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ABSTRACT 

This dissertation is concerned with the dynamic response of a 

finite flexible bar partially embedded in a half-space, under transverse 

loadings. The loadings are applied at the unembedded end of the bar and 

may, in general, be a combination of time-harmonic shear and moment. 

The problem is intended to serve as a fundamental idealization for the 

dynamic analysis of piles or other embedded foundations whose 

flexibilities are not negligible. 

By treating the bar as a one-dimensional structure and the half

space as a three-dimensional elastic continuum, the interaction problem 

is formulated as a Fredholm integral equation of the second kind. The 

essential tool required in the formulation is a group of Green's func

tions which describe the response of an elastic half-space to a finite, 

distributed, buried source which acts in the lateral direction. By 

means of a technique developed for a class of three-dimensional 

asymmetric wave propagation problems, the Green's functions are derived 

as integral representations. A numerical procedure for the computation 

of the semi-infinite Hankel-type integrals involved is presented which 

is free of the basic difficulties commonly encountered in such problems. 

Owing to the special nature of the kernel function, a numerical scheme 

which contains the essence of quadrature and collocation techniques is 

developed for the solution of the governing integral equation. Selected 

results for the interaction problem are presented to illustrate various 
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basic features of the solution. In addition to furnishing the compli

ance functions commonly used in soil-structure interaction studies, the 

solution should prove useful in providing a basis for the assessment and 

improvement of approximate and numerical models currently employed for 

such analyses. 
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CHAPTER I 

INTRODUCTION 

In soil-structure interaction studies, an important phase is the 

analysis of the interaction between the foundation and the underlying 

soil. At present, there are three approaches to this class of problems. 

One approach attempts to solve the corresponding wave propagation 

problems by strictly numerical techniques, e.g., the finite element 

methods. As only a finite region of the soil medium can be included in 

a numerical model, special treatment of the boundary is usually 

necessary to prevent erroneous results [10]. A second line of attack 

can be termed as semi-analytical and a representative example is the 

boundary element method [48]. Although this group of techniques is 

still primarily numerical in nature, some analytical information, such 

as the singular solutions for a half-space, are usually incorporated. 

The third group of efforts attempts to solve the problem analytically; 

some common techniques are the method of integral transforms and the 

theory of singular and regular integral equations. 

In general, numerical approaches permit easy handling of complex 

foundation geometries and material behaviors. However, they often 

suffer in their basic inability to model media of semi-infinite extent. 

The semi-analytical methods are attempts to remedy such a problem but 

other typical numerical approximations, such as continuum discretiza

tion, are still inherent in this approach. In contrast to these two 

groups of techniques, analytical approaches are usually feasible only 
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for problems with simple geometric configurations and material 

behaviors. The main advantage of this line of attack is, however, that 

it can often lead to exact or asymptotic results while furnishing more 

physical insight into the problem. In addition to their direct applica

bility to various practical situations, analytical solutions are usually 

considered as the fundamental check on the accuracy and reliability of 

approximate and numerical models. The present study belongs to this 

third group of efforts. 

1.1 BACKGROUND 

The problem under consideration is concerned with the dynamic 

response of a finite flexible cylindrical bar embedded in a half-space, 

under transverse loadings. The loadings are applied at the unembedded 

end of the bar and may, in general, be a combination of time-harmonic 

lateral shear and moment. For applications in soil-structure interac

tion, the problem serves well as an idealization for the dynamic 

analysis of piles or other embedded foundations whose flexibilities are 

not negligible. 

Despite their theoretical and practical significance, analytical 

works for embedded foundations are, in comparison with those for surface 

foundations, rather limited [27]. Of the problems that have been 

considered, the geometric dimensions are usually reduced by the assump

tions of (a) plane strain, e.g., Thau and Umek [45], and Dravinsky and 

Thau [11] or (b) anti-plane shear, e.g., Luco [24], Thau [43], Thau and 

Umek [44], and Wong and Trifunac [51]. Problems that are axially 
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symmetric have also been attempted as in Luco [26], Apsel and Luco [4], 

and Fowler and Sinclair [14]. With the exception of the last, all the 

aforementioned studies have taken the embedded structures to be rigid 

and thus have totally ignored the deformability of the foundation. 

Attempts to account for foundation deformability exist, but they are 

mostly approximate in nature. The best known among them are, perhaps, 

the works of Baranov [7], Tajimi [42] and Novak et al. [35,36,37]. In 

these analyses, the embedding soil medium is approximated by a stratum 

of independent infinitesimally thin elastic layers overlying an 

independent half-space. As a consequence of the approximations 

involved, solutions obtained in this manner do not satisfy all of the 

basic governing equations in elasticity, nor do they meet all of the 

boundary conditions such as those on the free surface. Owing to a lack 

of more rigorous solutions for comparison thus far, the validity and 

accuracy of these approximate approaches are difficult to assess. 

1.2 OUTLINE OF PRESENT WORK 

Following the treatment by Muki and Sternberg [33,34] of a class of 

static load-transfer problems for embedded rods, the embedded bar in the 

problem under consideration is regarded essentially as a one-dimensional 

structure while the embedding medium is taken to be a three-dimensional 

elastic half-space. A mathematical formulation of the problem is 

presented in Chapter II which culminates in a derivation of the govern

ing Fredholm integral equation. An essential tool required in the 

development is a group of Green's functions which describe the response 
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of an elastic half-space to a finite, distributed, buried source which 

acts in the lateral direction. The derivation and evaluation of the 

solution to this three-dimensional asymmetric wave propagation problem 

are described in Chapters III and IV, respectively. Chapter V is 

devoted to the development of the solution scheme for the governing 

integral equation. Illustrative numerical results are presented in 

Chapter VI. In Chapter VII, a summary of this investigation is pro

vided. 
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CHAPTER II 

FORMULATION OF THE PROBLEM 

In this chapter a mathematical formulation is presented for the 

three-dimensional interaction problem of a partially embedded bar in an 

elastic half-space, under transverse excitations. To this end, a 

rectangular Cartesian coordinate frame {O;x1,x2,x3} is used that spans 

the three-dimensional Euclidean space E. The position vector of points 

in E is denoted by~= (x1,x2 ,x3> and the unit base vectors in the 

A. A. A. 
x1,x2,x3 directions are designated by e1 , e2 , and e3 , respectively. 

Formally, one considers a finite cylindrical elastic bar of length 

l with its longitudinal centroidal axis coincident with the x3-axis. 

For clarity of presentation and convenience of referencing, the open 

cross-sectional region of the bar and its boundary are denoted by Il and 

all, respectively. The open half-space is defined by 

H {xix G E 

The cylindrical subdomain of H occupied by the bar is designated by 

D 

and the open cross section of D located at x
3 

= z is denoted by 

x =z} 
3 

(O~z~O 
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According to these definitions, the embedding medium would occupy the 

region H-D (see Figure 2.1). It should be noted that the interface 

between the bar and the embedding medium consists of the bar's 

circumferential and bottom surfaces only. With the notations above, it 

can be simply writ ten as aD-Il O where aD denotes the boundary of D. 

Finally, it is assumed that the loading is applied at the top of the bar 

and that it may, in general, be a combination of time-harmonic lateral 

shear force and moment acting in the same plane. The present investiga

tion is concerned with the response of the bar under the action of 

lateral loads on the assumption that the embedding medium can be 

considered as a homogeneous, isotropic, linear elastic solid and that 

the bar can be adequately modeled by an appropriate engineering beam 

theory. 

2.1 MECHANICS OF INTERACTION 

The present treatment of the problem aims at a bar whose diameter 

or lateral dimension is suitably small compared to the length of the 

embedded segment. As in the classical treatment by Muki and Sternberg 

on this class of problems [34], the embedding medium is extended 

throughout the half-space H and an elastic body S with the same material 

properties as the original material is assumed to occupy this extended 

region. Next, a fictitious reinforcement B• is introduced throughout 

the bar region D such that the "composite solid" occupying D is 

"equivalent" to the actual embedded bar segment. For the problem under 

consideration, "equivalence" is taken to mean that the reinforced region 
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REGION 
(H - 0) 

EMBEDDING 
MEDIUM 

(Es,Zls•Psl 

0 

(a) (b) 

Figure .2 .1 Geometry of Bar and Medium 

REGION D 
( Es,Zls, Ps l 

REGION { H- D l 
{ Es,Zls•Ps l 

s* IN 
REGION D 

(E,..p*l 

0 

(a) Extended Half-space S (b) Fictitious 
Reinforcement B* 

Figure 2.2 Decomposition of the Problem 



- 8 -

will have the same inertial and flexural properties as the actual bar. 

Typically, for a solid bar the reinforcement B* is assigned a Young's 

modulus of 

(2.1.1) 

and a mass density of 

(2.1.2) 

where the subscripts b and s denote the corresponding quantities of the 

bar and of the embedding medium, respectively (see Figure 2.2). 

In what follows, the extended medium is treated as a three-

dimensional continuum within the framework of classical elastodynamics. 

In contrast, the reinforcement B* is regarded as a one-dimensional elas-

tic structure. Since most engineering interests for this problem lie in 

the low-frequency range, it is considered adequate to adopt the 

Bernoulli-Euler bending beam theory for s.. Accordingly, B* is governed 

by the constitutive law 

(z,t) (2.1.3) 

and the dynamic equilibrium conditions 

aM* 
az (z,t) v.cz,t> (2.1.4) 
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M*t-H::., =-...=f-,1---t~~~~----.-
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I 

dz z 

Figure 2.3 Beam Theory for B* 

Figure 2.4 

ks 
I ~ 

I I 
I 
I 

Forces acting on B* and 
their Sign Conventions 
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av. 
p.(z,t) - az (z,t) (2.1.5) 

where the notation and sign conventions are explained in Figure 2.3. 

As to the interaction forces between the embedded bar and the 

medium, it is known that on occasion it is possible to have direct load 

transfers at both the top and the bottom of the bar [32] • This is 

mathematically and physically plausible as one might expect the stresses 

at the ends to exhibit some singular behavior. Allowing for this possi-

bility and assuming without loss of generality that the lateral loads 

are acting in the x1-x3 plane as shown in Figure 2.4, the external 

forces acting on B• consist of 

A 
(i) p•(z,t)e1 , the distributed normal forces per unit length 

exerted by S on B•; 

(ii) 
+ A 

v.co ,t)e1 , the resultant shear force at the top end of the 

bar after a possible direct load transfer; 

(iii) 
+ A 

M.<o ,t)C-e2), the resultant bending moment at the top end of 

the bar after a possible direct moment transfer; 

A 
(iv) v.ct,t)(-e1), the end shear force at the bottom of the bar; 

and 

A 
(v) M•({,t)e2 , the end moment at the bottom of the bar. 

As for the forces acting on the half-space, they consist of 
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(i) 

(ii) 
+ A 

[V(O,t)-V.(0 ,t)Je1 , the direct shear load transfer at the top 

of the bar; 

(iii) 
+ A 

[M(O,t)-M.<O ,t)](-e2), the direct moment transfer at the top 

of the bar; 

A 
(iv) v.<t,t)e1 , the end shear transfer from B•; and 

A 
(v) M•((,t)(-e2), the end moment transfer from B •• 

It should be noted that the effects of shear stresses acting on the 

circumferential surface of the bar have been neglected. This is 

equivalent to permitting slippage along the shaft of the bar. If the 

additional assumption of small cross-sectional rotation of the bar is 

made, the analysis can be simplified further as the effects of direct 

moment transfers become negligible. It follows, then, that one may take 

as a reasonable first approximation for many applications 

0 (2.1.6) 

and 

+ M(O,t) - M•(O ,t) = O. (2.1.7) 

2.2 STEADY-STATE CONDITION 

If the applied loads are taken to be harmonic in time with 

frequency w, they can be represented as 
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V(O,t) (2.2.1) 

M(O,t) (2.2.2) 

where v0 and M0 are, in general, complex constants. Under this condi

tion, the solution is expected to be of the form 

u(x,t) 

etc. 

( ) iwt u x e 

iwt u.(z)e 

iwt p•(z)e 

(2.2.3) 

Omitting the time factor eiwt from here on for brevity, the constitutive 

law and the dynamic equilibrium conditions for B• become 

( z) (2.2.4) 

dM• 
dz (z) (2.2.5) 

= 0 (2.2.6) 

For the description of the response of the extended medium to the 

interaction forces, it is convenient to first determine an influence 
A. 

function (commonly called Green's function) u(x,s) which is defined as 

the displacement at a point x in S due to a harmonic body-force field 
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distributed across the disc Ils' acting in the x1-direction, with unit 
A 

resultant (see Fig. 2.5). On the supposition that u(x,s) can be found, 

the time independent part of the displacement in the half space can be 

written as 

l 

u(x) - f 
0 

A 
p•(s)u(x,s)ds 

x e s 

In particular, along the centroidal axis of the bar where x = 

the displacement in the x1-direction can be represented as 

l 

- f 
0 

(2.2.7) 

(2.2.8) 

To render the motion of B• compatible with that of S, the imposi-

tion of a suitable bond condition is necessary. For this purpose, the 

requirement is adopted that the lateral displacement of the bar and the 

half-space be equal along the centroidal axis of the bar over the length 

of embedment; i.e., 

(2.2.9) 



Figure 2.5 
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Problem Configuration for Green's Function 
u(x,s) 
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There are other possible choices of bond conditions, but it is believed 

that the one proposed above has the most intuitive appeal. It also 

represents a generalization of one of the two successful schemes 

employed by Muki and Sternberg in their treatment of two-dimensional 

load transfer problems [32]. More importantly, this scheme provides a 

governing equation with many attractive analytical properties, which are 

helpful in the final solution process. 

With the aid of (2.2.8), the bond condition (2.29) can be written 

as 

l 

u. ( z) - f 
0 

for 0$..zS..l 
(2.2.10) 

Equation (2.2.10) represents the primary governing equation for the 

interaction problem under consideration. 

2.3 REDUCTION TO A FREDHOLM INTEGRAL EQUATION 

By virtue of (2.2.6), (2.2.10) can be written as 

= 

(2.2.11) 

Integrating by parts and taking into account the possible discontinuity 

of the integrand, (2.2.11) becomes, upon application of (2.1.6) and 

(2.1.7), 
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" [A r z 

" 
au1 au1 u.(z) v0u1 (z,0) - M (z,0) - M•(z) as (z,s) 0 as 

z 

l 2" l 

- f M•(s) 
a u1 (z,s)ds + 2 f " 
as2 w p•A u.(s)u1(z,s)ds 

0 0 

for O<z<l (2.2.12) 

At z=O and[, (2.2.11) can be reduced to 

u.(0) 

l 2" 

f 
a u

1 - M.(s) (0,s)ds 
as2 

0 

(2.2.13) 

and 

({,s)ds 

(2.2.14) 

" respectively. At a later stage when the influence function u1 (z,s) is 

studied more fully, one can show that (2.2.12) can actually be reduced 

to (2.2.13) and (2.2.14) through an analytical limiting process. 
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In equation (2.2.12), there are still two unknowns u.(z) and M.(z). 

With the constitutive law for a beam (2.2.4), M* can be expressed in 

terms of u. and vice versa. In the present study, M.(z) is chosen as 

the prime unknown because u.(z) can be obtained from M* by integration 

which is more accurate numerically than differentiation. To this end, 

it can be shown that 

where 

{ 

u.(z) = - J G(z,s)M.(s)ds + u.(0)(1 - 7> + u.<t><7> 

0 

G(z,s) 
{

(1 - 7>z 

= E~I (1 - 7) s 

z<s 

z>s 

(2.2.15) 

Substitution of (2.2.15) into (2.2.12) finally reduces the interac-

tion equation to: 

{ 

A(z)M.(z) + B(z)u.(O) + C(z)u.({) + J K(z,s)M.(s)ds 

0 

for O~z~{ (2.2.16) 



where 

A(z) 

B(z) 

C(z) 

G(z,s) 

K(z,s) 
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au
1 

[ 

A lz + 
as (z,s) 

s=z 

l 
(1 - ~{) - w2p*A J ( s>" ( 1 - l u1 z,s)ds 

( ~) 2 A { - w p* 

= E~I {:: 

0 

s - -)z 
l 

z - -)s 
l 

0 

2"' a u1 = (z,s) - G(z,s) + 
as2 

z<s 

z>s 

(2.2.17) 

Equation (2.2.16) is a Fredholm integral equation of the second kind, as 

it can be put into the standard form 

b 

a(z)y(z) - J k(z,s)y(s)ds = g(z) 

a 

(2.2.18) 

The solution of (2.2.16) furnishes the bending moment M*(z), which in 

turn will render the response of the whole system fully determinate with 

the aid of (2.2.7). It should be noted, however, that the formulation 

thus far has relied on the availability of the Green's functions 
A 2" 

A au1 a u1 u1 ( z, s) , (z,s) and -- (z,s). Unfortunately, these functions are as as2 
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not available in the current literature and must be derived. The 

following chapter is devoted to this phase of the analysis. 
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CHAPTER III 

DERIVATION OF THE GREEN'S FUNCTIONS 

To solve the integral equation (2.2.16), it is first necessary to 
A 

A aul 
determine the Green's functions u

1
(z,s), a;- (z,s), 

2A 
a u

1 and ~2- (z,s). 
as 

This is a three-dimensional asymmetric wave propagation problem concern-

ing the dynamic response of an elastic half-space to a finite, 

distributed, buried source acting in the lateral direction. 

The extensive literature on wave propagation in an elastic half-

space dates back to the pioneering work of Lamb [21]. Many authors 

since then have studied elastic waves produced by point and line loads, 

but only a few investigations were concerned with asymmetric source 

problems. Among them may be mentioned the works of Pekeris and Longman 

[38]. Chao [8], Johnson [20]. and Israel and Kovach [19]. However, none 

of these studies have considered sources that are finite in extent. Of 

those that do, they are mostly concerned with surface loading only, 

e.g., Thiruvenkatachar [46], Arnold, Bycroft and Warburton [3], Thomson 

and Kobori [47], Gladwell [16}, Luco and Westmann [25], Maiti and Mitra 

[28], and Wong and Luco [SO]. The work of Fowler and Sinclair [14] 

represents a rare exception where a finite, buried source problem is 

addressed. Their method of analysis is, however, only applicable to 

axisymmetric situations. 
A 

In this chapter, a technique for the derivation of u1(z,s) and its 

derivatives is presented. The procedure is of sufficient generality to 
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be useful in both axisymmetric and asymmetric wave propagation problems. 

3.1 HALF-SPACE PROBLEMS IN ELASTICITY 

In both static and dynamic elasticity, the method of potentials is 

a very powerful tool for the treatment of complicated boundary-value 

problems. For static half-space problems, the work of Harding and 

Sneddon [18], later generalized by Muki [31], is of classical importance 

as they have shown how the powerful technique of integral transforms can 

be combined with the method of potentials for the solution of this class 

of problems. 

For dynamic half-space problems, the use of Lam~ potentials 

together with Hankel transforms has been very successful in simplifying 

cases in the presence of axial symmetries. Similar attempts to date for 

asymmetric problems have, however, not met with equal success. One of 

the undesirable features of those attempts is that they do not reduce 

Navier's equations to a set of simple real wave equations as in the 

axisymmetric situations [28]. They also involve complicated transformed 

stress-potential and displacement-potential relations that make the 

imposition of boundary conditions difficult for buried-source problems. 

These are perhaps some of the reasons why, despite complicated manipula

tions, many researchers still choose to operate directly on Navier's 

equations in tackling asymmetric problems. In what follows, a method of 

potentials is developed which does not have the drawbacks mentioned 

above and thus furnishes an efficient means to approach asymmetric wave 

propagation problems in general. 
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3.2 A METHOD OF POTENTIALS 

3.2.1 Displacement Potentials 

Important to the development of the technique is a theorem due 

to Helmholtz on the decomposition of a vector field. In short, the 

theorem states that subject to some regularity conditions [29] on the 

vector field u, there exists a scalar field 0 and a vector field 

with components r./Ji, i=l,2,3 such that 

u = \JrJ + \Jxr./J (3.2.1) 

Lam~ has shown subsequently that such representation of a displacement 

vector field satisfies the displacement equations of motion in 

elasticity with zero body-force fields 

(A+µ)\J(\J . u) + µ'\fu 
az 

p -- u 
at2 

-
(3.2.2) 

identically, provided that 0(x,t) and r./J(x,t) are solutions of 

(3.2.3) 

(3.2.4) 

Here, A and µ are the Lam~ constants, and Cd and Cs are the dilatational 

and equivoluminal wave speeds, respectively. However, it is apparent 

that the representation (3.2.1) contains some arbitrariness as it 
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relates the three components of displacement to four scalar functions: 

d and r/J~, i=l,2,3. To reduce the degree of arbitrariness, an extra 

constraint, which is commonly called the "gauge condition," is usually 

imposed. To this end, the requirement is adopted that 

(v2 - ~ a~) <'V. if! 
c at s 

0 (3.2.5) 

which states that either '\J.0 =0, which is the trivial solution, or that 

\J. if! is a non-vanishing solution of (3.2.5). 

Although the imposition of the gauge condition renders the 

representation determinate, it would be more convenient to have three 

potentials to determine at the outset instead of four. As shown in 

Morse and Feshbach [30], the vector wave equation (3.2.4) in r./J is 

satisfied in general cylindrical coordinates by 

A A 
O~z) + 'Vx<11z) (3.2.6) 

A 
where z is the unit vector along the axial cylindrical coordinate z, 

provided the scalar functions X.11 satisfy the wave equations 

(3.2.7a) 

(3.2.7b) 

As can be easily shown, r./J in (3.2.6) satisfies the gauge condition 

(3.2.5) identically. Thus with (3.2.1) and (3.2.6), the problem reduces 
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to the determination of three scalar functions 0, X, and ~ which are 

governed by the wave equations (3.2.3), (3.2.7a) and (3.2.7b), 

respectively. In circular cylindrical coordinates (r,9,z), this 

representation leads to the displacement-potential relations: 

M 1 ax k u + - - + 
r ar r a0 azar 

u9 = !M ax +lk (3.2.8) r a0 ar r aza9 

M 1 ...£_ 
(r ~) - 1 a2 

u = - .L.!l. 
z az r ar r 2 a02 

where u , un and u are the displacements in the r, 9, and z directions, r Q' z 

respectively. The strain-displacement relations are given as 

e rr 

e rz 

au _r: 
ar 

au au 
_r: + _z 
az ar 

e zz 

au 
= _.z 

az 

(3.2.9) 

The stress-strain laws for a linearly elastic medium are used in the 
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form 

't' A.A + 2µs 't'99 A.A + 2µs99 rr rr 

't' A.A + 2µs (3.2.10) zz zz 

't'r9 = µ8 r9 't'z9 µ8 z9 't' = µ8 rz rz 

where A = 'efld. The strain-potential relations can be obtained by 

substituting (3.2.8) into (3.2.9). Substitution of the strain-potential 

relations into (3.2.10) gives the stress-potential relations. 

To complete the formulation of the boundary-value problem, it 

remains to specify the boundary conditions. Although body-force fields 

have been ruled out in the analysis, the effects of a distributed body-

force field oriented in an arbitrary direction over the disc Ils can be 

simulated by artificially viewing the half-space as composed of an upper 

and a lower region (region I and II in Fig. 2.5) divided by the plane 

z=s, and inserting a discontinuity in stresses over Ils across that 

plane, e.g. , 

't' (r,9,s-,t) - 't' (r,9,s+,t) 
zr zr 

, (r,9)Gil 

(r,9>¢Il 

, (r,9)Gil 

<r ,0> ¢n (3.2.11) 



~ (r,9,s-,t) - ~ (r,9,s+,t) 
zz zz 
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, (r,9)9Il 

, (r ,9) ¢Il 

where P(r,9,t), Q(r,9,t) and R(r,9,t) are specified body-force distribu-

tions. On requiring all displacements to be continuous across the plane 

z=s and the stresses to vanish on the free surface, 

~ (r,9,0,t) 
zz ~zr(r,9,0,t) ~z9 (r,9,0,t) = 0 (3.2.12) 

it remains only to specify the condition at infinity, commonly called 

the "radiation condition." A consideration of the characteristics of a 

half-space suggests that the solution in region II be required to con-

tain only outgoing waves and to be bounded as z approaches infinity. 

These conditions also ensure that the problem is mathematically well-

posed. 

3.2.2 Steady-State Solution 

With the assumption of steady-state motion, one may express the 

potentials and other quantities of interest in the form 

d(r,9,z,t) 

X(r,9,z,t) 

11(r,9,z,t) 

iwt d(r,9,z)e 

iwt = X(r,9,z)e (3.2.13) 

iwt 11(r,9,z)e , etc. 

iwt With the time factor e suppressed henceforth, Equations (3.2.3), 

(3.2.7a) and (3.2.7b) become 
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cv2 2 + kd)d(r,9,z) 0 

cv2 2 (3.2.14) + k )X(r,9,z) = 0 s 

cv2 + 2 k h1(r,9,z) = 0 s 

where kd = w/Cd, k = w/C , and v2 a 2 1 a 1 -a2 a2 
In view =--+-- +--- + 2· s s c3r2 r ar r2 c392 az 

of the completeness of the set of angular eigenfunctions {eim9} +ao , one m=-ao 

may write 

"" 
d(r,9,z) [ dm(r,z)e 

im9 

m=-a> 

Q) 

X(r,9,z) [ X (r,z)e im9 (3.2.15) = m 
m=-a> 

Q) 

11(r,9,z) [ 11 (r,z)e im9 = m 
m=-a> 

and 

Q) 

u (r,9,z) [ (r,z)e im9 
u r r m m=-Q) 

Q) 

u9(r,9,z) [ (r,z)e im9 (3.2.16) = u9 
m m=-Q) 

co 

u (r,9,z) [ (r,z)e im9 
= u z z m m=-co 
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Likewise, one may write (3.2.11) as 

CD 

[ P (r)e m 
im9 , (r,9)6Il 

m=-CD 
- + 't' (r,9,s ) - 't' (r,9,s ) = zr zr 

0 , (r,9)~Il 

CD 

[ Q (r)e 
m 

im9 , (r,9)6Il 

m=-CD 
- + 

't'z9 (r,9,s ) - 't'z9(r,9,s ) = (3.2.17) 

0 , (r ,9)~Il 

CD 

[ Rm(r)e 
im9 , (r,9)eil 

m=-CD 
- + 't' (r,9,s ) - 't' (r,9,s ) 

zz zz 
0 , (r ,9)~Il 

Substituting (3.2.15) into (3.2.14) and invoking the orthogonality 

im9 condition of the eigenfunctions {e }, one is led to the conclusion 

that 

a2rJ 1 adm 
+ (k~ - m2) 0 

a2 __ m 
+-- +- "m 

ar2 r ar 2 m az2 r 
0 

a2x ax (k! - m2) ~ 2 __ m + 1 _..m + +_a_ i! 

ar2 r ar 2 m az2 m r 
0 (3.2.18) 

a2 
1 a"'m 

+ (k! - :: ) •m 
a2 ~ +-- + - Tl 

ar2 r ar az2 m 
0 
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for m=0,±1,±2, ••• 

In view of the geometry and the boundary conditions of the problem, it 

is natural to introduce the mth order Hankel transform 

m ... 
f <e.z> 

with the inversion formula 

f f(r,z) r Jm<er>dr 

0 

.., m 

f(r,z) = f ~ <e.z> e Jm<er>de 

0 

(3.2.19) 

(3.2.20) 

where J is the Bessel function of the first kind of order m. Applica
m 

tion of (3.2.19) to Equations (3.2.18) reduces them to a set of ordinary 

differential equations in z: 

m 

d2d m 

<k2 - e1> 
... __m 

<e.z> + d <e.z> 
dz2 d m 0 

m 

d2x m 

<k2 - e1> ... __m 
<e.z> + x <e.z> 

dz2 s m 
0 (3.2.21) 

m 
2- m 

d ll 
<k2 - e1> 

... __ m 
<e.z> + "' <e.z> 

dz2 s m 
0 

for m=0,±1,±2, ••• 

where e is the transform parameter. The solutions of (3.2.21) are 
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easily found to be 

m - AI(~)eaz BI(~)e-az "Im(~,z) + m m 

m - CI(~)el3z DI(~)e-j3z XIm(~,z) = + m m (3.2.22) 

m - EI(~)el3z FI(~)e-13z 11Im<~.z> + in region I , m m 

and 

m - BII(~)e-az "Irm<~.z> m 

m - DII(~)e-13z XIIm(~,z) m (3.2.23) 

m - FII(~)e-13z llrrm ( ~ ,z) in region II , m 

2 2 ¥2 2 2 ¥2 I I II II where a=(~ -kd) ; 13 = (~ -k) ; and A , ••• ,F ,B , ..• , F are s m m m m 

constants of integration to be determined from the boundary conditions. 

The radicals a and 13 are made single-valued by specifying the branch 

cuts emanating from the branch points ~ = ±kd and ~ =±ks, respectively. 

The branches are chosen such that the real parts of a and 13 are always 

nonnegative (see Fig. 3.1). This can be confirmed to be the physically 

correct choice if a small amount of material damping is introduced at 

the outset of the formulation. Under this choice of the branches, the 

eaz and el3z terms in region II become inadmissible due to the radiation 

condition and are thus omitted in (3.2.23). 
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Im! 

COMPLEX { - PLANE 

0 Re! 

a 

BRANCH CUT 

Figure 3.1 Branch Cuts for a and S 
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Despite the complicated expressions for the stress-potential and 

displacement-potential relations in (3.2.10) and (3.2.8), the 

transformed relations, in proper combinations, are relatively simple. 

It can be shown that the transformed displacement-potential relations 

are: 

m m m 
_g_ - 2-

u = <J + ~ Tim z dz m m 

m-1 m-1 

.[d: 
m 

ix:] - d -u - iu = +-~ + (3.2.24) 
r 9 dz m m m 

m+l m+l 

-<[d: 
m 

- ix:] - d -u + iu9 
+ - Tl 

r dz m m m 

The transformed stress-potential relations required for the analysis 

take the form 

't 

m 

m-1 

zr 
m 

m+l 

m m m 
2- d2 - 2 d --A." <J + (A.+2µ) - <J + 2 " ~ m dz2 m µ~ dz 11m 

= 
[ 

m 
2 

m 
d - -µ~ 2 - <J + _g_:_ Tl 

dz m dz2 m 

m 

+ ~2 ; + i _g_ 
m dz 

,(3.2.25) 

m-1 

m+l -'t zr 
m 

+ i'tz9 = 
d -

-µ~ 2 dz <Jm [ 

m m 
d2 -

+--11 + 
dz2 m 

m ml 2- d -
~ Tl - i -d x • m z m 

m 

By the above relations, the imposition of (3.2.11), (3.2.12) and 

the displacement continuity condition at the plane z=s is greatly 
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facilitated; it provides the nine equations required for the solution of 

I II the nine unknowns A • •• F • This set of equations can be solved m m 

explicitly in terms of the Fourier coefficients P , Q and R of the m m m 

body-force field distributions. Substitution of them into (3.2.24) will 

give the transformed Fourier components of the displacements. For the 

special case where the distributed body-force field has no x
3

-

components, the transformed components of lateral displacements take the 

form: 

m-1 m-1 

= 

L -alz-sl 
2 e 

ak s 

Jl -plz-sl - e 
k2 

s 

_ L ~ -a(z+s) Jl ~ -p(z+s) 
e - e ak; R-(~) k; R-(~) 

4~ 2ap(2~2-k2 ) 
+ ------=s=- -(ps+az) 

e 
ak2R- (~) 

s 

4~ 2ap(2~2-k2 ) s 

ak2 R-(~) 
s 

-(as+pz) 
e 

+ t [ 0-p(z+s) + 0-Plz-sl ] [x~:Ym] , 

[x~~Ym] 

(3.2.26) 



u 

m+l 

r 
m 

where 

m+l -- iu 
9 

m 

L -alz-sl 
2 e 

ak s 
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_]_ -~lz-sl - e 
k2 

s 

L ~ -a(z+s) _]_ ~ -~(z+s) e - e 
ak; R-(~) k; R-(~) 

4~ 2a~(2~2-k2 ) 
+ -------=s-

ak2R- (~) 
s 

-(~s+az) e 

j [ .-P(z+s) + 0-Plz-sl ] [x~:Ymj , 

m-1 m-1 -x p ( ~) - iQ (~) m m m 

m+l m+l - -y = p (~) + iQ ( ~) m m m 

R±(~) (2~2-k2)2 
s ± 4~2a~ 

[\y~ 

(3.2.27) 

(3.2.28) 

(3.2.29) 

Application of the appropriate Hankel Inversion formulas to (3.2.26) and 

(3.2.27) will give an integral representation of the Fourier components 
A 

of the desired Green's function u1Cz,s). The Green's functions 

A 2A au
1 

a u
1 -a-s (z,s) and (z,s) can be obtained by permissible differentiations 

as2 

A 
of u1(z,s) under the integral sign. 
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3.3 INTEGRAL REPRESENTATIONS 

Up to this point, the cross section of the bar has been left 

arbitrary. In what follows, attention will be confined to the case of 

most interest, a bar of circular cross section. Henceforth, the open 

cross-sectional region n is taken to be 

n = (3.3.1) 

where "a" is the radius of the circular cross section. For a uniformly 

distributed shear force over Ils with unit resultant acting in the x1-

direction, 

_1_ 
cos 0 r~a 2 7ta 

_1_ 
sin 0 r~a 2 

(3.3.2) 

7ta 

From (3.3.2), it follows that 

_1_ 

27ta2 d.a 

P1(r) P_1(r) 

0 r>a 

P (r) 0 for all m1:±1 m 

and (3.3.3) 

i 
_1_ 

27ta 
2 r~a 

Ql (r) -Q-l(r) 
0 r>a 

Q (r) = 0 for all m1=±1 m 

Combining (3.3.3), (3.2.26), (3.2.27) and (3.2.28), and performing the 
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inverse transforms, one finds 

u (r,z;s) 
rl 

u (r,z;s) 
r 
m 

where 

r 1 Cz,s,~) 

r2 Cz,s,~) 

= 

= 

u (r,z;s) 
r_l 

= _1_ 
4nµa 

0 

J r 1 Cz,s,~>J1 C~a)[J0 (~r)-J2 C~r)]d~ 
0 

+ J r2 Cz,s,~>J1 C~a)[J0 (~r)+J2 (~r)]d~ 
0 

for all uff:±l 

L -alz-sl 
2 e 

Jl -13lz-sl - e 
ak k2 

s s 

£_ !Lw_ :....a(z+s) + Jl !Lill -13(z+s) 

ak2 R-(~) 
e - e 

k2 R-(~) 
s s 

~ 
(2~2-k2) 

[ -(13s+az) -(13z+as)] s 
+ 2 e + e 

k R-( ~) 
s 

1 -13lz-sl 1 -13(z+s) - e + - e 
13 13 

" 

,(3.3.4) 

(3.3.5) 

(3.3.6) 

The desired Green's function u1 can finally be obtained by substituting 

(3.3.4) into (3.2.16) and specializing it to r=O. In terms of dimen-

- wa - z - s kd 
sionless variables w = C-· z = ~· s = ~ and k = k"°"' it can be written as 

s s 



A. - -
u

1
(z,s) 

where 

I
1

(w,z,s) 

Here, 
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(3.3.7) 

<XI 

- 2 V: - -

f ( ... 2_
1

)'12 e-w('t' -1) 
2lz-sl -• J

1 
(w't') d't' 

0 

<XI 

- 2 'Ii--

I 1 -w('t' -1) (z+s) -
2 11 e J

1
(w't')d't' 

('t' -1)72 ' 
0 

(3.3.8) 

<XI 

2 2 '/2 2 = f 4't' ('t' -=) (2't' -1) 

0 R ('t') 

<XI f 4:;2('t'2-=)'/2(2't'2_1) 

0 R ('t') 



- 38 -

= 

A 
au1 With the aid of (3.3.7), the Green's function--=- (z,s) can be derived 
as 

as 

A 
aul I I I I I I I I 

(z,s) - _w_ [(I I +I ) s n (z-s) I +I +I I I ] - 4nµa 1- 2 3 g - 4 S 6- 7- 8 (3.3.9) 
as 

where 

CID 

- 2 2V:a--
I - - - f -c 

2 -w(-c -k ) lz-slJ (- )d r1 Cw,z,s) = e 1 w-c -c 

0 

CID 

- 2 'J/:a--, - - -
f (-c2-l)e-w(-c -1) lz-slJ

1
(w-c)d-c r2 cw,z,s) = 

0 

CID 

- 2 V:a--
I - - - f e-w(-c -1) lz-slJ

1
(;-c)d-c r3 cw,z,s) = 

0 

CID 

- 2 V:a--f e-w(-c -1) (z+s)Jl(;-c)d-c 

0 

(3.3.10) 
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CD 

2 2 2 f 4I (T -=-1)(2T -1) 

O R (T) 

- 2 l/·r 2 2 l/i-
-w [ ( T -1) s+(T -k ) z]J (- )d 

e l WT T 

CD f 4T2(T2-l)l/2(~2-k2)l/2(2T2_1) 
O R (T) 

- 2 l/c 2 2 l/c 
-w[(T -1) z+(T -k ) s]J (- )d 

e l WT T 

sgn (z-s) 
{

+1 

-1 

z>s 

z<s 

Likewise, the Green's 

2A a u
1 function -

-2 as 

(z,s) can be found as 

(3.3.11) 

where 

,, - - -
I

1
(w,z,s) 

CD 

,, - - -
I

2
(w,z,s) =f 

0 

CD 

=f 
0 

CD 

= f 
0 



,, - - -
r

5
cw,z,s) 

,, - - -
r

7
cw,z,s) 

,, - - -
r 8(w,z,s) 

=I 
0 

=I 
0 

=I 
0 

I 
2 2 2 2 

4~ (I -1) (2~ -1) 

R ( ~) 
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- 2 2'12--
-wh: -k ) (z+s)J ( )d e 

1 
w~ ~ (3.3.12) 

- 2 '1-r 2 2 '1-r 
-w[(~ -1) s+(~ -k ) z]J ( )d e 

1 
w~ ~ 

respectively. Equations (3.3.7), (3.3.9) and (3.3.11) constitute the 

set of Green's functions required for the solution of the governing 

integral equation. Owing to the complexity and importance of these 

functions, it is appropriate to give a discussion of their general 

properties and evaluation procedures, which is the subject of the next 

chapter. 
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CHAPTER IV 

PROPERTIES AND EVALUATION OF THE GREEN'S FUNCTIONS 

In Chapter 3 

A 

integral representations for the Green's functions 

2A a u
1 (z,s) were derived analytically. It is 

A aul 
u1 (z,s), (z,s) and 

as a;2 
clear, however, from their complicated expressions that a complete 

closed-form evaluation of these Green's functions would be extremely 

difficult if not impossible. The problem stems mainly from the appear-

ance of the irrational function R-(~) in some of the integrals involved. 

R-(~) is commonly called the Rayleigh function, the positive root of 

which corresponds to the Rayleigh wave speed. A detailed discussion of 

this interesting and yet complicated function may be found in Achenbach 

[1]. For those integrals that involve R-(~). there are few alternatives 

to evaluating them numerically. In contrast, the rest of the integrals 

which do not involve R- (~) can, despite their complexities, be evaluated 

in closed form. This is clearly desirable as it reduces the number of 

integrals that must be treated numerically. More importantly, however, 

it provides the required tools for a direct and systematic approach of 

resolving some of the problems encountered in the numerical treatment of 

the integrals, as will be discussed later in the chapter. 

In what follows, a discussion of the basic properties of the 

Green's functions is first given as they are of both theoretical and 

practical importance in the later treatment of the governing integral 

equation (2.2.16). The subsequent section is devoted to describing the 
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development of the analytical and numerical procedures employed for the 

evaluation of the various Green's functions. Typical behaviors of these 

functions are illustrated in the last section. 

4.1 BASIC PROPERTIES OF THE GREEN'S FUNCTIONS 

To determine the properties of the Green's functions, it is 

relevant, as a first step, to examine some of the general features of 

the integrals involved. An examination of the integrals in (3.3.8), 

(3.3.10} and (3.3.12} reveals that they all assume a common form 

CD 

I(w,z,s} = f F(w,z,s.~}J~(w~}d~ (4.1.1} 

0 

in which 

F(w,z,s.~} = f(~}e-wg(~.z.s} (4.1.2} 

Here, f(~} is an algebraic function which may contain irrational expres-

sions and thereby may require definitions of branch cuts; g(~.z.s} is an 

increasing function of ~ when ~ is sufficiently large and is a 

nondecreasing function of l~-;I; J~ is the Bessel function of the first 

kind of order ~. 

Owing to the presence of the decaying exponential factor in the 
A - -

integrands, the Green's function u
1

Cz.s) can be shown to be twice 

continuously differentiable with respect to z and s at all locations 

except possibly at z=s or at w = O. From (3.3.7} and (3.3.11), it can 

2" 
" - - a ul 

be demonstrated directly that u1Cz.s) and (z,s}. are continuous at 
-2 as 
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A 

all points including z=s. 
au1 In contrast, although is also continuous 
as 

at most locations, it suffers a finite jump-discontinuity at z=s. This 

is typical of most Green's functions encountered in mechanics. The 

situation is less transparent when either w or (z+s) is zero, since in 

this instance the integrands no longer decay exponentially. Any suspi-

cion of singular behavior can, however, be safely removed via an 

asymptotic analysis which indicates that all the aforementioned 

properties still hold for the Green's functions in such circumstances. 

This should represent no surprise as the corresponding static solution 

is believed to be well-behaved. The real difficulty in such situations 

lies in the numerical computation of the Green's functions which is the 

subject of the next section. 

4.2 EVALUATION OF THE GREEN'S FUNCTIONS 

To solve the integral equation (2.2.16), numerical values of the 

A 2A 
A _ _ au

1 
a u

1 Green's functions u1(z,s), (z,s) and (z,s) must actually be 
as -2 as 

computed. This requires an accurate determination of the various 

integrals involved in (3.3.8), (3.3.10) and (3.3.12). In this section, 

the above problem is addressed together with the general objective of 

developing an accurate and reliable numerical procedure for the evalua-

tion of integrals of the general form shown in (4.1.1). The availabil-

ity of an effective approach for such a problem is desirable because 

that type of integral occurs quite frequently in seismological studies 
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and wave propagation problems. In view of the similarity in procedures 

for the evaluation of the three Green's functions, attention will be 
A - -

mainly focused on u1(z,s) in this exposition. 
A - -

As indicated in (3.3 . 7), the evaluation of u1(z,s) requires the 

computation of eight integrals, I 1 to r 8• Although integrals I 5 to I 8 

are difficult to determine analytically owing to the complications of 

R-(~). integrals I 1 to I 4 can be evaluated in closed form. This is also 

" , , tt tt aul 
true of integrals I 1 to I 4 and I 1 to I 4 which are involved in --::- (z,s) 

as 
2A 

a u
1 and -- (z,s), respectively. 

-2 as 
chosen as shown in Figure 4.1, it can be shown that 

I 1 (w,z,s) 

- - -
I

3
(w,z,s) 

- - -
I 4(w,z,s) 

where 

= -i~ k3/2 H(2) 2 l/: 
[k-;;;( dl+l) 1 

2-;;; (d~+l)31'4 3/ 2 

= 

= 

i 

-iwd 
1 e 

(I) 

-i.!f JVi ~ 
-ijf JVi [~ 

[(d~+l)Vi_dl] l • H(2) [-(d2+1)'{1 
1/2 (I) 1 

[ < d 2+1 ) Vi -d 1 
2 2 

l • H(2) [-(d2+1l""J 
1/2 (I) 2 

(4.2.1) 
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J~ Bessel function of the first kind of order ~ 

~2 ) Hankel function of the second kind of order ~ 

z,s L o 

iwt When combined with the time factor e , I 1 to I 4 in (4.2.1) all 

represent outward propagating waves, confirming previous assertions in 

Chapter III on the choice of branches. The Hankel functions involved in 

(4.2.1) are all of fractional orders and are thus expressible in terms 

of circular functions. This is a clear advantage since no special 

numerical algorithms are needed for their evaluation. 

For integrals I 5 to I 8 , numerical integration represents the logi

cal alternative since closed-form evaluation seems impossible. An 

examination of the integrals, however, reveals two basic problems in 

such procedures. The first one concerns the existence of several 

singularities on the path of integration. There are two branch points 

at ~ = 1 and ~ = k, respectively, and a simple pole at ~ = ~R which 

corresponds to the root of the Rayleigh function R(~). To overcome this 

problem, one could use the special procedure suggested by Longman [23] 

which involves separate integration over subintervals and a special 

technique to integrate over the pole. The method of branch-line 

integration, as employed by Ewing et al. [13], represents another 
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possibility although the choice of contours is not obvious in the 

present case. On the other hand, the problem can be totally avoided if 

one simply resorts to the Cauchy's theorem in the theory of contour 

integration. By the theorem, the original path of integration r0 + r3 

can be replaced by a new contour rl + r2 + r3 which is free of any 

singularities (see Figure 4.2). On this modified contour, the integral 

can be evaluated easily by standard quadrature techniques. 

A more serious problem in the numerical computation of the 

integrals is concerned with the treatment of the infinite upper limit of 

integration. For numerical purposes, the upper limit must be truncated 

at a finite value ~ • This does not present great difficulties in most 
u 

cases owing to the strong decay of the integrand induced by the exponen-

tial factor. However, this is no longer true when either w or (z+s) is 

small or vanishing because in these cases the exponential decay will 

become vanishingly small or nonexistent. As some of the functions f(~) 

n involved in (3.3.8) are of order ~ , n L 1 as ~ --) =, numerical integra-

tion with a truncated upper limit on such an occasion may lead to 

grossly inaccurate results; the procedure may even be divergent. The 

2A a u
1 situation is particularly serious in the case of~- (z,s). 

-2 as 
A remedy for the problem is suggested by the following observation: 

as w or (z + s) tends to zero, the contribution of the integrands at 

large values of ~ apparently becomes increasingly important. Prompted 

by this observation, an asymptotic analysis of the integrands at large ~ 

is performed. It is at this point that the knowledge of r1 to r4 , r• 1 
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to r• 4 and I"1 to I"4 becomes helpful. Using the integrands of these 

integrals as the basic asymptotic sequence where appropriate, an 

asymptotic expansion F (w,z,s,•) of the original integrand F(w,z,s,•) asym 

can be found with the property that the difference between F and F 
asym 

decreases rapidly as• increases, e.g., IF-F I - 0(_.1_) as • ~ ..,. asym 2 • 
With this result, the integral (4.1.1) can be written as 

(I) 

I(w,z,s) ! Fr(w,z,s,•)J~ (w•)d• 

(4.2.2) 

where 

Fr(w,z,s,•) = F(w,z,s,~) - F (w,z,s,~)d~ asym (4.2.3) 

With F determined as described above, F , the residual integrand, asym r 

will decay to zero very rapidly in •· As a consequence, the first 

integral in (4.2.2) can always be determined with negligible error 

regardless of the values of w, z and s, provided the upper limit is 

truncated at a reasonable finite value. On the other hand, the second 

integral in (4.2.2) can be evaluated exactly in closed form, on the 

basis of the analytical results such as those shown in (4.2.1). An 

error bound for this method of integration by asymptotic decomposition 

can be established rigorously once the upper limit • is specified and 
u 

vice-versa. 
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For high frequencies or very deep locations, accurate results can 

also be obtained economically by applying standard asymptotic 

techniques, e.g., the method of steepest descent, to the integral 

representations of the Green's functions. It is, however, necessary in 

such procedures to derive terms to at least second order before the 

result is meaningful. 

4.3 NUMERICAL RESULTS 

By the procedure described in the previous section, the Green's 

A 2A ,,. au
1 

a u
1 functions u1(z,s), (z,s) and (z,s) can be computed accurately. 

a;-2 a;2 

0 - -

Representative results are shown in Figure 4.3 to 4.8 wherein u1(z,s), 
A - -

defined as 4~µau1 (z,s), is a non-dimensional form of the Green's func-

tion. 

In an integral equation, the most important quantity is undoubtedly 

the kernel function. For the equation under consideration, the kernel, 

a2o 
0 -- ~ 

as it appears in (2.2.17), involves both u1(z,s) and (z,s). The 
-2 as 

~20 

~ variations of (z,s) in z and s are shown in Figures 4.3 and 4.4, 
-2 as 

respectively. 

~20 

~ As can be seen from the figures, (z,s) is a very 
-2 as 

localized function with most of its significant variations confined to 

the vicinity of the point z=s. This characteristic has some important 

consequences in the eventual numerical solution of the integral equation 
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as will be discussed in the next chapter. The oscillatory nature of 

this Green's function is also visible although it is grossly masked by 

the strong decay of the function. Other properties of the Green func-

tion such as smoothness and continuity are visually apparent, supple-

menting the discussion in Section 4.1. 

Similar comments can be made in regard to the Green's function 

0 

u1Cz,s) whose variation ins is illustrated in Figure 4.5. The varia-

0 - -
tion of u

1
Cz,s) in z is not presented because the function is symmetri-

cal in z and s, as can be deduced from its expression in (3.3.7) and 

(3.3.8). This property is in accord with the reciprocity theorem in 

elasticity [121. 
0 - -

The oscillatory behavior of u
1

(z,s) is, in contrast to 

2o 

that 
a u

1 of-
-2 as 

(z,s), quite distinct. It could be noticed from the figure 

0 - -
that the smoothness of the real and imaginary part of u1(z,s) is quite 

different at the point z=s. 
0 - -

While the imaginary part of u1Cz,s) is very 

0 - -
smooth at that point, the real part of u1(z,s) has a sharp cusp. This 

interesting feature can, however, be readily explained if the suppressed 

time factor eiwt in the 1 i i i k d ana ys s s nvo e • With the time factor in 

0 - -

place, it can be easily seen that the real part of u1Cz,s) represents 

the response of the half-space at the instant the buried body-force 

field reaches its maximum strength, e.g., at t = O. Since the size of 

stress-discontinuity at the plane z = s is directly proportional to the 

magnitude of the force field as described by Equation (3.2.11), the lack 

0 - -
of smoothness in u1Cz,s) at such a point is expected. Likewise, the 

0 - -
imaginary part of u1Cz,s) can be interpreted as the response of the 



- 52 -

half-space at the instants when the buried body-force field vanishes. 

In this case, however, (3.2.11) implies that the stress-discontinuity at 

z = s would disappear. With the only discontinuity eliminated, the 

observed smoothness in the response is a logical consequence. 

0 - -
A measure of the sharpness of the cusp in the u1(z,s) at z = s is 

[a~1 the value of the jump in slope at that point; i.e., -=:-
as l 

-+ 
<-;,;> z 

s=z 

This quantity is also related to the coefficient A(z) in the integral 

equation (2.2.16). By the analytical results in (4.2.1), it can be 

shown that [:~ (z,s)] ::. takes on the value of - ~1~ The fact that nµa 

it is a constant helps to ensure that the Fredholm integral equation is 

regular for all frequencies including w = O. With this result, it can 

also be shown that equations (2.2.13) and (2.2.14) are actually deduci-

ble from (2.2.12), as asserted in Chapter II. 

2o a u
1 of--

a82 
The behavior 

0 - -
(z,s) and u

1
(z,s) when the source is at the 

surface of the half-space is illustrated in Figures 4.6 and 4.7. 

Compared with Figures 4.4 and 4.5 wherein the source is located at 

depth, the figures indicate that the maximum value of the functions is 

significantly higher and there is a stronger decay when the source is at 

or near the free surface. 

0 au
1 

_ 
The function--=:- (z,0), which constitutes one 

as 
of the inhomogeneous terms of the integral equation, is shown in Figure 

4.8. The nature of this function is generally similar to that of 

0 -
u1(z,O) and hence will not be described further. 





- 54 -

This concludes the discussion of the basic characteristics of the 

Green's functions. In addition to its intrinsic interests, this infor

mation is necessary for the development of an accurate and effective 

scheme for the solution of the governing integral equation. 
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CHAPTER V 

SOLUTION OF THE FREDHOLM INTEGRAL EQUATION 

A reading of the literature [5] indicates that techniques for solv

ing Fredholm integral equations of the second kind can be classified 

into five broad categories: (1) analytical and semi-analytical methods, 

(2) kernel approximation methods, (3) projection methods, (4) quadrature 

methods, and (5) Volterra and initial value methods. Each technique has 

its own merits and disadvantages in different circumstances, and it is 

beyond the scope of this presentation to discuss them in general. 

Interested readers may refer to [17] for more details. However, it is 

fair to say that in practical applications, projection and quadrature 

are usually the preferred techniques because of their conceptual 

simplicity and their ease in computer implementation. Since an under

standing of the ideas behind these two methods is helpful for the 

subsequent development of the solution scheme for the integral equation 

(2.2.16), a brief exposition of the relevant concepts is given in the 

following section. 

5.1 CONCEPTS IN QUADRATURE AND PROJECTION METHODS 

5.1.1 Quadrature Methods 

The idea underlying quadrature methods is perhaps the most 

natural one, whereupon the integral in the equation is approximated by a 

numerical quadrature. Thus, the Fredholm integral equation of the 

second kind 
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b 

y(t) - f K(t,s)y(s)ds 

a 

n 

g(t) 

y(t) - [ wkK(t,sk)y(sk) ~ g(t) 

k=l 

(5.1.1) 

(5.1.2) 

n n 
where {wk}k=l and {sk}k=l are the weights and nodes of a quadrature rule 

Qn, respectively. If y (t) is defined as the solution to 
n 

n 

[ wkK(t,sk)yn(sk) + g(t) 

k=l 

(5.1.3) 

then evaluating yn(t) at t=tj, j=l,2, ... ,n gives the following set of 

algebraic equations for {y (t.)}nj 
1

: 
n J = 

= 
n 

[ wkK(tj,sk)yn(sk) + g(tj) 

k=l 

j=l, ••. ,n (5.1.4) 

If (5.1.4) has a unique solution for sufficiently large n, then (5.1.3) 

provides a natural interpolation formula for obtaining y (t) for 
n 

te[a,b]. A general convergence proof for the method can be found in 

[17] where it is also established that the solution error is directly 

proportional to the quadrature error. 
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5.1.2 Projection Methods 

Projection methods include such techniques as collocation, the 

method of moments , Galerkin's method and least-square procedures. 

Collocation is generally the most efficient method since the numerical 

computation needed to generate the algebraic system of equations is 

minimized as only single, rather than multiple, integrals need be 

computed. This is particularly crucial, in terms of both efficiency and 

accuracy, when the evaluation of the kernel requires a significant 

amount of numerical effort. Since this is the case in the problem under 

consideration, the present discussion of projection techniques is spe-

cialized to collocation methods. The description of the technique, how-

ever, is cast in a fairly general setting so that the procedures for 

other projection methods will follow essentially the same development 

with only a few redefinitions. 

For the economy of further development, the Fredholm integral equa-

tion (5.1.1) may be written in operator form as 

y(t) - Ky(t) g(t) 

where the operator K:X~X is defined by 

Ky(t) 

b 

f K(t,s)y(s)ds 

a 

(5.1.5) 

(5.1.6) 

Here, X is the Banach space in which the solution is sought. Typically, 

it is taken to be the space of continuous functions with the norm 

II .II . In this setting, one attempts to approximate the solution y by 
~ 



- 58 -

a sequence {yn}~=l' such that yn G Xn where {Xn}~=l is taken to be a 

sequence of finite dimensional subspaces of X. Let P denote a projec
n 

tion operator that maps a function f in X onto a function f in X which 
n n 

n interpolates to it on the set of points {tk}k=l' Mathematically, this 

can be written as 

f (t) 
n 

p f(t) 
n = 

n 

~ f(tk)dk(t) 

k=l 

(5.1.7) 

where {dk(t)}~=l is a set of interpolation functions with the property 

that 0k(tj) = &kj' &kj being the Kronecker delta. Some common choices 

of {dk} are Lagrange interpolation functions and Chebyshev polynomials. 

-Taking y as an approximation to y and substituting it into the integral 
n 

equation, one obtains 

-

-R (y ) 
n n 

(5.1.8) 

where R (y ) is the residual which will be zero if yn is equal to y. n n 

Since this will not be true in general, one seeks to select y such that 
n 

-R (y ) is minimized. This is accomplished by making the projection of 
n n 

R onto X equal to zero; i.e., n n 

- -
Pnyn - PnKyn - Png 0 (5.1.9) 

With the definition of Pn as in (5.1.7) and the property that Pndk dk, 

(5.1.9) gives 
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n n b 

[ - [ - f K(tk,s)dj(s)ds y(tk)dk(t) - y(tj) ~k(t) 

k=l j=l a 

n 

[ g(tk)dk(t) (5.1.10) 

k=l 

By evaluating both sides of (5.1.10) at tj and using the fact that 

dk(tj) = &kj' equation (5.1.10) leads to 

n b 

y(tj) - [ y(tk) f K(tj,s)dk(s)ds g(tj) , j=l,2, •.• ,n (5.1.11) 

k~ a 

This is a system of linear algebraic equations, the solution of which 

together with (5.1.7) furnishes an approximation y (t) to the exact 
n 

solution. A convergence proof for this method is given in [5], on the 

conditions that (i) llK -Kil ~ 0 where K =PK, and (ii) Pg ~gas n n n n n 

approaches infinity. If the operator K is compact, then it is suffi-

cient that Pnf ~ f for all f e X and llPnll ~ M for nLl where Mis a 

positive constant [6]. 

Several comments are warranted at this point. If K(t,s) and y(t) 

are smooth functions, both quadrature and collocation will generally 

perform satisfactorily. However, if K(t,s) has rapid variations or is 

very localized, quadrature methods will usually be inaccurate unless n, 

the number of nodes, is taken to be very large which is often impracti-

cal. Collocation methods usually perform better on such occasions, 

although the choice of collocation points can sometimes be critical for 
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the success. For example, it is well known that polynomial collocation 

using equally spaced nodes is generally divergent. 

In the following section, a numerical scheme which contains the 

essence of both the quadrature and collocation techniques is developed 

for the solution of the integral equation (2.2.16). The possible 

interpretation of the procedure as an improved quadrature method, as 

will be discussed later, should make it appealing to engineers who 

demand accurate but simple solution methodology. 

5.2 PROPOSED NUMERICAL SCHEME 

It is convenient for further consideration that the governing 

Fredholm integral equation be put into a dimensionless form. To this 

end, the following dimensionless parameters are defined: 

u.(z) !li.tl 
a 

M{z} 

47rµ a 3 
s 

MO 

47rµ a 3 
s 

VO 
(5.2.1) 

2 47rµ a s 

p* 
RM 

PS 
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16µ 
RS 

__ s 

E• 

Pb 
p 

PS 

E 
Eb 
E s 

Here, RM and RS are functions of the relative mass ratio p and the 

relative stiffness ratio E, respectively. In terms of these parameters, 

the integral equation (2.2.16) can be written as: 

o ___ o o __ _ 
A(z)M.(z) + B(z)u.(0) + C(z)u.(() + 

( 0 

f K( ;, ;»M. (;-> d; 

0 

(5.2.2) 

where 

[ 0 t 0 2 aul 
A(z) 47Tµsa -=- (z,s) 

as 
z 

(i - ; ) 
( 

;) 0 -2 RM f (i 0 - - -
B(z) - (I) 

4 
u1 (z,s)ds 

0 



0 

C ( z) 

0 

u
1

(z,s) 

0 

G(z,s) 

0 

K(z,s) 
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(D - H~J 0 

0 - - -
u1(z,s)ds 

1 A. 
-
4

- u
1 

(z,s) 
7tµa 

(i-t) z z<s 

RS 

(i t) s z>s 

Because of the linearity of the Fredholm integral equation, the 

(5.2.3) 

inhomogeneous terms on the right-hand side of (5.2.2) arising from the 

applied shear v0 and the applied moment M0 may be considered separately 

in the solution process. 

In solving equation (5.2.2), the following set of approximate 

<X> 

integral operators {K } 
1 

is employed: 
n n= 

K f(x) 
n 

n l 
0 

[ f(xj) J K(x,s) dj(s)ds 

k=l 0 

(5.2.4) 

n n 
where {xj} j=l is a set of nodal points with x1=0 and xn=l, and {dj} j=l 

is a set of pyramid functions defined by 



ell (x) 

dj(x) = 

dn(x) 
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(x2-x) 

(x2-xl) 

0 

(x-xj-l) 

(x Fx j-1) 

(xj+l-x) 

(xj+l-xj) 

0 

(x-xn-1> 

(xn-xn-1) 

x8[0,x2] 

otherwise 

xe[xj-l'xj] 

xe[xj,xj+ll 

otherwise 

0 otherwise 

(5.2.5) 

The functions {dj}~=l are illustrated in Figure 5.1. It can be shown 

that they form an independent set and that the corresponding approxima-

~ -
tion subspaces {Xn} have the property that Un=l Xn is dense in C[O,{]. 

The latter condition ensures that the approximation subspaces can 

eventually cover the class of functions in which the solution is sought. 

Upon replacing the integral operator by the approximate one and evaluat-

n ing it at the set of nodal points {xj} j=l' equation (5.2.2) gives 

= (5.2.6) 

where 
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cp.(x) 
I 

0 

Figure 5.1 The Pyramid Functions {¢i} 



M. 
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c. 
1 

0 

B(x . ) 
1 
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{ 0 

Kij f K(xi,s)dj(s)ds 

0 

-
f . 

1 
or 

In matrix form, (5.2.6) is equivalent to 

-

-M 0 

[K]{M} + u.(O){b} + u.(f){c} 

-

(5.2.7) 

{f} (5.2.8) 

where Kij = Kij - ai&ij' Since M1 and Mn are already specified by the 
-

boundary conditions and take on the values M0 and zero, respectively, 

-
while u.(O) and u.(f) are a pair of extra unknowns, the system of equa-

tions in (5.2.8) can be arranged into 

[KI] {MI} { f I} (5.2.9) 

where 



[K,] 

M• 

f' 
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-
Kl,2 

b 

-K 

u*(O) 

M2 

Mn-1 

u.ct> 

f - M 
0 

n,2 

-K n, 

-K l,n-1 

c 

-K n,n-1 

(5.2.10) 

Equation (5.2.9) represents a set of linear algebraic equations for the 

_, 
n unknowns Mi. The solution of this system can be obtained readily on a 

digital computer. Together with the known values of M1 and Mn, it fur

nishes the complete bending moment profile and the top and bottom dis-

placements of the bar. 
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Note that if the projection operator which appeared in the descrip-

tion of collocation methods is defined as 

n 

[ u(tk) <Jk(t) 

k=l 

(5.2.11) 

where {dk} is the set of pyramid functions defined by (5.2.5), the 

method proposed above can be formally considered as a collocation 

0 

method. The kernel K(z,s) of the integral equation, defined in (5.2.3), 

is composed of three continuous functions and is thus also continuous. 

With this property, it can be shown that the integral operator 

0 

associated with K is compact. Since the projection operator defined in 

(5.2.11) represents nothing more than a linear interpolation between 

nodal values, the convergence of P f to f for f e C is guaranteed. As 
n 

llP II can easily be shown to be bounded, the convergence theorem in [6] 
n 

guarantees that the scheme will converge to the exact solution uniformly 

on [O,{] as n-+o. 

An interesting alternative interpretation of the solution scheme is 

also possible because, in practice, the term Kij defined in (5.2.7) will 

be determined by quadrature, e.g., by Simpson's rule. It follows then 

that K(x,s) will be sampled at more points over s than just at the nodal 

locations. Recall that in standard quadrature methods (i) only the 

nodal values of K(x,s) and u(x) are computed, and (ii) the solution 

error depends on the error in integrating K(x,s)u(s). Hence, even if 

u(x) is smooth, the solution accuracy can still be very poor if K(x,s) 
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varies very rapidly ins, e.g., within one or two nodal spacings. One 

remedy, of course, is to increase the number of nodes. This approach, 

however, is usually impractical when the cost of evaluating the kernel 

is high, because the number of sample points of K(x,s) increases 

quadratically with n. Furthermore, it also fails to utilize the possi-

ble smoothness of the solution to the best advantage in the numerics. 

In practical terms, if a function is smooth, then the knowledge of its 

value over a fine mesh is unnecessary as a few nodal values would have 

been sufficient to define its full characteristics. A logical way to 

resolve the dilemma is to try to improve the quadrature accuracy by sam-

pling the rapidly varying function K(x,s) at more locations than u(x). 

This is one of the original motivations of the proposed scheme. The 

fact that the pyramid functions all have local support and are linear 

between the nodes permits the scheme to be interpreted as a quadrature 

method where the quadrature error is reduced by a "secondary" integra-

tion over nodal spacings. 2 Note that if m is the number of sample 

points of K(x,s) required to achieve the desired level of accuracy by 

standard quadrature methods in the case of a smooth u(x) and an unsmooth 

K(x,s), the corresponding number required by the proposed method is usu-

ally of the order of m*n where n<<m. This will represent substantial 

savings particularly when m is large and the cost of evaluating the 

kernel is high. As the use of a very large m in quadrature methods for 

rapidly varying kernels is usually necessary but typically infeasible, 

the proposed method can, in most cases, provide a solution of an 

accuracy that is unobtainable by quadrature. Since the Green's 
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functions involved in many mechanics problems exhibit the same 

characteristics as those under consideration, it is hoped that the 

numerical scheme developed in this chapter would prove to be a simple 

and effective tool in the solution of other engineering problems by the 

integral equation approach. 

5.3 DETERMINATION OF THE SLOPE AND DISPLACEMENT 

The solution of equation (5.2.9) provides the bending moment 

profile and the top and bottom displacements of the embedded bar. 
tt 

Theoretically, according to the constitutive law E•Iu• = M., an integra-
, 

tion of M•(z)/E.I will give the slope u.(z), and a double integration 

will furnish the displacement u.(z) of the bar. Practically, however, 

this approach may not give the most accurate result as it is well known 

that double numerical integration is usually far less accurate than sin-

gle numerical quadrature due to accumulation of errors. This problem of 

uneven accuracy in the determination of u. and u. can be resolved by 

means of the integral representation of u. in terms of M• as it appears 

in (2.2.15). In dimensionless form, (2.2.15) can be written as: 

0 

where G(z,s) is defined in (5.2.3). As is apparent from (5.3.1), once 

M•(z) is known, u.(z) can be obtained from it by any acceptable 

quadrature rule (e.g., trapezoidal or Simpson's rule). More 
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importantly, however, (5.3.1) can be differentiated and thereby 
, 

generates an integral representation of u. as well: 

_, -
u.(z) 

where 

0 

c3G (z,s) 
az 

_, -

{ 0 

- fa~ 
0 az 

-RS * 

- - - - - [u({)-u(O)] 
(z,s).M.(s)ds + 

{ 

(i -n z<s 

~;~ z>s 

(5.3.2) 

(5.3.3) 

Thus, u.(z) can also be obtained by a single integration of M•(z). This 

illustrates one further advantage of employing integral representations. 

5.4 PERFORMANCE 

By means of the method outlined in the previous sections, the dis-

placement, slope, and bending moment of the bar can be determined. To 

obtain the best performance, the following basic criteria should be 

observed: (i) the nodal points should be distributed in such a way that 

the characteristics of the inhomogeneous terms and, to a certain extent, 

the kernel function of the integral equation are represented adequately. 

As an example, this criterion suggests that there should be more nodes 

near the top end as the inhomogeneous terms vary rapidly at that 

locality (see Figure 4.6 and 4.7). 

(ii) Suitable choices of nodal spacings and numerical quadratures which 
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take into account the special nature of the kernel should be employed to 

ensure an accurate evaluation of the matrix [K]. For instance, it was 

considered important in most cases to perform refined (composite) 

quadratures for the tridiagonal terms of [K] because of the localized 

nature of the kernel in the present problem. 

With these basic considerations, the numerical scheme was found to 

perform extremely well; fast and stable convergence was demonstrated in 

all cases being examined . For a bar length of 50 radii, a value chosen 

for illustration purposes, the use of 20 to 30 nodes was found to be 

adequate for the frequency range of interest (w = o.o to 0.5). Details 

of the solutions are presented in Chapter VI. 
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CHAPTER VI 

ILLUSTRATIVE NUMERICAL RESULTS 

By the method described in Chapter V, the Fredholm integral equa

tion associated with the dynamic interaction problem can be solved 

accurately. The numerical solution of the equation furnishes the bend

ing moment profile and the top and bottom displacements of the bar, 

which, in turn, render the response of the bar and the embedding medium 

fully determinate. In this chapter, selected results of the analysis 

are presented to illustrate some of the basic features of the solution. 

Because of the large number of parameters involved in this problem, 

attention is focused primarily on those that strongly influence the 

behavior of the solution. Consistent with general engineering interests 

and the initial intention of the formulation, results are presented for 

the low-frequency range (w=O.O to 0.5) only although validity of the 

theory in a wider range is expected. 

6.1 ZERO-FREQUENCY (STATIC) RESPONSE 

Before proceeding to the discussion of the dynamic behavior, it is 

relevant to examine first the response of the embedded bar under static 

lateral loadings. In addition to its intrinsic interests, the static 

solution provides a basis of comparison for the more complicated dynamic 

response. 

Although the formulation of the problem is inherently based on 

dynamic considerations, the static solution can be obtained from it by 
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letting w ~ O. Results for a wide range of flexibilities under shear

loading-only and moment-loading-only conditions are displayed in Figures 

6.1 to 6.3 and 6.4 to 6.6, respectively. As can be observed from the 

figures, all the curves represent functions that are very smooth 

throughout their interval of definition 0 ~ z/a ~ l/a. The bending 

moment of the bar under the shear-loading condition (see Figure 6.1) 

typically reaches its peak value within the top half of the bar depend

ing on the bar/medium stiffness ratio E. In contrast, the maximum bend

ing moment always occurs at the top of the bar for the moment-loading 

condition as is evident from Figure 6.4. Although it is probably more 

apparent in the moment-loading case because of scaling, one common 

feature for these two types of bending moment profile is a definite 

reversal of sign at some depth for bars that are not too rigid. This is 

particularly interesting in view of the absence of such a characteristic 

in some of the currently accepted numerical treatments of this static 

problem, e.g., Poulos and Davis [40). 

The slopes of the bar for the two loading conditions are shown in 

Figures 6.2 and 6.5 while the corresponding deflection profiles are 

illustrated in Figures 6.3 and 6.6, respectively. In accord with the 

reciprocity theorem in elastostatics, the top .rotation due to horizontal 

force is found to be equal to the top displacement due to applied moment 

with negligible errors for the whole range of stiffness ratios. 
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6.2 DYNAMIC RESPONSE 

Following the preceding discussion of the static behavior, atten-

tion will now be focused on the dynamic response of the bar under 

harmonic excitations. As illustrations, the responses of the embedded 

bar at two excitation frequencies, w = 0.2 and O.S are displayed in Fig-

ures 6.7 to 6.12 and Figures 6.13 to 6.18, respectively, for a typical 

set of physical parameters. Since the excitation and the response are 

out-of-phase in general, all response quantities are represented in 

complex notation, with the real and imaginary parts representing the in-

0 phase and 90 -out-of-phase components, respectively. 

A comparison of the figures with the results in the last section 

reveals that the real parts of the dynamic solutions are very similar to 

the corresponding static solutions, at least for the range of frequency 

under consideration. It is, however, apparent that the oscillatory 

nature has become more pronounced and frequency-dependent in the dynamic 

case. As can be deduced from the figures, the characteristic wavelength 

of the oscillation is, in general, an increasing function of stiffness 

ratio E and a decreasing function of the excitation frequency w. These 

trends are probably more apparent in the imaginary part of the response 

which has zero static bias; i.e., the imaginary part is identically zero 

when w = 0. 

The effect of embedment on the response is illustrated in Figures 

6.19 and 6.20 wherein bars of different lengths ({ = 30, 40 and 50) are 

considered. As is evident from the figures, there is a definite reduc-

tion in deflection and rotation as l is increased from 30 to 40 for the 
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chosen set of parameters. The change, however, becomes minimal for the 

top region of the bar when l is further increased to 50. This confirms 

the intuitive idea of a 'limiting length' beyond which further embedment 

will result in no significant change in the top response of the bar. It 

is interesting to note that the 'limiting length' appears to be 

dependent, in addition to the bar/medium parameters and configurations, 

on the loading conditions; in the example cited, the solutions for 

l = 40 and 50 apparently lie closer to each other under the moment-

loading condition than under the shear-loading condition. 

The influence of mass ratio p and Poisson's ratio~ on the response 

has also been examined. As expected, the inertia contribution of the 

bar was found to be of minor importance for low-frequency excitations 

such as those under consideration. Nevertheless, it is noteworthy that 

0 its influence is mostly on the 90 out-of-phase components of response; 

depending on the frequency and the mass ratio, an increase of 15% in 

response values (relative to that of a massless bar) has been observed. 

At higher frequencies, however, it is expected that the mass ratio will 

play a much more important role in the solution than what has been 

indicated. In regard to the effect of Poisson's ratio, it was found 

that an increase in its value tends to reduce the deflection and rota-

tion of the bar while causes an increase in the bending moment. As the 

choices of mass ratio and Poisson's ratio do not lead to any significant 

qualitative change in response, the details of their effects are not 

presented here. 
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6.3 DYNAMIC COMPLIANCES 

In many engineering applications, the item of primary interest is 

• 
the relationship between the top response of the bar and the applied 

lateral loadings. This information, which is furnished by the present 

theory, can be expressed compactly, as 

~:] ~:] (6.1) 

where 

l1 = u(O) 

9 U I ( 0) 

2 
(6.2) 

VO = v0/47tµa 

MO M0/47tµa 3 
= 

The matrix appearing in (6.1) is usually called the 'lateral compliance 

matrix' for the system under consideration. Normalized by their 

corresponding static values, the elements of the matrix for a typical 

set of physical parameters are shown in Figures 6.21 to 6.24. Comparing 

Figure 6.22 to Figure 6.24, one can readily see that C is identical to vm 

C , a demonstration of the reciprocity theorem in elastodynamics [12]. mv 

It is interesting to note, however, that the nature of C is considervv 

ably different from that of C or C in regard to both the real and mv mm 

imaginary parts . This is not totally surprising in view of the influ-

ence of loading conditions on the response characteristics as discussed 
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earlier. 

To provide further insight into the results, the normalized 

amplitudes of the compliances are plotted in Figures 6.25 to 6.27. From 

the figures, it is evident that there are indeed 'resonance frequencies' 

at which the responses are greater than their corresponding static 

values. Nevertheless, the size of amplification can be seen to be 

generally small although it does tend to increase with decreasing stiff

ness ratios. 

Compliance functions are useful tools in studies of soil-structure 

interaction by both analytical and numerical approaches. Examples of 

their applications can be found in References [41], [15] and [9]. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

In this dissertation, the dynamic response of a partially embedded 

bar under transverse excitations was examined theoretically. For appli

cations in soil-structure interaction, the problem serves well as a fun

damental idealization for the dynamic analysis of piles or other embed

ded foundations whose flexibilities are not negligible. The investiga

tion involved several relatively distinct phases of work which are 

summarized as follows: 

I) Mathematical Formulation 

A formulation was proposed whereby the bar was regarded essentially 

as a one-dimensional structure and the embedding half-space as a three

dimensional elastic contimuum. The finite lateral dimensions of the bar 

were accounted for by effecting its load transfer to the medium at any 

depth over an area which corresponds to the cross section of the bar. 

With the aid of several Green's functions, the interaction problem was 

reduced to a Fredholm integral equation of the second kind. 

II) Derivation of the Green's Function 

The Green's functions required in the proposed formulation are 

concerned with the response of an elastic half-space to a finite, 

distributed, buried source which acts in the lateral direction. A 

technique of solution for this class of three-dimensional asymmetric 

wave propagation problems was developed which utilizes displacement

potential representations and features, in particular, relatively simple 
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transformed stress and displacement potential relations. Specializing 

the method to the problem under consideration, the required Green's 

functions were derived as integral representations. 

III) Numerical Evaluation of the Green's Function 

The Green's functions are expressed in terms of several semi

infinite Hankel-type integrals. Some of the integrals could be 

evaluated in closed form but the rest, due to the involvement of the 

Rayleigh function in their integrands, had to be evaluated numerically. 

By the incorporation of asymptotic techniques, a numerical procedure was 

developed which is free of the basic difficulties commonly encountered 

in such problems. Error bounds for the method could be established 

quite readily. 

IV) Development of g Numerical Scheme for the Integral Equation 

Not atypical in mechanics problems, the kernel function of the 

governing Fredholm integral equation, which is composed of various 

Green's functions, was found to be very localized in nature. In view of 

this characteristic, numerical solution by the commonly employed 

quadrature methods was considered as inefficient as very fine subdivi

sions would be required to achieve accurate results. Without resorting 

to complicated procedures, a simple numerical method containing the 

essence of both the quadrature and collocation techniques was developed 

and applied to the equation under consideration. 

With the development described above, the dynamic interaction 

problem was solved. Selected results were presented to illustrate vari

ous basic features of the solution under lateral shear and moment 
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loading conditions. In general, the following observations can be made: 

(1) Definite characteristic oscillations were found to exist in the 

solutions of the time-independent problem, contrary to the findings 

of some of the currently accepted numerical treatments. 

(2) As the frequency of excitation increases, the oscillatory nature of 

the solution becomes more pronounced. The characteristic 

wavelength appears to be an increasing function of stiffness ratio 

and a decreasing function of frequency. 

(3) The results demonstrate the existence of a limiting length beyond 

which further embedment of the bar does not alter the top response 

significantly. The limiting length is dependent, in addition to 

the bar/medium parameters, on the loading conditions. 

(4) The response tends to decrease slightly when the mass of the bar is 

ignored; the difference in response, however, lies mainly in the 

0 90 -out-of-phase component. 

(5) The slope and deflection tend to decrease with increasing Poisson's 

ratio of the medium. The trend is, however, opposite for the bend-

ing moment. 

(6) The lateral compliance matrix obtained from the solution shows 

strong dependence on E and w. The variation of the compliance C vv 

appears to be distinctly different from C or C vm mm 
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(7) Despite the absence of large amplifications, distinct 'resonance' 

frequencies were observable in most of the compliance functions. 
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