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ABSTRACT 

Transitive permutation groups of finite order are 

viewed as linear groups over fields of characteristic 

p > 0 by having the group permute the basis elemerits of a 

vector space M. The decomposition of M into the direct sum 

of invariant subspaces is investigated, and criteria given 

for whether M is decomposable, and if it is, how many 

direct summands occur, in the special case the group has 

rank 3, i.e., it has 3 orbits on ordered pairs of points. 

In the case that each orbit is self-paired, M decomposes 

into the maximum possible number of indecomposables, and 

the group has every p/-element conjugate to its inverse, 

irreducibility results are obtained for the 

indecomposables. This last result holds for any rank. It 

applies in particular to the symmetric and thence to the 

altern2ting groups, which enables us to describe certain 

modular irreducibles of these groups. 
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I. DIRECT SUM DECOMPOSITIONS 

l.INTRODUCTION 

Let G be a group consisting of perm~tations of a 

finite set 0 of n > 1 points. If w E 0 I we write wg for 

the image under g E G of the point w £ 0. We assume 

throughout that given two points w 1 ~w 2 
g E G such that w 1 g = w2 1 i.e. I that G 

£ 0 1 there is a 

* is transitive. If 

partition o x 0 into orbits. The number of such orbits on 

0 X 0 is called the rank of G. Notice that D = {(w 1 w): w 

£ O} is always an orbit of o. Thus there are always at 

least 2 orbits on o X o. When the number of these orbits 

is in fact 2, G is called doubly- or 2-transitive. If 

L ~oX 0 is an orbit under Gl then L = {(w 1 ~w2 ) E 0 X 

0: (w 2 ~w 1 ) E L} is also an orbit. If L = L, L is said to 

be se~j-paired. 

Our interest, in the preser.t work, is to study the 

permutation module Mover a field F of characteristic 

* ) One may study the case where G is intransitive by 

looking at the constituent tra~si~ive actions on its 

orbits. 
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p > 0. To construct M, let the points of o be linearly 

independent generators of a vector space M over F, Khich 

will then have the same dimension over F as o has 

elements; i.e., n = 101. Here the bars indicate 

cardinality. To complete the definition of M, the action 

of G on M is given as follows: 

(~ 
w€0 

where a w € F. 

In this work we investigate in the rank 3 case 

whether M can be written as a direct sum of G-invariant 

subspaces, and, in case it can, how many direct summands 

it has. One might initially suspect that the answer to 

these questions could only be obtained by an elaborately 

detailed consideration of the permutation representation, 

perhaps together with a study of the internal structure of 

the group itself. Actually, we show that--at least in the 

rank 3 case--the answer as to how the permutation module 

decomposes can be obtained by ~!O~<i~g only certain 

combinatorial parameters, which were previously introduced 

by D.G. Higman [4). (The rank 2 case is well known and 

easy.) These parameters describe the cardinalities of 

various sets obtained from the orbi~s of G on ordered 

pairs of points, and will be defined in the next section. 

The proof proceeds by using the fac~ that projections must 

be linear combinations of 3 }~~o~n ~atrices, as the rank is 



3. By explicit calculations with these known matrices, 

which involve only combinatorial properties, all possible 

projections are determined, and thus the decomposition 

properties of M are established. 

As is well-known, in case the characteristic divides 

the order of the group, it may happen that a submodule 

cannot be split up as a direct sum of invariant subspaces, 

but it may possess an invariant subspace which is not a 

direct summand, there being no complementary invariant 

subspace. So we may wonder whether the indecomposables we 

obtain are actually irreducible. In the case of the 

symmetric and alternating groups, we obtain a result on 

this , thereby showing the irreducibility of certain 

modular representations of these groups. How can the study 

of rank 3 representations provide a demonstration of the 

irreducibility of certain representations? The secrets 

here are the limited centralizer algebra dimension and the 

self-duality of symmetric group representations. 

Rank 3 groups are actually very common, and we shall 

provide tables for the convenience of the reader with 

which one can determine the decomposition of the 

permutation modules for many cases which have been 

reported in the literature. 
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2. PRELHV:I!;..Z..RIES 

The centralizer algebra Cis defined to be the 

algebra of all linear maps c of M into itself which 

conmute with the action of G, i.e., such that 

c o g = g o c, for all g £ G, whe~e g is viewed here as a 

linear map on M. The centralizer algebra c is spanned by 

the linearly independent matrices {AT}T~oxo a G-orbit' 

where 

= {1, 
0, 

if (i,j) £ 

otherwise 

and thus C has the same dimension as the rank of G (see I. 

Schur (10] or H. Wielandt [11)). 

DECOMPOSITIONS AND PROJECTIONS 

The principal topic of investigation in this work is 

the deco~position of the permutc:icn module M into the 

direct sum of submodules which cannot themselves be 

decomposed . However, we find it easier to conduct the 

computations using projections. A linear map p £ c is 

called a projection ,..:hen p2 = P. Of course 1 , the identity 

map on M, is always a projection, as is 0, the rr.ap sending 

everything to 0. In general, . ., ::> is a p:c-ojection, 1 - p ~ l. 



is too. 

Suppose M = M1 6M 2 6···9 Mt, where the M1 are 

submodules of M. We obtain t projections ~· by considering 
~ 

the map that sends m £ M to rni' where mi is defined by the 

unique expression rn = m1 + m2 +-~~+ mt, each mj € Mj. 

These canonical projections satisfy (1) Ki~j = oij~i and 

{

1, if i = j} 
(2) 1 = ~ 1 +···+ ~t' where oiJ' = Notice 

0, otherwise 
that we can recover the Mi from the ~ 1 : Mi = M~i' 

Conversely, suppose we start with a family {~i}~=l 

satisfying the above conditions (1) and (2). Define 

M1 = M~ 1 . Now M = M1 e~~~e Mt, the sum being M by property 

(2); it is direct because m1 +~~~e +mt = 0, with all 

mj £ Mj, implies m 1 ~i +-~~+ mt~i = 0. Since mj = mj~j' 

property (2) gives mj = 0. Finally, note that ~i = 0 is 

equivalent to Mi = 0. 

Now M always has the 1-dimensional submodule 

S = <I w>, and C always has the map I a w ~ I ( I a
7

)w. 
w£0 w€0 w w£0 7£0 

Now we notice that G acts on M by maps which are 

orthogonal with respect to the inner product 

( I a w, I E w) = I a E . Thus :he perpendicular space 
w£0 w w£0 w w£0 w w 

T~ of a subrnodule T of M is also a sub~odule. In 

particular, S~ js always a subrnc~ule of M. 



Now if ptn, M = S e s1 , as I t s1 , since 
WE: 0 

n = I 1 ~ 0 in F. 
W€0 

In the case pin, S is never a direct summand of M. 

For suppose M = S 9 S. Then s1 - S~/M1 = (M/S)* = s* = S, 

where the * indicates the dual c~dule (for a discussion of 

dual modules, see Huppert and Blackburn [6]). Since G is 

transitive on 0, all fixed vecto~s are mutually 

proportional. Thus s1 = S, so S = s 1 . But S ~ S 1 , as n = 0 

in F. 

Now let r = rank(G). In the case where n is 

invertible in F and M = M1 e M2 8~ ~~e Mr, where the 

M1 ~ 0, or where n = 0 in F and M = M1 6·~·6 Mr-l' the 

Mi ~ 0, we say M decomposes jutlv. 
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3. SOLUTION OF RANK 2 CASE--A PREVIEW OF RANK 3 

As an example we can now easily solve the 

decomposition problem for rank 2 groups. (For more on the 

rank 2 case, including the quest:on of reducibility of 

direct summands, see Mortimer [ 9} , and the ¥;ork of 1>1. 

Klemm and L. L. Scott referred to therein.) Let 1 s suppose 

we have a projection P so that 1 = P + (1 - P} provides a 

decomposition of M. Since P £ C, P = ai + eJ, where I is 

the identity, J the all 1 1 s matr:x, and Pis viewed as a 

matrix by considering the basis :ormed by the points of o. 

The above equation holds for some a,e E F, as I and J are 

linearly independent and C is 2-dimensional by the fact 

that G has rank 2. Now P 2 = (ai + eJ} 2 = a 2 r 

2 2 -+(2ae + ne }J. The condition P - P becomes 

so the solutions are 

g = 0, 13 = 0 
= 0, 13 = 1 / n, if n ·- ·)(r;:od. p) i.e . • e 0 I = J., = 
= 1 I e = -1/n, if n ~ O(mod p ) 

Jo, 1 , 
; ~ in n:J ( I , I - ~J, -J.. n ;:: 0 F 

p = 
LO, T if n = 0 ir. F ~ ( 
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But in the latter case the decom~osition is trivial; in 

the former the images of lJ I - lJ areS and &~. n ' n 

respectively. Thus we see that: 

If G has rank 2, 

(1) M is decomposable if and only if n ~ O(mod p}; 

(2) If M does decompose, there are exactly 2 

indecomposable summands, and there are no 

other nontrivial proper submodules which 

are direct summands. 
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4. D. G. HIGMAN'S CQ!.miNAT O?.IAL PJ._E..!.J.1ETERS FOR A 

RANK 3 G::tOUP 

Suppose now that G has ra:::-!k 3. Let G act on 0 X o. 

Let Gv.;' the stabilizer of w, act on { w } X o. Since G has 

rank 3, we know {w } X 0 par ~ itions into 3 orbits. (By 

transitivity of G on 0, each orbit in o x o contains an 

ordered pair 

Conversel y , 

(w,7), 7 € 0 , and thus a G orbit w in {w} X 0. 

if we start with a G -orbit K in {w} X o, we 
w 

get a G-orbit in o X o, whic h contains no n ew ( w,7) tha t 

weren't in~) Call the 3 orbits 

{w}, ~(w), r(w). 

Here we choose the notation so that ~(wg) = ~(w)g, r(wg) = 

r(w)g. Higman's parameters are defined by 

n = I 01 

k = I D. ( w ) I 

1 = I r ( w) I 

{A, ·~ 1 b(w)1 l.L € 
16 ( w ) (\ 6 ( 1 ) I = 

).1, if 1 £ r ( w) _ 

d = (A- ~) 2 + 4(k- g ) , 

Notice t h at A and ~ are well - d ef ined, as G is tr~~sitive 
w 

on 6( w) a n d r ( ~ ), so the choice of 1 ~oes n e t matter. 
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5. STATEMENT OF DECOMPOSITI:N THEOREM FOR RANK 3 

Theorem 1. Let G be a rank 3 per=utation group of degree n 

and even order. Let p be a prime and F a field of 

characteristic p > 0. Let M be t~e corresponding 

permutation module of G over F. Then 

(1) If pin, M is decomposable if and only if d ~ O(mod p). 

In case decomposition occurs, there are exactly 2 

indecowposable summands, and the~e are no other 

nontrivial, proper direct summands of M; 

(2) If p~n, write M = S 9 S~. 

(i) If p ~ 2, S~ is decomposable if and only if 

d ~ O(mod p) and jd £ F; 

{ii) If p = 2, and F contains a 3rd root of unity 

other than l, SL is decosposable if and only 

if d ~ 0 (mod p) ; 

(iii) If p = 2, and F contai~s no 3rd root of unity 

ot he r than 1, SL is deco~posable 

if and only if d ~ 0 and~ = O(mod p). 

In case &1 decomposes, it has exac~l y 2 indecomposable 

summands, and there are no other nontrivial, proper 

, • .... , .,. C\ L a.1.rec ... summancs o ... " . 
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If S~ decomposes for F ~ GF(p), but not for GF(p), i.e., 

when p ~ 2, d ~ O(mod p), /dE F, /d t G~(p), or p = 2, 

~ = d = l(mod 2), F containing a root of unity 0 +-ho.,... 
\.&. --

than 1, letS~= K1 6 K2 . Then K1 and K2 are algeb~aically 

conjugate under the automorphism x H xP of GF(p 2 ). 

Remark l· Notice that just as the congruence of n mod p 

determined decomposition for the rank 2 case, the 

congruence of n and d determine the decomposition in the 

rank 3 case, except possibly for the case where certain 

algebraic equations are insoluble in F (for the odd order 

case, see the Appendix}. 

Remark£. By the result of Guralnick and Wales (2), we can 

compute the degrees of the indecomposables, as follows. If 

the irreducible complex constituents have degrees 1, f 2 , 

t 3 , the degrees of the indecomposables over an 

algebraically closed field of characteristic p are sums of 

these. If p~n, the degrees are 1, r 2 , 

.,.: ~ • 2 . ~ if 
~3 pjd. If pjn, they are n = 1 

f 'j' i f p '), d , 2. n d 1 , ... 
.r. 
.!.. 2, 

and 1 + f 2 , f 3 or 1 + f 3 , t 2 , if p~,d. The latter choice is 

made by determining whether 1 + f 2 or 1 + f 3 is divisibl~ 

by p. 

~e prepare for the proof by listing some results we 

shall need from D.G. Higman [4]. ~ote that n = 1 + k + 1. 
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= {1, if i £ A(j)} 
A . . 
~J 0, other~ise 

and all occurrences of the symbol = will mean that 

arithmetic is being carried \out modulo p . 

(a) ~l = k(k- A- 1) 

(b) A has exactly k l's in each row and in each 

column; the other entries are 0; 

(c) A2 = ki + AA + g(J - I - A) 

= {k - g)I + gJ + (A - g)A; 

(d) A is symmetric; 

{e) I,A,J form a basis of C; 

(f) dis a square in Z and /~1 [2k+ ( A-g) (n-1)], 

except possibly when k = l, u = A + 1 = k/2. 

(The above for JGI even) 

Le;;.p a 1. Let n _ 0. Then A - ;1 _ 2 k it and only if d _ 0. 
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.i.) 

Proof. ( 1 ) Suppose A - ~ - 2k. Then 

d = (A - ~)2 + 4(k - ~) - 4k 2 + 4k - 4)1 = 4[k(k+1) - ~] . 
Recalling (a), )ll = k(k- A- 1), and noting that 

1 = -k - 1 (as n = 0), we get 

-Jl(k + 1) = k[k - (2k+J1) - 1]. Thus 

-Jl = -k2 - k = -k(k + 1). Therefore, d _ 0. 

(2) Supposed= 0. By (f), jdl [2k+(A-Jl) (n-1)), so 

2k + (A - Jl) (-1) _ o; unless k = 1, u = A + 1 = k/2. In 

the latter case, A - J1 = 2k holds if and only if -1 = 2k; 

i.e., n = 0, which holds by hypothesis. q.e.d. 

Lemma 2. If n _ 0, d is a quadratic residue modulo p. 

Proof. By (f), dis a square in 2, hence also mod p, 

unless we fall into the case k = l, ~=A + 1 = k/2. In 

this case, d = (>... - ~) 2 + 4(k - ~) = (-1) 2 + 4(k - k/2) = 

1 + 2k = n 2 _ 0 . q.e.d. 

Lemma 3. Let p = 2, d ~ 0. Then k _ ~(n- 1). 

Proof. As d = (\- ~1 2 + 4(k- ~ ~ _ ( >... - Jl) 2 , >...- ~ = 1. 

By (a), k(k A - 1) = ~1, so k(k ~) _ ~(n- k- 1). 

Cancelling the k)l-terms, k = k 2 = Jl(n - 1). q.e.d. 
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6. PROOF OF DECOMPOSITION TH~OREM 

As in the rank 2 case, we notice that any projection 

P is in the centralizer algebra C, which is--according to 

(e)--spanned by I, J, and A. Thus 

P = ai + eJ + YA, P 2 = p , a,.B,Y € F. 

Conversely, if P is a linear com~ination of I, J, and A, 

and P2 = P, then P is a projection. The equation P2 = P 

gives 

P 2 = (ai + sJ + YA) 2 = (a2 + Y 2 (k-~)]I + [e2n + Y 2 ~ + 2ae 

+ 2.8Yk)J + ("r 2 (} ... -Jl) + 2aY)A, 

using J 2 = nJ and the expressions for AJ, JA, and A2 given 

in (b) and (c). Linear independence of I, J, A (result 

(e)) now turns the condition P 2 =Pinto the system 

fa = a2 + Y2 (k - Jl} 

( 1 ) t~ = s 2n + Y2J1 + 2ae + 2£-rk, 

= y2 () ... - Jl) + 2aY 

which must be solved for a,t,Y € F. 

We must first investigate what happens when y = 0 . Tn 

this case, ( 1) is equi valent to 
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{ 2 ) 

Thus a= 0 or 1. If a= 0, the second equation of (2) 

becomes s(sn - 1) = 0. We then get the solutions e = o, 

and e = 1/n (if n ~ 0). If a= l, the second equation of 

(2) becomes S(Bn + 1) = 0, so e = 0, or -1/n (if n ~ 0). 

Thus the projections which are linear combinations of I 

and J alone are 0 and I, if n = 0, and 0, . I, (1/n}J, 

I - (1/n)J, if n ~ 0. 

Suppose, then, that we ~re looking for solutions in 

which Y ~ 0. Dividing the third equation of (1) by Y, we 

get 

{: = a2 + Y2 (k 11) 

( 3) = .B2n + Y211 + 2a.B + 2 SYk 

= y().,_ - 11) + 2a 

Notice that we may immediately solve for Y, as follows. 

Write the third equation of (3) as 1 - 2a = y().,. - 11) and 

square beth sides. Now add 4 ti~es the first equation of 

(2), to get 

(1 2a) 2 + 4a = Y2 (A- 11) 2 + 4c 2 + 4Y 2 (k- 11). Thus 
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1 = Y2d. In this way we see that necessary condition s for 

the existence of a projection ~tich is not a linear 

combination of I and J are that 1 ~ 0, and that jd E F. We 

are forced to restrict ourselves to the case y = 1//d (if 

Y = -1/jd, change that notation so that the negative 

square root is meant by /d) . Thus (3) is equivalent to 

0 = a2 - a + k-u 
cr 

E = s 2n + ~ + 2as + 2B k 
( 4 ) a ~ 

2a = 1 - ~ 
y = 1 
~ 

By this system being equivalent to (3) we mean that for 

a,E,Y E F, (a,E,Y) satisfies (3) if and only if it 

satisfies (4). We also assume that all the symbols in the 

equations are defined, in order to say that a system is 

satisfied; in particular, denomi nators are not 0 and 

square roots shown exist in F. 

Suppose first that p ~ 2. 

Substituting for a in the 1st and 2nd equations of (4), we 

find that the 1st equation is satisfied automatically 

gi ven the 3rd, and (4) is equi v alent to 



17 

0 = n .82 A.-u-2k 
.8 + !J -ja Ci. 

( 5) a = ~( 1 - blj 
Jd. 

y = 1 
Td 

If pin, we obtain, using Lemma 1, 

[: 

~( 1 
A.-u = --) 
Ja 

= b' 
( 6 ) ( A.-g-2k) jd 

= 1 
Td 

If p~n, we obtain 

( 7 ) 

a = ~( 1 - "}cfl 
B = A. -u-~k 

2njd 
1 

TO y = 

± 1 
2n (p ;: 2) 

Here the second equation of (7) is obtained by solving the 

first of (5), simplifying using (a). The = is chosen 

i ndependently of t he choice of t he sign for j d . 

We turn now to the case where p = 2. Then {4) is 

equivalent to 
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[: 

= a2 + a + kdg 

( 8) = n.B2 + ~ .8 + 4 . ja Q 

= 1 
Ta 

If (B) has a solution, then d = 1(rnod 2), for otherwise fd 

is not invertible. Thus (8) is equivalent to 

0 = a2 + a + k-u ---Q 

0 = n.B2 + .8 + ~ ( 9 ) 
y = 1 

d ~ 0 

We now get in case 21n, using Le~ma 3 to show k- ~ _ 0, 

a = 0 or 1 

.8 = ~ ( 10) (p = 2) 
y = 1 

d ;;:; 0 

whilst in case 2~n, again using Lemma 3, we get 

0 = a2 + a + ~ 

( 11 ) 0 = 132 + .8 + ~ (p 2 ) = 
y = 1 

d ~ 0 

IfF~ GF ( 4), then we always fi~d (so l utions to (11}, 

v iz. 



{ ~n 1n 

case ~t _ 0, a 

a case ~ _ 1, 

= 
= 

1 0 
J. / 

0 

~ 

or , 
£ • I 

or 2 c I £ 

= 0 or 1 y = 1 I 

= or [2 - I 
y = 1 

where c2 + E + 1 = 0, and the choices for a and s are made 

independently. 

If F ~ GF(4), there is no solution to (11) if ~t ::: 1; as 

before, there are 4 solutions, c = 0 or 1, s = 0 or 1, 

y = 1, if J..J. = 0. 

Reviewing the solutions we have obtained, we find that in 

case pin, there is a projection (other than 0 or 1) it and 

only if d ~ 0, and in the case that d ~ 0, there are 

exactly two projections besides 0 and 1. Thus in this case 

the direct summands are unique. 

Examine now the case pln, p > 2. We now know that 

d - o or jd t F implies that only projections are 0, 

I 1~ I lJ 
I -:;:J I - -n ' Conversely, d ~ 0 and /d E F guarantees 

u 

that there are additional projections, according to (7). 

I 

In the latter case we show that s~ is decomposable, by 

solution to (7). Direct calcula:io~ shows ?J = JP = 0. 

S.i.::-,ce I lJ = ( I - -n1 J - ?) + ? and n 
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(I - iJ - P)P = P(I - iJ - P) = 0, S1 is decomposable. If 

we write s 1 = K1 e K2 , where K1 , K2 = 0, then we see that 

we have accounted for 8 projections of M = S e K 1 e K2 by 

adding together the various canc~ical p~ojections. But we 

have already seen that there are at most 8 solutions to 

equations (1), when p~n: 0, I, ~J, I - iJ for Y = 0, and 

4 solutions to (7}. Since any direct summand must have a 

corresponding projection, and we have listed all 

·projections, there can be no unlisted direct summands. 

Finally, we consider the case ptn, p = 2, d - 0. If c 

satisfies c2 
+[ + U = 0, and E E F, then S 1 decomposes. As 

when p > 2, we check that PJ = JP = 0 for P = ci + cJ +A. 

For PJ = JP = (nc + c + k)J = kJ, and Lemma 3 gives 

k = u(l - 1) = 0. Again we find S1 = K1 9 K2 decomposes, 

and we have exhausted all possioilities for projections. 

As to the algebraic conjugacy of K1 and K2 , in case 

s 1 is decomposable over F but not over GF(p), we just note 

that I, J, and A have entries i~ GF(p), so by algebraic 

conjugation the canonical projes:ion onto K1 becomes 

another projection P', and P = ?' since the coefficients 

of I, J, and A in the expression for P are not all in 

GF(p). Now the relations PJ = JP = 0 carry over to?': 

JP' = P'J = 0. Thus the image of P' must be K1 or K2 , 

since these are the only indeco~posable direct summands 

image c: P' must be 
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indeco~posable, as that of P was. But P ~ P' shows, from 

our knowledge that each projection is the sum of canonical 

ones onto~, K1 , and K2 , respectively, that the image of P 

is one of {K 1 ,K 2 ) and that of ?'the other. q.e.d. 
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II. IRREDUCIBILITY OF CERTAIN INDECOMPOSABLES 

Lemma (I. Schur). Let G be a tra~sitive permutation group 

of rank r. Then the centralizer algebra has dimension r, 

and has basis {E~}¢, where ¢ ru~s over the different 

orbits of G on ordered pairs, and 

= {1, 
0, 

if (i,j) € 4> 

otherwise 

Proof. Clearly the centralizer algebra is an algebra. Now 

the equation Ag = gA says that a 1 , (j)a =a _ 1 , where 
(i)a ,j 

a is the permutation g induces on the columns of A, when A 

... Ag, and a .. is the (i,j)-entry of A. Thus lJ a(a}a,(j)a = 
aa,j' letting i = (a)a. Thus our condition says simply 

that the (i,j)- and (i;,j ;}-entries are the same if they 

lie in the same orbit of G on o~dered pairs. The lemma now 

follows. q.e.d. 

Proposition l· Let G be a finite permutation group which 

is transitive on then points 0 = {1,2, ... ,n}, and suppose 

that the rank is r. Let M be the corresponding permutation 

module ove r a field of characte~istic p. Write 

V = M. 9 ··· 9 M~, where theM~ a~e i~decomposable . l '-
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submodules. Then if pin, t ~ r- 1; if ptn, t ~ r (in case 

equality holds, we say M decomp os es jullv). There is one 

and only one Mi containing a non-zero vector fixed by all 

g E G. Renumber to call it M1 . If M decc~poses fully, M2 , 

M3 , ... , Mt have scalar centralizer algebras (which will 

also be true of M1 , if p~n), and if p~ there is no other 

way than 

M = M1 $ M2 $~~~$ Mr to write Mas a su~ of indecomposable 

submodules. 

Note. The fact that there can be only one indecomposable 

in a direct decomposition which contains a vector fixed by 

all g E G is a well known consequence of transitivity of 

G; the submodule is then known as a Scott module. The 

fact that there can be no more than r direct summands in a 

decomposition can also be obtained by the result of 

Guralnick and Wales ( 2). For mo::::-e C!i. Scott ~od.u les b general, 

Proof. Let P 1 be the canonical projections of M ~ Mi, 

which will be FG-endomorphisms of M. Then ~ 1 P 1 +~~;+ ~tpt 

= 0 implies that AiPi = 0, by multiplying through by P1 . 

Since Pi ~0, Ai = 0. Thus the Pi are linearly independent 

elements of the centralizer algebra. Thus by Schur's lemma 

above, t ~ r. As to fixed vectors, the transitivity of G 

certainly implies that they are all multiples of s = I w. 
w€0 

Now writes~ m1 ~~.;+ mt, where ~i E M1 . As sg = s, for 
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all g £ G, mig= mi. But then transitivity implies rni = 

~is, for scalars xi. If ~: 1 ,~:j = 0, fori;: j, then 

M1 n Mj ;: 0. Thus s E Mi, for a unique i, and we renumber 

so that i = 1. We now show that ? 1 , ... , P ... , J are 
'-

linearly independent, in case p in. Here J is the 

FG-e~domorphism determined by the all 1 1 s matrix, for the 

if i;: 1, t + 1. Thus A. 2 

s £ 11 1 . Thus 

A.l ..... 0 implies r- Ml = <s>. Let c = M2 + •• ~ + Mt. Now <s> :i 

* * c.l. c.l <s> - (M/C) - Thus is spanned by a fixed vector. 

Transitivity of G again gives cl = <s>. Thus c = <s>.l. But 

pin implies s £ <s>.l. This contradicts C ~ <s> = 0. We 

conclude that A. 1 , and hence finally A.t+l are also 0. 7hus 

in the case pin, t ~ r - 1. 

We turn now to the case when M decomposes fully. If 

p/,n, P 1 , ... , Pr form a basis of the centralizer algebra, 

so any FG-endomorphism s of M ma~y be written c = a 1P1 
2 2 +···+ arPr . Thus c = c implies c 1 = a 1 (so ai = 0 or l}, 

for all i. Thus M = M1 e~~~e Mr is the only way to write M 

as a direct sum of indecomposable submodules. Now any 

FG-endomorphism of M1 becomes, by composition with the 

canonical injection into and the canonical projection onto 

M1 , an FG-endomorphism c of M. Kow cPj = 0 , for j ;: i, so 

we find a j = 0, for j ;: i. 
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If pin, P1 , ... , Pr_ 1 ,J forn a basis of the 

centralizer algebra, so write 

for the FG-endomorphism of M resulting from composition 

with the canonical maps of an arbitrary FG-endomorphism of 

Mi' i ... 1 1 as before. Since ( maps M into t-1 i I then 0 = ,... 

cP 1 = alP1 + arJ. Thus al = ar = 0 . For j ::t 1, r 1 i 1 we have 

0 = cP. = ajP j, so aj = 0. Thus c = aiP i, and the 
J 

centralizer algebra of Mi is scalar. q.e.d. 

Proposition ~· Let G be a transitive permutation group and 

M the corresponding permutat5on module over the field F. 

Suppose every orbit of G on ordered pairs of points is 

self-paired. Let M = M1 e~~~e Mt be a decomposition into 

indecomposables. Then the Mi 1 S a~e mutually orthogonal 

(with respect to the point-basis standard inner product} 

Proof. As usual, let Pi be the canonical projection onto 

Mi. We have (vPi,wPj} = (vPiPjT,w) = (vPiPj,w} = (O,w) = 
0, as PjT = Pj. This latter is true because, by the above 

lemma of Schur, the Pi can be w~itten as linear 

combinati o ns of the E~ 1 s, and ~ self-paired means that E¢ 

= E¢T. But an arbitrary element of Mu can be written as 



xPu, for some x € M. Thus the M1 are mutuallly orthogonal. 

Because l ~ M· ~ M1 , and the dinensions of the two must 
j ;=i J 

be the sa~e, M~ = 

q.e.d. 

~ M .• 
..: .... 1.. J Jr 

Now 

Theorem £. Let G be a transitive permutation group on Q, 

and M the corresponding permutation module over the field 

F of characteristic p > 0. Suppose that M decomposes 

fully, and that every orbit of G on ordered pairs is 

self-paired. Let G have the property that every p'-elemtnt 

of G is conjugate to its inverse. If we write M = M1 9••~8 

Mt, with Mi indecomposable, and s = 

... , Mt are irreducible. 

~ 7 € M1 , then M2 , 
7€0 

Remark. The irreducibility of S 1 in the natural 

representation for the symmetric group on u ~ 4 letters, 

or that for the alternating group on u ~ 5 letters, has 

been kno·~ since at least Dickson (see Mortimer[9]}. 

Notice also that in the case of Alt(4), the natural 

representation on 4 points has cegree 4, so ~l has 

dimension 3, but the group has no absolutely irreducible 
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representation of degree 3 over characteristic 2, so S~ is 

reducible. In this case the 2-regular element (123) is not 

conjugate to its inverse, so the hypothesis of the theorem 

fails. Our results are rarely--if ever--new with regard to 

these 2-transitive representations, which also occur as 

constituents of the rank 3 representation on unordered 

pairs of letters. New results are obtained for the other 

constituent, however. Results on the irreducibility of sL 

in the case of various 2-transitive representations, as 

well as a review of the literature, are to be found in 

Mortimer [9). Our results also apply to constituents of 

higher rank representations, however. 

Proof. Suppose first the field F is algebraically closed. 

By Prop. 1, M2 , ... , Mt have scalar centralizer algebras, 

L * and by Prop 2, MiAMi = 0 and Mi = Mi, tor i = 2, ... , 

t. By taking any irreducible S ~ Mi' S ~ 0, we notice that 

M1;sL = s*, where L refers to the usual inner product in 

* the point basis restricted to Mi. Now we show S = S . The 

Brauer character p afforded by S is the complex conjugate 

* of that afforded by S . Now the G-conjugacy of a 

p/-element g to its inverse will imply that p(g) = p(g-1 ) 

* = p(g). Thus s and s have the same Brauer character, and 

must therefore be isomorphic. Now consider ~:M. ~ M.;sL, 
1 l 

the canonical projection, ¢ the isomorphism between Mi/S~ 

and S, and the canonical injection t:S ~Mi. Then ~¢l is 

an FG-endomorphism of Mi, and thus must be scalar. 5ut 
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I 

then S ~ 0 gives s~ ~ M1 , so t h e e~domor?hism is not 0. 

Since r. ¢ L is scalar, S~ = o, so S = M, . If F is ~ot 
~ 

algebraically closed, extension of the field cannot cause 

the Mi to further decompose, as already over the original 

F, M decomposes fully. Furthermc~e. irre1ucibility over 

the algebraic closure of a fielc F implies a fortiori 

irreducibility over F. Thus our ~esult ~ith algebraically 

closed F implies the result for unclosed fields as well. 

q.e.d. 

Corollary. Let G be the symmetric group on the v letters 

of o, Sv, v ~ 4, or the alternat i ng group on v letters, 

Av, v ~ 5, and let G act on unor~ered pairs of points. Let 

2. Let M be the corresponding per~utation module 

over a field F of characteristic p > 0, where F 2 GF(p 2 ). 

Then the indecornposables of M no~ containing s = I r are 
T€0 

irreducible. 

Proof. By ever~ess of S 1 S order , the orbits of the v 

1-point stabilizer in the rank 3 action on unordered pairs 

are self-paired. By Theorem 1, i~ Pld=( y - 2) 2 , the 

permutation module decomposes fully, anc by Theorem 2, the 

indecomposables not containing s are irreducible. 

To handle Av' notice that 1: we consider the module 

Mi for Sv, the module for Avis simply ( Mil ~ . This is 
··v 
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because the Hignan parameters a~e the sane, as are the 

b · t · I J d " r · '"" · "- · d 'bl asJ.s rr.a rJ.ces I I an .M. ..... e"t .!. oe an ··v-J.rre ucJ. ... _e 

submodule of {Mi)A . We now apply Cliffo:-d's arg'..lment. We 
)J 

have that 2: Tg is an Sv-submodule of M1 ; hence by 
g£Sv 

irreducibility of M1 1 Now Tg is an 

irreducible Av-submodule. Thus by selecting just some of 

the g's we get a direct sum M1 = T 1 s~~~e Tu1 where the 

T 1 •s are Av-submodules. But M1 is already known to be 

Av-indecomposable. Thus M1 = T. 

q.e.d. 
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III. EXAM?LES 

l.Alt(5) 

Let the alternating group on 5 points permute the set of 

all unordered pairs of distinct elements of {1,2,3,4,5}, 

using the natural permutation re?resentation on 

{1,2,3,4,5}. We have now that 

o= { { 1 1 2 } ; { 1 1 3 } 1 { 1 1 4 } 1 { 1 f 5 } f { 2 f 3 } f { 2 t 4 } 1 { 2 t 5 } ; 

{3,4},{3,5},{4,5}}, 

so n=[~)=10. Now under the stabilizer of {1,2}, the pairs 

after the second semicolon, which are the pairs not 

intersecting {1,2}, are permuted among themselves; there 

are 1=(5; 2)=3 of them. Finally, there are k=2(5-2}=6 pairs 

· intersecting {1,2}. Now we may s~ill wonder whether the 

group is really rank 3; we have seen so far only that each 

set of 3 (resp. 6) pairs is mapped into itself; but is the 

stabilizer of {1,2} transitive on each of these sets? If 

we want to map {3,4} to {3,5}, for example, we may take 3 

to 3, 4 to 5, and then see whether the permutation doing 

this and fixing every other point is even or odd. If it 

chances to be odd, we multiply it by (1 2}, which--of 

course--stabilizes {1,2}. Since (4 5} is odd, the desired 

element of the stabilizer is (1 2) (4 5}. If we want to 

show transitivity on the set ~ of pairs intersecting 

{1,2}, we may without loss of generality assume that the 

problem is to map {1,3} to {1,4}. This can be done by 

(3 4 5). Thus Alt(5) really is rank 3 on unordered pairs. 

Notice now that 6.({1,2})(\~({1,3})={{1,4},{1,5}~{2,3}}, so 

)...=3 I and !:. ( { 1, 2 } ) (\~ ( { 3 1 4} } = { { 1 1 3 } 1 { 1 1 4} I { 2 I 3} I { 2 I 4} } 1 SQ 

u=4. The two complex irreducibles which occur in the rank 
5(5-~) 

3 representation he.ve degrees 5-1=1 and 2 ~ 5 (using 

the formulas from Higman[4)). We have 

d=(3-4) 2+4(6-4)=9=3 2 . Using the result of Guralnick and 

Wales[2] I the fact that the indecomposable 

direct summand containing S must have degree divisible by 

the highest power of the characteristic dividing n, and 

Theorem 1 of the present work, we see that in 

char. 21 M=6S4 

char. 31 M=169 



31 

char. 5, M=5$5, 

where the numbers indicate by the dimensions the 

indecomposable direct summands of the permutation module 

M. Notice that since d is a squa~e ~~d 2in, there is no 

d <:pendence of the decomposition on field extension (see 

Theorem 1). 

2. The Hall-Janko Group HJ. 

We see from the literature that Lhis group has a rank 3 

representation of degree n=lOO, and is of order 

2 7 .3 3 .5 2 .7. We are also given that k=36,l=63,A=14,~=12. 
Thus jd=lO, and again by the formulas found in Higman, the 

degrees of the complex constitue~ts are 36 and 63. We 

obtain: 

char. 2: M = 100 

char. 3: M = 1 e 36 e 63 

char. 5 : M = 100 

char. 7: M = 1 e 36 e 63. 

By examining the table for the Hall-Janko group in M. Hall 

and Wales[3), we see that every element of this even order 

group is conjugate to its inverse, and so by Theorem 2 

there are absolutely irreducible representations of 

degrees 36 and 63 over characteristics 3 and 7. 

3. Alt(25). 

Let Alt(25) act on unordered pai~s of distinct letters, of 

which there are 25.24/2=300. Here jd=25-2=23, f 2=275, 

t 3 =24. Now over characteristic 7 , we must have M breaking 
up as a direct sum of a 1-dimensional, a 24 dimensional, 

and a 275 dimensional module (full decomposition), by our 

results and the result of Guralnick and Wales. By Theorem 

2, the summands of degree 24 and 275 are irreducible 

(notice that these two representations lie in 7-blocks of 

defect 3). 



APPENDIX 

THE ODD ORDER CASE 

We have relegated the treatment of the odd order rank 

3 case to this appendix. Our notation is the same as 

before. 

Theorem Al. Let G have odd order and permutation rank 3. 

Let M be the permutation module over the field F of 

characteristic p > 0. Then 

(1) If pin, M is indecomposable. 

(2) Let p~, so M = s e s~. 

If p > 2, S~ is decomposable iff. j-n € F; 

if p = 2, and F ~ GF(4), s 1 is decomposable; 

if p = 2, and F ~ GF(4), then S1 is decomposable 

iff. A is odd. 

Remark. An example is the semidirect product of the 

multiplicative group of quadratic residues modulo 7 with 

the additive group of integers modulo 7. 

Proof of Theorem. As is well-known, for the odd order case 

we nust have n = 4\ + 3, k = 1 = t 2 = t 3 = 2\ + 1, u =A. 

This follo\~s from our ~~Oh~ relztions on the rank 3 
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parameters, together with the fact that a group of odd 

order has no real irreducible co=plex characters. Writing, 

as before, P = ai + ~J + YA, we find P2 = P is equivalent 

to: 

( Al) 

a 2 - ()..+l)Y 2 

n.B 2 + (A.+l)Y 2 

-Y
2 + 2CIY 

+ 2a.B + 2(2)..+1).BY 

Note that to derive these equations, we use that A + AT = 

J - I, as the two nontrivial orbits of G are paired. As w 

before, we know that for Y = 0, P = I or I - kJ (it p~). 

So for y ~ 0, the last equation of (Al) becomes y = 
2a 1, so the first equation of (All becomes a= a 2 -

(A.+ 1)(2a 1} 2 . This gives that -na2 + na- ().. + 1} = 0. 

Thus if pln, A. : -1, so n = 4A. + 3 = - 1. This is a 

contradiction. Thus if a projection other than 1 or 0 

exists, p~n. This proves (1). 

To prove (2), assume first that p = 2, 2~n. For our Y 

~ 0 solution, we must have 

l
-na 2 + ncr - ()..+1) = 0 

(A2} t = n.B 2 + ()..+1)Y 2 

'Y = 2a - 1 

i . e . , 
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a 2 + a + (A+l) = 0 

(A3) ~2 + e + (A+l) = 0 

'( = 1 

If A is odd, I - J = [J + A) + [I + A] is a decomposition 

of I - J into two orthogonal, nonzero projections. Thus 

s~ is decomposable. 

If A is even, we have a solution it and only if F 2 

GF(4). We find that I - J = (ai + (a+l)J +A] + [(a+l)I + 

aJ + A] is a decomposition into orthogonal nonzero 

2 projections, where a 

decot\posable. 

+ a + 1 = 0. Thus S~ is 

Having disposed of the characteristic 2 case, we now 

assume p > 2. We find after calculation that 

1 1 111 1 1 1 
I - J = [~(1+y=n)I - z(~n)J + ;=nAJ + [ 2 (1~)1 -

1 1 1 1 2( J-n'n)J - j=nA] is a decomposition into two orthogonal, 

nonzero projections, if j-n E F. To see that it is 

necessary that ;-n E F, in order that a solution with y ~ 

0 exist, we recall that -na2 + na - (A + 1) = 0, so the 

discriminant -n must be a square in F. 

q.e.d. 
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A NOTE ON THE TABLES 

In the following tables the author has attempted to list 

the parameters of some rank 3 representations, together 

with the number d, so the reader can conveniently apply 

the Decomposition Theorem to his favorite groups. 

Unfortunately, the author was not able to check more than 

an occasional set of parameters, and so the table is 

really just an incomplete compendium from the literature. 

Also, the literature the author looked at was sometimes 

ambiguous as to whether the para2eters were obtained from 

a rank 3 group; somet3rnes there were misprints, which the 

author has corrected when he became aware of them. Thus 

these tables cannot claim originality, certainty, nor 

completeness. The following references were quite helpful: 

Liebeck and Saxl [8] and Hubaut [5). 
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