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I. Idempotent Multipliers of H1 on the Circle 

II. A Mean Oscillation Inequality for Rearrangements 

by Ivo Kl emes 

Department of Mathematics 

California Institute of Technology 

Abstract 

H1(T) is the space of integrable functions f on the circle T 

such that the Fourier coefficients f( n) vanish for negative integers 

n. A multiplier is by definition a map m of H1 to itself such that 

the Fourier transform diagonal izes m. Let m(n) denote the diagonal 

coefficients of m for nonnegative n. Then m is called idempotent 

if each coefficient is zero or one. 

Theorem: If m is idempotent, then the set of n for which m(n) = 1 

is a finite Boolean combination of sets of nonnegative integers of 

the following three types: finite sets, arithmetic sequences, and 

lacunary sequences. 

By definition, a sequence is lacunary if there is a real number 

q > 1 such that each term of the sequence is at least as large as 

q times the preceding term. The theorem implies a classification 

of the projections in H1 which commute with translations, or, what 

is equivalent on the circle (but not on the line), of the closed, 

translation invariant subspaces which are complemented in H1. In 

the course of the proof, a 1 ower bound is obtai ned on the opera tor 
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norm of a multiplier whose coefficients are 0 or greater than 1 in 

magnitude. This bound implies that the number of nonzero coefficients 

in disjoint intervals of the same length is the same, up to some factor 

depending on the norm of m, provided that both intervals are shorter 

than their distance from 0. 

Part II is unrelated to Part I. There it is proved that a general 

expression measuring the oscillation of a function on an interval 

is minimized by the decreasing rearrangement of the function. A special 

case of this expression is the BMO norm for functions of bounded mean 

oscillation. 
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INTRODUCTION 

In a paper 1~ pages 1 ong written in 1933, Pa 1 ey [9] proved the 

inequality 

1 f (e ) 1 de , 

where f is an integrable complex valued function on the circle 

T = IR/21TZZ having Fourier series 
00 

f ~ L ane i ne , ( f E H1) 
n=O 

00 

and where { nk }k= 1 is q-lacunary; q > 1 and 

n k+ 1 2. qn k k = 1, 2, · · · . 

Paley's inequality implies the existence of a square-integrable function 

g with Fourier series 
00 

g ~ L inke 
k=1 anke ' 

and a 1 so the boundedness of the project i on f B g from H1 into H2, for 

a fixed { nk}. 

In 1953, Helson [4] characterized the subsets E c Zl 

property that 
00 

L anein e E L1 implies L an eine E L1 . 
n=-= n E E 

Helson's theorem is that this holds if and only if 

N 
E = U (a ; 1. + B; ) \ F 

i=1 

for some N 2. 0, a;, B; E ZZ, and a finite set F c Zl. 

having the 

The question 

of what happens when H1 replaces L1 in Helson's theorem is the main 

subject of this thesis. The result (Theorem 1) is that E (a subse t of the 
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nonnegative integers) is obtained by union and complementation from 

finitely many sets of two kinds. These are the sets in Helson's theorem 

(restricted to nonnegative integers) and the lacunary sequences appearing 

in Paley's inequality. The proof also consists of two corresponding 

parts. Two slightly different proofs of the second part, concerning 

1 acunarity, are given. One of these is a new 1 ower bound on the norm 

of a multiplier having coefficients either 0 or greater than 1 in 

magnitude (lemma 5). Both versions depend on the inequality of McGehee, 

Pi gno, Smith [8] (see Theorem 2), combined with some counting arguments, 

and an upper bound on the L1 norm of certain sums of Fejer kernels (lemma 

3). The latter lemma is probably well-known. 

By the H1-BMO duality, the property 

00 

L aneine E H1 
n=O 

::::. L aneine E H1 
nEE 

is equivalent to the property 
00 

L aneine E BMO =I: aneine E BMO. 
n=O nEE 

It turns out that the proof of Theorem 1 can be modified, using the 

full McGehee, Pigno, Smith result on one-sided interpolation, to prove 

the same conclusion about E assuming only the property 

=L: anein eE BMO. 
tiE£ 

These modification s are considered in section 3. 

Part II is completely disjoint from Part I. It is a paper about 

an inequality concerning the nonincreasing rearrangement f* of a real 

function f on [0,1]. A special case of this result is that llf*ll BMO 

~ llf II BMO" 
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Notation 

T = lR/2TIZZ, the circle 

Hl(T): the space of complex valued functions f on the circle T such 
" 

that f is Lebesgue integrable and f(n) = 0, n < 0, where 

" 27f 
f(n) =f e-in e f( e )d e/2 7f. 

0 

Hl is a Banach space with the norm 

27f 
llfh =f

0 
If( e ) I de/27f. 

Hco (T): the space of complex valued functions f on the circle T such 

that ess sup If I =ilfl, < co and f(n) = 0, n < 0. 

space with the norm llfll co . 

M(T):the space of Borel measures on T 

co 
H is a Banach 

For~ e M(T), ~~ ~ denotes the total mass of~ and also equals: 

sup {llf *~III: f e Ll(T), llfh ~ 1 } . 

BMO(T): the space of complex valued integrable functions f on T such 

that the supremum over i nterva 1 s I c T of 

is finite, whe r e fr = ~~ JI f. 

BMOA(T) : the subspace of BMO(T) of functions f such that 

f (n) = 0, n < 0 (analytic BMO). 
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PART 

1. Statement and context of the result. 

1.1 Definitions 

A multiplier of H1(T) is a map m : H1-+ H1 such that for some 

sequence { cn}n:O in a: and for all f E H1, n ~ 0, 

~ 
m(f)(n) = cnt(n). 

Here ~(n) is the nth Fourier coefficient of g: 

2n 
g(n) =J e-in8g( e )d G/2n. 

0 

(1) 

A multiplier of L1(T) is, similarly, a map m : L1-+ L1 such that 

( 1) holds for some two-sided sequence {cn}nEZZ for all f E L1 and 

n E ZZ. I will use the notation 

m(n) = Cn 

to indicate the correspondence between m and {en}. When the domain 

of In is H1, the domain of m is {n E zz, n ~ 0 } = Zl>O by definition. 

Also, supp ~ = {n : m(n) 1 0} denotes the support of m. 
An idempotent multiplier is one such that m om= m (a projection). 

In this case it is clear that m(n) = 0 or 1 for each n. 

1.2 Background on idempotent measures 

Let m1, m2 be idempotent multipliers of H1 and e the identity 

map of H1. Then 

are idempotent multipliers having coefficient sequences 
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with supports 

respectively. The same holds for idempotent multipliers of Ll except 

that ll replaces ll>O· In both cases it is clear that the collection 

of all supports, {supp m, m is an idempotent multiplier } is closed 

under finite union, finite intersection, and complementation (this 

is called a Boolean ring). 

In terms of multipliers, Helson's theorem reads as follows: 

Helson's theorem [4]. Let E c ll. There exists an idempotent 

multiplier m : Ll-+ Ll with supp m = E if and only if E is in the ring 

of subsets of ll generated by the sets a ll + S, a , 6 Ell. 

The sets all + 6 are just cosets of additive subgroups of ll, and the 

ring they generate is called the coset ring of ll. Yet another equivalent 

statement of the theorem is that a sequence rr1 of 0' s and 1' s defines 

an Ll multiplier if and only if for some integer p ~ 1 we have m(n+p) 

= m(n) for all but finitely many n ~ ll. 

A 

When a '} 0, the idempotent m with supp m = all + 6 has the exp 1 i cit 

form 

1 
rr(f)(e) =TaT 

jai-l 
L e2ni 6 k/j a j f( e -2nk/j a j ). 
k=O 

This is more often written as the convolution 

m(f) = ~ * f , f E Ll(T) ( 2) 

where ~ is the discrete measure on T with masses Tal e2 TI i 6 k/j a I at the 

points 2nk/j a j in T, k = 0, ... , Ia! -1. In fact, it is well-known 

that (2) is a 1-1 correspondence between all multipliers 
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m: L1(T)-+ L1(T) and all Borel measures 1.1 on T. If m and 1.1 satisfy 

(2), then 

m(n) ~(n), n 1'0 71. 

A 

where 1.1 is defined by 

If m is idempotent, then 1.1 * 1.1 = 1.1, and such 1.1 are called idempotent 

measures. Helson's theorem is usually stated as a characterization 

A 

of idempotent measures in terms of supp 1-1 · More complete information 

on idempotent measures, on arbitrary locally compact Abelian groups, 

may be found in Chapter 1 of [3]. 

1.3 Result on H1 

The theorem to be proved states: 

Let E c?l.>O· There exists an idempotent multiplier m : H1 -+ H1 with 

supp m = E if and only if E is in the ring of subsets of ll>O 

by lacunary sequences and the sets (a ll.+ B) n?l.>O• a , BE 71. . 

generated 

Paley's inequality implies that, for each lacunary sequence E, there 

exists an idempotent multiplier m : H1-+ H2 c H1 with supp m = E. Also, 

if m L1-+ L1 is an idempotent multiplier, then so is the restriction 

mo of m to H1, and supp mo = (supp m) n 71.>0· Hence the "if" part of 

the theorem is a consequence of the "easy" part of Helson's theorem, 

and Paley's inequality. The main result of this thesis is the "only 

if" part : 

Theorem 1: Let m : H1-+ H1 be an idempotent multiplier. Then supp m 

is in the ring of subsets of ll>o generated by the arithmetic sequences , 

finite sets, and lacunary sequences. 



7 

The proof will use the fact that a multiplier is necessarily a bounded 

linear transformation. This general property of multipliers of a 

commutative Banach algebra may be found in [7]. It is a direct 

consequence of the closed graph theorem and the uniqueness of Fourier 

coefficients. 

2n 
Definition JJmJJ = sup{jm(f}JJl: JJfh = fo Jf(e )Jd 8/2ni l, f E Hl} 

Before continuing, I will give an excuse for use of the multiplier 

terminology. Helson [5] actually later proved a stronger version of 

his theorem as follows (the semi idempotent theorem): 

Let ~ c: M(T). If ~(n) = 0 or 1 for all n _2. 0, then (supp ~) n 7l>o differs 

by a finite set from a periodic sequence in 7l>O· 

This implies that all idempotents m : Hl-+ Hl of the form m(f) = 

~*f, ~ E M(T) are also of the form m(f) = v*f where v( M(T) and 

\J * \J = \) . As a corollary, when supp m is lacunary, we have an object 

which exists only as a multiplier and cannot be a measure. 

I would finally like to isolate two main ingredients of the proof 

of Theorem 1 (for the proof see the next section). Helson [5] considered 

the weak* 1 imit points of the set of measures {e-in 8 d~( e ): n > 0} to 

get useful information about ~. The same idea occurs in [3], where 

a proof of Cohen 1 s idempotent theorem is presented. (The generalization 

of He 1 son 1 s to 1 oca lly compact abe 1 ian groups). I use a variation of 

this; considering weak* limit points of { e-in 8m(ein8 Kn( e )) : n _2. O}where 

m is an idempotent Hl multiplier and Kn( e ) is Fejer 1 S kernel. 

Next, the argument depends on: 
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Theorem 2 (McGehee, Pigno, Smith [8]): 

where n1 < ··· < nN are integers, N is a natural number, {ak}ca:, and 

c > 0 is an absolute constant. 

This result resolved the Littlewood conjecture 

21T I N I f L e i nke de ~ c 1 og N. 
0 k=1 

Historically, Cohen's theorem is also related to Littlewood's 

conjecture, through the fact that Cohen [1] started by obtaining the 

lower bound c(log N/log log N)1/8 and then used the method of proof 

in his proof of the idempotent theorem. The McGehee, Pigno, Smith 

inequality will give certain lower bounds on lim II when lm(n)l ~ 1 or 
A 

m(n) = 0 on an interval of integers n (lemmas 2, 5). 

2. Proof of Theorem 1. 

2.1 

Lemma 1. For each idempotent multiplier m : H1 -+ H1 there is an 

idempotent measure ~ E M(T) such that the multi p 1 i er of H1 defined 

by 

mo(f) = m(f) - ~ * f, f E H1 

satisfies the condition: 

For all integers x > 0 there is an integer g > 0 

such that [g,g + x] n supp mo = 0. Briefly, 
A 

supp mo has arbitrarily large gaps. 

( 3) 
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mo may not be idempotent, but satisfies mo(n) E {-1, 0, 1} for 

all n. Also note that supp ~is in the coset ring (by Helson's theorem) 

and that 

supp m = (supp mo) 1::. (ll>o n supp ~). 

,, 
Hence, if Theorem 1 is to be true, it must be that supp mo is either 

finite or a finite union of lacunary sequences (and the theorem would 

also follow if this were so) . Proving the latter will be the next 

step, but first the proof of the lemma: 

Proof of lemma 1: 

For each n > 0 let Kn denote the Fejer kernel 

~ ( 1H) · · Kn ( e ) = . w 1. - n + 1 e 1 J e , e E T . 
J=-n 

Recall that Kn ~ 0 and 

~TT 

II Kn 11 1 = f
0 

Kn( e )de/2n = 1 

for all n. Fix an idempotent multiplier m: Hl ~ Hl. Since the function 

ein e Kn( 8 ) is in Hl, we may define functions gn( 8 ) by 

Then ll gn ~ l..S.IIm ll IIKnlll = llm ll for all n; hence the sequence { gn( 8 )de/2n} 

has a weak* limit point v in M(T). This implies that, for some 

increasing sequence { nk}k: l and for all Q,E ll, 

A 

lim 9nk( Q, ) = v (d. 
k-+oo 

Note that for IQ, I..S. n we have 
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9n( 9- ) = Kn( 9, )m(n+Q, ) = ( 1- -'n:
11) m(n+ _Q, ). 

Now for fixed 9-E ll we eventually have j9- j ~ nk so that 

Since m(n) E { 0, 1}, this limit is 0 or 1; hence\) is idempotent. By 

Helson's theorem there exist p ~ 1 and t > 0 such that 

Consider the remainders of {nk} modulo p. There must be some 

r, 0 ~ r ~ p - 1 such that nk = r mod p for infinitely many nk. Letting 

d~( e ) = eir8dv(e ) 

satisfies the lemma, as will be verified: 

Clearly ~(n) = v (n-r) and ~ is idempotent. Let X > 0 be given. 

" For fixed Q, , v ( Q, ) = m(nk+ Q, ) eventually, and thus for sufficiently 

large k we have 

V (9, ) = m ( n k+ Q, ) , Q, ~ t, t + 1 , ... , t + X. ( 4) 

By the definition of r, there is also some nk = r mod p, nk ~ r such 

that (4) holds. Then 

" " 
v ( 9- ) = v ( 9-+nk-r) ~(nk+9- ), Q, = t, t + 1, ... , t + x; 

hence mo ( n ) = m ( n ) - G ( n ) = 0 f 0 r a 11 n E [ n k + t ' n k + t + X J ' s 0 

we can take g = nk + t. 
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2.2 Lacunarity and Fejer's Kernel 

It is easy to see that a set E of nonnegative integers is either 

finite or a finite union of lacunary sequences if and only if for 

some c > 0 and 0 < a < s we have 

\ [an, S n] n E \ < c n = 0, 1, 2, ... 

(Here \A\ is the cardinality of the set A). 
A 

Rudin [12] used the following argument to show that supp m must 

be of this form if m : Hl-+ H2 is an idempotent multiplier. First, 

by the closed graph theorem 

B = s u p {\\ m ( f ) \\ 2 : \\ f \\1 ~ 1 , f E H 1 } < oo • 

Next, considering f( 8) = ei3n8K3n( e) where K is Fejer's kernel, we 

get by Bessel's inequality that 

n 

B2 ~II m(f)\\
2 ~ I: lm(3n+j)f(3n+j)\2 
2 j=-n 

= J) ~( 3n+j) (1 - 3nj+i) \ 2 

n 

> i L ~(3n+j) - 9 . 
J=-n 

4 A 

= g\ [2n,4n] n supp m\. 

Similarly, for Hl multipliers, and using Theorem 2 instead of Bessel's 

inequality, we get the following leillma: 

Lemma 2. Let m : Hl -+ Hl be a multiplier such that 

A 

\m(n) \ >1 for all n E supp m. 
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Let a, y E 7l, a _?_ y _?_ 1 and define 

A = l [a, a+y) r.suppm l 

B = 1 [a+y, a+2y) n supp m 1 

then 

c (1 +A) II m II .?. 2 I 1 o g !+B I 

where c is the absolute constant in Theorem 2. 

Proof: Define V E H1 by 

V( e) = (eia e + ei(a+y)e ) Ky_ 1( e). 

Then I V h i 2 and 

A 

V(j) = 0, j _?_ a+ 2y . 

Therefore 

/""--. A A 

lm(V)(j) l = lm(j)l IV(j)l =lm(j)l _?_ 1, j € [a, a+y] n supp m 

............... A 

sup p m ( V) c [ 0 , a+ 2y) n sup p m 

Now estimate II m(V) h using Theorem 2, but enumerating supp r;{V) from 

right to left, say 

~ 
supp m(V) = { n1 > n2 > · ·· > nN } . 

By defir i tion, ns+1• ns+2• .. . 'ns+A E [a, a+y) n supp ~ ;hence 
N _............_ 

II m( V) b..?.. c L l m(V)(nk) Ilk 
k=l 

B+A l 

> c k =~+l k 
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This gives 

c (1+A \ llmll ~ llm(V)Iil/ IIVII1 > 2 log 1+B) · 

Similarly, considering 

W( e) = (ei(a+y;_e + ei(a+2y}:8)Ky_ 1(e) 

~ and numbering supp m(W) from left to right gives 

c ( 1 +B ) II m II ~ 2 1 og 1 +A · 

The method of lemma 2 gives more general estimates if we use 

more general combinations of Fefer kernels, but only if we estimate 

the norm of these combinations more carefully, as in the next lemma. 

Lemma 3. Let y > 0, a1 < a2 < ··· < aN be integers satisfying 

a k+ 1 - a k ~ y + 1, k = 1, 2, . . . , N - 1. 

Let q, c2, ... , CN E !I; then 

Proof: Since Ky ~ 0, the Cauchy-Schwartz inequality gives 

Sihce 
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Ky( e) = L: 
j=-y 
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and from lj I~ y, ak+1 - ak ~ y + 1 follows 

a k - aQ, + j = 0 , ¢o) k = Q; , j = 0 , 

N. 2 
we see that the last integral equals · 2:: lck I . 

k=1 
Only the special case q = c2 = . . . = CN = 1 will be needed. Some 

discussion concerning the significance of the general case is given 

in section 3. 

2.3 First proof of Theorem 1 

Let mo be the multiplier in the conclusion of lemma 1. It remains 

to show that supp mo is finite or is a finite union of lacunary 

sequences. It suffices to show 

..... 

sup l[3y, 6y) n supp mol < oo 

Y ElN 

under the assumptions (3) and 1 ~o(n)l > 1, n E supp mo. By lemma 2, 

there is a constant p> 1 depending only on ~mo~ such that 

~ B < A < p B whenever max(A,B) > p 
p - - -

( 5) 

where, as in lemma 2, 

A = I [a 'a + X ) n sup p mo I ' 
..... 

B = i[a +X, a+ 2x) nsupp mol 

a~x~1, a, x E ll.. 

The constant p may be chosen from ll. for convenience . 
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Now suppose 

3p ~ j(3y, 6y) 0SUpp moi _ S for SOme Y E Jl. 

Define N > 1 by 

I claim there is a sequence of integers 3y < x1 < x2 < · · · < XN 

satisfying 

( i ) X k+ 1- Xk ~ 3y, k = 1, 2, ... , N-1, 

(ii) ! [xk> xk + 3y) n suppmoj = 3pN-k+1, k = 1, 2, .. . , N. 

The claim follows easily from the gap condition (3) and the uniformity 

condition (5): There exists g > 3y such that I [g, g + 3y) n 

supp mol = 0. But s ~ 3pN, so there exists X1, 3y ~ X1 < g, such that 

If N ~ 2, continue by noting that for 

A 

B I[X1 + 3y, X1 + 6y) n supp mol· 

condition (5) implies B ~ 3p N-1. Again some g > x1 + 3y such that 

![g, g + 3y) n supp ~ol = 0 is available; hence 

I [x2, X2 + 3y) n supp mo I = 3pN-1 

for some x2 ~ x1 + 3y. Continuing this way gives the required sequence. 

By property (ii) and the uniformity (5) it follows that 

I[Xk + y, Xk + 2y) n supp mo l~ pN-k ( 6) 
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for each k. Finally, define f E H1 by 

N 
f(e ) = L (ei(xk+Y)e + ei(xk+2y)e )Ky_ 1(e ) 

k=l 

By lemma 3, /Jf ll 1 .S. / 2N. Now estimate ll mo(f) h as in the proof of 

lemma 2 by enumerating supp ~ backwards, say 

~ 
supp mo(f) = { nT < nT-1 < ··· < n2 < n1} 

N 
= U (Xk, Xk + 3y) n SUpp mo. 

k=1 

Note that for n ~ c (xk, Xk + 3y) we have 

Q, ~ 3p + 3p2 + ... + 3pN-k+1 < 3pN-k+2. 

Also note that f = 1 on [xk + y, Xk + 2y]. Thus by Theorem 2: 

T /~ 
II mo (f) 1\1 ~ c L I mo (f) ( n n ) I I Q, 

£=1 Yv 

N 
> c L L I mo ( n Q, ) I I Q, 

k= 1 n Q, E [Xk+Y, Xk+2y) 
N 

> c L PN-kf3pN-k+2 
k=1 

by (6) and (7), 

(7) 

But 3 ~ N+1 > s, so s 
f..i 

is bounded by constants not depending on y, as was to be shown . 

This concludes the first proof of Theorem 1. The second proof 

will give a better estimate on the number s = 1[3y, 6y) n supp mo l 

above. The argument above resulted in 

s ~ 3pN+1 .s_ 3 pYP
4

1\ mo l!
2 
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where y is some absolute positive constant. If p were independent 

of limo II· this estimate would be 

s < eall moll 2 
(8) 

for some constant a. But, in fact, 1 emma 2 on 1 y gives p ~ e c imo II 

Nevertheless, (8) is true. The proof involves a more careful counting 

argument which yields a sequence analogous to {xk} above, without 

the use of lemma 2, as will be seen below. 

2.4 Second proof of Theorem 1. 

Lemma 4. Let Ec ?l., a, b, yEll. and 

y > 0, b > a + y. 

Define A = ![a' a + y) n Ei , 
I 

B = i[b, b + y) n El. 

Suppose that A > B. Then there is a finite sequence of integers 

a- y ~ XN < XN-1 < ··· < x2 < x1 ~b-y with the following properties: 

( i ) 

( i i ) 

Xk - Xk+1 ~ y, 
N 

Define F = U 
k=1 

k = 1, 2, 

Define the function M on ll. by 

... ' N-1 

M(n) = J F n En [n,oo)i . 

Then M satisfies 

1) M(x1 + y) ~ 2B, M(x1) - M(x1 + y) > B 

2) M(Xk+1 + y) - M(xk) ~ 2M(xk) ) 

3) M(Xk+1)- M(Xk+1 + y) > M(xk) 
k = 1, 2, ... , N-1 

4) M(xN) ~ A/2, M(XN-1) < A/2. 



-Remark: Let F = 

imply that 

and also 

N 
l ' 

k=1 

18 

Condition ( i i ) is set up to 

_1_ > q 1 og ( 1 +A) + c 2 
M(n) 1+B 

( 1+A) N ~ c3 log 1+B 

for some absolute constants q > 0, c3 > 0, c2, q. This will be 

proved later, in the course of lemma 5. 

Proof of lemma 4: Let x1 be the largest integer in (- oo , b - y] 

satisfying \[X1, x1 + y) (l E\ > B. Such an integer exists because 

a E (-oo,-b - y] and \[a, a + y) n E\ = A > B. This also implies a 

~ x1 ~ b - y. Define inductively a finite or infinite sequence 

x1 > x2> as follows: 

Suppose x 1 > · · · > Xk, k 2._ 1, have been. defined. Let Xk+ 1 be 

the largest integer in (-oo , Xk - y] satisfying: 

k-1 
I ( [xk' Xk + 2y) u LJ [x £, - y' X£, + 2y)) n E I' 

£,= 1 

if such an integer exists; if not,then stop . 

(9) 

The sequence having been defined, 1 et N be the 1 east index such 

that 
N-1 

1 ( [xN, XN + 2y) u U [x£, - y, x£, + 2y)) n E I .?.. A/2. 
x_ =1 

We now check that N is well-defined and that (i) and ( i i) hold. 

Let K be the largest index such that XK exists and XK .?_a- y. K 

exists since x1 2._ a > a - y and since there are finitely many Xk in 

[a - y, xi]. We claim that 
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K -1 
1 ([xK, xK + 2y) u ,Q_~.11 [x,Q_ - y, xt + 2y)) n El _?. A/2. (10) 

There are three cases: 1) a + y < XK. Then by definition of XK, 

condition (9) fails for each XK+1 in [a - y, XK - y] c: [a - y, a]. 

In particular it fails for XK+1 = a, and this yields (10) 

since ![a, a+ y) n E1 =A_?. A/2. 2) a i XK < a+ y. Then either 

l[a, xK) n El 2_ A/2 orl[xK, a+ Y)l ~ A/2; hence either 

l[xK -y, XK) n E I _?. A/2 or l[xK,XK + y) n E \ 2_ A/2. But (9) must fai 1 

for XK+1 = XK- y 2_ a - y; thus both of the latter possibilities imply 

(10). 3) a- Y ~ XK < a.Then I[XK, XK + 2y)n E\2_ l[a, a+ y) n El 

= A, so (10) is clear. 

The existence of K implies that N is well-defined and also that 

XN 2_ a- y. Now (i) is true by definition. As for (ii}: 

1) M(x1) - M(x1 + y) = I[X1, x1 + y) n El > B by definition. 

Next, we have M(x1 + y) = J [x1 + y, x1 + 2y) n E I· Suppose 

x1 + y ~ b - y. Then by definition of x1 we must have 

ICx1 + y, x1 + 2y) r El ~B. Now suppose b-y < x1 + y. Then 

1 [ x 1 + y , x 1 + 2y ) n E 1 1 [ x 1 + y , b ) n E 1 + 1 [ b , x 1 + 2y) n E 1 

< I[X1 + y, b) n El + I [b, b + y) n E I 

= J[x1 + y, b) n El +B. 

If x1 =b-y, then [x1 + y, b) n E = !01 = 0. If X1 i b - Y - 1, 

then B _?. l[b - y, b) n EJ by definition of x1, and I [b - y, b) n El 2_ 

l[x1 + y, b) n El since b-y < x1 + y. Thus M(x1 + y) i 2B in all 

cases. 
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2) Suppose Xk+l = Xk - y. Then M(xk+l + y) - M(xk) = 0. Suppose 

Xk+l < Xk- y. Then by (9) we have 

l[x, x + y} n Eli M(xk) ( 11) 

for all X E (Xk+l• Xk- y]. If Xk- y < Xk+l + y, then 

M(Xk+l + y) - M(xk) i M(xk - y) - M(xk) 

= l[xk- y, Xk} n Eli M(xk). 

If Xk+l + Y i Xk- Y, then 

M(Xk+l + y) - M(xk) = I([Xk+1 + y, Xk+1 + 2y) U [Xk- y, Xk)) n El 

< l[xk+1 + y, Xk+l + 2y) nEI + l[xk-Y· xk)nEI 

i 2M(xk) by (11). 

3) This is just (9). 

4) This is the definition of XN· 

Combined with the McGehee Pigno Smith inequality, lemma 4 implies: 

Lemma 5. There is a constant o > 0 such that any multiplier 

m Hl -+ Hl with lm(n)l > 1, n .o: supp m satisfies: 

where 

( 
1+A )t 

Ji m II ~ 0 ll og 1 +B I 

A= l[a, a+ y)n supp m1 , 
B = 1 [b, b + y) n supp ~ 1, 

and a, b, y € ~ are any integers satisfying a~ 2y > 0, b ~a + y. 

Proof: For the proof we assume A > B since an entirely symmetric 

argument works for A < B. Let E = supp m and consider the 

N sequence {xk}k=1 obtained by applying lemma 4 to the data E, a, 

b, y. The function f defined by 
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N 

f ( e) = L ( e i x k8 + e i ( x k + Y )8 ) K Y- 1 ( 8) 
k=1 

is in H1 since x1 > · · · > XN ~a - y ~ y, and we have llf h ~ 2/N 

by lemma 3 and the condition Xk - Xk+1 ~ y. 

The function m(f) satisfies 

~ A A 

supp m( f) = supp m n supp f 

N 
c ' ' [xk - y, xk + 2y) n E = F 

k';'1 

~ 
and lm(f)(n)l = lm(n)f(n) 1 

N ~ 
~1forn :o: U [xk,xk+y)nE=F. 

k=1 

By Theorem 2 and the definition of M(n) in lemma 4, 

~ 
~m(f)lll ~c L lm(f)(n)I/M(n) 

n( f 

> c L 1/M(n). 
- nEF 

We will now prove the remark following lemma 4: We have 

M(x~) 
This is almost like L l/t except for some missing pieces 

t=B+1 

which are small. In fact: 

and 

M(x1+y) 
2: 1/t ~ (M(x1+y)-B)/B ~ 1 by ii(1) 

t=B+1 

M(xl) 
L: 1;t > 

t=M(xl+y)+l 
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(again by ii(1)). Therefore 

Similarly, fork= 1, 2, ... , N-1 we have 

and 

M(Xk+1) M(Xk+l+y}+M(xk) 
L 1/t > L 1/t > M(xk) 2. -! 

t=M(Xk+1+y)+1 - t=M(Xk+1+y}+1 - M(Xk+1iy)+M(x0 

(by ii(3) and ii(2)). Therefore 

Putting together (12) and (13) we have 

On the other hand, 

MCxN) 

L" 1/M(n) ~ ~ L 1/t 
nEF t=B+1 

1 (1+~)) ~ 9 log l+B 

1 ( 1+A/2) ~ 9 1 og 1+8 by i i ( 4) . 

M(x1) > B + M(x1 + y) ~ B 

M(Xk+1) > M(xk) + M(Xk+1 + y) 

by ii(l) 

by ii(3) 

since Xk+1 + y ~ xk, 

(12) 

( 13) 
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or 
( 

M(XN-1) 
log 1+8 

N ~ --iog 2 + 2 

< log ( 1~~~ 2 ) /log 2 + 2 by ii(4). 

We therefore have 

[[fill~ 2 (log ( 
1 ~~~ 2 ) /log 2 + 2)\ 

[Jm(f)[[1 ~ ~ log e~~~2 
)· 

and this implies 

for some constant o > 0. 

jjm 112. o(log ( i:~) t 
This cone l udes the proof of lemma 5. The second proof of 

Theorem 1 is the following: 

Let mo be the multiplier in the conclusi0n of lemma 1. (Thus 

supp mo has arbitrarily large gaps and I mo(n)l > 1 for 

n E supp mo). Let y > 0 be an integer, let a= 2y, and let 

b >a+ y be such that [b, b + y) is contained in a gap; i.e., 

A 

B = [[b, b + y) n supp mo[ = 0. 

By lemma 5 we have 

A = I [2y, 3y) nsupp ~0 i ~ q ec2llmoll2 

and this holds for all y. 
A 

Thus supp mo is finite or a finite 

union of lacunary sequences, as was to be shown. 

I do not know whether the exponent ~ is sharp in lemma 5, 

even for the case B = 0. On the other hand, the exponent 1 in 

lemma 2 is clearly sharp for the case B = 0, for the same reason 
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that the McGehee, Pigno, Smith inequality is sharp; the multiplier 

determined by 

ffi( n) = I ~ n E [O,A] 

otherwise 

has norm the order of 1 og A. One may speculate that 1 emmas 2 and 

5 are far from being sharp when A and B are both large, since it may 

be that a lower bound in terms of lA-B !, rather than A/B, exists. 

3. Some consequences and remarks. 

Reca 11 that in the proof of Theorem 1, an important step was 

identifying a sequence of disjoint intervals. 

k=l,2, ... ,N 

having the property that 

" \[xk, Xk + 3y ) n supp mj = PN-k+l 

for some number p > 1. This made it possible to conclude that ~ m!! was 

large if N was large , regardless of how far XN was from x1 . An analogy 

may be drawn between this situation and a certain gap theorem of Y. 

Mayer, as proved by J. Fournier in [2]. I will state this 

result since it, in fact, motivated my approach above: 

Let 

be integers such that 



25 

nk+1- mk+1 ~ s nk, k = 1, 2, ... 

A 

for some positive number s. Let ~ be a Borel measure such that ~(n) = 0 

for nk < n < mk, k = 1, 2, .. . 

Then 
00 

for some absolute constant c. 

Here are some of the analogies: 

A 

1) The density of supp ~ in [mk> nk) is decreasing at least 

geometrically. The density of supp m in [Xk> Xk + 3y) is decreasing 

geomet rica 11 y. 

2) There is no restriction from above on how far mk+1 is from 

nk. There is no restriction from above on how far Xk+1 is from Xk· 

3) Suppose only finitely many (mk, nk) are considered and 

a(mk) = 1, k = 1, 2, ... , N. Then the estimate is ~ ~ ~~ ~ c/ N, the 

same as in the proof of Theorem 1 for ~m ~ . 

Fournier proves the above gap theorem by a speci a 1 case of his 

general method for constructing bounded functions with prescribed 

Fourier coefficients. The result is that a function G t L00 exists 

such that 

k = 1, 2, 
00 

A 

supp G c. U [mk, nk) 
k=1 

Similarly, the McGehee, Pigno, Smith inequality is a consequence of 



26 

another L
00 

construction; if t 1 > 9.z > ... > tT ~ 0 are given integers , 
• 00 

and 'Y 1, Yz, ... 'Y1 are on the unit circle, then a funct1on <P E L 

exists such that 

~ <P ~ ooi c, an absolute constant. 

Now observe that in both constructions the functions are in fact 
00 

analytic; G, q, E H . By taking into account this additional property 

of <P , the proof of Theorem 1, and of the case A > B of 1 emma 5 can 

be modified to yield the same conclusions from the weaker assumption 
00 

that m is a Fourier multiplier of the space H into BMOA, the space 

of analytic functions of bounded mean oscillation. This is a weaker 

assumption because, by theH 1-BMOAduality, the property 

is equivlent to 

m : BMOA -+ BMOA 

for Fourier multipliers m. I will now discuss the changes needed 

to make the proofs work under the assumption that m H
00 

-+ BMOA. Let 

Lemma 1: The only change is that we define gn by 

n = 0, 1, .. . 
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We show that llgnll 1 , n = 1, 2, . .. , arebounded by duality: 

Let 

Then 
A 

Vn(j) = 1 2n ~ j ~ 4n, 

supp Vn c [0, 6n), 

00 

00 I I Let f t L , f 1 ~ 1. Then the convolution Vn * f e H satisfies 

IVn * fl ~ 2 and 

2n 
J e i 3n Ggn ( e)fT8Td o/2n 
u 

2n 
= f_ m ( e i 3n e Kn ( e ) ) T(8) d e/ 2 n 

0 

2n 
= j( m(ei3n8Kn( e ))(Vn*f)( e )de/2n 

0 

2TI A 

= J ei3n8Kn( e) m(Vn*f)( e) de/2 n (since m'''0 or 1). 
0 

By the HLBMO.Ll. duality, the magnitude of the last integral is bounded 

by 

~ c II m II llVn*f t~ 2 c lim II · 

But the supr emum of the first integral over l f l l oo~ 1 is just !lgn ll1; 

hence l\gnl\ 1 ~ 2c ll mil for a 11 n. 
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I thank T. Wolff for suggesting the use of the function Vn in the 

above calculation. 

Lemma 2 and the first proof of Theorem 1: Consider, for instance, the 

set {nr < nr-1 < ... < n2 < n1} in the proof. Let cf>E if' be the McGehee, 

Pigno,Smith construction for this set, with y£ = sgn ~(n £); i.e.; 

Re(¢(n x_ )· sgn(m(n£)) )2.. 1/ £ 

supp ¢ c [nr, co) 

II ct> ll co ~ c · 

We then show that ~m( cp ) !IBMOA is large, by duality: Integrating against 

the same function f E H1 used in the proof gives 

12N [lm( cp ~OOA~ iifli1 lim( cf> ) IIBMOA 

?n 
> I c Re l m( cp)f de/2 iT[ 

0 

2.. c N/3 p2 as in the proof. 

So the final estimate, llmll2.. c/ N/(3/2p2),has the same form as before. 

Notice that we can get cp c H
00

, instead of merely Leo , because of the 

backwards enumeration of the set { n £} . In general , the set may be 

very spread-out, so this is not possible in the other direction. For 

this reason, lemma 5 does not carry over completely, bu t does work 
A 

for the case A > B, m : H ~ -+BMO, l~(n)l 2.. 1, n E supp m. 

As a fi na 1 remark, I wi 11 note the connection between 1 emma 2 

and the fo 11 owing theorem of C. Fefferman, which I quote from Smith 

[13]. 
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Let ak ~ 0, k = 0, 1, 2, Then the following two conditions 

are equivalent: 

00 

1) L: nkak eike ( BMOAfor all sequences {n k} such that 
k=O 

i Tlk I = 1, nk ~ a: , k = o, 1, 2, . . . . 

2) su_g_+ f. ( (f1)n-1 ak )2 < oo. 

nell j=1 k=jn 

The connection is that lemma 2 and the HLBMO'\dua1ity immediately 

give the implication 1) ::::> 2). In fact, the case nk = 1 implies 

00 

¢ (e) = 'E a ke ike E BMO. 
k=O 

Now fix y E zz+ and define 

where 

00 

f(e) = L Cj(e.ijye +ei(j+1)Y8)Ky_ 1(e) 
j=1 

(j+1)y-1 

Cj = L ak 
k=jy 

By a direct calculation it can be seen that 

2n 
" ¢( e)~d 8/2n = 

Jo 

> 

00 

1: c· 
j=1 

J 

'Y) 

2: c· 
j=1 

J 

00 

L c~ 
j= 1 J 

y-1 

I: (ajy+t 
t=-y+1 

jy+y-1 

I: ak 
k=jy 

On the other hand, the integral is bounded by 

+ a(j+ 1)y+t)(1- 1~1) 
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00 

c ll tllsMoA \If IIJ ~ c I! tisMoA· zCZ::l c]7 

where we have used lemma 2 to estimate ~~~1 · We conclude 

.: ((j+1~y-1 )2 
~ · L a k i_ c \! ¢ \! ~MO'\ < oo 

j=1 k=jy 

for all y Ell+, and so 2) follows. 
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PART II 

The purpose of this paper is to prove an extrema 1 property of the 

decreasing rerrangement of a function on an interval. As a consequence, 

we obtain the sharp constant c = 1 in the inequality 

I~* !lsMO ~ c !f ~BMO , thus refining a result contained in Theorem 3.1 

of [1]. 

Let I c lR be a bounded nondegenerate interval. For f E: L1(I) let 

f* ·<: L1(I) denote the decreasing rearrangement of f. For a subset 

E c: I with IE I > 0, denote the average of f over E by fE = 

(1/ IEI)f. f(t)dt. The letters F,G will be reserved for functions 
E 

F, G : [O,oo) --r [O,oo) with the special properties that F(O) = 0, F(A.)/A. 

is increasing for A.> 0 and G(A.)/A. is decreasing for,\> 0. (We note 

for clarity that the only condition on G(O) is G(O) ~ 0.) 

With the above notation the main result is: 

Theorem. Let f E L1(I) and let a<: lR such that fK = a for at least 

one interval K c I. Suppose f o If- -::;.1, Go If-alE L1(I) where F,G 

have the above properties. Then 

( 1) 

where the supremum on the left is over all intervals J ci with fJ*=a, 

the supremum on the right is over a 11 i nterva 1 s K c I such that fK =a, 

and where by definition%= 0, TI = oo for x > 0. 

Before proving the theorem we apply it to f ~ BMO (I). For 

1 ~ p < oo, taking F(A. ) = ,\ P, G( ;J = 1, and taking the supremum over 

all a on both sides of (1) gives: 
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Corollary. For f c BMO(I) and 1~p < oo we have 

1 r * * 1 r sup -- J If - f I p ~ sup T 1 J ! f - f J I p 
JeT !JI J J Jci I.J, J 

where on both sides the supremum is over all intervals J c I such that 

I J! > o. 
The proof of the theorem may be divided into two lemmas. The 

first is a refinement of the well-known rising sun lemma and its proof 

is omitted (for the original rising sun lemma see [3] or [2], p. 293). 

Lemma A. Let f ( L1(I) where I is a bounded interval, let aE lR, and 

suppose fi i_ a . Then there is a finite or countable set s_ of pairwise 

disjoint subi nterva 1 s of I such that fL = a for each L c s_ and f ~ a 

almost everywhere on I \ US.. 

The second lemma contains the main computations. 

Lemma B. Let f E L1(I) where I is a bounded interval. Suppose J ci 

is an interval with IJi > 0 and E c I is a set with lEI > 0, such that 

( i ) * f.= fE = a and 
J 

( i i ) 

Assume that F o If- aJ , G o If- a! E L1(I) where F,G are the functions 

in the theorem Then 

(2) 
fEF o jf- al 

.frG o lf- a l 

where by definition ~ = 0 and ~ = oo for x > 0. 
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Proof of Lemma B. If JJ!:F* - a l = O,then JJ F o I f* - a l = 0 since 

F(O) = 0, and this gives (2). We now assume JJ If* - a l > 0. Define 

the functions m, M, n, N for A ~ 0 by 

m(A) = f f*it) - adt 
{t: f ( t) - a> >-} (I J 

* ( ) - a - f ~ t dt 
n ( A ) - f { t : a- f ( t ) >A 10 J 

M( A) = J f(t) - a dt 
{t:f(t)-a>A}fiE ' 

Letting H = F or G, the integrals in (2) are given by 

fJHo lf*- a l =-f(O, oo )H(A)! Adm( A) +H(O) l{t: f*(t) = a} nJ I -f(O,oo )H( A)/Adn(1) 

fEHo If - a l = -f(O, oo)H( A)I AdM( A) +H(O) l{t: f (t) = a} nE! -J(O, oo)H( A)n dN( A). 

We claim that 

(Fl) -f(O, oo)F( A)/ Adm( A)/m(O) ~ -f(O,oo )F( A)/ AdM( A)/M(O), 

(F2) -f(O, oo)F( .\)/ Adn( A)/n(O) ~ -J(o, oo/( >- )/ AdN( A)/N(O), 

(Gl) - f(O, oo)G( A)/ \ dm( \ )/m(O) ~ -J(O, oo)G( \ )/ \ dM( A)/M(O), 

(G2) -J(O, oo)G( \ )/ \ dn(A)/n(O) ~ -J(O, oo)G( \ )O.dN( A)/N(O), 

(G3) G(O) 1 {t : f*(t) = a } n J l/m(O) ~ G(O)I { t : f(t) = a} n E I!M(O). 

Assuming the claim for the moment, we derive (2) as follows: 

Hypotheses (i) and (ii) of the lemma imply m(O) = n(O) = 

i JJ If*- al ~ ~JE If - a l = N(O) = M(O). In particular,m(O) = n(O) ::f 0 

and M(O) = N(O) ::f 0. Recalling that F(O) = 0, we obtain (2) by dividing 

the sum of (Fl) and (F2) by the sum of (Gl), (G2), and (G3). 
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We now prove the claim. The easiest inequality is (G3): We note 

that {t f*(t) = a} cJ since f~ = a , JJ If* - a l > 0, and f* is de-

creasing. Therefore I {t : f*(t) = a} n J I = Kt : f*(t) = a} I = 

I {t : f(t) = 11 } I ~ l {t : f(t) = a} n E!. Since G(O) > 0 and m(O) < 

M(O), (G3) follows. 

The other inequalities will follow by iDt!!gration by parts, once 

we establish 

(iiia) m( A. ) < M( A. ) and (iiib) n( A. ) < N( A. ) for X > 0. 
mnrY - MTOT ii10T - NTOT 

To prove (iiia) write J = [a,b] where a < b and set XI = f*(a+O) - a . 

(We include the possibility that :\1 = +oo .) For 0 .s_ X < .A. l we have 

( () -j f*(t)- a dt = 
m O) - m X - {t:O<f*(t)- a<XlpJ 

J f* ( t) - a dt 
{ t : 0 < f * ( t ) - a~\} 

= J f(t) -adt 
{t:O<f(t)-a_s_A.} 

f( t ) - adt -
> J{ t:O<f(t) -a.s_\1 nE -

= M(O) - M( A. ). 

Recalling that m(O) _s_ M(O) we obtain m(O)-m( A. ) > M(O)-M( :\ ) 
m(O) - M(O) so that 

m( x)/m(O) _s_ M( A. )/M(O). For .A_~ XI we have m( A. ) = O,s0 (iiia) is proved. 

The proof of (iiib) is similar and we omit it. 

To prove (Fl) we may assume without loss of generality that 

F( A. )/ A. = ¢ ( A. ) is a bouwled increasing function (by the monotone 

convergence theorem). Since m(O+O) = m(O) and m{ A. ) --r 0 as .A. --r oo , 

integration by parts yields 

- ~O, oo) ¢ ( A. )dm( A. )/m(O) = ¢(0+0) + f (O , oo )m( A. )/ m(O)d ¢ ( A. ). 

Simi 1 arl y , 
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- f(O,oo)¢(\)dM(\)/M(O) =~(0 + 0) + f(O,oo)M(;>.)/M(O)d¢(\). 

In view of (iiia) and the fact that d¢ l 0, we obtain (F1) by comparing 

the last two equations. The proofs of (F2), (G1), and (G2) are similar. 

This concludes the proof of lemma B. 

Proof of the Theorem. We first note that both sides of i nequa 1 i ty 

(1) are invariant under the transformation f 1-7 -f, a 17 - a> so that 

we may assume fi < a. Let s_ be the set of i nterva 1 s given by lemma 

A and set E = U£. Let J c I be any interval such that f~ = a. We 

check that f f -a= 'l: ff -a= 0 so that fE =a. Also, 
£ Lt:£, L 

! 1 f - al = L: 
E LE:.L 

= 2! f - a 
{t:f(t)>a}nE 

f If - al = L 2 f f -a = 
L LE" {t:f(t).>a} n L 

d. 

= 2 f f - a = 2 f f*- 0 . 
{t:f(t)>a} {t:f*(t)>a} 

> 2! f: - 0. = J 1 f* - ~I· 
{ t: f ( t) >a} n j J 

Therefore lemma B applies and we obtain inequality (2). If 

f G o I f -a I > 0 then 
E 

JE Fo !f-al 

f Go lf-al 

) 
'";" fL Fo !f-al f Fo I f-al 

= Lc-£ < su L ' 
E , Lf Go[f-ai-L/ .. J Golf-al 

Lc£ L ~ L 

and the latter does not exceed the right-hand side of (1). If 

f Go If -cxl= 0 and! F o !f -al = 0, then by our 
E E 

convention 

~ F 0 If -all f G o!f -al= 0 ..s. R.H.S. of (1). If I Golf -al = 0 E . 

and I!=" o If -al > O_then f F o If -r( l > 0 for some E . I ' L L E £,whereas 
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J G o I f - a I = 0 , so that the r i g h t- hand s i de of (1 ) i s +co and we a g a i n 
L 

have { F o If -all{ G o 1 f - a \~ R.H.S. of (1) . Hence in all cases 

we have by (2) that j F o If* - a!/ jJ G o If* - a! < R.H.S. of (1). 

Taking the supremum over all admissible J yields (1) . 

We now consider functions of bounded mean oscillation on the 

circleT:: lR/2nZZ. For f E BMO(T) define 

where J ranges over all intervals in T. Let f# denote the symmetric 

decreasing rearrangement of f . Making use of the corollary, it can 

be shown that llf#\1 ~ 21\f:l . However, there are functions f such that 

[~#\\ > lif\1 . We give an example, omitting the computations. 

1 1 Define f(O) = f(l) = f{-1) = 0, f(3) = f( - 3) = 1 and interpolate 

linearly for the remaining e [-n,n]. Then f# is the piecewise linear 

function with corners (-1,0), (0,1), (1,0), and it can be shown that 

llf# \1 II > \If II, 

The failure of the inequality !If# II < ~ f ~ is due to the fact 

that the supremum \If# I! may be achieved for an interval J on which 

f# is not monotone. This makes it possible to construct an 

( equimeasurab 1 e) 11 perturbati on 11 f for which ~f 1\ < 1\ f# 1\ (as in the 

above example). 

We conclude with two problems. : 

1) For f 10 BMO(T), are there any equimeasurable rearrangements g 

for which 1\g~ is minimal, and if so, describe them. 

2) What is the best constant c such that !I f#\1 ~ c[! f l[ for a 11 

f E BMO(T)? 
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