296 | .C321¢6 | +CE551 | .CS922 | .105C4
W25 .C0CS4 | +C0326 ) 01455 037235 .C742C | .11157] 11527
240 | oCCLCL| 4CC354 | JCl588 | JC41C2Z | 4C8214 | 123686 | 412651
45| .C01C7 ) .CC375 ) 401695 «C441C | .C8621 ] +1361C | 13856
W50 ] «CO0L111 ] «CC39C | 01773 .C4649 ) JcS552C | 14815 J151¢e7]
WS JCO112 | JCC398 | 01818 | «C4ECS | oCSSBS | +15GTE | 16572
CEC| 4C0112 ] JCC297 | 01827 .C4E78 | 41C297 ) ~17C42 | 18056
65| oC0110 | «C0388 ) 01796 | oC4€43 | o1C4CE | 417648 | 416586
L7¢C | <cc1ca | L0365 | J0172C | JC4e87 | L1C274 | .1858¢€ ] .21CSS
75| «C0C%e | +C033S | w01594 | .Ca264 | JCG842 | 18818 J22452
o820 | _.CCCE4 | oC0298 | 401412 4C2642 | .CSC4C | 16386 | 22262
us | JccCey | JC0245 ) J0117C] .C32CT | LCTT82 ) J165G¢E | 23416
«5C | +CCOS5C | «C0176 ] C0E56 | .02463 | 4C5562 | +141C€ | 215C8|
.65t occc27 | Jco097 ) Jco472) .01274 ] JC2424 ) JCe527 | J154€7
1.¢C| oCcccc | occcoc | occooc| occccc ] occccel occccc| LcccccC
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TABLE III {continued)

T/T “a
o g.1 | 0.2 ] o.s ] 1.c | .o ] s5.¢ ] 1c
I(r, 75 8(0)); 6(0) = 0.8
LGl ] .CO0U00]| .0CV0G | .0000G | «COCCOU] .CCCCO | ~COCOC] -CGCCO
.02 Jcoozz) Lco07S | LC0352 ) L0029 | LCZCO8 | .C43CS| 06SE4
L1C| .CCC4% | JCOLSL| C06BC| CLTEC| «C2T77 | CT42€| J1CECE
_.15) .CCUE3 | LCC218 | LCU9BC| .C2E58 | .C5252 | .C9852| L127¢ES
LZ0 | JCOCEC| .CC278 ) 01252 | C22€3 | .C€759 | 11604 .143(C2
.25 .CCC95 ) .CcC332 | 01455 | .C26S5 | JCEC1S| 12475 ) .155(C2
L3¢ JCCice | oC0378) L017CT7 | .C4451 ] JCS127 | .14S2C| .165¢5
L3E] WCOL1S| «C0417| 01886 04529 | o1CICC | .1€225| .175¢6C
J4C | JCor28| LC0448 ) L02032 ) 05223 .10628 | 17426 .1856%
42| .C0134| .CC47C| .0214C | .C5€21| 411606 | 18525 ] .15€21
C5C| LCO13¢ | .C0484 | .0221C| 056237 | 412116 | .16522| .2Cese
«55 ] JC013S | .C0488 | 02237 ] 405642 | .12445 | 20395 21763
.6C| «cc137| Jcoa82| J02z220) .05524 | 12571 21114 .225CC
CE€5 1 WC0132 | oC0466 | oC2155| +056C1| 12455 | o216C2| 23682
L7C]| oC0124 | «C0438 | 02038 | 05520 o12C61 | 217€7| 24673
2751 .CO112 | .C0395| 01866 | .C51C8 | .1134C | 21474 .25728)
.80 | +CCCS8 | .C0347| 01622 | (04516 | 1C223C | 20465 | J260z¢
<85 ] .CC08C| .€C0282 ) .0133¢| JC23726| .CE657| 18516 425351
«SC| oCCC5T | «CC203 | 00966 | «C2743 | .Ce522 | .15C54 ] 22718
¢S5 | +CCC31 | «CCL10| .CO526 | oC151C| «C2657 | .€934S | .1601C
.CC| .CCCCU| «CCOOG| JCCCOC | «CCCCC| oCCCCC| ~CCCCC| -CCCCC
- - LT T5-8(0)) =5 s B(0) 204G
.CC] +C00CU | -CCO00| .CCOGC| .CCCCO | -CCCCO| -CCCCC[ .00CGCT
5| .CCC3C | .CCl06 | .C0486 | 01217 ) .C2676 | Ce786] J111¢€4
L1C ) .ccos8 | .cC202 | .C0925 | .C2487 ) .C5458 ) .1148C| 1€71¢
15 .co0e2 | Jco288) 01316 JC351S | CT€43 | 14S1C| J1STEC
_+2C| .CC104 | .CO364 | 01661 | 04422 | .CS466 | .17468 | .2165¢C|
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