
Time-Varying Optimization and Its Application to
Power System Operation

Thesis by
Yujie Tang

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2019
Defended January 4, 2019

ii

© 2019

Yujie Tang
ORCID: 0000-0002-4921-8372

All rights reserved

iii

ACKNOWLEDGEMENTS

My years at Caltech have truly been a precious experience and have shaped my
research style. Foremost, I would like to express my sincere gratitude to my advisor,
Professor Steven Low, for his generous support and invaluable guidance through my
studies and research. Steven has always inspired me by his passion, intelligence, pa-
tience, and hardworking attitude. His philosophy of research has greatly influenced
my thoughts and is something I will always admire and try to emulate in my future
career.

I would also like to thank Professor Adam Wierman, Professor Venkat Chan-
drasekaran, and Professor Babak Hassibi for being my thesis committee members
and providing brilliant comments and suggestions.

My sincere thanks also go to Professor Emiliano Dall’Anese at University of Col-
orado Boulder and Andrey Bernstein at National Renewable Energy Laboratory for
their strong support of my research. It has always been a great pleasure to work with
them.

I greatly appreciate the support from current and previous members of Netlab. My
early years at Caltech would not have been smooth without the help from Lingwen
Gan, Changhong Zhao, Qiuyu Peng, and Niangjun Chen. Discussions with Daniel
Guo and John Pang have always been enlightening and valuable. It is also pleasing
to see younger generations of Netlab making great contributions to state-of-the-art
research, stimulating me to gain more confidence and diligence.

Finally, I would like to thank my parents Yongcheng Tang and Diqiu Yu for their
unconditional love and support throughout my life.

iv

ABSTRACT

The main topic of this thesis is time-varying optimization, which studies algorithms
that can track optimal trajectories of optimization problems that evolve with time. A
typical time-varying optimization algorithm is implemented in a running fashion in
the sense that the underlying optimization problem is updated during the iterations
of the algorithm, and is especially suitable for optimizing large-scale fast varying
systems. Motivated by applications in power system operation, we propose and
analyze first-order and second-order running algorithms for time-varying nonconvex
optimization problems.

The first-order algorithm we propose is the regularized proximal primal-dual gradi-
ent algorithm, and we develop a comprehensive theory on its tracking performance.
Specifically, we provide analytical results in terms of tracking a KKT point, and
derive bounds for the tracking error defined as the distance between the algorithmic
iterates and a KKT trajectory. We then provide sufficient conditions under which
there exists a set of algorithmic parameters that guarantee that the tracking error
bound holds. Qualitatively, the sufficient conditions for the existence of feasible
parameters suggest that the problem should be “sufficiently convex” around a KKT
trajectory to overcome the nonlinearity of the nonconvex constraints. The study of
feasible algorithmic parameters motivates us to analyze the continuous-time limit
of the discrete-time algorithm, which we formulate as a system of differential inclu-
sions; results on its tracking performance as well as feasible and optimal algorithmic
parameters are also derived. Finally, we derive conditions under which the KKT
points for a given time instant will always be isolated so that bifurcations or merging
of KKT trajectories do not happen.

The second-order algorithms we develop are approximate Newton methods that
incorporate second-order information. We first propose the approximate Newton
method for a special case where there are no explicit inequality or equality con-
straints. It is shown that good estimation of second-order information is important
for achieving satisfactory tracking performance. We also propose a specific version
of the approximate Newton method based on L-BFGS-B that handles box con-
straints. Then, we propose two variants of the approximate Newton method that
handle explicit inequality and equality constraints. The first variant employs penalty
functions to obtain a modified version of the original problem, so that the approx-
imate Newton method for the special case can be applied. The second variant can

v

be viewed as an extension of the sequential quadratic program in the time-varying
setting.

Finally, we discuss application of the proposed algorithms to power systemoperation.
We formulate the time-varying optimal power flow problem, and introduce partition
of the decision variables that enables us to model the power system by an implicit
power flow map. The implicit power flow map allows us to incorporate real-time
feedback measurements naturally in the algorithm. The use of real-time feedback
measurement is a central idea in real-time optimal power flow algorithms, as it helps
reduce the computation burden and potentially improve robustness against model
mismatch. We then present in detail two real-time optimal power flow algorithms,
one based on the regularized proximal primal-dual gradient algorithm, and the other
based on the approximate Newton method with the penalty approach.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Y. Tang, E. Dall’Anese, A. Berstein, and S. Low. Running primal-dual gradient
method for time-varying nonconvex problems, 2018, arXiv:1812.00613. URL
https://arxiv.org/abs/1812.00613.
Y. Tang participated in formulating the problem and proposing the algorithm,
derived the theorerical results, prepared the simulation, and participated in the
writing of the manuscript.

[2] Y. Tang, E. Dall’Anese, A. Berstein, and S. H. Low. A feedback-based
regularized primal-dual gradient method for time-varying nonconvex opti-
mization. In Proceedings of the 57th IEEE Conference on Decision and
Control (CDC), pages 3244–3250, Miami Beach, FL, USA, Dec. 2018.
doi:10.1109/CDC.2018.8619225.
Y. Tang participated in formulating the problem, proposing the algorithm, and
deriving the theoretical results, prepared the simulation, and participated in the
writing of the manuscript.

[3] Y. Tang, K. Dvijotham, and S. Low. Real-time optimal power
flow. IEEE Transactions on Smart Grid, 8(6):2963–2973, 2017.
doi:10.1109/TSG.2017.2704922.
Y.Tang participated in formulating the problem, proposed and analyzed the algo-
rithm, prepared the simulation, and participated in the writing of themanuscript.

[4] Y. Tang and S. Low. Distributed algorithm for time-varying optimal power
flow. In Proceedings of the 56th IEEE Conference on Decision and
Control (CDC), pages 3264–3270, Melbourne, VIC, Australia, Dec. 2017.
doi:10.1109/CDC.2017.8264138.
Y. Tang participated in formulating the problem, proposed the distributed algo-
rithm, prepared the simulation, and participated in the writing of themanuscript.

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . vi
Bibliography . vi
Table of Contents . vii
List of Illustrations . viii
List of Tables . ix
Chapter I: Introduction . 1

1.1 Overview of Time-Varying Optimization 1
1.2 Review of Existing Works . 8
1.3 Organization of the Thesis . 14
1.4 Notations and Terminologies . 17

Chapter II: First-Order Algorithms for Time-Varying Optimization 22
2.1 Problem Formulation . 22
2.2 Regularized Proximal Primal-Dual Gradient Algorithm 26
2.3 Tracking Performance . 27
2.4 Continuous-Time Limit . 38
2.5 Summary . 53
2.A Proofs . 54

Chapter III: Second-Order Algorithms for Time-Varying Optimization 82
3.1 Problem Formulation . 82
3.2 Approximate Newton Method: A Special Case 82
3.3 Approximate Newton Method: The General Case 89
3.4 Comparison of First-Order and Second-Order Methods 101
3.5 Summary . 103
3.A Proofs . 103

Chapter IV: Applications in Power System Operation 109
4.1 The Time-Varying Optimal Power Flow Problem 109
4.2 A First-Order Real-Time Optimal Power Flow Algorithm 119
4.3 A Second-Order Real-Time Optimal Power Flow Algorithm 131
4.4 Summary . 145

Chapter V: Concluding Remarks on Future Directions 147
Bibliography . 151

viii

LIST OF ILLUSTRATIONS

Number Page
1.1 The distances to the optimal trajectory ‖xb(t) − x∗(t)‖ and ‖xr(t) −

x∗(t)‖, and the objective value differences c(xb(t), t) − c(x∗(t), t) and
c(xr(t), t) − c(x∗(t), t) of the two optimization schemes. 6

2.1 Illustration of condition (2.25). This condition is essentially on: (i)
time-variability of a KKT point, (ii) extent of the contraction, and
(iii) maximum error in each iteration. Note that in the error-less static
case (i.e., ση = e = 0), this condition is trivially satisfied. 31

4.1 Diagram of the control of a time-varying system. The system’s input-
state relation is given by F , which is influenced by some time-varying
components. 116

4.2 Topology of the distribution test feeder. 127
4.3 Profiles of individual loads pL

τ,i, i ∈ N , total load
∑

i∈N pL
τ,i and total

photovoltaic (PV) generation
∑

i∈NPV pPV
τ,i 128

4.4 Illustrations of

ẑτ − z∗τ

η
,

z∗τ − z∗τ−1

η
and α

λ∗τ

. 129
4.5 The voltage profiles v̂τ,i and v∗τ,i for i = 1, 27 and 34. 130
4.6 Load profiles used for simulation. 143
4.7 Illustrations of ‖ x̂τ− x∗,pτ ‖, ‖x

∗,p
τ − x∗,p

τ−1‖, (F
ε
τ (x
∗,p
τ)−Fε

τ (x̂τ))/F
ε
τ (x
∗,p
τ)

and Fε
τ (x
∗,p
τ). 144

4.8 Voltage profiles of the buses whose voltages have ever violated the
constraints 0.94 ≤ vi ≤ 1.06 for some t. 145

ix

LIST OF TABLES

Number Page
3.1 Averaged tracking errors of the first-order method and the second-

order method applied to the problem (3.34). 102
4.1 The locations and normalized areas of the PV panels, and the rated

apparent power of their inverters. 127

1

C h a p t e r 1

INTRODUCTION

1.1 Overview of Time-Varying Optimization
Suppose we are given a physical or logical system, and for each time t ∈ [0,T],
the optimal operation of the system can be modeled as the following optimization
problem:

min
x

c(x, t)

s.t. f (x, t) ≤ 0.
(1.1)

Here x ∈ Rn is the decision variable that will be applied for operating the system,
c(x, t) is the objective function, and f (x, t) gives the constraints at time t. It can be
seen that (1.1) gives an optimization problem that evolves with time. We focus on
the situations where the maps x 7→ c(x, t) and x 7→ f (x, t) will only be revealed
at time t and their prior predictions are not available. This is a typical setting of a
time-varying optimization problem.

In most situations where digital computers are used to solve this problem, we
discretize the period [0,T] by a sequence (tτ)Kτ=1 satisfying 0 < t1 < . . . < tK ≤ T ,
and obtain the following sequence of sampled problems:

min
x

cτ(x)

s.t. fτ(x) ≤ 0,
(1.2)

where τ ∈ {1, . . . ,K} labels the discrete time index, and cτ and fτ denote the
sampled versions c(·, tτ) and f (·, tτ). Traditionally, each instance of (1.2) is solved
in the batch scheme abstracted as follows:

For each τ = 1, 2, . . . ,K ,
1. Collect problem data D(tτ) at t = tτ, and construct the initial iterate z0

τ .

2. Repeat
zk
τ = T

(
zk−1
τ ; D(tτ)

)
(1.3)

for each k = 1, 2, . . . until zk
τ convergences to some z∞τ .

3. Let x∗τ = Πz∞τ , and apply x∗τ to the system of interest.

2

Here the operator T represents a single iteration of some iterative optimization
algorithm, zk denotes the intermediate iterate, D(t) denotes the problem data (ob-
jective function and constraints) at time t, and Π is a canonical projection map
that extracts an applicable solution from the intermediate iterate. In order for the
batch scheme to work smoothly, the iterations (1.3) for each τ should converge
before the next sampling instant tτ+1 arrives. However, when each sampling interval
tτ+1− tτ needs to be very small to fully capture fast-varying costs and constraints and
closely approximate the continuous-time optimal trajectory, the batch scheme may
not be appropriate as the iterations (1.3) may fail to converge within the interval
(tτ, tτ+1). The batch scheme may also break down if each instance of (1.2) is a
large-scale problem or the optimization procedure requires heavy communication
over a network in a distributed setting, as limited computation resources or high
computational complexity may prevent the iterations (1.3) from converging within
the interval (tτ, tτ+1).

The operation and control of smart grids is one such example. Technological
advances have continuously reduced the cost of sustainable energy, and it is antici-
pated that future smart grids will incorporate a large number of distributed energy
resources, including renewable generations such as solar panels and wind turbines,
as well as small-scale, distributed devices with controllable power injections such as
smart inverters, smart appliances, electric vehicles, and distributed energy storage
to name a few. On the one hand, renewable generations introduce hard-to-predict
fluctuations and uncertainties into the power network, making the operation and
control of smart grids challenging. On the other hand, the increasing penetration of
distributed controllable devices can provide diverse control capabilities that can be
potentially utilized to overcome these challenges. In addition, extensive real-time
measurement data will become available through the installation of smart meters
and other advanced measurement equipment.

The optimal operation of smart grids can be formulated as a time-varying optimal
power flow (OPF) problem, which is generally nonconvex. There is extensive
literature on traditional OPF algorithms that solve each instance of (1.2) in the
batch scheme; see the survey papers [45, 46] and the tutorial papers [65, 66].
However, these traditional algorithms are computationally burdensome if one needs
to handle the fast fluctuations and uncertainties introduced by renewable generations,
considering that the number of distributed controllable devices will be large in future
smart grids. This motivates us to develop novel technologies for the operation and

3

control of smart grids.

The operation of smart grids is not the only case where batch solutions can be
difficult to obtain or inappropriate for application due to the time-varying nature
of the problems. Similar situations can also occur in communication networks
[29, 67], robotic networks [25], social networks [8], sparse signal recovery [6, 9],
online learning [68, 96], economics [39], etc.

In time-varying optimization, this issue is resolved by designing algorithms that can
be implemented in a running fashion, in the sense that the underlying optimization
problem changes during the iterations of the algorithm. In other words, the problem
data will be constantly updated regardless of whether the iterations converge to an
optimal solution, and a sub-optimal solution can be extracted from the iterations at
any time when necessary.

Throughout the thesis we consider the situation where each sampling instant tτ is
equal to τ∆ for some ∆ > 0; in other words, we discretize [0,T] by a uniform
sampling interval ∆. Then, a running time-varying optimization algorithm for
solving (1.1) can be described by the following procedure:

For each τ = 1, 2, . . . , bT/∆c,
1. Collect problem data D(τ∆) at t = τ∆.

2. Compute
ẑτ = T(ẑτ−1; D(τ∆)),

x̂τ = Π ẑτ .
(1.4)

3. Apply x̂τ to the system of interest.

Here ẑτ ∈ Rd denotes the intermediate iterate, D(t) ∈ Rp represents the problem
data (parameters that describe the time-varying objective function, constraints, etc.)
at time t. The map T : Rd × Rp → Rd computes the new iterate from the previous
iterate and the problem data, and Π : Rd → Rn is a canonical projection map that
extracts an applicable solution from the intermediate iterate. The operator T has the
following features:

1. The computation of T is relatively inexpensive so that (1.4) can be finished within
the interval (τ∆, (τ + 1)∆).

2. Suppose X∗(t) is the set of global optimal solutions to (1.1) at time t which is
nonempty. Let Tt denote the map x 7→ T(x; D(t)). Then there exist an open

4

subset Ut ⊆ R
d with X∗(t) ⊂ Π[Ut] and a set Kt ⊇ X∗(t) with

sup
x∈Kt

inf
x′∈X∗(t)

‖x − x′‖ < +∞,

such that for any z ∈ Ut ,
Π ◦ Tk

t (z) ∈ Kt

eventually as k →∞, where

Tk
t := Tt ◦ · · · ◦ Tt︸ ︷︷ ︸

k times

.

Roughly speaking, this feature ensures that, if we fix t and run the iteration Tt

in the batch scheme from a sufficiently good initial point, then in the long run
we will get a good sub-optimal solution to (1.1) at time t. In other words, the
iteration (1.4) is able to at least properly handle static problems.

In applications, the iteration (1.4) is carried out immediately after the problem data
D(τ∆) has been collected, and once a single iteration (1.4) is finished, the solution
x̂τ will be immediately applied to the real world, and one prepares to collect the
new problem data at time t = (τ + 1)∆. While the solution x̂τ is in general only
sub-optimal, the problem data is updated frequently to keep pace with the time-
varying problem, so that the resulting solutions x̂τ will be able to track the optimal
trajectory.

The simplest time-varying optimization algorithm is perhaps the running gradient
descent algorithm for unconstrained time-varying optimization problems, whose
iterations are given by

x̂τ = x̂τ−1 − α∇cτ(x̂τ−1).

One can readily recognize that this is exactly a single iteration of the gradient descent
algorithm for static optimization problems. In fact, many time-varying optimization
algorithms are developed in a similar way, where the operator T resembles a single
iteration of some existing iterative algorithm for static optimization, as the operator
T constructed in such manner will be very likely to possess the aforementioned two
features.

Let’s look at a toy example that illustrates the advantages of employing running
time-varying algorithms over batch solutions. Consider the following time-varying
optimization problem

min
x∈R2

c(x, t) =
1
2

[
x1 − cos t

x2 − sin t

]T [
3 − 2 cos 2t 2 sin 2t

2 sin 2t 3 + 2 cos 2t

] [
x1 − cos t

x2 − sin t

]

5

for t ∈ [0, 2π], which models the optimization of some fictitious system that is
time-varying. It is easy to recognize that the problem is quadratic and convex for
each t and the trajectory of optimal solution is given by

x∗(t) =

[
cos t

sin t

]
.

Let us consider two strategies for solving this problem:

1. The batch scheme: The gradient descent algorithm is employed. Computation of
one gradient ∇xc(x, t) takes a fixed amount of time π/200. Starting from t = 0,
we update the problem data, then run the gradient descent algorithm until the
`∞ norm of the gradient is less than 10−3. Immediately after the iteration has
converged, we apply the resulting solution to the fictitious system, increase τ by
1, update the problem data, and restart the iterations with the initial point being
the previous solution that has just been calculated. For the fictitious system, the
applied setpoint does not change until the next solution arrives.

2. The running scheme: The running gradient descent algorithm is employed, and
computation of one gradient∇xc(x, t) takes the same fixed amount of time π/200.
After one iteration has been carried out, we immediately apply the iterate to the
fictitious system as a sub-optimal solution, increase τ by 1, update the problem
data, and compute the next iteration. For the fictitious system, the applied setpoint
does not change until the next solution arrives.

The initial point at t = 0 is (1.01, 0), and the step size is 1/3 for both schemes. We
assume that apart from the delays caused by the gradient computation, there are
no other delays or time spent during the procedure. The two schemes will provide
two solution trajectories; we denote the trajectory generated by the batch scheme by
xb(t), and denote the trajectory generated by the running scheme by xr(t). They are
step functions over t ∈ [0, 2π] as can be seen from the setting.

Figure 1.1 shows the curves of the distances to the optimal trajectory ‖xb(t) − x∗(t)‖

and ‖xr(t) − x∗(t)‖, and the objective value differences c(xb(t), t) − c(x∗(t), t) and
c(xr(t), t) − c(x∗(t), t). It is apparent that the running scheme achieves much better
performance in terms of tracking the time-varying optimal solution. In the batch
scheme, it takes quite some time for the iterations to converge, and when a batch
solution is applied to the system, the optimization problem has already changed
considerably, meaning that the applied solution is not up-to-date. But in the running
scheme, since we do not wait for the iterations to converge, we can update the

6

Figure 1.1: The distances to the optimal trajectory ‖xb(t)−x∗(t)‖ and ‖xr(t)−x∗(t)‖,
and the objective value differences c(xb(t), t) − c(x∗(t), t) and c(xr(t), t) − c(x∗(t), t)
of the two optimization schemes.

problem data much more frequently, and the resulting setpoints are able to keep
track of the fast varying problem. While this toy example has a much simplified
setting compared to practical scenarios, it demonstrates the benefits of time-varying
optimization algorithms that can become significant in appropriate situations.

Performance Evaluation of Time-Varying Optimization Algorithms
As previously discussed, the solutions provided by time-varying optimization algo-
rithms are in general not optimal; instead one focuses onwhether and how accurately
the solutions can track the optimal solution trajectory. Tracking performance is cen-
tral in evaluating time-varying optimization algorithms.

Let us consider the sampled problem (1.2), and denote
(
x∗τ

)
τ as a sequence of

its (local) optimal solutions1. Suppose we run some time-varying optimization
1 We choose x∗τ arbitrarily when there are multiple local optimal solutions to (1.2).

7

algorithm and obtain a sequence of solutions denoted by (x̂τ)τ. So far in existing
literature, three types of quantities have been proposed as metrics for tracking
performance with respect to

(
x∗τ

)
τ.

1. The distance to the optimal solution x∗τ

eτ :=

x̂τ − x∗τ

 ,
where the norm can be arbitrary. When there are explicit equality or inequality
constraints and the algorithm also generates dual iterates, we can also evaluate
the distance between the primal-dual pairs. This metric has been analyzed in
[64, 77, 84, 86–88, 95] for specific time-varying optimization algorithms and
employed in [9, 29, 35, 36, 90] for specific applications.

2. The sub-optimality in terms of objective values. Comparison of objective values
is standard for evaluating performance of online learning algorithms, and can be
also employed in time-varying optimization. There can be two sub-categories in
this type of metric:

a) The difference in objective values

eτ := cτ(x̂τ) − cτ(x∗τ).

The notion of dynamic regret in online learning is closely related to this metric
[48, 56, 68, 96, 99].

b) The ratio of objective values

rτ :=
cτ(x̂τ)
cτ(x∗τ)

or r :=
∑
τ cτ(x̂τ)∑
τ cτ(x∗τ)

.

Competitive ratio in online convex optimization can be viewed as a variant of
this metric [4, 30, 63]. This metric can be employed in situations where the
relative gap to the optimal objective value is more relevant than the absolute
gap. On the other hand, one usually needs strong assumptions on the objective
function to achieve a bounded competitive ratio.

When the iterates x̂τ generated by the algorithm do not strictly satisfy the con-
straints fτ(x̂τ) ≤ 0, we can use some meric function

φτ(x) = cτ(x) +
∑

i

g
(
[fτ,i(x)]+

)
instead of the objective function cτ, where [·]+ denotes the positive part of a
scalar, and g : R→ R+ is a non-decreasing function with g(x) = 0 for x ≤ 0.

8

3. The fixed-point residual
eτ := ‖ x̂τ − Gτ(x̂τ)‖ ,

where Gτ : Rn → Rn is a continuous map such that any fixed point of Gτ is
an optimal solution (local or global) to (1.2) at time τ. This metric has been
introduced and analyzed in [84].

We mention that, in existing literature, researchers have also proposed to compare
x̂τ with an optimal solution of the problem instance at the next time step τ + 1; in
other words, metrics based on

x̂τ − x∗τ+1

 , cτ+1
(
x̂τ

)
− cτ+1

(
x∗τ+1

)
,

cτ+1(x̂τ)
cτ+1

(
x∗
τ+1

) , ‖ x̂τ − Gτ+1(x̂τ)‖

have also been proposed. It turns out that it doesn’t matter much whether we choose
to compare x̂τ with x∗τ or x∗τ+1 in the time-varying optimization setting2; results on
either one of the choices can usually be transferred to results on the other choice
under appropriate conditions.

The three types of metrics are all reasonable quantitative characterizations of the
tracking performancemathematically, and depending on specific scenarioswhere the
time-varying optimization algorithms are applied, one can choose different metrics
that are more suitable for application. In this thesis, we mostly use the first metric,
the distance to the optimal trajectory, as the metric for tracking performance.

1.2 Review of Existing Works
In this section we give a brief and non-exhaustive review of some existing works on
time-varying optimization and related topics.

Reference [77] is one of the early papers that consider time-varying optimization
problems with a similar setting to the one in this thesis. The paper derived a
tracking error bound of the running gradient descent algorithm for unconstrained
time-varying convex optimization. Specifically, the paper showed that

lim sup
τ→∞

x̂τ − x∗τ

 ≤ ρ

1 − ρ
sup
τ

x∗τ − x∗τ−1

 (1.5)

for the running gradient descent algorithm for time-varying unconstrained strongly
convex problems, where

Λmin = inf
τ,x
λmin

(
∇2cτ(x)

)
, Λmax = sup

τ,x
λmax

(
∇2cτ(x)

)
,

2It does matter, however, in online learning where the actual loss incurred is cτ+1(x̂τ).

9

ρ = max{|1 − αΛmin |, |1 − αΛmax |},

and α ∈ (0, 2/Λmax) is the step size. The paper also considered a special case where
the tracking error ‖ x̂τ − x∗τ ‖ tends to zero as τ →∞. The tracking error bound (1.5)
turns out to be one of the most fundamental results in time-varying optimization.

Recent years have witnessed considerable advances in the theory and algorithms of
time-varying convex optimization. [64] proposed a decentralized algorithm based
on Alternating DirectionMethod ofMultipliers for time-varying unconstrained con-
sensus problems, and also derived a tracking error bound that is similar to (1.5).
[86] proposed a running algorithm based on the consensus + innovations method for
time-varying constrained consensus problems, and also showed a similar tracking
error bound. [87] proposed and analyzed the double smoothing method based on the
multiuser optimization algorithm in [60], which is one of the earliest time-varying
optimization algorithms that treat explicit inequality constraints. [95] introduced
auxiliary variables in the design of the running algorithm for time-varying uncon-
strained consensus problems over directed networks, and showed convergence to a
bounded tracking error. [84] proposed a unified framework for time-varying convex
optimization using averaged operators, and derived tracking error bounds for sev-
eral running algorithms. [16] proposed and analyzed a feedback-based time-varying
optimization algorithm based on the primal-dual gradient method, which applies
to logical or physical systems with feedback measurements. [34] proposed and
analyzed a feedback-based method to regulate the output of a linear time-invariant
dynamical system to the optimal solution of a time-varying convex optimization
problem. [54] proposed a formulation of time-varying projected gradient dynamics
by introducing the notion of temporal tangent cones, and showed existence of solu-
tion to the resulting differential equations. [15] developed an algorithmic framework
for tracking fixed points of time-varying contraction mappings, and derived tracking
error results in the situations where communication delays and packet drops lead to
asynchronous algorithmic updates.

We would like to further expand on the results of [84] and [87]. In [84], the author
considered the casewhere the time-varying optimization algorithm can be abstracted
as

x̂τ = Tτ
(
x̂τ−1

)
,

where for each τ, Tτ : Rn → Rn can be represented as

Tτ(x) = (1 − aτ)x + aτGτ(x), x ∈ Rn

10

for some aτ > 0 and some nonexpansive operatorGτ (i.e., ‖Gτ(x1)−Gτ(x2)‖ ≤ ‖x1−

x2‖), and the fixed point of the operator Tτ gives the optimal solution x∗τ . The paper
showed that, if σ := supτ ‖x∗τ − x∗τ−1‖ < +∞ and X := supτ supx∈Rn Tτ(x) < +∞,
then the sequence (x̂τ)τ satisfies

1
K

K∑
τ=1

1 − aτ
aτ
‖Tτ(x̂τ−1) − x̂τ−1‖

2 ≤
1
K

x̂0 − x∗1

2
+ σ(4X + σ).

In addition, in the special case where Tτ is a contraction mapping with a uniform
contraction coefficient ρ ∈ (0, 1), it was shown that

x̂τ−1 − x∗τ

 ≤ ρτ−1‖ x̂0 − x∗1‖ +
1 − ρτ−1

1 − ρ
σ.

The paper then applied this bound to several time-varying optimization algorithms.
Especially, a bound on the fixed-point residual was established for the running
projected gradient descent method that solves

min
x∈X(t)

c(x, t),

where X(t) ⊂ Rn is compact and uniformly bounded, and c(·, t) is convex and
uniformly strongly smooth for each t.

In [87], the authors considered the time-varying convex problem

min
x∈X

cτ(x)

s.t. fτ(x) ≤ 0,

where cτ : Rn → R is convex, fτ : Rn → Rm has convex components, andX ⊆ Rn is
convex and closed. The paper proposed a running version of the double smoothing
algorithm [60] given by

x̂τ = PX
[
x̂τ−1 − α∇xL

ν,ε
τ (x̂τ−1, λ̂τ−1)

]
,

λ̂τ = PRm
[
λ̂τ−1 + α∇λL

ν,ε
τ (x̂τ−1, λ̂τ−1)

]
,

where the regularized Lagrangian Lν,ετ is defined by

Lν,ετ (x, λ) := cτ(x) + λT fτ(x) +
ν

2
‖x‖2 −

ε

2
‖λ‖2.

The paper showed that, when the step size α is sufficiently small, there exists some
ρ < 1 such that

lim sup
k→∞

ẑτ − z?τ+1

 ≤ 1

1 − ρ
sup
τ

z?τ+1 − z?τ

 ,

11

where ẑτ =
(
x̂τ, λ̂τ

)
, and z?τ =

(
x?τ , λ

?
τ

)
denotes the saddle point of the regularized

Lagrangian Lν,ετ (x, λ). The authors also considered how to implement the algo-
rithm in a distribution manner when the cost and constraint functions have special
structures.

Time-varying optimization is closely related to parametric optimization that has a
long history [49, 73, 81]. The formulation of one-parametric optimization problems
is almost the same as (1.1), where t is regarded as a one-dimensional parameter that
may or may not represent time. Path-following methods (also called continuation
methods or homotopy methods) and their varients have been developed to solve
these problems [3, 39, 43, 80, 85, 97]. A typical parametric optimization algorithm
discretizes the parameter set [0,T] by 0 < t1 < . . . < tK ≤ T , and generates
approximate solutions x̂τ such that

e := sup
τ
‖ x̂τ − x∗(tτ)‖ = O (∆max) , as ∆max → 0,

where ∆max = maxτ |tτ+1 − tτ |. The theory of parametric optimization generally
focuses on the convergence rate of the approximation error e as ∆max → 0. In addi-
tion, many parametric optimization algorithms consist of a predictor and a corrector:
for each τ = 1, . . . ,K , the corrector utilizes the problem data at t = tτ to move the
prediction produced by the previous iteration towards the optimal trajectory, and the
predictor then estimates the tangent vector dz∗(t)/dt at t = tτ to provide a prediction
of the optimal solution at the subsequent parameter value. This predictor-corrector
procedure assumes knowledge of how the cost and constraint functions evolve with
time, which is different from the time-varying optimization setting discussed in this
thesis. The theory and algorithms of parametric optimization provide important
insights on and tools for the study of time-varying optimization.

We would also like to mention that, in online learning, theories on dynamic regret
have been developed, which are closely related to time-varying optimization [21,
48, 51, 56, 62, 68, 96, 99]. In online learning, for each time step τ, a player
chooses a strategy x̂τ from some feasible set X by an online learning algorithm, and
suffers some loss cτ+1(x̂τ) 3. To evaluate the performance of the online learning
algorithm in the time-varying setting, the dynamic regret is proposed that compares
the cumulative losses of the online player with the losses of the best possible

3 We label the time indices in a fashion that is different from online learning literature but similar
to the time-varying optimization setting.

12

responses
K∑
τ=1

cτ
(
x̂τ−1

)
− cτ

(
x∗τ

)
.

Particularly, researchers are interested in bounding the growth rate of the dynamic
regret as K → ∞ over a specific class of loss functions, and usually focus on the
situations where the dynamic regret achieves sublinear growth.

For example, the pioneering paper [99] formulated the online convex programming
problem in whichX ⊆ Rn is convex and compact and cτ is convex and differentiable
for all τ. The paper proposed the online projected gradient descent algorithm whose
iterations are given by

x̂τ = PX [x̂τ−1 − α∇cτ(x̂τ−1)] .

The paper showed that, for the online projected gradient descent algorithm, the
dynamic regret can be upper bounded by

K∑
τ=1

cτ
(
x̂τ−1

)
− cτ

(
x∗τ

)
≤

7R2

4α
+

R
α

K−1∑
τ=1

x∗τ+1 − x∗τ

 + Gα

2
K,

where
R := sup

x1,x2∈X
‖x2 − x1‖, G := sup

τ
sup
x∈X
‖∇cτ(x)‖ .

In [68], the authors considered an online learning problem where X ⊆ Rn is convex
and compact and the loss function cτ is uniformly strongly convex, i.e., there exists
µ > 0 such that

cτ(x2) ≥ cτ(x1) + ∇cτ(x1)
T (x2 − x1) +

µ

2
‖x2 − x1‖

2, ∀x1, x2 ∈ X.

It was shown that an improved bound on the dynamic regret can be derived for
the online projected gradient descent algorithm when the step size α is sufficiently
small:

K∑
τ=1

cτ
(
x̂τ−1

)
− cτ

(
x∗τ

)
≤ G

(
1

1 − ρ

K−1∑
τ=1

x∗τ+1 − x∗τ

 + ‖ x̂0 − x∗1‖

1 − ρ

)
,

where
ρ =

√
1 − αµ, G = sup

τ
sup
x∈X
‖∇cτ(x)‖.

A recent paper [48] considered an online learning problem where the loss function
could be nonconvex. Specifically, whileX ⊆ Rn was still assumed to be convex and

13

compact, each loss function cτ : X → R was assumed to be weakly pseudo-convex:
there exists M > 0 such that

cτ
(
x
)
− cτ

(
x∗τ

)
≤


M
∇cτ(x)T

(
x − x∗τ

)
‖∇cτ(x)‖

, ∇cτ(x) , 0,

0, ∇cτ(x) = 0

for any x ∈ X and any x∗τ ∈ arg minu∈X cτ(u). The paper showed that, if the strategies
x̂τ are generated by the online normalized gradient descent algorithm

x̂τ = PX [x̂τ−1 − ηgτ] , gτ :=


∇cτ(x̂τ−1)

‖∇cτ(x̂τ−1)‖
, ∇cτ(x̂τ−1) , 0,

0, ∇cτ(x̂τ−1) = 0,

where η is some positive constant, then the following bound on the dynamic regret
holds under certain conditions:

K∑
τ=1

cτ(x̂τ−1) − cτ(x∗τ) ≤
M
2η

(
4R2 + η2K + 6R

K−1∑
τ=1

x∗τ+1 − x∗τ

) ,

where R := supx∈X ‖x‖. Further investigation of these examples and other related
works suggests that, although time-varying optimization and online learning have
different perspectives and settings, the mathematics behind the theories of dynamic
regret can be very relevant for the research on time-varying optimization.

Time-varying optimization has also found its place in various applications. While
the original formulation was for static problems, the network flow control algorithm
in [67] is essentially implemented in a running fashion and can be easily extended
to time-varying situations. In [29], the primal-dual saddle point dynamics was
applied in time-varying wireless systems, with theoretical analysis on the tracking
performance. In [9], the running version of the iterative soft-thresholding algorithm
and its continuous-time counterpart for sparse signal recovery were analyzed under
the time-varying setting. In [8], the authors proposed a running stochastic gradient
descent method for topology tracking in social networks, though no theoretical
guarantee on tracking performance has been provided.

With the technological advances in sustainable energy and smart grids, recent re-
search has found it necessary to consider power system operation in the time-varying
setting. Reference [24] proposed an online algorithm based on the dual subgradient
ascent method, and [17, 47] proposed online algorithms based on the projected
gradient descent method for the operation of distribution networks, though no the-
oretical results were developed for the time-varying setting. [35, 36] employed the

14

double smoothingmethod [87] and a linearized power flowmodel for real-time oper-
ation of distribution networks, and [14] presented a more comprehensive framework
that can handle a wider range of controllable power devices. [52, 55] proposed
continuous-time online algorithms that employ projected gradient dynamics on the
power flow manifold.

1.3 Organization of the Thesis
Chapter 2: First-Order Algorithms for Time-Varying Optimization
In Chapter 2, we propose a first-order time-varying optmization algorithm, which
we call the regularized proximal primal-dual gradient algorithm. The regulariza-
tion comes in the form of a strongly concave term in the dual vector variable that
is added to the Lagrangian function [50, 58, 60]. The strongly concave regular-
ization term plays a critical role in establishing contraction-like behavior of the
proposed algorithm. However, as an artifact of this regularization, existing works
for time-invariant convex programs [60], time-varying convex programs [16], and
for static nonconvex problems [50] could prove that gradient-based iterativemethods
approach an approximate KKT point. On the other hand, in Chapter 2 we provide
analytical results in terms of tracking a KKT point (as opposed to an approximate
KKT point) of (1.2) and provide bounds for the distance of the algorithmic iterates
from a KKT trajectory. The bounds are obtained by finding conditions under which
the regularized proximal primal-dual gradient step exhibits a contraction-like be-
havior. The bounds are directly related to the maximum temporal variability of a
KKT trajectory, and also depend on pertinent algorithmic parameters such as the
step size and the regularization coefficient.

We then provide sufficient conditions for the existence of algorithmic parameters
that guarantee bounded tracking error for sufficiently small sampling interval. From
a qualitative standpoint, the sufficient conditions for the existence of feasible pa-
rameters suggest that the problem should be “sufficiently convex” around a KKT
trajectory to overcome the nonlinearity of the nonconvex constraints.

The study of feasible algorithmic parameters suggests analyzing the continuous-
time limit of the proposed regularized proximal primal-dual gradient algorithm;
see, e.g., [31, 32, 78, 79, 93] and pertinent references therein for continuous-time
algorithmic platforms. We show that the continuous-time counterpart of the discrete-
time algorithm is given by a system of differential inclusions that can be viewed as a
generalization of perturbed sweeping processes [2, 28]. The tracking performance

15

of the system of differential inclusions is analytically established; the continuous-
time tracking error bound shares a similar form with the discrete-time tracking
error bound. Then, we provide sufficient conditions for the existence of feasible
algorithmic parameters, and also analyze the existence and properties of the optimal
algorithmic parameters that minimize the tracking error bound.

Finally, we derive conditions under which the KKT points for a given time will
always be isolated; that is, bifurcations or merging of KKT trajectories do not
happen.

While most existing works on time-varying optimization focus on problems that are
globally convex, our study does not assume global convexity of the objective and
constraint functions, which can be particularly useful for time-varying nonconvex
problems such as the time-varying optimal power flow problem. Part of these results
have been reported in [88, 89].

Chapter 3: Second-Order Algorithms for Time-Varying Optimization
In Chapter 3, we consider second-order algorithms for time-varying optimization.
By “second-order” algorithms, wemean that for each τ, not only the current function
value and gradient information is used, but also the exact or approximate curvature
information is employed, which is similar to Newton and quasi-Newton methods in
static optimization.

We first propose the approximate Newton method for a special case where the
constraints in (1.2) appear in the form x ∈ Xτ for some closed and convex Xτ. The
approximate Newton method is a natural extension of (quasi-)Newton method to
the time-varying setting. It is shown that the tracking error is directly affected by
how well we can approximate the curvature of the objective function cτ. We also
propose a specific version of the approximate Newton method based on L-BFGS-B
[26, 69] that handles box constraints.

Then, we propose two variants of the approximate Newton method that can handle
nonlinear constraints that are formulated as explicit equalities and inequalities. The
first variant employs penalty functions [19, 72] to obtain a modified version of the
original problem, so that the approximate Newton method for the special case dis-
cussed above can be applied. We investigate the relationship between the penalty
functions and regularization on the dual variables, and derive bounds on the differ-
ence between optimal solutions of the penalized problem and the original problem.
The second variant can be viewed as an extension of sequential quadratic program-

16

ming [23] in the time-varying setting, with regularization on the dual variable just
like the regularized proximal primal-dual gradient algorithm. We perform a direct
analysis of the tracking error with respect to the optimal trajectory and discuss its
implications.

Finally, we use a toy example to compare first-order and second-order methods, in
order to have a better understanding of how to appropriately choose between these
two types of methods in practical scenarios.

As mentioned in Section 1.2, parametric optimization is closely related to time-
varying optimization, and many path-following algorithms utilize curvature infor-
mation in a very similar fashion to the approximate Newtonmethods [39, 43, 49, 97].
On the other hand, parametric optimization generally focuses on whether and how
fast the trajectory generated by path-following algorithms will converge to the opti-
mal trajectory as the sampling interval goes to zero. This is different from our setting
where we assume a given and fixed sampling interval, considering that the delays
caused by computation, communication, etc. will prevent the sampling interval
from being arbitrarily small in practice.

Similar to Chapter 2, we do not explicitly assume global convexity for the time-
varying optimization problem in our study. Part of these results have been reported
in [90, 91].

Chapter 4: Applications in Power System Operation
In Chapter 4, we discuss the application of time-varying optimization algorithms
to power system operation, motivated by the consideration that batch solutions are
inappropriate when one needs to optimize over a large number of distributed con-
trollable devices to handle fast-timescale fluctuations and uncertainties introduced
by distributed energy resources in future smart grids.

We formulate the time-varying optimal power flow problem, where the decision
variables are subject to the power flow equations. We partition the decision variables
into two groups, and replace the power flow equations by an implicit power flow
map between the two groups of variables. We present sufficient conditions for the
existence of the implicit power flow map, and discuss the advantages of introducing
implicit power flow map to utilize real-time feedback measurements. The use of
real-time feedback measurements is a central idea in real-time optimal power flow
algorithms [35, 36, 90, 91] (also see [47] for static optimization), which not only
greatly reduces the computation burden, but also improves robustness against model

17

mismatch.

Then we present two real-time optimal power flow algorithms in detail. The first
algorithm applies the regularized primal-dual gradient algorithm to the real-time
operation of a distribution feeder. Specifically, we show how real-time measurement
data can be naturally incorporated in the computation, and analyze the effect of
employing approximate Jacobian of the implicit power flow map in the algorithm
theoretically. The second algorithm applies the approximate Newton method with
penalty functions to the time-varying optimal power flow problem. Second-order
real-time optimal power flow method was first proposed by [90] and here we present
the distributed implementation proposed in [91].

Chapter 5: Concluding Remarks on Future Directions
We conclude the thesis by remarks on some future directions that are worth explo-
ration.

1.4 Notations and Terminologies
Sets and Functions
For any set A, its power set will be denoted by 2A, and the Cartesian product
A × · · · × A︸ ︷︷ ︸

n times

will be denoted by An.

Let (Ai)
n
i=1 be a finite sequence of sets, and let S be a nonempty subset of A1×· · ·×An.

A map π : S →
⋃n

i=1 Ai is called a canonical projection if there exists j ∈ {1, . . . , n}
such that

π(x1, . . . , xn) = x j, ∀(x1, . . . , xn) ∈ S.

We denote R+ = [0,+∞) and R++ = (0,+∞).

Suppose f : X → Y where X and Y are any sets. For any subset A ⊆ Y , f −1[A]

denotes the preimage {x ∈ X : f (x) ∈ A}.

For a real-valued function f defined on an interval D ⊆ R, we say that it is
nondecreasing if ∀x1, x2 ∈ D, x1 < x2 ⇒ f (x1) ≤ f (x2), and say that it is (strictly)
increasing if the inequality is strict. The notion of nonincreasing and (strictly)
decreasing functions are defined similarly. We say that f is unimodal if there exists
x0 ∈ D such that f is strictly decreasing on D ∩ (−∞, x0] and is strictly increasing
on D ∩ [x0,+∞).

For f : Rn → Rm, the inequality f (x) ≤ 0 means − f (x) ∈ Rm
+ .

18

For any x ∈ R, bxc denotes the largest integer n such that n ≤ x, and dxe denotes
the smallest integer n such that n ≥ x.

Linear Algebra
We use

x = (x1, . . . , xn) =


x1
...

xn


to denote vector x in Rn. The Euclidean norm on Rn will be simply denoted by

‖x‖ :=

√√ n∑
i=1

x2
i , x ∈ Rn.

The identity matrix will be denoted by I, or In ∈ R
n×n when the dimension needs to

be specified to avoid confusion.

For any matrix M =
(
Mi j

)
∈ Rm×n. ‖M ‖ denotes the operator norm

‖M ‖ := sup
x,0

‖M x‖
‖x‖

.

When M is a square matrix, we use λmax(M) and λmin(M) to denote the largest and
the smallest eigenvalues of M respectively.

For two real symmetric matrix A and B, the expression A � B means B − A is
positive semidefinite, and A ≺ B means B − A is positive definite.

Real Analysis
For a topological space X and a subset A ⊆ X , the interior of A will be denoted by
int A, and the closure of A will be denoted by cl A.

The closed unit ball in Rn centered at the origin will be denoted by Bn. For any two
subsets A, B of Rn and any α, β ∈ R, we define

αA + βB := {αx + βy : x ∈ A, y ∈ B}.

As an example, {x} + rBn is the closed ball in Rn of radius r centered at x.

Suppose f : X → R ∪ {+∞} where X is a topological space. We say that f is
lower semicontinuous if lim infn→∞ f (xn) ≥ f (x) for any x ∈ X and any sequence
(xn) ⊂ X that converges to x. Equivalently, f is lower semicontinuous if {x ∈ X :
f (x) > a} is an open subset of X for all a ∈ R. A function f : X → R ∪ {−∞}

19

is upper semicontinuous if − f is lower semicontinuous. A function f : X → R

is continuous if and only if it is both lower and upper semicontinuous. See [57,
Section 12] for more details.

Let f : I → R be a function defined on an interval I of R. The essential supremum
of f (t) over t ∈ I is defined by

ess sup
t∈I

f (t) := inf
{

M ∈ R : Leb
(
f −1[(M,+∞)]

)
= 0

}
,

where Leb denotes the Lebesgue measure on R.

Let f : [a, b] → Rm be a vector-valued function whose components are absolutely
continuous. Then there exists a Lebegue integrable function from [a, b] to Rm,
which we denote by D f , such that

f (t) − f (a) =
∫ t

a
D f (s) ds

for all t ∈ [a, b], and D f is unique up to a Lebesgue null set. We will also denote
d
dt f (t) := D f (t). Furthermore, f is Lipschitz continuous on [a, b] if and only if

ess sup
t∈[0,T]

‖D f (t)‖ < +∞,

or in other words, D f ∈ L∞([a, b]), and in this case,

sup
t1,t2∈[a,b],

t1,t2

‖ f (t2) − f (t1)‖
|t2 − t1 |

= ess sup
t∈[a,b]

‖D f (t)‖.

See [44, Section 3.5] for more details.

Differential Calculus
Let f : Rn → R be differentiable on Rn. The gradient of f at x ∈ Rn will be denoted
by ∇ f (x) which is an n-dimensional column vector. If f is twice differentiable, the
Hessian of f at x ∈ Rn will be denoted by ∇2 f (x).

Let f (x, y) be a function from Rn ×Y to R where Y is any set, and for some y0 ∈ Y ,
f (x, y0) is differentiable with respect to x. The (partial) gradient of f (x, y) with
respect to x at (x0, y0) ∈ R

n × Y will be denoted by ∇x f (x0, y0). If f (x, y0) is twice
differentiable with respect to x, the (partial) Hessian of f (x, y) with respect to x at
(x0, y0) ∈ R

n × Y will be denoted by ∇2
xx f (x0, y0).

20

Let f : Rn → Rm be a differentiable vector-valued function. We will denote its
components by f1, . . . , fm. The Jacobian of f at x ∈ Rn will be denoted by

J f (x) :=


∇ f1(x)T

...

∇ fn(x)T

 ∈ R
m×n.

Let f (x, y) be a vector-valued function from Rn × Y to Rm where Y is any set.
Suppose for some y0 ∈ Y , f (x, y0) is differentiable with respect to x. The (partial)
Jacobian of f (x, y) with respect to x at (x0, y0) ∈ R

n × Y will be denoted by

J f ,x(x0, y0) :=


∇x f1(x0, y0)

T

...

∇x fm(x0, y0)
T

 ∈ R
m×n.

The following equalities can be shown by straightforward calculations.

Lemma 1.1. 1. Suppose f : Rn → Rm is continuously differentiable. Then for any
x, y ∈ Rn,

f (y) = f (x) +
(∫ 1

0
J f (x + θ(y − x)) dθ

)
(y − x). (1.6)

2. Suppose f : Rn → R is twice continuously differentiable. Then for any x, y ∈ Rn,

f (y) = f (x) + ∇ f (x)T (y − x)

+
1
2
(y − x)T

(∫ 1

0
2(1 − θ)∇2 f (x + θ(y − x)) dθ

)
(y − x).

(1.7)

Convex Analysis
LetC ⊆ Rn be a convex set. The indicator function ofC will be defined and denoted
by

IC(x) =

{
0, x ∈ C,

+∞, x < C.

The relative interior ofC will be denoted by relint C. The normal cone ofC at x ∈ C

is defined by
NC(x) := {y ∈ Rn : yT (z − x) ≤ 0, ∀z ∈ C}.

When C is closed, for any x ∈ Rn, it is known [20, Proposition 2.2.1] that there
exists a unique vector that minimizes ‖y − x‖ over all y ∈ C. We call this vector the

21

projection of x into C, and denote it by

PC(x) := arg min
y∈C

‖y − x‖.

Furthermore, we have the following proposition.

Proposition 1.1 ([20, Proposition 2.2.1]). Suppose C ⊆ Rn is convex and closed.

1. For any x ∈ Rn,

y = PC(x) ⇐⇒ (x − y)T (z − y) ≤ 0, ∀z ∈ C ⇐⇒ x − y ∈ NC(y).

2. PC is nonexpansive, i.e., ‖PC(x) − PC(y)‖ ≤ ‖x − y‖ for any x, y ∈ Rn.

For a convex cone C ⊆ Rn, its polar cone is defined by

C◦ := {y ∈ Rn : yT z ≤ 0, ∀z ∈ C}.

For any subset A of Rn, its convex hull will be denoted by conv A, and its affine hull
will be denoted by aff A.

Let f : Rn → R ∪ {+∞} be a convex function. The domain of f is defined by

dom(f) := {x ∈ Rn : f (x) < +∞}.

We say that f is proper if dom(f) is nonempty. We say that f is closed if the
epigraph

epi(f) := {(x, y) ∈ Rn × R : y ≥ f (x)}

is closed.

Proposition 1.2 ([82, Theorem 7.1]). A proper convex function f : Rn → R∪{+∞}

is lower semicontinuous if and only if it is closed.

The subdifferential of f at x0 ∈ dom(f) is defined by

∂ f (x0) :=
{
u ∈ Rn : f (x) − f (x0) ≥ uT (x − x0), ∀x ∈ Rn} .

The definition indicates that ∂ f (x0) is the intersection of a collection of closed
half-spaces in Rn, and therefore is convex and closed.

Suppose g(x, y) is a function from Rn × Y to R ∪ {+∞} where Y is any set, and for
some fixed y0 ∈ Y , g(x, y0) is a proper convex function of x. We denote the partial
subdifferential of g(x, y) with respect to x at (x0, y0) ∈ R

n × Y by

∂xg(x0, y0) :=
{
u ∈ Rn : g(x, y0) − g(x0, y0) ≥ uT (x − x0), ∀x ∈ Rn} .

22

C h a p t e r 2

FIRST-ORDER ALGORITHMS FOR TIME-VARYING
OPTIMIZATION

2.1 Problem Formulation
Let us consider the following time-varying optimization problem

min
x∈Rn

c(x, t) + h(x, t)

s.t. f c(x, t) + f nc(x, t) ≤ 0,

f eq(x, t) = 0.

(2.1)

Here t ∈ [0,T] labels time and T > 0 is a fixed constant that represents the length of
the period we consider, c : Rn×R→ R, h : Rn×R→ R∪{+∞}, f c : Rn×R→ Rm,
f c : Rn × R → Rm and f eq : Rn × R → Rm′. For each fixed t ∈ [0,T], c(·, t),
f c(·, t), f nc(·, t) and f eq(·, t) are twice continuously differentiable, f c(·, t) has convex
components, and h(·, t) is a closed proper convex function with a closed domain.
We denote the domain of h(·, t) by

domt(h) := {x ∈ Rn : h(x, t) < +∞}.

In addition, we also assume that∇2
xxc(x, t),∇2

xx f c
i (x, t),∇

2
xx f nc

i (x, t) and∇
2
xx f eq

j (x, t)

for each i = 1, . . . ,m and j = 1, . . . ,m′ are continuous over Rn × [0,T]. We let
f in := f c + f nc.

We assume that (2.1) is feasible for all t ∈ [0,T], and that there exists a Lipschitz
continuous trajectory of primal-dual pair z∗ = (x∗, λ∗, µ∗) : [0,T] → Rn ×Rm

+ ×R
m′

such that for each t ∈ [0,T], z∗(t) = (x∗(t), λ∗(t), µ∗(t)) satisfies

(x∗(t), λ∗(t), µ∗(t)) ∈ domt(h) × Rm
+ × R

m′, (2.2a)

−∇xc(x∗(t), t) −

[
J f in,x(x∗(t), t)

J f eq,x(x∗(t), t)

]T [
λ∗(t)

µ∗(t)

]
∈ ∂x h(x∗(t), t), (2.2b)

f in(x∗(t), t) ∈ NRm+ (λ
∗(t)), (2.2c)

f eq(x∗(t), t) = 0. (2.2d)

The following proposition justifies (2.2) as KKT conditions for (2.1) under appro-
priate constraint qualification conditions.

23

Proposition 2.1. Suppose x̄ is a local minimum of the following optimization prob-
lem

min
x∈Rn

c(x) + h(x)

s.t. f (x) ∈ C,
(2.3)

where c : Rn → R and f : Rn → Rp are continuously differentiable, h : Rn →

R ∪ {+∞} is a closed proper convex function with a closed domain, and C ⊆ Rp

is a closed convex cone. Suppose the following constraint qualification condition is
satisfied:

There is no λ ∈ C◦\{0} such that λT f (x̄) = 0 and −J f (x̄)Tλ ∈ Ndom(h)(x̄). (2.4)

Then there exists λ̄ ∈ C◦ such that

−∇c(x̄) − J f (x̄)T λ̄ ∈ ∂h(x̄), (2.5a)

f (x̄) ∈ NC◦(λ̄). (2.5b)

The set of optimal Lagrange multipliers

Λ =
{
λ̄ ∈ C◦ : λ̄ satisfies (2.5)

}
is convex and compact.

The proof is given in Appendix 2.A for completeness.

Remark 2.1. The constraint qualification in Proposition (2.4) can be viewed as a
generalization of the Mangasarian-Fromovitz constraint qualification (MFCQ) [19].
Indeed, in the case where h = 0 and C = −Rm

+ × {0}m
′, we can prove that MFCQ is

equivalent to (2.4). Let I ⊆ {1, . . . ,m} denote the index set of active constraints at
x̄, and denote E = {m + 1, . . . ,m′}.

1. Suppose MFCQ holds at x̄, and u ∈ Rn satisfies J fI (x̄)u < 0 and J fE (x̄)u = 0.
Suppose λ ∈ Rm

+ × R
m′ satisfies λT f (x̄) = 0 and J f (x̄)Tλ = 0. Then we have

λi = 0 for i < I ∪ E, and

0 = λT J f (x̄)u = λT
I

J fI (x̄)u + λ
T
E J fE (x̄)u = λ

T
I

J fI (x̄)u.

Considering that J fI (x̄)u < 0 while λI ≥ 0, we get λI = 0. Thus J f (x̄)Tλ =

J fE (x̄)
TλE = 0. MFCQ requires that J fE (x̄) has linearly independent row vectors,

which implies that λE = 0. Now we see that λ = 0. Therefore MFCQ implies
the constraint qualification (2.4).

24

2. Suppose that MFCQ does not hold at x̄. If the row vectors of J fE (x̄) are linearly
dependent, then there exists µ ∈ Rm′\{0} such that J fE (x̄)

T µ = 0, and (2.4) is
obviously violated. If there is no u ∈ Rn satisfying J fI (x̄)u < 0 and J fE (x̄)u = 0,
we let

S1 =

{[
J fI (x̄)

J fE (x̄)

]
u : u ∈ Rn

}
, S2 =

{
(z, 0) ∈ R|I | × Rm′ : z ∈ −R|I |++

}
.

Obviously S1 and S2 are convex sets, and since S1 ∩ S2 = �, by the separating
hyperplane theorem, there exists some nonzero (v1, v2) ∈ R

|I | × Rm′ such that
vT

1 z ≥ 0 for all z ∈ −R|I |++, and

vT
1 J fI (x̄)u + v

T
2 J fE (x̄)u ≤ 0, ∀u ∈ Rn.

By setting u = J fI (x̄)
Tv1 + J fE (x̄)

Tv2 in the above inequality, we see that
J fI (x̄)

Tv1 + J fE (x̄)
Tv2 = 0. On the other hand, vT

1 z ≥ 0 for all z ∈ −R|I |++
implies v1 ≥ 0. We then see that if we define λ ∈ Rm

+ × R
m′ by λI = v1, λE = v2

and λi = 0 for any i < I ∪ E, the constraint qualification (2.4) is violated by λ.

We now see that the constraint qualification (2.4) is equivalent to MFCQ. �

Remark 2.2. In general, there can be multiple KKT points of (2.1) that move in
Rn × Rm

+ × R
m′ as time proceeds, which form multiple trajectories that can appear,

terminate, bifurcate or merge during the period (0,T). Reference [49] presented
a very comprehensive theory of the structures and singularities of trajectories of
KKT points for time-varying optimization problems. In [39], the authors show
that strong regularity for generalized equations is a key concept for establishing
the existence of Lipschitz continuous KKT trajectories over a given finite period.
Here, we arbitrarily select one of these trajectories that is well defined and Lipschitz
continuous for t ∈ [0,T], denote it by z∗(t), and mainly focus on this trajectory in
most part of our study. �

As a special case of (2.1), if we set h(x, t) to be the indicator function

h(x, t) =

{
0, x ∈ X(t),

+∞, otherwise,
(2.6)

where X(t) ⊂ Rn is convex and compact for each t ∈ [0,T], then (2.1) includes the

25

following problem as a special case

min
x∈Rn

c(x, t)

s.t. f c(x, t) + f nc(x, t) ≤ 0,

f eq(x, t) = 0,

x ∈ X(t),

(2.7)

and in this case, the subdifferential ∂x h(x, t) is the normal cone NX(t)(x) as can be
seen by

y ∈ ∂x h(x, t) ⇐⇒ h(z, t) ≥ h(x, t) + yT (z − x), ∀z ∈ Rn

⇐⇒ 0 ≥ yT (z − x), ∀z ∈ X(t)

⇐⇒ y ∈ NX(t)(x).

Proximal Operator
We define the proximal operator to a convex function g : Rk → R ∪ {+∞} by

proxg(x) := arg min
y∈Rk

g(y) +
1
2
‖y − x‖2. (2.8)

The proximal operator can be viewed as a generalization of projection onto convex
sets. Indeed, if we take g to be the indicator function of a convex set C ⊆ Rk , the
proximal operator is just the projection onto C.

The following lemma summarizes the properties of the proximal operator that will
be frequently used in subsequent sections.

Lemma 2.1 ([74]). Let g : Rk → R ∪ {+∞} be convex and proper. Then

1. proxg(x) is well-defined for all x ∈ Rk .

2. y = proxg(x) if and only if x − y ∈ ∂g(y).

3. proxg is nonexpansive: for any x, y ∈ Rk ,

proxg(x) − proxg(y)

 ≤ ‖x − y‖.

We can use the second property in Lemma 2.1 to rewrite two of the KKT conditions
(2.2b) and (2.2c) equivalently in the form of a fixed-point equation

x∗(t) = proxαh(·,t)

x∗(t) − α ©­«∇xc(x∗(t), t) +

[
J f in,x(x∗(t), t)

J f eq,x(x∗(t), t)

]T [
λ∗(t)

µ∗(t)

]ª®¬
 , (2.9a)

λ∗(t) = PRm+
[
λ∗(t) + β f in(x∗(t), t)

]
, (2.9b)

where α and β are any positive real number.

26

2.2 Regularized Proximal Primal-Dual Gradient Algorithm
We first discretize the time domain [0,T] so that discrete-time algorithms can be
proposed and implemented. Let ∆ > 0 be the sampling interval. Let T :=
{1, 2, . . . , bT/∆c} be the set of discrete time indices, and we denote

cτ(x) = c(x, τ∆), hτ(x) = h(x, τ∆),

f c
τ (x) = f c(x, τ∆), f nc

τ (x) = f nc(x, τ∆),

f in
τ (x) = f in(x, τ∆) f eq

τ (x) = f eq(x, τ∆),

for each τ ∈ T . The sampled version of the KKT trajectory z∗(t) will be denoted
by z∗τ = (x

∗
τ, λ
∗
τ, µ
∗
τ) for τ ∈ T .

Let ẑ0 = (x̂0, λ̂0, µ̂0) ∈ dom0(h) × Rm
+ × R

m′ be the initial point. The regularized
proximal primal-dual gradient algorithm produces a primal-dual pair (x̂τ, λ̂τ, µ̂τ)
iteratively by

x̂τ = proxαhτ

x̂τ−1 − α
©­«∇cτ(x̂τ−1) +

[
J f inτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1

µ̂τ−1

]ª®¬
 , (2.10a)

λ̂τ = PRm+

[
λ̂τ−1 + ηα

(
f in
τ (x̂τ−1) − ε

(
λ̂τ−1 − λprior

))]
, (2.10b)

µ̂τ = µ̂τ−1 + ηα
(
f eq
τ (x̂τ−1) − ε

(
µ̂τ−1 − µprior

))
(2.10c)

for each τ ∈ T . Here α > 0, η > 0, ε > 0, λprior ∈ R
m
+ and µprior ∈ R

m′ are
parameters of the algorithm.

The regularized proximal primal-dual gradient algorithm is closely related to the
following saddle point problem

min
x∈Rn

max
λ∈Rm+ ,µ∈R

m′
Lετ(x, λ, µ), (2.11)

where Lετ(x, λ, µ) denotes the regularized Lagrangian defined by

Lετ(x, λ, µ) = cτ(x) + hτ(x) + λT f in
τ (x) + µ

T f eq
τ (x)

−
ε

2

(

λ − λprior

2
+

µ − µprior

2

)
.

(2.12)

We can see that there is an additional term − ε2
(

λ − λprior

2
+

µ − µprior

2

)
com-

pared to the original Lagrangian function, which represents regularization that drives
the dual variables towards

(
λprior, µprior

)
. Then, (2.10) can be viewed as applying a

single iteration of proximal gradient descent on the primal variable and projected
gradient ascent on the dual variables in (2.12), with step sizes being α for the primal

27

update and ηα for the dual updates respectively. The parameter ε then controls the
amount of regularization on the dual variables. The constant vectors λprior and µprior

can be viewed as prior estimates of the optimal dual variables, and can be set to zero
if such prior estimates cannot be obtained1.

It can be seen that the regularized Lagrangian (2.12) is strongly concave with
respect to the dual variables, which potentially improves the convergence behavior
of primal-dual gradient methods. On the other hand, even if we solve the saddle
point problem (2.11) exactly, the resulting solution will be in general different from
the KKT points of (2.1), which suggests that there could be further sub-optimality
introduced by regularization in the time-varying setting. This is indeed the case as
will be seen in Section 2.3.

We denote the primal-dual pair produced by (2.10) as ẑτ = (x̂τ, λ̂τ, µ̂τ). We define
the norm

‖z‖η :=
√
‖x‖2 + η−1‖λ‖2 + η−1‖ν‖2

for z = (x, λ, ν) ∈ Rn+m+m′.

2.3 Tracking Performance
The regularized proximal primal-dual gradient algorithm proposed in the previous
section is expected to produce a sequence of primal-dual pairs that are sufficiently
close to the KKT points for each time instant; in other words, the algorithm should
be able to track the KKT points z∗τ = (x

∗
τ, λ
∗
τ, µ
∗
τ) for each τ. In this section, we

study the tracking performance of the regularized proximal primal-dual gradient
algorithm.

We define the tracking error to be

ẑτ − z∗τ

η
=

√
‖ x̂τ − x∗τ ‖

2 + η−1

λ̂τ − λ∗τ

2

+ η−1 ‖ µ̂τ − µ
∗
τ‖

2,

which represents the distance between the KKT point and the solution produced
by (2.10); a small tracking error implies good tracking performance with respect
to

(
z∗τ

)
τ. We are interested in factors that affect the tracking error, and especially

conditions under which a bounded tracking error can be guaranteed.
1 The dual update (2.10b) can also be equivalently written as

λ̂τ = PRm+

[
λ̂τ−1 + ηα

(
f̃ inτ (x̂τ−1) − ελ̂τ−1

)]
with f̃ inτ (x) = f inτ (x)+ελprior. In otherwords, we can also view (2.10b) as employing no prior estimate
of λ∗τ but a more conservative version of the inequality constraint given by f inτ (x) + ελprior ≤ 0.

28

Before proceeding, we first define some quantities that will be used in our analysis.
Let

ση := sup
t1,t2∈[0,T],

t1,t2

‖z∗(t2) − z∗(t1)‖η
|t2 − t1 |

= ess sup
t∈[0,T]

 d
dt

z∗(t)

η

,

i.e., the maximum speed of the KKT point with respect to the norm ‖ · ‖η; hence

z∗τ − z∗τ−1

η
≤ ση∆ for each τ. We assume that ση > 0 for some (and thus for any)

η > 0. Intuitively, the slower z∗(t) moves, the more likely it is to obtain a smaller
tracking error. We then define

Md := sup
t∈[0,T]

[
λ∗(t) − λprior

µ∗(t) − µprior

]

 , (2.13)

Mnc(δ) := sup
t∈[0,T]

sup
u:‖u‖≤δ

D2
xx

[
f nc(x∗(t) + u, t)

f eq(x∗(t) + u, t)

]

 , (2.14)

Mc(δ) := sup
t∈[0,T]

sup
u:‖u‖≤δ

D2
xx f c(x∗(t) + u, t)

 , (2.15)

L f (δ) := sup
t∈[0,T]

sup
u:‖u‖≤δ

[
J f in,x(x∗(t) + u, t)

J f eq,x(x∗(t) + u, t)

]

 , (2.16)

D(δ, η) :=
√
ηL f (δ) + Mc(δ) sup

t∈[0,T]
‖λ∗(t)‖ . (2.17)

Here for a vector-valued f (x, t) that is twice continuously differentiable in x for a
fixed t, we use D2

xx f (x, t) to denote the bilinear map that maps a pair of vectors
(h1, h2) to a vector whose i’th entry is given by hT

2∇
2
xx fi(x, t)h1, i.e.,

D2
xx f (x, t) : (h1, h2) 7→

(
hT

2∇
2
xx fi(x, t)h1

)
i
,

and

D2

xx f (x, t)

 is defined by

D2
xx f (x, t)

 := sup
h1,h2,0

D2
xx f (x, t)(h1, h2)

‖h1‖‖h2‖

= sup
‖h1‖=‖h2‖=1

D2
xx f (x, t)(h1, h2)

 .
Intuitively,

D2
xx f (x, t)

 characterizes the nonlinearity of function f with respect
to x at time t. Specifically, we have the following lemma, whose proof is given in
Appendix 2.A.

Lemma 2.2. Let t ∈ [0,T] be fixed. Then for any x1, x2,

J f ,x(x2, t) − J f ,x(x1, t)

≤ ‖x2 − x1‖ · sup
θ∈[0,1]

D2
xx f (x1 + θ(x2 − x1), t)

 , (2.18)

29

and

 f (x2, t) − f (x1, t) − J f ,x(x1, t)(x2 − x1)

≤
1
2
‖x2 − x1‖

2 · sup
θ∈[0,1]

D2
xx f (x1 + θ(x2 − x1), t)

 . (2.19)

The argument δ ∈ (0,+∞) in the definitions (2.14)–(2.17) represents the radius of
the ball centered at x∗(t), i.e., the local region around x∗(t) we are interested in.

Let the “nonconvex Lagrangian component” be

Lnc(x, λ, µ, t) := c(x, t) + λT f nc(x, t) + µT f eq(x, t),

Lnc
τ (x, λ, µ) := Lnc(x, λ, µ, τ∆).

We also define

HLnc (u, t) :=
∫ 1

0
∇2

xxL
nc(x∗(t) + θu, λ∗(t), µ∗(t), t) dθ, (2.20)

H f ci (u, t) :=
∫ 1

0
2(1 − θ)∇2

xx f c
i (x
∗(t) + θu, t) dθ, (2.21)

and

ρ(P)(δ, α, η, ε) := sup
t∈[0,T],
u:‖u‖≤δ

(I − αHLnc (u, t)
)2
− α(1 − ηαε)

m∑
i=1

λ∗i (t)H f ci (u, t)

 ,
ρ(δ, α, η, ε) :=

 max
{
ρ(P)(δ, α, η, ε), (1 − ηαε)2

}
+ α(1 − ηαε)

√
ηδMnc(δ)

2

+ α2 ©­­«2 sup
t∈[0,T],
u:‖u‖≤δ

ηε I − HLnc (u, t)

 D(δ, η) + D2(δ, η)

ª®®¬


1/2

,

κ(δ, α, η, ε) := max
{
1,

1 − ηαε
ρ(δ, α, η, ε)

,

√
ηαL f (δ)

ρ(δ, α, η, ε)

}
.

Here, HLnc (u, t) is the averaged Hessian matrix of the “nonconvex Lagrangian
component” around x∗(t) along the vector u, and H f ci (u, t) is the averaged Hessian
matrix of the convex part of the i’th constraint along the vector u. The quantity
ρ(δ, α, η, ε), as we will show later, can be viewed as the contraction coefficient of a
single step of the algorithm.

Remark 2.3. Although the algorithm (2.10) runs in the discrete time domain, the
definitions above take supremum over the continuous time domain [0,T], as some

30

of these quantities will be employed again to study the continuous-time limit of the
algorithm (2.10) in Section 2.4. The results in Theorem 2.1 will still follow if we
replace all the supremum over t ∈ [0,T] by supremum over t ∈ τT in the definitions
above. �

The following lemma is critical in establishing the tracking error bound of the
algorithm (2.10), whose proof will be presented in Appendix 2.A.

Lemma 2.3. Let τ ∈ T be arbitrary. If

ẑτ−1 − z∗τ

η
≤ δ and ẑτ is generated by

(2.10), then

ẑτ − z∗τ

η
≤ ρ(δ, α, η, ε)

ẑτ−1 − z∗τ

η
+ κ(δ, α, η, ε)

√
ηαεMd, (2.22)

where κ(δ, α, η, ε) is upper bounded by
√

2 and satisfies

lim
α→0+

κ(δ, α, η, ε) = 1.

Nowwe present one of themain results of this chapter, which establishes the tracking
error bound of the regularized proximal primal-dual gradient algorithm (2.10).

Theorem 2.1. Suppose there exist δ > 0, α > 0, η > 0 and ε > 0 such that

ση∆ ≤ (1 − ρ(δ, α, η, ε)) δ − κ(δ, α, η, ε)
√
ηαεMd . (2.23a)

Let the initial point ẑ0 = (x̂0, λ̂0, µ̂0) be sufficiently close to the KKT point z∗1 so that

ẑ0 − z∗1

η
≤ δ. (2.23b)

Then the sequence (ẑτ)τ∈T produced by the regularized proximal primal-dual gra-
dient algorithm (2.10) satisfies

ẑτ − z∗τ

η
≤
ρ(δ, α, η, ε)ση∆ + κ(δ, α, η, ε)

√
ηαεMd

1 − ρ(δ, α, η, ε)

+ ρτ(δ, α, η, ε)

(

ẑ0 − z∗1

η
−
ση∆ + κ(δ, α, η, ε)

√
ηαεMd

1 − ρ(δ, α, η, ε)

) (2.24)

for all τ ∈ T .

Moreover, we have

lim
α→0+

κ (δ, α, η, ε) = 1 and κ (δ, α, η, ε) ≤
√

2.

31

Note that Lemma2.3 asserts that if the radius δ is chosen such that ρ := ρ(δ, α, η, ε) <
1, iteration (2.10) is an approximate local contraction with coefficient ρ and error
term e := κ(δ, α, η, ε)

√
ηαεMλ. The idea of the proof of Theorem 2.1 is then

based on showing that condition (2.23a) is sufficient to guarantee that the trajectory
generated by the algorithm is confined within the contraction region at every time
step. Note that (2.23a) implies

B(z∗τ, ρδ + e) ⊆ B(z∗τ+1, δ), (2.25)

where B(z, δ) is the ball centered at z with radius δ (with respect to the norm ‖ · ‖η).
Then, it is possible to show by induction that if ẑ0 ∈ B(z∗1, δ), then ẑτ−1 ∈ B(z∗τ, δ)

for all τ. The idea of condition (2.25) is illustrated in Figure 2.1 and the formal
proof of Theorem 2.1 is given below.

z∗τ

z∗τ+1

δ

δ

ρδ + e

Figure 2.1: Illustration of condition (2.25). This condition is essentially on: (i)
time-variability of a KKT point, (ii) extent of the contraction, and (iii) maximum
error in each iteration. Note that in the error-less static case (i.e., ση = e = 0), this
condition is trivially satisfied.

Proof of Theorem 2.1. For notational simplicity, we just use ρ to denote ρ(δ, α, η, ε)
and use κ to denote κ(δ, α, η, ε). The condition (2.23b) guarantees that we can use
Lemma 2.3 to get

ẑ1 − z∗1

η
≤ ρ

ẑ0 − z∗1

η
+ κ
√
ηαεMd,

32

which shows that (2.24) holds for τ = 1. Now suppose that (2.24) holds for some
τ ∈ T . We have

ẑτ − z∗τ+1

η
≤

ẑτ − z∗τ

η
+

z∗τ − z∗τ+1

η

≤
ρση∆ + κ

√
ηαεMd

1 − ρ
+ ρτ

(

ẑ0 − z∗1

η
−
ση∆ + κ

√
ηαεMd

1 − ρ

)
+ ση∆

= (1 − ρτ)
ση∆ + κ

√
ηαεMd

1 − ρ
+ ρτ

ẑ0 − z∗1

η
. (2.26)

The condition (2.23a) implies

ρ < 1 and δ ≥
ση∆ + κ

√
ηαεMd

1 − ρ
,

and therefore

ẑτ − z∗τ+1

η
≤ (1 − ρτ) δ + ρτδ ≤ δ.

We can then use Lemma 2.3 and (2.26) to get

ẑτ+1 − z∗τ+1

η
≤ ρ

ẑτ − z∗τ+1

η
+ κ
√
ηαεMd

≤ ρ

(
(1 − ρτ)

ση∆ + κ
√
ηαεMd

1 − ρ
+ ρτ

ẑ0 − z∗1

η

)
+ κ
√
ηαεMd

=
ρση∆ + κ

√
ηαεMd

1 − ρ
+ ρτ+1

(

ẑ0 − z∗1

η
−
ση∆ + κ

√
ηαεMd

1 − ρ

)
,

and by induction we get (2.24) for all τ ∈ T . �

It can be seen that the tracking error bound in (2.24) consists of a constant term and a
term that decays geometricallywith τ, as the condition (2.23a) implies ρ (δ, α, η, ε) <
1. We call the constant term

ρ(δ, α, η, ε)ση∆ + κ(δ, α, η, ε)
√
ηαεMλ

1 − ρ(δ, α, η, ε)
(2.27)

the eventual tracking error bound, which can be further split into two parts:

1. The first part
ρ(δ, α, η, ε)

1 − ρ(δ, α, η, ε)
ση∆

is proportional to ση, the maximum speed of the KKT point. In time-varying
optimization, such terms are common in the tracking error bound [35, 68, 84, 90].
This term also decreases as one reduces the sampling interval ∆.

33

2. The second part
κ(δ, α, η, ε)

√
ηαεMd

1 − ρ(δ, α, η, ε)
is proportional to Md , the maximum distance between the optimal Lagrange
multiplier (λ∗(t), µ∗(t)) and the prior estimate (λprior, µprior). This term represents
the discrepancy introduced by adding regularization on the dual variable; similar
behavior has also been observed in [60].

In addition, the first part has a multiplicative factor ρ(δ, α, η, ε)/(1 − ρ(δ, α, η, ε)),
while the second part has a multiplicative factor 1/(1 − ρ(δ, α, η, ε)), which are all
strictly increasing in ρ(δ, α, η, ε). This implies that a smaller ρ(δ, α, η, ε)will lead to
better tracking performance. The condition (2.23a) is also more likely to be satisfied
when ρ(δ, α, η, ε) is smaller.

Feasible Parameters
In order that (2.23a) can be satisfied and the bound (2.27) can be as small as
possible, one needs to find an appropriate set of the parameters α, η, ε . However,
the expression that defines ρ(δ, α, η, ε) is rather complicated, making it difficult to
analyze how to achieve a smaller bound (2.27); even the existence of parameters
that can guarantee the condition (2.23a) is not readily available. In this section, we
give a preliminary study of the conditions under which (2.23a) can be satisfied.

Definition 2.1. We say that (δ, α, η, ε) ∈ R4
++ is a tuple of feasible parameters if

(1 − ρ(δ, α, η, ε)) δ − κ(δ, α, η, ε)
√
ηαεMd > 0. (2.28)

It can be seen that, if (2.28) is satisfied, then for sufficiently small sampling interval
∆ the condition (2.23a) can be satisfied; otherwise (2.23a) cannot be satisfied no
matter how much one reduces the sampling interval ∆. The quantity δ has been
added to the tuple of parameters for convenience.

Define

Λm(δ) := inf
t∈[0,T]

inf
u:‖u‖≤δ

λmin

(
HLnc (u, t) +

1
2

m∑
i=1

λ∗i (t)H f ci (u, t)

)
, (2.29)

ΛM(δ) := sup
t∈[0,T]

sup
u:‖u‖≤δ

λmax

(
HLnc (u, t) +

1
2

m∑
i=1

λ∗i (t)H f ci (u, t)

)
. (2.30)

Roughly speaking, Λm(δ) characterizes how convex the problem (2.1) is in the
neighborbood of x∗(t). It’s easy to see that Λm(δ) is a nonincreasing function in δ.

34

Lemma 2.4. 1. Suppose X and Y are metric spaces with X being compact, and
f : X × Y → R is a continuous function. Let g : Y → R be given by

g(y) = sup
x∈X

f (x, y).

Then g is a continuous function.

2. Suppose f : RBn × V → R is a continuous function for some R > 0 and V is a
metric space. Define g : (0, R) × V → R by

g(r, v) = sup
u:‖u‖≤r

f (u, v)

Then g is a continuous function on (0, R) × V .

The proof of Lemma 2.4 will be given in Appendix 2.A.

Theorem 2.2. Suppose there exists some δ̄ > 0 such that

Λm
(
δ̄
)
> Md Mnc

(
δ̄
)
. (2.31)

Let

Sfp :=
{
(δ, α, η, ε) ∈ R4

++ : (1 − ρ(δ, α, η, ε)) δ − κ(δ, α, η, ε)
√
ηαεMd > 0

}
.

Then Sfp is a non-empty open subset of R4
++.

Proof. Let R > δ̄ be arbitrary. We first show that HLnc (u, t) and each H f ci (u, t) are
continuous over (u, t) ∈ RBn × [0,T]. Indeed, by their definitions (2.20) and (2.21),
any entry of these matrices can be written in the form∫ 1

0
g(θ, u, t) dθ,

where g is some continuous function over (θ, u, t) ∈ [0, 1] × RBn × [0,T] as we have
assumed the continuity of∇2

xxc(x, t) and each∇2
xx f c

i (x, t),∇
2
xx f nc

i (x, t),∇
2
xx f eq

j (x, t).
Since [0, 1] × RBn × [0,T] is a compact set, g(θ, u, t) is bounded above. By the
dominated convergence theorem,

∫ 1
0 g(θ, u, t) dθ is continuous over (u, t) ∈ RBn ×

[0,T].

As a consequence of the continuity of HLnc (u, t) and each H f ci (u, t), ΛM(δ) is finite
for all δ ≤ R.

Let
fR(δ, α, η, ε) := (1 − ρ(δ, α, η, ε))δ − κ(δ, α, η, ε)

√
ηαεMd

35

for (δ, α, η, ε) ∈ (0, R)×R3
++, and let us consider the Taylor expansion of fR(δ, α, η, ε)

with respect to α as α→ 0+. We have(
I − αHLnc (u, t)

)2
− α(1 − ηαε)

m∑
i=1

λ∗i (t)H f ci (u, t)

= I − 2α

(
HLnc (u, t) +

1
2

m∑
i=1

λ∗i (t)H f ci (u, t)

)
+ α2Q(u, t, η, ε),

(2.32)

where Q(u, t, η, ε) is some positive semidefinite matrix that depends continuously
on (u, t, η, ε). It can be checked that for α < (2ΛM(R))−1, we have

0 ≺ 2α

(
HLnc (u, t) +

1
2

m∑
i=1

λ∗i (t)H f ci (u, t)

)
≺ I

whenever ‖u‖ < R, and so

I − 2α

(
HLnc (u, t) +

1
2

m∑
i=1

λ∗i (t)H f ci (u, t)

)

= 1 − 2αλmin

(
HLnc (u, t) +

1
2

m∑
i=1

λ∗i (t)H f ci (u, t)

)
whenever ‖u‖ < R and α < (2ΛM(R))−1. By (2.32), we get

sup
t∈[0,T]

sup
u:‖u‖≤δ

(I − αHLnc (u, t)
)2
− α(1 − ηαε)

m∑
i=1

λ∗i (t)H f ci (u, t)

= 1 − 2αΛm(δ) +O

(
α2)

as α → 0+ for any δ ∈ (0, R). Consequently, by Taylor expansion of ρ (δ, α, η, ε)
with respect to α and using the properties of κ (δ, α, η, ε), we can show that

ρ(δ, α, η, ε) = 1 − α
(
min {Λm(δ), ηε} −

√
η

4
δMnc(δ)

)
+O

(
α2) (2.33)

and

fR(δ, α, η, ε)

=α

(
δ

(
min {Λm(δ), ηε} −

√
η

4
δMnc(δ)

)
−
√
ηεMd

)
+O

(
α2) . (2.34)

Now we consider two cases:

36

1. Md > 0: Let δ0 = δ̄ and

η0 =

(
2Λm(δ0)

δ0Mnc(δ0)

)2
, ε0 =

Λm(δ0)

η0
.

By (2.34),

fR(δ0, α, η0, ε0
)
=α

δ̄

2
(
Λm

(
δ̄
)
− Md Mnc

(
δ̄
))
+O

(
α2) . (2.35)

Togeherwith the condition (2.31), we can see from (2.35) there exists a sufficiently
small α0 > 0 such that fR(δ0, α0, η0, ε0) is positive, and consequently Sfp is non-
empty.

2. Md = 0: Let η0 > 0 be arbitrary. Consider the function

g(δ) = Λm(δ) −

√
η0

4
δMnc(δ).

By the monotonicity of Λm(δ) and Mnc(δ),

lim
δ→0+

g(δ) = lim
δ→0+

Λm(δ) ≥ Λm
(
δ̄
)
> 0.

Therefore there exists some δ0 ∈
(
0, δ̄

]
such that g(δ0) > 0.

Now let ε0 = η
−1
0 Λm(δ0). By (2.34),

fR(δ0, α, η0, ε0) =αδ0g(δ0) +O
(
α2) . (2.36)

Therefore we can find some α0 > 0 such that fR(δ0, α0, η0, ε0) is positive, and
consequently Sfp is non-empty.

Finally, by Lemma 2.4, it can be seen that fR(δ, α, η, ε) is a continuous function over
(δ, α, η, ε) ∈ (0, R) × R3

++. Therefore the set

Sfp ∩
(
(0, R) × R3

++

)
= {(δ, α, η, ε) ∈ (0, R) × R3

++ : fR(δ, α, η, ε) > 0}

is an open subset of R4
++, and consequently

Sfp =
⋃
R>δ̄

Sfp ∩
(
(0, R) × R3

++

)
is an open subset of R4

++. �

The condition (2.31) for the existence of feasible parameters can be intuitively
interpreted as follows: The problem should be sufficiently convex around the KKT

37

trajectory to overcome the nonlinearity of the nonconvex constraints. It should be
emphasized that this is only a sufficient condition.

The parameters (δ0, α0, η0, ε0) given in the proof are in general not the optimal choice
of parameters. However, they do provide some insights on how to choose parameters
in practical situations:

1. Since ε controls the amount of regularization on the dual variable, a smaller
ε can help reduce the inaccuracy introduced by the regularization. On the
other hand, if ε is two small, one could have ρ(P)(δ, α, η, ε) < (1 − ηαε)2, and
the contraction coefficient ρ(δ, α, η, ε) can be too close to 1, which degrades
the overall tracking performance. In the proof we set ε0 = η−1

0 Λm(δ0) so that
ρ(P)(δ0, α0, η0, ε0) ≈ (1 − η0α0ε0)

2.

2. It can be seen that, in the case where the constraints and objective are all con-
vex, if we choose ε as previously mentioned, then the “contraction coefficient”
ρ(δ, α, η, ε) has a particular form

ρ(δ, α, η, ε) ≈ 1 − αΛm(δ) + α
2 · (additional terms),

where those “additional terms” are mainly related to the Lipschitz constants of
various functions. Similar forms have appeared in [35, 60, 87]. For the non-
convex case, the coefficient of the first-order term will be reduced, but Theorem
2.2 guarantees that it can be made positive by appropriate choice of parameters
under the condition (2.31).

Because of the “additional terms”, we could choose α to be sufficiently small so
that ρ(δ, α, η, ε) is less than 1, but an excessively small α can also degrade the
tracking performance. In practice the step size can be chosen heuristically by
experiments or simulations. Adaptive step sizes will be left for future study.

In the proof of Theorem 2.2, we consider the asymptotic behavior of ρ(δ, α, η, ε)
as the step size α approaches zero, which greatly simplifies the analysis. It is
well known that when the step size is very small, the classical projected gradient
descent can be viewed as good approximation of the continuous-time projected
gradient flow [71] which has simpler analysis but still provides valuable results
for understanding the discrete-time counterpart. This observation suggests that by
studying the continuous-time limit of (2.10), we may get a better understanding of
the discrete-time algorithm.

38

2.4 Continuous-Time Limit
In this section, we study the continuous-time limit of the regularized proximal
primal-dual gradient algorithm (2.10).

Let ẑ0 = (x̂0, λ̂0, µ̂0) be the initial primal-dual pair. For each K ∈ N, let ẑ(K)τ =(
x̂(K)τ , λ̂

(K)
τ , µ̂

(K)
τ

)
, τ = 0, 1, 2, . . . ,K be the sequence produced by (2.10) with sam-

pling interval ∆ = ∆K := T/K and step size α = ∆K β for some fixed β > 0. In other
words, we let ẑ(K)0 = ẑ0 and ẑ(K)τ =

(
x̂(K)τ , λ̂

(K)
τ , µ̂

(K)
τ

)
with

x̂(K)τ = prox∆K βhτ

x̂(K)
τ−1 − ∆K β

©­«∇cτ
(
x̂(K)
τ−1

)
+

[
J f inτ

(
x̂(K)
τ−1

)
J f eqτ

(
x̂(K)
τ−1

)]T [
λ
(K)
τ−1
µ̂
(K)
τ−1

]ª®¬
 , (2.37a)

λ̂
(K)
τ = PRm+

[
λ̂
(K)
τ−1 + ∆Kηβ

(
f in
τ

(
x̂(K)
τ−1

)
− ε

(
λ̂
(K)
τ−1 − λprior

))]
, (2.37b)

µ̂
(K)
τ = µ̂

(K)
τ−1 + ∆Kηβ

(
f eq
τ

(
x̂(K)
τ−1

)
− ε

(
µ̂
(K)
τ−1 − µprior

))
, (2.37c)

for τ = 1, 2, . . . ,K . Define

ẑ(K)(t) =
τ∆K − t
∆K

ẑ(K)
τ−1 +

t − (τ − 1)∆K

∆K
ẑ(K)τ (2.38)

if t ∈ [(τ − 1)∆K, τ∆K] for each τ = 1, . . . ,K . It can be seen that ẑ(K) is a linear
interpolation of the set of points

{(
τ∆K, ẑ

(K)
τ

)}
, and we are interested in the behavior

of ẑ(K) when K →∞.

Definition 2.2. Given S : [0,T] → 2Rk , we say that S(t) is κ-Lipschitz in t if

dH
(
S(t1), S(t2)

)
≤ κ |t1 − t2 |

for all t1, t2 ∈ [0,T], where and dH denotes the Hausdorff distance of two sets:

dH(A, B) := max

{
sup
x∈A

inf
y∈B
‖x − y‖, sup

y∈B
inf
x∈A
‖x − y‖

}
.

Theorem 2.3. Suppose the following conditions hold:

1. grapht(h) is κ1-Lipschitz in t for some κ1 > 0, where

grapht(h) := {(x, h(x, t)) : x ∈ domt(h)}

denotes the graph of the function x 7→ h(x, t) for each t ∈ [0,T];

2. there exists ` > 0 such that

sup
x1,x2∈domt (h)

|h(x2, t) − h(x1, t)|
‖x2 − x1‖

≤ `, ∀t ∈ [0,T]; (2.39)

39

3. ∇xc(x, t) is continuous on the set
⋃

t∈[0,T] domt(h) × [0,T], and there exists some
κ2 > 0 such that

‖∇xc(x, t)‖ ≤ κ2(1 + ‖x‖), ∀(x, t) ∈
⋃

t∈[0,T]
domt(h) × [0,T]; (2.40)

4. f in(x, t) and f eq(x, t) are continuous, and J f in,x(x, t) and J f eq,x(x, t) are bounded
and continuous over (x, t) ∈

⋃
t∈[0,T] domt(h) × [0,T]. Moreover, there exists

some integrable function l : [0,T] → R+ such that for each t ∈ [0,T]

sup
x∈domt (h)

∇2
xxc(x, t)

 ≤ l(t),

sup
x∈domt (h)

∇2
xx f in

j (x, t)

 ≤ l(t), ∀ j = 1, . . .m,

sup
x∈domt (h)

∇2
xx f eq

j (x, t)

 ≤ l(t), ∀ j = 1, . . .m′.

(2.41)

We keep T constant and let K → ∞. Then the sequence of trajectories
(
ẑ(K)

)
K∈N

defined in (2.38) converges uniformly to some Lipschitz continuous ẑ =
(
x̂, λ̂, µ̂

)
that

satisfies

−
d
dt

x̂(t) − β ©­«∇xc(x̂(t), t) +

[
J f in,x(x̂(t), t)

J f eq,x(x̂(t), t)

]T [
λ̂(t)

µ̂(t)

]ª®¬ ∈ β∂x h(x̂(t), t), (2.42a)

−
d
dt
λ̂(t) + ηβ

(
f in(x̂(t), t) − ε

(
λ̂(t) − λprior

))
∈ NRm+

(
λ̂(t)

)
, (2.42b)

−
d
dt
µ̂(t) + ηβ

(
f eq(x̂(t), t) − ε

(
µ̂(t) − µprior

))
= 0 (2.42c)

for almost all t ∈ [0,T]. Moreover, the differential inclusions (2.42) have a unique
absolutely continuous solution given any initial condition ẑ(0) = ẑ0.

The proof of Theorem 2.3 is given in Appendix 2.A.

Remark 2.4. Theorem 2.3 indicates that a continuous-time counterpart of the
discrete-time algorithm (2.10) is given by the differential inclusions (2.42). In
the special case where h is the indicator function of a compact convex set X(t) as
given in (2.6), the differential inclusions (2.42) can be written in the form

−
d
dt

ẑ(t) + Φ(ẑ(t), t) ∈ NC(t)(ẑ(t)), (2.43)

where C(t) = X(t) × Rm
+ × R

m′ is convex and Φ : Rn × Rm
+ × R

m′ → Rn × Rm
+ × R

m′

gives the gradient step of the primal and dual variables. This form of differential

40

inclusions has been studied under the name perturbed sweeping processes in the
literature [28], and the discrete-time algorithmhas been called the catching algorithm
of the perturbed sweeping processes.

It should be noted that, when the convex set C(t) is time-varying, the perturbed
sweeping process (2.43) in general cannot be equivalently written in the form

d
dt

ẑ(t) = PTC(t)(ẑ(t)) [Φ(ẑ(t), t)] , (2.44a)

where TC(t) denotes the tangent cone of C(t), or

d
dt

ẑ(t) = lim
s→0+

PC(t) [ẑ(t) + sΦ(ẑ(t), t)] − ẑ(t)
s

(2.44b)

as an ordinal projected dynamical system, as there may not exist solutions on [0,T]
that satisfy these equations almost everywhere. A simple example is given by
C(t) = {(x1, x2) ∈ R

2 : x1 ≥ t} with Φ(z, t) = 0. It can be seen that under the initial
condition (x1(0), x2(0)) = (0, 0), (2.43) admits the solution x1(t) = t, x2(t) = 0,
but (2.44a) and (2.44b) do not have solutions. In [54], the authors introduced a
formulation similar to (2.44a) based on the notion of temporal tangent cones, which
is a generalization of tangent cones in time-varying situations. �

Remark 2.5. Among the four conditions listed in Theorem 2.3, the first three con-
ditions and the continuity of f in, f eq, J f in,x and J f eq,x guarantee that

(
ẑ(K)

)
K∈N

will always have a convergent subsequence, any any convergent subsequence will
converge uniformly to an absolutely continuous solution to (2.42), while by adding
the existence of the function l(t) that satisfies (2.41), we can further derive the
uniqueness of the absolutely continuous solution to (2.42) and the convergence of
the sequence

(
ẑ(K)

)
K∈N itself. �

Tracking Performance
After showing that the differential inclusions (2.42) give the correct continuous-time
limit of the algorithm (2.10), we proceed to study the tracking performance under
the continuous-time limit.

We first present a Gronwall-type lemma, whose proof is given in Appendix 2.A.

Lemma 2.5. Let v(t) be a nonnegative absolutely continuous function that satisfies
1
2

d
dt

(
v2(t)

)
≤ av(t) − bv2(t)

for almost all t ∈ [0,T], where a and b are nonnegative constants. Then

v(t) ≤ e−btv(0) +
a
b
(1 − e−bt).

41

The following theorem then establishes the tracking error bound of the differential
inclusions (2.42), which is the continuous-time counterpart of Theorem 2.1. It char-
acterizes the behavior of the discrete-time algorithm (2.10) under the continuous-
time limit.

Theorem 2.4. Suppose there exists δ > 0, β > 0, η > 0 and ε > 0 such that

β−1ση < δ γ(δ, η, ε) −
√
ηεMd, (2.45)

where
γ(δ, η, ε) := min {Λm(δ), ηε} −

√
η

4
δMnc(δ). (2.46)

Let ẑ(t) be a Lipschitz continuous solution to (2.42) with ‖ ẑ(0) − z∗(0)‖η < δ. Then
for all t ∈ [0,T],

‖ ẑ(t) − z∗(t)‖η <
β−1ση +

√
ηεMd

γ(δ, η, ε)

+ e−βγ(δ,η,ε) t
(
‖ ẑ(0) − z∗(0)‖η −

β−1ση +
√
ηεMd

γ(δ, η, ε)

)
.

(2.47)

Proof. First of all, we notice that (2.42a) implies

β (h(x∗(t), t) − h(x̂(t), t))

≥ (x∗(t) − x̂(t))T ©­«− d
dt

x̂(t) − β∇xc(x̂(t), t) − β

[
J f in,x(x̂(t), t)

J f eq,x(x̂(t), t)

]T [
λ̂(t)

µ̂(t)

]ª®¬
= (x∗(t) − x̂(t))T

(
−

d
dt

x̂(t) − β∇xL
nc(x̂(t), λ∗(t), µ∗(t), t)

− βJ f c,x(x̂(t), t)T λ̂(t) + β

[
J f nc,x(x̂(t), t)

J f eq,x(x̂(t), t)

]T [
λ∗(t) − λ̂(t)

µ∗(t) − µ̂(t)

])
,

and by (2.2b),

β(h(x̂(t), t) − h(x∗(t), t))

≥ (x̂(t) − x∗(t))T ©­«−β∇xc(x∗(t), t) − β

[
J f in,x(x∗(t), t)

J f eq,x(x∗(t), t)

]T [
λ∗(t)

µ∗(t)

]ª®¬
= (x̂(t) − x∗(t))T

(
−β∇xL

nc(x∗(t), λ∗(t), µ∗(t), t) − βJ f c,x(x∗(t), t)Tλ∗(t)
)
.

42

Thus

(x̂(t) − x∗(t))T
d
dt

x̂(t)

≤ − β(x̂(t) − x∗(t))T
(
∇xL

nc(x̂(t), λ∗(t), µ∗(t), t) − ∇xL
nc(x∗(t), λ∗(t), µ∗(t), t)

+ J f c,x(x̂(t), t)T λ̂(t) − J f c,x(x∗(t), t)Tλ∗(t) +

[
J f nc,x(x̂(t), t)

J f eq,x(x̂(t), t)

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

])
= − β(x̂(t) − x∗(t))T BLnc (t) (x̂(t) − x∗(t))

− β(x̂(t) − x∗(t))T
(
J f c,x(x̂(t), t)T λ̂(t) − J f c,x(x∗(t), t)Tλ∗(t)

+

[
J f nc,x(x̂(t), t)

J f eq,x(x̂(t), t)

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

])
,

where BLnc (t) := HLnc (x̂(t) − x∗(t), t). Then, by (2.42b),

0 ≥ (λ∗(t) − λ̂(t))T
(
−

d
dt
λ̂(t) + ηβ

(
f in(x̂(t), t) − ε

(
λ̂(t) − λprior

)))
,

and by (2.2c),
0 ≥ ηβ

(
λ̂(t) − λ∗(t)

)T f in(x∗(t), t),

which lead to (
λ̂(t) − λ∗(t)

)T d
dt
λ̂(t)

≤ ηβ
(
λ̂(t) − λ∗(t))T

(
f in(x̂(t), t) − f in(x∗(t), t)

)
− ηβε

λ̂(t) − λ∗(t)

2
− ηβε

(
λ̂(t) − λ∗(t)

)T
(λ∗(t) − λprior).

Similarly by (2.42c) and (2.2d), we have

(µ̂(t) − µ∗(t))T
d
dt
µ̂(t)

= βη(µ̂(t) − µ∗(t))T
(
f eq(x̂(t), t) − f eq(x∗(t), t)

)
− ηβε ‖ µ̂(t) − µ∗(t)‖2 − ηβε

(
µ̂(t) − µ∗(t)

)T
(µ∗(t) − µprior).

43

Then it can be seen that
1
2

d
dt
‖ ẑ(t) − z∗(t)‖2η

= (x̂(t) − x∗(t))T
d
dt

x̂(t) + η−1 (λ̂(t) − λ∗(t))T d
dt
λ̂(t) + η−1(µ̂(t) − µ∗(t))T

d
dt
µ̂(t)

− (ẑ(t) − z∗(t))T
[
In

η−1Im+m′

]
d
dt

z∗(t)

≤ − β(x̂(t) − x∗(t))T BLnc (t)(x̂(t) − x∗(t))

− βε
(
‖λ̂(t) − λ∗(t)‖2 + ‖ µ̂(t) − µ∗(t)‖2

)
− β(x̂(t) − x∗(t))T

(
J f c,x(x̂(t), t)T λ̂(t) − J f c,x(x∗(t), t)Tλ∗(t)

)
− β(x̂(t) − x∗(t))T

[
J f nc,x(x̂(t), t)

J f eq,x(x̂(t), t)

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]
+ β

[
f in(x̂(t), t) − f in(x∗(t), t)

f eq(x̂(t), t) − f eq(x∗(t), t)

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]
− βε

[
λ∗(t) − λprior

µ∗(t) − µprior

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]
+ ση‖ ẑ(t) − z∗(t)‖η,

in which

− (x̂(t) − x∗(t))T
(
J f c,x(x̂(t), t)T λ̂(t) − J f c,x(x∗(t), t)Tλ∗(t)

)
− (x̂(t) − x∗(t))T

[
J f nc,x(x̂(t), t)

J f eq,x(x̂(t), t)

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]
+

[
f in(x̂(t), t) − f in(x∗(t), t)

f eq(x̂(t), t) − f eq(x∗(t), t)

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]
= − λ̂(t)T

(
f c(x∗(t), t) − f (x̂(t), t) − J f c,x(x̂(t), t)(x∗(t) − x̂(t))

)
− λ∗(t)T

(
f c(x̂(t), t) − f (x∗(t), t) − J f c,x(x∗(t), t)(x̂(t) − x∗(t))

)
+

[
f nc(x̂(t), t) + J f nc,x(x̂(t), t)(x∗(t) − x̂(t)) − f nc(x∗(t), t)

f eq(x̂(t), t) + J f eq,x(x̂(t), t)(x∗(t) − x̂(t)) − f eq(x∗(t), t)

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]
.

Since
f c(x∗(t), t) − f (x̂(t), t) − J f c,x(x̂(t), t)(x∗(t) − x̂(t)) ≥ 0

by the convexity of f c, and

λ∗(t)T
(
f c(x̂(t), t) − f (x∗(t), t) − J f c,x(x∗(t), t)(x̂(t) − x∗(t))

)
= (x̂(t) − x∗(t))T

(
1
2

m∑
i=1

λ∗i (t)B f ci (t)

)
(x̂(t) − x∗(t)),

44

where we denote B f ci (t) := H f ci (x̂(t) − x∗(t), t), we can see that

1
2

d
dt
‖ ẑ(t) − z∗(t)‖2η

≤ − β(x̂(t) − x∗(t))T
(
BLnc (t) +

1
2

m∑
i=1

λ∗i (t)B f ci (t)

)
(x̂(t) − x∗(t))

− βε
(

λ̂(t) − λ∗(t)

2

+ ‖ µ̂(t) − µ∗(t)‖2
)

+ β

[
f nc(x̂(t), t) + J f nc,x(x̂(t), t)(x∗(t) − x̂(t)) − f nc(x∗(t), t)

f eq(x̂(t), t) + J f eq,x(x̂(t), t)(x∗(t) − x̂(t)) − f eq(x∗(t), t)

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]
− βε

[
λ∗(t) − λprior

µ∗(t) − µprior

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]
+ ση‖ ẑ(t) − z∗(t)‖η .

(2.48)

Let κ1 be the Lipschitz constant of ẑ(t) with respect to the norm ‖ · ‖η. Define

∆̃ :=
1

2(κ1 + σ)

(
δ −max

{
‖ ẑ(0) − z∗(0)‖η ,

β−1ση +
√
ηεMd

γ(δ, η, ε)

})
.

We prove by induction that

‖ ẑ(t) − z∗(t)‖η ≤ max

{
‖ ẑ(0) − z∗(0)‖η ,

β−1ση +
√
ηεMd

γ(δ, η, ε)

}
(2.49)

for t ∈
[
(k − 1)∆̃, k∆̃

]
∩ [0,T] for each k = 1, . . . ,

⌈
T/∆̃

⌉
. Obviously (2.49) holds

for t = 0. Now assume that (2.49) holds for t = k∆̃. Then we have

‖ ẑ(t) − z∗(t)‖η ≤

ẑ(t) − ẑ

(
k∆̃

)

η
+

ẑ
(
k∆̃

)
− z∗

(
k∆̃

)

η
+

z∗
(
k∆̃

)
− z∗(t)

η

≤ (κ1 + ση)∆̃ +

ẑ(k∆̃) − z∗(k∆̃)

η
< δ

for any t ∈
[
k∆̃, (k + 1)∆̃

]
∩[0,T]. Therefore by the definition of Mnc(δ) and (2.19),

[
f nc(x̂(t), t) + J f nc,x(x̂(t), t)(x∗(t) − x̂(t)) − f nc(x∗(t), t)

f eq(x̂(t), t) + J f eq,x(x̂(t), t)(x∗(t) − x̂(t)) − f eq(x∗(t), t)

]

≤

Mnc(δ)

2
‖ x̂(t) − x∗(t)‖2

(2.50)

for t ∈
[
k∆̃, (k + 1)∆̃

]
∩ [0,T]. Moreover, by Young’s inequality,

‖ x̂(t) − x∗(t)‖

[
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]

 ≤ 1
2

©­«√η ‖ x̂(t) − x∗(t)‖2 +
1
√
η

[
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]

2ª®¬
=

√
η

2
‖ ẑ(t) − z∗(t)‖2η .

(2.51)

45

Combining (2.50) and (2.51) with (2.48), we see that

1
2

d
dt
‖ ẑ(t) − z∗(t)‖2η

≤ − β(x̂(t) − x∗(t))T
(
BLnc (t) +

1
2

m∑
i=1

λ∗i (t)B f ci (t)

)
(x̂(t) − x∗(t))

− βε
(

λ̂(t) − λ∗(t)

2

+ ‖ µ̂(t) − µ∗(t)‖2
)

+
βMnc(δ)

2
‖ x̂(t) − x∗(t)‖2

[
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]

− βε

[
λ∗(t) − λprior

µ∗(t) − µprior

]T [
λ̂(t) − λ∗(t)

µ̂(t) − µ∗(t)

]
+ ση‖ ẑ(t) − z∗(t)‖η

≤ − β

(
min {Λm(δ), ηε} −

√
η

4
δMnc(δ)

)
‖ ẑ(t) − z∗(t)‖2η

+ β
(
β−1ση +

√
ηεMd

)
‖ ẑ(t) − z∗(t)‖η (2.52)

for t ∈
[
k∆̃, (k + 1)∆̃

]
∩ [0,T]. Then by the condition (2.45), Lemma 2.5 implies

‖ ẑ(t) − z∗(t)‖η ≤ e−βγ(δ,η,ε)(t−k∆̃)

(

ẑ
(
k∆̃) − z∗

(
k∆̃

)

η
−
β−1ση +

√
ηεMd

γ(δ, η, ε)

)
+
β−1ση +

√
ηεMd

γ(δ, η, ε)

(2.53)

for t ∈
[
k∆̃, (k + 1)∆̃

]
∩ [0,T]. Now, if

ẑ
(
k∆̃

)
− z∗

(
k∆̃

)

η
is less than or equal to(

β−1ση +
√
ηεMd

)
/γ(δ, η, ε), then (2.53) shows that

‖ ẑ(t) − z∗(t)‖η ≤
β−1ση +

√
ηεMd

γ(δ, ζ, ν, ε)
, t ∈

[
k∆̃, (k + 1)∆̃

]
∩ [0,T],

while if

ẑ

(
k∆̃

)
− z∗

(
k∆̃

)

η
is greater than

(
β−1ση +

√
ηεMd

)
/γ(δ, η, ε), then (2.53)

with t = k∆̃ and (2.49) imply

‖ ẑ(t) − z∗(t)‖η ≤

ẑ

(
k∆̃

)
− z∗

(
k∆̃

)

η

≤ ‖ ẑ(0) − z∗(0)‖η, t ∈
[
k∆̃, (k + 1)∆̃

]
∩ [0,T],

and we can see that (2.49) for t ∈
[
k∆̃, (k + 1)∆̃

]
∩ [0,T]. By induction (2.49) holds

for all t ∈ [0,T], and particularly we get

‖ ẑ(t) − z∗(t)‖η < δ

for all t ∈ [0,T]. This suggests that (2.52) holds for all t ∈ [0,T], and finally by
Lemma 2.5, we get the desired bound on ‖ ẑ(t) − z∗(t)‖η. �

46

It is interesting to compare Theorem 2.1 and Theorem 2.4. The Taylor expansion
(2.33) shows that

ρ(δ, α, η, ε) = 1 − αγ(δ, η, ε) +O
(
α2) .

Therefore if we set α = ∆β in the condition (2.23a) and let ∆→ 0+, we will recover
the condition (2.45) except the strictness of the inequality. Furthermore, for any
t ∈ [0,T], we have

ρbt/∆c(δ,∆β, η, ε) =
(
1 − ∆βγ(δ, η, ε) +O

(
∆

2)) bt/∆c
= e−βγ(δ,η,ε)t +O(∆),

from which we can also recover (2.47). These observations partially justify that
(2.42) indeed gives the correct continuous-time limit of the discrete-time algorithm
(2.10).

Notice that the continuous-time tracking error bound (2.47) shares a similar form
with the discrete-time tracking error bound (2.24): a constant term

β−1ση +
√
ηεMλ

γ(δ, η, ε)
, (2.54)

which we still call the eventual tracking error bound in the continuous-time limit,
plus something that decays exponentially with τ. The eventual tracking error bound
can also be split into two parts, the first part β−1ση/γ(δ, η, ε) being proportional to
ση, and the second part √ηεMλ/γ(δ, η, ε) representing the discrepancy introduced
by regularization.

Feasible and Optimal Parameters
As can be seen, γ(δ, ζ, ε) and the bound (2.54) are much easier to analyze than
ρ(δ, α, ζ, ε) and (2.27). This enables us not only to discuss the existence of feasible
parameters but also the structure of the optimal parameters.

Theorem 2.5. Let

Afp(δ, β) :=
{
(η, ε) ∈ R2

++ : β−1ση < δ γ(δ, η, ε) −
√
ηεMd

}
.

1. Suppose Λm
(
δ̄
)
> Md Mnc

(
δ̄
)
for some δ̄ > 0. Then the set

Sfp :=
{
(δ, β, η, ε) ∈ R4

++ : (η, ε) ∈ Afp(δ, β)
}

is a nonempty open subset of R4
++.

47

2. Let β > 0 and δ > 0 be fixed such that Afp(δ, β) is nonempty, and suppose
Md Mnc(δ) > 0. Then the minimizer of (2.54) over (η, ε) ∈ Afp(δ, β) exists and
is unique, and is equal to (Λm(δ)/ε

∗, ε∗) where ε∗ is the unique minimizer of the
unimodal function

bδ,β(ε) :=
β−1σε−1Λm(δ) +

√
εΛm(δ)Md

Λm(δ) − δMnc(δ)
√
ε−1Λm(δ)/4

, ε >
1
Λm(δ)

(
δMnc(δ)

4Λm(δ)

)2
.

The proof is postponed to Appendix 2.A.

The first part of Theorem 2.5 is the continuous-time counterpart of Theorem 2.2,
and the proof uses the same approach as well. Then in Part 2, we proved that when
β and δ are fixed, there exists a unique optimal (η∗, ε∗) that minimizes the eventual
tracking error bound (2.54). We have also shown that η∗ is equal to Λm(δ)/ε

∗,
which has been suggested in Section 2.3 and now justified in the continuous-time
limit. The fact that ε∗ is the unique minimizer of the unimodal function bδ,β(ε)

quantitatively characterizes the trade-off in choosing the regularization parameter ε :
more regularization makes the Lagrangian better conditioned in the dual variables,
but introduces additional errors as a side effect.

We fix β and δ in Part 2 of Theorem 2.5, as a larger β or a smaller δ will always
lead to a smaller bound, while in applications β usually cannot be arbitrarily chosen
because of practical limitations (e.g., computation or communication delays), and
an excessively small δ can also result in violating the condition (2.45).

It should be noted that, the optimal (η∗, ε∗) that minimizes the bound (2.54) may
not be the optimal parameters that minimizes the tracking error itself, as (2.54)
is only an upper bound which can be loose in certain situations. However, the
analysis presented here will still be of value and can serve as a guide for choosing
the parameters in practice.

Remark 2.6. In the second part of Theorem 2.5, we only consider the case where
neither Md and Mnc(δ) is zero. If one of Md and Mnc(δ) is zero, the optimal (η∗, ε∗)
may not satisfy the structure stated in Theorem 2.5, but the analysis is similar and
no harder which we omit here. �

Isolation of the KKT Trajectory
In Section 2.1, we remarked that there could be multiple trajectories of KKT points,
and z∗(t) = (x∗(t), λ∗(t), µ∗(t)) is only one of these trajectories that is chosen arbi-
trarily. Then we analyzed the tracking performance of the algorithm (2.10) and its

48

continuous-time limit (2.42), and showed that under the conditions (2.23) or (2.45)
a bounded tracking error can be achieved. On the other hand, if the KKT trajectory
z∗(t) bifurcates into two or more branches at some time t̃ ∈ [0,T] and these branches
become far away as time proceeds, then we have no way to identify from Theorem
2.1 or Theorem 2.4 which trajectory the algorithm will track. It is also possible
that two KKT trajectories come very close to each other at some time, and Theorem
2.1 or Theorem 2.4 cannot distinguish which trajectory the algorithm will track
afterwards. Fortunately, as the following theorems show, such possibilities will not
occur in some sense under certain conditions.

Theorem 2.6a. Suppose for some δ > 0 and η > 0,

Λm(δ) −

√
η

2
δMnc(δ) > 0. (2.55)

Then there is no KKT point in the set{
z = (x, λ, µ) : 0 < ‖z − z∗(t)‖η ≤ δ, x , x∗(t)

}
for each t ∈ [0,T].

In particular, (2.55) holds if the condition (2.45) holds for some δ ≤ 2η−1/2Md .

Theorem 2.6b. Let z∗
(i)(t) =

(
x∗
(i)(t), λ

∗
(i)(t), µ

∗
(i)(t)

)
, i = 1, 2, be two Lipschitz contin-

uous trajectories of KKT points of (2.1) over t ∈ [0,T], and for each i = 1, 2, define
Λ
(i)
m (δ), M (i)nc (δ) for the associated trajectories by (2.29) and (2.14). Suppose there

exist δ(1) > 0, δ(2) > 0 and η > 0 such that

Λ
(i)
m

(
δ(i)

)
−

√
η

2
δ(i)M

(i)
nc

(
δ(i)

)
> 0 (2.56)

for i = 1, 2, and for some t ∈ [0,T], x∗
(1)(t) , x∗

(2)(t). Then

z∗
(1)(t) − z∗

(2)(t)

η
> δ(1) + δ(2).

Proof of Theorem 2.6a. Suppose for some t ∈ [0,T], there is another KKT point
z+ = (x+, λ+, µ+) satisfying

0 < ‖z+ − z∗(t)‖η ≤ δ and x+ , x∗(t).

By the KKT condition (2.2b), we have

h(x+) − h(x∗(t))

≥ (x+ − x∗(t))T ©­«−∇xc(x∗(t), t) −

[
J f in,x(x∗(t), t)

J f eq,x(x∗(t), t)

]T [
λ∗(t)

µ∗(t)

]ª®¬
= (x+ − x∗(t))T

(
− ∇xL

nc(x∗(t), λ∗(t), µ∗(t), t) − J f c,x(x∗(t), t)Tλ∗(t)
)
,

49

and
h(x∗(t)) − h(x+)

≥ (x∗(t) − x+)T ©­«−∇xc(x+, t) −

[
J f in,x(x̂+, t)

J f eq,x(x̂+, t)

]T [
λ+

µ+

]ª®¬
= (x∗(t) − x+)T

(
− ∇xL

nc(x+, λ∗(t), µ∗(t), t)

− J f c,x(x+, t)Tλ+ +

[
J f nc,x(x+, t)

J f eq,x(x+, t)

]T [
λ∗(t) − λ+

µ∗(t) − µ+

])
.

Thus

0 ≥ (x+ − x∗(t))T
(
∇xL

nc(x+, λ∗(t), µ∗(t), t) − ∇xL
nc(x∗(t), λ∗(t), µ∗(t), t)

+ J f c,x(x+, t)Tλ+ − J f c,x(x∗(t), t)Tλ∗(t) +

[
J f nc,x(x+, t)

J f eq,x(x+, t)

]T [
λ+ − λ∗(t)

µ+ − µ∗(t)

])
= (x+ − x∗(t))T BLnc (t)(x+ − x∗(t))

+ (x+ − x∗(t))T
(
J f c,x(x+, t)Tλ+ − J f c,x(x∗(t), t)λ∗(t)

)
+ (x+ − x∗(t))T

[
J f nc,x(x+, t)

J f eq,x(x+, t)

]T [
λ+ − λ∗(t)

µ+ − µ∗(t)

]
,

where BLnc (t) := HLnc (x+ − x∗(t), t). Also,

(λ+ − λ∗(t))T
(

f in(x+, t) − f in(x∗(t), t)
)

= − λ+
T f in(x∗(t), t) − λ∗(t)T f in(x+, t) ≥ 0

by the complementary slackness condition, and

(µ+ − µ∗(t))T (f eq(x+, t) − f eq(x∗(t), t) = 0.

Therefore

0 ≥ (x+ − x∗(t))T BLnc (t)(x+ − x∗(t))

+ (x+ − x∗(t))T
(
J f c,x(x+, t)Tλ+ − J f c,x(x∗(t), t)λ∗(t)

)
+

[
λ+−λ∗(t)

µ+−µ∗(t)

]T([
J f nc,x(x+, t)

J f eq,x(x+, t)

]
(x+−x∗(t)) −

[
f in(x+, t)− f in(x∗(t), t)

f eq(x+, t)− f eq(x∗(t), t)

])
.

50

Notice that

(x+ − x∗(t))T
(
J f c,x(x+, t)Tλ+ − J f c,x(x∗(t), t)λ∗(t)

)
+

[
λ+−λ∗(t)

µ+−µ∗(t)

]T([
J f nc,x(x+, t)

J f eq,x(x+, t)

]
(x+−x∗(t)) −

[
f in(x+, t)− f in(x∗(t), t)

f eq(x+, t)− f eq(x∗(t), t)

])
= λ+

T (
f c(x∗(t), t) − f c(x+, t) − J f c,x(x+, t)(x∗(t) − x+)

)
+ λ∗(t)T

(
f c(x+, t) − f c(x∗(t), t) − J f c,x(x∗(t), t)(x+ − x∗(t))

)
−

[
λ+ − λ∗(t)

µ+ − µ∗(t)

]T [
f nc(x+, t) + J f nc,x(x+, t)(x∗(t) − x+) − f nc(x∗(t), t)

f eq(x+, t) + J f eq,x(x+, t)(x∗(t) − x+) − f eq(x∗(t), t)

]
≥ (x+ − x∗(t))T

(
1
2

m∑
i=1

λ∗i (t)B f ci (t)

)
(x+ − x∗(t))

−

[
λ+ − λ∗(t)

µ+ − µ∗(t)

]T [
f nc(x+, t) + J f nc,x(x+, t)(x∗(t) − x+) − f nc(x∗(t), t)

f eq(x+, t) + J f eq,x(x+, t)(x∗(t) − x+) − f eq(x∗(t), t)

]
,

where we denote B f ci (t) := H f ci (x
+ − x∗(t), t). Therefore

0 ≥ (x+ − x∗(t))T
(
BLnc (t) +

1
2

m∑
i=1

λ∗i (t)B f ci (t)

)
(x+ − x∗(t))

−

[
f nc(x+, t) + J f nc,x(x+, t)(x∗(t) − x+) − f nc(x∗(t), t)

f eq(x+, t) + J f eq,x(x+, t)(x∗(t) − x+) − f eq(x∗(t), t)

]T [
λ+ − λ∗(t)

µ+ − µ∗(t)

]
≥ Λm(δ)‖x+ − x∗(t)‖2 −

Mnc(δ)

2
‖x+ − x∗(t)‖2

[
λ+ − λ∗(t)

µ+ − µ∗(t)

]

≥

(
Λm(δ) −

√
η

2
δM f nc (δ)

)
‖x+ − x∗(t)‖2.

However, if (2.55) holds, the right-hand side of the above inequality is then positive,
leading to a contradiction.

Now we prove that (2.55) holds if (2.45) holds for some δ ≤ 2η−1/2Md . We have

min {Λm(δ), ηε} ≤
Λm(δ) + ηε

2
,

and so
Λm(δ) ≥ 2 min {Λm(δ), ηε} − ηε .

On the other hand, (2.45) implies that

min {Λm(δ), ηε} >

√
η

4
δMnc(δ) + δ

−1
(
β−1ση +

√
ηεMd

)
>

√
η

4
δMnc(δ) + δ

−1√ηεMd .

51

Since δ ≤ 2η−1/2Md , we have δ−1√ηεMd ≥ ηε/2, and so

Λm(δ) > 2
(√
η

4
δMnc(δ) + δ

−1√ηεMd

)
− ηε ≥

√
η

2
δMnc(δ).

�

Proof of Theorem 2.6b. We temporarily denote z∗
(i)(t) =

(
x∗
(i)(t), λ

∗
(i)(t), µ

∗
(i)(t)

)
by

z(i) =
(
x(i), λ(i), µ(i)

)
for notational simplicity. Let

θ̃1 :=
δ(1)

δ(1) + δ(2)
, θ̃2 :=

δ(2)

δ(1) + δ(2)
, z̃ := θ̃2z(1) + θ̃1z(2).

Then it can be checked that

z(2) − z(1) = −
z(1) − z̃

θ̃1
=

z(2) − z̃

θ̃2
(2.57)

and

z̃ − z(1)

η
≤ δ(1),

z̃ − z(2)

η
≤ δ(2).

Now by (2.2b), we have

h
(
x(2), t

)
− h

(
x(1), t

)
≥

(
x(2) − x(1)

)T ©­«−∇xc
(
x(1), t

)
−

[
J f in,x

(
x(1), t

)
J f eq,x

(
x(1), t

)]T [
λ∗
(1)
µ∗
(1)

]ª®¬ ,
h
(
x(1), t

)
− h

(
x(2), t

)
≥

(
x(1) − x(2)

)T ©­«−∇xc
(
x(2), t

)
−

[
J f in,x

(
x(2), t

)
J f eq,x

(
x(2), t

)]T [
λ∗
(2)
µ∗
(2)

]ª®¬ .
Taking their sum, we get

0 ≥
(
x(2) − x(1)

)T

(
∇xc

(
x(2), t

)
− ∇xc

(
x(1), t

)
+

[
J f in,x

(
x(2), t

)
J f eq,x

(
x(2), t

)]T [
λ(2)

µ(2)

]
−

[
J f in,x

(
x(1), t

)
J f eq,x

(
x(1), t

)]T [
λ(1)

µ(1)

])
=

(
x(2) − x(1)

)T

((
∇xc

(
x(2), t

)
− ∇xc

(
x̃, t

))
−

(
∇xc

(
x(1), t

)
− ∇xc

(
x̃, t

))
+

([
J f in,x

(
x(2), t

)
J f eq,x

(
x(2), t

)]T [
λ(2)

µ(2)

]
−

[
J f in,x

(
x̃, t

)
J f eq,x

(
x̃, t

)]T [
λ̃

µ̃

])
(2.58)

−

([
J f in,x

(
x(1), t

)
J f eq,x

(
x(1), t

)]T [
λ(1)

µ(1)

]
−

[
J f in,x

(
x̃, t

)
J f eq,x

(
x̃, t

)]T [
λ̃

µ̃

]))
.

52

For the dual variables, by (2.2c),

0 ≥ −
(
λ(2) − λ(1)

)T
(

f in (x(2), t) − f in (x(1), t))
= −

(
λ(2) − λ(1)

)T
(

f in (x(2), t) − f in (x̃, t) − (
f in (x(1), t) − f in (x̃, t))) , (2.59)

and also

0 = −
(
µ(2) − µ(1)

)T (
f eq (x(2), t) − f eq (x(1), t))

= −
(
µ(2) − µ(1)

)T (
f eq (x(2), t) − f eq (x̃, t) − (

f eq (x(1), t) − f eq (x̃, t))) . (2.60)

Now, for each i = 1, 2, we have(
x(i) − x̃

)T

(
∇xc

(
x(i), t

)
− ∇xc

(
x̃, t

)
+

[
J f in,x

(
x(i), t

)
J f eq,x

(
x(i), t

)]T [
λ(i)

µ(i)

]
−

[
J f in,x

(
x̃, t

)
J f eq,x

(
x̃, t

)]T [
λ̃

µ̃

])
−

[
λ(i) − λ̃

µ(i) − µ̃

]T [
f in (x(i), t) − f in (x̃, t)
f eq (x(i), t) − f eq (x̃, t)

]
=

(
x(i) − x̃

)T (
∇xL

nc (x(i), λ(i), µ(i), t) − ∇xL
nc (x̃, λ(i), µ(i), t))

+

[
f nc (x̃, t) + J f nc,x

(
x̃, t

) (
x(i) − x̃

)
− f nc (x(i), t)

f eq (x̃, t) + J f eq,x
(
x̃, t

) (
x(i) − x̃

)
− f eq (x(i), t)

]T [
λ(i) − λ̃

µ(i) − µ̃

]
+ λT
(i)

(
f c (x̃, t) − f c (x(i), t) − J f c

(
x(i), t

)T (
x̃ − x(i)

))
+ λ̃T

(
f c (x(i), t) − f c (x̃, t) − J f c

(
x̃, t

)T (
x(i) − x̃

))
≥

(
x(i) − x̃

)T B(i)
(
x(i) − x̃

)
−

M (i)nc
(
δ(i)

)
2

x(i) − x̃

2

[
λ(i) − λ̃

µ(i) − µ̃

]

 , (2.61)

where

B(i) :=
∫ 1

0
∇2

xxL
nc (x(i) + θ (x̃ − x(i)

)
, λ(i), µ(i), t

)
dθ

+

m∑
j=1

λ(i), j

∫ 1

0
(1 − θ)∇2

xx f c
j
(
x(i) + θ

(
x̃ − x(i)

)
, t

)
dθ.

By summing (2.58), (2.59), and (2.60), and plugging in (2.57) and (2.61), we can
see that

0 ≥
∑
i=1,2

1
θ̃i

((
x(i) − x̃

)T B(i)
(
x(i) − x̃

)
−

M (i)nc
(
δ(i)

)
2

x(i) − x̃

2

[
λ(i) − λ̃

µ(i) − µ̃

]

)

≥
∑
i=1,2

θ̃i

(
Λ
(i)
m

(
δ(i)

)
−

√
η

2
δ(i)Mnc

(
δ(i)

))

x(2) − x(1)

2
.

53

But (2.56) then implies that the right-hand side of the above inequality is positive,
leading to a contradiction. �

Remark 2.7. It should be noted that, the condition (2.55) does not exclude the
possibility that at time t, there exists (λ+, µ+) such that (x∗(t), λ+, µ+) is also a KKT
point of (2.1) and 0 < ‖(x∗(t), λ+, µ+) − (x∗(t), λ∗, µ∗)‖η ≤ δ, unless we also assume
that the optimal dual variable associated with x∗(t) is unique at time t. A typical
constraint qualification condition that guarantees the uniqueness of the optimal
Lagrange multiplier is the linear independence constraint qualification (LICQ) [92],
which cannot be directly used in our setting but can be possibly checked if we write
(2.1) in some alternative formulation. �

Now, let us further assume that the optimal dual variable associated with x∗(t) is
unique for all t ∈ [0,T] as Remark 2.7 points out. Then Theorems 2.6a and 2.6b
show that, under certain conditions, the KKT points for a given time will always be
isolated. Especially, when the condition (2.45) is satisfied for some δ that is not too
large, there is no ambiguity in which of the KKT trajectories will be tracked by the
continuous-time algorithm (2.42).

2.5 Summary
In this chapter, we conducted a comprehensive study on the regularized proximal
primal-dual gradient method and its continuous-time counterpart for time-varying
nonconvex optimization.

For the discrete-time algorithm, we derived sufficient conditions that guarantee
bounded tracking error by investigating when the regularized proximal primal-dual
gradient step has a contraction-like behavior. The tracking error bounds are directly
related to the maximum temporal variability of a KKT trajectory, and also depend
on pertinent algorithmic parameters such as the step size and the regularization
coefficient.

We then investigated whether there exist algorithmic parameters that guarantee
bounded tracking error when the sampling interval is sufficiently small. Specifically,
we derived a sufficient condition for the existence of feasible parameters, which,
qualitatively, suggests that the problem should be “sufficiently convex” around a
KKT trajectory to overcome the nonlinearity of the nonconvex constraints.

The study on feasible parameters suggested analyzing the continuous-time limit of
the discrete-time algorithm. We formulated the continuous-time limit as a system of

54

differential inclusions, and established analytical results on the tracking performance
of the system of differential inclusions. The continuous-time tracking error bound
shares a similar form to the discrete-time tracking error bound. Then, we studied the
existence of feasible parameters of the continuous-time counterpart, and also derived
structural results on the optimal parameters that minimize the derived tracking error
bound, which can serve as guidelines for choosing parameters in practice.

Finally, we derived conditions under which the KKT points for a given time will
always be isolated, i.e., bifurcations or merging of KKT trajectories do not happen.
These conditions are closely related to the conditions for bounded tracking error
derived previously.

2.A Proofs
This section provides the proofs of the theorems that have been skipped in the text.

Proof of Proposition 2.1
We first present some lemmas and their corollaries that will be used in the proof.

Lemma 2.6. Let g1 and g2 be two closed proper convex functions on Rk , and let
g = g1 + g2. Then

∂g(x) = ∂g1(x) + ∂g2(x), ∀x ∈ dom(g)

if any one of the following conditions are satisfied:

1. ([82, Theorem 23.8]) relint dom(g1) ∩ relint dom(g2) is nonempty;

2. ([75, Theorem 3.16]) there exists x ∈ dom(g) such that g1 or g2 is continuous at
x.

Corollary 2.1. 1. Let C1 and C2 be two closed convex subsets of Rk . Then
NC1∩C2(x) = NC1(x) if x ∈ int C2.

2. Let g : Rk → R ∪ {+∞} be a closed proper convex function. Then ∂g(x) =
∂g(x) + Ndom(g)(x) for any x ∈ dom(g).

Proof of Corollary 2.1. The first corollary follows by applying Lemma 2.6 to the
indicator function IC1∩C2 = IC1 + IC2 . The second corollary follows by noting that
g = g + Idom(g). �

Lemma 2.7 ([82, Theorem 24.4]). Let g : Rk → R ∪ {+∞} be a closed proper
convex function. Then the graph of ∂g(x), defined by graph(g) := {(x, y) : x ∈

dom(g), y ∈ ∂g(x)}, is closed.

55

Lemma 2.8 ([20, Propositions 4.7.3 and 4.6.3]). Let z̄ be a local minimum of a
function g : Rk → R over a closed convex subset C of Rk . Assume that g has the
form g = g1 + g2 where g1 is smooth and g2 is convex. Then

−∇g1(z̄) ∈ ∂g2(z̄) + NC(z̄).

Now we begin the proof of Proposition 2.1. Since x̄ is a local minimum, we can
find some ε > 0 such that for all x ∈ X := {x ∈ dom(h) : ‖x − x̄‖ ≤ ε}, we have
c(x)+ h(x) ≥ c(x̄)+ h(x̄) as long as f (x) ∈ C. ObviouslyX is compact as dom(h) is
closed. Let D := {y ∈ C : ‖y − f (x̄)‖ ≤ ε}. Now consider the following auxiliary
problem:

min
(x,s)∈X×D

Fk(x, s) := c(x) + h(x) +
k
2
‖ f (x) − s‖2 +

1
2
‖x − x̄‖2 (2.62)

for each k ∈ N, and let (xk, sk) denote its global minimum. Since (x̄, f (x̄)) is a
feasible solution to this auxiliary problem, we have

c(x̄) + h(x̄) ≥ c(xk) + h(xk) +
k
2
‖ f (xk) − sk ‖

2 +
1
2
‖xk − x̄‖2. (2.63)

Since X × D is compact, (xk, sk) has a convergent subsequence. Let (x̃, s̃) denote
the limit of an arbitrary convergent subsequence of (xk, sk). By (2.63) and noticing
that c and f are continuous and h is closed (and thus lower semicontinuous) on
X, we get c(x̄) + h(x̄) ≥ c(x̃) + h(x̃) + 1

2 ‖ x̃ − x̄‖2 and f (x̃) = s̃. We then see
that (x̃, f (x̃)) is also a feasible solution to the original problem (2.3), implying that
c(x̄) + h(x̄) ≤ c(x̃) + h(x̃). Therefore we have x̃ = x̄, meaning that all convergent
subsequences of (xk, sk) will converge to the same limit, and by the compactness of
X × D, we get (xk, sk) → (x̄, f (x̄)).

By applying Lemma 2.8 to (2.62), we get

−∇c(xk) − k J f (xk)
T (f (xk) − sk) − (xk − x̄) ∈ ∂h(xk) + NX(xk),

k(f (xk) − sk) ∈ ND(sk).

Since for large enough k ∈ N, xk is in the interior of {x ∈ Rn : ‖x − x̄‖ ≤ ε} and sk

is in the interior of {y ∈ Rp : ‖y − f (x̄)‖ ≤ ε}, we have NX(xk) = Ndom(h)(xk) and
ND(sk) = NC(sk) by the first part of Corollary 2.1. Together with the second part
of Corollary 2.1, we see that for large enough k,

−∇c(xk) − k J f (xk)
T (f (xk) − sk) − (xk − x̄) ∈ ∂h(xk), (2.64a)

k(f (xk) − sk) ∈ NC(sk). (2.64b)

56

If there exists a subsequence of
(
k(f (xk) − sk)

)
k∈N that converges to some λ̄, then

since ∂h(x) and NC(s) have closed graphs Lemma 2.7, we get

−∇c(x̄) − J f (x̄)T λ̄ ∈ ∂h(x̄), (2.65a)

λ̄ ∈ NC(f (x̄)), (2.65b)

and λ̄ ∈ NC(f (x̄)) is equivalent to f (x̄) ∈ NC◦(λ̄) as can be seen by

λ̄ ∈ NC(f (x̄)) ⇐⇒ λ̄T (s − f (x̄)) ≤ 0, ∀s ∈ C

⇐⇒ λ̄T s ≤ 0, ∀s ∈ C and λ̄T f (x̄) = 0

⇐⇒ λ̄ ∈ C◦ and f (x̄)T λ̄ = 0

⇐⇒ (λ − λ̄)T f (x̄) ≤ 0, ∀λ ∈ C◦
⇐⇒ f (x̄) ∈ NC◦(λ̄),

where we used the fact that f (x̄) ∈ C and C is a closed convex cone.

Otherwise, if ‖k(f (xk) − sk)‖ → +∞ as k →∞, we define

lk := ‖k(f (xk) − sk)‖, yk :=
k(f (xk) − sk)

lk
.

Since ‖yk ‖ = 1 for all k ∈ N, by extracting a subsequence, we can without loss of
generality assume that yk → ỹ for some ỹ as k → ∞. Obviously ỹ , 0, and by
(2.64b) and that the graph of NC(s) is closed, we have ỹ ∈ NC(f (x̄)). By (2.64a),
we see that for any x′ ∈ dom(h),

l−1
k (h(x

′) − h(xk)) ≥ −

(
l−1
k (∇c(xk) + (xk − x̄)) + J f (xk)

T yk

)T
(x′ − xk),

and by letting k →∞, we get −(x′ − x̄)T J f (x̄)T ỹ ≤ 0 for all x′ ∈ dom(h), i.e.,

−J f (x̄)T ỹ ∈ Ndom(h)(x̄),

which contradicts the constraint qualification condition.

Next we consider the set

Λ :=
{
λ̄ ∈ C◦ : λ̄ satisfies (2.5)

}
.

By (2.65), it can be easily seen that Λ is convex and closed as ∂h(x̄) and NC(f (x̄))

are convex and closed. If Λ is unbounded, then there exists a sequence (λk)k∈N ⊂ Λ

such that ‖λk ‖ → ∞. By extracting a subsequence we can assume without loss of

57

generality that λk/‖λk ‖ converges to some λ̃ which is in C◦ since C◦ is a closed
cone. By (2.65), we have

1
‖λk ‖

(h(x) − h(x̄)) ≥ (x − x̄)T
(
−

1
‖λk ‖
∇c(x̄) − J f (x̄)T

λk

‖λk ‖

)
, ∀x ∈ dom(h)

and
λT

k f (x̄)

‖λk ‖
= 0

for all k ∈ N. Now let k →∞, and we get

0 ≥ −(x − x̄)T J f (x̄)T λ̃, ∀x ∈ dom(h),

i.e., −J f (x̄)T λ̃ ∈ Ndom(h)(x̄), and λ̃T f (x̄) = 0, which contradicts the constraint
qualification condition. Therefore Λ is bounded. �

Proof of Lemma 2.2
Denote h := (x2 − x1)/‖x2 − x1‖. By (1.6), for each i, we have

h′T (∇x fi(x2, t) − ∇x fi(x1, t))

= ‖x2 − x1‖

∫ 1

0
h′T∇2

xx fi(x1 + θ(x2 − x1), t) h dθ,

where h′ is any nonzero vector. Therefore

(J f ,x(x2, t) − J f ,x(x1, t)
)

h′

=

‖x2 − x1‖

∫ 1

0
D2

xx f (x1 + θ(x2 − x1))(h, h′) dθ

≤ ‖x2 − x1‖

∫ 1

0

D2
xx f (x1 + θ(x2 − x1))(h, h′)

 dθ

≤ ‖x2 − x1‖ · sup
θ∈[0,1]

D2
xx f (x1 + θ(x2 − x1), t)

 ‖h′‖,
and by the arbitrariness of h′, we get (2.18).

Similarly, by (1.7), for each i, we have

fi(x2, t) − fi(x1, t) − ∇x fi(x1, t)T (x2 − x1)

=
1
2

∫ 1

0
2(1 − θ) (x2 − x1)

T [
∇2

xx fi(x1 + θ(x2 − x1), t)
]
(x2 − x1) dθ

=
1
2
‖x2 − x1‖

2
∫ 1

0
2(1 − θ) hT [

∇2
xx fi(x1 + θ(x2 − x1), t)

]
h dθ,

58

and so

f (x2, t) − f (x1, t) − J f ,x(x1, t)(x2 − x1)

=
1
2
‖x2 − x1‖

2
∫ 1

0
2(1 − θ)D2

xx f (x1 + θ(x2 − x1), t)(h, h) dθ,

which leads to

‖ f (x2, t) − f (x1, t) − J f ,x(x1, t)(x2 − x1)‖

≤
1
2
‖x2 − x1‖

2
∫ 1

0
2(1 − θ)

D2
xx f (x1 + θ(x2 − x1), t)(h, h)

 dθ

≤
1
2
‖x2 − x1‖

2 · sup
θ∈[0,1]

D2
xx f (x1 + θ(x2 − x1), t)

 ∫ 1

0
2(1 − θ) dθ

=
1
2
‖x2 − x1‖

2 · sup
θ∈[0,1]

D2
xx f (x1 + θ(x2 − x1), t)

 .
�

Proof of Lemma 2.3
We have

∇cτ(x̂τ−1) − ∇cτ(x∗τ) +

[
J f inτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1

µ̂τ−1

]
−

[
J f inτ (x

∗
τ)

J f eqτ (x
∗
τ)

]T [
λ∗τ

µ∗τ

]
=∇xL

nc
τ (x̂τ−1, λ

∗
τ, µ
∗
τ) − ∇xL

nc
τ (x

∗
τ, λ
∗
τ, µ
∗
τ) +

[
J f ncτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
+ J f cτ (x̂τ−1)

T λ̂τ−1 − J f cτ (x
∗
τ)

Tλ∗τ

= BLnc
τ
(x̂τ−1 − x∗τ) +

[
J f ncτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
+ J f cτ (x̂τ−1)

T λ̂τ−1 − J f cτ (x
∗
τ)

Tλ∗τ,

where
BLnc

τ
:= HLnc (x̂τ−1 − x∗τ , τ∆).

59

Then by (2.10) and (2.9a), and using the nonexpansiveness of the proximal operator,
we get

x̂τ − x∗τ

2

≤

(x̂τ−1 − x∗τ) − α

(
∇cτ(x̂τ−1) − ∇cτ(x∗τ)

+

[
J f inτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1

µ̂τ−1

]
−

[
J f inτ (x

∗
τ)

J f eqτ (x
∗
τ)

]T [
λ∗τ

µ∗τ

])

2

=

 (
I − αBLnc

τ

)
(x̂τ−1 − x∗τ)

− α

([
J f ncτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
+ J f cτ (x̂τ−1)

T λ̂τ−1 − J f cτ (x
∗
τ)

Tλ∗τ

)

2

. (2.66)

We have,

[
J f ncτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
+ J f cτ (x̂τ−1)

T λ̂τ−1 − J f cτ (x
∗
τ)

Tλ∗τ

=

[
J f inτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
+

(
J f cτ (x̂τ−1) − J f cτ (x

∗
τ)

)T
λ∗τ

≤

[
J f inτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 +

J f cτ (x̂τ−1) − J f cτ (x
∗
τ)

 sup

t∈[0,T]
‖λ∗(t)‖

≤ L f (δ)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 + Mc(δ)

x̂τ−1 − x∗τ

 sup
t∈[0,T]

‖λ∗(t)‖ , (2.67)

where we used (2.18) and the definitions of Mc(δ) and L f (δ).

For the dual variables, by (2.10b), (2.10c), (2.9b) and (2.2d), and using the nonex-
pansiveness of projection onto convex sets,

[
λ̂τ − λ

∗
τ

µ̂τ − µ
∗
τ

]

2

=

(1 − ηαε)
[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
− ηαε

[
λ∗τ − λprior

µ∗τ − µprior

]
+ ηα

[
f in
τ (x̂τ−1) − f in

τ (x
∗
τ)

f eq
τ (x̂τ−1) − f eq

τ (x∗τ)

]

2

=

(1 − ηαε)
[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
− ηαε

[
λ∗τ − λprior

µ∗τ − µprior

]

2

+ η2α2

[

f in
τ (x̂τ−1) − f in

τ (x
∗
τ)

f eq
τ (x̂τ−1) − f eq

τ (x∗τ)

]

2

+ 2ηα

(
(1 − ηαε)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
− ηαε

[
λ∗τ − λprior

µ∗τ − µprior

])T [
f in
τ (x̂τ−1) − f in

τ (x
∗
τ)

f eq
τ (x̂τ−1) − f eq

τ (x∗τ)

]
.

60

Noting that ‖ x̂τ−1 − x∗τ ‖ ≤

ẑτ−1 − z∗τ

η
≤ δ, by (1.6) and the definitions of Md ,

L f (δ), we get

[
λ̂τ − λ

∗
τ

µ̂τ − µ
∗
τ

]

2

≤

(
(1 − ηαε)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 + ηαεMd

)2

+ η2α2L2
f (δ)

x̂τ−1 − x∗τ

2

+ 2ηα(1 − ηαε)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]T [
f in
τ (x̂τ−1) − f in

τ (x
∗
τ)

f eq
τ (x̂τ−1) − f eq

τ (x∗τ)

]
+ 2η2α2εMd L f (δ)

x̂τ−1 − x∗τ

 . (2.68)

By the convexity of the components of f c
τ and noting that λ̂τ−1 ∈ R

m
+ , we have

λ̂T
τ−1

(
f c
τ (x̂τ−1) + J f cτ (x̂τ−1)(x∗τ − x̂τ−1) − f c

τ (x
∗
τ)

)
≤ 0.

In addition, by (1.7), we have

λ∗τ
T (

f c
τ (x
∗
τ) + J f cτ (x

∗
τ)(x̂τ−1 − x∗τ) − f c

τ (x̂τ−1)
)

= −
1
2
(x̂τ−1 − x∗τ)

T

(
m∑

i=1
λ∗τ,i B f cτ,i

)
(x̂τ−1 − x∗τ),

where we denote B f cτ,i := H f ci (x̂τ−1 − x∗τ, τ∆). Therefore,[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]T [
f in
τ (x̂τ−1) − f in

τ (x
∗
τ)

f eq
τ (x̂τ−1) − f eq

τ (x∗τ)

]
− (x̂τ−1 − x∗τ)

T ©­«
[
J f ncτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
+ J f cτ (x̂τ−1)

T λ̂τ−1 − J f cτ (x
∗
τ)

Tλ∗τ
ª®¬

=

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]T [
f nc
τ (x̂τ−1) + J f ncτ (x̂τ−1)(x∗τ − x̂τ−1) − f nc

τ (x
∗
τ)

f eq
τ (x̂τ−1) + J f eqτ (x̂τ−1)(x∗τ − x̂τ−1) − f eq

τ (x∗τ)

]
+ λ̂T

t−1
(
f c
τ (x̂τ−1) + J f cτ (x̂τ−1)(x∗τ − x̂τ−1) − f c

τ (x
∗
τ)

)
+ λ∗τ

T (
f c
τ (x
∗
τ) + J f cτ (x

∗
τ)(x̂τ−1 − x∗τ) − f c

τ (x̂τ−1)
)

≤
Mnc(δ)

2

x̂τ−1 − x∗τ

2

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 − 1
2
(x̂τ−1 − x∗τ)

T

(
m∑

i=1
λ∗τ,i B f cτ,i

)
(x̂τ−1 − x∗τ)

≤

√
η

4
δMnc(δ)

ẑτ−1 − z∗τ

2
η
−

1
2
(x̂τ−1 − x∗τ)

T

(
m∑

i=1
λ∗τ,i B f cτ,i

)
(x̂τ−1 − x∗τ), (2.69)

where we used (2.19) and the definition of Mnc(δ) in the second step, and used

x̂τ−1 − x∗τ

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 ≤ 1
2

©­«√η

x̂τ−1 − x∗τ

2
+

1
√
η

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

2ª®¬
=

√
η

2

ẑτ−1 − z∗τ

2
η

61

in the last step.

Now we take the sum of (2.66) and (2.68) and use (2.67) to bound

ẑτ − z∗τ

2
η
by

ẑτ − z∗τ

2
η
= ‖ x̂τ − x∗τ ‖

2 + η−1

[
λ̂τ − λ

∗
τ

µ̂τ − µ
∗
τ

]

2

≤ (x̂τ−1 − x∗τ)
T (

I − αBLnc
τ

)2
(x̂τ−1 − x∗τ)

+ α2

(
L f (δ)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 + Mc(δ)

x̂τ−1 − x∗τ

 sup
t∈[0,T]

‖λ∗(t)‖

)2

− 2α(x̂τ−1 − x∗τ)
T (

I − αBLnc
τ

) ([
J f ncτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
+ J f cτ (x̂τ−1)

T λ̂τ−1 − J f cτ (x
∗
τ)

Tλ∗τ

)
+ η−1

(
(1 − ηαε)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 + ηαεMd

)2

+ ηα2L2
f (δ)

x̂τ−1 − x∗τ

2

+ 2α(1 − ηαε)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]T [
f in
τ (x̂τ−1) − f in

τ (x
∗
τ)

f eq
τ (x̂τ−1) − f eq

τ (x∗τ)

]
+ 2ηα2εMd L f (δ)

x̂τ−1 − x∗τ

 . (2.70)

Notice that

α2

(
L f (δ)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 + Mc(δ)

x̂τ−1 − x∗τ

 sup
t∈[0,T]

‖λ∗(t)‖

)2

+ ηα2L2
f (δ)

x̂τ−1 − x∗τ

2

≤ α2

(
√
ηL f (δ) + Mc(δ) sup

t∈[0,T]
‖λ∗(t)‖

)2

ẑτ−1 − z∗τ

2
η

= α2D2(δ, η)

ẑτ−1 − z∗τ

2
η
. (2.71)

62

Moreover,

(1 − ηαε)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]T [
f in
τ (x̂τ−1) − f in

τ (x
∗
τ)

f eq
τ (x̂τ−1) − f eq

τ (x∗τ)

]
− (x̂τ−1 − x∗τ)

T (
I − αBLnc

τ

) ([
J f ncτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
+ J f cτ (x̂τ−1)

T λ̂τ−1 − J f cτ (x
∗
τ)

Tλ∗τ

)

= (1 − ηαε)
©­­«
[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]T [
f in
τ (x̂τ−1) − f in

τ (x
∗
τ)

f eq
τ (x̂τ−1) − f eq

τ (x∗τ)

]

− (x̂τ−1 − x∗τ)
T ©­«

[
J f ncτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
+ J f cτ (x̂τ−1)

T λ̂τ−1 − J f cτ (x
∗
τ)

Tλ∗τ
ª®¬
ª®®¬

− α(x̂τ−1 − x∗τ)
T (
ηε I − BLnc

τ

) ([
J f ncτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]
+ J f cτ (x̂τ−1)

T λ̂τ−1 − J f cτ (x
∗
τ)

Tλ∗τ

)
≤ (1 − ηαε)

(√
η

4
δMnc(δ)

ẑτ−1 − z∗τ

2
η
−

1
2
(x̂τ−1 − x∗τ)

T

(
m∑

i=1
λ∗τ,i B f cτ,i

)
(x̂τ−1 − x∗τ)

)
+ α

ηε I − BLnc
τ

x̂τ−1 − x∗τ

×

(
L f (δ)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 + Mc(δ)

x̂τ−1 − x∗τ

 sup
t∈[0,T]

‖λ∗(t)‖

)
≤ (1 − ηαε)

(√
η

4
δMnc(δ)

ẑτ−1 − z∗τ

2
η
−

1
2
(x̂τ−1 − x∗τ)

T

(
m∑

i=1
λ∗τ,i B f cτ,i

)
(x̂τ−1 − x∗τ)

)
+ α

ηε I − BLnc
τ

 D(δ, η)

ẑτ−1 − z∗τ

2
η
. (2.72)

63

Therefore by plugging (2.71) and (2.72) into (2.70), we get

ẑτ − z∗τ

2
η

≤ (x̂τ−1 − x∗τ)
T

[(
I − αBLnc

τ

)2
− α(1 − ηαε)

m∑
i=1

λ∗τ,i B f cτ,i

]
(x̂τ−1 − x∗τ)

+ (1 − ηαε)2η−1

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

2

+ α2D2(δ, η)

ẑτ−1 − z∗τ

2
η

+ α(1 − ηαε)
√
η

2
δMnc(δ)

ẑτ−1 − z∗τ

2
+ 2α2

ηε I − BLnc

τ

 D(δ, η)

ẑτ−1 − z∗τ

2
η

+ 2
√
ηαεMd

(
1 − ηαε
√
η

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 + √ηαL f (δ)

x̂τ−1 − x∗τ

)
+ ηα2ε2M2

d .

It’s not hard to see that(
1 − ηαε
√
η

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 + √ηαL f (δ)

x̂τ−1 − x∗τ

)
≤ max

{
1 − ηαε,

√
ηαL f (δ)

}

ẑτ−1 − z∗τ

η
,

and by the definition of ρ(δ, α, η, ε) and κ(δ, α, η, ε), we get

ẑτ − z∗τ

2
η

≤ ρ2(δ, α, η, ε)

ẑτ−1 − z∗τ

2
η
+ ηα2ε2M2

d

+ 2
√
ηαεMd ·max

{
1 − ηαε,

√
ηαL f (δ)

}

ẑτ−1 − z∗τ

η

≤

(
ρ(δ, α, η, ε)

ẑτ−1 − z∗τ

η
+ κ(δ, α, η, ε)

√
ηαεMd

)2
,

which is just (2.22).

Now let δ, η and ε be fixed. With the help of Lemma 2.4, it can be shown
that, if we temporarily allow α to take arbitrary values in R, then the function
α 7→ ρ(P)(δ, α, η, ε) is a continuous function over α ∈ R, and so

lim
α→0+

ρ(P)(δ, α, αη, ε) = ρ(P)(δ, 0, η, ε) = 1.

Then by the definition of ρ(δ, α, η, ε), it’s straightforward to get ρ(δ, α, η, ε) → 1
when α→ 0+, which further leads to

lim
α→0+

κ(δ, α, η, ε) = 1.

64

We also have

max
{
1 − ηαε,√ηαL f (δ)

}
ρ(δ, α, η, ε)

≤
1 − ηαε + αD(δ, η)

ρ(δ, α, η, ε)

≤

√
2
(
(1 − αηε)2 + α2D2(δ, η)

)
ρ(δ, α, η, ε)

≤
√

2,

which implies that κ(δ, α, η, ε) ≤
√

2. �

Proof of Lemma 2.4
Part 1. Let a ∈ R be arbitrary, and consider the set

g−1[(a,+∞)] = {y ∈ Y : g(y) > a}

= {y ∈ Y : ∃x ∈ X such that f (x, y) > a}

=
⋃
x∈X

{y ∈ Y : f (x, y) > a}.

The continuity of f implies that {y ∈ Y : f (x, y) > a} is open for each x ∈ X ,
and so g−1[(a,+∞)] is open. By the arbitrariness of a ∈ R, we see that g is lower
semicontinuous.

Now let y0 ∈ Y be arbitrary, and let (yn)n∈N be any sequence in Y such that yn → y0

and limn→∞ g(yn) exists. Since X is compact and f is continuous, we can see that
for any n, there is some xn ∈ X such that g(yn) = f (xn, yn). By the compactness
of X , we can find a subsequence (xkn)n∈N such that xkn → x0 for some x0 ∈ X as
n→∞. Then

lim
n→∞

g(yn) = lim
n→∞

f (xn, yn) = lim
n→∞

f (xkn, ykn) = f (x0, y0) ≤ g(y0),

where the third equality follows from the continuity of f , and the last inequality
follows from the definition of g. By the arbitrariness of the sequence (yn)n∈N, we
get

lim sup
y→y0

g(y) ≤ g(y0),

where y0 ∈ Y is arbitrary. Now we can conclude that f is upper semicontinuous,
and thus continuous on Y .

Part 2. Now suppose f : RBn × V → R is continuous. Define the auxiliary
function f̃ : RBn × (0, R) × V → R by

f̃ (u, r, v) = f
(
PrBn(u), v

)
.

65

The function (u, r) 7→ PrBn(u) is continuous (in fact Lipschitz), as for any (u1, r1)

and (u2, r2) in RBn × (0, R), we have

Pr1Bn(u1) − Pr2Bn(u2)

≤

Pr1Bn(u1) − Pr1Bn(u2)

 +

Pr1Bn(u2) − Pr2Bn(u2)

≤ ‖u1 − u2‖ + |r1 − r2 |.

Therefore f̃ is also a continuous function. Moreover,

g(r, v) = sup
u:‖u‖≤r

f (u, v) = sup
u∈RBn

f̃ (u, r, v).

By the compactness of RBn and the first part of Lemma 2.4, we conclude that g is
continuous. �

Proof of Lemma 2.5
The proof is directly based on the following lemma.

Lemma 2.9 ([94]). Let I be a closed interval with zero as left endpoint. Let u(t) be
a continuous nonnegative function that satisfies the integral inequality

u(t) ≤ u0 +

∫ t

0
w(s)up(s) ds,

where w(t) is a continuous nonnegative function on I. For 0 ≤ p < 1 we have

u(t) ≤
(
u1−p

0 + (1 − p)
∫ t

0
w(s) ds

) 1
1−β

,

and for p = 1, we have

u(t) ≤ u0 exp
∫ t

0
w(s) ds.

Let us define u(t) = e2βtv2(t). Then

d
dt

u(t) = 2βe2βtv2(t) + e2βt d
dt

(
v2(t)

)
≤ 2βe2βtv2(t) + 2e2βt(αv(t) − βv2(t))

= 2αe2βtv(t) = 2αeβt
√

u(t)

for almost all t ∈ [0,T]. Therefore by Lemma 2.9,

u(t) ≤
(√

u(0) + α
∫ t

0
eβs ds

)2
=

(√
u(0) +

α

β
(eβt − 1)

)2
,

and by the definition of u(t), we get the desired result. �

66

Proof of Theorem 2.3
The following definitions and lemmas from set-valued analysis are needed.

Definition 2.3. Let X and Y be topological spaces. We say that F : X → 2Y is a
set-valued map from X to Y . The domain of F is defined by dom(F) := {x ∈ X :
F(x) , �}. The graph of F is defined by graph(F) := {(x, y) ∈ X × Y : y ∈ F(x)}

We say that the set-valued map F is closed if its graph is a closed subset of X × Y .

We say that the set-valued map F is upper semicontinuous at x ∈ dom(F) if for
any open subset U ⊆ Y such that F(x) ⊆ U, there exists an open subset V ⊆ X

containing x such that for all x′ ∈ V , we have F(x′) ⊆ U.

Lemma 2.10 ([7, Proposition 1.4.9]). Let X and Y be two topological spaces, and
let F and G be two set-valued maps from X to Y . Assume that F is closed, that G(x)

is compact and that G is upper semicontinuous at x ∈ dom(F ∩ G). Then F ∩ G is
upper semicontinuous at x.

Lemma 2.11 ([7, Theorem 7.2.2]). Let X be a topological vector space,Y a Banach
space and F be a nontrivial set-valued map from X toY . We assume that F is upper
semicontinuous on its domain.

Let us consider measurable functions xm(·) and ym(·) fromΩ to X andY respectively,
satisfying: for almost all ω ∈ Ω and for all neighborhoods U of 0 in the product
space X × Y , there exists M := M(ω,U) such that

∀m > M, (xm(ω), ym(ω)) ∈ graph(F) +U.

If we assume that

1. xm(·) converges almost everywhere to a function x(·),

2. ym(·) ∈ L1(Ω;Y) and converges weakly in L1(Ω;Y) to a function y ∈ L1(Ω;Y),

then for almost all ω ∈ Ω such that x(ω) ∈ dom(F), y(ω) ∈ cl conv F(x(ω)).

The following lemma provides conditions for the closedness of the partial subdif-
ferential.

Lemma 2.12. Suppose we are given g : Rp × [0,T] → R ∪ {+∞} satisfying

1. grapht(g) is κ-Lipschitz in t, where grapht(g) := {(z, g(z, t)) : z ∈ domt(g)};

2. for each fixed t ∈ [0,T], g(·, t) is convex and proper, and is continuous when
restricted to its domain.

67

Then the set

{(z, t, y) ∈ Rp × [0,T] × Rp : z ∈ domt(g), y ∈ ∂zg(z, t)}

is closed; in other words, the set-valued map (z, t) 7→ ∂zg(z, t) is closed.

Proof of Lemma 2.12. Denote

A = {(z, t, y) ∈ Rp × [0,T] × Rp : z ∈ domt(g), y ∈ ∂zg(z, t)} .

Let (zk, tk, yk), k ∈ N, be a sequence in A that converges to some (z, t, y). We then
have

inf
u∈domt (g)

‖z − u‖ ≤ ‖z − zk ‖ + inf
u∈domt (g)

‖zk − u‖

≤ ‖z − zk ‖ + inf
u∈domt (g)

‖(zk, g(zk, tk)) − (u, g(u, t))‖

≤ ‖z − zk ‖ + dH

(
grapht(g), graphtk (g)

)
≤ ‖z − zk ‖ + κ |t − tk |,

where k ∈ N is arbitrary. By letting k → ∞ we get infu∈domt (g) ‖z − u‖ = 0, and
since domt(g) is closed, we have z ∈ domt(g).

Next, for each k ∈ N, let

uk ∈ arg min
u∈domt (g)

‖(u, g(u, t)) − (zk, g(zk, t))‖.

We have ‖(uk, g(uk, t)) − (zk, g(zk, tk))‖ ≤ κ |t − tk | since grapht(g) is κ-Lipschitz
with respect to t. Therefore

‖uk − z‖ ≤ ‖uk − zk ‖ + ‖zk − z‖

≤ ‖(uk, g(uk, t)) − (zk, g(zk, tk))‖ + ‖zk − z‖

≤ κ |t − tk | + ‖zk − z‖,

which implies that uk converges to z since (zk, tk) converges to (z, t). Then by taking
the limit of

‖g(zk, tk) − g(z, t)‖ ≤ ‖g(zk, tk) − g(uk, t)‖ + ‖g(uk, t) − g(z, t)‖

≤ κ |t − tk | + ‖g(uk, t) − g(z, t)‖,

and using the continuity of g(·, t), we get g(zk, tk) → g(z, t).

68

Now let w ∈ domt(g) be arbitrary, and let

wk ∈ arg min
u∈domtk

(g)

‖(u, g(u, tk)) − (w, g(w, t))‖.

We have ‖(wk, g(wk, tk)) − (w, g(w, t))‖ ≤ κ |t − tk | as grapht(g) is κ-Lipschitz with
respect to t. Then[

yk

−1

]T [
w − zk

g(w, t) − g(zk, tk)

]
=

[
yk

−1

]T ([
w − wk

g(w, t) − g(wk, tk)

]
+

[
wk − zk

g(wk, tk) − g(zk, tk)

])
≤

[
yk

−1

]T [
w − wk

g(w, t) − g(wk, tk)

]
≤ (‖yk ‖ + 1) · κ |t − tk |,

where we used

yk ∈ ∂zg(zk, tk) ⇐⇒ yT
k (u − zk) ≤ g(u, tk) − g(zk, tk), ∀u ∈ domtk (g).

By letting k →∞ and noting that zk → z, yk → y and g(zk, tk) → g(z, t), we get[
y

−1

]T [
w − z

g(w, t) − g(z, t)

]
≤ 0,

or yT (w − z) ≤ g(w, t) − g(z, t). By the arbitrariness of w ∈ domt(g), we see that
y ∈ ∂zg(z, t), and therefore (z, t, y) ∈ A. �

The following lemma constitutes the core step of the proof of Theorem 2.3. It
can be viewed as a generalization of [28, Theorem 4.1′] where the normal cone is
replaced by the subdifferential, and the proof uses essentially the same techniques
as in [2, 28].

Lemma 2.13. Suppose Φ : Rp × [0,T] → Rp and g : Rp × [0,T] → R∪ {+∞}, and
that

1. grapht(g) is κ1-Lipschitz in t, and for each fixed t ∈ [0,T], g(·, t) is a proper
convex function,

2. there exists ` > 0 such that

sup
z1,z2∈domt (g)

|g(z2, t) − g(z1, t)|
‖z2 − z1‖

≤ `

for every t ∈ [0,T]. In other words, g(z, t) is uniformly Lipschitz continuous with
respect to z,

69

3. Φ is continuous when restricted to the set
⋃

t∈[0,T] domt(g) × [0,T], and there
exists some κ2 > 0 such that

‖Φ(z, t)‖ ≤ κ2(1 + ‖z‖), ∀(z, t) ∈
⋃

t∈[0,T]
domt(g) × [0,T].

Let ẑ0 ∈ dom0(g) be arbitrary, and for each K ∈ N, Define ẑ(K)τ , τ ∈ {0, 1, 2, . . . ,K}
by

ẑ(K)0 = ẑ0,

ẑ(K)τ = prox∆Kg(·,τ∆K)
[
ẑ(K)
τ−1 + ∆KΦ

(
ẑ(K)
τ−1, τ∆K

)]
,

where ∆K := T/K , and for t ∈ [0,T], define

ẑ(K)(t) =
τ∆K − t
∆K

ẑ(K)
τ−1 +

t − (τ − 1)∆K

∆K
ẑ(K)τ (2.73)

if t ∈ [(τ − 1)∆K, τ∆K]. Then, if we keep T constant and let K → ∞, the sequence(
ẑ(K)

)
K∈N defined in (2.73) has a convergent subsequence, and any convergent

subsequence converges uniformly to a Lipschitz continuous ẑ that satisfies

ẑ(0) = ẑ0,

−
d
dt

ẑ(t) + Φ(ẑ(t), t) ∈ ∂zg(ẑ(t), t), ∀t ∈ [0,T] a.e.
(2.74)

Proof of Lemma 2.13. Let A =
⋃

t∈[0,T] domt(g), gK
τ (·) = g(·, τ∆K). For each τ ≥ 1,

let
u(K)τ = prox∆KgKτ

[
ẑ(K)
τ−1

]
,

v
(K)
τ ∈ arg min

v∈dom
(
gKτ

)

(v, gK
τ (v)) −

(
ẑ(K)
τ−1, g

K
τ−1

(
ẑ(K)
τ−1

))

 .
We have

∆Kg
K
τ

(
u(K)τ

)
+

1
2

u(K)τ − ẑ(K)
τ−1

2
≤ ∆Kg

K
τ

(
v
(K)
τ

)
+

1
2

v(K)τ − ẑ(K)
τ−1

2

by definition, which leads to

u(K)τ − ẑ(K)
τ−1

2
≤

v(K)τ − ẑ(K)
τ−1

2
+ 2∆K

(
gK
τ

(
v
(K)
τ

)
− gK

τ

(
u(K)τ

))
≤

v(K)τ − ẑ(K)
τ−1

2
+ 2∆K`

v(K)τ − u(K)τ

≤

v(K)τ − ẑ(K)
τ−1

2
+ 2∆K`

(

v(K)τ − ẑ(K)
τ−1

 +

u(K)τ − ẑ(K)
τ−1

) ,
and since

v(K)τ − ẑ(K)
τ−1

 ≤ κ1∆K by the κ1-Lipschitz continuity of grapht(g) in t, we
get

u(K)τ − ẑ(K)

τ−1

2
− 2∆K`

u(K)τ − ẑ(K)
τ−1

 ≤ ∆2
K

(
κ2

1 + 2κ1`
)
,

70

which implies that

u(K)τ − ẑ(K)
τ−1

 ≤ ∆K(κ1 + 2`).

Then

ẑ(K)τ − ẑ(K)
τ−1

 ≤

prox∆KgKτ
[
ẑ(K)
τ−1 + ∆KΦ

(
ẑ(K)
τ−1, τ∆K

)]
− prox∆KgKτ

[
ẑ(K)
τ−1

]

+

prox∆KgKτ
[
ẑ(K)
τ−1

]
− ẑ(K)

τ−1

≤ ∆K

Φ(
ẑ(K)
τ−1, τ∆K

)

 +

u(K)τ − ẑ(K)
τ−1

≤ ∆K(κ1 + κ2 + 2`) + ∆K κ2

ẑ(K)
τ−1

 , (2.75)

and so

ẑ(K)τ

 ≤ ∆K(κ1 + κ2 + 2`) + (1 + ∆K κ2)

ẑ(K)
τ−1

for any τ = 1, . . . ,K . By induction we can see that

ẑ(K)τ

 ≤ (1 + ∆K κ2)
τ

(
‖ ẑ0‖ +

κ1 + κ2 + 2`
κ2

)
−
κ1 + κ2 + 2`

κ2

holds for all τ = 0, . . . ,K , and since ∆K = T/K , we get

ẑ(K)τ

 ≤ (
1 +

T κ2
K

)K (
‖ ẑ0‖ +

(κ1 + κ2 + 2`)
κ2

)
−
κ1 + κ2 + 2`

κ2

≤ eT κ2

(
‖ ẑ0‖ +

(κ1 + κ2 + 2`)
κ2

)
−
κ1 + κ2 + 2`

κ2
=: κ3

for any τ = 0, 1, . . . ,K . By plugging it back to (2.75), we have

ẑ(K)τ − ẑ(K)
τ−1

 ≤ ∆K(κ1 + κ2 + κ2κ3 + 2`),

and consequently

 d
dt

ẑ(K)(t)

 = ∆−1

K

ẑ(K)
dt/∆K e

− ẑ(K)
bt/∆K c

 ≤ κ1 + κ2 + κ2κ3 + 2` =: ˜̀

for almost every t ∈ [0,T].

Let Dẑ(K)i ∈ L∞([0,T]) denote the weak derivative of the i’th entry of ẑ(K) for each
i = 1, . . . , p. Then the sequence

(
Dẑ(K)i

)
K∈N lies in the ball

B =

{
f ∈ L∞([0,T]) : ess sup

t∈[0,T]
| f (t)| ≤ ˜̀

}
.

The Banach–Alaoglu theorem [83] indicates that B is weak* sequentially compact,
and so

(
Dẑ(K)i

)
K∈N has a convergent subsequencewith respect to theweak* topology.

71

We extract an arbitrary convergent subsequence and still denote it by
(
Dẑ(K)i

)
K∈N.

Then Dẑ(K)i
w∗

→ qi for some qi ∈ B, or in other words,∫ T

0
u(t)qi(t) dt = lim

K→∞

∫ T

0
u(t)Dẑ(K)i (t) dt

for all u ∈ L1([0,T]). Consequently ẑ(K) converges uniformly to ẑ given by

ẑ(t) = ẑ0 +

∫ t

0
q(s) ds,

where q : [0,T] → Rp is the vector-valued function with entries g1, . . . , gp.

Next we prove that any convergent subsequence of
(
ẑ(K)

)
K∈N converges to a limit

that satisfies the differential inclusions (2.74). We still use ẑ to denote the limit of
an arbitrary convergent subsequence of

(
ẑ(K)

)
K∈N, and without loss of generality we

assume ẑ(K) → ẑ by extracting the subsequence. Since
(
ẑ(K)

)
K∈N is equi-Lipschitz,

the convergence ẑ(K) → ẑ is uniform, ẑ is ˜̀-Lipschitz, and Dẑ(K)
w∗

→ Dẑ. Define

δ(K)(t) =
⌊

t
∆K

⌋
∆K, θ(K)(t) =

⌈
t
∆K

⌉
∆K .

Then we have for almost all t ∈ [0,T],

−
d
dt

ẑ(K)(t) + Φ
(
ẑ(K)

(
δ(K)(t)

)
, θ(K)(t)

)
=

1
∆K

(
ẑ(K)

(
δ(K)(t)

)
+ ∆KΦ

(
ẑ(K)

(
δ(K)(t)

)
, θ(K)(t)

)
− ẑ(K)

(
θ(K)(t)

))
∈ ∂zg

(
ẑ(K)

(
θ(K)(t)

)
, θ(K)(t)

)
,

where the second fact in Lemma 2.1 is used in the last step. In addition, for almost
all t ∈ [0,T],

− d

dt
ẑ(K)(t) + Φ

(
ẑ(K)

(
δ(K)(t)

)
, θ(K)(t)

)

 ≤ ˜̀+ κ2(1 + κ3),

and so for almost all t ∈ [0,T],

−
d
dt

ẑ(K)(t) + Φ
(
ẑ(K)

(
δ(K)(t)

)
, θ(K)(t)

)
∈ ∂zg

(
ẑ(K)

(
θ(K)(t)

)
, θ(K)(t)

)
∩

(˜̀+ κ2(1 + κ3)
)
Bp.

Now we define the set-valued map

F(z, t) = ∂zg(z, t) ∩
(˜̀+ κ2(1 + κ3)

)
Bp, (z, t) ∈ Rp × [0,T].

72

By Lemma 2.12 and Lemma 2.10, the set-valued map F is upper semicontinuous.
We then have

−
d
dt

ẑ(K)(t) + Φ
(
ẑ(K)

(
δ(K)(t)

)
, θ(K)(t)

)
∈ F

(
ẑ(K)

(
θ(K)(t)

)
, θ(K)(t)

)
.

Noticing that
lim

K→∞
δ(K)(t) = lim

K→∞
θ(K)(t) = t,

lim
K→∞

Φ

(
ẑ(K)(δ(K)(t)), θ(K)(t)

)
= Φ(ẑ(t), t),

by Lemma 2.11, we can conclude that, for almost all t ∈ [0,T],

−
d
dt

ẑ(t) + Φ(ẑ(t), t) ∈ F(ẑ(t), t),

which implies (2.74). �

Now we are ready to finish the proof of Theorem 2.3. For each t ∈ [0,T] and
z = (x, λ, µ) ∈ Rn × Rm × Rm′, we define

Φ(z, t) := β


−∇xc(x, t) − J f in,x(x, t)Tλ − J f eq,x(x, t)T µ

η
(
f in(x, t) − ε(λ − λprior)

)
η

(
f eq(x, t) − ε(µ − µprior)

)
 (2.76)

and
g(z, t) := βh(x, t) + IRm+ (λ).

Since g is a separable sum, we have [74]

prox∆Kg(·,t)(x, λ, µ) =
(
prox∆K βh(·,t)(x) , prox∆K IRm+

(λ), µ
)

=
(
prox∆K βh(·,t)(x) , PRm+ (λ), µ

)
for each t ∈ [0,T] and x ∈ domt(h), λ ∈ Rm

+, µ ∈ R
m′. The iterations (2.37) can then

be formulated as

ẑ(K)0 = ẑ0,

ẑ(K)τ = prox∆Kg(·,τ∆K)
[
ẑ(K)
τ−1 + ∆KΦ

(
ẑ(K)
τ−1, τ∆K

)]
.

We check the conditions of Lemma 2.13 as follows:

73

1. g(z, t) is max{1, β}κ1-Lipschtz with respect to t, as

inf
z∈domt2 (g)

‖(z, g(z, t2)) − (z1, g(z1, t1)‖

≤ inf
x∈domt2 (h),

λ∈Rm+ ,µ∈R
m′

(‖(x, βh(x, t2)) − (x1, βh(x1, t1))‖ + ‖(λ, µ) − (λ1, µ1)‖)

≤ inf
x∈domt2 (h)

max{1, β}‖(x, h(x, t2)) − (x1, h(x1, t1))‖

≤ max{1, β}κ1 |t2 − t1 |

for any t1, t2 ∈ [0,T] and z1 = (x1, λ1, µ1) ∈ domt1(g).

2. By (2.39), we have

sup
z1,z2∈domt (g)

|g(z2, t) − g(z1, t)|
‖z2 − z1‖

= sup
x1,x2∈domt (h)

β
|h(x2, t) − h(x1, t)|
‖x2 − x1‖

≤ β`

for all t ∈ [0,T].

3. Φ is obviously continuous on
⋃

t∈[0,T] domt(g) × [0,T]. Moreover,

‖Φ(z, t)‖ ≤ β

(
‖∇xc(x, t)‖ +

[
J f in,x(x, t)

J f eq,x(x, t)

]

[
λ

µ

]

)

+ ηβ

[

f in(x, t)

f eq(x, t)

]

 + ηβε

[
λ

µ

]

 + ηβε

[
λprior

µprior

]

 .
Let xaux ∈

⋃
t∈[0,T] domt(h) be arbitrary, and

κ3 := sup


[
J f in,x(x, t)

J f eq,x(x, t)

]

 : (x, t) ∈
⋃

t∈[0,T]
domt(h) × [0,T]

 ,
κ4 := sup

t∈[0,T]

[

f in(xaux, t)

f eq(xaux, t)

]

 ,
both of which are finite. Then

[
f in(x, t)

f eq(x, t)

]

 ≤ κ4 + κ3(‖x‖ + ‖xaux‖).

By (2.40) and noticing that ‖x‖ ≤ ‖z‖ and ‖(λ, µ)‖ ≤ ‖z‖, we get

‖Φ(z, t)‖ ≤ β(κ2(1 + ‖z‖) + κ3‖z‖)

+ ηβ (κ4 + κ3(‖z‖ + ‖xaux‖)) + ηβε ‖z‖ + ηβε

(λprior, µprior)

≤ κ5(1 + ‖z‖),

74

where κ5 satisfies

κ5 ≥ βκ2 + ηβ(κ4 + κ3‖xaux‖) + ηβε ‖(λprior, µprior)‖,

κ5 ≥ β(κ2 + κ3) + ηβκ3 + ηβε .

By Lemma 2.13, the sequence of trajectories defined by (2.73) [and consequently
(2.38)] then has convergent subsequences each of which converges to some Lipschitz
continuous solution to (2.74). Let ẑ(t) = (x̂(t), λ̂(t)) denote one such solution. By
(2.74) and the definition of Φ, we have(

−
d
dt

[
λ̂(t)

µ̂(t)

]
+ ηβ

[
f in(x̂(t), t)

f eq(x̂(t), t)

]
− ηβε

[
λ̂(t) − λprior

µ̂(t) − µprior

])T [
λprior − λ̂(t)

µprior − µ̂(t)

]
≤ 0,

which implies that

1
2

d
dt

[
λ̂(t) − λprior

µ̂(t) − µprior

]

2

≤ ηβ

[
f in(x̂(t), t)

f eq(x̂(t), t)

]T [
λ̂(t) − λprior

µ̂(t) − µprior

]
− ηβε

[
λ̂(t) − λprior

µ̂(t) − µprior

]

2

≤ ηβκ2

[
λ̂(t) − λprior

µ̂(t) − µprior

]

 − ηβε

[
λ̂(t) − λprior

µ̂(t) − µprior

]

2

.

By Lemma 2.5,

[
λ̂(t) − λprior

µ̂(t) − µprior

]

 ≤ e−ηβε t

[
λ̂0 − λprior

µ̂0 − µprior

]

 + κ2
ε

(
1 − e−ηβε t

)
,

and then by triangle inequality we see that

(λ̂(t), µ̂(t))

 is always strictly less than

Rd :=

[
λ̂0 − λprior

µ̂0 − µprior

]

 +

[
λprior

µprior

]

 + κ2
ε
.

Now suppose ẑ(1) =
(
x̂(1), λ̂(1), µ̂(1)

)
and ẑ(2) =

(
x̂(2), λ̂(2), µ̂(2)

)
are two solutions to

75

the differential inclusions (2.74). Then for any t ∈ [0,T],

Φ(
ẑ(2)(t), t

)
− Φ

(
ẑ(1)(t), t

)

≤ β

∇xc
(
x̂(2)(t), t

)
− ∇xc

(
x̂(1)(t), t

)

+ β

[

J f in,x
(
x̂(2)(t), t

)
− J f in,x

(
x̂(1)(t), t

)
J f eq,x

(
x̂(2)(t), t

)
− J f eq,x

(
x̂(1)(t), t

)]T [
λ̂(2)(t)

µ̂(2)(t)

]

+ β

[
J f in,x

(
x̂(1)(t), t

)
J f eq,x

(
x̂(1)(t), t

)]T [
λ̂(2)(t) − λ̂(1)(t)

µ̂(2)(t) − µ̂(1)(t)

]

+ ηβ

[

f in (x̂(2)(t), t) − f in (x̂(1)(t), t)
f eq (x̂(2)(t), t) − f eq (x̂(1)(t), t)

]

 + ηβε

[
λ̂(2)(t) − λ̂(1)(t)

µ̂(2)(t) − µ̂(1)(t)

]

≤ βl(t)

x̂(2)(t) − x̂(1)(t)

 + βl(t)

x̂(2)(t) − x̂(1)(t)

 · Rd

+ β(κ3 + ηε)

[
λ̂(2)(t) − λ̂(1)(t)

µ̂(2)(t) − µ̂(1)(t)

]

 + ηβκ3

x̂(2)(t) − x̂(1)(t)

≤ β ((1 + Rd)l(t) + (1 + η)κ3 + ηε)

ẑ(2)(t) − ẑ(1)(t)

 ,

where we used (2.41). Denote l̃(t) = β ((1 + Rd)l(t) + (1 + η)κ3 + ηε). Obviously
l̃(t) is nonnegative and integrable. Now by (2.74),

−
d
dt

ẑ(i)(t) + Φ
(
ẑ(i)(t), t

)
∈ ∂zg

(
ẑ(i)(t), t

)
, ∀t ∈ [0,T] a.e.

with ẑ(i)(t) = ẑ0 for i = 1, 2. We then have

g
(
ẑ(2)(t), t

)
− g

(
ẑ(1)(t), t

)
≥

(
−

d
dt

ẑ(1)(t) + Φ
(
ẑ(1)(t), t

))T (
ẑ(2)(t) − ẑ(1)(t)

)
,

g
(
ẑ(1)(t), t

)
− g

(
ẑ(2)(t), t

)
≥

(
−

d
dt

ẑ(2)(t) + Φ
(
ẑ(2)(t), t

))T (
ẑ(1)(t) − ẑ(2)(t)

)
for almost all t ∈ [0,T]. By taking their sum, we get(

d
dt

(
ẑ(2)(t) − ẑ(1)(t)

)
−

(
Φ

(
ẑ(2)(t), t

)
− Φ

(
ẑ(1)(t), t

)))T (
ẑ(2)(t) − ẑ(1)(t)

)
≤ 0,

or

1
2

d
dt

ẑ(2)(t) − ẑ(1)(t)

2
=

(
d
dt

(
ẑ(2)(t) − ẑ(1)(t)

))T (
ẑ(2)(t) − ẑ(1)(t)

)
≤

(
Φ

(
ẑ(2)(t), t

)
− Φ

(
ẑ(1)(t), t

))T
(ẑ(2)(t) − ẑ(1)(t))

≤ l̂(t)

ẑ(2)(t) − ẑ(1)(t)

2
.

76

By Lemma 2.9,

ẑ(2)(t) − ẑ(1)(t)

2
= 0 for every t ∈ [0,T], i.e., the two solutions are

identical.

The uniqueness of the absolute continuous solution to (2.74) also implies that any
convergent subsequence of

(
ẑ(K)

)
k∈N converges uniformly to the same limit ẑ, and

consequently any convergent subsequence of
(
Dẑ(K)i

)
k∈N converges to the same limit

Dẑi with respect to the weak* topology for each i = 1, . . . , p. In the proof of Lemma
2.13, we see that

(
Dẑ(K)i

)
k∈N and Dẑi lie in the set

B =

{
f ∈ L∞([0,T]) : ess sup

t∈[0,T]
| f (t)| ≤ ˜̀

}
for some ˜̀ > 0 for each i, and the Banach–Alaoglu theorem [83] ensures that B is a
compact and metrizable with respect to the weak* topology, we can then conclude
that

(
Dẑ(K)i

)
k∈N converges to Dẑi with respect to the weak* topology for every

i = 1, . . . , p, and
(
ẑ(K)

)
k∈N converges uniformly to ẑ. �

Proof of Theorem 2.5
We first prove that ση is a continuous function of η over η ∈ R++. Let t1, t2 ∈ [0,T]
with t1 , t2 be given, and define

v(x; t1, t2) :=
‖z∗(t2) − z∗(t1)‖x−2

|t2 − t1 |

=

(
‖x∗(t2) − x∗(t1)‖2 + x2

(
‖λ∗(t2) − λ∗(t1)‖2 + ‖µ∗(t2) − µ∗(t1)‖2

))1/2

|t2 − t1 |

for x ∈ R++. Obviously v(x; t1, t2) is a convex function of x over x ∈ R++. Then
since σx−2 is the supremum of v(x; t1, t2) over {(t1, t2) ∈ [0,T]2 : t1 , t2}, σx−2 is
also a convex function of x over x ∈ R++. As the domain of σx−2 is R++ which is
open, we can conclude that σx−2 is a continuous function of x over x ∈ R++, and
consequently ση is a continuous function of η over η ∈ R++.

Part 1. The proof uses the same approach as in proving Theorem 2.2. Let R > δ̄

be arbitrary, and define

fR(δ, β, η, ε) = δγ(δ, η, ε) −
√
ηεMd − β

−1ση .

We consider two cases.

1. Md , 0: Let δ0 = δ̄ and

η0 =

(
2Λm(δ0)

δ0Mnc(δ0)

)2
, ε0 =

Λm(δ0)

η0
.

77

We then have

fR(δ0, β, η0, ε0) =
δ̄

2
(
Λm

(
δ̄) − Md Mnc

(
δ̄
))
− β−1ση0

Since Λm
(
δ̄) > Md Mnc

(
δ̄
)
, we can find sufficiently large β0 > 0 so that

fR(δ0, β0, η0, ε0) > 0, implying that Sfp is nonempty.

2. Md = 0: Let η0 > 0 be arbitrary, and let ε0 = η
−1
0 Λm(δ0). Then

γ(δ, η0, ε0) = Λm(δ) −

√
η0

4
δMnc(δ).

By the monotonicity of Λm(δ) and Mnc(δ),

lim
δ→0+

γ(δ, η0, ε0) = lim
δ→0+

Λm(δ) ≥ Λm
(
δ̄
)
> 0.

Therefore there exists some δ0 ∈
(
0, δ̄

]
such that γ(δ0, η0, ε0) > 0, and we have

fR(δ0, β, η0, ε0) = δ0γ(δ0, η0, ε0) − β
−1ση0 .

Therefore we can find sufficiently large β0 > 0 such that fR(δ0, β0, η0, ε0) is
positive, and consequently Sfp is non-empty.

Finally, by Lemma 2.4 and the continuity of η 7→ ση, it can be seen that fR(δ, β, η, ε)

is a continuous function over (δ, β, η, ε) ∈ (0, R) × R3
++. Therefore the set

Sfp ∩
(
(0, R) × R3

++

)
= {(δ, β, η, ε) ∈ (0, R) × R3

++ : fR(δ, β, η, ε) > 0}

is an open subset of R4
++, and consequently

Sfp =
⋃
R>δ̄

Sfp ∩
(
(0, R) × R3

++

)
is an open subset of R4

++.

Part 2. Denote

g0(η, ε) :=
β−1ση +

√
ηεMd

γ(δ, η, ε)
,

g1(η, ε) := δ γ(δ, η, ε) −
√
ηεMd − β

−1ση,

where (η, ε) ∈ R2
++. Obviously g0(η, ε) = δ if g1(η, ε) = 0, and g0(η, ε) < δ

if g1(η, ε) > 0. It can also be seen that g1(η, ε) is a continuous function over
(η, ε) ∈ R2

++.

78

Now let M > 1 be arbitrary such that

2Λm(δ)

M
≤ min

{
1,

Md

δ2

}
,

and let (η, ε) ∈ R2
++ be arbitrary such that η + ε ≥ M . Consider the following two

cases:

1. ηε ≥ Λm(δ). Then

g1(η, ε) = δΛm(δ) −

√(
δ2Mnc(δ)

4
√
η +
√
ηεMd

)2
− β−1ση

≤ δΛm(δ) −

√
δ4M2

nc(δ)

16
η + M2

dηε
2 − β−1ση

≤ δΛm(δ) −

√
δ4M2

nc(δ)

16
η + M2

dΛm(δ)ε − β
−1ση

≤ δΛm(δ) −min
{
δ2Mnc(δ)

4
, Md

√
Λm(δ)

}
√

M − β−1ση .

2. ηε < Λm(δ). In this case, since

ε +
Λm(δ)

ε
> ε + η ≥ M,

we must have ε ≥ M/2 or ε−1Λm(δ) ≥ M/2. In the former case, we have
η < ε−1Λm(δ) ≤ 2Λm(δ)/M , and by the choice of M we have η ≤ 1 and
δ
√
η ≤ Md . Thus

g1(η, ε) = δηε −

√
η

4
δ2Mnc(δ) −

√
ηεMd − β

−1ση

≤
√
ηε(δ
√
η − Md) − β

−1ση ≤ −β
−1σ1.

For the latter case, we have η ≥ M − ε ≥ M − 2Λm(δ)/M ≥ M − 1, and therefore

g1(η, ε) = δηε −

√
η

4
δ2Mnc(δ) −

√
ηεMd − β

−1ση

≤ δΛm(δ) −

√
M − 1

4
δ2Mnc(δ).

Summarizing these results, we get by the arbitrariness of M that

lim sup
η+ε→+∞

g1(η, ε) < 0.

Therefore the set g−1
1 [[0,+∞)] is a bounded subset of R

2
++.

79

Now let (η̃, ε̃) be any boundary point of the set g−1
1 [[0,+∞)] inR

2, and let (ηk, εk)k∈N

be a sequence in g−1
1 [[0,+∞)] that converges to (η̃, ε̃). Obviously

lim inf
k→∞

g1(ηk, εk) ≥ 0,

and by the continuity of g1 on R2
++, we further have limk→∞ g1(ηk, εk) = g1(η̃, ε̃) = 0

if (η̃, ε̃) ∈ R2
++. Since

lim sup
(η,ε)→(0,ε̃)
(η,ε)∈R2

++

g1(η, ε) = lim sup
η→0+

(
−β−1ση

)
< 0,

we see that η̃ , 0, and then since

lim
(η,ε)→(η̃,0)
(η,ε)∈R2

++

g1(η, ε) = −

√
η̃

4
δ2Mnc(δ) − β

−1ση̃ < 0,

we see that ε̃ , 0. Therefore the boundary point of g−1
1 [[0,+∞)] inR

2 are all inR2
++.

By the continuity of g1, we can conclude that g−1
1 [[0,+∞)] is a closed subset of R

2.
Together with the boundedness shown above, we have shown that g−1

1 [[0,+∞)] is
compact.

By the continuity of g0(η, ε) over (η, ε) ∈ g−1
1 [[0,+∞)] and the compactness of

g−1
1 [[0,+∞)], the minimum of g0(η, ε) over (η, ε) ∈ g−1

1 [[0,+∞)] is achieved by
some (η∗, ε∗) ∈ g−1

1 [[0,+∞)]. By assumption, the set

Afp(δ, β) = g−1
1 [(0,+∞)] ⊆ g−1

1 [[0,+∞)]

is nonempty, and for (η, ε) ∈ g−1
1 [(0,+∞)] we have g0(η, ε) < δ, while for (η, ε) ∈

g−1
1 [{0}] we have g0(η, ε) = δ. Therefore (η∗, ε∗) must be in the set g−1

1 [(0,+∞)].

Next we show that ε∗ = Λm(δ
∗)/η∗. It’s not hard to check that the function ε 7→

g1(η
∗, ε) is continuous over ε ∈ R++, is monotonic when ε ≤ Λm(δ)/η

∗, and is
decreasing when ε ≥ Λm(δ)/η

∗. Thus the set

Aη∗ := {ε > 0 : g1(η
∗, ε) > 0}

is an open interval in R++. We have

d
dε

g0(η
∗, ε) = −

η∗
(
δMd Mnc(δ)/4 + β−1ση∗

)(
η∗ε −

√
η∗δMnc(δ)/4

)2 < 0

when ε ∈ Aη∗ ∩ (0,Λm(δ)/η
∗), and

d
dε

g0(η
∗, ε) =

√
η∗Md

Λm(δ) −
√
η∗δMnc(δ)/4

> 0

80

when ε ∈ Aη∗ ∩ (Λm(δ)/η
∗,+∞). Since the minimum of g0(η

∗, ε) over ε ∈ Aη∗ is
achieved, we must have ε∗ = Λm(δ)/η

∗. This conclusion has a further implication:
If we define the function

g̃0(x) = g0

(
x−2, x2

Λm(δ)
)
=

β−1σx−2 + xΛm(δ)Md

Λm(δ) − x−1δMnc(δ)/4
,

g̃1(x) = g1

(
x−2, x2

Λm(δ)
)

for x ∈ (xl,+∞), where

xl :=
δMnc(δ)

4Λm(δ)
,

then √
ε∗

Λm(δ)
=

1
√
η∗
∈ arg min

x∈g̃−1
1 [(0,+∞)]

g̃0(x).

Finally, we prove that g̃0(x) has a unique minimizer over (xl,+∞). Since σx−2 is a
convex and nondecreasing function of x, it is absolutely continuous and admits a
weak derivative u(x) which is nonnegative and nondecreasing in x. Then we see
that g̃0(x) is also absolutely continuous, whose weak derivative is given by

Dg̃0(x) =
β−1u(x) + Λm(δ)Md −

β−1 x−1σ
x−2+Λm(δ)Md

x(Λm(δ)−x−1δMnc(δ)/4)
δMnc(δ)

4

Λm(δ) − x−1δMnc(δ)/4
.

We can see that x−1σx−2 is equal to

sup
t1,t2∈[0,T],

t1,t2

(
x−2 ‖x∗(t2) − x∗(t1)‖2 +

(
‖λ∗(t2) − λ∗(t1)‖2 + ‖µ∗(t2) − µ∗(t1)‖2

))1/2

|t2 − t1 |
,

showing that x−1σx−2 is nonincreasing in x. Then we can easily verify that

β−1x−1σx−2 + Λm(δ)Md

x(Λm(δ) − x−1δMnc(δ)/4)

is a strictly decreasing function of x, as the numerator is nonincreasing in x and
the denominator is positive and strictly increasing in x for x > δMnc(δ)/(4Λm(δ)).
Moreover, we have

lim
x→+∞

(
β−1u(x) + Λm(δ)Md −

β−1x−1σx−2 + Λm(δ)Md

x(Λm(δ) − x−1δMnc(δ)/4)
δMnc(δ)

4

)
= β−1 lim

x→+∞
u(x) + Λm(δ)Md > 0,

81

while

lim
x→x+

l

(
β−1u(x) + Λm(δ)Md −

β−1x−1σx−2 + Λm(δ)Md

x(Λm(δ) − x−1δMnc(δ)/4)
δMnc(δ)

4

)
= −∞.

Therefore there exists a unique x∗ ∈ (xl,+∞) such that Dg̃0(x) < 0 for x ∈ (xl, x∗)

and Dg̃0(x) > 0 for x ∈ (x∗,+∞). We then see that g̃0(x) is a unimodal function
over x ∈ (xl,+∞) with the unique minimizer x∗ . Therefore

{x∗} = arg min
x∈(xl,+∞)

g̃0(x).

Since g̃−1
1 [(0,+∞)] ⊆ (xl,+∞), and both g̃−1

1 [(0,+∞)] and (xl,+∞) are open subsets
of R++, we have

arg min
x∈g̃−1

1 [(0,+∞)]
g̃0(x) ⊆ arg min

x∈(xl,+∞)
g̃0(x),

from which we can conclude that x∗ = 1/
√
η∗ =

√
ε∗/Λm(δ).

The unimodality of bδ,β(ε) can be obtained by noting that bδ,β(ε) = g̃0
(√
ε/Λm(δ)

)
and that ε 7→

√
ε/Λm(δ) is a strictly increasing function. �

82

C h a p t e r 3

SECOND-ORDER ALGORITHMS FOR TIME-VARYING
OPTIMIZATION

3.1 Problem Formulation
In this chapter, we consider the following time-varying optimization problem:

min
x∈Rn

cτ(x) + hτ(x)

s.t. f in
τ (x) ≤ 0,

f eq
τ (x) = 0.

(3.1)

Here τ labels the discrete time index which ranges in the set T = {1, 2, . . . ,K} for
some K ∈ N. The maps cτ : Rn → R, f in

τ : Rn → Rm and f eq
τ : Rn → Rm′ are twice

continuously differentiable, and hτ : Rn → R ∪ {+∞} is a closed proper convex
function with a closed domain for each τ ∈ T . We assume that (3.1) always has a
solution for every τ ∈ T .

By “second-order” algorithms, we mean that for each τ ∈ T , not only the current
function value and gradient information is used, but also the exact or approximate
curvature information is employed when generating approximate solutions to (3.1),
which is similar to Newton and quasi-Newton methods in static optimization. In
otherwords, the algorithms discussed in this chapter can be viewed as generalizations
of Newton or quasi-Newton methods in the time-varying setting.

Unlike in Chapter 2, we are not going to consider continuous-time limit of second-
order algorithms, and we directly consider a discrete-time setting where we already
get a sequence of sampled problems. As we shall see, this is partially due to the
fact that in practice, second-order methods are usually employed in situations where
sampling intervals are large compared to where first-order methods are used. For the
analysis of the asymptotic behavior of second-order methods in the continuous-time
limit, we refer to [39, 97].

3.2 Approximate Newton Method: A Special Case
We first consider the special case where there are no explicit equality and inequality
constraints in (3.1), i.e.,

min
x∈Rn

cτ(x) + hτ(x) (3.2)

83

for each τ ∈ T . By Lemma 2.8, its optimality condition is given by

−∇cτ
(
x∗τ

)
∈ ∂hτ

(
x∗τ

)
, (3.3)

where x∗τ is any local optimal solution to (3.2). Just as in Chapter 2, in the following
discussion, we use x∗τ to denote an arbitrarily chosen local optimal solution in case
there are multiple local optimal solutions to (3.2), and we will mainly focus on this
particular sequence

(
x∗τ

)
τ∈T .

The approximate Newton method for (3.2) is given by the iteration

x̂τ = arg min
x∈Rn

∇cτ(x̂τ−1)
T (x − x̂τ−1) +

1
2
(x − x̂τ−1)

T Bτ(x − x̂τ−1) + hτ(x) (3.4)

or equivalently in the form of a generalized equation

−∇cτ(x̂τ−1) − Bτ(x̂τ − x̂τ−1) ∈ ∂hτ(x̂τ) (3.5)

for each τ ∈ T , where Bτ ∈ Rn×n is a positive definite matrix. The rationale behind
(3.4) is that we approximate the smooth part of the objective function cτ by a convex
quadratic function for each τ, and when hτ is simple or has special structures, we
expect that the resulting convex program can be solved much more efficiently than
finding the batch solution. We do not put restrictions on the method of producing
the matrix Bτ in (3.2) apart from the positive definiteness of Bτ. Therefore (3.2)
gives a class of algorithms. For example, we can set Bτ to be a scalar matrix, and in
this case (3.2) is a special case of the first-order proximal gradient method proposed
in Chapter 2. We can also set Bτ = ∇2cτ(x̂τ−1), or use any quasi-Newton method
to calculate Bτ, and in this case we obtain a generalization of the (quasi-)Newton
method to the time-varying situation, which can be seen more clearly by noting that
(3.4) is equivalent to

x̂τ = x̂τ−1 − B−1
τ ∇cτ(x̂τ−1)

when hτ = 0.

Since we use a quadratic approximation of cτ in deriving (3.4), we can tell from
intuition that the quality of this quadratic approximation plays a significant role in
the tracking performance. We now proceed to capture this intuition mathematically.

Tracking Performance
We define the tracking error by

x̂τ − x∗τ

W

84

for each τ ∈ T , where we denote ‖x‖W := xTW x for any x ∈ Rn and any positive
definite W ∈ Rn×n. Tracking performance will then be evaluated quantitatively by
the tracking error.

We then define
σW := sup

τ∈T\{0}

x∗τ − x∗τ−1

W ,

which upper bounds the distance between consecutive optimal solutions. It charac-
terizes how fast the optimal solution x∗τ drifts as time proceeds.

Lemma 3.1. Let τ ∈ T be arbitrary. If ẑτ is generated by (3.4), then

x̂τ − x∗τ

Bτ
≤ ρτ

x̂τ−1 − x∗τ

Bτ
, (3.6)

where

ρτ :=

B−1
τ

(
∇cτ

(
x̂τ−1

)
− ∇cτ

(
x∗τ

))
−

(
x̂τ−1 − x∗τ

)

Bτ

‖ x̂τ−1 − x∗τ ‖Bτ
.

Proof. The generalized equation (3.5) implies that

hτ(x∗τ) − hτ(x̂τ) ≥
(
x∗τ − x̂τ

)T (
−∇cτ

(
x̂τ−1

)
− Bτ (x̂τ − x̂τ−1)

)
.

On the other hand, by the optimality condition (3.3), we have

hτ(x̂τ) − hτ(x∗τ) ≥ −
(
x̂τ − x∗τ

)T
∇cτ

(
x∗τ

)
.

We then have (
x̂τ − x∗τ

)T (
∇cτ

(
x̂τ−1

)
− ∇cτ

(
x∗t

)
+ Bτ (x̂τ − x̂τ−1)

)
≤ 0,

which leads to

x̂τ − x∗τ

2

Bτ
=

(
x̂τ − x∗τ

)T Bτ
(
x̂τ − x∗τ

)
≤

(
x̂τ − x∗τ

)T Bτ
(
B−1
τ

(
∇cτ

(
x∗t

)
− ∇cτ

(
x̂τ−1

))
−

(
x∗τ − x̂τ−1

))
≤

x̂τ − x∗τ

Bτ
·

B−1

τ

(
∇cτ

(
x∗t

)
− ∇cτ

(
x̂τ−1

))
−

(
x∗τ − x̂τ−1

)

Bτ

=

x̂τ − x∗τ

Bτ
· ρτ

x̂τ−1 − x∗τ

2

Bτ
.

The inequality (3.6) now follows directly. �

Lemma 3.1 directly leads to the following theorem on the tracking error bound for
(3.4).

85

Theorem 3.1. Let W ∈ Rn×n be a positive definite matrix, and

λM := sup
τ∈T

inf{λ ∈ R : λW � Bτ},

λm := inf
τ∈T

sup{λ ∈ R : λW � Bτ}.

If

ρ := sup
τ∈T

B−1
τ

(
∇cτ

(
x̂τ−1

)
− ∇cτ

(
x∗τ

))
−

(
x̂τ−1 − x∗τ

)

Bτ

‖ x̂τ−1 − x∗τ ‖Bτ
<

√
λm

λM
, (3.7)

then

x̂τ − x∗τ

W ≤
ρσW√

λm/λM − ρ
+

(
ρ

√
λM

λm

)τ (

x̂0 − x∗1

W −
σW

√
λm/λM√

λm/λM − ρ

)
(3.8)

for any τ ∈ T .

Proof. The definition of ρ implies that ρτ ≤ ρ for all τ ∈ T . Therefore by Lemma
3.1, for τ = 1, we have

x̂1 − x∗1

W ≤

√
λ−1

m

x̂1 − x∗1

B1
≤ ρ

√
λ−1

m

x̂0 − x∗1

B1
≤ ρ

√
λM

λm

x̂1 − x∗0

W ,

while if (3.8) holds for some τ, then

x̂τ+1 − x∗τ+1

W

≤

√
λ−1

m

x̂τ+1 − x∗τ+1

Bτ
≤ ρ

√
λ−1

m

x̂τ − x∗τ+1

Bτ

≤ ρ

√
λM

λm

(

x̂τ − x∗τ

W +

x∗τ − x∗τ+1

W

)
≤ ρ

√
λM

λm

(
ρσW√

λm/λM − ρ
+

(
ρ

√
λM

λm

)τ (

x̂0 − x∗1

W −
σW

√
λm/λM√

λm/λM − ρ

)
+ σW

)
=

ρσW√
λm/λM − ρ

+

(
ρ

√
λM

λm

)τ+1 (

x̂0 − x∗1

W −
σW

√
λm/λM√

λm/λM − ρ

)
.

The bound (3.8) then follows from mathematical induction. �

The condition (3.7) and the tracking error bound (3.8) suggest that ρ should be
sufficiently small so that good tracking performance can be achieved. However,
in practice, it is difficult to evaluate the quantity ρ unless we carry out the whole
iterations (3.4), whichmakes Theorem 3.1 not very useful for estimating the tracking
error a priori. Rather, Theorem 3.1 justifies our intuition that the quality of the

86

quadratic approximation in (3.4), which is now quantitatively assessed by ρ, plays a
central role in the tracking performance. Furthermore, in order to make ρ as small
as possible, we need

∇cτ
(
x̂τ−1

)
− ∇cτ

(
x∗τ

)
≈ Bτ

(
x̂τ−1 − x∗τ

)
.

for each τ; in other words, thematrices Bτ in (3.4) should approximate the (averaged)
Hessian of cτ along the direction x̂τ−1 − x∗τ . This implication partially substantiates
our motivation of introducing second-order methods: although (3.4) is in general
harder to compute than the proximal gradient method, the tracking error can be
potentially reduced by employing a more sophisticated Bτ.

A Centralized Algorithm Based on L-BFGS-B
As Theorem 3.1 points out, the approach of producing the matrices Bτ has a ma-
jor effect on the tracking performance of the approximate Newton method (3.4).
However, the Hessian of cτ is in general a dense n × n matrix, which makes the
scalability of (3.4) questionable as n increases. Another issue is that (3.4) involves
optimization of a potentially nonsmooth function, and in the special case where hτ is
the indicator function of some convex set Xτ, we obtain a constrained optimization
problem which cannot be solved by directly applying algorithms for unconstrained
optimization.

In this subsection, we provide a specific algorithm based on L-BFGS-B to deal with
these issues, when the nonsmooth convex function hτ is the indicator function of a
rectangular set in Rn with a nonempty interior:

hτ = IXτ, Xτ =
{

x ∈ Rn : xτ ≤ x ≤ xτ
}
.

The L-BFGS-B algorithm [26, 69] is a quasi-Newton method that solves nonlinear
programs with box constraints. It employs two key techniques: the limited-memory
BFGS method to produce the approximate Hessian, and the gradient projection
method1 to handle the box constraints. By applying these two key techniques to
the time-varying optimization setting, we propose the following procedure for each
τ ∈ T :

1. Produce Bτ by the limited-memory BFGS method.
1 Not to be confused with the projected gradient method.

87

2. Use the gradient projectionmethod to get an approximate solution to the quadratic
program

min
x∈Rn

qτ(x) := gT
τ (x − x̂τ−1) +

1
2
(x − x̂τ−1)

T Bτ(x − x̂τ−1)

s.t. xτ ≤ x ≤ xτ,
(3.9)

where gτ = ∇cτ(x̂τ−1).

Note that the gradient projection method which will be presented shortly will only
produce an approximate solution to the quadratic program (3.9) in general. Never-
theless, simulation shows that such an approximate solution usually suffices.

We now give a succinct introduction to these two key techniques under the time-
varying optimization setting.

Limited-memory BFGS In limited-memory BFGS, the approximate Hessian Bτ
takes the form

Bτ = ϑτ I − KτMτKT
τ , (3.10)

where Kτ ∈ R
n×2d and Mτ ∈ R

2d×2d for some d ∈ N. In practice d is typically
between 3 and 20 and is usually much smaller than n. It can be seen that Bτ is a
small rank correction of a scalar matrix.

To be specific, we denote

sτ = x̂τ − x̂τ−1, yτ = ∇cτ(x̂τ) − ∇cτ(x̂τ−1),

and
Yτ =

[
yτ−d · · · yτ−1

]
, Sτ =

[
sτ−d · · · sτ−1

]
,

The matrices Kτ and Mτ are then given by

Kτ =
[
Yτ ϑτSτ

]
, Mτ =

[
−Dτ LT

τ

Lτ ϑτST
τ Sτ

]−1

,

where Dτ ∈ R
d×d and Lτ ∈ Rd×d are given by

Dτ = diag
(
sT
τ−dyτ−d, . . . , sT

τ−1yτ−1

)
,

(Lτ)i j =

{
sT
τ−d−1+iyτ−d−1+ j, if i > j,

0, otherwise.

88

The scalar ϑτ is given by

ϑτ =
yT
τ−1yτ−1

yT
τ−1sτ−1

.

For 1 < τ ≤ d, the matrices Yτ, Sτ, Dτ and Lτ will only be constructed from
s1, . . . , sτ−1 and y1, . . . , yτ−1, and consequently Yτ ∈ Rn×(τ−1), Sτ ∈ Rn×(τ−1), Kτ ∈

Rn×2(τ−1) and Mτ ∈ R
2(τ−1)×2(τ−1). For τ = 1, we let Bτ = ϑ0I where ϑ0 > 0

is an initial estimate. For the rationale behind the limited-memory BFGS method
and minor modifications to guarantee the positive definiteness of Bτ, we refer to
[26, 27, 72].

The gradient projection method The gradient projection method estimates the
free variables of the box constraints in (3.9) and then performs a subspace mini-
mization to provide an approximate solution to (3.9). The estimation of the free
variables is via the generalized Cauchy point. Let

x̃τ(t) = PXτ [wτ−1 − t∇qτ(wτ−1)] , wτ−1 := PXτ (x̂τ−1),

and let tc
τ be the smallest minimizer of the piecewise quadratic function qτ(x̃τ(t))

over t > 0. The generalized Cauchy point is then given by xc
τ := x̃τ

(
tc
τ

)
. Let

I =
{
i ∈ {1, . . . , n} : xc

τ,i = xτ,i or xc
τ,i = xτ,i

}
.

We then solve
uτ = arg min

u∈Rn
qτ(xc

τ + u)

s.t. uτ,I = 0.
(3.11)

It can be immediately recognized that (3.11) is essentially an unconstrained quadratic
program. After obtaining uτ, we compute2

ũτ = PXτ
[
xc
τ + uτ

]
− wτ−1, (3.12)

and generate x̂τ by
x̂τ = wτ−1 + ατũτ,

where ατ is equal to 1 or is determined by some backtracking strategy.

Because of the compact representation of the limited-memory BFGSmethod (3.10),
the search for tc

τ and the minimization (3.11) can be computed in a very efficient
manner that has time complexity O(d2n+ d3+ n log n). More details of the gradient
projection method can be found in [72, Section 16.7] and also in [26, 69].

2 In the case where the ũτ generated by (3.12) does not satisfy ∇qτ(wτ−1)
T ũτ < 0, we set

ũτ = xcτ + uτ − wτ−1, which is a descent direction of qτ as shown in [26]. A backtracking is then
needed to ensure that x̂τ is feasible.

89

3.3 Approximate Newton Method: The General Case
Now we consider the general case given by

min
x∈Rn

cτ(x) + hτ(x)

s.t. f in
τ (x) ≤ 0,

f eq
τ (x) = 0,

(3.1)

where there are explicit equality and inequality constraints. By Proposition 2.1,
under certain constraint qualification conditions, the KKT conditions are given by

−∇cτ
(
x∗τ

)
−

[
J f inτ

(
x∗τ

)
J f eqτ

(
x∗τ

)]T [
λ∗τ

µ∗τ

]
∈ ∂hτ

(
x∗τ

)
, (3.13a)

f in
τ

(
x∗τ

)
∈ NRm+

(
λ∗τ

)
, (3.13b)

f eq
τ

(
x∗τ

)
= 0, (3.13c)

where
(
x∗τ, λ

∗
τ, µ
∗
τ

)
∈ dom(hτ) ×Rm

+ ×R
m′ is a KKT point of (3.1). Just as in Chapter

2, when there are multiple solutions to the KKT conditions, we arbitrarily select one
of them, denote it by z∗τ =

(
x∗τ, λ

∗
τ, µ
∗
τ

)
, and mainly focus on this trajectory in most

part of our study.

We shall introduce two approaches that handle the inequality and equality constraints
differently.

The Penalty Approach
The penalty approach introduces the penalty functions

φτ(x) :=
m∑

i=1

[
f in
τ,i (x)

] κ
+
+

m′∑
j=1

��� f eq
τ, j (x)

���κ .
Here [·]+ := max{0, ·} denotes the positive part of a scalar, and κ ∈ (2,+∞) is a
fixed constant. Then instead of (3.1), we consider the following penalized version

min
x∈Rn

Fε
τ (x) + hτ(x), (3.14)

where
Fε
τ (x) := cτ(x) +

1
κε
φτ(x),

and ε > 0 is the penalty parameter. The penalized function Fε
τ (x) is twice continu-

ously differentiable as we assume κ > 2. Then, we can just apply the approximate

90

Newton method (3.4), with cτ being replaced by Fε
τ . Specifically,

x̂τ = arg min
x∈Rn

©­«∇cτ
(
x̂τ−1

)
+

[
J f inτ

(
x̂τ−1

)
J f eqτ

(
x̂τ−1

)]T [
λ̂τ−1

µ̂τ−1

]ª®¬
T

(x − x̂τ−1)

+
1
2
(x − x̂τ−1)

T Bτ (x − x̂τ−1) + hτ(x),

(3.15)

where
λ̂τ−1,i = ε

−1 [
f in
τ,i

(
x̂τ−1

)] κ−1
+

, i = 1, . . . ,m,

µ̂τ−1, j = ε
−1 sgn

(
f eq
τ,i

(
x̂τ−1

)) ��� f eq
τ,i

(
x̂τ−1

) ���κ−1
, j = 1, . . . ,m′,

and Bτ is a positive definite matrix that tries to approximate the Hessian of Fε
τ .

On the other hand, we should note that (3.15) tracks a solution to the penalized
problem (3.14), which in general is different from the solutions to the original
problem (3.1). As a result, if we calculate the tracking error with respect to x∗τ ,
there will be some additional term in the tracking error bound due to this difference,
which can be regarded as a side effect of the penalty approach. This is similar to
the situation in Chapter 2 where the regularization on the dual variables introduces
additional error. In fact, the similarity is not a coincidence, as we shall show that
the penalized problem is closely related to a min-max problem with regularization
on the dual variables. Let us consider

min
x∈Rn

max
λ∈Rm+ ,µ∈R

m′
Lετ(x, λ, µ) (3.16)

with
Lετ(x, λ, µ) := cτ(x) + hτ(x) + λT f in

τ (x) + µ
T f eq

τ (x)

−
ε β−1

β

©­«
m∑

i=1
|λi |

β +

m′∑
j=1
|µ j |

βª®¬ ,
(3.17)

where β ∈ (1, 2) is determined by κ−1 + β−1 = 1. The term

−
ε β−1

β

©­«
m∑

i=1
|λi |

β +

m′∑
j=1
|µ j |

βª®¬
represents the regularization added on the dual variables. It’s not hard to see that
Lετ(x, λ, µ) is additively separable in the dual variables, and the maximization of
Lετ(x, λ, µ) over λ ∈ Rm

+, µ ∈ R
m′ can be explicitly solved. Let λ̃τ(x) and µ̃τ(x)

denote the optimal dual variables that maximize Lετ(x, λ, µ) for a given fixed x.

91

Then
λ̃τ,i(x) = ε−1 [

f in
τ,i (x)

] 1
β−1
+

,

µ̃τ, j(x) = ε−1 sgn
(

f eq
τ, j (x)

) ��� f eq
τ, j (x)

��� 1
β−1
,

and

max
λ∈Rm+ ,µ∈R

m′
Lετ(x, λ, µ) = L

ε
τ

(
x, λ̃τ(x), µ̃τ(x)

)
= cτ(x) + ε−1

m∑
i=1

[
f in
τ,i (x)

] 1
β−1
+

f in
τ,i (x) + ε

−1
m′∑
j=1

sgn
(

f eq
τ, j (x)

) ��� f eq
τ, j (x)

��� 1
β−1

f eq
τ, j (x)

−
ε β−1

β
· ε−β

©­«
m∑

i=1

[
f in
τ,i (x)

] β
β−1
+
+

m′∑
j=1

��� f eq
τ, j (x)

��� β
β−1 ª®¬ + hτ(x)

= cτ(x) +
1
κε

©­«
m∑

i=1

[
f in
τ,i (x)

] κ
+
+

m′∑
j=1

��� f eq
τ, j (x)

���κª®¬ + hτ(x) = Fε
τ (x) + hτ(x),

where we used the fact that κ = β/(β − 1). Thus we see that the penalized problem
(3.14) is essentially equivalent to the min-max problem (3.16) in the sense that x̃τ is
a local optimal solution to (3.14) if and only if

(
x̃τ, λ̃

(
x̃τ

)
, µ̃

(
x̃τ

))
is a local solution

to the min-max problem (3.16) with regularization on the dual variables.

Intuitively, as the penalty parameter ε tends to zero, the solution to the penalized
problem (3.14) should converge in certain sense to an optimal solution to the original
problem (3.1). We shall not provide a comprehensive study of how the difference
of the two solutions change as ε decreases. The following two theorems bound this
difference for two special cases, whose proofs are given in Appendix 3.A.

Theorem 3.2. Consider the following convex program

min
x∈Rn

c(x) + h(x)

s.t. f in(x) ≤ 0,

aT
j x = b j, j = 1, . . . ,m′,

(3.18)

where c : Rn → R and f in : Rn → R are twice continuously differentiable,
h : Rn → R ∪ {+∞}, a j ∈ R

n for each j = 1, . . . ,m′, b ∈ Rp′. The functions c(x),
h(x) and each component of f in(x) are all convex over x ∈ Rn. Let X∗ denote the
set of optimizers to (3.18) which we assume to be nonempty.

Assume that the constraint qualification condition (2.4) holds for (3.18) at any
optimal solution. Furthermore, we assume that there exists some ν > 0 such that

(x − PX∗(x))T
(
∇c(x) − ∇c

(
PX∗(x)

))
≥ ν ‖x − PX∗(x)‖2 , ∀x ∈ dom(h). (3.19)

92

Let x̃ε denote a solution to the penalized problem

min
x∈Rn

c(x) + h(x) +
1
κε

©­«
m∑

i=1

[
f in
i (x)

] κ
+
+

m′∑
j=1

���aT
j x − b j

���κª®¬ , (3.20)

where ε > 0 and κ > 1. Then

ν ‖ x̃ε − PX∗(x̃ε)‖2 +
(κ − 1)
κε

©­«
m∑

i=1

[
f in
i (x̃ε)

] κ
+
+

m′∑
j=1

���aT
j x̃ε − b j

���κª®¬
≤
(κ − 1) ε 1

κ−1

κ

©­«
m∑

i=1

��λ∗i �� κ
κ−1 +

m′∑
j=1

��µ∗j �� κ
κ−1 ª®¬ ,

(3.21)

where (λ∗, µ∗) is any optimal dual variable associated with PX∗(x̃ε).

Theorem 3.3. Let c : Rn → R, f in : Rn → Rm, f eq : Rn → Rm′, gin : Rn → Rp

and geq : Rn → Rp′ be twice continuously differentiable. Suppose x∗ is a local
optimal solution to the nonlinear program

min
x∈Rn

c(x)

s.t. f in(x) ≤ 0, f eq(x) = 0,

gin(x) ≤ 0, geq(x) = 0.

(3.22)

Suppose the linear independence constraint qualification holds for (3.22) at x∗, and
let the optimal dual variables be λ∗ ∈ Rm

+ , µ∗ ∈ Rm′, ζ∗ ∈ Rp
+ and υ∗ ∈ Rp′. We

further assume that strict complementary slackness holds for λ∗ and ζ∗, that all
entries of µ∗ are nonzero, and that ∇2L(x∗, λ∗, µ∗, ζ∗, υ∗) is positive definite, where
L denotes the Lagrangian

L(x, λ, µ, ζ, υ) = c(x) + λT f in(x) + µT f eq(x) + ζTgin(x) + υTgeq(x).

Then there exist ε̄ > 0, M > 0 and a unique continuous function x̃ : [0, ε̄) → Rn

such that x̃(0) = x∗ and x̃(ε) is a local solution to the penalized problem

min
x∈Rn

c(x) +
1
κε

©­«
m∑

i=1

[
f in
i (x)

] κ
+
+

m′∑
j=1

��� f eq
j (x)

���κª®¬
s.t. gin(x) ≤ 0, geq(x) = 0

(3.23)

for any ε ∈ (0, ε̄), where κ > 2 is a fixed constant. Moreover,

‖ x̃(ε) − x∗‖`κ ≤ ε
1
κ−1 M

(
m∑

i=1

��λ∗i �� κ
κ−1 +

m∑
i=1

��µ∗i �� κ
κ−1

) 1
κ

. (3.24)

93

Remark 3.1. Theorem 3.2 considers convex programs, and the bound (3.21) is
“global” in the sense that it holds for any local optimal solution to the penalized
problem (3.20). Theorem 3.3 considers nonlinear programs for which linear inde-
pendence constraint qualification and strict complementary slackness hold at some
optimal point, and the result is “local” in the sense that the bound (3.24) only applies
to penalized problems with ε < ε̄ where ε̄ is guaranteed to exist but not explicitly
specified. �

There is a trade-off when choosing the penalty parameter ε : A smaller ε in general
leads to more accurate tracking as the penalized problem (3.14) approximates the
original problem (3.1) better, but it also makes the penalized objective function
Fε
τ more ill-conditioned, which could also increase the difficulty in producing the

approximate Hessian Bτ. The parameter κ should not be too large as well, and in
practice we usually choose 2 < κ < 3.

The Saddle Point Approach
In the penalty approach, we require κ > 2 so that the function Fε

τ is twice continu-
ously differentiable. If we set κ = 2, the penalty approach may still work in practice,
but it becomes unclear whether the quasi-Newton method is able to handle the dis-
continuity of the Hessian. In the following, we propose an alternative approach that
is similar to the penalty approach for κ = 2 but avoids the discontinuity issue by
employing a saddle point formulation.

It has been shown that for κ = 2, the penalized problem (3.14) is equivalent to the
min-max problem

min
x∈Rn

max
λ∈Rm+ ,µ∈R

m′
cτ(x) + hτ(x) + λT f in

τ (x) + µ
T f eq

τ (x) −
ε

2

(
‖λ‖2 +

µ

2
)
.

(3.25)
In the saddle point approach, for each τ ∈ T , we let ẑτ =

(
x̂τ, λ̂τ, µ̂τ

)
to be the

solution to the following saddle point problem:

min
x∈Rn

max
λ∈Rm+ ,µ∈R

m′
∇cτ(x̂τ−1)

T (x − x̂τ−1) +
1
2
(x − x̂τ−1)

T Bτ(x − x̂τ−1)

+

[
λ

µ

]T [
f in
τ (x̂τ−1) + J f inτ (x̂τ−1)(x − x̂τ−1)

f eq
τ (x̂τ−1) + J f eqτ (x̂τ−1)(x − x̂τ−1)

]
−
ε

2

(

λ − λreg
τ

2
+

µ − µreg
τ

2
)
+ hτ(x),

(3.26)

94

where
λ

reg
τ = (1 − χ)λ̂τ−1 + χλprior,

µ
reg
τ = (1 − χ)µ̂τ−1 + χµprior.

In (3.26), Bτ is still a positive definite matrix that is updated at each time slot, ε > 0
is the regularization parameter, λprior and µprior are employed as prior estimation of
the optimal dual variables, and χ ∈ (0, 1] is a constant.

By comparing (3.26) with (3.25), we can see that, apart from a more sophisticated
regularization that drives the dual variables towards

(
λ

reg
τ , µ

reg
τ

)
, the saddle point

approach still employs the “quadratic approximation trick” as in (3.4). It is also
closely related to sequential quadratic programming for static optimziation problems.
But since the min-max formulation is kept, what we obtain is a saddle point problem
whose objective function is convex in x and strongly concave in (λ, µ). The KKT
conditions on ẑτ are given by

−∇cτ(x̂τ−1) − Bτ(x̂τ − x̂τ−1) −

[
J f inτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ

µ̂τ

]
∈ ∂hτ(x̂τ), (3.27a)

f in
τ (x̂τ−1) + J f inτ (x̂τ−1)(x̂τ − x̂τ−1) − ε

(
λ̂τ − λ

reg
τ

)
∈ NRm+

(
λ̂τ

)
, (3.27b)

f eq
τ (x̂τ−1) + J f eqτ (x̂τ−1)(x̂τ − x̂τ−1) − ε

(
µ̂τ − µ

reg
τ

)
= 0. (3.27c)

These conditions can be written in the form of a generalized linear equation
Bτ J f inτ (x̂τ−1)

T J f eqτ (x̂τ−1)
T

−J f inτ (x̂τ−1) ε I 0
−J f eqτ (x̂τ−1) 0 ε I



x̃τ
λ̂τ

µ̂τ

 ∈−∂ h̃τ
©­­«

x̃τ
λ̂τ

µ̂τ


ª®®®¬+


−∇cτ(x̂τ−1)

f in
τ (x̂τ−1) + ελ

reg
τ

f eq
τ (x̂τ−1) + ε µ

reg
τ

 ,
where we denote x̃τ = x̂τ − x̂τ−1 and

h̃τ(x, λ, µ) = hτ(x + x̂τ−1) + IRm+ (λ).

When hτ is simple or has special structures, we expect that this generalized linear
equation can be solved much more efficiently than finding a batch solution.

Now let us study the tracking performance of the saddle point approach. For any
positive definite matrix W ∈ Rn×n and positive scalar ε , we define the norm

‖z‖W,ε :=
(
‖x‖2W + ε ‖λ‖

2 + ε ‖µ‖2
)1/2

for any z = (x, λ, µ) ∈ Rn × Rm × Rm′. We use

σW,ε := sup
t∈T\{1}

z∗τ − z∗τ−1

W,ε

95

to denote the maximum distance between each consecutive optimal primal-dual pair
with respect to the norm ‖ · ‖W,ε . We denote

Ls
τ := cτ(x) + λT f in

τ (x) + µ
T f eq

τ (x),

which can be thought of as the Lagrangian of the “smooth” part of the problem
(3.1).

We also define the following quantities:

Md := sup
t∈T

[
λ∗τ − λprior

µ∗τ − µprior

]

 ,
M f (δ,W) := sup

τ∈T
sup

u:‖u‖W≤δ

1
‖u‖2W

[

f in
τ

(
x∗τ + u

)
− J f inτ

(
x∗τ + u

)
u − f in

τ

(
x∗τ

)
f eq
τ

(
x∗τ + u

)
− J f eqτ

(
x∗τ + u

)
u − f eq

τ

(
x∗τ

)]

 .
The quantity M f (δ,W)measures the nonlinearity of the constraint functions f in

τ and
f eq
τ within the neighborhood around x∗τ of radius δ > 0, which is similar to the
quantity Mnc(δ) in the regularized proximal primal-dual gradient method in Chapter
2; W is a positive definite matrix that provides some flexibility in choosing the norm
of the primal variable.

Theorem 3.4. Let W ∈ Rn×n be a positive definite matrix, and

λM := sup
τ∈T

inf{λ ∈ R : λW � Bτ},

λm := inf
τ∈T

sup{λ ∈ R : λW � Bτ},

and define

ρ(P) := sup
t∈T

(x̂τ−1 − x∗τ
)
− B−1

τ

(
∇xL

s
τ

(
x̂τ−1, λ

∗
τ, µ
∗
τ

)
− ∇xL

s
τ

(
x∗τ, λ

∗
τ, µ
∗
τ

))

Bτ

‖ x̂τ−1 − x∗τ ‖Bτ
,

ρ := ©­«max

{
ρ(P)

√
λM

λm
, 1 − χ

}2

+ (1 − χ)
δM f (δ, λmW)

2
√
ε

+
δ2M2

f (δ, λmW)

4ε
ª®¬

1/2

.

If
σλmW,ε ≤ (1 − ρ)δ −

√
2ε χMd, (3.28)

and the initial point ẑ0 satisfies

ẑ0 − z∗1

λmW,ε

≤ δ, then

ẑτ − z∗τ

λmW,ε

≤
ρσλmW,ε +

√
2ε χMd

1 − ρ

+ ρτ

(

ẑ0 − z∗1

λmW,ε

−
σλmW,ε +

√
2ε χMd

1 − ρ

) (3.29)

for all τ ∈ T .

96

Proof. Let τ ∈ T be arbitrary, and suppose that

x̂τ−1 − x∗τ

λmW ≤ δ. By (3.27a),

we have

hτ
(
x∗τ

)
− hτ

(
x̂τ

)
≥ −

(
x∗τ − x̂τ

)T

(
∇cτ

(
x̂τ−1

)
+ Bτ(x̂τ − x̂τ−1) +

[
J f inτ (x̂τ−1)

J f eqτ (x̂τ−1)

]T [
λ̂τ

µ̂τ

])
,

while (3.13b) implies that

hτ
(
x̂τ

)
− hτ

(
x∗τ

)
≥ −

(
x̂τ − x∗τ

)T

(
∇cτ

(
x∗τ

)
+

[
J f inτ

(
x∗τ−1

)
J f eqτ

(
x∗τ−1

)]T [
λ∗τ

µ∗τ

])
.

Therefore

0 ≥
(
x̂τ − x∗τ

)T

(
∇cτ

(
x̂τ−1

)
+ Bτ(x̂τ − x̂τ−1) − ∇cτ

(
x∗τ

)
+

[
J f inτ

(
x̂τ−1

)
J f eqτ

(
x̂τ−1

)]T [
λ̂τ

µ̂τ

]
−

[
J f inτ

(
x∗τ−1

)
J f eqτ

(
x∗τ−1

)]T [
λ∗τ

µ∗τ

])
,

and we get

x̂τ − x∗τ

2

Bτ

≤ −
(
x̂τ − x∗τ

)T

(
∇cτ

(
x̂τ−1

)
− ∇cτ

(
x∗τ

)
− Bτ

(
x̂τ−1 − x∗τ

)
+

[
J f inτ

(
x̂τ−1

)
J f eqτ

(
x̂τ−1

)]T [
λ̂τ

µ̂τ

]
−

[
J f inτ

(
x∗τ−1

)
J f eqτ

(
x∗τ−1

)]T [
λ∗τ

µ∗τ

])
= −

(
x̂τ − x∗τ

)T (
∇xL

s
τ

(
x̂τ−1, λ

∗
τ, µ
∗
τ

)
− ∇xL

s
τ

(
x∗τ, λ

∗
τ, µ
∗
τ

)
− Bτ

(
x̂τ−1 − x∗τ

))
−

(
x̂τ − x∗τ

)T

[
J f inτ

(
x̂τ−1

)
J f eqτ

(
x̂τ−1

)]T [
λ̂τ − λ

∗
τ

µ̂τ − µ
∗
τ

]
.

(3.30)

Now, by (3.27b), we can get(
λ∗τ − λ̂τ

)T (
f in
τ (x̂τ−1) + J f inτ (x̂τ−1)(x̂τ − x̂τ−1) − ε

(
λ̂τ − λ

reg
τ

))
≤ 0,

and by (3.13c), (
λ̂τ − λ

∗
τ

)T
f in
τ

(
x∗τ

)
≤ 0.

Thus(
λ̂τ − λ

∗
τ

)T (
f in
τ (x̂τ−1) + J f inτ (x̂τ−1)(x̂τ − x̂τ−1) − ε

(
λ̂τ − λ

reg
τ

)
− f in

τ

(
x∗τ

))
≥ 0,

97

or

ε

λ̂τ − λ∗τ

2

≤

(
λ̂τ − λ

∗
τ

)T
J f inτ

(
x̂τ−1

) (
x̂τ − x∗τ

)
+

(
λ̂τ − λ

∗
τ

)T (
f in
τ

(
x̂τ−1

)
+ J f inτ

(
x̂τ−1

) (
x∗τ − x̂τ−1

)
− f in

τ

(
x∗τ

))
+ ε

(
λ̂τ − λ

∗
τ

)T (
λ

reg
τ − λ

∗
τ

)
.

(3.31)
Similarly, by (3.27b) and (3.13c), it can be shown that

ε

µ̂τ − µ∗τ

2

=
(
µ̂τ − µ

∗
τ

)T J f eqτ

(
x̂τ−1

) (
x̂τ − x∗τ

)
+

(
µ̂τ − µ

∗
τ

)T
(

f eq
τ

(
x̂τ−1

)
+ J f eqτ

(
x̂τ−1

) (
x∗τ − x̂τ−1

)
− f eq

τ

(
x∗τ

))
+ ε

(
µ̂τ − µ

∗
τ

)T (
µ

reg
τ − µ

∗
τ

)
.

(3.32)
By summing (3.30), (3.31), and (3.32), we can see that

x̂τ − x∗τ

2
Bτ
+ ε

λ̂τ − λ∗τ

2
+ ε

µ̂τ − µ∗τ

2

≤ −
(
x̂τ − x∗τ

)T (
∇xL

s
τ

(
x̂τ−1, λ

∗
τ, µ
∗
τ

)
− ∇xL

s
τ

(
x∗τ, λ

∗
τ, µ
∗
τ

)
− Bτ

(
x̂τ−1 − x∗τ

))
+

[
λ̂τ − λ

∗
τ

µ̂τ − µ
∗
τ

]T [
f in
τ

(
x̂τ−1

)
+ J f inτ

(
x̂τ−1

) (
x∗τ − x̂τ−1

)
− f in

τ

(
x∗τ

)
f eq
τ

(
x̂τ−1

)
+ J f eqτ

(
x̂τ−1

) (
x∗τ − x̂τ−1

)
− f eq

τ

(
x∗τ

)]
+ ε

[
λ̂τ − λ

∗
τ

µ̂τ − µ
∗
τ

]T [
λ

reg
τ − λ

∗
τ

µ
reg
τ − µ

∗
τ

]

=


x̂τ − x∗τ
λ̂τ − λ

∗
τ

µ̂τ − µ
∗
τ


T 

Bτ
ε Im

ε Im′



dτ,x
dτ,λ
dτ,µ

 ,
where we denote

dτ,x
dτ,λ
dτ,µ,

 =


(
x̂τ−1 − x∗τ

)
− B−1

τ

(
∇xL

s
τ

(
x̂τ−1, λ

∗
τ, µ
∗
τ

)
− ∇xL

s
τ

(
x∗τ, λ

∗
τ, µ
∗
τ

))
ε−1

(
f in
τ

(
x̂τ−1

)
+ J f inτ

(
x̂τ−1

) (
x∗τ − x̂τ−1

)
− f in

τ

(
x∗τ

))
+ λ

reg
τ − λ

∗
τ

ε−1
(

f eq
τ

(
x̂τ−1

)
+ J f eqτ

(
x̂τ−1

) (
x∗τ − x̂τ−1

)
− f eq

τ

(
x∗τ

))
+ µ

reg
τ − µ

∗
τ

 .
By the Cauchy–Schwarz inequality, we see that

x̂τ − x∗τ

2
Bτ
+ ε

λ̂τ − λ∗τ

2
+ ε

µ̂τ − µ∗τ

2

≤

(

x̂τ − x∗τ

2

Bτ
+ ε

λ̂τ − λ∗τ

2
+ ε

µ̂τ − µ∗τ

2
)1/2

×

(
‖dτ,x ‖2Bτ + ε

dτ,λ

2
+ ε

dτ,µ

2

)1/2
,

98

and thus

x̂τ − x∗τ

2

Bτ
+ ε

λ̂τ − λ∗τ

2
+ ε

µ̂τ − µ∗τ

2

≤ ‖dτ,x ‖2Bτ + ε

dτ,λ

2
+ ε

dτ,µ

2
.

By the definition of ρ(P), we have

‖dτ,x ‖Bτ ≤ ρ
(P)

x̂τ−1 − x∗τ

Bτ
≤ ρ(P)

√
λM

λm

x̂τ−1 − x∗τ

λmW ,

and by the definition of M f (δ,W) and Md , we have

ε
(

dτ,λ

2
+

dτ,µ

2

)
≤ ε

(
ε−1 M f (δ, λmW)

2

x̂τ−1 − x∗τ

2
λmW+ (1− χ)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 + χ

[
λprior − λ

∗
τ

µprior − µ
∗
τ

]

)2

≤
δ2M2

f (δ, λmW)

4ε

x̂τ−1 − x∗τ

2
W + ε(1 − χ)

2

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

2

+ ε χ2M2
d

+ (1 − χ)δM f (δ, λmW)

x̂τ−1 − x∗τ

λmW

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

+ χMdδM f (δ, λmW)

x̂τ−1 − x∗τ

λmW + 2εMd χ(1 − χ)

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 .
We also note that

x̂τ−1 − x∗τ

λmW

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

 ≤ 1
2
√
ε

©­«

x̂τ−1 − x∗τ

2
λmW + ε

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

2ª®¬ .
Therefore

x̂τ − x∗τ

2
Bτ
+ ε

λ̂τ − λ∗τ

2
+ ε

µ̂τ − µ∗τ

2

≤
©­«
(
ρ(P)

√
λM

λm

)2

+ (1 − χ)
δM f (δ, λmW)

2
√
ε

+
δ2M2

f (δ, λmW)

4ε
ª®¬

x̂τ−1 − x∗τ

2
λmW

+

(
(1 − χ)2 + (1 − χ)

δM f (δ, λmW)

2
√
ε

)
ε

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

2

+ 2χ
√
εMd

(
δM f (δ, λmW)

2
√
ε

x̂τ−1 − x∗τ

λmW + (1 − χ)

√
ε

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

)

+ ε χ2M2
d

≤

(
ρ
(

x̂τ−1 − x∗τ

2
λmW + ε

λ̂τ−1 − λ
∗
τ

2
+ ε

µ̂τ−1 − µ
∗
τ

2
)1/2
+
√

2ε χMd

)2
,

99

where we used

δM f (δ, λmW)

2
√
ε

x̂τ−1 − x∗τ

λmW + (1 − χ)

√
ε

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

≤
√

2 ©­«
δ2M2

f (δ, λmW)

4ε

x̂τ−1 − x∗τ

2
λmW + (1 − χ)

2ε

[
λ̂τ−1 − λ

∗
τ

µ̂τ−1 − µ
∗
τ

]

2ª®¬
1/2

≤
√

2ρ
(

x̂τ−1 − x∗τ

2
λmW + ε

λ̂τ−1 − λ
∗
τ

2
+ ε

µ̂τ−1 − µ
∗
τ

2
)1/2

,

and so

ẑτ − z∗τ

λmW,ε

≤ ρ

ẑτ−1 − z∗τ

λmW,ε

+
√

2ε χMd . (3.33)

Now, for τ = 1, since we have assumed that

ẑ0 − z∗1

λmW,ε

≤ δ, we see that

x̂0 − x∗1

λmW ≤ δ and we can apply (3.33) to get

ẑ1 − z∗1

λmW,ε

≤ ρ

ẑ0 − z∗1

λmW,ε

+
√

2ε χMd,

showing that (3.29) holds for τ = 1. Then suppose that (3.29) holds for some τ ∈ T .
We then have

x̂τ − x∗τ+1

λmW ≤

ẑτ − z∗τ+1

λmW,ε

≤

ẑτ − z∗τ

λmW,ε

+ σλmW,ε

≤
ρσλmW,ε +

√
2ε χMd

1 − ρ
+ ρτ

(

ẑ0 − z∗1

λmW,ε

−
σλmW,ε +

√
2ε χMd

1 − ρ

)
+ σλmW,ε

≤
σλmW,ε +

√
2ε χMd

1 − ρ
+ ρτ

(
δ −

σλmW,ε +
√

2ε χMd

1 − ρ

)
.

By (3.28),
σλmW,ε +

√
2ε χMd

1 − ρ
≤ δ.

Thus we get

x̂τ − x∗τ+1

λmW ≤ δ, and we apply (3.33) to get

ẑτ+1 − z∗τ+1

λmW,ε

≤ ρ
(

ẑτ − z∗τ

λmW,ε

+ σλmW,ε

)
+
√

2ε χMd

≤ ρ ·
ρσλmW,ε +

√
2ε χMd

1 − ρ
+ ρσλmW,ε

+ ρτ+1

(

ẑ0 − z∗1

λmW,ε

−
σλmW,ε +

√
2ε χMd

1 − ρ

)
+
√

2ε χMd

=
ρσλmW,ε +

√
2ε χMd

1 − ρ
+ ρτ+1

(

ẑ0 − z∗1

λmW,ε

−
σλmW,ε +

√
2ε χMd

1 − ρ

)
.

By induction we conclude that (3.29) holds for all τ ∈ T . �

100

The conditions and the conclusion of Theorem 3.4 are very similar to those of
Theorem 2.1 for the regularized proximal primal-dual method. The expression
of the quantities ρ(P) and ρ, on the other hand, are much simpler. Some direct
implications from Theorem 3.4 are as follows.

1. The quantity ρ(P) plays a crucial role in the tracking error bound (3.29), and its
definition is similar to (3.7) in Theorem 3.1. It’s obvious that ρ(P) should be as
small as possible in order to achieve good tracking performance, which implies
that the matrices Bτ should satisfy

∇xL
s
τ

(
x̂τ−1, λ

∗
τ, µ
∗
τ

)
− ∇xL

s
τ

(
x∗τ, λ

∗
τ, µ
∗
τ

)
≈ Bτ(x̂τ−1 − x∗τ),

or in other words, Bτ should approximate

∇2cτ(x) +
m∑

i=1
λ∗τ,i∇

2 f in
τ (x) +

m∑
j=1

µ∗τ,i∇
2 f eq
τ (x)

along the direction x̂τ−1−x∗τ . The appearance of λ∗τ and µ∗τ in the above expression
adds difficulty in designing quasi-Newton algorithms for finding such Bτ. In
practice, we may replace them by λ̂τ−1 and µ̂τ−1, and employ the quasi-Newton
methods designed for sequential quadratic programming (see, for example, [72,
Section 18.3]) to generate Bτ.

2. The expression of ρ implies that the nonlinearity of the constraint functions will
deteriorate the tracking performance. Further study seems to suggest that this
negative effect cannot be eliminated even if the components of f in are convex,
which is possibly due to the fact that all the constraints are linearized in formulat-
ing (3.26) regardless of their convexity. However, if any component of f in

τ (say,
f in
τ,1) is convex and the constraint f in

τ,1 ≤ 0 is easy to handle computationally for
each τ ∈ T , we may consider solving the following saddle-point problem

min
x∈Rn

max
λ̃∈Rm−1

+ ,µ∈Rm
′
∇cτ(x̂τ−1)

T (x − x̂τ−1) +
1
2
(x − x̂τ−1)

T Bτ(x − x̂τ−1)

+

[
λ̃

µ

]T [
f̃ in
τ (x̂τ−1) + J f̃ inτ (x̂τ−1)(x − x̂τ−1)

f eq
τ (x̂τ−1) + J f eqτ (x̂τ−1)(x − x̂τ−1)

]
−
ε

2

(

λ̃ − λ̃reg
τ

2
+

µ − µreg
τ

2
)
+ h̃τ(x)

to generate ẑτ, where λ̃, λ̃reg
τ and f̃ in

τ are formed by excluding the first components
of λ, λreg

τ and f in
τ respectively, and

h̃τ(x) = hτ(x) + I{x: f in
τ,1(x)≤0

}(x).

101

One can still apply Theorem 3.4 to this procedure and obtain the tracking error
bound. In the extreme case where all the components of f in

τ are convex and f eq
τ

is affine for each τ ∈ T , we see that we may consider solving

min
x∈Rn

∇cτ(x̂τ−1)
T (x − x̂τ−1) +

1
2
(x − x̂τ−1)

T Bτ(x − x̂τ−1) + hτ(x)

s.t. f in
τ (x) ≤ 0, f eq

τ (x) = 0

to get x̂τ. In this case Theorem 3.4 will still apply with ρ = ρ(P)
√
λM/λm 3. It

is interesting to observe that we don’t need regularization on the dual variables
associated with convex constraints.

3.4 Comparison of First-Order and Second-Order Methods
In this section we present a toy example to give a preliminary comparison between
first-order and second-order methods for time-varying optimization.

We consider the following time-varying optimization problem:

min
x∈R10

1
2

xT AU(t)x

s.t. x ∈ X(t),
(3.34)

where

AU(t) =
1 + cos t

2
diag(1, 2, . . . , 10) +

1 − cos t
2

U diag(1, 2, . . . , 10)UT,

for some orthoginal matrix U ∈ R10×10, and

X(t) =
{

x ∈ R10 :
����xi − 2 cos

(
t +
(i − 1)π

10

)���� ≤ 1
2

}
.

Suppose the time period is [0, 2π], and the sampling interval is ∆. Let the sequence
of sampled optimal points be denoted by

(
x∗,∆,Uτ

)
τ. We apply both the first-order

running projected gradient algorithm and the second-order algorithm based on L-
BFGS-B on the time-varying problem (3.34), and get two sequences of points
which we denote by

(
x̂∆,U,1τ

)
τ and

(
x̂∆,U,2τ

)
τ respectively. The initial point for both

algorithms will be the optimal solution to (3.34) for t = 0. For the limited-memory
BFGS representation of Bτ, we choose d = 3. We are interested in the averaged
tracking error

1
b2π/∆c

∑
τ

x̂∆,U,kτ − x∗,∆,Uτ

3 In fact Theorem 3.1 will also apply if we let hτ(x) include the convex constraints using indicator

functions.

102

∆ = π/125 ∆ = π/250
first-order second-order first-order second-order

1 0.0207 0.0115 0.0105 0.0034
2 0.0254 0.0100 0.0127 0.0041
3 0.0334 0.0110 0.0154 0.0048
4 0.0270 0.0129 0.0137 0.0042
5 0.0266 0.0140 0.0130 0.0045
6 0.0218 0.0100 0.0096 0.0037
7 0.0216 0.0086 0.0102 0.0027
8 0.0192 0.0096 0.0093 0.0035
9 0.0229 0.0104 0.0112 0.0036
10 0.0213 0.0099 0.0098 0.0040

∆ = π/500 ∆ = π/1000
first-order second-order first-order second-order

1 0.0052 0.0011 0.0026 3.8 × 10−4

2 0.0063 0.0016 0.0032 6.7 × 10−4

3 0.0073 0.0018 0.0036 7.4 × 10−4

4 0.0069 0.0013 0.0035 4.7 × 10−4

5 0.0064 0.0014 0.0032 4.5 × 10−4

6 0.0045 0.0012 0.0022 4.6 × 10−4

7 0.0049 0.0020 0.0024 3.2 × 10−4

8 0.0046 0.0011 0.0023 4.1 × 10−4

9 0.0056 0.0012 0.0027 4.2 × 10−4

10 0.0046 0.0015 0.0022 5.0 × 10−4

Table 3.1: Averaged tracking errors of the first-order method and the second-order
method applied to the problem (3.34).

for k = 1, 2. We randomly generate 10 instances of U, and the resulting averaged
tracking errors are recorded in Table 3.1. It can be seen that the second-order method
achieves better tracking performance over the first-order method for all the instances,
which is expected as utilizing second-order information can facilitate convergence
toward the optimal trajectory. On the other hand, each iteration of the second-order
method involves solving a quadratic-like program, which in general takes more time
than performing a projected gradient step. These observations suggest that second-
order methods should be employed in situations where the sampling interval∆ needs
to be relatively large due to communication delays, non-negligible dynamics, delays
from sensors, etc. and, as a consequence, first-order methods don’t perform well.

103

3.5 Summary
In this chapter, we proposed and analyzed the approximate Newton methods that
incorporate second-order information for time-varying optimization.

We first considered the special case where there are no explicit inequality or equality
constraints. In this case each iteration of the approximate Newton method solves
a convex program that can be viewed as a quadratic approximation of the original
problem. It was shown that good estimation of second-order information is impor-
tant for achieving satisfactory tracking performance. We also proposed a specific
version of the approximate Newton method based on L-BFGS-B that handles box
constraints.

Then, for the general case where there are nonlinear equality and inequality con-
straints, we proposed two variants of the approximate Newton method. The first
variant employs penalty functions to obtain a modified version of the original prob-
lem, so that the approximate Newton method for the special case can be applied. We
showed that the difference between optimal solutions of the original problem and
the penalized problem can be upper bounded under certain conditions. The second
variant can be viewed as an extension of sequential quadratic programming in the
time-varying setting, and regularization on the dual variable is also employed. We
performed a direct analysis of the tracking error bound with respect to the optimal
trajectory and discussed its implications.

Finally, we used a toy example to compare first-order and second-order time-varying
optimization algorithms, which helps us understand the situations where second-
order methods are more appropriate than first-order methods.

3.A Proofs
This section provides the proofs of the theorems that have been skipped in the text.

Proof of Theorem 3.2
Denote

A =
[
a1 · · · am′

]T
∈ Rm′×n

104

and x∗ = PX∗(x̃ε). The KKT conditions to (3.18) are given by

(x∗, λ∗, µ∗) ∈ dom(h) × Rm
+ × R

m′,

−∇c(x∗) −

[
J f in(x∗)

A

]T [
λ∗

µ∗

]
∈ ∂h(x∗),

f in(x∗) ≤ 0, λ∗T f in(x∗) = 0,

Ax∗ = b,

from which we can see that

h(x̃ε) − h(x∗) ≥ − (x̃ε − x∗)T ©­«∇c(x∗) +

[
J f in(x∗)

A

]T [
λ∗

µ∗

]ª®¬ . (3.35)

Let
Lε (x, λ, µ) = c(x) + h(x) + λT f in(x) + µT (Ax − b)

−
ε β−1

β

©­«
m∑

i=1
|λi |

β +

m′∑
j=1
|µ j |

βª®¬ ,
where β = κ/(κ − 1), and

λ̃ε,i = ε
−1 [

f in
i (x̃ε)

] κ−1
+

, i = 1, . . . ,m,

µ̃ε, j = ε
−1 sgn

(
aT

j x̃ε − b j

) ���aT
j x̃ε − b j

���κ−1
j = 1, . . . ,m′.

We have shown that the min-max problem

min
x∈Rn

max
λ∈Rm+ ,µ∈R

m′
Lε (x, λ, µ) (3.36)

is equivalent to the penalized problem (3.20), whose solution is given by (x̃ε, λ̃ε, µ̃ε).
Then we have

Lε
(
x̃ε, λ̃ε, µ̃ε

)
≥ Lε

(
x̃ε, λ∗, µ∗

)
=⇒

ε β−1

β

©­«
m∑

i=1

��λ̃ε,i ��β + m′∑
j=1

��µ̃ε, j ��βª®¬
≤

[
λ̃ε − λ

∗

µ̃ε − µ
∗

]T [
f in(x̃ε)

Ax̃ε − b

]
+
ε β−1

β

©­«
m∑

i=1

��λ∗i ��β + m′∑
j=1

��µ∗j ��βª®¬ .
By f in(x∗) ≤ 0 and the complementary slackness condition λ∗T f in(x∗) = 0,(

λ̃ε − λ
∗
)T f in(x∗) ≤ 0,

105

and together with Ax∗ = b, we get

ε β−1

β

©­«
m∑

i=1

��λ̃ε,i ��β + m′∑
j=1

��µ̃ε, j ��βª®¬
≤

[
λ̃ε − λ

∗

µ̃ε − µ
∗

]T [
f in(x̃ε) − f in(x∗)

Ax̃ε − Ax∗

]
+
ε β−1

β

©­«
m∑

i=1

��λ∗i ��β + m′∑
j=1

��µ∗j ��βª®¬ .
(3.37)

It can be checked that the optimality condition for (3.20) is given by

−∇c(x̃ε) −

[
J f in(x̃ε)

A

]T [
λ̃ε

µ̃ε

]
∈ ∂h(x̃ε),

and therefore

h(x∗) − h(x̃ε) ≥ − (x∗ − x̃ε)
T ©­«∇c(x̃ε) +

[
J f in(x̃ε)

A

]T [
λ̃ε

µ̃ε

]ª®¬ . (3.38)

By combining (3.38) with (3.35), we get

(x̃ε − x∗)T ©­«∇c(x̃ε) − ∇c(x∗) +

[
J f in(x̃ε)

A

]T [
λ̃ε

µ̃ε

]
−

[
J f in(x∗)

A

]T [
λ∗

µ∗

]ª®¬ ≤ 0.

The assumption (3.19) then indicates that

ν‖ x̃ε − x∗‖2 ≤ (x̃ε − x∗)T ©­«
[
J f in(x∗)

A

]T [
λ∗

µ∗

]
−

[
J f in(x̃ε)

A

]T [
λ̃ε

µ̃ε

]ª®¬ . (3.39)

Summing (3.39) and (3.37), we obtain

ν‖ x̃ε − x∗‖2 +
ε β−1

β

©­«
m∑

i=1

��λ̃ε,i ��β + m′∑
j=1

��µ̃ε, j ��βª®¬
≤ λ̃T

ε

(
f in(x̃ε) + J f in(x̃ε) (x

∗ − x̃ε) − f in(x∗)
)

λ∗T
(

f in(x∗) + J f in(x
∗) (x̃ε − x∗) − f in(x̃ε)

)
+
ε β−1

β

©­«
m∑

i=1

��λ∗i ��β + m′∑
j=1

��µ∗j ��βª®¬ .
Now, since each component of f in is convex, we have

f in(x̃ε) + J f in(x̃ε) (x
∗ − x̃ε) − f in(x∗) ≤ 0,

f in(x∗) + J f in(x
∗) (x̃ε − x∗) − f in(x̃ε) ≤ 0,

and then by λ̃ε ≥ 0 and λ∗ ≥ 0, we get

ν‖ x̃ε − x∗‖2 +
ε β−1

β

©­«
m∑

i=1

��λ̃ε,i ��β + m′∑
j=1

��µ̃ε, j ��βª®¬ ≤ ε β−1

β

©­«
m∑

i=1

��λ∗i ��β + m′∑
j=1

��µ∗j ��βª®¬ ,
which is just the bound (3.21). �

106

Proof of Theorem 3.3
Let I denote set of indices of active constraints in f in(x∗) ≤ 0 and J denote the set
of indices of active constraints in gin(x∗) ≤ 0. Without loss of generality we assume
that

I = {1, 2, . . . , |I |} , J = {1, 2, . . . , |J |} ,

and consequently Ic = {|J | + 1, . . . ,m}, J c = {|J | + 1, . . . , p}. Define u∗ ∈ Rm
+

and v∗ ∈ Rm′ by

u∗i = λ
∗
i

1
κ−1 , i = 1, . . . ,m,

v∗j = sgn(µ∗j)|µ
∗
j |

1
κ−1 , j = 1, . . . ,m′.

Consider the following set of generalized equations in z = (x, v, υ, u, ζ):

∇c(x) +
m∑

i=1
uκ−1

i ∇ f in
i (x) +

m′∑
j=1

sgn(v j)|v j |
κ−1∇ f eq

j (x) +

[
Jgin(x)

Jgeq (x)

]T [
ζ

υ

]
= 0,

− f eq(x) + εv = 0,

−geq(x) = 0,

− f in(x) + εu + NRm+ (u) 3 0,

−gin(x) + NRp+(ζ) 3 0.
(3.40)

It can be checked that z∗ := (x∗, v∗, υ∗, u∗, ζ∗) is a solution to (3.40) for ε = 0, while
for ε = ε1/(κ−1) > 0, any solution to (3.40) provides a local optimal solution to the
penalized problem (3.23).

Denote K := Rn+m′+p′ × R
m+p
+ . We introduce the map Φ : R+ × K → K such that

Φ(ε, z) + NK(z) 3 0

is a shorthand form of (3.40). Let

Ψ(z) := Φ(0, z∗) + JΦ,z(0, z∗)(z − z∗) + NK(z).

The set-valued map Ψ(z) can be viewed as the “linearization” of the set-valued map
Φ(0, z) + NK(z) near z∗. Now consider the generalized equation w = Ψ(z) where

107

w ∈ K is some given vector. It can be checked that w = Ψ(z) is explicitly given by

H∗(x − x∗) + J f in
I
(x∗)TŨ∗

(
uI − u∗

I

)
+ J f eq (x∗)TṼ∗(v − v∗)

+Jgin(x
∗)T (ζ − ζ∗) + Jgeq (x∗)T (υ − υ∗) = wx,

−J f eq (x∗)(x − x∗) = wv,

−Jgeq (x∗)(x − x∗) = wυ,

−J f in
I
(x∗)(x − x∗) + N

R
|I |
+
(uI) 3 wu,I,

− f in
Ic
(x∗) − J f in

Ic
(x∗)(x − x∗) + N

R
|Ic |
+
(uIc) 3 wu,Ic,

−Jgin
J
(x∗)(x − x∗) + N

R
|J |
+
(ζJ) 3 wζ,J,

−gin
J c (x∗) − Jgin

Jc
(x∗)(x − x∗) + N

R
|Jc |
+
(ζJ c) 3 wζ,J c,

(3.41)

where
H∗ = ∇2

xxL(x
∗, λ∗, µ∗, ζ∗, υ∗),

Ũ∗ = (κ − 1) diag
(
u∗1

κ−2, . . . , u∗
|I|

κ−2
)
,

Ṽ∗ = (κ − 1) diag
(��v∗1��κ−2

, . . . ,
��v∗m′��κ−2

)
,

and wx,wv,wυ,wu,I,wu,Ic,wζ,J,wζ,J c are the corresponding subvectors of w. By
the positive definiteness of H∗, the linear independence constraint qualification, the
strict complementary slackness, and the assumption that the entries of µ∗ are all
nonzero, we can see that the matrix

H∗ J f eq (x∗)TṼ∗ Jgeq (x∗)T J f in
I
(x∗)TŨ∗ Jgin

J
(x∗)T

J f eq (x∗) 0 0 0 0
Jgeq (x∗) 0 0 0 0
J f in
I
(x∗) 0 0 0 0

Jgin
J
(x∗) 0 0 0 0


is invertible. Then it can be verified that when ‖w‖ is sufficiently small, the
generalized equation (3.41) can be reduced to

H∗ J f eq (x∗)TṼ∗ Jgeq (x∗)T J f in
I
(x∗)TŨ∗ Jgin

J
(x∗)T

J f eq (x∗) 0 0 0 0
Jgeq (x∗) 0 0 0 0
J f in
I
(x∗) 0 0 0 0

Jgin
J
(x∗) 0 0 0 0





x − x∗

v − v∗

υ − υ∗

uI − u∗
I

ζJ − ζ
∗
J


=



wx

wv

wυ

wu,I

wζ,J


,

uIc = 0,

ζJ c = 0.

108

It’s not hard to verify that this set of equations has a unique solution that depends
Lipschitz continuously on w. In other words, we have shown thatΨ−1, the inverse of
the set-valued map Ψ, has a Lipschitz continuous single-valued localization around
0 for z. It’s also not hard to check that Φ(ε, z) and JΦ,ε(ε, z) is continuous over
(ε, z) ∈ R+ × K. Therefore by [40, Theorem 2B.1], there exist some ε̄ > 0, M > 0
and a unique continuous function z̃ : [0, ε̄) → K such that z̃(0) = z∗ and z̃(ε) solves
the generalized equation (3.40) for each ε ∈ (0, ε̄). Moreover,

‖ z̃(ε) − z∗‖`κ ≤ M

Φ(

ε, z∗
)
− Φ(0, z∗)

`κ
= εM

(
m∑

i=1

��λ∗i �� κ
κ−1 +

m∑
i=1

��µ∗i �� κ
κ−1

) 1
κ

.

Then by noting that the first n entries of z̃
(
ε1/(κ−1)) form a local solution to the

penalized problem (3.23), we get the desired conclusions, with ε̄ = ε̄κ−1. �

109

C h a p t e r 4

APPLICATIONS IN POWER SYSTEM OPERATION

4.1 The Time-Varying Optimal Power Flow Problem
In this chapter, we discuss the applications of time-varying optimization in power
system operation, with a focus on the time-varying optimal power flow problem and
real-time optimal power flow algorithms.

As mentioned in Chapter 1, in future smart grids, the fluctuations and uncertainties
introduced by large penetration of renewable generation make the operation of smart
grids challenging, while controllable devices provide diverse control capabilities
that can be employed to overcome the challenges. Extensive real-time measurement
data will also become available by smart meters and other advanced measurement
equipment. When time-varying optimization tools are applied for real-time power
system operation, these factors should be taken into consideration to tailor the
algorithms so that the structures and properties of smart grids can be utilized.

We now present the formulation of the time-varying optimal power flow problem.
Suppose we have a single-phase power network1 with a topology represented by
a connected graph (N+, E) where N+ := {0} ∪ N , N = {1, 2, . . . , n} and E ⊆
N+ × N+. Bus 0 will be the slack bus, and the phase angle of its voltage will be
the reference and taken as zero. Let t ∈ [0,T] be an arbitrary time instant. We use
v(t) ∈ RN

+ and θ(t) ∈ RN to denote respectively the vector of voltage magnitudes
and the vector of voltage phase angles, so that Vi(t) := vi(t)ejθi(t) is the voltage
phasor at bus i ∈ N and V0(t) := v0(t) is the voltage phasor at the slack bus. We
use `(t) ∈ RE to record the squared current magnitudes through the lines, where

ìk(t) denotes the squared current magnitude associated with the edge (i, k) ∈ E. We
use p(t) ∈ RN

+ and q(t) ∈ RN
+ to denote the vectors of real power injections and

reactive power injections of the controllable devices respectively, so that pi(t)+jqi(t)

is the complex power injection of the controllable devices connected to bus i. We
use pL(t) and qL(t) to denote the vectors of real and reactive uncontrollable loads
respectively, and p(t) − pL(t) and q(t) − qL(t) then represent the net real and reactive
power injections.

1 The basic ideas and principles of real-time optimal power flow algorithms can be applied to
the operation of three-phase networks as well, which for simplicity will be omitted here.

110

The relation between v(t), θ(t), `(t), p(t), q(t), pL(t) and qL(t) is described by
physical laws and usually can be written as a set of algebraic equations (when one
is interested in the steady state behavior) or ordinary differential equations (when
dynamics needs to be accounted for). For steady states, the power flow equations

pi(t) − pL
i (t) + j

(
qi(t) − jqL

i (t)
)
=

∑
k∈N+

Vi(t)V∗k (t)Y
∗

ik, ∀i ∈ N+

or
0 = − (pi(t) − pL

i (t))

+
∑

k∈N+
vi(t)vk(t)(Gik cos(θi(t) − θk(t)) + Bik sin(θi(t) − θk(t))),

0 = − (qi(t) − qL
i (t))

+
∑

k∈N+
vi(t)vk(t)(Gik sin(θi(t) − θk(t)) − Bik cos(θi(t) − θk(t))), ∀i ∈ N+

(4.1a)
are satisfied, where Yik = Gik + jBik is the (i, k)’th entry of the admittance matrix of
the network, and we let θ0(t) ≡ 0. The squared current magnitudes satisfy

0 = − ìk(t) + |Yik(Vi(t) − Vk(t))|2

= − ìk(t) + |Yik |
2
(
v2

i (t) + v
2
k(t) − 2vi(t)vk(t) cos (θi(t) − θk(t))

)
, ∀(i, k) ∈ E

(4.1b)
We abbreviate the set of equations (4.1) as

G
(
p(t) − pL(t), q(t) − pL(t), v(t), θ(t), `(t)

)
= 0, (4.2)

where the vector-valued function G has 2(n + 1) + |E | entries that are given by the
right-hand side of (4.1).

For each bus, there are physical constraints on how much power can be injected
by the controllable devices. We assume that they can be modeled by time-varying
constraints

si(pi(t), qi(t), t) ≤ 0, i ∈ N+,

where each si(·, t) is a vector-valued continuously differentiable functionwith convex
components over R2 for every t ∈ T , and the set {(pi, qi) : si(pi, qi, t) ≤ 0} is
compact. Information about the capabilities of controllable devices can be encoded
in these time-dependent constraints.

The voltages and currents also need to be bounded for operational reasons. We
assume that they are given by

vi ≤ vi(t) ≤ vi, i ∈ N+,

ìk(t) ≤ `ik, (i, k) ∈ E .

111

For each bus i, we assume that a cost ci(pi, qi, t) will be incurred when complex
power pi + jqi is injected by the controllable devices at bus i into the network at
time t. The cost functions can be potentially time dependent. We also assume that
they are all convex functions of (pi, qi) and are twice continuously differentiable for
each fixed t, and that the Hessian of ci with respect to (pi, qi) is continuous over
(pi, qi, t) ∈ R2 × [0,T].

The time-varying optimal power flow problem we shall consider is then formulated
as

min
p,q,v,θ,`

∑
i∈N+

ci(pi, qi, t)

s.t. G
(
p − pL(t), q − pL(t), v, θ, `

)
= 0,

si(pi, qi, t) ≤ 0, i ∈ N+

vi ≤ vi ≤ vi, i ∈ N+

ìk ≤ `ik, (i, k) ∈ E .

(4.3)

The goal is to find a sufficiently good sub-optimal solution p̂τ ∈ RN
+

, q̂τ ∈ RN
+

, v̂τ ∈

RN
+

θ̂τ ∈ R
N and ˆ̀

τ ∈ R
E to (4.3) for each t = τ∆. We see that (4.3) is

within the general framework of time-varying optimization2. When a time-varying
optimization algorithm is tailored and applied to (4.3), we call the resulting algorithm
a real-time optimal power flow algorithm.

As usual, we let (p∗(t), q∗(t), v∗(t), θ∗(t), `∗(t)) denote a trajectory of local optimal
solutions to (4.3).

Power System as an Implicit Map
While we can directly apply the regularized proximal primal-dual method or the
approximate Newton method to (4.3), we note that the power flow equations (4.2)
will in general not be satisfied by the resulting solution (p̂τ, q̂τ, v̂τ, θ̂τ, ˆ̀

τ). More-
over, we observe that, given a subvector of (p(t), q(t), v(t), θ(t), `(t)) with appro-
priate dimension and value, the remaining entries can be determined implicitly by
the power flow equations (4.2). This observation suggests that we can partition
(p(t), q(t), v(t), θ(t), `(t)) into two subvectors, which we denote by x(t) and y(t), so
that there is an implicit function derived from the power flow equations [in some

2 Strictly speaking, the formulation (4.3) assumes that the behavior of the power network can be
described by the steady-state power flow equations for all t, which is an approximation considering
that the power network has its own dynamics that needs to be described by differential equations.
How to incorporate the dynamics will be left for future work.

112

neighborhood of (p∗(t), q∗(t), v∗(t), θ∗(t), `∗(t))] that maps x(t) to y(t). We refer to
x(t) as the input variable, and y(t) as the state variable.

Specifically, we construct two operators

Px : RN
+

× RN
+

× RN
+

× RN × RE → Rdx,

Py : RN
+

× RN
+

× RN
+

× RN × RE → Rdy,

where dx, dy ∈ N and dx + dy = 4n+ 3+ |E |, such that (Px,Py) permutes the entries
of the vectors in RN+ × RN+ × RN+ × RN × RE to form a new vector in R4n+3+|E |.
The partition of (p(t), q(t), v(t), θ(t), `(t)) into x(t) and y(t) can then be represented
by

x(t) = Px(p(t), q(t), v(t), θ(t), `(t)), y(t) = Py(p(t), q(t), v(t), θ(t), `(t)).

We assume that this partition does not depend on t. Denote

xL(t) := Px
(
pL(t), qL(t), 0, 0, 0

)
,

yL(t) := Py

(
pL(t), qL(t), 0, 0, 0

)
,

and
x∗(t) := Px

(
p∗(t), q∗(t), v∗(t), θ∗(t), `∗(t)

)
,

y∗(t) := Py

(
p∗(t), q∗(t), v∗(t), θ∗(t), `∗(t)

)
.

The power flow equations (4.2) can then be rewritten in the form

GP (
x(t) − xL(t), y(t) − yL(t)

)
= 0. (4.4)

By [53, Proposition 1], the 2(n + 1) + |E | equations in (4.4) are independent gener-
ically. Then the requirement that an implicit function can be derived that maps
x(t) to y(t) in some neighborhood of (x∗(t), y∗(t)) suggests that dx = 2n + 1 and
dy = 2(n + 1) + |E |.

Proposition 4.1. Suppose x∗(t), y∗(t), xL(t) and yL(t) are all continuous functions
over t ∈ [0,T]. LetU ⊂ R2n+1 be open and simply connected such that x∗(t)−xL(t) ∈

U for all t ∈ [0,T], and letV ⊆ R2(n+1)+|E | be open such that y∗(t) − yL(t) ∈ V for
all t ∈ [0,T]. Let C ⊆ U ×V denote the path-connected component of

{(x, y) ∈ U ×V : GP(x, y) = 0}

such that
(
x∗(t) − xL(t), y∗(t) − yL(t)

)
∈ C for all t ∈ [0,T]. Suppose the following

assumptions hold:

113

1. For every x ∈ U, there exists y ∈ V such that (x, y) ∈ C and the Jacobian
JGP,y(x, y) is nonsingular.

2. For any (x0, y0) ∈ C and x1 ∈ U, there exists a continuous path γ : [0, 1] → C
such that γ(0) = (x0, y0) and πx ◦ γ(t) = (1 − t)x0 + t x1 for any t ∈ [0, 1], where
πx : C → U denotes the canonical projection that maps (x, y) ∈ C to x ∈ U.

Then there exists a unique smooth map F̃ : U → V such that for each t ∈ [0,T],

x∗(t) − xL(t) ∈ U, y∗(t) − yL(t) = F̃ (x∗(t) − xL(t)),

and (
x, F̃ (x)

)
∈ C, ∀x ∈ U.

Proof. Let (x0, y0) ∈ C be arbitrary. By the implicit function theorem, there exist
an open neighborhood U0 ∈ U of x0, an open neighborhood V0 ∈ V of y0, and a
diffeomorphism f0 : U0 → V0 such that

{(x, f0(x)) : x ∈ U0} = C ∩ (U0 × V0).

This implies that πx : C → U is a local diffeomorphism. Then by the assumptions
and [76, Theorem 1.1], πx : C → U is a covering map. Finally, since C is path-
connected and U is simply connected, by [70, Theorem 54.4], we conclude that
πx : C → U is a homeomorphism. Let F̃ : U → V be defined by F̃ := πyπ−1

x ,
where πy : C → V denotes the canonical projection that maps (x, y) ∈ C to y ∈ V.
It can be verified that F̃ satisfies the properties stated in the proposition. The
smoothness of F̃ is guaranteed by the smoothness of GP. �

Proposition 4.1 is a version of the global implicit function theorems [22]. From now
on we assume that, for the partition (Px,Py), there exists an open set U ⊆ R2n+1

and an implicit power flow map F̃ : U → R2(n+1)+|E | that accords with the optimal
trajectory (x∗(t), y∗(t)). We denoteU(t) := U + xL(t), and

F (x, t) := F̃
(
x − xL(t)

)
+ yL(t)

for any (x, t) satisfying x ∈ U(t).

By modelling the behavior of the power network through the implicit map F , we
can reformulate the time-varying optimal power flow problem (4.3) in the form

min
x∈U(t)

c
(
x, F (x, t), t

)
s.t. x ∈ X(t),

h
(
x, F (x, t), t

)
≤ 0,

(4.5)

114

for some c : R2n+1 × R2(n+1)+|E | × [0,T] → R, some set-valued map X : [0,T] →
2R2n+1 and some map h that is defined over R2n+1 × R2(n+1)+|E | × [0,T]. Without
loss of generality, we can assume that c(x, y, t) is twice continuously differentiable
over (x, y) ∈ R2n+1 × R2(n+1)+|E |, X(t) is convex and compact, and h(x, y, t) is
continuously differentiable over (x, y) ∈ R2n+1 × R2(n+1)+|E | for each t. We see that
explicit power flow equations are eliminated in (4.5), and we only need to optimize
over x = Px(p, q, v, θ, `), whose advantage will be discussed in the next subsection3.

The sampled version of (4.5) will be denoted by

min
x∈Uτ

cτ
(
x, Fτ(x)

)
s.t. x ∈ Xτ,

hτ
(
x, Fτ(x)

)
≤ 0.

Remark 4.1. Note that (4.5) is in general not equivalent to (4.3), unless the implicit
function F is the unique implicit function that can be derived from the power flow
equations (4.4) over the feasible set of (4.3). In addition, Proposition 4.1 imposes
conditions on the Jacobian JGP,y(x, y), and consequently imposes constraints on the
partition (Px,Py) as well. In practice, the following factors should be taken into
account when we design the partition (Px,Py):

1. We have seen in Chapters 2 and 3 that the set inclusion constraint x̂τ ∈ Xτ will
always be satisfied, while the inequality constraints can be violated for the time-
varying optimization algorithms we propose. Thus for real-world applications,
we usually partition the variables in a way such that x(t) ∈ X(t) consists of the
constraints that cannot be violated physically (e.g., lower and upper limits of real
power injections), while h(x(t), F (x(t), t), t) ≤ 0 consists of the constraints that
can be violated temporarily (e.g., limits on the voltage or current magnitudes).

2. It is usually favored to choose x(t) to be those variables that can be directly
controlled (such as power injections), and y(t) to contain the conventional power
network state variables (voltage magnitudes and phase angles) and the squared
current magnitudes. In practice, it has been empirically observed that, given
a “reasonable” set of injections, there is a unique solution to the power flow
equations that satisfies the operational constraints in most situations. While
counterexamples do exist [5, 59], recent works [18, 41, 42] have identified condi-
tions under which there is a unique power flow solution within a certain domain.
3 The idea of partitioning variables into two subvectors to eliminate equality constraints has

been proposed in the reduced gradient method [1] and has been used for solving optimal power flow
problems [38].

115

As an example, in distribution networks, we usually let

x(t) = (v0(t), p1(t), q1(t), . . . , pn(t), qn(t)),

y(t) =
(
p0(t), q0(t), v1(t), θ1(t), . . . , vn(t), θn(t), (ì j(t))(i, j)∈E

)
.

In transmission networks, the situation is more complicated. Bulk generators are
connected to PV buses whose real power injections and voltage magnitudes are
easier to control directly, suggesting that it is reasonable to put (pi(t), vi(t)) instead
of (pi(t), qi(t)) in the vector x(t) for a PV bus; however, one has to pay the price that
the constraint on the reactive power injection could be violated. For the slack bus,
although there are hard physical constraint on the real power injection p0(t), we still
put it in the vector y(t), as in transmission networks we usually have

∑
i∈N+ pi(t) ≈ 0

and numerical issues are very likely to occur if we let x(t) consist of all pi(t). We
shall not discuss in detail here heuristic methods that address the issue of violation
of hard physical constraints. �

Remark 4.2. When the partition (Px,Py) is chosen appropriately, it can be the
case that the function h depends on x purely through F (x, t). In other words, the
inequality constraint in (4.5) can be written as h(F (x, t), t) ≤ 0. We shall denote
the sampled version of h by hτ(y) := h(y, τ∆) in this case. �

From now on we neglect the constraint x ∈ U(t) in (4.5). In well-designed power
networks, under optimal operations, there should be sufficiently large margins from
voltage collapse and other instabilities. When the partition (Px,Py) is properly
chosen, this means that the distance from the optimal solution to (4.3) to the set{

(x, y) ∈ R2n+1 × R2(n+1)+|E | : GP (
x − xL(t), y − yL(t)

)
= 0,

JGP,y

(
x − xL(t), y − yL(t)

)
is singular

}
should be sufficiently large, and the boundary ofU(t) can be pushed sufficiently far
from x∗(t) for each t. It is then usually safe to neglect the constraint x ∈ U(t) as
long as the tracking error is sufficiently small without considering this constraint.

Incorporating Feedback Measurements
In the previous subsection, we provide a mathematical theory on the implicit power
flowmap, which is employed as a model for the power system. In this subsection, we
discusswhywe employ the implicit power flowmap froman engineering perspective.

Figure 4.1 shows the diagram of the control of a time-varying system. Here the
system’s state variable y(t) is determined by the input variable x(t) through the time-
varying relation y(t) = F (x(t), t). The time-varying components can be introduced

116

Figure 4.1: Diagram of the control of a time-varying system. The system’s input-
state relation is given by F , which is influenced by some time-varying components.

by some exogenous sources that interact with the system but are hard to predict.
Sensors are installed that measure the state of the system and collect relevant data of
time-varying components in real-time. The controller uses feedback measurement
provided by sensors to determine a setpoint x̂τ for the system at each sampled time
instant τ. We can readily recognize that Figure 4.1 provides a paradigm of real-
time control of future power networks, where distributed controllable devices are
jointly operated to handle fast-timescale fluctuations and uncertainties introduced
by renewable generation, with the help of real-time measurements provided by
advanced measurement equipment.

Themodelling of power systems as an input-state map allows us to better incorporate
the real-time measurement data. Mathematically, the computation of the implicit
power flow map F requires solving the power flow equations. On the other hand,
when real-time measurement data are available, the power network itself can then
be used as a solver for the power flow equations.

To illustrate the basic idea, let us consider an ideal case where accurate measurement
data can be obtained without delays and the dynamics of the power network can be
safely ignored. Then when we want to get the value of F (x, t) for some x, we can
apply x to the power network, and then use the sensors to measure the state y.

The use of real-time feedbackmeasurements is a central idea in the real-time optimal
power flow algorithms, and leads to the following benefits:

117

1. The power flow equations are a central constraint in the optimal power flow
problem, and most optimization algorithms either explicitly or implicitly solve
the power flow equations. The use of feedback measurement data potentially
helps reduce the computation burden caused by solving the power flow equations
and increase efficiency, which is crucial in the time-varying setting.

2. In practice, it is usually difficult to obtain accurate parameters (the admittance
matrix, very detailed topology, etc.) of the power network. Utilizing feedback
measurement data can potentially increase the robustness of the controller against
model mismatch.

3. Real-time feedback measurements help us closely keep track of the time-varying
components that are hard to predict.

Now, let us assume that we want to modify certain time-varying optimization algo-
rithm, whose iteration is given by

ẑτ = T(ẑτ−1; Dτ),

x̂τ = Π ẑτ,

to incorporate feedback measurements to solve the time-varying optimal power flow
problem (4.5). A general framework is given as follows:

For each τ = 1, 2, . . . , bT/∆c,
1. Measure the input variable, the state variable as well as relevant time-varying

components at time t = τ∆. Let x̌τ denote the newly measured input variable,
y̌τ denote the newly measured state variable, and Dτ denote the newly collected
problem data.

2. Construct žτ by replacing the entries of ẑτ−1 associated with the canonical projec-
tion map Π such that Π žτ = x̌τ, and keeping other entries unchanged. Compute

ẑτ = T̃
(
žτ; y̌τ,Dτ

)
,

x̂τ = Π ẑτ .
(4.6)

3. Apply x̂τ to the system.

We first note that, in order for the real-time optimal power flow algorithm to work
smoothly, the time spent on the measurement and computation procedure should
be less than ∆. Secondly, we use a modified version of the operator T, denoted by
T̃, so that computation of the implicit power flow map Fτ is replaced by using the

118

measurement data y̌τ. Thirdly, notice that the we use žτ as the starting point for the
iteration (4.6), to make sure that the algorithm uses data that are in accordance with
the implicit power flow map Fτ. The quantity x̌τ can be different from x̂τ−1 because
of the following reasons:

1. For a controllable device, there might be some discrepancy between the control
command it receives and its actual power injection. The cause of this discrepancy
could be, for example, that the settling time of the device is larger than the interval
between real-time updates, or that X(t) is only an approximation of the actual
operating region. See [13] for some related discussions.

2. Since the feasible set of input variable x(t) is time-varying, the setpoint x̂τ−1,
which satisfies the constraints specified by Xτ−1, may not lie in the feasible set
specified by Xτ. During the period

(
(τ − 1)∆, τ∆

)
, the controllable devices may

need to adjust their setpoints so that the hard physical constraints will not be
violated.

3. The measurement error is not negligible.

The details of how the controllable devices implement the received control com-
mands and how they adjust their setpoints due to changes in physical conditions are
out of the scope of this paper. Here we employ the following assumption:

Assumption 4.1. For any τ, the difference between the setpoint x̂τ−1 applied at the
end of the last iteration and the measured input variable x̌τ at the beginning of the
current iteration is bounded by

−(ex + ςυ) ≤ x̂τ−1 − x̌τ ≤ ex + ςυ, (4.7)

where ∆ is the sampling interval, ex ∈ R
dx
+ is a constant vector, ς > 0 is a constant

scalar, and each entry of υ ∈ Rdx
+ is defined by

υi = sup
τ

sup
x∈Xτ

��xi −
(
PXτ+1(x)

)
i

�� , i = 1, . . . , dx .

Basically, (4.7) says that the difference x̂τ−1 − x̌τ is bounded by two terms. The
vector ex gives an upper bound on the discrepancies between the received control
commands and the measured value of setpoints that are independent of the change
inXτ. The vector υ characterizes the maximum rate of change of the feasible region
Xτ, and ςυ gives an upper bound on how much the controllable devices adjust their
setpoints due to changes in Xτ.

119

Finally, we note that the framework given above assumes that the input variable, the
state variable and relate problem data can all be measured or collected in real-time.
The measurement and collection of these data may require real-time power system
state estimation, which we shall not expand as it is out of the scope of this thesis.

In the next two sections we present two real-time optimal power flow algorithms,
one based on the regularized proximal primal-dual gradient algorithm, and the other
based on the approximate Newton method with the penalty approach.

4.2 A First-Order Real-Time Optimal Power Flow Algorithm
In this section, we introduce a first-order real-time optimal power flow algorithm.

The algorithm is based on the regularized proximal primal-dual gradieng algorithm
discussed in Chapter 2, and is designed for operation of a distribution feeder in
which the power injections at some of the buses are controllable. A similar real-
time optimal power flow algorithm has first been proposed in [35] and generalized
in [14, 36], where regularization on the primal variable has also been introduced.

We choose the partition (Px,Py) as

x(t) = (v0(t), p1(t), q1(t), . . . , pn(t), qn(t)),

y(t) =
(
p0(t), q0(t), v1(t), θ1(t), . . . , vn(t), θn(t), (ì j(t))(i, j)∈E

)
.

The slack bus of the distribution network is placed at the substation, which connects
the distribution feeder to the transmission network. For simplicity we assume
that v0(t) is fixed at 1 p.u. We assume that for each time t, the constraint on
the power injection of the controllable devices connected to bus i ∈ N is given by
(pi(t), qi(t)) ∈ Xi(t), whereXi(t) ⊂ R2 is convex and compact and sufficiently simple
so that the projection onto Xi(t) can be easily computed. The set X(t) is then given
by

X(t) = {1} ×
n∏

i=1
Xi(t). (4.8)

The constraint on (p0(t), q0(t)) is given by a time-varying box constraint

p
0
(t) ≤p0(t) ≤ p0(t),

q
0
(t) ≤q0(t) ≤ q0(t),

(4.9a)

where p
0
(t), p0(t), q

0
(t) and p0(t) are known at time t. We assume that there is no

explicit cost associated with the power injection at the slack bus, i.e., c0 = 0.

120

The constraints on voltage magnitudes and squared current magnitudes are still
given by

vi ≤ vi(t) ≤ vi, i ∈ N, (4.9b)

ìk(t) ≤ `ik, (i, k) ∈ E . (4.9c)

By employing the implicit power flow map, the constraints on the state variable y(t)
(4.9) can then be written in the form

h(F (x(t), t), t) ≤ 0. (4.10)

The dimension (number of entries) of h will be denoted bym. Note that h depends on
x purely through F (x, t) because of the choice of the partition (Px,Py). Moreover,
the Jacobian Jh,y(y, t) is a constant matrix over (y, t) ∈ Rdy × [0,T]. We denote
H := Jh,y(y, t).

We notice that when the regularized proximal primal-dual gradient algorithm is
applied to our problem, it’s natural to incorporate measured value of the state
variable, which we denote by y̌τ, in the dual update step (2.10b) as

λ̂τ = PRm+

[
λ̂τ−1 + ηα

(
hτ(y̌τ) − ε

(
λ̂τ−1 − λprior

))]
.

On the other hand, in the primal step (2.10a), we need to compute the Jacobian of
hτ(Fτ(x̌τ)), which is equal to HJFτ (x̌τ). The computation of the Jacobian JFτ (x̌τ) =

JF̃ (x̌τ − xL(τ∆)) can be a daunting task, as the implicit function theorem gives

JF̃ (x) = −
[
JGP,y

(
x, F̃ (x)

)]−1
JGP,x

(
x, F̃ (x)

)
,

which involves the inversion of a large matrix JGP,y

(
x, F̃ (x)

)
. Existing literature has

proposed different methods for reducing the computational complexity. Reference
[33] employed rectangular representations of the power flow equations and reported
improvement in efficiency over traditional methods; [18, 24, 35, 47] employed
particular approximations or linearizations that can be computed offline; [47] also
proposed an iterative approach that converges fast empirically by exploiting the
radial topology of distribution networks; [90] utilized the observation that there will
only be a small number of buses or lines whose voltages or currents violate their
constraints in practical situations. We shall introduce the method in [90] in the next
section. For now, we make the following assumption that there exists a method to
produce an approximate Jacobian efficiently for each iteration:

121

Assumption 4.2. Let τ be arbitrary. Let F̃ be the implicit map derived in Proposi-
tion 4.1. Define

O(δ) =
⋃

t∈[0,T]

(
δBdx +

(
x∗(t) − xL(t)

))
.

Then there exist some sufficiently large δ̄ > 0, a map J : O(δ̄) ×Rdy ×Rm
+ → R

dy×dy

and a function eJ : R++ → R+ such that we have

λT H
(
J(x, F̃ (x), λ) − JF̃ (x)

)

 ≤ eJ(δ)‖λ‖ (4.11)

for any x ∈ O(δ), any λ ∈ Rm
+ and any δ ∈ (0, δ̄].

Moreover, J(x, y, λ) is continuous over (x, y) for each λ, and the map J is compu-
tationally inexpensive so that each iteration of (4.12) can be completed within the
interval (τ∆, (τ + 1)∆).

The first-order real-time optimal power flow algorithm based on the regular proximal
primal-dual gradient algorithm (2.10) is then given as follows:

Initialize α, η, ε , λprior, λ̂0.

For each τ = 1, 2, . . . , bT/∆c,

1. At time t = τ∆, measure the input and the state variables as well as the loads
pL(τ∆), qL(τ∆), and collect data on the cost functions ci(·, ·, τ∆), the sets Xi(τ∆)

and p
0
(τ∆), p0(τ∆), q

0
(τ∆), q0(τ∆).

Let p̌τ ∈ RN
+ and q̌τ ∈ RN

+ denote the newly measured real and reactive power
injections, and let v̌τ ∈ RN , θ̌τ ∈ RN , ˇ̀

τ ∈ R
N denote the newly measured

voltage magnitudes, phase angles and squared current magnitudes, respectively.
Let

x̌τ = (1, p̌τ,1, q̌τ,1, . . . , p̌τ,n, q̌τ,n),

y̌τ =
(
p̌τ,0, q̌τ,0, v̌τ,1, θ̌τ,1, . . . , v̌τ,n, θ̌τ,n, (ˇ̀τ,i j)(i, j)∈E

)
.

2. Compute p̂τ and q̂τ by[
p̂τ,i
q̂τ,i

]
= PXi,τ

[[
p̌τ,i
q̌τ,i

]
− α

(
∇ci,τ(p̌τ,i, q̌τ,i)

+ Jpi,qi
(
x̌τ − xL

τ , y̌τ − yL
τ , λ̂τ−1

)T HT λ̂τ−1

)]
, i ∈ N, (4.12a)

λ̂τ = PRm+

[
λ̂τ−1 + ηα

(
hτ(y̌τ) − ε

(
λ̂τ−1 − λprior

))]
, (4.12b)

122

where Jpi,qi denotes the columns of the matrix-valued map J that correspond to
(pi, qi), and xL

τ := xL(τ∆), yL
τ := yL(τ∆), Xi,τ := Xi(τ∆), ci,τ(·, ·) := ci(·, ·, τ∆).

3. For each i ∈ N , set the real and reactive power injections at bus i to be p̂τ,i and
q̂τ,i respectively.

Distributed implementation Suppose for each bus i with controllable devices,
there exists a local agent that operates and measures the controllable devices con-
nected to bus i. Apart from the local agents, there exists a central operator that
collects the measurement data of the voltage phasors, current magnitudes and rel-
evant uncontrollable loads across the network. There are communication links
between the central operator and each of the local agents. Further, suppose that
we use a constant matrix J to approximate the Jacobian JF̃ (the matrix J can be
derived, for example, from the linear DistFlow model [65]). Then the first-order
real-time optimal power flow algorithm can be implemented in a distributed fashion
naturally. Specifically, at time t = τ∆, the central operator will broadcast the La-
grange multiplier λ̂τ−1, and then update the Lagrange multipliers by (4.12b) from
the measured state variable y̌τ. Each local agent stores their corresponding columns
of the matrix HJ offline, and upon receiving λ̂τ−1, each local agent will carry out the
update (4.12a) individually. This distributed implementation has been suggested in
[35, 36].

Tracking Performance
Now we study the tracking performance of the first-order real-time optimal power
flow algorithm.

We have formulated the time-varying optimal power flow problem as

min
x

c
(
x, t

)
s.t. x ∈ X(t),

h
(
F (x, t), t

)
≤ 0,

(4.13)

where c(x, t) is twice continuously differentiable for each fixed t ∈ [0,T] and
∇2

xxc(x, t) is continuous over (x, t) ∈ R2n+1 × [0,T]. Since F (·, t) and h(·, t) are
both smooth functions for each t ∈ [0,T], the constraint function h(F (x, t), t) is
twice continuously differentiable with respect to x for each t ∈ [0,T]. It can also be
checked that ∇2

xx h(F (x, t), t) is continuous over (x, t) provided that pL(t) and qL(t)

123

are continuous functions over t ∈ [0,T]. We let

h(F (x, t), t) = f c(x, t) + f nc(x, t)

be an arbitrary decomposition of h(F (x, t), t) such that f c(·, t) has convex component
for each t ∈ [0,T], and ∇2

xx f c(x, t) is continuous over (x, t).

Similarly as in Chapter 2, we assume that for the problem (4.13) there exists a
Lipschitz continuous KKT trajectory z∗(t) = (x∗(t), λ∗(t)) over t ∈ [0,T]. We then
define

ση := sup
t1,t2∈[0,T],

t1,t2

‖z∗(t2) − z∗(t1)‖η
|t2 − t1 |

= ess sup
t∈[0,T]

 d
dt

z∗(t)

η

,

Md := sup
t∈[0,T]

λ∗(t) − λprior

 , Mλ := sup

t∈[0,T]
‖λ∗(t)‖ ,

Mnc(δ) := sup
t∈[0,T]

sup
u:‖u‖≤δ,

x∗(t)+u∈X(t)

D2
xx f nc(x∗(t) + u, t)

 ,
Mc(δ) := sup

t∈[0,T]
sup

u:‖u‖≤δ,
x∗(t)+u∈X(t)

D2
xx f c(x∗(t) + u, t)

 ,
L f (δ) := sup

t∈[0,T]
sup

u:‖u‖≤δ,
x∗(t)+u∈X(t)

HJF ,x(x∗(t) + u, t)

 ,

D(δ, η) :=
√
ηL f (δ) + Mc(δ)Mλ,

and
Lnc(x, λ, t) := c(x, t) + λT f nc(x, t),

HLnc (u, t) :=
∫ 1

0
∇2

xxL
nc(x∗(t) + θu, λ∗(t), t) dθ,

H f ci (u, t) :=
∫ 1

0
2(1 − θ)∇2

xx f c
i (x
∗
t + θu, t) dθ,

ρ(P)(δ, α, η, ε) := sup
t∈[0,T]

sup
u:‖u‖≤δ,

x∗(t)+u∈X(t)

(I − αHLnc (u, t)
)2
− α(1−ηαε)

m∑
i=1

λ∗i (t)H f ci (u, t)

 ,
ρ(δ, α, η, ε) :=

 max
{
ρ(P)(δ, α, η, ε), (1 − ηαε)2

}
+ α(1 − ηαε)

√
ηδMnc(δ)

2

+ α2 ©­­«2 sup
t∈[0,T]

sup
u:‖u‖≤δ,

x∗(t)+u∈X(t)

ηε I − HLnc (u, t)

 D(δ, η) + D2(δ, η)

ª®®¬


1/2

,

κ(δ, α, η, ε) := max
{
1,

1 − ηαε
ρ(δ, α, η, ε)

,

√
ηαL f (δ)

ρ(δ, α, η, ε)

}
.

124

Notice that when taking the supremum over u : ‖u‖ ≤ δ in these definitions, we also
restrict u to lie in the set X(t) − x∗(t), which is different from what we have done in
Chapter 2. This is because we use x̌τ ∈ Xτ instead of x̂τ−1 in the iterations.

For simplicity of analysis, we assume that the measurement noise is negligible when
we collect data at the beginning of each iteration.

Lemma 4.1. Let τ be arbitrary, and we assume that Assumption 4.2 holds. Let
žτ = (x̌τ, λ̂τ−1), and suppose

žτ − z∗τ

η
≤ δ

for some δ ∈ (0, δ̄]. Then if ẑτ = (x̂τ, λ̂τ) is generated by (4.12), we have

ẑτ − z∗τ

η
≤ ρ(δ, α, η, ε)

žτ − z∗τ

η
+ κ(δ, α, η, ε)

√
ηαεMd + αeJ(δ)

λ̂τ−1

 ,
(4.14)

where κ(δ, α, η, ε) is upper bounded by
√

2 and satisfies

lim
α→0+

κ(δ, α, η, ε) = 1.

Proof. We introduce the auxiliary quantity z̃τ = (x̃τ, λ̃τ) by

x̃τ = PXτ
[
x̌τ − α

(
∇cτ(x̌τ) + JF̃

(
x̌τ − xL

τ

)T HT λ̂τ−1

)]
,

λ̃τ = PRm+

[
λ̂τ−1 + ηα

(
hτ

(
F̃
(
x̌τ − xL

τ

)
+ yL

τ

)
− ε

(
λ̂τ−1 − λprior

))]
.

It can be seen that λ̃τ = λ̂τ as we assume negligible measurement noise on y̌τ. On
the other hand, by employing the same approach as in the proof of Lemma 2.3, we
can show that

z̃τ − z∗τ

η
≤ ρ(δ, α, η, ε)

žτ − z∗τ

η
+ κ(δ, α, η, ε)

√
ηαεMd,

with κ(δ, α, η, ε) satisfying the desired properties. Now we bound the difference
between z̃τ and ẑτ. We have

‖ ẑτ − z̃τ‖η = ‖ x̂τ − x̃τ‖

≤ α

λ̂T

τ−1

(
HJF̃

(
x̌τ − xL

τ

)
− HJ(x̌τ − xL

τ , y̌τ − yL
τ , λ̂τ−1)

)

≤ αeJ(δ)

λ̂τ−1

 ,

where we used

x̌τ − xL
τ −

(
x∗τ − xL

τ

)

 =

x̌τ − x∗τ

 ≤

žτ − z∗τ

η
≤ δ

to employ the bound (4.11) in Assumption 4.2. The desired inequality then follows
from the triangle inequality. �

125

The following theorem then characterizes the tracking performance of the first-order
real-time optimal power flow algorithm.

Theorem 4.1. Let (ẑτ)τ denote the sequence generated by the first-order real-time
optimal power flow algorithm (4.12), and suppose Assumptions 4.1 and 4.2 hold.
Define

E1 := ση∆ + ς ‖υ‖ + ‖ex ‖,

E2 := κ(δ, α, η, ε)α
√
ηεMd + αeJ(δ)Mλ,

ρ̃(δ, α, η, ε) := ρ(δ, α, η, ε) + α
√
ηeJ(δ).

Further, suppose there exist parameters δ ∈ (0, δ̄], α > 0, η > 0 and ε > 0 such that

(1 − ρ̃(δ, α, η, ε)) δ ≥ E1 + E2. (4.15a)

If initially we have

ž1 − z∗1

η
=

[
x̌1 − x∗1
λ̂0 − λ

∗
1

]

η

≤ δ, (4.15b)

then

ẑτ − z∗τ

η
≤
ρ(δ, α, η, ε)E1 + E2

1 − ρ̃(δ, α, η, ε)

+ ρ̃τ(δ, α, η, ε)

(

ž1 − z∗1

η
−
ρ(δ, α, η, ε)E1/ρ̃(δ, α, η, ε) + E2

1 − ρ̃(δ, α, η, ε)

)
(4.16)

for all τ.

Proof. For notational simplicity, we just use ρ to denote ρ(δ, α, η, ε), use ρ̃ to denote
ρ̃(δ, α, η, ε), and use κ to denote κ(δ, α, η, ε).

The proof is by induction. By the condition (4.15b), we can apply Lemma 4.1 to get

ẑ1 − z∗1

η
≤ ρ

ž1 − z∗1

η
+ κ
√
ηαεMd + αeJ(δ)

λ̂0

 .

We notice that

λ̂0

 ≤

λ̂0 − λ

∗
1

 +

λ∗1

 ≤ √η

ž1 − z∗1

η
+ Mλ.

Therefore

ẑ1 − z∗1

η
≤ ρ

ž1 − z∗1

η
+ κ
√
ηαεMd + αeJ(δ)

(
√
η

ž1 − z∗1

η
+ Mλ

)
= ρ̃

ž1 − z∗1

η
+ E2,

126

which indicates that (4.16) holds for τ = 1. Now suppose that for some τ the
inequality (4.16) holds. Then we have

žτ+1 − z∗τ+1

η
≤ ‖ žτ+1 − ẑτ‖η +

ẑτ − z∗τ

η
+

z∗τ − z∗τ+1

η

≤ ‖ex + ςυ‖ +
ρE1 + E2

1 − ρ̃
+ ρ̃τ

(

ž1 − z∗1

η
−
ρE1/ρ̃ + E2

1 − ρ̃

)
+ ση∆

≤ E1 +
ρE1 + E2

1 − ρ̃
+ ρ̃τ

(

ž1 − z∗1

η
−
ρE1/ρ̃ + E2

1 − ρ̃

)
≤ E1 +

ρE1 + E2
1 − ρ̃

+ ρ̃τ
(
δ −

ρE1/ρ̃ + E2
1 − ρ̃

)
,

wherewe used the assumption (4.7) and the condition (4.15b). The condition (4.15a)
implies ρ̃ < 1 and δ > (E1 + E2)/(1 − ρ̃), and together with the definition of ρ̃, we
can further get δ > (ρE1/ρ̃ + E2)/(1 − ρ̃). Therefore

žτ+1 − z∗τ+1

η
≤ E1 +

ρE1 + E2
1 − ρ̃

+ ρ̃

(
δ −

ρE1/ρ̃ + E2
1 − ρ̃

)
= E1 + E2 + ρ̃δ ≤ δ,

where the last step follows from (4.15a). We also have

λ̂τ

 ≤

λ̂τ − λ∗τ

 +

λ∗τ

≤
√
η

(
ρE1 + E2

1 − ρ̃
+ ρ̃τ

(

ž1 − z∗1

η
−
ρE1/ρ̃ + E2

1 − ρ̃

))
+ Mλ.

Then by Lemma 4.1, we get

ẑτ+1 − z∗τ+1

η
≤ ρ

žτ+1 − z∗τ+1

η
+ κ
√
ηαεMd + αeJ(δ)

λ̂τ

≤ ρ

(
E1 +

ρE1 + E2
1 − ρ̃

+ ρ̃τ
(

ž1 − z∗1

η
−
ρE1/ρ̃ + E2

1 − ρ̃

))
+ κ
√
ηαεMd + αeJ(δ)Mλ

+ α
√
ηeJ(δ)

(
ρE1 + E2

1 − ρ̃
+ ρ̃τ

(

ž1 − z∗1

η
−
ρE1/ρ̃ + E2

1 − ρ̃

))
≤ ρE1 + ρ̃ ·

ρE1 + E2
1 − ρ̃

+ E2 + ρ̃
τ+1

(

ž1 − z∗1

η
−
ρE1/ρ̃ + E2

1 − ρ̃

)
=
ρE1 + E2

1 − ρ̃
+ ρ̃τ+1

(

ž1 − z∗1

η
−
ρE1/ρ̃ + E2

1 − ρ̃

)
.

The tracking error bound (4.16) then follows by induction. �

Compared with the bound (2.24) in Theorem 2.1, the bound (4.16) further takes into
account the effect of employing an approximate Jacobian J(x, y, λ) of the implicit

127

Figure 4.2: Topology of the distribution test feeder.

Bus no. 3 6 9 12 16 19 21 22 25
Normalized area 2 1 1 2 2 2 2 2 2

Rated kVA 200 200 100 200 200 200 200 200 200
Bus no. 27 28 29 30 31 32 33 34 35

Normalized area 1 2 2 2 1 2 2 2 3.5
Rated kVA 200 200 200 200 200 200 200 200 350

Table 4.1: The locations and normalized areas of the PV panels, and the rated
apparent power of their inverters.

power flow map as well as the difference between x̂τ−1 and x̌τ as in Assumption 4.1.
It is interesting to see that the error in the approximate Jacobian eJ(δ) affects the
tracking error bound differently from the bound on the difference x̂τ−1 − x̌τ. We can
also see that

ρ(δ, α, η, ε)E1 + E2
1 − ρ̃(δ, α, η, ε)

(4.17)

gives the eventual tracking error bound.

Numerical Example
In this subsection we present a numerical example of the proposed first-order real-
time optimal power flow algorithm applied to a power system test case.

The test case is based on a single-phase version of the IEEE 37 node test feeder
with high penetration of photovoltaic (PV) systems. The topology of the network
is shown in Figure 4.2. A total of 18 PV systems are installed, and Table 4.1 shows
their locations specified by the bus numbers, normalized areas and their inverters’

128

Figure 4.3: Profiles of individual loads pL
τ,i, i ∈ N , total load

∑
i∈N pL

τ,i and total
photovoltaic (PV) generation

∑
i∈NPV pPV

τ,i .

rated apparent power. The sampling interval ∆ is 1 sec.

The objective function is given by

cτ(p, q) =
∑

i∈NPV

cp
(
pi − pPV

τ,i
)2
+ cqq2

i ,

where NPV denotes the set of buses with PV systems installed, and pPV
τ,i is the

maximum real power available for the PV system at bus i at time t = τ∆. The term
cp

(
pi − pPV

τ,i

)2 represents the cost for curtailment of the real power generated by the
PV system, and cqq2

i represents the cost of injecting reactive power qi by the inverter
at bus i. The cost coefficients are cp = 3 and cq = 1. For i ∈ NPV, the set Xi,τ is
given by

Xi,τ =
{
(p, q) ∈ R2 : p2 + q2 ≤ S

2
i , 0 ≤ p ≤ pPV

τ,i

}
,

where Si is the rated apparent power for the inverter at bus i (see Table 4.1). For
i ∈ N\NPV we set Xi,τ = {(0, 0)}. We require the voltage magnitudes at each bus
to be within [0.95, 1.05] p.u., i.e., vi = 1.05 and vi = 0.95 for each i ∈ N ; they
constitute the state variable constraint hτ(Fτ(x)) ≤ 0.

The load profiles pL
τ are based on real load data measured from feeders in Anatolia,

CA during the week of August 2012, and we assume that qL
τ =

1
2 pL

τ , i.e., a fixed

129

Figure 4.4: Illustrations of

ẑτ − z∗τ

η
,

z∗τ − z∗τ−1

η
and α

λ∗τ

.
constant power factor of 2/

√
5 for each uncontrollable load. The generation profiles

of PV systems
(
pPV
τ,i

)
i∈NPV

are simulated based on real solar irradiance data scaled
by the normalized areas [10]. The time period is from 09:00 to 15:00. The load and
generation profiles are shown in Figure 4.3.

We employ the following constant matrix to approximate the Jacobian

J(x, y, λ) = JF̃ (0) = −
[
JGP,y

(
0, F̃ (0)

)]−1
JGP,x

(
0, F̃ (0)

)
,

i.e., the Jacobian of F̃ when there is no net power injection at each non-slack bus.
The parameters of the algorithm are ε = 10−5, α = 0.04, η = 0.75/ε and λprior = 0.
In order to evaluate the tracking performance, an optimal KKT trajectory z∗τ is
computed by the conventional projected primal-dual gradient algorithm in the batch
scheme starting from the initial point (x̂τ, λ̂τ) for each τ.

130

Figure 4.5: The voltage profiles v̂τ,i and v∗τ,i for i = 1, 27 and 34.

Figure 4.4 shows the resulting tracking error

ẑτ − z∗τ

η
, together with ‖z∗τ − z∗τ−1‖η

and α

λ∗τ

. It can be seen that apart from some spikes, the tracking error is bounded

below 0.2 for all τ. We also have the following statistics:

1
K

∑
τ

‖ ẑτ − z∗τ‖η = 3.26 × 10−2,
1
K

∑
τ

‖ ẑτ − z∗τ‖η
‖z∗τ‖η

= 8.87 × 10−3.

As a comparison, we have K−1 ∑
τ ‖z∗τ − z∗τ−1‖η = 8.55 × 10−3. Moreover, the

illustrations seem to suggest that

ẑτ − z∗τ

η
is strongly correlated with ‖z∗τ−z∗τ−1‖η ≈

 d

dt z∗(τ∆)

∆ and α

λ∗τ

 in a way similar to the eventual tracking error bound (4.17).

Figure 4.5 compares the voltage magnitudes v̂τ,i corresponding to x̂τ and the voltage
magnitudes v∗τ,i corresponding to x∗τ for buses i = 1, 27 and 34. It can be seen that
the constraint on the voltage magnitude of bus 34 is slightly violated for certain time
instants. The violation is very small though, as simulation gives

1
K

∑
τ,i

([
v̂τ,i − vi

]
+
+

[
vi − v̂τ,i

]
+

)
= 3.58 × 10−4,

where [·]+ denotes the positive part of a real number. The violation is partly a
consequence of the regularization, which drives the dual variables towards zero and
leads to an underestimation of the optimal dual variables.

131

We emphasize that this numerical example is derived from real-world data, and the
theoretical assumptions may not apply here. Nevertheless, the simulations results
seem to be in accordance with the theory presented above.

4.3 A Second-Order Real-Time Optimal Power Flow Algorithm
In this section, we introduce a second-order real-time optimal power flow algorithm.

The algorithm is based on the approximateNewtonmethodwith the penalty approach
discussed in Chapter 3, and is designed for operation of power networks where
delays incurred by measurement, communication, etc. are significant and first-order
methods do not achieve satisfactory tracking performance. The algorithm can be
tailored and applied in both transmission and distribution networks.

Here for the sake of simplicity we employ the same partition as in Section 4.2,

x(t) = (v0(t), p1(t), q1(t), . . . , pn(t), qn(t)),

y(t) =
(
p0(t), q0(t), v1(t), θ1(t), . . . , vn(t), θn(t), (ì j(t))(i, j)∈E

)
,

but other partitions can also be considered depending on specific situations. This
time we do not fix the voltage magnitude of the slack bus, and assume it can take
values between v0 and v0 just like other buses. We also associate the power injection
at the slack bus with a cost function given by c0(p0, q0, t).

Other settings are the same as in Section 4.2. The resulting constraints are given by

x(t) ∈ X(t) =
[
v0, v0

]
×

n∏
i=1
Xi(t), (4.18)

and

p
0
(t) ≤ p0(t) ≤ p0(t), q

0
(t) ≤ q0(t) ≤ q0(t), (4.19a)

vi ≤ vi(t) ≤ vi, i ∈ N, (4.19b)

ìk(t) ≤ `ik, (i, k) ∈ E . (4.19c)

The constraints on the state variable (4.19) can still be written in the form

h(F (x(t), t), t) ≤ 0.

We shall slightly abuse the notation and use p0(x, t), q0(x, t), v1(x, t), θ1(x, t), . . . ,
vn(x, t), θn(x, t), and ì j(x, t), (i, j) ∈ E to denote the entries of F (x, t).

132

In the approximate Newton method with the penalty approach, we employ penalty
functions to handle the constraints on the state variable. Specifically, let

Fε
τ (x) := c0

(
p0(x, τ∆), q0(x, τ∆), τ∆) +

∑
i∈N

ci
(
pi, qi, τ∆)

+
∑
i∈N

1
κεvi

([
vi(x, τ∆) − vi

] κ
+
+

[
vi − vi(x, τ∆)

] κ
+

)
+

∑
(i, j)∈E

1
κε`i j

[
ì j(x, τ∆) − `i j

] κ
+

+
1
κεp0

([
p0(x, τ∆) − p0(τ∆)

] κ
+
+

[
p

0
(τ∆) − p0(x, τ∆)

] κ
+

)
+

1
κεq0

([
q0(x, τ∆) − q0(τ∆)

] κ
+
+

[
q

0
(τ∆) − q0(x, τ∆)

] κ
+

)
,

where κ > 2, and εvi , ε`i j , εp0 , εq0 are positive constants. We apply the approximate
Newton method to the following penalized version of the time-varying optimal
power flow problem:

min
x

Fε
τ (x)

s.t. (pi, qi) ∈ Xi(t),

v0 ∈
[
v0, v0

]
.

(4.20)

The procedure of the second-order real-time optimal power flow algorithm is then
given as follows:

For each τ = 1, 2, . . . , bT/∆c,
1. At time t = τ∆, measure the current input and state variables as well as the loads

pL(τ∆), qL(τ∆), and collect data on the cost functions ci(·, ·, τ∆), the sets Xi(τ∆)

and p
0
(τ∆), p0(τ∆), q

0
(τ∆), q0(τ∆).

Denote the newly measured input variable by x̌τ.

2. Utilize the new measurement and problem data to compute the gradient

gτ := ∇Fε
τ (x̌τ),

as well as other quantities that will be used for Hessian estimation.

3. Let x̂τ be an approximate solution to the following problem:

min
x

gT
τ (x − x̌τ) +

1
2
(x − x̌τ)T Bτ(x − x̌τ)

s.t. (pi, qi) ∈ Xi(τ∆), i ∈ N

v0 ∈
[
v0, v0

]
.

(4.21)

133

Here the matrix Bτ is a positive definite matrix which serves as an estimate of
the Hessian of F ε

τ .

4. Change the setpoints of the devices in the network according to x̂τ.

5. Update the Hessian estimate.

Just as explained in Chapter 3, we do not specify the method of producing the
positive definite matrix Bτ, and different implementations of this algorithm can use
different methods and result in different tracking performance and efficiency. In
the following, we shall first study the tracking performance of the second-order
real-time optimal power flow algorithm, and then discuss specific implementation
details and propose a distributed algorithm for solving the quadratic approximation
(4.21).

Tracking Performance
In this subsection, we analyze the tracking performance of the second-order real-
time optimal power flow algorithm. We pick up an arbitrary trajectory of local
optimal solutions to the penalized problem (4.20), and denote it by

(
x∗,pτ

)
τ. We

define
σW := sup

τ

x∗,pτ − x∗,p
τ−1

W ,

where W ∈ Rdx×dx is any positive definite matrix. For simplicity we assume that
measurement noise is negligible when we collect data at the beginning of each
iteration.

Theorem 4.2. Let (x̂τ)τ be the sequence generated by the second-order real-time
optimal power flow algorithm. Let W ∈ Rdx×dx be a positive definite matrix, and let
|W | denote the matrix obtained by taking the absolute values of all the entries of W .
Assume that Assumption 4.1 holds, and for the approximate solution x̃τ, we assume
that

‖ x̂τ − x̃τ‖W ≤ esol

for each τ for some esol > 0, where x̃τ denotes the exact solution to (4.21). We also
define

ex,W :=
√

eT
x |W |ex, υW :=

√
υT |W |υ,

and
λM := sup

τ
inf{λ ∈ R : λW � Bτ},

λm := inf
τ

sup{λ ∈ R : λW � Bτ}.

134

If for each τ, we have

ρ := sup
τ

B−1
τ

(
∇cτ

(
x̌τ

)
− ∇cτ

(
x∗,pτ

))
−

(
x̌τ − x∗,pτ

)

Bτ

x̌τ − x∗,pτ

Bτ

<

√
λm

λM
, (4.22)

then

x̂τ − x∗,pτ

W ≤
ρ
√
λM/λm

1 − ρ
√
λM/λm

(
σW + ςυW + ex,W

)
+

esol

1 − ρ
√
λM/λm

+

(
ρ

√
λM

λm

)τ (

x̌1 − x∗,p1

W −

σW + ςυW + ex,W + esol

1 − ρ
√
λM/λm

) (4.23)

bounds the tracking error for each τ.

Proof. We first observe that, Lemma 3.1 can be applied to get the following inequal-
ity for each τ

x̃τ − x∗,pτ

Bτ
≤ ρ

x̌τ − x∗,pτ

Bτ
. (4.24)

Then we prove the bound (4.23) by induction. For the initial time step,

x̂1 − x∗,p1

W ≤ ‖ x̂1 − x̃1‖W +

x̃1 − x∗,p1

W ≤ esol +

√
λ−1

m ρ

x̌1 − x∗,p1

B1

≤ esol + ρ

√
λM

λm

x̌1 − x∗,p1

W ,

showing that (4.23) holds for τ = 1.

Now suppose for some τ the tracking error bound (4.23) holds. Then

x̂τ+1 − x∗,p
τ+1

W

≤ ‖ x̂τ+1 − x̃τ+1‖W +

x̃τ+1 − x∗,p

τ+1

W ≤ esol +

√
λ−1

m

x̃τ+1 − x∗,p

τ+1

Bτ+1

≤ esol + ρ

√
λ−1

m

x̌τ+1 − x∗,p

τ+1

Bτ+1
≤ esol + ρ

√
λM

λm

x̌τ+1 − x∗,p
τ+1

W

≤ esol + ρ

√
λM

λm

(
‖ x̌τ+1 − x̂τ‖W +

x̂τ − x∗,pτ

W + σW

)
,

(4.25)

where we used (4.24). Now by (4.7), we can see that

‖ x̌τ+1 − x̂τ‖W

≤ sup{‖u‖W : −(ex + ςυ) ≤ u ≤ ex + ςυ}

= sup{‖u1 + u2‖W : −ex ≤ u1 ≤ ex,−ςυ ≤ u2 ≤ ςυ}

≤ sup{‖u1‖W + ‖u2‖W : −ex ≤ u1 ≤ ex,−ςυ ≤ u2 ≤ ςυ}

= sup{‖u‖W : −ex ≤ u ≤ ex} + sup{‖u‖W : −ςυ ≤ u ≤ ςυ}.

135

We notice that

sup{‖u‖W : −ex ≤ u ≤ ex} = sup

√∑

i, j

uiWi ju j : −ex ≤ u ≤ ex


≤ sup


√∑

i, j

ui |Wi j |u j : −ex ≤ u ≤ ex

 = ex,W,

and similarly,
sup{‖u‖W : −ςυ ≤ u ≤ ςυ} = ςυW .

Therefore
‖ x̌τ+1 − x̂τ‖W ≤ ex,W + ςυW . (4.26)

Now by plugging (4.26), (4.23) into (4.25), we can show that

x̂τ+1 − x∗,p
τ+1

W ≤

ρ
√
λM/λm

1 − ρ
√
λM/λm

(
σW + ςυW + ex,W

)
+

esol

1 − ρ
√
λM/λm

+

(
ρ

√
λM

λm

)τ+1 (

x̌1 − x∗,p1

W −

σW + ςυW + ex,W + esol

1 − ρ
√
λM/λm

)
.

By induction we see that (4.23) holds for all τ. �

Remark 4.3. The tracking error bound in Theorem 4.2 is with respect to an optimal
trajectory of the penalized problem (4.20). One can further obtain tracking error
bounds with respect to

(
x∗τ

)
τ, an optimal trajectory of the original problem, if the

difference

x∗τ − x∗,pτ

W can be upper bounded. �

Computation of the Gradient
In order to compute the gradient of Fε

τ , we need to find the partial derivatives of
vi(·, τ∆), ì j(·, τ∆), p0(·, τ∆), and q0(·, τ∆) with respect to the entries of the input
variable. As mentioned before, this leads to inverting the Jacobian of the power
flow equations, and although the Jacobian is in most cases sparse, its inverse is not
and the computation will in general be very time consuming as the number of buses
becomes large.

On the other hand, we note that in practical situations, there will only be a small
number of buses or lines whose voltages or currents violate their constraints at
each time instant. Since the derivative of [x]κ+ with respect to x is exactly zero
when x ≤ 0, we only need to find ∇xvi(x̌τ, τ∆) and ∇x ì j(x̌τ, τ∆) that correspond to
voltages and currents that have violated their constraints. They will involve only a

136

small fraction of the inverted Jacobian matrix, which could make the computation
much faster.

From now on until the end of this subsection, we consider a fixed time instant τ and
omit the time indices of variables temporarily. We write the power flow equation
(4.1) in the form

p0 = f p
0 (v0, v1:n, θ1:n), q0 = f q

0 (v0, v1:n, θ1:n),

pi = f p
i (v0, v1:n, θ1:n), qi = f q

i (v0, v1:n, θ1:n), i ∈ N,

where we use the subscript 1 : n to denote the collection of entries with indices in
{1, . . . , n}. The partial derivatives of the functions fp0 , fq0 , fpi and fqi are given, for
example, by [12, Equations (10.40) and (10.41)], and their computation is purely
arithmetic as long as the measurement data v̌i, θ̌i, p̌i and q̌i are available for use.
By viewing p0,q0 and vi, θi, i ∈ N as functions of v0, p1:n and q1:n and taking the
derivatives of the above equations, we get

∂ f p1:n
∂v1:n

∂ f p1:n
∂θ1:n

∂ f q1:n
∂v1:n

∂ f q1:n
∂θ1:n



∂v1:n
∂p1:n

∂v1:n
∂q1:n

∂θ1:n
∂p1:n

∂θ1:n
∂q1:n

 = I2n, (4.27a)


∂ f p1:n
∂v1:n

∂ f p1:n
∂θ1:n

∂ f q1:n
∂v1:n

∂ f q1:n
∂θ1:n



∂v1:n
∂v0

∂θ1:n
∂v0

 =

−
∂ f p1:n
∂v0

−
∂ f q1:n
∂v0

 , (4.27b)


∂p0
∂p1:n

∂p0
∂q1:n

∂q0
∂p1:n

∂q0
∂q1:n

 =

∂ f p0
∂v1:n

∂ f p0
∂θ1:n

∂ f q0
∂v1:n

∂ f q0
∂θ1:n



∂v1:n
∂p1:n

∂v1:n
∂q1:n

∂θ1:n
∂p1:n

∂θ1:n
∂q1:n

 , (4.27c)


∂p0
∂v0

∂q0
∂v0

 =

∂ f p0
∂v0

∂ f q0
∂v0

 +

∂ f p0
∂v1:n

∂ f p0
∂θ1:n

∂ f q0
∂v1:n

∂ f q0
∂θ1:n



∂v1:n
∂v0

∂θ1:n
∂v0

 , (4.27d)

where we use the notation

∂a1:n
∂b
=

[
∂ai

∂b

]
i=1,...,n

∈ Rn×1,
∂a
∂b1:n

=

[
∂a
∂b j

]
j=1,...,n

∈ R1×n,

∂a1:n
∂b1:n

=

[
∂ai

∂b j

]
i=1,...,n
j=1,...,n

∈ Rn×n.

137

First we note from (4.27a) that
∂v1:n
∂p1:n

∂v1:n
∂q1:n

∂θ1:n
∂p1:n

∂θ1:n
∂q1:n



∂ f p1:n
∂v1:n

∂ f p1:n
∂θ1:n

∂ f q1:n
∂v1:n

∂ f q1:n
∂θ1:n

 = I2n.

Now let
J =

{
i ∈ N : ˇ̀i j ≥ `i j for some j ∈ N+

}
∪ {i ∈ N : i is a neighbor of the slack bus} ,

I = J ∪
{
i ∈ N : v̌i ≥ vi or v̌i ≤ vi

}
.

Then we have 
∂vI
∂p1:n

∂vI
∂q1:n

∂θJ
∂p1:n

∂θJ
∂q1:n



∂ f p1:n
∂v1:n

∂ f p1:n
∂θ1:n

∂ f q1:n
∂v1:n

∂ f q1:n
∂θ1:n

 =
[
II 0
0 IJ

]
, (4.28)

where II is the submatrix formed by the rows of In corresponding toI, and similarly
for IJ . It can be seen that this is a set of |I | + |J | linear systems with a common
sparse coefficient matrix, and can be solved efficiently when |I | + |J | � n.

After we find ∂vI/∂p1:n, ∂vI/∂q1:n, ∂θJ/∂p1:n and ∂θJ/∂q1:n, we use (4.27b) to
get 

∂v1:n
∂v0

∂θ1:n
∂v0

 =

∂ f p1:n
∂v1:n

∂ f p1:n
∂θ1:n

∂ f q1:n
∂v1:n

∂ f q1:n
∂θ1:n


−1 
−
∂ f p1:n
∂v0

−
∂ f q1:n
∂v0


=


∂v1:n
∂p1:n

∂v1:n
∂q1:n

∂θ1:n
∂p1:n

∂θ1:n
∂q1:n



−
∂ f p1:n
∂v0

−
∂ f q1:n
∂v0

 .
and so 

∂vI
∂v0

∂θJ
∂v0

 =

∂vI
∂p1:n

∂vI
∂q1:n

∂θJ
∂p1:n

∂θJ
∂q1:n



−
∂ f p1:n
∂v0

−
∂ f q1:n
∂v0

 . (4.29)

Then by (4.27c) and (4.27d), and noting that ∂ f p
0 /∂vi = ∂ f p

0 /∂θi = ∂ f q
0 /∂vi =

∂ f q
0 /∂θi = 0 if i is not a neighbor of the slack bus, we get


∂p0
∂p1:n

∂p0
∂q1:n

∂q0
∂p1:n

∂q0
∂q1:n

 =

∂ f p0
∂vI

∂ f p0
∂θJ

∂ f q0
∂vI

∂ f q0
∂θJ



∂vI
∂p1:n

∂vI
∂q1:n

∂θJ
∂p1:n

∂θJ
∂q1:n

 , (4.30)

138

and 
∂p0
∂v0

∂q0
∂v0

 =

∂ f p0
∂v0

∂ f q0
∂v0

 +

∂ f p0
∂vI

∂ f p0
∂θJ

∂ f q0
∂vI

∂ f q0
∂θJ



∂vI
∂v0

∂θJ
∂v0

 , (4.31)

By the definition ofI andJ , we can see that (4.28), (4.29), (4.30) and (4.31) give all
the partial derivatives for calculating ∇xvi(x̌τ, τ∆) and ∇x ì j(x̌τ, τ∆) that correspond
to violated constraints as well as ∇x p0(x̌τ, τ∆) and ∇xq0(x̌τ, τ∆).

A Distributed Implementation Based on L-BFGS
In this subsection, we present a distributed implementation for the second-order
real-time optimal power flow algorithm, and especially for solving the quadratic
approximation (4.21).

We assume that for each bus i with controllable devices, there exists a local agent
that is responsible for operating andmeasuring the controllable devices connected to
bus i. Apart from the local agents, there exists a central operator that is responsible
for collecting the measurement data of the voltage phasors, current magnitudes and
uncontrollable loads across the network. There are communication links between
the central operator and each of the local agents.

At the beginning of each time instant t = τ∆, the local agents will measure their
associated power injections, and report the measurement data back to the central
operator. The central operatorwill collect othermeasurement data, and then compute
the objective value Fε

τ (x̌τ) and the gradient gτ.

We then employ the L-BFGSmethod to produce and update the approximateHessian
Bτ, so that Bτ can be represented by

Bτ = ϑτ I − KτMτKT
τ . (4.32)

Here Kτ ∈ R
n×2d and Mτ ∈ R

2d×2d for some d ∈ N which is typically between 3
and 20, and ϑτ is a scalar. They are constructed from the

Yτ :=
[
yτ−d · · · yτ−1

]
, Sτ :=

[
sτ−d · · · sτ−1

]
,

where
sτ := x̂τ − x̌τ, yτ := ∇Fε

τ (x̂τ) − ∇Fε
τ (x̌τ).

We refer to Section 3.2 for a brief introduction of L-BFGS and to [26, 27] for more
details. It can be seen that Bτ is equal to a scalingmatrix plus a small rank correction,

139

and because we use the limited-memory approach, computation involving Bτ can be
done in a very efficient way even when n is large. On the other hand, the matrix Bτ
in general is not sparse, making distributed computation quite difficult. We use the
central operator to store and update Bτ and compute its multiplication with vectors.

The central step of the second-order real-time optimal power flow algorithm is to
solve (4.21). It can be seen that, while Bτ is in general not sparse, the constraints in
(4.21) on the input variable x are separable, suggesting that some computation can
be done on local agents in a distributed manner. To be specific, we assume that the
feasible region Xi(t) is represented by

Xi(t) =
{
x ∈ R2 : Ai(t)x ≤ bi(t),

1
2

xTQi(t)x + wi(t)T x + ri(t) ≤ 0
}
, (4.33)

where Ai(t) is a matrix with 2 columns, bi(t) is a vector, Qi(t) is a positive semidefi-
nite matrix, wi(t) ∈ R2 and ri(t) is a scalar. We also assume thatXi(t) has a nonempty
interior4. This kind of specification for the feasible region Xi(t) can cover most of
the situations for optimal power flow problems. We also introduce

A0(t) :=

[
1
−1

]
, b0(t) :=

[
v0

−v0

]
,

and Q0(t) := 0, w0(t) := 0, r0(t) := −1.

The problem (4.21) can now be formulated as

min
x

gT (x − x̌) +
1
2
(x − x̌)T B(x − x̌)

s.t. Ai x(i) ≤ bi,

1
2

x(i)
T

Qi x(i) + wT
i x(i)i + ri ≤ 0, i = 0, 1, . . . , n,

where for notational clarity we temporarily drop the time indices, and denote

x(i) = (pi, qi), x(0) = v0.

4 The proposed implementation can be generalized or tailored to the cases where there are
multiple convex quadratic constraints or where Xi(t) has an affine dimension less than 2.

140

The KKT conditions for this problem are given by

g + B(x − x̌) +
[
AT

i λi + νi(Qi x(i) + wi)

]n

i=0
= 0,

diag(λi)(bi − Ai x(i)) = εi1,

−νi

(
1
2

x(i)
T

Qi x(i) + wT
i x(i) + ri

)
= εi,

Ai x(i) ≤ bi,
1
2

x(i)
T

Qi x(i) + wT
i x(i) + ri ≤ 0,

λi ≥ 0, νi ≥ 0,

(4.34)

with εi = 0 for each i = 0, . . . , n. Here 1 denotes the vector whose entries are all
1, and we use the notation [Qi]

n
i=0 to denote the symmetric matrix whose diagonal

blocks are given by Qi for each i = 0, 1, . . . , n.

We solve (4.34) by multiple iterations in an interior-point-like fashion. The Newton
step for (4.34) with positive εi is given by(

B + [νQi]
n
i=0

)
δx +

[
AT

i δλi +
(
Qi x(i) + wi

)
δνi

]n

i=0

= − g − B(x − x̌) −
[
AT

i λi + νi
(
Qi x(i) + wi

)]n

i=0
,

− diag(λi)Aiδx(i) + diag
(
bi − Ai x(i)

)
δλi = εi1 − diag

(
bi − Ai x(i)

)
λi,

and
−νi(Qi x(i) + wi)

Tδx(i) −

(
1
2

x(i)
T

Qi x(i) + wT
i x(i) + ri

)
δνi

= εi +

(
1
2

x(i)
T

Qi x(i) + wT
i x(i) + ri

)
νi .

It can be shown that this set of linear equations for
(
δx, (δλi)

n
i=0, (δνi)

n
i=0

)
is equivalent

to (
[Di]

n
i=0 − K MKT

)
δx = − g −

(
ϑI − K MKT

)
(x − x̌)

−

[
εi

(
AT

i G−1
i 1 + z−1

i
(
Qi x(i) + wi

))]n

i=0
, (4.35a)

δλi = G−1
i

(
εi1 + diag(λi)Aiδx(i)

)
− λi, (4.35b)

δνi = z−1
i

(
εi + νi

(
Qi x(i) + wi

)T
δx(i)

)
− νi, (4.35c)

where we denote

Gi = diag
(
bi − Ai x(i)

)
, (4.36a)

zi = −

(
1
2

x(i)
T

Qi x(i) + wT
i x(i) + ri

)
, (4.36b)

141

and

Di = ϑI + νiQi + AT
i G−1

i diag(λi)Ai + z−1
i νi

(
Qi x(i) + wi

) (
Qi x(i) + wi

)T
, (4.37)

in which we used the L-BFGS representation (4.32). It can be seen that (4.35b) and
(4.35c) can be computed in a distributed fashion by local agents after δx is solved,
and δx can be solved by the central operator after it collects enough information from
the local agents. Based on these observations, we propose the following iterative
method for solving (4.34):

1. The central operator construct ϑ, K and M−1 by the L-BFGS method [26, 27].
The parameter ϑ is then broadcast to each local agent. Each local agent sets the
initial values of x(i), λi and νi that are strictly feasible, and initializes the barrier
parameter εi.

2. Each local agent calculates Gi and zi by (4.36), and then computes

D−1
i ←

(
ϑI + νiQi + AT

i G−1
i diag(λi)Ai + z−1

i νi
(
Qi x(i) + wi

) (
Qi x(i) + wi

)T
)−1

,

ui ← −εiD−1
i

(
AT

i G−1
i 1 + z−1

i (Qi x(i) + wi)

)
,

and sends x(i), D−1
i and ui to the central operator.

3. The central operator computes

K ←
[
D−1

i

]n
i=0 K,

ψ ←
[
D−1

i

]n
i=0

(
−g − ϑ

((
x(i)

)n
i=0 − x̌

))
+ K MKT

((
x(i)

)n
i=0 − x̌

)
,

and then solves for δx by

ψ ← K
(
M−1 − KT K

)−1
KT (
(ui)

m
i=0 + ψ

)
, (4.38a)

δx ← (ui)
n
i=0 + ψ + ψ. (4.38b)

4. The central operator sends δx(i) to the i’th local agent for each i.

5. Each local agent i computes

δλi ← G−1
i (εi1 + diag(λi)Aiδx(i)) − λi, (4.39a)

δνi ← z−1
i

(
εi + νi

(
Qi x(i) + wi

)T
δx(i)

)
− νi, (4.39b)

142

and does the following updates:

x(i) ← x(i) + αiδx(i), (4.40a)

λi ← λi + αiδλi, (4.40b)

νi ← νi + αiδνi, (4.40c)

where αi ∈ (0, 1] is chosen such that the updated x(i), λi and νi are strictly feasible.

6. Each local agent updates their barrier parameter εi.

7. Terminate if some stopping criterion is met; otherwise go to Step 2.

In (4.38) we employ the matrix inversion lemma to efficiently solve for δx . Then it’s
not hard to see that the above procedure is essentially an interior-point algorithm
that seeks the solution to the KKT conditions (4.35). We have carefully chosen
the variables computed for each step, so that the communication between a local
agent and the central operator will only involve a small number of low-dimension
vectors and matrices for each iteration. Moreover, the central operator does not
need to know anything about Xi(t). As a result, not only will the communication
burden between the central operator and the local agents be relieved, but also the
information leakage from the local agents to the central operator could be potentially
reduced.

Numerical Example
In this section, we give a numerical example of the proposed distributed implemen-
tation of the second-order real-time optimal power flow.

The power network is a modified IEEE 118-bus system. We adopt the original
topology, line impedances, and generator data which are taken fromMatPower [98].
The time-varying load profiles for each bus are shown in Figure 4.6 which span a
period of 6 hours; they are based on the ECO data set [11] and the original load data
of the IEEE 118-bus system. The upper and lower bounds of voltage magnitudes
in the original IEEE 118-bus system are 1.06 and 0.94 p.u. respectively, but in this
simulation we use vi = 1.045 and vi = 0.955 for all i ∈ N+. The corresponding
penalty function is then given by

1
κεv

∑
i∈N

(
[vi(x, τ∆) − 1.045]κ+ + [0.955 − vi(x, τ∆)]κ+

)
,

with κ = 2.5 and εv = 1.6 × 10−4. In other words, we shrink the bounds on the
voltage magnitudes to [0.955, 1.045] so that it is more unlikely for the original
bounds on voltage magnitudes to be violated.

143

Figure 4.6: Load profiles used for simulation.

At time t = 0 we run an offline OPF solver and apply a local optimal solution to
the power network as a starting point. Then we run the proposed implementation of
the second-order real-time optimal power flow algorithm with a sampling interval
∆ = 5 sec. For the distributed L-BFGS algorithm, the number of correction pairs is
d = 8, and we stop the iterations when

‖δx ‖∞ ≤ 10−5 and max
i

max{‖δλi ‖∞, |δνi |} ≤ 10−5

and max
i

max{‖Giλi‖∞, ziνi} ≤ 10−6,

or when the total number of iterations has reached 40. We also add a backtracking
step before applying x̂τ to ensure sufficient decrease in the (penalized) objective
value.

In Figure 4.7, we show the curves of the quantities

x̂τ − x∗,pτ

,

x∗,pτ − x∗,p
τ−1

,
(Fε

τ (x
∗,p
τ) − Fε

τ (x̂τ))/F
ε
τ (x
∗,p
τ) and Fε

τ (x
∗,p
τ), where x∗,pτ denotes local optimal solu-

tion to the penalized problem. It can be seen that, while the tracking error remains
bounded from above and is relatively stable, it is somewhat large compared to the
quantity

x∗,pτ − x∗,p
τ−1

. This seems to suggest that the problem is not very well-
conditioned. On the other hand, the relative gap

Fε
τ (x
∗,p
τ) − Fε

τ (x̂τ)

Fε
τ (x
∗,p
τ)

144

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

‖
x
∗
,p

τ
−

x
∗
,p

τ
−
1
‖

0 0.5 1 1.5 2 2.5 3

Time (h)

0

1

2

3

4

5

6

(F
ǫ τ
(x̂

τ
)−

F
ǫ τ
(x

∗
,p

τ
))
/
F

ǫ τ
(x

∗
,p

τ
)

×10−3

4

6

8

10

12

14

F
ǫ τ
(x

∗
,p

τ
)

×104

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

‖
x̂
τ
−

x
∗
,p

τ
‖

Figure 4.7: Illustrations of ‖ x̂τ − x∗,pτ ‖, ‖x
∗,p
τ − x∗,p

τ−1‖, (F
ε
τ (x
∗,p
τ) − Fε

τ (x̂τ))/F
ε
τ (x
∗,p
τ)

and Fε
τ (x
∗,p
τ).

is very small for the whole period, and its average value turns out to be 3.19× 10−4.
This suggests that, while the tracking error may seem a bit large, the resulting
sequence of setpoints are still good sub-optimal solutions.

Figure 4.8 shows the voltage profiles of the 9 buses whose voltage magnitudes have
ever violated the original constraints 0.94 ≤ vi ≤ 1.06. It can be seen that for most
of the time the voltages are within the original bounds; only for the period between
0.75 h and 1.5 h do we see some relatively apparent violations, and those violations
still remain at an acceptable level.

145

0 0.5 1 1.5 2 2.5 3

Time (h)

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

V
o
lt
a
g
e
m
a
g
n
it
u
d
e
(p
.u
.)

Figure 4.8: Voltage profiles of the buses whose voltages have ever violated the
constraints 0.94 ≤ vi ≤ 1.06 for some t.

4.4 Summary
In this chapter, we applied the time-varying optimization algorithms presented in
previous chapters to power system operation.

We formulated the time-varying optimal power flow problem, in which the power
flow equations are central constraints that describe the underlying physics of power
networks. We partitioned the decision variable into two subvectors, one called the
input variable and the other called the state variable, and introduced the implicit
power flowmap derived from the power flow equations that relates the input and state
variables. After reformulating the time-varying optimal power flow problem using
the implicit power flow map, we discussed how real-time feedback measurement
data can be naturally incorporated in the framework of real-time optimal power flow
algorithms, so that computation efficiency and robustness against model mismatch
can be improved.

We then presented two real-time optimal power flow algorithms in detail. One is
based on the regularized proximal primal-dual gradient algorithm. We analyzed
its tracking error in the situation where approximate Jacobian of the implicit power
flow map is employed for the primal update. The other is based on the approximate
Newton method with the penalty approach. We studied how to improve efficiency
in computing the gradient vector of the penalized objective function, and proposed
a distributed implementation based on the L-BFGS method that produces and stores
the approximate Hessian by a compact representation.

146

Numerical examples were presented for both algorithms. For the first-order real-
time optimal power flow algorithm, we tested its performance on a distribution
feeder test case, while for the second-order algorithm, we tested its performance on
a transmission network test case.

147

C h a p t e r 5

CONCLUDING REMARKS ON FUTURE DIRECTIONS

In this chapter, we make some concluding remarks on future directions that are
worth exploring.

Different metrics for tracking performance Throughout this thesis, the metric
for evaluating the tracking performance has been almost exclusively based on

eτ :=

x̂τ − x∗τ

 ,
i.e., the distance between the solution generated by the time-varying optimization
algorithm and the optimal solution it tracks. But there are also other metrics for
evaluating the tracking performance as discussed in Section 1.1.

For example, [84] used the fixed-point residual to evaluate the tracking perfor-
mance of several running algorithms; especially, c(x, t) is not required to be locally
strongly convex around x∗(t) for the running projected gradient algorithm to achieve
a bounded fixed-point residual. Another example is [48], which considered online
learning problems with weakly pseudo-convex loss functions, and derived bounds
on the dynamic regret.

These results suggest that, weaker conditions for guaranteed tracking performance
may be derived if we use different metrics for tracking performance, and we are
interested in whether the results or techniques can be applied to more general time-
varying nonconvex problems.

Tracking optimal trajectories that are not Lipschitz continuous In the study
of the regularized proximal primal-dual gradient algorithm, we assume that the
optimal KKT trajectory z∗(t) is Lipschitz continuous, and the Lipschitz constant
plays a crucial role in the tracking error bound. In the study of the approximate
Newton method, we also make the assumption that the distance between consecutive
optimal points is upper bounded. However, in practice it is not always the case that
we can find such a Lipschitz continuous trajectory over the whole period [0,T].
Reference [49] discusses situations where a KKT trajectory can emerge, terminate
or bifurcate, or several KKT trajectories can merge during the period (0,T), which

148

is not yet covered in our study. There are also cases where the trajectory is only
absolutely continuous, or even only of bounded variation with jumps allowed to
appear. We are interested in whether reliable methods can be developed to deal with
these issues in the time-varying nonconvex setting.

Distributed and asynchronous algorithms in networked systems In this thesis,
we have only considered distributed implementation of the real-time optimal power
flow algorithms with a particular assumption on the structure of the cyber layer
(a central operator with local agents), and we have not yet studied asynchronous
algorithms for optimizing a time-varying networked system. References [64, 86,
95] are some representative existing works on distributed time-varying algorithms.
Specifically, they proposed different distributed running algorithms for the time-
varying consensus optimization problem

min
x∈X

m∑
j=1

c j,τ(x),

where each local agent is associated with a local time-varying cost function c j,τ

and the local agents are connected by a communication network with an arbitrary
topology. In [15], the authors proposed an algorithmic framework for tracking
fixed points of time-varying contraction mappings, where only imperfect informa-
tion of the map is available and communication delays and packet drops lead to
asynchronous algorithmic updates.

We are interested in developing and analyzing more general distributed and asyn-
chronous running algorithms for optimizing time-varying networked system, where
the communication graph (the cyber layer) can have a general topology.

Better approaches for handling constraints In this thesis, we handle the con-
straints either by Lagrange multipliers or by penalty functions, and whenever we
introduce Lagrange multipliers there will be an accompanying regularization term
on the dual variable to ensure that the resulting iterations will have a contraction-like
behavior. However, since we essentially modify the original problem to derive the
iterations in both approaches, the resulting tracking error bound has a second term
which is related to the regularization or penalty coefficient, as can be seen from
(2.27), (3.29) or implied by Theorems 3.2 and 3.3.

On the other hand, we notice that a recent work [78] has proved exponential stability
of the primal-dual gradient dynamics on the augmented Lagrangian. Specifically,

149

the paper introduced the primal-dual dynamics
dx
dt
= −∇x Laug(x, λ)

dλ
dt
= η∇λLaug(x, λ),

on the augment Lagrangian Laug defined by

Laug(x, λ) := c(x) +
m∑

j=1

[
ρ
(
aT

j x − b j
)
+ λ j

]2

+
− λ2

j

2ρ
,

where c : Rn → R is a strongly convex and strongly smooth function, each a j is a
vector and each b j is a scalar. It has been shown that, under certain conditions, this
primal-dual gradient dynamics will converge exponentially to the solution to

min
x

c(x)

s.t. aT
j x ≤ b j, j = 1, . . . ,m.

This result suggests that we might be able to obtain linear convergence for the
primal-dual gradient method without altering the original problem by dual variable
regularization or penalty. It is interesting to see whether the techniques can be used
to establish tracking error bounds in the time-varying setting.

Incorporating coupling in the time domain In our formulation of time-varying
optimization problems, each time instant is associated with an optimization problem
that does not explicitly depend on information from other time instants, and each
problem instance can be solved independently without referring to other problem
instances. In other words, there is no explicit coupling in the time domain in our
formulation, which can be limited in some applications. There are already some
pioneering works that consider time domain coupling [30, 34, 37, 61, 62]. For
example, [30] considered online convex optimization with switching cost where the
cost function over the whole period is given by

K∑
τ=1

cτ(xτ) + β ‖xτ − xτ−1‖ ,

and analyzed the competitive ratio of theAveraging FixedHorizonControl algorithm
against the time-varying optimal strategies; [62] considered a similar problem with
the overall cost function being

K∑
τ=1

cτ(xτ) +
β

2
‖xτ − xτ−1‖

2 ,

150

and analyzed the dynamic regret of the Receding Horizon Gradient Descent algo-
rithm. In these two papers, the source of the time domain coupling is the switching
cost. The paper [37] proposed a Newton-type running algorithm for the nonlinear
optimal control problem

min
(xτ,uτ)Kτ=1

K∑
τ=1

Lτ(xτ, uτ) +Q(xK)

s.t. xτ = fτ(xτ−1, uτ),

for any given initial point x0, and [34] considered the problem of regulating the
output of a linear time-invariant system

dx
dt
= Ax + Bu + Bww,

y1 = C1x + D1ww,

y2 = C2x + D2ww,

to track the solution to a time-varying constrained optimization problem that op-
timizes the steady-state trajectory of the system. Here the time domain coupling
comes from the underlying dynamical systems. We are interested in generalizing
our theories and algorithms to handle time domain coupling.

151

BIBLIOGRAPHY

[1] J. Abadie and J. Carpentier. Generalization of the Wolfe reduced gradient
method to the case of nonlinear constraints. InR. Fletcher, editor,Optimization,
pages 37–47. Academic Press, London, 1969.

[2] S. Adly, T. Haddad, and L. Thibault. Convex sweeping process in the frame-
work of measure differential inclusions and evolution variational inequalities.
Mathematical Programming, 148:5–47, 2014.

[3] E. L. Allgower and K. Georg. Numerical path following. In P. G. Ciarlet and
J. L. Lions, editors, Handbook of Numerical Analysis, volume 5, pages 3–207.
Elsevier Science, Amsterdam, 1997.

[4] L. Andrew, S. Barman, K. Ligett, M. Lin, A. Meyerson, A. Roytman, and
A. Wierman. A tale of two metrics: Simultaneous bounds on competitiveness
and regret. In Proceedings of the 26th Annual Conference on Learning Theory,
volume 30 of Proceedings of Machine Learning Research, pages 741–763,
Princeton, NJ, USA, June 2013.

[5] A. Araposthatis, S. Sastry, and P. Varaiya. Analysis of power-flow equation.
International Journal of Electrical Power & Energy Systems, 3(3):115–126,
1981.

[6] M. S. Asif and J. Romberg. Sparse recovery of streaming signals using `1-
homotopy. IEEE Transactions on Signal Processing, 62(16):4209–4223, 2014.

[7] J.-P. Aubin andH. Frankowska. Set-Valued Analysis. Birkhäuser Boston, 1990.

[8] B. Baingana, P. Traganitis, G. Giannakis, and G. Mateos. Big data analytics
for social networks. In I. Pitas, editor, Graph-Based Social Media Analysis,
pages 293–339. Chapman & Hall/CRC, 2015.

[9] A. Balavoine, C. J. Rozell, and J. Romberg. Discrete and continuous-time
soft-thresholding for dynamic signal recovery. IEEE Transactions on Signal
Processing, 63(12):3165–3176, 2015.

[10] J. Bank and J. Hambrick. Development of a high resolution, real time,
distribution-level metering system and associated visualization modeling, and
data analysis functions. Technical Report NREL/TP-5500-56610, National
Renewable Energy Laboratory, May 2013.

[11] C. Beckel, W. Kleiminger, R. Cicchetti, T. Staake, and S. Santini. The ECO
data set and the performance of non-intrusive load monitoring algorithms. In
Proceedings of the 1st ACM Conference on Embedded Systems for Energy-
Efficient Buildings, pages 80–89, Memphis, TN, USA, Nov. 2014.

152

[12] A. R. Bergen and V. Vittal. Power Systems Analysis. Prentice Hall, 2nd edition,
2000.

[13] A. Bernstein, N. J. Bouman, and J.-Y. L. Boudec. Design of resource agents
with guaranteed tracking properties for real-time control of electrical grids,
2015, arXiv:1511.08628.

[14] A. Bernstein and E. Dall’Anese. Real-time feedback-based optimization of
distribution grids: A unified approach, 2017, arXiv:1711.01627.

[15] A. Bernstein and E. Dall’Anese. Asynchronous and distributed tracking of
time-varying fixed points. In Proceedings of the 57th IEEE Conference on
Decision and Control (CDC), pages 3237–3243, Miami Beach, FL, USA,
Dec. 2018.

[16] A. Bernstein, E. Dall’Anese, and A. Simonetto. Online optimization with
feedback, 2018, arXiv:1804.05159.

[17] A. Bernstein, L. Reyes-Chamorro, J.-Y. Le Boudec, and M. Paolone. A com-
posable method for real-time control of active distribution networks with ex-
plicit power setpoints. Part I: Framework. Electric Power Systems Research,
125:254–264, 2015.

[18] A. Bernstein, C.Wang, E. Dall’Anese, J.-Y. Le Boudec, and C. Zhao. Load flow
in multiphase distribution networks: Existence, uniqueness, non-singularity
and linear models. IEEE Transactions on Power Systems, 33(6):5832–5843,
2018.

[19] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Mas-
sachusetts, 1999.

[20] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex Analysis and Optimiza-
tion. Athena Scientific, Belmont, Massachusetts, 2003.

[21] O. Besbes, Y. Gur, and A. Zeevi. Non-stationary stochastic optimization.
Operations Research, 63(5):1227–1244, 2015.

[22] J. Blot. On global implicit functions. Nonlinear Analysis: Theory, Methods &
Applications, 17(10):947–959, 1991.

[23] P. T. Boggs and J.W. Tolle. Sequential quadratic programming. ActaNumerica,
4:1–51, 1995.

[24] S. Bolognani, G. Cavraro, and S. Zampieri. A distributed feedback control
approach to the optimal reactive power flow problem. In D. C. Tarraf, editor,
Control of Cyber-Physical Systems, pages 259–277. Springer International
Publishing Switzerland, 2013.

[25] F. Bullo. Lectures on Network Systems. CreateSpace, 2018. With contributions
by J. Cortés, F. Dörfler, and S. Martinez.

153

[26] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm
for bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208, 1995.

[27] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-newton
matrices and their use in limited memory methods. Mathematical Program-
ming, 63(1-3):129–156, 1994.

[28] C. Castaing, T. X. Dúc Hā, and M. Valadier. Evolution equations governed by
the sweeping process. Set-Valued Analysis, 1(2):109–139, 1993.

[29] J. Chen and V. K. N. Lau. Convergence analysis of saddle point problems in
time varying wireless systems — Control theoretical approach. IEEE Trans-
actions on Signal Processing, 60(1):443–452, 2012.

[30] N. Chen, A. Agarwal, A. Wierman, S. Barman, and L. L. H. Andrew. Online
convex optimization using predictions. In Proceedings of the 2015 ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pages 191–204, Portland, OR, USA, June 2015.

[31] A. Cherukuri, B. Gharesifard, and J. Cortés. Saddle-point dynamics: condi-
tions for asymptotic stability of saddle points. SIAM Journal on Control and
Optimization, 55(1):486–511, 2017.

[32] A. Cherukuri, E. Mallada, S. Low, and J. Cortés. The role of convexity in
saddle-point dynamics: Lyapunov function and robustness. IEEE Transactions
on Automatic Control, 63(8):2449–2464, 2018.

[33] K. Christakou, J.-Y. LeBoudec, M. Paolone, and D.-C. Tomozei. Efficient
computation of sensitivity coefficients of node voltages and line currents in
unbalanced radial electrical distribution networks. IEEETransactions on Smart
Grid, 4(2):741–750, 2013.

[34] M. Colombino, E. Dall’Anese, and A. Bernstein. Online optimization as a
feedback controller: Stability and tracking, 2018, arXiv:1805.09877.

[35] E. Dall’Anese and A. Simonetto. Optimal power flow pursuit. IEEE Transac-
tions on Smart Grid, 9(2):942–952, 2018.

[36] E. Dall’Anese, S. S. Guggilam, A. Simonetto, Y. C. Chen, and S. V. Dhople.
Optimal regulation of virtual power plants. IEEE Transactions on Power
Systems, 33(2):1868–1881, 2018.

[37] M. Diehl, H. G. Bock, and J. P. Schlöder. A real-time iteration scheme for
nonlinear optimization in optimal feedback control. SIAM Journal on control
and optimization, 43(5):1714–1736, 2005.

[38] R. Divi and H. K. Kesavan. A shifted penalty function approach for opti-
mal load-flow. IEEE Transactions on Power Apparatus and Systems, PAS-
101(9):3502–3512, 1982.

154

[39] A. L. Dontchev, M. I. Krastanov, R. T. Rockafellar, and V. M. Veliov. An
Euler–Newton continuation method for tracking solution trajectories of para-
metric variational inequalities. SIAM Journal on Control and Optimization,
51(3):1823–1840, 2013.

[40] A. L. Dontchev and R. T. Rockafellar. Implicit Functions and Solution Map-
pings. Springer Science+Business Media New York, 2nd edition, 2014.

[41] K. Dvijotham, S. Low, and M. Chertkov. Convexity of energy-like func-
tions: Theoretical results and applications to power system operations, 2015,
arXiv:1501.04052.

[42] K. Dvijotham, S. Low, and M. Chertkov. Solving the power flow equations: A
monotone operator approach, 2015, arXiv:1506.08472.

[43] M. Fazlyab, C. Nowzari, G. J. Pappas, A. Ribeiro, and V. M. Preciado. Self-
triggered time-varying convex optimization. In Proceedings of the 55th IEEE
Conference on Decision and Control (CDC), pages 3090–3097, Las Vegas,
NV, USA, Dec. 2016.

[44] G. B. Folland. Real Analysis: Modern Techniques and Their Applications.
John Wiley & Sons, 2nd edition, 1999.

[45] S. Frank, I. Steponavice, and S. Rebennack. Optimal power flow: a biblio-
graphic survey I – formulations and deterministic methods. Energy Systems,
3(3):221–258, 2012.

[46] S. Frank, I. Steponavice, and S. Rebennack. Optimal power flow: a biblio-
graphic survey II – non-deterministic and hybrid methods. Energy Systems,
3(3):259–289, 2012.

[47] L. Gan and S. H. Low. An online gradient algorithm for optimal power flow
on radial networks. IEEE Journal on Selected Areas in Communications,
34(3):625–638, 2016.

[48] X. Gao, X. Li, and S. Zhang. Online learning with non-convex losses and
non-stationary regret. In Proceedings of the 21st International Conference on
Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine
Learning Research, pages 235–243, Playa Blanca, Lanzarote, Spain, Apr.
2018.

[49] J. Guddat, F. G. Vazquez, and H. T. Jongen. Parametric Optimization: Singu-
larities, Pathfollowing and Jumps. Springer Fachmedien Wiesbaden, 1990.

[50] D. Hajinezhad and M. Hong. Perturbed proximal primal-dual algorithm for
nonconvex nonsmooth optimization. [Online] Available at: http://people.
ece.umn.edu/~mhong/PProx_PDA.pdf, 2017.

155

[51] E. C. Hall and R. M. Willett. Online convex optimization in dynamic environ-
ments. IEEE Journal of Selected Topics in Signal Processing, 9(4):647–662,
2015.

[52] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler. Projected gradient
descent on riemannian manifolds with applications to online power system
optimization. In 2016 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 225–232, Monticello, IL, USA,
Sept. 2016.

[53] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler. Generic existence of
unique Lagrange multipliers in AC optimal power flow. IEEE Control Systems
Letters, 2(4):791–796, 2018.

[54] A. Hauswirth, I. Subotic, S. Bolognani, G. Hug, and F. Dörfler. Time-varying
projected dynamical systems with applications to feedback optimization of
power systems. In Proceedings of the 57th IEEE Conference on Decision and
Control (CDC), pages 3258–3263, Miami Beach, FL, USA, Dec. 2018.

[55] A. Hauswirth, A. Zanardi, S. Bolognani, F. Dörfler, and G. Hug. Online opti-
mization in closed loop on the power flowmanifold. In 2017 IEEEManchester
PowerTech, pages 1–6, Manchester, UK, June 2017.

[56] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan. Online opti-
mization: Competing with dynamic comparators. In Proceedings of the 18th
International Conference on Artificial Intelligence and Statistics, volume 38
of Proceedings of Machine Learning Research, pages 398–406, San Diego,
CA, USA, May 2015.

[57] J. Jost. Postmodern Analysis. Springer-Verlag Berlin Heidelberg, 3rd edition,
2005.

[58] M. B. Khuzani and N. Li. Distributed regularized primal-dual method: Con-
vergence analysis and trade-offs, 2016, arXiv:1609.08262.

[59] A. J. Korsak. On the question of uniqueness of stable load-flow solutions.
IEEE Transactions on Power Apparatus and Systems, PAS-91(3):1093–1100,
1972.

[60] J. Koshal, A. Nedić, and U. V. Shanbhag. Multiuser optimization: Distributed
algorithms and error analysis. SIAM Journal on Optimization, 21(3):1046–
1081, 2011.

[61] L. S. P. Lawrence, Z. E. Nelson, E.Mallada, and J.W. Simpson-Porco. Optimal
steady-state control for linear time-invariant systems. In Proceedings of the
57th IEEE Conference on Decision and Control (CDC), pages 3251–3257,
Miami Beach, FL, USA, Dec. 2018.

156

[62] Y. Li, G.Qu, andN. Li. Using predictions in online optimizationwith switching
costs: A fast algorithm and a fundamental limit. In 2018 Annual American
Control Conference, pages 3008–3013, Milwaukee, WI, USA, June 2018.

[63] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska. Dynamic right-sizing
for power-proportional data centers. IEEE/ACM Transactions on Networking,
21(5):1378–1391, 2013.

[64] Q. Ling and A. Ribeiro. Decentralized dynamic optimization through the
alternating direction method of multipliers. IEEE Transactions on Signal
Processing, 62(5):1185–1197, 2014.

[65] S.H. Low. Convex relaxation of optimal power flow—Part I: Formulations and
equivalence. IEEE Transactions on Control of Network Systems, 1(1):15–27,
2014.

[66] S. H. Low. Convex relaxation of optimal power flow — Part II: Exactness.
IEEE Transactions on Control of Network Systems, 1(2):177–189, 2014.

[67] S. H. Low and D. E. Lapsley. Optimization flow control — I: Basic algorithm
and convergence. IEEE/ACM Transactions on on Networking, 7(6):861–874,
1999.

[68] A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro. Online opti-
mization in dynamic environments: Improved regret rates for strongly convex
problems. In Proceedings of the 55th IEEE Conference on Decision and
Control (CDC), pages 7195–7201, Las Vegas, NV, USA, Dec. 2016.

[69] J. L. Morales and J. Nocedal. Remark on “Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound constrained optimization”. ACM
Transactions on Mathematical Software, 38(1):7, 2011.

[70] J. R. Munkres. Topology. Prentice Hall, 2nd edition, 2000.

[71] A. Nagurney and D. Zhang. Projected Dynamical Systems and Variational
Inequalities with Applications. Springer Science+Business Media New York,
1996.

[72] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Sci-
ence+Business Media, 2nd edition, 2006.

[73] J. S. Pang. Solution differentiability and continuation of newton’s method for
variational inequality problems over polyhedral sets. Journal of Optimization
Theory and Applications, 66(1):121–135, 1990.

[74] N. Parikh, S. Boyd, et al. Proximal algorithms. Foundations and Trends® in
Optimization, 1(3):127–239, 2014.

[75] R. R. Phelps. Convex Functions, Monotone Operators and Differentiability.
Springer-Verlag Berlin Heidelberg, 2nd edition, 1993.

157

[76] R. Plastock. Homeomorphisms between Banach spaces. Transactions of the
American Mathematical Society, 200:169–183, 1974.

[77] A. Y. Popkov. Gradient methods for nonstationary unconstrained optimization
problems. Automation and Remote Control, 66(6):883–891, 2005.

[78] G.Qu andN. Li. On the exponential stability of primal-dual gradient dynamics.
IEEE Control Systems Letters, 3(1):43–48, 2019. Full version available at
https://arxiv.org/abs/1803.01825.

[79] S. Rahili and W. Ren. Distributed continuous-time convex optimization
with time-varying cost functions. IEEE Transactions on Automatic Control,
62(4):1590–1605, 2017.

[80] J. Rakowska, R. T. Haftka, and L. T. Watson. An active set algorithm for
tracing parametrized optima. Structural optimization, 3(1):29–44, 1991.

[81] S. M. Robinson. Strongly regular generalized equations. Mathematics of
Operations Research, 5(1):43–62, 1980.

[82] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[83] W. Rudin. Functional Analysis. McGraw-Hill, 2nd edition, 1991.

[84] A. Simonetto. Time-varying convex optimization via time-varying averaged
operators, 2017, arXiv:1704.07338.

[85] A. Simonetto and E. Dall’Anese. Prediction-correction algorithms for time-
varying constrained optimization. IEEE Transactions on Signal Processing,
65(20):5481–5494, 2017.

[86] A. Simonetto and G. Leus. Distributed asynchronous time-varying constrained
optimization. In Conference Record of the Forty-Eighth Asilomar Conference
on Signals, Systems & Computers, pages 2142–2146, Pacific Grove, CA, USA,
Nov. 2014.

[87] A. Simonetto and G. Leus. Double smoothing for time-varying distributed
multiuser optimization. In Proceedings of the 2nd IEEE Global Conference
on Signal and Information Processing (GlobalSIP), pages 852–856, Atlanta,
GA, USA, Dec. 2014.

[88] Y. Tang, E. Dall’Anese, A. Berstein, and S. Low. Running primal-dual gradient
method for time-varying nonconvex problems, 2018, arXiv:1812.00613.

[89] Y. Tang, E. Dall’Anese, A. Berstein, and S. H. Low. A feedback-based regular-
ized primal-dual gradient method for time-varying nonconvex optimization.
In Proceedings of the 57th IEEE Conference on Decision and Control (CDC),
pages 3244–3250, Miami Beach, FL, USA, Dec. 2018.

158

[90] Y. Tang, K. Dvijotham, and S. Low. Real-time optimal power flow. IEEE
Transactions on Smart Grid, 8(6):2963–2973, 2017.

[91] Y. Tang and S. Low. Distributed algorithm for time-varying optimal power
flow. In Proceedings of the 56th IEEE Conference on Decision and Control
(CDC), pages 3264–3270, Melbourne, VIC, Australia, Dec. 2017.

[92] G. Wachsmuth. On LICQ and the uniqueness of Lagrange multipliers. Oper-
ations Research Letters, 41(1):78–80, 2013.

[93] J. Wang and N. Elia. A control perspective for centralized and distributed
convex optimization. In Proceedings of the 50th IEEE Conference on Decision
and Control (CDC), pages 3800–3805, Orlando, FL, USA, Dec. 2011.

[94] D.Willett and J. S.W.Wong. On the discrete analogues of some generalizations
of Gronwall’s inequality. Monatshefte für Mathematik, 69(4):362–367, 1965.

[95] C. Xi and U. A. Khan. Distributed dynamic optimization over directed graphs.
In Proceedings of the 55th IEEE Conference on Decision and Control (CDC),
pages 245–250, Las Vegas, NV, USA, Dec. 2016.

[96] T. Yang, L. Zhang, R. Jin, and J. Yi. Tracking slowly moving clairvoyant:
Optimal dynamic regret of online learning with true and noisy gradient. In
Proceedings of the 33rd International Conference on Machine Learning, New
York, NY, USA, June 2016.

[97] V. M. Zavala and M. Anitescu. Real-time nonlinear optimization as a general-
ized equation. SIAM Journal on Control and Optimization, 48(8):5444–5467,
2010.

[98] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas. MATPOWER:
Steady-state operations, planning, and analysis tools for power systems research
and education. IEEE Transactions on Power Systems, 26(1):12–19, 2011.

[99] M. Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the Twentieth International Conference
on Machine Learning, ICML-2003, pages 928–935, Washington DC, USA,
Aug. 2003.

