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ABSTRACT 

Anisotropic interaction potentials between helium and linear mole­

cules have been studied experimentally and theoretically to examine the 

relationship between the potential and the scattering differential cross­

section, and to extract these potentials from crossed-molecular beam 

data. 

Chapter 2 presents the measurement of total (elastic and inelastic) 

differential scattering cross sections for He + C02, CS2, OCS at a 

relative collision energy of about 65 me V with a crossed molecular 

beam apparatus. Anisotropic interaction potentials were extracted from 

these data, by way of an infinite order sudden approximation analysis. 

Several different anisotropic potential models were used in this analysis. 

The necessity for considering the anisotropy in the position of the well 

minimum as well as of its depth is demonstrated. A potential is proposed 

for He + OCS that reflects the symmetry of OCS, with a m1n1mum 

number of modeling parameters. 

In Chapter 3 a detailed sensitivity analysis of the total and 

rotational state-to-state differential cross-section (DCS) is performed 

on an empirical potential energy surface for He + C02. The infinite 

order sudden approximation is used to calculate the cross-sections. 

The sensitivity analysis consists of: 1) a large scale modification of 
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the parameters that determine the anisotropic potential, and 2) an 

infinitesimal variation of these parameters to obtain a relative sensitivity 

function for the DCS. From these we demonstrate the effect each 

potential parameter has on the cross-sections. Despite the fact that 

this highly quantum system displays no classical effects such as rainbow 

scattering, we have shown that the quanta! DCS oscillations contain 

significant information regarding the depth and width of the potential 

well and its anisotropy. Much of this information can be extracted 

from total-DCS scattering data. However the rotationally inelastic DCS 

contain a substantial amount ·of additional information regarding the 

shape of the potential energy surface. 

Some of the conclusions reached In Chapter 3 indicate that the 

measuring of rotationally inelastic differential cross-sections can provide 

significantly greater insight into the nature of the potential than does 

the total DCS. In Chapter 4 we develop the means for simulating 

experimentally observable data from the potential for a given set of 

apparatus conditions. In Chapter 5 we describe modifications made 

to the crossed-beam apparatus in order to observe this inelasticity and 

present preliminary results for He + C02 . 
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CHAPTER 1 

INTRODUCTION 
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The detailed nature of van der Waals type interaction potentials 

between molecules is of great interest in understanding a wide range 

of phenomena, which include equations of state for gases and liquids , 

gas transport properties, and spectral line broadening. Van der Waals 

interaction potentials are rather weak compared to the forces that 

hold molecules together {by two to three orders of magnitue) , yet 

characteristcally they have a similar shape, a strongly repulsive region 

at small distances separation, which falls down to an atractive well 

with increasing distance, the well rises to weak monotonically decreasing 

attractive region at large distances. In the past several years a 

concerted effort has been undertaken by experimentalists and theorists 

at quantifing the shape of a many of these potetenial energy surfaces. 

Although excellent methods have been developed for predicting the 

above mentioned phenomena, they depend upon the knowledge of the 

potential energy surface. Currently, the most direct and conc]usive 

approach for the determination of the potential is offered by crossed 

molecular beam experiments. The region of the potential to which 

these experiments are most sensitive is the vicinity of the attractive 

well. Since this well results from the balance between the competing 

long-range atractive and the short range repuslive forces, its ab-initio 

evaluation is more difficult than for the adjacent regions. As a result, 

the experimental approach is the best one for the determination of the 

potential well characteristics. 
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The maJor significance of a crossed-beam experiment is that it 

permits the observation of effects which are the result of a single collision. 

The direction and velocity with which the collision partners leave the 

region of interaction will be a function of that interaction. Depending 

upon the nature of the potential the collision may be elastic or inelastic. 

Rotational inelasticity arises when then potential is anisotropic, i.e. 

it lacks spherical symmetry. Vibrational and electronic exciations are 

possible only at higher collision energies. 

In this thesis, interaction potentials between helium and various 

linear molecules are extrated from crossed-beam data. A beam of helium 

atoms intersects a beam of molecules under conditions that preclude 

more than one collision. A detector measures the number and in some 

cases, the velocity of the He atoms scattered by the molecular bean1 as a 

function of the angle away from the axis of the He beam. The potential 

is extracted from the data by a fitting procedure, where parameters 

characterizing the potential are varied and adjusted untill the potential 

can be used to accurately simulate the observed data. This requires 

that the potential model be flexible and unbiased with respect to a 

specific shape, and that the simulation procedure accurately reflects the 

conditions of the experiment. 

In Chapter 2 we present empirically measured total (sum of elastic 

and inelastic) differential cross-sections (DCS) for the scattering of 

helium by carbon dioxide, carbon disulfide and carbonyl sulfide. From 
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these data we extract the interaction potentials between the three 

scattering systems . Careful attention is paid to the simulation of 

experimental conditions in the potential fitting procedure to ensure that 

the potentials obtained are not affected by experimental artifacts. To 

ensure that the final results are not biased by the potential model, 

we employ a large number of models, both isotropic (spherical) and 

anisotropic. These models are appropriately manipulated to show that 

only anisotropic potentials provide a good accounting of the observed 

data, and that this anisotropy is with respect to the position of the van 

der Waal well minimum as well as the depth of that minimum. 

In Chapter 3 we provide a detailed analysis of the sensitivity of 

the total, elastic, and rotationally inelastic differential cross-sections 

to the parameters of the He + C02 potential. We wish to know: a) 

How do features of the potential effect the observed cross-sections? b) 

How sensitive are the data to a given potential parameter and therefore 

how significant is this parameter? These questions are important 

in understanding the results of Chapter 2 as well as predicting the 

results and sensitivites of data which measure rotationally inelastic cross­

sections. 

The conclusions of Chapter 3 indicate that the measuring of 

rotationally inelastic differential cross-sections can provide significantly 

greater insight into the nature of the potential than does the total 

DCS. In Chapter 4 we develop the means for simulating experimentally 
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observable data from the potential for a given set of apparatus conditions. 

In Chapter 5 we describe modifications made to the crossed-beam 

apparatus in order to observe this inelasticity and present preliminary 

results for He + C02. 
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CHAPTER 2 

POTENTIALS FOR 

He+ C02 ,He + CS2 , and He+ OCS 
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1. INTRODUCTION 

Interaction potentials between an atom and a molecule have 

been and continue to be subjects of a large body of theoretical and 

experimental work. 1,2 The successful application of the infinite order 

sudden approximation (IOSA) to many systems has made possible 

the prediction of a wide range of phenomena.1- 3 ,11 - 13 However, the 

prediction from first principles of these potentials is still difficult in the 

range where there is a transition between the long range attractive van 

der Waals forces and the short range repulsive forces. The accurate 

determination of the potential requires the analysis of a variety of 

experimental data; the differential cross section (DCS) is one of the most 

sensitive observables to the potential. 

A potential that has attracted a particularly large interest is one 

for He + C02 .3 - 6 ,11- 15 Which of its characteristics account for various 

features of the DCS? How uniquely can they be obtained from the data? 

Is there evidence for potential anisotropy in the data and how can it be 

studied? 

These questions have been addressed previously. Pack14 showed 

that anisotropy of rm dampens the DCS quanta! oscillations, while E 

anisotropy has a much smaller effect on on the DCS. Eno and Rabitz 7 

computed sensitivity coefficients for Pack's 14 Lennard-J ones potential to 

show that the DCS is most sensitive to rm , with decreasing sensitivity 
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forE , rm anisotropy, and E anisotropy. Raff and coworkers11 ,12 compared 

the effects of variations of potential energy surface topography on the 

observed integral inelastic cross sections and total differential cross 

sections for He + C02; they found that the total (elastic plus inelastic) 

DCS is by far more sensitive to potential anisotropy than the state 

resolved integral cross sections. Faubel et a/.9 ,10 measured the He + 

0 2 and He + N2 DCS 's, where the total DCS oscillations are very 

slightly dampened and potential anisotropy can only be extracted by 

measuring the rotationally inelastic DCS. The DCS for He + C02 was 

first observed by Keil et al. 5 and further analyzed by Parker et al. 4 to 

extract a potential which provied a good fit to their data. Recently, 

Keil and Parker3 fitted the He + C02 DCS along with a large set of 

data which included integral cross sections, transport properties , and 

linewidths. However, as we will point out, they did not correctly account 

for certain instrumental parameters in analyzing the DCS data. Because 

of this problem they could not obtain the correct He + C02 potential. 

In this paper we present and analyze total (elastic and inelastic) 

differential scattering cross section data for He + C02, CS2 and OCS. 

In section 2 we summarize the infinite order sudden approximation 

(IOSA) and show that it is valid for the analysis of the data collected. 

In section 3 we list various anisotropic potential forms used to fit our 

data. In section 4 we describe our crossed-molecular beam apparatus 

and its operating conditions. In section 5 we describe the data analysis 



- 10-

procedure used to extract an interaction potential from the data. In 

section 6 we present our data and various potential models that fit the 

data. We demonstrate the need for anisotropy in well minimum position 

as well as in the well depth in order to account for all the features of 

the scattering data. An anisotropic potential for He + OCS is proposed 

that includes the lack of an inversion center with a minimum number of 

variable parameters. In section 7 we calculate various bulk properties 

for He + C02 from our best fit potential and compare them to reported 

experimental measurements. The paper concludes with a summary of 

our results and conclusions in section 8. 
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2. THEORY 

The theoretical basis for extraction of non-spherically symmetric 

potentials from differential scattering cross-section data for atom-

linear molecule collisions is the infinite order sudden approximation 

(IOSA) for rotationally inelastic transitions. Parker and Pack have 

presented an excellent derivation of the IOSA; 13 hence we will only 

demonstrate its highlights and how it applies specifically to obtaining 

non-spherical intermolecular potentials. At the collision energies under 

consideration here, vibrational excitations are not accessible, while 

vibrational deexcitations are not possible since the molecules of interest 

herein are in their vibrational ground states.23 Therefore, it is reasonable 

to treat the target molecule as a rigid rotor of length R (the distance 

between the end atoms) and with a moment of inertia I. Let r be the 

position vector of the incident atom with respect to the center-of-mass 

of the molecule and 1 be the angle between r and the oriented molecular 

axis !J,. The nuclear motion Hamiltonian for this system is therefore 

(1) 

" " where JL is the atom-molecule reduced mass, and L and J are the 

orbital angular momentum and molecular angular momentum operators, 

respectively. 
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Solution of the corresponding nuclear motion Schrodinger equation 

can be achieved by expanding the scattering wave function in eigen­

functions of the total angular momentum J = J + L . This yields 

a set of radial differential equations in the coefficients of this expan­

sion coupled by the matrix elements of V(r, 1) in the expansion basis 

set. These equations can be decoupled by imposing the centrifugal sud­

den approximation 18,19 and the energy sudden approximation. 16·17 This 

involves replacement of the orbital and molecular angular momentum 

operators in (1) by the constants 

(2) 

and 

(3) 

where l and ] are effective angular momentum quantum numbers which 

are chosen differently to accommodate various versions of the theory. 

Collectively, these two approximations are known as the IOSA, 13 which 

yields the decoupled ordinary differential equations 

(4) 

In terms of which the differntial cross sections of interest can be 

calculated as indica ted below. Equation ( 4), in which 1 plays the role 

of a parameter (since it does not appear in differential operators) , can 
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be solved in a manner analogous to a spherical potential problem,21 by 

requiring that the wave function vanish at the origin and that at large r 

it behave as 

¢Jr ---r 
r-oo 

(5) 

where tJr( 1) is the phase shift for a given fixed atom-molecule orientation 

and the wave vector k; is given by13 

(6) 

for a given total energy E. 

The scattering amplitude for a given angle of incidence 1 is obtained 

in a manner identical to that for a spherical scattering problem21 

fk; (I I 0) = 2~. ~)2l + 1){ 1 - e2i'11 hl} Pz(cos 0) ( 7) 
J l 

It can be shown that the rotational state-to-state differential cross-

section is given in this approximation by13 

Note that this result is independent of the choice of r. (The matrix 

elements of f( 1 I 0) are evaluated in the spherical harmonics of the 

body- fixed coordinates - BF). 
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The implication of the IOSA is that the approach angle 1 does not 

change appreciably during the collision. 13,15 ,17 This can be related to 

two operationally more tangible conditions which ensure the validity of 

the IOSA: a) the relative collision translational energy is large compared 

to the spacing between rotational energy levels - i.e., the collision is 

not strongly influenced by the rotation b) rotational transitions occur 

at small impact parameters, i.e., at low values of orbital angular 

momentum. The first condition is easily met by the systems considered 

in this paper where the relative collisional energy of 65 me V is much 

greater than the largest spacing of 6 me V between consecutive open 

rotational states. The second condition is met by systems, which have 

a small well depth relative to the collisional energy, implying that the 

incident atom is mainly influenced by the repulsive wall of the interaction 

potential which occurs at short distances r. The well depths for the 

collisions studied herein and other helium-molecule systems are less than 

8 mev.3-5,8-10,28-36 

The total differential cross-section, from a state j to all accessible 

states j', can be obtained by summing equation {8) over all j'. If] is 

chosen to be equal to j then this sum yields 

u( 8) = 1/ 21" I f('y I OW sin "f d"f . {9) 

This expression is independent of the initial rotational state j, and hence 

represents the total differential cross-section for all initial states. 
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3. POTENTIAL MODELS 

In order to insure a reasonable uniqueness and reliability of the 

potential derived from experimental data, we have employed several 

parametrized models for the He-molecule potential. These include highly 

flexible central field potentials as well as anisotropic potentials. The 

spherical models were chosen to demonstrate their inappropriateness 

as models of the interaction of He with the molecules considered in 

this work. The anisotropic 'potential models were chosen for their 

simplicity, flexibility and physical reasonability. Simplicity is an 

important criterion, since an excess of parameters in a least-squares 

fitting procedure can lead to an over-determined system with high 

correlations between parameters, yielding a final potential that is not 

unique. 

3.1. Anisotropy Parameterization 

We consider three forms for expressing the anisotropy of a potential. 

1} Legendre expansion representation 

A reasonably obvious form for expressing the angular dependence 

of an atom~rigid linear molecule potential is a Legendre polynomial 

expansion 
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00 

V(r,1) = L Vn(r)Pn(cosl) {10) 
n=O 

The Vn ( r) 's are spherical-type potentials with several parameters each. If 

the expansion proceeds beyond n = 2 the number of parameters becomes 

too large to insure the uniqueness and independence of each parameter. 

f) Multi-center representation 

An alternate means for constructing an atom-molecule anisotropic 

potential is to express it as . a sum of pairwise isotropic atom-atom 

potentials:4 

n 

V(r,1) = LVi(ri) (11) 
i=l 

where 

{12) 

and Zi is the distance from the center-of-mass of the molecule to the 

center of atom i; it may be positive or negative. 

9} Angular-dependent parameter representation 

A third way of specifying anisotropy, is by giving a 1 dependence 

to the parameters of an otherwise spherical potential, 14 
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{13) 

where E is the well depth, rm is the well minimum position, and {3 is a 

shape parameter which depends on the parameterization of V. Some 

parameterizations may have more than one shape parameter, all of 

which may have angular dependence. The angular dependence of any 

parameter A {such as E, rm, [3) may be expressed in terms of Legendre 

polynomials 14 

00 

A( I) . L A(n) Pn(cosl) (14) 
n=O 

In general, for symmetric molecules, the expansion is carried only to two 

non-vanishing terms n = 0 and n = 2, because an excess of parameters 

may not yield a unique potential via the least squares procedure as 

the data are not sensitive enough for their determination. Another 

parameterization for A( 1) (also for symmetric molecules), especially 

useful for rm, is an elliptical form5 

( ) _ [ 1 + q sin 
2 1] 112 

rm I - rm.l. 1 + q (15) 

where 

q = [r;.L - 1] 
rmll 

(16) 

while r m.1. is r m for the 1 = ~ configuration and r mu is r m for 1 = 0 or 

1r. 
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Since each parameter has been given an angular dependence, the 

angular dependence of the potential can be complicated such that its 

expansion contains Legendre polynomials to large orders. We then 

expect that the angular-dependent parameter representation would be 

the most flexible potential form. 4
'
5 

3.2. Shape Parameterization 

The shape of the anisotropic potential in any of the three 

representations given above c~ be expressed in terms of well known 

spherical-like potentials. The potentials we consider are: 

1} Lennard-Jones {LJ}24a 

(17) 

This potential is quite simple, but not very flexible. The width of the 

well is fixed and is approximately fitted by a {3 = 6.3 Morse potential of 

equal depth and well position. 

2} Morse 41 

(18) 

The shape parameter {3 gives the Morse much greater flexibility in 
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specifying the well width than the LJ. It determines not only the well 

width but also the long range van der Waals' part of the potential to 

which scattering experiments do not have much sensitivity. The van der 

Waals dispersion terms are quite amenable to theoretical calculation, 

and inculsion of them in a potential is appropriate for improving the 

Morse potential. 

9) Lennard-Jones-Dispersion {LJB} 

The Lennard-Janes potential may be modified to include the Ca 

dispersion term. This gives some flexibility to the well width but it is 

subject to the control of the dispersion term 4 

4) Morse .. Spline-van der Waals {MSV} 

A better parameterization is one in which the dispersion and well 

width are more independent. At short distances we use the Morse 

potential, while at long distances we use the van der Waals dispersion 

potential. The two are joined with a cubic spline.28 ,36 ,37 

(20a) 

for r ~ rMs 

V ( r) = [ S 1 ( r sv - r) 2 + S 3] ( r sv - r) 
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for rMs < r < rsv 

C6 Cs 
V(r) = ----r6 rs (20c) 

for r ~ rsv 

where rMs = rm (1 + In 2/ {3) is the inflection point of the Morse 

function. The spline coefficients 81, 82 ,83 and 84 are determined by 

continuity conditions imposed on the potential and its derivative at 

rMs and rsv. The Spline-van der Waals junction is maintained at 

rsv /rm = 1.6.27-30 

5} Morse-Morse-Spline-van der Waals {MMSV} 

The MSV potential still has some inflexibility since the well width 

parameter {3 also affects the repulsive wall. This interdependence can be 

removed by using a different Morse function for the repulsive region to 

yield 27,36,37 

V(r) = : { e2!.B'-r.Bw/rm) _ 2e!.B'-r.Bw/rm)} (2la) 

for r / r m < 1 - In 2 I {3 

V(r) = VMsv(r) (21b) 

for r I r m ~ 1 - In 2 I {3 

where 
{3'- In 2 

w=---
{3- In 2 
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The constant w is used to impose a smooth transition between the two 

Morse functions. 

6} Simons-Parr-Fin/an-Dunham {SPFD} 

Another very flexible potential is the SPFD {Simons-Parr-Finlan­

Dunham) potential which includes a van der Waals term. It is esentially 

a polynomial in r- 1 and is given by 38 - 40 

N 

V(r) = t{b0 A2 (1 + ~b;A') -1} 
for r ~ r1 

C6 Cs 
V(r) = -~- -;:s 

for r > r1 

where A = 1 - rm 
r 

(22a) 

{22b) 

The two highest order shape parameters bN-1 and bN are fixed by 

smoothness conditions in joining to the van der Waals point at rf, which 

is made equal to 1.6r m. In general N is 2 or 3, giving one or two shape 

parameters, b0 and b1 . The SPFD potential is not well behaved for 

r < 0.6rm, and oscillates in that region. This problem can be eliminated 

by replacing it by an exponential of the form 24 V ( r) = Ae-br for r < rw, 

where A and b are fixed by smoothness at rw. The choice for rw is 

usually 0.7rm, and has little effect on the final results since experimental 

data are not sensitive to this highly repulsive region. 
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7} Hartree-Fock n~·spersion (HFD) 32,33 

V (r) = ce/3(1-r /rm) - Ca - Cs e- (arm/r-1) 2 (23a) 
r6 rB 

for r <arm 

V(r) = f.e/3(1-r/rm) - Ca - Cs 
r6 rB 

(23b) 

for r ~arm . 

Only one of c, {3, or a can be specified for a given potential: the other 

two are fixed by the requirement that at rm the potential be equal to -f. 

and its derivative vanish. For the purposes of this study we will either 

vary a or c, in addition to rm. 

The potentials with the correct long range behavior are the MSV, 

MMSV, SPFD, and HFD. We would then expect that they should 

give the most accurate representation of the potential. The long range 

dispersion terms constrain the potential in regions where the sensitivity 

of the experiment is low, while giving it the necessary flexibility in regions 

of greater sensitivity. The van der Waals dispersion term coefficients Ca 

and Cs for He + C02 have been accurately calculated by Pack.26 Both 

coefficients have significant anisotropy which can represented by a second 

order Legendre expansion 

where n = 6 or 8 
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The differential cross-section is most sensitive to the spherical average 

of the c6 coefficient c~O) .6 The sensitivitites for the anisotropy of c6 

( C~2)) and for the c8 coefficient with its anisotropy ( cJO) and C~2 )) are 

at least a factor of 50 smaller than for than for C!O). 6 In the fitting 

procedure described in section 5 the dispersion coefficients are assumed 

to be known, i.e., are not treated as fitting parameters. Therefore for the 

purposes of this paper, C~o) must be known with the greatest accuracy, 

while the other coefficients are less significant and need not be known 

as accurately. This is fortunate since at present calculations for the 

dispersion terms for He+ CS2. and He+ OCS have not been published, 

and hence they must be approximately derived from those for He+ C02 

and the polarizibilities a(X) 24ab, 25 ,26 , where X= C02, CS2, and OCS. 

For c!O) a quite reliable relation is 

C(o) (X) = C(o) (CO ) a(X) 
6 6 2 o:(C02) 

The expressions for the other coefficients are more complicated and are 

less accurate. 

The disperison term for the multi-center potentials is splined into 

each of the three centers i using 

V:· ( . ) = -1 ( C 6 (I) + C 8 (I) ) . 
' r, v DW 3 6 8 r r 

where r i is the distance from the center i to a point 1n space with 

the coordinates (r, 1), and is given by equation (12). As a result, in 



- 24-

the dispersion region the Vi(r;) contain 1-dependent parameters. This 

means that physically the potential is no longer a sum of three spherically 

symmetric potentials having different centers, over the full range of r. 

This procedure is adopted because of numerical convenience, since the 

resulting fits are not strongly affected by it. 

For the multi-center potential we use the spectroscopic bond 

distances22 to locate the origins of each of the central potentials from the 

center-of-mass of the molecule; the Zi in equation ( 12) is not treated as an 

adjustable parameter in the least-squares parameter fitting procedure. 

This provides a reasonable constraint on the potential, such that the 

least-squares algorithm produces a physically acceptable potential. 
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4:. EXPERIMENTAL 

The crossed molecular beam apparatus used in these experiments 

1s depicted in Figure 1. The basic constituents are a doubly 

differentially pumped supersonic primary (probe) beam source, an 

effusive secondary (target) beam source, and a doubly differentially 

pumped mass spectrometer. The beams cross at right angles, while 

the mass spectrometer detects the scattered signal at angles in the 

plane or out of the plane of · the beams. This section will attempt 

to present a reasonably thorough description of the apparatus, with 

emphasis on improvements made since previous descriptions.28,42 - 45 

The primary and secondary beam sources along with the movable 

detector are mounted on a 130 em diameter base (Fig. 1). The base is 

covered by a stainless steel bell jar, which may be raised to permit access 

to internal components. The 1250 liter vacuum chamber is pumped by 

four liquid nitrogen ( l - N 2 ) trapped 6 inch oil diffusion pumps and 2 

l -N2 and refrigeration-trapped mercury pumps with a total pumping 

speed of 1850 1/ sec. Pressures as low as 2 x 10-8 torr can be achieved 

with no load on the system. 

The primary beam (PB) is produced via a supersonic expanston 

through a 70 micron diameter nozzle (N z) consisting of platinum or 

molybdenum electron microscope aperture. The central portion of the 

resultant beam is collected by a 0.64 mm diameter conical brass skimmer 
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(Sk) at a distance of 11 mm from the nozzle. The edge of the skimmer 

aperture is sharp and has an inner surface half-angle of 28 degrees 

and outer surface angle of 34 degrees. The skimmer-nozzle distance is 

remotely variable, and was optimized at 11 mm for strongest scattered 

signal and smallest background. The gas that does not pass through 

the skimmer is pumped by a 6 inch oil diffusion pump (DP1) with a 

250 1/ sec pumping speed for helium ( 400 1/ sec for air). The pressure in 

this chamber is 2 x 10-3 torr48 with a 1300 torr stagnation pressure of 

He behind the nozzle. This pressure is limited by the pumping speed 

of DP1, and not by dimer formation. After passing the skimmer the 

beam enters a second differentially pumped chamber. This is pumped 

by a 100 1/sec (for helium) mercury diffusion pump. Under the above 

conditions the pressure in this chamber is 4 x 10-5 torr.48 The chamber 

contains a chopper ( Ch) to modulate the beam at 160 Hz for lock-in 

signal detection. Also enclosed in the chamber is a slotted-disk velocity 

selector (VS) 47 used for measuring the beam velocity distribution; it is 

moved out of the beam path during scattering experiments. The beam 

emerges into the scattering chamber through a collimating aperture (1.52 

rom diamter) 79 mm from the scattering center. 

The velocity distribution data obtained with the VS consist of signal 

from the mass-spectrometer as a function of the selector rotational 

frequency to which the velocity is directly proportional. These (after 

correction for the fact that a mass spectrometer is a number density 
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detector rather than a flux detector) are fitted via least-squares to the 

function 46 

(24) 

where m is the mass of the beam molecule. In this expression there are 

two variable parameters T8 and v11 • The constant c is determined be 

requiring f( v) to be normalized over v. The gas stream temperature 

T8 and stream velocity V 8 are related to the effective nozzle stagnation 

temperature T0 , a Mach number M, and the heat capacity ratio 1 = 

(25) 

and 

(26) 

The secondary beam (SB) enters the scattering center directly from 

a capillary array ( CA), located 6 mm before it. The array consists of 2 

micron diameter glass tubules 610 microns long fused into a single disk, 

with a 50% open area to gas flow. 49 The array is held in place by an 

o-ring which vacuum seals and exposes a 1.6 mm diameter region of the 

disk. This assembly is mounted on a block which may be tilted up via a 

remotely activated pneumatic bellows so as to uncross the beams. In the 
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crossed position the bellow presses the source assembly firmly against a 

fixed flat surface to ensure precise alignment. 

The secondary beam conditions are chosen to maximize the 

intensity, mimimize the angular spread and eliminate secondary collisions 

of the primary beam with secondary beam molecules. The first criterion 

requires the greatest stagnation pressure behind the capillary array, 

while the other two require a lower stagnation pressure. Also, a lower 

stagnation pressure reduces the formation of van der Waals dimers. An 

optimum pressure occurs in the range of 3 to 5 torr. This results 

in a scattering chamber pressure of approximately 3 x 10-7 torr, for 

condensible (on l-N2 cooled surfaces) gases such as C02 , CS2, and OCS. 

These pass through the capillary array with little expansion cooling as 

their low Mach number ( M ~ 1) indicates . This was determined by 

measuring the velocity distribution of the secondary beam, with the 

capillary array placed in the position of the primary beam nozzle. 

The optimal operating condition of the beam sources are summa­

rized in Table I. The angular distributions were measured using the mass 

spectrometer, and characterized approximately by the shape of a cosine 

squared distribution. 

Primary beam atoms that are scattered by the secondary beam, 

pass through a detector entrance aperture of 1.52 mm diameter, 8.0 

em from the scattering region. This aperture is equipped with a gate 

valve (GV) which separates the scattering (main) chamber from a buffer 
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chamber. A second aperture, also 1.52 mm in diameter , 4.5 em away 

from the first one, isolates this buffer chamber from the main part 

of the mass spectrometer (MS) vacuum chamber. The center of the 

mass spectrometer ionization region is located 2.4 em from that second 

aperture. The penumbral cone determined by these apertures is 4 

degrees and spans a 5.8 mm diameter at the scattering region. The 

umbral cone angle is 0.67 degrees with a 1.6 mm diameter span at the 

scattering center. This ensures that the entire scattering region is in full 

view of the mass spectrometer. The angular resolution, as determined 

from the angles subtended by the umbral and penumbral projections at 

the ionization region, is in the range 0.67 to 1.41 degrees. However, the 

overall apparatus angular resolution {afhab) is a com-posite of this and 

the size of the scattering volume. The value of this parameter is crucial; 

a correct potential cannot be obtained from the data without it. For 

the beam conditions under consideration, the overall angular apparatus 

resolution was determined to be 1.5 degrees by a careful analysis of He 

+ Ar scattering data. The potential parameters for an MMSV and a 

SPFD potential were fitted along with ~Olab to the He + Ar scattering 

data obtained on our apparatus. The potential parameter values agreed 

with those obtained at other laboratories.33- 36 The same value of ~Olab 

was obtained by making it the only variable parameter and fitting it to 

our data with the SPFD potential parameters fixed at values obtained at 

those laboratories. This is a new value of the resolution parameter and 
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·superseds the value of about 1.9 deg. which we previously reported.28- 30 

The main reason for this change is that the previous value of Da.Ozab was 

obtained by fitting the data to a very rigid Lennard-Janes potential.24 

We will discuss the implications of this change in Da.Ozab on the He + 

C02 potential in section 6. 

The detector buffer chamber is pumped by a 5 I/ sec ion pump and 

the mass spectrometer chamber is pumped by a 25 I/ sec ion pump. 

During experiments a liquid helium cryopump (CP) carries most of the 

pumping load of the main MS chamber. The pump is surrounded by a l­

N2-cooled jacket. The ionizer (I) directly below the cryo-pump is cooled 

with l - N2 to reduce radiation heating of the pump. This shielding allows 

the pump to operate for over four hours with an initial fill of one liter 

of liquid He. The cryo-pump has an estimated pumping speed of 300 to 

400 1/sec at pressures 7.0 to 15 x 10-10 torr. A bake-out is necessary in 

order to maintain these pressures. 

The mass-spectrometer ionizer is a high-efficiency electron-impact 

device, 50 operated at 15 rnA to 25 mA emission current. The ions 

produced in it are focused into a quadupole mass filter and after mass 

selection are detected by a Channeltron51 electron multiplier. The 

Channeltron may be operated in a pulse counting (digital) mode or 

current measuring (analog) mode. In the pulse counting mode the 

Channeltron pulses are passed through a pulse amplifier-discriminator52 

and proceed to a gated phase sensitive pulse counter.53 The counter 
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is controlled and read by a PDP11/03 computer.54 The gating signal 

originates at a photodiode light sensor on the primary beam chopper 

( Ch); it is amplified, shaped, phase shifted and then serves as the gate 

for the counter. The computer reads the counter at twice the 160 Hz 

chopper frequency, i.e., when the chopper passes the primary beam and 

when it blocks the beam. The computer then subtracts the "blocked" 

signal from the "unblocked" to obtain a phase sensitive digital lock-in 

reading. Due to the finite length of the read cycle, followed by a counter 

clear pulse, the counter has a reduced duty time of 95%. This, however, 

is not a problem since we further gate our signal to an 85% duty time so 

as not to count pulses while the primary beam intensity rises and falls as 

the chopper teeth edges cross the beam path. The duration of the gate is 

maintained by a quartz oscillator to ensure precision and reproducibility 

of each gate pulse. 

In the analog detection mode the Channeltron current is measured 

by a home-built electrometer with a sensitivity of about 50 picoamperes.56 

The electrometer output goes into a PAR HR-8 phase sensitive lock-in 

amplifier,55 which also makes use of the chopper photodiode. The lock-in 

output is read by an analog-to-digital converter of the PDP-11/03. 

As stated above, the mass-spectrometer has two angular degrees of 

freedom. It may by positioned from 12 degrees below the plane of the 

beams to 40 degrees above that plane. Motion in the plane of the beams 

ranges from -20 to 110 degrees , where the positive angular direction is 
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from the primary beam to along the secondary beam, with the primary 

beam axis serving as the orgin. The positioning reproducibility in both 

directions is better than ±0.05 degrees. 

Accurate and precise alignment is a necessary prerequisite for good 

scattering intensity measurements. The principal axis of alignment 

consists of: the primary beam nozzle, the skimmer, the exit aperture, a 

0.05 mm alignment pin placed at the scattering center, the two detection 

apertures and cross-hairs at the back of the mass spectrometer housing. 

All of these are made to lie along a line to the specified tolerances of 0.05 

mm with the aid of a precision surveyor's telescope. After this alignment 

is completed the secondary beam source is aligned with the scattering 

center pin, where the latter is rotated to 90 degrees from the primary 

beam axis. 

The in- and out-of-plane angles are measured wth the help of two 

sychro position sensors.57 The accuracy of these sensors is determined 

by measuring the distance along a rotation arc at a large radius. The 

agreement of the sensor readings with these measurements is within 0.05 

degrees. The accuracy with which the detector tracks the scattering 

center is measured as the distance from the scattering center pin to the 

front aperture. The maximum variation is 0.1 mm over the full range 

of both angular degrees of freedom; this corresponds to a maximum 

deviation of 0.1 degrees in the tracking of the scattering center, which 

occurs at large ( c.a. 40 deg.) out-of-plane angles. 
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Data are collected in the range of 2 to 20 degrees (out of the plane 

of the beams) at intervals of 0.25 degree for up to 10 degrees , every 0.5 

degree up to 15 degrees and every degree thereafter. We use the digital 

pulse counting mode for these experiments in preference over the analog 

mode since it is inherently simpler and requires shorter measurement 

times at larger angles for equivalent data quality. The modulated signal 

is accumulated at a given angle with the beams crossed, thereafter 

the secondary beam source is tilted up to uncross the beams and the 

modulated component of the background signal is measured and then 

subtracted from the crossed signal. A reference signal at 4.5 degrees 

is repetitively measured after every three to five successive angles to 

provide a normalization and to compensate for any drift in sensitivity. 

The entire angular scattering intensity distribution is measured six times, 

giving a total accumulation time of 5 minutes per angle at low angles 

to 2 hours at the largest angles. These six measurements are averaged; 

the standard deviation at each angle defines the error bars for use in the 

weighted least squares procedure. 
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5. DATA ANALYSIS 

The process of extracting a potential from differential cross-section 

data begins by proposing a good model of the potential with a reasonable 

initial guess of the appropriate parameters. This model is the basis of 

a computer simulation of the data. A least-squares fitting procedure is 

employed to iteratively adjust the potential parameters until the best 

possible match is made between experimental and modeled data. 

The simulation of data can be divided into two parts a) calculation 

of the cross-section in the center-of-mass frame by means outlined in 

the theory section for a range of relative collision energies and scattering 

angles; b) transformation of these results to a laboratory reference frame 

and averaging over the velocity and angular distributions of the beams 

as well as the effective resolution of the detector. 

Rotationally inelastic collisions occur for systems with anisotropic 

potentials. In general, this inelasticity should be considered in 

transforming the total differential cross sections to the laboratory frame. 

However, since the changes in rotational quantum number are small6 

and the collision energy is much greater than the rotational spacings6 

for the systems under consideration, it is possible to transform the total 

differential cross sections as if they were purely elastic without any loss 

of accuracy.15 
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The DCS calculation is done as follows: 

(1) The phase shifts are calculated at a set of relative collision velocities 

Wn and approach angles 1 (see equation 5) . The Wn are picked to 

represent the full range of collision velocities as determined from 

the operating conditions of the beams. The approach angles are 

chosen to correspond to Gauss-Legendre integration points. The 

phase shifts are calculated to a specified precision by the J WKB 

method58 ,20b or for the low partial waves in some cases, by Numerov 

integration 59 of the Schrodinger equation ( eq. 4). 

It was found that a 12-point Gauss-Legendre quadrature over 1 is 

virtually identical to a 48-point quadrature for the conditions of 

our calculation. The inversion symmetry of C02 and CS2 further 

reduces the number of points by a half, requiring the phase shift 

calculation at only six values of I· 

(2) The scattering amplitudes are calculated using equation (7) for a set 

of center-of-mass scattering angles Om. The partial wave summation 

is truncated when several successive phase shifts become less than 

a specified value (usually 0.001 radian). This requires phase shifts 

to be calculated up to a maximum l which lies in the range 150 to 

350 depending on the target molecule considered. 

(3) The square of the scattering amplitude is integrated over the 

approach angle 1, using equation ( 9). This yields center-of-mass 

differential cross-sections a( Wn , Om) at relative collision velocities 
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Wn and scattering angles Om. 

The transformation and averaging procedure is done as follows: 

(1) A set of Gaussian integration points is obtained for the distribution 

of beam velocities based on the characteristics summarized in Table 

I. The range of integration is specified by cut-off probabilities of the 

velocity distributions; the integration points are designated Upi and 

Vsj for the primary and secondary beams, respectively. 

(2) A set of Gaussian integration points are obtained for the spread of 

beam interaction angles, designated at ~k. The ~k are determined 

from a convolution of the individual beam spreads as given in Table 

I. 

(3) Cross sections a( Wijk, Om) are interpolated from a( Wn, Om) where 

the Wijk are the relative collision velocities corresponding to 

{4) The center-of-mass cross-sections a(Wijk, Om) are transformed to the 

laboratory reference frame by multiplying by the Jacobian factor62 

1zi1:(0m) (appropriate for a number density detector) 28 to yield 

I( o:!: )iik, a laboratory scattering intensity, where ot!: depends on 

Om. By interpolation the I( ot!Z)ijk are converted to I( elab)ijk' where 

the Olab are a set of Bzab angles used subsequently in a quadrature. 

(5) A Gaussian quadrature {summation of 1(8iab)ijk ) over uP, Vt, and~ 

{ i , j, k) yields I( Blab). 
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(6) At each angle Blab , the I( Blab) are averaged over the effective 

angular width of the detector. We say "effective" since this 

resolution represents not only the angular width of the detector 

but also contributions from the finite scattering volume. For these 

experiments the effective angular resolution angle is 1.5 degrees 

FWHM with an assumed cosine squared distribution in Blab. The 

scattering intensities averaged over the effective angular range of the 

detector are interpolated to give I( Blab) at the experimental angles 

Biab· 

The least-squares procedure for the potential parameter determina­

tion is done by minimizing the quanti ty60 

n 

x2 = L wi[Fi- ali(Pt, ... ,pk)]2 (27) 
i=l 

with respect to the parameters Pb ... , Pk for laboratory angles Blab i 

(i = 1, ... , n). The Fi are the measured scattering intensities; the Ii 

are the calculated intensities based on the potential parameters which 

are being optimized; and the Wi are weighting factors which are given in 

terms of the experimental error bars (or standard deviations) ~Fi 

{28) 

Since the experimentally measured intensities F i are arbitrarily normal­

ized, the calculated intensities Ii must be scaled to them. The scaling 

factor a is obtained in closed form by minimizing x2 with respect to a. 
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Following Keil and Kuppermann27 we use a "goodness-of-fit" statistical 

index 

_ 1 [ x
2 

] G = (tl.a./a)o.95 = -t(n- kh-o.os ( ) l:n 2 a n - k . 1 w,· I. 
t= I 

{29) 

where t( n - k) 1-y is Student's t-distribution for a confidence level y of 

the scaling factor a, with n data and k adjusted parameters. 

The parameters are optimized according to a nonlinear weighted 

least-squares regression algorithm introduced by Marquardt.61 The 

process is iterative, requiring five to fifteen cycles before convergence 

is attained, depending upon an initial guess for the parameters. 
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6. RESULTS AND DISCUSSION 

The scattering intensities of He colliding with C02 , CS 2, and OCS 

are plotted in Figures 2, 3, and 4 respectively, as a function of the 

laboratory scattering angle. The data have been multiplied by the sine of 

the laboratory scattering angle 0 so as to emphasize quanta! oscillations 

and display their relative contribution to the integral cross section .1 

While prominent oscillations have been observed for scattering of He 

with various diatomics 9,lo,29 and highly symmetric polyatoms such as 

CH4 and SF6,8,30 our current data by comparison show a substantial 

dampening of these oscillations, as has been previously observed for He 

+ C02 and other highly anisotropic systems.3 ' 4 The rainbow scattering 

angle structure is completely obscured as is the case for systems with 

spherical potentials. 6,33 

The questions that form immediately are: what features of the 

potential account for the oscillation dampening? How unique are these 

features? And, how well can these be extracted from the data? 

As we mentioned in the introduction, these questions have been 

addressed previously. However, we claim that the He + C02 potential 

presented by Keil et al.5 , Parker et al.4 , and Keil and Parker3 is 

inaccurate for the fact that all three of these papers used the value of 

angular resolution of the detector of Keil et al.28 which we showed to be 

incorrectly determined (see Section 4.). Although many of the qualitative 
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conclusions reached by Keil and Parker3 ' 4'5 will remain the same, the 

actual potential that we present will naturally be different. The angular 

resolution of the detector determines how the detection system dampens 

the observed oscillations. Therefore to correctly account for the actual 

quantal oscillation dampening it is necessary to distinguish it from 

the intrumental dampening. Since Keil and Parker used an angular 

resolution that was too large, they underestimated the extent of the 

quanta! dampening. Keil et a/. 28 made a similar mistake for He + Ar 

where they obtained a well that was too shallow and also too wide; Aziz 

et al. 35 have pointed out the possible source of this error and reported the 

correct He + Ar potential. There are many factors that contribute to the 

dampening of the oscillation; the rm anisotropy is the most pronounced. 

The shape of the well, i.e. the well depth and particularly well width 

contribute significantly to the shape of the oscillations.6 In fact the width 

parameter is very important one; it can dampen the oscillation more 

significantly than the well depth.6 Low angle He + C02 DCS oscillations 

(0 < 12°) are dampened by a decrease in well width, while higher angle 

oscillations ( 0 > 12°) are dampened by an increase.6 An increase in well 

depth dampens oscillations only in the range 5° < 0 ::; 12° ; outside this 

range the oscillations increase with increasing well depth.6 The angular 

range for the He + C02 and He + Ar experiments is 2 to 20 degrees. 

For most of this range the an increase of well width can be compensated 

for by an decrease in the depth; very roughly we can say that the well 
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capacity (depth times width) remains fixed. Only the first and last 

oscillations (or dampened remenants) in this range do not follow this 

"fixed well capacity rule. " From this one may deduce as to why the 

Keile/ al. He + Ar well is too shallow and too wide. In fact the widths 

of the Keil and Parker3
'
4

'
5 He + C02 potentials are consitently greater 

than those reported for other He scattering system8- 10 ,33- 35 (except 

those reported by Keil et a/.28- 30 ). On this basis we feel that the 

questions mentioned in the previous paragraph must be consided again, 

with careful accounting of all DCS oscillation dampening factors. 

We first may address the uniqueness question by suggesting that a 

spherical potential may be constructed with appropriate values for its 

parameters , that can model our data without resorting to anisotropic 

potentials. Referring again to Figures 3 through 4, we note that the 

calculated scattering intensity curves for the best spherical fit have 

significantly more oscillatory structure than our data, for all three 

systems. The parameters for these spherical fits are given in Table II. 

We have used the very flexible SPFD and MMSV27 forms (equations 

21 and 22). The goodness-of-fit statistic G (eq. 29) and the relative 

x2 
( eq. 27) reflect a rather poor fit for cs2 and ocs and at best a 

marginal fit for C02. Even though previous experience dictates that for 

these experiments G in the range of 1.8 to 2.0% gives acceptable fits 

( G less than 1.3% gives very good fits) , 4,27- 30 we should not a priori 

give full credence to the results. The well depth E, is very large , much 
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deeper than reported for helium collisions with various diatomics, such 

as C0,29 which were satisfactorily modeled with spherical potentials. 

It is also much deeper than the spherical average of the well depth 

for our anisotropic fits to He + C02, which as shown below, is in 

the range of 3.8 to 4.3 meV, depending on the potential model used. 

It is also much deeper than the well depth of the spherical average 

of these anisotropic potentials, which is about 2.8 me V. Presumably 

if these experiments and data reduction methods are not capable of 

detecting potential anisotropy, they should then sample the spherical 

average of the actual potential and not the spherical limit potential (the 

potential constructed from the spherical averages of the angle-dependent 

parameters of the actual potential). The same can be said for the well 

width and repulsive steepness parameters, which yield a very narrow well 

with a steep repulsive part, which is inconsistent with previous empirical 

isotropic33 ,34 and anisotropic potentials3 '8 - 10 as well as our anisotropic 

fits. Clearly therefore the spherically symmetric potential model does 

not satisfactorily represent the interaction of He with C02, CS2 and 

OCS; and hence we must include anisotropy into the potential models. 

This is consistent with the conclusions reached previously for similar 

systems. 4,5 

In section 3 we have proposed several means of including anisotropy 

and several means of characterizing the radial shape of the anisotropic 

potential. Since the various combinations would produce well over a 
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hnndred different potential models, it would not be practical , or very 

informative to present an exhaustive survey. We will concentrate only 

on several reasonable choices for He + C02 . The best of these will be 

used to analyze He + CS2 and He + OCS. 

6.1. Potentials for He + C02 

In Tables III and IV we present the best fit results for a variety 

of multi-center and parameter expansion potentials for He + C02 . 

Conspicuously absent are the results for Legendre expansion potential 

fits of equation (10). We repeatedly tried different types of fits to the 

Vn ( r) with terms up to second order, but with minimal success. 4 ' 8 The 

major problem associated with these potentials is multiple minima along 

a radius of constant 1, in the repulsive region, and in some cases an 

attractive region at small r for 1 close to the molecular axis. Both of 

these characteristics tended to develop in the process of least squares 

adjustment of potential parameters, and are physically unacceptable. 

Also, the parameters tend to be highly correlated, yielding a potential of 

questionable uniqueness. In addition, if we examine equation ( 10) we see 

no reason for the Vn (r) to have a general shape of the spherical potentials 

in section 3.2 . The shape of V(r, 1) at a fixed 1 should have a form 

given by those potentials, but there is no a priori basis for selecting 

Vn ( r) to have one of those forms. However, is is reasonable that the 

n = 0 term should be shaped that way since it is the spherical average 
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of the potential. 1' 9 ' 10 We have expanded all our resultant potentials (of 

Tables III and IV) to n = 6 order, and found that only the n = 0 

terms had a repulsive region at small r, a well at 3 to 4 Angstroms and 

weak monotonically decreasing attractive region at large r, as required 

physically. In many cases the n = 2 terms could also be described by 

this behavior, and in certain cases the V2 ( r) were the negatives of a 

typical van der Waals potential. But no n = 4 (or greater) term could 

be described as a van der Waals type, and most of the potentials in 

Tables III and IV have significant V6(r) terms. We therefore conclude 

that the Legendre expansion potentials are unsuitable as good models 

for He + C02 and similar systems using equations (17) thru (23) for 

the form of the r-dependent coefficients, and we forgo them in further 

consideration and discussion. 

The multicenter potentials in Table III all give very good fits to the 

data, as is evident by the low values of G or x2 . Varying six parameters 

in place of five produces somewhat better fits if we compare MSV­

ml to MSV-m2 and SPFD-m2 to SPFD-m3. However, an even better 

improvement in fit is acheived if the six parameters are chosen differently 

as in MMSV-m and SPFD-ml. The MMSV-m emphasizes and improves 

the shape of the repulsive region by separating it from the parameters 

that define the shape of the well. The function of the b1 shape parameter 

in the SPFD is not as region specific, and we have a better fit in the 

SPFD-ml where the bo 's for each of the centers are different and the 
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b1 's are fixed. The Morse-m yielded the best fit with six parameters; but 

since it does not include the long range van der Waals forces and differs 

significantly from the other multi-center potentials it has to be taken 

cautiously. The validity of the multi-center and parameter expansion 

potentials will be discussed later. 

The angular-dependent parameter potentials of Table IV give a 

range of fits to the data; most are very good. Especially noteworthy are 

the four parameter LJ8-e and the three parameter HFD-e. In the case 

of the HFD we were unable to vary additional parameters, such as the 

anisotropy of o: or the values of t:(o) and t:(2), since this variation yielded 

a potential with unacceptable behavior at certain angles. The LJ-e gives 

a good fit despite its lack of long range dispersion terms, but the results 

are deceptive; the anisotropy of the well depth is unrealistically extreme, 

producing well depth ranging from 0.04 (I= 0) to 5.24 meV (I= 1rj2). 

The other potentials have values of rm(l) close to one another, and while 

the agreement in well depths is not as good, it is still quite reasonable. 

The angular-dependent parameter potentials give a particularly 

straightforward visualization of the anisotropy, especially the elliptical 

parameterization of rm ( 1) - much better than the multi-center potentials, 

which nonetheless fully account for the anisotropy (as we shall see later). 

Yet one may wonder how real these anisotropies are? Even though, they 

do give much better fits to the data than the spherical potentials. This 

improvement in fit might, for example, be due to a greater number of 
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parameters in the region of sensitivity of these experiments. The results 

of Table V will clear up some of these questions, as shown below. 

The best fit potential of Table IV is SPFD-e. Let us determine the 

degradation in this fit as the potential anisotropy is decreased. First we 

lessen the anisotropy of t by decreasing t(2) / t(o) to -0.4 7 and keeping 

it fixed at this value while optimizing the remaining parameters. The 

well minimum ( r m ( 1) ) does not change appreciably, but the average 

well depth increases, and the well narrows ( b0 is larger) , with a slight 

reduction in quality of fit. We now remove all depth anisotropy (setting 

t(2) = 0) and optimize b1 instead. As can be seen by the results of test 

B, the well deepens and narrows even further with a significant decrease 

in the quality of fit. Perhaps the choice of b1 as the new variational 

parameter was not a good one, since the optimized value is close to 

original fixed value of -6.1. Let us instead introduce anisotropy in the 

shape parameter bo (test C). The fit is better than for test B but not as 

good as for test A in which there was some t anisotropy. The interesting 

fact is that the anisotropy of b0 is such that the well is wider at the 

angles for which the previous fits (with t anisotropy) gave a deeper well, 

( 1 = 1r /2 ) , and narrower at the angles for which previously the well 

was shallower ( 1 = 0 ) . In very general terms, the fitting procedure is 

trying to keep the well capacity (depth times width) somewhat constant. 

However, if the well depth has the anisotropy given in Table IV, the 

inclusion of bo anisotropy in SPFD-e produces no marked improvement in 
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the potential nor does it change the other parameters , and the resulting 

final b0 ('2) / bo (o) is small (less than 0.02). 

Table IV shows a greater agreement between the position of the 

well minima and of their anisotropies for the several potential models 

than the well depths and their anisotropies. This suggests and other 

ample evidence confirms6 ' 7 that our data are more sensitive to the well 

position than to its depth. We can then assume that the omission of r m 

anisotropy and inclusion of E anisotropy will produce a poorer fit to the 

data. This is indeed the case to a small extent {in Table V, thest D gives 

G = 1.69% wheras thest B gives G = 1.61%). This test D is however 

still much better than the spherical case. The striking feature of the 

results obtained by eliminating the rm anisotropy (compare test D and 

A in Table V) is the increase in the well depth, and in its anisotropy as 

well as a narrowing of its width. The inclusion of shape anisotropy (test 

E) has a minor effect on the results or on the quality of fit (as compared 

to test D) . The E anisotropy provides the proper regulation of the well 

capacity, and it is of the correct sign though somewhat greater than the 

ones in Table IV, in the range of -0.47 to -0. 70, which provide a better 

fit than test E. 

In Fig. 5 we have plotted the laboratory scattering intensity for 

these anisotropy tests. All of the curves are very similar at angles 

below 5 degrees. The potentials with no rm anisotropy (tests D and 

E) show the most deviation in the region at 4.5 degrees. The region 
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from 5 to 9 degrees demonstrates the need for both r m and E anisotropy; 

the oscillations are not as dampened if only r m or E anisotropies are 

present, nor does the inclusion of f3 anisotropy with that for rm properly 

dampen this oscillation. The range from 7 to 20 degrees demonstrates the 

importance of rm anisotropy, which alone is responsible for significant 

dampening of quantum oscillations. Yet this region is influenced by 

i or f3 anisotropies. The curves with no E anisotropy do fall within 

the upper ranges of the data error bars, so the effectiveness of this 

region in establishing E or f3 anisotropy is rather marginal. The role 

of rm anisotropy is absolutely essential in establishing the He + C02 

potential. Although rm( 1) is the most important parameter, and 

should be determined first before adjusting the other parameters , it is 

nonetheless evident that well depth anisotropy does play a crucial role in 

defining the potential and the resulting laboratory scattering intensity, 

and it is not just an arbitrary parameter chosen to improve the quality 

of fit. 

We fitted our data to several potential models and obtained well 

positions and their anisotropies. Even if well depth anisotropy is ignored 

the final best fit rm_!_ and q are very close to the results in Table IV. 

The two parameters which specify rm(l) are crucial in determining 

the well depth and shape parameters, as is evident from Table V. 

Our experience in constructing the results of Table IV indicates that 

these rm ( 1) parameters should be determined first before any other 
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anisotropy is introduced. Otherwise, starting the fitting procedure at 

arbitrary initial values of all potential parameters and varying r m and t 

anisotropies produces very unsatisfactory results. We therefore conclude 

that the parameters which specify rm ( 1) are the ones which are most 

precisely determined, and from the discussion in the previous paragraph, 

are crucial in establishing the values of the other parameters. However, 

r m ( 1) cannot be the only angle-dependent parameter. The well depth 

must also have such a dependence. 

In Table VI we present several features of each of the best potentials 

from Tables III and IV which have been reduced to and MMSV form. 

Features of interest are the minimum location r m , well depth t , the well 

width as characterized by f3, and the repulsive steepness as characterized 

by f3'. f3 is derived by finding the zero crossing of the potential and its 

inflection point; we present both. f3' is found by fitting it to eq. 2la 

with all other parameters given. These five features are evaluated at 

1 = 1r I 2, 1r I 4, and 0; expanded to zeroth and second Legendre orders; 

and determined for the spherical average of the potential. 

With some reservation we included the analysis of the potential at 

1 = 0. Our experimental data are not very sensitive to regions near the 

molecular axis, and misleading conclusions can be drawn if too much 

weight is placed upon the shape of the potential in these regions. A 

configuration space analysis shows that the solid angle element (which 

contributes to eq. (9) ) will be greatest at 1 = 1rl2 , while at 1 = 0 it 
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will be zero. On these grounds the helium atom is more likely to hit 

the molecule perpendicular to its axis than along that axis. This means 

that about 70% of the sensitivity lies in the range 1 = 1r I 4 to 1 = 1r 12 ( 
cos ( 1r I 4) ~ 0. 7). The differential scattering cross-section will mainly be 

influenced by this portion of the potential (unless it favors the collinear 

orientation so strongly as to force most collisions to occur in an aligned 

configuration; a situation which does not occur in the systems being 

considered). The extracted potential will be most similar to the real 

potential in this range, while in the range near the axis it will reflect the 

intrinsic biases of the given model as that model tries to best match the 

regions of highest sensitivity. Care should be taken so as not to infer too 

much from the structure of the model potential near 1 = 0. 

All of the potential models in Table VI agree very well on the 

position and anisotropy of the well minimum. Despite the warnings of 

the previous paragraph the agreement is very good even at 1 = 0. The 

standard deviation for rm( 1) is approximately 1% for each of the the 

three values of 1 given. It can be said with reasonable confidence that 

r m ( 1) is model-independent and that we have established its angular 

dependence. The minima location follows the overall shape of the C02 

molecule; the difference between rm(O) and rm(7rl2) is about 1.1 A which 

correlates with the CO bond distance of 1.16 A. This correspondence is 

not an internal bias of any of the potentials used; all of these are capable 

of a wide range of behavior including elongation perpendicular to the 
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C02 axis. 

As expected, there is less agreement among the potentials in Table 

VI regarding the well depth and its anisotropy. The expectation is 

motivated by the above discussions regarding the need for well depth 

anisotropy. Although it is clear that E( 1) has 1 dependence, it is not 

completely clear how this relates to the width of the well; every potential 

in Table VI manipulates E and {3 differently. The first drive in the fitting 

process is to establish r m ( 1), to which the cross-section is most sensitive; 

it is not as sensitive to the other parameters which are therefore much 

more subject to the biases of a given model. 

We have observed that the parameters of the fitted multi-center 

potentials exhibit a greater correlations between various parameters than 

for the angular dependent parameter potentials.. This is due to the 

fact that for the former potentials a changes in one of the parameters 

affects the potential globally in more pronounced way than for the latter 

potential. As an example, let us compare the MSV-ml, MSV-m2, and 

MMSV-m potentials to each other. For these potentials the well width 

and wall shape parameters are specified in different ways. The MSV-ml 

is a six-fitted-parameter potential; the rm, E and f3 for each center are 

adjusted in the fitting procedure. The MSV-m2 is a five-fitted-parameter 

potential; the {3's for the three centers are set equal to one another in 

the fitting procedure. The MMSV-m is a six-fitted-parameter potential, 

where the f3's for the three centers are made equal to each other as 
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well as the the f3' 's and are therefore treated as two fitting parameters. 

The MSV-ml and MSV-m2 potentials are very similar to each other in 

quality of fit and value (Table VI). They differ the most at and near 

"' = rr /2, where the MSV-ml is deeper, narrower, and steeper (on the 

wall). In general, the well is narrower when f3 is higher, and the wall 

becomes steeper when {3' increases. The MMSV-m potential provides a 

somewhat better fit than the two MSV-m ones. It is not as similar to 

either of them as they are to each other: the well is shallower and wider; 

the minimum position is greater; and the wall is steeper for all 'Y· The 

repulsive wall shape parameter {3' has a strong influence on the fitting of 

the other parameters for these potentials. This influence is also observed 

if we compare the angular-dependent parameter potentials MSV .. e and 

MMSV-e although it is not as pronounced. 

A potential that gave a very good fit, but one which we can reject 

is the Morse-m. It has an extreme anisotropy in well depth (the latter 

ranging from 1.9 to 8.13 me V), and a very narrow and steep well. By 

contrast the Morse-e potential gave a very poor fit with a shallow and 

wide well. This extreme behavior of both potential is caused primarily 

by inadequate flexibility in the form of the Morse potential for which the 

well parameters determine the behavior in the van der Waals dispersion 

reg1on. 

The other potentials are much more difficult to reject ; all are quite 

physically reasonable. We may suspect to some extent those that have 
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m. However, a selection of potentials for He interacting with various 

moleculest - s,s-to,27- 30 shows that many MMSV type potentials do 

have larger {3' than {3 (eq. 21) , also sensitivity analysis shows6 that 

the DCS is much less sensitive to {3' than to {3 making {3' a less relaible 

parameter. Otherwise there is no reason to favor any of the potentials 

in Table VI other than by the quality of fit. The two best "fits" are 

the SPFD-ml and SPFD-e. We have chosen to depict these graphically 

in Figures 6 through 9. In both cases the contours (Figures 6 and 8) 

are smooth. The fixed angle plots (Figures 7 and 9) further confirm 

a regular and smooth potential. The contours for the two potentials 

do have similar overall features, but the details are different. This 

is expected, since there simply is not enough information in the data 

(Figure 2) to unequivocally establish the shape of the potential. These 

contours should be viewed as representing the basic features of the real 

potential but not the specific details. 

6.2. Potentials for He + CS2 

The best potential fits for He + CS2 data are presented in Tables 

VII and VIII. We have chosen the potential forms that gave the best 

fits for He + C0 2 . The quality of fit to experimental data is not as 

good as for He + C02 , but nonetheless reasonably good. Substantial 

improvement in quality of fit occurs if the repulsive wall is made steeper 
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as in the MMSV-e (Table VII) or MMSV-m (Table VIII). The poorer fit 

of the other potentials is manifest at scattering angles above 14 degrees 

(see Fig. 3 - note: I( 0) sin 0 is not plotted for MSV -m). At angles below 

14 degrees agreement between the various models is very good. 

The characteristics of the He + CS2 potentials are presented in 

Table IX. All of the potentials have similar well positions , depths and 

widths. The Morse-m deviates the most from the average of the others 

- but since it does not have the correct long-range behavior we reject it 

more readily than the others (as in the case of He+ C02). The MMSV­

m has the shallowest well and greatest rm anisotropy. Since it provides 

the best fit to the data we claim it as most representative of the real 

potential. The contours and sectional views are shown in Figures 10 and 

11. 

The reliability level of the He + CS2 potentials is lower than for 

He + C02. This is based on the larger fluctuation between the various 

forms and the poorer fits to the data. We can attribute some of these 

differences to the van der Waals dispersion coefficients. The CS2 ones 

were obtained from the accurately calculated C02 coefficients by the use 

of a polarizibility correction (see end of Sec. 3) and are therefore less 

accurate than those for C02. 

6.3. Potentials for He + OCS 

The best potential fits for He + OCS data are presented in Tables X 
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and XI, with Table XII displaying the features transformed to a common 

MMSV form. Once again we have used those potential forms that gave 

the best and most physically reasonable results for the He + C02 system. 

As is evident from the tables, all the potentials afforded very good fits. 

However, since the dispersion constants are not as well known for He + 

OCS we should hold less trust in these results than in the He + C02 

ones. 

In Table X we present the best fits for two different three-center 

MSV potentials. In these cases we decided to use three different centers 

and fit only five parameters; rm(O), t(O), rm(S), t(S) and one f3 assumed 

to be the same for all three centers. We chose the rm(C) and t(C) 

parameters for the carbon center as the average of the corresponding 

He + C02 and He + CS2 multi-center potential values. For those 

systems we found that the central atom potential had less effect on the 

cross-section than the outer atom potential. In addition varying the 

C-centered potential produced smaller changes in the potential or the 

quality of fit, as most of these changes were compensated for by the 

two outer potentials. The difference between the MSV-ml and MSV-m2 

potentials is in the way the van der Waals dispersion terms are included. 

For the MSV-m2 they are included in the same way as outlined at the end 

of section 3. For the MSV-ml the potential centered at the carbon was 

splined to a zero valued dispersion term, while the 0 centered potential 

was splined one half of the He + C02 term, and the S centered potential 
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was splined to one half of the He + CS2 term. These dispersion terms 

were evaluated using the r; ( eq. 11 amd 12) and not r as was done for 

the other multi-center potentials (end of section 3). 

The MSV-m1 fitt ed the data better than the MSV-m2 , and hence we 

display it in Figures 12 and 13 which show the potential as contours and 

angular sectional views, respectively. From Table XII we see that the two 

potetials are not so different considering the fact that we cannot expect 

too much detail regarding the potential from our data. The position of 

the repulsive wall is in agreement with those for He + C02 and He + 

cs2 ' being greater at the s end, as can be seen by comparing the values 

of r (for 1 = 0, 1r) at which the potentials crosses zero (see Figs. 12 , 8 

and 10). The well is deeper at the S end as would be expected from bond 

polarizabilities of -C=S and -C=0,24ab ,25 (the former being greater) and 

from the He + C02 and CS2 potential parameter results. However, 

the well near the 0 in OCS is much shallower than in C02 , and hence 

physically unrealistic. This emphasizes our previous warning on trusting 

the characteristics of a potential in a region of low sensitivity near the 

molecular axis. We must be even more cautious with a lower symmetry 

potential extracted from our limited data. Yet,we can consider the MSV­

ml or MSV-m2 potentials to be very reasonable models which display 

many of the overall features of the real potential. 

The angle-dependent potentials were defined for systems with a 

center of symmetry. As a result , when applied to the asymmetric OCS 
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system , they are expected to represent the average of the two halves 

of the correct potential about the plane perpendicular to the OCS­

axis and passing through the center-of-mass of the molecule. We did 

not attempt to employ angle-dependent potentials without an inversion 

center since these would have too many degrees of freedom; expansion of 

rm ( 1) and t( 1) to second or third order with [3 would give seven to nine 

parameters, an excessive number for the information content of the DCS 

data. The centro-symmetric potential fits to the OCS data are given in 

Table XI. The Morse-e potential gives a good fit, but is physically very 

unreasonable; both the r m and E anisotropies are extreme and reversed. 

The MMSV-e is such a good fit that no useful or additional informaion 

can be obtained by including more parameters in fitting the data. Also, 

the amplitudes in the DCS oscillations (see Figure 4) are significantly 

dampened, and it would be unrealistic to expect them to reflect the 

subtle details of the actual potential. 

In Table XII we show an average of the MSV-ml and MSV-m2 

potentials about the center-of-mass of the OCS, to facilitate comparison 

between the centrosymmetric MMSV-e potential. The MSV -ml-average 

shows a good similarity to the MMSV-e, while the MSV-m2-average 

is rather different from the MMSV-e. On the basis of the MSV-ml­

average we can consider the MMS V -e to be a reasonable approximation 

to a center-of-mass average of the actual potential. 
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1. INTEGRAL CROSS SECTIONS AND BULK PROPER­

TIES 

The validity of our He + C02 potential can be tested by its ability 

to predict a variety of observed phenomena, which include integral 

cross section Q(vHe) (as a function of He velocity) , binary diffusion 

coefficient DHe,C02 (T) , viscosity curvature f7He,co2 (T), and second 

virial coefficient BHe,co2 (T). The expressions for these quantities have 

been derived and presented in several publications13 '2 , and hence we will 

forgo listing them here. The figures in which we compare experimental 

data to our calculations are sufficent in substantiating the validity of 

our potential. All of the bulk property calculations are for the SPFD-e 

potential. 

Butz et al.63 have measured the total integral cross sections Q( VH e) 

as a function of the velocity of a He beam interacting with a cell of 

C02 gas. To model these data the total integral cross sections are 

calculated at a range of collision energies they are then averaged over 

the distribution of velocities of the bulk C 0 2 gas and the He beam. 

In Figure 14 we show calculations of Q( VHe) on our SPFD-e potential 

(Table IV) and compare then to the data of Butz el al .. 63 Our potential 

predicts averaged integral cross sections that for all velocities are about 

3% lower than the experimental; however there is very good agreement in 

the relative intensities. Butz el al. have given a 15 % upper error limit on 

their measurements which includes estimates of the extent of systematic 
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errors to which experiments of this type are highly susceptible.64 ,65 Our 

calculations are well within these error bars. 

In Figure 15 we compare experimental66 binary diffusion coefficients 

DHe,C02 (T) for He in C02 to those calculated from our potential . The 

agreement is excellent for the entire measured temperature range of 180 

to 600 K. 

In Figure 16 we compare calculated mixture viscosity coefficients to 

experimental viscosities 'l:;r,c
02 

( T) at two mole fractions xco
2 

of C02 to 

ones obtained experimentally by Kestin and Ro67 . We also compare the 

interaction viscosity (transport of momentum along a velocity gradient) 

coefficients '1H e,co2 (T) to those extracted from Kestin and Ro's data 

by Keil and Parker3
. The interaction viscosity coefficients '1He,CO'J can 

be extracted from the experimental mixture viscosities; they cannot be 

measured directly. (The mixture viscosities are a function of the mole 

fraction of the two constituents, the interaction viscosity coefficients, and 

the binary diffusion coefficient.) For all three cases the agreement is once 

again excellent. 

Finally, in Figure 17 we compare the calculated second virial 

coefficients B(T) to experimentally measured ones.68 The agreement is 

very good at temperatures above 200 K and fair below. The experimental 

data are from three different laboratories; the points with the largest 

error bars are from the one source68a, while the ones with the smallest 

error bars are from a different source68b. Its is difficult to determine 
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how conservatively or liberally these error bars were assigned by the 

respective authors. Our assessment is that the low error bars may be 

reported somewhat conservatively, and hence our potential has allowed 

a very accurate calculation of the second virial coefficient as function of 

temperature. 

Our He + C02 potential is capable of predicting a variety of 

observables. However, we should point out that the bulk properties 

disscussed above, can be equally well predicted by the Parker-Keil­

Kuppermann4'5 and Keil-Parker3 potentials. Yet these potential are 

rather different from ours. In fact, Parker and Pack13,31 have proposed 

a He + C02 potential that was able to predict the viscosity and diffusion 

coefficients very well but failed to predict the integral and differential 

cross-section data. It is therefore, quite evident that the bulk properties 

are much less sensitive to the potential energy surface topography then is 

the differential cross-section. This is not surprising since the expressions 

for the diffusion, viscosity and virial coefficients are integrals over several 

variables, and thereby contain significant averaging. The total integral 

cross section curve is rather structureless, and at low velocities of He 

includes large energy averaging over the C02 velocity. The variety of 

potentials that could easily yield the same bulk properties is much larger 

than those that could reproduce a similar differential cross section. These 

properties are only useful in substantiating the validity of the potentials 

which are extracted from crossed beam DCS data. 
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8. CONCLUSIONS 

We have measured the total differential scattering cross-sections 

(DCS) for He + C02 , CS 2 , and OCS. From these we obtained 

realistic interaction potentials that exhibit significant anisotropies in well 

minimum position as well as in the well depth. Isotropic potentials do 

not satisfactorily represent the potential that produces the scattering 

data. Clearly the scattering data is not the result of a spherical average 

of the real potential. This is particularly evident if they are compared 

to He + atom and He + diatomic-molecule scattering data.9
,
10

,
29 

With He + C02 we have clearly demonstrated that not only is the 

well minimum position ( r m) anisotropy important in accounting for the 

observed data, but the depth ( t: ) anisotropy is also detected and accounts 

for many features in the DCS. Although the rm anisotropy accounts for 

most of the dampening of the quanta} oscilations; t: anisotropy is also 

responsible for some of the dampening as well as for the shape of the 

oscillation. Also very important is the width of the well, to which we 

were unable to ascribe any anistropy. Crucial to the extraction of a 

potential from the DCS was a knowledge of the long term dispersion 

coefficients. Potential forms that do not have provisions for them, could 

not be sucessfully fitted to the DCS; either the potential was physically 

unreasonable or the fit was poor. 

Two models for characterizing the potential anisotropy which have 

demonstrated a high degree of flexibility as well as simplicity are the 
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parameters expansion potential to second order in Legendre polynomials; 

and the multi-center potential. These were coupled with two very flexible 

spherical-like potential forms, to correctly describe the shape of the 

potential along a given angle of approach. Both the MMS V (or MS V) 

and the SPFD forms have good control of well depth as well as including 

the needed dispersion terms. 

Both the parameter expansion and multicenter models have allowed 

us to extract very similar potentials from the DOS. In all three cases 

we found that rm corresponds to the geometry of the molecule ( C02 , 

CS2 and OCS). While the potential minimum is located perpendicular 

to the molecular axis. In the case of He + OCS, we have proposed 

a non-centro-symmetric potential constructed of three MSV potentials 

centered on the three OCS nuclei. Only five parameters were adjusted; 

the C-centered MSV was chosen on the basis of the He + C02 and He 

+ cs2 potentials. 

Although our results yield the most accurate and detailed potentials 

for these systems to date, nonetheless we cannot state that these models 

are identical with the actual potential in every aspect. First of all, 

any technique that relies on a collision to probe the potential will be 

most sensitive to that potential in the regions where the collision is most 

probable; perpendicular to the axis of the C02 , CS2 , and OCS molecule. 

Second, our experiment detects a wide range of rotationally inelastic 

collisions which are unresolved and thereby dampen many features in 
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the total DCS. However, these result provide significant limits on the 

range of many potential parameters and unambiguously establish the 

presence of certain features. 
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Table I. Molecular Beam Characteristics 

Characteristic Probe Beam Target Beam 

Gas He C02 cs 2 ocs 

Stagnation Temperature/K 298 298 298 298 

Stagnation Pressure/torr 1330 4.4 4.4 4.4 

Angular Spread FWHMa/de.grees l.Ob 3.0b 3.0b 3.0b 

Most probable velocity/(km/sec) 1. 76 0.49c 0.37c 0.42c 

Velocity FWHM (6v/v} 0.12 0.8 0.8 0.8 

Mach number 12.7 1.06 1.06 1.06 

Effective Heat capacity ratio y 1.06 2.20 2.20 2.20 

aFull width at half maximum. 

bThe effective detector acceptance angle of 1.5 deg is greater than 

the actual detector acceptance angle (see text} since it includes 

the effects of the finite size of the scattering volume. 

cThese most probable velocities give a relative collision energy of 

65 meV with helium. 



Table II. Spherical Potential Best Fits 

System/Potential rm e: B or b0a B' or b1a r/rma c b G/%c 2 c 
w X 

He + C02 
MMSV 3.34 6.09 11.39 19.12 1! 37 0.82 2.00 72.4 

SPFD 3.34 5.96 104.5 -7.33 1.40 0.84 2.09 74.9 

SPFD 3.39 6. 21 107.6 -7.25 1.41 1.0 2.17 87.7 

He + cs2 
SPFD 3.82 5.52 65.67 -5.70 1.67 0.98 3.59 156.6 

He + oc~ 

SPFDd 3.94 5.79 85.92 -7.19 1.34 1. 781 3.08 204.2 

SPFDe 3.97 6.33 147.8 -9.49 1.32 0.623 2.28 112.5 

a Band e' apply to the MMSV potential {eq. 21) while b0 and b1 apply to the SPFD potential {eq. 22); 

rs is the van der Waals spline point. 

b cw is a multiplier for the c6 and c8 van der Waal's coefficients, i.e., c• 6 or 8 = cwc6 or 8. 

C) 
<0 
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Table III. Multicenter Potentials for He + co2 

Potentlal 0 2d 
Type Centerb r JA r./meV Shape(l)c Shape(2)c G/%d X 

MSV-ml c 3.14 3.19 11.00 
0 3.14 1.54 6.47 1 .15 23.9 

MSV-m2 c 3.18 2.88 7.90e 
0 3. 15 1.24 7.90 1.18 26.1 

MMSV-m c 3.26 3.27 5.37e 13.26e 
0 3.45 0. 51 5.37 13.26 1.08 21.3 

3. 21 4. 51 77.15 f SPFD-ml c -6.0f 
0 3.37 0.66 22.84 -6.0 1.05 19.9 

SPFD-m2 c 3.12 3. 51 66.52e -7.04 
0 3.22 0.82 66.52 -7 .04e 1.11 22.5 

3.15 3.33 60.66e f SPFD-m3 c -6.0f 
0 3. 21 0.98 60.66 -6.0 1.15 24.6 

tt>rse-m c 3.22 4.83 17.11 
0 3.23 1. 74 4.21 0.99 18.5 

aRefer to equation ( 11). Potentials at each center are of the same 

spherical type, as discussed in section 1118. The designation .. _m .. 

is for classification and refers to multicenter. 

bThe c-o bond distance is fixed at 1.162 A. For systems with long 

range van der Waals dispersion terms each center contributes one 

third of the dispersion. The dispersion terms are given as: 

C6 = 9.98 + 2.31 P2 (cosy) eV·A6 and 

c8 = 46.4 + 48.4 P2 (cosy) eV·A8 

They are splined to the potential at r/rm = 1.6 for all cases. 
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Table III. continued 

clhe shape parameters are defined by equations (18), (20), (21), and 

(22) for the Morse, MSV, MMSV, and SPFD parameterizations respectively. 

The second shape parameter for MMSV or SPFD is 8' or b1 respectively. 

dG is the goodness-of-fit statistic of eq. (29); while x2 is unitless 

as defined by eqs. (27) and (28). 

elhis parameter is the same as the analogous one for the potentia·l 

centered at the C. Both were varied as one parameter. 

fThis parameter is fixed and was not varied via least squares. 



Table IV. Angular-dependent-parameter potentials for He+ co2 
-

Potentia 1 type a 
ob qb £(O)/meVc (2)/ (O)c shape( l)d d' 2e 

rm! /A £ £ shape (2) G/%e X 

SPFD-e 3.10 -0.477 3.99 -0.697 54.45 -6.14 f 0.99 18.3 

MSV-e 3.11 -0.437 4.29 -0.477 7.05 1.27 31.5 

t-t1S V-e 3.11 -0.437 4.19 -0.568 6.91 16.16 1.16 26.5 

HFD-e 3.19 -0.424 (3.6l)g (-0.727)g (6.08)9 (a=l .o7)9 1.63 50.1 

LJ8-e 3.14 -0.465 3.70 -0.690 1. 23 29.8 

LJ-e 3.13 -0.490 3.51 -0.988 1.30 33.0 ~ 
Col.) 

I 

Morse-e 3.22 -0.548 3.23 -0.687 5.00 2.50 117.8 

r (0)/Ah 
h 

r(2)/r(O) 
m m m 

SPFD-p 3.54 0.226 3.88 -0.773 52.57 -6.1 f 0.99 18.4 

MSV-p 3.41 0.206 4.35 -0.439 7.11 1.40 36.6 

LJ8-p 3.56 0.224 3.69 -0.679 1.24 30.1 

--
aRefer to equation (13). The designations 'Le'' and 'LP'' are for c1 ass i fi cation and refer to elliptical 

expansion of rm(y) and second order Legendre expansion of rm(y). The dispersion terms used in the 



Table IV. continued 

MSV, MMSV, SPFO, HFD and LJ8 are 
06 c6 = 9.98 + 2.31 P2 (cos y} eV·A and c8 = 46.4 + 48.4 P2 (cos y) eV·A 8 ; 

and are splined at r/rm = 1.6 

bEliptical expansion of rm(y) is given by eqs (15-16). 

clegendre expansion of E(y) is given by eq. (14). 

dThis shape parameter is B of eqs. (18, 20 and 21) or b0 of eq. (22). 

d'This shape parameter is 8' of eq. (21), or b0 of eq. (22). 

eG is defined by eq. (29), the "goodness-of-fit" statistic. x2 is given by eqs. (27-28) and is unitless. 

fThis parameter is fixed in the least squares fitting procedure. 

gThe well depth and its anisotropy are derived. The shape parameter corresponds to B of eq. (20) and 

was derived from the zero crossing of the potential. Only three parameters were varied; rm!' q, and 

a [see eq . ( 2 3} ] . 

hlegendre expansion of Ym(Y) is given by eq. (14). 

~ 



Table V. SPFDa angular-dependent-parameter potentials to test anisotropy for He+ C02 

r /Ab qb e(O}/mevc e(2}/e(O}c (O)d d 2e 
Test b (2}/b (0) bl G/%e m bo 0 0 X 

A 3.09 -0.480f 4.34 -0.470f 60.06 of -6.1 f 1.12 25.3 

B 3.09 -0.440 4.83 of 67.10 of -5.90 1.61 48.2 

c 3.09 -0.490 3.98 of 58.99 0.616 -6.1 f 1.41 36.8 ~ 

of of 
CT1 

D 3.39 5.77 -0.802 103.93 -7.15 1.69 52.4 

E 3.39 of 5. 76 -0.802 103.80 0.052 -7.14 1.67 52.0 

aSee equation (22}. Note: see a) of table III. 

bsee equations (15) and (16). 

cSee equation (14). 

dThe first shape parameter b0 was expanded to a second Legendre order eq. (14). 

eSee eq. (29) for G and eqs. (27) and (28) for x2 which is unitless (reduced). 

fThis parameter was fixed in the least squares fitting. 
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Table VI. Summary of Characteristics of Best Fit Potentials for He+ co2 

Potential 0 

B d B·d Brd type a Cha racteri s ti cb rm/A t./meVc z , 

MSV-ml y = rr/2 3.11 5.93 9.72 11.0 10.5 

y = rr/4 3.67 4.08 7.04 13.0 7.20 

y = 0 4.2 2.8 8.0 8.5 8.9 

L = 0 3.45 4.62 8.27 9.13 9.43 

L = 2 0.74 -2.2lf -1.379 -1.269 -2.21 9 

s 3.75 2.72 7.50 8.53 7.49 

MSV-m2 y = rr/2 3.12 4.96 7.64 8.29 7.62 

y = rr/4 3. 72 4.14 8.08 8.69 8.01 

y = 0 4.2 2.8 9.7 9.8 10.4 

L = 0 3. 51 4.24 7.90 8.38 8.32 

L = 2 0.74 -1. 36f 1.54f 1. 54f 1.64 f 

s 3.85 2.69 8.35 9.13 8.97 

MMSV-m y = rr/2 3.26 4.30 5.23 5.34 13.15 

"'( = TT/4 3.78 2.81 8.38 3.06 13.77 

y = 0 4.2 2.4 10.7 8.5 17.8 

L = 0 3.59 3.41 7.30 5.55 14.23 

L = 2 0.71 -1.45 3.osf 1.189 4.82f 

s 3.93 2.44 9.63 6.09 15.06 
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Table VI. continued 

Potentlal 0 B d B·d B d 
type Cha racteri s ti cb rm/A £/meVc z , r 

SPFD-ml y = rr/2 3.20 5.83 7.92 8.10 7. 51 

y = rr/4 3.69 3.11 7.30 8.60 9.30 

y = 0 4.3 2.1 7.9 7.3 11.3 

L = 0 3.50 4.28 7.88 8.59 8.40 

L = 2 0.72 -2.86f of -0.71f 2.00f 

s 3.79 2.45 7.71 8.98 10.84 

SPFD=m2 y = rr/2 3.10 5.07 8.07 8.71 8.10 

y = rr/4 3.79 3.68 7.67 11.3 7.99 

y = 0 4.2 2.6 9.8 13.0 10.0 

L = 0 3.53 3.98 7.92 8.78 8.52 

L = 2 o.aof _,.51 f l.08f 0.30f 0.9/ 

s 3.92 2.60 7.82 9.00 12.90 

SPFD-m3 y = rr/2 3.12 5.14 7.54 8.28 7.39 

y = rr/4 3.76 3.78 7.54 10.1 7.58 

y = 0 4.2 2.7 9.1 6.6 9.7 

L = 0 3.52 4.10 7.62 8.06 7.93 

L = 2 0.78 -1.59 f l.lOf 0.85 1. 34 f 

s 3.87 2.59 7.45 8. 91 12.94 

ftt>rse-m y = rr/2 3.21 8.13 14.6 15.8 16.9 

y = rr/4 3~29 4.12 13.5 21.5 18.3 
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Table VI. continued 

Potentla1 0 

B d B·d B d 
Characteristicb rm/A £/meVc type z 1 r 

'( = 0 4.3 1.9 5.4 5.4 4.9 

L = 0 3.42 5.78 12.15 13.55 16.59 

L = 2 0.71f 5.22f -7.71 9 -8.919 -3.589 

s 3.28 4.38 14.02 17.91 17.95 

SPFD-e y = n/2 3.10 5.38 7.54 9.33 7.67 

y = n/ 4 3.74 3.29 7.54 8.04 7.71 

'( = 0 4.3 1.2 7.5 8.6 7.7 

L = 0 3.52 3.99 7.54 8.53 7.69 

L = 2 0.81 -2.78 0 0 0 

s 3.76 2.50 6.85 7.15 7.83 

MSV-e y = n/2 3.11 5.31 7.08 7.10 7.08 

y = n/4 3.67 3.77 7.03 7.03 7.03 

'( = 0 4.2 2.2 7.0 7.0 7.0 

L = 0 3.48 4.29 7.05 7.05 7.05 

L = 2 0.70 -2.05 0 0 0 

s 3.66 2.91 6.80 7.11 7.22 

MMSV-e y = n/2 3.11 5.38 6.91 6.91 16.16 

y = n/4 3.67 3.60 6.91 6.91 16.16 

'( = 0 4.2 1.8 6.91 6.91 16.16 

L = 0 3.48 4.19 6.91 6.91 16.16 

L = 2 0.70 -2.38 0 0 0 

s 3.65 2.89 9.40 7.38 15.25 
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Tab1 e VI. continued 

Potent!a1 0 

8 d 8.d 8 d 
Characteri sti cb rm/A E/meVc type z , r 

HFD-e y = Tr/2 3.19 5.22 5.98 4.33 6.29 

y = Tr/4 3.73 2.70 6.14 5.36 6.46 

y = 0 4.2 1.6 6.2 7.2 6.5 

L = 0 3.55 3.61 6.08 6.37 6.40 

L = 2 0.69 -2.62 0.15 0.34 0.16 

s 3.65 2.78 6.02 6.07 6.44 

LJ8-e y = Tr/2 3.14 4.98 6.42 6.03 7.79 

y = Tr/4 3.76 3.06 6. 71 6.43 7.97 

y = 0 4.3 1.1 6.5 6.3 7.8 

L = 0 3.55 3.67 6.59 6.61 7.90 

L = 2 0.78 -2.55 0.17f 0.17f 0.11 f 

s 3. 72 2.63 6.61 6.58 7.92 

SPFD-p y = Tr/2 3.14 5.38 7.44 8.60 7.66 

y = Tr/4 3.74 3.13 7.44 8.58 7.69 

y = 0 4.3 0.9 7.4 8.9 7.6 

L = 0 3.54 3.88 7.44 8.41 7.67 

L = 2 0.80 -3.00 of of 0 

s 3.75 2.48 6.79 7.05 7.83 
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Table VI. continued 

Potentia 1 0 

8 d 8.d 8 d 
type a Characteri sti cb rm/A r./meVc z , r 

LJ8-p Y = TT/2 3.16 4.94 6.44 6.06 7.80 

Y = TT/4 3.06 3.76 6. 71 6.59 7.97 

y = 0 4.4 1.2 6.6 6.3 7.9 

l = 0 3.56 3.69 6.60 6.61 7.90 

L = 2 0.80 -2.50 0.19f 0.19 f 0.12f 

s 3.75 2.56 6.62 6.63 7.92 
Averageh y = n/2 3.14 5.2 7.2 7.4 8.8 

(0.05) (0.4) (1.1) ( 1. 4) (2.8) 

y = n/4 3.73 3.4 7.3 7.9 8.8 

( 0 . 04 ) ( 0. 5) (0.6) (2.5) (2.8) 

y = 0 4.2 2.0 8.0 8.1 9.9 

(0.07) (0. 7) ( 1 .4) ( 1. 8) (3. 5) 

L = 0 3.52 4.0 7.3 7.6 9.1 

(0.04) (0.7) (1.0) (0.7) ( 1. 6) 

L = 2 0.75 -2.3 0.5 0.2 0.7 

( 0 . 04 ) ( 0 . 7) ( 1 . 0) (0. 7) ( 1 . s) 

s 3.77 2.6 7.5 7.6 9.9 

(0.09) (0. 2) ( 1 .1) ( 1.2) ( 3.1) 

aPlease refer to tables III and IV for details concerning potential 

types. 

bThe characteristics include: profiles of the potential at approach 

angles Y = TT/2, TT/4, and 0; Legendre expansion of the potential 

parameters for orders L = 0 and L = 2, and the shape of the spherical 

average of the potential (S). 
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Table VI. continued 

cThe well minimum is found numerically using Newton's method for the 

zero of the potential derivative. The "L • 0" and "L = 2" are the 

Legendre projections of the parameter (as a function of angle 

1 
XL= (L + ~) J x(y) PL(cos y) d cosy 

-1 

dThe S's are the MMSV type (eqs. 20 and 21). Bz is found from the 

zero point of the potential rz, 

8 
_ ln 2 

z - 1 - r z~r m 
d2V(r ) 

Si is found from the potential's inflection point rz ( 2 z = O) 
dr 

ln 2 
r./r -l 

1 m 

The value B in the repulsive region is found by iteratively 

fitting B' in equation (2la) with given B = Bz,£' and rm to the 

potential at r = 0.8 rz. 

fExpansion terms of higher Legendre order exist for this parameter, 

and are at 1 east 5% of the zeroth term. 

gExpansion terms of higher Legendre order exist for this parameter, 

and are at least 25% of the zeroth order. 

hThe value of the above parameters (except for Morse -m) are 

averaged. The standard deviations are in parentheses below each 

parameter. 



Table VII. Angular-dependent-parameter potentials for He + cs2 

Potential Type a r ;Ab 
m 

qb £(0) /meVc £(2)/ e: (O)c shape( 1) d shape( 2) d' G/ %e 

tfotSV-e 3.58 -0.506 4.28 -0 . 549 7.53 20.3 1.59 

MSV-e 3. 51 -0.543 4. 31 -0.579 7.38 1.87 

SPFD-e 3.61 -0.510 4.25 -0.658 62.0 -6.1 f 1.84 

a See note a of Table IV except of the dispersion terms which are c6 = 33.28 + 10.64 P2 (cos y)9 

c8 = 137.21 + 160.20 P2 (cosy). 

b-e see corresponding notes of Table IV. 

f This parameter is fixed 9 but if it is varied with the others there is no change in the quality of 

fit or in b19 which changes to -6. 11. 

2e 
X 

32.8 

41.0 

39.4 
I 

00 
t-) 



Table VIII. Multicenter Potentials for He+ cs2 

Potential Typea Centerb 
0 

shape(l)c shape(2}c G/%d 2 d rm/A £/meV X 

MSV-m c 3.68 4.04 8.44 1.80 38 . 2 

s 3.64 0.98 9.17 

MMSV-m c 3.76 3.94 6.80 19.56 1.26 18.5 00 

s 3.90 0.52 6.80e 19.56e 
(.A.) 

SPFD-m1 c 3.67 5.34 67.22 -6.0f 1.82 38.8 

s 4.11 0.33 25.08 -6.0f 

SPFD-m2 c 3.52 5.04 70.38 -8.91 1.88 41.4 

s 4.07 0.18 70.38e -8.9le 

tt>rse-m c 3.69 4.80 17.12 1.43 25.9 

s 4.80 1. 71 4.02 

a See note a of Tab 1 e II I. 



Table VIII. Continued. 

b The C-S bond distance is fixed at 1.554 A. The van der Waal 's dispersion terms are: 

c6 = 33.28 + 10.64 P2 (cosy); c8 = 137.21 + 160.20 P2 (cosy). Each center contributes one-third 

of the dispersion. These are splined to the potential at r/rm = 1.6. 

c -f See corresponding notes of Table III. 

~ 
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Table IX. Summary of Characteristics of Best Fit Potentials for 

He + cs 2 

Potential 0 

E/meVC 8 d 8·d 8 d 
type a Characteri s ti cb rm/A z , r 

r+1SV-e Y = TT/2 3.58 5.46 7.53 7.63 20.34 

Y = TT/4 4.41 3.70 7.53 7. 56 20.34 

y = 0 5.1 1.9 7.5 7.5 20.3 

L = 0 4.13 4.28 7.53 7.53 20.34 

L = 2 1.03 -2.35 0.0 0.0 0.0 

s 4.53 2. 31 11.19 8.95 19.49 

MSV-e y = n/2 3. 51 5.55 7.38 7.38 7.38 

y = n/4 4.43 3.68 7.38 7.38 7.38 

y = 0 5.2 1.8 7.4 7.4 7.4 

L = 0 4.11 4.31 7.38 7.38 7.38 

L = 2 1.14 -2.49 0.0 0.0 0.0 

s 4.56 2.18 6.79 7.39 7. 51 

SPFD-e y = n/2 3.61 5.64 7.88 8.21 7.61 

Y = TT/4 4.45 3.55 7.88 8.54 7.66 

y = 0 5.2 1.5 7.9 8.2 7.6 

L = 0 4.16 4.25 7.88 8.69 7.64 

L = 2 1.05 -2.79 0.0 -0.11 0.03 

s 4.55 2.27 7.02 7. 51 7.90 
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Table IX. Continued. 

Potential 
Characteristicb rm/A 8 d s.d 6 d typea r./meVc z , r 

MSV-m y =rr/z 3.63 5.38 8.29 8.94 8.38 

y =rr/'+ 4.41 4.07 8.85 11.95 9.45 

y =0 5.1 2.6 11.0 12.1 12.7 

L=O 4.11 4.47 8.79 9.39 9.44 

L=2 1. 02f -2.06f 1.96f 2.079 2.709 

s 4.69 2.20 9.57 11.00 11.0 

Mf~SV-m y=rr/z 3.73 4.92 6. 71 7.17 21 .12 

y=rr/'+ 4.52 3.11 10.55 5. 91 25.86 

y=O 5.1 2.1 13.7 8.6 32.9 

L=O 4.20 3.79 10.17 7.31 22.02 

L=2 0.99f -1.949 5.919 0.90f 7.58~ 

s 4.85 2.07 14.41 15. 3l 24.18 

SPFD-m1 y=n/z 3.67 5.99 7. 81 7.77 7.56 

y=n/'+ 4.54 2.69 5.84 3.92 9. 51 

y=O 5.2 1 .8 8.1 8.3 10.2 

L=O 4.15 4.06 7.39 8.40 8.49 

L=2 l.llf -3.179 -0.359 -o.o8f 1. 70f 

s 4.67 2.00 7.01 6.60 10.10 
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Table IX. Continued. 

Potential 
Characteristicb type a rm/A t./meVc B d 

z 
s.d 

1 
8 d 
r 

SPFD-m2 y=rr/2 3.54 5.28 8.66 11.83 9.32 

y=rr/4 4.60 3.37 7.22 8.02 6.42 

y=O 5.2 1.6 9.6 9.5 11.3 

L=O 4.22 3.66 7.58 9.35 8.84 

L=2 1.13f -1.99 1. 689 1. 669 -1.259 

s 4.70 2.37 8.62 10.76 7.93 

Morse-m y=rr/2 3.76 5.43 13.20 20.26 18.21 

y=rr/4 5.62 2.26 4.50 4.49 3.86 

y=O 6.3 2.0 5.2 5.3 5.2 

L=O 4.96 3.06 6.98 10.13 12.08 

L=2 1.82 -1.979 -5.359 -12.039 -14.599 

s 5.52 2.18 4.43 4.48 3.61 

Avera9e-h y=rr/2 3. 61 5.5 7.8 10.0 12.0 
(0. 07) (0.3) (0.6) ( 5. ) ( 6.) 

y=rr/4 4.48 3.5 8.4 7.6 12.0 
(0.07) (0.4) ( 1. 6) (2.5) ( 8.) 

y=O 5.2 1.9 11. 8.8 15. 
(0.05} (0.3) ( 6.) (1. 6) ( 9.) 

L=O 4.15 4.1 8.3 8.3 12. 
(0.04) (0.3) (0.9) (0.9) ( 6.) 

L=2 1.07 -2.4 1. 0.6 1.5 
(0.06) (0.4) ( 2.) (0.9) ( 3.) 

s 4.65 2.2 9.2 9.7 12.6 
(0.11) ( 0.1) (2.8) (3.0) (6.6) 
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Table IX. Continued 

b -

a Please refer to Tables VII and VIII for details concerning 
the potential types 

gSee corresponding notes for Table VI 

hThe averages are for all the above potentials (except for 
Morse-m) with the standard deviations given in paren­
thesis. 
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Table X. Three-center MSV Potentials For He + OCS 

Potential a 
Centerb Z!Ab 

. c 
Type rm/A r:. /meV 8 Gc xz 

MSV-mld c 0.523 3.80 0.69 6.23 1.07% 26.3 

s -1.037 3.90 3.75 6.23f 

0 1. 683 3.90 0.17 6.2/ 

MSV-m2e c 0.523 3.79 0.63 5.84 1.16 28.6 

s -1.037 3.68 2.95 5.84f 

0 1. 683 4.14 0. 72 5.84f 

a Refer to equation (11). These are three center potentials with an MSV 

spherical potential at each center . 

b The distance z is from the center-of-mass of the OCS molecule, c is 

fixed in the least-squares parameter fitting procedure. 

c See eq. (29) for G and eqs. (27-28) for x2
• 

d The long range dispersion part of this potential was constructed by 

giving the MSV potential centered at the 0 one-half of the He + CO z 

dispersion terms as given in Table III (see eq. (20c)), and by giving 

the MSV potential centered at the S one-half of the He+ CS z dispersion 

terms. While the C-centered MSV is given dispersion terms of value 

zero. 

e The long range dispersion part of this potential was constructed in the 

same manner as for the He + CO z and CS z multi-centered potentials. 

The dispersion coeficients are the same as given in Table X (foot-

note g). 



Table XI. Angular-dependent-parameter Potentials for He + OCS 

Potential 
r !Ab qb E:(O)/meVc £(2)/E(O)c Gd 2d 

Typea B B" X ml 

ftt>rse-e 4.50 0.978 3.04 l. 14 5.16 1 .19% 31.6 

MMSV-ee 3.59 -0.474 4.34 -0.228 7.38 5.90 1.17 29.6 

a Refer to equation (13). The designation 11 -e 11 classifies the potential as having an 

elliptical form for rm(y). 

bEll iptical form for r (y) is given by eqs. (15-16). 
m 

c Legendre expansion of E:(y) is given by eq. (14). 

d G is defined by eq. (29). x2 is given by eqs. (27-28). 

eApproximated dispersion terms for He+ OCS are given as (see text for deprivation) 

c6 = 21.63 + 6.37 p2 (cosY) eV • A6 and Ca = 91.81 + 104.30 p2 (cosY) eV. A8 

(0 
0 
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Table XII. Summary of Characteristics of Best Fit Potentials for He + OCS 

Potential 
Characteristicb E/meVC B d B·d B d Type a rm/A z , r 

r+1SV-e y= rr/ 2 3.59 4.83 7.36 7.36 5.90 

y=rr/ .. 4.32 4.09 7.36 7.36 5.90 

y=O 4.9 3.3 7.36 7.36 5.90 

L=O 4.07 4.33 7.36 7.36 5.90 

L=2 0.92 -0.99 0.0 0.0 0.0 

s 4.43 2.61 6.63 7.38 6.30 

MSV-ml y=O 5.2 0.8 7.9 13.5 7.8 

y=rr/ .. 4.34 1.60 6.34 6. 39 6.32 

y=rr/ 2 3.76 4.60 5.80 5.92 5.71 

y=3rr/'+ 4.55 4.07 7.06 6.90 7. 01 

y= rr 4.9 3.9 7.9 7.6 7.9 

L=O 4. 21 3. 51 6.40 6.52 6.42 

L=l -0.10 -1.56 -0.46 -0.36 -0.29 

L=2 0.92 -1.70 l. 27 1.04 1.44 

L=3 0.35 -0.30 0.32f 0.17f 0.39 

s 4.53 2.34 6.90 7.02 7.03 

MSV-m2 y=O 5.7 1.2 7.5 8.0 8.0 

y=rr/ .. 4.95 1. 59 6.34 6.50 6.15 

y=rr/2 3.62 4.17 5. 31 5.69 5.23 

Y=3 rr /2 4.34 3.75 6.10 6.71 6.00 
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Table XII. Continued. 

Potential 
Characteristicb rmiA ElmeVc 6 d s .d 8 d Typea z 1 r 

MSV-m2 y=n 4.7 4.7 6.7 8.3 7.1 

(Continued) L=O 4.28 3.14 5.93 6.14 6.08 

L=l 0.43 -1.64 0.18 0.23 -0.05 

L=2 1.10 -0.91 1.19 1.04 1. 65 

L=3 O. lOg 0.21g -0.03f 0.22f 0.53f 

s 4. 79 1.72 6.23 6.24 6. 61 

MSV-ml h Y=O 5.4 1.8 7.3 7.5 8.0 

Y=n I 4 4.70 2.29 5.94 5.13 6.45 

Y=>rr I 2 3.62 4.17 5. 31 6.22 5.23 

MSV-m2h y=O 5.0 2.2 7.8 9.6 8.0 

y= nl 4 4. 51 2.79 6. 91 6.83 6.90 

y=nl 2 3.76 4.60 5.80 6.07 5.71 

a Please refer to tables X and XI for details concerning the potential 

types. 

b The characteristics include: Profiles of the potential at approach 

angles Y=O, nl 4 , nl 2 , and for the non-centrosymmetric potential, 

also at Y=3nl 4 and n; Legendre expansion of the potential param-

ters for orders up to L=3 (the L=l and L=3 terms are zero for the 

centro-symmetric potentials); and the shape of the spherical 

average of the potential (S). 
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Table XII. Continued. 

c) - g) See corresponding notes for Table VI. 

h) Average of the corresponding non-centrosymmetric potential 

about a plane perpendicular to the molecular axis and passing 

through the center-of-mass of the OCS; i.e., V(r,y) = 

1/2 [V(r,y) + V(r,rr- y)J. 
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Figure 1. Vertical cut view of the crossed molecular beam apparatus, 

drawn approximately to scale. DP = diffusion pumps, 

PB = primary beam source - beam axis is parallel to 

drawing, Nz = nozzle (64 mm), Sk = skimmer, VS = 

velocity selector, Ch = beam modulation chopper, SB 

= secondary beam source - beam axis is perpendicular 

to plane of drawing' oh = in plane angle of detector as 

measured from the PB axis, Bv = out-of-plane angle of 

detector, MS = mass spectrometer detector, GV = gate 

valve in front of the mass spectrometer entrance apperture, 

IPh =51/sec ion pump for buffer chamber, I= ionizer and 

ion focus lenses ( [ .. N 2 cooling coils around filament not 

shown), CEM = Channeltron electron multiplier (Model 

4816), CP =liquid He cryopump (350 1/sec), IP = 251/sec 

ion pump, IG = ionization gauge, BY = bake out and vent 

valve. 
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Figure 2. Laboratory differential cross section for out-of-plane scat­

tering of He by C02. Experimental points are plotted with 

their error bars. The solid curve is the calculated cross­

section from the best fit anisotropic potential SPFD-e (see 

Table IV). The broken curve is for the best fit spherical 

potential (see Table II). 
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Figure 3. Laboratory differential cross section for out-of-plane scat­

tering of He by CS2. Experimental points are plotted with 

their error bars. The solid curve is the calculated cross 

section for the best fit anisotropic potential MMSV -m (see 

Table VIII). The broken curve is for the best fit spherical 

potential (see Table II). 
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Figure 4:. Laboratory differential cross section for out-of-plane scat­

tering of He by OCS. Experimental points are plotted with 

their error bars. The solid curve is the best fit anisotropic 

potential, the three-center MSV (see Table X). The broken 

curve is for the best fit spherical potential (see Table II). 
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Figure 5. Calculated laboratory cross sections for test of He + C02 

anisotropy. The potentials are those listed in Table V. 

The solid curve is for a potential with r m and E anisotropy 

(test A). The long dashed curve is for the potential with 

no E anisotropy (test B). The short dashed curve is for the 

potential with r m and f3 anisotropy (test C). The short­

long dashed curve is for the potential with norm anisotropy 

(tests D and E, for which the plot are indistinguishable). 
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Figure 6. Equipotential contours for the He + C02 SPFD-m 1 

potential (see Tables III and VI). The indicated contour 

values are in me V, while the tick marks are in Angstroms. 

The attractive region is indica ted by solid curves , the 

repulsive by the small dashes, and the zero of the potential 

by the large dashes. The minimum of the potential is -5.83 

meV at r = 3.20 Aand 1 = 1rj2. The saddle point is at r 

= 4.3 A7 = 0 (and also 1 = 1r) with a value of 2.1 meV. 

The centers of the C and 0 atoms are separated by 1.1621 

A. 
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Figure 7. He + C02 SPFD-ml potential for three fixed approach 

angles 1, 0, 45, and 90 degrees and the spherical average 

of the potential (dashed curve). Please refer to Table VI 

for numerical details. 
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Figure 8. Equipotential contours for the He+ C02 SPFD-e potential 

(see Tables III and VI). The indicated contour values are 

in meV, while the tick marks are in Angstroms. The 

attractive region is indicated by solid curves, the repulsive 

by the small dashes, and the zero of the potential by the 

large dashes. The minimum of the potential is -5.38 me V 

at r = 3.10 Aand 1 = 1r /2. The saddle point is at r = 4.3 

A, = 0 (and also 1 = 1r) with a value of 1.2 meV. The 

centers of the C and 0 atoms are separated by 1.1621 A. 
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Figure 8. 
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Figure 9. He + C02 SPFD-e potential for three fixed approach 

angles 1 , 0, 45, and 90 degrees and the spherical average 

of the potential (dashed curve). Please refer to Table VI 

for numerical details. 
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Figure 10. Equipotential contours for the He + CS2 MMSV -m 

potential (see Tables VII and IX). The indicated contour 

values are in me V, while the tick marks are in Angstroms. 

The attractive region is indicated by solid curves, the 

repulsive by the small dashes, and the zero of the potential 

by the large dashes. The minimum of the potential is -4.92 

me V at r = 3. 73 Aand 1 = 1r /2. The saddle point is at r 

= 5.1 A1 = 0 (and also 1 = 1r) with a value of 2.1 me V. 

The centers of the C and S atoms are separated by 1.554 

A. 
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Figure 10. 
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Figure 11. He + CS2 MMSV -m potential for three fixed approach 

angles /, 0, 45, and 90 degrees and the spherical average 

of the potential (dashed curve). Please refer to Table IX 

for numerical details. 
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Figure 12. Equipotential contours for the He + OCS MSV-m1 

potential (see Tables X and XII). The indicated contour 

values are in me V, while the tick marks are in Angstroms. 

The attractive region is indicated by solid curves, the 

repulsive by the small dashes, and the zero of the potential 

by the large dashes. The minimum of the potential is -4.6 

meV at r = 3.76 Aand 1 = 1rj2. One saddle point is at r 

= 5.2 A1 = 0 with a value of -0.8 meV, the other saddle 

point is at r = 4.9 A1 = 1r with a value of -4.9 meV. The 

distance between the nuclei of the C and S atoms 1.560 A, 

and the distance between the nuclei of the C and 0 atoms 

is 1.160 A. 
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Figure 13. He + CS2 MMSV-m potential for three fixed approach 

angles /, 0, 45, 90, 135, and 180 degrees and the spherical 

average of the potential (dashed curve). Please refer to 

Table XII for numerical details. 
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Figure 14:. Total integral cross sections as a function of the He beam 

velocity v1 . Points are from data of Butz et al. . The 

curve is a calculation for the He + C02 SPFD-e potential 

(Table IV). The ordinate scale is designed to exaggerate 

oscillatory behavior. 
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Figure 15. Interaction diffusion coefficients as a function of temper­

ature. Points are from various references (see text). The 

curve is a calculation for the He + C02 SPFD-e potential 

(Table IV). 
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Figure 16. Mixture viscosity coefficients as a function of temperature 

for two different mole fractions of C02: xco2 = 0.0928 

(upper curve) and xco2 == 0.6015 (center curve). The 

lower curve is for the interaction viscosities t712 . See text 

for references on the points. The curves are calculations 

for the He + C02 SPFD-e potential (Table IV). 
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Figure 17. Interaction second virial coefficients as a function of 

temperature. The curve is a calculation for the He + C02 

S PFD-e potential (Table IV). See text for references on the 

points. 
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CHAPTER 3 

SENSITIVITY ANALYSIS FOR 

He+ C02 SCATTERING 
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Sensitivity Analysis of the 
Differential Scattering Cross-Section to the 

He+ CO:l Interaction Potential a) 

Jaroslaw W. Winniczek b) and Aron Kuppermann 

Arthur Amos Noyes Laboratory of Chemical Physics c) 

California Institute of Technology, Pasadena, California 91125 

(received ) 

A detailed sensitivity analysis of the total and rotational state­

to-state differential cross-section (DCS) is performed on an empirical 

potential energy surface for He + C02. The infinite order sudden 

approximation is used to calculate the cross-sections. The sensitivity 

analysis consits of: 1) a large scale modification of the parameters that 

determine the anisotropic potential, and 2) an infinitesimal variation 

of these parameters to obtain a relative sensitivity function for the 

DOS. From these we demonstrate the effect each potential parameter 

has on the cross-sections. Despite the fact that this highly quantum 

system displays no classical effects such as rainbow scattering, we have 

a.) This work wa.s supported in pa.rt by the Air Force Office of Scientific Resea.rch ( Contra.ct 

No. F49620-79-C-0187). 
b) 

Work performed in pa.rtia.l fulfillment of the requirements for the Ph. D. degree in 

Chemistry a.t the Ca.lifornia. Institute of Technology. 

e) Contribution No. --
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shown that the quantal DCS oscillations contain significant information 

regarding the depth and width of the potential well and its anisotropy. 

Much of this information can be extracted from total .. DCS scattering 

data. However the rotationally inelastic DCS contain a substantial 

amount of additional information regarding the shape of the potential 

energy surface. 
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1. INTRODUCTION 

Interaction potentials between an atom and a molecule have 

been and continue to be subjects of significant theoretical as well 

as experimental analysis. 1- 30 The experimentalists have sought ways 

to extract information on the shape of the potential from observed 

phenomena such as differential scattering cross-sections, integral cross­

sections, transport phenomena, and relaxation spectroscopy.9 The 

theorists have devised means for calculating and predicting the observed 

phenomena and associating them with various regions of the potential 

energy surface.4 - 7 ,13,14, 18 - 22 The anisotropy of these potentials results 

in the interconversion of translational and rotational energy during an 

encounter of the molecule with the atom. The most efficient theoretical 

tool for studing the outcome of such collisions is the infinite order 

sudden approximation ( IOSA), 24 which we will use in the course of this 

paper, under conditions appropriate for its vadidity. The measurement 

of differential scattering cross sections in a crossed molecular beam 

apparatus is a very sensitive tool for the dermination of atom-molecule 

potentials. The region of the potential to which such data are most 

sensitive is the vicinity of the attractive well. Since this well results from 

the balance between the competing long-range atractive and the short 

range repulsive forces, its ab-initio evaluation is more difficult than for 

the adjacent regions. As a result, the experimental approach is the best 

one for the detrmination of the potential well characteristics. 
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The extraction of potentials from scattering data begins by 

proposing a physically reasonable model for the potential. The model 

is characterized by several parameters that define the specific shape of 

the potential, such as well depth, well minimum position, well width, 

repulsive wall steepness, and various features of the anisotropy. Initial 

values of these parameters are chosen judiciously, and are then used 

to simulate the observed scattering data. A least squares alogorithm 

is employed to adjust these parameters such that the best possible 

agreement is achieved between the observed and calculated cross­

sections. As a result, the interpretation and analysis of scattering 

experiments is very dependent on theoretical considerations. In 

particular one wishes to know: a) how do various features of the potential 

effect the observed cross-section? b) how sensitive are the data to a given 

parameter and therefore how significant is this parameter? 

These questions have been addressed by many investigators in 

a variety of ways. Crossr4 used semiclassical theory to show that 

anisotropic potentials have differential cross-sections with dampened 

rainbow and quanta! oscillations. Using the IOSA, Pack 25 has 

shown that the rainbow oscillation dampening is due to anisotropies 

in the potential well depth, while the quantal oscillation dampening 

is primarily caused by anisotropies in the position of the well depth 

minimum. In several instances computed IOSA integral rotational 

state-to-state cross-sections were found to be very sensitive to the 
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anisotropic topography. 14, 19 - 21 Rotationally inelastic rainbow structure 

has been related to details of the anisotropic potential energy surface.5 - 7 , 

Numerous experimentalists have successfully fitted potentials to their 

data only if those potentials contained anisotropy.3 ' 9,lO,tS-t7 

A potential that has received considerable attention is one for He + 

C02 . The repulsive wall as well as its anisotropy have been calculated by 

several methods21 ,22 . The anisotropic long-range dispersion coefficients 

were evaluated by Pack.35
,
36 Parker et al. 10

'
9 measured the differential 

cross-section from which they obtained an anisotropic potential for the 

well region. Recently we remeasured the differential cross-sections for 

that system, and proposed a new potential which we believe to be more 

accurate.3 

In this paper we wish to probe and answer the questions regarding 

the significance and sensitivity of the parameters which specify the He + 

C02 potential. Some of the above mentioned papers employed classical 

scattering theory in arriving at many of their conclusions. Classical 

mechanics is not applicable to this highly quanta! system which shows 

no evidence of rainbow scattering. Some have used rather rigid and 

inflexible potentials, such as the Lennard-J ones, which was shown to be 

unsatisfactory for modeling real potentials .18 

This study has been undertaken to establish a clearer connection 

between the observed differential cross-sections and the potential energy 

surface for He + C02 . Although we have chosen a specific system for 
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this analysis , we feel that the majority of the conclusions will apply 

to similar systems, i.e., highly quantum systems with collision energies 

and rotational energy spacings analogous to those for He + C 0 2 . Our 

approach is two fold; a) We conduct a large scale sensitivity analysis 

by selectively modifing the parameters of our empirical potential to 

elucidate the effects they have on the scattering. b) We then conduct 

an infinitesimal sensitivity analysis by taking the partial derivatives 

of the cross-sections with respect to a given potential parameter; the 

sensitivities of all the parameters will be compared to each other and 

the relative significance of each parameter will be accessed. 

The infinitesimal sensitivity analysis has been stimulated by the 

work of Rabitz and coworkers rf 11-14, allthough our approach is much 

less general and less elegant, it nonetheless is completely adequate in 

satisfing the goals of this paper. 

Eno and Rabitz11 - 14 have developed the formal theory of sensitivity 

analysis for collision process. The basic premise of the theory is to 

determine how variations in one quantity are affected by variations in an 

other quantity. The first application is obtaining the variations of cross­

sections with variations in a feature of the interaction potential. The 

theory is highly generalizable to other applications, such as variation 

of one state-to-state cross-section with a different state-to-state cross­

section, variations of one potential parameter with an other. All of these 

can be obtained from a single solution of the scattering problem, with 
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relatively little additional computational effort. 

Eno and Rabitz13 have evaluated the parameter sensitivities for an 

assumed He + COz anisotropic potential. This potential is an inflexible 

Lennard-J ones type, and hence does not fully resemble the empirical 

potential3 . In addition they reported sensitivities for differential cross­

sections with an initial ground rotational state (j == 0). If He + C02 

sensitivity results are to be a useful guide for the experimentalist, one 

should present calculations that most closely model the conditions of the 

experiment. Under most experimental conditions it is not practical or 

possible to produce C02 molecules in their ground state.3 , 10 Even if C02 

molecules were prepared in their ground states the small energy loss by 

the helium in exciting the C02 to a higher rotational state could not 

be observed with current time-of-flight molecular beam apparati. The 

rotational constant for C02 is so much smaller than the collision energy, 

a transition from the ground rotational state would change the scattered 

He energy (and hence flight time to the detector) by such a small amount 

that the transition would be obscured by the spreads in energy of the 

He and C02 beams. 

Schinke et al.6 have pointed out that the rotational rainbow (not to 

be confused with the classical rainbow) is a structure highly sensitive to 

the potential anisotropy. Eno and Rabitz 13 have confirmed this with 

their sensitivity analysis. However both of these studies have been 

Performed on the initial ground state of the target molecule. For higher 
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ground states and larger changes in rotational quantum number the 

rotational rainbows become much less pronounced and move to higher 

scattering angles. 6
'
13 In fact Schinke et al. 6 recommend that experiments 

be conducted at the initial ground state of the target molecule and at 

higher scattering angles. As we stated before, for the case of C0 2 it 

is not practical to have it in its ground state. Also, large scattering 

angles are difficult to attain experimentally, since the signal is usually 

very low at high angles. For practical purposes it is best to concentrate 

on small scattering angles. We will then concentrate on conditions that 

best model experimental conditions, and as we will show the majority of 

significant information regarding the potential will be contained in the 

range of scattering angles easily observable. 

In section 2 we briefly summarize the lOS approximation and 

present the needed expressions for the total and state-to-state differential 

cross-sections. In section 3 we review our model potential. In sections 

4 and 5 we present the calculation methods. We demonstrate the 

inappropriateness of classical rainbow scattering analysis for our model 

system in section 6. Before considering anisotropic scattering we analyze 

a spherical analog of our model potential in section 7. The fully 

anisotropic potential sensitivities for the total differential cross-section 

are presented in section 8. In section 9 we discuss the rotational state­

to-state differential cross-sections by way of the large scale sensitivity 

analysis, and employ the infinitesimal sensitivity analysis in section 10. 
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In section 11 we briefly discuss the results of a set of analyses at two 

collision energies above and below the 65 me V used in sections 4 thru 

10. Finally we summarize our findings in section 12. 
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2. CROSS-SECTIONS 

We have used the infinite order sudden approximation (IOSA) to 

calculate the total (elastic and inelastic) and rotational state-to-state 

differential scattering cross-sections (DCS). Since this formalisn1 has 

been reviewed and outlined by many authors we will only present the 

salient points of the IOSA. 

In the systems to be considered, the target molecules are essentially 

all in their ground vibrational states and the collision energies are well 

below the threshhold for producing vibrational excitations.33 Therefore, 

it is reasonable to treat the target molecule as a rigid rotor of length R 

(the distance between the end atoms) having a moment of inertia I. Let 

r be the position vector of the incident atom with respect to the center­

of-mass of the molecule and 1 be the angle between r and the oriented 

molecular axis !J,. The nuclear motion Hamiltonian for this system is 

therefore 

( 1) 

where J.t is the atom-molecule reduced mass, and L and J are the 

orbital angular momentum and molecular angular momentum operators, 

respectively. 

The Schrodinger equation can be solved for the above Hamiltonian 

by expanding the wave function in eigenfunctions of the total angular 

momentum operator J = J + L and its projection J z about a space 
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fixed axis z. This results in a set of coupled radial differential equations; 

the coupling being due to the matrix elements of V ( r, 1) obtained using 

these eigenfunctions. Under the conditions of our calculation it is valid to 

decouple these equations, by imposing the centrifugal sudden ( CS )29 ,30 

and energy sudden (ES) 27
'
28 approximations, collectively known as the 

infinite order sudden approximation {IOSA). 24 The CS approximation 

is introduced by replacing the orbital angular momentum operator with 

its eigenvalue form 29,30 

i? ~ n?T(T + 1) (2) 

while to implement the ES approximation the molecular angular 

momentum operator is replaced with its eigenvalue form27,28 

(3) 

where land J are appropriately chosen effective quantum numbers. 

The resulting set of decoupled differential equations are 

[ 
cF 2 T(T+ 1) 2tt ] 
dr2 + kJ - r2 - n? V(r, I) ¢r(r; I) = 0 (4) 

where the wave vector is 

(5) 

E being the total energy of the system and ¢z is an effective scattering 

Wave function for a angle of incidence I· These equations can be solved 
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for a given [ and 1 in a manner analogous to a spherical problem , by 

requiring that the wave function must vanish at the origin, and at large 

r behave as 

¢>r ----+ ki -lf2{e-i(lcyr-ln"/2)- ei[kyr-ln"/2+2ir1r(l)]} (6) 
r-+oo 

where tJr( 1) is the phase shift for a given fixed atom-molecule orientation, 

which is obtained in a manner identical to that for a spherical scattering 

problem31 ,32 , and the resulting scattering amplitude is given by 

fky(ll 0) == _t L(2l + 1){ 1- e2irll(l) }Pz(cos 0) (7) 
2ki l 

It can be shown that the rotational state-to-state differential cross-

section is given in this approximation by24 

where the matrix elements of f( 1 I 0) are evaluated in the spherical 

harmonics of the body-fixed coordinates- BF .23 It should be noted that 

this result is independent of the choice of l. 

Equation (8) can be simplified for calculational purposes by 

expanding fki ( 1 I 0) in Legendre polynomials 

(9) 
i 
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where 

F1"'(8) = (i + 1/2) 1" P;(cOS'y)f"'(t 18) sin')' d1 (10) 

This then leads to the expression for the differential cross-section 

u(i' ..__ j I B) = (!~ )2 

L 2 .}+ 1 C
2 (j, j", j'; 0, 0, 0) I F;,; (8) 1

2 (11) 
J j" J 

The total differential cross-section is the sum of all state-to-state 

cross-sections u (j' +- j I 0) from an initial state j over all energetically 

allowed final states j'. The cross-section in equation ( 11) can be summed 

and simplified if the effective IOSA rotational quantum number j is set 

equal to j (the initial rotational state). By way of the completeness 

of the spherical harmonics and the addition theorem for the spherical 

harmonics it can be shown that the total differential cross-section is 

(12) 

This expression, for a given initial relative translational energy, IS 

independent of the initial rotational state j, and hence represents the 

total differential cross-section for any initial state. 

It has been demonstrated that the IOSA is valid in cases where 

the relative collision energy is much larger than the spacing between 

rotational levels and larger than the attractive part of the potential. 

Since we will consider collision energies of 35 to 95 me V we are well 
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within the range validity for the He + C0 2 interaction where the typical 

co2 rotational spacings are less than 6 me V, and where the He + C02 

well depth is less than 7 meV. 
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s. POTENTIALS 

In order to obtain realistic results and fulfill the objectives of this 

paper we will use a realistic potential for our cross-section and sensitivity 

calculations. Our potential is based on one extracted from experimental 

crossed-beam data. We represent the anisotropy by giving an angular 1 

dependence to the parameters of an otherwise spherical potential, 

(13) 

where t is the well depth, rm is the well minimum position, and {3 is a 

shape parameter which depends on the parameterization of V. Some 

parameterizations may have more than one shape parameter, all of 

which may have angular dependence. In this paper we will expand the 

well minimum position and the well depth to second order in Legendre 

polynomials 

and 

rm(l) = r~) + ri;) P2(cos1) 

= r~) [1 + qP2( cos 1 )] 

t('Y) = t(o) + £(2) P2(cos1) 

= t(o) [1 + aP2(cos 1)] 

(14a) 

(14b) 

(15a) 

(15b) 
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where we have defined the anisotropies of the well minimum position 

and depth as q = r~) / r~) and a = E( 2) I t(o) respectively. Due to the 

symmetry of the C02 molecule the first order Legendre term is zero. 

The shape of V(r,rm,t,/1) is charterized by the highly flexible 

Morse-Morse-spline-van der Waals {MMSV) potential which may be 

written as 

V(r) = : { e2(fJ'-rfJw/rm) _ 2e(P'-rfJw/rm)} (l6a) 

for r < r 0 

for r ~ ri 

V(r) = [81(rsv- r) 2 + 83](rsv- r) 

+ [82(r- ri) 2 + 84] (r- ri) 

for ri < r < r su 

06 Gs 
V(r) = ----

r6 rs 

for r ~ r 8 ., 

with 
P' -ln 2 

w=---
{3- ln 2 

(16b) 

(16c) 

(16d) 

where r0 = rm(l - ln 2/ /1) is the zero of both Morse funtions, and 

ri = rm(l +In 2/ P) is the inflection point of the second Morse function. 

The spline coefficients 811 82, 83 and 84 are determined by continuity 

conditions imposed on the potential and its derivative at ri and r 8 .,. The 

Spline-van der Waals junction is maintained at r 8 ., I rm = 1.6,3 ' 9 ' 10,18 and 
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the constant w is used to impose a smooth transition between the two 

Morse functions. 

This parameter-expansion MMSV potential is a good choice for this 

study since the various features of the potential are neatly segregated 

into specific parameters; the well minimum position ( ri?)), the well depth 

( t:(0)), their anisotropies ( q and a), the well width (/3) ,and the repulsive 

wall steepness (/3'). Table I lists the values of these parameters as used 

in this study, obtained from an empirically derived potential, 3 the long 

range dispersion terms for this potential were computed by Pack36 ) . In 

the course of this study we will change some of these values one by one to 

see what effect the change has on the cross-sections and the sensitivities. 
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4. SENSITIVITY CALCULATIONS 

Extensive work has been done by Eno and Rabitz 11 - 14 on formal 

sensitivity analysis in quantum collison theory. However, since the aims 

of this study are less probing and less demanding, we can adopt a simpler 

and less general approach to analyzing the sensitivity of observable data, 

i.e., cross-sections, to the interaction potential; one that will serve as 

a useful guide to interpreting experimental scattering data. We wish 

to know how sensitive the differential scattering cross-section is to a 

parameter specifing the corresponding potential? In other words, for 

a given potential and collision energy, by what fraction will the cross-

section change for a small change in the parameter. If this change is small 

enough we can expand the cross-section a in the potential parameter Pk 

as 

0 ( aa ) o a = a + B (Pk - Pk) 
Pic Pk 

(17) 

where a can refer to a state-to-state or a total differential cross-

section, and the super-scripted a 0 and p~ refer to a reference choice 

of parameters. In order to facilitate comparison between sensitivities for 

various parameters and for different scattering angles as well as different 

initial and final conditions, we define a reduced and unitless relative 

sensitivity 
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(18) 

This quantity g1ves the fractional change in the cross-section for a 

fractional change in the parameter. This may be written as 

tl.u = S( u; Pk) ( tl.pk) 
u Pk 

(19) 

For a given potential and collision energy we calculated the phase 

shifts rJl( 1) in equation {7), via Numerov integration38 for low values 

of l and via the J WKB method37 '31 for higher values (the switch over 

taking place between l = 15 and 25 ). In general it is sufficient to use 

48 approach angles 1 in order to obtain good values for state-to-state 

cross-sections (total differential cross-sections are convergent with only 

12 approach angles). Using equations ( 7) and ( 10) we determined the 

expansion scatttering amplitudes F:r ( 8) . These are then used to obtain 

all state-to-state differential cross-sections from equation (11). 

The sensitivities are determined by the finite difference method, 

which from equation ( 19) is expressed as 

S(u;pk) = (~) u(pk + tl.pk)- a(pk) 
tl.pk a(pk) 

The tl.pk is 10-4pk and the cross-section is calculated at Pk and 

Pk(1 + 10-4 ) for a collision energy of 65 meV. Collision energies of 35 

and 95 meV are also considered in section 11. The masses of the He and 

C02 are 4.0026 and 44.0098 amu, respectively.33 They are used along 
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with the C-0 bond distance33 to determine the moment of inertia I ( eq. 

5). 

The computational time for these sensitivities is rather small, 30 

minutes on our VAX 11/780 computer for a given energy and a given 

potential with 10 parameter Pk varied. 
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5. THE METHOD 

In order to investigate the effect the potential parameters have 

on the differential cross-section we have calculated the cross-sections 

and their sensitivities for several physically reasonable values of a given 

parameter. We start with the above mentioned parameter-expansion 

MMSV potential, the parameters for which are given in Table I. We 

then change one parameter and determine its effect on the cross-sections 

and sensitivities. Since there are ten parameters that specify this 

potential and since we wish to consider several initial values of each 

of these parameters above and below their actual values, we can easily 

generate well over several hundered figures representing the dependence 

of the differential cross-sections on these parameters. This is definately 

undesirable, nor is it very informative. Hence we will show only some 

of the figures and summarize the key features of the others in tabular 

form. 

We have constructed various potentials based on the one in Table 

I, for which we give the designation M. In order to be able to refer to 

these modified potentials we will classify them by the symbols outlined 

in Tables II and III. The first table (II) lists the spherical potential 

constructed from the empirical anisotropic MMSV potential (M). This 

potential is generated by setting q, a, C~2 ) ,and C~2) equal to zero in 

Eqs. 14 and 15. The other table (III) lists variations in the anisotropic 

potential. 
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Various sensitivity features which are not plotted will be compared 

to those that are plotted, in Tables V thru IX. The two characteristics 

of the sensitivity functions which we will compare are: their overall 

magnitude, abbreviated as "mag.", and their oscillations with scattering 

angle, abbreviated as "osc.". A trend in either of these properties 

as a function of an increase of a parameter, energy or inelasticity is 

indicated with several adjectives. By "same" magnitude we mean that 

the magnitudes of the two sensitivities are within a factor of 1.2 of each 

other for all angles. Magnitudes that are "similar" ( abbrev. "simi.") 

are within a factor of 1.2 at most angles with some larger variations up 

to factor of 1.5 for some ranges of angles. Changes in magnitude are 

marked as "increasing" ("incr.") or "decreasing" ("deer."). A "slight" 

( "sl.") increase or decrease is less than a factor of 2, and is usually over 

the entire range, unless marked otherwise; while "significant" ( "sig.") 

change is a change by a factor of 10 or more. 

Changes in oscillation control are more difficult to quantify. By 

"same" we mean that the sensitivity oscillations cross zero at the same 

angles for the two sensitivities being compared. "Similar" indicates the 

same number of zero crossings but with some at different angles. A 

"significant" increase or decrease in oscillation control means there was 

at least a factor of 2 change in the number of zero crossings; while a 

"slight" change is one for less than a factor of 1.2 or just a change in the 

positions of the crossings. 
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6. CLASSICAL BEHAVIOR 

It is well known3 ' 9 'lO,lS-lS that helium-molecule scattering data 

exhibit very pronounced quantum effects, as is evident by the broad os-

cillations in the differential cross-section. Let us nonetheless summarize 

the characteristcs of classical scattering using different central field po­

tentials. To this effect we calculate the classical deflection function given 

1
00 1 e (b) = 7r - 2 b dr -------r====;====== 

rc r 2 J1- V(r)/ E- b2 fr 2 
(20) 

where r c is the classical turning point of the potential, and b is the 

classical impact parameter which can be expressed in terms of the partial 

wave angular momentum quantum number l 

b = l + 1/2 
k 

The classical differential cross-section is given as2 

'""" bi a(O) = L . I de I 
i Sln 0 dbi 

(21) 

(22) 

the sum is over all bi for which e( bi) exists such that 0 =I e (mod 1r) I· 

It is clear that as : approaches zero the cross-section approaches 

infinity. The scattering angle at which this occurs is known as the 

rainbow angle. In Figure 1 we plot the deflection function versus the 

reduced impact parameter (actually bk- ! = l). The minimum of e(l) 
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is indicative of the rainbow angle, while the inflection of E>( l) will yield 

the pre-rainbow minimum of the cross-section. 

Table IV summarizes the positions of the rainbow maxima and the 

corresponding oscillation minima for different spherical potentials. The 

rainbow angle is most strongly affected by the well depth and well width, 

and only slightly by the well minimum position. The well mimimum 

position does however, have a strong effect on the impact parameter (or 

l) at which the rainbow angle occurs. With behavior in mind let us 

analyze to quantum DCS for the SM potential given in Figure 2. The 

lowest scattering angle oscillation occurs at 4.5 degrees and it is very 

dampened. The next oscillation is much more pronounced having a well 

defined minimum at 7.7 degrees and a maximum at 9.8 degrees. Only 

this second oscillation is close enough to the rainbow to be considered as 

a vestige of that classical feature. If that is indeed the case it should not 

be strongly affected by changes in well minimum position (rm), while its 

angular position should be shifted most by the well depth or well width. 

In order to verify whether this is or is not the case, we present in Figure 3 

comparative plots for several different MMSV potentials. From Figure 3a 

we observe that increasing rm shifts all of the oscillations closer together 

and modifies their relative intensities, while variations in E or {3 have 

only a marginal influence on their positions (Figures 3a and 3b). Hence, 

we can conclude that there is no evidence of any rainbow structure in 

this highly quantum system. Despite the fact that this fingerprint of 
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well depth is not observable, we will show that the quanta! oscillations 

do contain significant well depth and width information. 
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'f. DCS SENSITIVITIES FOR SPHERICAL POTENTIALS 

Before we deal with the effects of potential anisotropy on the 

differential scattering cross-section (DCS), we will discuss the influence of 

the parameters of a spherical MMSV potential on the DCS. As mentioned 

in the previous section, the position of the DCS oscillations is most 

strongly influenced by the well position ( r m) with some small shifts due 

to changes in the well depth (E) and width (/3). 

We draw attention to the intensity of the oscillations for various 

values of r m, f, and f3 in Figure 3. An increase in E (Fig. 3a) tends to 

intensify most of the oscillations, even the low angle one becomes clearly 

visible at high L The only exception to this rule is the second oscillation 

(at rv 7.5°) which decreases slightly in intensity with increasing c If 

the well is made narrower, i.e. f3 is increased (Fig. 3c) the high angle 

oscillations (above 15°) increase in intensity, while the intensity of the 

low angle oscillations decreases. The intensity of the oscillation at rv 12 

degrees does not change appreciably with {3. The intensity behavior 

is less regular for variations in rm (Fig.3a). The overall pattern is for 

the oscillation amplitude to decrease somewhat with increasing rm -

while the overall DCS increases as does the frequency of the oscillations. 

However, the lowest angle oscillation is first dampened as r m increases, 

but as r m becomes even larger it reappears. 

It is clearly evident that despite no indication of rainbow scattering, 

the spherical potential DCS contains information pertaining to the well 
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depth and width, and it is known that r m has a greater influence over 

the cross-section than any of the other parameters. Since r m effect ively 

determines the size of the scattering target it will in turn determine 

the overall magnitude of the cross-section. The positions of the DCS 

oscillations will also be most influenced by the size of the scattering 

target. This may be visualized by analogy to the diffraction of light 

through a slit, where the slit width is analogous to the target size. 

As the slit width is decreased the diffraction pattern spacings increase 

and broaden out. The same is true for scattering; as rm decreases the 

oscillations broaden out and decrease in frequency as a function of angle. 

However, it is unrealistic to expect a priori that the well depth and width 

have a small or negligible influence on the shape of the DCS. After all, 

they both deterime the shape and value of the potential at a given r. 

The value of the potential can in turn be related (in classical terms) to 

the degree of deflection the probe particle will be subject to for a given 

impact parameter. 

In Figure 4 we plot the sensitivities for the six parameters of 

the MMSV-(SM) potential. The above mentioned observations and 

expectations are clearly evident in the plots. The rm sensitivity is the 

greatest by an overall factor of 10 above that for c or f3. The overall 

sensitivities for c and f3 are very similar, while the [3' sensitivity is slightly 

smaller than that for f3. The C6 and G8 sensitivities are lower by a 

factor of 100 and 1000, respectively, than that for rm at angles below 
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25 degrees. Above 25 degrees, the C6 sensitivity becomes similar to 

that for Cs, both being about 1000 times lower than for rm. The most 

pronounced feature of all of these sensitivities is their oscillation between 

positive and negative values, such that an increase in a parameter will 

shift a( 8) up at one angle and down at another. In other words, all 

the potential parameters have an influence on the DCS oscillations and 

magnitude. 

Comparing the sensitivities S ( 8; t:) and S( 8; {3) we observe that for 

0 less than 15 degrees they have in general opposite signs; while for 8 

between 15 and 35 degrees they usually have the same sign. Beyond 35 

degrees their behavior is not well correlated. Even the small dampened 

DCS oscillation at 4.5 degrees shows strong sensitivity to both t: and {3. 

However if this oscillation is dampened further by setting t: low and f3 

high (potential SBEHL in Table II) the sensitivity in this region decreases 

and loses its oscillatory structure. In general many of the gross features 

of the sensitivities are preserved if a parameter is altered by a physically 

reasonable amount, as in Table II. 

The {3 1 sensitivity shows very similar structure to the {3 one in the 

range of 10 to 20 degrees. Beyond 20 degrees the overall magnitude of 

S(O; {3') remains relatively constant as the regularity of the oscillations 

decreases significantly; whereas at angles below 10 degrees overall 

magnitude of the sensitivity drops rapidly with angle. From classical 

scattering theory we would not expect a parameter that controls the 
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close (low r) features of the potential to have any effect on small angle 

scattering. Since for r 2:: r o (potential zero crossing) (3' has no effect 

on the potential, we would not expect to see any f3' sensitivity for 

those impact parameters which do not sample the potential in the 

region r < r 0 • For the MMSV -SM potential these impact parameters 

correspond classically to scattering angles of less than 15 degrees, below 

which S( 0; /3') starts to decrease, dropping to zero at 0 degrees. Yet 

because this is a highly quantum system the sensitivity does not drop to 

zero instantly at 15 degrees. 

Similar classical scattering arguments can be used to explain 

why the C6 and C8 sensitivities are largest at small angles. Large 

impact parameters imply larger distances of closest approach, where 

the potential is weak and produces a small scattering angle. Hence the 

far reaches of the potential, as determined by Ca and C8 , will have 

significant influence on small angle scattering. For scattering angles less 

than 7 degrees the C6 sensitivity is within a factor of two of the r m, 

f, and f3 sensitivities. The C8 sensitivity is much smaller then the one 

for c6 at angles less than 25 degrees, and is not important in defining 

the shape of the DCS. Above 25 degrees both S(O;C6 ) and S(O;C8 ) have 

approximately the same small magnitude and should play a minor role 

in the appearance of the differential scattering cross-section. 

The sensitivities described above have been calculated for specific 

values of the potential parameters. What happens to these sensitivities 
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if one of the key parameters rm , E, or {3 is changed by a large although 

physically reasonable amount (as in Table II)? As we stated before, there 

is no benefit in plotting all of the sensitivities for every parameter change. 

Instead we have summarized, in Table V the changes that do occur in 

the sensitivities as each of these parameters is individually lowered or 

raised above its normal value (see also Section 5). Two key features of 

the sensitivities are the effects they imply on the overall magnitude and 

oscillations of the DCS. We will use the expression "oscillation control" 

as the effect of the parameter on the amplitude of the oscillations in the 

differential cross-section. This control manifests itself in the sensitivity 

versus angle curve as oscillations above and below zero. For example, 

we say that rm exhibits strong oscillation control (Fig. 4a), while {3' 

exhibits a poorer oscillation control (Fig. 4d), especially in ther range 

of 40 to 55 degrees. 

Superficially, most of the sensitivities were not significantly affected 

by large, allthough physically reasonable, changes in a parameter. The 

most notable exceptions are the C6 and 0 8 sensitivites for changes in rm 

and {3. The increase of rm moves both the Morse inflection point ri and 

the spline-van der Waals junction to larger r where the van der Waals 

part of the potential is weaker. Therefore the van der Waals part makes 

up a smaller portions of the potential, and hence it has less less effect 

QD. the ma-gnitude of the potential. Similarly, as {3 increases the well 

narrows, the inflection point ri moves to smaller r, and the r811 remains 
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the same. This makes the spline region wider and results in a greater 

influence of the van der Waals region, giving the C6 and Cs coefficients 

a greater control of the DCS. 

The other variations in sensitivities are more subtle and are not 

as readily predictable. However, a clue to understanding some of this 

behavior is realizing that f3 and /3 1 are dimensionless parameters that 

govern the well and repulsive wall shapes, respectively. The actual slope 

of the potential, in the attractive and repulsive regions, is governed by E 

and rm. Hence any change of these parameters is expected to affect the 

sensitivity of parameters that also control the slope, i.e. f3 and /3'. 
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8. TOTAL DCS SENSITIVITIES FOR ANISOTROPIC 

pOTENTIALS 

It is well known, as discussed in the introduction, that the anisotropy 

of rm ( q in eq. 14) has a much greater influence on the appearance of 

the DCS than does the anisotropy of f (a in eq. 15). Yet it has been 

demonstrated3 that a is essential in fitting potentials to experimental 

data; q as the only anisotropy term cannot adequately account for all the 

features of the observed DCS. Similar conclusions can be drawn fro1n the 

total differential cross-sections (i.e., summed over all final states) plotted 

in Figure 5. Variations of q from 0.1 to 0.5 show how significantly the 

oscillations can be dampened. For q = 0.1 the DCS is very similar to the 

one for a purely spherical potential (see Figure 2), despite the presence 

off anisitropy. However, both these values of q are physically unrealistic. 

The well minimum position anisotropy should follow the shape and size 

of the C02 molecule. Since the C-0 bond distance is 1.16 A, it then 

is expected that the difference between rm(l = 0) and rm(l = 1rj2) 

be approximately this distance. This is indeed the case for q = 0.21 

(the experimentally fitted value) which results in a difference of 1.10 A, 

whereas the difference is 0.53 Afor q = 0.1 and 2.63 Afor q = 0.5. 

There are no easy clues that can be used to predict the well 

depth anisotropy (a), and as Figure 5b shows a has a much more 

subtle effect on the total DCS than q. An increase in a dampens 

some oscillations, i.e. at 5 and 9 degrees; while others become more 
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pronounced, especially at 15 degrees. Hence, well depth anisotropy 

information is contained not in overall oscillation dampening but 1n 

relative dampening and relative intensities of the oscillation. Just as 

in the spherical potential case, the total DCS was determined mainly by 

rm, with fine variations in oscillation intensity resulting from the well 

depth and shape. Consequently, for anisotropic potentials the angular 

dependent well minimum position r m { 1) determines the main features 

of the total DCS. The well depth anisotropy and shape parameters gives 

the oscillatory structure of the cross-section. 

In Figure 6 we present the effects of varying the shape parameters 

fi and /3'. As was the case for the spherical potential, an increase of f3 

increases the oscillation amplitudes above 10 degrees and reduces those 

below that angle. Also the magnitude of the DCS above 10 degrees 

remains about the same, while below it drops with increasing {3. We 

know that classical low angle scattering is due to trajectories that sample 

regions of the potential for large distances of closest approach r c. For 

this distance equal to 3.8 A( the value of r i for the SM potential) the 

resultant scattering angle is about 8 degrees {for the scattering energy 

of 65 me V considered in this paper). The deflection angle for r c = 5.6 

A( the value of r sv) is 1 degree. As f3 increases the well narrows and 

the spline region between ri and r80 becomes shallower, and a smaller 

fraction of the trajectories are scattered in to the region between 1 and 8 

degrees. Similarly as the well narrows the DCS exhibits sharper quantum 
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interference oscillations. 

The repulsive wall shape parameter {3' has little effect on scattering 

below about 16 degrees, the scattering angle corresponding to a classical 

closest approach distance radius of 3.1 A, the value of r 0 • Above 16 

degrees, however, the increase of (3' decreased the total DCS (Fig. 6b). 

The reason seems to be that as (3' increases the wall becomes steeper and 

less likely to be penetrated, yielding a lower cross-section at the larger 

scattering angles. 

In the framework of the above observations let us now consider 

the sensitivities for these parameters. The sensitivites to r~), E(o), 

q, a, f3 and {3' are presented in Figure 7, and to the van der Waals 

coefficients c!O)' c~O)' cJ2)' and C~2 ) in Figure 8. We can compare these 

sensitivities to those for the spherical limit of this potential (Fig. 4). The 

presence of anisotropy has significantly altered these sensitivites. Those 

for rt!), j3 and C~O) have increased in overall magnitude; while those forE, 

{3' and c~O) have decreased. The oscillation control has been reduced for 

E and /3', whereas for the other parameters it has remainded relatively the 

same in so far as the frequency of the sensitivity oscillations is concerned, 

with only some changes in their relative amplitudes. This is particularly 

true for S( 0; rt!)). The rm sensitivity for the spherical potential has 

a progression of oscillations with alternating crests (postitive) and 

troughs (negative) of equal width and equal magnitude; whereas the 

r~) sensitivity has large troughs (negative) and small and narrow peaks 
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(postitive). An increase in r~) tends to lower the DCS oscillation troughs 

much more than it raises the crests. This is effectively a decrease in 

oscillation control. The peak to trough height does not increase as much 

for the anisotropic potential as for. the spherical one for an increase in 

r~), since for the spherical potential the troughs move down as much as 

the peaks move up, while for the anisotropic potential the troughs move 

down, but the peaks move up only slightly. 

The sensitivity to the spherical average of the well depth t(o) is 

reduced slightly by the introduction of anisotropy, as can be seen from 

a comparison of Figures 7b and 4b. There is also some reduction 

of oscillation control, especially for low scattering angles ( 0 < 20°). 

The DCS oscillation at 4 degrees is still influenced by f(O) such that 

an increase will deepen the trough of the oscillation. In general, the 

inclusion of anisotropy has reduced the precision with which well depth 

information can be extracted from a measured DCS. However, this is not 

as unfortunate as it may seem, since the DCS also contains information 

pertaining to the anisotropy. Also, the presence of anisotropy permits 

C02 rotational energy transfer, which can be observed as inelastic 

scattering. This inelastic scattering, as we shall see later, contains 

additional information which can be used to extract the various potential 

parameters, as well as the well depth, more accurately and more 

precisely. 

The DCS oscillation dampening properties of the well m1n1mum 
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position anisotropy q are clearly evident in Figure 7c. The sensitivity, 

S( 8; r}:;)), is positive in regions of the DCS troughs, and negative in 

regions of DCS crests. The DCS dampening properties of a are very 

sinmilar to those of q, as is seen by comparing Figure 7d with Figure 7c. 

From 0 to 7.5 degrees the two sensitivites are of similar magnitude, while 

between 8 and 35 degrees the S( 8; q) magnitude rises up to 10 times that 

of S( 8; a). Therefore the scattering below 7.5 degrees should be most 

important in defining a, particularly since a has a greater oscillation 

control than q for the DCS oscillation at 4 degrees. Even in the range 

of 7.5 to 14 degrees S(O; a) is one third of S{8; q) indicating that a has 

a significant influence on the DCS. For low angle scattering ( 8 ~ 20°) 

a provides much more oscillation control than f(o) and hence serves an 

indispensable function in modeling the real potential. In fact, it has 

been demonstrated3 that a calculated DCS cannot be sucessfully fitted 

to experimental DCS scattering data with potential models that do not 

include well depth anisotropy. 

The sensitivity to the well width parameter f3 has increased with 

the introduction of anisotropy, as indicated by comparing Figures 7e 

and 4c. The overall magnitude of this sensitivity has incresed, up to 

a factor of three, above 12 degrees; and oscillation control has also 

increased some (below 20 degrees). Indeed, the sensitivity to f3 is the 

second most intense one after S( 8; r~)), greater than the f(o) sensitivity. 

Its importance should not be underemphasized, particularly for this 
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anisiotropic potential, although it is not obvious why the sensitivity 

should increase with increased anisotropy. This sensitivity of the DCS 

to the j3 parameter has not been previously realized. 

The sensitivity to f3' (Figure 7f) shows essentially the same behavior 

as in Figure 6b; very little sensitivity at low angles with only very 

minor oscillation control, and a negative sensitivity at higher angles. As 

mentioned above, scattering below 15 degrees corresponds to classical 

trajectories that do not approach the repulsive wall, hence this region 

(0 < 8 < 15°) represents penetration into the classically forbidden region 

of the repulsive part of the potential. For the scattering angles above 

15° oscillation control disappears and the sensitivity to (3' demonstrates 

that a steeper wall (higher f3') reduces the DCS magnitude. 

The sensitivities to the dispersion coefficients are plotted in Figure 

8. The only important coefficient, one with the largest magnitude by 

far, is G~o). The sensitivities to the other dispersion parameters is so 

low that they do not significantly affect the DCS. Since these coefficients 

are calculated theoretically, their sensitivities provide a guide as to how 

accurately those calculations must be performed. The sensitivities to the 

anisotropy terms G~2) and c!2
) can be expected to be small because the 

van der Waals region extends ranging from rsv to infinity and has some 

influence on the spline region. As the He atom traverses the van der 

Waals region the C02 molecule rotates thereby changing I· The DCS 

then reflects the spherical averge of the dispersion terms. The well and 
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wall regions will be traversed more quickly by the He atom, and hence 

the anisotropy of this part of the potential will not be severely averaged 

over I· 

Table VI summarizes the significant changes that occur in the 

sensitivities if q, a, or [3 are changed above or below their nominal 

values. In general the sensitivities are not substantially affected by these 

changes; most of the differences are subtle. Some sensitivites increase as 

a parameter is increased, and upon a further increase of the parameter 

they drop again in magnitude. Only S( 0; a) increases significantly in 

magnitiude as a is raised; it also gains oscillation control as q is increased. 

In addition, a narrowing of the well i.e., and increase in [3 makes the well a 

sharper target which in turn increases the sensitivity of the well minimum 

position ( r!:;)). Other than these there are no regular or predictable 

trends in the small variations of these sensitivities. 
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9. STATE-TO-STATE DIFFERENTIAL CROSS-SECTIONS 

The anisotropy of the He + C02 interaction potential allows for the 

coupling and transfer of energy between the rotation of the C02 molecule 

and the relative translational energy between it and the helium J.tom. 

The total differential cross-sections, discussed in the previous sections 

of this paper, are the sums of a large set of rotational state-to-state 

transitions {Equation 12), and therefore they are less sensitive to the 

details of the the potential then the individual cross-sections would be. 

In this section we will show these state-to-state cross-sections depend 

on the characteristics of the potential. We have chosen as an example 

an initial state j = 12, which lies in the range of rotational states that 

the C02 is likely to occupy at all but the lowest temperatures. The 

discussions and conclusions for j = 12 can be easily carried over to other 

initial states j, from j = 4 to j = 30. 

In Figure 9 we plot the full range of rotational transitions from 

j = 12. For a given change in fl.j = j'- j {where j' is the final rotational 

state) the shapes of the DCS curves for the rotational gain ( tl.j > 0) are 

very similar to the one for rotational loss {tl.j < 0), for the same llljj. 

The major difference is that the rotational fl.j > 0 transitions have DCS 's 

which in magnitude are greater than those for the corresponding fl.j < 0 

trasitions. We will therefore focus our attention on the former without 

compromising detail or completeness of conclusions. 

Elastic scattering dominates at low scattering angles. Inelastic 
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transitions for fl.j == 2 become important for scattering angles 8 above 

10 degrees. Transitions for fl.j > 6 are not significant for angles below 

40 degrees. Beyond 40 degrees the fl.j == 8 DCS has minor significance. 

Transitions with fl.j > 8 although not shown in Figure 9, contribute very 

little to the total DCS, and are extremely small at all angles. We also 

do not show DCS 's from initial states other than j == 12. These other 

transitions have virtually identical characteristics to those for j == 12. 

However, j == 0 is an exception in that DCS's for small fl.j (2 and 4) are 

greater than those for the other inelastic ones and the elastic ones for 

angles above 10 or 15 degrees. 

In Figure 10 we probe the effects of varying the potential well 

minimum position anisotropy q. The anisotropy parameter q elongates 

the potential along the C02 molecular axis (if it is positive). As this 

happens the torque about the center-of-mass of the C02 imparted by the 

He atom to the C02 molecule will increase, which increases the amount of 

translational to rotational energy exchange. We then expect a potential 

with a larger q to have greater inelastic cross-sections, as is borne out 

in Figures lOa and lOb. For q == 0.5 (high value) inelastic scattering is 

substantial even at 4 degrees (for fl.j between 2 and 8). For q == 0.1 (low 

value) even fl.j = 4 scattering has little effect on the total scattering. 

At 12 and 18 degrees (Fig. lOa) the DCS for the fl.j == 2 transition is 

comparable in magnitude to that of the elastic DCS. The elastic DCS 

curve for q == 0.1 has oscillations of greater amplitude than the one for 
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q ::= 0.21. As q increases the elastic DCS oscillations dampen while those 

for inelastic transition DCS (t:..j > 2) tend to increase. The elastic DCS 

decreases with q and so do the DCS 's for small D..j transitions. The 

magnitude of the total DCS is unchanged by the value of q (Figure 5a), 

and since inelasticity increases with q, the elastic DCS should therefore 

decrease. 

There are problems with potentials having large large values of q, 

and thereby relatively large differential cross-section for large D..j. The 

lOS approximation is only valid for cases where rotational transitions 

occur at small impact parameter and for relatively small changes in the 

rotational energy. A potential with a large q does not meet these criteria, 

and hence the results shown in Figure lOb, are not a good approximation 

to those the exact ones. Nonetheless, we can still use the results to show 

the trends that occur as q changes. Similar caution is required for low 

q potentials where the target molecule has a small moment of inertial 

I ( a light diatom such as H2 , or even N 2 is an example). The small I 

is indicative of large spacings between rotational levels; a condition to 

which the IOSA is not applicable. 

Variations in the well depth anisotropy a do not have as dramatic an 

effect on the DCS's as does q. Yet, as is evident from examining Figures 

11a and 11 b, the influence is significant. The differences in state-to-state 

DCS's are most apparent at low scattering angles, as a increases (in 

absolute value) from -0.2 to -0.9. We expect, based upon the discussion 
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of spherical potentials , the well depth information to be concentrated at 

scattering angles in the range of greatest classical sampling of the well 

region, i.e. 4 to 20 degrees. An increase in a dampens the oscillations for 

all inelastic DCS 's, particularly for larger !:::.j 's, while the DCS 's increase 

in magnitude especially at low angles. 

To account for these observations, we probed further by making 

several modifications in the well depth and its anisotropy. First , we 

plot the state-to-state DCS 's for two extreme values of the overall well 

depth E(o) (2.5 and 7.5 meV) with the anisotropy a unchanged at -0.5. 

For an increasing E(o) the trends, as shown in Figures 12a and 12b, 

are: the inelastic DCS amplitudes increases; the elastic DCS magnitude 

increases between 4 and 20 degrees; and the DCS oscillation magnitudes 

also increase somewhat abvove 25 degrees. For a negative a the well is 

deeper than the spherical average E(o) at angles greater than the zero 

point of the second order Legendre polynomial P2(cos 1) (cos 1 = 1/vfa 

or 1 ~ 54.7°). We can make this region shallower than E(o) and place 

the very minimum of the potential on the molecular axis ( 1 = 0, or 1r) 

rather than perpendicular to it ( 1 = 1r /2), by setting a to a positive value. 

Figures 13 show the DCS's for two different values of a positive: a +0.5 

and +0.1. For scattering angles below 12 to 22 degrees (depending on the 

!::.j of the transition) the inelastic DCS 's increase in overall magnitude 

and decrease in oscillation amplitude as a is increased. Above these 

angles the DCS magnitude drops slightly and the oscillations intensify. 
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To complete the test we set the well depth anisotropy a to +0.3 and 

t(O) to 2.5 and 5.5 meV, Figures 13c and 13d respectively. Once again 

the deepening of the well produces an increase of the magnitude of the 

inelastic DCS for low scattering angles ( 12 to 2 2 degrees). 

In summary, the increase of the well depth increases the inelastic 

DOS regardless of the anisotropy. The increase of the magnitude of the 

well depth anisotropy also increaes the inelastic DOS. An increase in the 

magnitude of a will deepen the well somewhere. Since the inelastic DCS's 

apparently sense a depth increase, regardless of the sign of a, they must 

be influenced by regions of the potential above and below the approach 

angle 1 corresponding to the zero of P2 (cos 1). This is consistent with the 

arguments presented in the discussion of the well minimum anisotropy 

q: the most effective translational-rotational energy transfer will occur 

at approach angles 1 for which the torque is greatest, i.e. somewhere 

away from both parallel and perpendicular approaches. 

Figures 14a and 14b show elastic and inelastic DCS's for extreme 

values of the potential well width parameter {3. As we demonstrated 

in the Sections 7 and 8, an increase in {3 results in an increase in the 

low angle scattering and an increase in DCS oscillation amplitudes. The 

same is observed for the state-to-state DCS's. An increase in {3 narrows 

the well so that the values of the potential in the well region decrease for 

all r other than r m at a fixed I· A narrower well will have a repulsive 

wall which starts at a larger r and has an initially steeper slope (before 
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p' becomes influential), and therefore the effective target size increases 

as does the cross-section. As f3 increases, the inelastic DCS increases 

at scattering angles which classically correspond to collisions with the 

repulsive wall of the potential, as can be seen by comparing Figures 14a, 

gb and 14b for which f3 is 5.0, 7.2 12.0 respectively. 

When we discussed the effects of the repulsive wall shape parameter 

on the total DCS, we observed that an increase in {3' decreases the 

scattering intensity at higher angles with virtually no effect on the 

oscillations. A similar observation is made for state-to-state DCS's for 

small t:1j (~ 4). For the larger t:1j (~ 6) the reverse is true, i.e. the high 

angle state-to-state DCS's increase with increasing wall steepness. There 

is no discernable difference in the state-to-state DCS's for variations in {3' 

at angles below 15 degrees, and only above 35 degrees is the difference 

reasonably significant. At 60 degrees the largest variation is for the 

ll.i = 8 DCS, with less than a factor of 2 increarse in the DCS for a 

change in {31 from 5.0 to 12.0. 



- 173-

10. STATE-TO-STATE DCS SENSITIVITIES 

In the previous section we observed the response of the state-to­

state differential cross-sections to relatively large changes in potential 

parameters. We now turn to the sensitivities of equation 18, to gauge 

the response of the state-to-state DCS to very small parameter changes. 

How do they compare to the total DCS sensitivities? How do they change 

as the inelasticity increases? 

In Figure 15 we plot the sensitivities of the j = 12 to j = 14 DCS 

sensitivities to the parameters r~), t:(o), q, a, {3 and {3'. We observe 

only one significant change over the total DCS sensitivities of Figure 7, 

otherwise the two sets of sensitivities are very similar. The change is in 

the q sensitivity S( 8; q) which shows a very significant loss of oscillation 

control and an overall increase in magnitude. The sensitivities to the 

G~o) and C~2 ) coefficients do show some increase in magnitude over 

those for the total DCS. In Table VII we compare these sensitivities 

to the sensitivities for the total DCS, the elastic j = 12 DCS, and a 

variety of inelastic ( j = 12 to j = 4, 6, 8, 10, 14, 16, 18, 20) DCS. 

The difference between the total and state-to-state sensitivities for 

q is quite remarkable, compare Figures 7c and 15c respectively. The 

increase in magnitude was expected since the elongation of the potential 

should be and is the primary feature responsible for translational­

rotational energy exchange. The significant loss of oscillation control 

indicates that the primary dampening mechanism of the total DCS 
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oscillations is the fact that the phases of the inelastic DCS oscillations 

differ from each other and from those of the elastic DCS (see Figures 

g and 10). As q increases in magnitude the inelastic DC S 's increase 

and therefore contribute more to the total DCS. Since the oscillation 

peaks of i' +- j DCS occur roughly at the same angles as the troughs 

of the adjacent DCS for which the i' differ by 2, the oscillations of the 

total DCS will dampen. The state-to-state inelastic DCS oscillations 

are not dampened at all by q; actually, a large q tends to increase the 

large ~i oscillations (compare Figures lOa and lOb). The state-to-state 

elastic DCS oscillations, however, are dampened by an increasing q; and 

the S( 8; q) is very similar to the one for the total DCS with only minor 

decrease in oscillation control (we did not plot the elastic sensitivity since 

it is so similar to the total). 

The q sensitivity in Figure 15d is positive for 8 < 20 degrees and 

negative for 8 > 25°. As ~i increases the sensitivity becomes positive for 

all angles and increases in magnitude up to 20 times fori' == 4 +- j == 12 

over the 12 +- 12 elastic process (Table VII). This effect was observed 

in Figure 10, where for small angles the DCS increases with q, while at 

larger angles ( 8 > 20°) the DC S decreases for small ~j and increases 

for larger ~j. Classical trajectories with small values of the distance 

of closest approach correspond to small impact parameters and have 

large scattering angles. Large angle scattering is due to collisions that 

approach the repulsive wall, for which smaller ~j DCS decrease while 
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larger fl.j increase with increasing q. If a trajectory approaches the 

repulsive wall and scatters at large angles it will be able to transfer a 

greater amount of energy than at lower angles and therefore the total 

DCS will be dominated by larger !J,.j transitions. 

The spherical average of the well depth minimum position r~) has a 

very strong effect on the high inelasticity DCS. For fl.j = 8 the sensitivity 

S( 0; r~)) increases by a factor of 500 over the one for the total DCS 

(Table VII). The repulsive wall shape parameter /31 sensitivity also shows 

a significant increase for larger fl.j, up to a factor of 100. Since large fl.j 

transitions occur at the wall, the parameters that control the position 

and shape of that wall ( r~) and /3' respectively), should have the greatest 

influence on the corresponding inelstic DCS. A larger r~) means a larger 

target and hence a greater DCS. A larger /3 1 means a steeper wall and 

hence a more effective inelastic DCS (as we observed at the end of the 

previous section). 

The sensitivity to the well depth anisotropy parameter a is rather 

strongly affected by large tl.j transitions; the tl.j = 8 sensitivity increases 

up to 30 times over the one for the total DCS. This confirms the 

observations and discussions of the previous section, according to which 

an increase in the magnitude of a increases the inelastic DCS. 

The increase of sensitivities for the dispersion terms, particularly 

the anisotropy terms c!2
) and cJ2

), with increasing inelasticity (Table 

VII), is unimportant because the corresponding state-to-state DCS is 
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extremely small {Figures 9a and 9b), especially at low scattering angles 

where elastic transitions dominate. 

Table VIII summarizes the effects of parameter changes on the 

j == 12 to j' = 14 DCS sensitivities. It is similar to the analogous table 

(VI) for the total DCS sensitivities. Many of the conclusions reached 

regarding Table VI are equally applicable to Table VIII. We include 

this table only for completeness sake, and refer the reader to previous 

discussions, since there is no additional insight that can be presented. 
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11. DIFFERENT SCATTERING ENERGIES 

All of the above analyses were for a single relative kinetic energy of 

65 me V. What happens to the DCS 's and their sensitivities at energies 

above and below this value? We have made calculations at 35 me V 

and 95 me V and summarize their results below with emphasis on the 

differences between the studies at these energies and those at 65 me V. 

The lOS approximation is valid over this energy range. 

The positions of the DCS oscillations depend not only upon the 

well minimum location but also on the kinetic energy and hence the 

wavelength. As the energy increases the wavelength decreases and hence 

the spacing of the oscillations decreases. The magnitudes of the total 

DCS and also the inelastic DCS decrease with increasing energy for 

scattering angles below 30 degrees. At scattering angles above 30 degrees 

kinetic energy has a negligible 

effect on the magnitude of all the DCS's. Inelastic DCS's for small 

!::.j also decrease with increasing energy; while for large tl.j they increase. 

This is expected since the large tl.j DCS's depend upon the repulsive wall 

collisions (see previous section); a larger energy makes the wall region 

more accessible. 

Table XI list the changes in sensitivities for the total and j = 12 

to j = 14 DCS's as the initial kinetic energy increases. Overall, 

the sensitivities were not very significantly altered. The well depth 

sensitivity showed a factor of 5 decrease only for scattering angles above 
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17 degrees (as the kinetic energy is raised from 35 to 95 me V). The 

sensitivities for {3 and C~o) were the virtually the same for 35 and 95 

meV but much greater for 65 meV. The C~2 ) sensitivity showed a marked 

increase with energy. 

Classically, one would expect that at a lower kinetic energy, the 

probing of the well region would be greater and the probing of the 

wall lesser. This is the case to a small extent for our system, but not 

significantly so. The P' sensitivity increases only slightly, indicating a 

slight increase in the probing of the repulsive wall. The minor decrease in 

the c(o) sensitivity indicates very little decrease in the probing of the well; 

most of the decrease in S( 8; c(o)) is for angles above the classical range 

of well sampling. The other well parameter p has the most sensitivity 

at an intermediate energy ( 65 me V); at the extreme energies ( 35 and 65 

me V) the S( 8; [3) 's are identical. 

The specific choice of a scattering energy to experimentally probe 

the He + C02 potential, or one for a similar system is not important. 

The higher energies in this range yield cross-sections with more classical 

behavior, and will sample more of the repulsive wall. At the lower 

energies the behavior is more quant al in nature, and hence the scattering 

will be less a function of how a trajectory samples the well region, than 

how a wave is distored by the total potential. It is not appropriate 

or very useful to invoke trajectory concepts in attempting to predict 

parameter sensitivities at low energies. Therefore, it is not very beneficial 
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to measure cross-sections for quanta} scattering systems at very low 

scattering energies, since similar information can be obtained at room 

temperature energies. The only advantage of lower energy studies is 

the increase in elastic cross-section at intermediate scattering angles; a 

factor of 2 increase is observed in the range of 5 to 15 degrees as the 

energy drops from 95 to 35 me V. The disadvantage is that the inelastic 

cross-sections decrease for these conditions. The best course of action is 

to measure the cross-sections at many energies, and use the combined 

data to extract a potential. 
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12. CONCLUDING REMARKS 

In this paper we have investigated the effect of several anisotropic 

interaction potential parameters on observable differential cross-sections 

for the scattering of He by C02 at an energy of 65 me V. Relative 

sensitivity functions for the DCS were introduced to quantify the 

influence of each parameter. We also performed a large scale sensitivity 

analysis by calculating the cross-sections at several physically reasonable 

values of each of the potential parameters. The following conclusions 

were reached: 

I. The DCS (total and inelastic) are most sensitive to the location of 

the potential well mimimum r m, particularly the spherical average 

of rm(l). It has, by far , the greatest effect on the overall magnitude 

of the DCS especially at low angles, and on the positions of the 

quanta! oscillations. 

2. The quanta! oscillations of the total DCS versus scattering angle 8 

curves are dampened primarily by the presence of anisotropy in the 

position of the well minimum rm. The dampening is due to the fact 

that the inelastic DCS 's have oscillations with troughs and crests 

at different 8. The state-to-state DCS 's are not dampened by the 

anisotropy of rm, but their relative magnitudes are very dependent 

on this anisotropy. 

3. Although the He + C02 system is highly quanta! and therefore 

its DCS shows no classical rainbow behavior, it is still possible to 
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extract siginficant information regarding the depth and width of the 

well from DCS measurments. The sensitivities to these parameters 

extened well beyond what would be expected classically. The low 

angle DCS oscillations increase with the well depth. Increasing the 

well width increases the amplitude of low angle ( 8 < 12°) oscillations 

and decreases the high angles ones. The increase of well depth also 

increases the inelasticity of the collision. 

4. The elastic and inelastic DCS is highly sensitive to the width of 

the well. The sensitivity to it is actually somewhat greater than 

to the well depth. However the range in experimentally determied 

values for the reduced well width (parameterized by {3 for the MMS V 

potential, {3 = 5.5 to 8.2) is much smaller than the range of values 

of well depth (2.5 to 7.0 meV). 

5. The anisotropy of the well depth E is clearly discernable in the total 

DCS, primarily in the shape of the oscillations. It has little effect 

on the dampening of the oscillations. An increase in its absolute 

value increases the inelasticity. 

6. There is little change in parameter sensitivities for scattering at 

energies other than 65 me V. At 35 me V the increase in sensitivity 

in the well depth is less than a factor 1.5 over that for 95 me V, 

indicating that classical arguments are not very useful in predicting 

sensitivities. 

Although we considered a specific case, the above conclusions are 
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valid for systems with similar characterstics: collision energy, reduced 

mass, and rotational energy spacing. The techniques outlined should 

prove beneficial in interpreting total and inelastic diffential cross-section 

data, and in assigning significance to the features of the potentials that 

are obtained from the data. 
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TABLE I. MMSV Anisotropic Parameter Expansion 
Potentiala Parameters 

-
Parameter Symbol 

-
well minimum (spherical average) (0) 

rm 

well minimum anisotropy q 

well depth (spherical average) £(0) 

well depth anisotropy a 

well shapeb {3 

wall shapeb fJ' 

Spline-van der Waals joint p BtJ == r lltJ I r m 

van der Waals coefficients c(o) 
6 

c(2) 
6 

c(o) 
8 

c(2) 
8 

a) see equations 14, 15, and 16; this potential will 
be designated as M 

b) in some cases these parameters will be expanded 
in Legendre polynomials (as in eqs. 14 or 15 ) 

Value 

3.5 A 

0.21 

4.3 meV 

-0.50 

7.2 

7.2 

1.6 

9.98 meV A6 

2.31 meV A6 

46.4 meV A8 

48.4 meV A8 
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TABLE II. Modified Spherical Potentials 

Characteristic Parameter Value Potential 

unmodified potentiala - SM 

low rm rm == 2.5 A SRL 

high rm rm == 4.5 A SRH 

low t t == 2.5 meV SEL 

high t t == 7.5 meV SEH 

low f3 f3 == 4.0 SBWL 

high f3 f3 == 10.0 SBWH 

low {3' {3' == 4.0 SBRL 

high /3' {3' == 10.0 SBRH 

low f3 and {3' {3 == {3' == 4.0 SBL 

high f3 and {3' f3 == {3' == 10.0 SBH 

low t and high f3 t == 2.5 meV SBEHL 
f3 == 10.0 

a) Spherical limit of the MMSV anisotropic potential in Table I , 

i.e. q == 0 and a == 0 (also G~2 ) and cJ2
) are zero) 
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TABLE III. Modified Anisotropic Potentials 

Characteristic Parameter Value Potential 

unmodified potentiala - M 

zero q q=O QO 

low q q = 0.1 QL 

high q q = 0.5 QH 

zero a a=O AO 

low a a= -0.2 AL 

high a a= -0.9 AH 

low {3 f3 = · 5.0 BWL 

high f3 {3 = 12.0 BWH 

low fJ' fJ' = 5.0 BRL 

high {3' fJ' = 12.0 BRH 

anisotropic {3b [3(2) I p(O) = 0.62 BA 
a= 0.0 

low positive a a= 0.1 PAL 

high positive a a= 0.5 PAH 

low £ £ = 2.5 meV EL 

high f_ £ = 7.5 meV EH 

positive a a= 0.3 PAEL 
low £ £ = 2.5 meV 

positive a a= 0.3 PAEH 
high t E = 7.5 meV .._ 

a) the anisotropic MMSV potential of Table I 
b) f3 ansiotropy is introduced by way of a Legendre expansion 

( eq. 14 or 15) . 
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TABLE IV. Classical Rainbow Scattering Angles 

-
Potential a Or I deg l(Or)b Or mini degc 

SM 8.9 40 7.5 

SRL 6.8 28 4.3 
8.8 43 8.5 

SRH 9.2 52 7.7 

SEL 5.0 40 3.8 

SEH 16.0 41 13.3 

SBWL 7.0 43 2.9 

SBWL 10.8 40 9.1 

M 
i=O 4.5 48 4.0 
'Y=1fl4 7.8 42 6.0 
'Y=1fl2 11.0 36 9.1 

AO 
')'=0 9.1 48 7.1 
i==1fl4 9.0 42 7.6 
'Y = 1fl2 8.7 37 7.6 

QO 
i=O 4.1 39 3.4 
'Y=1fl4 7.7 40 6.7 
'Y=1fl2 11.4 40 10.0 

a) See tables II and III for potential symbols 
b) The reduced impact parameter for the rainbow angle (eq. 21) 
c) Location of the rainbow minimum 
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TABLE V. Sensitivity Variations as a Function 
of Parameter Increase for Spherical Potentials 

-
Sensitivitya Parameter Increasing 

and 
characteristic rm f f3 

S(O; rm) 
mag. siml. 1ncr. 1ncr. (0>20°) 

( 10 X 15 ° <0<20°) deer. (0<20°) 

08C. same 1ncr. deer. (0>30°) 

S( 0; t:) 
mag. 1ncr. (low rm) 1ncr. 1ncr. (0>25°) 

08C. same deer. 1ncr. 
(10°<0<15°) 

S( 8; /3) 
mag. sl. incr. sl. deer. same 
08C. same deer. (0>30°) incr .(0>25°) 

S(0;/3') 
mag. 1ncr. (low rm) same same 
08C. Slg. 1ncr. 

. • b 
Slg. 1ncr. incr. ( 0> 15 °) 

S(O;C6) 
mag. deer. (xlo) same 1ncr. 

(xso 8>25°) 

08C. simil. var.c same 

S( 8; C8 ) 

mag. deer. ( x 10) same same 
08C. simi I. var.c same 

a) See sec. 5 of text for a full description of this table and symbols 
b) Especially small at low E 

c) Variable number of oscillations for different ranges of 8 
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TABLE VI. Sensitivity Variations as a Function 

,..-

Sensitivitya 

of Parameter Increase for Anisotropic Potential 
Total DCS 

Parameter Increasing 

characteristic q a {3 

S(O;r~)) 
simil.b mag. simil.b Slg. incr.c 

osc. simil. b sl. deer. same 
sig. incr.(8>20°)c 

S(O;t:(o)) 
mag. same 1ncr. same 
osc. deer. 1ncr. same 

S(O;q) 
mag. simil.d simil.d same 
08C. simil.b same simil. 

S(O; a) 
mag. same Slg. 1ncr. same 
osc. simil. same simil. 

in.cr. (5x 8<8°) 

S( 8; /3) 
mag. simil.b simil.b simil.b 
08C. simil. b simil.b simil.b 

S(8;{3') 
mag. same same same 
08C. same same 1ncr. 

a) See sec. 5 of text for a full description of this table and symbols 
b) Highest at intermediate value of the parameter and similar at 
extereme 

values 
c) The increase is for value of f3 changing from 4.0 to 7.2 only 
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d) Increase only for higher value of parameter 
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TABLE VII. Comparison of Inelastic Sensitivities 

-
Sensitivitya Increase Comparison with 

lll total DCS S(O;pk) 

and ~j 

for elastic inelastic 
characterisitc j == 12 j == 12 j == 12---+- 14 

S( 8; r~)) 
mag. 1ncr. (X 500) same 1ncr. (8<6°) 

08C. same same same 

S( 8; t(o)) 

mag. sl. incr. same simi I. 
08C. deer. sl. incr. sl. incr. 

S(O;q) 
mag. incr. (x20) simi I. 1ncr. 
08C. sig. deer. deer. v. sig. deer. 

S(8;q)>O 

S(O;a) 
mag. incr.( x30) simi I. tncr. 
08C. deer. simil. sl. deer. 

S(O; P) 
mag. tncr. same 1ncr. 

(X 10 8<10°) 

08C. same same same 

S( 0; P') 
mag. 1ncr. same sl. incr. 

(X 100 Llj=S) 

osc . tncr. same simil. 
... 

{continued} 
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TABLE VII. (continuation} 

Sensitivitya Increase Comparison with 

lll total DCS S( 8; Pk) 

and tl.i 
for elastic inelastic 

characterisitc i = 12 i = 12 i = 12----+- 14 

S( 8; C~o)) 
mag. 1ncr. simi!. 1ncr. 
08C. same same simi!. 

S(8; C~o)) 
mag. sl. incr. deer. ( x 10) sl. deer. 
o~c. deer. deer. deer. 

S(8 ; C~2)) 
mag. 1ncr. simil. 1ncr. 

(x 100 aj=S) (x1o 8<5°) 

08C. same deer. deer. 

s( 8; c~2)) 
mag. 1ncr. same simil. 

(x 10 aj=S) 

08C. deer. deer. simil. 

a) See sec. 5 of text for a full description of this table and symbols 
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TABLE VIII. Sensitivity Variations as 
a function of Parameter Increase 
for Anisotropic Potential j = 12-+ j = 14 DCS 

Sensitivitya Parameter Increasing 

and 
characteristic q a {3 

S(O;r~)) 
mag. same simil.b In cr. 
08C. sl. deer. simil. sl. incr. 

S( 0; t(O)) 

mag. sl. deer. 1ncr. same 
08C. sl. deer. same same 

S(O;q) 
mag. sl. 1ncr. same same 
08C. sl. 1ncr. sl. incr. sl. incr. 

S(O;a) 
mag. deer. sig. incr.( x 1oo) sl. deer. 
08C. sl. deer. sl. incr. same 

S( 0; [3) 
mag. simil.b sl. deer. 1ncr. (0<6°) 

08C . siml.b sl. deer. same 

S(0;{3') 
mag. simil. same same 
08C. simil. sl. deer. Slg. lllCr. 

a) See sec. 5 of text for a full description of this table and symbols 
b) Highest at an intermediate value of the parameter 

and similar at extreme values 
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TABLE IX. Variations in Sensitivities 
with Increasing Energy 

-
Sensitivitya total j = 12 --+ j = 14 

and characteristic DCS DCS 

S(O ; r~)) 
mag. same sl. deer. (@ 95 meV) 

08C. sl. incr. same 

S(O ; t(o)) 

mag. deer. same 
(x5 8>17°) 

08C. sl. incr. same 

S(O ;q) 
mag. tncr. same 

(x2 8>25°) 

08C. same simil. 

S(O;a) 
mag. same same 
08C. same same 

S(8;{3) 
mag. simil.b simil.b 

08C. simil.b sl. incr. 

S( 8; P') 
mag. 1ncr. sl. incr. 
osc. same same 

(continued} 
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TABLE IX. (continuation} 

~ 

Sensitivity total i = 12 ~ i = 14 

and characteristic DCS DCS 
~ 

s( o; c~o)) 
mag. simil.c simil. c 

osc. simiLe simil.c 

S( 0; C~o)) 
mag. same same 
osc. same same 

s( O; c~2)) 
mag. same sl. deer. 
osc. same simil. 

s( o; c~2)) 
mag. 1ncr. Slg. 1ncr. 

(x1095meV) (X 100 95 meV) 

osc. same sl. incr. 

a) See sec. 5 of text for a full description of this table and symbols 
b) Similar at 35 and 95 meV but 10 times greater at 65 meV, 

also the oscillations are increased at 65 me V 
c) Similar at 35 and 95 meV but 100 times greater at 65 meV, 

also the oscillations are significantly increased at 65 me V 
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Figure 1. Deflection function for the spherical MMSV potential (SM 

Table II) at a collision energy of 65 me V. 
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Figure 2. Differential cross section (in the center-of-mass reference 

frame) for the spherical MMSV potential (SM Table II) at 

a collision energy of 65 me V. 
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Figure 3. Comparison of differential cross sections for variations of 

parameters rm, E, and {3 of the spherical MMSV potential. 

The center curve (in each of the three sets of curves) is for 

the SM potential (Table II). For clarity, the upper curves 

are shifted upwards by a factor of 10 while the lower curves 

are shifted downwards by the same factor. For panels a, 

b, and c the upper curves correspond to the SRH, SEH, 

and SBH potentials (Table II), respectively, and the lower 

curves correspond to the SRL, SEL, and SBL potentials, 

respectively. 
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Figure 4:. Sensitivity functions for the SM (Table II) potential for 

the parameters rm, E, /3, /3', c6, and Cs. The solid curves 

are for positive values of the sensitivities, while the dashed 

curves are for negative values of the sensitivities. 
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Figure 5. Comparison of differential cross sections for variations 

of the anisotropy parameters q, and a for the MMSV 

potential given in Table I and its variations given in Table 

Ill. The center curve (in the two set of curves) is for the 

M potential (Table III). For clarity, the upper curves are 

shifted upwards by a factor of two; while the lower curves 

are shifted downwards by the same factor. For panels a, 

and b the upper curves correspond to the QH and AH 

potentials, respectively, and the lower curves correspond 

to the QL and AL potentials, respectively. 
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Figure 6. Comparison of differential cross sections for variations of 

the well shape parameter f3 and the repulsive wall shape 

parameter {3' for the MMSV potential given in Table I and 

its variations given in Table III. The center curve (in the 

two set of curves) is for the M potential (Table III). For 

clarity, the upper curves are shifted upwards by a factor 

of two, while the lower curves are shifted downward by 

the same factor. For panels a and b the upper curves 

correspond to the BWH and BRH potentials, respectively, 

and the lower curves correspond to the B WL and BRL 

potentials, respectively. 
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Figure 7. Total DCS sensitivity functions for the M (Table I) 

anisotropic potential for the parameters r!2), E(o), q, a, 

P and {31
• The solid curves are for positive values of the 

sensitivities, while the dashed curves are for negative values 

of the sensitivites. 
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Figure 8. Total DCS sensitivity functions for the M (Table I) aniso­

tropic potential for the long range dispersion coefficients 

C~), c;) , C~) and C~). The solid curves are for positive 

values of the sensitivities, while the dashed curves are for 

negative values of the sensitivities. 
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Figure 9. Rotational state-to-state differential cross sections for the 

anisotropic potential M (Table I) from initial state j = 12. 

Figure a shows the rotational energy loss cross sections 

final j' = 12, 10, 8, 6, and 4. While b shows the energy 

gain cross sections, final j' = 12, 14, 16, 18, and 20. The 

upper curve in both figures is for the elastic cross-section; 

the curves below it are progressively more inelastic. An 

increase in inelasticity corresponds to decrease in cross 

section, particularly at low scattering angles. The curves 

for alternating j' +-- j cross sections are plotted with dashes 

for distinguishability. 
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Figure 10. Rotational state-to~state differential cross sections for high 

and low values of the parameter q (the we II minimum 

position anisotropy). The values are given in Table III; 

Fig. lOa (low q) is for the QL potential, while lOb (high q) 

is for the QH. The same transitions are shown as in Figure 

9b (rotational energy gain cross sections). 
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Figure 11. Rotational state-to-state differential cross sections for 

high and low values of the parameter a (the well depth 

anisotropy). The values are given in Table III; Fig. lla 

(low a) is for the AL potential, while lib (high a) is for 

the AH. The same transitions are shown as in Figure 9b 

(rotational energy gain cross sections). 
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Figure 12 .. Rotational state-to-state differential cross sections for high 

and low values of the parameter t:(o) (the spherical average 

of the well depth). The values are given in Table III; Fig. 

12a (low t:(o)) is for the EL potential, while 12b (high t:(o)) 

is for the EH. The same transitions are shown as in Figure 

9b (rotational energy gain cross sections). 



N 
cK[ 
~ -CD 

·r 
..... 

-b 

- 240-

10 3 ~--------------------------------------------~ 

10 

\ 

\ 
I 
\ I 
I I 
\J 

10- 1 

I 
I 
I 

(' I 
I \ I 

I \ I 

10-2 I 
\I 

I 
I 

/' I 
I \ I 

\ I 
\ ( 
\J 

0 10 

,r, I 
I \_.~ 

r.. I 
\ I 
\; 

20 

I 

,--._/ 
/ 

/-...__../ 

30 
8/deg 

Figure 12a. 

,.--/ 

low E(O} 

"'----....... _ 
-----...,.-----_...---::::..__...:::-_--=.-:. 

40 50 60 



+ .... -b 

- 241 -

10 3 ~--------------------------------------------~ 

10 

0 10 

high E(O} 

" \ 
/ ' x--,.--->r 

r\ \ / ----............. " ':;..-:::._ 
;\ I \ I '-- / -...__. '---~--

!' I \ ,; 
I \ I \ I ' 

/ \ I 'J 

\ I \/ 
\ I 
\I 
\} 

20 30 

8/deg 

Figure 12b. 

40 50 60 



- 242 -

Figure 13. Rotational state-to-state differential cross sections for 

potentials with a "reversed" well depth anisotropy, i.e. a is 

a positive value. Figures 13a and 13b are for the PAL (low 

positive a) and P AH (high positive a) potential of Table 

III, respectively. Figures 13c and 13d are for potentials 

with an intermediate positive value of a ( +0.3) with low 

(PAEL) and high (PAEH) values of the spherical average 

of the well depth E(o), respectively. The same transitions 

are shown as in Figure 9b (rotational energy gain cross 

sections). 
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Figure 14. Rotational state-to-state differential cross sections for high 

and low values of the well width parameter {3. The values 

are given in Table III; Fig. 14a (low [3) is for the BWL 

potential, Fig. 14b (high /3) is for the B WH. The same 

transitions are shown as in Figure 9b (rotational energy 

gain cross sections). 
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Figure 15. Rotational state-to-state j = 12 to j = 14 DCS sensitivity 

functions for the M (Table I) anisotropic potential for the 

parameters r~), E(o), q, a, (3 and {3'. The solid curves 

are for positive values of the sensitivities, while the dashed 

curves are for negative values of the sensitivities. 
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CHAPTER 4: 

SIMULATION OF 

INELASTIC SCATTERING 
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l.INTRODUCTION 

Rotationally inelastic differential cross-sections (DCS) are the result 

of anisotropy in the interaction potential between an atom and a linear 

molecule. They have been measured together with the corresponding 

elastic DCS as a total DCS with no discrimination between elastic and 

inelastic processes.1 '3 Only an anisoptropic potential could accurately 

account for all the features of the total DCS for the scattering of He by 

C02, and other triatomic molecules. 1' 3 'lO,ll However, the total DCS for 

the scattering of He by N2 and 02, was effectively predicted with an 

isotropic potential.6 This does not indicate that the scattering process is 

insensitive to the anisotropy, only that the anisotropy is small and that 

it is possible to have a spherical potential that can account for the total 

DCS. The measurement of rotationally inelastic DCS for these systems 

confirms strongly that the potentials are anisotropic. 4 ,5 AI though an 

aniostropic potential for He + C02 was extracted from total-DCS data, 

many of its features cannot be precisely determined from such a limited 

data set. A total-DCS curve depends on only one variable, the scattering 

angle; yet it is used to obtain the potential which is a function of 

two variables, the distance between the helium atom and the molecular 

center·of·mass and the angular orientation of the atom with respect to 

the molecular axis. The ability to measure rotational inelasticity will 

provide an additional dimension of information, which in turn will permit 
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a more precise extraction of an anisotropic interaction potential. 

Agrawal and Raff8 have shown that total DCS's are much more 

sensitive to the topography of the potential energy surface than are 

the rotational state-to-state integral cross-sections. Eno and Rabitz 7 

have computed sensitivity coefficients for a test anisotropic potential 

and have shown that the inelastic DCS's are highly sensitive to potential 

anisotropy. We have reached similar conclusions2 for the empirical He 

+ C02 potential, in addition to showing that inelastic-DCS are very 

sensitive to other features of the potential. 

In order to obtain potentials from scattering data it is necessary to 

be able to simulate the data from a proposed potential for a fixed set 

of experimental conditions and compare the simulated to experimental 

data. The proposed potential is modified until the best agreement is 

attained between the simulation and experiment. In this chapter we 

present a technique for simulating this data by calculating the velocity 

distribution of the scattered particles for a given scattering angle. The 

inelasticity will be manifest as a loss or gain of velocity by the scattered 

particle over that for elastic scattering. 

Section 2 summarizes the infinite order sudden approximation for 

calculating the rotational state-to-state differential cross-sections. This 

approximation is valid for the scattering of He from C02 and similar 

targets. Since these cross-sections are calculated in the center-of-mass 

frame, while the scattering is observed in the laboratory frame it is 
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necessary to be able to transform the former to the latter. In Section 

3 we derive a general set of coordinate transformations between the 

laboratory and center-of-mass reference frames. These transformations 

are completely general and are applicable to reactive scattering; they 

have been independently derived but are identical to those derived 

previously.20 We also introduce a new set of coordinate transformations 

which we call "intermediate transformation relations." These relations 

are used in an apparatus averaging scheme which we call "source 

averaging" and describe in Section 4. This averaging is over a grid 

of all possible velocities of the center-of-mass frame with respect to 

the laboratory frame ( vg ). The grid is obtained from the velocity and 

angular spread distributions of the interacting beams. The source of 

scattered particles is the velocity space origin of the center-of-mass frame 

(G), hence the name of this averaging scheme. In Section 5 we present 

examples at serveral scattering angles for our empirical (total DCS) He 

+ C02 potential. 
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2. THEORY 

We have used the infinite order sudden approximation (IOSA) to 

calculate the total (elastic and inelastic) and rotational state-to-state 

differential scattering cross sections (DOS). Since this formalism has been 

reviewed and outlined by many authors we will only present the salient 

points of the IOSA. These cross sections were calculated on a highly 

fiexibile anisotropic potential which we will present in section 2.2. 

£. 1. CROSS SECTIONS 

In the systems to be considered, the target molecules are essentially 

all in their ground vibrational states and the collision energies are well 

below the threshhold for producing vibrational excitations. 16 Therefore, 

it is reasonable to treat the target molecule as a rigid rotor of length R 

(the distance between the end atoms) having a moment of inertia I. Let 

r be the position vector of the incident atom with respect to the center-

of-mass of the molecule and 1 be the angle between r and the oriented 

molecular axis [l. The nuclear motion Hamiltonian for this system is 

therefore 

(2.1) 

where p, 1s the atom-molecule reduced mass, and L and J are the 
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orbital angular momentum and molecular angular momentum operators , 

respectively. 

The Schrodinger equation can be solved for the above Hamiltonian 

by expanding the wave function in eigenfunctions of the total angular 

momentum operator J = J + L and its projection J z about a space 

fixed axis z. This results in a set of coupled radial differential equations; 

the coupling being due to the matrix elements of V ( r, 1) obtained using 

these eigenfunctions. Under the conditions of our calculation it is valid 

to decouple these equations, by imposing the centrifugal sudden12 (CS) 

and energy sudden13 (ES) approximations, collectively known as the 

infinite order sudden approximation (IOSA). 10 The CS approximation 

is introduced by replacing the orbital angular momentum operator with 

its eigenvalue form 

(2.2) 

while to implement the ES approximation the molecular angular 

momentum operator is replaced with its eigenvalue form 

(2.3) 

where land J are appropriately chosen effective quantum numbers. 

The resulting set of decoupled differential equations are 

(2.4) 
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where the wave vector is 

(2.5) 

E being the total energy of the system and </>z is an effective scattering 

wave function for a angle of incidence I· These equations can be solved 

for a given l and 1 in a manner analogous to a spherical problem, by 

requiring that the wave function must vanish at the origin, and at large 

r behave as 

------? 

r-oo 
(2.6) 

where '7r( 1) is the phase shift for a given fixed atom-molecule orientation, 

which is obtained in a manner identical to that for a spherical scattering 

problem 14 , and the resulting scattering amplitude is given by 

/k1 (11 0) = _t 'E(2l + 1){1- e2irH("f) }Pz(cos 0) (2.7) 
2k-

J l 

It can be shown that the rotational state-to-state differential cross-

section is given in this approximation by9 

k~ 
u(i' +-- i I 0) = . 3 

2 'E I< i'm;lfk1 (11 O)lim; >sF 12 (2.8) 
(2J+1)kj m· 

J 

where the matrix elements of f( 1 I 8) are evaluated in the spherical 

harmonics of the body-fixed coordinates - BF .9 It should be noted that 

this result is independent of the choice of l. 
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Equation (2 . 8) can be simplified for calculational purposes by 

expanding Jk r ( 1 I 0) in Legendre polynomials 

fk 3 (il 0) = LF:3 (0)Pz(cosl) (2.9) 
i 

where 

(2.10) 

This then leads to the expression for the differential cross-section 9 

The total differential cross-section is the sum of all state-to-state 

cross-sections a(i' ~ i I 0) from an initial state j over all energetically 

allowed final states j'. The cross-section in equation (2.11) can be 

summed and simplified if the effective IOSA rotational quantum number 

J is set equal to i (the initial rotational state). By way of the 

completeness of the spherical harmonics and the addition theorem for 

the spherical harmonics it can be shown that the total differential cross 

section is 

(2.12) 
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This expression, for a given initial relative translational energy, is 

independent of the initial rotational state j, and hence represents the 

total differential cross-section for any initial state. 

It has been demonstrated that the IOSA is valid in cases where 

the relative collision energy is much larger than the spacing between 

rotational levels and larger than the attractive part of the potential. 

Since we will consider collision energies of 30 to 90 me V we are well 

within the range validity for the He + C02 interaction where the typical 

C02 rotational spacings are less than 6 meV, and where the He + C02 

well depth is less than 7 me V. 

!2. !2. POTENTIALS 

In order to obtain realistic results we will use a realistic potential 

for our cross-sections. Our potential is based on one obtained from 

experimental total differential cross-section crossed-beam data. We 

represent the anisotropy by giving an angular 1 dependence to the 

parameters of an otherwise spherical potential, 

(2.13) 

where E is the well depth, rm is the well minimum position, and f3 is a 

shape parameter which depends on the parameterization of V. Some 

parameterizations may have more than one shape parameter, all of 

which may have angular dependence. In this paper we will expand the 
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well minimum position and the well depth to second order in Legendre 

polynomials 

and 

E(l) = f(o) + £(2) P2(cos 1) 

= £( 0)[1 + aP2 (cos1)] 

(2.14a) 

( 2.14b) 

(2.15a) 

( 2.15b) 

where we have defined the anisotropies of the well minimum position 

and depth as q = r~) I r~) and a = £(2) I f(o) respectively. Due to the 

symmetry of the C02 molecule the first order Legendre term is zero. 

The shape of V(r, rm, £, ,8) is charterized by the highly flexible 

Morse-Morse-spline-van der Waals (MMSV) potential which may be 

written as 

V(r) == : { e2{f3'-rf3w/rm) _ 2e(f3'-rf3w/rm)} 

for r < rz 

for r < ri 

V(r) = [S1(rsv- r)2 + 83] (rsv- r) 

(2.16a) 

(2.16b) 
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(2.16c) 

for r i < r < r sv 

C6 Cs 
V(r)=----

r6 r8 
(2.16d) 

for r ~ rsv 

with 
{3' -In 2 

w=---
{3- ln2 

where r z = rm ( 1 - In 2/ [3) is the zero of both Morse funtions , and 

ri = rm(l +In 2/ [3) is the inflection point of the second Morse function. 

The spline coefficients 8 1 , 82 , 83 and 84 are determined by continuity 

conditions imposed on the potential and its derivative at r; and rsv. 

The Spline-van der Waals junction is maintained at rsv /rm = 1.6, 1 and 

the constant w is used to impose a smooth transition between the two 

Morse functions. 

This parameter-expansion MMSV potential is a good choice for this 

study since the various features of the potential are neatly segregated 

into specific parameters; the well minimum position ( r~)), the well 

depth ( t:(o)), their anisotropies ( q and a), the well width (,B),and the 

repulsive wall steepness ({3'). The parameters for the potential used in 

this calculation are given in Table I; the long range dispersion terms for 

this potential were computed by Pack17). The masses of the He and 

C02 are 4.0026 and 44.0098 amu, respectively. 15 They are used along 

with the C-0 bond distance15 to determine the moment of inertia l ( eq. 

2.5). 
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TABLE I. MMSV Anisotropic Parameter Expansion 
Potentiala Parameters 

Parameter Symbol Value 

well minimum (spherical average) (0) 
rm 3.5 A 

well minimum anisotropy q 0.21 

well depth (spherical average) f(O) 4.3 meV 

well depth anisotropy a -0.50 

well shape p 7.2 

wall shape P' 7.2 

Spline-van der Waals joint P (It} = r (It} I r m 1.6 

van der Waals coefficients c(o) 
6 9.98 meV A6 

c~2) 2.31 meV A6 

c(o) 
s 46.4 meV AS 

c(2) 
s 48.4 meV As 

a) see equations 2.14, 2.15 and 2.16. 
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3.TRANFORMATIONS BETWEEN LABORATORY AND 

CENTER-OF-MASS FRAMES 

9.1. DEFINITIONS 

Consider the reaction (or interaction) of molecule A with molecule 

B to produce molecules C and D accompanied with a net energy change 

f:t.E. If the process is non-reactive than C and D will be just A and B, 

respectively. 

A+ B --+ C + D + ~E {3.1) 

We wish to relate the velocities of the products in the center-of-mass 

reference frame ( CM) to their velocities in the laboratory frame (LAB) 

and vice versa. For the purposes of this analysis we will only consider 

the case of the velocities of C; the equations that relate the CM and 

LAB velocities for D can easily be obtained from those for C by an 

interchange of indices. 

Table I summarizes the symbols we will use; in all cases a prime on 

a variable refers to the products while unprimed variables refer to the 

pre-collision reactants. The subscripts 1, 2, 1' and 21 refer to A, B, C 

and D, respectively. For the scattering angles { 8, ¢J} of C we will not use 

numerical subscripts, instead the subcript l will be used to denote { 8, ¢J} 

in the LAB frame, while no subscript will indicate the CM frame. The 

subscript g denotes the position of the CM origin in the LAB frame. 
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TABLE I. Symbols for CM and LAB interconversion 

velocity of A 

velocity of B 

velocity of C 

velocity of D 

scattering angles of C 

initial relative velocity 

final relative velocity 

unit vectors 

origin 

beam intersection angle 

mass of A,B,C,D 

total mass 

angle between v 1 and w 1 

angle between 111 I and W11 

velocity of center-of-mass 

angle between v 1 and Vg 

angle between v 1 
1 and Vg 

{Oz, ¢>z} 
~ w 

wl 

{i,j,k} 

0 

{8,¢>} 
~ 

w 

wl 

{i,J,k} 

G 

M== m1 + m2 

0: 
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Figure A. Newton Diagram 
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Let us define the coordinates of the LAB frame such that v1 ( the 

beam of A ) is along the Zz- axis' while v2 (the beam of B) is in the 

xzzz-plane, with ~ being the angle between the two, as shown in the 

Newton diagram in Figure A, and zz, xz and yz are the cartesian axes in 

the laboratory frame. Then the initial beam velocities are 

(3.2a) 

(3.2b) 

The initial relative velocity is defined as the difference between the 

inintial velocities of the interacting particles in either of the two frames; 

By the cosine rule the magnitude of the relative velocity is 

(3.3a) 

(3.3b) 

(3.3c) 

(3.4) 

The z- axis in the CM frame is defined to lie along the relative velocity 

vector w, which is on the same axis as the CM initial velocities uh and 

w2 . The CM y-axis is parallel to the LAB yz-axis, while the x-axis 

follows the right hand rule. The unit vectors of the CM frame may be 

transformed to those in the LAB frame as a rotation by angle a 
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i = i cos a + k sin a 

k = -i sin a + k cos a 

(3.5a) 

(3.5b) 

(3.5c) 

while the LAB unit vectors may be transformed to those in the CM 

frame by rotating by -a 

i = i cos a - k sin a 

k = i sin a + K cos a 

(3.6a) 

(3.6b) 

(3.6c) 

The cosine of a is merely given in terms of the dot product of w 
and ul 

..... ..... 
W ·Vi 

cosa = 

w 

The sine is given by the sine rule 

v2 s1n ~ 
sma = 

w 

9.2. CONSERVATION RELATIONS 

Conservation of linear momentum in the LAB frame yields 

(3.7) 

(3.8) 
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(3.9) 

Substituting in equation (3.2) we have an expression for the velocity of 

the center of mass: 

Vg = 1/ {im2v2 sin 1 + k(ml v1 + m2v2 cos i)} 

= v g { i sin 0 g + k cos 0 g} 

This may be written in polar coordinates: 

(3.10a) 

(3.10b) 

(3.lla) 

(3.llb) 

The net linear momentum in the CM frame is by definition zero, which 

yields 

By way of equation (3.3a) we also have 

(3.12) 

(3.13a) 

(3.13b) 

In order to determine the velocities of the scattered products we 

must consider energy conservation. The total energy prior to the collision 
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ET is the sum of the CM translational energy T and the internal energy 

Ev for a given quanta! state v (the v represents all of the internal states 

of A and B ) . This is equivalent to the final total energy ET', which 

is the sum of the final CM translational energy T', the internal energy 

Ev' of C and D, plus the change in the ground state energies between 

reactants and products f1E0 • We then write 

(3.14) 
T + Ev = T' + Ev' + f1Eo 

This can be rewritten if we define f1E = Ev'- E11 + f1Eo to be the net 

change in energy as in equation (3.1): 

T = T' + f1E 

The relative kinetic energies are 

1 2 
T = 2JLW 

T l 1 I 12 = -p, w 
2 

where the reduced masses are 

(3.15) 

(3.16a) 

(3.16b) 

(3.17a) 

(3.17b) 
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By combining equations (3.15) and (3.16) we obtain an expression for 

the magnitude of the final relative velocity vector 

(3.18) 

Conservation of linear momentum in the CM frame yields the 

following equations for the final CM velocities: 

(3.19) 

I 
_,.I m2 _,.I w1 =-w 

M 
(3.20a) 

I 
_,.I m1 _,.I 

w 2 = --w 
M 

( 3.20b) 

9.9. LAB TO CM TRANSFORMATIONS 

In the LAB to CM transformation we want to express the final CM 

velocity vector of C (index 11
) w1

1 in terms of the LAB velocity vector 

v1
1

• These can be written in cartesian coordinates using the spherical 

coodinate angles ( { 0, ¢>} in the CM frame and { Bz, ¢>z} in the LAB frame) 

to specify the magnitudes of the three cartesian vectors. 

I 

W t' = ~ w' ( i sin 0 cos ¢> + J sin 0 sin ¢> + k cos 0) (3.21) 
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(3.22) 

The latter equation can be transformed to the CM frame by substituting 

in equation (3.6) for the LAB unit vectors. Upon rearranging and 

collecting terms we have 

vt' = Vt 1 
{ i( sin Oz cos ¢>l cos a + cos ol sin a) 

+J sin Oz sin ¢>l 

+ K(- sin Oz cos ¢>z sin a + cos Oz cos a)} 

(3.23) 

The LAB velocity v1' is the vector sum of the velocity of the CM origin 

in the LAB frame v(J and the CM velocity w1'. We then can write w1' as 

(3.24) 

We can evaluate this further if we substitute equation (3.23) for v1' and 

equation {3.10) for vg, but first we must transform equation {3.10) to CM 

frame cartesian coordinates. Substituting equations (3.6) into (3.10) and 

rearranging yields 

V9 = ~ {i(m2v2 sin i cos a+ m1 v1 sin a+ m2v2 cos pin a) 

+K( -m2v2 sin~ sin a+ m1 Vt cos a+ m2v2 cos~ cos a)} 

This can be simplified by use of angle addition formulas to give: 

V9 = ~{i(m2v2 sin(i +a)+ m1v1 sin a) 

+i(m2v2 cos(~+ a)+ m1 Vt cos a)} 

(3.25) 

(3.26) 
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Substituting this into equation ( 3.24) we obtain 

w1
1 = {i[vt 1(sin 8z cos ¢>z cos a+ cos 8z sin a) 

m2v2 . m1v1 . - -u s1n(~ +a)- -u s1na] 

+i v 1 
1 sin 8z sin ¢>z (3.27) 

+ K[ v1 
1 (cos 8z cos a - sin 8z cos ¢>z sin a) 

m2v2 m 1v1 
---cos(~+ a)--- cos a]} 

M M 
We can obtain all the necessary tranformation relations by equating 

each of the three cartesian components in equation (3.27) with those in 

equation (3.21). Matching the i vectors we have 

cos 0 = M~1 1
1 
(cosO, cos a -sinO, cos rfo1 sin a) 

m 2 w 
m2v2 m1v1 

-
1 1 

cos(~+a)-
1 1 

cos a 
m2w m2w 

(3.28) 

It is sufficient to know cos 8 to obtain 8 since the range of 8 is 0 to 

1r. However, the range of ¢> is 0 to 21r; therefore we must know both the 

sine and cosine. Hence we match the i and J components to yield 

• A. Mv 1 
1 sin 8z sin ¢>z 

Sln 'f' = ------
m21W1 sin 8 

A. Mv1 1 (sin 8z cos ¢>z cos a+ cos 8z sin a) 
cos 'f' =--~----------~ 

m 2
1w 1 sin 8 

m2v2 sin(~+ a)- m1v1 sin a 

m21w 1 sin 8 

(3.29) 

(3.30) 
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9.,.l. CM TO LAB TRANSFORMATIONS 

For the CM to LAB coordinate transformation we want to express 

the final LAB velocity vector of C ( v1') in terms of the CM velocity vector 

w1'. These can be written in cartesian coordinates using the spherical 

coordinate angles ( { Oz, ~l} in the LAB frame and { 8, ~} in the CM frame) 

to specify the magnitudes of the cartesian coordinates , as was done in 

equations (3.21) and (3.22). This time we transform equation (3.21) to 

the LAB frame using equations {3.5), to obtain 

I 
~ , m2 '{ "( . 8 A.. 8 . ) w1 = M w +t sin cos "'cos a - cos sin a 

+ J sinO sin~ 

+k(sin 8 cos~ sin a+ cos 8 cos a)} 

Recall that v1' is the vector sum of vg and w1' 

Substituting in equations (3.10) and (3.31) gives 

fi1
1 = ~ { +i[m2

1 w'(sin 0 cos .P cos a: - cos 0 sin a:) + m 2v2 sind 

+ jm2'w' sin 8 sin~ 

(3.31) 

{3.32) 

(3.33) 

The magnitude of v1' may be found by taking the square root of the dot 

product , which after much algebra yields 
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v1' = ( vt' . v1') 1/
2 

= ~ {(m2 1
w

1
)
2 + (m2v2) 2 + (m1 vt)2 + 2ml v1 m2v2 cos 1 

+ 2m2'w'm2v2(sin(~ +a) sin 0 cos~+ cos(~+ a) cos 0) 

+ 2m2
1w 1m1 v1 (sin a sin 0 cos~+ cos a cos 0)} 112 (3.34) 

The angular postion of v1' can be found by matching the cartesian 

components of equations (3.22) and (3.31). Matching the k vectors we 

have 

cos Oz = ~M{ m2'w'(sin 0 cos~ sin a+ cos 0 cos a)+ m1 v1 + m2v2 cos~} 
Vt 

{3.35) 

As we stated before, it is sufficient to know the cos Oz to obtain 0 

since the range of 0 is 0 to 1r. However, the range of ~ is 0 to 21r and 

therefore we need sin~~ and cos ~l· If we match the j and i components 

we obtain 

,,. o·).. . ).. m2 W Sill Sill 'f 
Sill 'fl = . 

Mv1' s1nOz 
(3.36) 

and 

;.. m21w 1(sinOcos¢>cosa- cosOsina) + m2v2sin~ 
cos 'fl = . 

Mv 1' sin Oz 
(3.37) 



- 281 -

9.5. EVALUATION OF E 

The angle between v1' and w1' is important for converting of cross 

sections between the two reference frames,L Equations (3.21) and (3.22) 

may be used to find cos E which is 

..... I ..... I 
f) • w 

COS E = l l 

Vt
1
Wt

1 
(3.38) 

We can use equations (3.5) or (3.6) to evaluate the dot products 

between the CM and LAB unit vectors to give 

COS E =sin 81 COS~~ (sin 0 COS</> COS a - COS 0 sin a) + sin 81 sin </>i sin 0 sin~ 

+cos Ol(sin 8 cos¢> sin a+ cos 0 cos a) (3.39) 

For the case of in-plane scattering ~~ is zero and as a consequence 

¢> is also zero (or 1r). If we use three angle addition formulas we find 

f = ol- 0 +a (3.40) 

It can be easily shown that the case of ¢> = 1r can be accommodated 

by giving 0 the range of -7r to 1r, i.e. 8 is negative if¢>= 1r. 

9.6. INTERMENDIATE TRANSFORMATION RELATIONS 

The above equations are useful for direct interconversion between 

the two reference frames. However, for certain applications it is more 
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useful to have a different set of initially known conditions. For instance 

if we have a given LAB angle and velocity and we know ~ E we wish to 

find the initial and final CM conditions which can be used to evaluate 

the appropriate cross-sections. We do need more initial conditions before 

we can solve the problem. A very useful intitial condition is knowing the 

the position of the CM orign G in relation to the LAB origin 0, i.e. v9 • 

Once v9 is given along with { Oz, <Pz}, v 1' ,and ~E all the other quantities 

needed to make the transformation can be evaluated. 

The problem then is to find w1' ,w', and w for given vu and il/ (i.e. 

v1' and {Ol, <Pz} ). We first note that v9 ,v1', and w1' form a triangle, with 

e being the angle between ilg and i11'. Then w 1' is given by the cosine 

rule as 

(3.41) 

We can find e from the dot product of v9 and v1', using equations (3.10b) 

and (3.22) 

'"* ... , 
v ·v 

cos e = g 
1 

vgv1 ' 

=sin 09 sin Oz cos <Pz +cos 09 cos Oz (3.42a) 

For the in-plane case this gives 

cos€ = cos(Oz- Og) (3.42b) 
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Using equation (3.20a) we find w 1
, and using equation (3.18) we find w: 

(3.43) 

and 

w= (3.44) 

Once w is evaluated we can find with simple trigonometric relations the 

initial LAB velocities and the angle a. Using the sine and cosine rules 

we have the following equations: 

• Vg • 0 stna =- stn z 
Wt 

(3.45a) 

cos a= cos[sin- 1 (sina)] (3.45b) 

(3.46) 

sin(1r- Bg- a) 
Vt = W1 . O 

Sln g 
(3.47) 

(3.48) 

(3.49) 
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These quantities can be used in conjunction with equations (3 .28) ,(3.29) 

and ( 3.30) to obtain the CM angles { 8, ¢>} , which can then be used for 

calculating differential cross-sections. 

A quantity that will prove to be useful later on is the angle between 

the center-of-mass origin G velocity vector v9 and the velocity of C v1' , 

which can be evaulated using the dot product of both vectors (equations 

3.10b and 3.22) and dividing it by the vector magnitudes, and is given 

by 

cos,., :::: sin 8 g sin 8l cos ¢>l + cos 8 g cos 8l (3.50) 

For a given Vg and the scattering angles { 8l, ¢>L} (the direction of 

ii1') the minimum w 1
1 which will intersect the line passing through the 

origin 0 in the direction { 8z, ¢>z} will be perpendicular to that line , and 

by inspection can be written as 

( 3.51) 

Similarly, the corresponding v1 
1 is given in as 

(3.52) 

!J. 7. TRANSFORMATION OF CROSS-SECTIONS 

We wish to relate the diffential cross-section a( 8, ¢>) in CM frame 

to that in the LAB frame a( 81 , ¢>z). The first consideration is that the 
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flux per unit of solid angle dO should be the same in either frame for 

coresponding cross-sections, hence we write 

(3.53) 

where 

dfl = sin 8d8d¢ 

and 

dflz = sin 8zd8zd¢z 

This can also be seen in another way: the total cross-section should be 

invariant to the coordinates used, hence we have 

Q = J u(O, if>)dfl = J u(O,, if>t)dfl, 

equation (3.53) follows from this since the integrands must be be equal 

in order for the integrals to be equal. 

We now must relate dO to dOz. One way is to consider an element 

of surface in velocity space for both frames: 

dSz = v1 '
2 

dOz 

dS = Wt
12 dO 

where dS 1 is normal to u1' while dS is normal to w1'. Therefore the LAB 

cross-section may be written in terms of the CM cross-section 
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(3.54) 

The ratio of the surface area elements is easily evaluated by taking into 

account the angle between the two infinitesimal planes passing through 

dS and dS1• We already know the normals to these planes wt' and 

v11 respectively and the angle between them as in equations (3.38) thru 

(3.40). Then the projection of dS onto dSz gives 

dSp = dSI cos cl (3.55) 

This is the portion of the CM surface area that is observed by a given 

unit surface area in the LAB frame. As the angle c increases the amount 

of CM surface area that is sub tended by a unit of LAB surface area 

increases, as would be expected. The absolute value insures no negative 

areas. This then gives the transformation relation 

,2 1 
"1 

u( Dz, ¢>,) = u( 0, ¢>) - 2 I I 
W1 1 COS f 

(3.56) 

The reason we project the CM area on to the LAB and not vice versa 

is that the final state of the system is specified by the initial conditions 

and wl' which is a dynamic constant of motion for the overall reaction, 

while v1' is not a constant of motion. Rather it is dependent upon 

the scattering angles in both reference frames (see equations (3.33) and 

(3.34)). Hence it is better to view in the LAB frame the amount of flux 

coming from the CM frame for a given unit LAB area, since the CM flux 



- 287-

is only descriptive of the processes involved in the reaction (equation 

(3.1)) and is independent of any peculiarities of the LAB frame . 

9.8. DETECTION OF SCATTERING 

Two basic type of detection schemes can be employed to measure 

the number of scattered molecules C: a) flux detection ( particles per 

area), and b) number-density detection (particles per volume). Both of 

these are related in different ways to the differential cross-section. 

The cross-section u is defined as the ratio of the scattered probability 

flux density j 8 to the incident probability flux density ji 

where d is the distance from the scattering center to the point at ·which 

the flux j 8 is measured. The incident probability flux density j; is for an 

incoming plane wave and represents the total incoming flux, the scattered 

probability flux density j 8 is for an outgoing spherical wave and represent 

the flux scattered into into an element of surface area subtended by 

the solid angle dO (or in the LAB frame dflz). As the distance from 

the scattering center increases the outgoing flux will decrease in inverse 

proportion to the surface area of a sphere ( d- 2 ); hence it is multiplied 

by d2 to obatain a quantity independent of d. This definition for the 

cross-section may be rearanged to given an expression for the scattering 

flux 
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(3.57) 

where we have replaced the absolute values of the vector quantities U,l 

and Uil with the symbols j, and ji, respectively. This expression is valid 

in the OM frame as well as in the LAB frame; it is for a collisional 

encounter of one particle A with one particle B. The scattered flux J c 

of particles C for a number of single collision encounters between A and 

B {in a crossed-beam of A and B, particle A will encounter only one 

particle B, and vice versa), is the product of the scattered flux j, (for 

particle C) and the number of scattering centers. If we pick ji to be 

the flux of particle A then the number of scattering centers this flux 

encounters will be equal to the number density of particles B ( na) times 

the volume of interaction V. Since the particles B are in motion with 

velocity v2, the density that will actually be encountered by jA will 

be different than the densitity measured in the laboratory frame. This 

density n~ can be obtained by considering a stationary particle B with 

density na with a flux of particles A impinging on it; the velocity of this 

flux is just the relative velocity between the two particles w. The flux of 

particles A as measured in the laboratory frame has a velocity v1, hence 

the density n~ is the product of the laboratory density na and the ratio 

of the velocities w / v1 . Then the total flux of C scattered into solid angle 

dOz at distanance d is 
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Jc =jAn~~ a( 81, 1/Jr) (3 .58a) 

= jA ( ~ ) nB ~ a( 81 , 1/Jr) (3.58b) 

Since flux is the product of the number density and velocity, we can 

write 

(3.58c) 

This same result could have been obtained by considering a flux of B 

impinging on a number density of paritcles A. 

The output signal of many detectors, such as electron impact 

spectrometers , is proportional to the number of particles in a given 

volume, and not the number passing though one end of this volume. 

Particles with a greater speed will pass through the volume faster than 

slower ones and hence have a smaller chance of being detected. Hence the 

number density I( Oz , l/Jz) of particles C scattered into dflz in the direction 

{ Oz, l/Jz} per unit time is the product of equation ( 3.58) and the reciprocal 

of the final LAB velocity v1' 

(3.59) 

We may combine the above equation with equation (3.56) to obtain a 

general center-of-mass to laboratory transformation 
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(3.60) 

The number densities of the initial particles A and B and the 

interaction volume V are useful in the process of averaging over 

instrumental parameters. These parameters include the velocity 

distributions of the particles and the angular spreads of the particle 

beams. The velocitiy distributions are proportional to the number 

densities; while angular spreads of the beams define the scattering 

volume. 
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4:. VELOCITY RESOLVED LABORATORY SCATTERING 

The simulation of a velocity resolved signal from a crossed beam 

scattering experiment consists of two basic steps: 1) the calculation 

of cross sections in the center-of-mass frame at appropriate energies 

and scattering angles, 2) transformation of these quantit ies to the 

laboratory reference frame while averaging over the characteristics of 

the experiment. In order to perform the center-of-mass calculations 

the conditions of the experiment being simulated must be known. 

For computational convenience it is useful to first determine the 

characteristics of the experiment and obtain several quantities that 

will be needed in the actual calculation. We therefore break up our 

simulation into three parts: 1) preliminary calculations, 2) cross section 

calculations, and 3) center-of-mass to laboratory transformations and 

apparatus averaging. 

The apparatus averaging is over a range of Vg. The vector Vg defines 

the location of the CM origin in the LAB frame. This origin is the source 

of the scattered particles, hence we call this averaging scheme: "source 

averaging." The range of vg is determined by velocity distributions and 

angular divergences of the beams. 

4.1. Preliminary Calculations 
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For a specific molecular beam apparatus we are given the following: 

(1) Velocity distribution of the primary beam f( v1 ) 

(2) Angular spread of the primary beam rl(81) 

(3) Velocity distribution of the secondary beam f( v2 ) 

(4) Angular spread of the secondary beam r2{82) 

(5) The intersection angle between the two beams ~. 

(6) The set of scattering angles to be simulated {Ol, ¢l}[a] {the [a] is an 

index). 

The beam velocity distributions are characterized by the function21 

(4.1) 

where m is the mass of the beam atom or molecule. In this expression 

there are two variable parameters T8 and v8 • The constant c is 

determined be requiring f( v) to be normalized over v. The gas stream 

temperature T 8 and stream velocity V 8 are related to the effective nozzle 

stagnation temperature To, a Mach number M, and the heat capacity 

ratio "f = CP/Cv 21 

{4.2) 

and 

m 
(4.3) 

The beam angular distributions are characterized by 
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r(o) = Acos[6 ~ ]
2 

2uto ( 4.4) 

=0 for 161 > 6to 

where ~to is the ualf width of the distribution at the base. 

The range of the beam velocities to be considered is truncated by 

specified distribution cut offs, which are chosen to include a significant 

portion of the distribution and exclude velocities of low probability which 

contribute negligibly to the final result. 

From the given distributions and cut offs we calculate: 

(I) a convolution of beam angular divergences as a single function, 

represented as a distribution of beam intersection angles ~· and 

characterized by 

(4.5) 
=0 for kl >~to 

where ~to is the half width of the convoluted ditribution, while ~o is 

the most probable beam intersection angle 

( 2) range of relative velocities W[b] for the cross-section calculations, (see 

eq. 3.3 for w) 

(3) range of velocities of the center-of-mass frame with respect to the 

laboratory frame Vg. These are determined by constructing a grid 

of Vg points within a trapezoid; the corners of the trapezoid are 

obtained from the limits of the beam velocity and angular spread 

distributions. The grid is constructed by dividing each edge of the 
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trapezoid into a given number of points and connecting the points 

on one edge to those of the oposite edge ( oposite edges are divided 

into the same number of points). The intersections of the connecting 

line segments make up the grid points ( Vg) [ i,j]· 

The center-of-mass scattering angles { 0, ¢> }[c] are determined for the 

entire scattering range. Since the cross-sections for the system under 

consideration are independent of ¢>, the range of ¢> is not important. 

The range of 0 is from 0 to 1r. 

,j..2. Cross Section Calculations 

For a given potential and collision energy we calculated the phase 

shifts ru ( 1) in equation ( 2. 7), via Numerov integration 19 for low values 

of l and via the JWKB method18,14 for higher values (the switch over 

taking place between l = 15 and 25 ). In general it is sufficient to use 

48 approach angles 1 in order to obtain good values for state-to-state 

cross-sections (total differential cross-sections are convergent with only 

12 approach angles). Using equations (2.7) and (2.10) we determined 

the expansion scatttering amplitudes F,~r ( 0) . These are computed at 

energies corresponding to the initial relative collision velocity W[b] and 

scattering angles O[c] for all b and c, and are then used to calculate state­

to-state differential cross sections 0' (j' +- j I 0) using equation ( 2.11). 

4.9. Transformation and Averaging 
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For each laboratory scattering angle { Oz , ~l}[a] and each j' +-- j 

transition we calculate the laboratory signal as a function of velocity of 

particle C (equation 3.1) I(j' +-- j, { Oz, ~l }raj, v1 '). These are calculated 

as follows: 

(1.) The limits at which the laboratory velocities v1' are to be calculated 

are given by 

I _ I ± v 12 I 2 
Vllim - Vlwt' . Wl - Wlmin 

mtn 
(4.6) 

wl~in and v1~ , . are obtained from equations (3.50) thru {3.52); 
1 mtn 

w 1 
1 is obtained from equations (3.18) and {3.20a) which are 

dependent on the inelasticity of the transitions. The actual limits 

are determined by selecting Vg and w from the extreme limits of 

v1 , v2, and~; Vg and ware given by equations {3.10a) and (3.3b), 

respectively. Since there are eight possible combinations of extremes 

for v1, v2, and ~, the upper limit is picked as the maximum v1~im 

and the lower limit as the minimum. The ± refers to the possibility 

of two ranges of v1~im. The plus sign applies to all cases; while the 

negative sign applies only when v1 ~im is positive, which for inelastic 

scattering occurs only when w1' < w1. 

(2.) For each v1 
1 we integrate (Gaussian) over vg the contributions of 

each (ug)[i,i]· This technique is called: "source averaging." 

(a.) Using equations (3.41) thru (3.49) we determine: the final CM 

velocity w1 1, the corresponding initial relative velocity w, the 
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angle a, and the laboratory beam velocities v1 and v2 along 

with the beam intersection angle ~. 

(b.) From v1, v2 and ~ we determine the relative number density 

for this configuration of beam velocities and intersection angle 

using equations { 4.4) and ( 4.5) which will be proportional to 

(nAnBV) in equation (3.60). This is the product f(v 1 ) • f(v 1 ) • 

Z(~). 

(c.) Using equation (3.39) (or 3.40) we find cos E. 

(d.) The center-of-mass scattering angle 8 is obatined from equation 

(3.28). The azimuthal scattering angle ¢J can be obtained from 

equations (3.29) and {3.30), but since the cross-sections are 

independent of this angle we do not need to calculate it. 

(e.) The cross sections u( 8, w) are interpolated from those calcu­

lated on the grid { 8[c], W[b] }. 

(f.) These above quantities are combined as in equation (3.60) 

and are multiplied by the relative thermal population at 

temperature T of the initial rotational state 

(4.7) 

to obtain the final result. (Where, kb is Boltzmann's constant, 

and Q r ( T) is the rotational partition function.) The rotational 

energy Ej is given by equation {2.5) (it is the second term on 

the left). 
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In summary, this Vg grid integration process is expressed as 

I(i' +-- i , O, , v1') 

= ~ l dVu P;(T)f( vl)f( v2)Z(1) ~v~ a(j' +- jJO, w) 
g grid W1

1 I cost I 
(4.8) 

where v1, v2, ~, w, v~, w1 1, E, and 0 are dependent on vg , 

O,, v1 1, i and i'. The integral is normalized over the grid, 

with the factor Ngrid = J dvg. The factor of 1/ d2 (Eq. 3.59) 

was excluded since it is a constant for a given experimental 

configuration. 

Usually all possible transitions i' +-- J are summed for a 

given scattering angle to simulate an actual experimentally 

observable signal. 

The beam parameters used for this simulation are the same as those 

for our He + C02 scattering experiments1 . The cut-offs for the beam 

velocities v1 and v2 are at 0.05 of the peak of both distributions f( v1) and 

f( v2). The cut-offs for the convoluted distribution of beam intersection 

angles ~ are at 0.05 of the peak of the distribution Z(~ ). 

We use 8 CM velocities W[c) which are equally spread over an interval 

between the cut-offs of the w probability distribution. The cut-offs are at 

0.005 of the peak of the w distribution. The cross sections are calculated 

at each of these W[c) and CM angles 0 from 0 to 180 degrees {every 1/3 

deg. for 0 to 20 deg. , every 1 deg. for 20 to 40 deg. , and 2 deg. for 40 

to 180 deg.) . 
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A grid of 64 (8 by 8) Vg integration points is perfectly adequate for 

this application. 

At a temperature of 298 K 99.3 % of the C02 molecules are in states 

below i = 50 (the most probable rotational state for the C02 is j = 16). 

Hence we will consider all initial rotational states up to i = 50. Final 

states will depend upon the cross sections. As we will show in the next 

section, transitions for a change in rotational quantum number !:1i > 8 

are virtually insignificant , and need not be considered. For low scattering 

angles ( 0 < 10 de g.) only !:1i = 2 transitions need be calculated; for 10 

deg. < 0 < 18 deg. only !:1i ~ 4 need be calculated; for 18 deg. < 0 < 

25 deg. only !:1i ~ 6 need be calculated. 
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5. RESULTS AND DISCUSSION 

In Figure 1 we plot the center-of-mass differential cross-section 

(DCS) for the He + C02 potential at 65 me V, the most probable energy 

for the conditions of the simulation outlined in the previous section. All 

of the five curves are for an initial rotational state i = 12; curve for 

other initial states from i = 4 thru i = 30 are very similar to these. 

The lowest curve is for the elastic cross-section (the change in rotational 

quantum number for the C02 molecule lli = 0); the curve above it is a 

sum of all state-to-state cross sections with lllil ~ 2; the center curve is 

for lllil ~ 4; the curve above it is for lllil ~ 8; the upper curve (dashed) 

is barely visible and it is for the total DCS from j = 12 (eq. 2.12). It is 

clear from this figure that to calculate the laboratory cross-sections it is 

sufficient to include only a small fraction of all the possible state-to-state 

DCS's. 

This figure can also serve as a guide in selecting scattering angles 

for which the observed scattering signal will contain the greatest 

rotational inelasticity. We can use the CM cross-section as a guide to 

understanding the LAB cross-section because the difference between 0 

(the CM scattering angle) and the corresponding 81 (the LAB scattering 

angle) is small for scattering angles less than 90 degrees.11 ,2 At low 

scattering angles elastic transitions should predominate. At 13, 18 and 

23 degrees the elastic DCS is at a minimum and the inelastic DCS 's 

contribute significantly to the total DCS. From 30 to 60 degrees the 
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elastic DCS is only 1/3 to 1/4 of the total. 

Four angles were chosen for simulation of laboratory velocity 

resolved cross-sections: 5, 13, 18 and 40 degrees. At 5 degrees the 

inelasticity will be minimal. At 13 and 18 degrees there should be 

enough inelasticity to be observed experimentally. These angles are 

relatively small and the cross-section is high enough that they should be 

easily distinguished from the background in a crossed molecular beam 

apparatus. At 40 degrees the inelasticity is somewhat higher than at 18, 

but not significantly (as will be shown below), while the expected signal 

is lower by about a factor of three. There is also another reason why 

there is no significant advantage in measuring inelasticity at 40 degrees 

versus 18 (or 23); it will be discussed later. 

The velocity resolved cross-sections for 5 degrees are shown in Figure 

2. The inelastic cross-section makes up 1. 7 4% of the total cross-section, 

compare Figure 2a (the total) to Figure 2b (the inelastic). This is not a 

negligible contribution, although it is quite small, and hence it becomes 

difficult to distinguish the inelastic and purely elastic contributions to 

the observed signal. The peaks of both the total and elastic signals are 

shifted to a slightly higher most probable velocity Vma:x over the velocity 

of the He beam, 1.76 km/sec. The width (full-width-at-half-maximum, 

Vfwhm) of the total peak is 0.185 km/sec which is narrower than the 

He beam width of 0.210 km/sec. This peak shift and narrowing are 

primarily a consequence of the CM to LAB transformation. The range 
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of LAB velocities for Figure 2 correspond to a 1 degree range of CM 

velocities; the lower velocities correspond to lower CM angles, and the 

higher velocities to higher CM angles. Hence the velocity distribution is 

modified by the sloping CM DCS. 

At 13 degrees the inelastic contribution increases to 25% of the total 

cross-section, compare Fig. 3a and 3b. The total cross-section peak is 

wider than the elastic, and is shifted to a slighly higher velocity. 

At 18 degrees the inelastic contribution to the total cross-section is 

60%, compare Fig. 4a and 4b. The total (Fig. 4a) cross-section peak 

is about 25% wider than the elastic (Fig. 4b). The shoulder on the 

inelastic cross-section peak (Fig. 4c) is due to the tl.j > 0 transitions 

(Fig. 4e) which shows the source of this structure. This shoulder is due 

to the fact that a range of CM scattering angles is transformed to the 

LAB frame for a given LAB angle. The slight indentation at 1.82 km/sec 

(Fig. 4e) corresponds to a trough in the inelastic DCS oscillations, which 

in general are much sharper than elastic ones. The sum of the tl.j < 0 

transitions (Fig. 4d) does not show a similar shoulder, indicating that 

no trough was sampled in the LAB frame for these cross-sections. 

Inelastic cross-sections contribute 75% to the total cross-section at 

40 degrees, compare Figs. 5a and 5b. However, the relative broadening 

of the total over the pure elastic velocity distribution peaks is 17%, 

compared 25% for 18 degrees. The elastic peak is significantly wider than 

elastic peaks for the lower angles. This widening is caused by the velocity 
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distribution of the C02 beam, which has a FWHM of 0.38 km/sec for a 

most-probable velocity of 0.49 km/sec. At larger LAB angles the C02 

beam velocity distribution has a greater effect on the velocity distribution 

of the scattered He, which at low angles is primarily affected by the 

incoming He beam distribution. The advantages of greater inelasticity at 

40 degrees are compromised by this broadening and the lower scattering 

intensity. 

From the above observations, it is evident that the velocity 

distribution of the scattered signal contains enough information to 

permit one to distinguish inelastic processes from purely elastic ones. 

The inelasticity is present as a widening and a distortion of the 

velocity distribution peak from what would be expected for an elastic 

process. The actual inelasticity cannot be observed as a distinct and 

isolated peak, but it can be obtained in conjunction with a potential 

fitting algorithm. The algorithm would simulate the observed velocity 

distributions according to the procedure outlined above using a potential 

which can be extracted from total-DCS experiments. The potential 

can then be adjusted via a least-squares algorithm untill it provides 

calculated "data" that is in best agreement with the experimental data. 
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Figure 5b. Velocity resolved laboratory scattering signal for He. 
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CHAPTER 5 

INELASTIC SCATTERING EXPERIMENTS WITH 

CORRELATION CHOPPER VELOCITY ANALYSIS 
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!.INTRODUCTION 

In the previous chapter we described a method for simulating 

velocity resolved laboratory DCS data for an assumed interaction 

potential. From these simulations for He + C02 we showed that the 

velocity distribution of the scattered He contains rotationally inelastic 

contributions that can be related to potential anisotropy. In this 

chapter we describe experimental techniques for measuring these velocity 

distributions and present results of preliminary experiments for He + 

C02 . 

In Section 2 we review the theoretical background behind the cor­

relation chopper technique for measuring the time-of-flight distributions 

(which are easily converted to velocity distributions) of the scattered 

particles. The primary advantage of the correlation chopper technique 

is its high duty cycle of almost 50%, over alternate time-of-flight and 

velocity analysis techniques. For instance the velocity selector described 

in Chapter 2, has a duty cycle of 0.5%, while a single slot chopper with a 

resolution of the correlation chopper described in this chapter will have 

a duty cycle of about 1%. Thus, the correlation chopper offers at least 

a factor of 50 advantage over the other techniques, meaning that the 

data collection time will be appropriately reduced for the same quality 

of data. 

In Section 3 we present a simulation of the performance of our 
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chopper. In Section 4 we outline the modifications to the molecular 

beam apparatus described in Chapter 2, in order to facilitate correlation 

chopper experiments. In Section 4 we discuss the results for preliminary 

experiments for He + C02. In the final section we mention suggestions 

for improvements to the apparatus to facilitate further experiments. 
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2.CORRELATION CHOPPER THEORY 

The correlation chopper was initially developed to measure velocity 

distributions of cold neutrons. Von Jan and Scherm 1 along with 

Price and Skold2 '3 have presented the theory and means of application 

to neutron spectrometry. The technique was naturaly adaptable to 

measuring velocity distributions of scattered atoms and molecules, 

and numerous descriptions of the theory and apparati have been 

presented. 4 - 6 This section will most closely follow the outline and 

notation of von J ahn and Scherm 1, and hence, individual references will 

be omitted. 

!2.1. THE TECHNIQUE 

In an experiment utilizing a correlation chopper, particles along a 

given direction (determined by their source and the point of detection) 

are modulated according to the modulation function M(t) by a 

correlation chopper located near their source, and are then detected 

as a function of time by a detector at a distance d from the chopper. 

The modulation function M( t) basically determines how much scattered 

beam is passed to the detector at a given time t and has values ranging 

from 0 to 1. The quantity we wish to measure is the time-of-flight 

distribution S(t) of the scattered beam, and is assumed to be non-zero 

for a finite range 0 ~ t ~ T. The signal z(t) at the detector is given by 
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z(t) = 1T S(t')M(t- t')dt' + B (2.1) 

where B is the time-independent background intentsity. 

The modulation function M( t) can be described as 

N 

M(t) = Lxif(t-ti) (2.2) 
i=l 

where the chopper has been divided into N equally spaced intervals 

i of a time duration fJ. Therefore one chopper rotation occurs in a 

period of N fJ. Each interval i is specified by Xi = {0, 1} indicating the 

presence (xi = 1) or absence (xi = 0) of an open slot. The function 

f(t - ti) specifies the shape of the pulse produced by an individual 

chopper interval lasting from t = ti - {} to t = ti. 

An ideal modulation M( t) is one characterized by a 6-function 

autocorrelation 

AMM(T) = ~iT M(t)M(t- t')dt 

= ao(r) + b 

(2.3) 

if the time T is sufficiently large. The constants a and b depend upon 

the exact form of M(t). 

For this correlation M( t) it is possible to reconstruct the time-of­

flight distribution S ( t) from the detected signal z( t) by way of the cross 

correlation P(r), which is defined by 
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1 {T 
P(T) = T lo z(t)M(t- T)dt (2.4) 

which from equation (2.3) can be written as 

lT lT 11T P(T) =a S(t')6(T- t')dt + b S(t')dt + B- M(t- t')dt' 
o o T o 

{T 1 {T 
= aS(r) + b Jo S(t')dt + B T Jo M(t- t')dt' 

(2.5) 

It is quite evident that P( T) is indeed proportional to the desired 

distribution S ( T). We now need to establish the constants a and b so as 

to minimize the background distribution. 

2.2. PROPERTIES OF THE MODULATION FUNCTION 

In order for the modulation function M(t) (equation (2.2) ) to meet 

the requirements of equation (2.3) it must meet several criteria, which 

will be imposed on the functions Xi and f( t - ti). First the pulse shape 

function must obey the relation 

(2.6) 
i 

where rigorously, the sum is over N, but in practice it includes at 

most i - 1, i and i + 1. All this relation makes sure of is that when 

neighbouring pulses overlap they should add up to a plateau. The ideal 

form for f( t - ti) is a pure step pulse such that it is non-zero only for 
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ti - {} ~ t ~ ti. Since real choppers cannot instantanously block and 

unblock a beam of particles, the process of blocking and unblocking will 

show up as a gradual fall and rise in the modulation, with f( t - ti) 

reflecting this property. If two or more consecutive intervals are open to 

beam transmission then the region between the rise and fall must be a 

flat plateau; equation (2.6) ensures this. 

The autocorrelation of the discrete sequence Xi must be of the 6-

function type such that 

k=O,N,2N,3N ... 

(2.7) 
otherwise 

where the constants A0 and A are integers because the Xi = {0, 1}. 

Sequences which have autocorrelations of the above type are called 

pseudorandom sequences. 7'8 The autocorrelation function can be solved 

in terms of the constants A0 and A for a modulation with m pulses per 

period of chopper rotation, i.e. in one rotation m slots out of N will be 

open. This then give by inspection 

N 

Ao = L:x; = m (2.8) 
i=l 

We can easily show that 

and from equation ( 2. 7) 
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N 

E = Ao + (N- !)A 
i=l 

combining these two equation we obtain an expression for A 

A= m(m -1) 
N-1 

(2.9) 

Since A must be an integer several other conditions must be satisfied 

before equation (2.9) is met. A set of sequences called minimum length 

sequences or shift register sequences fulfill all the above requirements. 

The number of intervals N is 

(2.10a) 

where n is an integer. The number of open intervals is 

m = (N + 1)/2 (2.10b) 

The sequence IS generated with a binary shift register having n 

digits dz. The register is shifted to the right, where the rightmost digit 

dn determines Zi for the i-th shift of the register. The new leftmost digit 

d1 is obtained by taking the exclusive-or (modulo two addition) of the 

rightmost digit dn with a set of digits { du, dz2, dz3 , •.. } 
7'8'4 

di+l - di 
l - l-1 l =F 1 

(2.lla) 

(2.11b) 
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Xi= d~ (2 .11c) 

The number of digits { du , d12, d13, ... } vanes upon the sequence 

required. A useful starting shift register is one where all the d~ are set to 

1. For a set of digits to be modulo-two added the resulting sequence must 

be verified so that it does indeed meet all the criteria; not all sequences 

generated by this method meet the criteria. 

£.9. CROSSCORRELATION 

In equation (2.4) we crosscorrelated the signal z(t) with the 

modulation function M( t - r) and showed that the time-of-flight 

distribution S ( t) can be recovered from the crosscorrelation P( r) in 

equation (2.5). It would be simpler if one could crosscorrelate from 

the discrete sequence Xi. The crosscorrelation is 

{Tr 
P(r) = lo z(t)x(t- r)dt 

rN lt· 
=~Xi t;~IJ z( T + t)dt 

(2.12) 

where Tr is the total data collection time Tr = r N IJ for r revolutions of 

the chopper. 

Subsitituting equation (2.1) for z(r + t) gives 
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P( r) = r [ t x;Xj 1NiJ [~8 f(r + t- t'- t;)S(t')dt dt' 
,,, J 

N 

+B~x;] 
I 

(2.13) 

where lJ = tJ B is the background per interval. The double integral 

involving S ( t) is merely a convolution over the pulse shape function and 

the the width of one interval ( 19-). We can redefine this integral to be 

NfJ ,.' 

S(r + r') = [ 1 f(r + t- t')S(t')dt dt' {2.14) 
lo ,-'-{} 

From equation ( 2. 7) we have 

where tk = t;- ti (and hence k = j- i) . 

By taking into account equations (2.6), (2.7), and the following 

trivial relations 

iT f(t)dt = ,? for large T 

iT S(t)dt =,?iT S(t)dt 

we obtain 
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P(r) = rm [(1- D)S( r) + ~ foN{J S(t)dt + B] (2.16a) 

the integral can easily be converted into a sum by considering the inner 

integral of equation (2.14), this yields 

(2.16b) 

where D is the duty cycle of the chopper and is given by D = A/ m (A 

is defined by equation (2.9) ). 

The above equation provides the means for solving for the pulse­

shape- and interval-width-convoluted distribution S ( t). If S ( t) is 

significantly wider than f(t) or{} then S(t) will for all practical purposes 

be identical to the true distribution. 
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£.4. CHANNELS OF FINITE WIDTH 

Under experimental conditions data are collected into channels of 

finite width such that data z( t) are integrated over the width of the 

channel fJ. An integral of this type appears in equation {2.12) for the 

crosscorrelation of z(t) with Xi. We can define a discrete form for z(t) 

such that 

(2.17) 

We can also define similar discrete forms for the deconvolution P{ t) and 

the distribution S(t). Where a "r" in square brackets is now discrete 

T = Jc{} for lc = 0, 1, 2, 3, ... , N. 

Rearranging equation {2.16b) for discrete T and solving for S[r] we 

obtain 

1 [ 1 rN N ] 
S[r]= l-D rmt;xiz[r+ti]-Dt;S[t]-B {2.18) 

The sum over S[t] is a constant and can be related to the total signal 

and background which permits us to write 

rN 
- 1 ~Xi- D -
S[r] = - L...J z[r + t;]- B 

mr 1- D 
i=l 

{2.19) 

In general the most efficient correlation-choppers have a duty cylce of 

D = A/m = 1/2, see equations (2.9) and (2.10b). We can sum all the 

z[ T + ti] for all the revolution to obtain 
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r 

Z[r + ti] = 2: z[r + ti + l11N] (2.20) 
l=O 

We also can define a new correlation sequence 

x·-D 
a·=-'--
'- 1- D (2.21) 

= {-1,1} for D = 1/2 

yielding 

N 

S[r] = _!_ 2: a;Z[r + t;]- B 
mr 

(2.22) 
i=l 

This is the most useful form for computational purposes and will be 

employed in all analyses and data reduction described below. 

!2.5. VELOCITY DISTRIBUTIONS 

A velocity distribuition F( v )dv measures the number of particles 

having velocities v in the range v to v + dv. This must equal the number 

of particles specified by the time-of-flight distribution S ( t)dt 

then 

F(v)dv = S(t)dt 

dt 
F(v) = S(t) dv 

since for a given constant velocity the flight time over distance R is 
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R 
t=-

1J 

F(v) = (- ~)s(t) (2.23) 

Therefore to convert a time-of-flight distribution to a velocity distribu­

tion one must divide by the square of the flight time. 
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3.CORRELATION CHOPPER SIMULATION 

The correlation chopper which was used for the experiments to 

be described in the next section, consists of 255 intervals (28 - 1). 

The sequence that specifies the chopper may be generated according 

to equation 2.11, which we repeat for this particular case 

di+l - di 
l - l-1 

Xi= d~ 

(3.1a) 

(3.1b) 

(3.1c) 

where di is the l-th digit of an a 8-digit shift register after i shifts 

to the right of that register, the 8-th digit is the rightmost one. The 

left-most digit is constructed by modulo two addition of bits 2, 3, and 8. 

(The digits are binary quantities with values of either 0 or 1). Figure 1 

shows the resultant correlation sequence. Since the sequence is periodic 

for every 255 interval the starting position can be chosen arbitrarily. For 

the experiments to be described below, the chopper is installed such that 

the sequence begins with a value of 1438 for the initial shift register (the 

octal representation of the shift registers is such that the least significant 

digit of the binary equivalent corresponds to the 8-th register digit). 

Prior to presenting experimental details it is worthwhile to perform 

simulations of the correlation chopper operation. In Figure 2 we plot a 

Gaussian veleocity distribution of the form 
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(3.2a) 

where V0 is the most probable velocity, A is a normalization factor, a 

is the width parameter and is related to the velocity full-width-at-half--

maximum Vfwhm by 

2 
vfwhm a=_;;.... __ 
4 ln2 

(3.2b) 

This particular Gaussian is centered at v0 = 1.5 km/ sec with a 

VJwhm = 0.4 km/sec. What does the signal Z[tk] look like when 

this Gaussian velocity distribution is convoluted by our chopper with a 

detector at 13 em from it (an actual representation of the experimental 

apparatus described below)? 

Figures 3 thru 5 show Z[tk] for three different V 0 with various widths 

v Jwhm. The predominant trait of these plots is the smoothing of sharp 

structure with an increase of probability of lower velocities; this is evident 

if we compare plots for one value of V0 with an increase in width, or if 

we compare plots for one value of Vfwhm with a decrease in V0 • The very 

narrow and high velocity peak (Fig. 3a, V0 = 2.0 km/sec, Vfwhm = 0.1 

km/sec) bears a very strong resemblance to the chopper correlation 

sequence (Fig. 1). There is very little smoothing of the sequence, only 

prior to and after a change from open to closed (or vice versa) does Z[ tk] 

show some smoothing. A decrease in velocity V 0 = 1.5 km/sec for the 

same width shows greater smoothing and also an upward shift in time tk, 
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as would be expected since the lower velocities will have a longer chopper­

detector flight time than higher ones. This type of behavior can be seen 

in the other plots. The reason that Z[ t~c] is smoothed with a decrease 

in V0 for an equal width Vfwhm is that this technique measures time­

of-flight distributions S ( t); at higher flight times (lower velocities) the 

flight-time density dt increases for a fixed velocity density dv: dt oc v2 dv. 

Basically, lower velocities (longer flight times) shift Z[ t~c] to the left. A 

greater density of flight-times produces broadening of Z[ tk], since each 

flight time individually results in a different shift in Z[ t~c]. 



- 334-

4:. EXPERIMENTAL APPARATUS 

The crossed beam apparatus has been described previously in 

Chapter 2 (Sec. 4), and hence only changes from this will be presented 

here. These changes can be classified as improvements in the apparatus 

or modifications to accommodate the correlation chopper, and are shown 

in Figure 7. 

In order to improve the signal to noise ratio for the correlation 

chopper experiments the pumping speed in the mass-spectrometer has 

been increased by substituting the ion pumps with turbo-molecular 

pumps TMPb and TMP. The TMPb 11 pumps helium at 60 liters/sec (air 

at 55 liters/sec), which is a dramatic improvement over the ion pump 

pumping speed of 0.3 1/sec for He (5 1/sec for air). Since this pump is 

in the differential buffer chamber between the scattering region and the 

ionizer (I) of the mass-spectrometer, it limits the number of atoms and 

molecules in the scattering chamber which are not in collimation with the 

detector apertures, from entering the ionization region. For a He + C02 

scattering experiment (see Chapter 2) the background signal for helium 

(the C02 beam entering into the scattering chamber but not crossed 

with the He) at a scattering angle of 10 degrees was 9 x 103 counts/sec. 

If the ion (51/sec) pump was turned off the background signal increased 

to 18 x 102 cnts/sec. Under otherwise identical conditions, but with 

the 60/1 pump in place of the ion pump, this background is reduced to 
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about 250 cnts/sec. In both cases the background is relatively constant 

for scattering angles greater than (and equal to) 10 degrees. 

The other turbo-molecular pump (TMP) 12 has a pumping speed of 

350 liters/ sec. It essentially replaces the liquid-helium cryo-pump ( CP). 

Although the cryo-pump has an estimated pumping speed of 300 1/sec, 

it makes a negligible contribution to reducing the He background signal 

level when the turbo pump is operational. The reason for this could 

be related to how the cryo-pump functions. Helium atoms at a partial 

pressure in the 10-10 torr range can not condense on a surface which 

is at liquid helium temperatures (at 1 atmosphere). Rather, they are 

occluded in crystals of other gases which do condense and freeze on the 

cryo-surface. Since the turbo pump removes most of these gases the 

cryo-pump is not able to effectively pump helium. The major advantage 

of the turbo-molecular pump over the cryo-pump is the convenience of 

operation and the indefinte running time (the cryo-pump hold liquid 

helium for 4 hours). Also the turbo-pump is able to maintain a pressure 

of 4 x 10-10 torr for stand-by mode, and 8 x 10-10 during experiments. 

The position of the correlation chopper is shown in Figure 7. It is 

located 13.0 em before the center of the ionization region. For visual 

clarity the gate valve which covers the entrance aperture of the detector, 

has been omitted from the figure; nonetheless it is present. For the time­

of-flight experiments the primary beam modulator ( descibed in Chapter 

2, not shown in the figure) is still in place but is not rotating, rather, it 
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is held in a fixed position so as to pass the entire primary beam. 

The chopper is rotated by a hysteresis synchronous motor9 at 

frequencies ranging from 400 to 650 Hz. In order to operate at the 

higher frequencies it is necessary to periodically replace the bearings10 . 

Frequencies up to 950 Hz can be achieved but the chopper rotation is 

not stable for a long time and bearing wear is severe. Cooling is very 

important for the motor which may heat up above the safe operating 

temperature of 85 C in less than 8 hours, causing premature bearing 

wear and potential damage to the motor windings. 

Figure 8 show a functional schematic of the correlation chopper drive 

and data collection system, the heart of which is the multi-channel scaler 

(MCS). It generates the signal that drive the chopper motor, collects the 

data, and transmits it to a PDP 11/03 computer. In order to drive the 

drive the chopper motor the MCS generates two pulses for the duration {} 

of one channel (corresponding to Z[tk], see equation 2.20), these are then 

divided by the number of chopper intervals N (28 - 1 = 2551o = 377 s) 

to produce a square wave. The square wave is filtered and amplified to 

yield a sine wave, which is input into a power amplifier13 . The output of 

the amplifier is impedence matched and stepped up with a transformer18 

for use with the motor. The phase matching capacitor (C) mantains a 90 

degree phase delay between the two motor windings; its value has been 

optimized at 0.22 p,£ for 400 Hz and 0.06 p,£ for 650 Hz. As the chopper 

completes one revolution its large slit passes between a light emitting 
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diode (not shown) and a photo diode which generates a trigger signal in 

the MCS. The "chopped" atoms (or molecules) enter the ionization (I) 

region of the detector. The resulting ions are mass filtered (quadrupole 

mass filter QMF) and impinge on the Channeltron electron multiplier 

(CEM). The CEM current is converted to pulses via a pulse amplifier 

and discriminator. The pulses a counted by the MCS and are stored in 

memory. 

The MCS is a virturally identical copy of one developed by Brian 

Reid and Randal Sparks 17 , which is a modification of a model designed 

at the University of California 19 . A schematic of the basis functions is 

shown in Figure 9. The unit is designed in conjuction with a CAMAC 

crate14,15 , which interfaces easily with any computer via the CAMAC 

dataway and a computer specific controler16 . A 20 MHz clock signal 

is divided to a lower frequency to provide the data channel interval 

{}, the increment for the memory, and the drive pulses for the motor 

(as described in the previous paragraph). The channel interval can 

be set by computer at any value from 1 to 999 p,sec. The memory is 

incremented untill a preset memory address is reach, the unit the waits 

for the trigger pulse from the chopper before continuing to collect more 

data. The trigger pulse is the signal that initiates data collection; if the 

memory counter does not reach the preset value before the trigger signal 

it is reset to zero and data collection resumes for a chopper revolution. 

The data collection stops after a given number (set by the computer) 
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of trigger signals (chopper revolutions). At this time the computer may 

read the data from the MCS memory, it may also clear the memory, and 

then proceed with more accumulation of data. A sweep counter is also 

provided to count down each time the trigger counter reaches zero; it 

primarily functions as an aid to the users (the value is displayed on the 

front panel of the MCS). The unit is equiped with dual data counters; 

as one is counting the incoming data, the other is added to a memory 

location for a given channel. The memory increment signal switches the 

function of the counters. This dual counter system has a very short 

"dead" time between channels (time during which no pulse are counted) 

of 60 nsec, which is almost insignificant compared to the 80 nsec width 

of the data pulses. 

For the He + C02 velocity resolved experiments the beam operating 

conditions are identical to those for the total DCS experiments (see 

Chapter 2). The chopper is operated 653.59 Hz, which corresponds to 

6 p,sec per MCS channel. Data are collected with the MCS for 6500 

chopper revolutions (triggers) before the computer reads and clears the 

MCS memory and restarts the data collection. This gives the computer 

time to add this data to an array, deconvolute the data to a velocity 

distribution, and plot it on a display, before it is time to read in the 

next set of data. The scattering signal is measured with the beams 

crossed for about 10 minutes ( 60 sweeps), the beams are uncrossed 

and the background signal is measured for the same time period. Both 
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measurments are necessary, since the background signal has a thermal 

velocity distribution which contributes to the total signal. Measurement 

times range from about 1 to 2 hours for low scattering angles (below 7 

degrees) to 120 hours for large scattering angles ( 40 degrees). 
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5.PRELIM:INARY RESULTS 

Figure lOa shows the deconvoluted velocity distribution for a He 

beam entering the mass spectrometer at 0.75 degrees; Figure lOb shows 

the "raw" data from which the deconvolution was made. In order 

to reduce the pumping load on the mass-spectrometer chamber, the 

measurement was made at this small angle rather than with the beam 

going directly into the detector. Also to reduce gain degradation on the 

Channeltron electron multiplier ( CEM) the mass-spectrometer ionizer 

was operated at a reduced ionization efficiency. The resultant velocity 

spectrum compares favorably with the one obtained using the velocity 

selector, as described in Chapter 2 (Sec. 2.4). The position of the most 

probable velocity is at 1.76 km/sec, in both cases. The width of the peak 

is 12.4%, which is slightly higher than the 12.0% which was measured 

with the velocity selector. Also, the peak is somewhat broader near the 

baseline, this is most likely attributable to the fact that the deconvoluted 

signal does not give the actual time-of-flight (or velocity) distribution but 

rather a distribution which is the convolution of the actual distribution 

of the He atoms with the width of the individual chopper channel and 

the chopper shape function (Eq. 2.14). This verifies the choppers ability 

to resolve velocity distributions of similar characteristics. 

The velocity resolved scattering signal for He + C02 was measured 

at several angles from 5 to 40 degrees. In Figures 11 thru 13 we present 
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the deconvoluted velocity distributions {and the "raw" data - Fig. llb 

for 5 deg.) for only three of these angles: 5, 13, and 18 degrees. In all 

three cases we do observe an outline of a distribution. However, these 

distributions are much wider than and are peaked at lower velocities 

than those predicted for these angles in Chapter 4. Also, they are very 

noisy. These problems are evident in the "raw" data plot for 5 degrees in 

Figure lib; the "raw" data plots for the other angles are similar. There 

is much more noise in the "raw" plot than would be expected on the 

basis of Poisson statistics, which gives error bars of about 3% for Figure 

lib (the full scale of the plot is for the range of Z~r, from maximum to 

minimum, the range is 5.3% of the maximum signal Z~r,). The small 

details that were pointed out in Section 3 as being indicative of higher 

velocities are completely obscured by this noise. The convoluted signal 

should resemble the one in Figure lOb; it, instead, has a very broad 

structure which implies a broad velocity distribution. The situation is 

similar for the other angles. 

The above results give an indication of a velocity distribution for 

He scattered by C02 at several scattering angles. If the beams are 

uncrossed the resultant distribution is even broader and much weaker. 

However, the widths of these distributions are much too large for 

indentifying rotationally inelastic processes, and therefore these results 

are inconclusive. 

There are several causes of broadening of the correlation chopper 
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signal. The first one was mentioned before, i.e. the technique measures 

a distribution that is a convolution of the actual distribution and the 

chopper function. This is most unlikely to be the cause of the extreme 

broading of the measured distributions for the scattered signal, since the 

He beam distribution was only slightly broadened. The three most likely 

causes are: 1) jitter of the chopper blade, 2) insufficient pumping in the 

ionization region, and 3) the ionization region of the mass spectrometer 

has a high density of electrons such that ions that are formed there are 

trapped for a period of time before moving to the mass filter. 

The jitter problem has been mentioned before.6 It arises from the 

inherent friction of the bearings which gives rise to stick and slip effects 

and thus a jerky rotation of the blade. This problem is particularly 

prevalent at high rotation speeds and prolonged operation times. Our 

experience indicates that bearings will have a longer running life if they 

are operated for shorter periods of time (less than 2 hours) rather than 

one extended period. The accurate balance of the blade and the rotor 

(of the motor) has a strong effect on bearing life as well as vibration of 

the motor unit. Slight errors in balance cause such excessive vibrations 

that mounting screws will be removed. 

Insufficient pumping in the ionization region will of course cause 

a high background count level, which makes it more difficult to 

distinguish the signal from that background. The introduction of the 

turbo-molecular pump TMPb in the buffer chamber has reduced the 
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background level by a factor of 50 for angles above 15 degrees. Also, the 

total signal with the beams crossed is much greater than the background 

(the beams uncrossed) at 5 degrees. Nonetheless the 5 degree velocity 

distribution is as broad as t_hat at 13 or 18 degrees. Hence, it is unlikely 

that insufficient pumping is a major cause of the broadening. 

The high density of electrons in the ionization region is probably 

the most likely cause of the broadening. The measurement of the 

velocity distribution for the He beam was performed with an electron 

emission current of 0.5 rnA, while the measurements of the scattered 

signal were performed with an emission current of 15 rnA. This is the 

only operational difference between the two cases. Unfortunately, the 

signal at angles above 15 degrees is so low that it it is unlikely that is 

can be observed at the low emission currents. 
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6. SUGGESTIONS FOR FUTURE EXPERIMENTS 

The He + C02 velocity resolved experiments cannot be conducted 

any further under the above conditions, because the results are 

inconclusive. However, since we were able to diagnose several very 

probable causes of this inconclusiveness, we then propose several 

modifications to the molecular beam apparatus which will most likely 

remedy these problems for the rotationally inelastic experiments as well 

as for the planned H-atom reactive scattering experiments.20 

A relatively straightforward modification is the increase of the 

distance between the correlation chopper and the ionization region from 

13 to 19 em. This can be done by rebuliding the support which holds 

the mass-spectrometer to the flange (the entire mass-spectrometer is 

contained on this flange permitting it to be remove from the chamber). 

This change will not alter the ionizer or the quadrupole mass filter in any 

way; only the distance between the exit aperture of the quadrupole and 

the electron multiplier needs to be decreased. Increasing the chopper­

ionizer distance increase the flight time for particles with a given velocity, 

which in turn increases the number of deconvoluted channels for the 

width of a velocity distribution peak (see Eqs. 2.22 & 2.23), which 

effectively increases the resolution of the velocity peak. The same 

resolution can be obatined with an 19 em distance as with the 13 em 

one by lowering the chopper rotation frequency by a factor of 13/19. 
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The major advantage of the longer flight time is that the ion trapping 

mechanism, mentioned at the end of the previous section, will be less 

significant. The consequece of this mechanism is to smooth out (in 

time) the "raw" data, but with increasing chopper-ionizer distances the 

convoluted data (Z[t~c] of Eq. 2.20) becomes smoother for the same 

velocity distribution. 

Increasing of pumping speed In the mass spectrometer chamber, 

particularly in the ionization region, will decrease the background signal, 

permitting the measurement of lower scattering intensities. This in turn, 

will permit the lowering of the electron emission current of the ionizer. 

Currently the lowest level of background He (m/e = 4) is 200 counts per 

second at angles above 20 degrees, while the scattered signal at these 

angles can be as low 5 counts per second. A turbo-molecluar pump 

directly over the ionizer should reduce this background. The cryo-pump 

currently over the ionizer does not pump effectively with a fast turbo­

molecular pump in the same chamber for reasons discussed in Section 4. 

Additional backgound reduction can be achieved if the ionization region 

is isolated from the rest of the mass spectrometer, except for an aperture 

between the last ion lens and the quadrupole mass filter This way two 

chambers are formed, and atoms or molecules which are not ionized when 

they pass the ionizer will be pumped by the pump over the quadrupole 

region and will not be able to return to the ionization region. 

If the ionizer is moved further away from the scattering region, space 
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will be provided to insert another level of differential pumping on the 

entrance slits of the mass spectrometer chamber. This should further 

reduce background from the scattering chamber. 

The correlation chopper bearings tend to wear out very quickly at 

frequencies of 650Hz. They also produce a jerkey motion of the chopper 

blade. Comsa et al.6 have observed a similar problem, which they solved 

very sucessfully by magnetically suspending the motor shaft. This is a 

highly recommended course of action for the chopper system described 

herein. 
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Figure 1. Correlation chopper sequence. 
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Figure 2. Gaussian velocity distribution. The points are for a 

deconvolution of the convoluted signal in Fig. 4c. 
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Figure 3b. Convolution of a Gaussian velocity distribution. 
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Figure 3c. Convolution of a Gaussian velocity distribution. 
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Figure 4:a. Convolution of a Gaussian velocity distribution. 
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Figure 4:b. Convolution of a Gaussian velocity distribution. 
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Figure 5a. Convolution of a Gaussian velocity distribution. 
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Figure 5b. Convolution of a Gaussian velocity distribution. 
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Figure 5c. Convolution of a Gaussian velocity distribution. 
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Figure 7. Vertical cut view of the crossed molecular beam apparatus, 

drawn approximately to scale. DP = diffusion pumps, 

PB = primary beam source - beam axis is parallel to 

drawing, Nz = nozzle (64 mm), Sk = skimmer, VS = 

velocity selector, SB = secondary beam source - beam axis 

is perpendicular to plane of drawing' oh = in plane angle 

of detector as measured from the PB axis, Bv = out-of­

plane angle of detector, CC = correlation chopper blade 

(motor not shown), MS = mass spectrometer detector, 

TMPb =50 I/ sec turbomolecular pump for buffer chamber, 

I = ionizer and ion focus lenses ( l- N 2 cooling coils 

around filament not shown), CEM = Channeltron electron 

multiplier {Model 4816), CP = liquid He cryopump (350 

I/ sec), TMP = 360 I/ sec turbomolecular pump, IG = 

ionization gauge, for clarity the gate valve in front of the 

mass spectrometer entrance aperture is not shown. 
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Figure 8. Schematic of the correlation chopper experiment. Refer to 

Figure 7 for labels on the mass spectrometer. 
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Figure 10. Velocity resolved scattering signal for a He beam with the 

detector at 0.75 degrees from the beam center, Figure lOa. 

The "raw" (undeconvoluted) data are shown in Figure lOb. 
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Figure 11. Velocity resolved scattering signal for He + C02 for a 

scattering angle of 5 degrees, Figure lla. The "raw" 

(undeconvoluted) data are shown in Figure lOb. The 

full scale corresponds to 240 counts/sec. The baseline 

corresponds to 4260 counts, the background signal for 

the beams uncrossed has been subtracted, the average 

signal for the beams uncrossed is 1700 counts/sec. Data 

accumulation time for the beams crossed and uncrossed, 

was 3.6 hours. Relative normalization for peak area from 

total DCS data (velocity unresolved) is 500.0 . 
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Figure 12. Velocity resolved scattering signal for He + C02 for a 

scattering angle of 13 degrees. The full scale for the "raw" 

(undeconvoluted) data corresponds to 17 counts/sec. The 

baseline corresponds to 170 counts, the background signal 

for the beams uncrossed has been subtracted, the average 

signal for the beams uncrossed is 330 counts/sec. Data 

accumulation time for the beams crossed and uncrossed, 

was 36 hours. Relative normalization for peak area from 

total DCS data (velocity unresolved) is 19.15. 
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Figure 13. Velocity resolved scattering signal for He + C02 for a 

scattering angle of 18 degrees. The full scale for the "raw" 

(undeconvoluted) data corresponds to 23 counts/sec. The 

baseline corresponds to 102 counts, the background signal 

for the beams uncrossed has been subtracted, the average 

signal for the beams uncrossed is 300 counts/sec. Data 

accumulation time for the beams crossed and uncrossed, 

was 30 hours. Relative normalization for peak area from 

total DCS data (velocity unresolved) is 11.29. 
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