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ABSTRACT 

In this thesis we explore political and market equilibria in worlds with 

income taxes . In part I we study individual and majority-rule choice of an 

income tax schedule in the context of a simple two-sector economy in which 

individuals respond to higher taxes by earning less taxable income and 

devoting more time to untaxed activities . If voters are concerned with the 

"fairness" of the distribution of after-tax incomes in society, then a 

majority-rule equilibrium tax schedule exists, and is linear. If voters care 

primarily about their own after-tax income however , then in general no such 

equilibrium exists, although equilibria may exist within special classes of 

taxes . In characterizing individual preferences we find that "middle-class" 

voters prefer sharply progressive schedules that impose low marginal tax 

rates on lower-income taxpayers and high marginal rates on upper-income 

taxpayers. This suggests that the observed preference for marginal-rate 

progre ssion has little to do with "fairness," but results from the middle-class' 

successfully reducing its own tax burden. 

ln Part 11 we study the effects of income taxation on capital asset market 

equilibrium, using a popular model of asset pricing, the Arbitrage Pricing 

Theory (APT) . We focus on two features found in many tax codes, the 

differential treatment of dividends and capital gains, and the different 

treatment of various types of investors . We show first that, with restrictions 

on the portfolios investors may hold, in general at any prices there will be 

some investor who can make unlimited arbitrage profits. Next we restrict 

portfolios, requiring that no investor borrow so much that her total dividend 

payment on short sales exceeds her total dividend income on the assets she 
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owns . Given this restriction there exist prices at which no investors can 

make unlimited arbitrage profits . We show that if at least one investor faces 

a hjgher tax rate on capital gains than dividends (true for corporations in the 

U.S . today) then the prices must be different from those predicted by the APT 

without taxes . 
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I. THE POLITICS OF INCOME TAXATION IN A TWO-SECTOR ECONOMY 

1. Introduction 

The taxation of personal incomes is a very direct and transparent 

redistributive mechanism, and hence potentially a source of great instability 

in democratic societies. In a world where majority coalitions form to impose 

heavy taxes on the minority and distribute the revenue to themselves. we 

might expect frequent, dramatic changes in the distribution of tax burdens 

and after-tax incomes; those in the minority would always have a strong 

incentive to change the current scheme by offering rewards to selected 

members of the majority in return for their support . 

In fact, however, we do not see such chaos. Virtually all advanced 

industrial democracies impose taxes on incomes and use these taxes to 

redistribute income as well as raise revenue, and the tax schedules are stable 

over time . Changes in tax codes , while fairly frequent, generally address 

technical details rather than the overall structure of rates, and changes in 

tax schedules that do occur are often "technical" in nature as welL such as 

when rates are adjusted for inflation. Moreover, there are important 

patterns in the rate structures across countries . Taxes paid as a fraction of 

income increase with income, implying some redistribution from upper

income individuals to those with lower incomes; generally however, the 

amount of redistribution is quite modest . Marginal tax rates also rise with 

income, much more quickly than average rates, and thus in many countries 

large groups of taxpayers face very different marginal tax rates. 

So far, theoretical studies have had mixed success in explaining these 

patterns . Such studies usually begin with the reasonable assumption that the 

individuals in society must choose a tax schedule , by majority voting, from 
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some set of admissible schedules . The admissible schedules must satisfy an 

exogenous government revenue target. Taking before-tax incomes as 

independent of the tax schedule chosen, Foley [ 10] finds that if citizens are 

concerned with their own after-tax incomes then a majority-rule equilibrium 

exists if the set of admissible schedules is restricted to the class of linear 

schedules (i.e . schedules with a constant marginal tax rate). If the 

distribution of incomes is skewed to the left however, as is usually the case, 

then the equilibrium schedule has a marginal tax rate of 100%, and results in 

complete equalization of after-tax incomes . This is empirically implausible . 

Hamada [ 11 ] also takes before-tax incomes as fixed, but assumes that voters 

are "benevolent," concerned with the "fairness" of the after-tax distribution 

of incomes in society, as measured by Bergsonian-Samuelsonian social 

welfare functions (weighted averages of after-tax incomes). Given weighting 

functions that are concave in income, a majority-rule equilibrium exists even 

if no restrictions are placed on the set of admissible schedules; however, the 

equilibrium is the same as Foley 's, yielding equal after-tax incomes . 

An unrealistic assumption underlying these results is that incomes are 

exogenous , so individuals do not respond even to large changes in the tax 

structure . Aumann and Kurz [ 4], and Romer [ 1 B] analyze models which relax 

this assumption. In Aumann and Kurz [ 4], individuals have the option to 

destroy part or all of their income, and this "threat" limits the power of the 

majority . Voters are assumed to be egoistic, and the tax schedule is chosen 

by majority-rule . Treating the choice as a cooperative game and using the 

Harsanyi-Shapley-Nash value as their solution concept, they find that there 

exists a unique solution. However, little can be said in general about the 

shape of tax schedule associated with the solution; average and marginal 
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rates may be progressive, regressive, or constant . 

Romer [ 18] works in an even more realistic framework, the "labor

leisure" model popular in the literature on optimal income taxation, in which 

individuals can respond to high taxes by substituting untaxable leisure for 

taxable income . Voters are again egoistic, each voting to maximize a utility 

function that depends only on her own after-tax income and leisure. Romer 

shows that if voters have a Cobb- Douglas utility function and the set of 

admissible tax schedules is restricted to those linear schedules under which 

all individuals work some positive amount (i.e ., no individual allocates all her 

time to leisure), then a majority-rule equilibrium exists . This equilibrium 

typically involves some redistribution, but does not result in complete 

equality of after-tax incomes, a more plausible result than that of Foley and 

Hamada . It is possible, however (depending on the parameters of the model), 

that the equilibrium tax has a positive intercept and thus be average-rate 

regressive . Also, it is probable that under a more general specification of the 

utility function, no voting equilibrium exists . 

The "labor-leisure" framework is appealing in its generality, but it seems 

unlikely that it can be used to generate interesting results in the context of 

majority voting . Aside from the usual mathematical difficulties of optimal 

control, there are fundamental nonconvexities which arise from the 

structure of the problem, and it is quite likely that voter preferences over tax 

schedules (linear and nonlinear) will in general be very badly behaved. 

We explore the issues of individual and collective choice of an income tax 

schedule in the context of a simple economic model which incorporates 

incentive effects which are similar in spirit, but different in detail, from those 

of the optimal taxation literature. We assume, conventionally, that 
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individuals vary in their potential to earn income (i.e ., their endowment of 

"ability ," or "labor productivity") . However, in our model an individual faced 

with a high tax rate on his labor income responds, not by substituting 

untaxable leisure for taxable work effort, but rather by working in an 

untaxed "underground" economy, at a lower (but tax-free) wage rate . We 

take the government's budget constraint as given exogenously, and only 

compare taxes that raise enough revenue to satisfy it . 

We assume that collective choices are made by simple majority rule. 

Since it is not clear what is the most reasonable way to model voters, or even 

whether there is a single model of voters that applies generally, we consider 

several different assumptions about voters' preferences. Studying different . 

possibilities allows us to compare the outcomes under each. At the one 

extreme, we suppose that voters are purely "egoistic" when choosing among 

tax schedules, each looking only at how she personally will fare under a 

schedule to decide how well she likes it. At the other extreme we suppose 

that voters are purely selfless, or "benevolent," and rank tax schedules based 

on some social welfare measure of the whole distribution of after-tax 

incomes, preferring a large per capita income and more equality to less (as in 

Hamada [ 11 ]) . We also examine intermediate cases, of voters who care both 

about their own after-tax income and the distribution of incomes in society. 

In Section 2 we describe the model in detail. and develop some necessary 

preliminary results . In Section 3 we study linear tax schedules, and show 

that for all three type of voters (egoistic, benevolent, and those with more 

general. "mixed" preferences) there exists a majority-rule equilibrium in the 

set of linear schedules. We find that egoistic voters with small endowments, 

and benevolent voters with a strong preference for equality, prefer higher 
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marginal tax rates . Unfortunately, it is in general impossible to say anything 

about the relation between the marginal tax rate of the equilibrium schedule 

in the different cases , since egoistic voters might choose a schedule with a 

higher or lower rate than benevolent voters, depending on the 

characteristics of the median voter . 

As we are interested in explaining the apparently stable democratic 

preferences for income taxes with increasing marginal rates, in Section 4 we 

study nonlinear tax schedules . We first show that for benevolent voters, 

given any nonlinear schedule there exists a linear one which is unanimously 

preferred. This means that the majority-rule equilibrium linear tax is an 

equilibrium over the set of all taxes, and hence quite robust. The fact that 

such a stable schedule exists is a step in the right direction; however the fact 

that it is linear leaves marginal-rate progressivity unexplained. 

For egoistic voters the story is quite different. If the government 

revenue constraint is not too high then egoistic voters favor tax schedules 

with sharply increasing marginal rates . We char.acterize the schedules most 

preferred by egoistic voters of varying abilities and find that for those with 

medium ability levels this schedule has two large "tax brackets"--it imposes a 

marginal rate of zero on lower incomes and a positive rate on higher 

incomes . Also, we show that if the government's revenue constraint is 

nonpositive (e .g., it is doing pure redistribution) then there exists a 

majority-rule equilibrium within this set, namely the most-preferred schedule 

of the median ability (and median income) voter, most likely a middle-class 

taxpayer . If the government revenue constraint is large then for high-ability 

individuals the most-preferred tax schedules are a bit more complicated, and 

the marginal and average rates actually decrease in income over part of their 
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ranges. For individuals of "low enough" ability however, the most-preferred 

tax schedule is still of the increasing-rate, "two-bracket" type. It is quite 

possible that middle-range ability levels, including the median, are "low 

enough": this is an empirical question. Also, if we restrict attention to convex 

schedules then the most-preferred schedules for voters of all ability levels 

will either be linear or have two brackets (and of course be marginal-rate 

progressive), and for some voters the marginal rate in the lower bracket may 

be positive . When we consider voters whose utility depends on both their own 

after-tax income and the distribution of after-tax incomes in society, the 

most-preferred convex schedules are again either linear or "two-bracket" 

schedules . 

These results suggest that the observed stability and marginal-rate 

progressivity of income taxation in democratic societies have little to do with 

fairness or equity considerations, but arises from the success of the middle

class in minimizing its own tax burden, at the expense of upper and lower 

income taxpayers . 

In Section 5 we relax the assumption, implicitly made throughout the 

above discussion, that voters are perfectly informed about all the relevant 

parameters in the economy. In particular, we suppose that they are 

uncertain about their own ability level. This is especially relevant if they are 

choosing a tax schedule that will be in effect for several years (say, because 

it is very costly to change the schedule often), since it is likely that the future 

income-earning potential of an individual is subject to considerably more 

variance than the underlying structure of the economy (i.e., the distribution 

of endowments and technology) . If voters are risk-averse and either view 

their ability level as a random draw from the actual distribution in the 
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economy, or are "pessimistic" about their chances of having a high ability, 

then they again prefer linear tax schedules . "Optimistic" voters, on the other 

hand, may prefer schedules that are marginal- and average-rate regressive; 

this is true, for example, if they are risk- neutral. 

ln Section 6 we compare our model with the "labor-leisure" framework of 

the optimal taxation literature, and clarify the role of some of the 

assumptions in driving results . 



- 8-

2 . The Model and Some Preliminaries 

Here we describe in detail the essential features of the economic and 

political parts of the model. and prove some necessary preliminary results, in 

particular , the existence of a market equilibrium in the economy. 

2.1 The Economy 

We assume a simple one-good economy with two sectors, a legal "taxed" 

sector and an untaxed "sheltered" sector. The agents are worker-

consumers, each endowed with a fixed amount of labor to supply to the 

economy. Each agent allocates her labor between sectors so as to maximize 

her consumption, or after-tax income. Labor endowments vary across 

individuals , and the distribution of endowments is given by the probability 

distribution function F .1 We assume that F is nonatomic, its support is an 

interval [n ,n] c [0 ,1] , and the average labor endowment (i.e., the total labor 
n 

available per capita) is N = J ndF(n) > 0. (For notational brevity, we will 

suppress the limits on integrals whenever the limits are .n and n.) 

We assume that for each sector all units of labor supplied to the sector 

receive the same return, or "wage ." The wage in the taxed sector is always 1. 

The wage in the untaxed sector may vary however, depending on the total 

labor supplied to the sector . Thus there exists a function wD : [O,N] _.. (0, 1 ). 

2 where wn(L) gives the wage in the untaxed sector when L is the total 

labor used in the sector . (We denote the function by wD because it may be 

interpreted as the inverse labor demand function in the untaxed sector.) We 

assume that wn is continuous and strictly decreasing .3 We will call wn the 
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"relative wage " function . Since wD is strictly decreasing on [O,N] it has an 

inverse over the interval [ wD(N),wD(O)] , which we denote by LD· We can then 

extend LD naturally to [0,1] by letting LD(w) = N for all w < wD(N) and 

LD(w) = 0 for all w > wD(O). We call LD the untaxed sector "labor demand" 

function. 

The government taxes income earned in the taxed sector.4 A tax 

schedule is a lower semi-continuous function T: [0,1]-+ [ -1,1] satisfying 

T(x) ~ x for all x . Thus, T(x) is the net tax liability or credit due on a pretax 

(taxable) income of x. Lower semi-continuity ensures the existence of an 

optirnallabor allocation for all individuals, and the second restriction 

prevents an individual's tax liability from exceeding her taxable income . We 

place no further restrictions on the form of T, so tax schedules may be 

discontinuous, increasing, decreasing, or whatever . We denote the set of tax 

schedules by T. 

2 .2 }iarket Equilibrium and Preliminary Results 

Given a relative wage in the untaxed sector w and tax schedule T, an 

individual with labor endowment n who allocates x E [O,n] of her work 

efforl to the taxed sector and n -x to the untaxed sector earns an after-tax 

income of 

x- T(x) + w(n- x) = -[T(x)- (1 - w)x] + wn. (2 .1 ) 

We assume that in choosing how to allocate their labor supply, individuals 

take the wage and tax schedule as fixed, and thus an optimal allocation is one 

which maximizes (2 .1 ), or equivalently, which minimizes the quantity in 
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square brackets . 5 Let 

x(n,u;,T) = ~x · E [O,n] I x'- T(x ') + w(n -x') ~ (2 .2) 

x - T(x) + w(n - x) for all x E [O,nH 

be the set of allocations which are optimal for n given w and T. In view of 

the observation above, evidently 

Cornrn,ent 2 .1. x' E x(n,w IT) if and only if x' minimizes T(x) - (1 - w )x 

overx E [O,n]. 

From lower semi-continuity, x(n,w IT) is non-empty and compact for all 

n, w, and T. A more explicit characterization, which will be useful below, is 

as folLows: suppose the function T(x)- (1 - w)x possesses a minimum x' 

on some interval of the form [O,x") . Let x be the smallest such minimum 

(by lower semi-continuity ~=min ~x · I x' = ar.amin T(x) - (1 - w)x~ is well 
(tl.z " ) 

defint~ d), and let x define the largest interval on which this is still a minimum 

(i.e ., x = sup~x" I T(x) - ( 1 - w )x ~ T(x') - ( 1 - w )x' for all x E [O,x")D . We 

shall say the interval [~.X) is w-critical for T. Clearly any T and w define 

a unique (possibly empty) set of disjoint critical intervals . (See Figure 2.1.) 

Now for individuals with endowments n E [x ,X), from Comment 2 .1 

evidently X I E x( n ,wIT) if and only if 

T(x')- (1 - w)x' = min T(x) + (1 - w)x = T~.) + (1 - w)x ; thus x is 
z:E(O.n] 

always optimal (though not necessarily uniquely so) for all such n. For 

individuals with n = x, either T(X) - ( 1 - w )x = T(A) - ( 1 - w };., in which 

case the above equality again defines the optima, or else there is a 

discontinuity at x with (from lower semi-continuity) 
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T(X) + (1 - w)x < T~) + (1 - w)~. so from Comment 2.1, 

x(n ,WIT) = ~X~ = ~n ~ uniquely . On the other hand, if n does not belong to 

the closure of any critical interval, then it must be true that T(x) - ( 1 - w )x 

has no minimum on [O,n) . By lower semi-continuity it must have a minimum 

on [O,n], which must therefore be at n, so x(n,w,T) = ~n~ uniquely, again 

by Comment 2.1. Summarizing , we have 

Comment 2 .2 . The correspondence x( . I • IT) is as follows. 

(i) if n ( [~.x] for every w-critical interval [x ,X), then x(n ,wIT) = ~n L 

(ii) if n E [~.X) for some such interval, then 

x(n,w ,T) = ~x· E [x,n] I T(x ') + (1 -w)x' = T~) + (1 -w)~L 

(iii .a) if n = x for some such interval and T is discontinuous at x with 

T(X) - (1 - w )x < T~) + (1 - w )~ then x(n,w IT) is given by (i), and 

(iii.b) if n = x for some such interval and T is continuous at x then 

x(n,w,T) is given by (ii) . 

Let X(w, T) =~X I X= J i(n)dF(n), where i Ex( . ,w, T) is integrable~ 

be the set of possible aggregate labor supplies to the taxed sector given wage 

w and tax schedule T, and let L(w, T) = N- X(w, T) be the possible 

aggregate labor supplies to the untaxed sector . Clearly, L(w, T) is non

empty and compact (and convex, from Richter's theorem) for all w and T. 

A market equilibrium for the tax schedule Tis a wage w • and an aggregate 

untaxed labor supply L • satisfying wD(L •) = w • and L • E L(w •. T) . Our first 

proposition is that for any tax schedule T there exists a unique market 
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equilibrium. 

Proposition 2 .1. For any tax schedule T, a market equilibrium (w •,L •) 

exists and is unique . 

Proof. See Appendix A. 

Denote this equilibrium by (w •( T),L •( T)), and let x•( T) = N- L •( T). 

From individual maximization, an individual's optimal allocations must all 

yield the same after-tax income. Thus, let y •(n, T) be the after-tax income 

of an individual with endowment n under the tax schedule T at the 

equilibrium wage w•(r); i.e ., y•(n,T) = x'- T(x') + w•(r)(n -x') for all 

x' E x(n,w·(r) ,T) . Let x·(n,T) = x(n,w·(r),T) be the labor supply of an 

individual with endowment n at the equilibrium wage . Of course, x •(n, T) 

need not be single-valued; thus, in general, before-tax incomes and taxes 

paid at the equilibrium wage are indeterminate . However, the aggregates are 

unique, since L •( T) is . Denote the equilibrium aggregate before-tax income 

by z•( T) and the aggregate after-tax income by y•( T) . Then 

z•( T) = x•( T) + w •( T)(N- x•( T)) = ( 1 - w •( T))x•( T) + w •( T)N, and 

y•( T) = J y •(n I T)dF(n ) . Notice that if two tax schedules rl and T2 produce 

the same market equilibrium, then z•( T1) = z•( T2 ) . Denote the aggregate 

revenue collected under T by R( T). Clearly, R( T) = z•( T) - y•( T). Finally, 

for any G denote the set of tax schedules T such that R( T) = G by T( G) . 

We call two schedules T1 and T2 equivalent if (i) w •( T1) = w •( T2), 

(ii) R(T1) = R(T2 ) , and (iii) y•(n,T1) = y•(n,T2) for all n . Since equivalent 

schedules induce the same after-tax income distribution and raise the same 

revenue, their welfare implications for any individual, or for society, are the 
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same . 

One last fact, which will be used often later, is 

Comment 2. 3 . If T1 and T2 are tax schedules such that T1 (x) = ex + T2 (x) for 

all x, then T1 and T2 generate the same market equilibrium, and 

- -
for some integrable selection x of x•( · ,T1) . Now for anyn, x(n) is optimal 

given T1 and w·(T 1) . So by Comment 2 .1. for all x E: [O,n], 

- -
ex+ T1(x(n))- (1 -w•(r1))x(n) ~ex+ T1(x)- (1 -w·(r1))x, or equivalently, 

- - -
T2(x(n))- (1 -w·(rl))x(n) ~ex+ TI(x)- (1 -w·(rl))x . Thus x(n) is also 

optimal for n under T2 at wage w •( T1). This implies that 

for T2 . To see that R( T1) = ex + R( T2), note that for all n 

- - -
y•(n,T1) = x(n)- T1(x(n)) + w•(T1)[n -x(n)] 

- - -
= x(n)- ex- T2 (x(n)) + w•(T1)[n -x(n)] = y•(n,T2)- ex, so 

y•(r1) = y•(r2)- ex. Also, since x·(T1) = x·(r2), z•(T1) = z•(T2). and thus 

R ( T 1) = Z • ( T 1) - y• ( T 1) = Z • ( T 2) - y• ( T 2) + ex = R ( T 2) + ex . 

QED 
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2.3 A Note About Convex Tax Schedules 

In the analysis to follow, we sometimes pay special attention to tax 

schedules that are convex functions of taxable income, i.e., schedules that 

have nondecreasing marginal tax rates. One nice feature of convex 

schedules is that they have at most one critical interval, and (if it exists) it is 

of the form [x, 1]. This is clear since if 

x 2 > x 1 we have (by the convexity of T) 

Thus, if x 1 is in the critical interval defined by x then so are all points 

Let [z:.( T),1) be the w •( T)-critical interval for T. (Of course, .*.( T) 

might equal 0 or 1.) Then for all n ~ .*.( T), x •(n, T) = n, and for all 

n > z.( T), z.( T) Ex •( T) . Also, by the convexity of T, if n 1 Ex •(n. T) and 
~T) 

n 2 E: x•(n.T) then [n 1,n 2 ] c x•(n.T) . Clearly, x•(r) ~ f nd.F(n) (else 
n 

(w •( T),L •( T)) would not be the equilibrium), so there exists a unique 
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n .,T) n 
n •(r) E [x(T) .n] such that x·(r) = J ndF(n) + J [n- n •(T)]dF(n) 

n n •(7') 
n •(7') 

(since at n .( T) =X ( T) the right- hand side is J ndF(n) ~ x·( T), at 
.u 

n •( T) = n it is f ndF(n) = N ~ x•( T). and it is continuous and strictly 

increasing in n •( T) ). Also, by the convexity of T. the labor choices 

::: { n for n ~ n • ( T) 
x ( n) = n • ( T) for n > n • ( T) 

are optimal for all n . (See Figure 2. 2 .) Of course, this selection need not be 

the unique optimum, although if T is strictly convex then it is . In any case, 

when dealing with convex schedules we will always assume that these 

particular labor choices are made. And, abusing notation slightly, we will 

denote these choices by x •(n. T) for all n . Then n •( T) is a "threshold" level 

for taxable income--no one earns a taxable income higher than this . 

A useful fact about convex tax schedules is 

Comment 2. 4. Given a tax schedule T. the schedule T1 induces the same 

market equilibrium if either 

(i) w •( T) = wD(O) and T!(n) ~ 1 - wD(O), or 

(ii) w •( T) = wD(N) and Tt(n) ~ 1 - wD(N), or 

(iii) w·(r) E (wD(N),wD(O)) and 1-w•(r) E [T!(n.(T)),Tt(n•(r))]. 

(where T1(x) is the left-hand derivative, and Tt(x) the right-hand 

derivative, of T1 at x) . 

Proof. If (i) holds then x(n ,w .( Tl)) = ~n ~ 3 X ·(n. T) for all n, so 

L(w•(r).T1) = ~0~ 3 LD(w.(T)) = L•(r). and thus (w·(r).L.(T)) is a market 

equilibrium for T1. Since the market equilibrium is unique, it is the market 

equilibrium for T1. If (ii) holds, then x(n,w•(r1)) =~OJ 3x•(n,T) for all n, 
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market equilibrium for T1 . If (iii) holds then 

for n ~ n •( T) 
for n > n •( T) 

and thus (w •( T) ,L •( T)) is again the market equilibrium for T1 . 

2 .4 The Politics 

As discussed above, we are looking for a "long-run" majority-rule 

QED 

equilibrium tax schedule , i.e., a schedule which would defeat or tie any other 

in a pairwise simple-majority vote . Also , we take the government's budget 

constraint as given, and thus restrict the set of allowable tax schedules to 

those that raise enough revenue to meet it . Thus, we do not analyze the joint 

problem of simultaneously choosing the level of government spending and the 

tax schedule . 

It is well known that when the set of alternatives can be ordered along a 

one-dimensional space and voters' preferences over this space satisfy a 

certain "single-peakedness" condition, then such an equilibrium exists (see 

Black [5]) . This result has been proved under a variety of assumptions, but 

none of the statements of it found in the literature (by us) can be directly 

applied here, as the assumptions always include at least one of the following : 

(i) there is a finite set of voters ; (ii) voter preferences are strictly single-

peaked, with no "large regions" of indifference ("single-peaked," in Black's [5] 

terminology) . Since we sometimes wish to consider a continuum of voters --



- 17-

for example , when all worker-consumers in the economy are voters-- we 

cannot in1pose (i) . Also. it turns out that we must allow voter preferences to 

have large regions of indifference, and thus cannot impose (ii); in particular 

we must allow preferences of the form Black calls "single-peaked with a 

plateau on top ." Thus, we prove the required result below. (In fact, we prove 

a more general result than required. which allows voter preferences to have 

"plateaus'' below the top as well as at the top .) 

Let the set of alternatives be a closed interval A c JR and let each voter 

j have a continuous preference relation ~i over A. Denote the strict part 

of ~i by >i. and for any a' E: A let P1(a') =~a E: A I a >1 a'J and let 

P{1(a ') =~a E: A I a <1 aT We say that ~i is weakly single-peaked. if there 

exists an alternative a1 E: A such that a" ~i a' for all a' ~ a" ~ a1. and 

a' ~i a" for all a1 ~a'~ a". 

To aEow for a continuum of voters we must describe the "set" of voters 

as a measure-space . Thus. let the voters be given by (J,F,J.L). where J is the 

set of voter types, F is a a-algebra over J such that for all a E: A and all 

closed intervals B cA. J(a,B) = ~j E: J I B c p1- 1 (a)~ E: F, and J.L is a 

countably additive probability measure on (J,F). We say that J satisfies 

weak single-peakedness if for all j E: J, ~i is weakly single-peaked. 

We define the majority relation ~ll by a > 11 a' if and only if 

J.L(b E: J I a >1 a'D > ~ . (We show below, in the proof of Comment 2 .5, that 

b E: J I a >1 a·~ E: F.) For any a' E: A let Pg(a') =~a E: A I a >11 a'J and let 

Pjj 1(a') = ~a E: A I a <y aT A majority-rule equilibrium is an alternative 

a • E: A such that Py(a •) = ¢. 

The result needed is 
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Comment 2. 5 . Let (J,F,J.L) describe the set of voters . If J satisfies weak 

single-peakedness then a majority-rule equilibrium exists . 

Proof. Using a lemma due to Fan (see Theorem 7.2 of Border [7]) an 

equilibrium exists if (i) PM 1 (a) is open for all a, and (ii) a t co (PM( a)) for 

all a (where co (P..v(a)) is the convex hull of P..v(a) ). 

To see that (i) holds, pick a such that PM1(a) ~ ¢ . Let a' E: PM 1(a) be 

arbitrary. We show that there exists an open neighborhood V of a' such 

that V c PM 1 (a), and thus PM 1 (a) is open. Let J0 = fj E: J I a>; at and for 

n = 1,2, ... let Jn = b E: J I [a'-]._, a'+}_] C P{1 (a)~. Then Jn C J0 for all n . 
n n 

Al [ , 1 , 1 ] [ , 1 , 1 ] . f [ , 1 , 1 ] p 1 ( ) then so, a-n+ 1 .a+n+1 c a-~,a+~ so1 a-~,a+n C T a 

[a'--
1

-
1

, a'+_l_
1

] C P1:-
1(a), so Jn C Jn+I for all n. Also, since ~; is 

n+ n+ 

continuous, P{1 (a) is open, so for each j E: J0 there exists n; s oo such 

1 1 DO , 

that [a'--, a'+-] C PT1(a), and thus U Jn = J0 . By assumption, Jn E: F 
ni ni n=I 

"" for all n . Also, J 0 E: F, since J0 = U Jn. Then since J.L is a countably 
n=l 

additive probability (hence finite) measure, lim J.L(Jn) = J.L(J0) > 
2
1 

(see, for 
n~.., 

example, Theorem 1.2 .7 of Ash [2]). Thus, there exists m < oo such that 

J.L(Jm) > 
2
1

. Then [a'--1 
, a'+-

1
] C PM1(a), so (a'--

1
, a'+J__) C Pj1 (a) . 

m m m m 

Also, (a'--1-. a'+ -
1
-) is clearly open, and contains a', so (i) holds . 

m m 

To see that (ii) holds, note first that a f- P..v(a). Suppose there exists 

a' E: Py(a), such that a'> a . If a" f- P..v(a) for all a"< a then 

a f_ co (Py(a)) . Since a' E: P..v(a), J.LOj E: J I a' >jan> ~' By the definition of 

weakly single-peaked, if a' >1 a for a' > a then a ~i a" for all a " < a. 
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Thus. for all a"< a , J.LOj E: J I a ';!:.j a"D > ~ so J.LOj E: J I a" >i mn < ~ and 

thus a" f. Pg(a ) . The same reasoning applies if instead there exists 

a ' E: P"(a) such that a'< a, so (ii) holds . 

QED 

To use Comment 2.5, the sets J(a,B) must be measurable (i.e ., in F) for 

all a E: A and all closed B cA . To prove that this is true for the measure-

spaces of voters we define below, the following comment will be useful. 

Comment 2. 6. Suppose J is a complete, separable, metric space, and for each 

j E: J, ';!::.; is representable by a continuous function l!(j, · ) :A -+ [0, 1] such 

that for each a E: A, 'f/1( · ,a) is F-measurable . If F contains all closed 

subsets of J then J(a ,B) E: F for all a E: A and all closed B cA . 

Proof. Define V 4 : Jx [0,1]-+ [-1.1] by 1r4 (j,a') = 'f/l(j,a') -'f/l(j,a). Then 

rr4 (j , · ) is continuous for all j E: J, and v 4 ( · ,a') is F-measurable for all 

a' E: A . So, 1r is F®BOR[O,l]-measurable, where BOR[0,1] denotes the 

Borel sets of [ 0,1 ], and ® denotes the product a-algebra (see example (7). 

page 42, of Hildenbrand [12]} . Now, 

J(a,B) = tj E: J I rr0 (j ,a') < 0 for all a' E: B~ =li E: J I max Tr0 (j ,a')< 0~ . Let 
a'EB 

rp : J ....... J x A be the correspondence defined by rp(j) = li ~xB. The graph of 

rp is closed, and hence measurable . Let X: J ... [-1.1] be defined by 

X(j) =max ~rr(rp(j))~ (i.e ., max lP I p = n(j,a') for some (j,a') E: rp(j)J ). Then 

'A is F-measurable (see Proposition 3, page 60, of Hildenbrand [12]), so 

b E: J I 'A(j) < 0~ E: F. But b E: J I 'A(j) < 0~ E: F =li E: J I max n.(j.m') < 0~. 
•'EB 

QED 
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We study several different assumptions about voters, with the objective 

of comparing the outcomes under each. First, suppose voters care only 

about their own after-tax incomes . Then each voter of type j can be 

characterized by her endowment ni, and we can define her preference 

relation over tax schedules , ~i· by 

T1 ~i T2 if and only if y •(ni, T1) ~ y •(ni, T2). 

In this case we call a voter of type j egoistic. 6 If all voters are egoistic then 

the set J of voter types is [n..n] , endowed with the Euclidean norm. Then J 

is a complete, separable, metric space. Let F be the Borel a-algebra on J . 

Second, suppose each voter cares only about the "fairness" of the 

distribution of after-tax incomes in society, as measured by a social welfare 

function which is a weighted average of the after-tax incomes. Thus, given a 

"weighting function" W : [0,1] _. [0,1], the distribution of after-tax incomes 

H 1 is preferred to the distribution H2 if and only if 

J W(y)dH 1(y) ~ J W(y)dH2 (y). We can then define an indirect social welfare 

function over tax schedules, S( · ,W), by S(T,W) = J W(y•(n,T)dF(n)? If 

the preference relation ~i of a voter of type j is given by 

for some weighting function Wi , we call her benevolent. 

We consider two types of weighting functions, (i) strictly increasing, 

differentiable and strictly concave, and (ii) strictly increasing and linear .8 In 

both cases we are assuming that each individual, no matter how large her 

income, is given some weight . In the first case, income equalization is 

positively valued; in particular, given two distributions with the same mean 

(i.e ., the same size "pie") the more egalitarian distribution is strictly 
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preferred. In the second case, it is only the mean income (the size of the 

"pie ") that matters -- all income levels are given equal weight so no 

redistributing (in any direction) changes the value of the social welfare 

function as long as the average income remains constant. 

If all voters are benevolent then the set J of voter types is the space of 

continuous functions taking [0, 1] into [0,1] that satisfy either (i) or (ii) (a 

subspace of the set of all continuous functions on [0,1] ) . Endowing this with 

the sup norm, J is a complete, separable, metric space . Let F be the Borel 

a-algebra on J. 

In much of the ,,optimal taxation', literature, ,,optimal', taxes are defined 

as those that maximize a social welfare function of the type above . Thus, in 

characterizing a benevolent voter's favorite schedule we also characterize an 

,,optim.al" schedule in this sense. Like Hamada [11], however, we are 

interested in more than this . We find conditions under which a political 

equilibrium exists for a group of voters interested in promoting social welfare 

who may have different ideas about exactly what ,,social welfare" is . 

The most general form of voter preferences that we study is a mixture of 

egoism and benevolence . In particular, we consider voters with utility 

functions defined over their own after-tax incomes and a social welfare 

measure of the distribution of after-tax incomes in society. Thus if Y; is the 

afler-tax income of a voter of type j, S; is her evaluation of the distribution 

of after-tax incomes in society, and u; her utility function, then her utility is 

u;(Y;.S;) . We assume that S; is derived from a social welfare function with 

weighting function W; . Thus, each voter of type j is fully characterized by 

the triple ( n;, W; ,u;), where n; is her endowment, and her indirect utility 

function over tax schedules v; is defined by v;( T) = u;(Y •(n;. T), S( T, W;) . In 
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this case we say a voter of type j has generalized preferences. We assume 

that ui is quasiconcave , and that the weighting function ~ satisfies either 

(i) or (ii) above . Thus , if all voters have generalized preferences, the set of 

voter types J is the product space of [n,n] , the space of admissible 

weighting functions. and the space of admissible utility functions . Endowing 

both the space of weighting functions and the space of utility functions with 

the sup norm. and endowing J with the product topology, J is a complete, 

separable, metric space . Let F be the Borel a-algebra on J. 

Modeling preferences this way seems to be the most natural way to 

extend egoistic and benevolent preferences, and purely egoistic or 

benevolent preferences are clearly special cases . Essentially, we treat the 

distribution of incomes in society as a public good, in the same way as we 

would treat national defense, expenditures on education, or other public 

goods. As Thurow [23] has argued, there are several reasons to believe that 

the distribution of incomes in society is a valuable public good. Besides 

purely aesthetic reasons. a more even distribution of income may cause less 

crime and social unrest by reducing poverty, less envy between citizens, and 

higher productivity due to more widespread (and perhaps more overall) 

education and a feeling among workers that the society is "just." 

Implicit in all the above is the assumption that voters are perfectly 

informed about their own endowment, and about the distribution of 

endowments in society (and also about the technology in both sectors of the 

economy , the tax functon, etc .) . We will examine what happens when voters 

have imperfect information about their endowment. Voters may be choosing 

a tax schedule that will apply for many years , or that will not go into effect 

immediately, and they may not know with certainty what their income-
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earning potential (endowment) will be in the future . Thus, we assume that a 

voter of type j has a subjective probability distribution Fj over endowments , 

and is an expected utility maximizer . Also, we assume the voter is egoistic, 

with a continuous, strictly increasing utility function Ui over after-tax 

income, so her indirect utility function over tax schedules is 

If all voters have preferences of this sort, the set J of voter types is the 

product space of allowable probability distribution functions and utility 

functions . Endow the space of measures with the weak-• topology, and the 

space of utihty functions with the sup norm. Then putting the product 

topology on J, J is again a complete , separable metric space . Let F be the 

Borel a-algebra on J. 

Notic~ that if Fj = F then EUi is equivalent to the indirect social 

welfare fur:ction S( · , Ui) . Also, strict risk aversion is equivalent to (i) above 

(i .e ., Ui strictly concave) , and risk neutrality is equivalent to (ii). Thus, the 

results proved below about benevolent voters apply to the case where Fj = F 

for all j E: J . In general. however, Fj 'fo F. We consider several different 

cases , including a form of "optimism" ("pessimism"), where the voter places a 

higher subjective probability on high (low) endowments than does F. defined 

in terms of first- order stochastic dominance . 
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3 . Results for Linear Tax Schedules 

In this section we study in detail voter preferences over the set of linear 

tax schedules . Linear schedules are of interest because of their simplicity, 

both mathematically and practically (many economists and politicians argue 

that much of the tax code's volume and complexity is due to having a 

nonlinear tax schedule) . Also, as we will show in the next section, some linear 

schedules are optimal from a social welfare point of view, and under certain 

assumptions about voters' utility functions, some linear schedule will be a 

robust majority rule voting equilibrium. 

3 .1 After-tax Incomes under Linear Schedules 

Let T be defined by T(x) =a.+ {3x for all x, with {3E [0,1]. Also, since 

T(x) ~ x for all x, a. ~ 0. Then for all n , 

x( n I w, T) = I [a, n] :: : : ~ =: 
0 if w > 1-{3 . 

So, 

I 0 if w < 1-{3 

L( w I T) = [ 0 IN] if w = 1 -{3 
N if w > 1-{3 . 

To chare;.cterize the equilibrium after-tax incomes, there are three cases to 

consider . 

(i) 1f {3 < 1-wD(O) then w·(r) = wD(O), L•(r) = 0, and x•(n,T) = n for all 

n. Thus y •(n IT) = ( 1-{3)n -a. for all n I and R( T) = a. + {3N. 

(ii) If {3 > 1-wD(N) then w •( T) = wD(N). L •( T) = N. and x •(n, T) = 0 for all 
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n . Thus y•(n.T) = wD(N)n- a for all n, and R(T) =a. 

x·(n ,T) = [O,n] for all n . Thus, x = n is optimal at wage w•(r) for all n, 

so y•(n , T)=( 1 -~)n-a forall n, and R(T)=a+~[N-LD(1-~)]. 

For any G, let L( G) be the set of linear schedules T such that 

R( T) = G. Because of the constraint a~ 0, there exists a revenue level, 

G". which is the maximum amount that can be raised by any linear schedule 

(whic~. as shown later, is the maximum revenue that can be raised by any 

schecule) . 

Comment 3 .1. There exists Gil> 0 such that L( G) = ¢ for all G > G11. Also. 

any schedule T" E: L( G") satisfies T11(x) = ~"x for all x, for some 

Proof. Consider the class of schedules ~ that are linear with intercept zero 

(i .e , if TE~ then T(x) = ~x for all x , for some ~ E: [ 0,1]) . Then, letting 

-
R0 be defined by R0 ({3) = R( T) where TE~ has slope ~ . 

I
~N for~< 1 -wD(O) 

R0 ({3) = ~ [N - LD( 1-~)] for ~ E: [ 1-wD(0),1-wD(N)] 

0 for ~ > 1 - wD(N) . 

Since LD iscontinuouson [1-wD(0),1-wD(N)], with LD(1-~)=0 at 

~ = 1--'ZLD(O) and LD(1-~) =Nat~= 1-wD(N), R0 is continuous on [0, 1]. 

Thus R0 achieves a maximum on [0,1 ], say at ~~~. Let G11 = ~(fJll). Now, if 

T is any linear tax with slope (3 and intercept a , and T1 is linear with 

slope {3 and intercept 0, then by Comment 2.3, R( T) ~ R( T1), with equality if 

and only if a = 0. Thus, for G > G11, R( T) < G for all linear taxes T, so 
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L( G) = ¢ . Also , any tax TM E: L( GM) must have intercept 0. To see that the 

slope {3M of such a tax must lie in [ 1--'WD(0),1--'WD(N)), differentiate .Ro . For 

QED 

Note that by Comment 2 .3 the schedules in L( G) can be characterized 

completely by their slope parameter (if T1 and T2 are linear taxes with the 

same ~lope but different intercepts then R(T1) # R(T2) ) . Let i.(G) c [0,1] be 

the set of {3 such that L( G) contains a tax schedule T with slope 

parameter {3 . Notice that for G ~ 0, L( G) = [0,1 ], and for G > 0, 

L(G) ~ (0, 1--'WD(N)] (since, if T has slope equal to zero or greater than 

1--'WD(N) then R( T) = a.~ 0 < G) . Of course, for G > GM, L( G) = ¢ . 

For the remainder of this section we will assume that G = 0; we can 

prove similar results for G # 0 but this simply adds technical and notational 

details without altering the conclusions . (Basically, when stating and proving 

the results for G # 0 we must be careful to restrict attention to L( G) .) 

Let a({3) be the intercept parameter that makes the tax T defined by 

T(x) = a({3) + {3x an element of L(O). Then 

! 
-{3N for {3 < 1--'WD(O) 

a(f3) = -{3 [N- LD( l -{3) for f3 E: (1--'WD(O), l --'WD(N)) 

0 for {3 > 1--'WD(N) . 
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Let y(n ,fl) be the equilibrium after-tax income to an individual with 

endowment n under the tax in L(O) with slope {3 . Then 

[ 

( l -{3)n + {3N for {3 < 1-wD(O) 

y(n,{3) = (1-{3)n + {3 [N- LD(l-{3)] for {3 E: [1-wD(O),l-wD(N)] 

nwD(N) for {3 > 1-wD(N) . 

(3 .1) 

Clearly, for fixed n, y(n, ·) is continuous. Also, differentiating with respect 

to {3, 

_ [ -n + N for (3 < l-wD(O) 

~(n,{3) = 
0

-n + N- LD( l -{3) + f3LD' (l-{3) for (3 E: (1-wD(0),1-wD(N)) (3 .2) 

for {3 > 1-wD(N) 

2
_ [ 0 for (3 < 1-wD(O) 

~it (n ,{J) = 2LD'( 1-{J) + fJLD"( 1-{J) for {J E: ( 1--wD(O), 1--wD(N)) 

0 for (3 > 1-wD(N) . 

(3.3) 

Using these we can characterize y(n, · ) . For each n, let {311(n) be the set of {3 

which maximize y(n, · ) . 

(i) for all n, y(n, · ) is strictly concave over ( 1-wD(O), 1-wD(N)), weakly 

concave 

over [0, 1-wD(N)), and constant over [ 1-wD(N), 1 ]; and 

(ii) for n > N, y(n, · ) is strictly decreasing over [0,1-wD(N)], and hence 

f3"(n) = 0, 

(iii) for n = N, y(n, · )is constant over [0 ,1-wD(O)] and strictly decreasing 

over (1-wD(0),1-wD(N)), and hence f3"(n) = [0,1-wD(O)], and 

(iv) for n < N, y(n, · )is strictly increasing over [0,1-wD(O)), so (311(n) is 
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unique 

and an element of [ 1--'Wv(O), l --'Wv(N)) . 

(See Figure 3 .1 .) 

Proof. From (3 .2) , y(n, · ) is linear over [0, 1 -wv(O)) and constant over 

2Lv'(w) ... 
[1 -wv(N), 1]. Also, if Lv" (w) > 

1
--'W then by (3 .3), y(n, ·) is strictly 

concave over ( 1--'Wv(O), 1--'Wv(N)). To see that y(n, · ) is weakly concave 

over [ 0, 1 -w n( N)) we must show that ~( n, ·) is no nincre a sing across the 

possible discoc.tinuity at {3 = 1--'Wv(O). Recall that Lv'(w) < 0 for all 

w E (wv(N),wv(O)) . Thus, using (3.2), 

,.; --n + N = ~(n .~) for all~ E: [0,1-wn(O)). 

Thus , (i) holds . 

E:i If n > N lhen from (3.2), of3 (n,f3) < 0 for all {3 E [0,1-wv(O)) and all 

{3 E ( 1 -wv~0), 1 -wD(N)) . And y(n, · ) is continuous, so (ii) holds . If n = N 

Ei - Ei_ then from (3.2), of3 (n,f3) - 0 for all {3 E [0,1-wv(O)), and of3 (n,f3) < 0 for 

Ei_ 
all {3 E (1-wv(0) ,1-'Wv(N)), so (iii) holds. For n < N, o{3 (n,.) > 0 for all 

{3 E [0, 1--wv(O)) , so y (n, · ) is strictly increasing over this interval. Also, 

lim ~{3-(n,f3)=-n+ [1 -wv(N)] lim Lv'(1-{3)<0, soany {3 that 
{J-+1 - w 0 (N)_ v {J-+1-wD(N) _ 

maximizes y(n, ·) must be less than 1-wv(N) . Thus, since y(n, ·) is 
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strictly concave over (1-wD(0),1-wD(N)), it has a unique maximum, 

achieved at some {3 E: [ 1-wD(O), 1-wD(N)), so (iv) holds . 

QED 

weak , requiring only that the labor demand function not be "too concave ." 

For example, if the labor demand function is linear or convex then the 

condition is clearly satisfied . We have just shown that, given this, y(n, · ) is 

weakly single-peaked for all n. Thus if we consider egoistic voters, each of 

whorn rank~ tax schedules by her own after-tax income under the tax 

schedules, preferences over the set of linear schedules will satisfy weak 

single-peakedness as defined in Section 2.4 and there will be a majority-rule 

voting equilibrium. 

Proposition 3.1. Given a measure-space of egoistic voters, if 

2LD'(w) 
LD"(w) > 

1
-w for all w E: (wD(N).wD(O)) then there exists a majority-

rule equilibrium tax schedule over the set L(O), and any such equilibrium 

schedule has slope parameter f3E E: [0,1-wD(N)) . 

Proof. If we order the elements of L(O) along the line by their slope 

parameters then by Comment 3.2 the preference relations of the set J of 

voter types satisfies weak single-peakedness , as defined in Section 2.4. Also, 

y(n, · ) is continuous for all n, andy( · , (j) is continuous (hence 

measurable) for all {3, so the conditions of Comment 2 .6 hold. Thus, by 

Comment 2 .5, there exists a majority-rule equilibrium over L(O) . Clearly, 

there exists a schedule with slope parameter {3 < 1-wD(N) such that all 
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voters prefer it to any schedule with slope parameter {3 ' ~ 1-wD(N), so the 

equilibrium must have slope parameter f1E E [0, 1 -wn(N)) . 

QED 

Notice that if more than half of the voters have a higher endowment 

than average (i.e., greater than N) then PE = 0. More likely however, the 

median endowment is below the average and thus PEE [1-wD(O),l-wD(N)) . 

Also , if the distribution of endowments stays constant but the set of voters 

changes so that the endowment of the median voter falls, then the slope of 

the rnajority-rule equilibrium tax schedule rises (or stays constant) . This 

follows from the comment below. 

Proof Differentiate ~ with respect to n to get 

_k]L_ -2- [ -1 
8f1Bn (n.{J)- ~ 1 

for (3 < 1-4.VD(O) 

for f1 E ( 1-wD(O), 1-wD(N)) 

for (3 > l-wD(N) . 

Thus, if ~(n2 ,p)..;; 0 then ~ (n 1 ,p)..;; 0. Using Comment 3.2 this implies 

that any {3 that maximizes y(n 1 , · ) must be less than or equal to any {3 

that mc-,ximizes y(n 2 , · ), as desired . 

Thus we have 

QED 
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Comment 3 . 4 . Fix the distribution F of endowments in the economy and 

consider two measure- spaces of egoistic voters ( J 1 ,F1 ,J..L 1) and (J2.F2 ,J..l2) 

wit h unique median endowments n 1 and n 2 respectively, n 2 < N . If 

n 2 < n 1 then the tax rate of the majority-rule equilibrium tax schedule for 

Over time, as voting in the United States (and in other countries as well) 

has become more universal due both to changes in the law and changes in 

participation rates, the income earning potential (i.e., endowment) of the 

median voter has probably fallen relative to the average . Given that the 

shape of the distribution of endowments has stayed relatively constant, 

Comment 3 .4 suggests that tax rates should have risen. It also suggests that 

given two (democratic) countries with similar technologies and distributions 

of endown1ents but different voting patterns, the country with a higher 

relative participation rate among low income people should have a higher 

average income tax rate . 

3.2 Social Welfare Functions over Linear Schedules 

In this subsection we characterize social welfare functions over linear 

tax schedules . Recall that given a weight function W we can define the 

function S( · , W) : T-+ lR by S( T, W) = J W(y •(n, T))d.F(n ). For the set L(O) 

- -we can define a function over slope parameters, S( · , W) : L(O) -+ lR by 

S:.f3. W) = J W(y(n,f3))d.F(n) . Of course, the generalization to G ~ 0 is 

straightforward . Using the results of the previous subsection we can easily 

characterize 'St_ · , W) . Let {3 5 ( W) be the set of {3 that maximize 8( · , W). 



- 32-

(i) S'( · , W) is constant over [ 1 -wD(N) . 1 ]; and 

(ii) if W is strictly concave then S( · , W) is strictly concave over 

so (3 5 ( W) is unique and an element of [ 1-wD(0),1-wD(N)), and 

(iii) Lf W is linear then S( ·, W) is constant over [0,1-wD(O)], strictly 

decr ·.=asing and concave over ( 1-wD(0),1-wD(N)), and thus 

(See Figure 3 .2 .) 

Proof. Clearly, S( · , W) is constant over [ 1-wD(N),1] since by Comment 3.2 

y (n . · ) is constant over [ 1 -wD(N), 1] for all n, so (i) holds. 

Now, since W is in~rea£ing and y(n, · ) is strictly increasing and weakly 

concave over [0, 1-wD(N)) for all n, if W is strictly concave then 5t · ,W) 

is strictly concave over [0,1-wD(N)) . Next, note that 

as -J 1 - §__ ap ({3. W)- W (y(n,p)) ap (n,(3)dF(n). and thus 

lim aa{3S-((3. W) = f W'(y(n,l-wD(N)) [lim ElLa: (n.(3)]dF(n) . As shown in 
fl-+1-w.o(lv)_ fl-+1-w.o(N)_ ,... 

Comment 3 .2, lim aa~ (n,p) < 0 for all n, so lim aa~ ((3. W) < 0 . 
fl-+1-w.o(N) _ ,.. fl-+1----w.o(N)_ ,... 

Thus, {3 5 ( W) < 1-wD(N), and by the concavity of 8( · , W), (35 ( W) is unique . 
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To see that {3 5 ( W) ~ 1-wD(O), note that for {3 < 1-wD(O), 

-
as f -lim, -a{3 ({3 ,W) = W'(y(n,1-wD(O))) [ -n + N]dF(n) 

{3 .... 1 -w.v 10) _ 

N n 
= j [N-n]W'(y(n,1-wD(O)))dF(n) + f [N-n]W'(y(n,1-wD(O)))dF(n). 

n N 

Thus, 

n 

+ J [ N -n] W'(:y ( N, 1 -w D( 0))) dF( n) 
N 

= W'(y(N,1-wD(O))) j [N-n ]dF(n) = 0. 

-
Since S( · , W) is concave over [0,1-wD(O)), ~: ({3. W) > 0 for all 

{3 E: [0, 1-wD(O)), and thus {3 5 ( W) ~ 1-wD(O). So, (ii) holds . 

If W is linear then for {3 E: [0,1-wD(O)], 

8({3. W) = f W(n( l -{3) + {3N)dF(n) = W' ·[(1-{3) f ndF(n) + {3N] = W'N. so 

5\ · ,W) isconstantover [0,1-wD(O)]. Since W isincreasing,and y is 

increasing and strictly concave over ( 1-wD(0),1-wD(N)), S( · , W) is strictly 

-
~: ({3, W) = j W'·[ -n +N- LD(l-{3) + f3LD'(1-{3)]dF(n) 
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= W'· [ -LD( l -{3) + f3LD'( l -{3)] < 0 , so St: · , W) is strictly decreasing on 

(1-'WD(O), l --'WD(N)) . Thus, (iii) holds . 

QED 

Thus, if voters rank tax schedules by social welfare functions (i.e ., they 

are benevolent, as defined in Section 2.4), their preferences over the set of 

linear schedules L(O) are weakly single-peaked, so we have a majority-rule 

equilibrium, just as in the case for egoistic voters above. 

Propo::;ition 3 .2. Given a measure-space of benevolent voters, if 

Ln"(w) > 
2~D!' ) for all w E: (wn(N),wn(O)) then there exists a majority

rule equilibrium tax schedule over the set L(O) . and any such equilibrium 

schedule has slope parameter f3E E: [0,1-'WD(N)) . 

Proof. If we order the elements of L(O) along the line by their slope 

parameters then by Comment 3 .5 the preference relations of the set J of 

voter types satisfies weak single-peakedness, as defined in Section 2 .4 . Also, 

St: · , W) is continuous for all W, and 5t:f3. · ) is continuous (hence 

measurable) for all {3 , so the conditions of Comment 2 .6 hold. Thus, by 

Comment 2 .5, there exists a majority-rule equilibrium over L(O). Clearly, 

there exists a schedule with slope parameter {3 < 1--'WD(N) such that all 

voters prefer it to any schedule with slope parameter {3' ~ 1--'WD(N), so the 

equilibrium must have slope parameter f3E E: [0,1--'WD(N)) . 

QED 

Note that if more than half of the voters have a linear weight function 

W then the majority-rule equilibrium schedule is not unique, but in fact any 
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schedule in L(O) with slope f3 E: [0,1-wD(O)] is an equilibrium. (since with a 

linear weight function the median voter wants to maximize average income, 

and all schedules in L(O) with slope f3 E: [0,1-wD(O)] produce the same 

average income, namely N) . On the other hand, if more than half of the 

voters have a strictly concave weight function, then the majority-rule 

equilibrium tax schedule is unique, and will have slope 

f3E E: [1-wD(0) ,1-wD(N)) (the schedule with slope 1-wD(O) is preferred to 

any schedule with slope less that 1-wD(O) by all voters with strictly concave 

weighting functions, who constitute a majority). 

In general. the slope of the equilibrium linear tax schedule for egoistic 

voters may be greater than, less than, or equal to that for benevolent voters. 

In two special cases we can determine which is greater. First, if the egoistic 

voter with median endowment has an endowment greater than average and 

more than half of the benevolent voters have a strictly concave weighting 

function, then the equilibrium linear tax schedule for benevolent voters has a 

higher slope than that for egoistic voters (some f3 > 1-wD(O) versus 0) . 

Second, if the egoistic voter with median endowment has an endowment less 

than average and more than half of the benevolent voters have a linear 

weighting function then the equilibrium linear tax schedule for benevolent 

voters has a lower slope than that for egoistic voters (any f3 ~ 1-wD(O) 

versus some f3 ~ 1-wD(O) ) . 

3.3 Linear Schedules and More General Voter Preferences 

We now consider voters with more general utility functions, as described 

above in Section 2 .4 . Recall that a voter of type j is characterized by n;. 
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Wi and ui , and that her preferences over tax schedules are given by the 

L(O) we can define the function v; over slope parameters by 

As in the pre,·ious subsections we wish to characterize voters ' 

preferences over L(O) and prove the existence of a majority-rule voting 

equilibrium. Fortunately , the results of the previous subsections make this 

an easy task 

weakly single-peaked over [0,1 ], and the set of {3 which maximize v; over 

[0 ,1 ] is a closed interval in [0,1--wD(N)). 

Proof. Clearly, v; is constant over [1--wD(N),1] since y(n;.·) and 5'( · .W;) 

both are . Now, suppose u; is concave in Y; and S; . Then for all {3 1 and {32 

in [0, 1-wD(N)), 

The first inequality follows since y(n; . · ) and 5'( · , W;) are weakly concave 

over [0.1--wD(N)), and u; is nondecreasing in Yi and :J; . The second 

inequality follows since U; is assumed to be concave. Thus . vi is weakly 
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concave over [0, 1-'WD(N)) . 

Using the limit results from the proofs of Comments 3.2 and 3 .5, plus the 

assumption that u1 is nondecreasing in y1 and ~. and strictly increasing 

in at least one of them, this is less than zero. So v; is strictly decreasing in 

a neighborhood of 1-'WD(N), and thus it is weakly single-peaked on [0, 1 ], 

and the set of f1 which maximize it is a closed interval in [0,1-'WD(N)) . 

If u; is not concave then let rp : lR ... lR be a strictly increasing function 

such that rp(u;) is concave. Such a rp exists since u; is quasiconcave . 

Then, applying the result just proved for concave utility functions, rp(v;) is 

weakly single-peaked and the set of (3 which maximize it is a closed interval 

in [0,1-'WD(N)) . However, since rp is strictly increasing , 

hold for v; . 

QED 

With this comment in hand, we have a third voting result . 
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Proposition 3. 3 . Given a measure- space of voters with generalized 

2LD'(w) 
preferences , if LD" (w) > l-1.V for all w E (wD(N),wD(O)) then there 

exists a majority-rule equilibrium tax schedule over the set L(O). and any 

such equilibrium schedule has slope parameter f3E E [0,1--'WD(N)) . 

Proof. If we order the elements of L(O) along the line by their slope 

parameters then by Comment 3 .6 the preference relations of the set J of 

voter types satisfies weak single-peakedness, as defined in section 2.4. 

Letting '1/1 : J X [0, : ]-+ lR be defined by 1/l(j,(J) = vj((3), 1/l(j .. ) is continuous 

for all j, and 1/1( · ,(3) is continuous (hence measurable) for all fJ, so the 

conditions of Comment 2.6 hold. Thus, by Comment 2 .5, there exists a 

majority-rule equilibrium over L(O) . Clearly, there exists a schedule with 

slope parameter (3 < 1--'WD(N) such that all voters prefer it to any schedule 

with slope parameter (3' ~ l-1.VD(N), so the equilibrium must have slope 

parameter f3E E [0.1-wD(N)) . 

QED 
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4 . Nonlinear Schedules 

Here, we expand our attention, and consider nonlinear tax schedules . 

First , we will define the notion of "simple" schedules, which will be quite useful 

in proving results . 

4 .1 Simp~e Schedules 

Let Es say a schedule T is simple if 

T(x) = T~) + (l - w •( T))(x - ..t:) for all x E: [..t. . .i). 

for every interval [..I. . .i) that is critical for w •( T). Thus, a simple schedule is 

linear, with slope ( 1 - w •( T)), over its w •( T)-critical intervals. An 

alternati\Te and equivalent characterization is as follows. 

Comment 4 .1 . T is simple if and only if 

Proof. If the inequality holds everywhere, it clearly holds (with equality) on 

every w •( T) critical interval, so T is simple. Conversely, if the inequality 

T(x')- (1 -w•(T))x'~ T(x) -(1 -w•(r))xforallx E: [O,x 2)J . Evidently, this 

defines a w •( T)-critical interval [x ,X) which contains x 2 , and 

not simple . 

QED 

Comment 4 .1 implies, in particular, that the marginal tax rate of a 
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simple schedule cannot exceed 1-w •( T). Thus, for example, if T is linear 

then T is simple if and only if it has slope {J ~ 1-wD(N) . Simple schedules 

havf' the following convenient property. 

Comment 4 .2 . If T is simple then y •(n, T) = n - T(n) for all n, and 

R(T) = f T(n)dF(n)- (1-w.(T))L.(T). 

Proof. Suppose n E [~ .X) for some w •( T)-critical interval [.*.,X). Since T is 

simple , T(n) = T~) + (1 -w•(r))(n -..t_), so by (ii) of Comment 2.2, z' = n 

is optimal. whence y •(n, T) = n - T(n) for all such n . If n does not belong 

to any w •( T)-critical interval then by the rest of Comment 2.2, z' = n is 

optimal for n (uniquely optimal if n is not in the closure of any w •( T)

critical intervals), again implying that y•(n,T) = n -T(n) . To see that 

R(T) = J T(n)dF(n)- (1-w.(T))L.(T), recall that 

z•( T) = N - ( 1-w •( T))L •( T) and R( T) = z•( T) - y•( T) (see Section 2.2), 

integrate y •(n, T) to get y•( T), and substitute . 

The impcrtance of simple schedules lies in the following fact. 

QED 

Comment 4 . 3. For any tax schedule T, there exists a simple tax schedule 

T 1 which is equivalent to T. 

(See Figure 4 .1.) 

Proof. We construct T1 by linearizing T over its w •( T)-critical intervals . 

Without loss of generality we can suppose there is just one such interval 
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[~ . X) . T1 is then defined by 

{ 
T~_) + ( 1 - w •( T))(x - ~) for all x E [..I. . .i) 

Td x) = T(x) otherwise . 

Evidently T1 (x) - ( 1 - w •( T))x = T1 ~) - ( 1 - w •( T))~ for all x E [..I. .X). and 

[x .X) is the unique w •( T)-critical interval of T1. Comment 2.2 then implies 

that 

[~.n]:? i(n,w•(r),T) for n E [.*. . .i). 

i ( n , w • ( T) , T 1 ) = 
~n ~ = x(n ,w •( T). T) for n t [..I..£], and either 

[..:,n] :? i(n ,w •( T), T) or 

~n ~ = x( n, w • ( T), T) for n = x . 

Thus, if i(n) is optimal for n at w •( T) under T then it is also optimal 

under T1 at the same wage, so X(w •( T), T1) :? X(w •( T), T), implying 

w•(T1) = w•(T) and x•(T1) = x·(T) . This implies that [..I..X) is the unique 

w•(r1)-criticalintervalof Tl, andthat T1 issimple . 

We next show that both schedules induce the same after-tax income 

distribution. By (ii) of Comment 2.2, for n E [..I. . .i), x(n) = ._ is optimal under 

T at w•(r) and under T1 at at w•(r1) (since [•.X) is critical in either 

case) and T1 C..) = TC..) by construction, so 

Similarly , for n t. [~.£], i(n) = n is (uniquely) optimal under T at w·(r) 

and under T1 at w•(T 1), and T(n) = T1(n) , so 

Yr(n) = n- T(n) = n- T(n) = y•(n,T1) for all such n . The same 

conclusion is readily verified for n = x, whence y •(n, T) = y •(n, T1) for all 

n . 
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Hence, Y"(T) = Y"(T1), and since X"(T) = X"(T1) it follows that 

Z"( T) = Z"( T1) and R( T) = R( T1) . So, T1 is equivalent to T. It remains to 

show that T1 is a tax schedule ; i.e., that T1(x) ~ x for all x . But T is a tax 

schedule (by assumption), so this follows immediately from the construction 

of T1. since T1 (x) = T(x) for x t [.~ . .i). and 

T1(x) = T~) + (1 -w"(T))(x -.*_) ~ T(x) for x E [-*. . .i) . 

QED 

It is nearly , but not quite, true that every schedule has a unique simple 

equivalent . ln particular, if n < 1 the portion of any schedule which applies 

to x E (n, 1] is irrelevant, since taxable incomes in this range cannot occur . 

Thus if T is equivalent to T1 as constructed above, it is also equivalent to 

every simple schedule which coincides with T1 on (O,n]. If we define a 

"canonical" simple schedule as a simple schedule T1 such that 

TI(x) = T(n) + (1 - w"(TI))(x- it) for X> n, however, it follows from the 

construction above that every schedule is equivalent to a unique canonical 

simple schedule . 

As an example of how using simple schedules simplifies matters, we prove 

the folllowing comment, which will be used later . In Comment 3 .1 we showed 

that there exists a linear schedule T11 E L0 that maximizes government 

revenue over the set of all linear schedules L. Here we extend that result, 

and show that T11 maximizes revenue over the class of all tax schedules . 

Comment 4 .4 . Let T11 be defined as in Comment 3 .1. Then for all T E T, 

R( T) ~ R( Til) = Gil. 

Proof. From Comment 4 .3 we may confine attention to simple schedules (if T 
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is not simple then take a simple equivalent) . For any simple schedule T, let 

T) be defined by T) (x) = (1 -w .( T) )x for all X . Clearly' rl (x) ~ T(x) for all 

x , using Comment 4 .1 and the fact that T(O) ~ 0 (since it is an admissible 

schedule) . Moreover, since T1 E: L with slope 1-w •( T), 

L(w.(T) ,T1) = [O,N] 3 L•(T) , so T1 induces the same market equilibrium as 

T; i.e ., w·(T 1 ) = w·(r) and L•(T1) = L•(r) . Thus T1 is simple, so by 

Comment 4 .2, R(T1)- R(T) = f T1(n)ctF(n)- f T(n)ctF(n) ~ 0. And by 

Comment 3.1, R( T1) ~ R( T11), so R( T) ~ R( T11) . 

QED 

4.2 Social Welfare Functions and Nonlinear Schedules 

Here we show that for any nonlinear tax schedule there exists a linear 

schedule which raises the same amount of revenue and is ranked higher by 

any indirect social welfare function whose weighting function is strictly 

concave . For social welfare functions with linear weights, the linear tax will 

be ranked higher than or equal to the nonlinear schedule. Thus, given any 

set of benevolent voters, the linear schedule will be unanimously preferred 

to the nonlinear one (perhaps with some voters indifferent). Combined with 

the results from section 3 .2, this implies that for any set of benevolent voters 

there exists a majority-rule equilibrium tax schedule, and that schedule is 

(up to equivalence) linear . It also implies that , regardless of the particular 

indirect social welfare function chosen, the "optimal" tax schedule is (again, 

up to equivalence) linear . 

The key is a result by Atkinson [3], which in the present context says 

roughly that given two distributions of income with the same mean, if one 
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distribution can be obtained from the other by redistributing income from 

richer to poorer individuals , then it is ranked higher by any social welfare 

function with a strictly concave weighting function . We can describe the 

result in terms of the indirect social welfare functions over tax schedules as 

follows . 

Comment 4 . 5 . Let T1 and T2 be tax schedules such that R( T1) = R( T2) and 

y•(T1) = y•(T2) . If there exists an n, E: (n,n) such that 

y • ( n , T 1) ~ y • ( n , T 2 ) for all n < n, , and 

y • ( n , T 1 ) ~ y • ( n , T 2 ) for all n > n, , 

then for any strictly increasing concave W, 

J W(y•(n.T1)dF(n) ~ J W(y•(n,T)dF(n) . If W is strictly concave, and the 

above inequalities hold strictly on some set of positive (F) measure, then 

Proof. See Atkinson [3]. 

Recall that for indirect social welfare functions with linear weighting 

functions. if Y( T1) = Y( T2) then T1 and T2 are ranked the same regardless 

of how the income is distributed . 

Proposition 4.1 . If T is a simple tax schedule which is not linear over (n.n) 

then there exists a (simple) linear tax schedule T1 with R( T1) = R( T) such 

that for any S( · , W) with W strictly concave, S( T1, W) > S( T, W) . 

Proof. Let T1 be defined by T1 (x) = a + (Jx, with fJ = 1 - w •( T) and 

a = w •( T)N - y•( T) . It is readily verified that this schedule induces the same 

equilibrium (the interval [0 ,1) is w•(r)-critical for T1• so 
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X(w•(r).T1) = [O.N]. whence x·(r) E: X(w·(r).T1); thus w•(T1} = w•(r) and 

x·(T1) = x·(r) ). so z•(T1) = z•(T2 ). Also. T1 is simple. so 

y•(n, T1) = n- T1(n) = w•(T)(n- N) + y•(r) for all n (from Comment 4.2). 

and thus y•( T1 ) = J [ w •( T)(n - N) + y•( T)] = y•( T), and 

R ( T) = Z • ( T) - y• ( T) = Z • ( T 1) - y• ( T 1) = R ( T 1). 

Since T is simple, for any x 1 and x 2 with 0 ~ x 1 < x 2 ~ 1. 

T(x 2 ) ~ T(x 1) + ( 1 - w •( T))(x 2 - x 1) (by Comment 4.1 ), so 

T1(x 2)- T(x 2)~ T1(x 1)- T(x 1) + (1 -w•(r))(x2 -x 1) . Thus T1 - Tis 

nondecreasing on [0,1]. Moreover, since T is nonlinear over (n.n) by 

hypothesis , there must exist n' E: (n.,n) such that 

T1(x)- T(x) > T1(n.)- T(n) for all x E: (n',n). Clearly, if T1(n.)- T(n.) ~ 0 

then T1 (x) - T(x) ~ 0 for all x > 11. with strict inequality for x > n ', which 

from Comment 4 .2 would imply that y•(r1) < y•(r). a contradiction. Hence 

T1 (n) < T(n) . Similarly, T1 (it) - T(n) ~ 0 would imply that y•(T1) < y•( T). 

again a contradiction, so T1 (n) > T(n) . Thus there must exist n. E: (n..n) 

such that T1 (n) ~ T(n) , whence y •(n, T1) ~ y •(n, T) (from Comment 4.2) for 

n < n 8 , and y •(n , T1) ~ y •(n, T) for n ~ n. (using lower semi-continuity). 

Moreover , the inequality must be strict for a neighborhood of n and a 

neighborhood of n. Thus. by Comment 4.5, the proposition holds. 

QED 

Thus, the voting result of Section 3.2 extends to nonlinear tax schedules ; 

i.e .. if voters are benevolent then there exists a voting equilibrium among the 

class of all tax schedules that raise the same amount of revenue. 
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Proposition 4 .2 . Given a measure-space of benevolent voters, if 

L0 "(w) > 
2~0!') for all w E: (w0 (N),w0 (0)) then there exists a linear 

majority-rule equilibrium tax schedule over the set T(O) . If at least half of 

the vote!'s have a strictly concave weighting function then any such 

equilibrii.lm schedule is equivalent to a linear schedule with slope 

f3E € [0, : -wD(N)) . 

Proof. From Proposition 3 .2 there exists a majority-rule equilibrium schedule 

TEE. L(O) over the set L(O) of linear tax schedules, and has slope parameter 

f3E € [0, 1-wD(N)) . Suppose there exists a schedule T1 € T(O) which defeats 

TE in a pairwise majority-rule vote , and let K c J be the set of voter types 

that strictly prefer T1 to TE . Then K constitutes a majority (i.e ., 

J,J.(K) > ~ ) . By Proposition 4 .1 there exists a linear schedule T2 € L(O) such 

that a.ll voter types in J , and hence all voter types in K, prefer T2 to T1. 

By the transitivity of individual preferences, all voter types in K also prefer 

T2 to TE. But this means that T2 ~~~ Tg, contradicting the assumption that 

TE is a majority-rule equilibrium over L(O) . Thus, no such T2 exists, so TE 

is a majority-rule equilibrium over T(O). The fact that when more than half 

of the voters have strictly concave weighting functions every majority-rule 

equilibriun1 must be equivalent to a linear schedule follows directly from 

PropositiOn 4 .1. 

QED 
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4 . 3 After- tax Incomes Under Nonlinear Schedules 

While there 1s a robust political equilibrium for benevolent voters, no 

such equilibrium exists if voters are egoistic . In general. if we condider large 

classes of nor.linear taxes , there will be severe voting cycles . Thus, to obtain 

a political equilibrium for egoistic voters we must either put more structure 

on the political game or change our equilibrium concept, or look at restricted 

sets of taxes . The results in Section 3.1 are an example of this, where we 

found a voting equilibrium over the set of hnear taxes . In this section we 

cons-ider a particular class of nonlinear tax schedules, namely the set of 

"individually optimal" tax schedules (to be defined shortly). This set is of 

special interest because it helps point out who the "winners" and "losers" are 

under different types of taxes. Thus, even though there is no robust 

majority-rule equilibrium, we are able to suggest likely outcomes depending 

on how political power is distributed. 

In definirjg the tax schedules that are optimal for a particular individual, 

we restrict attention to nondecreasing schedules . We denote the set of 

nondecreasing tax schedules by N, and for each G the set of nondecreasing 

schedules that raise revenue equal to G by N( G). 9 For n e: [n,n], we say 

that a tax schedule Tn is optimal for type n given G if it solves 

max iJ •( n, T). Let B( G) = l T : T is optimal for type n, for some n~ be the set 
TeN( ~) 

of all such individually optimal schedules. 

Before discussing majority voting over B( G), we must characterize its 

elements . The characterization itself is rather simple and intuitive, but 

proving that it is in fact true is a nontrivial task, involving tedious proofs . 

Therefore, we state the results first, leaving the proofs for later . For n and 
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G "small enough, " Tn will be (up to equivalence) of the form 

{
a for x ~ n 

Tn(x) = a +{3(x -n) forx >n 

for some a ~ 0 and {3 . If G ~ 0 then Tn will be of this form for all n . For 

G > 0 and n "too large" (to be made precise below). no function of this 

form will be an admissible tax schedule--any such function T that satisfies 

R( T) = G must have ex > 0, and thus violates the condition that T(x) ~ x for 

all x . In this case Tn is of the form 

{3x 

Tn(x) = 1 

1 + {3(x - n) 

I 
for x ~ (i 

I 
for x E: ( (i·n] 

for x > n 

for some 1 ~ 0 and {3 . (See Figure 4.2.) 

To n1ake this precise and prove that it is true, we must first make a few 

definitions. For simplicity we assume that the distribution F of abilities has 

a densit) f and that its support is [n. .n] = [0, 1]. 

I 
Let So= l{1,{3,n) In E: [0, 1], 1 E: [0,(1-wD(N))n], and. fJ E: [ -,1]L for all n 

n, let So(n) = H1,{J) I (1,{J,n) E: SoL and let So'= H1,n) In E: [0,1] and. 

1 E: [ 0 , ( 1 -wD(N))n]~ . Fix~ E: [0,1] and consider the setS(~) of tax schedules 

of the form 

{Jx 

T(x) = 1 

1 + fJ(x - ~) 

I 
for 0 ~ x ~ (i 

I 
for (i < x ~ ~ 

for ~ < x ~ 1 

for some (1,{J) e So(~) . Also let S(n,J contain the schedule T defined by 



- 49-

T(x) = 0 for all x . Note that each T E: S(n,J is completely characterized by 

the two parameters 1 and {3 (let the parameters for the schedule T = 0 be 

(1 ,{3) = (0 ,0) ), and there is a 1-1 mapping from So(n.J onto S(n,J Let 

R0 : So -+ [0 , 1] be defined by R0 (1,{3,n.;.) = R( T) , where T E: S(n.;.) has 

parameters (1,{3) . In Appendix B we prove that R 0 ( · , · ,n.;.) is continuous on 

So(n.;.) for all n, . (See Lemma B.3.) 

We now define a set of schedules S(n.;.,G) that are optimal for n.;. given 

the government's revenue constraint G. First, note that the revenue 

maximizing linear schedule T11, defined by T11(x) = {311x for all x, is an 

element of S(n,) , and has parameters ({311n.;,.{311) . By Comment 4 .4 

R( T11) =max R( T) = G11. Thus, we have R0 (0,0,n.;.) = 0 and 
TET 

R0 ({311n.;.. {311 . n.;.) = G11. so by the continuity of R0( · , · .n.;.). for any 

G E: [O,GAI] there exists (1,{3) E: So(n.;.) such that R0 (;,(3,n.;.) =G. 

Since [0,1] is compact, the continuity of R 0 ( · , · .n.;.) guarantees that 

there exists f3H(O,n.;.) that solves max R0 (0,f3.71..t) . Let 
, E [0.1) 

G.;, = R0(0, f3H(O .TL.t). ~) be the maximum value of R0 (0, · ,n,;). Also, since 

R 0 (0,(3,n,) = R0 (0.(3,(0.~).n.;.) for (3 > (3,(0.~}. there is a solution 

f3H(O.n.;,) E: [0.{3,(0.~)]. Let p, be the set of all such solutions. Clearly, if T, 

is a schedule in S(nJ with parameters (0,(3,), (3, E: p,, then T, is simple and 

solves rna): R( T) s . t . T(n.;.) = 0. Let P(n.;.) be the set of tax schedules of 
TE S(~) 

the form o. + T (i.e ., T1 E: P(~) is defined by T1(x) =a+ T(z) for all x) 

where o. ~ 0 and T E: S(~) with parameters (0,{3,), (3, E: p, . For G s G,, let 

S(n.;.. G) be the elements of P(~) with a = G - G0 . (Note that if p, has 

more than one element, then so does S(n.;,,G) .) 
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Next, note that HT.P) E: So(n.J I R0 (T,p,n;,) = G~ is closed (since IG~ is 

closed and R0 is continuous) and bounded (since So(n;,) is bounded), hence 

compact . So, there exists a solution (f(n;,,G) . ~(n;,,G)) to min 7" s .t . 
(-r.~) € So(~) 

R0 (T .P.n.;,) =G. Since R0 (T,f3,n;,) = R0 (T.P8 (T,n;,).n;,) for all f3 ~ fJ.(T,n;,) and 

all 'T, there is a solution such that ~(n;,.G) E: [f(n;,,G)/n;,, {38 (f(n;,,G),n;,)]. 

Clearly f is nondecreasing in G for any n;,. so (f(n;,, G).~(n;,, G)) also solves 

min 'T s .t . R0 (T,p,n;,) ~G. Let ~(n;,,G) be the set of such solutions . If 
(-r .~) E So ("i) 

Tt. is any schedule in S(n;,) with parameters (T0 (n;,,p.J E: ~(n;,,G) then T;, is 

simple and solves 

min T(n;,) s . t. R( T) ~ G. 
T E S(n,) 

For G > Gt. let S(n;,. G) be the set of such solutions . 

To facilitate the proof that the schedules in S(n;,, G) are optimal for n;, 

given G, we use the following lemma . 

Lemma 4 .1. Fix n;, E [0,1]. Let T be simple with T(n;,) ~ 0, and let T1 be 

defined by 

T(n;,) + ( 1 - w •( T))(x - n;,) 

T(n.J 
for 0 ~ x ~ ----

1-w ·(r) 
T(n;,) 

for .( ) < x ~ n;, 1-w T 

for n;, < x ~ 1 

Then T1 E: S(n;,) and R(T1) ~ R(T) . Furthermore, if T = T1 then 

Proof. See Appendix B. 
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We are now ready to prove 

Proposition 4 .3. For any 71..t E: [0,1] and G E: [o,Grn], the schedules in 

S(1~ . G) are optimal for ~ given G, and any T which is optimal for 71..t given 

G is equivalent to some element of S(71..t, G) . 

Proof. By definition, T;, is optimal for n,: given G if and only if it solves 

ma:x y •(n;.. T) s .t . R( T) ~ G . By Comment 4.3 we may restrict attention to 
TE N(G) 

simple schedules (if Tis not simple, pick its unique simple equivalent), for 

which y •(71..t. T) = 71..t - T(~) . Then 1';, is optimal for n;, given G if and only if 

it solves min T(~) s.t . R( T) ~ G. 
T E N(C) 

Fix 11..t. and for each G let Tf be a selection from S(~. G) . Consider 

first G ~ G,. Let T be any (simple) schedule such that R(T) ~ G. We show 

that T(71..t) ~ T;,G(n;.) = G - G;, . Let T2 = T- T(n,:) (i.e., define T2 by 

T2 (x) = T(x)- T(~) for all x) . Then by Comment 2 .3, w•(r2) = w•(r) and 

R( T2 ) = R( T) - T(~) . Let T1 e: S(~) have parameters (0, 1 - w •( T)) (see 

Figure 4 .3). Then by Lemma 4.1, R( T1) ~ R( T2 ) . But by definition 

T(n;.) ~ G - G;, = Tf(11..t) as desired. 1f T2 ~ T1, then by Lemma 4 .1 

R( T1) > R( T2 ), whence T(~) > Tf(71..t) and T is not optimal. Or, if 

R( T2 ) < G.;. then again T(71..t) > Tf(11..t) and T is not optimal. Thus, if T is 

optimal for 71..t given G then T2 = T1 and R( T2 ) = G;,. so T = T2 + T(n;,) and 

thus T E: S(71..t,G) . 

Next, consider G > Gi . Again, let T be any (simple) schedule such that 

R( T) ~ G. First, we show that T(~) > 0. Suppose not, and as above let 

T2 = T- T(n;,) and T1 E: S(71..t) have parameters (0,1 - w •( T)) . Then 
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R( T1) ~ R( T2 ) . But G, ~ R( T1), so we have G;. ~ R( T2 ) = R( T) - T(~) 

~ G - T(n,;) ~ G, contradicting G > G;, . Now, let T3 be the schedule in S(~) 

with parameters ( T(~) . 1 - w •( T)) . Then T3 (~) = T(n,;) and by Lemma 4.1 

R( T3 ) ~ R( T) ~ G. Thus, by definition Tf(~) ~ T3 (n;.). so Tf(n;.) ~ T(~) as 

desired . Again, if T3 ~ T then by Lemma 3.4 R( T3 ) > R( T) ~ G and the 

schedule T4 = T3 + R( T) - R( T3 ) satisfies T4 (n;.) < T3 (n;.) = T(n;.) . and 

R( T4 ) = R( T) ~ G. so Tis not optimal. Or, if T8 t S(n;.. G) then 

Tf(~) < T3 (n;.) = T(n;.) and Tis not optimal. So, if Tis optimal for n;. given 

G then T E S(n;., G) . 

QED 

Next we show that under the same restriction on LD as in the previous 

sections (namely, that LD not be "too concave" in w ), egoistic voters' 

preferences over the set of individually optimal schedules are weakly single

peaked for any government revenue constraint G ~ 0. 

We prove the result as follows . Given the restriction on LD. S(n;.,G) is 

single-valued for all ~ and G; i.e., there exits a unique optimal schedule for 

n;. given G. Denote this schedule by Tf · and for each n, n;. and G let 

f(n;.,n,G) = Tf(n) and let y(n;.,n,G) = y•(n;.. Tf) . We show that f( · ,n,G) is 

"weakly single-troughed" (at n) for any fixed n; i.e., n;. < n 1 ~ n implies that 

T(~ .n.G) ~ f(n 1,n,G), and n ~ n;. < n 1 implies that f(n;.,n,G) ~ f(n 1,n,G) . 

Then since Tf is simple. y(~.n.G) = n- f(~ .n.G), so y( · ,n,G) is weakly 

single-peaked (at n). Thus, if we order the schedules by n;. along a line and 

consider any set of egoistic voters , voter preferences will satisfy weak 

single-peakedness, as defined in Section 2.4, and thus there will exist a voting 

equilibrium over the set of individually optimal schedules. 
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To show that f( · ,n, G) is weakly single-troughed we must first 

characterize the individually optimal schedules more precisely. In particular, 

we must describe the parameters f3 and T as functions of ~ · Fix 

ni E: ~ 0. 1 ) and T E: [0,(1 - wD(N)~]. and solve 

max R0 (T,f3,~) s.t . f3 E: ['11~.1]. 
fJ 

( 4 .1) 

As noted above, a solution f3H(T,~) exists since R0 (T, · ,n,:) is continuous in 

f3 and [ Tl ni.1] is compact . Now we characterize f3n and find the condition 

under which it is unique . 

From above, for (T.~) E: So' 

1 

f3M( T I {3) + T f dF(n) + f3N(n;,) 
T/ fJ 

1 

f3M(•If3) + T f dF(n) + f3N(n;,) -f3LD(1 -{3) for .I_~f3 < 1 -wD(O) 
~fJ ~ 

1 

{3fi(T,~)M(TI {3,(i.~)) + T f dF(n) 
T/ fJ1 (T.'fL;.) 

+ {3, ( T,n;,)N(~) - {3, ( 'i,~)LD( 1 - f3 . ( T,n;,)) for {3, ( T,~) < P ~ 1 

8R0 ,_ {3 ., .) _ 
SO, B{3 \'• , . .,; -

M(TI {3) + N(ni) for ~ ~ {3 < 1 - wD(O) 

M( 1 I {3) + N(n;,) - LD( 1 - {3) + f3LD'( 1 - {3) for max (.I_, 1 - wD(O)) ~ f3 < {3, ( T,n;_) n;, 
0 for {3, ( T,n;,) < f3 ~ 1 . 

(4 .2) 

8R0 T 
For T < T0 (n;,), ap( T, · .n;,) > 0 on ( n;,, 1 - wD(O)) . So there are no 

aR-
solutions in [ ~ ,1 - wD(O)) . Also, the left-hand derivative 813° (T,f3.(i,n,J,n;,) 
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dLD = (3 dw ( 1 - f31j ( T,TL.;,)) < 0 so there are no solutions in [(3, ( 1,'1Lt), 1]. Thus, the 

only solutions lie in [max(_!_,1- wD(O)), f31j(1.71.;.)) . If R0 is strictly concave 

'""' 
in f3 over this interval then the solution is unique . For 

T 
(3 E: (max(-, 1 - wD(0)),(38 (T,TL.;,)), 

TL.;. 

a2Ro 12 T 
a(32 (;,(3 ,n.;.) = -

133 
I ( -p) + 2LD'(1-{3) - f3LD"(1-{3) . This is negative if and 

only if-;:/(;)+~ LD'(l-P) <LD"(l-p) Now ;/(;);,Q, soil 

then for all T < lo(TL.;.). R0(;, · ,n.J is strictly concave over the interval 

(4.3) 

I 
[max(-,1 -wD(O)), {38 (T,TL.;,)], and there is a unique solution fln(1,1Lt) in the 

71.;. 

interval. 

T 
For 1 ~ 10(71.;.). {38 (T,TL.;,) =- and R0(1,{J.TL.;.) = R0(1, 1/71.;.. TLt) for all 

71.;. 

(3 E: [;/n.;., 1], so any (3 E: [1/TL.;.. 1] solves equation (4.1). When fJ > {J8 (1) 

however, the tax schedule with parameters (1,{J) is not simple, and is 

equivalent to the schedule with parameters ('i,{J,(T,TLt)) . So for 1 > 1 0 (n.J 

pick f3H(T .n,) = _!_. (See Figure 4.4 .) 
'1Lt 

Let RH(;,n,) = R0 (T,fJn(I,TLt).n;.) . We now characterize fln(O, · ) and 

RH(O. · ) as functions of TL.;,. 

Lemma 4 .2 . There exists an n' E: [0,1] such that fJn(O, · ) is strictly 

decreasing on [O,n') and Pn(O.TLt) = 1 -wD(O) for n E: [n',1]. Also 

flH(O,O} = {311. Rn(O, ·} is strictly decreasing on [0,1] with 

BRH -
on;. = {3 n(O .n.;.)N' (n.;.) for all TLt. Rn(O, 0} = G11, and Rn(O, 1) = 0 . 
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Proof. At T = 0, equation (4.2) becomes 

0 for {3,(0 ,74) < p < 1. 

Now N is a continuous , strictly decreasing function of 74 on [0, 1] with 

N(O) = N and N(l) = 0, so either there exists an n' such that 

latter case, let n' = 0 . Then for 74 E [0,1], 

{ 

E (1 - wD(O),f38 (0,?'4)) for 1'4 < n' 

f3H(O.T4) = 1 - wD(O) for 74 ~ n' 

and 

oR0 { = 0 for 74 ~ n' 
a{3 (O ,f3 H(O .?'4).1'4) < 0 for 1'4 > n' . 

(4 .4)(a) 

(4 .4)(b) 

oRH oRo of3H oR0 
Now fJ1'4 (O,n,J = a{3 (0, f3H(O,T4), 1'4) · fJ1'4 (0,?'4) + ~ (0, PH(O,T4), 1'4). So, 

oRH oR0 -
for 1'4 E [O,n'), an ... (O,ni) = ~ (0, f3H(O,n;,), n;,) = PH(O,n;.)N'(n;,) < 0 (this is 

an example of the "envelope theorem"). Also, differentiating both sides of 

. fj2 Ro of3H fJ2 Ro of3H - (j2 Ro 
(4 .4)(a) ytelds - 2- · -~- + apa = 0, or '""' . = Bf3BT4 

0{3 V1'4 1'4 VI 'i 

B2Ro 
apz . Now 

o2 H0 - 82 R 0 Bf3H 
apa·n.i = N'(ni) < 0 and of32 < 0 because of equation (4.3), so ~ < 0 

BfJn 
for all n 1 E: (O,n') . For 1'4 E [n',1), f3H(0 ,74) is constant, so ~ = 0, and 

- BRH -
RH(O,n;,) = f3H(0,74)N(T4) so fJ1'4 = f1n(0 ,74)N'(T4) < 0 . Clearly, (Jn(O,O) = {311 , 

RH(O,O) = G11 and Rn(O, 1) = 0, so PH(O , ·) and Rn(O, · ) are as described. 
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QED 

Thus we can show 

2LD'(w) 
Comment 4 . 6 . If LD"(w) > 

1
-'W for all w E (wD(N),wD(O)), and G ~ 0, 

then for all n E [ 0,1]~ y( · ,n,G) is weakly single-peaked (at n). 

Proof. Since G ~ 0 I RH(O~n;.) = R( Ti) ~ G, so Tf E P(n;.) for all n;.. So 

_ _ { G - RH(O~n;.) + PH(O,n;.) [n;. - n] for 0 ~ n;. < n 
T(n;. ~n I G) - G - RH(O.n;.) for n ~ n;. < 1 . 

If n ' ~ n then 

BRH apH 
ar - Bn;. (O,n;.) + an;. (Oin,J [n - n;.] - PH(O,n;.) for 0 < n;. <1 

~ (n;. ~n~G} = aRH 
-an;. (O,n.J for n < n;. < 1 . 

aRH - ! 1 

Now -a -(O~n;.) = PN'(n;.) = -p d.F(n}l so for n;. <n, 
ni ~ 

af apH ! 1 

an;. (n;.~n~G) = an;. (O in.J [n - n,J + PH(O,n;.) ~ d.F(n}- 1 < 0 since 

1 af J d.F(n) < 1. Clearly, for n;. > n, ~ . (n;.~n, G) > 0. Thus f( · ,n,G} is 
~ Ul"\ 

weakly single-troughed at n . If n' < n then 

aRH apH -an;. (O,n;.) + On;. (O~n;.)[n - n;.]- p(O,n;.} for 0 < n;. <n ' 

ar BRH 
Bn;. (n;.~n, G) = - an;. (O,n;.) - P H(O ~ n;.) for n' < n;. < n 

BRH 
- ~ . (O,n;.) 

u•"' for n < ~ < l . 

BT BT 
Then as above , ani (71.t,n,G) < 0 for n;. < n, n;. ~ n', and ~ (71.t,n,G) > 0 
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ar 
for n,: > n . At n,: = n', -

8
-(n,;,n,G) does not exist; however, since Tc is 
n,: 

continuous, it must be strictly decreasing at n' also (it simply has a "kink'') . 

and again f( · ,n, G) is weakly single-troughed at n . Hence, y( · ,n, G) is 

weakly single-peaked at n . 

QED 

With this in hand, we can prove a voting result analogous to that in 

Proposition 3.1. 

Proposition 4 . 4 . Given a measure-space of egoistic voters, if 

2LD'(w) 
LD''(w) > l-w for all w E: (wD(N).wD(O)) and G s 0, then there exists a 

majority-rule equilibrium tax schedule over the set of individually optimal 

schedules for G. 

Proof. If we order the individually optimal simple schedules along the line by 

74 then by Comment 4.6 the preference relations of the set J of voter types 

satisfies weak single-peakedness, as defined in Section 2.4. Also, y( · ,n, G) is 

continuous for all n, and y({3. · ,G) is continouse (hence measurable) for all 

{3. so the conditions of Comment 2.6 are satisfied. Thus, by Comment 2.5, 

there exists a majority-rule equilibrium over this set . 

QED 

While the voting result here (like those of Section 3) is limited in that it 

holds only over a restricted class of schedules, the characterization of the 

individual optima is quite informative . For G not too large and individuals 

with very small endowments, the optimal simple schedule is linear over most 

of its range, with a positive slope. For individuals with large endowments, the 
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optimal schedule has a marginal rate of zero over most of its range, and thus 

is essentially a "lump-sum" tax, except at the highest (and for large G also 

the lowest) income levels . For individuals in the middle, however, the optimal 

schedule is sharply progressive in that there is a large range of incomes that 

face a low marginal rate (zero, in fact), and a large range that face a higher 

marginal rate . This suggests that if some group in the middle income range is 

"getting their way," say because of their strategic position in the disribution 

of voters, then we would see income tax schedules that are marginal-rate 

progressive . 

4.4 After-tax Incomes and Convex Schedules 

In this section we again study individually optimal tax schedules, but we 

restrict the choice set to schedules that are nondecreasing convex functions 

of income, i.e ., schedules that are marginal-rate progressive. An argument 

for doing this is that citizens may have such strong beliefs about the 

"unfairness" of marginal-rate regressive tax schedules that no such schedule 

could be sustained (a similar argument was implicit in the previous section, 

regarding decreasing tax schedules). 

From Proposition 4.3, for any 71..t and any G ~ G;.. the individually 

optimal schedules S(Tt.t. G) over all nondecreasing schedules are convex, and 

hence will also be optimal among the set of convex schedules. For G > G;. 

however, the schedules in S(Tt.t. G) are not convex, and thus cannot be 

optimal among the set of convex schedules . As we show below, for G > G;. 
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the set of simple optimal schedules for n;. given G are of the form 

{

'l;.X 

T;.(x) = 'l;.Tt;. + p,(x -n;.) 

for some 'l;. s {3;. . 

for x s ~ 
for x > ~ 

Proposition 4.5. If T" is a simple, convex schedule that is optimal for n;. 

(4.5) 

given G then it satisfies equation (4 .5), and any other schedule which is also 

optimal for n;. given G is equivalent to such a Ti . 

Proof. Suppose T is simple and convex. Then 

violates either simplicity or convexity). Thus, if T is nonlinear over (n;.,1] 

then n;. < n •( T) and T is nonlinear over (n;. .n •(r)], so 

r+(n;.) < r+(n •( T)) s 1--u· •( T) . In this case, let T1 be defined by 

{ 
T(x) 

T1(x) = T(n;.) + (1--u··(r))(x -n;.) 

for x s n;. 

for x > n;. . 

Then T1 isconvex(since T is)and T1'(n.(T))=1-w.(T), sobyComment 

2.4, T1 induces the same market equilibrium as T, and thus is simple . Also, 

by continuity r+(x) < 1- w•(r) = T1'(x) for some neighborhood (n;.,xi] of 
n n 

n,; and thus T(n) = T(n.J + f r+(x)dx < T(n;.) + f T1'(x)dx = T1(n) for all 
flo( ~ 

n E: (n;. ,n •( T) ]. so R( T1) > R( T) . 1f T is optimal for n;. given G then 

R ( T) ~ G; but then R(T1 ) > G, so there exists a schedule T2 = T1 - ex for 

some Q < 0 such that R~ T2 ) = G. By Comment 2.3, T2 generates the same 

equilibriu.m as T1 and hence is simple (since T1 is), so 

=y •(n;.. T) + ex > y •(n;.. T). contradicting the assumption that T is optimal 



- 60-

for n,; given G. So, T must be linear over (n,;,l]. 

by 

Next , suppose T is not linear over [O,n,;). lf n,; < n •(r) then define T1 

T1 (x) = I 
T(ni) 
--x for x ~ n,; 

n,; 

T(x) for x ~ n,; . 

Then T1 is convex and induces the same market equilibrium as T, and 

hence is simple . Also, since T is convex, T(An,;) ~ AT(n,;) + T(O) for all 

X T(~) 
A E: [0,1], or letting A=-, T(x) ~ --x + T(O) for all x e: [O,nd. Since 

~ ~ 

T is a tax schedule, T(O) ~ 0, and since T is assumed nonlinear on [0.~). 

T(x') < T(~) x' for some x' e: [0.~) and hence for some open 
~ 

neighb::>rhood of x'. Thus R(T) < R(T1), so again if T is optimal for ~ 

given G then R( T) ~ G, and we define T2 = T1 -a for a >0 such that 

R( T2 ) = G. Then y ·(~. T2 ) > y •(71..t, T) , so T could not be optimal. and thus 

T must be linear over [0,71..t) . 

If ~ > n •( T) then define T 1 by 

for x ~ ~ 

for x > ~ 

and repeat the above exercise . Note in this case that the optimal schedule 

for ~ given G will be linear (i.e., A must equal (3 ) . 

That the marginal tax rate over [0.~) cannot exceed the rate over 

(n,;.l] follows directly from convexity . 
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QED 

Of course , this merely characterizes an optimum if one exists , and does 

nc.t prove existence . To do so , we can use the same strategy as in section 4 .3 . 

That is , given any '7'Lt and G , we define the two-parameter family of 

schedules that satisfy equation (4 .5) and R( T) ~ G , define the corresponding 

parameter space , show that the parameter space is compact and that the 

ind ~vidual's afte:--tax income is continuous over it , and apply the theorem of 

the rr..axin1um. Since the work is tedious and rather unenlightening, we omit 

it here . 

4 .5 Conve-x Sr hedules and More General Preferences 

In the previous sections we characterized the optimal schedules for 

bene~- olent and egoistic voters, finding that for a benevolent voter the taxes 

are always linear and for an egoistic voter they are in general "two-part" or 

"three-pa!'t" sctedules with two marginal rates . In this section we 

characterize the optimal tax schedule for voters with generalized 

preferences . This is especially interesting since the shape of the optimal 

schedules for a benEvolent voter is so different from that for an egoistic 

voter . The question is, how is the difference resolved by a voter whose 

preferences are a mixture of the two. We provide a simple and intuitive 

answer . 

As in Section 4 .4, we restrict attention to tax schedules that are 

nondecre=ising, convex functions of income . The characterization we shall 

prove is 
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Proposition 4. 6. Let a voter of type j have preferences over tax schedules 

strictly concave and u1 strictly increasing in S . If 1j is convex, simple, and 

opt in1al fo; j given G then 7j satisfies 

{

a.i + -y1x for x ~ n1 
T.· (x) = 

J a.·+ "Y ·n· + tJ.(x - n ·) for x > n· ] I) ) f'l) J J . 

PrGoj. We proceed exactly as in the proof of Proposition 4.5. Suppose T is 

not line,,r over (n1,1]. Then n; < n •(T) and T is not linear over (n1,n •(T)]. 

Let T1 be defined by 

for x ~ n; 

for x > n;. 

Then T1 is simple and convex, generates the same equilibrium as T, and 

R(T1) = R(T) . Let T2 be defined by T2 (x) = T1(x) + [R(T)- R(T1)] for all x . 

(See ?igure 4 .5.) Then y•(n.T2 ) > y•(n,T1) = y•(n,T) for all n ~ n1. and 

R( T2 ) = R ~ T) . So there must exist n, E: (n1 ,n •( T)) such that 

y•(n.T2') > y•(n.T) for all n < n,. and y•(n,T2 ) < y•(n.T) for all n > n,. 

Then by Comment 4.5, S( T2 , W;) > S( T. W;). and since y •(n1• T2) > y •(n;. T), 

v1(T2 ) = u;(y•(r~.1 .T2), S(T2 ,W1)) > u;(y•(n;.T). S(T.W1) = v;(T). and Tis not 

optintal for a voter of type j . 

Next, suppose 0 < ni < n •( T) and T is not linear on [O,n; ), so 

r+(o) < r - (n;) . For any {3 e: [(T(ni)- T(O))Ini, r-(n;)], define the schedule 

Ti ( · ,{3) by 

. ) J J 

{ 

T(n ·)- (n · - x){J 
TJ(x,f3 = T(x) 

for x ~ ni 

for x > n; . 

(See Figure 4.6 .) Then Ti( · .{3) is simple and convex, and generates the 
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same equilibrium as T. Let Ri(p) = R( Ti( · ,{3)) for all {3 . Then for 

{3 = (T(n1)- T(O))/n;. Ti(x ,p) > T(x) for all x e: (O,n;) (since Tis convex), 

so Ri(f3) > R(T) . And for {3 = r-(n1), Ti(x,{J) < T(x) for all z in some open 

neighborhood of 0, so Ri ({3) < R( T) . Clearly Ri is continuous, so there 

exists {3' E ((T(n;)- T(O))In;, r-(n;)) such that Ri({f) = R(T) . And for 

Ti( · .{3') there exists n' E: (O,n;) such that y•(n,Ti( · ,{f))> y•(n,T) for all 

n < n ' , and y •(n, Ti( · ,{J')) < y •(n, T) for all n E: (n',n;) . Thus by Comment 

4 .5, S(Ti( · ,{J').W;) > S(T,W1) . Also,y•(n1,Ti( · ,{3')) =y•(n;,T), so since u; is 

strictly increasing in S, v;(Ti( · ,{3')) = u;(y•(n1,Ti( · ,{3')), S(Ti( · ,{J'),W;)) > 

u1(y ·(n1. r;, S( T, n-j)) = v;( T), and T is not optimal for j . 

If n; > n •( T) the argument proceeds in the same fashion, with Ti ( · ,{J) 

defined by 

for z ~ n •(r) 
for x > n •( T) . 

QED 

ln general the conclusions from Sections 4 .4. and 4.5 hold, although with 

some modifications . For voters with very small endowments the optimal 

schedule i!:i again linear over most of its range. For voters with very large 

endowments the optimal schedule is also linear over most of its range, but 

the slope is positive if they care about the distribution of after-tax incomes, 

rather than zero as in the case of purely egoistic voters when G is small . 

Thus , the co~clusion that when G is small the optimal tax for voters with 

large endowment is essentially "lump-sum" is true only for egoistic voters--it 

does not hold for voters with generalized preferences . For voters with 

"average" endowments the optimal schedule again imposes different marginal 
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tax rates on two wide ranges of incomes, and thus is rather marginal-rate 

progressive. The tax rate on lower incomes is not zero, however, as in the 

case of egoistic voters when G is small, but positive, and thus the "degree" 

of progressivity, as measured, say, by the difference between the two 

marginal tax rates, is probably less than in the egoistic case. For large G 

( G > Gi ) the shape of the optimal schedule for voters with generalized 

preferences is the same as that for egoistic voters (when we restrict the 

choice set to convex schedules), although for different reasons. 
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5. Tax Schedules and Uncertain Voters 

In the previous sections we have assumed that each voter is perfectly 

informed about her own endowment , the distribution of endowments in the 

economy, the production functions in each sector (or at least the demand 

function for labor in the untaxed sector), and the tax function . Here we 

relax the assumption that voters know with perfect certainty their own 

endowments . One reason for doing this is that we may imagine voters 

choosing a tax schedule that will apply in the future, and they may not have 

perfect foresight about their future productivity. 

Thus, let a voter of type j be egoistic with utility function U; over her 

after-lax income, and let her have a subjective probability distribution 

function Fj over the interval of possible endowments [ n ,n]. Her expected 

utility given a tax schedule Tis then EUi(T) = J U;(y•(n,T)dFj(n). We wish 

to characterize the schedules T that maximize this, subject to the 

government's revenue constraint . 

If F; = F (where F, as above, is the distribution of endowments in the 

economy) and U; is either linear or strictly concave then clearly a type j 

voter's expected utility function has the same form as that of a benevolent 

voter with weighting function Vi, so the Propositions of sections 3 .2 and 4 .2 

regarding benevolent voters apply here . Thus, 

Comment 5 .1. Given a measure-space of uncertain egoistic voters such that 

each voter has a subjective probability distribution over her endowments 

2LD'(w) 
equal to F, if LD"(w) > l-w for all w E: (wD(N),wD(O)) then there exists 

a majority-rule equilibrium tax schedule over the set T(O) which is linear . If 
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more than half of the voters are strictly risk-averse, then any equilibrium is 

equivalent to a linear schedule . 

Recall that a linear utility function means risk-neutrality, and a strictly 

concave utility function means strict risk aversion. 

The voters in Comment 5.1 have rather "neutral" beliefs, in that they 

essentially view their own endowment as a random draw from the distribution 

in society ("tomorrow l could be anyone"). We might imagine instead that 

voters are ,,pessimistic" (',optimistic") and believe it more likely (less likely) 

that they will have a high endowment than if their endowment was drawn 

randomly from F. One natural way to capture this is to call a voter 

pessimistic (optimistic) if Fj is first-order stochastically dominated by 

(first-order stochastic dominates) F . Then for pessimistic voters we have 

the following result. 

Proposition 5.1. For any pessimistic, egoistic voter there exists a simple 

linear schedule which maximizes her expected utility over the set T(O). If 

she is strictly risk-averse then any simple schedule that maximizes her 

expected utility over T(O) is linear . 

Proof Let the voter be of type j , with endowment n cj and subjective 

probability distribution function Fj . First, we show that if T is any simple 

schedule that is not linear on [n..n] then there exists a (simple) linear 

schedule T1 with R( T1) = R( T) such that the voter prefers T1 to T. Let T 

be simple and nonlinear on [n,n] and let T1 be the linear schedule with 

slope 1-w •( T) and intercept w •( T)N - y•( T) . Then, as shown in the proof 

of Proposition 4.1, T1 is simple and generates the same equilibrium as T. 
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R(T1) = R(T) and hence y•(T1 ) = y•(r), and there exists n, E (n,n) such 

that y•(n,T1)';?::y•(n,T) forall n~n, and y•(n,T1 )~y·(n.T) forall 

n ';?::. n 6 , with strict inequality on some open neighborhoods of 11 and n. 

In fact, the function y •( · , T1) - y •( · , T) is nonincreasing on [n,n]. To 

h . f . h b . l ' ·t T(x2) - T(xl) •( ) see t 1s, note 1rst t at y s1mp 1c1 y ~ 1--'W T for all 
xi- x2 

x 1 < x 2 . And, by construction, 

both simple, y•(n 1,T1) -y•(n 1.T) = [n 1 - T1(n 1)]- [n 1 - T(n 1)] = 

T(n 1)- T1(n 1) ';?::. T(n 2)- T1(n 2 ) = y•(n 2 ,T1) -y•(n2 .T). for all n 1 < n 2 , as 

desired . 

Then, since Fj is stochastic ally dominated by F. 

J [y•(n,T1) -y•(n,T)]dFj(n) ';?::. J [y•(n.T1) -y•(n.T)]dF(n) = 0 . Let 

1 = J [y•(n.T1) -y•(n,T)]dFj(n) ';?::. 0, and define the schedule T2 by 

T2 (x) = T1(x) + 1 for all x. (See Figure 5 .1 .) Then, by Comment 2.3, T2 

for all n and J y•(n.T2)dF(n) = J y•(n.T)dF(n). Also, 

1 < y•(o ,T1) -y•(o.T) (else 1 > J [y•(n,T1) -y•(n.T)]dJij(n) contrary to 

assumption) so there exists n,' E (n ,n) such that y •(n, T2) ';?::. y •(n, T) for all 

n ~ n, and y •(n, T2) ~ y •(n, T) for all n ';?::. n,, with strict inequality for some 

open intervals of n and n. Then, by Comment 4 .5, 

U; is increasing , U; (y •(n, T1) ';?::. V;(Y •(n, T2)) for all n, so 

EU;(T1) ';?::. EU;(T2 ), and thus EV;(T1) ~ EU;(T) as desired. 

Since Jij is stochastically dominated by F. Fj(n) ';?::. F(n) for all n and 
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thus Fj has positive measure on a neighborhood of ll (since F does, by 

assumption) . Thus, since y •( · , T2 ) < y •( · , T) on an open neighborhood of 

n. if Ui is strictly concave then EU1( T2) > EU1 ( T) and hence 

EU1( T1) > EU1( T) and T is not optimal. So, when the voter is strictly risk 

averse, any optimal schedule for j must be linear over [n,n]. 

... 
Now, we show that an optimal linear schedule exists. Let EU1 : JR--+ JR be 

defined by EUi(f3) = EUi( T) where T E: L(O) has slope (:3. Then from equation 

(3 .1 ), y(n , ·) is continuous for all n, so E'U; is continuous . And, for 

- -
(:3 t. [0,1-wD(N)], EUi(f3) ~ EUi(O) so we can restrict our search for an 

optimal (:3 to [0,1-wD(N)]. This is compact, and thus a f3; that maximizes 

-
EU1 exists . Then the linear tax schedule T1 E: T(O) with slope f3; is optimal 

for the voter given G = 0. 

QED 

We have a voting result analogous to that for benevolent voters . 

Proposition 5.2. Given a measure-space of pessimistic, egoistic voters who all 

2LD'(w) 
have the sante utility function U, if LD" > l--'W for all w E: (wD(N),wD(O)) 

then there exists a majority-rule equilibrium tax schedule over the set T(O) . 

If the voters are strictly risk-averse, then any such equilibrium schedule is 

equivalent to a linear schedule . 

Proof. Using the same argument as in the proof of Comment 3.5 (with Fj 

substituted for F) we can show that the preferences of each voter type are 

weakly single-peaked over the set L(O) when we order the elements of L(O) 

by their slope parameter. Thus, the set of voter preferences satisfy weak 
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single-peakedness, as defined in Section 2.4. Also, the conditions of Comment 

2.6 are satisfied, so by Comment 2 .5 there exists a majority-rule equilibrium 

tax schedule TE over L(O) . Using the same argument as in the proof of 

Proposition 4.2 we can extend this to T(O), so TE is an equilibrium over 

T(O) . If more than half of the voters are strictly risk-averse then by 

Proposition 5 .1 any equilibrium must be equivalent to a linear schedule. 

QED 

In general. we cannot easily characterize the optimal schedules for 

"optimistic'' voters. In the special case of risk-neutrality however, we can, 

and the result is somewhat surprising, at least at first glance . 

Comment 5.2. Given an egoistic, risk-neutral. optimistic voter, for any 

G ~ < 0 the schedule Tc defined by Tc(x) = G for all x is optimal for the 

voter given G , over the set N( G) . 

Proof. Let the voter be of type j . Clearly, if T is any simple schedule in 

N( G) then the function T - T c is nondecreasing on [ n ,n], so 

y •( · , Tc) - y •( · , T) is also (since both T and Tc are simple). Then since 

Fj stochastically dominates F, 

J [y•(n,Tc) -y•(n ,T)]dFj(n) ~ J [y•(n,Tc) -y•(n,T)]dF(n) . And 

x•( Tc) = N ~ x•( T), so y•( Tc) = N- R( Tc) = N- G ~ y•( T), so 

J [y •(n, Tc) - y •(n, T) ]dF(n) ~ 0 . Thus 

EUi(Tc) = J y•(n,Tc)dFj(n) ~ J y•(n,T)dFj(n) = EU1(T), so Tc is optimal for 

j . 

QED 

Notice that Tc is the schedule that maximizes the after-tax income of the 
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individual with the highest ability level (over the set N( G) ). It is easily 

checked that the same result holds for G > 0; i.e ., the schedule that 

maximizes the after-tax income of the most able individual over N( G) is 

optimal for j over N( G). Of course, there may be other optimal schedules, 

depending on the relationship between Fj and F (where Fj and F 

coincide, there is lots of "room for maneuver") . 
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6 . A Comparison with the "Labor-Leisure" Framework 

Here we compare our two-sector model to the "labor-leisure" model 

formulated (or at least formalized) by Mirrlees [ 1 7], which is quite popular 

and has been used extensively in the optimal tax literature, to see how the 

assumptions differ and what role the differences play in driving results. In 

the Mirrlees framework, each worker-consumer has a utility function u over 

consumption (income) and leisure, and has 1 unit of time to divide between 

earning income and leisure . An individual's "ability level" (endowment) 

affects his marginal productivity in earning income, but does not affect his 

"productivity" in converting leisure into utility . Thus, an individual of ability 

n who works t units of time and consumes 1 - t units of leisure gets 

utility 

u(nt- T(nt). 1-t) 

where it is assumed that the wage is 1 and T is the income tax schedule 

(only income can be taxed, not leisure or ability levels) . 

(6 .1 ) 

In our model. if we interpret endowments as "ability levels," and give 

each worker-consumer 1 unit of time to divide between sectors (as in Note 

2 .1 ), we can rewrite equation (2.1) as 

nt - T(nt) + wn ( l -t) . (6.2) 

Interpreting the untaxed sector earnings as leisure, this looks very much like 

a special case of the utility function above, since if u(c ,l) = c + wl for all c 

and l then equation (6.1) becomes 

nt - T( nt) + w ( 1 -t) . (6 .3) 

Note, however, the difference that n does not directly affect the marginal 
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utility of leisure time in equation (6.3), as it does in (6 .2) . Also, in the 

Mirrlees framework all individuals are assumed to have the same utility 

function u (hence the same w, if u is linear), so we cannot make the 

marginal utility of leisure depend on n by having u depend on n . Another 

difference between the models is that in the Mirrlees model (with a linear 

utility function) the marginal utility of leisure time for any individual, w , is 

fixed, while in our model the marginal utility of time spent in the untaxed 

sector varies, depending on the aggregate supply of time in that sector. 

It is clear that while the models are slightly different in these respects , 

the "linearity" in our model of each individual's indirect utility function over 

labor plays a key role in driving some results, particularly regarding the 

shape of the optimal tax schedules, which do not come out so "cleanly" in the 

Mirrlees model. Basically, in the two-sector model we need only worry about 

the marginal tax rate at "a few" income levels--the lower endpoints of critical 

intervals-- because each individual either makes her labor choice to satisfy a 

marginal condition at one of those points, or else will "corner," and supply all 

her labor to the taxed sector (i .e "consume no leisure"), while in the Mirrlees 

model with highly nonlinear indirect utility functions over labor choices, the 

marginal tax rate is important at almost all income levels because all 

individuals who work choose an "interior" point where they are balancing the 

marginal utility gain from working (which depends on the marginal tax rate) 

with th e marginal utility of leisure . 

Some of the other conclusions of our model are due not to the absence 

of a nonlinear "labor-leisure" tradeoff, but to assumptions made about the 

untaxed sector . In particular , the disturbing prediction that for any strictly 

convex tax schedule T no individuals earn a taxable income higher than 
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n •( T) and there is a large "clump" of individuals who earn taxable income 

exactly n •( T) (see Section 2 .3), is due to the assumption that the untaxed 

sector is perfectly competitive; i.e ., that only one wage prevails, and that 

labor is homogenous . To prove this, we show below that this same conclusion 

holds even in the "labor-leisure" setting if a competitive untaxed sector 

exists . 

As in the standard Mirrlees model, let each individual have a utility 

function u over money income and leisure . Suppose however, that 

individuals can split the time they work between a taxed and an untaxed 

sector, and that the labor markets in both sectors are perfectly competitive 

so that in each sector all units of labor are paid the same wage. Let the wage 

in the taxed sector be 1, and that in the untaxed sector w . Then an 

individual of ability n who works x units of time in the taxed sector, z 

units in the untaxed sector, and consumes 1-x -z units of time as leisure, 

receives utility 

v(x,z,n) = u(nx- T(nx) + nwz, 1-x-z) 

where T is the tax due as a function of taxable income. As we are proving a 

proposition about strictly convex tax schedules, assume T is strictly convex. 

Also, for simplicity, assume T is twice differentiable . 

Individuals choose x and z to maximize v. subject to x E [0,1 ]. 

z E [0, 1 ], and x + z ~ 1. Assume, as in Mirrlees, that lim 8ua = +oo and 
c-+0 C 

lim aaul = +oo, so no individuals choose to consume either zero leisure or 
l-+0 
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zero income . Differentiating v yields 

av au dT au dT 
ax = ac ·n(1 - dl (nx))- az = 0 if and only if 1 - dl (nx) = 

av au au - = - ·nw - - = 0 if and only if w = 
az ac aL 

au 
ac 
au. 

n·az 

au 
ac 
au 1 and 

n·-
8l 

Th b av av l . f d T ( ) us , oth ax and a; on y 1 1 - dl nx = w. This is the same condition 

as that for convex schedules in our simple two-sector model--the individual 

supplies labor to the taxed sector up to the point at which the after-tax 

marginal wage in the taxed sector equals the wage in the untaxed sector . 

(See Figure 2 .2 .) If the individual is unable to allocate her working time 

between sectors to achieve this condition, then she will "corner,'' and spend 

all her working time in one sector . 

To clarify this, let x•(n) , z •(n) be an optimal labor choice pair for n; 

thus t•(n) = 1 - x •(n) - z •(n) is her leisure choice . If these are optimaL 

then no reallocation of labor x, z such that x + z = t•(n) can increase her 

after-tax income . Thus, 

(i) If ~~ (0) ~ 1-w then z •(n) = 1 - l •(n) and x •(n) = 0; i.e., she allocates 

all her labor to the untaxed sector (else shifting labor from the taxed sector 

to the untaxed would increase her after-tax income) . 

(ii) If ~~ (nl•(n)) ~ 1-w then x •(n) = 1 -l•(n) and z •(n) = 0; i.e., she 

allocates all her labor to the taxed sector (else shifting labor from the taxed 

sector to the taxed would increase her after-tax income). 

(iii) Otherwise, x·(n) E: (O,l.(n)) satisfies the marginal condition above, 
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d T I .( )) -dl , nx n - 1 -w . 

So, letting I(w,T) solve ~~(f(w,T)) = 1-w (such an I(w,T) exists as long 

dT dT 
as dl (0) < 1-w and di(J) > 1-w for some I), it is clear that given w 

and T no individual ever earns a taxable income higher than I (w, T), and all 

individuals who spend a positive amount of time in the untaxed sector earn a 

taxable income of exactly I(w, T) . This holds for all w, and thus for w •( T) 

in particular (note, we do not need to specify how w •( T) is determined) . 

Thus, it is the assumption of a purely competitive untaxed sector, and 

homogenous labor, that generates the "maximal" taxable income and 

"clumping ." Of course, if the untaxed sector is modelled differently--for 

example, if each individual has an untaxed sector production function that 

depends on her own labor input to the sector--or if there are several types of 

labor which differ with respect to their relative productivity in the taxed and 

untaxed sectors, then "clumping" of taxable incomes might not occur. 
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Notes for Part I 

1. Equivalently , we could assume that all individuals supply the same 

amount of labor, but productivity per unit varies across individuals . 

2. Actually , to get interesting results we only need the weaker condition 

wD(N) < 1. However, assuming wD(L) E: (0, 1) for all L E: [O,N] 

simplifies notation and avoids some technical details. 

3 . There are several simple stories that would support these assumptions; 

we give two here . 

( 1) We may imagine that in each sector there is a production function 

which depends on the total labor supplied to the sector. Suppose that 

there are constant returns to scale in the taxed sector, and choose units 

so that the output per unit of labor in that sector is 1. Suppose that 

production in the untaxed sector is always "less efficient" than that in 

the taxed sector, and exhibits decreasing returns to scale . That is, 

suppose there exists a function q : [O,N] .... RR, where q (L) is the 

output given total labor input of L, with q'(L) E: (0,1) and q"(L) < 0 for 

all L . If the labor market in each sector is perfectly competitive then 

the the return to each unit of labor must be equal to the marginal 

product of labor, so the wage in the taxed sector is 1 and that in the 

untaxed sector is wD(L) = q'(L) . Then wD(L) E: (0,1) and wD'(L) < 0 for 

all L. There is a further complication in this story however-- given 

decreasing returns to scale, there are profits earned on all 

inframarginal units of labor in the untaxed sector, and it is unclear who 

receives these profits . Thus, to eliminate profits we must imagine some 



- 77 -

sort of negative production externality, a kind of "crowding", so that 

q'(L) gives the productivity of all units of labor in the untaxed sector 

when the total labor used in that sector is L . 

(2) Suppose that the production function is the same in both sectors, 

and satisfies constant returns to scale . Again, choose units so the 

marginal product (and thus the average product) per unit of labor is 1. 

Suppose that the government polices the untaxed sector and punishes 

labor in that sector by confiscating any output it discovers. Suppose 

also that the government is more effective at policing, the greater the 

amount of labor supplied to the untaxed sector . (Note that we are 

taking the government's policing "effort" as exogenous .) Thus, let 

p (L) E (0,1) be the probability that the government discovers a unit of 

labor in the untaxed sector given a total untaxed labor supply of L, with 

p'(L) >0 for all L. Again suppose that labor markets in both sectors 

are perfectly competitive, so the wage in the taxed sector is 1. The 

expected wage in the untaxed sector is then p (L) ( p (L) ·1 + ( 1-p (L)) ·O ), 

so if we let wD be the expected wage in the untaxed sector, 

wD(L) E (0 ,1 )) and wD'(L) < 0 for all L as desired. 

4 . Thu~ . the government cannot tax labor in the sheltered sector, nor can 

it tax labor directly. 

5 . Allerna.tively , we could assume that each individual i in the economy, 

with endowment ni, has a utility function ui over her own after-tax 

income and some public good. Thus, if Yi is her after-tax income and 

G is the amount of public good provided, her utility is ~(Yi · G) . If the 

level of public good is fixed at G, and ~( · , G) is strictly increasing in 
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Y-;. , then U-;. ( · , G) is maximized if and only if Y-;. is . Thus, an individual 

i with n-;. = n will maximize the expression in equation (2 .1 ) . This is 

interesting because we wish to consider some taxes that raise nonzero 

net revenue to the government, the assumption being that the 

government does not throw the money away, but spends it on public 

goods . 

6 . We could instead assume that voters have utility functions over both 

their own income and the amount of public good (as in note 2.5), and are 

choosing a tax schedule taking the level of public good as fixed at some 

level G. (And thus only consider tax schedules T such that R( T) = G.) 

7 . Again , we could suppose (as in note 2 .5) that individuals in the economy 

have utility functions u-;. over Y-;. and G, and voters are choosing a tax 

schedule taking the level of public good provided, G, as fixed. (And thus 

only consider tax schedules T such that R( T) = G.) If all individuals 

have the same utility function u then a benevolent voter j with 

weighting function Wj has indirect utility function over tax schedules 

S( · .Wi) defined by S(T.Wi) = f Wi(u(y•(n.T).G))dF(n) . 

8 . We could deal with intermediate cases as well, where W is only weakly 

concave but not linear , but doing so merely adds technical details 

without additional insights. 

9 . If we allow decreasing schedules then the optimal schedule given G for 

an individual with endowment n is of the form below, with a sharp 
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discontinuity at n . (See Figure N.l. ) 

{ 
{3x 

T(x) = T(n) + {3x 
for x < n 
for x ~ n 

w~ere f3 E: ) - wn(O) , 1 - wn(N)] and 

-{3N+f3LnC - .B)+G 
T(n) = 1 

J dF(m) 
n 

(or any equivalent schedule) . 
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Appendix A 

Here we prove the existence and uniqueness of a market equilibrium. In 

what fo llows , ~(n,w~T) = minx(n~w~T)~ x(n,w~T) = maxx(n,w~T)~ 

X( w I T) = min X( w I T) and X( w, T) = max X( w, T). 

Lemma A.l . For each n E: [0 .1 ], x(n, · ,T) and x(n, · ~T) satisfy 

(i) if w 1 ~ w 2 then ~(n,w 2 1 T) ~ x(n lw 2 1 T) ~ x(n lw 1 1 T) ~ x(n~w 1 1 T) ~ and 

(ii) X (n I • ' T) is right- hand continuous, and x(n I . IT) is left- hand 

cor~ tinuc· u s . 

Proof. For any w, x(nlwl T) ~ x(n,w, T) by definition. For notational 

convenience, write Xm =~(n~w 1 ,T) . We show that T(x)- (1 -w 2 )x 

> T(xm,)- ( ~ -w2)xm for all X E: (xm,nJ and thus x(nlw2,T) ~ Xm l from which 

(i) follows . If x E: (xm ~ nJ, and w 2 > w 1 , then x > Xm implies 

[ T(x) - C - w 2)x] - [ T(xm.) - ( 1 - w 2)xm.J > 

[T(x)- (1 - w 1)x]- [ T(xm.)- (1- w 1)xm.J. 

But xm minimizes T(x' )- (1 - w 1)x' over [O~nJ, so the right side is 

nonnegative, and T(x) - (1 - w 2 )x > T(xm.) - (1 - w 2)xm as desired. 

We now show that x(n, · , T) is left- hand continuous; the proof for 

x(n , · ,T) is analogous . Let wE: (0 ~1 ), write x(n,w~T) = xml and fix E: > 0 . 

We must find 6 such that w' E: (w- o,w) implies x(n ~w'~T) -xm < E: (by (i), 
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x(n,w', T) ~ xm for all w' < w) . Now if xm + t > n then clearly 

x (n.w ', T) < xm + e for all w' < w and we may choose any 6, so suppose 

x m + t ~ n . Let s ( t) = min 
[:m + t,n] 

T(x) - T(xm) 
x -xm 

Clearly s (e) exists, since 

T(x)- T(xm) 
[xm + e,n] is compact and is continuous. Also, for all 

x -xm 

x E: (xm,n], T(x)- (1 - w)x > T(xm)- (1 - w)xm, or 

T(x)- T(xm) > 1 -w. so s(e) > 1 -w. Let 6 = s(e) -1 + w > 0, and let 
X -xm 

w ' E: (w - 6,w) = (1 - s(e),w). Then for all x E: [xm + t,n], 

Ttx)- T(xm) ~ s(e) > 1- w, or T(x)- ( l - w')x > T(xm)- (1 - w')xm . So, 
x -xm 

x(n,w' , T) < xm + t and x(n, . IT) is left-hand continuous at W. And 

wE: (0,1) was arbitrary, so x(n, · ,T) is left-hand continuous on (0,1). 

QED 

Lemrna A.2. X( · , T) and X( · , T) satisfy 

(i) if w 1 ~ w 2 then X(w 2 , T) ~ X(w 2 . T) ~ X(w 1 , T) ~ X(w 1 , T), and 

(ii) X( · , T) is right-hand continuous, and X( · , T) is left-hand continuous . 

Proof. For all wE: (0,1), X(w,T) = J ~(n,w,T)dF(n) and 

X(w, T) = J x(n,w, T)dF(n), so (i) follows directly from Lemma A.1. To see 

that X( · .T) is left-hand continuous, let wE: (0,1) and let ~wi~ be a 

sequE'nce in (O,w] with wi __. w . Then lim x(wi, T) w, .. w 

= lim f x(n,wi,T)dF(n) = f lim x(n,wi,T)dF(n) = f x(n,w,T)dF(n) 
wi .. w w, .. w 

= X(w, T). The second equality follows from the Lesbegue Dominated 

Convergence Theorem, and the third follows from Lemma A.1. A similar 

argument shows that X( · , T) is right-hand continuous. 
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QED 

Recall that an equilibrium is a pair (w •,L •) satisfying L • E: L(w •, T) and 

Proposition A.l. For any tax schedule T, a market equilibrium (w •,L •) 

exists and is unique . 

(See Figure A. l) 

Proof. As noted in the paper (following (3)) X( · , T) : (0,1) ........ [O,N] has 

nonempty compact, convex values. Hence X(w, T) = [X(w, T),X(w, T)] for all 

w, so by Lemma A. 2 X( · , T) clearly has closed graph (it is upper 

- -
hemicon~inous and has compact range), so L( · , T) = N- X( · , T) does also. 

By assumption, the wage function wD: [O,N]--+ (0,1) is continuous, so by the 

Von Neumann Intersection Lemma, an equilibrium (w •,L •) exists. To prove 

uniqueness, let (w',L') be another equilibrium, and suppose w' ~ w •. If 

w I > w. then L ' < L. since WD is a strictly decreasing function, so x· <X' . 

But by Lemma A.2 X(w', T) ~ X(w •, T), so X' E: X(w •, T) implies that 

X'~ X(u •. T) ~ x•, a contradiction. Similarly, we cannot have w' < w •. so 

w' = W • . And, since WD is strictly decreasing, X'= x•. 

QED 
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Appendix B 

We must show that R0 ( · , · ,ni) is continuous on So(~) . This requires 

some pre liminary work. 

If T E: S(ni) has parameters (T,{3) then 

0 

T -
[O,.M( {f) + N(~)] 

L( w I T) = N - X( w I T) = T -
M( (1-w)) + N(~) 

[.M (~) + N(~). N] 

N 

for wE: [0,1 -{3) 

for w = 1 - {3 

T 
for wE: (1 -{3,1- -) 

~ 

T 
for w = 1--

~ 

T 
for w E: ( 1 - -, 1] 

~ 

n 1 

(B.1) 

where for any n E: [0,1], M(n) = J mdF(m) and N(n) = J (m- n)dF(m). 
0 n 

Let T 0 (ni) = ~ [ 1 - wD(M(~) + N(~))]. Then 

- T 
M (ni) + N(ni.) > LD( 1 - -) for T < T0 (~) . and 

~ 

.M(ni) + N('f4) < LD( 1 - .2....) for T > T0 (~) . 
~ 

Let (3e : Sa ' -+ [1 -wD(O), 1 -wD(N)] be defined by 

for T E: (T0 (~). ( 1 - w (N))~] . 

(See Figure B.l .) 

We now prove that {3 8 is well-defined and has several convenient 

properlie s . 
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Lemma B.l . The function {36 exists, is continuous and strictly increasing in 

T for any ni E: [0, 1], and satisfies 

Proof. Consider T E: [0 ,T0 (n..;)]. For T > (1 - wD(O))n..; and f3 = ..!_, 
71...; 

T - T 
T ~ ( 1 - w_o(O))n,. and f3 = 1 - wn(O), M( ""f) + N(n..;) = M( 1-wD(O)) 

+ N(ni ) > 0 = Ln(l - {3). For any T E: [0,T0 (n..;)] and f3 = 1 - wn(N). 

T- T-- T-
M ( {j) + N(n..;) = M( 1-wn(N)) + N(ni) < N = Ln(l - {3) . Now, .M.( p) + N(n..;) is 

decreasing and continuous in f3 on [max(1 - wD(O),..!_), 1 - wn(N)]. and 
71...; 

Ln(l - {3) is strictly increasing and continuous in f3 on (1-wn(0),1-wn(N)), 

so there exists a unique {3 8 ( 1,71...;) that solves M(;) + N(n;,) = Ln( 1-{3). and 

the function {3 6 defined above exists, and satisfies 

Write lhe equation M(;) + N(n;,) = Ln(l-{3) as N(n..;) = Ln(l-{3) - M(;) 

~ 1 2 1 BLn = g ( 1,{3) and differentiate to get ap ( 1,{3) = {33 f (""f) - aw (1-{3) > 0 for 

{3 E: (1-wD(O), 1-wD(N)) . Thus , by the implicit function theorem {3,( · .n..;) is 

continuous (in fact, differentiable) on [0,T0 (n..;)] for any n;,. Obviously , 

{3 6 ( · .n;,) is continuous over (10 (n;,), (1-wn(N))n..;]. From above 
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continuous on [0 , (1-wD(N))nJ . 

Clearly, {3 8 ( · ,n.J is strictly increasing on (To(~) . (1-wD(N))~) . For 

~ 
( ( ) ( ( ) ) - -( . ) ~ ~. Ef!_ - Ef!_ - - .EI_ T E: 0,T0 TL.t , g T,{3 8 T - N ~ , so 

8
T + 

8
{3 

8
T - 0, or 

8
T - Eg_ . Now 

8{3 

E.g_ E9_ T T 

8
R, > 0 from above, and = --1 ( -) < 0 so 
t-' 8T f3'2 {3 I 

Ef!_ 
8

T > 0. Thus, {38 ( · .~) is 

strictly increasing on [ 0,( 1 -wD(N))~]. 

QED 

The function {3, ( · .~) defines the "boundary" between the simple and 

nonsimple schedules in S(nJ . That is , 

Lemma B.2. Let T E: S(~) have parameters (T ,{3). If {3 E: [ _!_, p,(T,~)] then 
~ 

w •( T) = min (1 - {3 , wD(O)) and T is simple . If {3 E: (p, ( T,~) . 1] then 

w •( T) = 1 - {3, ( T .~) and T is not simple, but T is equivalent to the simple 

schedule T1 E: S(ni) with parameters (T,f38 (T, ~)) . 

(See Figure B.2 .) 

Proof. Fix ~ E: [0, 1] and T E: [0,( 1 -wD(N))~). For P E: [ _!_, 1-wD(O)) (if any 
~ 

such {3 exist), N- x•(wD(O), T) = 0 = LD(wD(O)) so w •( T) = wD(O) and T is 

T -
clearly simple . For {3 E: [max( 1-wD(O),-), {38 (T.~)], N- X(l-p,T) = 

~ 

T - T -
[0, M ( p) + N(~)] :> [0, M( {3,(T,~)) + N(~)] ~ LD(1-{38 (T,~)) . Since LD is 

strictly decreasing , LD( 1-{3) < LD( 1-{38 ( T,~)) and thus 

LD(l -{3) E: N - X( 1-{3 , T), so w •( T) = 1-{3, so again T is simple . For 
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{3 E: (f' 9 (T,ni), 1], if~~ T0 (n.J then N -X(1-{3i(T.~).T) ~ 

M ( {3 (T ))+N(ni)=LD(1-f3e(T.~)) so w•(r)=1-{39 (T,~) . andif 
9 T,n~ 

simple . However , the schedule T1 E: S(~) with parameters ( 1,{39 ( T,~)) is 

simple, and following the proof of Comment 4 .3 it is straightforward to show 

that T1 is equivalent to T. ( T1 is T "properly linearized" over its critical 

intervals .) 

Thus, we finally have 

Lem·maB.3. For any~ E: [0,1], R 0 ( · , · .~)is continuous on S(~) . 

Proof. Fix ni E: [0, ~ ]. In view of Comment 4.2 and Lemma B.2, for 

1 

T J -R0 (T,f',~) ={3M(-;;-)+ 1 dF(n) + {3N(~); for 
tJ TI{J 

HT./3) I T E: [0, (1-wD(N))n.J and {3 E: [max(l-wD(O), {38 (T,~)L 
1 

R0 (T,f' ,n.J ={3M ( -~)+ 1 J dF(n) + {3N(n:,J- f3LD(1-{3); and for 
~ 7'/ fJ 

H1,{') I T-.:: [0,(1 - wD(N))~] and {3 E: ({38 (i,~).1]L 

and LD is continuous by assumption, R0 ( · , · ,nJ is continuous over 
1 

QED 

So(nJ- HO.O)~ . Also, lim R0 (0,{3.~) =lim {3j (n- ~)dF(n) = 0 = R0 (0,0.~). 
{J ... O {J ... O ~ 

so R0 ( · , · .~) is also continuous at HO.O)~. So R0 ( · , · .~) is continuous on 
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Here we prove Lemma 4 .1 . 

Lemma 4 .1 Fix ~ E: [0,1]. Let T be simple with T(~) ~ 0, and let T1 be 

defined by 

T1 (x) = T(~) 
T(~) + (1 - w •( T))(x - n,J 

T(~) 
for O~x~ ---

1-w ·(r) 
T('n.t) 

for .( ) < x ~ 7t.t 1-w T 

for ~ < x ~ 1 . 

Then T1 E: S(~) and R(T1) ~ R(T) . Furthermore, if T ~ T1 then 

Proof Smce Tis simple, T(n;),;; (1- w •(r))n;, so (1 - w·(r)) E: [ T~) .1] 

and thus T1 E: S(n.J . Since Tis also nondecreasing, 

QED 

T(ni) 
T(x)~ (1 -w·(T))x = T1 (x) for O~x~ (

1
-w.(T))' T(x)~ T(7t.t) = T(x) for 

T(~) ) < x ,;; n;. and T(x) ,;; T(n;) + (1 - w •( T))(x -n;) = T1 (x) for 
1-w T 

r r(~) ] 
ni < x ~ 1. 1f 1 - w •( T) E: l~· {38 (T(~).~) then by Lemma B.2, T1 is 

simple and w •( T1) = w •( T), so using Comment 4.2, 

R(T1) = jT 1(n)dF(n)- (1 -w·(T1))LD(w.(T1)) 

~ J T(n )dF(n) - ( 1 - w •( T))LD(w •( T)) = R( T) . If T(x) # T1 (x) for some x , 

then by continuity T < T1 over some open neighborhood of x, so 

jT1(n)dF(n) > jT(n)dF(n), and thus R(T1) > R(T) . 
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Otherwise 1 - w •( T) E ({38 ( T(n;,) ,n;,), 1 ], so by Lemma B.2 T1 is not 

sirr1ple, but it is equivalent to the simple schedule T2 E S(n;,) with parameters 

(T(nJ, ~e(T(n;,) . n;,)) . For T(n;,) E [ O,T0(n;,)], 

LD( l - f3u( T(nJ ,ni)) = M(T(n.,)l {3 8 (T(n;.),n;,)) + N(n;.) and 
1 

R0 (T(ni), {38 (T(n;.).n;,)) = T(n;.)j dF(n) . Since Tis simple, 
T(~)l fJ, (T(ni)·ni) 

1 

= (1 -u··(r)) ·M(T(r'i)/(1-w·(r))) + T(n;.)j dF(n) 
T(~); (1-w ·cr» 

T(~)l fJ, (T(~).~) 
= (1 - w·(T))M (T:nJI (1-w.(T))) + T(n;.)j dF(n) 

rcn,)l (1-w ·en> 
1 

+ T(ni)j dF(n) + (1 - w •(T))N(n;,) 
T(ni)l fJ, (T(ni).n.t) 

f T(ni) T(n;,) ] • 
For n E l1-w .( T) , f3e ( T(n;.).n;,) , T(n;,) ~ ( 1 - w ( T)}n, so 

T(~)l fJ, (T(~).~) 
R(T) ~ (1-w.(T))M(T(ni)/ 1-w.(T)) + (1-w.(T))j ndF(n) 

rc~>; c1-w ·en> 
1 

+ (1-w.(T))N(ni)- (1-w.(T))LD(w.(T)) + T(ni)j dF(n) 
T(~)l fJ, (T(~).~) 
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1 

+ T(n.;.)j dF(n) . 
T(~)l P11 (T(n,).~) 

(See Figure B.3.) 

in brackets is strictly negative, and 
1 

R(T) < T(n;_)j dF(n) = R(T1) as desired. 
T(~)l P11 (T(~).n,) 

T(~) 
For T(n;_) > T 0 (ni)· {3,.(T(n;_),n;_) = --, and LD(1 - {3,.(T(~).n;_)) = 

n,; 
nl 

M(ni) + N(ni) + J dF(n) > M(nJ + N(n;_) and R0 (T(~).{3,.(T(~).n,;)) = 
1 

n, 

T(ni)j dF(n) for some n 1 > ni. Using a similar argument to that above, 
nl 

1 

R(T) ~ (1-w.(T))M(T(~)/ (1-w.(T))) + T(n;,)j d.F(n) 
rc~>; c1-w ·en> 

n 1 1 

~ (1-w.(T)) ·flM(n;,) + j dF(n) + M(n;,)- LD(w.(T))] + T(n,;>f dF(n) . 
~ nl 

(See Figure B.4.) 

Again, since 1 - w •( T) > {3,. ( T(n;_),n,;), LD(w •( T)) > LD(l - 13.( T(~).n,;)) so the 
1 

term in brackets is negative, and R( T) < T(ni) J dF(n) = R( T1) as desired . 
nl 

QED 
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Il. INCOME TAXES IN THE ARBITRAGE PRICING THEORY 

7 . Introduction 

A necessary condition for a market to be in equilibrium is that there are 

no opportunities for any trader to make an arbitrarily large profit. This 

condition often imposes limitations on what an equilibrium must look like, 

particularly when the markets involved function "smoothly;" i.e ., when 

information and transaction costs are low. Capital asset markets seem 

"smooth," or at least they are often modelled as if they were, and thus the 

condition that no one can make limitless profits is quite powerful in 

restricting the prices at which the markets will be in equilibrium. 

It is quite possible, of course, that for all price vectors there is at least 

one trader who has the opportunity to make limitless profits . In "perfect" 

(very smooth) capital markets this may be true when different investors 

receive different profits from the same investment. One reason investors 

may receive different profits is taxes--if different investors and assets are 

taxed differently then their profits after taxes may be different even though 

their profits before taxes are the same. 

The tax codes in many industrialized nations do in fact treat different 

taxpayers differently. Different types of investors are distinguished, such as 

private individuals, pension funds, corporations, nonprofit institutions and 

insurance companies, and for various reasons are taxed in different ways and 

at different rates. Different types of income are distinguished as well, such 

as wages and salaries, royalties, gifts, interest, dividends and capital gains, 

and these may be taxed differently . Thus, for example, in the U.S . today 

corporations in the top bracket face a (nominal) marginal tax rate of 6 .9% on 
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dividend income (the top bracket is 46%, and 85% of dividend income is 

excluded) and 28% on capital gains, while for an individual in the 50% tax 

bracket the rates are 50% on dividends (dividends are fully taxed, after a 

small exclusion) and 20% on long-term capital gains (60% of long-term capital 

gains are excluded) . And many pension funds are not taxed at all on 

investment income, so for such investors the rates are zero . 

Using some of these features it is easy to construct, in highly simplified 

worlds, situations in which there always exists at least one investor with an 

opportunity for making limitless profits . For example, consider two investors, 

Ms . T who is taxed at 50% on all net income (and all net payments) and Ms . N 

who is not taxed. Suppose there are (at least) two riskless assets traded, 

bond t which is taxable, and bond n which is not . Suppose these bonds 

are available in limitless quantities, there are no transactions costs, and 

there are no limitations on buying and short-sales for either investor . lf the 

return per dollar invested in bond t, rt , is not equal to the return per dollar 

invested in bond n, rn, then Ms . N can make unlimited profits by buying the 

bond with the higher return and selling short equal amounts (in dollars) of 

the other . If, say, Tt > r n then she earns Tt - r n > 0 for each dollar of 

matching short and long positions. And the transaction costs her nothing 

(her short and long I. )Sitions cancel) so she can make it limitlessly. A 

transaction involving no net investment (such as Ms . N's) is called an 

"arbitrage" transaction, and the ensuing profits are called "arbitrage 

profits ." Because arbitrage transactions involve zero net investment, the 

scale of such transactions is not limited by the investor's net wealth. As a 

result, if r n and r, remain fixed, Ms . N can earn any amount of arbitrage 

profits that she desires . On the other hand, if rn does equal r, then Ms . T 
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can make unlimited arbitrage profits by buying bond n and selling short 

bond t in equal amounts . On each dollar of this (costless) transaction she 

earns rn - .5rt = .5rn > 0 . Thus , given any pattern of rates of return, at least 

one of the investors can make arbitrarily large profits . Other examples can 

be found in Schaefer [2 1]. 

Schaefer [2 1] points out that if capital asset markets were perfect then 

opportunities such as this would abound, and thus equilibrium in these 

markets must be generated by "frictions;' ' i.e., market imperfections of some 

sort . Thus, to understand the nature of the equilibrium we must understand 

what the frictions are and what the relationship is between them and the 

equilibrium. 

Using the Capital Asset Pricing Model (CAPM) as formulated by Sharpe 

[22], Black [6] and others, Brennan [8], Long [1 6], Litzenberger and 

Ramaswamy [ 15] derived various conditions under which income taxes cause , 

or do not cause, the relative rates of return (i.e ... relative prices) 1 of assets 

to be different from the prices without taxes . In this part we study similar 

issues using a more recent and comprehensive model of capital asset pricing , 

the Arbitrage Pricing Theory (APT) formulated by Ross [19],[20]. We define a 

simple extension of the standard APT (in which there are no taxes) with an 

income tax, paying special attention to the differential treatment of capital 

gains and dividends . First we assume that capital markets are perfect , and 

find that only under very strong conditions will there exist prices at which no 

investor can make limitless profits . Then we consider a particular type of 

market imperfection, portfolio restrictions on borrowing, lending and short 

sales . We find that, in general, there exist prices at which no investors 

have any arbitrage opportunities, but the pricing relation will often differ 
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from that in the no-tax world . That is, the taxes and market imperfection 

considered affect the relative prices of assets . 

To concentrate on the intuition behind the results, in Section 8 we deal 

with a highly simplified version of the APT in which there are no idiosyncratic 

(asset-specific) risks. This allows us to state and prove results simply, 

without the need to use limiting arguments as in Huberman [ 13], Ingersoll 

[ 14], and Ross [20]. In Section 9 we do the asymptotic work, and prove 

results analogous to those of Section 8 for the APT with idiosyncratic risks . 
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8. Income Taxes and the APT with No Idiosyncratic Risks 

Here we assu.me that there are no asset-specific risks . In Section 8.1 we 

derive necessary and sufficient conditions under which the condition of "no 

arbitragE" is satisfied simultaneously for all investors . With no restrictions 

on the portfo lios investors may hold , these conditions seem quite strong . 

They cC\n be stated in various ways as constraints on tax rates, asset factor 

weight ~ (betas) , and dividend returns. One straightforward implication of the 

conditiJns is that if there is at least one taxpayer whose tax rates on capital 

gains a:1d. dividends are the same (for example, tax exempt investors) then 

the san1e linear p r icing relationship as in the no-tax APT must hold for asset 

pretax returns . At the end of the section we relate these conditions to those 

dE·rived in Long [1 6]. 

In Section 8 .2 we investigate the effects of portfolio restrictions in the 

forn1 of constraints on short sales or "borrowing ," similar to those in 

Litz ~~ nberger and Ramaswamy [1 5]. We find that in the special case 

considEred the form of the no arbitrage asset pricing relation will probably be 

diffErent from that of the usual no-tax APT. If the conditions that prevent 

arbitrage with no portfolio restrictions are not met, then an asset pricing 

relation of the same form as that in the no-tax APT is a necessary and 

suff ; cient condition for no arbitrage to exist if and only if all investors face a 

tax rate on dividends no less than their tax rate on capital gains . (Recall, 

this is not true for corporations in the the U.S. today.) We derive a different 

no arbitrage pricing relation (or rather, a set of them) assuming that there 

are restrictions on borrowing . In this relation, an asset's expected returns 

depend not only on its factor weights but also on its dividend payment . 
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B. 1 The Model with Perfect Markets 

In the standard APT there is a fixed number of assets whose returns are 

generated by a K-factor linear model, i.e ., 

(B .l) 

where J+ 1 is the number of assets, R; is the jth asset's (random) realized 

return and E; its expected return, P;' = (f3; 1 , .. . ,f3;x) is the jth asset's 

vector of factor weights, and =; = (11 , ... , =; x) is the (random) realized vector 

of factor values . It is assumed that E(.Y") = 0 for all k, E(i) = 0 and 

var (i;) < cr for all j, and cov ('i; ,'it) = 0 for all j ~ l . To obtain results, one 

must have an economy with an infinite number of assets, so that it is possible 

to forrr~ portfolios in which the variance caused by idiosyncratic risks (the 'i; 

term~) is negligible . Thus Huberman [13] and Ross [20] consider sequences 

of economies in which the number of assets goes to infinity, and prove results 

for the limit economy. 

To keep the arguments as transparent as possible, we ignore the asset-

specific risk terms entirely . Thus, we assume that there are J+l assets, 

J > K, with returns generated by the K-factor linear model 

(8 .2) 

where R1, E;, fJ;' and =; are as in (B.l ) . R; is the pretax realized return on 

as sel j, and E1 the pretax expected return. We assume that R; consists 

- - -partly of dividends and partly of capital gains . That is, R; = D; + G;, where 

D1 = f;(R) are the dividends, and G; = R; - f;(R;) the capital gains, paid by 
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asset j . 

Investors are taxed on their returns, and their tax rates on capital gains 

and dividends may be different. Let si E: [0,1) be investor i's tax rate on 

capital gains, and tiE: [0,1) her tax rate on dividends . Then i's after-tax 

rate of return on asset j is 

Note that each investor's tax rates do not depend on the realized return; i.e ., 

individuals do not change tax brackets. (This is similar to the tax treatment 

in Brennan [ 8] and Long [ 16].) In the real world taxes are often progressive, 

so an investor's tax rates may change with her income. While progressive 

taxation raises a number of interesting questions, we do not address them 

here . What is important for our purposes is that there be investors who face 

different relative tax rates on capital gains versus dividends regardless of 

their incomes, as is true for corporations and individuals in many countries. 

In the general form written above, it is difficult to proceed much further, 

so we assume that 

- -
f;(R;) = d; + e;R;, forj = 0,1, ... ,J. (8.3) 

This linear form is easily manipulated, and if e; = 0 then it reduces to the 

case considered in Brennan [8], Litzenberger and Ramaswamy [15] and Long 

[16], where dividends are known with certainty. Given (8 .3), investor i's 
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after-tax return on asset j 1s 

Letting (si - ti)ei + 1 - si = vJ and substituting from (8 .2), 

= (si- ti)d. + v~E- + v~R_•.; 
) ) ) 1fJ) I . 

Note that vJ is investor i's marginal after-tax return on asset j per 

dollar of the pretax return. If vJ < 0 then investor i 's after-tax return on j 

falls as the pretax return on j rises, a peculiar state of affairs which we will 

assume never to occur .In fact, under reasonable assumptions about the 

dividend payment functions, vJ E: (0,1] for all j and i . To see this, note 

that vJ is a linear function of e;, with vJ = 1 -si for ei = 0 and 

vJ = 1 - ti for ei = :, so vJ lies between 1 - si and 1 - ti for all 

e;E:[0,1]. Since si and ti are restricted to lie in [0,1), vJ E: (0,1] for all 

such ei . If ei < 0 then asset j pays a lower dividend the higher its realized 

return, and if ei > 1 then asset j pays more that $1 in dividends for each 

additional $1 it earns . Both of these seem unrealistic so it may be reasonable 

to assume that ei E: [0, 1]. 

If x = (x 0 , . . . , x ;)' is any portfolio ( xi is the dollar amount held in 

asset j ) then the after-tax return on x to investor i is 

= (si - ti) t x .d . + t z.v~E- + t x.v~p .·:y . 
i =0 ) ) j =0 ) 1 1 i =0 1 ) 1 

(8.4) 
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In what follows. it is convenient to use matrix notation. Thus, we write (8 .4) 

a~ 

(8.4)' 

where Ri = (k~ . . ... R~)' is the vector of realized returns, d = (d 1 •... , d1) ' is 

the vect-or of dividend line intercept parameters, Y. is a (J+1)x(J+1) 

diagonal matrix whose (j ,j)th element is vJ. E = (E0 . . .. , E1)' is the vector 

of £'Xpected asset returns. and B is the (J + 1 )xK matrix of factor weights 

with (j ,k )th element f3jt. 

Po rtf olio x uses no wealth if (A1) x' 1 = 0, where 1 is a vector of J + 1 

ones. 2 and x has no "systematic risk" for investor i (in the present model, 

no risk at all, since there is no asset-specific risk) if (A2) x'V'(J" = 0 for all 

k = ~ , .. .. K, where fJ~~; = (Pa· ... ,p.!k)' is the kth column of B. We call a 

portfolio that satisfies (A:i) and (A2) an arbitrage portfolio fori . The after-

tax return to i of such a portfolio is 

(8 .5) 

= x'[ (s i - t'')d + Y:E] (8 .6) 

since the last term in (8 .4)' is zero by (A2) . If 'R! > 0 then i will wish to 

hold infinite amounts of such a portfolio, given rather mild assumptions 

about her utility function . We call the existence of such a portfolio (i.e., an 

x satisfying (Al ), (A2) and .R! > 0) an arbitrage opportunity fori. 

Notice tt.~.at the set of arbitrage portfolios for investor i is a linear 

subspace , and the dimension of the space is (J+ 1) minus the rank of V'B 
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(thus if the vectors l,V(J 1 , . .. , V(J K are linearly independent, the dimension 

is (J+ J. )-(K+ 1) = J-K ) . Also, while in general the set of arbitrage portfolios 

will be different for different investors , for any investor i with tax rates 

sat1sfying si = ti. vJ = (1 - s") for all j, so the set of arbitrage portfolios is 

the set of x (simultaneously) orthogonal to l,p 1, . .. , p K' Thus the set of 

arbitrage portfolios is the same for all investors who face equal tax rates on 

divide n ds and capital gains, and is equal to the set of arbitrage portfolios for 

the ta:>: exempt investor . Note also that even if the set of arbitrage portfolios 

is the same for two investors, the set of arbitrage opportunities may not be . 

That is, a portfollo I may simultaneously satisfy I'l = 0, I'V'P" = 0 and 

x·vmpt = 0 for k = 1, ... ,K, R~ > 0 and it;~ 0, so that I is an arbitrage 

portfolio for both i and m, but an arbitrage opportunity only for i. 

lt is reasonable to assume that for the market to be in equilibrium, there 

can be no arbitrage opportunities for any investor . We call this state of 

affairs no arbitrage . We now consider the implications of this condition on 

the expected return, dividend, tax rate and factor sensitivity parameters, 

assurrung there are no restrictions on the portfolios investors may hold . 

If there is no arbitrage opportunity for i then .R! ~ 0 for any I that is 

an arbitrage portfolio for i . Since, if I is an arbitrage portfolio for i then 

-x is also , R~ must equal zero for any such arbitrage portfolio . From (8.6) 

this means that the vector (s" - ti)d + ~E must be orthogonal to any I 

that satisfies (A1) and (A2), and thus (si - t')d + ~E must be in the linear 

span (i .e ., the set of all linear combinations) of 1.~(3 1 , .. . ,V'flx- We write 

this as (s'- ti)d +VEE: span(l.~P 1 • ..• • ~Px) · So, there exist constants 
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q~ I ••• , qk such that 

(8 .7) 

(8 .8) 

where [vtri. the inverse of V'-. is a diagonal matrix whose (j ,j}th element 

is 11vJ. Thus, E must lie in the linear span of [Y.]-Il,p1, . . . ,pK, 

translated by the vector (s i - f') [V ]-1 d. lt is a necessary and sufficient 

condition for there to be no arbitrage opportunities for i. So we have 

Comment 8 .1. With no restrictions on allowable portfolios, there is no 

arbitrage if and only if for all investors i there exist q~ , . . . , q_k such that 

As noted above, for an investor with si = ti, vJ = (1 - si) for all j, so 

V' = (1 - s')I and [V']-1 = [ 
1 
~ s' ]I. where I is the (J+1)x(J+1) identity 

matrix . Thus (8 .8) becomes 

r q~ ] . . 
E = l . 1 + q' p + . . . + q~.RK 1-s' 1 I .Kl"' 

+ qJJJx I 
(8 .9) 

Since the vectors l,p 1 1 ••• , (J K are independent of i, the coefficients 

ri,q; . ... ,qk are also independent of il and we can write (8 .9) as 

(8 .1 0) 

where q = (q I, . .. , qK) . This is the familiar pricing relationship of the 

standard no-tax APT . As usual, r is the expected return on any "zero-beta" 
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asset, and also the return on the risk-free asset if one exists. Thus we have 

Comment 8 .2 . If there exists at least one investor with equal tax rates on 

capital gains and dividends then (8 .10) is a necessary condition for there to 

be no arbitrage . 

In the U.S. there are many tax exempt investors, such as pension funds, 

and for such investors Comment 8.2 clearly applies . Thus, since E is the 

vector of pretax expected returns, empirical tests of the no-tax APT are also 

partial tests of the APT with income taxes . Also, if all investors face equal tax 

rates on capital gains and dividends then (8.1 0) is sufficient as well as 

necessary for there to be no arbitrage.3ud 

Consider now the implications of the requirement that there are no 

arbitrage opportunities for an investor m with sm ~ tm, assuming there is 

some investor i with si = ti . Substituting (8.10) into (8.7) yields 

(8. 11 ) 

This says that d + re E span(l,vm(J1, ... ,vmpK) . Given that the pricing 

relation (8 .1 0) holds, (8 .11) is a necessary and sufficient condition for there 

to be no arbitrage opportunities for m . Thus we have 
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Proposition 8 .1. If there are no restrictions on portfolios and there exists at 

least one investor i with si = ti then there is no arbitrage if and only if 

(8 1 0) holds and (8 .11 ) holds for every investor m such that s"' pt tm . 

Thus d + re must be in the intersection of all the linear subspaces 

spanned by vectors t,vmp 1, .. . , vmp K such that sm pt tm for some investor 

m . This intersection contains the line through 0 (a vector of J+ 1 zeros) 

and 1, but it appears that the conditions under which it contains anything 

else are quite strong . Consider the case where K=l. and suppose there are 

two investors i and m such that si pt ti and sm pt tm. Then (8.11) is 

satisfied for both investors and the intersection of span(l,V'(:J1} and 

span(t ,vm(:J 1) is of dimension greater than one only if V'{J 1 E span(t,vrn(:J1) . 

So there must exist constants aim and o'm such that 

[(si- ti)ej + (1 - si)]pjl =aim+ oim [(sm- tm)ej + (1 - sm)]pj1 for all j' or 

letting c~m = [( si - ti) - 6\m(sm - tm)] and c~m = [(1 - s')- oim(1 - sm)], 

C\me.R . + CimR _ =aim for all]' If Cim = 0 and Cim pt 0 then 
1 Jf-IJI 2 f-IJI · 1 2 

pi 1 = aim I c ~m for all j , so all assets have exactly the same risk 

characterstics and hence are effectively identical. If c~ pt 0 then 

aim - c'mp . 
im 2 11 for all j such that p1 1 pt 0 . Unless there are some 

c 1 pj 1 

economic forces that might cause this functional relationship between asset 

dividend line slopes and factor betas, it is extremely unlikely that it is 

satisfied . The last possibility is that c~m = c~m = 0, in which case there is no 

restriction imposed on e and {J 1 . However, c~m = c~m = 0 if and only if 

si - ti sm - tm 

1 
_ s' - -

1
-_-

5
-m-· a strong restriction on tax rates . For K>l the 

conditions are more difficult to interpret, and work explaining them needs to 
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be done , but we expect the results to be similar . 

On the other hand, if the intersection of the linear spans described 

above contains only the line through 0 and 1 then d + re = h 1 for some 

h . This ha~ an easily recognized economic interpretation--it says that all 

asset dividend return lines cross at R; = r; i.e., all assets pay the same 

dividend if they earn the zero-beta (riskless) rate of return. 

Another interesting case is when e = e 1, i.e., all assets' dividend return 

lines have the same slope . (A special case of this is that considered in 

Brennan [8] , Litzenberger and Ramaswamy [15] and Long [16], where all 

assets' dividends are known with certainty so e = 0.) Then for each investor 

m 

(8 .12) 

so yn = vm I and vmB = vmB. Thus the set of arbitrage portfolios is the 

sa-:nr. for all investors, and span(1.vmp1, . .. ,vmpx) = span(1.{l 1 • . .. ,flx) for 

all ir~vcstC"rS, so n span(1.vmp1'. 0 • • vmflx) = span(1.{ll, 0 0 • • flx), Writing 
m 

(8 .11)as 

(8 .1 3) 

we have 

Comment 8.3 . If there are no restrictions on portfolios, if there exists at 

least one investor with equal tax rates on capital gains and dividends and one 

investor with unequal tax rates on capital gains and dividends, and if e = e 1, 

then there is no arbitrage only if (8.10) holds and de:: span(1,fl 1 , ... • flx). 
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8 . 2 Portfolio Restrictions 

So far we have assumed that investors may hold any portfolio of assets . 

Acteally, for at least some investors, there are limits on such transactions as 

borrowing and shorts sales, which restrict the set of portfolios they can 

acquire . As Schaefer [21] argues, it may be these restriction ("frictions") 

that prevent arbitrage and induce a market equilibrium. This equilibrium 

need not be the same as the equilibrium without restrictions (if one exists) , 

and probably will be sensitive to the form of the restrictions imposed. 

Economists have employed several kinds of restrictions in past work. 

Black [6] analyzed the CAPM assuming that investors could not borrow or 

lend at the riskless rate of return. Schaefer [21] studied two types of 

constraints , (C1) no short sales ( I~ 0) and (C2) dollar limits on short sales 

( x ~ a for some fixed a ) . Litzenberger and Ramaswamy [ 15] also impose 

restrictions on short sales, but on the aggregate level of short sales, not on 

individual assets. In their model there is a risk-free asset whose return is all 

dividends, and the dividends of all risky assets are known with certainty. 

Their first restriction is that an investor's "interest" payments (dividend 

payments on short sales of the riskless asset) cannot exceed her total 

dividend income on risky assets ; i.e ., (C3) t x;d.; ~ -x0E0 = -x 0d 0 , where 
j=l 

asset 0 is riskless . Noting that (C3) can be written as t x;d.; ~ 0 (or , in 
j:O 

vector notation , :z:'d ~ 0 ), an equivalent statement of the constraint is that 

an investor 's total dividend and interest income must be nonnegative . The 

second restriction is that an investor's holdings of risky assets cannot 

exceed some fixed fraction of her total wealth; i.e ., (C4) t X; s b t X; , or 
j:l j:O 



- 105-

1-b J 
-b- I; x1 ~ x 0 . As Litzenberger and Ramaswamy note, (C4) is a type of 

j=O 

"margin requirement" and (C3) an "income requirement ." Since lending 

institutions seem to be concerned about the wealth and income of potential 

borrowers (e .g ., loan applications require such information), (C3) and (C4) 

may be empirically relevant . 

Clearly (C l ) is sufficient to prevent arbitrage, because along with (A l ) it 

implies that the only allowable arbitrage portfolio for any investor is I = 0. 

Of course. in this case the no arbitrage condition is rather empty, as it 

imposes no restrictions on asset expected returns. If a < 0 then (C2) allows 

investors to hold at least small amounts of any arbitrage portfolio 

opportunities that exist without portfolio restrictions . However, like (Cl) it is 

not useful for deriving conditions on arbitrage pricing. 

The most interesting restriction is (C3) . In the model here, where 

dividends may not be known with certainty, it has a slightly more awkward 

interpreta lion than in Litzenberger and Ramaswamy [ 15]: when e 1l 0, it says 

that an investor's total interest payments cannot exceed the total dividend 

income she receives from risky assets when all risky assets realize a return 

of zero. This seems somewhat strange--it would perhaps be more natural to 

suppose that borrowing is restricted so that an investor's interest payments 

cannot exceed her dividend income when, say, all assets realize their 

expected return; i.e ., t x1(ct1 + E1e1) ~ -x0 E0 . However, in the special case 
j=I 

we consider, our model points to a condition like (C3) . 

Suppose that e = e 1 and consider the constraint (C5) :z:'(d + y) ~ 0, 

where y isanyvectorinthelinearspanof l,(J 1, ... ,fJx- When y=O (C5) 

reduces to (C3) . Also, given the restriction on e we can choose y = re 
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where r is the zero- beta rate of return. Then (C5) becomes x'(d + re) ~ 0, 

which says that an investor's total dividend income must be nonegative when 

all assets realize the zero-beta return . Or , if asset 0 is riskless, then writing 

J 

(C5) as 2; x;(d; + re) ~ -x 0 (d 0 + re ) , we can interpret it as saying that an 
j=l 

investor's interest payments cannot exceed her dividend income on risky 

assets when all assets realize the riskless return. Note also that (C5} and 

(C3) can be considered as restrictions on either pretax or after-tax 

dividends , since all dividends (and interest) are taxed at the same rate for 

any investor--for example, t x;d; ~ -x 0d 0 if and only if 
j=l 

J 
2; (1 - ti)x;d; ~ -( 1 - ti)x 0 d 0 . 

j=l 

Since e = e 1, (8 .12) applies so for each individual i v~ =vi 
' J 

for all j . 

Let n solve 

si - ti 

Also, Comment 8 .3 applies. We can now state and prove 

Proposition 8.2. Suppose e; = e for all j, vi > 0 for all i, all allowable 

portfolios satisfy (C5), and d t span(l,{J1 , .. . • Px) . Then there exists no 

arbitrage if and only if 

sn- tn 
for some (r ,q 1 • . . . , qK) and some p ~ vn 

Proof. Suppose E satisfies (8 .14) . Fix i and consider any allowable 

(8 .14) 



- 107-

arbitrage portfolio I for i . Then from (8 .5) , 

-\ . . . . . . 
Rz = (s' - t')x'd + x'VE = (s' - t')x'd + v'x'E . (8 .1 5) 

Substituting (8.14) into (8 .15) yields 

= (s" - ti - pv")x'(d + y) 

using (A1 ) , (A2) and the assumption that y is a linear combination of 

l ,{J 1 , ... ,(JK Now v" > 0, so we can write 

s" - ti sn - tn b h d f . . . f since s n s p y t e e 1n1t1ons o n and p, and x'd~ 0 by 
v" v 

(C5) . So, there is no arbitrage opportunity for i . Since i was chosen 

arbitrarily, there is no arbitrage . 

Now suppose (8.14) does not hold . Then either (i) 

or (ii) E is not in the linear span of 1,/J 1 •..• , (J x,d. Suppose (i) holds . 

r sn - tn l Project E + l vn d onto span(l,fJ 1 , . .. ,flx)· Let 

F = a 0 1 + a. dJ 1 + · · · + axfJ K be the projection, and let 

rsn-tnl ' 
x = E + l vn d- F. Then x'l = 0 and x'{Jt = 0 for all k=l, ... ,K, so I is 
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an arbitrage portfolio . Also, 

x'(d + y) = x'd 

(8.16) 

sn- tn 
so x is allowable. Since p #- n and d is not a linear combination of 

v 

l.(J 1 • . . . , (J K· x yt. 0. Thus, by (8 .16), x'd> 0. Choosing investor n and using 

(8 .15) and (i), R; = vn[ sn v-;. tn - pii'd > 0, so I is an arbitrage opportunity 

for n, contradicting the assumption of no arbitrage. Thus, (i) cannot hold . 

So, suppose (ii) holds, and project E onto span(l,(J 1 • • .. ,fJx,d). Let 

F = a 0 1 + a 1(J 1 + · · · + axflx + bd be the projection, and let x = E- F. Then 

x'l = 0, x'(Jt = 0 for all k = 1 , .. . ,K and x'd= 0, so x is an allowable 

arbitrage portfolio for any investor i. Also, x yt. 0 by the assumption of (ii), 

so 

... \ . . . 
Rz = (s' - t')x'd + v'x'E 

= v'ix·x > 0, 

and x is an arbitrage opportunity for i, again contradicting the assumption 

of no arbitrage . Thus (8.14) must hold . 

QED 

There are several things to note about the pricing relation (8.14) . Since 
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vi > 0 for all i, 
s" - ti 4 ---:--- > 0 if and only if si > ti . Thus, if there is some v" 

investor i with si > ti, p > 0 and the form of the asset pricing relation is 

differer ... t from that in the no-tax APT . Assets must be priced to prevent 

arbi 1~rage opportunities for the investors with s i > ti . On the other hand , if 

si ~ ti for all i then p = 0 ~ sn ~ tn so the pricing relation with taxes 
v 

couli hive (but does not need to have) the same form as that in the world 

with no taxes and no portfolio restrictions. 5 F'or small corporations in the 

U.S. today, the tax rate on capital gains is higher than the rate on dividends , 

so the first case seems to apply . 

8 .3 A Note on Testing the Model 

Econometric tests of the model presented here are as straightforward 

(or difficult, depending on one's view) as tests of the APT with no taxes . The 

basic rEsults to test are Proposition 8 .1 and Proposition 8 .2. Assuming that 

e = e 1, this means testing the linear relationships (8.1 0), (8.13) and (8.14) . 

One pov.·erful method of testing whether or not a group of data lie on a line is 

the "bilinear paradigm" used in Brown and Weinstein [9]. If (8 .10) or (8.13) is 

rejected, this is evidence against the model with no restrictions on portfolios . 

Assuming that there exists some investor whose tax rate on capital gains 

exceed~ her tax rate on dividends, we have two tests of the model with 

portfolio restrictions--that the asset returns lie on a line like (8.14). and that 

the sign of the coefficient on d is negative . Testing the model with taxes and 

portfolio restrictions against the "standard" APT (with no taxes or portfolio 

restrictions) is also quite simple . It involves comparing (8 .10) versus (8 .14), 
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which can be done by at-test on the coefficient of d in (8.14). If we cannot 

reject the hypothesis that the coefficient is zero, this is evidence in favor of 

our model with taxes and portfolio restrictions over the simpler APT. 
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9. Income Taxes and the APT with Idiosyncratic Risks 

In this section we prove propositions analagous to those in the previous 

section for the APT with asset-specific risks. As in previous work on the APT 

(e.g ., Ross [20], Huberman [13], Ingersoll [14]), our propositions are "limit 

approximation results" that bound the total deviation in asset expected 

returns from a given linear relation. In stating and proving our propositions 

we follow closely the paper by Huberman [ 13]. 

9.1 Assumptions and Definitions 

We consider an infinite sequence of economies J = 1,2, .. . with an 

increasing number of assets. As in Huberman [ 13] and Ingersoll [ 14] we will 

consider both the general case in which the sets of assets in different 

economies need not bear any particular relation to each other, and the 

special case where the sets of assets are nested--i.e ., where all assets in the 

Jth economy also appear in any economy L with L > J. We present the 

general case first. In the Jth economy there are J assets whose pretax 

returns are generated by a K-factor linear model of the form 

where R-' = (J?{, ... , Rj)' is the vector of (random) realized rates of return, 

E"' = (~I . . . I E;f)' is the vector of expected rates of return, B"' is the JxK 

matrix of factor weights ("betas") whose (j lk )th element is f:Jj~, 

-; -J -J 7 = (/' 1 ~ . . . ,J'K)' is the vector of (random) realized factor values, and 

'iJ = (i~~ . . . , 'i;)• is the vector of (random) realized asset-specific risk terms. 
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E[.YtJ = 0 for all k, 

E[~j] = 0 for all j , 

E[ (~j)2 ] ~ a2 < oo for all j, and 

E[~j ~(] = 0 for all j # l . 

(9.1)(i) 

(9 .1)(ii) 

( 9 .1) (iii) 

(9 .1)(iv) 

These are the same assumptions as in Huberman [ 13]. Note that (9.1 )(iii) 

says that the variances of asset-specific risks arc uniformly bounded, and 

(9 .1)(iv) says that asset-specific risks are uncorrelated between assets. It is 

straightforward to relax (9 .1)(iv) as done in Ingersoll [14] and consider sets 

of a ssets with correlated idiosyncratic risks . We will write the kth column of 

B' as Pt. Also, we will let 11 be a vector of J ones , and denote the 

Jx(K+ 1) matrix [11 I B'] by :8'. 

-, ~. Each asset j's return is divided into dividends Di and capital gains li; 

according to 

and 

For simplicity assume that the set of investors is fixed. (There are various 

ways to weaken this , but they shed no light on the problem.) As before, each 

investor i is taxed on her dividend income at a rate ti E [0,1) and on her 

capital gains at a rate s;. E: [0,1) . Denote i's after-tax rate of return on 

- 'J asset j by R; . Then 
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(9 .2) 

From (9 .2) it is evident that vJ' is the marginal after-tax rate of return to 

investor i on asset j, when the after-tax rate of return is viewed as a 

function of the asset 's pretax return. As noted in section 8 .1, under 

reasonable assumptions vJ1 E: (0, 1] for all i and j. Here we assume that 

0 < vl ~ vf ~ vu < oo for all i and j ; 

i.e., the vJ1 are uniformly bounded away from zero and infinity. Letting VU 

be the JxJ diagonal matrix with (j ,j)th element vJ1. we can write the 

.... -u -;.; 
vector of after-tax returns for investor i, :RU = (R1 , ... , R1 )', as 

If x' = (x~, ... , xf) ' is any portfolio of assets, the after-tax rate of return of 

r' to investor i is 

(9.3) 

We must modify our definitions of arbitrage portfolios and arbitrage 

opportunities slightly from those used in Section 8 . Let an arbitrage portfolio 

in the Jth economy be any portfolio r' satisfying r'1 1 = 0, i.e., any 

portfolio that uses no wealth. Let an arbitrage opportunity fori be any 

sequence of portfolios ~x'~j=I' where x' is an arbitrage portfolio in the Jth 
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economy, such that there exists a subsequence ~r~ c ~r'~j= 1 with 

There is no arbitrage if there are no arbitrage opportunities for any investor . 

9.2 Perfect Markets Again 

Here we prove results that parallel the results in Section 8.1. 

Proposition 9.1. If there is no arbitrage then for each investor i there exist 

Ai < oo and a sequence Hq~1 . .. . , qJl)~j= 1 such that for all J 

(9.4) 

Proof. Fix i and for each J project VUE"+ (si - fL)d1 orthogonally onto 

span(l',yi.'p~, . . . . V'-'p'f) . Let rpiJ = q~1 1 1 + f q!'fJt be the projection, and 
A:=l 

let 

Then 

xi1'1 1 = 0, and 

xiJoyiJ fJi = 0 for all k. 

Consider the sequence of portfolios ~aiJxiJ~j= 1 where 

By (9 .6), a:ux;.;,x' = 0, so a:uxu is an arbitrage portfolio in the Jth 

(9 .5) 

(9 .6) 

(9 .7) 
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economy. By (9 .3) , FP(a.iJx\J) = 

va.r [ }?J (a ;.;xu)] = (a. iJ) 2xiJ•-yiJ (E[ ~'~'· ])vt.' · xiJ 

~ (a."'? (vu)2a2xi'·xiJ 

= (vu)2a2(x1.J·xiJ) - 112 . 

, r x ]2 
' LJ ) J J 0 J LJ k Jk . 

By the definition of xiJ xi'·xiJ = " tv~'Ef + (si - ti)d~- q"'- v~" q"'f3~ 
j=l k=l 

Suppose (9 .4) does not hold. Then for any sequence Hq~' . ... , q~~j= 1 there 

exists a subsequence Hqlf', ... , q;f)~ such that 

, r x ]
2 

Lli~ 2: tvf'Ef + (si - ti)df- qif - vJL ~ qf'f3f~c = +oo; 
j=l k=l 

i.e., 

lim xif. ·:x. iL = +c.o . 
L~ ... 

is an arbitrage portfolio for i, contradicting the assumption of no arbitrage. 

Thus (9 .~ ) must hold for all i . 

QED 

Proposition 9 .1 is analogous to Theorem 1 of Huberman [13] and the proof is 

nearly identical. 

Let a stationary sequence of economies be a sequence where the sets of 

assets are nested, so that we may write Ej = E; , f3j" = f3;~c , d.f = d.; , ef = e; , 

and vJ' = vf for all j ~ J . (Simply order the assets so that asset 1 is the first 
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asset in all economies, asset 2 is the second asset in all economies with 

";,./ . K -J -J 
J?:. 2. etc .) Then !'(_. = Ej + L; {3i" "Y~c + t 1 for all j ~ J, for all J . 

:J lc=l 

Proposition 9 .2 . Given a stationary sequence of economies, for each investor 

i there exist q~, . .. , qJc such that 

(9.8) 

Proof. Fix i . For any matrix B let r(B) be its rank. Then for all J?:. 1, 

1 ~ r(V'Jfr') ~ r(0·J+l:i)J+ 1) ~ K+ 1, so there exists L such that 

r (V'J:B') = r (vtLW) for all J?:. L . Permute the columns of W so that the last 

K + 1-r (V'Jit') columns are linear combinations of the first r(v"W) 

columns . Let 

wherE" Ai is the upper bound whose existence is guaranteed by Proposition 

9 . ~. Then lf-J is nonempty for all J (by Proposition 9.1) and compact for 

J?:. L , and Hi.J+l c Jf.l for all J. Thus n lf-J-¢ ¢. And any element 
J=l 

(q~ . ... . qk) € r 1H-J satisfies (9 .8) . 
J=l 

QED 

Proposition 9.2 is analogous to Theorem 2 of Huberman [13], and the proof is 

nearly identical. 

If we pick i such that s" = ti then the results in Propositions 9.1 and 
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9.2 reduce exactly to Theorems 1 and 2 of Huberman [13]. 

Corollary 9 .1. If there is at least one investor i with si = ti and no 

arbitrage then there exist A < oo and Hq~ I ••• I q_k)!j= 1 such that 

(9 .9) 

Proof. Pick investor i and note that vJ' = ( 1 - s ;.) for all j ~ J, for all J . 

Applying Proposition 9. 11 there exist Ai < oo and Hq~J . ... , q}fHj= 1 such that 

. qiJ 
Dividing by 1 - s' and setting qJ = 0 

. qf = q'!:' for all k, and 0 1 - s'' "' "" 

Ai 
A= this reduces to (9.9). ( 1 - s i)2 I 

QED 

Corollary 9 .2 . Given a stationary sequence of economies, if there is at least 

one investor i with s;. = ti and no arbitrage then there exists q 0 , . . . , qK 

such that 

(9.10) 

Proof. Pick investor i and apply Proposition 9.2; then proceed as in the 

proof of Corollary 9.2. 

As usual, q 0 is the rate of return on the riskless asset if it exists, and 

the rate of return on any zero-beta portfolio. Note that Corollaries 9 .1 and 

9.2 do not predict a unique vector or sequence of vectors. Thus, if 

Hq~ I ••• , q_k)!j= 1 is any sequence that satisfies (9.9), we call the sequence 
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~q~~j= 1 a sequence of zero-beta parameters, and if (q 0 , .. . ,qx) is any 

vector satisfying (9. 1 0), we call q 0 a stationary zero-beta parameter. 

Proposition 9 . 3 . If there is at least one investor i such that si = ti and 

there is no arbitrage, then for any investor m with sm ~ tm there exist 

em < oo and ~(p~J ... . ,pj(')~j= 1 such that for all J 

(9 .11 ) 

where ~rJ~j= 1 is any sequence of zero- beta parameters . 

Proof. Let A , HrJ,qf, . . . , qk)~j= 1 satisfy (9.9) and let 

Am, Hq~' . ... , qj(')~j= 1 satisfy (9.4). These sequences exist by Corollary 

9 .1 and Proposition 9.1, respectively. Let r = E"'- rJ 1J- ~ q:fJ: and let 
A:=l 

K 
x!"'J = vm;~ + (sm - tm)dJ- q~lJ- I: q':"V""J{J:. Solving the first of these 

A:= 1 

equations for E"' and substituting into the second yields 

x!"'J - yn.J ¥1 = 

By the Minkowski inequality, 

definition of rn', rnJ·rnJ ~Am for all J. Also, 
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q ~J - 1 + s m q rJ - q; 
Let t ing p~J = , p;:"J = for all k, and sm - tm ,._ sm - tm 

r (Am) 1 I 2 + v u A 1 I 2 ]
2 

em = l m m 1 this reduces to (9.11 ) , 
s - t 

QED 

Coroll.ary 9 . 3 . Given a stationary sequence of economies, if there is at least 

one investor i such that si = ti and there is no arbitrage, then for any 

investor m with sm ~ tm there exists (p~ . . .. ,p';) such that 

whE-rE: r is any stationary zero- beta parameter . 

Proof. Sirnilar to that of Proposition 9.3 , using the vectors whose existence is 

guaranteed by Proposition 9.2 and Corollary 9.2 . 

Proposition 9 .3 and Corollary 9.3 are analogous to Proposition 8 .1. 

asserting that a necessary condition for no arbitrage in the absence of 

portfolio restrictions is that rJeJ + dJ is approximately in the linear span of 

(lJ ,ynJp~ . .. . . vmJp~) for all investors m with sm ~ trn. As argued in 

Section 8 .1 , this is a very strong condition, not likely to be met in the real 

world . 
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9. 3 Portfolio Restrictions 

Here we consider the short sales ("borrowing") constraint used in 

Section 8 .2, namely that any allowable portfolio r' in the Jth economy must 

satisfy r 'd1 ~ 0. We prove a proposition analogous to Proposition 8.2 . 

Suppose e1 = e 111 for all J ; i.e ., all asset dividend lines have the same 

slope . Then vJ1 = (si - t'i.)e 1 + 1 - si = viJ for all j ~ J for all J, for all i, 

and (9 11 ) becomes 

' r K ]2 
LJ i 0 LJ /c ~ j/c - I 
"' ldJ- (pmJ- r 1e 1) - "' ymJpmJRJ <em 
j=l /c=l 

or letting p~ =p~1 -r1e 1
, and pf=vm'p':' for all k, 

(9 .12) 

That is, when e1 = e 111 for all J, Proposition 9.3 asserts the existence of 

~(p~ .... . p~)~j= 1 such that (9.12) holds. 

Let n solve 
si -ti si -ti 

max ----:-:-. Note that, since ~ 
i viJ vi1 

si - ti 
only if i ~ 

1 - s 

sm- tm 

1 
m . n is independent of J. 

-s 

For a nonstationary sequence of economies, the result we can prove is 

not very useful. However, we state and prove it for completeness, and use it 

to prove the more interesting result for stationary sequences of economies . 

Lemma 9.1 . If e1 = e 1 11 for all J, and any allowable portfolio ~ in the 

Jth economy satisfies r'd1 ~ 0, and (9 .12) is not satisfied, then there exist 
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A<oo and Hqt .... ,qf,h1Hj= 1 suchthat 

' r ,., ' ' ' ~ ' ' ]2 I: tl!.j + h di - q 0 - t..J q~cf3;~c ~A for all J. 
j=l Jc=l 

(9 .13) 

Furthermore , ~h 1 jj= 1 must satisfy 

(9 .14) 

Proof. The proof that (9 .13) holds is similar to the proof of Proposition 9 .1. 

For each J , project E' onto span ( 1 1 .(:Jf . . . .. f:Jf,d1), let 

K 
q/ = q t 11 + I: q'tP't - h 1 d1 be the projection, and let x' = E' - rp1

. Then 
Jc = 1 

r'' 1' = 0 . 7/'f:J't = 0 for all k. and x''d1 = 0. If (9.13) does not hold, then 

there exists a subsequence ~rj c ~x'jj= 1 such that lim r'r = +oo . For any 
L-+., 

scalar a 1
, a1"11'11 = 0 and a1r''d1 = 0, so a'r' is an allowable arbitrage 

portfolio in the Jth economy. By (9 .3), for any investor i, 

arbitrage opportunity for i, contradicting the assumption of no arbitrage . 

Thus (9.13) holds . 

To see that (9.14) holds, for each J project d1 onto 

span ( 1 1 .(3~ . .. .• f:Jf), let rp 1 = Pt 1 J + f pf:fJ't be the projection, and let 
Jc=l 

x' = d1 
- rp'. Again, consider the sequence of portfolios ~a1x'~j=I· where 

o..1 = (r'r') - s; 4 for all J . Then o..1r'' 11 = 0 (so a1x' is an arbitrage 

portfolio in the Jth economy) , o..1r''(:J{; = 0 for all k, and 
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a..'xl'dJ = alxl·x:' + a/r'•v/ = alx:'·x:' ~ 0 (so alx! is an allowable portfolio in 

the Jth economy) . By (9 .3) the rate of return to investor n on a1r! is 

(9.15) 

K 
Let c; = 1...; + h J dJ - q ~ 1 J - ~ q~(J~ for all J . Substituting for E"' in (9 .15) 

A:= 1 

(9.16) 

By the Cauchy-Schwarz inequality, I xl·cJ I ~ (r''xl) 112 (cJ'c1) 112 . By (9 .13) 

and the definition of cJ. (cJ'cJ) ~A for all J, so x''c' ~ -A 112(x''r') 112 for 

all J . Then since vnJ ~ vu for all J, 

If (9 .12) is not satisfied then there exists a subsequence ~rj c lx'~j= 1 such 

that lim r ·r = +oo . Then by (9.16), for this subseqence 
L .... oo 
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subsequence ~x:M~ c ~rj such that 

Then ~:r'~j= 1 would be an arbitrage opportunity for n, contradicting the 

assumption of no arbitrage. Thus, limsup (sn - tn - vnLhL) ~ 0, or 
L ....... 

QED 

In a stationary sequence of economies we have a much more elegant and 

useful result . In a stationary sequence e 1 = e for all J, so 

v;.; = (si- ti)eJ + 1 -si = (si- ti)e + 1 -si =vi for all J. 

Proposition 9.4 . Consider a stationary sequence of economies . If e; = e for 

all j and any allowable portfolio 71 in the Jth economy satisfies xi'cJ ~ 0, 

and (9 .12) is not satisfied, then there exists q 0 , .. . , qx,h such that 

(9 .1 7) 

Furthermore, h must satisfy 

(9.18) 

Proof. The proof that (9 .1 7) holds is similar to the proof of Proposition 9.2 : 

for each J rearrange the columns of the matrix [it' I d1] appropriately and 
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define 

HJ = !(go·····gK,gK+l) s.t. j~l [Ej + gK+lrl.j- go- k~l gk(ljkr <A, 

and qt = 0 for r(:B") ~ k ~ K+2 L 

where A is the upper bound in (9 .13) of Lemma 9.1. Then n H1 '# ¢, so 
J=l 

(9.1 7) holds, where h = qK+t· To see that (9.18) holds, simply note that 

QED 
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Notes for Part II 

1. Some tax features, like investment tax credits for some subset of assets , 

might alter the conditions under which a portfolio uses no wealth . 

2 . As in much of the finance literature, we refer to both "prices" and "rates 

of return." The relationship is as follows : consider an asset that yields a 

certain dollar profit (return) next period of :x; then letting r denote 

the rate of return and p the price, r = x/ p. Clearly, one knows the 

price if and only if one knows the rate of return. 

3 . Many economists argue that (for efficiency reasons) the preferential 

4 . 

treatment of capital gains should be eliminated, and capital gains taxed 

at the same rate as dividends . 

si - ti 
The function --- does not have a simple economic interpretation. 

vi 

Except for its sign, it is not directly related to the gap between an 

investor 's tax rates, si - ti. However, if we assume as in Long [16] that 

all combinations of tax rates (s ,t) inside some box [0, T]x[O, T] are 

s'- ti 
possible , then --- is maximized at (sn.tn) = ( T,O) . 

vi 

5 . Litzenberger and Ramaswamy [15] assume that si = 0 for all i , and 

thus that si ~ ti for all i . 
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