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ABSTRACT 

In this thesis an experiment to measure the transverse 

polarization of electrons from the decay of polarized 60co is 

presented. The result 
< J- > 

P = ( 1.2 ± 0.2 ) YVl - v2 /c 2 J 

is consistent with the predicted polarization based on the V - A 

theory of the weak interaction and the Weinberg, Salam, Glashow 

model. The theoretical prediction is 

where 

This is the first measurement of the transverse polarization of 

beta particles from the decay of polarized nuclei. The polarization 

of the electrons was measured by scattering them from gold foil 

and detecting the scattering asymmetry predicted by Mott scattering 

theory. 60co nuclei were polarized by embedding them in a ferromagnetic 

host where they feel a strong hyperfine field. The host foil was 

attached to a dilution refrigerator to lower the entropy of the 

nuclei and allow for nuclear polarization. 
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Chapter 1 INTRODUCTION 

1.1 THE BE:rA DECAY WEAK INTERACTION 

For many years the weak interaction has been the focus of interest of 

much of the physics community. In the past the study of its properties has 

been tilled with excitement and new ideas. Recently progress has been 

made toward the understanding and unification of the fundamental interac­

tions. The discoveries of neutral weak currentskd the intermediate vector 

2 
bosons, W and Z, have solidified the foundation of the Weinberg, Salam, 

Glashow model~fying the electromagnetic and weak interactions. In this 

model parity violation is introduced by coupling the intermediate vector 

boson to quarks or leptons of definite chirality. Thus, the vector - axial-

vector form for the weak force supported by studies of muon decay and con-

sistent with nuclear beta decay is a natural consequence. 

Since the discovery of parity violation by the weak force'\he symmetry 

properties of the fundamental interactions have been central issues. With 

the discovery of both time reversal and the combination of parity and 
5 

c~ge conjugation violation in the weak decays of the neutral K-mesons the 

investigation of time reversal symmetry has been stimulated. However, 

unlike the case of parity violation, little progress has been made toward the 

understanding of time reversal violation. Thus, the study of the time rever­

sal symmetry of fundamental processes with increasingily better accuracy 

is of great importance in understanding this situation. 

Time reversal violation is not predicted by the simplest W.S.G. model. 

Extensions of the model are needed in order to generate time reversal viola­

tion. In the Kobayashi-Maskawa model6the matrix describing the weak 

interaction eigenstates in terms of the quark mass eigenstates for six 



-2-

quarks can lead to time reversal violation i! the mixing parameters have a 

complex phase. Alternatively, Weinherl and other/have proposed additions 

of extra Higgs bosons to the model other than those needed to give the W 

and Z their mass. These extra Higgs can generate time reversal violation 

through their interactions with quarks. This model may soon be in contllct 

with the experiments on the electric dipole moment o! the neutron. 

Historically the weak interaction in nuclear beta decay has been 

described by the most general local Lorentz invariant interaction. The weak 

Hamiltonian is written9 

G ( -
H = f2 · ~ 'i'pOi'i'n) 

I 
[ w a.( c.+ c.rs) '¥ l 1"e 1 1 1 v + H.C. (1.1.1) 

where i = S, Y, T. A, and P. Here 

OS = 1 Oy = yll ' OT = -2~ ( y~y>.. - y'Ayll) 
(1.1.2} 

oA = -irll Ys oP = hs • 

These are the scalar, vector, tensor, axial-vector, and pseudoscalar 

interactions corresponding to their Lorentz transformation properties. The , 
so called even and odd coupling constants, Ci and C i , are in general com-

plex constants. Time reversal symmetry and the combination of parity with 

charge conjugation will be broken by this interaction i! any of the coupling 

constants have a complex relative phase to the others. Thus, it is required 

that all constants be real for time reversal invariance to hold. The W.S.G. 

model predicts the following relations 
I I I I 

cs cs ' CT , C,. , Cp , Cp = 0 Cv = cv = 1 , 

CA : C I G = g cos ec • 
(1.1.3} 

A 
Here, g is the universal weak coupling strength and 0C is the Cabibo angle. 

The axial-vector coupling should differ !rom minus the vector coupling only 

due to a renormalization to include interactions with virtual quarks . How-

ever, the presence or contributions to nuclear decay by scalar and tensor 



-3-

interactions has not been experimentally ruled out. Also the restriction to C. 
1 

I 

= C . corresponding to purely left handed lepton and quark couplings is 
1 

not complete. Many di.tierent types of experiments have been performed to 

determine the presence of each of these interactions. The most general fit 

of the coupling constants to the experimental results for allowed nuclear 

10 beta decays has been carried out by Boothroyd. Markey and Vogel. The 

analysis was resJ;.ricted to real couplings. The best fit to the data gives 
~A , ~ 
C = - 1. 261 C A = C A Cv = Cv 
v 

with the tensor and scalar terms zero. The limits on the tensor and scalar 

interactions are I CS < cv 0.23 cs J < cv 0.19 

1~ < 0.09 
CT 
CA < 0.09 • 

These limits are expected to be even weaker if the restriction to real con-

stants is removed. Thus, the contributions to nuclear beta decay by time 

reversal violating couplings can not be ruled out. 

Several types of time reversal tests can be done with nuclei. A well 

known test is the experimental limit on the presence of a static electric 

dipole moment of the neutron. The experimental result is 11 

dn < 4 x 10-25 
e-cm ( 95% C.L. ). 

Theoretical predictions range from 10-2ior-the Higgs exchange modeHo l0-32 

e-cm for the K.M. modet'1f time reversal violation. 

Other tests of time symmetry use measurements of nuclear reaction 

detailed balance or electromagnetic radiation correlations. The most 

stringent limit on time reversal violating contributions to nuclear reactions 

is in the case of14 

27 A 1 + . p ~ 24Mg + a -~ 

A limit of 5 x 10-4 of the time reversal symmetric amplitudes has been 
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measured. Time reversal violation may be observed by determin.ing the 

phase angle between the amplitudes of competing multipoles in a nuclear 

transition. The best limit on time reversal violating phase was obtained in 

our laboratory giving15 

sin n < 5 ± -4 4 X 10 . 

An experiment has been performed to look for time reversal violation in 

the decay of polarized positive muons~ti.rb.e resulting limit on the transverse 

polarization of the positrons lying perpendicular to the plane of the muon 

spin and the positron momentum is consistent with time reversal symmetry. 

The limit can be described by a weak interaction of 

v (l+e:)A lrme:l~ 0.15. 

For allowed nuclear beta decay the search for time reversal violation is 

analagous to the measurement of the phase angle between amplitudes for 

the couplings described above. The general measured correlation parame­

ter will contain contributions of the form 

y = ~i jjAjl e ;q,i.j 

where A. and A . are the two amplitudes and ¢ij is the phase angle between 
1 J . 

them. Many di!!erent types of correlations can be measured to restrict the 

phase angle to the time reversal consistent values of 0 or PI. The well known 

experiment of Wu et a1: 7 the beta angular correlation from polarized nuclei, 

is dependent on the cos( (tljj ). ln order to do sensitive tests of time reversal 

syiiimetry, correlations including the sin(¢; j ) must be used. This is 

equivalent to a requirement that the naive symmetry of the correlation be 
...... 

odd with respect to time reversal. For example, the correlation J·itf~ 

has been measured for the decay of polarized neutrons. Under time rever-

sal this becomes 
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'Ibis experiment is sensitive to sin( <P AV ). In table 1.1.1 is presented the 

existing experimental results with their correlations and relevent phase 

angle restrictions. 

Our experimental program is directed toward the measurement ot 
- - _. 
JCo • Ps X aS 

tor the decay ot polarized 60-Co. 'Ibis can be achieved by measuring the 

transverse polarization ot the electrons trom the decay or the polarized 

nuclei which lies perpendicular to the plane ot the electron momentum and 

the nuclear polarization. 
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DECAY CORRELATION RESULT PHASE 
LIMIT 

18 ..... - ~ 0 

n+p e v D J • P ex p -0 .0011±0. 0017 ¢Av= 180.14±0.22 
\) 

Ne+F e '1}9 ~ _.. - 0 

D J · P ex p 0.0004±0.0008 ¢Av= 180.04±0.09 
\) 

same 20 _. _.. 
CSCAsin¢sA= -0.2±0.1° R J • aex p -0.08±0.05 

\) 

21 - ...,. _.,. _,. ...:::. 
Co+Fe e v E1J ·(Pex ky)J·ky -0 .01±0. 02 ¢Av= 183±6 

C) 

Table 1.1.1 Nuclear beta decay time reversal tests 



1.2 BETA PARI'ICLE POLARIZATION 

The discovery of parity violation in 195.ftn nuclear beta decay quickly 

drew attention to the measurement of the polarization of electrons and posi-

trons. As a result of the violation of parity symmetry by the weak interac-

tion beta particles from the decay of unpolarized nuclei are longitudinally 

polarized. However, the subject of electron polarization predates the 

discovery of parity violation. The prediction of the spin dependence in the 

scattering of electrons from nuclef~recipitated the study of techniques of 

producing and measuring the polarization of electrons. Today, the polariza-

tion of beta particles provides a valuable tool for the study of the structure 

of the weak interaction in nuclear beta decay. 

In general the polarization of an electron is characterized by a three 
_,. 

dimensional unit vector, < a >. It corresponds to the direction of the 

spin of the electron in its rest frame. The electron polarization in a direc-

tion n is given by 

= 

+ -
N ( N ) is the probability of finding the electron with spin in the direction of 

n (-E). For an electron with momentum pin the laboratory it is convenient 

to define three mutually perpendicular projections of the polarization. In 

figure 1.2.1 these components are schematically shown. There are two 

independent transverse polarization projections, P T and PT , along with 
1 2 

the longitudinal polarization, P L 

Several techniques have been used to measure the longitudinal polari-

zation of beta particles from the decay of unpolarized nuclei. The electron 

longitudinal polarization has been converted to transverse polarization by 

the detlection in the radial electric tleld produced in an electrostatic 
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Figure 1.2.1 Polarization projections 
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spectrometer. The resulting transverse polarization was measured by the 

scattering asymmetry in Mott scattering from heavy nuclei. 

The most sensitive measurements of the longitudinal polarization of 

positrons from nuclear beta decay detect the change in population of the 

singlet and triplet positronium states in a strong longitudinal magnetic field. 

Thus the polarization does not need to be converted to a transverse orienta-

tion. 

The longitudinal polarization has been measured to be consistent within 

a few percent of the pure V-A weak interaction predictions. For electrons 24 

v - A Theory P. = - ! Experiment P~, = ( -1.01 ± 0.03) v 
L. c c 

and for positrons 25 

v - A Theory P. = v Experiment PL = ( 0.99 ± 0.04) v 
L c c. 

Beta particles from the decay of unpolarized nuclei are not expected to 

be transversely polarized(it would violate the assumption of the isotropy of 

space). However, beta particles from the decay of polarized nuclei are 
26 

expected to be transversely polarized. Tolhoek and de Groot in 1951 

described the production of polarized beta particles from the decay of 

polarized nuclei based only on the conservation of angular momentum. This 

polarization would be in the direction of the nuclear polarization. Thus, beta 

particles emitted perpendicular to the nuclear polarization should be 

transversely polarized with a polarization P, . Depicted in figure 1.2.2 are 

the relative orientations of the beta particle spin, momentum and the 

nuclear polarization. In addition to the component P11 there is another 

transverse polarization component, P ~ . The presence of a non-zero value 

for P J. is equivalent to the existence of a correlation of the form 

in the beta particle distribution for the decay of polarized nuclei. As dis­

cussed in section 1.1 this might signal a violation of time reversal symmetry 
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Figure 1.2.2 Nuclear and beta particle polarization 
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by the weak interaction in beta decay. However. because of the influence of 

the nuclear charge. Z. on the beta particle as it leaves the nucleus there is 

expected to be a correlation of this form even it the beta decay weak 

interaction has no time reversal violating couplings. A detailed presentation 

of the expected transverse polarizations, both parallel and perpendicular to 

the nuclear polarization, will be given in the next chapter. 

There has been only a single previous experiment to measure the 

transverse polarization of beta particles from the decay of polarized nuclei. 

An upper limit27 

0.01 

on the transverse polarization. P ..L , of positrons from the decay of polar­

ized 11-.ie is consistent with time reversal symmetry. In this case the value 

-3 of PJ.. from nuclear charge interactions is on the order of 10 . The 

expected P 
11 

of about 10-2 was not measured. 

The eventual goal of the experiments discussed in this thesis is the 

measurement of possible contributions to the correlation described by 

""- .... ...... 
JCo • Ps X aS 

from time reversal violating weak interaction couplings in nuclear beta 

decay. As the first step toward the measurement of P .l. for beta particles 

from the decay of polarized nuclei this thesis describes the first measure-

ment of P 
11 

• Polarized 60-Co was produced at low temperature utilizing 

the interaction of the nuclear magnetic moment with the hyperfine mag-

netic field in a ferromagnetic host material. The transverse polarization, P11 

of the electrons emitted perpendicular to the nuclear polarization was 

measured by Mott scattering the electrons from gold foil. The results are 

< J > Experiment P,,• ( 1.2 ± 0.2 ) r1/l - v:/c 3 J 
• 

Here, the theoretical prediction is based on a pure V- A weak interaction. 
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Chapter 2 THE PRINCIPLES OF THE EXPERIMENT 

2.1 NUCLEAR POLARIZATION AT LOW TEMPERATURE 

Nuclear polarization is the preferential ordering or nuclear angular 

momenta, or spins, in space . An example would be the orientation of 

nuclear spins along an axis of quantization. The quantization of angular 

momentum determines states with different projections of angular momen-

tum on this axis. Nuclear polarization occurs when the states with a positive 

projection of the angular momentum are populated unequally to the states 

with a negative projection of the angular momentum. This may be achieved 

!or an ensemble of nuclei with spin J if the energy degeneracy of the 2J + 1 

states is removed by an external intluence and the entropy is dramatically 

decreased, typically by the transfer of energy to another system at low 

temperature. 

The orientation of a system of nuclei with rotational symmetry about an 

arbitrary axis can be completely characterized by the relative populations 

p(m) of the states with an angular momentum projection ,m , on this axis. 

The p(m) are normalized according to 

~ p{m) = 1. 

The nuclear polarization along this axis is equal to 
...... 

< J > 1 
J = J M m p{m) 

It is convenient to define orientation parameters, B.x. 

to characterize the distribution of p(m) where 

B). : n 2). + 1 )( 2J + 1 ~'/;,. ~ {-l)m+J(_~ ~ ~) p{m). 

Here 

( J J ). ) 
-m m 0 
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is a Wigner 3-J symbol. The B.A. vanish for > 2J. The nuclear polarization is 

related to B A by 
< r > 

J = J + 1 
3 J • 

The interaction between the nuclear magnetic dipole moment, ~ , and 

the hypertine magnetic field , · H, will facilitate orientation of the nuclei by 

removing the degeneracy of the different m states. The interaction energy 

is described by the Hamiltonian .. -H = - lJ • H • 

The state populations become 
p(m) = ellllJH/KTJ 1 

To produce substantial polarization a large value of the Boltzmann factor 

is required. 

Besides removing the degeneracy of the spin states the entropy of the 

system of nuclei must be reduced . The entropy of the nuclei was lowered 

by thermally linking them to a H;- He 4 dilution refrigerator. The refrigera­

tor is capable of sustaining 20mK temperature with a small heat load. 

The general angular distribution of radiation emitted by oriented nuclei 

at an angle 0 from the axis of orientation is 28 

W( e) = ~ BA UA AA QA PA(cos e) 

P A is the Legendre polynomial of order .A. • The deorientation coefficient 

U >- corrects for the effect of unobserved radiation emitted by the nucleus 

prior to the emission of the radiation described by W( 0 ). The angular dis-

tribution coefficients A ).. are determined by the properties of the particular 

radiation. Corrections for the finite solid angles subtended by the source 

and detector are by the Q >- . 
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The nuclear polarization achieved in this experiment was found by con­

sidering the spatial distribution of gamma ray emission from the nuclei. The 

gamma ray angular distribution for pure E2 gamma ray radiations is 

Wy (e) = 1 + ~=2 , 4sK UK AK QK PK(cos 0). 

The rate of gamma ray emission at 90 degrees was monitored continuously 
,..,.,),:.. mk 

during the experiment. The nuclear orientation parameters B2 and B4 

for the polarized nuclei at mK temperature were determined by the meas-

He temperature contribute less than .01 percent to the denominator of 

A. They are ignored in this experiment. For an assembly of nuclei with spin J 

at a particular temperature, measurement of B2 and B 4 allows the cal-
.J 

culation of B1 . which is proportional to < J > I J, the nuclear polarization. 
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2.2 BETA PARTICLE DISTRIBUTION FROM POLARIZED NUCLEI 

The polarization of beta particles from the decay of oriented nuclei is 

determined by the relative probabilities of beta emission with particular 

spin and momentum directions. The beta decay distribution for allowed 

beta decay from oriented nuclei in angle and beta polarization is29 

w dE c1n a: dE dn u + f·{A< T > + G a) + 

...... { ~< j > + "' -o I< J > R) + R< J > 
0• I' J ~ J E J 

£ {2.2 . 1) 
X E)}. 

p and E are the momentum and total energy of the beta particle in units 

with c = n = 1. The beta particle momentum and spin correlation 

coefficients, A. G, N, Q, and R, are calculated in terms of the weak interac­

tion described in section 1.1 , and the Fermi, S 1, and Gamow-Teller, f <S , 

nuclear matrix elements. Included are the electromagnetic contributions 

due to the interaction of the beta particle with the nuclear charge, Z. It is 

assumed that the Ci and C~ weak coupling constants are equal. Thus, the 
I 

formulas for the coefficients will be written using c;-= Ci= i for i = S, A. V, T. 

This corresponds to a weak interaction which couples to purely left handed 

neutrinos( eigenstates of chirality with negative eigenvalue ) . The general 

expressions for the coefficients without this assumption can be found in 

Jackson. Treiman, and Wyld~9However, a removal of this assumption does 

not alter the main ideas of this section. The assumption only serves to 

reduce the number of phase angles defined below to a more manageable 

number. The vector weak coupling will be used to define the positive real 

axis. The other complex couplings are defined with a phase angle relative to 

the vector coupling. The correlation coefficients for electron beta decay 

become 
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I 
l 'l 

~G ~ )lj{2(S- ~) + 4aZ~ sv sin~5 } + 

(2.2.2) 
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Here, = 1 for Jfinal = Jinitial - 1 

A = 1 
for Jfinal = Jinitial J + 1 

= J 
for Jfinal = Jinitial + 1 

J + 1 

where J; niti a fS the spin of the beta decaying nucleus and J.nna 1 is the 

final spin of the nucleus. 

As discussed in section 1.1 the weak interaction would violate time 

reversal symmetry if any of the coupling phase angles are not zero or pi. 

Therefore, any of these correlations can be altered by a violation of time 

reversal symmetry. The eventual goal of these experiments with oriented 

nuclei is to measure the possible contributions to beta decay correlations 

from scalar couplings with a time reversal violating phase. The correlations 

most sensitive to a time reversal violating scalar coupling contain terms 

with SA sin(¢
5

-<PA) or SV sin(cfs) . These are A. G. and R. However, the 

correlation determined by R has a contribution proportional to the SA sin( <Ps 

- <P A) that is not reduced by the electromagnetic factor a Z . Thus, the 

goal becomes a measurement of the correlation generated by R. 

The polarization of beta particles from the decay of polarized nuclei can 

be calculated using the decay distribution equation 2.2.1. The transverse 

polarization of beta particles emitted perpendicular to the nuclear polariza-

tion has two projections shown in figure 1.2.2 . These become 

pu = N < J > 
J 

P~ = R ~ < j > { J X p ) 

Here, v I c is the velocity of the beta particle divided by the speed of light. 
,., 
J and p are unit vectors. R is proportional to the transverse polariza-

tion perpendicular to the nuclear polarization, P~ . However, the 

transverse polarization parallel to the nuclear spin, P
11

• will be present. As 
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a first step in developing an experiment to measure P.J. the measurement of 

P 11 has been achieved. The measurement of P ..1.., and thus R. may simply 

require a rotation o! the polarization detection device by 90 degrees about 

the initial beta particle momentum vector. 

For a time reversal symmetric weak interaction with only vector and 

axial vector couplings the N and R coefficients become 

R =- aZg_ N = aZ!!!. /Saf>.. l + 2 fa }1 'flr VA 
. p . p ) s 1 t v '2. + J Set/'" A l. 

A time reversal violating scalar coupling would modify R tor mixed Fermi­

Gamow-Teller beta transitions by a term containing SA sin( ¢s'<PA ). Using the 

relation of equation 2.2.5 N is generally larger than R. Thus, P11 is 

expected to be larger than P .J. . 

In this experiment P 
11 

is measured as a function of energy for nega­

tive beta particles from the decay of nuclei polarized at low temperature. 
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2.3 KF..ASUREMENT OF TRANSVERSE POLARIZATION BY MO'IT SCATIERING 

Several methods are available for measuring the polarization of elec-

trans. The direct measurement techniques take advantage of the depen­

dence of scattering cross-sections on polarization . At high energy, greater 

than about 1 MeV, Moller scattering from the polarized electrons in magnet­

ically saturated ferromagnetic foils has been used~tt.Iere, the polarization 

sensitivity su!Jers greatly because only 2 of every 26 target electrons in the 

target foil are aligned. For energies below 500 keY Mott scattering from high 

Z nuclei has been used successfully to measure transverse polarization:'lrh.e 

spin orbit interaction between the electron magnetic moment and the mag­

netic field seen in the electron rest frame produced by the motion of the 

nuclear charge causes the cross section to be strongly spin dependent at 

large scattering angles. 

The first relativistic quantum theory of electron scattering by nuclei 

predicted the transverse polarization of initially unpolarized electrons after 

scattering. The spin orientation is perpendicular to the plane of scattering. 

The amount of polarization , S( 8 ), is a function of energy and increases 

approximately linearly with Z . In figure 2.3.1 S( 8 ) is plotted for 150 Kev 

electrons. S(90) as a function of energy is in figure 2.3.2. 

If electrons are initially transversely polarized with polarization P,the 

scattering cross-section for Mott scattering from nuclei is asymmetric. 

dd~ = ~ { 1 p { ) { ) ~' ct~ s e sin ¢ } 2. 3.1 
da 0 ~ 

where drl is polarization independent. Here '~' is the azimuthal angle of 

scattering relative to the plane of the initial momentum and the polarization 

of the electrons. A measurement of the scattering asymmetry yields P. The 

largest asymmetry is in the plane perpendicular to the initial momentum 

and the polarization vector ( ¢ = 90 or 270 degrees ). 
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Figure 2.3.1 Mott scattering polarization sensitivity 
for 150 keV electrons as a function of angle 
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Figure 2.3.2 Matt scattering polarization sensitivity 
at 90°as a function of electron energy 



This is usually denoted as the left-right asymmetry 

= L R 
L + R = p S( e ) (2.3.2) 

Left is the direction of P crossed into the momentum. 

For most experiments equation 2.3.2 does not represent a valid meas-

urement of P . The measured asymmetry, AM' is the sum of As and the 

systematic instrumental asymmetry, AI' 

(2.3.3) 

A I is generally due to unequal solid angles or unequal detection efficiencies 

for the two scattering directions, L and R. In many experiments the 

seperate contributions to ~ of As and A I can be found by measuring AM 

while reversing the direction of P. Also, exchanging the roles of the R and L 

detectors by rotating the set of detectors around the initial momentum 

direction by 180 degrees has been used to eliminate the effects of A I . 

In order to measure the transverse polarization of the electrons in this 

experiment the scattering asymmetry is measured for the polarized elec-

trons. It is compared with the asymmetry for electrons with the polariza-

tion turned off. 

• ~( L:...,_---r.-R::.L.i) P~:-l{...::.l~-__;,;.R )'"PP=O • p- t=> ( 2 3 4) 
( L + R) P=O 1;,? • • 

Here. the instrumental asymmetries are removed explicitly. Ep is the 

polarization detection efficiency of the polarimeter. The E pis a function of 

the solid angles, detector responses, and S( e ). 

In practice the measured S( e ) is less than that predicted. by the 

nuclear scattering cross-section. Plural and multiple scattering in target 

foils of finite thickness can reduce the efficiency for polarization measure-

ments significantly. The effective S including the reduction due to foil thick­

ness has been measured by several experimenters . Figure 2.3.3 shows the 

measured S(t) normalized by S from extrapolating to zero foil thickness. In 
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t.o I S(t) I S(O) 

o.s 

Fit to the Data 

! Experiment (31) 

Figure 2.3.3 Mott scattering polarization sensitivity 
for finite thickness scattering foils normalized to 
zero thickness foils 
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this experiment S( 8 ) derived from theoretical calculations3~orrected for 

the effects of multiple scattering as determined by previous experimenters' 

results will be used to calculate Ep . 

The optimal design for a polarimeter to measure transverse polariza­

tion must take into consideration the choice of the scattering angles , solid 

angles , and foil thickness. 



Chapter 3 TilE 60 - CO EXPERIMENT 

3.1 TilE CHOICE OF BETA DECAY TRANSITION 

In order to test the theory for the transverse polarization of beta parti-

cles from polarized nuclei a transition with a large value for N, in equation 

2.2.1, is desired. From the formula for N, this is satisfied best by a beta 

transition with Jfinaf ~niti'a4• and low energy. To obtain high polariza­

tion sensitivity from the Mott scattering technique the beta decay should be 

an electron decay with a maximum kinetic energy of several hundred keV. 

To simplify the analysis of experimental results a nucleus with only a single 

allowed decay in the beta energy region of interest is preferred. Nuclear 

polarization is made possible by large values for the nuclear magnetic 

moment and magnetic hyperfine field in a ferromagnetic host. In addition 

subsequent gamma decay with known properties in the decay scheme of the 

nuclei is required to measure the nuclear polarization during the experi-

ment. With these criteria in mind 60-Co is a natural choice for the beta 

decay transition. 

The decay scheme of 60-Co is shown in figure 3.1.1 . The two gamma 

decays are known to be pure E2 by the consistency of their conversion 
33 

coefficients with predictions. The magnetic moment of 60-Co is from ESR 

measurements J.l = 3.81 ±.01
3
kd the magnetic hyperfine field in permen­

dure, the ferromagnetic host, was found to be -282± 4 KG by NMR(ON)~5 

These values result in H /Jk = 7.86 ± 0.11 mK for the Boltzmann factor. 

Thus significant nuclear orientation can be obtained at temperatures of 

about 40 mK. 
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Figure 3.1.1 60co decay scheme 



-27..; 

3.2 THE PREPARATION OF THE SOURCE 

The preparation of the source is crucial to the success of this experi-

ment. In order to minimize the deflection of the momentum and spin of 

the electrons by the external magnetic field used to saturate the source foil, 

permendure, an alloy of 49% Fe, 49% Co, and 2% V was used as the host 

material. Permendure properly heat treated in an external magnetic field is 

highly anisotropic and can be magnetically saturated along the preferred 
36 

axis by less than one Oersted. Additionally, 6D-Co is not an impurity in per-

mendure and sees a single hyperfine field, 282 ± 4 KG mentioned above, 

measured in a similiar source. 

To avoid multiple scattering of the observed beta particles the 60-Co 

must be dit!used into the permendure host as near the foil surface as possi-

ble. However, the standard prescription for heat treating permendure 

requires temperatures of 820 to 850 degrees C for 4 to 24 hours. Such a pro-

cedure would result in dillusion of the 60-CO throughout the host. A tech-

nique has been developed to resolve this conflict. The host foil is first 

prepared in the standard fashion. The 60-Co is then applied to the surface 

and a short di.fiusion is performed. 

The sources used in the experiment were made with 13 micro m thick 

non-heat-treated permendure foil obtained from Arnold Engineering Co. of 

Marengo, Ill. The foil was cut and bent into the form shown in figure 3.2.1 . 

The magnetic properties of the foil were achieved by heat treating it in a 

pure H2 atmosphere with a 140 Orsted external field applied as shown. Fig­

ure 3.2.2 gives the first heat treating cycle. The B - H curve of a foil 

prepared in this way is shown in figure 3.2.3. 

For making these sources 6D-Co in 0.1 N HCl was bought from Isotope 

products in Burbank, Ca., with a specific activity of 380 Cil g Co ( pure 6D-
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Figure 3.2.1 Source foil geometry 
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Figure 3.2.2 1st heat treatment cycle for 
Pennendure foi 1 
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Figure 3.2.3 B - H curve of Permendure source 
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Co is 1100 Ci/ g Co ). Two sources both of about 50 micro Ci were used in 

this experiment. A drop of 3 mm diameter and 1.5 micro liters of CoCl solu-

tion was placed on the the surface of the foil. The acid and water were dried 

under a small lamp in an argon atmosphere. Also under an argon atmo-

sphere the tabs of the foil were electroplated with nickel. The foil was heat 

treated the second time for a short period as shown in figure 3.2.4 . The 

first source with activity of 65 micro Ci was kept at 830 degrees C for 5 

minutes. The secound source with an activity of 50 micro Ci was kept at 830 

degrees C for 12 minutes. Afterward the surface of each foil was cleaned 

with cerium oxide and freon to remove any activity remaining unsited on the 

surface. Typically 80 to 90 percent of the 60-Co dried onto the surface was 

d.i!Iused into the foil . . 

The magnetic properties of a foil prepared by this technique differed 

very little from those of a foil treated in the standard way. Figure 3.2.3 

includes the B - H curve for a foil after this secund treatment. In addition, 

the calculation of the saturation of the hyperfine field from the measured 

gamma ray anisotropy as a function of applied external magnetic field for 

the first source at 45 m K degrees is shown. 

The apparent saturation of these foils at about 10 Orsted instead of the 

aforementioned less than 1 Orsted can be understood by considering the 

demagnetizing field for the particular foil geometry. Inside the foil the 

demagnetizing magnetic field apposes the applied field. The field can be ' 

approximately calculated for the center of the foil by 

H = 2 BS W t = 6 0 D 1T p e 
B = 23 KG is the saturation magnetization, 1 = 1.8 em is the length of lhe 

foil, t = 13 micro m is the thickness and W = 1 em is the width of the foil. 

To saturate the foils in this experiment the demagnetizing field must be 
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Figure 3.2.4 2nd heat treatment cycle for 
Permendure foi 1 
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overcome by the external applied field. 

An estimate of the depolarization due to the multiple scattering in the 

foil of the observed beta particles will require lmowledge of the depth in the 

foil of the 60-Co d.i!Iused through the surface. The distribution was deter­

mined by uniformly lapping the surface away. The weight and activity of the 

foil were measured at steady intervals. In figure 3.2.5 are the resulting 

depth distributions for the two sources. 

The installation of the source into the dilution refrigerator system is 

quite simple. Figure 3.2.6 shows the geometry of the source and cold finger 

with respect to the m.ixing chamber( the coldest part of the refrigerator). 

After heat treatment the tabs of the source are gold electroplated in an 

argon atmosphere. The tabs are pressed to the cold finger with the sharp 

edges of the cold finger clamps. The cold finger is made of OFHC copper and 

is gold electroplated just before installing the source foil. The foil cold welds 

to the cold finger at the edges of the clamps. These procedures were neces­

sary to ensure good thermal contact between the foil and the refrigerator. 
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Figure 3.2.5 Activity distribution in the 
source foils 
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Figure 3.2.6 Source and cold finger geometry 
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3.3 mE PO:I...ARIME:rER 

An electron transverse polarization polarimeter utilizing Mott scatter­

ing was designed !or this experiment. In order to maximize the polarization 

analyzing power or sensitivity in a certain counting time, many things have 

to be considered. The number of electrons scattered from the gold foil rela­

tive to the background of gamma rays from the source was of key impor­

tance. The scattering asymmetry depends critically on the scattering angle, 

foil thickness, and the foil geometry. A side view, figure 3.3.1, looking south 

in the lab along the axis of polarization of the source shows in cross section 

the geometry of the polarimeter. 

Neglecting the effects of multiple scattering in the foil the maximum of 

the scattering asymmetry for electrons of 150 keY is at 125 degrees as seen 

in figure 2.3.1 . However, without considering background the analyzing 

power varies as 

Analyzing Power « S( e ) VCount Rate • (3.3.1) 

In figure 3.3.2 one can see that this simple argument puts the best scatter­

ing angle at about 90 degrees. 

The background to measuring the scattered electrons was due to 

gamma rays from the source. The signal to background is worse for the 

backward scattering angles because of both the smaller scattering rate and 

the increase in background as the space available for shielding decreases. 

The combined effect of these facts led to the choice of 90 degrees for the 

central scattering angle. 

Several geometries of the scattering foil have been used by previous 

experiments. The two most widely discussed, the transmission and the sym­

metric designs are shown in figure 3.3.3 along with the reftection geometry. 

The polarization sensitivity is decreased much more by multiple scattering 
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in the !oil for the symmetric case. For this reason the transmission 

geometry was chosen for the design. 

The choice of the foil thickness is determined by the signal to back-

ground and the change in scattering asymmetry with foil thickness. For a 

wide range of increasing thickness the scattering asymmetry decreases 

linearly In this experiment a gold foil of 135 micro g I cnfwas used . Multiple 

scattering decreases the asymmetry by about 15 % at an energy of 150 keV. 

The gamma background was about equal to the scattered electron rate for 

this foil at this energy. The analyzing power varies as 

Analyzing Power « S t Si nal ~aunt 
BackgroundiSlgnal 

where the thickness is in units of 135 micro g I cm.2 One can see that the 

maximum is near three but it is not a very strong function of t. A choice of t 

= 1 was intluenced by two considerations. Rather than simply maximizing 

this analyzing power the effect should be kept as large as possible to minim-

ize sensitivity to systematic effects. In addition this treatment only dealt 

with 150 keV electrons, for lower energy electrons the maximum analyzing 

power is at smaller values of t due to the reduced asymmetry with the 

increase in multiple scattering as seen in figure 2.3.3. 

The gold scattering foil was made by evaporating gold onto a formvar 

backing. The formvar was first applied to the surface of a glass plate in a 

similar way as in Revell et al3? The gold was evaporated on the formvar 

while it was still on the glass plate. The formvar and gold were then tloated 

off the glass in a water bath and installed in the foil holder. The thickness of 
2 2 

the formvar, 15±5 g /em, and the gold 135±10 g /em were measured by 

the energy loss of alpha particles from Th-228. 

The electronics used in the experiment are shown in the diagram in 

figure 3.3.5. The Si(Li) detectors have a 2.54 em diameter with a 5 mm. 



o.s 

-41-

lnalyzing Power For 150 KeV Electrons 

I 
I 

0 

Figure 3.3.4 Analyzing power as a 
function of foil thickness 

L4 

Foil Thickness 
(135micro g/cm2) 



Si(Li) Detector 

1 
Preamp 

1 
Spectroscopy 
Amplifier 

\ 

Input 

-42-

Proportional Counter 

Preamp 

1 
Timing Single 

Channel Analyzer 

J 
Gate Generator 

I 

t 
Gate 

Pulse Height Analyzer 

Figure 3.3.5 Electronics Setup 
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depletion depth. The proportional counters are shown in figure 3.3.6. A mix­

ture o! 90 % Argon and 10% methane was used as the counter gas. In order 

to reduce the gamma ray background the proportional counters and the 

Si(Li) detectors were used in coincidence. The proportional counter was 

used to create a gate for the scattered electrons The timing resolution of 

the proportional counter and Si(Li) detector systems were about 150 

nanoseconds. A gate pulse of 4 micro seconds was used to gate the Si(Li) 

detector at the pulse height analyzer. Because of the small gamma ray 

efficiency of the proportional counters the gamma ray background in the 

Si(Li) detectors was reduced by a factor of 100. 

The polarimeter was attached to the outside of the dilution refrigerator 

room temperature vacuum chamber. The vacuum of the polarimeter was 

seperate from the refrigerator. The source was separated from the polarim­

eter by three Mylar windows. with a total thickness of 450 micro g /em~ 
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3.4 THE JlEASUREMENT OF NUCLEAR POLARIZATION 

The nuclear polarization of the 6Q-Co source in this experiment was 

determined from the change in the gamma ray distribution. For both the 

1.17 and 1.33 MeV gamma rays the directional distribution is 

In order to know the nuclear polarization at millikelvin temperatures the 

gamma ray spectrum in a germanium detector was measured continuously 

through the experiment. The relative change in the two gamma ray rates at 

90 degrees from the axis of polarization between liquid helium and millikel-

vin temperatures determines the nuclear orientation. One measures 

A = W( 90 ~ at mK = 1 + 0 208 8 mK - 0 087 8 mK (3 4 2) 
W( 90 at 44 

• 2 • 4 • • • . 
Using the nuclear magnetic moment of +3.81 ±.01 and assuming all of the 

nuclei see the saturation hyperfine field of -282 ± 4 KG the nuclear orienta-

tion parameters are uniquely related to delta. In figure 3.4.1 is a plot of the 

nuclear polarization versus delta. 
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Figure 3.4.1 Nuclear polarization of 60co 
as a function of measured~ 
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3.5 :MEASURED SCA11'ERING .A.SY'M1.1El'RIE:3 

The data for this experiment were taken in four separate runs. The 

polarimeter was aligned as shown in figure 3.5.1. The first two runs were 

done with the 65 micro Ci source and the next two runs used the 50 micro Ci 

source both described in section 3.2 . For run 1 the external magnetic field 

used to saturate the source foil was pointing north and for run 2 the field 

was reversed . The energy spectra from the Si(Li) detectors gated by the 

proportional counters were measured for about 10 hour intervals in the 

pulse height analyzers and recorded. Bbetween each interval the refrigera­

tor was refilled with LN and once a day refilled with LHe. The runs were 

started by cooling the refrigerator down to the lowest temperature that 

could be achieved of about 35mK. Data were taken for several intervals at 

millikelvin temperatures then the refrigerator was warmed to LHe tempera­

ture for data taking for several more intervals. 

The gamma ray energy spectrum of a germanium detector positioned 

perpendicular to the axis of nuclear polarization of the source was continu­

ously measured in order to know the nuclear polarization. Table 3.5.1 gives 

the average nuclear polarization of the 6Q-Co nuclei during the intervals at 

millikelvin temperatures for the four data runs. A lower temperature and 

thus greater nuclear polarization was achieved for runs 3 and 4 with the 

weaker 50 micro Ci source. This is expected because for these sources the 

temperature obtainable was limited by the selfheating generated by the 

nuclear decay energy deposited in the source foil. 

The cumulative proportional counter gated spectra from the Si(Li) 

detectors for the intervals of run 1 with the source at LHe temperature are 

shown in figure 3.5.2. The background spectra due to the gamma rays from 

the source were very nearly identical in the two detectors. They were 
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Figure 3.5.1 Geometry of source, field and detectors 
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SOURCE STRENGTH 

65 micro Ci 

65 micro Ci 

50 micro Ci 

50 micro Ci 

< J >/ J 

0.41± 0.01 

0.39± 0.01 

0.43± 0.01 

0.45± 0.01 

Table 3.5.1 Nuclear polarization 
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measured at room temperature by replacing the scattering foil with a form-

var foil of the same thickness used as the backing for the gold scattering 

foil. 

From the measured spectra the asymmetries, 

Aco(Eld A£) N,- N" T Awa(Erm .. E) N,- N,. 
i '" =!\~tNJ f; warm i ,g = N, +_Nl. 

can be calculated for the 1-th measuring interval from an energy interval 

centered atE, E wide, where N is the number of counts within this energy 

range from Si(Li.) detector 1 and N is trom detector 2. Cold, Warm refers to 

the temperature of the source being at millikelvin or LHe temperature 

respectively. To eliminate polarization dependent effects from the denomi-

nator of the asymmetries and thus simplify the analysis ,LHe temperature 

counts are used to normalize the asymmetries. The A i are normalized by 

the total LHe count in the energy interval for this run. A correction for the 

different counting times of each interval is accomplished by the factor T 

(the total LHe counting time)/ T (the i-th interval time). In figure 3.5.3 the 

asymmetries from many energy intervals for the measuring intervals of run 

1 are plotted. Figure 3.5.4 has the results from run 2 for which the field was 

reversed. Two runs were taken with the second source of 50 micro Ci and 

the asymmetries are shown in figures 3.5.5 and 3.5.6 . 

During all of the runs there was no significant drift in the data with 

time. Thus, in the forthcoming analysis for each run the data from the 

intervals when the source was cold, millikelvin. will be added together and 

likewise for the LHe data intervals. 

For each run the difference , co 1 d 

llA(E,AE) =~arm 
warm 

-~arm 
~N)" 

between the counting asymmetry measured with polarized 6Q-Co at millikel­

vin temperature and the asymmetry measured with unpolarized 60-Co at 
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llie temperature is a measurement of the transverse polarization of the 

beta particles that enter the polarimeter from the polarized so-co. Figure 

3.5.7 shows A( E . .6E) for the four runs completed. In the next section this 

experimental result will be compared to the expected efiect based on the 

theory of the transverse polarization of beta particles from the decay of 

polarized nuclei and the known polarization sensitivity of the Mott scattering 

of electrons from gold foils. 
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3.6 m:I'A PARTICLE SPECTRUM AND PREDICTED POLARIZATION 

In order to compare the measured scattering asymmetry change A(E.A 

E), described above to the predicted effect based on the theory of the 

polarization of beta particles from the decay of oriented nuclei and the 

polarization sensitivity of Mott scattering, several things must be included. 

The predicted transverse polarization and the energy spectrum of the elec­

trons as they enter the polarimeter must be known. With these as input the 

change in asymmetries for the measured spectra can be calculated using 

the expected Mott scattering cross sections from theoretical calculations 

and previous experimenter's results. The goal is to determine whether the 

experimental results presented in section 3.5 are in agreement with the 

predictions of beta decay theory. The energy spectrum of beta particles 

that enter the polarimeter is determined in this section. The polarization of 

electrons is calculated based on the purely V- A weak interaction result for 

the distribution in momentum and polarization for electrons from the decay 

of polarized 60-Co. 

The beta energy spectrum shown in figure 3.6.1 is from a 6Q-Co source 

prepared as in section 3.2 . It was measured using one of the Si(Li) detec­

tors of the polarimeter. For this spectrum mylar windows of the same thick­

ness as in the refrigerator were placed over the source. In order to find the 

actual spectrum of beta particles entering the polarimeter the spectral 

response of the Si(Li) detector to monoenergetic electrons must be deter­

mined. The response function of the detector was measured using a 139-Ce 

conversion electron source. The measured 139-Ce spectrum and its decay 

scheme are shown in figure 3.6.2. The variation of the response function 

with energy is needed to determine the actual spectra of the 6Q-Co sources. 

It is assumed that the height of the low energy. tail relative to the peak 
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height increases as the inverse of the kinetic energy of the peak toward low 

energy. 'Ibis is used since the tail is due to backscattering from the detec-

tor. The width of the energy peak is taken to be constant with energy 

because it is dominated by the detector noise. Using this response function 

the spectrum of beta particles entering the polarimeter is calculated and 

presented in figure 3.6.3 . 

The angular distribution of electrons from the decay of polarized 60-Co 

is 

W ex 1 
~ 

v .... <J> 
p·-c J 

(3.6.1) 

P is the direction of the momentum. Figure 3.6.4 shows the relationship 

between the nuclear polarization. the initial electron momentum direction, 

and the magnetic field used to saturate the source foil. In the calculation of 

the expected !:!. A. the asymmetry for electrons from polarized 60-Co must 

include the asymmetric distribution of electrons and the detlection of the 

electron momentum in the magnetic field used to saturate the source foil. 

For each element of solid angle dn
1 

shown in figure 3.6.4 the proper weight­

ing from the distribution equation 3.6.1 is calculated correcting for the mag­

netic deftection in the y direction. B (z) is assumed to be only in the x 

direction. Figure 3.6.5 gives the measured B (z). The detlection is deter-

mined by 
~ 1' 

.6. y = ~ ~ ~ B(z'') dz'' dz' 
E v o o 

Here, e is the electron charge and E is its total energy. Thus, the solid 

angle elements get the weighting for undefiected electrons A y away. 

The starting point for determining the predicted transverse polariza­

tion of the beta particles that enter the polarimeter is the distribution of 

beta particles from polarized so-co, w ex 

£::!!!!. _E_ v - " p. < j > 
+ E-m E+m c cr.p "'"J 

-V I' <J> V ~ A 

1-c-P•J -c-u·p 
~ 

+. Zm <J> ,. -
-E- J X P•cr. {3.6.2) 
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Figure 3.6.4 Scattering geometry and magnetic field 
trajectories 
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From this distribution the electron polarization for electrons entering the 

polarimeter is calculated. This predicted transverse polarization must be 

corrected for the effects of scattering in the source foil and windows of the 

refrigerator. In addition the effects of the applied magnetic field used to 

saturate the source foil must be included. 

In this analysis the depolarization of the electrons which enter the 

polarimeter due to scattering in the windows of the refrigerator will be 

ignored. Using the scattering theory as applied by Scott 
3~ere are very few 

expected scatterings in the total Mylar thickness of 450 micro g I cm:lat any 

energy of interest. In addition. because of the low Z of the constituents of 

Mylar any scattering would not be expected to affect the polarization. 

·The determination of the reduction of the electron polarization due to 

the scattering in the source foil was separated into two parts. First, using 

the measured depth of diffusion of the 6Q-Co into the surface of the source 

foil the average depolarization as they exit the foil of beta particles emitted 

from the nuclei in the direction of the polarimeter can be estimated. Since 

the expected scattering again based on the theory of Scott is small this con-

tribution to the average depolarization is assumed to be zero. 

The transverse polarization of the beta particles entering the polarime­

ter may be reduced in another way. Many of the electrons which finally 

enter the polarimeter were initially emitted from the polarized nuclei in 

other directions. They scatter in the foil and eventually leave the foil sur-

face into the polarimeter. The net result can be a reduction in the average 

polarization of the the electrons reaching the polarimeter. In figure 3.6.3 is 

shown the 6Q-Co beta spectrum measured by one of the Si(Li) detectors, 

corrected for the detector response, from one of the permendure foil 

sources used in this experiment. There is no significant difference between 
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the spectra for the two sources used described in section 3.2. Compare with 

this the spectrum from a source deposited on a 200 micro g/ cm2 Mylar 

backing shown in the same figure 3.6.3. Neglecting the scattering in the 

Mylar the difference in the spectra is attributed to scattering in the per-

mendure foil. Here, it is assumed that the difference, the extra scattered 

beta particles, are completely depolarized. Thus, the expected transverse 

polarization of the beta particles that enter the polarimeter is that deter-

mined by the distribution of electrons from polarized 60-Co corrected by 

the simplified effects of scattering in the source foil. 

The prediction of the transverse polarization measured by the polarim-

eter must be corrected for the detlection of the momentum and spin of the 

electrons in the magnetic field used to saturate the source foil. Mott 

scattering is sensitive to the transverse polarization of the electrons per-

pendicular to the scattering plane. For the accuracy needed here the quan-

tum electrodynamical corrections to g = 2 , the gyromagnetic ratio, for the 

electron can be ignored. Thus, the longitudinal polarization of the electrons 

will be constant. Therefore, the a. p terms in equation 3.6.2 will not con-

tribute to the scattering asymmetries. The transverse polarization perpen-

dicular to the scattering plane, P will be calculated by considering the two 

polarizations P11 and P~. The polarization 

P, = ......::!!!!. <J> 
E T 

is constant as the electron is detlected by the magnetic field. The polariza-
~ 

tion P .1.. which is the component perpendicular to J and the momentum is 

Zm <J> p = J. -E -J-

P J. precesses about the the B field at the same rate as the momentum. 

Shown in figure 3.6.4 are the initial and final relationships of these direc-

tions. Using P11 and P~ at the scattering foil the P 
5 

can be calculated 
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for all d n1 and d n
2 

solid angle elements. At each energy the resulting Ps 

is corrected for the relative depolarization in the source due to the contri­

bution of the scattered unpolarized electrons discussed above. 
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3. 7 COMPARISON OF RESULT TO PREDICTION 

The energy spectrum of electrons scattered from the gold foil of the 

polarimeter detected in Si(Li) detector 1 can be calculated as 

Gl(E,Ps) = Gpolarizatio~ 6polarization N t sdE'W(E') F(E,E') 
independent dependent 
~s dn' )dn"5 ;~ cp ~E') [1 P5(E') Seff(E~ a ~ 

where the geometry is shown in figure 3.6.1 . Here, N is the number density 
I 

of Au nuclei and t is the thickness of the scattering foil. W( E ) is the energy 

spectrum of electrons entering the polarimeter from the source presented 
I 

in section 3.6. F(E,E ) is the energy spectrum response function of the 
I 

Si(Li) detector proportional counter system . P S (E) is the predicted 

transverse polarization of the electrons perpendicular to the scattering 
dcr 

plane as a function of electron energy. The drt'" and S( 8 ) are the Mott 
eff 

scattering cross sections. The 1 /sin( cp ) term corrects for the effective 

thickness of the foil for oblique incidence. As a first approximation, this 

correction is simply the square root of 2. 

The total proportional counter gated count rate in Si(Li) detector 1 in 

an energy intervalM centered at E is 

R
1
(E,6E,P

5
) = s 1 (E,~E,P5 ) + r 1 (E,~E,P5 ) · 

The gamma rate in this energy interval is r.1 . Thus the change in measured 

asymmetries in the previous section can be calculated , 

A(E,tiE) = 

The contribution to A A from the change in gamma ray rates can be 

estimated by measuring fl A at high energy where W(E) is zero. From figure 

3.5. 7 in section 3.5 this is seen to be zero in the energy interval of 300 - 400 

Kev for all four data runs. Thus, we will assume that the gamma rays only 
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/ 
/ 

Figure 3.7.1 Scattering solid angles 



-70-

at!ectAA by their appearence in the denominator. This assumption will be 

discussed further in appendix A . Now, the D. A can be written 

where 

similarly for detector 2, 

G1polarization 
dependent 

X1(E,AE) = 

X2(E,AE) = 

G2polarization 
dependent 

R1 (E,~E,O) 
B1(E,AE,O) 

R2(E,AE,O) 

B2 (E,~E,O) 

are the measured ratios of total to beta rates shown in figure 3. 7.2. 

The energy response functions were measured using a 139-Ce source. A 

200 micro Ci source on a 200 micro g I en? Mylar backing was used in the 

polarimeter in a holder designed to place the source at the same position as 

the 6D-Co sources when they are attached to the refrigerator. The meas-

ured spectra are shown in figure 3. 7.3 . The total width of 25 keY of the K-

conversion line energy peak is attributed to the constant 15 keY width of the 

Si(Li) detector plus the equally important widths due to energy loss strag­

gling in the proportional counter and the variation in path length through 

the proportional counter. The width due to straggling is estimated to be 

about 15 keY for the K-conversion line. The remaining width due to path 

length variations of about 13 keY was taken to be constant as a percentage 

of energy loss in the proportional counter. The straggling width is expected 

to vary as the inverse of the velocity squared of the electrons. It is assumed 

that the height of the low energy tail relative to the peak height increases as 

the inverse of the kinetic energy of the peak toward low energy. With the 
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Kinetic Energy (KeV) 

Figure 3.7.2 Ratio of total to beta particle 
counts in 50 keV intervals 
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Figure 3.7.3 Response function of the polarimeter 
detector system 
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response function as a function of energy one can calculate the expected 

spectra for given Matt cross sections and input spectrum. W(E). 

The determination of the proper Matt cross sections to be used in equa-

tion 3. 7.1 will be treated separately for the two sides of the polarimeter. 

The polarization independent cross sections to be used for scattering from 

finite thickness foils will be assumed to behave as 

dcr ( a. ) ~ 
<in" = 1 + f d~'2'' 

where a. is a constant and Tis the kinetic energy of the electrons. Thus, at 

high energy the cross section becomes as expected the single scattering 

cross section, ~ ~1 • For side two multiple scattering in the foil is expected 

to be minimal. The value, a. = 17 keY is determined by fitting the calculated 

spectrum shape using~,in equation 3. 7.1 to the measured spectrum shape 

of figure 3.5.2 . 

For side 1 the polarization independent cross section is changed much 

more by multiple scattering from the single scattering cross section. The 

geometry of the foil with respect to the incident electrons and the detectors 

allows multiple small angle scattering to mimic a single large angle scatter-

ing. The higher rate of scattered electrons from the 60-Co sources seen on 

side 1 as compared with side 2 is due to this increase in scattering in spite 

of the smaller total solid angle for scattering into side 1. It is assumed that 

the multiple scattering can be accounted for by the addition of a similar 

term in ~ ~,, with a.= 115 keY determined by the best fit to the measured 

scattered spectrum shape for the 60-Co sources. Thus, for side 1 

dcr = ~ ( 1 + Sl ) 
dn" dn" 1 

The effective Sherman function, Sef-f3 ), for side 2 was found by apply­

ing a correction to the theoretically predicted single scattering S( 8 ) of 

Holzwarth and Meister. It is used as s ( a ) ;:.S.l.....:e~ ....... .,... 32 ( t 
. eft = I+ o( ) t 
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where t is the foil thickness and o is taken from the measurements of Van 

Klinken for the transmission geometry at 105 degrees. It is assumed that 

delta does not vary over the scattering angles used in this polarimeter for 

side 2. Plotted in figure 3. 7.4 is o as a function of energy for the foil thick­

ness of 135 micro g/cm 2used in this experiment. 

There have been no systematic studies of S ( e ) for reftection geometry 

which is used for side 1, see figure 3.6.4. Therefore, the analysis will be car­

ried out using two different assumptions about the effects of multiple 

scattering on the ~ff 8) for side 1 of the polarimeter. These assumptions 

are that either i) Sef4:'8) = S ( e), the effective Sherman function is not 

affected by the multiple scattering; or ii) Seffe) = S (e) , it is reduced by 
1+ a/T 

the multiple scattering. This second assumption can be understood by writ-

ing the cross section as 
dcr = dn 

dcr ( 1 + ~ _ 
dn T P5 s( e) ) 

eff 

where the increase in scattering due to multiple scattering only affects the 

polarization independent cross section. Thus, it is equivalent to a statement 

that multiple scattering contributes only to an increase in the background 

of polarization independent scattering. This may be, justified by the idea 

that the multiple scattering is mainly small angle scattering where S ( 8 ) is 

near zero. 

The b. A have been calculated for many energies of interest for the two 

assumptions above. Figure 3.7.5 shows b.A compared to the combined 

experimental results presented in section 3.5 . The experimental results 

from runs 2 and 4 were combined with those. for runs 1 and 3 with a relative 

minus sign because of reversed nuclear polarization direction in these runs. 

Since the expected ll A is proportional to < J > I J the results in table 3.5.1 

are used to combine the runs results. 
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Figure 3.7.4 Finite foil thickness correction to 
polarization sensitivity 
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Figure 3. 7. 5 Measured llA as a function of energy 
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The goal of this experiment is to verity the predictions of the beta 

decay theory. Therefore, the analysis was extended to determine the best 

experimental value for N of 60-Co in equation 2.2.1 . The expected value for 

Nis 
V - A Theory N = e:-l!!!. , E 

where e: = 1 for the theoretical prediction. The best fit of the predicted /).A 

to the experimental results using assumption ii described above between 

100 and 250 Kev is with 

e: = 1.2 :t 0.2 

The results are consistent with the expected effect based on the theory of 

the transverse polarization of beta · particles from the de cay of oriented 

nuclei. 
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Chapter 4 Discussion 

The goal of the experiments in our laboratory with polarized nuclei is a 

search for possible violations of time reversal symmetry in nuclear beta 

decay correlations. The immediate plan is to begin a measurement of the 

correlation term 

R X 

for 60-Co. This is sensitive to CrCA sin(<P fA 
A new source preparation technique appears possible which would much 

reduce the external magnetic field needed to polarize the source foil. It is 

possible that 6Q-Co can be dillused into a thin film( 50 .A thick ) of permen-

dure. The demagnetizing field for such a foil is less than the coercivity of 

the permendure. Thus, the foil would become a switchable permanent mag-

net needing no external magnetic field to remain polarized. This new tech­

nique will be explored in the near future . 

An experim7~~ ~::-;;A R fo: 60-C: ::;xpected to acbleve a limit of 

within a short time. The apparatus described above may be used to meas­

ure R and N correlation terms in 56-Co or other mixed Fermi-Gamow-Teller 

transitions. In these cases one might expect to observe 10% scalar contribu-

tions with 90 relative phase due to Higgs exchange mechanisms. The 

existence of such interactions cannot be ruled out by current experimental 

results. Such an expuriment may be persued in the future. 
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APPENDIX A CONTRIBUTIONS OF GAllY.A RAY BACKGROUND 

The total proportional counter gated count rate in Si(Li) detector 1 in an 

. energy interval L1 E centered at E is 

R1(E,!E,P5) = B1(E,AE,P5) + r 1 (E,~E,P5 ). 
Thus, the measured change in asymmetries is 

In section 3. 7 the contributions trom r 1and r 2 are assumed to be small Using 

the de.on!tioc.s 
x1 (E ,A E) = 

for sides 1 and 2, the contribution to A trom r Is becomes 

r1{E,dE,P5) - r2(E,AE,P5)- (r1(E,AE,O) - r2 (E,~E,O)) .4. ( E ,AE) = --=---=----=--~-____;;;;....._,. __ ____,;=----­
y 

respect to the polarization ot the nuclei 

r1,2{E,6E,P5) ~ 1.04 r1,2{E,6E,O) 

for all tour data runs. In addition 

Jr 1 (E,~E,O) - r2(E,AE,O)f ' 0.01 

. (A.2) 

(A.3) 

in every energy interval. Using these conditions the asymmetry change is lim­

ited to 

(A.4) 
Ay(E, E) ~ -x}~E, E~ + x2 ~E, E~ x1 E, E -1 x2 E, E -1 

In t!gure A.l A1 is shown. A'( is tar smaller than the statistical errors in AA 

ot about 5 ?. and thus can be neglected. 
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Figure A.l Limit on contribution of gamma asymmetry 
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