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ABSTRACT

Transitive permutation groups of finite order are
viewed as linear groups over fields of characteristic
p > 0 by having the group permute the basis elements of a
vector space M. The decomposition of M into the direct sum
of invariant subspaces is investigated, and criteria given
for whether M is decomposable, and if it is, how many
direct summands occur, in the special case the group has
rank 3, i.e., it has 8 corbits on ordered pairs of points.
In the case that each orbit is self-paired, M decomposes
into the maximum possible number of indecomposables, and
the group has every p’/-element conjugate to its inverse,
irreducibility results are obtained for the
indecomposables. This last result holds for any rank. It
applies in particular to the symmetric and thence to the
alternating groups, which enables us to describe certain

modular irreducibles of these groups.
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I. DIRECT SUM DECOMPOSITIONS
1.INTRODUCTION

Let G be a group consisting of permutations of a
finite set 0 of n > 1 points. If w ¢ 0 , we write w¥ for
the image under g € G of the point w ¢ 0. We assume
throughout that given two points Wy, €0, there is a
g € G such that wlg = Wy i.e., that G is transitive.* If
we let G act on 0 X 0 by settinc (wl,wz)g = (wlg,wzg), we
partition 0 X 0 into orbits. The number of such orbits on
N0 X 0 is called the rank of G. Notice that D = ((w,w): w
€ Q) is always.an orbit of 0. Thus there are always at
least 2 orbits on 0 X 0. When the number of these orbits
is in fact 2, G is called doubly- or 2-transitive. If
L C 0X QO is an orbit under G, then L = {(ul,wz) e QX
Q: (wQ,wl) e L} is also an orbit. If L = ﬁ, L is said to

be self-paired.

4]

OQur interest, in the present work, is to study the

‘

permutation module M over a field F of characteristic

* : . i
( ) One may study the case where G is intransitive by
looking at the constituent transitive actions on its

orbits.
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p > 0. To construct M, let the points of 0 be linearly
independeﬁt generators of a vector space M over F, which
will then have the same dimensicn over P as 0 has
elements; i.e., n = |nl. Here the bars indicate
cardinality. To complete the definiticn of M, the action

of G on M is given as follows:

(3 «a w)g = Y a w9, where a¢ ¢ F.
wep © wen ¢ e

In this work we investigate in the rank 3 case
whether M can be written as a direct sum of G-invariant
subspaces, and, in case it can, how many direct summands
it has. One might initially suspect that the answer to
these questions could only be obtazined by an elaborately
detailed consideration of the permutation representation,
perhaps together with a study of the internal structure of
the group itself. Actually, we show that—fat least in the
rank 3 case--the answer as to how the permutation module
cdecomposes can be obtained by knowing only certain
combinatorial parameters, which wsre previously introduced
by D.G. Higman [4]. (The rank 2 case is well known and
easy.) These parameters describe the cardinalities of
various sets obtained from the orbits of G on ordered
pairs of points, and will be d=fined in the next section.
The proof proceeds by using the fact that projections must

be linear combinations of 23 known matrices, as the rank is
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3. By explicit calculations with these known matrices,
which involve only combinatorial properties, all possible
projections are determined, and thus the decomposition

properties of M are established.

As is well-known, in case the characteristic divides
the order of the group, it may happen that a submodule
cannot be split up as a direct sum of invariant subspaces,
but it may possess an invariant subspace which is not a
direct summand, there being no complementary {nvaeriant
subspace. So we may wonder whether the indecomposables we
obtain are actually irreducible. In the case of the
symmetric and alternating groups, we obtain a result on
this, thereby showing the irreducibility of certain
modular representations of these groups. How can the study
of rank 3 representations provide a demonstration of the
irreducibility of certain representations? The secrets
here are the limited centralizer algebra dimension and the

self-duality of symmetric group representations.

Rank 3 groups are actually very common, and we shall
provide tables for the convenience of the reader with
which one can determine the decomposition of the
permutation modules for many cases which have been

reported in the literature.
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The centralizer algebra C is defined to be the
algebra of all linear maps c of ¥ into itself which
commute with the action of G, i.e., such that
C o g =g o c, for all g € G, where g is viewed here as a
linear map on M. The centralizer algebra ¢ is spanned by
the linearly independent matrices {AT}TQQXQ a G-orbit?

where

'] T, 4 (1,3) ¢ £
LA 0, otherwise

and thus C has the same dimension as the rank of G (see I.

Schur [10] or H. Wielandt [11]).
DECOMPOSITIONS AND PROJECTIONS

The principal topic of investigation in this work is
the decomposition of the permutaticn module M into the
direct sum of submodules which caznnot themselves be
decomposed. However, we find it easier to conduct the
computations using projections. A linear map P ¢ C is

2

called a projection when P = P. Of course 1, the identity

map con M, is always a projection, as is 0, th

(0]
3!
]
U
n
1
3
Q,
t
3]
(e}

evervthing to 0. In general, if P is & projection, 1 - P
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is too.

Suppose M = M, ® M, .-+ M., where the M, are

submodules of M. We obtain t projections w4 by considering

the map that sends m € M to mj, where m; is defined by the

unique expression m = my + my tee ot my ., each m. e Mj.

$ 74 and

J
These canonical projections satisfy (1) xs:m; = aiJ

1)

1, if i = 3

{2) 1 = 74 +ooot L where Bij = { }. Notice

G, otherwise
that we can recover the Mi from the Ty Mi = Mﬂi.

Conversely, suppose we start with a family {”i}§=1
satisfying the above conditicons (1) and (2). Define

Mi = Mxi. Now M = M1 Do Mt' the sum being M by property

{(2); it is direct because my Feoeed Ry = 0, with all

mj € Mj' implies myxy +oeoe et My = 0. Since mj = mjxj,

property (2) gives mj = 0. Finally, note that ny =0 is

equivalent to My = 0.

Now M always has the 1-dimensional submodule

§ = < ¥ w>, and C always has themap Y a w+~ 2 ( 3 «a

Jw.
weD we ¢ weR 7eN

T

Now we notice that G acts on M by maps which are

crthogonal with respect to the inner product

(2 aw, Z wa) = 3 a B, Thus *he perpendicular space
we ¥ wen Wwe N w

71 of a submodule T of M is alsc a submodule. In

particular, &t is alwavs a submccule of M,
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Now if pYn, M = 8 © &l, as Y ¢ &l, since
we D

n= Y1=2=O0 in F.
weN

In the case plin, & is never a direct summand of M.

*

For suppose M = § & S. Then st = st/mt (M/S)* = 9

n
n

3,

where the * indicates the dual codule (for a discussion of
dual modules, see Huppert and Blackburn {6]). Since G is
transitive on 0, all fixed vecters are mutually
proportional. Thus st = 4, so S=&%. But 8§ ¢ &t, asn =0

in F.

Now let r = rank(G). In the case where n is
invertible in F and M = M; & M, 3---6 M,, where the

17 the

Mi 2 0, or where n = 0 in F and ¥ = My SRR Mr—

Mi = 0, we say M deccmposes fully.



3. SOLUTION OF RAKK 2 CASE--A PREVIEW OF RANK 3

As zn example we can now easily sclve the
decomposition problem for rank 2 groups. (For more on the
rank 2 case, including the questicn of reducibility of
direct summands, see Mortimer [¢!, and the work of'M.

Klemm and L. L. Scott referred to therein.) Let's suppcse

we have a projection P so that 1 P + (1 - P) provides a
decomposition of M. Since P ¢ C, P = al + 8J, where I is
the identity, J the all 1's matrix, and P is viewed as &
matrik by considering the basis formed by the points of Q.
The above eqguation holds for some a,£ ¢ F, as I and J are
linearly independent and ¢ is 2-dimensional by the fact
that G has rank 2. Now P2 = (al + BJ)2 = a21

%)

+(2ag + ns°)J. The condition P2 = P becomes

"
™ A
n ]
Q
N
(M)

2a8 + n#8

so the solutions are

a = 0, 8 =0
a =0, #=1/n, if n 2 ¢(mod p) o
a =1, 8 =20 I
ga=131, 8= -1/n, if n 8 O(mod p)

1 ik i = - :
P_!O,EJ, I, I -23, 42 n=01inF



But in the latter case the decorzecsition is trivial; in

the former the images of % ; L = %J are § and &l,

respectively. Thus we see that:
1f G has rank 2,
(1) M is decomposable if and only if n 2 O(mod p);
(2) If M does decompose, there are exactly 2
indecomposable summands, and there are no

other nontrivial proper submodules which

are direct summands.



4, D.G. HIGMAN'S COMBINATCRIAL PARZMETERS FOR 2

RANK 3 CROUP

Suppose now that G has rank 3. Let G act on 0 X Q.
Let Gw, the stabilizer of w, act on {w} X Q. Since G has
rank 3, we know {w} X 0 partitions into 3 orbits. (By
transitivity of G on 0, each orbit in Q X 0 contzins an
ordered pair (w,7), 7 € 0, and thus a Gw orbit in {w} X Q.
Conversely, 1if we start with a'Gw—orbit ¥ in {w} X 0, we

get a G-orbit in 0 X 0, which contains no new {(w,7) that

weren't in KX) Call the 3 orbits
{w), Alw), T(w).

Here we choose the notation so that A(w”®

r{w)9. Higman's parameters are defined by

n = 1nl
k= 1Aa(w)l
1l = Ir{u)l
X, if 7 ¢ Alw)
la{w) O A(7)I =
w, 1f 7 € Tlw)]
- _ 2 e
d = () u) + 4(k H

Notice that X\ and u are well-defined, =as Gw is transitive
on A{w) and r{w!, so the choice of 7 coss nct matter
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5. STATEMENT OF DECOMPOSITICN TEECREM FOR RANK 3

Theorem 1. Let G be a rank 3 perzutation group of degree n
and even order. Let p be a prime and F a field of
characteristic p > 0. Let M be the corresponding

permutation module of G over ¥F. Then

(1) If pin, M is decomposable if and only if 4 2 O(mod p).
In case decomposition occurs, there are exactly 2
indecomposable summands, and there are no other

nontrivial, proper direct summands of M;

(2) If pin, write M = § o &t.

(i) If p # 2, &t is decomposable if and only if

d 2 O(mod p) and /d € F;

(ii) If p = 2, and F contains a 3rd root of unity
other than 1, gt is deconposable if and only

if d

Ht

0(mod p);

(iii) If p = 2, and F contains no 3rd root of unity
cther than 1, &% is deconposable

if and only if d 2 0 and yu = 0(mod p).

! . : s
In case &~ decomposes, it has exacitly 2 indecomposable

summands, and there are nc cther nontrivial, proper

direct summands of &l.



[N
fas

IT &l decomposes for F 2 GF(p), but not for GF(p), i.e.,

when p # 2, d 2 O(mod p), /d e F, /4 ¢ GF(p), or p = 2,

(€V]

roct of unity other

[N

u =d = 1l(mod 2), F containing =

than 1, let §t = Ky & Ky Then Xy and K, are algebraically
conjugate under the automorphism x =~ %P of GF(pz).

Remark 1. Notice that just as the congruence of n mod p
determined decomposition for ths rank 2 case, the
cengruence of n and 4 determine the decomposition in the
rank 3 case, except possibly for the case where certain
algebraic equations are insoluble in F (for the odd order

case, see the Appendix).

Remark 2. By the result of Guralnick and Wales [2], we can
compute the degrees of the indecomposables, as follows. If
the irrecducible complex constituents have degrees 1, 1Py

f~, the degrees of the indecompcsables over an

“

algebraically closed field of characteristic p are sums of

thess. If phwn, the degrees are i, f f,, if p¥d, and 1

o Ia ‘
fz + f3 if p|éd. If pln, they are n = 1 + f2 + Ly 1L Ble;

and 1 + f2, f3 or 1 + fa, f2, if Y4 The_latter choice is
made by determining whether 1 + f2 or 1 + f3 is céivisible

by p.

shall need from D.CG. Higman {4)]. lote that n =1 + & + 1.
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In the following,

1, if i e A(])
Ai- =
J 0, otherwise

and all occurrences of the symbol = will mean that

arithmetic is being carried 'out modulo p.
(2) gl = k(k - X - 1)

(t) A has exactly k 1's in each row and in each

column; the other entries are 0;

o
oy
i

kI + \NA + pu(J - I - A)

(k - o) + uJ + (N - pa;

(d) A is symmetric;

(e) I,A,J form a basis of (;

(f) 4 is a sguare in &2 and /Al [2k+(X-u)(n-1)1,

except possibly when k = 1, g =X + 1 = k/2.

(The above for |G| even)




i %
1o

Proof. (1) Suppose )\ - [ 2k . Then

A= (N - )% + 4(k - p) = 4k® + 4k - £ = 4[k(k+1) - u].
Recalling (a), ¢l = k(k - X - 1), and noting that

l =~k -1 (asn =0), we get

-u{k + 1) = k[(k - (2k+uy) - 1]. Thus

b ~k% -k = -k(k + 1). Therefore, 4 = O.

(2) Suppese 4@ = 0. By (£f), /dl[2k+(x-u)(n—-1)1, so

2k + (X = u)(-1)

0, unless k =1, g =X + 1 =%k/2. In

]

the latter case, X - g = 2k holds if and only if -1 = 2k;

i.e., n = 0, which holds by hypcthesis. g.e.d.

Lemma 2. If n = 0, d is a quadratic residue modulo p.

Prcof. By (f), 4 is & square in 2, hence also meod p,

unless we fall into the case k =1, g4 =X + 1 = k/2, In
)2

this case, d = (A - )2 + 4(k - g) = (-1)% + 4(k - k/2) =

1 + 2k =n=20 g.e.d.

Lemma 3. Let p = 2, d 2 0. Then k = u(n - 1)

- e A _— 2 » \ — / 2 S
Proof. As d = () - u)° + 4(k - g} = (X = )" X - u= 1.
By (a), k(k - x = 1) = uyl, so k{k - g) = u(n - k - 1)

Cancelling the kuy-terms, k =z k“ = u(n - 1). qg.e.d.



©. PROCF OF DECCMPOSITION THEOREM

-]

As in the rank 2 case, we notice that any projecticn

P is in the centralizer algebra (, which is--according to

(e)-—-spanned by I, J, and A. Thus

P =qaI + £ + YA, P2 =P, a,8,v ¢ F.

Conversely, if P is a linear combination of I, J, and A,
2

and P = P, then P is a projection. The eguation P2 = p

gives

P2 = {al + B8J + YA)Z = [u2 + Yz(k—u)]I + [£2n + qu + 2ad8
+ 25vk]1T + [v2(n-u) + 2av]a,

using J% = nJ and the expressions for AJ, JA, and aE given

in (b) and (c). Linear independence of I, J, A (result

(e)) now turns the condition P2 = P into the system

[¢ = ¢2 + v2(k - p)

2 2

(1) 8 = B°n + Yy + 2af + 24vk,

A - u) + 2av

which must be solved for a,£,y € F.

We must first investigate what happens when v = 0, Tn

this case, (1) is eguivalent to
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Thus ¢ = 0 or 1. If a = 0, the second eguation of (2)
becomes 4(8n - 1) = 0. We then get the solutions 8 = 0,
and 8 = 1/n (if n 2 0). If a = 1, the second eguation of
(2) becomes g(8n + 1) = 0, so 8 =0, or -1/n (if n 2 0).

Thus the projections which are linear combinations of I
and J alone are 0 and I, if n = 0, andé 0, I, (1i/n)J,

I - (1/n)J, if n 2 0.

Suppose, then, that we are looking for solutions in
which v # 0. Dividing the thiréd equation of (1) by ¥, we

get

a = a2 + Y2(k - o)
(3) 8 = 52n + qu + 2a8 + 2E8YK

Y(Xx - u) + 2a

[oy
1l

Notice that we may immedizately solve for v, as follows.
Write the third equaticn of (3) as 1 - 2a = vy(x - u) and

sguare bcth sides. Now add 4 times the first eguation of

4

(c), To get
(1 - 20)2 + 4a = v2(x - w)? + 4c? + 4v%(x - u). Thus



1 = v%d. In this way we see that necessary conditions for
the existence of a projection which is not a linear
combination of I and J are that 4 2 0, and that /d ¢ F. We
are forced to restrict ourselves to the case v = 1//d4 (if
vy = -1//d, change that notation so that the negative

sguare root is meant by /d). Thus (3) is equivalent to

[0 = a? - a + géﬂ
e 42 u k
A = 8 n + + 2a8 + 2%
(&) ) a Ja «
2a=1—-)-‘7_a‘i
Yy = o
L 7d

By this system being eguivalent to (3) we mean that for
a, 8,y € F, (a,8,v) satisfies (3) if zand only if it
satisfies (4). We also assume that z2ll the symbols in the
eguations are defined, in order to say that a system is
satisfied; in particular, denominators are not 0 and

square roots shown exist in F.

Substituting for a in the 1st ard 2nd ecuaticns of (4}, we
find that the 1st equation is sztisfied automatically

given the 3rd, and (4) is eguivzlent to



_ 2 A—u—-2k 1
0O = ng 73 A + S
(5) a = 31 -2
1
Y =
7d

If pln, we obtain, using Lemma 1,

_ 1 N=
@ = z(1 - <55~

1
{(A—u—-2k) /d
1

7

(®)
< w™
I ]

If pyn, we obtain

-

Here the second eguation of (7) is obtained by solving the
first of (5), simplifyving using (&). The = is chosen

independently of the choice of the sign for /4.

We turn now to the case where p = 2. Then (4) is

equivalent to



P
[60)

(8) o=n52+2‘:%—1,5+%.
_ 1
Y-—7'a
If (8) has a solution, then d = 1(mod 2), for otherwise /d

is not invertible. Thus (8) is eguivalent to

_ 2 k-u
0 = «a + a + g
o=n52+54-13‘
(9)
v =
d 20

We ncw get in case 2|ln, using Lemma 3 to show k - g = 0,

= 0 or 1

1]
o Qs

A <X » A
I

whilst in case 2%n, again using Lemma 3, we get

0 = a2 + a + u
 p2
(11) b= AT e & f (p = 2) .
y =1
d 0
If F 2 GF(4), then we always find 4 solutions to (11},

<
(WS
N
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in case 4 =0, a = 0 or 1, £ =0 oc¢cr 1, v =1

. _ 2 2 _

in case g4 =1, a = ¢ or ¢, B = £ or £, v =1
where ¢“ + ¢ + 1 = 0, and the choices for a and 8 are made
independently.

If F D GF(4), there is no solution to (11) if g«

1l; as
before, there are 4 solutions, ¢ = 0 or 1, 8 =0 or 1,

vy = 1, if u 0.

0

Reviewing the solutions we have obtained, we find that in
case pln, there is a projection (other than 0 or 1) if and

only if 4 2 0, and in the case that d

i

0, there are
exactly two projections besides 0 and 1. Thus in this case

the direct summands are unigue.

Examine now the case p¥n, © > 2. We now know that

d = 0 cr /@ ¢ F implies that the only projecticns zre O,
1. 1 - =

I, 53, I - £J. Conversely, d 2 C ana /d ¢ F guerantees
il

that there are additional projections, according to (7).

] . .
In the latter case we show that §~ is decomposable, by
; 1 A=t keti-2k 1 1
k + = = i : + = &
looking at P 2(1 —70)1 ( T ZE)J /qA' a
eclution to (7). Direct calculaticn shows PJ = JP = 0.
Lo - - i B s A
Since I = gd = (1 = %J = F) # F &hd
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(I - 47 - P)P = P(I - 23 - P) = 0, 8§ is Gecomposable. If

o

we write 8§t = K, © K,, where Ko K5 2 0, then we see that
we have accounted for 8 projections of M = 3§ @& K, & K, by

acdding together the various cencniczl projections. But we

&

have already seen that there are at most 8 solutions to

-

eguations (1), when pYwn: 0, I, =J, I - %J for v = 0, and

S

4 solutions to (7). Since any direct summand must have a
corresponding projection, and we have listed all

‘projections, there can be no unlisted direct summands.

Finally, we consider the case pin, p = 2, d # 0. If ¢

2

satisfies ¢© +: + u = 0, and ¢ ¢ F, then s+ decomposes. As

when p > 2, we check that PJ Jp =0

h

or P

¢l + ¢J + A.
For PJ = JP = (n¢g + ¢ + k)J = kJ, and Lemma 3 gives
k = (1l - 1) = 0. Again we find &l = Kl & K2 decomposes,

and we have exhausted all possivilities for projections.

As to the algebraic conjugacy of K, and K2, in case
8t is decomposable over F but not over GF(p), we just note
that I, J, and A have entries in CGF(p), so by algebraic
conjugation the canonical projecticon onto Kl becomes
another projection P“, and P = P’ since the coefficients
of I, J, and & in the expression for P are not all in
GF(p). Now the relations PJ = JP = 0 carry over to P“:

’

JF’ = P’J = 0. Thus the image of P’ must be Kl or K,,

since these are the only indecorposable direct summands

),

, s i ! ¥
contained in 8§, and the image ¢cf P’ must be

f.



indeconposable, as that of P was. But P = P’ shows, fronm

our knowledge that each projecticn is the sum of cancnical

ones onto &, Kl’ and K2, respectively, that the image of P

is one of {Kl,Kz} and that of P’ the other. g.e.d.
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II. IRREDUCIBILITY OF CERTAIN INDECOMPOSARLES

Lemma (I. Schur). Let G be a transitive permutation group
of rank r. Then the centralizer algebra has dimension r,
and has basis {E¢}¢, where ¢ runs over the different

orbits of G on ordered pairs, and

1, Af (1,.3) € &
(E(P)ij =
0, otherwise

Proof. Clearly the centralizer zlgebra is an algebra. Now

the eguation Ag = gA says that = a

f

i,(j)o (i)a_l,j' where

o is the permutation g induces on the columns of A, when A

. oy T £ A. Thus . -
Ag, and a:LJ is the (i,j)-entry of A. Thus a(a)a'(J)a

24 i letting i = (a)eo. Thus our condition says simply
that the (i,j)- and (i“,j“)-entries are the same if they
lie in the same orbit of G on ordered pairs. The lemma now

follows. ag.e.d.

Proposition 1. Let G be a finite permutation group which

is transitive con the n points 0 = {(1,2,...,n}, and suppose
that the rank is r. Let M be the corresponding permutation
module over a field of characteristic p. Write

Moo= My &8 Mg, where the M., are indeccmposable
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submodules. Then if pln, t < r - 1; if pin, t £ r (in cace
eguality holds, we say M decomposes fully). There is one
and only one Mi containing a non-zero vector fixed by all
g € G. Renumber to call it My If M deccnposes fully, P
Mg, .., Mg have scalar centralizer algebras (which will
also be true of Ml' if pYn), and if pwn there is no other
way than

M =M &M, 8--:© M, to write M as a sur of indecomposable

submodules.

Note. The fact that there can be only one indecomposable
in a direct decomposition which contains a vector fixed by
all g e G is a well known consequence of transitivity of
G; the submodule is then known as a Scott module. The
fact that there can be no more than r direct summands in a
decomposition can also be obtained by the result of

Guralnick and Wales [2]. For more on Scott modules in general,

Proof. Let Pi be the canonical projections of M - My

which will be FG-endomorphisms of M. Then X1P, +oeeed APy

= 0 implies that X-Pi = 0, by multiplying through by Pi'

i
Since Py #0, x; = 0. Thus the P, are linearly independent

elements of the centralizer algebra. Thus by Schur's lenma

above, t s r. As to fixed vectors, the itransitivity of G

certainly implies that they are 2ll multiples of s = 3 w.
weQ
Neow write s = my et My where ny € My, As sg = s, for



all g e G, mig = my.

3 But then transitivity implies m. =

el

KiS, for scalars K g If Ki”j = 0, ftor i 2 5, then

M, " M. # O. Thus s ¢ M for 2 unigque i, and we renumber

1 J

so that i = 1. We now show that ?l, Yy Pt' J are

il

linearly independent, in case pin. Here J is the
FG~endomorphism determined by the all 1's matrix, for the

basis {7} Suppose that lel +oo et xtPt + xt+1J = 0.

7€0Q’
Then Xipi = —Xt+1JPi = 0, if i # 1, t + 1. Thus Xp Zeee=
g = 0. Now lel = —)\t+1JP1 gives XlPl = —xt+13, as

s € Ml. Thus

Ay # 0 implies Ml = <s>. Let C = M, +oeo ot My. Now <s>

IR

E 3

~

<s> (M/C) = cl. Thus ct is spanned by a fixed vector.

124

Transitivity of G again gives ct = <s>. Thus ¢ = <s>!. But

pln implies s ¢ <s>1. This contradicts C n <s>

0. We
conclude that g and hence finzlly Apyq are also 0. Thus

in the case pln, t £ r - 1.

e turn now to the case when M decomposes fully. If

pYn, Pl' ey Pr form a basis of the centralizer algebra,
co any FG-endomorphism ¢ of M manv be written ¢ = a, Py

5 : oy . _
+oe ot G“Pr‘ Thus ¢° = ¢ implies Bg— = Gy (so0 Gy = 0 or 1),

for 211 i. Thus M = M, &-++6 M, is the only way to write M
as a direct sum of indecomposable submocdules. Now any
FG-endomorphism of Mi becomes, by composition with the
canonical injection into and the canonical projection onto

M:, an FG-endomorphism ¢ of M. Now P, = 0, for j # i, so
S J

o~

Hh

we find Gj = 0, for 3 & 4.
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If pln, P P J forn a basis of the

A L

centralizer algebra, so write

¢ = alPl toert ar—lpr—l + arJ
for the FG-endomorphism of M resulting from composition
with the canonical maps of an arbitrary FG-endomorphism of
Mi' i# 1, as before. Since ¢ maps M into Mi’ then 0 =
cPl = alPl + arJ. Thus a; = g, = 0. For j = l,r(i, we have

0 = ch = aij, so aj = 0. Thus ¢ = aiPi’ and the

centralizer algebra of Mi is scalar. g.e.d.

Proposition 2. Let G be a transitive permutation group and

M the corresponding permutation module over the field F.
Suppose every orbit of G on ordered pairs of points is
self-paired. Let M = M; ©--+® M, be a decomposition into
incdecomposables. Then the Mi's are mutually orthogonal
(with respect to the point-basis standard inner product)

3
and Mi = Mi'

Proof. As usual, let Pi be the canonical projection onto

M.. We have (vPi,wP T

1 ) = (VvP.,P.",w) = (vP;P.,w) = (0,w) =

h) itj itj!

jT = Pj’ This latter is true because, by the above

Jemma of Schur, the Pi can be written as linear

0, as P

combinations of the E¢‘s, and ¢ self-paired means that E¢
T

= Eé . But an arbitrary element cf M, can be written as



N
(62

»P,, for some x e M. Thus the M; are mutuallly orthogonal.

Beczuse .Z_Mj c Mii, and the dimensions of the two must
&l

be the sane, Ml = _Z_Mj. Now
Jzi

¥
i ((Mi+Mil)/Mii) & Mi/(Mil N M) =M.

X
R

Theorem 2. Let G be a transitive permutation group on @,

and M the corresponding permutation module over the fiel

(o}

F of characteristic p > 0. Suppose that M decomposes
fully, and that every orbit of G on ordered pairs is
self-paired. Let G have the property that every p/-element
of G is conjugate to its inverse. If we write M = M, ®--0

Mt' with M. indecomposable, and s = Y 7 € M,, then M,,
+ i 7€Q 4 2

.+ Mg Bre irreducible.

Remark. The irreducibility of 8! in the natural
representation for the symmetric group on u 2> 4 letters,
or that for the alternating group on u 2 5 letters, has
been known since at least Dickson (see Mortimer[9]).
Notice 2also that in the case of 21t(4), the natural
representation on 4 points has dsgree 4, so 8t nas

dimension 3, but the group has no absolutely irreducible



representation of degree 3 over characteristic 2, so 8+ is
reducible. In this case the 2-regular element (122) is not
conjugate to its inverse, so the hypothesis of the theorenm
fails. Our results are rarely--if ever--new with regard to
these 2-transitive representations, which also occur as
constituents of the rank 3 representation on unordered
pairs of letters. New results are obtained for the other
constituent, however. Results on the irreducibility of gt
in the case of various 2-transitive representations, as
well as a review of the literature, are to be found in
Mortimer [9]. Our results also apply to constituents of

higher rank representations, however.

Proof. Suppose first the field F is algebraically closed.
By Prop. 1, Mz, R Mt have scalar centralizer algebras,

and by Prop 2, M; N Mil = 0 and M-* = M TOr 1 = 245 wesy

i 31
t. By taking any irreducible S ¢ M;, S # 0, we notice that

*

M*/S'L S , where L refers to the usual inner product in

R

*
the point basis restricted to M;. Now we show S = S . The

Brauer character p afforded by S is the complex conjugate
of that affcorded by S*. Now the G-conjugacy of a
p’-element g to its inverse will imply that p(g) = p(g_l)
= 5(g). Thus S and s* have the same Brauer character, and
must therefore be isomorphic. Now consider My - Mi/Sl,
the canonical projection, ¢ the isomorphism between Mi/Sl
and S, and the canonical injection ¢:S - Mi. Then x¢¢ is

an ¥FG-e

o

domorphism of Mi, and thus must be scalear. EBut



N . ! ; 5 .
then S8 # 0 gives S* # M., so the endomorphism is not ©.

.

Since x¢¢ is scalar, st

1]
(@]

so S =M If F is not

i .
algebraically closed, extension of the field cannot cause
the M; to further decompose, as zlready over the original

=™

F, M decomposes fully. Furthermcre, irreducibility over

1
=
I}
tx

the algebraic closure of a fi

n

implies @ fortiort
=

irreducibility over F. Thus our result with algebraically

closed F implies the result for unclosed fields as well.
g.e.d.

Corollary. Let G be the symmetric group on the p letters

of 0, Sy, v 2 4, or the alternating grecup con v letters,
Ay, v 2 5, and let G act on unordered pairs of points. Let
phw - 2. Let M be the cecrresponcding permutation mecdule

over a field F of characteristic p > 0, where F 2 GF(p2).

Then the indecomposables of M not containing s = I 7 are
TEQ

{irreducible.

Proof. By evenness of Sy‘s order, the orbits of the

(€3]

i1-point stabilizer in the rank action on unordered pairs
g < ;& : 2

zre self-paired, By Thecorem 1, iI pYd=(y - 2)°, the

permutation module decomposes fully, anc by Theorem 2, the

indecomposables not containing s are irrsducible.

To handle Ay, notice that if we consider the module

M; for S, the module for A, is simply (¥;), . This is
A,
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because the Higman parameters ars the same, as are the

basis matrices I, J, and A. Let T be an Av~irreducible
submodule of (Mi)A . We now a2pply Clifford's argument. We
v
have that 2 Tg is an S»—submodule of My hence by
geSv
irreducibility of Mi, > Tg = M. Now Tg is an
geSy

irreducible Ay—submodule. Thus by selecting just some of
the g's we get a direct sum M; = T; ©+-+0 T,, Where the

T.'s are Ay—submodules. But M:

i is already known to be

i
Av—indecomposable. Thus Mi = T.

g.e.d.
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III. EXAMPLES

1.21%(5)
Let the alternating group on 5 points permute the set of
2all unordered pairs of distinct elements of {(1,2,3,4,5},
using the natural permutation representztion on
{(1,2,3,4,5}). We have now that
o={{1,2});{1,3},(1,4}),{(2,5},{2,3},{2,4},(2,5};
{3,4},{(3,5},{4,5}},
so n=[2]=10. Now under the stabilizer of (1,2}, the pairs
after the second semicolon, which are the pairs not
intersecting (1,2}, are permuted among themselves; there
are l=[552}=3 of them. Finally, there are k=2(5-2)=6 pairs
intersecting {(1,2). Now we may still wonder whether the
group is really rank 3; we have seen so far only that each
set of 3 (resp. 6) pairs is mapped into itself; but is the
stabilizer of (1,2} transitive on each of these sets? 1If
we want to map (3,4} to (3,5}, for example, we may take 3
to 3, 4 to 5, and then see whether the permutation doing
this and fixing every other point is even or odd. If it
chances to be odd, we multiply it by (1 2), which--of
course—-—stabilizes {1,2}. Sirice (4 5) is odd, the desired
element of the stabilizer is (1 2)(4 5). If we want to
show transitivity on the set A of pairs intersecting
(1,2}, we may without loss of generzlity assume that the
problem is to map (1,3} to {(1,4). This can be done by
(3 4 5). Thus Alt(5) really is rank 3 on unordered pairs.
Notice now that aA({1,2})na({1,3))={({1,4},{1,5),{2.3}}, so
x=3, and A{{1,2})na({3,4})={{1,38),{31,4).{2,8).{2.,4)}, so

(=4. The two complex irreducibles which occur in the rank
5-3)

3 representation have degrees 5-1=4 and 54 5 =5 (using
the formulas from Higman([4]). We have
d=(3—4)2+4(6—4)=9=32. Using the result of CGuralnick and
Wales(2], the fact that the indecomposable

direct summand containing & must have degree divisible by
the highest power of the characteristic dividing n, and
Theorem 1 of the present wcrk, we see that in

char. 2, M=63%54

char. 3, M=l&¢
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char. 5, M=5&5,

where the numbers indicate by the dimensions the
indecomposable direct summands of the permutation module
M. Notice that since 4 is a sguare and 2in, there is no
dependence of the decomposition on field extension (see
Theorem 1). '

2. The Hall-Janko Group HJ.

We see from the literature that this group has a rank 3

representation of degree n=100, and is of order
27.3%,52 7, we are also given that k=36,1=63,)\=14,u=12,
Thus /d=10, and again by the formulas found in Higman, the

degrees of the complex constituents are 36 and 63. We

obtain:

char. 2: M = 100

char. 3: M =1 9 36 & 63
char. 5: M = 100

char. 7: M 1l & 36 @ 63.
By examining the table for the Hzll-Janko group in M. Hall

I

and Wales[3], we see that every element of this even order
group i1s conjugate to its inverse, and so by Theorem 2
there are absolutely irreducible representations of
degrees 36 and 63 over characteristics 3 and 7.

3. Alt(25).

Let Alt(25) act on unordered pairs of distinct letters, of
which there are 25.24/2=300. Here /d=25-2=23, f2=275,
f4=24. Now over characteristic 7, we must have M breaking
up as a direct sum of a 1-dimensicnal, a 24 dimensicnal,
and a2 275 dimensional module (full decomposition), by our
results and the result of Guralnick and Wales. By Theorem
2, the summands of degree 24 and 275 are {rreducible
(notice that these two representations lie in 7-blocks of
defect 3).
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APPENDIX

THE ODD ORDER CASE

We have relegated the treatment of the odd order rank
3 case to this appendix. Our notation is the same as

before.

Theorem Al. Let G have odd order and permutation rank 3.
Let M be the permutation module over the field F of

characteristic p > 0. Then

(1) If pin, M is indecomposable.
(2) Let p¥n, so M = § & &*.

If p > 2, a8t is decomposable iff. /-n e F;

if 2, and F 2 GF(4), &l is decomposable;

o}
il

if p 2, and F P GF(4), then &L is deconposable

iff. X is odd.

Remark. An example is the semidirect product of the

multiplicative group of guadratic residues modulo 7 with

the additive group of integers rmodulo 7.

Prcof of Theorem. As is well-kncwn, for the odd order case

we rmust have n = 4\ + 83, k = 1 = f2 = f:3 = 2\ + 1, g = X.

This follows from our known relztions on the rank 3



parameters, together with the fact that a group of odd

order has no real irreducible cozplex characters. Writing,

as before, P = al + 8J + YA, we find P2 = P is equivalent
to:

¢ = a? - (X+1)72
(A1) 8 = neZ + (A+1)v2 + 208 + 2(2x+1)8v

v = -v2 + 2av

Note that to derive these equations, we use thaf A+ AT =
J - I, as the two nontrivial orbits of Gw are paired. As
before, we know that for vy = 0, P = 1 or I - %J (if phn).
So for v # 0, the last equation of (A1) becomes vy =

2a - 1, so the first equation of (Al) becomes a = @ -

(A + 1)(2a - 1)2. This gives that -na? + na - (M + 1) = 0.

Thus if pln, X\ -1, son = 4\ + 3

]

— 1. This is a

1l

contradiction. Thus if a projection other than 1 or O

exists, pYn. This proves (1).

To prove (2), assume first that p = 2, 2%n. For our ¥

# 0 sclution, we must have

~na2 + na - (\A+1) = 0
(£2) £ = ng + (N+1)v2 ;
Yy = 2a - 1



3L

+ a + (A+1) =0
2 0

a
(A3) B + B 4+ (2+1) =
Y

=1

If X\ is odd, I - J = {J + A] + [I + A] is a decomposition
cf I - J into two orthogonal, nonzero projections. Thus

st is decomposable.

If X is even, we have a solution if and only if F 2
GF(4). We find that I - J = [al + (a+1)J + A] + [(a+1)f +
aJ + A] is a decomposition into orthogonal nonzero
projections, where a2 + a+ 1 =0. Thus &% is

decomnposable.

Having disposed of the characteristic 2 case, we now

assume p > 2, We find after calculation that

I—-J=%-l-i7— - ()T + TEgR) + [H(1—E)T
)3

-( —n n - A] is a decomposition into two orthogonal,
nonzero projections, if /-n € F. To see that it is
necessary that /-n ¢ F, in order that a solution with v 2z

0, so the

0 exist, we recall that —na2 + na - (X + 1)
discriminant -n must be a sguare in F.

g.e.d.
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A NOTE ON THE TABLES

In the following tables the author has attempted to list
the parameters of some rank 3 representations, together
with the number 4, so the reader can conveniently apply
the Decomposition Theorem to his favorite groups.
Unfortunately, the author was nct able to check more than
an occasional set of parameters, and so the table is
really just an incomplete compendium from the literature.
Also, the literature the author looked at was sometimes
ambiguous as to whether the parareters were obtéined from
a rank 3 group; sometimes there were misprints, which the
author has corrected when he became aware of them. Thus
these tables cannot claim originality, certainty, nor
completeness. The following references were gquite heipful:

Liebeck and Saxl [8] and Hubaut [5].
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