I. Studies on the Coordination of Bis-hydroxybenzamido Chelating Ligations to Chromium, Iron, and Osmium II. A Survey of the Organometallic Chemistry

of Osmium Tetraoxide

Thesis by George H. Spies

In Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California

1985

(Submitted October 4, 1984)

ACKNOWLEDGEMENTS

It is indeed difficult to recall with certainty everyone who has helped make this work possible. At the risk of missing someone, I would like to mention several deserving people.

A special thanks goes to my advisor, Dr. Terry Collins, for his guidance and support and to the entire Kiwi group, including former members Jay and Judy Audett and Steve Baxter, for their camaraderie and assistance. Dr. Bernard Santarsiero has contributed much time and effort to my graduate career, including collaborative work on eight or so crystal structure determinations. The Bernardstown hot tub will be missed. The Inorganic Faculty and the X-ray Crystallographic Group, including Kirby and Jean, have also been very helpful and supportive. Pat Anderson, our secretary, has continued (valiantly) to hold our research effort together.

I also would like to thank Dan Zirin (TGZ); Thursday lunches will be missed. I will also not forget the fun "Hog" softball and "Jerry's Kids" volleyball games. Good Luck next season. My housemates, Ed Schlesinger and A. Ray Bulls, have done a good job putting up with me, especially during these final days.

Toepler experiments were conducted in the laboratories of Dr. J.E. Bercaw with the help of Mark "Tippy" Thompson. The well-drawn figures in this thesis were done be Valerie Purvis. (The author takes full credit for any errors in the text, whether real or typographical; he typed this thesis himself with a little help from T_EX and the Chemistry VAX 11/780.)

Last and assuredly not least I would like to thank my parents, family, and friends from Ohio who have kept me from getting too homesick through their calls, letters, visits, and tasty care packages.

G.H.S.

ABSTRACT

The coordination chemistry of chromium, iron, and osmium with bis-hydroxybenzamido chelating ligands was investigated. Two types of complexes were obtained on reacting $CrCl_3 \cdot 6H_2O$ with 1,2-bis(3,5-dichloro-2-hydroxybenzamido)ethane ((H)₄CHBA-Et). A neutral dimeric complex, in which two chelates bridge two metal centers, was discovered and characterized by X-ray crystallography. This is the first molecule in which both forms of monodentate organic amide coordination (*i.e.*, O-bound and N-bound coordination) have been found. The Nbound amide was shown to be a better σ -donor. This is the first well-characterized example of N-coordination to chromium(III).

A second complex, which is a precursor to the neutral dimer, has not been fully characterized. It may also be dimeric. Similar complexes, with different bishydroxybenzamido ligands, have been examined. Iron(III) species, synthesized from these ligands and FeCl₃, appear to be analogous to the latter chromium(III) compounds.

X-ray crystallographic studies have complemented investigations into the coordination chemistry of these bis-hydroxybenzamido ligands with several transition metals. In addition to the dimeric chromium(III) complex, in which the ligand bridges two metal centers, many osmium(IV) complexes were found with the bis-hydroxybenzamido ligands coordinated to one metal center as a planar tetradentate tetraanion. These structures exhibited the first examples of bonds between osmium(IV) and an N-coordinated organic amide ligand and a phenoxide ligand. One such complex, a μ -oxo dimer, was found with potassium ions in unusually low coordination environments (*i.e.*, four- and five-coordinate). Oxidation of trans-Os(CHBA-Et)(py)₂ subsequently resulted in crystals of a new complex with a hydroxy and a methoxy group on the ethylene unit bridging the amide nitrogen atoms of the chelated ligand. The bond distances and angles for this molecule are very similar to those of its precursor, trans-Os(CHBA-Et)(py)₂. The ligand, (H)₄CHBA-Et, was found to cocrystallize with pyridinium

chloride. This structure has provided a benchmark for comparison with complexed chelates; few significant differences were observed.

The fusion of 2,3-bis(2-hydroxy-benzamido)-2,3-butane with $(NH_4)_2OsCl_6$ (T>300°C) resulted in the formation of an osmium(IV)-imidazoline complex.

Also examined was the organometallic chemistry of osmium tetraoxide. Oxidation of low valent carbonyl complexes with the quinuclidine adduct of osmium tetraoxide resulted in attack of both the low valent metal and a carbonyl ligand with the formation of μ -CO₂ mixed-valent complexes. The surprising stability of this new type of CO₂ complex is kinetic in origin as demonstrated by the chemistry of a series of compounds. Decomposition with loss of CO₂ was observed for more labile metal complexes. In the absence of nitrogenous bases, oxidation of Ru(CO)₃(PPh₃)₂ with osmium tetraoxide resulted in the formation of what is believed to be a tetranuclear complex. The low valent metal center and a coordinated carbonyl ligand were oxidized.

One other mode of reactivity was discovered. Oxidative addition of osmium tetraoxide to $Pt(PPh_3)_2(C_2H_4)$ displaced the ethylene ligand with the formation of a μ -oxo bridged tetranuclear complex. These and other potential modes of OsO_4 reactivity with organometallic and inorganic complexes are discussed.

TABLE OF CONTENTS

Acknowledgements
Abstract
List of Figures
List of Schemes
List of Tables
Abbreviations for Spectroscopic Data
Chapter 1. Studies on the Coordination of Bis-hydroxybenzamido
Chelating Ligations to Chromium, Iron, and Osmium
Introduction $\ldots \ldots 2$
Results and Discussion
Synthesis
X-ray Crystallography
Conclusions
Experimental
General Information
Synthesis
X-ray Crystallography
References
Chapter 2. A Survey of the Organometallic Chemistry
of Osmium Tetraoxide
Introduction $\dots \dots \dots$
Results and Discussion
Conclusions
$\mathbf{Experimental}$
General Information
Synthesis
References

TABLE OF CONTENTS (cont.)

Appendix A. Structure factor amplitudes $(10F_o, 10F_c, 10\sigma_F;$		
$\sigma_{\rm F}/{\rm k} = [{\rm F_o} + \sigma_{{\rm F}^2}]^{1 \over 2} - {\rm F}_o , {\rm k} = 0.3100; {\rm F_o} < 0 \; {\rm means} \; {\rm I_o} < 0)$		
for $(H)_4$ CHBA-Et·pyHCl	Pa	ge 17 0
Appendix B. Structure factor amplitudes ($10F_o$, $10F_c$, $10\sigma_F$;		
$\sigma_{\rm F}/{\rm k} = [{\rm F_o} + \sigma_{{\rm F}^2}]^{\frac{1}{2}} - {\rm F}_o , {\rm k} = 1.9012; {\rm F_o} < 0 {\rm means} {\rm I_o} < 0)$		
for trans-Os $(\eta^4$ -CHBA-HMEt $)(py)_2$	•	. 185
Appendix C. Structure factor amplitudes ($10F_o$, $10F_c$, $10\sigma_F$;		
$\sigma_{\rm F}/{\rm k} = [{\rm F_o} + \sigma_{{\rm F}^2}]^{\frac{1}{2}} - {\rm F}_o , {\rm k} = 1.0108; {\rm F_o} < 0 \; {\rm means} \; {\rm I_o} < 0)$		
for trans- $Os(\eta^2$ -HBA-TMI) ₂ Cl ₂		. 216
Appendix D. Publications		. 23 0

LIST OF FIGURES

Chapter 1

Figure 1.1. Schematically illustrated known high valent complexes Page 9
Figure 1.2. Potentially tetraanionic tetradentate planar
bis-hydroxybenzamido chelates used in these studies $\ldots \ldots \ldots \ldots \ldots 12$
Figure 1.3. ORTEP view of trans-Os $(\eta^4$ -CHBA-HMEt $)(py)_2$
Figure 1.4. ORTEP view of trans-Os $(\eta^4$ -CHBA-Et $)(py)_2$
Figure 1.5. Structure of trans- $Cr(biuret)_2Cl_2$
Figure 1.6. Dimeric chromium(II) bridging amido complexes
Figure 1.7. Possible formulations for the Type I compounds
and schematic structure of the Type II chromium dimer
Figure 1.8. Dimeric species thought to form when cupric ion
and N, N' -diglycl-1,2-ethanediamine was titrated with aqueous
sodium hydroxide $\ldots \ldots 42$
Figure 1.9. Proposed coordination modes of bis-pyridine-
carboxamido ligands with Mn^{+2} , Fe^{+2} , Co^{+2}
Figure 1.10. ORTEP view of (H) ₄ CHBA-Et·pyHCl
Figure 1.11. ORTEP view of ${Cr((H)CHBA-Et)(py)_2}_2 \cdot 2py$.
Bond lengths for the coordination sphere of the chromium
atoms are in angstroms
Figure 1.12. Schematic view of $K_2[{Os(\eta^4-CHBA-Et)(OPPh_3)}_2O]$
$\cdot \frac{3}{2}$ acetone $\cdot H_2O$. The water molecule and the fractional acetone
molecule are not shown $\ldots \ldots \ldots$
Figure 1.13. Structure of $[{Os(\eta^4-CHBA-Et)(OPPh_3)}_2O]^{-2}$.
Averaged bond lengths (over four sets of atomic positions) are in
angstroms and averaged bond angles are in degrees
Figure 1.14. Potassium ion coordination mode found in the molecular
structure of $K_2[{Os(\eta^4-CHBA-Et)(OPPh_3)}_2O]\cdot\frac{3}{2}acetone\cdot H_2O$

LIST OF FIGURES (cont.)

Figure 1.15. ORTEP view of trans-Os $(\eta^2$ -HBA-TMI)₂Cl₂.

Bond lengths are in angstroms and bond angles are in degrees . . . Page 77

Chapter 2

LIST OF FIGURES (cont.)

Figure 2.11. Possible structures for $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)Os$ -			
$O_2(\mathrm{NC}_7\mathrm{H}_{13})$ from $\mathrm{CH}_2\mathrm{Cl}_2$ (a) and from benzene (b) Page 146			
Figure 2.12. Proposed structure for the reaction product of			
OsO_4 and $Ru(CO)_3(PPh_3)_2$ in the absence of nitrogenous bases 150			
Figure 2.13. Proposed structure for the reaction product of			
OsO_4 and $Pt(PPh_3)_2(C_2H_4)$ in the absence of nitrogenous bases 153			

LIST OF SCHEMES

Chapter 1

Scheme 1.1. Proposed organic oxo transfer reaction involving
potential high valent mono-oxo complexes
Scheme 1.2. Synthetic route to the bis-hydroxybenzamido
ligands used here
Scheme 1.3. Resonance structures for N - and O -complexed
organic amide groups
Scheme 1.4. Proposed coordination pathway for bis-hydroxy-
benzamido ligands to chromium(III)

LIST OF TABLES

Chapter 1

Table 1.1. The dependence of coordinating groups on
E° of $Cu^{II,III}$ couples
Table 1.2. Several high valent chromium, iron, and osmium complexes,
involving organic fragments, that have not been discussed above
Table 1.3. Bond lengths (in angstroms) for the molecular structure
of (H) ₄ CHBA-Et·pyHCl
Table 1.4. Bond angles (in degrees) for the molecular structure
of (H) ₄ CHBA-Et·pyHCl $\ldots \ldots 52$
Table 1.5. Bond lengths (in angstroms) for the molecular structure
of ${Cr((H)CHBA-Et)(py)_2}_2 \cdot 2py$
Table 1.6. Bond angles (in degrees) for the molecular structure
of ${Cr((H)CHBA-Et)(py)_2}_2 \cdot 2py$ (
Table 1.7. Bond lengths (in angstroms) for the molecular structure
of trans-Os(CHBA-HMEt)(py) ₂
Table 1.8. Bond angles (in degrees) for the molecular structure
of trans-Os(CHBA-HMEt)(py) ₂ \ldots \ldots \ldots \ldots \ldots 72
Table 1.9. A comparative listing of selective linkages in the
free ligand $(\eta^4-(H)_4CHBA-Et)$, trans-Os $(\eta^4-CHBA-Et)(py)_2$,
$K_2[{Os(\eta^4-CHBA-Et)(OPPh_3)}_2O]$, and
trans-Os $(\eta^4$ -CHBA-HMEt)(py) ₂ (in angstroms)
Table 1.10. Bond lengths (in angstroms) for the molecular structure
of trans-Os $(\eta^2$ -(H)HBA-TMI) ₂ Cl ₂
Table 1.11. Bond angles (in degrees) for the molecular structure
of trans- $Os(\eta^2-(H)HBA-TMI)_2Cl_2$

LIST OF TABLES (cont.)

Table 1.12. Pertinent data for the syntheses of the organic
chelates: (H) ₄ HBA-oBz, (H) ₄ HBA-DMBu, (H) ₄ tBuHBA-Et,
$(H)_4$ CHBA- o Bz, $(H)_2$ NMHBA-Et
Table 1.13. Fractional coordinates (CLA-P5: $\times 10^5$; HO1-HP5:
\times 10 ⁴) and thermal parameters (U _{ij} \times 10 ⁴ in Å ² ; B in Å ²)
for $(H)_4$ CHBA-Et·pyHCl
Table 1.14. Fractional coordinates (Cr-P10: $\times 10^5$; P11-P16:
\times 10 ⁴) and thermal parameters (U _{ij} \times 10 ⁴ in Å ² ; B in Å ²)
for ${Cr((H)CHBA-Et)(py)_2}_2 \cdot 2py \dots \dots$
Table 1.15. Fractional coordinates $(Os(A)-Cl(2D): \times 10^5; O-H(46B):$
imes 10 ⁴) and thermal parameters (U _{eq} $ imes$ 10 ⁴ in Å ² ; B in Å ²)
for $K_2[{Os(\eta^4-CHBA-Et)(OPPh_3)}_2O] \cdot \frac{3}{2} acetone \cdot H_2O$
Table 1.16. Fractional coordinates (Os-P10: $\times 10^5$; W-HP10:
\times 10 ⁴) and thermal parameters (U _{ij} \times 10 ⁴ in Å ² ; B in Å ²)
for trans-Os $(\eta^4$ -CHBA-HMEt $)(py)_2 \cdot \frac{1}{4}H_2O$
Table 1.17. Fractional coordinates (Os-SO1: $\times 10^5$; H1-H16:
imes 10 ⁴) and thermal parameters (U _{eq} $ imes$ 10 ⁴ in Å ² ; B in Å ²)
for trans-Os $(\eta^2$ -(H)HBA-TMI) ₂ Cl ₂ ·2DMF

ABBREVIATIONS FOR SPECTROSCOPIC DATA

Infrared Spectroscopy (IR):

br	broad
mb	medium and broad
ms	medium and sharp
S	strong
sb	strong and broad
sh	sharp
SS	strong and sharp

Nuclear Magnetic Resonance Spectroscopy (NMR):

d	doublet
m	multiplet
s Gradies on th	singlet

Chapter 1

Studies on the Coordination of Bis-hydroxybenzamido Chelating Ligations to Chromium, Iron, and Osmium.

Introduction

Studies on the oxidation of organic and inorganic compounds have been an area of considerable interest since the nineteenth century.¹ Today, oxidation chemistry encompasses a wide spectrum of research ranging from electrochemistry and redox reactions of metal ions to stoichiometric and catalytic oxidative transformations of organic functional groups. Our work has focused on two aspects of oxidation chemistry:

- investigating ligand systems that have the potential to stabilize transition metals in the higher oxidation states, to ultimately design improved oxidants for organic synthesis, and
- characterizing the reactivity of classical oxidants, such as osmium tetraoxide, with low valent organometallic complexes.

The development of new oxidants for organic synthesis and the modification of known reagents has traditionally been a rather empirical process due to the complex nature of most metal-based organic oxidations.² However, at our present level of understanding other strategies are possible. In many metaloxidant/organic-substrate systems, the participation of more than one active species in the overall oxidation has been documented.³ This generally results in poor chemoselectivity due to the differing reactivity of each active oxidant. The challenge is to learn how to control these specific reactions — to be able to transform multicomponent oxidations into single component oxidations, which are usually very chemoselective.⁴

The oxidation of secondary alcohols with chromic acid is a well-studied example.⁵ The mechanism of this reaction is now thought to involve four main stages:

 $Cr(VI) + R_2CHOH \longrightarrow Cr(IV) + R_2CO$ (Stage 1)

 $2Cr(IV) + 2R_2CHOH \longrightarrow 2Cr(III) + 2[R_2COH]^{\bullet}$ (Stage 2)

 $2Cr(VI) + 2[R_2COH]^{\bullet} \longrightarrow 2Cr(V) + 2R_2CO$ (Stage 3)

 $2Cr(V) \longrightarrow Cr(VI) + Cr(IV)$ (Stage 4).

Here the initial reaction (Stage 1) is complicated by the additional reactivity of a transient chromium(IV) species. The organic radicals formed in Stage 2 of this oxidation often undergo rearrangement reactions. Thus, when these rearrangements are faster that oxidation of the radical species, additional products are observed. As predicted by the stoichiometry, up to 66% of the alcohol can be converted into products other than the ketone.

The effect of multicomponent oxidants on the chemoselectivity was illustrated by a classic study. To probe the multicomponent nature of the chromium(VI) oxidation of secondary alcohols, Roček carried out several experiments with cyclobutanol and phenyl-t-butylcarbinol in which he was able to quench either the oxidations by chromium(IV) or by chromium(VI). Under the usual conditions, the chromic acid oxidations of these alcohols resulted in the formation of several products, cyclobutanone and 4-hydroxybutanal or pivalophenone, benzaldehyde, and t-butanol, respectively.

Addition of vanadyl perchlorate, which has been shown to rapidly reduce chromium(VI) to chromium(V) and (more slowly) chromium(V) to chromium(IV),⁶ allowed the organic oxidation to occur solely with chromium(IV); in the chromic acid/cyclobutanol system, the only oxidation product isolated was the cleavage product, 4-hydroxybutanal. Conversely, addition of cerium(III) to the chromic acid/alcohol system quenched the reactivity of chromium(IV) by a rapid disproportionation reaction of chromium(IV) to chromium(VI) and chromium(III).⁷ In the presence of cerium ion phenyl-t-butylcarbinol was oxidized with the formation of only a minimal amount (5%) of the cleavage products, benzaldehyde and t-butanol. The lesson from this system is that while the overall oxidations by chromic acid exhibit poor selectivity, each chromium component appears to be very chemoselective. The multiple products observed, therefore, result from the superposition of a number of chemoselective reactions, each producing a specific oxidized compound.

We believe the way to produce chemoselective metal-oxo oxidizing agents is to design systems in which it is possible to control oxidation state changes at the metal. Our approach has been to provide a well-defined coordination sphere at the transition metal center. To accomplish this goal, studies have been initiated utilizing chelating ligands that have the potential to:

- form high oxidized and highly oxidizing transition metal complexes, and
- form intermediate oxidation state reduced species, designed to be stable to further reduction.

Shown in Scheme 1.1 is a schematic reaction for an oxo transfer oxidation involving the proposed transition metal complexes of a tetradentate tetraanion. The chelating ligand serves to stabilize the higher valent species by providing a coordination sphere of negatively charged contact atoms and it preserves the integrity of the inorganic compounds due to the chelate effect. The main advantage is that the oxidation is limited to one oxidizing species, since the redox reactions are matched, *i.e.*, a straightforward net transfer of two electrons. The suppression of side reactions should lead to improved yields.⁴ The possibility exists for both stoichiometric reactions or catalytic regeneration of the high valent complex using co-oxidants, *e.g.*, iodosylbenzene,⁸ which might make reagents of this kind attractive for both small-scale and large-scale applications.

Suitable chelating ligands, *i.e.*, those that stabilize high valent transition metals, are rare.⁹ Most known high oxidation state compounds contain hard monodentate donors such as F^- , Cl^- , Br^- , O^{-2} , N^{-3} , and O_2^{-2} . New multi-dentate ligands will most likely have to mimic them, incorporating hard donor

Scheme 1.1. Proposed organic oxo transfer reaction involving potential high valent mono-oxo complexes.

SO barge. - The ligeads should | e of the mean + the higher out .W. hereds though + l from readily at and symplectic work prov S st, issue and and frame they be t constanta<u>r</u> Conglesces ar 11. == 0=

6

atoms in the contact positions. Considering the general geometric requirements of chelates, the binding sites are therefore limited to oxygen and nitrogen atoms. Proposed features for the design of these chelating ligands are outlined below; some have been experimentally verified:

1. High negative charge. — The ligands should be multianionic to counter the high positive charge of the metal in the higher oxidation states.

2. Insensitivity to oxidation. — The ligands must be able to withstand the strongly oxidizing conditions to prevent decomposition of the complexes and degradation of the ligand framework.

3. Superior chelating properties. — The ligands should form favorable (five- or six-membered) metallacycles upon chelation and should be resilient to hydrolysis.

4. Coordinative unsaturation. — The complexes should have available sites for chemistry to occur, allowing for prior coordination of the organic substrate to the metal, if necessary.

5. Potential for adaptation. — The ligands should be easily modified so that the oxidizing power of the derivative complexes can be attenuated. Incorporation of steric bulk or chirality to affect shape selective or asymmetric oxidations should also be possible.

6. Economical syntheses. — To be practical reagents for organic synthesis, these ligands should be easily produced from readily available starting materials in high yield.

Several chelating ligand systems have been proposed and/or shown to stabilize high valent chromium, manganese and iron; they include porphyrin and corrole derivatives and the salen ligand.* Upon complexation these planar chelates are di- and trianionic and tetradentate. Complexes are known to accommodate the oxo and, in one instance, the nitrido ligand in an axial site (Figure 1.1). The sensitivity of these chelating ligands to oxidation is variable. For instance, in the absence of oxidizable substrates oxidation of Fe(TPP)Cl and $Fe(TTP)Cl^{\dagger}$ with iodosylbenzene leads to rapid degradation of the porphyrin.¹⁰ Oxidation of Cr(II) and Cr(III) porphyrinato complexes¹¹ yields characterizable Cr(IV) and Cr(V)

^{*} salen = N, N'-(ethylene)bis(salicylidenimine).

[†] TPP = dianion of tetraphenylporphyrin; TTP = dianion of tetra-o-tolylporphyrin.

complexes; however, their catalytic activity with iodosylbenzene in oxidations of organic substates (e.g., alkenes) is shortlived. In general, these ligands are not well protected from oxidative degradation.

The characterization of high valent transition metal complexes has been difficult. Structures have often been proposed by implication from their reactivity, i.e., studies on the oxidation of alkanes, alkenes, arenes, etc. Such characterizations are far from being totally satisfactory. Controversy and uncertainty surround most of these studies due, in part, to limited spectroscopic techniques and to the fact that few high valent complexes have been isolated. Many of these complexes are stable only at reduced temperature $(-80^{\circ}C)$ and/or in solution. This is especially true for purported iron(IV)- and iron(V)-oxo complexes. (TmTP)FeOOFe(TmTP)[‡] is known to form a new complex, {FeO-(TmTP)(MeIm)_x, upon addition of a stoichiometric amount of *N*-methylimidazole (MeIm) at -80°C.¹² Magnetic susceptibility measurements and its paramagnetic behavior suggest it is a monomeric iron(IV)-oxo complex, viz., FeO(TmTP)(MeIm), but its full acceptance as an oxo complex must await definitive spectroscopic evidence. There are examples of well-characterized compounds. A polymeric complex, $catena-(\mu-\infty \alpha)$ (hemiporphyrazinato) iron(IV), with alternating μ -oxo ligands between the iron centers has recently been characterized by X-ray crystallography.¹³ Characterized manganese compounds include: Mn(TPP)(OMe)₂, {Mn- $(TPP)X_{2}O$ (X = N₃⁻, OCN⁻), MnN(TpMPP), and two as yet not definitively characterized complexes incorporating iodosyl ligands: {Mn(TPP)Y(OIPh)}2O $(Y = Cl^-, Br^-)$, and $Mn(TPP)(OI(OAc)Ph)_2$.^{*14}

Compounds of high valent chromium have been isolated as well; all are oxo compounds. Treatment of Cr(TPP)Cl with iodosylbenzene produces the chromium(V) compound, CrO(TPP)Cl, which decomposes on standing to Cr-O(TPP); this molecule has been structurally characterized.¹¹ A similar corrole

[‡] TmTP = dianion of *meso*-tetra-*m*-tolylporphyrin.

^{*} TPP = dianion of tetraphenylporphyrin; TpMPP = dianion of p-methoxyphenylporphyrin.

Figure 1.1. Schematically illustrated known high valent complexes.

o program doby, chattery whe comparison (Hits conversion of ¹⁴ Respectively, it was performed to an production), 10, OppH records producing, [Coloradou of P₂,¹¹⁴] which of ford [17 his complete its well as usualy of the process products to provide a literate.

the by heavier and to maintle the Pipus 1 Zachen for ever, as argument to whet the the terrelease protected doner that the whitting properties of a constit. Constanting a way in descent of a con-

derivative, CrO(tetmc),[§] is prepared by eluting the chromium(III) complex over silica gel (aerial oxidation).¹⁵ Recently, it was reported that $[Cr(salen)(H_2O)_2]PF_6$ would react with iodosylbenzene producing $[CrO(salen)]PF_6$,¹⁶ which also has been structurally characterized. This complex as well as many of the porphyrinato complexes have been shown to epoxidize alkenes.

Our studies have focused on the ligand system derived from 1,2-bis(2-hydroxybenzamido)ethane and closely related derivatives, which meets many of the requirements outlined above.¹⁷ As shown in Figure 1.2, these compounds are potentially tetraanionic, tetradentate chelates and upon coordination they form five- or six-membered chelate rings to the metal. The oxidative sensitivity of the ethylene unit, bridging the two hydroxybenzamido moieties (Figure 1.2a,c), was recognized at the onset. However, an argument existed that the tetradentate tetraanion would be such a powerful donor that the oxidizing properties of the derived complexes would be small. Consequently, it was decided to find out by experimentation what kinds of protection to oxidation were indeed necessary. The sensitivity of these chelating ligands to oxidation was found to be variable depending on the derivatization. The ethylene bridge in the prototype ligand, 1,2bis(3,5-dichloro-2-hydroxybenzamido) ethane ((H₄)CHBA-Et, Figure 1.2c), was recently identified as a vulnerable site for oxidative degradation.¹⁸ Chemical or electrochemical oxidation of trans- $Os(\eta^4$ -CHBA-Et)(py)₂ resulted in the eventual cleavage of the carbon-carbon bond of the ethylene unit. Many intermediates in the overall degradation scheme were isolated and characterized. In the presence of methanol and water, trans-Os $(\eta^4$ -CHBA-Et)(py)₂ was oxidized to an unusual compound with a hydroxy and a methoxy group on the ethylene unit (Figure **1.3**). This unwanted reactivity was shown to be easy to block. The ethylene bridge was replaced by the more robust dichlorophenylene bridge (Figure 1.2d). The phenol rings have routinely been chlorinated to block oxidation at the ortho and para positions. However, several initial coordination chemistry studies of low

[§] tetmc = the trianion of 7,8,12,13-tetraethyl-2,3,17,18-tetramethylcorrole.

Figure 1.2. Potentially tetraanionic tetradentate planar bis-hydroxybenzamido chelates used in these studies.

а

b

valent metals were performed using unchlorinated derivatives. These investigations have provided a foundation for the development of related transition metal systems including an alcohol oxidation catalyst.¹⁸

An important feature of 1,2-bis(2-hydroxybenzamido)ethane and its derivatives is the incorporation of the amide functional group into the central binding sites. Peptides and related compounds, containing the amide group, have been studied as models of metal-protein binding, especially with the late transition metals.¹⁹ Interestingly, the +III oxidation state of copper and nickel can be stabilized in these systems. Margerum has found that the electrochemical potential E° of the couple Cu^{III,II} decreases as the number of (N-bound) deprotonated amides coordinated to the metal increases (Table 1.1).²⁰ The E° values range from 0.98 V (vs. NHE) for one deprotonated N-bound amide to 0.55 V for three coordinated amide groups. Birker has structurally characterized the stable complex, tetra-nbutylammonium o-phenylene-bis(biuretato)cuperate(III).chloroform,²¹ and along with Bour and Steggerda has characterized a number of biuret complexes: K[M- $(\text{biuret})_2$ (M = Cu(III), Ni(III), Co(III))²²; here the coordination is via the "amide" nitrogen atoms. A cobalt(IV) complex containing N-bound organic amide ligands, trans-Co(η^4 -CHBA-DCBz)(4-t-Bupy)₂,[†] has recently been characterized by our group.²³ The stabilization of the higher oxidation states is expected to be a a general characteristic of N-coordinated amide groups for other metals such as chromium, manganese, and iron.

There have been few investigations reported in the literature concerning Nbound coordination of the amide functional group to the earlier transition metals, *i.e.*, to the triads of scandium to iron. Sigel and Martin believe this is due to the failure of these transition metal ions to substitute for the amide hydrogen.²⁴ Due to the high basicity of the deprotonated amide nitrogen atom in aqueous solution (pK_a = 15), metal ion hydrolysis often occurs before the amide coordination step. However, in some metal/chelating ligand systems, metal ion substitution at an

[†] CHBA-DCBz = tetraanion of 1,2-bis(3,5-dichloro-2-hydroxybenzamido)-4,5dichlorobenzene.

Figure 1.3. ORTEP view of trans- $Os(\eta^4$ -CHBA-HMEt)(py)₂.

Table 1.1. The dependence of coordinating groups on E° of Cu^{II,III} couples.

xup representation for a settion constituant of others interfailing on the first and strandbered objects thege to be formed." Rock and P^{(**}), and Co²⁺ generally interfail play where for the population much remains formation all stores of the population.

Cu(III)-Peptide	$\mathbf{p}\mathbf{H}$	$\mathbf{E}^{\circ}(V)^{a}$
-----------------	------------------------	-----------------------------

$Cu(H_{-2}glycylglycyl-L-histidine)$	7.5	0.98
Cu(H ₋₂ triglycine)	7.7	0.92
$Cu(H_{-2}$ diglycinamide)(OH)	9.2	0.89
$Cu(H_{-s}triglycinamide)$	9.5	0.64
$Cu(H_{-3}tetraglycine)]^{-1}$	9.3	0.63
$Cu(H_4N-formyltetraglycine)]^{-2}$	11.5	0.55

^aCu^{II,III} couples are reported vs. NHE and determined by cyclic voltammetry with a carbon paste working electrode. [CuL]_T = 5×10^{-4} M, $\mu = 0.1$ M NaClO₄, 25°C.

Cu(H_2glycylglycyl-L-histidine)

amide group is possible when prior coordination of other binding sites allows for favorable five- and six-membered chelate rings to be formed.^{*} Ions such as Pd^{2+} , Cu^{2+} , Ni^{2+} , and Co^{2+} generally exhibit pK_a values for the peptide hydrogen displacement reaction (equation 3) of 2, 4, 8, and 10, respectively.

$$M^{2+}$$
 + R'CONRH \rightleftharpoons H⁺ + [R'CONR-M]^{1+} (3)

According to Sigel and Martin, the pK_a values for the earlier transition metal ions are prohibitively high. However, few, if any, of these investigations have been conducted in organic solvents or under aprotic conditions which may drastically affect the observed results. The role of the "chelate effect" is also an important factor, though its influence is hard to define, making comparisons between various metal-ligand systems difficult.

Exceptions have been found. Compounds of osmium and the ligands 1,2bis(3,5-dichloro-2-hydroxybenzamido)ethane and 1,2-bis(3,5-dichloro-2-hydroxybenzamido)-4,5-dichlorobenzene have been characterized, several by X-ray structural analysis; trans-Os(η^4 -CHBA-Et)(py)₂ is shown in Figure 1.4.¹⁸ In all cases the osmium is located in the central site bound to the deprotonated phenolic oxygen atoms and the deprotonated amide nitrogen atoms. Other reports of **N**-coordination to the earlier transition metals have appeared in the literature. Martell proposed that aqueous ferric ion complexed to ethylenediamine-N,N'di(acetylglycine)-N,N'-diacetic acid with deprotonation of both amide hydrogen atoms at high pH.²⁵ Reinterpretation of the data suggests this is incorrect due to the fact that a precipitate, probably ferric hydroxide, formed during the titration with aqueous sodium hydroxide. Results from a titration of aqueous ferrous ion and bleomycin with base, however, suggests deprotonation of an amide group does occur near pH = 6.26 Most other studies of these early transition metals with compounds containing the organic amide and related functional groups have found only O-bound complexes such as trans-Cr(biuret)₂Cl₂ (Figure 1.5).²⁷

^{*} N-coordination of organic amides has been found only when the amide group has been part of a larger multidentate ligand.

However, several dimeric chromium(II) complexes in which the bidentate amide group bridges the two metal centers (Figure 1.6) have been found.²⁸

Our interest in developing new oxidants for organic synthesis has inspired the initial goals of this project: to investigate the coordination chemistry of 1,2bis(3,5-dichloro-2-hydroxybenzamido)ethane (and other derivatives) with many transition metals (chromium, iron, and osmium in this work) and eventually explore the oxidation chemistry of the higher valent complexes. In designing routes to these compounds we have considered the previous work with chelating ligands, described above, and we have looked to other characterized compounds of chromium, iron, and osmium as well. Table 1.2 summarizes most of the known compounds involving other ligands which contain carbon and hydrogen for these metals in the higher valences.

Figure 1.4. ORTEP view of trans- $Os(\eta^4$ -CHBA-Et)(py)₂.

Figure 1.5. Structure of trans-Cr(biuret)₂Cl₂.

Figure 1.6. Dimeric chromium(II) bridging amido complexes.

Table 1.2. Several high valent chromium, iron, and osmium complexes, involving organic fragments, that have not been discussed above.

High valent chromium complexes:

$$CrR_4^{\ a}$$

 $Cr(OR)_4^{\ b}$
 $Cr(NR_2)_4^{\ c}$
 $CrO(O_2CCR_2O)_2^{\ d}$
 $CrO_2(O-t-Bu)_2^{\ e}$
 $CrO_2(O_2CCH_3)_2^{\ f}$
 $CrO_2(OX(C_6H_5)_3)_2, X = C, Si, Ge, Sn^{\ g}$
 $CrO(O_2)_2(py)^{\ h}$
 $CrO(O_2)_2(bpy)^{\ i}$

High valent iron complexes:

$$\begin{split} & [\mathrm{Fe}(o-\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{AsMe}_{2})_{2}]^{+2-j} \\ & [\mathrm{Fe}(o-\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{PMe}_{2})_{2}]^{+2-k} \\ & [\mathrm{Fe}(\mathrm{S}_{2}\mathrm{NCR}_{2})_{3}]^{+1-l} \\ & [\mathrm{Fe}(\mathrm{TPP})\mathrm{Cl}]^{+1-m} \end{split}$$

High valent osmium complexes:

$$\{OsO_2(O_2R)\}_2 \ ^n$$

 $OsO_2(O_2R)(py)_2 \ ^n$
 $OsO(O_2R)_2 \ ^n$
 $OsO_x(NR)_{4-x}, x = 1, 2, 3 \ ^n$

- ^a Mowat, W.; Shortland, A.; Yagupsky, G.; Hill, N.J.; Yagupsky, M.; Wilkinson, G. J. Chem. Soc., Dalton Trans., 1972, 533; Mowat, W.; Shortland, A.J.; Hill, N.J.; Wilkinson, G. Ibid., 1973, 770; Kruse, W. J. Organomet. Chem., 1972, 42, C39.
- ^b Alyea, E.C.; Basi, J.S.; Bradley, D.C.; Chisholm, M.H. J. Chem. Soc, Sect. A, 1971, 772; Dyrkacz, G.; Roček, J. J. Amer. Chem. Soc., 1973, 95, 4756; Bochmann, M.; Wilkinson, G.; Young, G.B.; Hursthouse, M.B.; Abdul Malik, K.M. J. Chem. Soc., Dalton Trans., 1980, 1863.
- ^c Basi, J.S.; Bradley, D.C.; Chisholm, M.H. J. Chem. Soc., Sect. A, 1971, 1434.
- ^d Krumpolc, M.; Roček, J. Inorg. Syn., 1980, 20, 63, and references therein.
- ^e Sharpless, K.B.; Akashi, K. J. Amer. Chem. Soc., 1975, 97, 5927.

- ^f Treibs, W.; Schmidt, H. Chem. Ber., 1928, 61, 459.
- ^g Lyčka, A.; Šnobl, D.; Handlíř, K.; Holeček, J.; Nádvorník, M. Collect. Czech. Chem. Commun., 1981, 46, 1383, and references therein.
- ^h Stromberg, R. Arkiv. för Kemi, 1964, 22, 29.
- ⁱ Stromberg, R.; Ainalem, I. Acta Chemica Scandinavia, 1968, 22, 1439.
- ^j Hazeldean, G.S.F.; Nyholm, R.S.; Parish, R.V. J. Chem. Soc., Sect. A, 1966, 162.
- ^k Warren, L.F., Bennett, M.A. Inorg. Chem., 1976, 15, 3126.
- ¹ Pasek, E.A.; Straub, D.K. Ibid., 1972, 11, 259.
- ^m Felton, R.H.; Owens, G.S.; Dolphin, D.; Forman, A.; Borg, D.C.; Fajar, J. Ann. N.Y. Acad. Sci., 1973, 206, 504.
- ⁿ Schröder, M. Chem. Rev., 1980, 80, 187, and references therein.
- ^o Chong, A.O.; Oshima, K.; Sharpless, K.B. J. Amer. Chem. Soc., 1977, 99, 3420, and references therein.

Results and Discussion

Synthesis

The chelating ligands used in this study were all synthesized in moderate to high yield from the appropriate diamine and the appropriate 2-acetylsalicylic acid (Scheme 1.2). The acids were cleanly converted to the corresponding acid chlorides using oxalyl chloride and readily formed amides on mixing with dichloromethane solutions of the diamine. Treatment of the residues with aqueous base facilitated cleavage of the acetyl groups: reacidification precipitated the desired compounds from the aqueous solution. White microcrystalline solids were recovered on recrystallization, typically from acetone/water. The complex, 1,2-bis(2-hydroxybenzamido)ethane, was easily converted to the tetrachlorinated derivative, 1,2-bis(3,5-dichloro-2-hydroxybenzamido)ethane, using chlorine gas with glacial acetic acid as the solvent. This compound cocrystallized with pyridinium chloride and has been structurally characterized by X-ray crystallography. The structure has provided a benchmark for discussion of the structural parameters of the transition metal complexes of H_4 CHBA-Et and related ligands. (See Results and Discussion, X-ray Crystallography.)

Attempts to complex these potential ligands to chromium were made via both high valent species, e.g., CrO_3 , CrO_2Cl_2 , $Na[CrO(OC(O)C(CH_3)_2O)_2]$, and $Cr(O-t-Bu)_4$, and chromium(III) compounds: $CrCl_3 \cdot 3thf$ and $CrCl_3 \cdot 6H_2O$. Only with $CrCl_3 \cdot 6H_2O$ were tractable complexes isolable. Coordination compounds were made with the following chelates: 1,2-bis(2-hydroxybenzamido)ethane, 1,2bis(3,5-dichloro-2-hydroxybenzamido)ethane, and 1,2-bis(2-hydroxybenzamido)benzene.[†]

From a solution of $CrCl_3 \cdot 6H_2O$ (1 equiv.) and the bis-hydroxybenzamido ligand (1 equiv.), which had been refluxed over anhydrous sodium carbonate, two types of coordination complexes were obtained. Microcrystalline green powders (Type I) were collected on immediate addition of a suitable precipitating agent

[†] Abbreviated (H)₄HBA-Et, (H)₄CHBA-Et, and (H)₄HBA-oBz, respectively.

Scheme 1.2. Synthetic route to the bis-hydroxybenzamido ligands used here.

and, in one instance, a dimeric crystalline complex (Type II) was obtained from a pyridine solution after several weeks.

Infrared spectra of the Type I compounds[‡] have pronounced bands in the $3200-3600 \text{ cm}^{-1}$ region suggesting the presence of hydrated/coordinated water or hydroxyl groups. Infrared bands attributed to the ligand carbonyl stretching modes shifted to lower energy by $28-40 \text{ cm}^{-1}$. Using resonance arguments, both *N*-bound and *O*-bound complexes are consistent with this observation (Scheme 1.3). The elemental analyses were also in agreement with two formulations — one with *N*-bound organic amide groups, chelating to one metal, the other with *O*-bound amide groups, forming a dimeric or polymeric complex — as shown in Figure 1.7a,b. In both cases they are sodium salts.

Direct evidence for either assignment has not been forthcoming. Cation exchange has not been successful and attempts to measure the conductivity and the molecular weight have been hindered by poor solubility in suitable solvents. Attempts to oxidize these complexes by various chemical means,* with hopes of obtaining characterizable species with chromium in a higher valency, have also been unsuccessful. Indirect arguments for the dimeric/polymeric structure can be made if the Type II compound is considered.

This second coordination mode was discovered when an X-ray crystallographic study was undertaken on crystals which had deposited from a pyridine solution after several weeks. As shown in Figure 1.7c, the ligand was found to bridge the two chromium centers forming an unusual dimeric complex, coordinating via the two deprotonated phenolic oxygen atoms, a deprotonated amide nitrogen atom, and an amide-carbonyl oxygen atom. (See Results and Discussion, X-ray Crystallography.) Since the Type I complexes precede the formation of neutral dimers, such as $\{Cr((H)(CHBA-Et))(py)_2\}_2, i.e., immediate precip-$

[‡] Although the characterized complexes were synthesized in other solvents, Type I materials from pyridine exhibited identical infrared spectra.

^{*} Oxidants tried were: hydrogen peroxide, *m*-chloroperbenzoic acid, *meta*sodium periodate, iodosylbenzene, and *t*-butyl hydroperoxide.

Scheme 1.3. Resonance structures for N- and O-complexed organic amide groups.

Figure 1.7. Possible formulations for the Type I compounds and schematic structure of the Type II chromium dimer.

b

С

itation rather than extended exposure to pyridine, it is likely that these Type I salts are also dimeric or polymeric (Figure 1.7b). Had the N-bound complex (Figure 1.7a) formed first, it is unlikely that it would react with the solvent, pyridine, to dissociate the phenoxide, which would be necessary to form the observed Type II dimer. The Type I dimeric/polymeric structure is reasonable, if the possible acid-base equilibria are considered. Under basic conditions, three fundamental reactions can occur: i) metal hydrolysis (equation 4), ii) phenoxide coordination (equation 5), and iii) chelate-assisted N-coordination of the organic amide (equation 6).

$$[\mathbf{M}-\mathbf{OH}_2]^{n+} \iff [\mathbf{M}-\mathbf{OH}]^{(n-1)+} + \mathbf{H}^+$$
(4)

$$\mathbf{M}^{n+}$$
 + \mathbf{ArOH} \rightleftharpoons $[\mathbf{M}-\mathbf{OAr}]^{(n-1)+}$ + \mathbf{H}^+ (5)

$$\mathbf{M}^{n+}$$
 + \mathbf{R}' CONRH \rightleftharpoons $[\mathbf{M}$ -NRCOR']⁽ⁿ⁻¹⁾⁺ + \mathbf{H}^+ (6)

As shown in Scheme 1.4, the first chelation step is most likely coordination of a phenol (pK_a \approx 7-8²⁹). Then two plausible reactions could occur: i) the deprotonation and coordination of the second phenol or ii) the chelate assisted *N*-coordination of the organic amide group. Even in organic solvents it is doubtful that the equilibrium of the latter reaction could be shifted substantially to compete with phenol deprotonation and coordination in this system. This reaction has not been shown to compete effectively with metal hydrolysis which occurs at pK_a = 9.4 in aqueous solution;³⁰ *cf.* the reactivity of amide groups with Os(VI), Cu(II), Ni(II), and Co(II). Therefore, the next step would be attack by the phenol situated at the other end of the ligand. Coordination to the same chromium ion is not possible due to the geometric constraints and steric demands of the amide groups; thus monomers are disfavored when the amide nitrogen atoms will not readily deprotonate and coordinate to the metal.

Analogous dimeric/polymeric complexes have been postulated. Titrations of cupric ion and N, N'-diglycyl-1,2-ethanediamine (H₂L) with sodium hydroxide were found to be very complex. A satisfactory model for the complexation process, derived from the simultaneous spectrophotometric and potentiometric data, Scheme 1.4. Proposed coordination pathway for bis-hydroxybenzamido ligands to chromium(III).

includes two dimeric species, $[Cu_2(HL)_2]^{+2}$ and $[Cu_2(H_2L)_2]^{+4}$ (Figure 1.8).³¹ Vagg, *et al.*, have investigated the reactivity of several transition metal salts with derivatives of 1,2-bis(2-pyridinecarboxamido)ethane (H₂L'). Thermogravimetric analysis of complexes with non-deprotonated ligands (*e.g.*, Mn(H₂L')Cl₂, $Fe(H_2L')Cl_2$, or Co(H₂L')Cl₂) exhibited a decomposition pattern suggestive of a polymeric material; these compounds were also found to be fairly insoluble. A proposed coordination mode is shown in Figure 1.9.³²

If the Type I and Type II complexes have the chelating ligands coordinated in nearly the same way, similar infrared spectra might also be expected. Interestingly, the infrared spectra of the Type II complex were found to be significantly different than the corresponding spectra of the Type I material. The crystalline neutral dimer exhibits a strong band at 1508 $\rm cm^{-1}$ which has been tentatively assigned to the $\nu(CO)$ for the O-coordinated amido carbonyl. The Type I salt, on the other hand, has no infrared bands in this region, but does have strong bands from 1570-1610 cm⁻¹. The $\nu(NH)$ in the neutral dimer appears as a weak broad band centered near 3200 cm^{-1} ; all of the Type I complexes have a strong broad band extending from $3200-3600 \text{ cm}^{-1}$, which has a profile typical of hydrated/coordinated water or hydroxyl groups. To probe this situation further, the coordination complex of $CrCl_3 \cdot 3H_2O$ and 1,2-bis(N-methyl-2-hydroxybenzamido)ethane $((H)_2 NHMBA-Et)$ was synthesized. Here the ligand cannot coordinate through the amide nitrogen, since it is blocked by the methyl group, thus preventing the formation of monomers. Although this complex was not obtained analytically pure (possibly due to chromic hydroxide contamination), the infrared spectra of the crude material was nearly identical to that of the Type I $CrCl_3 \cdot 3H_2O/(H)_4HBA$ -Et complex. This result suggests the two complexes are very similar or that infrared spectroscopy is not a useful means of characterization for these complexes.

The coordination chemistry of iron(III) with these ligands was found to be analogous to the chemistry described above; the infrared spectra were identical Figure 1.8. Dimeric species thought to form when cupric ion and N,N'-diglycl-1,2-ethanediamine was titrated with aqueous sodium hydroxide.

Figure 1.9. Proposed coordination modes of bis-pyridinecarboxamido ligands with Mn^{+2} , Fe^{+2} , Co^{+2} .

to the corresponding Type I chromium(III) compounds. It is likely that coordination of the bis-hydroxybenzamido ligands is also the same. The complex with (H)₄HBA-Et has been characterized by infrared spectroscopy, elemental analysis, and magnetic susceptibility measurements. The magnetic moment was found to be significantly lower than the theoretical value for high-spin d^5 system. It is possible that this molecule exhibits intermediate spin as was found for an iron(III) prophyrinato complex.³³ No other iron(III) complexes were isolated in pure form; ferric hydroxide contamination seems likely.

Attempts to oxidize these iron(III)-bis-hydroxybenzamido complexes with hydrogen peroxide, *t*-butyl hydroperoxide, *meta*-sodium periodate, iodosylbenzene, and *m*-chloroperbenzoic acid have been made. The products of these reactions, dark brown or black colored noncrystalline solids, also have not been isolated in pure form.

X-ray Crystallography

X-ray Crystallography has played a major role in the characterization of the transition metal complexes involving these bis-hydroxybenzamido ligands. It has been especially useful when the nuclear magnetic resonance spectroscopic data were ambiguous or nonexistent. Five structure determinations are reported here, including the free ligand, $(H)_4$ CHBA-Et. Refined atomic coordinates and Gaussian thermal parameters appear in the Experimental section; structure factor tables for compounds which have not been reported in the literature appear in Appendices A-C.

$(H)_4$ CHBA-Et·pyHCl.

We have been fortunate to obtain crystals of this ligand which was found to cocrystallize with pyridinium chloride. It has proved to be a useful benchmark for comparisons of structural data of many bis-hydroxybenzamido complexes. A comparative listing appears in Table 1.9 below.

As with other salicylic derivatives the phenolic oxygen atoms were found to be coplanar with the carbonyl group (Figure 1.10).³⁴ Hydrogen bonding between the phenol hydrogen atoms[†] and the amide carbonyl oxygen atoms was also observed. The $H \cdots O$ contacts (1.659(3) and 1.741(3)Å) are similar to those found in salicylic acid (1.704Å).³⁵

The chloride ion was found to be near the pyridinium ion $(Cl^--H_{PN} 2.009(1)Å)$ and also in close proximity to the amide hydrogen atoms[‡] on the ligand framework $(Cl^--H_{N1} 2.611(1) \text{ and } Cl^--H_{N2} 2.267(1)Å)$. The hydrogen bonding to the chloride ion may be responsible for the observed *gauche* conformation about the ethylene bridge in the molecule; considering steric factors, the *anti* conformation should be more stable. Packing forces may also play a major role. Bond lengths and bond angles are given in Table 1.3 and Table 1.4.

[†] Located on a difference Fourier map.

[‡] In idealized positions.

Figure 1.10. ORTEP view of (H)₄CHBA-Et·pyHCl.

Table 1.3. Bond lengths (in angstroms) for the molecular structure of $(H)_4$ CHBA-Et·pyHCl.

CLA-C4	1.749(5)
CLB-C2	1.742(5)
CLC-C15	1.737(5)
CLD-C13	1.749(5)
O1-C1	1.351(5)
O1-H01	0.986(9)
O2-C16	1.352(5)
O2-HO2	1.000(9)
O 3-C7	1.247(5)
O4-C1 0	1.244(6)
N1-C7	1.334(6)
N1-C8	1.467(6)
N2-C9	1.460(6)
N2-C10	1.323(6)
C1-C2	1.414(6)
C1 -C6	1.401(6)
C2-C3	1.360(6)
C3-C4	1.385(6)
C4-C5	1.378(6)
C5-C6	1.388(6)
C6-C7	1.501(6)
C8-C9	1.536(6)
C10-C11	1.486(6)
C11-C12	1.409(6)
C11-C16	1.400(6)
C12-C13	1.379(6)
C13-C14	1.369(7)
C14-C15	1.378(6)
C15-C16	1.393(6)
PN-P1	1.324(7)
PN-P5	1.328(7)
P1-P2	1.360(8)
P2-P3	1.380(8)
P3-P4	1.355(8)
P4-P5	1.359(8)

Table 1.4. Bond angles (in degrees) for the molecular structure of $(H)_4$ CHBA-Et·pyHCl.

C1-O1-HO1	107.9(9)	N2-C10-O4	121.2(4)
C16-O2-HO2	117.9(9)	N2-C10-C11	118.7(4)
C7-N1-C8	121.4(4)	O4-C10-C11	120.0(4)
C9-N2-C10	123.0(4)	C10-C11-C12	121.9(4)
O1-C1-C2	119.3(4)	C10-C11-C16	118.8(4)
O1-C1-C6	123.3(4)	C12-C11-C16	119.2(4)
C2-C1-C6	117.4(4)	C11-C12-C13	119.4(4)
CLB-C2-C1	118.3(3)	CLD-C13-C12	118.8(4)
CLB-C2-C3	118.8(4)	CLD-C13-C14	119.1(4)
C1-C2-C3	122.9(4)	C12-C13-C14	122.0(4)
C2-C3-C4	117.8(4)	C13-C14-C15	118.5(4)
CLA-C4-C3	115.3(3)	CLC-C15-C14	118.7(4)
CLA-C4-C5	119.6(3)	CLC-C15-C16	119.2(3)
C3-C4-C5	122.1(4)	C14-C15-C16	121.9(4)
C4-C5-C6	119.6(4)	O2-C16-C11	118.8(4)
C1-C6-C5	120.2(4)	O2-C16-C15	119.1(4)
C1-C6-C7	117.8(4)	C11-C16-C15	122.1(4)
C5-C6-C7	122.5(4)	P1-PN-P5	122.1(5)
O3-C7-N1	122.2(4)	PN-P1-P2	119.4(5)
O3-C7-C6	120.7(4)	P1-P2-P3	119.7(5)
N1-C7-C6	117.1(4)	P2-P3-P4	119.1(5)
N1-C8-C9	113.5(4)	P3-P4-P5	119.6(5)
C6-C9-N2	113.2(4)	P4-P5-PN	120.0(5)

 ${Cr((H)CHBA-Et)(py)_2}_2 \cdot 2py.$

This was one of the first bis-hydroxybenzamido complexes examined by our group. It has alerted us to the fact that several coordination modes are available to these ligands. This is also the first structurally characterized example of *N*-bound organic amide coordination to chromium(III). Very few complexes of this type are known for the earlier transition metals.³⁶ The ambidentate nature of the organic amide functional group is also evident, showing that both forms of monodentate amide coordination are possible, at least where the amide is part of a larger chelating system. We have compared the metric data for these two groups below.

The structure consists of discrete dimers and disordered solvent molecules of pyridine. An ORTEP view (Figure 1.11) gives the metrical details on the immediate ligation about the chromium centers. The distorted octahedral environment includes the pyridine nitrogen atoms, an amide nitrogen atom, the phenolic oxygen atoms, and an amide carbonyl oxygen atom; the coordinated pyridine ligands are *cis* and the phenolic oxygen atoms are *trans*. Complete listings of bond lengths and bond angles are given in Table 1.5 and Table 1.6.

The Cr-N_{amide} bond length is 2.030(6)Å and the two Cr-N_{phenol} bond lengths are 1.915(5) and 1.931(5)Å; similar metal-ligand contacts are found for [Cr(salen)(H₂O)₂]Cl: Cr-N 2.005(9) and 1.997(8)Å, Cr-O 1.916(8) and 1.952(8)Å.³⁷ The Cr-O_{carbonyl} bond length is 1.976(5)Å, which is somewhat longer than the 1.91(2)Å Cr-O_{carbonyl} bond length found in *mer*-trichloro-(*N*,*N*'-dimethylformamide)(1,10-phenanthroline)chromium(III).³⁸

For the first time a direct comparison between both forms of monodentate organic amide coordination has been possible; both amide groups were found *trans* to pyridine. The Cr-N_{pyridine} bond lengths (2.145(6)Å, *trans*-to-N and 2.097(6)Å, *trans*-to-O) indicate a greater *trans* influence for the N-coordinated vs. the O-coordinated amido ligand. Interestingly, the C_{carbonyl}-N_{amide} bond length for the N-coordinated amide is longer than that found in the free ligand: 1.365(9)

Figure 1.11. ORTEP view of $\{Cr((H)CHBA-Et)(py)_2\}_2 \cdot 2py$. Bond lengths for the coordination sphere of the chromium atoms are in angstroms.

Table 1.5. Bond lengths (in angstroms) for the molecular structure of ${Cr((H)-CHBA-Et)(py)_2}_2 \cdot 2py$.

CR-O1	1.976(05)	CK-CM	1.340(12)
CR-O3	1.915(05)	CG-CM	1.424(11)
CR-O4	1.931(05)	CL1-CJ	1.750(08)
CR-N2	2.030(06)	CL2-CF	1.730(08)
CR-N3	2.097(06)	CL3-CM	1.759(08)
CR-N4	2.145(06)	CL4-CD	1.767(09)
N1-C1	1.486(09)	N3-P1	1.327(10)
N1-CO1	1.343(09)	P1-P2	1.402(13)
N2-C2	1.474(09)	P2-P3	1.363(14)
N2-CO2	1.365(09)	P3-P4	1.375(13)
C1-C2	1.560(10)	P4-P5	1.391(12)
CO1-O1	1.278(09)	N3-P5	1.344(10)
OS-CA	1,322(08)	N4-P6	1.340(10)
O4-CG	1.302(09)	P6-P7	1.376(12)
CO1-CH	1.487(10)	P7-P8	1.381(13)
CO2-O2	1.270(09)	P8-P9	1.397(13)
CO2-CB	1.504(10)	P9-P10	1.388(11)
CA-CB	1.427(10)	N4-P10	1.345(10)
CB-CC	1.405(10)		
CC-CD	1.353(11)	Solvent Molecule:	
CD-CE	1.380(11)		
CE-CF	1.360(11)	P11-P12	1.34 (2)
CA-CF	1.417(10)	P12-P13	1.40 (2)
CG-CH	1.435(11)	P13-P14	1.40 (2)
CH-CI	1.408(10)	P14-P15	1.33 (2)
CI-CJ	1.360(11)	P15-P16	1.44 (2)
CJ-CK	1.429(12)	P11-P16	1.32 (2)

Table 1.6. Bond angles (in degrees) for the molecular structure of ${Cr((H)-CHBA-Et)(py)_2}_2\cdot 2py$.
O1-CR-O2	91.2(2)	O3-CA-CB	124.7(6)	CG-CM-CK	126.4(8)
01-CR-04	88.1(2)	O3-CA-CF	120.1(6)	CR-N3-P1	121.5(5)
O1-CR-N2	91.4(2)	CB-CA-CF	115.0(6)	CR-N3-P5	119.5(5)
O1-CR-N3	175.6(2)	C02-CB-CA	123.3(6)	P1-N2-P5	118.9(7)
O1-CR-N4	86.7(2)	CO2-CB-CC	116.7(6)	N3-P1-P2	122.4(8)
O3-CR-O4	175.8(2)	CA-CB-CC	119.9(7)	P1-P2-P3	118.9(9)
O3-CR-N2	92.8(2)	CA-CC-CD	120.1(7)	P2-P3-P4	118.8(9)
O3-CR-N3	90.4(2)	CL4-CD-CC	118.6(6)	P3-P4-P5	120.0(8)
O3-CR-N4	89.7(2)	CL4-CD-CE	118.3(6)	N3-P5-P4	121.0(8)
O4-CR-N2	91.3(2)	CC-CD-CE	122.9(7)	CR-N4-P6	121.4(5)
O4-CR-N3	90.0(2)	CD-CE-CF	116.8(7)	CR-N4-P10	118.1(5)
O4-CR-N4	86.2(2)	CL2-CF-CA	117.0(5)	N4-P6-P7	124.0(8)
N2-CR-N3	92.5(2)	CL2-CF-CE	117.9(6)	P6-P7-P8	117.8(8)
N2-CR-N4	177.0(2)	CA-CF-CE	125.1(7)	P7-P8-P9	119.0(8)
N3-CR-N4	89.2(2)	O4-CG-CH	126.4(7)	P8-P9-P10	119.5(8)
C1-N1-CO1	122.1(6)	O4-CG-CM	119.1(7)	N4-P10-P9	121.1(7)
CR-N2-C2	120.8(4)	CH-CG-CM	114.4(7)		
CR-N2-CO2	124.8(5)	CO1-CH-CG	118.9(6)	Solvent Molecule:	
C2-N2-CO2	114.1(6)	CO1-CH-CI	120.3(6)		
N1-C1-C2	107.0(6)	CG-CH-CI	120.8(6)	P12-P11-P16	124.2(11)
N2-C2-C1	111.0(6)	CH-CI-CJ	119.9(7)	P11-P12-P13	119.4(12)
N1-CO1-O1	117.9(6)	CL1-CJ-CI	119.2(6)	P12-P13-P14	115.1(13)
N1-CO1-CH	118.6(6)	CL1-CJ-CK	118.6(6)	P13-P14-P15	126.3(14)
O1-CO1-CH	123.5(6)	CI-CJ-CK	122.2(7)	P14-P15-P16	114.8(14)
N2-CO2-O2	122.6(7)	CJ-CK-CM	116.3(8)	P11-P16-P15	199.7(12)
N2-CO2-CB	121.6(6)	CL3-CM-CG	116.1(6)		. ,
O2-CO2-CB	115.8(6)	CL3-CM-CK	117.4(6)		

vs. 1.328(6)Å(ave.). The opposite effect is observed for metal-bound and free peptides ($C_{carbonyl}-N_{amide}$ ave.: 1.30Å, N-bound; 1.31Å, O-bound; 1.325Å, free).³⁹ Distortions due to the strain in the bridging chelate can not be discounted. The carbonyl C-O bond lengths are equal for both the coordinated and uncoordinated amide carbonyls (1.278(9) vs. 1.270(9)Å); the carbonyl C-O bond length in the free ligand is 1.246(6)Å (ave.). Freeman has reported average peptide carbonyl bond lengths for metal-bound and free peptides; the difference between them is small (C-O_{carbonyl} ave.: 1.26Å, N-bound; 1.24Å, O-bound; 1.24Å, free).³⁹

The chromium-chromium distance in the dimer is 8.9Å.

$K_2[{Os(\eta^4-CHBA-Et)(OPPh_3)}_2O]\cdot \frac{3}{2}acetone \cdot H_2O.$

Investigations into the osmium chemistry of these bis-hydroxybenzamido ligands, in collaboration with Dr. J.A. Christie (Audett) and T.E. Krafft, resulted in several crystallographic studies,¹⁸ including this μ -oxo dimer. This structure clearly demonstrated, for the first time, that the bis-hydroxybenzamido ligand could coordinate as a tetradentate tetraanion, via the amide nitrogen atoms and the phenolic oxygen atoms, to one metal center. The structure also exhibited the first examples of bonds between osmium(IV) and an *N*-coordinated organic amide ligand, a phenoxide ligand, and a phosphine oxide ligand.

The bis-hydroxybenzamido ligands in this μ -oxo dimeric complex were found to bind to the osmium(IV) centers in an eclipsed planar fashion (Figure 1.12); the Os-O-Os angle is 175(1)°. The averaged bond lengths and angles in these chelates were found to be very similar to those found in the free ligand: C-O_{phenol} 1.33(2) vs. 1.352(2)Å, C-O_{carbonyl} 1.27(2) vs. 1.246(6)Å, and C-N_{amide} 1.33(2) vs. 1.328(6)Å. Complete metrical data (averaged) appear in Figure 1.13.

This study also revealed unusual coordination environments for the potassium ions. One potassium ion, centered in a square pyramid, is well within binding distance of the four phenolic oxygen atoms (K⁺-O_{phenol} 2.87Å ave.) and one acetone solvate molecule (K⁺-O_{acetone} 2.80Å) as shown in Figure 1.14; this potassium ion is further coordinated to the μ -oxo ligand (K⁺-O_{oxo} 3.16Å).

Figure 1.12. Schematic view of $K_2[{Os(\eta^4-CHBA-Et)(OPPh_3)}_2O] \cdot \frac{3}{2}acetone \cdot H_2O$. The water molecule and the fractional acetone molecule are not shown.

L = OPPh3

Figure 1.13. Structure of $[{Os(\eta^4-CHBA-Et)(OPPh_3)}_2O]^{-2}$. Averaged bond lengths (over four sets of atomic positions) are in angstroms and averaged bond angles are in degrees.

The second potassium ion is apparently four-coordinate, situated at the center of a distorted tetrahedron, linking adjacent anions by bonding with two pairs of eclipsed amide carbonyl oxygen atoms, one pair from each dinuclear unit (K⁺- $O_{carbonyl}$ 2.66Å ave.). Low coordination numbers for potassium ions are rare.⁴⁰ In fact, this structural study represents the third for five-coordinate potassium and only the second for four-coordinate potassium.

The close interligand contacts of the bis-hydroxybenzamido ligands in this eclipsed conformation are predominantly $Cl \cdots Cl$ contacts, ranging from 3.6-3.9Å, close to the sum of the van der Waals' radii for the two Cl atoms (ca. 3.6Å). Presumably, the coordination of the potassium ions plays a significant role, and results in the observed eclipsed conformation of the two planar ligands.

The dinuclear octahedral osmium(IV) oxo-bridged structure has been observed previously in the complex $Cs_4[{OsCl_5}_2O];^{41}$ a bent oxo bridged dinuclear osmium(IV) complex, $Os_2(\mu-O)(\mu-O_2CCH_3)_2Cl_4(PPh_3)_2$, has also been structurally characterized.⁴²

trans- $Os(\eta^4$ -CHBA-HMEt)(py)₂· $\frac{1}{4}H_2O^*$.

Electrochemical and chemical oxidation of trans-Os(η^4 -CHBA-Et)(py)₂ has resulted in a series of well-characterized degradation products. Aerial oxidation of trans-Os(η^4 -CHBA-Et)(py)₂ over silica gel followed by dichlorodicyanoquinone oxidation in the presence of methanol and water resulted in the formation of trans-Os(η^4 -CHBA-HMEt)(py)₂, which was found to cocrystallize with a small amount of uncoordinated water.

The structure of this molecule (Figure 1.3) was found to be nearly identical to the structure of *trans*-Os(η^4 -CHBA-Et)(py)₂ (Figure 1.4).¹⁸ The bis-hydroxybenzamido ligand was again coordinated in a planar fashion to the equatorial sites of the osmium(IV) center. The hydroxy group and the methoxy group on the five-membered ring (composed of the atoms labeled Os, N1, C8, C9, and N2)

^{*} CHBA-HMEt = the tetraanion of 1,2-bis(3,5-dichloro-2-hydroxybenzamido)-1-hydroxy-2-methoxyethane.

Figure 1.14. Potassium ion coordination mode found in the molecular structure of $K_2[{Os(\eta^4-CHBA-Et)(OPPh_3)}_2O]\cdot\frac{3}{2}acetone\cdot H_2O.$

were in the axial positions on C8 and C9, respectively.

The observed *trans* conformation appears to be sterically favored over the *cis* form, where the hydroxy and methoxy groups would be nearly eclipsed. The proposed mechanism for the oxidation steps, discussed elsewhere,¹⁸ requires the formation of the *trans* structure. The bond lengths and bond angles for this structure are given in Table 1.7 and Table 1.8.

Pyridine molecules complete the coordination sphere bonding to the axial positions in the complex. The pyridine rings are staggered with respect to each other with a dihedral angle of $82(4)^{\circ}$; it is not known whether this result is due to electronic effects or crystal packing forces. In a study of *trans*-Co(acac)₂(py)₂ and *trans*-Ni(acac)₂(py)₂, where the pyridine molecules were found to be staggered and eclipsed, respectively, crystal packing forces were thought to be dominant.⁴³ Other studies of osmium(IV)-bis-pyridine complexes have found the pyridine molecules in the staggered conformation.^{18,44}

A comparative listing of selective linkages in the free ligand $((H)_4 CHBA-Et)$, trans-Os $(\eta^4$ -CHBA-Et)(py)₂, K₂[{Os $(\eta^4$ -CHBA-Et)(OPPh_3)}₂O], and trans-Os $(\eta^4$ -CHBA-HMEt)(py)₂ appears in Table 1.9; the variances are small in comparison to the experimental errors. Interestingly, the metal-bound amide groups have somewhat longer C_{carbonyl}-N_{amide} bond lengths and somewhat shorter C_{carbonyl}-O_{carbonyl} bond lengths, relative to the data for the uncoordinated ligand. (The bond lengths in K₂[{Os(CHBA-Et)(OPPh_3)}₂O] are not very precise.) These results are also directly opposite to the data for coordinated peptide groups noted by Freeman.³⁹

trans- $Os(\eta^2-(H)HBA-TMI)_2Cl_2\cdot 2DMF.$ §

The fusion of $(NH_4)_2 OsCl_6$ with $(H)_4 HBA-DMBu$ at temperatures greater than 300°C resulted in the rearrangement of the $(H)_4 HBA-DMBu$ ligand. Under the severe conditions, one of the amide nitrogen atoms attacked an amide carbonyl carbon atom forming an imidazoline fragment. Presumably, salicylic acid

 $⁽H)_2$ HBA-TMI = 2-(2'-hydroxyphenyl)-4,4,5,5-tetramethylimidazoline.

Table 1.7. Bond lengths (in angstroms) for the molecular structure of *trans*- $Os(CHBA-HMEt)(py)_2$.

OS-01	1.973(07)
05-02	1 001(07)
00 01	1.001(01)
OS-NI	1.983(08)
OS-N2	1.976(08)
OS-PN1	2.072(08)
OS-PN2	2 054(05)
	2.001(00)
CLI-C2	1.722(12)
CL2-C15	1.747(11)
CL3-C4	1.733(14)
CL4-C18	1 742(12)
	1.012(10)
01-01	1.310(12)
O2 -C16	1.305(12)
O3-C7	1.264(13)
O4-C10	1.210(15)
05-08	1 889(12)
06-09	1 422(18)
OG-CME	1.422(10)
NI C7	1.401(17)
NI-CI	1.340(13)
N1-08	1.477(13)
N2-C9	1.460(13)
N2-C10	1.349(14)
C1-C2	1.393(15)
C1-C6	1.450(14)
C2-C3	1.392(17)
C3-C4	1.358(16)
C4-C5	1.377(18)
C5-C6	1.398(16)
C6-C7	1.484(14)
C8-C9	1.536(14)
C10-C11	1.502(15)
C11-C12	1.409(16)
C11-C16	1.448(15)
C12-C13	1.844(17)
C18-C14	1 866(17)
C14-C15	1.877(16)
C15-C16	1.904(15)
DNI DI	1.094(10)
FNI-FI DVI Dr	1.525(14)
PNI-PS	1.333(14)
P1-P2	1.346(18)
P2-P3	1.392(19)
P3-P4	1.343(18)
P4-P5	1.383(17)
PN2-P6	1.340(14)
PN2-P10	1.363(14)
P6-P7	1.367(18)
P7-P8	1.398(19)
P8-P9	1.340(20)
P9-P10	1.310(19)

Table 1.8. Bond angles (in degrees) for the molecular structure of *trans*-Os(CHBA-HMEt)(py)₂.

93.1(03)	C6-C7-N1	120.4(09)
92.3(03)	N1-C8-O5	1.9.5(08)
173.6(03)	C9-C8-05	111.3(08)
92.5(03)	C9-C8-N1	107.9(08)
84.9(03)	N2-C9-O6	112.2(08)
174.3(03)	C8-C9-O6	106.3(08)
91.6(03)	C8-C9-N2	108.9(08)
88.3(3)	N2-C10-O4	123.1(10)
85.4(03)	C11-C11-O4	118.2(10)
83.1(03)	C11-C10-N2	118.7(09)
89.7(03)	C12-C11-C10	116.4(10)
96.8(03)	C16-C11-C10	125.2(09)
92.0(03)	C16-C11-C12	118.3(09)
92.1(03)	C13-C12-C11	121.7(11)
173.1(03)	C12-C13-CL4	120.0(09)
126.9(06)	C14-C13-CL4	118.3(09)
122.9(06)	C14-C13-C12	121.6(11)
114.2(09)	C15-C14-C13	118.4(11)
129.2(07)	C14-C15-CL2	118.8(09)
114.3(06)	C16-C15-CL2	117.4(08)
116.5(08)	C16-C15-C14	123.7(10)
112.5(06)	C11-C16-O2	124.7(09)
128.0(07)	C15-C16-O2	119.0(09)
119.5(08)	C15-C16-C11	116.2(09)
118.3(09)	P1-PN1-OS	121.1(07)
125.3(09)	P5-PN1-OS	125.2(07)
116.4(09)	P5-PN1-P1	113.6(09)
118.2(08)	P2-P1-PN1	125.3(11)
118.8(09)	P3-P2-P1	119.6(12)
122.9(11)	P4-P3-P2	117.2(12)
119.0(12)	P5-P4-P4	118.5(12)
118.9(10)	P4-P5-PN1	125.7(11)
119.6(10)	P6-PN2-OS	125.8(07)
121.4(12)	P10-PN2-OS	119.3(07)
120.7(11)	P10-PN2-P6	114.8(09)
119.1(09)	P7-P6-PN2	122.3(11)
124.8(09)	P8-P7-P6	120.2(12)
115.9(09)	P9-P8-P7	116.6(13)
122.4(09)	P10-P9-P8	121.0(13)
117.2(09)	P9-P10-PN2	125.1(12)
	93.1(03) 92.3(03) 173.6(03) 92.5(03) 84.9(03) 174.3(03) 91.6(03) 85.3(3) 85.4(03) 85.4(03) 85.4(03) 89.7(03) 92.0(03) 92.0(03) 92.1(03) 173.1(03) 126.9(06) 122.9(06) 114.2(09) 129.2(07) 114.5(06) 116.5(08) 112.5(06) 125.3(09) 116.4(09) 118.2(08) 118.2(08) 118.2(08) 118.2(08) 118.2(08) 118.4(09) 122.9(11) 119.0(12) 118.9(10) 121.4(12) 120.7(11) 119.1(09) 124.8(09) 122.4(09) 117.2(09)	93.1(03) $C6-C7-N1$ 92.3(03)N1-C8-O5173.6(03)C9-C8-O592.5(03)C9-C8-N184.9(03)N2-C9-O6174.3(03)C8-C9-N288.3(3)N2-C10-O485.4(03)C11-C11-O485.4(03)C12-C11-C1096.8(03)C16-C11-C1092.0(03)C16-C11-C1292.1(03)C13-C12-C11173.1(03)C12-C13-CL4126.9(06)C14-C13-C12114.2(09)C15-C14-C13129.2(07)C14-C15-CL2114.3(06)C16-C15-C14112.5(06)C11-C16-O2128.0(07)C15-C16-C11116.3(09)P1-PN1-OS125.3(09)P5-PN1-P1116.4(09)P5-PN1-P1116.4(09)P3-P2-P1122.9(11)P4-P5-P2119.0(12)P5-P4-P4118.9(10)P4-P5-PN1119.6(10)P6-PN2-OS121.4(12)P10-PN2-OS122.7(11)P10-PN2-P6119.1(09)P7-P6-PN2124.6(09)P8-P7-P6115.9(09)P9-P8-P7122.4(09)P10-P9-P8117.2(09)P9-P10-PN2

Table 1.9. A comparative listing of selective linkages in the free ligand $(\eta^4 - (H)_4 CHBA-Et)$, trans-Os $(\eta^4 - CHBA-Et)(py)_2$, K₂[{Os $(\eta^4 - CHBA-Et)(OPPh_3)$ }₂O], and trans-Os $(\eta^4 - CHBA-HMEt)(py)_2$ (in angstroms).

	Α	\mathbf{B}^{a}	С	D
Os-Namide		1.969(4)	2 .024(26)	1.98 0(1)
Os-Ophenol		1.999(3)	2 .0 3 8(19)	1.984(1)
$C-O_{phenol}$	1.352 (5)	1.331(5)	1.341(4 0)	1.3 07(1)
$C-O_{carbonyl}$	1.24 5(6)	1.228(6)	1.267(43)	1.237(1)
$C_{carbonyl} - N_{amide}$	1.32 8(6)	1.355(6)	1.340(44)	1.344(1)

 $A = (H)_4 CHBA-Et$ $B = trans-Os(CHBA-Et)(py)_2$ $C = K_2[\{Os(CHBA-Et)(OPPh_3)\}_2O]$ $D = trans-Os(CHBA-HMEt)(py)_2$

^a Anson, F.C.; Christie, J.A.; Collins, T.J.; Coots, R.J.; Furutani, T.T.; Gipson, S.L.; Keech, J.T.; Krafft, T.E.; Santarsiero, B.D.; Spies, G.H. J. Amer. Chem. Soc., 1984, 106, 4460. was extruded. The role of the osmium(VI) ion in this process is not known.

Crystals were obtained from a DMF solution of the extracted residues. This unusual structure consists of discrete monomers bearing axial chloride ligands and two bidentate monoanionic phenoxy-imidazoline ligands in the equatorial positions disposed mutually *trans* (Figure 1.15). Solvated DMF molecules were also found.

This is the first reported structure determination of an osmium(IV)-imidazoline complex, though complexes of the 2-o-phenoxyimidazole ligand are known.⁴⁵ The Os-O bond length (1.995(12)Å) was found to be similar to those found in the osmium(IV)-bis-hydroxybenzamido complexes described above. The Os- $N_{imidazoline}$ bond length 2.140(9)Å was also similar to the Os- $N_{pyridine}$ bond lengths in trans-Os(η^4 -CHBA-Et)(py)₂ (2.105(3)Å ave.). The Os-Cl bond length was 2.344(3)Å. A complete listing of bond lengths and bond angles are given in Tables 1.10 and 1.11.

Figure 1.15. ORTEP view of trans-Os $(\eta^2$ -HBA-TMI)_2Cl_2. Bond lengths are in angstroms and bond angles are in degrees.

Table 1.10. Bond lengths (in angstroms) for the molecular structure of trans- $Os(\eta^2-(H)HBA-TMI)_2Cl_2$.

Cl	01	2.343(3)
01	Os	1.99(2)
N 1	Os	2.104(9)
01	C 1	1.33(2)
C 1	C 2	1.41(2)
C 2	C 3	1.35(2)
C 3	C4	1.41(2)
C4	C 5	1.39(2)
C 5	C 6	1.41(2)
C 1	C 6	1.42(2)
C 6	C 7	1.46(2)
N 1	C 7	1.28(2)
N 2	C 7	1.34(2)
N 2	C 8	1.44(2)
C 8	C 11	1.59(2)
N 1	C 11	1.48(2)
C 8	C 9	1.51(2)
C 8	C 10	1.56(2)
C 11	C 12	1.53(2)
C 11	C 13	1.57(2)

Table 1.11. Bond angles (in degrees) for the molecular structure of *trans*-Os(η^2 -(H)HBA-TMI)₂Cl₂.

01 - Os -Cl	91.9(4)
01 - 0s -Cl	88.1(4)
N1 - Os -Cl	89.3(3)
N1 - Os -Cl	90.7(3)
N1 - Os -O1	87.2(4)
Os - O1 - C1	125.8(9)
C6 - C1 - O1	123.6(11)
C2 - C1 - O1	118.0(16)
C2 - C1 - C6	118.2(11)
C1 - C2 - C3	122.9(14)
C2 - C3 - C4	120.6(16)
C3 - C4 - C5	116.9(15)
C4 - C5 - C6	124.0(13)
C1 - C6 - C5	117.3(11)
C1 - C6 - C7	121.4(10)
C5 - C6 - C7	121.2(11)
C6 - C7 -N1	128.3(10)
C6 - C7 - N2	118.8(10)
N1 - C7 - N2	112.9(10)
Os - N1 - C7	122.5(8)
Os - N1 - C11	122.6(7)
C7 - N1 -C11	109.3(9)
C7 - N2 - C8	109.8(10)
C9 - C8 - N2	113.2(11)
C10- C8 -N2	108.4(12)
C11-C8-N2	99.3(10)
C9 - C8 -C 10	109.0(12)
C9 - C8 -C11	114.7(11)
C10- C8 -C11	111.8(11)
C8 -C11-N1	100.4(9)
C12-C11-N1	113.8(10)
C13-C11-N1	108.3(10)
C8 -C11-C12	112.5(10)
C8 -C11-C13	111.0(11)
C12-C11-C13	110.4(11)

Conclusions

It appears that the utility of the derivatives of 1,2-bis(2-hydroxybenzamido)ethane as ligands capable of stabilizing transition metals in the higher valent states is limited to systems where *N*-coordination of the organic amide exists. Complexation of these ligands to chromium(III) and iron(III) has most likely resulted in the formation of *O*-bound dimeric and/or polymeric complexes. Only in one instance has *N*-coordination of the organic amide been documented. Oxidation of these trivalent species did not produce tractable high valent compounds. Had monomeric complexes formed, higher valent complexes should have been accessible; $[Cr(salen)(H_2O)_2]PF_6$ is easily oxidized to a stable chromium(V) complex.¹⁶ Compounds such as $Os(\eta^4-CHBA-DCBz)(py)_2^{\dagger}$ can be oxidized electrochemically to complexes of osmium(V) and possibly higher valencies;¹⁸ here the coordination is known to be via the deprotonated amide nitrogen atoms and the deprotonated phenolic oxygen atoms. No tractable complexes were found on direct reaction of high valent chromium with these ligands.

X-ray crystallographic studies have complemented the synthetic investigations on the coordination chemistry of these bis-hydroxybenzamido ligands. We have characterized the first examples of N-bound organic amide coordination to chromium(III) in a molecule where the ligand bridges two metal centers. Both forms of monodentate organic amide coordination were found and the N-bound form was observed to be a stronger σ -donor, as expected.

Coordination to one metal center in a planar fashion was also discovered. An unusual osmium(IV) μ -oxo dimer has been characterized in which potassium ions, in low coordination environments, are thought to lock the structure in a conformation where the large planar chelates are essentially eclipsed. Comparisons of the metrical data with that found for the free ligand, also structurally characterized, indicate few significant differences. The structure of trans-Os(η^4 -CHBA-HMEt)(py)₂ was found to be very similar to that of trans-Os(η^4 -CHBA-Et)(py)₂

[†] CHBA-DCBz = tetraanion of 1,2-bis(3,5-dichloro-2-hydroxybenzamido)-4,5dichlorobenzene.

and in agreement with the solution NMR spectroscopic data.¹⁸ These structural studies have provided a foundation for the production of solution-stable highly oxidized complexes with formal potentials as high as 2.5 volts.^{18,46}

The rearrangement of $(H)_4$ HBA-DMBu in the presence of $(NH_4)_2$ OsCl₆ at temperatures greater than 300°C has resulted in an unusual osmium(IV)imidazoline complex. These imidazoline ligands may also be useful chelates for stabilizing metal ions in high oxidation states.⁴⁷

Experimental

General Information

Physical and Spectroscopic Methods. Proton NMR spectra were recorded on a Varian 390 spectrometer. The chemical shifs are reported in ppm(δ) relative to tetramethylsilane ($\delta = 0.0$). Infrared spectra were obtained using a Beckman 4240 spectrometer; nujol mulls were routinely used with potassium bromide plates unless noted otherwise. All infrared spectral assignments are tentative. No NMR spectra were obtained for the chromium(III) and iron(III) complexes, due to their paramagnetic nature, thus unambiguous characterization has been difficult.

Elemental analyses were performed by Schwartzkopf Microanalytical Laboratory, Galbraith Laboratories, Inc., or by Mr. L. Henling at the C.I.T. Chemistry Dept. Analytical Facility. Magnetic susceptibilities were measured on a Cahn Electrobalance, model DTL, which employs the Faraday Technique.

Materials. All solvents were reagent grade and used without further purification, except for dichloromethane and tetrahydrofuran which were freshly distilled from calcium hydride.

The following compounds were used as received: 2-acetylsalicylic acid, tbutyl hydroperoxide, m-chloroperbenzoic acid, chromyl chloride, sym-dimethylethylenediamine, ethylenediamine, o-phenylenediamine (all from the Aldrich Chemical Co.), chromium trichloride hexahydrate, chromium trioxide, anhydrous ferric chloride, hydrogen peroxide, anhydrous sodium carbonate, sodium hydroxide (all from Baker Chemical Co.), cerric ammonium nitrate, hydrochloric acid, meta-sodium periodate, triethylamine (all from Mallinckrodt Inc.), 3,5-dichlorosalicylic acid, iodosylbenzene (from Pfaltz and Bauer Chemical Co.), trichlorotris(tetrahydrofuran)chromium(III) (from Alfa Chemical Co.), and chlorine gas from the Matheson Co. Oxalyl chloride from both Pfaltz and Bauer Chemical Co. and the Aldrich Chemical Co. was freshly distilled before use.

The following compounds were synthesized using reported procedures: 2acetyl-5-*t*-butylsalicylic acid,⁴⁸ 2-acetyl-3,5-dichlorosalicylic acid,⁴⁹ 2,3-diamino-2,3-dimethylbutane,⁵⁰ Cr(O-*t*-Bu)₄,⁵¹ and Na[CrO(O₂CC(CH₃)₂O)₂].⁵²

Synthesis

Preparation of (H)₄HBA-Et. 2-acetylsalicylic acid (50.0 g,0.277 mol) was mixed with 50–60 mL of neat oxalyl chloride in a 250 mL round bottom flask. The reaction flask was vented to a hood and maintained at 30°C for 4 hours. The initial slurry gradually changes to a pale yellow solution as the acid was converted to the acid chloride. When the gas evolution had ceased, the remaining oxalyl chloride was distilled off in vacuo. The residue was dissolved in 30 mL of dry dichloromethane which was also distilled off in vacuo; this step was repeated several times to remove the last traces of oxalyl chloride. The residue was dissolved in 100 mL of dry dichloromethane and refrigerated. A solution of ethylenediamine (9.277 mL,0.138 mol) and 100 mL of dry dichloromethane was placed in a 500 mL round bottom flask equipped with a stir bar. After the solution had cooled sufficiently in an ice bath, the freshly prepared acid chloride solution was slowly dripped in with stirring. The slurry was stirred for 1 hour **at** which time an excess of 1 equivalent of triethylamine was added; the mixture was stirred for an additional $\frac{1}{2}$ hour. This mixture was then treated with *ca*. 100 mL of warm 6M NaOH and heated in vacuo to distill off the dichloromethane and triethylamine. The remaining aqueous solution was decanted from the undissolved organic residues which were then dissolved in a minimal amount of acetone and treated with an additional 50 mL of warm 6M NaOH. The acetone was then distilled off in vacuo and the aqueous portions were combined. This very basic solution was cooled on ice, and was then cautiously acidified with concentrated HCl. The product precipitated and was easily collected. The recrystallized yield (from acetone/water) was 33.3 g (80%).

Tentative analytical data: (H)₄HBA-Et

IR (cm⁻¹,nujol): 3418 [ss, ν (NH)], 1647 [ss, ν (CO)].

¹H NMR (acetone-d₆): 6.61–7.68 [m,8H,Ph], 3.21–3.68 [m,4H,CH₂].

E.A.: (Calc.) C: 63.99%, H: 5.37%, N: 9.32%;

(Found) C: 64.12%, H: 5.58%, N: 9.14%.

 $\chi_{\rm m}$ (cgs units): -192×10^{-6} .

Preparation of $(H)_4$ HBA-oBz, $(H)_4$ HBA-DMBu, $(H)_4$ tBuHBA-Et, $(H)_4$ CHBAoBz[†], and $(H)_2$ NMHBA-Et. These compounds: 1,2-bis(2-hydroxybenzamido)benzene, 2,3-bis(2-hydroxybenzamido)-2,3-dimethylbutane, 1,2-bis(5-t-butyl-2-hydroxybenzamido)ethane, 1,2-bis(3,5-dichloro-2-hydroxybenzamido)benzene, and 1,2-bis(N-methyl-2-hydroxybenzamido)ethane, were all synthesized in an analogous manner to that of 1,2-bis(2-hydroxybenzamido)ethane, described above. Table 1.12 lists the starting materials, recrystallizing solvents, and yields for these preparations.

Tentative analytical data: (H)₄HBA-oBz IR (cm⁻¹,nujol): 3383 [ms, ν (NH)], 1638 [sh, ν (CO)]. ¹H NMR (acetone-d₆): 7.63-8.10 [m,4H,Ph], 7.23-7.53 [m,4H,Ph], 6.76-7.00 [m,4H,Ph]. E.A.: (Calc.) C: 68.96%, H: 4.63%, N: 8.04%; (Found) C: 69.04%, H: 4.75%, N: 8.14%. $\chi_{\rm m}$ (cgs units): -124×10^{-6} . Tentative analytical data: (H)₄HBA-DMBu IR (cm⁻¹,nujol): **33**59 [ms, ν (NH)], **1625** [sh, ν (CO)]. ¹H NMR (acetone-d₆): 7.83–8.00 [m,2H,Ph], 7.25–7.50 [m,2H,Ph], 6.76-7.00 [m,4H,Ph], 1.65 [s,12H,CH₃]. E.A.: (Calc.) C: 67.40%, H: 6.79%, N: 7.86%; (Found) C: 67.37%, H: 6.86%, N: 7.68%. $\chi_{\rm m}$ (cgs units): -214×10^{-6} . Tentative analytical data: $(H)_4 tBuHBA-Et$ IR (cm⁻¹,nujol,NaCl plates): 3365 [ms, ν (NH)], 1648 [ss, ν (CO)]. ¹H NMR (acetone-d₆): 7.79 [d,2H,Ph], 7.40–7.56 [m,2H,Ph], 6.82 [d,2H,Ph], 3.64 [s,4H,CH₂], 1.30 [s,18H,*t*Bu]. E.A.: (Calc.) C: 69.88%, H: 7.82%, N: 6.79%; (Found) C: 70.13%, H: 8.05%, N: 6.63%. $\chi_{\rm m}$ (cgs units): -237×10^{-6} .

Tentative analytical data: (H)₄CHBA-oBz

[†] Direct chlorination of $(H)_4$ HBA-oBz was not productive.

Table 1.12. Pertinent data for the syntheses of the organic chelates: $(H)_4$ HBAoBz, $(H)_4$ HBA-DMBu, $(H)_4 t$ BuHBA-Et, $(H)_4$ CHBA-oBz, $(H)_2 N$ MHBA-Et.

Ligand	Starting	Recrystallizing	Yield
	Materials	Solvents	
$(\mathbf{H})_{4}\mathbf{HBA}$ - $o\mathbf{B}\mathbf{Z}$	2-acetylsalicylic	acetone/	81%
	acid; o-phenylene-	water	
	diamine		
(H) ₄ HBA-DMBu	2-acetylsalicylic	DMF/	56%
	acid; 2,3-diamino-	water	
	2,3-dimethylbutane		
(H) ₄ tBuHBA-Et	5-t-butyl-2-acetyl-	acetone/	50%
	salicylic acid;	water	
	ethylenediamine		
(H) ₄ CHBA- <i>o</i> Bz	2-acetyl-3,5-dichloro-	acetone/	7 5%
	salicylic acid; o-	water	
	phenylene diamine		
$(\mathbf{H})_2 N \mathbf{M} \mathbf{H} \mathbf{B} \mathbf{A} \mathbf{\cdot} \mathbf{E} \mathbf{t}$	2- acetylsalicylic acid;	DMF/	66%
	sym-N, N'-dimethyl-	water	
	ethylenediamine		

IR (cm⁻¹,nujol): 3385 [mb,ν(NH)], 1646 [ss,ν(CO)].
¹H NMR (acetone-d₆): 8.00 [d,2H,Ph], 7.68–7.50 [m,4H,Ph], 7.10–7.30 [m,2H,Ph].
E.A.: (Calc.) C: 49.41%, H: 2.49%, N: 5.76%; (Found) C: 49.52%, H: 2.68%, N: 5.85%. *Tentative analytical data*: (H)₄ NMHBA-Et IR (cm⁻¹,nujol): 1570 [sb,ν(CO)].
¹H NMR (CDCl₃): 6.7–7.5 [m,8H,Ph], 4.1[s(br),4H,CH₂], 3.2 [s(br),6H,N-CH₃].
E.A.: (Calc.) C: 65.84%, H: 6.14%, N: 8.53%; (Found) C: 65.45%, H: 6.09%, N: 8.49%.

Preparation of $(H)_4$ CHBA-Et. $(H)_4$ HBA-Et (5 g) is dissolved in 80-100 mL of warm glacial acetic acid in a 500 mL filtration flask. Chlorine gas was bubbled through the solution for $\frac{1}{2}$ hour period; the product precipitated during this time due to its low solubility in acetic acid. The mixture was then cooled on ice. The product was collected on a glass frit and washed with cold water. It was then recrystallized from acetone/water. The overall yield was 6.6 g (90%).

Tentative analytical data: (H)₄CHBA-Et¹⁸ IR (cm⁻¹,nujol): 3343 [ss, ν (NH)], 1632 [ss, ν (CO)]. ¹H NMR (acetone-d₆): 7.76 [d,2H,Ph], 7.58 [d,2H,Ph], 3.70 [s,4H,CH₂]. $\chi_{\rm m}$ (cgs units): -192 × 10⁻⁶.

Preparation of $\{Na[Cr(\eta^{4}-(H)_{2}HBA-Et)(OH)_{2}]\}_{x}$. CrCl₃·6H₂O (444 mg,0.0017 mol) was dissolved in *ca*. 50 mL of *N*,*N*'-dimethylformamide and heated under reflux in a 100 mL beaker. The ligand, (H)₄HBA-Et (500 mg,0.0017 mol) was then added to the solution which was stirred for 2 minutes. At this point the heat was reduced and a large amount (*ca*. 5 g) of anhydrous sodium carbonate was mixed into the solution. After stirring for an additional 2 minutes, the mixture was filtered and cooled to room temperature. The product formed on addition of

acetone. It was filtered from the solution, washing with diethyl ether, and dried in vacuo. The yield was approximately 75% (0.52 g).

Tentative analytical data: {Na[Cr(η^4 -(H)₂HBA-Et)(OH)₂]}_x IR (cm⁻¹,nujol): 3100-3650 [br, ν (OH);obscured, ν (NH)], 1610 [ss, ν (CO)].

E.A.: (Calc.) C: 47.18%, H: 3.96%, N: 6.88%;

(Found) C: 46.97%, H: 4.08%, N: 6.70%.

 μ_{eff} (Bohr magnetons): (Calc.) 3.87; (Found) 3.70.

Preparation of $\{Na[Cr(\eta^{4}-(H)_{2}CHBA-Et)(OH)_{2}]\}_{x}$. CrCl₃·6H₂O (304 mg, 0.0011 mol) was dissolved in *ca.* 100 mL of acetone and heated under reflux in a 100 mL beaker. When the salt had completely dissolved, (H)₄CHBA-Et (500 mg,0.0011 mol) was added, changing the color from purple to khaki. After 2 minutes the heat was reduced and anhydrous sodium carbonate (*ca.* 5 g) was mixed into the solution. After stirring for an additional 2 minutes, the mixture was filtered and cooled to room temperature. Upon the addition of diethyl ether, the product precipitated. It was filtered from the solution, washed with diethyl ether, and dried *in vacuo*. The yield was approximately 85% (0.51 g).

Tentative analytical data: {Na[Cr(η^4 -(H)₂CHBA-Et)(OH)₂]}_x IR (cm⁻¹,nujol): 3100-3650 [br, ν (OH);obscured, ν (NH)], 1595 [ss, ν (CO)]. E.A.: (Calc.) C: 35.26%, H: 2.22%, N: 5.14%; (Found) C: 35.11%, H: 2.60%, N: 5.16%. μ_{eff} (Bohr magnetons): (Calc.) 3.87; (Found) 3.86.

Preparation of $\{Na[Cr(\eta^{4}-(H)_{2}HBA-oBz)(OH)_{2}]\}_{x}\cdot 3xH_{2}O$. The procedure for this synthesis is analogous to that of $\{Na[Cr(\eta^{4}-(H)_{2}HBA-Et)(OH)_{2}]\}_{x}$, as described above. Using 382 mg (0.0014 mol) of $CrCl_{3}\cdot 6H_{2}O$ and 500 mg (0.0014 mol) of $(H)_{4}HBA-oBz$ (in *ca.* 50 mL *N*,*N*'-dimethylformamide), the complex was isolated in 80% yield (0.57 g). Tentative analytical data: {Na[Cr(η^4 -(H)₂HBA-oBz)(OH)₂]}_x·3xH₂O* IR (cm⁻¹,nujol): 3000–3650 [br, ν (OH);obscured, ν (NH)], 1610 [ss, ν (CO)]. E.A.: (Calc.) C: 47.16%, H: 4.35%, N: 5.50%;

(Found) C: 47.20%, H: 4.03%, N: 5.44%.

 μ_{eff} (Bohr magnetons): (Calc.) 3.87; (Found) 4.01.

Preparation of $\{Cr((H)CHBA-Et)(py)_2\}_2 \cdot 2py$. $CrCl_3 \cdot 6H_2O$ (304 mg,0.0011 mol) was dissolved in *ca*. 50 mL of pyridine and heated under reflux in a 100 mL beaker. When the salt was dissolved, $(H)_4CHBA-Et$ was added to the hot solution. After 2 minutes approximately 5 g of anhydrous sodium carbonate were mixed into the solution. The mixture was stirred for an additional 2 minutes and then filtered. The dark green solution was placed in a sealed bottle and set aside in a cool dark place. After several weeks green crystals formed; a pale green powder also precipitated. The yield of crystals collected was estimated at 5%. Infrared spectra of the crystals and the amorphous material were found to be the same.

Tentative analytical data: ${Cr((H)CHBA-Et)(py)_2}_2 \cdot 2py$ IR (cm⁻¹,nujol): 3150-3300 [br, ν (NH)], 1508 [ss, ν (CO)]. X-ray crystallographic analysis described below.

Preparation of crude $\{Na[Cr(\eta^4-NMHBA-Et)(OH)_2]\}_x$. The synthesis of this impure complex is similar to that of $\{Na[Cr(\eta^4-(H)_2HBA-Et)(OH)_2]\}_x$. $CrCl_3 \cdot 6H_2O$ (406 mg,0.0015 mol) and 500 mg (0.0015 mol) of $(H)_2 NMHBA$ oBz were dissolved in acetone (*ca.* 50 mL) and heated under reflux. After 2 minutes the heat was reduced and anhydrous sodium carbonate (*ca.* 5 g) was mixed into the solution. The mixture was stirred for an additional 2 minutes, then filtered and cooled to room temperature. Upon the addition of tetrahydrofuran, the product precipitated. It was then filtered from the solution and dried *in vacuo*.

^{*} No independent verification for the waters of hydration.

Tentative analytical data: $\{Na[Cr(\eta^{4}-(H)_{2}NMHBA-Et)(OH)_{2}]\}_{x}$ IR (cm⁻¹,nujol): 3100-3650 [br, $\nu(OH)$], 1609 [ss, $\nu(CO)$].

Preparation of $\{Na[Fe(\eta^{4}-(H)_{2}HBA-Et)(OH)_{2}]\}_{x} \cdot xH_{2}O$. The procedure for this synthesis is analogous to that of $\{Na[Cr(\eta^{4}-(H)_{2}HBA-Et)(OH)_{2}]\}_{x}$, as described above. Using 270 mg (0.0017 mol) of FeCl₃ and 500 mg (0.0017 mol) of (H)₄HBA-Et (in *ca.* 50 mL *N,N*²-dimethylformamide), the complex was isolated in 75% yield (0.55 g).

Tentative analytical data: {Na[Fe(η^4 -(H)₂HBA-Et)(OH)₂]}_x·xH₂O[§] IR (cm⁻¹,nujol): 3100-3650 [br, ν (OH),obscured, ν (NH)], 1610 [ss, ν (CO)]. E.A.: (Calc.) C: 44.78%, H: 4.23%, N: 6.53%; (Found) C: 44.40%, H: 3.97%, N: 6.54%. μ_{eff} (Bohr magnetons): (Calc.) 5.92; (Found) 4.37.

Preparation of crude $\{Na[Fe(\eta^{4}-(H)_{2}CHBA-Et)(OH)_{2}]\}_{x}$ and $\{Na[Fe(\eta^{4}-(H)_{2}HBA-oBz)(OH)_{2}]\}_{x}$. Compounds of iron containing the ligands $(H)_{4}CHBA-Et$ and $(H)_{4}HBA-oBz$ were made under the same conditions as their chromium analogues. Elemental analyses of these complexes indicate they were not pure.

Tentative analytical data: {Na[Fe(η^4 -(H)₂CHBA-Et)(OH)₂]}_x IR (cm⁻¹,nujol): 3100-3650 [br, ν (OH);obscured, ν (NH)], 1600 [ss, ν (CO)].

Tentative analytical data: {Na[Fe(η^4 -(H)₂HBA-*o*Bz)(OH)₂]}_x IR (cm⁻¹,nujol): 3100-3650 [br, ν (OH);obscured, ν (NH)], 1608 [ss, ν (CO)].

Oxidations of trivalent complexes. The metal complexes were freshly prepared, as described above, except that they were not precipitated from the filtered solution. These solutions were heated under reflux and then an excess of one equivalent of the oxidant (hydrogen peroxide, *m*-chloroperbenzoic acid, iodosylbenzene, *meta*-sodium periodate, or *t*-butyl hydroperoxide) was added; no

[§] No independent verification for the waters of hydration.

apparent reaction occurred at room temperature. The solutions usually changed to a dark brown color within three minutes. After cooling to room temperature, the products were precipitated (by the addition of diethyl ether) and filtered from the solution. The materials were then washed with diethyl ether and dried *in vacuo*. Infrared spectroscopic data and elemental analyses indicated the trivalent complexes were not cleanly oxidized to higher valent compounds.

Reactivity of $(H)_4$ CHBA-Et with CrO₃, CrO₂Cl₂, Na[CrO(O₂C(CH₃)₂O)₂], and Cr(O-t-Bu)₄. Direct reactions of chromium trioxide or chromyl chloride (1 equiv.) with $(H)_4$ CHBA-Et (1 equiv.) were not productive; intractable powders were isolated under a variety of conditions, e.g., in acetone, N,N-dimethylformamide, tetrahydrofuran, or dichloromethane, with and without heating, and with and without added sodium carbonate or other bases. No reaction was observed between $(H)_4$ CHBA-Et and Na[CrO(O₂C(CH₃)₂O)₂] in acetone. An intractable gray-green powder resulted on mixing $(H)_4$ CHBA-Et (1 equiv.) with Cr(O-t-Bu)₄ (1 equiv.) in dry degassed tetrahydrofuran.

X-ray Crystallography[†]

Structure Determination of (H)₄CHBA-Et·pyHCl.

Data collection. A crystal roughly 0.25 mm on a side was mounted on a glass fiber with epoxy. Oscillation and Weissenberg photographs indicated that the space group was of the monoclinic class. The intensity data were collected on a locally modified Syntex P2₁ diffractometer with Mo K_{α} radiation ($\lambda = 0.7107$ Å) and a graphite monochromator.

Unit cell parameters were obtained by least-squares refinement of the orientation matrix using 15 centered reflections in the range $19^{\circ} < 2\theta < 38^{\circ}$: a = 10.659(3)Å, b = 22.472(6)Å, c = 4.890(2)Å, $\beta = 95.63(2)^{\circ}$, and V = 1165.8(6)Å³. The systematic absences led to the assignment of the space group P2₁ (0k0: k=odd, h0l: none, hkl: none).

A total of 6033 intensity measurements were recorded for reflections in one hemisphere (3.5° < 2 θ < 46.0°) using θ -2 θ scans at a constant scan speed of 4.88°/min (2 θ ≤ 36.0°) or 3.91°/min (2 θ > 36.0°). Background measurements were recorded for a time interval equal to half the scan time before and after each scan. The integrated intensities were calculated in the following manner: I = R[C - T(B₁ + B₂)], where R is the scan rate, C is the scan count, B₁ and B₂ are the background measurements, and T is the ratio of the scan time to the total background counting time. Three check reflections were remeasured after every 197 reflections. No decay was observed; absorption corrections were not applied. Observational variances, $\sigma^2(F_o^2)$, were based on counting statistics plus a term, 0.02C, where C is the scan count. After deletion of systematic absences, and averaging of multiple and symmetry-related reflections, the total number of unique data was 2892 of which 2268 were greater that 3 σ .

Structure determination and refinement. The atomic positions of the chlorine atoms were generated by MULTAN.⁵⁴ Subsequent Fourier and difference

[†] All calculations were carried out on VAX 11/780 and VAX 11/750 computers using the CRYRM crystallographic system.⁵³
Fourier maps revealed all non-hydrogen atoms. Atomic scattering factors were taken from Stewart, Davidson, and Simpson⁵⁵ for H and the International Tables for X-ray Crystallography⁵⁶ for all others.

Several cycles of full-matrix least-squares refinement minimizing $\sum w (F_o^2 - (F_c/k)^2)^2$, $w = \sigma^{-2}(F_o^2)$, on all non-hydrogen parameters yielded $R = \{\sum ||F_o| - |F_c/k||/|F_o|\} = 0.192$ and GOF = $\{\sum w (F_o^2 - (F_c^2/k))^2/(n_o - n_p)\}^{\frac{1}{2}} = 3.62$, where n_o is the number of reflections and n_p is the number of parameters; all atomic coordinates were in one block and the scale factor and the isotropic Gaussian ellipsoids were in the other. Subsequently, the Gaussian ellipsoids were refined anisotropically and hydrogen atoms on the carbon and nitrogen atoms were placed a distance of 1.0Å from them by assuming ideal geometry; phenolic hydrogen atoms were found on a difference Fourier map. Hydrogen atom coordinates and isotropic thermal parameters (B = 5.0Å) were not refined. The final cycle of least-squares refinement gave values for R and $R_{3\sigma}$, the R-factor calculated using only the reflections with $F_o^2 > 3\sigma(F_o^2)$, of 0.045 and 0.034; the GOF was 1.51 and the data-to-parameter ratio was 7.99. The final values for the atomic coordinates and Gaussian ellipsoids are given in Table 1.13.

Structure determination of ${Cr((H)CHBA-Et)(py)_2}_2 \cdot 2py$.

Data Collection. Oscillation photographs of crystals large enough for X-ray analysis indicated that most were badly twinned. One crystal, however, was found to extinguish well under polarized light. An oscillation photograph revealed that the individual selected for intensity data collection was a single crystal with only a minor twin component. The crystal, roughly a cube 0.25 mm on a side, was mounted on a glass fiber with epoxy. The intensity data were collected on the locally modified Syntex P2₁ automated diffractometer with Mo K_{α} radiation (λ = 0.7107Å) and a graphite monochromator.

Unit cell parameters were obtained by least-squares refinement of the orientation matrix using 15 centered reflections in the range $18^{\circ} < 2\theta < 35^{\circ}$: a = 14.343(4)Å, b = 14.225(3)Å, c = 16.447(8)Å, $\beta = 104.28(3)^{\circ}$, and V = 3252(2)Å³.

Table 1.13. Fractional coordinates (CLA-P5: $\times 10^5$; HO1-HP5: $\times 10^4$) and thermal parameters (U_{ij} $\times 10^4$ in Å²; B in Å²) for (H)₄CHBA-Et·pyHCl.

x	У	z	U11	U22	U33	U_{12}	U13	U23
45154(11)	8060(08)	24070(25)	428(06)	504(07)	501(07)	-103(06)	69(05)	-124(06)
\$4550(12)	24550(00)	96448(30)	400(07)	519(08)	846(10)	102(06)	196(07)	-148(07)
125281(13)	-16124(08)	27226(28)	607(08)	527(07)	633(09)	139(07)	76(07)	-176(07)
88975(12)	-16231(08)	95995(31)	495(07)	509(08)	908(10)	-134(07)	139(07)	161(08)
620331(29)	24820(14)	112248(63)	467(18)	\$33(16)	522(18)	S(E5)	99(15)	-146(15)
126871(30)	-3413(15)	39443(66)	423(19)	480(18)	537(19)	5(15)	168(16)	·21(15)
84254(29)	20955(14)	110611(67)	407(18)	480(20)	534(21)	16(15)	-10(16)	-180(16)
121771(33)	5830(14)	64957(71)	556(23)	433(19)	770(24)	-139(17)	\$79(20)	-113(17)
89355(32)	15804(17)	73582(74)	273(18)	481(22)	447(23)	19(16)	27(17)	-84(18)
106728(34)	6054(16)	93768(73)	829(20)	406(22)	511(22)	-25(16)	130(17)	-74(17)
58647(39)	20966(18)	91617(85)	\$78(24)	280(21)	423(24)	7(16)	122(20)	27(18)
45803(41)	20481(19)	81496(97)	\$52(24)	335(230	564(30)	68(20)	133(22)	-21(21)
41592(42)	16606(20)	61277(94)	842(25)	396(23)	485(23)	1(20)	85(21)	64(20)
50437(41)	13101(19)	49937(66)	389(24)	301(22)	417(25)	-35(18)	87(20)	-1(18)
63133(40)	13495(19)	58329(86)	\$52(23)	\$\$5(22)	425(24)	20(18)	68(19)	12(18)
67303(38)	17450(19)	79071(87)	289(21)	\$25(22)	369(24)	14(18)	66(19)	3(18)
60989(42)	18153(19)	89068(90)	405(24)	254(23)	436(26)	38(19)	41(20)	26(19)
102944(39)	16685(20)	80254(94)	326(21)	430(26)	471(29)	-33(20)	73(20)	-65(22)
108921(40)	12264(20)	101659(92)	346(25)	359(22)	557(28)	-4(20)	27(22)	-94(20)
113444(38)	\$225(21)	76480(87)	\$12(21)	409(23)	456(26)	-24(20)	56(19)	-1(22)
110926(39)	-3193(18)	71073(85)	302(23)	341(22)	386(26)	\$1(18)	16(19)	-8(19)
101890(41)	-6362(21)	84416(90)	360(24)	442(26)	489(27)	-2(20)	72(21)	45(22)
100147(42)	-12346(22)	79067(97)	373(25)	423(26)	512(29)	-57(21)	20(22)	60(23)
107306(43)	-15589(21)	61970(97)	465(25)	400(27)	571(28)	38(22)	-68(22)	.1(23)
116109(43)	-12282(20)	48824(88)	447(27)	413(24)	427(26)	106(22)	18(21)	-\$5(20)
118120(40)	-6212(20)	53027(86)	327(23)	408(25)	426(26)	27(19)	2(20)	18(20)
83730(12)	3529(08)	28833(27)	476(07)	507(07)	672(08)	-4(00)	292(06)	-37(00)
33099(43)	45919(21)	39569(94)	522(2 6)	596(26)	609(26)	100(21)	-3(22)	-176(22)
34094(54)	40493(27)	50095(110)	654(37)	784(39)	580(35)	-132(32)	64(29)	-86(29)
42792(60)	\$6680(25)	41453(114)	881(47)	461(32)	588(36)	-56(32)	-87(83)	-14(21)
50547(52)	38532(24)	22123(108)	559(33)	532(32)	622(34)	133(27)	-32(28)	-93(27)
49365(52)	44150(24)	12164(105)	\$45(33)	605(33)	603(32)	33(27)	99(27)	-85(26)
40484(57)	47824(23)	21051(111)	764(39)	456(31)	595(34)	69(27)	60(30)	-22(25)
	x 45154(11) 34660(12) 125261(13) 88973(12) 620331(29) 126871(30) 84254(29) 121771(33) 89355(32) 106726(34) 45863(41) 41592(42) 50457(41) 63133(40) 67303(38) 80969(42) 102944(39) 108921(40) 113444(38) 100926(39) 108921(40) 113444(38) 100926(43) 116109(43) 116109(43) 116109(43) 116109(43) 116109(43) 116109(43) 33099(43) 34094(54) 42792(60) 50547(52) 40484(57)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	xyz $45154(11)$ $8060(08)$ $24070(25)$ $34660(12)$ $24680(00)$ $96448(30)$ $125281(13)$ $-16124(08)$ $27226(26)$ $86975(12)$ $-16231(06)$ $95995(31)$ $620331(29)$ $24820(14)$ $112248(63)$ $126871(50)$ $-3413(15)$ $59443(66)$ $84254(29)$ $20955(14)$ $110611(67)$ $121771(33)$ $5830(14)$ $64957(71)$ $89355(52)$ $15804(17)$ $73582(74)$ $106726(34)$ $6054(16)$ $93768(73)$ $36647(39)$ $20966(18)$ $91617(55)$ $45803(41)$ $20481(19)$ $81496(97)$ $41592(42)$ $16606(20)$ $61277(94)$ $50437(41)$ $13101(19)$ $49957(66)$ $67303(38)$ $17450(19)$ $79071(87)$ $80989(42)$ $18153(19)$ $89068(90)$ $102944(39)$ $16688(20)$ $80254(94)$ $10692(14)$ $12264(20)$ $101659(92)$ $113444(38)$ $3225(21)$ $76480(87)$ $110926(39)$ $-5193(18)$ $71073(85)$ $101590(41)$ $-632(21)$ $84416(90)$ $100147(42)$ $-12282(20)$ $48824(68)$ $118120(40)$ $-6212(20)$ $5027(86)$ $85750(12)$ $3529(06)$ $2853(27)$ $3509(43)$ $45919(21)$ $39569(41)$ $34094(54)$ $40493(27)$ $50095(110)$ $42792(60)$ $36562(25)$ $44150(25)$ $44150(25)$ $44150(25)$ $14153(114)$ $50547(52)$ $38532(4)$ $22123(10$	xyz U_{11} 45154(11)8060(08)24070(25)426(06)34660(12)24860(00)96448(30)400(07)125281(13)-16124(08)27226(28)607(08)86975(12)-16231(08)95995(31)495(07)620331(29)24820(14)112246(63)467(18)126671(30)-5413(15)59443(66)423(19)84254(29)20955(14)110611(67)407(18)121771(35)5830(14)64957(71)556(23)89355(32)15804(17)73582(74)273(18)106726(34)6054(16)93766(73)329(20)56647(39)20966(18)91617(55)378(24)41592(42)16606(20)61277(94)342(25)50437(41)15101(19)49957(66)389(24)65133(40)123495(19)58529(66)352(23)67303(38)17450(19)79071(87)269(21)10592(40)12264(20)101659(92)346(25)115444(38)3225(21)76460(87)312(21)10692(140)12264(20)101659(92)346(25)115444(38)3225(21)79067(97)375(25)107306(43)-13589(21)61970(97)465(25)116109(43)-12282(20)48824(68)447(27)118120(40)-6212(20)5007(66)327(23)85750(12)3529(06)28653(27)476(07)35099(43)45919(21)39569(94)522(26)34094(54)40493(27)50095(110)654(57) </td <td>xyzU11U2245154(11)$8060(08)$$24070(25)$$428(06)$$504(07)$$34660(12)$$24880(00)$$96448(30)$$400(07)$$519(08)$$125261(13)$$-16124(08)$$27226(28)$$607(08)$$527(07)$$86975(12)$$-16231(08)$$95995(31)$$495(07)$$509(08)$$620331(29)$$24820(14)$$112246(63)$$467(18)$$333(16)$$126671(50)$$-3413(15)$$59443(66)$$423(19)$$480(18)$$84254(29)$$20955(14)$$110611(67)$$407(18)$$480(18)$$84254(29)$$20955(14)$$110611(67)$$407(18)$$480(12)$$121771(35)$$5830(14)$$64957(71)$$556(23)$$433(19)$$89555(32)$$15804(17)$$7582(74)$$275(18)$$480(21)$$16726(34)$$6054(16)$$93768(73)$$329(20)$$406(22)$$166647(39)$$20966(18)$$91617(55)$$378(24)$$380(21)$$45803(41)$$20481(19)$$81496(97)$$352(24)$$355(23)$$50437(41)$$13101(19)$$49957(66)$$389(24)$$301(22)$$67303(38)$$17450(19)$$79071(87)$$289(21)$$225(22)$$63089(42)$$1658(20)$$80254(94)$$326(21)$$430(26)$$102944(59)$$16686(20)$$80254(94)$$326(21)$$430(26)$$102944(59)$$16686(20)$$80254(94)$$326(21)$$450(25)$$110926(39)$$-12346(22)$$79067(97)$$373(25)$</td> <td>xyzU11U22U3345154(11)8060(06)24070(25)426(06)504(07)501(07)34660(12)24860(00)96448(30)400(07)519(08)846(10)125281(13)-16124(08)27226(28)607(08)527(07)633(09)86975(12)-16231(08)95955(31)495(07)509(08)908(10)620331(29)24820(14)112248(63)467(18)333(16)522(18)126671(30)-5413(15)59445(66)423(19)480(18)537(19)84254(29)20935(14)110611(67)407(18)460(20)834(21)121771(35)5830(14)64957(71)556(23)433(19)770(24)89355(32)15804(17)73582(74)273(18)481(22)447(23)106726(34)6054(16)93766(73)329(20)406(22)511(22)58647(39)20966(18)91617(55)378(24)280(21)425(24)45805(41)20481(19)81496(97)352(24)355(23)355(22)426(4)45805(41)20481(19)89957(66)389(24)301(22)417(25)63133(40)13495(19)58529(66)352(23)335(22)456(26)102944(39)16686(20)80254(94)326(21)325(22)369(24)6703(38)17450(19)79071(87)289(21)325(22)369(24)63039(44)322(21)76460(87)312(21)409(23)456(26)102944(39)16686(20)80254(94)<!--</td--><td>xyz$U_{11}$$U_{22}$$U_{33}$$U_{12}$45154(11)8060(08)24070(25)426(06)504(07)501(07)-103(06)34560(12)24560(00)96448(30)400(07)519(08)846(10)102(06)125281(13)-16124(08)27226(28)607(08)527(07)633(09)139(07)86973(12)-16231(08)95995(31)495(07)509(06)906(10)-154(07)620331(29)24820(14)112246(65)467(18)333(16)522(18)3(85)126871(30)-3413(15)39443(66)423(19)480(18)537(18)5(35)84254(29)20955(14)110611(67)407(18)480(20)534(21)16(15)121771(33)8580(14)64957(71)556(23)433(19)770(24)-139(17)89355(32)15804(17)7358(74)273(18)481(22)447(23)19(16)106726(34)6054(16)95768(73)329(20)406(22)511(22)-25(16)58647(39)20966(18)91617(85)378(24)280(21)423(24)7(18)45803(41)20481(19)81496(97)352(24)301(22)417(25)-35(16)50437(41)1310(19)49957(66)389(24)301(22)417(25)-35(16)50437(41)1310(19)49957(66)359(23)355(22)456(24)24(18)67303(38)17450(19)79071(87)269(21)325(22)369(24)14(18)69085(42)181</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td>	xyzU11U2245154(11) $8060(08)$ $24070(25)$ $428(06)$ $504(07)$ $34660(12)$ $24880(00)$ $96448(30)$ $400(07)$ $519(08)$ $125261(13)$ $-16124(08)$ $27226(28)$ $607(08)$ $527(07)$ $86975(12)$ $-16231(08)$ $95995(31)$ $495(07)$ $509(08)$ $620331(29)$ $24820(14)$ $112246(63)$ $467(18)$ $333(16)$ $126671(50)$ $-3413(15)$ $59443(66)$ $423(19)$ $480(18)$ $84254(29)$ $20955(14)$ $110611(67)$ $407(18)$ $480(18)$ $84254(29)$ $20955(14)$ $110611(67)$ $407(18)$ $480(12)$ $121771(35)$ $5830(14)$ $64957(71)$ $556(23)$ $433(19)$ $89555(32)$ $15804(17)$ $7582(74)$ $275(18)$ $480(21)$ $16726(34)$ $6054(16)$ $93768(73)$ $329(20)$ $406(22)$ $166647(39)$ $20966(18)$ $91617(55)$ $378(24)$ $380(21)$ $45803(41)$ $20481(19)$ $81496(97)$ $352(24)$ $355(23)$ $50437(41)$ $13101(19)$ $49957(66)$ $389(24)$ $301(22)$ $67303(38)$ $17450(19)$ $79071(87)$ $289(21)$ $225(22)$ $63089(42)$ $1658(20)$ $80254(94)$ $326(21)$ $430(26)$ $102944(59)$ $16686(20)$ $80254(94)$ $326(21)$ $430(26)$ $102944(59)$ $16686(20)$ $80254(94)$ $326(21)$ $450(25)$ $110926(39)$ $-12346(22)$ $79067(97)$ $373(25)$	xyzU11U22U3345154(11)8060(06)24070(25)426(06)504(07)501(07)34660(12)24860(00)96448(30)400(07)519(08)846(10)125281(13)-16124(08)27226(28)607(08)527(07)633(09)86975(12)-16231(08)95955(31)495(07)509(08)908(10)620331(29)24820(14)112248(63)467(18)333(16)522(18)126671(30)-5413(15)59445(66)423(19)480(18)537(19)84254(29)20935(14)110611(67)407(18)460(20)834(21)121771(35)5830(14)64957(71)556(23)433(19)770(24)89355(32)15804(17)73582(74)273(18)481(22)447(23)106726(34)6054(16)93766(73)329(20)406(22)511(22)58647(39)20966(18)91617(55)378(24)280(21)425(24)45805(41)20481(19)81496(97)352(24)355(23)355(22)426(4)45805(41)20481(19)89957(66)389(24)301(22)417(25)63133(40)13495(19)58529(66)352(23)335(22)456(26)102944(39)16686(20)80254(94)326(21)325(22)369(24)6703(38)17450(19)79071(87)289(21)325(22)369(24)63039(44)322(21)76460(87)312(21)409(23)456(26)102944(39)16686(20)80254(94) </td <td>xyz$U_{11}$$U_{22}$$U_{33}$$U_{12}$45154(11)8060(08)24070(25)426(06)504(07)501(07)-103(06)34560(12)24560(00)96448(30)400(07)519(08)846(10)102(06)125281(13)-16124(08)27226(28)607(08)527(07)633(09)139(07)86973(12)-16231(08)95995(31)495(07)509(06)906(10)-154(07)620331(29)24820(14)112246(65)467(18)333(16)522(18)3(85)126871(30)-3413(15)39443(66)423(19)480(18)537(18)5(35)84254(29)20955(14)110611(67)407(18)480(20)534(21)16(15)121771(33)8580(14)64957(71)556(23)433(19)770(24)-139(17)89355(32)15804(17)7358(74)273(18)481(22)447(23)19(16)106726(34)6054(16)95768(73)329(20)406(22)511(22)-25(16)58647(39)20966(18)91617(85)378(24)280(21)423(24)7(18)45803(41)20481(19)81496(97)352(24)301(22)417(25)-35(16)50437(41)1310(19)49957(66)389(24)301(22)417(25)-35(16)50437(41)1310(19)49957(66)359(23)355(22)456(24)24(18)67303(38)17450(19)79071(87)269(21)325(22)369(24)14(18)69085(42)181</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	xyz U_{11} U_{22} U_{33} U_{12} 45154(11)8060(08)24070(25)426(06)504(07)501(07)-103(06)34560(12)24560(00)96448(30)400(07)519(08)846(10)102(06)125281(13)-16124(08)27226(28)607(08)527(07)633(09)139(07)86973(12)-16231(08)95995(31)495(07)509(06)906(10)-154(07)620331(29)24820(14)112246(65)467(18)333(16)522(18)3(85)126871(30)-3413(15)39443(66)423(19)480(18)537(18)5(35)84254(29)20955(14)110611(67)407(18)480(20)534(21)16(15)121771(33)8580(14)64957(71)556(23)433(19)770(24)-139(17)89355(32)15804(17)7358(74)273(18)481(22)447(23)19(16)106726(34)6054(16)95768(73)329(20)406(22)511(22)-25(16)58647(39)20966(18)91617(85)378(24)280(21)423(24)7(18)45803(41)20481(19)81496(97)352(24)301(22)417(25)-35(16)50437(41)1310(19)49957(66)389(24)301(22)417(25)-35(16)50437(41)1310(19)49957(66)359(23)355(22)456(24)24(18)67303(38)17450(19)79071(87)269(21)325(22)369(24)14(18)69085(42)181	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Atom	x	У	T	в
HOI	7130	2470	11590	5 .0
HO2	12922	77	4490	5.0
HN1	8628	1324	5701	5.0
HN2	9978	\$60	10238	5.0
HC3	3222	1632	5424	5.0
HC5	6940	1088	4935	5.0
HC6A	10425	2090	8781	5.0
HC6B	10738	1640	6314	5.0
HC9A	10529	1304	11958	5.0
HC9B	11823	1295	10423	5.0
HC12	9671	-423	9809	5.0
HC14	10603	-1975	5834	5.0
HPN	2653	4871	4683	5.0
HP1	2817	8919	6368	5.0
HP2	4310	8257	4967	5.0
HP3	8775	3576	1633	5.0
HP4	8496	4560	-285	5.0
HP5	4107	5162	1052	5.0

The systematic absences led to the assignment of the space group $P2_1/c$ (0k0: k=odd, h0l: l=odd, hkl: none).

A total of 8370 intensity measurements were recorded for reflections in one hemisphere (4.0° < 2θ < 45.0°) using θ - 2θ scans at a constant scan speed of 2.02°/min with a fixed symmetric scan width of 2.0° in 2θ . Background measurements were recorded for approximately 30 seconds[‡] before and after each scan. The integrated intensities were calculated in the following manner: I = $R[C - T(B_1 + B_2)]$, where R is the scan rate, C is the scan count, B_1 and B_2 are the background measurements, and T is the ratio of the scan time to the total background counting time. Three check reflections were remeasured after every 97 reflections. A linear least-squares fit of intensities of these check reflections implied a 5% decay over the 206 hours of data collection. Absorption corrections were deemed unnecessary ($\mu = 7.4 \text{ cm}^{-1}$). Observational variances, $\sigma^2(F_o^2)$, were based on counting statistics plus a term, 0.02C, where C is the scan count. After deletion of systematic absences, and averaging of multiple and symmetry-related reflections, the total number of unique data was 3685 of which 2031 were greater that 3σ .

Structure determination and refinement. The atomic positions of the chromium atoms were derived from the Patterson map. Subsequent Fourier and difference Fourier maps revealed all non-hydrogen atoms. Atomic scattering factors were taken from Stewart, Davidson, and Simpson⁵⁵ for H, and the International Tables for X-ray Crystallography⁵⁶ for all others.

Several cycles of full-matrix least-squares refinement minimizing $\sum w (F_o^2 - (F_c/k)^2)^2$, $w = \sigma^{-2}(F_o^2)$, on all non-hydrogen parameters yielded $R = \{\sum ||F_o| - |F_c/k||/|F_o|\} = 0.127$ and GOF = $\{\sum w (F_o^2 - (F_c^2/k))^2/(n_o - n_p)\}^{\frac{1}{2}} = 1.76$, where n_o is the number of reflections and n_p is the number of parameters; all atomic coordinates were in one block and the scale factor and the Gaussian ellipsoids (anisotropic for all atoms except those of the disordered pyridine ring)

[‡] The background counting time was proportional to $\frac{1}{2}$ the scan time.

were in the other. Hydrogen atoms were placed a distance of 0.99Å from their respective carbon or nitrogen atom by assuming ideal geometry, and were not refined. The final cycle of least-squares refinement gave values for R and $R_{3\sigma}$, the R-factor calculated using only the reflections with $F_o^2 > 3\sigma(F_o^2)$, of 0.122 and 0.055; the GOF was 1.38 and the data-to-parameter ratio was 9.8. The final values for the atomic parameters are given in Table 1.14.

Structure Determination of $K_2[{Os(\eta^4-CHBA-Et)(OPPh_3)}_2O] \cdot \frac{3}{2}acetone \cdot H_2O$.

Data collection. A dark blue crystal $(0.2 \times 0.2 \times 0.2 \text{ mm})$ was mounted on a glass fiber with epoxy. Oscillation and Weissenberg photographs were used to determine the space group for the structure: P2₁/c (hol: l=odd, 0k0: k=odd, hkl: none). The intensity data was collected on the locally modified Syntex P2₁ diffractometer with Mo K_{α} radiation ($\lambda = 0.7107$ Å) and a graphite monochromator. Lattice parameters were obtained by least-squares refinement of the orientation matrix using fifteen centered reflections (11.5° < 2 θ < 26.0°): a = 18.72(1)Å, b = 15.290(9)Å, c = 28.24(2)Å, $\beta = 107.49(5)$ °, V = 7709(9)Å³.

A total of 6065 intensity measurements were recorded $(+h,+k,\pm l; 2\theta \leq 36^{\circ})$ using θ -2 θ scans at a constant scan speed of 6°/min with a fixed symmetric scan width of 2.0° in 2 θ . Stationary-counter/-crystal background counts were recorded for approximately 30 s before and after each scan. The integrated intensities were calculated in the following manner: $I = R[C - T(B_1 + B_2)]$, where R is the scan rate, C is the scan count, B_1 and B_2 are the background measurements, and T is the ratio of the scan time to the total background counting time. Three check reflections were remeasured after every 97 reflections; a 16% decay in intensity was observed and linear scaling was applied. No absorption corrections were made (μ = 3.98 mm⁻¹). Observational variances, $\sigma^2(F_o^2)$, were based on counting statistics plus a term, 0.02C, where C is the scan count. After deletion of systematic absences, and averaging of multiple and symmetry-related reflections, the total number of unique data was 5331 of which 3411 were greater than 3 σ .

Structure determination and refinement. Atomic scattering factors were

Table 1.14. Fractional coordinates (Cr-P10: $\times 10^5$; P11-P16: $\times 10^4$) and thermal parameters (U_{ij} $\times 10^4$ in Å²; B in Å²) for {Cr((H)CHBA-Et)(py)₂}₂·2py.

102

Atom	x	У	z	U11	U22	U33	U12	U13	U23
CR	312 95(07)	-6517(07)	8314(06)	386(06)	\$13(06)	837(07)	10(06)	64(5)	16(06)
N1	59667(32)	10823(33)	8658(28)	\$\$9(32)	380(34)	397(35)	-126(29)	124(26)	-47(29)
N2	73124(31)	\$\$72(31)	659(30)	265(31)	\$47(33)	\$95(36)	14(26)	56(26)	29(29)
C1	64166(41)	1804(41)	11777(38)	889(41)	343(40)	505(46)	147(34)	134(37)	177(36)
C2	73941(41)	1130(41)	9487(33)	415(41)	448(42)	193(37)	14(34)	114(32)	71(34)
CA	70844(37)	10902(41)	-16916(38)	210(36)	\$\$5(40)	446(47)	\$8(32)	62(33)	42(37)
CB	74682(39)	16074(42)	-9408(36)	\$17(39)	404(42)	295(41)	-48(34)	33(33)	8(36)
CC	78632(41)	25027(43)	-9896(39)	496(45)	\$55(41)	452(48)	-95(39)	38(39)	18(38)
CD	79150(46)	28603(41)	-17404(42)	814(56)	341(44)	422(49)	-242(40)	58(45)	52(39)
CE	75426(45)	23983(45)	-24869(41)	619(47)	403(45)	439(49)	-161(39)	51(40)	74(39)
CF	71402(41)	15371(42)	-24415(36)	497(45)	873(43)	284(43)	-22(37)	24(36)	2(36)
CG	86205(44)	22067(42)	-1229(35)	800(48)	327(45)	403(47)	33(37)	75(39)	68(37)
CH	46421(41)	20762(40)	1540(36)	364(42)	\$12(40)	353(44)	4(35)	73(35)	72(35)
CI	52770(42)	27581(40)	-131(41)	804(47)	245(43)	578(51)	-42(36)	103(40)	15(38)
CJ	49342(45)	35441(43)	-4546(41)	607(50)	\$15(45)	601(53)	-114(40)	174(43)	180(39)
CK	39438(51)	36950(45)	-7717(44)	711(55)	338(47)	743(60)	-5(43)	120(48)	107(43)
CM	33358(44)	30360(46)	-6055(40)	528(48)	420(45)	822(51)	57(39)	-8(40)	135(40)
CL1	57390(14)	43776(13)	-6682(13)	882(15)	447(12)	887(16)	-214(12)	230(13)	167(13)
CL2	66426(15)	9575(13)	-33710(11)	1101(17)	535(13)	359(12)	-206(12)	26(11)	-2(10)
CL3	20907(14)	32215(14)	-9724(14)	648(15)	699(15)	1115(20)	118(12)	-8(14)	\$55(14)
CL4	84290(19)	\$9825(15)	-17726(13)	1797(25)	682(15)	639(16)	-762(16)	84(16)	70(13)
COI	50146(42)	11943(41)	6035(35)	426(44)	298(41)	264(40)	-70(37)	70(34)	-20(34)
01	44768(23)	5344(26)	7483(22)	271(25)	333(26)	378(26)	-7(22)	87(21)	51(23)
CO2	74540(38)	12631(44)	-817(38)	165(36)	547(48)	354(45)	22(37)	34(33)	87(40)
O2	75709(26)	18864(27)	4845(25)	437(28)	418(29)	444(32)	-114(24)	104(24)	-97(24)
03	66593(25)	2596(26)	-17163(23)	380(27)	321(26)	864(28)	-80(22)	15(23)	47(22)
04	29613(26)	16348(28)	\$1(25)	384(28)	420(29)	480(30)	8(23)	72(24)	156(25)
N 3	17277(31)	8807(31)	9527(31)	337(34)	320(35)	471(38)	-28(27)	63(29)	6(31)
P1	15117(45)	8244(48)	16913(44)	474(48)	686(57)	666(54)	-55(44)	203(43)	-56(49)
P2	8947(50)	10194(52)	17931(50)	484(52)	805(63)	1050(72)	62(49)	382(50)	-34(54)
P3	-1109(50)	12705(50)	11049(55)	479(54)	772(62)	1131(80)	-33(48)	296(54)	-109(61)
P4	1067(45)	13246(53)	\$409(50)	183(41)	903(66)	1018(73)	12(44)	-43(46)	-91(58)
P5	10367(47)	11422(47)	2823(42)	486(49)	852(49)	638(54)	49(42)	58(43)	6(43)
N4	\$6361(32)	17348(34)	17424(32)	323(34)	371(35)	595(42)	•74(29)	165(31)	-39(32)
P 6	32440(44)	25960(48)	16538(42)	538(48)	473(48)	585(54)	54(43)	111(42)	-130(43)
P7	36598(51)	33684(49)	20997(49)	691(58)	483(51)	964(70)	-40(46)	149(52)	-264(51)
Pð	45560(52)	32600(49)	26406(48)	688(57)	553(53)	855(64)	-155(49)	218(49)	-296(51)
P 9	49699(45)	23713(53)	27440(40)	539(48)	736(57)	461(53)	-56(40)	197(42)	-100(46)
P1 0	44951(43)	16239(45)	22886(38)	\$95(41)	\$00(46)	462(48)	\$(\$9)	150(39)	-5(40)

Atom	x	y	Z	В
P11 ⁴	1101 (06)	3651 (06)	1506 (06)	8.6(0.2)
P12	480 (08)	3856 (07)	748 (07)	10.2(0.3)
P13	-475 (08)	4064 (08)	788 (07)	11.2(0.3)
P14	-718 (07)	3949 (08)	1548 (08)	10.5(0.3)
P15	-117 (10)	8687 (09)	2272 (08)	12.5(0.3)
P16 ^b	866 (07)	3564 (07)	3232 (06)	10.4(0.3)

⁶ This atom is 0.80 C and 0.70 N. ⁶ This atom is 0.70 C and 0.30 N.

taken from Stewart, Davidson. and Simpson⁵⁵ for H, and the International Tables for X-ray Crystallography⁵⁶ for all others. The positions of the osmium atoms were derived from a Patterson map, and the subsequent Fourier and difference Fourier maps indicated the locations of the remaining non-hydrogen atoms; the hydrogen atoms were placed at calculated positions 0.98Å from their respective carbon atom and were not refined. The Gaussian amplitudes of the μ -oxo and the hydrogen atom coordinates (B = 2.75 and 5.0Å²) and the population of the uncoordinated acetone molecule (set to 0.5) were not refined either.

Full-matrix least-squares refinement minimized the following function: $\sum w (F_o^2 - (F_c/k)^2)^2$, $w = \sigma^{-2}(F_o^2)$. Subsequent cycles of least-squares led to the final values for $R = \{\sum ||F_o| - |F_c/k||/|F_o|\} = 0.111$, $R_{3\sigma}$ (the R-factor calculated using only the reflections with $F_o^2 > 3\sigma(F_o^2)$) = 0.076, and GOF = $\{\sum w (F_o^2 - (F_c^2/k))^2/(n_o - n_p)\}^{\frac{1}{2}} = 2.03$, where n_o is the number of reflections and n_p is the number of parameters. All atomic coordinates were in one block and the scale factor and the Gaussian ellipsoids were in the other. The final atomic coordinates and Gaussian thermal parameters appear in Table 1.15.

Structure Determination of trans-Os $(\eta^4$ -CHBA-HMEt)(py)_2 $\cdot \frac{1}{4}$ H₂O.

Data collection. A dark blue crystal $(0.1 \times 0.2 \times 0.4 \text{ mm})$ was mounted on a glass fiber with epoxy. Oscillation and Weissenberg photographs indicated no symmetry; the space group was assigned P₁. The intensity data were collected on an Enraf-Nonius CAD-4 diffractometer with Mo K_{α} radiation ($\lambda = 0.7107$ Å) and a graphite monochromator. Lattice parameters were obtained by least-squares refinement of the orientation matrix using 25 centered reflection (19° < 2 θ < 40°): a = 9.959(2)Å, b = 12.740(2)Å, c = 15.028(2)Å, $\alpha = 94.16(1)^{\circ}$, $\beta = 76.74(1)^{\circ}$, $\gamma = 63.48(1)^{\circ}$, V = 1626.8(5)Å³.

A total of 20518 intensity measurements were recorded for reflections in the entire sphere $(2\theta \leq 50^{\circ})$ using ω -2 θ scans at a scan speed of $4^{\circ}/\min^{*}$ with a

^{*} The scan speed for weak reflections was slowed to make $\sigma(I)/I = 0.02$.

Table 1.15. Fractional coordinates $(Os(A)-Cl(2D): \times 10^5; O-H(46B): \times 10^4)$ and thermal parameters $(U_{eq} \times 10^4 \text{ in } \text{\AA}^2; \text{ B in } \text{\AA}^2)$ for $K_2[\{Os(\eta^4-CHBA-Et)(OPPh_3)\}_2O]\cdot\frac{3}{2}acetone\cdot H_2O.$

Label	1 x 1 1 1	У	Z	Ueg	
Os(A)	21549(7)	5201(8) 20862(5) 330(4)
Os(B)	22403(7)	-3081(8) 32900(5) 342(4)
$\mathbf{K}(\mathbf{A})$	38656(36)	-5101(4	6) 28668(27) 584(2	23)
K (B)	92306(41)	-16181(4	7) 20055(31) 696(2	25)
P(1A)	21693(42)	7659(5	2) 9063(35) 457(6	59)
O(3A)	22183(93)	9606(14	3) 14329(64) 619(13	39)
P(1B)	26586(47)	-7880(5	5) 45206(35) 504(2	28)
O(3B)	23603(82)	-7434(12	1) 39547(59) 404(14	11)
CI(1A)	41860(61)	46022(6	2) 27162(42) 1072(3	39)
Cl(2A)	47787(44)	12102(6	0) 25529(38) 754(3	38)
Cl(1B)	34678(49)	-20796(5	9) 18321(40) 856(3	36)
Cl (2B)	9253(62)	-39454(5	8) 15248((44) 1034(4	42)
Cl(1C)	37223(61)	40764(5	5) 39150((41) 984(4	13)
Cl (2C)	47417(47)	8201(6	1) 38329(37) 817(3	38)
CI(1D)	17066(71)	-49684(5	7) 27331(45) 1164(5	55)
Cl(2D)	3 9503(50)	-26485(5	7) 3 2344((39) 811(3	34)
Label	x	у	Z	В	
0	2181(10)	70(11)	2669(7)	2.80	
O(1A)	3240(10)	957(11)	2358(6)	2.95(0.43)	
O (1B)	2542(10)	-611(12)	1893(6)	3.72(0.44)	
O (2A)	1714(11)	3057(14)	2466(7)	4.71(0.51)	
O(2B)	114(11)	-807(12)	1566(7)	4.63(0.50)	
N(1A)	1705(12)	1693(14)	2198(8)	3.05(0.54)	
N(1B)	1057(13)	134(15)	1780(8)	3.48(0.56)	
C(1A)	901(17)	1568(18)	2136(11)	3.71(0.72)	
C(2A)	2083(15)	2411(18)	2389(10)	2.40(0.65)	
C(3A)	2904(17)	2497(19)	2453(11)	3.44(0.72)	
C(4A)	3146(16)	3361(18)	2538(10)	3.04(0.67)	
C(5A)	3889(19)	3505(21)	2617(12)	4.92(0.82)	
C(6A)	4423(18)	2878(22)	2648(12)	5.08(0.84)	
C(7A)	4154(16)	2056(19)	2538(10)	3.41(0.69)	
C(8A)	3414(16)	1816(18)	2451(10)	2.85(0.66)	
C(1B)	539(17)	917(19)	1705(11)	4.09(0.76)	
C(2B)	825(18)	-650(21)	1689(11)	4.25(0.74)	
C(3B)	1343(17)	-1406(20)	1714(11)	3.70(0.73)	
C(4 B)	968(18)	-2205(22)	1619(12)	5.22(0.84)	

Label	x	У		L	В		Label	x	у		z	В
C(6B)	2169(17)	-2918(1	9) 1	673(11)	3.75	5(0.72)	C(35A)	3957(22) 63	9(24)	350(13)	6.78(0.94)
C(7B)	2493(17)	-2145(2	1) 1	775(11)	4.02	2(0.75)	C(36A)	3215(20) 72	9(22)	421(13)	6.16(0.92)
C(8B)	2160(19)	-1314(2	3) 1	780(12)	5.28	8(0.87)	C(41A)	1692(17) -17	9(19)	678(11)	3.52(0.72)
O (1C)	3249 (10)	316(1)	3) 3	589(7)	3.82	2(0.45)	C(42A)	917(18) -14	8(20)	590(11)	4.17(0.77)
O (1D)	2 826(10)	-1392(1)	2) 3	182(7)	3.90	(0.47)	C(43A)	493(21) -91	9(25)	454(13)	6.75(0.99)
O (2C)	1423(11)	2093(1)	3) 3	616(7)	4.42	2(0.49)	C(44A)	814(21) -166	3(23)	402(13)	6.05(0.91)
O (2D)	441(13)	-2020(1-	4) 2	723(8)	6.02	2(0.57)	C(45A)	1563(21) -171	5(23)	471(13)	6.33 (0.95)
N(1C)	16 63(13)	677(1	5) 3	475(8)	3.86	(0.57)	C(46A)	2015(19) -92	8(24)	611(13)	5.84(0.91)
N(1D)	1223(13)	-922(10	6) 3	084(9)	4.08	(0.60)	C (21B)	1931(20) -78	32(23)	4739(14)	6.30 (0.92)
C(1C)	878(18)	420(2)	2) 3	429(12)	5.60	(0.83)	C(22B)	1995(20) -56	1(24)	5249(13)	6.65(0.93)
C(2C)	1852(18)	1528(2)	2) 3	567(12)	4.57	(0.79)	C(23B)	1296(26) -160	0(28)	5436(16)	9.00(1.16)
C(3C)	2083(17)	1/46(2)	0) 39 0) 9	659(11)	3.72	(0.73)	C(24B)	700(27) -88	5(30)	5074(19)	9.90(1.32)
C(4C)	2(9((19)	2040(2)	2) 3	(25(12)	5.08	(0.84)	C(25B)	038(29) -118	O(32)	4001(19)	1100(1.44)
	3529 (21) 410 9(17)	2669(2	2) 3 0) 9	829(12)	9.63	QU.91)	C(20B)	1244(24) -115	0(23)	4420(14)	1.29(1.03)
C(0C)	4020(17)	1501(0)		799(11)	0.45	(0.72)	C(31B)	3135(11) 19	9(22)	4009(12)	4.23(0.77)
	4 020(17) 2 202(17)	1159(2)	0) 3 0) 9	(00(11) 676(11)	3.03	(0.13)	C(32D)	4200(20) 10	Q(25)	4990(13) \$100(13)	3.83(0.90)
C(1D)	640(10)	-953(2)	0) 3 0) 3	030(12)	0.45	(0.12)	C(34B)	9015(24) 174	9(26)	5199(13)	776(1.06)
C(2D)	1124(20)	-1743(2)	1) 9	0.05(12)	4 78	(0.81)	C(35B)	3184(23	173	1(25)	AR 81(14)	7 19(1.00)
C(3D)	1748(10)	-9373(9)	1) 2	976(11)	4 39	(0.81)	C(36B)	2766(18) 00	6(23)	4604(12)	5 31(0.86)
C(AD)	1507(18)	-3267(2)	2) 2	846(12)	5 10	(0.19)	C(A1B)	3272(17	-172	n(20)	4717(12)	4 09 (0 76)
C(5D)	2014(10)	-9018(20	1) 2	870(12)	4.55	(0.84)	C(42B)	3379(20	, -210	Q(24)	5108(13)	6 14(0 92)
C(6D)	2741(22)	-3738(9)	1) 2	975(14)	6 78	(0.00)	C(43B)	3852(22) -280	3(25)	5388(14)	7 00(1 02)
C(7D)	3001(18)	-2803(2)	1) 2	000(11)	4 36	(0.38)	C(44B)	4170(22	308	1(25)	5035(16)	7 51(1 03)
C(8D)	2495(17)	-2188(2)		059(11)	3.48	(0.70)	C(45B)	4114(20)	-278	7(24)	4571(14)	6 33(0 94)
C(21A)	1695(17)	1692(10		489(11)	3 70	(0.73)	C(46B)	3645(19	-205	0(22)	4416(12)	5.12(0.84)
C(22A)	1514(18)	1611(2)	1)	-92(12)	4 66	(0.10)		5312(16	-107	2(17)	3383(10)	9 08(0 76)
C(23A)	1223(22)	2324(2	7)	369(14)	7 97	(1.06)	$\mathbf{A}(2\mathbf{A})$	6083(31	-117	7(37)	3582(19)	1231(154)
C(24A)	1173(22)	3040(2	7)	130(15)	7 97	(1.00)	A(3A)	6147(23	-220	1(28)	3679(15)	9 15(1 19)
C(25A)	1327(21)	3211(24	4)	384(14)	6.96	(0.00)	A(4A)	6393(27	-42	6(34)	3651(17)	12.20(1.44)
C(26A)	1684(19)	2463(2)	3)	755(12)	5.37	(0.88)	A(1B)	8152(32	-13	6(37)	948(20)	9.53(1.58)
C(31A)	30 81(16)	660(19	9) 4	850(12)	4.19	(0.73)	A(2B)	8257(46	46	2(51)	526(27)	9.09(1.80)
C(32A)	3680(23)	455(26	5) 1	255(14)	7.36	(1.00)	A(3B)	8843(32	67	9(35)	816(19)	4.26(1.27)
C(33A)	4381(23)	398(27	7) 1	214(15)	8.20	(1.06)	A(4B)	7592(31) 87	6(34)	791(19)	3.81(1.33)
C(34A)	4508(19)	434(22	2)	774(13)	5.96	(0.86)	W	1193(28) 39 4	0(32)	1488(18)	13.28(1.64)
		,	/	· · · ·		, ,				. ,		
			_	-		Ð	Label		v		R	
			846	J 1924	3440	5.00	E(244)	E012	300	756	5.00	
	10		640	1334	2449	5.00	E(34A)	4050	302	130	5.00	
		(AA) 9	041	2843	2000	5.00	I(36A)	9799	840	194	5.00	
	10		063	2006	2305	5.00		667	409	622	5.00	
			406	1105	1386	5.00	H (42A)	-52	-002	3022	5.00	
	R	(1 D)	45	738	1710	5.00	H(44A)	507	-2103	811	5.00	
	1	(\mathbf{AB})	432	-2259	1564	5.00	H(45A)	1796	-2190	432	5.00	
	1	(6B) 9	402	-3440	1648	5.00	H(46A)	95 59	-045	647	5.00	
	H	(0D)	863	169	3745	5.00	H(22R)	2439	-369	5481	5.00	
	E E E E E E E E E E E E E E E E E E E	(1C')	558	927	3344	5.00	H(23B)	1302	-436	5771	5.00	
	H	(4C) 2	392	3067	3693	5.00	H(24B)	232	-987	5164	5.00	
	H	(6C)	626	2666	3899	5.00	H(25B)	163	-1419	4399	5.00	
	H	(1D)	530	37	2712	5.00	H(26B)	1204	-1362	4084	5.00	
	В	(1D')	179	-528	3065	5.00	H(32B)	4241	-3 87	5018	5.00	
	н	(4D)	971	-3405	2735	5.00	H(33B)	4854	949	5390	5.00	
	H	(6D) 3	099	-4208	2967	5.00	H(34B)	4166	2303	5244	5.00	
	B	(22A) 1	571	1037	-164	5.00	H(35B)	2919	2288	4834	5.00	
	В	(23A) 1	096	2281	-731	5.00	H(36B)	2226	1023	4528	5.00	
	В	(24A)	984	3 550	-347	5.0 0	H(42B)	3070	-1883	5399	5.00	
	В	(25A) 1	217	3 783	502	5.0 0	H(43B)	3952	-3037	5730	5.00	
	Н	(26A) 1	876	25 21	1116	5.0 0	H (44B)	4508	-3587	5138	5.0 0	
	B	(32A) S	8581	324	1570	5.0 0	H (45B)	4379	-30 64	4360	5.0 0	
	B	(33A) 4	804	33 5	1518	5.0 0	B (46B)	3594	-1785	4091	5.0 0	

variable scan width.[§] Background counts were recorded before and after each scan. The integrated intensities were calculated in the following manner: I = R[C - T(B)], where R is the scan rate, C is the scan count, B is the averaged[†] background measurement, and T is the ratio of the scan time to the total background counting time. Three check reflections were remeasured after every 10000 seconds. No decay was observed and no absorption corrections were applied. Transformation of the unit cell resulted in the following lattice parameters: a = 9.959Å, b = 12.173Å, c = 15.079Å, $\alpha = 105.28^{\circ}$, $\beta = 76.74^{\circ}$, and $\gamma = 110.53^{\circ}$. Averaging of multiple and symmetry related reflections and deletion of several poorly measured reflections resulted in 9048 unique data; 5690 were greater than 3σ .

Structure determination and refinement. Atomic scattering factors were taken from Stewart, Davidson. and Simpson⁵⁵ for H, and the International Tables for X-ray Crystallography⁵⁶ for all others. The positions of the osmium atoms were derived from a Patterson map, and the subsequent Fourier and difference Fourier maps indicated the locations of all non-hydrogen atoms. Hydrogen atoms, except for those on the hydroxy and methoxy groups and the uncoordinated water molecule, were placed 0.98Å from their respective carbon atom, in idealized positions, and were not refined (B = 4.0). The population of the uncoordinated water molecule was set at 0.25.

Full-matrix least-squares refinement minimized the following function: $\sum w (F_o^2 - (F_c/k)^2)^2$, $w = \sigma^{-2}(F_o^2)$. Several cycles of least-squares led to the final values for $R = \{\sum ||F_o| - |F_c/k||/|F_o|\} = 0.100$, $R_{3\sigma}$ (the R-factor calculated using only the reflections with $F_o^2 > 3\sigma(F_o^2)$) = 0.072, and GOF = $\{\sum w (F_o^2 - (F_c^2/k))^2/(n_o - n_p)\}^{\frac{1}{2}} = 2.14$, where n_o is the number of reflections and n_p is the number of parameters. All atomic coordinates were in one block and the scale factor and the Gaussian ellipsoids were in the other. The final atomic coordinates

[§] Omega scan angle = $0.8 + 0.35tan\theta$. Horizontal aperture (mm) = $2.0 + 1.0tan\theta$.

[†] Averaged for each degree in 2θ .

and Gaussian thermal parameters appear in Table 1.16.

Structure determination of trans-Os(HBA-TMI)₂Cl₂·2DMF.

Data collection. A crystal, roughly a cube 0.30 mm on a side, was mounted on a glass fiber with epoxy. The intensity data were collected on a locally modified Syntex P2₁ automated diffractometer with Mo K_{α} radiation ($\lambda = 0.7107$ Å) and a graphite monochromator.

Unit cell parameters were obtained by least-squares refinement of the orientation matrix using 10 centered reflections in the range $13^{\circ} < 2\theta < 24^{\circ}$: a = 10.324(23)Å, b = 10.598(12)Å, c = 16.783(17)Å, $\beta = 107.67(13)^{\circ}$, V = 1750(5)Å³, Z = 2. The systematic absences led to the assignment of the space group P2₁/c (0k0: k = odd, h0l: l = odd, hkl: none).

A total of 4744 intensity measurements were made in the range ($4.0^{\circ} < 2\theta < 56.0^{\circ}$) using θ -2 θ scans at a constant scan speed of 4.88° /min and a fixed symmetric scan width of 2° in 2θ . Background measurements were recorded for a time interval equal to half the scan time before and after each scan. The integrated intensities were calculated in the following manner: $I = R[C - T(B_1 + B_2)]$, where R is the scan rate, C is the scan count, B_1 and B_2 are the background measurements, and T is the ratio of the scan time to the total background counting time. Three check reflections were remeasured after every 97 reflections. A decay of 8% was observed; the data were scaled accordingly. Absorption corrections were not applied ($\mu = 40.6 \text{ cm}^{-1}$). Observational variances, $\sigma^2(F_o^2)$, were based on counting statistics plus a term, 0.02C, where C is the scan count. After deletion of systematic absences, and averaging of multiple and symmetry-related reflections, the total number of unique data was 3448 of which 2041 were greater that 3σ .

Structure determination and refinement. Atomic scattering factors were taken from Stewart, Davidson. and Simpson⁵⁵ for H, and the International Tables for X-ray Crystallography⁵⁶ for all others. The positions of the osmium atoms were derived from a Patterson map, and the subsequent Fourier and difference

Table 1.16. Fractional coordinates (Os-P10: $\times 10^5$; W-HP10: $\times 10^4$) and thermal parameters (U_{ij} $\times 10^4$ in Å²; B in Å²) for *trans*-Os(η^4 -CHBA-HMEt)-(py)₂ $\cdot \frac{1}{4}$ H₂O.

Atom	x	У	z	U11	U22	U33	U12	U13	U23
os	22623(05)	7817(04)	36342(03)	321(02)	188(02)	\$10(02)	103(01)	-148(02)	81(01)
CLI	34062(40)	-25322(26)	30523(25)	1008(27)	513(17)	736(23)	468(18)	-517(21)	-11(15)
CL2	56408(33)	32345(28)	47660(24)	806(19)	742(20)	690(23)	39(16)	-847(17)	\$40(17)
CLS	-7233(61)	-56658(26)	11188(35)	1966(50)	260(16)	1225(38)	111(22)	-1050(38)	18(18)
CL4	76324(42)	64884(27)	37582(30)	782(26)	411(17)	980(31)	-113(17)	-398(24)	67(17)
O1	\$4461(69)	-7529(49)	37074(44)	379(42)	198(31)	\$41(39)	94(29)	-179(34)	\$7(29)
02	\$4270(68)	17064(52)	\$6570(48)	284(39)	273(34)	\$18(41)	-36(29)	-203(33)	32(29)
03	-4026(87)	-15471(56)	6966(56)	683(56)	317(37)	873(55)	73(37)	-440(47)	75(34)
04	\$8566(108)	42374(67	84252(84)	932(36)	273(36)	1448(93)	36(39)	-842(67)	283(45)
O5	17287(75)	9961(56)	\$893(49)	448(39)	408(39)	357(43)	147(54)	-97(36)	167(32)
06	-4335(74)	18909(59)	35228(55)	372(43)	458(41)	818(50)	259(35)	-75(38)	95(35)
N 1	10304(75)	-15(65)	16362(53)	152(39)	\$53(45)	242(43)	43(34)	-118(34)	85(35)
N 2	21179(78)	22609(63)	\$4081(53)	231(42)	269(41)	387(44)	125(35)	-65(35)	-98(34)
CI	17654(111)	-18232(78)	22754(67)	458(64)	268(48)	236(54)	184(47)	-27(48)	87(40)
C2	\$0670(129)	-28012(64)	24017(75)	677(79)	299(51)	\$\$7(62)	225(53)	-193(59)	43(45)
C3	13100(147)	-39810(88)	20467(92)	901(100)	\$93(56)	679(89)	293(61)	-371(79)	26(54)
C4	2732(150)	-41973(82)	15172(91)	933(102)	194(48)	601(84)	138(57)	-446(79)	-37(48)
C5	-138(131)	-32772(87)	13037(83)	673(81)	296(54)	494(73)	113(54)	-339(65)	87(49)
C6	7193(102)	-20839(78)	16583(69)	\$\$1(56)	259(48)	\$10(57)	86(43)	-98(47)	78(41)
C7	4247(105)	-11706(80)	13096(70)	\$28(58)	\$15(51)	\$\$4(58)	113(45)	-136(48)	57(42)
C8	7513(103)	8405(75)	12044(73)	\$20(56)	253(45)	898(63)	96(41)	-192(50)	48(41)
C9	9120(102)	20287(78)	19142(72)	302(56)	\$03(50)	386(63)	104(45)	-145(49)	143(45)
C10	29927(109)	\$\$927(85)	26350(83)	342(60)	277(52)	598(78)	73(46)	-172(56)	155(49)
C11	41970(111)	36186(81)	31699(78)	361(61)	286(51)	449(70)	94(46)	-173(54)	28(46)
C12	82450(127)	47587(83)	32308(87)	562(77)	242(50)	564(79)	81(51)	-222(65)	70(49)
C13	63500(116)	50740(89)	37131(86)	\$25(64)	\$23(58)	589(81)	-31(49)	-120(59)	42(53)
C14	64687(115)	43282(98)	42089(89)	291(62)	523(70)	866(82)	82(54)	-138*55)	51(59)
C15	54642(110)	\$2056(82)	41674(76)	359(60)	\$\$0(53)	417(66)	62(45)	-245(53)	\$(45)
C16	43090(99)	27930(80)	36632(67)	196(50)	\$\$\$(52)	282(54)	61(42)	-58(42)	\$6(41)
CME	-5979(162)	29626(117)	30962(106)	890(107)	656(88)	673(99)	532(83)	105(84)	26(72)
PN1	4139(83)	8925(57)	36274(55)	368(49)	165(34)	\$\$\$(48)	102(33)	-148(40)	79(32)
P1	3687(119)	133997(100)	44104(78)	377(65)	613(72)	317(62)	133(56)	-76(53)	28(53)
P2	-8023(146)	13859(108)	50712(92)	629(88)	653(82)	448(79)	161(70)	-154(72)	15(62)
P3	-20704(124)	4266(100)	49797(85)	478(74)	584(74)	451(76)	259(62)	\$5(62)	238(61)
P4	-20682(123)	-4302(96)	42047(89)	394(69)	443(66)	554(80)	49(55)	5(62)	147(57)
Pð	-8192(127)	-3087(93)	35551(79)	540(76)	456(64)	363(66)	179(58)	-13(59)	72(51)
PN2	42551(83)	9954(57)	17644(55)	349(47)	171(85)	\$26(46)	103(33)	-133(39)	54(31)
P6	46600(114)	14903(95)	10083(83)	327(61)	518(66)	423(71)	151(52)	-23(55)	120(54)
P7	60223(133)	16680(104)	5062(89)	499(78)	652(79)	478(80)	218(65)	116(64)	284(63)
P8	70530(140)	13331(110)	7752(104)	467(81)	594(80)	698(101)	265(67)	108(73)	67(70)
P 9	66212(136)	8290(119)	15269(99)	499(83)	865(94)	897(91)	382(74)	-95(72)	236(73)
P 10	52980(108)	6670(104)	19807(86)	274(56)	753(82)	529(79)	334(57)	-15(53)	203(63)

Atom	x	y	x	в
w	3624(44)	5204(33)	9846(31)	6.3(0.9)
H3	1525	-4642	2179	4.0
H 5	-740	-3457	898	4.0
H8	-277	529	1038	4.0
H9	1131	2712	1620	4.0
H12	5167	5333	2912	4.0
H14	7247	4586	4586	4.0
H P1	1258	2062	4520	4.0
HP2	-765	2045	5614	4.0
HP3	-2929	377	5460	4.0
HP4	-2930	-1126	4102	4.0
HP5	-842	-938	2993	4.0
HP6	3955	1731	808	4.0
HP7	6276	2035	-43	4.0
HP8	6040	1458	430	4.0
HP9	7304	580	1742	4.0
H P10	5035	277	2517	4.0

Fourier maps indicated the locations of the remaining non-hydrogen atoms; the hydrogen atoms were placed at calculated positions 0.98Å from their respective carbon atom and were not refined.

Full-matrix least-squares refinement minimized the following function: $\sum w (F_o^2 - (F_c/k)^2)^2$, $w = \sigma^{-2}(F_o^2)$. Twenty percent of the data from the inner shell ($2\theta < 32^\circ$), based on the number of unique data, were then excluded due to crystal absorption. Subsequent cycles of least squares using the remaining 2692 reflections (1411 greater than 3σ) led to the final values for $R = \{\sum ||F_o| - |F_c/k||/|F_o|\} = 0.111$, $R_{3\sigma}$ (the R-factor calculated using only the reflections with $F_o^2 > 3\sigma(F_o^2)$) = 0.056, and GOF = $\{\sum w (F_o^2 - (F_c^2/k))^2/(n_o - n_p)\}^{\frac{1}{2}} = 1.36$, where n_o is the number of reflections and n_p is the number of parameters. All atomic coordinates were in one block and the scale factor and the Gaussian ellipsoids were in the other. The final model with all the data gave R = 0.095, $R_{3\sigma} = 0.065$, and GOF = 3.49. The final atomic coordinates and Gaussian thermal parameters appear in Table 1.17.

Table 1.17. Fractional coordinates (Os-SO1: $\times 10^5$; H1-H16: $\times 10^4$) and thermal parameters (U_{eq} $\times 10^4$ in Å²; B in Å²) for trans-Os(η^2 -(H)HBA-TMI)₂-Cl₂·2DMF.

	<u>x</u>	Z	<u>.</u>	Usq	
01	0(0)	0(0)	0(0)	2 82(1)	
Cl	-8772(36)	9827(27)	-13043(16)	410(4)	
01	18854(82)	847(174)	-858(58)	445(12)	
N 1	4040(103)	17891(84)	5643(50)	821(12)	
N 2	13139(114)	36724(87)	7991(64)	353(14)	
C 1	25277(125)	10494(92)	-2452(71)	344 (16)	
C 2	85945(133)	8622(139)	- 5987(98)	446(21)	
C 3	43525(163)	18152(152)	-7481(116)	503(24)	
C4	40846(177)	30748(145)	- 5723(100)	487(23)	
C 5	30883(158)	32605(124)	-1834(84)	427(19)	
C 6	22775(125)	22907(98)	-176(65)	3 33(15)	
C 7	12957(130)	25411(92)	4353(61)	333(15)	
C 8	5434(142)	36175(119)	13835(70)	895(18)	
C9	-1667(152)	48449(117)	14481(91)	508(23)	
C 10	15310(212)	82716(205)	22623(98)	572(30)	
C 11	-4450(115)	24845(99)	9856(66)	329(14)	
C 12	-8410(182)	17055(151)	16444(86)	487(22)	
C 13	-17524(153)	29720(145)	2982(107)	480(24)	
SC1	563 05(435)	26824(246)	18848(214)	823(56)	
SC2	43253(278)	7394(244)	20067(195)	834(50)	
S N1	55277(200)	15685(165)	23607(92)	572(27)	
S C3	64237(152)	13087(153)	30667(125)	53 5(25)	
S O1	63601(214)	3618(127)	85065(115)	696(28)	

	1	etre 🖊 i	1 L
al start.	9716	40	8, 93, 89, 750
EI .	9/10	- 40	-100
H 2	5108	1574	-987
H3	4631	8777	-670
H 4	29 20	4157	-8
HN	1839	4435	73 6
H5	483	5457	1775
H 6	- 562	5175	869
H 7	-918	4739	1693
H 8	1139	2544	2527
H 9	17.47	394 6	2640
H 10	2375	28 97	2177
H 11	-1876	1502	1453
H 12	- 396	86 8	1729
H 13	-672	2117	2190
H 14	-1523	8692	9
H 15	-2126	2288	-104
H 16	-2476	8231	549

REFERENCES

- ¹ (a) Mouren, C.; Dufraisse, C. Chem. Rev., **1926**, 7, **133**; (b) Milas, N.A. Ibid., **1932**, 10, 295.
- ² (a) Bowers, A.; Halsall, T.G.; Jones, E.R.H.; Lemin, A.L. J. Chem. Soc., 1953, 2548; (b) Poos, G.J.; Cuth, G.E.; Beyler, R.E.; Sarret, L.H. J. Amer. Chem. Soc., 1953, 75, 422; (c) Holm, J.R. J. Org. Chem., 1961, 26, 4814; (d) Hess, W.W.; Frank, F.J. Tetrahedron Lett., 1968, 3363; (e) Sharpless, K.B.; Akashi, K. J. Amer. Chem. Soc., 1975, 97, 5927.
- ³ For instance, consider oxidations of Mn(VII) and Cr(VI) compounds: Oxidation in Organic Chemistry, Part A; Wiberg, K.B., ed.; Academic Press: New York, 1973; Benson, D. Mechanisms of Oxidation by Metal Ions; Elsevier Scientific Publishing Co.: Amsterdam, 1976.
- ⁴ Oxidations of OsO₄: Schröder, M Chem. Rev., 1980, 80, 187; Oxidations of IO₄⁻: Burton, C.A. Oxidation in Organic Chemistry, Part A; Wiberg, K.B., ed.; Academic Press: New York, 1973; p. 69.
- ⁵ (a) Westheimer, F.H.; Nicolaides, N. J. Amer. Chem. Soc., 1949, 71, 25;
 (b) Cohen, M.; Westheimer, F.H. Ibid., 1952, 74, 4387; (c) Watanabe, W.;
 Westheimer, F.H. J. Chem. Phys, 1949, 17, 61; (d) Hampton, J.; Leo, A.;
 Westheimer, F.H. J. Amer. Chem. Soc., 1956, 78, 306; (e) Roček, J.; Radkowsky, A.E. Ibid., 1968, 90, 2968; (f) Roček, J.; Radkowsky, A.E. Ibid.,
 1973, 95, 7123; (g) Wiberg, K. Oxidation in Organic Chemistry, Part A,
 Wiberg, K.B., ed.; Academic Press: New York, 1973; p. 69.
- ⁶ Espenson, J.H. J. Amer. Chem. Soc., 1964, 86, 5101.
- ⁷ Benson, D. Mechanisms of Oxidation by Metal Ions; Elsevier Scientific Publishing Co.: Amsterdam, 1976; p. 182.
- ⁸ For instance, see: (a) Groves, J.T.; Nemo, T.E. J. Amer. Chem. Soc., 1983, 105, 5786; (b) Chang, C.K.; Kuo, M.-S. Ibid., 1979, 101, 3413.
- ⁹ Extensive surveys have been made: Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th Ed.; Wiley-Interscience: New York, 1980.
- Groves, J.T.; Kruper, W.J.; Nemo, T.E.; Myers, R.S. J. Mol. Catal., 1980, 7, 169.
- ¹¹ (a) Budge, J.R.; Gatehouse, B.M.K.; Nesbit, M.C.; West, B.O. J. Chem.

Soc., Chem. Commun., 1981, 370; (b) Groves, J.T.; Kruper, Jr., W.J.; Haushalter, R.C.; Butler, W.M. Inorg. Chem., 1982, 21, 1363; (c) Buchler, J.W.; Lay, K.L.; Castle, L.; Ullrich, V. Ibid., 1982, 21, 842. (d) Groves, J.T.; Kruper, Jr., W.J. J. Amer. Chem. Soc., 1979, 101, 7613.

- ¹² Chin, D.-H.; Balch, A.L.; La Mar, G.N. J. Amer. Chem. Soc., 1980, 102, 1446.
- ¹³ Willer, W.; Strähle, J.; Datz, A.; Hanack, M.; Hatfield, W.E.; ter Haar, L.W.; Gütlich, P. J. Amer. Chem. Soc., **1984**, 106, **329**.
- ¹⁴ (a) Hill, C.L.; Hollander, F.J. J. Amer. Chem. Soc., 1982, 104, 7318; (b) Smegal, J.A.; Hill, C.L. Ibid., 1983, 105, 2920; (c) Smegal, J.A.; Schardt, B.C.; Hill, C.L. Ibid., 1983, 105, 3510; (d) Hill, C.L.; Schardt, B.C. Ibid., 1980, 102, 6374; (e) Groves, J.T.; Watanabe, Y.; McMurry, T.J. Ibid., 1983, 105, 4489.
- ¹⁵ (a) Murakami, Y.; Matsua, Y.; Yamada, S. J. Chem. Soc., Dalton Trans.,
 1981, 833; (a) Murakami, Y.; Matsua, Y.; Yamada, S. Inorg. Chim. Acta,
 1980, 44, L309.
- ¹⁶ Siddall, T.L.; Migaura, N.; Huffman, J.C.; Kochi, J.K. J. Chem. Soc., Chem. Commun., 1983, 1185.
- ¹⁷ Ojima, H. Nippon Kagaku Zusshi, 1967, 88, 329; See also: Chemical Abstracts, 1967, 67, 7589.
- ¹⁸ Anson, F.C.; Christie, J.A.; Collins, T.J.; Coots, R.J.; Furutani, T.T.; Gipson, S.L.; Keech, J.T.; Krafft, T.E.; Santarsiero, B.D.; Spies, G.H. J. Amer. Chem. Soc., 1984, 106, 4460.
- ¹⁹ See: Freeman, H.C. Inorganic Biochemistry, Vol. 1; Eichorn, G.L., ed.; Elsevier Scientific Publishing Co.: Amsterdam, 1973; p. 121.
- ²⁰ Margerum, D.W.; Wong, L.F.; Bossu, F.P.; Chellappa, K.L.; Czarnicki, J.J.; Kirksey, Jr., S.T.; Neubecker, T.A. Adv. Chem. Ser., 1977, 162, 281.
- ²¹ Birker, P.J.M.W.L. Inorg. Chem., 1977, 16, 2478.
- ²² Bour, J.J.; Birker, P.J.M.W.L.; Steggerda, J.J. Inorg. Chem., 1971, 10, 1202.
- 23 Anson, F.A.; Collins, T.J.; Coots, R.J.; Gipson, S.L.; Richmond, T.G. J.

Amer. Chem. Soc., 1984, 106, 5037.

- ²⁴ Sigel, H.; Martin, R.B. Chem. Rev., 1982, 82, 385.
- ²⁵ Motekaitis, R.J.; Martell, A.E. J. Amer. Chem. Soc., 1970, 92, 4223.
- ²⁶ Sugiura, Y.; Ishizu, K.; Migoshi, K. J. Antibiot., 1979, 32, 453.
- ²⁷ Larkworthy, L.F.; Nelson-Richardson, M.H.O. Inorg. Chim. Acta, 1978, 28, 251; cf. Freeman, H.C.; Smith, J.E.W.L. Acta Crystallogr., 1966, 20, 153.
- ²⁸ Baral, S.; Cotton, F.A.; Ilsley, W.H. *Inorg. Chem.*, **1981**, *20*, **2696**; and references therein.
- ²⁹ Estimated using values for Fe⁺³ with phenol: Martell, A.E.; Smith, R.M. Critical Stability Constants, Vol. 3; Plenum Press: New York, 1977; p. 181.
- ³⁰ Martell, A.E.; Smith, R.M. Critical Stability Constants, Vol. 4; Plenum Press: New York, 1976; p. 7.
- ³¹ Briellman, M.; Zuberbühler, A.D. Helvetica Chim. Acta, 1982, 65, 46.
- ³² Barnes, D.J.; Chapman, R.J.; Stephens, F.S.; Vagg, R.S. Inorg. Chim. Acta, 1981, 51, 155.
- ³³ Reed, C.A.; Mashiko, T.; Bentley, S.P.; Kastner, M.E.; Scheidt, W.R.; Spartalian, K.; Lang, G. J. Amer. Chem. Soc., 1979, 101, 2948.
- ³⁴ For example: salicylamide: Sasada, Y.; Takano, T.; Kakudo, M. Bull. Chem. Soc. Japan, 1964, 37, 940; N-acetylsalicylamide: Rao, V.M.; Manohar, H. Acta Crystallogr., Sect. A, 1981, 37, C87.
- ³⁵ Sundaralingan, M.; Jensen, L.H. Acta Crystallogr., 1965, 18, 1053.
- ³⁶ Spies, G.H. Candidacy Report, California Institute of Technology, Pasadena, California; 1982.
- ³⁷ Coggin, P.; McPhail, A.T.; Mabbs, F.E.; Richards, A.; Thornley, A.S. J. Chem. Soc., Sect. A, 1970, 3296.
- ³⁸ Broomhead, J.A.; Evans, J.; Grunley, W.D.; Sterns, M. J. Chem. Soc., Dalton Trans., 1977, 173.
- ³⁹ Freeman, H.C. Adv. in Protein Chem., 1967, 22, 257.
- ⁴⁰ Examples include: K₂O: Zintl, E.; Harder, A.; Dauth, B. Z. Electrochem., 1934, 40, 588; K₈[C₁₂H₁₄O₃₅S₈]·7H₂O: Nawata, Y.; Ochi, K.; Shiba, M.;

- ⁴¹ Tebbe, K.F.; von Schnering, H.G. Z. Anorg. Allg. Chem., 1973, 396, 66.
- ⁴² Armstrong, J.E.; Robinson, W.R.; Walton, R.A. Inorg. Chem., 1983, 22, 1301.
- ⁴³ (a) Elder, R.C. Inorg. Chem., 1968, 7, 1117; (b) Elder, R.C. Ibid., 1968, 7, 2316.
- 44 Collins, T.J.; Coots, R.J.; Krafft, T.E., unpublished results.
- ⁴⁵ Haga, M.; Tanaka, T. Chemistry Letters, 1979, 863.
- ⁴⁶ Personal communication: Professor T.E. Collins, Professor F.C. Anson, T.E. Krafft, S.L. Gipson.
- ⁴⁷ Peake, G.T. Candidacy Report, California Institute of Technology, Pasadena, California, 1983.
- ⁴⁸ Meyer, H.; Bernhauer, K. Monatshefte für Chemie, 1929, 53/54, 740.
- ⁴⁹ Hurst, H.D.; Gokel, G.W. *Experimental Organic Chemistry*; McGraw-Hill: New York, 1980.
- ⁵⁰ Bewad, J. Berichte, 1906, 39, 1233.
- ⁵¹ Krauss, H.L.; Münster, G. Z. Anorg. Allg. Chem., 1967, 352, 24.
- ⁵² Krumpolc, M.; Roček, J. Inorg. Syn., 1980, 20, 63.
- ⁵³ Duchamp, D.J.; Trus, B.L.; Westphal, B.J. CRYRM Crystallographic Computing System, California Inst. of Technology, Pasadena, California, USA, 1964.
- ⁵⁴ Germain, G.; Woolfson, M.M. Acta Crystallogr., Sect. B, 1968, 24, 91; Germain, G.; Main, P.; Woolfson, M.M. Acta Crystallogr., Sect. A, 1971, 27, 368.
- ⁵⁵ Stewart, R.F.; Davidson, I.R.; Simpson, W.T. J. Chem. Phys., 1965, 42, 3157.
- ⁵⁶ International Tables for X-ray Crystallography, Vol. IV; Kynoch Press: Birmingham, England, 1974; p. 155.

Chapter 2

A Survey of the Organometallic Chemistry of Osmium Tetraoxide.

Introduction

The chemistry of oxidants and inorganic/organometallic compounds has continued to be an area of active interest for the past several decades.¹ The emergence of organometallic chemistry in the late 1950's and 1960's has led to the characterization of oxidative addition reactions, *e.g.*, the reaction of methyl iodide or molecular oxygen with *trans*-IrCl(CO)(PPh₃)₂^{2,3} (Figure 2.1). Studies of metal-based inner- and outer-sphere electron transfer processes have grown in importance stemming from their applicability as model systems of biological and biochemical phenomena.⁴ Currently, advances in both oxidation chemistry and inorganic/organometallic chemistry have facilitated studies on the reactivity of classical oxidants, *e.g.*, iodosylbenzene, organic peracids, and osmium tetraoxide, with low valent transition metal complexes.⁵ The goals of these investigations are to better understand the reactions available to this class of oxidants and to ultimately develop selective oxidation reactions for organometallic synthesis.

Iodosylbenzene has recently been shown to perform several fundamental oxygen transfer reactions. The utility of this reagent as an oxidant of organic substrates via transition metal complexes has been demonstrated.⁶ In many instances, the oxidized transition metal complex is the active reagent for the oxidative transformation of the organic species. Groves⁷ has characterized several reactive high valent chromium-oxo-porphyrinato compounds derived from iodosylbenzene oxidation of lower valent species. The oxidation of coordinated ligands by oxygen atom transfer reactions has a number of precedents. For instance, Gladysz has produced the rare formaldehyde ligand⁸ in the compound, $[CpRe(\eta^2-CH_2O)(NO)(PPh_3)]PF_6$, by treating the cationic methylidine complex, $[CpRe(=CH_2)(NO)(PPh_3)]PF_6$, with iodosylbenzene in dichloromethane $(-23^{\circ}C).^{9}$

There are many reagents such as iodosylbenzene where the fundamental reaction chemistry with inorganic/organometallic complexes remains to be investigated. Studies of the fundamental reactions of metal-oxo compounds with low valent organometallic complexes are very rare. There is, however, an obviFigure 2.1. Oxidative addition reactions of methyl iodide and molecular oxygen with Vaska's complex, trans-IrCl(CO)(PPh₃)₂.

ous conceptual connection, since it is clear that reactions between the two types of molecules will occur. Oxidations by osmium tetraoxide have been examined by our group. One can conceive of several possible modes of reactivity for this reagent with low valent organometallic complexes by drawing analogies with the osmium tetraoxide oxidations of alkenes, which have been studied in some detail.

Oxidation of 2,3-dimethylbut-2-ene with osmium tetraoxide results in the formation of dimeric monoester complexes,[†] syn- and anti-Os₂O₄(O₄C₆H₁₂)₂ (Figure 2.2a,b); the anti form has been isolated and structurally characterized.¹⁰ In the presence of nitrogenous bases, e.g., pyridine, monomeric diolatodioxobis(amine)osmium(VI) ester complexes (Figure 2.2c) are formed.¹⁰ The infrared spectrum for this monomeric compound shows strong bands near 840 cm⁻¹ assigned to the asymmetric stretching vibration, ν^{as} (OsO₂); the dimeric complexes exhibit strong bands near 980 cm⁻¹ assigned to the Os=O_{terminal} stretching mode.

Until recently, the mechanism of alkene oxidation was thought to involve direct oxygen attack at the carbon-carbon double bond via the familiar six- π electron cyclic transition state¹¹ (Figure 2.3a). Sharpless¹² in 1977 proposed an alternative mechanism in which the alkene attacks the electron-impoverished osmium center,[‡] to form, via an η^2 -alkene complex, an asymmetric four-membered cyclic intermediate (Figure 2.3b); the intermediate subsequently rearranges to the observed five-membered cyclic ester. The experimental data can be rationalized for either mechanism; the "Sharpless intermediate" has not, as yet, been observed.¹³

Based on these organic oxidations, plausible reaction pathways for inorganic/organometallic systems range from a simple dative interaction (*cf.* the first stage of the Sharpless mechanism) to a formal oxidative addition of the osmium tetraoxide (Figure 2.4a,b,c). Oxidation of two molecules by one electron or oxidation

[†] Secondary substitution reactions result in the formation of diester and trinuclear osmium complexes.

[‡] This reaction is similar to nucleophilic attack of organic carbonyls.

Figure 2.2. Structures of characterized osmium(VI)-oxalato complexes.

¢

$$H_{3}C/1/1 = 0/1/1 = 0$$

 $H_{3}C/1/1 = 0/1/1 = 0$
 $H_{3}C = 0$
 H_{3

125

Figure 2.3. Proposed mechanisms for the oxidation of alkenes by osmium tetraoxide.

of dimeric compounds may produce trinuclear complexes with the $O-Os(O)_2-O$ moiety bridging the two metal centers (Figure 2.4d,e). Oxidation of coordinated ligands may also be possible.

The reactivity of osmium tetraoxide with *trans*-IrCl(CO)(PPh₃)₂ has recently been investigated;¹⁴ the results were not totally as expected. In the presence of *t*-butylpyridine attack of *both* the iridium center and the coordinated carbonyl ligand was observed. The dinuclear complex, formed in this reaction, contains what is formally a μ -carbon dioxide moiety bridging the iridium and osmium centers. An X-ray crystallographic structure determination was undertaken on a derivative of this product, *viz.* [(PPh₃)₂(4-*t*-Bupy)(*t*-BuNC)Ir(μ -O)-(μ -C(OCH₃)O)OsO₂(4-*t*-Bupy)₂](ClO₄)₂ (Figure 2.5), to support this unusual result, which was unambiguously characterized by spectroscopic methods.

This is the first well characterized example of bridging η^2 -CO₂ coordination. Other modes of carbon dioxide coordination are known. Herskovitz¹⁵ has examined a series of rhodium and iridium complexes which exhibit an unprecedented η^1 -M-CO₂ structure, *e.g.*, Rh(diars)₂Cl(CO₂) (Figure 2.6a). Lappert¹⁶ and Aresta¹⁷ have characterized η^2 -CO₂ complexes in which the carbon and oxygen atoms are coordinated to the same metal (Figure 2.6b,c). Coordination to all three atoms has also been discovered. Floriani¹⁸ has reported the synthesis of a polymeric cobalt complex in which the potassium counterion interacts strongly with both oxygen atoms (Figure 2.6d). Several osmium-carbonyl clusters also bind carbon dioxide;¹⁹ the η^3 -CO₂ bridges two cluster units (Figure 2.6e). Beck²⁰ has characterized an unusual μ^3 -CO₂ bridged dimer, {(CO)₅Re(μ^3 -CO₂)Re(CO)₄}₂ (Figure 2.6f).

The η^2 -CO₂ structure, bridging two metal centers, has been proposed previously. Floriani²¹ treated {CpTiCl}₂ with CO₂ (10 atm, 90°C) and recovered {CpTiCl}₂O and CO (\approx 90%); the suggested reactive intermediate was the μ -CO₂ complex, CpClTi(μ -CO₂)TiClCp. A preliminary communication on a rhodium complex,²² (PPh₃)₃Rh₂(CO)₂(CO₂)₂, reported three bands attributable to the coordinated CO₂ ligands (1600(s), 1355(s), 825(w) cm⁻¹); cf. the spectrum of Figure 2.4. Plausible reaction pathways for the interaction of osmium tetraoxide with low valent organometallic complexes.

Figure 2.5. ORTEP view of $[(PPh_3)_2(4-t-Bupy)(t-BuNC)Ir(\mu-O)(\mu-C(OCH_3)O)-OsO_2(4-t-Bupy)_2]^{+2}$. For clarity, the *t*-butylpyridine molecules are represented by their respective nitrogen atom and the phenyl rings are represented by the carbon atoms attached to the phosphorous atoms.

Figure 2.6. Characterized coordination modes of carbon dioxide to transition metals.

<u>c</u>

<u>f</u>

 $(PPh_3)_2Cl(4-t-Bupy)Ir(\mu-O)(\mu-CO_2)OsO_2(4-t-Bupy)_2$ (1593(s), 1022(s) cm⁻¹). The CO₂ bonding mode is not known. Bridging μ -CO₂ coordination is a possible structure for this molecule. An interesting alternative is a structure in which the two carbon dioxide molecules dimerize in a head-to-tail fashion, as was found for $IrCl(C_2O_4)(PMe_3)_3^{23}$ (Figure 2.7); the infrared spectrum for this compound, however, exhibits many more bands (1725(s), 1680(s), 1648(s), 1605(s), 1290(s), 1005(m), and 790(m) cm⁻¹).

Another mode of reactivity was also found. The reaction of osmium tetraoxide and *trans*- $IrCl(CO)(PPh_3)_2$ in the absence of nitrogenous bases¹⁴ resulted in the formation of a partially characterized complex in which the coordinated carbonyl ligand was not oxidized. Based on infrared data and the stoichiometry of the reaction, two structures have been proposed as shown in Figure 2.8; the second structure is thought more reasonable. Few other details are known.

The initial work on the organometallic chemistry of osmium tetraoxide inspired the investigation presented below. Several unanswered questions invited additional study: Could other organometallic substrates be cleanly oxidized by osmium tetraoxide? Was attack at the coordinated carbonyl ligand a general reaction? Could it be extended to nitrosyl, thiocarbonyl, and isocyanide complexes? Were there other modes of reactivity available to osmium tetraoxide? An X-ray structural study of an authentic μ -CO₂ complex was also warranted.

Figure 2.7. Structure of IrCl(C₂O₄)(PMe₃)₃.

Figure 2.8. Proposed structures for the reaction products of osmium tetraoxide and trans-IrCl(CO)(PPh₃)₂ in the absence of nitrogenous bases.

Results and Discussion

Several low valent organometallic complexes have been examined. Treatment of $Ru(CO)_3(PPh_3)_2$ or $Os(CO)_3(PPh_3)_2$ with the stable quinuclidine adduct of osmium tetraoxide afforded yellow complexes containing the bridging carbon dioxide moiety (Figure 2.9). This formulation was supported by the appearance of strong infrared bands attributable to C=O and symmetric and asymmetric C \equiv O stretching modes. Interestingly, the positions of these bands were dependent on the method of isolation. The dinuclear products precipitated spontaneously on mixing the reactants in benzene (Ru: ν (C \equiv O) at 2025, 1973 cm⁻¹, ν (C=O) at 1551 cm⁻¹; Os: ν (C=O) at 2015, 1952 cm⁻¹, ν (C=O) at 1550 cm⁻¹) or it was isolated from dichloromethane by addition of hexanes (Ru: $\nu(C\equiv O)$ at 2009, 1973 cm^{-1} , $\nu(C=O)$ at 1602 cm⁻¹; Os: $\nu(C\equiv O)$ at 2000, 1934 cm⁻¹, $\nu(C=O)$ at 1550 cm⁻¹). Note that there is a 50 cm⁻¹ solvent-dependent difference in ν (C=O). Both forms were analytically pure and could be interconverted. Solid-state ³¹P NMR spectra of the two ruthenium compounds (Figure 2.10), were found to be different, yet consistent with trans phosphines;[†] solution ³¹P NMR spectrum (CD_2Cl_2) of the analogous osmium complex exhibited one singlet $(\delta = -0.74)$.[‡]

The structural differences between the two forms is most likely due to solid state effects. The subtle changes are not known. A discrete dinuclear complex $(\nu(\text{CO}) \text{ at } 1602 \text{ cm}^{-1})$ and a weakly bound dimer/polymer (Figure 2.11b) in which the carbonyl oxygen coordinates weakly to the five-coordinate osmium center $(\nu(\text{CO}) \text{ at } 1550 \text{ cm}^{-1})$ is a possible assignment. However, the infrared bands for Beck's μ^{3} -CO₂ complex²⁰ (Figure 2.6f) are much lower $(\nu(\text{CO}_{2}): 1380, 1295, 1260 \text{ cm}^{-1})$.

The stability of these complexes is thought to be kinetically rather than thermodynamically controlled. Free carbon dioxide has been found to coordinate

[†] Some broadening was observed, but this is not uncommon with solid-state ^{\$1}P NMR spectra.²⁴

[‡] The scale (δ) is relative to external H₃PO₄.

Figure 2.9. Proposed structures for the reaction products of $OsO_4(NC_7H_{13})$ with $Ru(CO)_3(PPh_3)_2$ and $Os(CO)_3(PPh_3)_2$.

M = Ru, Os

Figure 2.10. Solid-state ³¹P NMR spectra of $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)$ -OsO₂(NC₇H₁₃) from CH₂Cl₂ (spectrum CIT-A) and from benzene (spectrum CIT-B).

Figure 2.11. Possible structures for $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ from CH_2Cl_2 (a) and from benzene (b).

only to electron-rich metal centers (vide supra). However, osmium tetraoxide oxidation of the carbonyl ligand in essence traps the CO₂ moiety between the oxidized organometallic center and the osmium(VI) center. Decomposition of this complex therefore depends on the lability of this μ -CO₂ group. The iridium(III)osmium(VI) complex, (PPh₃)₂(t-Bupy)ClIr(μ -O)(μ -CO₂)OsO₂(t-Bupy)₂, studied by Audett and Collins,¹⁴ was found to be stable in solution, which is in keeping with the propensity of iridium(III) complexes to be very inert to substitution. The osmium(II)-osmium(VI) complexes, described here, were only stable in solution for several days, and the ruthenium(II)-osmium(VI) complexes were stable for less than one hour. This is consistent with the greater lability of ligands coordinated to ruthenium(II) compared to osmium(II) metal centers.

The decomposition of $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ in dichloromethane was investigated. A Toepler experiment on a sample stirred for 24 hours under vacuum recovered approximately 1 equivalent of CO₂; the darkbrown inorganic material was not fully characterized. Infrared spectroscopic evidence indicated it contained bound carbonyl ligands. No bands attributable to mono- or dioxo osmium compounds were found; the formation of polymeric osmium oxides was likely. Repeating the experiment in the presence of excess pyridine also resulted in the formation of carbon dioxide; infrared spectra of the inorganic residues showed that the very stable dimer, $(py)_2OsO_2(\mu-O)_2OsO_2(py)_2$, was also formed. If the decomposition of $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ was carried out in the presence of CS₂, no new products were formed, *e.g.*, the complex where the CS₂ replaced the bridging η^2 -CO₂ moiety.

An unusual tetranuclear complex (Figure 2.12) was obtained on mixing solutions of osmium tetraoxide and $Ru(CO)_3(PPh_3)_2$ (each in benzene). Attack at the ruthenium center and the coordinated carbonyl ligand was observed. Strong carbonyl bands appeared in the infrared spectrum at 2020, 1988 and 1622 cm⁻¹. The $\nu(OsO)$ band was found at 972 cm⁻¹, which is typical of five-coordinate dimeric mono-oxo osmium(VI) complexes (see Figure 2.2a,b). Elemental analysis and ¹H NMR also support this formulation. Unfortunately, the poor solubility of this complex hindered attempts to determine the molecular weight. No tractable complexes were formed in the presence of pyridine — a distinct contrast to earlier work.¹⁴

Treatment of Ru(NO)Cl(CO)(PPh₃)₂ or Pt(CO)(PPh₃)₂ with the quinuclidine adduct of osmium tetraoxide also resulted in attack at the metal center and the coordinated carbonyl ligand. Decomposition of the complexes hindered the isolation of analytically pure samples. The nitrosyl ligand in Ru(NO)Cl(CO)-(PPh₃)₂ was found to be oxidatively sensitive (*vide infra*). Free carbon dioxide (0.48 equiv.) was collected from a solution of crude (PPh₃)₂Pt(μ -O)(μ -CO₂)-OsO₂(NC₇H₁₃) after 24 hours.

Little is known about the mechanism of these unusual oxidations, *i.e.*, oxidative addition to organometallic complexes with attack of coordinated carbonyl ligands. However, from earlier work on the reactivity of carbonyl complexes, it seems likely that the first step is oxidation of the low valent metal. Angelici²⁵ has set the $\nu(C\equiv O)$ cutoff for nucleophilic attack of carbonyl ligands at $\approx 2000 \text{ cm}^{-1}$. Carbonyl ligands which exhibit lower $\nu(C\equiv O)$ values (including the organometallic substrates examined here) are less susceptible to nucleophilic attack at the carbon atom due to $d\pi$ -p π back-bonding from the adjacent electronrich metal center.

The actual oxidation step could occur in several ways; the active oxidant is still a mystery. In CCl₄, the equilibrium constant for the dissociation of pyridine from $OsO_4(py)$ is approximately $12 M^{-1}$.²⁶ In benzene or dichloromethane, similar values should be observed for the dissociation of quinuclidine from $OsO_4(N-C_7H_{13})$. Therefore, the oxidation could occur via OsO_4 or $OsO_4(NC_7H_{13})$. From a mechanistic point of view, direct oxo attack, interactions like those proposed by Sharpless,¹² or electron transfer steps are viable pathways. The ring-closure step then is a nucleophilic attack at the carbonyl ligand. This is facilitated by the prior oxidation of the low-valent metal center, which makes the carbonyl ligand

Figure 2.12. Proposed structure for the reaction product of OsO_4 and $Ru-(CO)_3(PPh_3)_2$ in the absence of nitrogenous bases.

more electrophilic (due to the loss of $d\pi$ -p π back-bonding), and by the anchimeric effect, *i.e.*, intramolecular rather than intermolecular attack.

Reaction of $Pt(PPh_3)_2(C_2H_4)$ with osmium tetraoxide[§] afforded what is believed to be a brown tetranuclear complex (Figure 2.13). Oxidative addition of osmium tetraoxide to the Pt(0) complex resulted in the formation of μ -oxo bridges linking the platinum and osmium atoms. The infrared and ¹H NMR spectroscopic data and the elemental analysis are consistent with this formulation. A molecular weight determination was unsuccessful due to poor solubility in suitable solvents. The ethylene ligand was lost as is the case when $Pt(PPh_3)_2(O_2)$ is formed on aerial oxidation of $Pt(PPh_3)_2(C_2H_4)$.²⁷

Complexes with thiocarbonyl, isocyanide, nitrosyl, and dinitrogen ligands have been examined as well. The thiocarbonyl ligands in *trans*-RhCl(CS)(PPh₃)₂ and [Rh(CS)(bpy)(PPh₃)₂]ClO₄ were not readily attacked on treatment with one equivalent of either osmium tetraoxide or with its quinuclidine adduct; the ν (CS) band in the infrared spectra of the oxidized materials remained. Infrared spectra of the oxidation products of *trans*-RhCl(CS)(PPh₃)₂ and osmium(VIII) oxidants exhibited a new sharp band at 1989 cm⁻¹, near the reported value for *trans*-RhCl(CO)(PPh₃)₂ (1980 cm⁻¹, CH₂Cl₂).²⁸ Oxidation with excess equivalents of osmium(VIII) reagents resulted in the decomposition of *trans*-RhCl(CS)(PPh₃)₂; no distinct mono- or dioxo osmium vibrations were found in the infrared spectra of the recovered materials. No tractable complexes were obtained on reaction of [Rh(CN-*t*-Bu)₂(PPh₃)₂]Cl with these oxidants.

The nitrosyl complexes $Rh(NO)Cl_2(PPh_3)_2$ and $Rh(NO)(PPh_3)_3$ also did not react cleanly with OsO_4 or $OsO_4(NC_7H_{13})$. The bands in the infrared spectra of the oxidized materials attributable to the NO stretching mode were broad and variable. Degradation of the starting organometallic complexes without the formation of discrete mixed-metal compounds was likely. Oxidation of *trans*- $W(N_2)_2(diphos)_2$ ($\nu(NN)$: 1955 cm⁻¹) with osmium tetraoxide afforded a new

[§] The reaction with $OsO_4(NC_7H_{13})$ could not be characterized.

Figure 2.13. Proposed structure for the reaction product of OsO_4 and $Pt-(PPh_3)_2(C_2H_4)$ in the absence of nitrogenous bases.

complex retaining a coordinated dinitrogen ligand (ν (NN): 2000 cm⁻¹). Unfortunately, elemental analyses were variable and not consistent with any reasonable formulation; infrared bands attributable to oxidized dinitrogen ligands, *e.g.*, the -N=N-O- moiety, were not found.

The oxidations of Co(saltmen),* $Os(CO)_2(PPh_3)_2(C_2H_4)$, and two dimeric species, { $Mo(\mu-O_2CCH_3)(thf)Cl$ } and { $CpMo(CO)_2$ }, with osmium(VIII) reagents were found to be ill-defined; no characterizable complexes were obtained. The cyclopentadienyl ligand appeared to be very sensitive to oxidation by osmium tetraoxide; the reactivity of osmium tetraoxide and ferrocene could not be characterized either.

^{*} saltmen = the diamon of N, N'-(1,1,2,2-tetramethylethylene)bis(salicylidenimine).

Conclusions

We have shown that oxidative addition of osmium tetraoxide-quinuclidine to several organometallic carbonyl complexes results in the formation of μ -CO₂ mixed-metal complexes. The stability of these complexes in solution is thought to be kinetically controlled. The lability of the μ -CO₂ ligand at the ruthenium(II)/osmium(II) metal center probably facilitates their decomposition, which did not result in characterizable complexes. In the presence of pyridine, however, (CO)₂-(PPh₃)₂Ru(μ -O)(μ -CO₂)OsO₂(NC₇H₁₃), degraded to form (py)₂OsO₂(μ -O)₂-OsO₂(py)₂ (as well as other products). The evolution of carbon dioxide has been demonstrated.

Oxidative addition of osmium tetraoxide to $Ru(CO)_3(PPh_3)_2$, in the absence of nitrogenous bases, again resulted in attack at the coordinated carbonyl ligand with the formation of a μ -CO₂ complex. This molecule was found to be a tetramer; the ruthenium atoms are six-coordinate and the osmium atoms are five-coordinate (Figure 2.12).

One other mode of reactivity has been discovered. Oxidative addition of osmium tetraoxide to $Pt(PPh_3)_2(C_2H_4)$ displaced the ethylene ligand with the formation of μ -oxo bridges connecting the platinum and osmium centers (Figure 2.13). The unusual tetranuclear complex is similar, in many respects, to known dimeric osmium(VI) ester complexes (Figure 2.2a,b).¹⁰

Oxidation of several other organometallic and inorganic compounds with osmium(VIII) oxidants did not produce tractable products. The oxidative addition of osmium(VIII) reagents does not appear to be applicable to a wide range of compounds; the sensitivity of ligands such as phosphines, nitrosyls, and cyclopentadienyls, to oxidation complicates the reactivity at the low-valent metal center. The reaction of osmium(VIII)-oxo compounds with low valent carbonyl complexes to form μ -CO₂ complexes does not appear to have straightforward analogies in the chemistry of other π -acid ligands such as NO, N₂, CS, and CNR.

Experimental

General Information

Physical and Spectroscopic Methods. Proton NMR spectra were recorded on a Varian 390 spectrometer. The chemical shifts are reported in ppm(δ) relative to tetramethylsilane ($\delta = 0.0$). Solution ³¹P NMR spectra were recorded on a Jeol FX-90Q spectrometer and solid-state ³¹P NMR spectra with cross-polarization magic-angle spinning were collected on a Nicolet NT-150 wide-bore spectrometer at the Colorado State University Regional NMR Center.[†] The chemical shifts are reported in ppm(δ) relative to external H₃PO₄ ($\delta = 0.0$). Infrared spectra were obtained using a Beckman 4240 spectrometer; nujol mulls were routinely used with potassium bromide plates. Elemental analyses were performed by Mr. L. Henling at the C.I.T. Chemistry Dept. Analytical Facility.

Materials. All solvents were reagent grade and used without further purification, except for dichloromethane and tetrahydrofuran which were freshly distilled from calcium hydride and benzene which was freshly distilled from sodium.

The following compounds were used as received: 2,2'-bipyridine, 1,8-diazabicyclo[5.4.0]undec-7-ene, ethylenebis(diphenylphosphine), ferrocene, N-methyl-N-nitroso-p-toluenesulfonamide, SiCl(CH₃)₃, triphenylphosphine, WCl₆ (all from the Aldrich Chemical Co.), t-butyl isocyanide, Mo(CO)₆, OsO₄, $\ddagger K_2$ PtCl₄, RhCl₃-·3H₂O, RuCl₃·xH₂O (all from the Alfa Chemical Co.), glacial acetic acid, NH₄Cl, CS₂, HBF₄, FeCl₂, Mg, Na, Zn (all from Baker Chemical Co.), formaldehyde (37% w/v), hydrochloric acid (from Malinckrodt Inc.), carbon monoxide, carbon dioxide, molecular oxygen (from the Matheson Co.), NaBH₄ from the Wilshire Chemical Co., 3a,4,7,7a-tetrahydro-4,7-methanoindene from MCB Inc., and anhydrous AgClO₄ from the G. Frederick Smith Co. Co(saltmen) was a generous gift from Dr. W. P. Schaefer.

[†] The Colorado State University Regional NMR Center is funded by the National Science Foundation (Grant No. CHE-8208821).

[‡] Several grams of OsO_4 were a gift from the Engelhard Co.

The following compounds were synthesized using reported procedures: {CpMo-(CO)₂}₂,²⁹ {CpMo(CO)₃}₂,³⁰ Mo₂(μ -O₂CCH₃)₄,³¹ {MO(μ -O₂CCH₃)(thf)Cl}₂,³² (NH₄)₂[OsCl₆],³³ OsHCl(CO)(PPh₃)₃,³⁴ OsH₂(CO)(PPh₃)₂,³⁴ Os(CO)₂(PPh₃)₃,³⁴ Os(CO)₃(PPh₃)₂,³⁵ Os(CO)₂(PPh₃)₂(C₂H₄),³⁶ OsO₄(NC₇H₁₃),³⁷ Pt(CO)(PPh₃)₂,²⁷ Pt(PPh₃)₂(C₂H₄),³⁸ Pt(PPh₃)₃,³⁹ Pt(PPh₃)₄,³⁹ [Rh(CN-t-Bu)₂(PPh₃)₂]Cl,⁴⁰ RhCl(PPh₃)₃,⁴¹ RhCl(CS)(PPh₃)₂,⁴² [Rh(CS)(bpy)(PPh₃)₂]ClO₄,⁴³ Rh(NO)-(PPh₃)₃,⁴⁴ Rh(NO)Cl₂(PPh₃)₂,⁴⁴ Ru(CO)₃(PPh₃)₂,⁴⁴ RuHCl(CO)(PPh₃)₂,⁴⁴ RuHCl(CO)(PPh₃)₂,⁴⁴ Ru(NO)Cl(CO)(PPh₃)₂,⁴⁵ and W(N₂)₂(diphos)₂.⁴⁶

159

Synthesis

All reactions were run in 100 mL three-neck round bottom flasks under a blanket of flowing high-purity nitrogen unless noted otherwise and all reactions used stoichiometric quantities of osmium(VIII) oxidants and the organometallic/inorganic substrates, except for the study on RhCl(CS)(PPh₃)₂ with excess quantities of these reagents. Enrichment with ¹⁸O was carried out as follows: The osmium tetraoxide needed for one experiment was placed in a 2 mL round bottom flask along with 40 equivalents of ¹⁸OH₂ (35 μ L for 11 mg OsO₄) and 1 drop benzene. The mixture was stirred overnight; then the osmium tetraoxide was dissolved in the solvent required for the experiment. The organic solution was either decanted from the water and used directly, or it was treated with 1 equivalent of quinuclidine, decanted from the water, and then used in the experiment.

Preparation of $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})\cdot\frac{1}{3}C_6H_6$ from benzene. $Ru(CO)_3(PPh_3)_2$ (39 mg,0.0547 mmol) was placed in the round bottom flask and dissolved in benzene (15 mL). $OsO_4(NC_7H_{13})$ (20 mg,0.0547 mmol), dissolved in benzene (2 mL), was slowly added dropwise. Within 5 minutes the product spontaneously precipitated. It was filtered from the solution, washed with benzene, and dried *in vacuo*. Yield: 47 mg (80%).

Analytical data: $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13}) \cdot \frac{1}{3}C_6H_6$ IR $(cm^{-1},nujol)$: 2025, 1973 $[ss,\nu(C\equiv O)]$, 1551 $[ss,\nu(C=O)]$, 1061 $[ss,\nu(C-O)]$, 858 $[ss,\nu(OsO_2)]$. IR $(cm^{-1},nujol,^{18}O \text{ enriched})$: 1551 $[ss,\nu(C=O)]$, 1046 $[ss,\nu(C-O)]$, 816 $[ss,\nu(OsO_2)]$. ¹H NMR (CD_2Cl_2) : 7.2–7.7 [m,30H,Ph], 7.35 [s,2H,Ph], 2.1–2.5 $[m,6H,CH_2]$, 1.3–1.8 $[m,7H,CH_2]$. ³1P NMR (solid-state): 20.6 [s]. E.A.: (Calc.) C: 52.36%, H: 4.12%, N: 1.27%; (Found) C: 52.28%, H: 4.21%, N: 1.27%. Preparation of $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ from CH_2Cl_2 . Ru $(CO)_3(PPh_3)_2$ (39 mg,0.0547 mmol) was placed in the round bottom flask and dissolved in CH_2Cl_2 (15 mL). $OsO_4(NC_7H_{13})$ (20 mg,0.0547 mmol), dissolved in CH_2Cl_2 (2 mL), was slowly added dropwise. After 5 minutes, the product was precipitated by addition of hexanes. It was filtered from the solution, washed with hexanes, and dried *in vacuo*. Yield: 50 mg (85%).

Analytical data: $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ IR $(cm^{-1},nujol)$: 2009, 1955 $[ss,\nu(C\equiv O)]$, 1602 $[ss,\nu(C=O)]$, 1038 $[ss,\nu(C-O)]$, 852 $[ss,\nu(OsO_2)]$. IR $(cm^{-1},nujol,^{18}O \text{ enriched})$: 1602 $[ss,\nu(C=O)]$, 1018 $[ss,\nu(C-O)]$, 812 $[ss,\nu(OsO_2)]$. ¹H NMR (CD_2Cl_2) : 7.2–7.7 [m,30H,Ph], 2.1–2.5 $[m,6H,CH_2]$, 1.3–1.8 $[m,7H,CH_2]$. ⁸¹P NMR (solid-state): 39.0 [s] (shoulder: 40.5 [s][§]). E.A.: (Calc.) C: 51.39\%, H: 4.03\%, N: 1.30\%; (Found) C: 51.28\%, H: 4.08\%, N: 1.29\%.

Decomposition of $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$. $(CO)_2$ - $(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ (120 mg) was dissolved in degassed CH₂-Cl₂ which was transfered into the 100 mL round bottom flask using trap-to-trap techniques. The solution was stirred for 24 hours at room temperature. The gases were collected in 67.7 mL with a toepler pump (dry ice/acetone trap). Analysis for CO₂: (Calc.): 30.1 torr, (Found): 39 torr* Carbon dioxide was identified by infrared spectroscopy.

The remaining solution was pumped to dryness *in vacuo*. The infrared spectrum of the crude material contained several bands attributable to carbonyl vibrations, but no strong bands in the $1500-1700 \text{ cm}^{-1}$ region or in the $820-890 \text{ cm}^{-1}$ region.

[§] This is probably a solid-state artifact.

^{*} Inefficient trapping may have allowed CH_2CL_2 vapor to pass to the pump.

IR (cm⁻¹,nujol): 2045, 1982, 1935 [s, ν (C \equiv O)].

Decomposition of $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ in the presence of pyridine. $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ (100 mg) was dissolved in degassed CH_2Cl_2 which was transfered into the 50 mL three-necked round bottom flask using trap-to-trap techniques. Then 0.5 mL of pyridine was added via syringe through a septum. The septum was removed under a flow of argon and the flask was stoppered. The solution was immediately frozen, evacuated, then thawed. This step was repeated to remove oxygen, argon, etc. The solution was stirred at room temperature for 24 hours. The gases were collected in 11.6 mL with a toepler pump (dry ice/ethanol trap). Analysis for CO_2 : (Calc.): 148.5 torr, (Found): 56.5 torr. Carbon dioxide was identified by infrared spectroscopy.

The remaining solution was pumped to dryness *in vacuo*. The infrared spectrum of this material contained features identical with that of $(py)_2 OsO_2(\mu - O)_2 OsO_2(py)_2$, indicating that the crude material contained some of this dimer.

IR (cm⁻¹,nujol): 840 [ss, ν (OsO₂)].

Decomposition of $(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ in the presence of CS₂. $Ru(CO)_3(PPh_3)_2$ (60 mg,0.0845 mmol) was mixed with $OsO_4(NC_7H_{13})$ in 15 mL of CH_2Cl_2 in a 100 mL round bottom flask. Immediately, 1 mL of CS₂ was added and the flask stoppered. The solution was stirred overnight. Then the crude product was precipitated with hexanes and collected. The infrared spectrum of this material was the same as was found when CS₂ was not present.

IR (cm⁻¹,nujol): 2045, 1982, 1935 [s, ν (C \equiv O)].

Preparation of $(CO)_2(PPh_3)_2Os(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})\cdot\frac{1}{3}C_6H_6$ from benzene. Os $(CO)_3(PPh_3)_2$ (44 mg,0.0547 mmol) was placed in the round bottom flask and dissolved in benzene (15 mL). OsO₄(NC₇H₁₃) (20 mg,0.0547 mmol), dissolved in benzene (2 mL), was slowly added dropwise. Within 5 minutes the product spontaneously precipitated. It was filtered from the solution, washed with benzene, and dried *in vacuo*. Yield: 53 mg (83%).

Analytical data: $(CO)_2(PPh_3)_2Os(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})\cdot\frac{1}{3}C_6H_6$ IR $(cm^{-1},nujol)$: 2015, 1952 $[ss,\nu(C\equiv O)]$, 1550 $[ss,\nu(C=O)]$, 1068 $[ss,\nu(C-O)]$, 861 $[ss,\nu(OsO_2)]$. IR $(cm^{-1},nujol,^{18}O \text{ enriched})$: 1550 $[ss,\nu(C=O)]$, 1035 $[ss,\nu(C-O)]$, 818 $[ss,\nu(OsO_2)]$. ¹H NMR (CD_2Cl_2) : 7.2–7.7 [m,30H,Ph], 7.35 [s,2H,Ph], 2.1–2.5 $[m,6H,CH_2]$, 1.3–1.8 $[m,7H,CH_2]$. E.A.: (Calc.) C: 48.44%, H: 3.81%, N: 1.18%; (Found) C: 48.58%, H: 3.83%, N: 1.14%.

Preparation of $(CO)_2(PPh_3)_2Os(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ from CH_2Cl_2 . Os $(CO)_3(PPh_3)_2$ (44 mg,0.0547 mmol) was placed in the round bottom flask and dissolved in CH_2Cl_2 (15 mL). OsO₄(NC₇H₁₃) (20 mg,0.0547 mmol), dissolved in CH_2Cl_2 (2 mL), was slowly added dropwise. After 5 minutes, the product was precipitated by addition of hexanes. It was filtered from the solution, washed with hexanes, and dried *in vacuo*. Yield: 55 mg (84%).

Analytical data: $(CO)_2(PPh_3)_2Os(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ IR $(cm^{-1},nujol)$: 2000, 1934 $[ss,\nu(C\equiv O)]$, 1602 $[ss,\nu(C=O)]$, 1039 $[ss,\nu(C-O)]$, 853 $[ss,\nu(OsO_2)]$. IR $(cm^{-1},nujol,^{18}O \text{ enriched})$: 1602 $[ss,\nu(C=O)]$, 1018 $[ss,\nu(C-O)]$, 810 $[ss,\nu(OsO_2)]$. ¹H NMR (CD_2Cl_2) : 7.2–7.7 [m,30H,Ph], 2.1–2.5 $[m,6H,CH_2]$, 1.3–1.8 $[m,7H,CH_2]$. ³¹P NMR (CD_2Cl_2) : -0.74 [s]. E.A.: (Calc.) C: 47.46%, H: 3.72%, N: 1.20%; (Found) C: 47.20%, H: 3.73%, N: 1.16%.

Preparation of $\{(CO)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO(\mu-O)\}_2 \cdot C_6H_6$. $Ru(CO)_3$ -(PPh₃)₂ (30 mg,0.0433 mmol) was placed in the round bottom flask and dissolved in benzene (15 mL). OsO_4 (11 mg, 0.0433 mmol), dissolved in benzene (2 mL), was slowly added dropwise. After 5 minutes the product was precipitated by addition of hexanes. It was filtered from the solution, washed with hexanes, and dried *in vacuo*. Yield: 31 mg (75%).

Analytical data: $\{(C\equiv O)_2(PPh_3)_2Ru(\mu-O)(\mu-CO_2)OsO(\mu-O)\}_2 \cdot C_6H_6$ IR (cm⁻¹,nujol): 2020, 1988 [ss, $\nu(C\equiv O)$], 1622 [ss, $\nu(C=O)$], $--^{\dagger} [\nu(C-O)]$, 972 [$\nu(OsO)$]. IR (cm⁻¹,nujol,¹⁸O enriched): 1622 [ss, $\nu(C=O)$], $-^{\dagger} [ss,\nu(C-O)]$, 922 [ss, $\nu(OsO)$]. ¹H NMR (DMSO-d⁶): 7.3-7.7 [m,30H,Ph]. E.A.: (Calc.) C: 50.30\%, H: 3.31\%. (Found) C: 50.35\%, H: 3.41\%.

Preparation of crude (NO)Cl(PPh₃)₂Ru(μ -O)(μ -CO₂)OsO₂(NC₇H₁₃) from CH₂Cl₂. RuCl(NO)(CO)(PPh₃)₂ (38 mg,0.0547 mmol) was placed in the round bottom flask and dissolved in CH₂Cl₂ (15 mL). OsO₄(NC₇H₁₃) (20 mg,0.0547 mmol), dissolved in CH₂Cl₂ (2 mL), was slowly added dropwise. After 5 minutes, the product was precipitated by addition of hexanes. It was filtered from the solution, washed with hexanes, and dried *in vacuo*. Yield: 38 mg (65%).

Analytical data: (NO)Cl(PPh₃)₂Ru(μ -O)(μ -CO₂)OsO₂(NC₇H₁₃) IR (cm⁻¹,nujol): 1804 [ss, ν (NO)], 1630 [ss, ν (C=O)], 1052 [ss, ν (C-O)], 868 [ss, ν (OsO₂)]. IR (cm⁻¹,nujol,¹⁸O enriched): 1630 [ss, ν (C=O)], 1025 [ss, ν (C-O)], 820 [ss, ν (OsO₂)].

Preparation of crude $(PPh_3)_2Pt(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ from CH_2Cl_2 . Pt(CO)(PPh_3)₂ (40 mg,0.0547 mmol) was placed in the round bottom flask and dissolved in CH_2Cl_2 (15 mL). $OsO_4(NC_7H_{13})$ (20 mg,0.0547 mmol), dissolved in CH_2Cl_2 (2 mL), was slowly added dropwise. After 2 minutes, the product was

[†] This band was obscured.

precipitated by addition of hexanes. It was filtered from the solution, washed with hexanes, and dried *in vacuo*. Yield: 43 mg (70%).

Analytical data: $(PPh_3)_2Pt(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$ IR $(cm^{-1},nujol)$: 1612 $[ss,\nu(C=O)]$, $-^{\ddagger} [\nu(C-O)]$, 858 $[ss,\nu(OsO_2)]$. IR $(cm^{-1},nujol,^{18}O \text{ enriched})$: 1612 $[ss,\nu(C=O)]$, $-^{\ddagger} [\nu(C-O)]$, 813 $[ss,\nu(OsO_2)]$.

Decomposition of $(PPh_3)_2Pt(\mu-O)(\mu-CO_2)OsO_2(NC_7H_{13})$. $Pt(CO)(PPh_3)_2$ (40 mg,0.0547 mmol) and $OsO_4(NC_7H_{13})$ (20 mg,0.0547 mmol) were placed in a 100 mL round bottom flask. The reactants were dissolved in CH_2Cl_2 which was transfered into the flask using trap-to-trap vacuum techniques. The solution was stirred for 24 hours at room temperature. Then the gases were collected in 11.6 mL with a toepler pump (dry ice/ethanol trap). Analysis for CO_2 : (Calc.) 85.4 torr, (Found) 41.5 torr.

The remaining solution was pumped to dryness *in vacuo*. The infrared spectrum of the crude material contained no strong bands in the $1550-2100 \text{ cm}^{-1}$ region and no strong bands in the $820-980 \text{ cm}^{-1}$ region.

Preparation of $\{(PPh_3)_2Pt(\mu-O)_2OsO(\mu-O)\}_2$. Pt $(PPh_3)_2(C_2H_4)$ (32 mg, 0.0433 mmol) was placed in the round bottom flask and dissolved in benzene (15 mL). OsO₄ (11 mg,0.0433 mmol), dissolved in benzene (2 mL), was slowly added dropwise; the product spontaneously precipitated. It was filtered from the solution, washed with benzene, and dried *in vacuo*. Yield: 32 mg (75%).

Analytical data: $\{(PPh_3)_2Pt(\mu-O)_2OsO(\mu-O)\}_2$ IR (cm⁻¹,nujol): 965 [ss, ν (OsO)]. IR (cm⁻¹,nujol,¹⁸O enriched): 915 [ss, ν (OsO)]. ¹H NMR (DMSO-d⁶): 6.9-7.7 [m,30H,Ph]. E.A.: (Calc.) C: 44.40%, H: 3.10%.

[‡] This band was obscured.

165

(Found) C: 44.54%, H: 3.21%.

Reactivity of trans-RhCl(CS)(PPh₃)₂ with osmium(VIII) oxidants. RhCl-(CS)(PPh₃)₂ (1 equiv.) was dissolved in CH₂Cl₂ (15 mL). OsO₄, OsO₄ with pyridine (0.5 mL), or OsO₄(NC₇H₁₃) (1 equiv.), dissolved in CH₂Cl₂ (2 mL), was then added dropwise with stirring. After 15 minutes, the product was precipitated with hexanes, filtered from the solution, and dried *in vacuo*. The infrared spectra of these materials revealed that the ν (CS) band remained intact. However, a new band formed at 1989 cm⁻¹ (nujol).

Reactivity of trans-RhCl(CS)(PPh₃)₂ with excess equivalents of osmium(VIII) oxidants. RhCl(CS)(PPh₃)₂ (1 equiv.) was dissolved in CH₂Cl₂ (15 mL). OsO₄ or OsO₄(NC₇H₁₃) (2-3 equiv.), dissolved in CH₂Cl₂ (2 mL), was then added dropwise with stirring. The solution darkened considerably. After 15 minutes, the product was precipitated with hexanes, filtered from the solution, and dried *in vacuo*. The infrared spectra of these materials revealed that the ν (CS) band was very broad or gone. No distinct osmium-oxo bands were found.

Reactivity of $[Rh(CS)(bpy)(PPh_3)_2]ClO_4$ with osmium(VIII) oxidants. $[Rh-(CS)(bpy)(PPh_3)_2]ClO_4$ (1 equiv.) was dissolved in CH_2Cl_2 (15 mL). OsO₄ or OsO₄ (NC₇H₁₃) (1 equiv.), dissolved in CH_2Cl_2 (2 mL), was then added dropwise with stirring. After 15 minutes, the product was precipitated with hexanes, filtered from the solution, and dried *in vacuo*. The infrared spectra of these materials revealed that the $\nu(CS)$ band remained intact.

Reactivity of $W(N_2)_2(diphos)_2$ with OsO_4 . $W(N_2)_2(diphos)_2$ (1 equiv.) was dissolved in degassed benzene (15 mL). OsO_4 (1 equiv.), dissolved in benzene (2 mL), was added dropwise to the solution. A precipitate formed immediately. The product was filtered from the solution, washed with benzene, and dried *in vacuo*. The infrared spectrum of this material showed a new strong band at 2000 cm^{-1} (nujol).

Reactivity of $Os(CO)_2(PPh_3)_2(C_2H_4)$, $Rh(NO)Cl(CO)(PPh_3)_2$, $Rh(NO)-(PPh_3)_5$, $[Rh(t-BuNC)_2(PPh_3)_2]Cl$, Co(saltmen), $\{Mo(\mu-O_2CCH_3)(thf)Cl\}_2$, $\{Cp-Mo(CO)_2\}_2$, and Cp_2Fe with osmium(VIII) oxidants. Oxidations were carried out as follows: A solution containing 1 equivalent of OsO_4 or $OsO_4(NC_7H_{13})$ was added dropwise to a solution containing 1 equivalent of the organometallic/inorganic substrate (2 equivalents of Co(saltmen)). The solution was stirred for 2-5 minutes. Addition of hexanes precipitated the reaction products, which were filtered from the solution, washed with hexanes, and dried *in vacuo*. The solvents were typically dichloromethane or benzene; tetrahydrofuran was used for Co(saltmen) oxidations. Infrared spectra exhibited few features attributable to osmium-oxo vibrations. In several instances, broadening of ligand bands was observed. Mixing the reactants together at reduced temperature (-78°C) and then warming the products to room temperature was also ineffective in improving the reactivity. When attempted, heating the reaction solutions was also not productive.

REFERENCES

- ¹ (a) Benson, D. Mechanisms of Oxidations by Metal Ions; Elsevier Scientific Publishing Co.: Amsterdam, 1976; (b) Vaska, L. J. Amer. Chem. Soc., 1966, 88, 5325; and references therein.
- ² Reed, C.A.; Roper, W.R. J. Chem. Soc., Dalton Trans., 1973, 1370.
- ⁸ Heck, R.F. J. Amer. Chem. Soc., 1964, 86, 2796.
- ⁴ (a) Yocum, K.M.; Shelton, J.B.; Shelton, J.R.; Schroeder, W.A.; Worosila, G.; Isied, S.S.; Bordignin, E.; Gray, H.B. Proc. Natl. Acad. Sci., USA, 1982, 79, 7052; (b) Kostić, N.M.; Margalit, R.; Che, C.-M.; Gray, H.B. J. Amer. Chem. Soc., 1983, 105, 7765.
- ⁵ (a) Audett, J.D.; Collins, T.J.; Santarsiero, B.D.; Spies, G.H. J. Amer. Chem. Soc., 1982, 104, 7352; (b) Bird, C.; Booth, B.L.; Hazeldine, R.N.; Neuss, G.R.H.; Smith, A.A. J. Chem. Soc., Dalton Trans., 1982, 1109; (c) Bird, C.; Booth, B.L.; Hazeldine, R.N. Ibid., 1982, 512.
- ⁶ For instance, see: (a) Groves, J.T.; Nemo, T.E. J. Amer. Chem. Soc., 1983, 105, 5786; (b) Chang, C.K.; Kuo, M.-S. Ibid., 1979, 101, 3413.
- ⁷ (a) Groves, J.T.; Kruper, Jr., W.J.; Haushalter, R.C.; Butler, W.M. Inorg. Chem., 1982, 21, 1363; (b) Groves, J.T.; Kruper, Jr., W.J. J. Amer. Chem. Soc., 1979, 101, 7613.
- ⁸ (a) Brown, K.L.; Clark, G.R.; Headford, C.E.L.; Marsden, K.; Roper, W.R. J. Amer. Chem. Soc., 1979, 101, 503; (b) Clark, G.R.; Headford, C.E.L.; Marsden, K.; Roper, W.R. J. Organomet. Chem., 1982, 231, 335; (c) Berke, H.; Bankhardt, W.; Huttner, G.; von Seyerl, J.; Zsolnai, L. Chem. Ber., 1981, 114, 2754; (d) Berke, H.; Huttner, G.; Weiler, G.; Zsolnai, L. J. Organomet. Chem., 1981, 219, 353; (e) Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Amer. Chem. Soc., 1982, 104, 2019; (f) Head, R.A. J. Chem. Soc., Dalton Trans., 1982, 1637.
- ⁹ Buhro, W.E.; Patton, A.T.; Strouse, C.E.; Gladysz, J.A. J. Amer. Chem. Soc., 1983, 105, 1056.
- ¹⁰ (a) Criegee, R.; Marchand, B.; Wannowius, H. Justus Liebigs Ann. Chem., 1942, 550, 99; (b) Phillips, F.L.; Skapski, A.C. J. Chem. Soc., Dalton Trans., 1975, 2586; (c) Collin, R.J.; Jones, J.; Griffith, W.P. Ibid., 1974, 1094; (d)
Schröder, M. Chem. Rev., 1980, 80, 187.

- ¹¹ (a) Dewar, M.J.S. J. Amer. Chem. Soc., 1952, 74, 3341; (b) Dewar, M.J.S.; Longuet-Higgins, H.C. Proc. R. Soc., London, Ser. A, 1952, 214, 482; (c) Dewar, M.J.S. Ind. Chim. Belge., 1950, 15, 181; (d) Dewar, M.J.S. Chem. Zentralbl., 1951, 1, 1716.
- ¹² Sharpless, K.B.; Teranishi, A.Y.; Bäckvall, J.-E. J. Amer. Chem. Soc., 1977, 99, 3120.
- ¹³ (a) Schröder, M.; Constable, E.C. J. Chem. Soc., Chem. Commun., 1982, 734; (b) Casey, C.P. J. Chem. Soc., Chem. Commun., 1983, 126; (c) Marzilli, L.G.; Hanson, B.E.; Kistenmacher, T.J.; Epps, L.A.; Stewart, R.C. Inorg. Chem., 1976, 15, 1661.
- ¹⁴ Audett, J.D. Ph. D. Thesis, California Inst. of Technology, Pasadena, California, 1984 (Dr. T.J. Collins, Advisor).
- ¹⁵ Calabrese, J.C.; Herskovitz, T.; Kinney, J.B. J. Amer. Chem. Soc., 1983, 105, 5914.
- ¹⁶ Bristow, G.S.; Hitchcock, P.B; Lappert, M.F. J. Chem. Soc., Chem. Commun., 1981, 1145.
- ¹⁷ Aresta, M.; Nobile, C.F.; Albano, V.G.; Forni, E.; Manassero, M. J. Chem. Soc., Chem. Commun., 1975, 636.
- ¹⁸ Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Amer. Chem. Soc., 1978, 100, 7405.
- ¹⁹ Guy, J.J.; Sheldrick, G.M. Acta Crystallogr., Sect. B, 1978, 34, 1718.
- ²⁰ Beck, W.; Raab, K.; Nagel, U.; Steimann Angew. Chem., Int. Ed. Engl., 1982, 21, 526.
- ²¹ Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Amer. Chem. Soc., 1979, 101, 1767.
- ²² Kolomnikov, I.S.; Belopotapova, T.S.; Lysyak, T.V.; Vol'pin, M.E. J. Organomet. Chem., 1974, 67, c25.
- ²³ Herskovitz, T.; Guggenberger, L.J. J. Amer. Chem. Soc., 1976, 98, 1615.
- ²⁴ Maciel, G.E.; O Donnell, D.J.; Greaves, R. Adv. Chem. Ser., 1982, 196, 389.

- ²⁵ Angelici, R.J. Accts. Chem. Res., 1972, 5, 335.
- ²⁶ Clark, R.J.; Behrman, E.J. Inorg. Chem., 1975, 14, 1425.
- ²⁷ Ugo, R.; La Monica, G.; Cariati, F.; Cenini, S.; Conti, F. Inorg. Chim. Acta, 1970, 4, 390.
- ²⁸ Vaska, L.; Peone, Jr., J. J. Chem. Soc., Chem. Commun., 1971, 418.
- ²⁹ Curtis, M.D.; Klinger, R.J. J. Organomet. Chem., 1978, 161, 23.
- ³⁰ King, R.B.; Stone, F.G.A. Inorg. Syn., 1963, 7, 99.
- ³¹ Brignole, A.B.; Cotton, F.A. Inorg. Syn., 1972, 13, 87.
- ³² Green, M.L.H.; Parkin, G.; Bashkin, J.; Fail, J.; Prout, K. J. Chem. Soc., Dalton Trans., 1982, 2519.
- ³³ Dwyer, F.P.; Hogarth, J.W. Inorg. Syn., 1957, 5, 206.
- ⁸⁴ Private communication: Professor T.J. Collins.
- ³⁵ Grundy, K.R. Inorg. Chim. Acta, 1981, 53, L225.
- ³⁶ Grundy, K.R.; Roper, W.R. J. Organomet. Chem., 1981, 216, 255.
- ³⁷ Cleare, M.J.; Hydes, P.C.; Griffith, W.P.; Wright, M.J. J. Chem. Soc., Dalton Trans., 1977, 941.
- ³⁸ Blake, D.M.; Roundhill, D.M. Inorg. Syn., 1978, 18, 120.
- ³⁹ Ugo, R.; Cariati, F.; La Monica, G. Inorg. Syn., 1968, 11, 105.
- ⁴⁰ Nakamura, A.; Tatsuno, Y.; Otsuka, S. Inorg. Chem., 1972, 11, 2058.
- ⁴¹ Osborn, J.A.; Wilkinson, G. Inorg. Syn., 1967, 10, 67.
- 42 Kubota, M.; Ho, C.O.M. Inorg. Syn., 1979, 19, 204.
- ⁴³ Uson, R.; Lahuerta, P.; Carmona, D.; Oro, L.A.; Hildenbrand, K. J. Organomet. Chem., 1978, 157, 63.
- ⁴⁴ Ahmad, N.; Levison, J.J.; Robinson, S.D.; Uttley, M.F. Inorg. Syn., 1974, 15, 45.
- 45 Laing, K.R.; Roper, W.R. J. Chem. Soc., Sect. A, 1970, 2149.
- 46 Dilworth, J.R.; Richards, R.L. Inorg. Syn., 1980, 20, 119.

Appendix A. Structure factor amplitudes $(10F_o, 10F_c, 10\sigma_F; \sigma_F/k = [F_o + \sigma_{F^2}]^{\frac{1}{2}} - |F_o|, k = 0.3100; F_o < 0 \text{ means } I_o < 0$ for $(H)_4$ CHBA-Et·pyHCl.

-14 <i>1</i> 1 L 1 43 -33 9	1 32 -31 Ø 2 39 8 -4	2 29 -38 -18 3 35 1 13 -12 8 L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 78 -3 -18 3 28 -8 13 -11 12 L	1 65 -68 -1 <i>0</i> 2 127 -33 9 3 31 -28 -2
-14 1 L 1 69 -34 17	-13 9 L 1 65 -17 -1 2 4 $\%$ 11 15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-11 3 L 1 83 -47 2 2 36 6 5 3 161 131 -7	1 7 8 8 2 31 25 -6 3 188 97 5	4 76 59 18 -187 4 L 1 1874 -76 11
-14 2 L 1 -4 8 -4 -14 3 L	-13 10 L 1 -21 25 -21 -13 11 L	-12 9 L 1 84 -8 -12 2 149 137 17 3 93 91 4	4 55 12 10 -11 4 L 1 86 39 -17	-11 13 L 1 67 -49 -9 2 35 -38 -8 3 51 24 -8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 49 52 -5 -13 Ø L	1 53 36 4 -12 ØL	-12 1 <i>8</i> L 1 33 17 1	2 53 58 -14 3 54 -36 26 4 59 17 Ø	-11 14 L 1 78 -62 1	1 20 15 -1 2 125 -126 -6 3 110 -77 -20
1 -12 -31 -15 2 76 -72 6 3 Ø 6 Ø	1 46 41 6 2 -28 -4 -12 3 52 34 19	2 86 81 5 3 25 -5 -6 -12 11 L	-11 5 L 1 178 -178 -1 2 78 -75 -16 3 77 58 3	2 115 -9 <i>1</i> 7 -12 3 83 -31 26 -11 15 L	4 121 26 6 -187 6 L 1 146 133 -18
-13 1 L 1 1972 -65 3 2 51 31 -11	-12 1 L 1 114 1975 -12 2 897 86 -18	1 162 -158 -7 2 67 -57 -17 -12 12 L	4 44 -34 7 -11 6 L	1 124 73 24 2 55 46 1 <i>8</i> -11 16 L	2 99 91 -12 3 18 17 -13 4 98 81 17
3 25 -5 3 -13 2 L 1 -13 11 -7	3 23 38 -17 -12 2 L 1 98 8 -8	1 44 -18 -6 2 61 12 -14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 48 42 7 2 68 68 -1	-100 / L 1 700 -37 00 2 37 -300 9 3 136 118 6
2 36 1 14 3 11Ø 97 -1 -13 3 L	2 86 -25 6 3 29 -8 -1 -12 3 L	1 122 112 8 2 52 3Ø 6	-11 7 L 1 86 6 <i>1</i> 7 23 2 1 <i>1</i> 7 7 <i>1</i> 7	1 76 -78 -7 2 -21 -1Ø -13	4 52 39 19 ~1 <i>9</i> 8 L
1 -3 Ø -12 2 125 1Ø7 3 3 1Ø6 92 24	1 92 -87 4 2 77 -48 Ø 3 86 -61 -3	-12 14 L 1 5 21 -7 2 49 50 -14	3 52 62 -2 <i>8</i> 4 35 3 <i>8 8</i> -11 8 L	-11 18 L 1 33 -3 <i>8</i> -7 -1 <i>6</i> 6 I	1 48 -42 4 2 168 -130 -4 3 131 -55 1 4 48 33 -4
-13 4 L 1 47 -18 -2 2 52 -27 -4	-12 4 L 1 68 5 2 2 25 -18 -3 2 48 49 9	-12 15 L 1 69 13 -21	1 128 51 -26 2 28 18 -9 3 81 37 8 4 41 -38 -1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1# 9 L 1 119 -98 # 2 129 -91 -6 3 31 -2 -8
-13 5 L 1 45 -28 4 2 27 -31 -15	-12 5 L 1 1 <i>00</i> -14 -6	1 38 4Ø -2 2 28 19 6 3 1Ø1 99 4	-11 9 L 1 94 -8 -16 2 86 -83 8	-107 1 L 1 212 -73 -107	4 -18 Ø -9 -18 18 L
-13 6 L 1 46 49 -2 <i>8</i> 2 68 61 -3	2 47 34 12 3 1ØB 67 15 -12 6 L	4 158 156 4 -11 1 L 1 160 -53 -18	3 29 19 8 4 38 25 Ø -11 1Ø L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 95 55 -12 2 64 11 -12 3 72 59 -9 4 44 -7 2
-13 7 L 1 6 -2 -3 2 112 118 -18	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-10 11 L 1 23 -29 -8 2 62 -3 -17 3 68 61 13
-13 8 L	1 75 -54 12	1 118 -48 20	1 76 76 Ø	-1Ø 3 L	4 115 10/4 9

-12 -9 9 L 67 -50 -9 -1 -18 12 L 89 -16 ż -10 -23 -14 -48 -7 - 1 -8 -20 -9 -8 -7 -7 -2 -19 -15 -8 13 L 7.0 -9 -9 L -14 -79 -15 2 L -14 -8 -9 86 -93 -31 -85 -9 18 L 74 -67 -2 -2 -10 13 L -10 -5 166 -148 Ø -7 94 -98 -38 -5 156 -138 Ø -67 -9 . -17 - 4 -7 176 -58 -18 76 -34 -9 87 -88 -9 207 L -8 -8 14 L - 5 75 -44 -34 -74 -1 -23 -4 -76 -5 -9 11 L 1.01 -84 -20 -1 -10 14 L -9 3 L -19 -16 36 -58 -38 -9 21 L - 5 -48 -20 189 -183 -9 194 -184 -22 69 -24 -31 -8 -83 -10 -8 15 L 113 106 -10 105 -103 -19 ż -2 -8 3Ø -15 7 L 35 33 58 -55 142 148 - 1 -10 15 L -1 140 128 -27 -9 12 L -9 22 L -4 1.87 -26 -9 L -22 -19 Ø -8 -5 -40 ø 175 -135 -21 39 -22 -17 248 -169 55 -25 77 -21 -2 -5 ø -14 -9 -2 -8 ØL Ø -8 16 L L -10 16 -30 -8 115 111 -36 97 -183 -15 -8 L -9 -34 31 -19 -20 -28 L -87 -14 163 163 ø -13 51 -45 -99 -16 -1 17 -14 - 4 4 -9 L -4 72 78 74 -11 -16 38 -35 51 -59 -18 -8 17 L -10/ 17 L - 4 -6 -2 . -27 -8 1 L -89 1.07 -8 -9 14 L 201 -189 9 L -5 -8 -5 52 57 -22 -73 403 -326 -2 -7 -1 286 -164 -10 -25 . -9 99 -83 66 -39 171 -132 -13 -10 18 L L -28 85 -82 -8 L 31 -25 -5 Ø -14Ø -8 2 L -5 137 -146 -29 -4 -9 L 53 -50 487 -182 -8 107 L -1 -1Ø 19 L . 214 -54 134 -93 -5 -9 ø -8 -56 -32 -61 -17 19 L 127 -125 -9 7 L ø -1 -15 73 -55 . 110 -33 -19 -47 -17 -3 -65 -58 -2 -22 -18 28 L -90 -9 16 -8 3 L -22 -10 Ø -28 270 -268 -11 -8 11 L -8 20 L -3 -26 3.86 -46 1.08 -74 -15 - 9 g ø L 131 134 -25 -11 -42 -16 -9 -65 112 117 -11 L -1 -19 -9 17 L -226 -1 -4 -5 ø ø -11 -8 L -15 -8 21 L -15 ... 13 25 1Ø1 ø 105 -103 - 1 -8 12 L -54 96 -71 -9 1 L -32 30 -19 -9 18 L 71 46 6Ø

-4 -18 . -5 Ø 11 -8 22 L -7 6 L -58 -2 -7 23 L -6 13 L -90 -14 155 -131 -7 14 L - 1 -17 - 4 -3 -43 -7 -6 -11 -16 104 98 -3 -8 23 L 4.4 -38 -26 ø -9 ø 83 -58 -76 -7 24 L -10 -9 -6 6 L -7 7 L 77 -54 -15 - 9 -60 -6 14 L -8 24 L 284 -162 -7 15 L -49 -19 177 -47 -2 -7 25 L 117 -186 154 -154 - 4 -3 74 68 140 -43 61 -36 -3 -44 103 103 -20 70 -61 219 -135 47 -13 -4 -9 -12 143 61 -11 -7 Ø L 14 -8 -20 152 -75 -9 113 100 -6 ØL 7 L -6 27 -22 299 -294 -7 8 L 329 -324 -7 16 L 266 -261 373 -353 -19 -6 15 L 71 -79 -15 -94 -28 -32 -18 -29 47 -49 -28 -20 234 -238 -9 -49 -3 -1 -18 50 -21 45 -6 202 -142 100 -90 57 -53 б -3 - 9 141 -121 -36 91 -98 -13 -32 102 -103 -23 -7 1 L -35 - 8 -6 - 4 112 -113 -3 -6 78 -68 124 -184 -7 L -7 L -6 1 L 315 -248 -1 q -6 16 L ... -9 224 -217 -13 147 -35 - 4 -9 - 9 -12 6.0 -8 -35 97 -12 -40 -2 -40 -20 8 -12 156 -153 -6 -3 -18 3Ø 48 -53 -30 -7 2 L -12 Ø -2 -7 L -6 L -3 -7 10 L -6 17 L -22 1.09 -48 -11 -6 2 L -91 4.0 -5 -11 -19 232 217 -1 -6 217 -288 120 118 -14 -19 177 173 q -12 -50 34 -43 105 -82 -7 -3 48 -22 -8 ø -6 -11 6Ø -7 -7 3 L L 87 73 66 -49 -6 1Ø L -6 18 L 223 -201 -7 11 L -34 49 -11 Ø -4 -50 -89 -10 -18 78 -78 -21 3Ø 3 L 78 -20 -10 -6 -1 309 239 -10 114 103 142 -147 -15 -16 393 -275 -7 - 4 - 7 47 -42 -7 84 -52 -4 -7 28 L -9 ~6 -7 - 4 L 244 -22 -6 19 L 44 -53 180 -144 -20 -6 11 L 141 -135 -7 12 L -26 -15 52 -27 . 86 -57 -60 ø -15 80 -66 73 -46 -25 -54 84 -71 -5 -19 -8 21 -11 ø -7 21 L -6 4 L -90 -2 -26 -27 101 -52 54 -43 -16 41 - 49 438 324 -6 -6 20 L -16 -29 70 -65 -7 - L ø -11 -60 -6 12 L -7 13 L -15 -17 135 -119 -22 -7 22 L 64 35 Ø 73 -24 -15 -13 -50 -79 -5 127 119 160 -154 - 4 ~ 6 -9 -5 -6 5 L -67 -21 -6 21 L

1 65 -35 -4 2 10/4 -10/1 2 3 93 29 10/	3 213 199 -9 4 167 160 0 5 50 -42 -8 6 43 -25 -2	4 74 -16 5 5 52 -46 -3 -5 11 L	3 84 -18 2 4 85 -19 2 -5 19 L	5 27 -17 6 6 46 -1 29 -4 1 L	4 98 79 -13 5 49 9 5 6 26 -19 2
-6 22 L 1 46 167 13 2 63 -167 16 3 88 68 4 -6 23 L	-5 4 L 1 391 344 27 2 276 100 51 3 330 181 -1 4 133 129 8 5 64 -26 19 5 64 -26 19	1 10/5 93 9 2 10/1 10/6 -19 3 146 83 -12 4 120/ 67 -12 5 30/ -18 10/ -5 12 L	1 87 91 -15 2 152 155 -8 3 -16 31 -29 4 58 43 -3 -5 28 L 1 88 -24 5	1 531 528 16 2 419 391 25 3 96 34 2 4 81 67 -16 5 159 -99 13 6 27 -15 5 -4 2 1	1 581 -175 19 2 202 72 -8 3 233 -122 5 4 73 60 7 5 74 -1 16 6 42 -13 8
1 11.07 1.077 9 2 73 -65 07 3 57 -507 4 -6 24 L	-5 5 L 1 139 -69 55 2 437 -434 3 3 88 -61 187 4 197 79 -7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 131 95 -18 3 173 55 18 4 -29 -3 -18 -5 21 L 1 66 -35 4	1 407 401 16 2 221 144 5 3 126 116 29 4 45 -42 5 5 74 30 7 6 46 -27 -4	-4 9 L 1 364 258 23 2 288 -198 21 3 19 8 1 4 154 151 -12 5 98 8 -11
2 26 -34 -16 -6 25 L	5 147 -133 19 6 47 -28 14 -5 6 L	1 10/5 -60/ 15 2 178 -120/ -8 3 136 -59 -27	2 53 8 -6 3 7Ø -6Ø -11 4 76 -82 -15	-4 3 L 1 302 -321 31	6 -11 -14 -6 -4 18 L
1 38 34 -3 2 54 4Ø -1Ø -6 26 L	1 195 -164 38 2 200 -202 -13 3 129 -123 4 4 -13 3 -15	4 67 -25 3 5 28 27 -6 -5 14 L	-5 22 L 1 88 6 -7 2 41 -14 2 3 46 44 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1073 64 -8 2 239 236 -17 3 218 162 16 4 51 46 -12 5 25 15 2
1 19 -17 Ø -5 Ø L	5 61 -31 41 6 78 -55 9 -5 7 L	1 116 -103 24 2 145 67 -3 3 41 -22 -14 4 88 -85 0	-5 23 L 1 49 48 -7 2 62 69 -6	-4 4 L 1 352 -65 41 2 176 124 -19	-4 11 L 1 211 -149 2 2 219 -212 9
1 300 5 515 27 2 99 -96 8 3 316 -307 19 4 19 21 -1 5 95 95 0 6 54 -507 4	1 223 193 58 2 150 120 33 3 231 212 -3 4 104 90 -9 5 64 -57 15 6 -5 25 -14	-5 15 L 1 268 41 1 2 58 18 -13 3 71 46 -5	3 39 34 -8 -5 24 L 1 94 81 23 2 26 -9 -4	-4 5 L	-4 12 L
-5 1 L 1 140 -120 17 2 365 -179 -11 3 207 -52 8 4 35 -7 -13	-5 8 L 1 194 113 16 2 117 1 <i>8</i> 6 7 3 196 112 -24	4 22 18 1 5 83 38 12 -5 16 L 1 199 -171 -5	3 5 -13 -4 -5 25 L 1 56 -7 1 <i>8</i> 7 2 91 -24 23	1 248 13 45 2 186 -166 29 3 128 118 9 4 77 -64 14 5 118 -73 17	1 419 -418 1 2 266 -262 14 3 178 92 -15 4 24 35 -15 5 82 -67 2
5 42 18 4 6 29 8 8 -5 2 L	4 27 7 -4 5 28 Ø 3 -5 9 L	2 69 54 87 3 134 133 -15 4 33 -28 -11 5 -28 -16 -23	-5 26 L 1 68 55 22 2 34 -15 1	6 52 -37 Ø -4 6 L 1 283 245 5	-4 13 L 1 257 164 2 2 127 59 4 3 88 61 4
1 166 156 -29 2 260 -232 4 3 209 -188 11 4 81 6 11 5 48 37 12	1 369 -358 8 2 224 -52 9 3 1Ø2 7 15 4 74 -73 -2 5 1Ø8 -9Ø -8	-5 17 L 1 168 -129 7 2 125 -116 7 3 100 -101 -15	-5 27 L 1 38 16 2	2 216 165 67 3 194 -1000 -8 4 700 57 -8 5 54 35 100 6 43 38 -8	4 10/8 -11 -21 5 36 -4 8 -4 14 L
6 39 23 3 -5 3 L 1 2000 1000 14 2 161 -307 29	-5 187 L 1 33 387 -7 2 154 52 27 3 129 128 -3	4 41 13 -6 -5 18 L 1 269 -276 -33 2 73 -66 -21	-4 Ø L 1 289 -29Ø -3 2 647 -655 -11 3 21Ø -2Ø3 16 4 41 -29 12	-4 7 L 1 684 398 26 2 298 -236 11 3 86 -34 12	1 1507 -49 -12 2 57 17 -107 3 87 77 12 4 44 47 -7 5 61 -48 07

37 -44 -17 32 -10 202 -141 -5 -3 28 L -4 15 L ø -45 -79 -27 -1 -31 131 -135 -19 -6 -25 -13 -4 L -3 L -5 24 -15 -15 -3 11 L -20 -3 -2 ØL -74 71 -73 -11 -29 -73 286 -157 -3 19 185 -178 ~8 -5 L -2 - 4 RØ -71 -7 131 -125 -4 161 -110 ø -37 -4 16 L ø -4 25 -21 107 -68 -28 -17 L -95 - 6 52 -18 -15 -9 -96 -14 -49 -9 -3 101 -28 -11 ø -3 L -3 L ø -2 1 L 65 -51 -3 L -13 -25 -34 -1 -43 -4 26 Ø -49 -97 -17 154 -147 -4 17 L 128 -111 -10 ø -18 151 147 -6 -11 270 -135 -18 184 185 - 4 4.0 -28 -66 -7 116 115 -14 -59 -27 -4 27 -3 21 L 54 22 L -3 13 L -14 -5 -76 -3 6 L -31 -2 -54 -4 . 14 -3 -38 L 645 -659 -30 -46 -42 -27 474 -228 -4 18 L -14 ø -19 -9 -4 28 L -1 263 -69 -17 -30 -5 21 -19 -12 124 -185 -24 - 4 -3 22 L 111 -24 -2 -3 121 -88 ø -3 23 -17 -18 -3 14 L -3 - 7 -3 ø L -6 7 L -3 -45 -13 232 -232 ø -2 -4 19 L -61 -20 L -18 -5 -17 -3 -47 -35 -10 - 5 -7 -36 -3 23 L 274 257 -19 135 -130 141 -126 -24 -4 -9 -20 -21 -11 298 265 -7 -18 -11 -6 -2 -3 15 L -77 -5 -48 -16 -2 -3 -18 -4 200 L L -39 -10 -3 8 L 149 -149 -45 -27 -13 -47 4.05 112 -31 -3 L -2 4 L -2 ø 77 -46 -21 ø -37 1.0 319 -151 -8 73 -57 -37 -9 -12 -5 ø 1.0 -57 -7 -3 16 -17 -24 79 -86 -7 -21 -4 21 L -22 -1Ø 328 324 -3 73 -71 -2 - 8 -7 ø -3 308 -290 L - 3 Ø -3 L -39 -4 -4 -3 -32 -6 -2 L 51 -48 -26 -3 -3 -13 - 8 ø 406 -233 320 -218 408 -103 -4 22 L 186 -184 -3 L -3 L 264 -234 -29 -61 135 -115 -9 -55 115 114 -29 -9 -19 -89 -43 -20 7Ø -30 -3 L -8 -3 27 L -3 -17 -3 10 L - 1 -2 L -23 -64 -4 23 L -67 -11 ø 326 -144 216 -208 -23 -3 18 L - 1 ~5 347 335 1 106 -105 -7 ø

128 -136 -27 ø 38 -13 -72 -14 -32 -1 175 -116 67 2 L -50 -2 -52 -17 -1 L -33 -6 -2 L -90 131 -122 -2 14 L -18 43 -37 -2 -86 -11 -8 -13 -30 -7 -2 -24 -92 -26 485 -215 ø 4.05 -29 -10 -7 -67 -92 -27 -1 17 L -9 207 -217 -36 -9 -15 -23 14 -22 -10 -53 -33 -2 23 L -1 3 L -1 209 -144 -12 -1 10 L -7 -2 15 L 5Ø -32 -21 -32 102 110 -37 -94 - 8 -38 -7 -3 ø -108 -31 -2 L -17 -13 -77 ø -1 18 -34 Ø -39 -3 -2 -21 -14 L -6 -23 -51 - 4 -10 -1 4 L -79 -20 A -11 -2 16 L -10 -1 11 L 132 118 1127-1141 -18 377 -378 569 -367 -11 -12 -2 -338 ø -1 19 -2 -22 -34 -39 L -17 L -30 -36 -18 82 -69 -24 -26 -21 1.03 -9 124 -112 -13 -11 -21 8.0 -2 -16 - 1 24 -25 -2 -12 -6 -8 -2 -83 -3 318 -291 -2 -2 17 L -1 5 L -14 -15 -2 -1 12 -8 L L 224 -222 -1 20 -21 -33 L 142 -141 -3 -30 -95 -44 1.0 L 67 -24 -4 -15 -8 ø 174 -168 -1 -2 -25 -8 147 -97 42 -38 ø 289 -292 -12 -3 ø -54 61 -56 -26 7 97 -13 ø -13 628 -483 -2 L -5 -17 -7 -2 18 L -25 -21 -1 L -1 13 L -1 L -3 Ø q 2.02 -14 -36 -18 -17 q - 4 -30 -68 -11 -2 28 L 371 344 -11 -16 144 -139 -2 -2 11 L -61 60 -56 -5 -12 -55 Ø -37 -25 -9 -2 19 L -33 -1 L -38 -5 -1 ø L -1 14 L 128 115 -12 -1 7 L -4 -12 -3 -10 -1 -12 -19 ø ø -83 234 -233 -28 187 170 -47 -10 б -1 244 236 144 -101 -40 -8 . -43 -4 -2 12 L -73 108 -110 -13 -17 -12 -3 120 -112 -5 -1 L -2 20 L -2 6Ø -72 ø -17 -1 15 L -8 - 4 -66 -36 1.0 - 1 L -49 -6 -1 . -6 -59 -17 -70 -35 -13 ø 260 -250 -7 -58 457 -161 -44 ø -24 -1 L -2 21 -36 -16 446 -409 -12 -2 L -25 -13 181 -71 -2 -19 -9 -5 -1 16 L -63 -10 108 -108 -23 -21

78 -41 -54 -11 139 121 -14 Ø -52 416 -378 ø 18 L a Ø -7 - 8 -7 -5 -1 -22 - 8 110 -103 -43 Ø ø -48 -18 - 1 0 -18 367 127 ø -21 - 1 27 L -23 245 -145 pr. -273 458 -310 5Ø -1 -51 -8 - 7 -32 -26 -17 -21 -37 -21 ż -17 -5 -1 26 -10 231 201 5 L -86 -13 Ø -29 Ø 19 -6 L a L A -95 -18 -747 -53 -9 -3 - 4 Ø 12 L -4 ø -7 -99 ø -19 -72 -1 27 -57 -12 6 L Ø L . -18 -6 -2 6Ø -54 -19 ø L ø 7Ø1 -25 -7 301 -71 ø -30 -20 -13 L -90 -34 271 -245 ø 6 L Ø -1 L Ø -58 -23 -24 -38 -32 -30 -11 -99 -259 -17 Ø 13 L - 8 57 -50 -3 -52 376 -236 -16 121 120 -53 -94 -2 7 L a ø L -2 14 -6 -1Ø -14 -6 Ø 21 L -3 -11 - 5 -23 ø 1 L ø 512 506 -68 177 -173 - 4 -3 200 -150 102 -42 -7 ø 302 287 -57 194 -117 -10 ø L Ø 14 L 116 -111 428 -229 - 8 162 138 -12 -16 -6 -7 4.02 -25 -16 395 -382 -47 8.0 294 -262 -29 337 -315 -8 -39 -61 -8 1.06 ø 153 -133 -73 -3 Ø 22 L 85 -84 - 1 -25 -12 - 7 Ø -75 Ø L 133 -121 263 -253 8 L -5 180 -108 ø -35 -46 21 -14 159 -160 -6 - 8 -19 ż 409 -331 217 -141 -37 L Ø -1 -49 -39 -62 Ø 8 L 484 289 - 7 -7 ø ø L -25 1.0 -6 ø -211 Ø -11 - 3 -15 -17 -28 Ø Ø L -53 -13 -33 4Ø -20 180 -176 - 4 -3 -28 -21 7Ø -24 - 4 -15 ø -4 L -31 1Ø -5 -10 -17 -8 -9 -23 -19 -17 Ø -827 -62 -5 . 246 133 0 16 L a 441 -372 692 -485 -12 ø 9 L Ø L -2 ø -87 ø -52 - 9 268 -148 -25 -2 -7 ø -28 -18 -91 -1 - 3 -35 -18 -30 - 4 -88 -34 118 -116 -1 -19 3 L -54 61 -58 -5 ø -18 Ø -5 691 -604 ø L -32 L 155 -129 ø L 386 -237 ø Ø Ø 1Ø L · L -6 -165 -10 -44 -63 -77 958 -961 - 1 -23 -9 ø 434 -229 -13 ø ø -5 Ø -53 - 9 -57 -20 -60 -12 -21 -55 -9 Ø 26 L -23 118 -122 -7 -119 -12 ø 4 L -2 - 8 258 -234 - 8

6 18 Ø 1 11 L Ø 222 205 1 2078 -65 - 2 173 137 3 213 207 4 69 -65 5 35 -20 1 12 L Ø 228 -172 1 352 -344 2 126 96 3 223 217	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 298 213 -4 1 1897 -887 29 2 245 87 -18' 3 113 113 113 4 155 128' 9 5 38 28 7 2 11 L 8 273 139 24 1 387 315 34 2 28 -4 6 3 99 -18'9 -38 4 14 31 -19 5 33 -24 8 2 12 L 2	Ø 153 74 -13 1 123 120 -1 2 107 43 -6 3 23 Ø 11 4 106 80 26 5 19 5 6 2 18 L Ø 99 -27 21 1 69 -18 2 2 18Ø 179 3 3 76 75 -3 4 52 -52 Ø 2 19 L
5 43 -31 1 1 3 L	13 4 84 72 28 1 28 L	1 20 L 1 30 -40 -15 1 13 -1 -9 2 32 -24 -1	5 64 61 7 6 39 -5 21 2 6 L	Ø 64 -28 12 1 385 -376 25 2 87 -83 Ø 3 148 -147 -7	Ø 187 -167 5 1 253 -187 Ø 2 113 -14 24 3 61 -26 6
Ø 159 -34 1 348 26 2 237 -115 3 80 -27 4 122 -116 5 79 -30 1 14 L	-8 8 35 -42 -22 9 1 53 -41 -15 21 2 -25 -2 -18 -6 3 69 67 -6 18 4 61 21 -4 34 1 21 L	2 Ø L Ø 241 221 63 1 1Ø6Ø 1Ø99 -37 2 383 -389 -13 3 333 -336 -6 4 45 -47 -2 5 1969 195 -13	Ø 265 -256 2 1 187 -92 55 2 371 351 187 3 61 46 28 4 186 -89 -18 5 88 -9 -27 6 48 39 9	4 191 -143 -14 5 28 6 5 2 13 L 8 225 111 21 1 53 -48 18 2 98 -48 18 3 147 117 -17	4 44 -46 -9 2 28 L 8 81 -86 -33 1 186 -186 -25 2 32 2 -21 3 142 59 -3 4 81 -56 9
Ø 153 -53 1 1Ø5 1Ø 2 139 133 3 166 89 4 1Ø6 -1Ø2 5 12 -11	-5 1 125 -50 -31 1 2 75 -70 4 -4 3 80 -75 8 8 4 36 31 4 -3 0 1 22 L	6 33 -3 15 2 1 L 8 452 338 18 1 981 -736 -15 2 144 21 -9	2 7 L 8 66 41 38 1 475 -249 -5 2 232 -287 4 3 113 -31 -4 4 135 -138 -19	4 126 -3 5 5 27 -29 -2 2 14 L 8 367 298 8 1 -4 -4 -8	2 21 L 8 61 -62 -14 1 81 8 -4 2 83 75 1 3 38 -15 4
1 15 L 8 18/3 57 1 137 115 2 128 19 3 46 -29 4 39 -29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 167 97 -4 4 45 19 11 5 72 -64 -7 6 2 -3 -7 2 2 L	5 42 -22 8 6 35 18 11 2 8 L Ø 43 36 16 1 536 -481 24	2 205 104 19 3 218 226 -29 4 39 33 4 5 36 2 5 2 15 L	4 28 -27 -13 2 22 L 8 98 -16 18 1 61 -8 -7 2 35 11 6
5 56 46 1 16 L	15 Ø 85 -47 -3Ø 1 118 113 8 2 127 116 4 2 127 116 4	Ø 276 9 Ø 1 1158 12,07 -62 2 18,07 -79 37 3 83 -66 28 4 210 110 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ø 237 29 32 1 168 -54 -5 2 87 -9Ø -12 3 52 38 12	3 42 48 -12 4 22 29 -8 2 23 L
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 3 L	2 9 L 8 244 83 -9 1 184 -66 -28	5 32 -28 8 2 16 L 8 161 125 -1	Ø 63 -6Ø 3 1 1Ø'9 97 7 2 9Ø'37 -3 3 74 -79 -13
1 17 L 8 162 -129 - 1 78 64 2 125 126 3 71 -63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ø 357 218 -5 1 1246-18/44 -43 2 345 -341 -8 3 81 -48 17 4 96 18/8 -48 5 71 -58 28 6 13 -23 -7	2 68 -1 -13 3 57 49 -17 4 187 36 6 5 22 -14 -8 2 18 L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 24 L Ø 43 27 -15 1 -25 5 -14 2 22 -24 -18 3 88 -8Ø 18

Ø 1 2 3	2 25 L 129 -29 7ø 12 57 41 18 1	29 3 -4	6 Ø	23 187 3 4 L 58787 251 319 3187	3 8 26	1 2 3 4 5	433 - 418 78 -76 2Ø9 42 47 41 74 -59	-12 -2Ø 31	1 2 3 4	66 66 124 -35 68 -31 48 13 28 -17	97 - 297 - 33 - 3 3	1 2 3	78 -1 48 59 32 6 3 26 L	ø -5 18	3 4 5	66 59 13 -16 37 36 4 5 L	-9 -23 Ø
Ø 1 2 Ø	2 26 L 87 -11 20 34 39 -26 2 27 L 29 -4 101 -79	- 13 15 - 5 8	2 3 4 5 6 <i>9</i> 1 2	384 313 142 96 48 36 57 30 9 9 3 5 L 429 255 316 222 86 5	8 -5 3 7 -2 7 16 9	Ø 1 2 3 4 5	3 11 L 285 241 172 139 110 -59 89 76 109 110 85 -88 3 12 L	-2 -19 7 13 -14 -15	Ø 1 2 3 4 Ø	3 18 L 127 -29 16 -17 202 -202 106 -104 15 -4 3 19 L 179 -100	97 - 6 - 9 7 97 97 97	8 1 2 8 1 2	1874 - 86 31 - 34 34 87 3 27 L 74 - 53 24 - 36 35 32 3 28 L	36 -4 2Ø -18 -14 2	Ø 1 2 3 4 5 Ø 1	441 -248 148 114 330 -324 92 -62 58 -25 56 -30 4 6 L 122 -57 245 -210	17 34 -3 -26 -7 24 -8 -21
2 Ø 1	73 -46 2 28 L 36 -38 -14 13	2Ø -2 -7	3 4 5 6	67 2Ø 125 88 21 13 3Ø -14 3 6 L	6 8 -12 5	Ø 1 2 3 4 5	35 Ø 329 146 8Ø 1Ø9 -17 93 46 49 49 67 -68	4 17 19 1 Ø -5	1 2 3 4	707 - 707 34 13 97 - 28 1071 - 18 3 207 L	-3 -4 -17 12	g 1	35 14 56 34 4 Ø L	3 -4	2345	212 -8 201 78 21 -13 113 -85 4 7 L	27 -24 4 3
Ø 1 2 3 4 5 6	3 8 L 385 - 367 302 302 169 168 7 29 77 -81 51 56 38 67	38 Ø 3 -14 -10 -7 19	Ø 1 2 3 4 5 6	528 -214 189 -18 557 -483 278 -249 28 -11 57 68 37 -12 3 7 L	4 16 -10 -3 4 -11 0	Ø 1 2 3 4 5	3 13 L 277 -259 147 72 69 34 98 -1ø2 36 -19 31 -2	9 -5 -15 -2 12	10 12 34 10 10	181 122 60 49 99 95 13 26 15 17 3 21 L 56 36	-7 8 1Ø -17 -7	1 2 3 4 5 8	437 -422 338 -327 155 -149 131 -131 19 6 16 44 4 1 L 288 -198	310 7 207 1 6 -26	Ø 1 2 3 4 5	158 -13 287 286 138 -13 42 -38 91 78 61 4 8 L	-36 3 2 -6 -12 18
Ø 1 2 3 4 5 6	3 1 L 568 -549 84 3 1696 88 71 -467 84 -72 -17 18 31 23	4 23 -4 27 -5 -15 5	Ø 1 2 3 4 5	482 -295 61 52 252 -4 55 -37 84 38 8 -13 3 8 L	11 25 26 8 29 -6	Ø 1 2 3 4 5	3 14 L 170 -167 254 -251 87 -71 131 35 36 -21 63 -43 3 15 L	-15 10 -3 16 -8 33	1 2 3 4 1 2	144 -110 53 16 40 51 24 -17 3 22 L 105 -5 132 -126 26 7	13 4 -18 5 23 1 -1	1 2 3 4 5 <i>9</i> 1	427 -231 302 -260 55 -3 77 49 57 46 4 2 L 419 337 325 310	53 21 -12 -11 -4 26 38	1 2 3 4 5	351 - 303 108 - 100 360 - 159 123 19 63 - 15 38 - 8 4 9 L 224 - 200	52 12 17 -2Ø Ø 12
Ø 1 2 3 4	3 2 L 535 - 478 389 - 286 361 114 198 - 1 80 - 73	-14 -19 -10 -5 3	Ø 1 2 3 4 5	384 391 268 238 296 54 44 25 29 18 38 -4 3 9 L	-23 15 -9 5 1Ø Ø	Ø 1 2 3 4 5	169 -74 171 71 186 156 54 55 78 -54 38 -19	3 -1 16 -4 14 3	3 Ø 1 2 3	-16 7 3 23 L 122 122 86 -68 53 -36 43 42	-11 -12 -8 1	2 3 4 5 Ø	637 458 98 -83 114 -113 46 19 4 3 L 218 183	1Ø -11 -5 24 61	1 2 3 4 5	203 74 94 65 129 -87 72 -71 48 -32 4 18 L	-16 3Ø -11 -3 -5
5 6 Ø 1 2 3	27 17 24 2 3 3 L 454 -351 156 36 41 -32 127 -74	6 Ø 35 17 11	Ø 1 2 3 4 5	184 39 119 -58 237 -228 32 4 181 83 34 -35	-49 21 2 11 16 -13	Ø 1 2 3 4 5	3 16 L 221 178 198 149 186 186 124 115 49 38 35 21	5 2 Ø 2 -18 -5	Ø 1 2 3	3 24 L 41 -1 57 39 96 -5 3Ø -2 3 25 L	5 2Ø -2Ø 15	1 2 3 4 5	150 72 345 -340 61 65 66 66 42 32 4 4 L 391 -375	-33 9 -13 -7 3	10 1 2 3 4 5	258 187 416 245 92 -22 -12 13 30 14 119 53 4 11 L	3 11 -16 -24 3 1
4	7Ø -6Ø 64 17	-12	ø	252 -152	32		3 17 L		ø	37 -36	ø	1 2	374 -354 4Ø2 364	38 -37	Ø 1	305 -124 128 117	32 2Ø

197 114 Ø 16 -1Ø Ø 6 L -41 -7 - 7 -3 5 13 L -38 -1 ø 339 -211 A ι 4 28 ø -5 4 19 L -11 Ø 5 21 L ø 58 -55 -6 -17 ø 4 12 -1 L -62 -4 -20 -68 8.0 -10 -16 -30 ž Ø -61 -14 -65 ø -10 -12 L -4 -17 -6 -8 190 -179 L 47 -52 -21 ø 109 -112 -9 L L 4.0 4 20 401 -415 -31 -77 . ø 89 -87 129 -127 Ø ø 7Ø -11 54 38 7Ø -65 1 97 Ø -4 4 13 L -96 -17 189 -186 -8 -6 -7 -42 -5 84 -83 -1 ø . - 4 -8 -11 ø 23 L L 8 L 5 15 -4 L 4 21 L -40 ø -82 ø -17 -3 33 -13 214 -22 ø -33 -12 ø ø -16 -92 -17 ž -51 -32 -4 ø -29 -1 -7 247 245 174 -142 -49 117 -105 4 14 L -11 -10 ø -14 -16 -2 -11 -23 -5 -20 24 L -58 ø ø 2 L 5 16 L -22 -1 -76 159 -120 -33 4 22 L L -35 177 147 8Ø -47 -7 -14 ø -51 -9 -10 228 -186 162 119 Ø ø -16 ø -11 32 -31 -3 25 L -97 -75 212 174 1 99 -17 -2 -3 4 15 144 121 -31 -26 Ø -20 L -5 q 4 23 L - 3 5 17 L - 8 a L 169 -108 5 26 L 10 L -6 -40 ø ø -3 436 -330 -16 -7 -10 -7 ø -62 ø 1.06 ø ø -71 -10 -5 -32 -55 ø -1 -8 105 -80 35 -11 -10 5 27 L 4 24 L -93 4 16 L -13 -6 L -9 -69 ø -14 -6 ø -82 4 L -57 -16 -3 Ø -74 11 L -18 -25 -41 -18 ø 263 238 Ø.L -46 -3 177 -175 -6 ø 39 -28 -30 4 25 -4 144 -143 -8 -3 -8 ø L 291 -184 ž -2 222 223 ø -5 -6 4 17 L 119 115 ø -33 -8 -23 -89 L 150 -159 -25 ø -12 -29 -7 -19 -20 -13 153 -152 -3 ø -59 -6 L -6 ø -62 4 26 12 L 112 -85 ø L 180 -121 -6 a 87 -65 ø -11 -58 ø ø 163 161 146 -122 a 4 18 - 4 155 -157 -13 -22 - 1 L -86 -13 169 165 -48 ø ø -12 - 1 4 27 L -14 24 -18 -2 ø - 4 4 -2 -19 -30 -44 -11 107 -94

	-1.6	2 0	41	m		~	16	9-1	12			1 1	000	22-			6		6 0			-29	-1-			15	19	80			18	3 6	8		-29	118	1 40	
-	-43	-36	39	-43	-	62	138	9.6	-15	-	. !	-1.08	11	130		_	-241	- 49	-15	-		-132	-13		_	¥E-	121	-27	-		1.01	9.0	-33	-	- 75	5.0	-50	-
7 13	246	89	36	25	7 14	146	228	87	34	7 15		154	116	1 C		10	243	182	5.0		11	44	28	5	7 18	147	138	49	7 19		189	76	32	7 2.8	6.4	66	11	7 21
		- ~	3	4		6	2-1	20	*			1 0 -	2	ه د			8	- 0	(m =	•		b g	20)		8	- ~	i m			B -	- 2	3		6	9-0	n n	
-13	D		8	-11	-13	-12	1		19	13	1.0	11-	'n		11	- 8	3	9 6		9	- 32	1.6	- 4		-24	17	11	-16			4	11	8-	e.		1	1.0	- 6
-24	5	_	187	384	-62	12		_	133	165	1	-36		_	112	-61	-49	- 53		, :	33	-58	45	L	152	18	86	-29		,	139	1.00	5	1 /	_	129	-63	1 1 1
37	0	7 6	269	328	72	45		1 1	17.6	172	31	52		8	14.6	116	62	42	0		156	113	56	7 1.8	154	293	99	1.0	7 11		168	986	-17	5	7 12	18.8 -	52	28
€ 4 10	7			- 2	ς.	ч г	2		8	- ~	n u	4 1	5		89.	- 2	e	4 10			Q	20	4		à	1	20	4				- 2	(m •	e.		8	- 21	m 4
6-		- 5			2-	19		~	16	13	-22-	۲ ۱		18	5	7 67	e I	80		19	14	12	Ω.		89	-	rα	ۍ د	-			2.0	- '	20	ŝ		11	26 2
25		18		_	-21	8	-	10	65	-185	25	23	٦	-111		-12	-39	-15	-	176	-65	66	-13	-		-15	115	4	-13	-		-14.8	-27	12-	-16	-	16-	-158
28	2	34		26	52	*	8	16	13	19.8	TE	6	1	117	239	101	99	38	2	186	1111	86	31	6	183	21	138	18	11	4		148	128	136	14	5	178	193
2		8 -			19	-	~	6	2 1	2	-	2	~	6		v m	4	ŝ		B •	- 0	ار س	J.	-	8	ĩ	20	-	ŝ	-	,	R	N	پ ه در	ß	~	80	- 2
10	5	-18	4		¢	5 00	ا مں ا	1 10	2		8	12	100	T.		-18	61	4			21	16	,		ლი დ 1 1	-	- 8		-	nur I	BR I	n		9	-13	0		- 8
ل 199	42	-27	46	_		89	14.0	- 35	5	_	116	-18	- 65	9	_	11	e	22	ļ,		53	54	2	i.	24-	80	80	L	95	- 5.8	-28	17-	_	-26	32	-	ر	25
215	812	54	49	17		136	178 -	32	0	18	143 -	200	15	18	5 19	179	28	31	DC	87 80	292	92	10	;	25	45	29	5 22		25	80	54	5 23	49	45		*7	35
- 	R I	20	4			8	2	ر م	,		8		10.	4		8	1	2 2			Q	20			69 -	• ~	e	Ĩ	1	e	20	r		80		3		B -
-19		7	80	1.6	13	2-2		5-	-	-14	5 1	2		σ	100	-16	r I	ŝ		13	18	יט ער ו	2		900	-14	-16	r		6	-28	-11	-2-			-13	-2-	м
-37	_	173	1.8.8	185	-52	2	-	-	186	126	-27	8	-	16-	-22-	41-	-11	33	_	216	221	-41	i _	,	6-1	189	51	1	_	147	21	119	-19	_	1 0.2	38	- 2	1.0
1.816	6 9	- 162	184 -	186	99	11	6 1.87	53	317 -	129 -	28	5.0	6 11	1 GLA	12.0	11	11	38	6 12	238	223	38	13	2	194	199	1.019	2	6 14	- 175	173	111 -	23	6 15	1 01 1	121	12	32
4 D		5	-	2 2	41	ŝ		a	1 9	20	•	ŝ		8	2-1		4	ß		8	- 2	m 4			6-	2	en =	r		8	-	Ne	-		a	Q (чe	4
BI		16	1.0	14	1			18	9	-31	9			9 -	4	-18	8.1			-28	-21	-18			38	171	27	11			21	5-1-1	-16	13		- 5	19	1.8
		20	-	2 10	5			-	-	9 0	210			23	11	683	11				888	11			54	19	48	8			32	63	42	200	24		12	22
	-	11	13	n n	N	-	5	80 0	n m	- 4		-		N	1	2					-N		100		m-		1 1				1	10	11	1 1				-

あしろうき かしろうき かしろうき かしろうき かしろうせん かしろうせん かしろう

-30 21 L 150 -119 -8 . -47 Ø -36 -16 -33 ø -6 -24 111 -34 -11 Ø -28 -19 - 4 -23 192 149 -25 -37 -8 -17 -13 -35 - 1 -4 -18 -12 -38 -1 7 22 L -42 -5 9 14 L L 22 L L ø ø -6 13 L ø -6 -47 -2 -38 -17 Ø -73 ø ø -20 94 -90 - 4 -37 -45 ø -50 -28 -5Ø 114 -81 -16 -3 7 23 L 4.4 -43 ø 23 L -33 -12 -11 -6 -32 -10 9 15 L 8 6 -97 ø L ø ø -8 -75 7 L Ø -3 14 L -52 -6 ø -51 -19 -6 L -18 -11 ø 7 24 L -36 Ø -72 -8 1.84 -14 -2 -18 -44 ø ø -1 -18 -29 9 16 L ø -4 -9 Ø -11 -10 -28 7 L . -21 7 25 L L -4 L ø -47 -24 47 -31 . -14 ø 95 -46 -25 -20 ø -5 ø -56 Ø ø 122 107 -35 113 -84 -3 -33 7Ø -25 3Ø -20 6Ø -7 9 17 L ø L -58 -5 -66 1 L ø ø -48 ø -6 8 16 L 1.09 -60 ø -14 L -7 -16 -18 L -7 -1 ø -6 ø 67 -36 -49 -6 -98 -5 18 L -41 -48 ø -25 11 -1Ø 9.0 -33 -2 -24 ø -39 - 1 -36 -17 -4 -3 ø ø -5 L -15 -72 -28 L 2 L 283 274 L Ø 1.00 -6 a -88 -6 1.0 L 9 19 L Ø -31 -14 -1Ø ø -3 -15 -23 -69 -2 138 -119 -1 38 -32 -16 -4 37 -29 -18 -24 ø 1.01 -9 -11 ø -24 -78 4.0 -32 Z -6 -9 -1 -13 -22 -11 2 L ~6 -10 L 3 L -27 -17 9 2Ø L 8 1.0 ø Ø -184 L ø ø 1.09 -17 9 11 ø -6 L 239 -186 -39 -24 71 -15 95 -17 -3 . 138 -135 -12 -43 -1 -14 -26 L -5 -7 9 21 L -20 3 L -4 3Ø -15 -68 -23 -8 ø L Ø -3 8 11 L -58 ø 12 L ø -1 -6.0 -1 -1 ø 1.02 -85 147 -117 -37 ø 22 L ø Ø -8 -10 ø -9 177 -158 20 L -22 -7 -35 -7 39 -15 -5 ø -6 -1 -11 -2 ø ø ØL 4 L -28 -21 -4 -18 -8 9 13 L - L Ø 116 -116 -1 37 -30 8 12 L Ø

		5 8		-3		-11	4		14	:	11-		2	:	11-	9		8	-		4 1		16-2		60 -	
-	3	141	_ i	25	<u>ر</u>	29	47	_ ;	193		1.0	_	53	່ '	8 _	5	77	57	46	_	8.8		55	_	17	_
c	n		8	•	=			2		6		4	-	5	. 6					2		3		4	1	L)
	3	6 4	2	900	2	2	9	2	2.0	2	n a	N	9	N :		- în -	Ξ,	, u	58	е е	6	3	22	5	91	m
		12	-	R N	-	8	1	-	B -1	- •	R -1	1	82	- •	а а	180 ·			-	-		1	19	1	8	1
	15		e	10 1	-1.6		-31	- 1		ñ-:	*	-	4 m		~ 6	с. -		27		ŝ	-16		-18	1	80 4	- 8 25
	83		21	22	22			32		5.8	٥		88		9 19	9				91				D	1	6
2	1	8	Ť ,	a 1	1	1	ĩ	11	2	1		,		4			0 0	1	 9		ĨĨ	7	ī		, (3.	
-	116 48	1	64	184	6.0		76	52		23	40	1 8.8	28		12	24		500		57	66		1.82	2	5	37
11		11		1		12			12		12			12	-	:	17		12			12		12		
	6			6	-0		8	21			9	6	-0		6	2	9	8-0		68			Ø → (J	6 2 ·	- 0
	5	-1/ 26		2-1	- 1.6		-28	13	n i	1	-12	×		8	1	- 6		5	6-	1	52	٥				9
1	199	21	۔ '	19	34	-	11	74 8	• _	-25	-24	_	-27	- 4.6	28	65	_	17	19	۔ '	N 4	PC -	19		29	55
~	- m	v m te	80	60	1 8	5	~	84	1.0		0 m	11	mr		5 12	4 9	13	60 0	S	14		, 1	,	16		٥
-	19	40	1	29	1.8	1	-	co 🔫 •	4		סעי	1	4-	₹.		94	1	12	ŝ		1 4 L	•	9 9	1	je o	r)
		- 21 10	-	8 -	NO	1	-	- 22	r 1	182 -	- 22	1	B	~ ~	- 6	12	1	R	2	-		ч ^г	' 89 -		182	-
	-14		-9 -18		1		-18 -5	- 9		-165	Q -		18 −16	14 6		ດ ມາ ເ	- 2		-18	-12 -3		4 0	-16		-15	21
۰. ب	187 -14	Ļ	6.00 -9 -4 -1.0	Ļ	-38 1	L	128 -18 48 -5	-21 -9	ſ	-17 5 -20 -16	18 -4	L	-7 81 -57 -16	-12 14 24 6	L	-32 -3	19 -2	Ļ	-15 12 -33 -18	15 -12 13 -3	L	121 4 52 B	45 -16	L	-15 -15	1 21
18 L	82 1.87 -14 56 41 -9	19 L	38 6.0 -9 22 -4 -1.0	2.00 L	16 -38 1	Br L	2.07 128 -18 13 48 -5	12 -21 -9	1 T	23 -17 5 53 -28 -16	12 18 -4	2 L	9 -7 Ø	29 -12 14 1Ø 24 6	3 L	58 -32 -3 31 -82 -5	51 19 -2	4 L	59 -15 12 25 -33 -10	39 15 -12 3 13 -3	5 L	27 121 4	12 44 -4	6 L	31 -81 -15 59 -15 4	15 1 21
1 <i>9</i> 18 L	18/2 18/7 -14 56 41 9	1.87 19 L	88 6.0 -9 -22 -4 -1.0	1.89 2.69 L	46 -38 1	11 Ø L	12.07 128 -18 43 48 -5	-12 -21 -9 47 -41 7	11 1 L	23 -17 5 53 -20 -16	a 12 16 42 18 -4	11 2 L	9 -7 Ø 51 -57 -16	29 -12 14 40 24 6	11 3 L	158 -32 -3 81 -82 -5	51 19 -2	11 4 L	59 -15 12 25 -33 -18	39 15 -12 3 13 -3	11 5 L	127 121 4 59 52 8	48 45 -16	11 6 L	81 -81 -15 59 -15 4	45 28 1.0
1Ø 18 L	8 187 -14 1 56 41 9	1.0% 19 L	197 88 6.07 -9 1 -22 -4 -1.07	1.87 2.87 L	g 46 -38 1	11 Ø L	81 12.01 12.8 -18 1 4.3 4.8 -5	2 -12 -21 -9 3 47 -41 7	11 1 F	8 23 -17 5 1 53 -28 -16	a 17 16 7 3 42 18 -4	11 2 L	1 51 -57 -16	2 29 -12 14 3 4.07 24 6	11 3 L	Ø 158 -32 -3 1 81 -82 -5	3 51 19 -2	11 4 L	1 25 -15 12 1 25 -33 -18	2 39 15 -12 3 3 13 -3	11 5 L	1 127 121 4 1 59 52 8	3 42 44 -4	11 6 L	8 81 -81 -15 1 59 -15	3 45 1 21
-5 -5 -6	8 182 187 -14 1 56 41 9	-8 1 <i>8</i> 19 L -5	-21 1 -22 -4 -18	1.09 2.09 L	6 Ø 46 -38 1 Ø	-18 11 Ø L 17	Ø 12Ø 128 -18 1 43 48 -5	2 -12 -21 -9 19 3 47 -41 7	16 11 1 L Ø	8 23 -17 5 1 53 -28 -16	-9 3 42 18 -4 8 3 42 18 -4	-11 11 2 L	1 51 -57 -16	14 3 29 -12 14 14 3 48 24 6	11 11 3 L -18	8 158 -32 -3 1 81 -82 -5	9 3 51 19 -2	-18 11 4 L	II 25 -15 12 1 25 -33 -18	21 3 39 15 -12 21 3 3 13 -3	12 11 5 L	Ø 127 121 4 16 1 59 52 8	13 3 42 44 -4	11 6 L	-4 8 81 -81 -15 -4 1 59 -15 4	2 45 28 10 3 45 1 21
85 -5 18 18 L -6 -5	L 1 56 41 9	47 -8 18/19 L 76 -5	22 8 8 68 68 -9 11 -21 1 -22 -4 -16	L 1.07 2.08 L	22 6 8 46 -38 1 6 8	Ø −18 11 Ø L 58 17	12.00 12.00 12.00 -18 L 1 4.3 4.8 -5	22 19 2 -12 -21 -9 22 19 3 47 -41 7	5 16 11 1 L 76 87 11 1 L	L B 23 -17 5 L 1 53 -28 -16	687 -9 2 31 21 2 19 87 -4	35 -11 11 2 L -2 11	1 51 -7 8	55 14 3 4Ø 24 6	83 4 -5 11 11 3 L 11 -18	L 1 81 -82 -3 L 1 81 -82 -5	19 9 2 4/ -34 18 19 9 3 51 19 -2	38 -18 11 4 L	L Ø 59 -15 12 1 25 -33 -1Ø	87 87 2 39 15 -12 333 21 3 3 13 -3	24 12 11 5 L	L Ø 127 121 4 30 16 1 59 52 8	18 5 2 48 45 -16 44 13 3 42 44 -4	L 11 6 L	27 -4 8 81 -81 -15 27 -4 1 59 -15 4	22 10 2 410 28 110 3 45 1 21
8 -185 -5 18 18 L	9 L 1 56 41 9		1 -22 8 8 68 -9 1 1 -21 1 -22 -4 -18	.Bf L 1.BF 2.BF L	3 22 6 8 46 -38 1 7 6 8	1 Ø -18 11 Ø L 58 17	1 L 1 1 43 48 -5	22 19 3 47 -41 7	83 16 11 1 L 76 18 19 11 1 L	2 L B 53 -28 -16	-68 -9 2 31 21 21 2 -19 3 42 18 -4	35 -11 11 2 L -2 11	3 L 1 51 -7 8	7 -55 14 3 4.07 24 6	-83 # 11 3 L -11 -18 11 3 L	4 L 158 -32 -3	1 19 9 3 51 19 -2 19 9 3 51 19 -2	38 -1Ø 11 4 L	5 L Ø 59 -15 12 1 25 -33 -18	33 21 3 3 13 -12 33 21 3 3 13 -3	24 12 11 5 L	0 L Ø 127 121 4 30 16 1 50 52 8	-18 5 2 48 45 -16 -44 13 3 42 44 -4	7 L 11 6 L	7 52 -4 Ø 81 -81 -15 27 -4 1 59 -15 4	3 45 1 21
113 -185 -5 18 18 L 27 -6 -5	e 187 - 14 e 1 1 56 41 9	145 -147 -8 18/19 L 18/6 -76 -5	23 -22 8 8 68 -9 -38 11 -21 1 -22 -4 -18	81.181 L 1.187 2.68 L	28 22 6 8 46 -38 1 18 6 8 8	79 <i>b</i> -18 11 b L 71 58 17	8 12 12 12 12 12 13 13 14 18 18 18 18 18 18 18 18 18 18 18 18 18	48 22 19 3 47 -41 7	33 3 16 11 1 L 77 76 87 11 1 L	9 12 L 9 23 -17 5 1 53 -28 -16	57 -68 -9 2 3 42 18 -4 25 -19 8	111 35 -11 11 2 L 26 -2 11	1 13 L 1 51 -7 16	88 -55 14 3 48 24 6	9/ -83 4 37 -5 11 11 3 L -27 -11 -18	9 14 L 9 158 -32 -3	38 19 9 3 51 19 -2 26 13 851 19 -2	31 38 -1Ø 11 4 L	9 15 L 8 59 -15 12 1 25 -33 -18	38 8 8 2 2 39 15 -12 61 33 21 3 3 13 -3	35 24 12 11 5 L	7 15 L Ø 127 121 4 E1 39 16 1 59 52 8	26 -18 5 2 48 45 -16 61 -44 13 3 42 44 -4	7 17 L 11 6 L	58 52 -4 8 81 -81 -15 38 27 -4 1 59 -15 4	24 - 22 10 2 410 28 110 3 45 1 21
2 113 -1865 -5 188 18 L 3 27 -6 -5	18 9 L 1 56 41 9	11 18/5 -147 -8 18/19 L 11 18/5 -76 -5	2 23 -22 <i>B</i> B 68 68 -9 3 -38 11 -21 1 -22 -4 -18	18/18/L 18/28/L	87 28 22 6 87 46 -38 1 1 187 6 87	2 79 Ø -18 11 Ø L 3 71 58 17	80 12.00 12.00 12.00 -18 160 11 L 1 4.3 4.8 -5	0 48 22 19 3 47 -41 7	2 33 3 16 11 1 L 3 77 76 87 11 1 L	18/12 L 1 53 -17 5	8 57 -68 -9 2 3 42 18 -4 1 22 -19 8	2 111 35 -11 11 2 L 3 26 -2 11	18/13 L 1 51 - 7 8 18/13 L 1 51 - 57 - 16	8 88 -55 14 3 48 24 6	1 9/ -83 4 3 37 -5 11 11 3 L 3 -27 -11 -18	18 14 L 1 1 81 -82 -5	8 36 19 9 2 4/ -34 18 1 36 19 9 3 51 19 -2	2 31 38 -18 11 4 L	1.87 L 86 59 -15 12 1 25 -33 -18	8 38 8 8 2 39 15 -12 1 61 33 21 3 3 13 -3	2 35 24 12 11 5 L	100 L0 L 00 127 121 4 01 E1 30 15 1 E0 52 A	2 61 -44 13 3 42 44 -4	187 L 11 6 L	8 58 52 -4 8 81 -81 -15 1 38 27 -4 1 59 -15 4	2 24 -22 10 2 45 28 10 3 45 1 21
8 2 113 -185 -5 18 18 L -3 3 27 -6 -5	8 18 2 18 2 18 1 18 2 18 7 -14 16 18 9 L 1 56 41 9	房 145 -147 -8 18 19 L 1 186 -76 -5	7 2 23 -22 8 8 68 -9 -38 3 -38 11 -21 1 -22 -4 -18	-15 -3 18/18/L 18/28/L	8 28 22 6 8 46 -38 1 1 18 6 8	– 2 79 <i>b</i> f –18 11 <i>b</i> f L –2 3 71 58 17	-42 Ø 12.0 12.8 -18 2 1.0 11 L 1 43 48 -5	-15 8 48 22 19 3 47 -41 7	2 83 83 16 2 87 83 18 11 1 L 3 77 76 88	-8 8 23 -17 5 -34 18 12 L 1 53 -28 -16	12 1 22 -19 8 3 42 18 -4 12 1 22 -19 8	2 111 35 -11 11 2 L 3 26 -2 11	-25 18/13 L 1 51 -57 -16	-1 2 29 -12 14 -13 8 88 -55 14 3 48 24 6	9 1 97 -83 4 -7 2 37 -5 11 11 3 L 3 -27 -11 -18	18 14 L 1 1 81 -82 -5	2 8 38 19 9 3 51 19 -2 2 8 38 19 9 3 51 19 -2	6 2 31 38 -18 11 4 L	107 15 L 07 59 -15 12 1 25 -33 -107	-21 8 38 8 8 8 2 2 39 15 -12 -6 1 61 33 21 3 3 13 -3	-3 .2. 35 24 12 11 5 L	10 15 L 01 12 12 14 64 51 30 15 1 50 52 8	11 1 26 -18 5 2 48 45 -16 -16 2 61 -44 13 3 42 44 -4	6 18 17 L 11 6 L	8 58 52 -4 8 81 -81 -15 1 38 27 -4 1 59 -15 4	-18 2 24 -22 8 2 45 28 18 -18 3 45 1 21
-4 8 2 113 -185 -5 18 18 L 24 -3 3 27 -6 -5	-34 8 -34 8 -34 8 -34 9 - 14 -34 -37 16 18 9 L 1 56 41 9	L BY 145 -147 -8 18/19 L 1 18/6 -76 -5	119 7 2 23 -22 8 8 68 -9 6 -38 3 -38 11 -21 1 -22 -4 -18	-52 -15 -2 -3 18/18/L 18/28/L 27 -3 18/18/L	L 1 18 5 8 8 46 -38 1 L 1 18 5 8	2 79 ø -18 11 ø L 1ø -2 3 71 58 17	88 - 42 89 120 128 - 18 72 2 18 11 L 1 43 48 -5	-3 -15 2 48 22 19 3 47 -41 7	L 2 33 3 18 11 1 L 3 77 76 87	-59 -8 23 -17 5 48 -34 18 12 L 1 53 -28 -16	-28 12 2 1 21 8 -34 4 8 57 -68 -9 3 42 18 -4 -12 1 22 -19 8	L 2 11 35 -11 11 2 L	118 -25 18/13 L 1 51 -57 -16	113 -1 2 29 -12 14 -76 -13 8 88 -55 14 3 48 24 6	-13 - 9 1 - 97 - 83 4 -3 - 7 2 37 - 5 11 11 3 L -3 - 27 - 11 - 18	L 18 14 L 1 181 -82 -5	8 3 8 36 19 9 2 47 -34 18 88 2 88 36 19 9 3 51 19 -2 9 1 25 12 89 3 51 19 -2	-48 6 2 31 38 -18 11 4 L	L 18 15 L 8 59 -15 12 1 25 -33 -18	135 - 21 8 38 8 8 2 39 15 - 12 92 - 6 1 61 33 21 3 3 13 - 3	36 -3 .2 35 24 12 11 5 L	L 10 15 L 01 127 121 4 L 01 51 30 15 1 50 52 8	-72 11 1 26 -18 5 2 48 45 -16 13 -16 2 61 -44 13 3 42 44 -4	4 6 18/17 L 11 6 L	L 8 58 52 -4 8 81 -81 -15 1 38 27 -4 1 59 -15 4	-1 2 2 24 -22 10 2 45 28 10 -46 -107 3 45 1 21
5 -4 # 2 113 -1#5 -5 1# 18 L 1 24 -3 3 27 -6 -5	2 -37 16 18 9 L 1 56 41 9 2 -37 16 18 9 L 1 56 41 9	1 L B/1 145 -147 -8 18/19 L 1 18/6 -76 -5	2 -119 7 2 23 -22 8 8 68 68 -9 2 6 -38 3 -38 11 -21 1 -22 -4 -18	/ =5.2 =15 3 =2.2 =3 1.89 1.86 L 1.87 2.69 L 7 2.89 9 .	2 L 1 18 22 6 8 46 -38 1 2 L 1 18 6 8	5 18/ -2 3 71 58 17 11 8/ L	1 88 -42 Ø 12.07 12.07 12.09 12.04 18 -18 4 72 2 130 11 L 1 43 48 -5	3 -3 -15 7 -5 6 8 48 22 19 3 47 -41 7 6 2 19 3 47 -41 7	3 L 2 33 3 8 11 1 L 3 77 76 8	6 -59 -8 8 23 -17 5 3 148 -34 18 12 L 1 53 -28 -16	1 - 28 12 2 - 18 2 - 1 21 8 4 - 34 4 8 57 - 689 3 42 18 -4 4 - 11 12 1 22 -19 8	4 L 3 26 -2 11 11 2 L	5 -118 -25 18 13 L 1 51 -57 -16	2 -113 -1 2 29 -12 14 7 -76 -13 8 88 -55 14 3 48 24 6	e - 4.3 5 1 57 - 83 4 8 - 3 - 7 2 37 - 5 11 11 3 L 3 - 27 - 11 - 18	5 L 18 14 L 1 181 -82 -5	8 4 3 7 19 19 2 4 19 19 2 7 19 19 2 8 19 19 19 19 19 19 19 19 19 19 19 19 19	2 -48 6 2 31 38 -18 11 4 L	6 L 18 15 L 8 59 -15 12 1 25 -33 -18	9 135 -21 8 38 8 8 8 2 39 15 -12 2 92 -6 1 61 33 21 3 3 13 -3	7 43 7 2 35 24 12 1 36 -3	7 L 10 10 L 10 127 121 4 6 61 30 16 1 50 57 8	Ø -72 11 1 26 -18 5 2 48 45 -16 Ø 13 -16 2 61 -44 13 3 42 44 -4	8 4 6 18 17 L 11 6 L	8 L 8 58 52 -4 8 81 -81 -15 1 38 27 -4 1 59 -15 4	5 -46 -18 2 24 -22 8 2 45 28 18 5 -46 -18 2 24 -22 8 2 45 1 21
5 -4 19 2 113 -1975 -5 13 18 L 21 24 -2 3 27 -6 -5	33 - 34 8 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	第 1 L 第 145 -147 -8 16 19 L	122 -119 7 2 23 -22 8 8 68 68 -9 162 6 -38 3 -38 11 -21 1 -22 -4 -18	97 − 52 − 15 53 − 2 − 3 16/16/L 16/26/L 27 26/9	87 2 L 1 187 5 87 46 –38 1 187 5 87	65 187 – 2 79 87 – 18 11 87 L	111 88 -42 8 12.0 12.8 -18 74 72 2 1.6 11 L 1 43 48 -5	53 -3 -15 6 8 48 22 19 3 47 -41 7 27 -5 6 8 48 22 19 3 47 -41 7	88 3 L 2 87 83 18 11 L 3 77 76 87 11 L	96 -59 -8 163 148 -34 18 12 L 1 53 -28 -16	31 - 28 12 27 - 68 - 9 2 31 21 8 - 4 44 - 11 12 12 - 19 8	9 4 L 2 11 35 -11 11 2 L	176 -118 -25 18 13 L 1 51 -57 -16	113 -113 -1 137 -76 -13 B B -55 14 3 48 24 6	68 - 43 9 1 97 - 83 4 48 - 3 - 7 2 37 - 5 11 11 3 L 3 - 27 - 11 - 18	8 5 L 18 14 L 1 181 -82 -3	38 4 3 99 98 8 3 38 19 9 3 51 19 -2 15 0 2 1 25 19 9 3 51 19 -2	72 -48 6 2 31 38 -18 11 4 L	87 6 L 187 15 L 87 59 -15 12 1 25 -33 -187	179 135 -21 8 38 8 8 8 2 39 15 -12 1872 92 -6 1 61 33 21 3 3 13 -3	47 43 7 2 35 24 12 11 5 L 41 36 -3	197 L 119 L 197 121 4 197 L 197 121 4 198 51 39 15 1 59 52 8	86 -72 11 1 26 -18 5 2 48 45 -16 28 13 -16 2 51 -44 13 3 42 44 -4	18 4 6 1 8 17 L 11 6 L	8 8 L 8 58 52 -4 8 81 -81 -15 1 38 27 -4 1 59 -15 4	38 -1 2 2 24 -22 10 2 45 28 10 45 -46 -187 2 24 -22 10 3 45 1 21

-16 9 14 1 L B -2B 2B -14 2 L B -16 B -16 L -32 3.0 8 29 14 Ø 8 1 1 -16 L L L 33 1Ø 71 11 8 13 13 13 6-4-13 8 L Ø 2Ø -25 1 11 -14 13 9 L 2.8 -59 L -6 -6 83 7 58 22 1 13 -18 -7 -12 65 15 L -58 Ø 61 1 -13 13 6 Ø 87 -

Appendix B. Structure factor amplitudes $(10F_o, 10F_c, 10\sigma_F; \sigma_F/k = [F_o + \sigma_{F^2}]^{\frac{1}{2}} - |F_o|, k = 1.9012; F_o < 0$ means $I_o < 0$ for trans-Os $(\eta^4$ -CHBA-HMEt)(py)₂.

				2 289 23	5 15	3	1.03 61	3	3	-77 -153	-19	1	328 -333	-1	2	441 -36	7 33
				2 167 1	- 17		246 102	12		101 150	c	2	190 115	12	2	-140 -4	4 -10
	-13	I L		3 -16/ -1	5 -17	4	240 103	13	- 2	191 190	0	-	190 115	14	3	-140 -4	4 -10
				4 259 -18	0 18				5	140 120	3	3	288 214	19	4	367 39	9 22
1	129	-124	1	5 -185 4	-21		-12 10 1		6	171 -161	2	4	80 -129	-5	5	-185 -8	8 -30
1	130	-124	1	6 100 10			16 10 6		7	-77 -10	- 2		104 -110	10	é	222 -10	7 0
				6 -102 10	5 -11				/	-// -18	- 3	5	104 -110	110	0	232 -19	
	-13	2 1				1	-213 -52	-29	8	112 120	- 1				7	44 14	1 -11
				-12 3		2	148 -168	- 3					-11 11 1		8	211 15	8 11
1.				-12 5	-	6	140 100	5									
1	263	-19Ø	16							-11 5 L		- N.			9	-66 -11	9 -110
2	-284	-31	-24	1 -219 7	1 -35		-12 11 L					1	203 -210	-1	1Ø	-154 -10	1 -207
	2.0 1		-	2 190 20	a - 2				1	162 196	-8	2	193 251	-14			
				2 150 201			007 004	-	-	200 202		2	107 00	20		10 1	
	-13	3 L		3 -161 -6	2 -18	1	2101 - 224	- 3	6	389 - 303	32	3	-18/ 96	-20		-110 4	L
				4 170 -17	1 Ø				3	-200 -78	-32	4	263 -212	11			
	754	224		5 -129 2	-10		-11 97 1			250 236	3				1	-185 -13	8 -23
1	204	-230	0	5 -120 2	5 -10				2	230 230					-	420 27	1 25
2	77	75	ø	6 158 12	7 4				5	-180 17	-21		-11 12 L		2	428 -31	1 25
						1	-167 25	-19	6	128 -175	-8				3	123 17	3 -107
	1.2			-12 4		2	206 200	- 4	7	-195 4	-20	1	-97 -62	- 5		212 26	4 15
	-13	4 L		-12 4	-	2	200 200		-	105 4	20		07 02		-	57 10	
						3	36 -132	-110	8	112 119	Ø	2	216 3102	-/	5	-5/ -18	3 -25
1	194	-148	8	1 222 18	8 9	4	322 -272	15							6	-98 -9	6 -12
	104	175	2	2 122 16			140 157	- 1		-11 6 1			-10		7	207 19	2 3
4	194	1/5	3	C 132 10	0 -0	5	140 157	- 1		-11 0 L			10 0 0		-	201 13	
3	174	123	7	3 129 -19	8 -13	6	203 139	12							8	55 9	5 -3
				4 151 -13	Ø 3	7	-61 -135	-12	1	-205 95	-37	1	607 513	47	9	136 -14	4 -1
	1.7	E 1		E 11E 11	a a	0	157 -132	3	2	400 -335	25	2	-111 -131	-21	10	-175 -3	8 -19
	-13	5 L		5 115 11	5 10	0	157 -152	5	-	400 333	2.5	2	117 207	26	**	1/0 0	
				6 -82 6	6 -6				3	-1// 2	-21	3	44/ -38/	26			
1	-124	-23	- 9				-11 1 L		4	246 244	ø	4	-161 141	-33		-10/5	L
-	220	350	20	-12 E					5	-284 -49	-28	5	196 205	-4			
2	3310	250	210	-12 5	-			~ *	5	204 45	20	5	100 205	-			
3	-177	18	-18			1	-43 175	-21	6	264 -217	12	6	-68 -58	-5	. 1	337 -32	2 6
				1 250 27	9 - 8	2	206 180	6	7	-126 51	-10	7	166 -203	-7	2	220 -25	5 -11
	10	c .		2 52 5	2 - 2	2	227 -210	9	0	140 191	-7	9	-64 71	- 5	3	378 36	A A
	-13	6 L		2 -52 5	3 - 3	3	337 -310		0	140 101	- /	0	107 117		-	570 50	
				3 333 -27	1 18	4	150 -69	1.0				9	-120 11/	-16	- 4	-116 13	2 -22
1	47	83	-2	4 -167 -5	A - 18	5	153 140	2		-11 7 L		10	82 -126	-5	5	281 -21	3 19
-	200	25.0		F 373 10	- 20	c	00 00	a							6	-116 -2	9 -19
2	289	250	110	5 2/2 18	5 210	0	36 30	N			-					110 3	2 21
				6 -190 2	3 -21	7	221 -135	16	1	-79 -54	-6		-19/ 1 L		/	31/ 24	/ 21
	-12	7 1				8	-205 -79	-29	2	236 -238	Ø				8	-198 2	0 -23
	15	/ L		12 6		~	2.00 .0		2	122 144	- 1	1	247 278	25	9	291 -18	4 26
				-12 6					3	133 144	- 1		347 270	20		251 10	
1	2.07	169	7				-11 Z L		4	196 1/3	4	2	242 -261	-в	1.0	-154 3	4 -14
2	218	169	9	1 354 35	3 Ø				5	108 -173	-10	3	227 -238	- 3			
2	210	105	,	2 175 6	1 - 22	1	210 200	17	č	90 -191	-15		-141 98	-21		-18 6	
				2 -1/5 -6	1 -22		315 205	17	0	00 -101	-15	- 2	141 50			10 0	-
	-13	8 L		3 349 -27	8 22	2	-202 25	-29	1	171 184	-2	5	216 252	-110		- 1.4. TR	
				4 -128 6	4 -11	3	257 -224	9				6	233 -181	12	1	423 -39	9 11
	100	102	10	E 227 20			-97 -67	- 9		-11 9 1		7	284 -152	1 07	2	122 -18	R 2
1	1310	192	-10	5 227 20	4 5	-	- 57 - 67			-11 0 L		-	204 132		5	170 47	7
						5	238 186	12				8	12/ 1310	10	3	4/9 42	/ 24
	-12	6 1		-12 7	L D	6	-148 38	-14	1	246 -232	3	9	-57 51	- 3	4	-95 1	6 -6
						7	179 -156	A	2	194 -123	13	10	151 -176	-4	5	333 -31	2 7
~						-	103 100		-	210 205				-	6	- 00 5	4
1	319	-176	36	1 259 25	د ۱	9	-187 63	-23	3	310 296					0	- 55 5	
2	-150	79	-17	2 229 -15	8 15				- 4	-71 29	-3		-1Ø 2 L		7	261 26	4 10
2	204	170	25	2 116 -12	9 -1		-11 3 1		5	271 -238	8				8	80 -9	1 -1
3	204	1/0	25	5 110 12					6	155 11	14		100 216	-7	0	00 -15	2 -9
- 4	-148	-114	-210	4 88 17	/ -13				ь	-155 -11	-14	1	190 216	- /		50 -15	3 -0
5	205	-159	8	5 -143 10	5 -18	1	450 346	42	7	227 284	4	2	448 -354	41	1Ø	97 7	4 Z
-						2	-148 -51	-17				3	182 -223	-11			
				12 0		2	212 -254	-12		-11 0 1		4	205 261	11		-18 7	
	-12	I L		-12 8	-	3	212 -234	-12		-11 9 6		- 2	235 201			10 /	-
						4	-22 69	-3				5	-1/1 65	-24			
1	-43	-83	- 5	1 -157 5	6 -17	5	231 191	9	1	312 -272	12	6	268 -209	16	1	282 -28	Ø Ø
-	173	140		2 119 -10	9 -14	E	27 -114	-7	2	62 -46	1	7	-123 -1	- 9	2	1979 11	1 -1
2	1/2	146		2 119 -19	-14	0	37 -114	22	2	201 200		-	207 150	10	-	200 20	
3	-104	126	-15	3 105 2	b 5	7	-183 -69	-23	3	284 282	10	9	23/ 152	18	3	388 36	1 11
4	242	-225	4	4 259 22	4 8	8	100 119	-2	4	-106 -55	-8	9	-212 -26	-29	4	167 -18	5 -4
-	-115	1	- 7	207 66	5	5			5	202 -190	2	10	244 -193	13	5	221 -24	9 -8
3	-115	1	- /						5	CO 190	-	10	244 103	1.5	6	75 15	4 -10
				-12 9	L		-11 4 L		ь	-63 /4	- 5		1.71		9	-/5 15	-18
	-12	2 1											-1Ø 3 L		7	-13Ø 13	5 -21
				1 66 -2	7 2	1	293 297	2		-11 19 1			and a state of the second		8	-71 -13	9 -14
				1 170 -2	2	-	107 100	a					-145 0	-16	0	-140 -0	7 -19
- 1	-146	- 29	-14	/ 1/8 -15	8 3	2	18/ -186	10				1	-140 9	-10		-140 -7	/ -10

-10 8 L 1 181 -179 0 2 307 278 10 3 177 171 1 4 369 -282 30 5 -62 -111 -10 6 170 187 -3 7 -185 25 -21 8 196 -183 2	1 2 3 4 5 6 7 8 9 1 <i>Ø</i> 1 1	$\begin{array}{r} 89 & -187 \\ 462 & -450 \\ -81 & 18 \\ 455 & 402 \\ -117 & -7 \\ 323 & -317 \\ 51 & 87 \\ 216 & 226 \\ -45 & -132 \\ 145 & -143 \\ 136 & 136 \end{array}$	-21 -5 25 -10 -3 -2 -12 0 1 0	1 490 -489 2 -159 105 3 393 377 4 -110 -105 5 283 -324 6 211 188 7 248 229 8 238 -184 9 99 -143 10 241 172 1 -228 69	87 -31 7 -18 -16 5 13 -6 15 -36	4 5 6 7 8 9 1Ø	194 -232 283 278 87 182 227 -238 -47 -84 -66 156 94 55 -9 9 L 471 422 289 136	-10 1 -1 0 -5 -16 3 23 16	2 1 2 3 4 5 6 7 8	284 -246 -8 Ø L 487 -478 228 -285 707 644 -171 -105 467 -421 -138 46 463 414 99 -91	1ø -22 48 -35 23 -17 23 1	6 7 8 9 1Ø 11 12 13	565 489 -89 -115 319 -318 -87 58 247 166 125 -186 187 -186 188 111 -8 4 L -71 179	46 -16 Ø -7 2Ø -17 Ø -1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 1 2 3 4 5 6 7 8 9 1 <i>Ø</i> 11 12	269 15Ø -9 1 L 145 -175 511 -48Ø 139 179 482 459 218 -215 112 -2Ø4 1Ø4 158 65 168 252 -23Ø -189 -6Ø 22Ø 161 -114 9	25 1 -7 16 -9 12 Ø -2Ø -9 -15 6 -25 1 12 1 -12	12 193 -131 -9 5 L 1 399 -399 2 319 341 3 246 302 4 325 -267 5 263 -294 6 453 396 7 -43 115 8 297 -256 9 -165 273 215 1 -180 10 -9 6 L	1ø -9 -21 21 -11 25 -10 12 -19 15 -19	3456789 1234567	485 -458 -57 -55 348 316 129 -26 261 -245 -155 2 217 156 -9 18 L 361 378 78 -48 441 -425 43 186 277 268 145 -283	12 -4 11 9 4 -14 12 -3 1 7 -6 4 1 -11	9 1ø 11 12 13 14 12 34 56 78	373 -281 49 176 263 217 121 -111 230 -168 41 89 -8 1 L 580 -549 -195 20 547 535 -89 -165 432 -395 226 267 352 393 311 -333	34 -18 12 1 13 -3 -3 -36 -29 -29 -14 -19 -8	2 3 4 5 6 7 8 9 1 Ø 11 12 13	445 422 -190 -54 340 -54 347 -319 134 178 47 391 241 -293 258 -252 116 159 96 123 106 -144 -116 -78 126 117 -8 5 L 253 271 359 396	$ \begin{array}{r} 12 \\ -35 \\ 9 \\ -1.0 \\ 7 \\ -7 \\ -7 \\ -5 \\ -11 \\ 1 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -10 \\ -7 \\ -7 \\ -10 \\ -7 \\ -7 \\ -10 \\ -7 \\ -7 \\ -10 \\ -7 \\ -7 \\ -10 \\ -7 \\ -7 \\ -7 \\ -10 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -10 \\ -7 \\ -7 \\ -7 \\ -10 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7$
5 -99 132 -16 6 127 141 -2 7 72 -86 -1 -18 11 L 1 284 246 -11 2 139 181 -8 3 386 -274 9 4 164 -136 4 5 174 198 -4 6 -112 92 -11 -18 12 L	1 2 3 4 5 6 7 8 9 1 <i>Ø</i> 11 12	-9 2 L 335 -349 228 -269 387 -269 387 -269 171 224 389 -285 -174 -71 256 264 -178 -1 294 -232 -188 18 156 128 -289 37	-6 -18 -7 -15 9 -27 -2 -22 18 1 -21 1 -27	1 242 -235 2 602 601 3 176 154 4 614 -555 5 -132 -15 6 475 435 7 -159 -56 8 192 -214 9 -216 38 10 186 180 1 14 -72 -9 7 L	2 8 5 31 -13 18 -28 -5 -32 1 -2	8 1234 567	10/1 85 -9 11 L 157 223 234 -286 293 -275 157 206 189 203 254 -170 -44 -84 -9 12 L 169 216	1 -16 -16 5 -18 -3 18 -5 -18	9 1Ø 11 12 13 14 1 2 3 4 5 6	149 -165 254 289 -189 149 179 -131 142 -81 151 128 -8 2 L 485 -396 481 393 224 238 289 -281 -54 -114 484 474	-3 12 -22 8 7 3 -13 5	3 4 5 6 7 8 9 10 11 12 13	321 -316 369 -373 411 377 148 208 382 -382 164 -197 271 241 -154 95 221 -164 101 -56 229 126 -8 6 L 590 571	2 -2 16 -15 -8 9 -22 12 18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 1 Ø 11 12	-9 3 L 482 -457 -193 -78 515 451 -169 -58 356 -322 -56 97 236 241 69 -85 226 -198 -145 61 172 128 -185 -74	$ \begin{array}{r} 13\\ -37\\ 33\\ -25\\ 14\\ -9\\ -1\\ -1\\ 1\\ -15\\ 7\\ -22\\ \end{array} $	1 -51 225 515 511 3 121 -128 4 37 -43 5 -78 159 6 257 288 7 186 -177 8 115 -149 9 187 138 0 137 187 -9 8 L 1 448 424 2 286 287 3 226 -328	-42 -1 -3 -22 -100 1 -5 100 4 11 000	2 3 4 5 6 1 2 3 4	378 -397 82 -175 275 386 -62 92 214 -223 -9 13 L -71 77 382 -368 -89 -21 334 312 -9 14 L 212 -173	-7 -14 -9 -7 -7 -2 -6 5 -4 6	7 8 9 1 8 1 1 1 1 2 3 4 5	178 135 336 -339 -172 -98 281 220 194 26 1071 -158 -189 65 144 125 -8.3 L -192 558 -198 -50 356 -283 -176 59	9 -1 -29 17 -26 -8 -9 2 -35 21 -38 23 9 -39	2 3 4 5 6 7 8 9 1 Ø 11 12	-122 156 639 -643 164 -2Ø1 441 43Ø -137 5Ø 455 -414 -1Ø3 13 268 248 29 9 1Ø2 -165 -63 19 -8 7 L 5Ø5 522 -182 -27	-34 -3 -18 -18 -19 -7 -7 -7 -9 -2

3 4 5 6 7 8 9 1Ø 11	717 -787 -55 91 487 487 181 -289 353 -314 143 195 191 227 183 -119 121 -163	8 -9 Ø -7 14 -11 -9 -2 -6	1 2 3 4 5 6	-8 12 L 303 -377 177 -179 275 305 -48 101 304 -296 129 -28	2 Ø -1Ø -7 2 8	9 1Ø 11 12 13 14	251 218 329 322 66 -144 94 -150 23 146 -53 52 -7 2 L	107 2 -11 -12 -3	1 2 3 4 5 6 7	-7 5 L 50/4 518 276 -298 449 -444 371 417 352 343 397 -369 270 -247	-9 -1Ø 3 -24 4 13 8	1 <i>9</i> 11 12 1 2 3	-73 -105 283 250 -150 85 -7 9 L 586 -597 221 -220 277 247	-10/ 9 -17 -8 0/ 10/	5 6 7 1 2 3	193 36 347 288 -135 -8Ø -7 14 L 145 29 311 327 93 -8	19 17 -13 12 -5 5
12	14Ø 172 -8 8 L 224 283	-5	7	227 25Ø -8 13 L 373 -392	-5	1 2 3 4 5	348 396 349 331 159 -228 374 -364 445 4Ø7	-28 9 -23 5 2Ø	8 9 1Ø 11 12	406 366 -111 110 234 -221 -144 -122 93 146	18 -18 3 -24 -7	45678	231 208 350 -312 -157 -143 321 324 68 77	7 15 -34 -1 Ø	4	287 -276 14Ø 84 -7 15 L	2 6
23456	315 -323 421 -412 365 353 219 251 317 -298	-3 4 5 -9 6	2 3 4 5 6	-31 -66 334 31Ø 84 -29 296 -28Ø -14Ø 52	-3 7 3 4 -12	6 7 8 9 1 <i>Ø</i>	268 26Ø 479 -435 288 -288 434 386 -142 63	3 23 Ø 22 -18	13	-187 54 161 -165 -7 6 L	-23 Ø	9 1Ø 11	276 -236 -148 17 208 194 -7 107 L	11 -13 2	1 2 3	258 187 134 21Ø 2Ø2 -19Ø -6 Ø L	16 -14 2
7 8 9 1Ø 11	145 -186 273 29Ø -1Ø3 126 2Ø8 -2Ø4 -121 -5Ø	-8 -5 -16 Ø -9	1 2 2	-8 14 L 3#3 -3#4 199 87 227 226	Ø 17	11 12 13 14 15	289 -238 -218 1 269 208 -87 -68 255 -200	16 -33 16 -7 12	12345	498 506 555 -562 226 -283 397 406 -109 106	-5 -4 -22 -4 -19	1 2 3 4	685 -71Ø 93 -77 476 436 -11Ø 58	-19 2 19 -11	1 2 3 4	711 734 264 331 53Ø -52Ø 192 -253	-22 -37 9 -24
1 2 3	-8 9 L -57 147 462 -499 -91 -56	-19 -2Ø -8	4	-26 -101 -8 15 L 211 -192	-6	1 2 3	-7 3 L 619 581 -95 93 452 -45Ø	34 -17 1	7 8 9 1Ø 11	-119 -3Ø 337 275 -166 53 325 -3Ø8 -96 7	-12 23 -22 6 -6	6 7 8 9	-59 1Ø8 289 249 39 -113 256 -18Ø 186 161	-1Ø 12 -6 17	7 8 1Ø 11	451 -427 -202 -98 -177 -18 393 -378 -191 38	-32 -13 -45 -26 6 -28
45678	452 447 -74 65 261 -299 132 -42 314 268	2 -7 -12 9 14	2	251 18Ø -7 Ø L 193 -256	-24	4 5 6 7 8	-163 -73 5Ø9 489 -159 -25 472 -416 -58 2Ø	-3Ø 15 -23 29 -3	12 13	208 238 74 -85 -7 7 L	-7 -1	1 2	-7 11 L 522 -553 -37 95	-17	13 14 15 16	283 226 -156 -8Ø 14Ø -152 8Ø 94	16 -2Ø -2 -1
9 1Ø	-122 5 2Ø5 -174 -8 1Ø L	-9 6	23456	618 588 156 23Ø 348 -36Ø 13Ø -133 6Ø4 554	26 -24 -5 Ø 34	9 1ø 11 12 13	419 377 134 -146 196 -202 74 80 103 163	19 -2 -1 Ø -9	12345	3Ø7 338 591 -6Ø7 -141 -42 422 382 -198 -71	-15 -13 -19 2Ø -39	34567	387 343 62 -1Ø4 173 -169 326 269 3Ø6 219	17 -4 Ø 18 24	1 2 3	-6 1 L 922 913 191 232 731 -7 <i>8</i> 6	7 -17 23
12345	-11 -47 338 -321 -146 49 468 443 -1Ø6 -26	-1 6 -17 11 -8	7 8 9 1Ø 11	-46 -98 495 -488 95 163 379 335 -136 -50	-9 3 -13 18 -15	14	-118 -132 124 -129 -7 4 L	-18 Ø	6 7 8 9 1Ø	512 -477 136 173 357 328 238 -21Ø 262 -238	18 -8 11 7 7	89	248 -228 113 -197 -7 12 L	-14	56789	697 784 246 -243 547 -554 -114 72 382 412	-6 1 -4 -15 -15
6 7 8 9	357 -325 1Ø3 112 2Ø3 2Ø1 138 -15Ø	11 -1 Ø -1	12 13 14 15	223 -230 -86 67 2000 156 -85 -84	-1 -7 8 -8	1 2 3 4 5 6	436 455 -88 125 76Ø -725 229 263 49Ø 464 281 -286	-11 -22 3Ø -13 15	11 12 13	253 224 199 136 164 -123 -7 8 L	11 6	23456	364 -388 3Ø5 346 198 223 245 -239 -74 -88 331 292	-10 -15 -6 1 -8 12	11 12 13 14	153 -194 215 -186 -91 154 -67 134 -29 -167 85 -116	-10 7 -23 -15 -18 -2
1 2 3 4	260 -253 277 -226 224 175 340 310	2 15 12 1 <i>0</i>	1 2 3 4	-14Ø -4 856 834 -159 6 536 -496	-19 19 -24 33	7 8 9 1Ø 11	378 -335 322 281 273 236 199 -245 116 -124	19 16 12 -13 -1	1 2 3 4 5	95 -127 497 -5Ø9 121 162 3Ø4 28Ø 2Ø6 -221	-6 -7 -9 9 -4	7	102 109 298 -264 -7 13 L	Ø 9	16	158 147 -6 2 L 588 528	ī -18
5 6 7 8	189 -2Ø3 182 -168 286 237 1Ø6 94	-3 2 13 1	5 6 7 8	86 2Ø6 387 4Ø4 3Ø1 -3ØØ 436 -428	-29 -8 Ø 4	12 13 14	14Ø 94 94 95 121 -14Ø	6 Ø -2	6 7 8 9	367 -366 323 29Ø 227 212 332 -288	12 4 14	1 2 3 4	263 -219 453 47Ø 132 68 418 -334	12 -7 7 3Ø	2456	88 -138 483 504 425 495 327 -351	-12 -14 -45 -12

						6	637 653	-16	6	652 678	-25	10	265 -247	6	8	3#1 2#5	25
	-5 1Ø L			-5 15 L		7	283 333	-26	7	253 - 307	-24	11	241 -271	-9	9	227 -209	4
1	592 627	-27	1	216 -95	21	g	328 -321	-22	ğ	268 265	- 1	12	252 171	18	1.0	1410 -1102	4
2	249 219	9	2	322 -264	17	10	493 523	-18	1.0	254 238	5	14	170 -153	2		-4 13 L	
3	359 -320	17	3	247 191	12	11	228 218	3	11	340 -318	9			-			
4	34 20	ø	4	266 244	5	12	445 -470	-13	12	2 -155	-17		-4 9 L		1	438 -485	13
5	369 348	9				13	195 -173	5	13	261 289	- 9	1.0	1	1.1.1	2	340 -255	29
6	72 -63	Ø		-5 16 L		14	394 328	26	14	-179 118	-31	1	676 660	13	3	499 470	13
7	418 -372	19	÷ .	201 -205	1	15	118 65	6	15	2// -1//	24	2	294 -298	-1	4	220 149	15
8	205 262	10	1	231 -205		17	89 -27		10	56 - 56	Ø	3	141 209	-19	6	222 -135	17
1.9	126 -133	- 1		-4 Ø L		• '	0, 2,			-4 6 L		5	497 498	ø	7	295 256	11
11	219 -168	10					-4 3 L					6	341 -296	18	8	34 4.0	Ø
12	-46 84	-5	1	724 -760	-39	÷			1	317 329	-7	7	349 -354	-2		1.1.243. 31	
			2	1Ø71-1147	-68	1	871 -935	-67	2	795 825	-29	8	373 362	5		-4 14 L	
	-5 11 L		3	798 850	-55	2	476 465	12	3	336 -365	-17	9	230 183	12		426 420	
	E20 E74	- 21	4	195 280	-4/	3	601 -627	- 29	4	762 -775	-12	1.0	424 -368	-2	2	420 -429	22
2	143 -67	12	6	760 -795	-35	5	38 -143	-22	6	561 580	-12	12	174 185	-2	3	448 394	21
3	540 -553	-7	7	787 829	-40	6	546 556	-10	7	510 -525	-11	13	119 49	6	4	207 -35	23
4	192 168	6	8	34Ø 376	-20	7	-139 -17	-20	8	107 -168	-13				5	406 -350	20
5	518 510	4	9	466 -505	-24	8	200 -226	-9	9	429 420	4		-4 1 <i>1</i> L		6	-45 68	-3
6	257 -206	14	10	-69 -138	-20	9	192 -223	-10	10	160 196	-9		147 120		/	285 294	-2
7	328 -344	-5	11	-94 25	-6	1.0	-152 29	-20	12	454 - 392	28	2	384 - 324	27		-4 15 1	
9	115 147	-4	13	413 -484	4	12	487 -483	2	13	271 261	3	3	138 -45	13		4 10 1	
10	189 -145	8	14	-203 -16	-32	13	78 48	2	14	-19 22	ø	4.	512 543	-17	1	289 -248	11
11	-40 -97	-6	15	376 319	21	14	347 331	5	15	217 -214	ø	5	162 -37	18	2	255 94	3Ø
			16	-43 -54	-2	15	-168 -53	-20	16	-162 45	-16	6	446 -456	-5	3	372 357	5
	-5 12 L		17	173 -191	-3	16	222 -161	12				7	141 1	14	4	170 -121	7
	195 191		18	-/5 61	-5	17	-1/9 43	-210		-4 / L		8	3103 293	-19		-4 16 1	
2	400 404	7		-4 1 1			-4 4 1		1	787 819	-38	107	286 -238	14		-4 10 L	
4	174 179	-1							ź	341 369	-16	11	68 33	2	1	289 -288	19
5	373 373	Ø	1	1138-1239	-86	1	-59 -127	-25	3	798 -817	-18	12	288 203	2Ø	2	237 203	7
6	277 -224	15	2	161 -89	23	2	933 994	-6Ø	4	235 -272	-15		 191 5 				
7	276 -262	4	4	197 265	-36	3	-178 31	-44	5	646 649	-2		-4 11 L			-3 🗊 L	
8	236 1/7	13	5	954-1007	-5.0	4	551 -5/2	-21	5	152 182	-8		-56 -82	- 0		204 -201	-55
9	262 117	28	7	552 575	-19	6	A11 A13	-19	á	-111 5	-10	2	541 -555	-7	1.9	A10 425	-9
	-5 13 L		8	-125 -63	-19	7	-70 115	-17	9	419 424	-2	3	-50/ 3	-2	11	91 205	-28
			9	394 -397	- 1	8	362 -393	-16	10	-147 -20	-17	4	641 610	20	12	476 -436	21
1	383 368	6	1Ø	120 218	-27	9	-194 54	-37	11	398 -365	13	5	168 -124	9	13	-147 Ø	-17
2	527 -511	7	11	529 520	5	1Ø	395 409	-6	12	88 35	4	6	465 -444	9	14	497 589	-5
3	254 -257	Ø	12	236 -236	17	11	90 -1/6	-1/	13	262 242	5	6	-65 100	-9	15	-211 -3/	-35
4	469 469	10	14	257 215	12	13	146 180	-7	15	256 -197	13	ğ	203 -156	9	17	-119 64	-11
6	372 -343	10	15	90 231	-29	14	305 227	23	10	200 100		1.0	157 -172	-2	18	251 152	2.0
7	-34 -70	-3	16	-89 -173	-23	15	185 -138	8		-4 8 L		11	225 169	11		1.1	
8	195 201	- 1	17	123 -85	4	16	48 -124	-7								-3 1 L	
			18	127 129	ø	17	142 93	6	1	947 954	-5		-4 12 L				25
	-5 14 L								2	87 107	-3		242	20	9	-163 55	-30
1	259 117	21		-4 2 L			-4 5 L		3	156 124	-24	2	633 -636	-1	11	-159 61	-25
2	491 -515	-11	1	1285-1493	-98	1	192 -262	-37	5	804 817	-10	3	221 170	13	12	473 -481	-4
3	238 22	31	2	263 370	-74	2	1262 1315	-39	6	299 -334	-15	4	536 531	2	13	216 275	-20
4	399 381	6	3	799 860	-64	3	1.05 -133	- 7	7	529 -549	-11	5	258 -274	-5	14	324 343	- 8
5	262 -85	32	4	178 -256	-39	4	885 -906	-18	8	193 221	- 8	6	340 -318	7	15	231 -179	13
6	359 -302	17	5	733 -762	-30	5	180 239	-24	9	435 364	31	7	237 221	4	16	239 -197	1.0

1 1	7 179 163 3 -124 123	-18		-3	5 L		23	594 164	-594 46	22	11	215	224	-2		-2	1 L			-2	5 L	
			1	1046	1093	-43	4	834	827	5		-3 1	2 L		10	-145	16	-21		1.20	10	
	-3 2 L		3	972	-993	-18	6	749	-759	-8	1	766	-756	6	12	-192	-566	-36	2	1258	-1244	20
	-302 -61	-139	4	6.0	162	-26	7	-87	4	-6	2	178	27	22	13	397	397	ø	3	242	-269	-15
11	469 484	-13	5	912	921	-7	8	500	531	-17	3	535	493	21	14	-21	-181	-25	4	727	712	15
	326 - 349	-13	5	460	-161	-18	10	19/	-203	-1	4	211	-109	21	15	219	-271	-16	5	246	-212	15
	3 389 413	-14	8	479	5.02	-14	11	211	174	2.0	6	296	278	5	17	226	200	-1	7	325	-541	-9
1	-142 -167	-42	9	191	198	-2	12	2Ø7	221	- 3	7	377	342	12	18	212	-166	9	8	657	661	- 3
1	2 370 -383	- 6	1Ø	373	-395	-11	13	151	-108	6	8	225	-238	- 3	19	168	-130	6	9	327	-365	-19
1	3 424 426	-1	11	254	-2/4	-19	14	-144	-126	-3	1 0	216	-192	15		- 2	2 1		10	519	-518	Ø
1	288 - 310	-7	13	-105	123	-18	15	1	137		1.0	212	2.05	15		-2	2 L		12	343	328	-15
1	-60 -131	-13	14	198	-16Ø	8		-3	9 L			-3 1	3 L		8	340	341	ø	13	140	-158	-3
1	334 225	31	15	140	-145	Ø	÷.,		100	45		400	~ · · ·		9	692	7.07	-14	14	91	-161	-11
1	-106 50	-/	15	284	219	16	2	738	-719	45	2	428	-341	36	1.0	35/	-40/	-28	15	260	193	17
	-3 3 L		1 /	00		5	3	217	-51	36	3	335	292	15	12	-115	127	-25	17	276	-234	10
				-3	6 L		4	68Ø	682	- 1	4	277	-283	-2	13	268	284	-6			19	
	1 -147 267	-126		1002	1042		5	494	-433	-15	5	219	-220	Ø	14	247	-229	5		-2	6 L	
	543 -542	-91	2	255	-258	-3/	7	4/5	429	-14	7	232	118	21	15	205	-192	11	1	263	-214	25
	240 - 301	-37	3	752	-765	-12	8	309	282	9	8	263	-258	- 1	17	154	151	ø	ż	992	-988	2
	5 248 258	-5	4	380	385	- 3	9	261	-265	- 1		1.51	2011 - P		18	291	-244	12	4	1032	997	29
	5 938 947	-8	5	682	691	-8	1.0	221	-182	9		-3 1	4 L			- 7	2 1		5	692	-665	25
	B 320 - 368	-26	7	519	-523	-2	12	-119	97	-14	1	245	-175	17		-2	3 L		7	555	567	-7
	9 736 740	- 3	8	4.05	466	-34	13	324	-183	35	2	389	354	13	8	647	61.0	33	8	467	468	ø
1	0 143 190	-13	9	174	249	-24	14	-25	-13	ø	3	160	78	11	. 9	480	486	-3	.9	538	-542	-2
1		- 37	1.0	482	-454	-13		-3 1	0		4	423	-383	24	1.0	189	- 6910	-29	1.0	218	323	-19
1	3 405 395	4	12	252	269	-5		3.			6	409	365	15	12	329	324	2	12	95	176	-15
1	4 -120 -65	-13	13	-52	32	-2	1	412	-376	18	7	162	- 4	13	13	-137	129	-28	13	357	-298	21
1	5 330 -321	3	14	272	-213	16	2	186	-53	25					14	311	-263	16	14	-130	-3	-11
1	7 213 203	- 5	16	286	249	-0	4	160	146	-10		-3 1	5 L		16	225	223	Ø	16	145	-2	11
1	8 -182 -37	-19					5	479	-448	15	1	269	81	35	17	-188	23	-22		19.2		
	192			-3	7 L		6	179	-149	7	2	489	418	27	18	254	-220	8		-2	7 L	
	-3 4 L		1	229	196	1.0	6	397	107	-12	3	186	-200	18		-2	4 1		1	777	-742	24
	816 841	-27	2	434	-448	-9	9	270	-273	-1		303	300	17		-2			ź	592	-573	18
	2 538 550	-13	3	504	-530	-18	1Ø	-78	-22	- 4		-3 1	6 L		1	446	5.07	-73	3	452	447	3
	3 864 -9Ø1	-38	4	554	555	ø	11	307	261	13		245	101		2	547	-579	-37	4	218	237	-7
	4 1/1 -261 5 807 805	-45	6	673	-637	30	13	221	-210	-9	1	245	161	17	3	315	360	-30	5	476	-455	12
	5 424 449	-17	7	191	-247	-19	15		210	2		-2	ØL		5	610	596	14	7	688	678	8
	7 721 -709	11	8	415	444	-15		-3 1	11 L					1.00	7	318	-347	-16	8	292	276	6
		-14	9	148	91	1.0		681	-611	-6	1.0	254	329	-36	8	760	754	5	10	6.05	-691	-14
1	7 -122 -18	-13	11	465	-38	- 1	2	337	-233	39	12	140	-227	-25	10	680	-666	11	11	425	409	-17
1	485 -442	22	12	326	313	4	3	687	639	32	13	455	442	6	11	-100	1.01	-17	12	-149	-6	-16
1	2 -65 118	-14	13	-118	-54	-11	4	176	-27	22	14	49	-21	1	12	383	359	10	13	371	-338	12
1	3 240 246	-1	14	274	-216	15	5	558	-550	12	15	-206	-296	- 21	13	-146	18	-17	14	-102	242	-11
1	5 222 -244	-5	15	04	134	-0	7	334	354	-7	17	324	235	27	15	-80	61	-6	16	89	-60	2
1	5 171 109	1.0		- 3	8 L		8	51	-88	- 3	18	145	-76	8	16	2.06	173	7				_
1	7 131 138	- 1		107			9	244	-238	1	19	67	-138	- 8	17	192	-157	6		-2	8 L	
			1	10/	114	14	1 10	631	165	610					18	219	-145	13				

1 2 3 4	850 -826 291 -237 965 930 238 168	21 24 29 23	1 <i>0</i> 11 12	317 312 193 -42 259 -167	1 19 19	17 18 19	-10/1 -23 258 -213 34 -9	-7 11 Ø	4 5 6 7	199 286 56Ø -573 482 -5Ø2 559 5Ø5	-5Ø -13 -18 44	6 7 8 9	806 802 372 386 572 -603 218 -166	3 -7 -19 15	13	306 261 -1 11 L	12
5	/63 -/41	19		-2 12 L			-1 1 L		g	778 -747	27	110	JA/ 525	-6	2	336 352	-0
7	623 597	19	1	215 -66	29	9	260 312	-28	10	42 -106	-8	12	462 -424	17	3	463 -464	ø
8	236 -233	1	ż	599 595	2	1.0	1102-1100	1	11	494 517	-13	13	-180 5	-22	4	137 -82	8
9	393 - 397	- 1	3	239 -89	32	11	-19 154	-22	12	-117 85	-17	14	345 357	-4	5	318 306	4
1Ø	-151 -9	-17	4	499 - 499	Ø	12	488 533	-27	13	428 - 407	1Ø	15	-98 8	-5	6	151 -32	15
11	314 353	-15	5	206 164	10	13	-125 -146	-31	14	-142 45	-16	16	274 -221	13	7	378 -300	28
12	-/6 -86	-8	5	3/3 350	- 1	14	431 -409	- 22	15	189 221	- 24		-1 0 1		8	15 -/5	- 3
14	81 129	-5	8	287 -269	5	16	279 294	-5	17	262 -142	25		-1 0 L		10	191 26	29
15	161 178	-3	ğ	233 187	10	17	129 -156	- 4	18	225 151	14	1	564 -532	25	11	350 -270	23
			1Ø	263 237	6	18	301 -246	15				2	1081 1034	37			
	-2 9 L					19	257 181	16		-1 5 L		3	292 281	5		-1 12 L	
1.1				-2 13 L						010 700	4.5	4	566 -535	23		610 COF	
1	888 -/56	20	1	278 284	25		-1 Z L		2	813 -769	45	5	-35 5	12	2	518 525 1C5 _50	17
3	591 551	25	2	456 447	23	1	285 -64	51	3	263 324	-39	7	163 81	15	3	630 -588	22
4	229 -231	ø	3	255 -125	29	2	168 183	-6	4	340 -350	-6	8	568 -577	-6	4	75 12	3
5	545 -545	ø	4	352 -299	18	3	-244 49	-85	6	-76 84	-14	9	115 -21	9	5	404 382	8
6	311 287	1.Ø	5	253 16Ø	21	9	-80 -107	-19	7	839 812	24	10	419 431	-5	6	148 -51	12
7	493 496	-1	6	192 203	-2	10	840 -837	Z	8	168 -207	-12	11	-125 -60	-14	7	326 -315	3
8	36/ -310	-19	2	281 -288	12	12	334 349	-/	1.0	-1/6 49	- 310	12	318 -295	6	8	219 245	21
10	219 247	-8	9	376 303	22	13	319 -319	8	12	45 -81	-3	14	321 288	107	10	104 -185	-13
11	201 147	11	5	0,0 0.0		14	357 -358	ø	13	356 -315	16	15	-48 -97	-6	•~	1.04 1.00	
12	255 -206	12		-2 14 L		15	200 224	-6	14	239 266	- 8					-1 13 L	
13	65 -71	ø				16	210 186	5	15	244 224	5		-1 9 L				1.1
14	214 179	7	1	458 448		17	292 -226	19	16	215 -202	3	2	050 030	33	1	575 571	2
	-2 16 1		2	446 -422	14	19	268 248	- 0	1/	141 -124	2	2	199 - 99	32	2	238 -271	-12
	-2 10 L		4	174 -129	7	1 9	200 240	5		-1 6 L		4	789 -751	30	4	296 202	26
1	408 -418	-5	5	277 284	-2		-1 3 L					5	250 257	-2	5	296 246	14
2	381 357	12	6	245 126	22			1.5 1	1	1634-1574	35	6	453 455	-1	6	245 -222	5
3	387 402	-7	7	282 -261	5	1	148 -159	-4	2	145 95	14	7	117 -176	-13	8	252 222	7
4	360 -312	21		-2 16 1		2	834 -832	- 57	3	1091 1076	12	8	292 -284	3		-1 14 1	
5	236 -253	22		-2 15 L		5	366 -120	-42	5	802 -777	23	10	269 257	3		-1 14 L	
7	173 178	-1	1	457 456	ø	6	620 -641	-22	6	107 154	-11	11	233 -220	3	1	319 319	
8	369 -352	6	2	305 100	42	7	680 683	-2	7	731 698	29	12	271 -214	15	2	376 -382	-2
9	42 -101	- 5	3	443 -370	26	8	733 719	13	8	539 -541	ø	13	3Ø3 26Ø	12	3	359 -316	14
10	383 333	18	4	276 7	37	9	777 -762	13	9	471 -483	-7	14	65 76	Ø	4	325 262	18
11	133 59	11		-2 16 1		11	3/9 -362	- 72	1.0	368 403	-17		-1 10 1		5	210 -222	29
13	-145 17	-12		-2 10 L		12	-121 92	-20	12	257 -281	-8		-1 10 L		0	310 -232	2.0
10	145 17		1	336 292	12	13	287 -276	4	13	-67 -97	-9	1	476 410	35		-1 15 L	
	-2 11 L					14	166 -217	-13	14	316 3Ø8	2	2	298 321	-100			
				-1 Ø L		15	238 234	1	15	216 121	18	3	237 -195	13	1	326 124	45
1	303 -228	27		624 630		16	-20 95	-6	16	179 -191	-2	4	427 -386	20	Z	465 -413	20
2	251 199	19	107	729 ~715	12	19	77 -12	-13	17	0/ -62	1	5	334 355	- 4	3	358 332	8
4	471 -438	16	11	344 -370	-13	10	11 12	3		-1 7 L		7	287 - 309	-8	-	330 332	0
5	276 -101	43	12	531 560	-18		-1 4 L					8	191 -197	-1		Ø Ø L	
6	377 383	-2	13	-135 137	-32				1	913 -887	23	9	393 417	-1Ø	1.15		
7	-80 -89	-10	14	297 -315	-7	1	-190 -123	-71	Z	230 169	24	10	157 95	9	9	763 -753	9
g	178 100	12	15	377 331	-32	23	621 626	-44	5	833 -794	39	12	402 - 368	- 4	110	520 549	-27
2				0,1 001		3	561 020	3	9	555 / 54	55	1 4	02 20	-		JEN 545	Sec. 7

-1Ø -9 -8 -7	238 244 541 -557 429 -428 5Ø7 556	-2 -15 -12 -14 $\emptyset -13$ -41 -12	324 300 -47 -43 441 -402 162 105	10 -3 22 13	-8 -7 -6 -5	47Ø 517 199 -24 478 -512 14Ø Ø	-3Ø 32 -21 17	8 9 1Ø 11	267 239 421 -4Ø4 1Ø9 -69 376 385	7 6 4 -2	15 16 17	96 72 342 -356 200 -6	-4 2Ø	12 13 14 15	349 -358 416 424 161 214 353 -381	97 -3 -13 -11
- 6	204 229	-11 -11	426 435	~ 5	-4	347 333	7	12	275 59	35		1 -11 L		16	-107 -52	- 9
-5	238 -168	30 -10	200 -205	-1	-3	243 -118	37				~	177 110		17	378 328	17
- 4	106 -27	25 -9	201 202	- 3	-2	401 -351	25		1 -14 L		10	4// -448	15	10	201 -244	15
- 3	435 401	34 -7	493 514	-15	a	486 466	11	Ø	401 388	5	2	592 569	14	19	301 -244	15
-1	491 -487	3 -6	416 -453	-25	ĩ	325 -286	17	ĩ	303 -251	16	3	275 257	6		1 -8 1	
ø	88 3	9 -5	424 -423	ø	2	363 -333	14	2	283 -225	17	4	527 -563	-22			
1	733 712	21 -4	391 4Ø9	-11	3	264 189	25	3	455 466	- 4	5	300 -280	7	ø	1238-1187	38
2	378 -352	17 -3	350 381	-19	4	278 179	32	4	233 168	15	6	690 709	-14	1	501 459	28
3	657 -664	-7 -2	419 -384	23	5	277 -255	8	5	529 -585	-28	7	200 198	ø	2	712 708	3
4	400 412	-8 -1	222 -159	23	ь	182 -132	11	5	106 -115	-12	8	585 -648	-38	3	922 -922	8
5	348 338	27 1	260 201	25		a 15 1		é	401 400	-12	10	135 -64 Cas 642	-22	2	0CC 04E	21
7	211 -182	10 2	699 -712	-11		N 15 L		9	432 -471	-17	11	172 -154	A	7	686 -673	12
8	311 317	-2 3	121 -44	12	-10	275 -262	4	1.0	213 136	15	12	504 -530	-13	8	404 -410	-3
9	256 242	5 4	369 369	ø	-9	209 88	26	11	446 490	-19	13	-90 50	-7	9	853 86Ø	-6
1.0	371 -354	9 5	156 -6Ø	18	-8	293 284	3	12	95 -87	ø	14	334 335	ø	1Ø	145 -166	-5
11	105 -128	-4 6	385 - 362	12	-7	254 -135	34	13	356 -367	- 3	15	-59 -178	-22	11	571 -565	4
12	244 278	-13 7	190 115	19	~6	362 - 382	-10	14	-117 143	-19	16	338 -315	7	12	59 74	-1
13	104 11	8 8	302 308	-2	-5	307 298	15		1 12 1		17	303 215	23	13	628 629	-5
	a 11 1	10	189 -215	- 7	- 4	3/3 335	31		1 -13 L		18	281 233	13	15	-121 -26	-12
		10	107 215	· · · ·	-2	341 -250	37	Ø	188 68	28		1 -18 1		16	24 121	-9
-17	223 -212	3	Ø 13 L		-1	378 302	35	ĩ	563 -595	-17				17	363 325	14
-16	157 -159	ø			ø	278 127	44	2	191 -2	24	Ø	619 -587	23	18	217 -179	8
-15	277 249	11 -15	301 288	5	1	389 -357	15	3	411 448	-13	2	378 274	43	19	138 -127	1
-14	125 124	Ø -14	184 -180	1	2	3Ø1 -173	42	4	192 -12	25	3	210 -53	33		 Site Address 	
-13	326 - 342	-8 -13	288 -251	14	3	3Ø1 339	-16	5	427 -410		4	258 -168	3Ø		1 -7 L	
-12	275 -252	19 -12	335 268	29				5	152 /8	11	5	233 111	33		120 -12	
-11	27 -20	Ø - 10 Ø - 9	283 -274	20		10 IO L		8	194 -208	-21	7	186 -36	25	1	745 710	34
-9	627 -660	-28 -8	442 430	6	-5	314 278	16	9	475 -515	-19	8	784 -790	-4	2	661 625	36
-8	1.04 52	8 -7	276 257	8	-4	212 37	31	1.0	258 231	7	9	176 138	9	3	1224-1238	-11
-7	747 781	-35 -6	341 -379	-21				11	395 429	-14	1.0	549 562	-7	5	782 765	17
-6	181 -82	27 -5	187 -191	-1		1 -16 L		12	324 -382	-21	11	460 -443	9	6	127 -42	15
-5	498 -524	-20 -4	518 541	-16				13	273 -236	10	12	347 -366	-8	7	898 -841	49
-4	292 240	27 -3	93 46	6	Ø	369 321	14	14	336 312	7	13	345 346	ø	8	140 117	5
-3	568 615	-21 -2	403 -405	27	2	297 93	39	15	258 1/5	18	14	332 312	16	1.	714 694	19
-1	457 -458	-10 -1	334 352	-9	3	215 -51	22		1 -12 1		15	233 -181	12	11	629 -599	25
ø	418 414	3 1	162 -7	23	4	332 302	9				17	298 293	1	12	452 452	Ø
ĩ	531 485	34 2	349 -366	-9	5	235 -143	18	ø	185 -189	16	18	162 135	4	13	672 649	18
2	411 -417	-4 3	228 157	22	6	327 -325	ø	1	611 -606	2				14	429 -419	4
3	156 -130	7 4	488 472	1Ø	7	232 169	13	2	504 483	11		1 -9 L		15	268 -263	1
4	344 334	5 5	269 -231	14	8	357 361	- 1	3	632 673	-29	(- 12)			16	384 392	-3
5	211 201	3 6	347 -331	17		1		4	403 -395	27	10	656 -632	21	17	108 195	-17
5	395 - 387	4 /	107 94	1/		1 -15 L		5	424 -470	-12	2	430 333	12	19	-126 -79	-14
Ŕ	335 305	14	107 54	1	ø	495 450	18	7	371 382	-5	Ă	1280-1323	-32	20	243 226	4
9	80 77	ø	Ø 14 L		ĩ	368 - 304	21	8	494 -509	-7	5	487 435	31	-~		
10	294 -269	10			2	448 -411	14	9	445 -423	10	6	588 569	7		1 -6 L	
11	-68 28	-4 -13	145 -115	5	3	292 231	17	1Ø	491 515	-11	7	441 -409	17		2218 234	1.1
	4.16 3.1	-12	315 292	9	4	343 312	10	11	286 299	- 4	8	349 -356	-3	Ø	251 239	6
	Ø 12 L	-11	260 235	9	5	264 -191	18	12	524 -555	-15	9	548 581	-2.0	1	1308 1219	62
-16	-71 -20	-10	192 -560	-16	5	301 -209	10	13	272 222	-16	1.0	254 231 A19 - 459	-21	2	1215-1220	-15
10	-/1 -310		105 - 54	64	/	321 202	1 3	14	213 323	10	11	415 -450	C 1	5	ICIJ ILLJ	1.5

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 6 7 8 9 1 0 1 1 1 1 1 1 1 1 1 5 1 6 1 7 1 1 1 1 5 1 6 7 8 9 1 0 1 1 1 1 2 1 3 1 1 1 1 5 1 6 7 8 9 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59 74 -4 42 41 9 23 <i>ø</i> 1 -13 -14 14 3 4 -1 <i>ø</i> -6	16 17 18 19 20 0 1 20 0 1 2 3 4 6 7 8 9 11 2	148 198 247 - 306 214 - 218 403 351 193 126 1 -3 L 1699 1627 643 - 650 1940-1693 2031 1733 913 797 319 - 398 - 163 113 560 504 212 - 244 771 752 232	-12 -20 -1 19 11 44 -7 130 148 -7 130 148 -54 -15 16	18 27 19 4 20 26 1 1 10 16 11 52 12 59 13 39 14 45 15 24 16 28 17 -7 18 35 19 -10 20 20	1 254 5 107 9 -252 Ø L 8 2355 7 522 9 -516 5 -413 5 429 7 248 9 -291 4 -97 4 336 7 -35 1 -207	4 -5 4 -4 -9 13 Ø -1Ø 6 -7 -1	Ø 1 3 7 8 9 1 Ø 11 12 13 14 15 16 17 18 19	397 779 8Ø1 -124 742 249 7Ø8 -179 666 245 582 17Ø8 425 22Ø 285 225 1	-34Ø -777 822 -722 -287 714 -5 -691 256 563 -218 -426 232 246 -128 3 L	46 2 -23 -19 -18 -5 -31 -20 -31 -20 -13 00 -13 00 -13 107 17	-18 -17 -16 -15 -14 -13 -12 -11 -18 -9 -8 -76 -5 -4 -3 -2 -1	-72 296 146 431 39Ø 432 424 295 476 297 8888 733 247 673 -121 355 -179	106 257 -231 389 397 -443 -316 466 293 -878 466 293 -142 1009 271 -783 83 374 46	-10 12 -21 24 17 -10 6 2 16 -17 21 -14 -30 -15 -48	2 3 4 5 6 7 8 9 1 <i>Ø</i> 11 12 13 14 15 16 17	46 9Ø9 933 11322 3Ø6 546 -123 636 -29 443 133 475 24Ø 36Ø 217 58	-2 -911 -927 1Ø94 331 -543 -47 6Ø6 23 -436 185 481 -216 -341 166 159 6 L	2 -2 5 31 -14 25 -1 3 -12 -1 6 7 11 -12
		1 -5 L		13	453 -494	-24	1	1 L		-20	157	117	5	1	456	451	-50	-19	188	-97	Ø
$ \begin{bmatrix} 1 & 1863 & 1599 & 58 & 15 & 488 & 393 & 8 & -19 & -145 & -59 & -15 & -16 & -214 & -56 & -34 & 3 & 638 & -658 & -24 & -17 & -53 & 83 & -65 \\ \hline 8 & 894 & -958 & 36 & 16 & -167 & -43 & -71 & 35 & 57 & -24 & -16 & 411 & -375 & 15 \\ \hline 3 & 881 & -718 & 844 & 17 & 342 & -311 & 12 & -17 & 37 & 135 & -5 & -15 & -76 & -43 & -5 & 5 & 817 & 893 & -15 & -145 & 223 & -16 \\ \hline 4 & 1617 & 1566 & 31 & 18 & 78 & -66 & 97 & -16 & -13 & -155 & 521 & 19 & 9 & 549 & 541 & 5 & -12 & -18 & 458 & -278 & -17 & -13 & 355 & 521 & 19 & 9 & 549 & 541 & 5 & -12 & -18 & 18 & -78 $	Ø	308 347	-29	14	319 -313	2 -	20 -4	3 155	-14	-19	228	-184	9	2	695	696	-1	-18	378	322	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	894 -858	36	16	-167 -49	-24 -	19 - 14 18 23	4 -229	-15	-18	-214	278	-34	3	638	-915	-24	-17	-53	-375	-6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	801 -718	84	17	342 -311	12 -	17 9	7 135	- 5	-16	-76	-43	-5	5	817	803	13	-15	-145	23	-16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1617 1566	31	18	78 -68	Ø -	16 38	4 314	27	-15	458	-379	36	6	528	519	8	-14	5.02	462	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1431-1318	71	20	-158 -31	-15 -	14 16	7 -207	-11	-13	555	521	19	ġ	549	541	-13	-12	410	-444	-18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	813 -742	68				13 37	2 372	ø	-12	9.0	-181	-21	1.0	3Ø7	342	-16	-11	-119	1.05	-22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	780 764	15		1 -2 L	-	12 63	3 614	16	-11	466	-465	ø	11	377	-388	-5	-10	652	646	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	251 282	-15	a	1229 1349	-185 -	10 25	9 - 662 8 - 267	4.0	-10	470	-462	-4	13	436	450	-13	-9	500	-528	-18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	102 120	-3	ĩ	487 -205	265	-9 78	3 759	22	- 7	86Ø	-825	33	14	105	-112	-1	-7	390	355	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	991 979	9	2	1609-1230	225	-8 29	9 342	-27	-6	633	648	-16	15	411	-386	10	-6	874	868	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	-120 -112	-23	107	342 438 1Ø8 188	-88	9 33	9 613	-20	- 3	320	-401	-16	15	-184	287	-23	-5	298	-84/	-41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	-61 -16	-3	11	688 669	17	11 -15	0 -96	-31	-2	1432	1552	-87	18	138	-41	9	-3	499	518	-17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	345 351	-2	12	-74 -38	-6	12 68	2 -687	-3	- 1	-218	42	-67		÷	1.1		-2	641	682	-44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	-154 -91	-23	13	797 -771	-27		6 15	-39	Ø	1345-	-1365	-15		1	5 L		-1	1194-	1226	-25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.	128 142	-2	16	88 -167	-14	15 -8	4 77	-10	2	960	1047	-89	-19	186	-147	7	1	1126	1114	1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	285 228	14	17	210 -186	6	16 4Ø	6 -39Ø	7	3	537	-553	-19	-18	212	247	-9	2	55	-25	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1 -4 1		18	-108 54	-9	17 - 13	6 123	-23	5	-119	-109	-35	-17	243	163	19	3	1218-	1163	41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 -4 -		20	77 -132	-6	19 14	9 -89	8	é	431	-427	-35	-15	304	-280	22	5	922	892	25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ø	991 94.0	47					814 - V		9	64	168	-23	-14	515	512	1	6	-102	18	-10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	527 471	62		1 -1 L		1	2 L		1.0	617	588	25	-13	174	156	4	7	585	-585	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-174 -155	-73	2	487 -688	-188 -	20 8	5 154	-9	12	439	-444	-12	-11	-52	-515	-5	g	333	377	-21
5 846 827 19 5 291 -367 -56 -18 250 -197 13 14 355 354 Ø -9 349 -3Ø4 23 11 217 -20Ø -22 6 1133 109 827 7 819 797 22 -17 2Ø2 232 -8 15 271 -289 -6 -8 908 -922 54 12 253 26Ø -2 7 445 453 -8 9 1345 -12 435 -16 243 216 8 16 159 -183 -5 -7 39 -11 1 13 30° 30° 30° 19 -7 39 -11 1 33° 30° 18 -30° 282 5 -6 1101 1138 -32 14 97 -20° 29° -9 19 -20° -5 494 -445 42 15 203 -20° 19 13 30° 99 4 -4 <td>4</td> <td>875 838</td> <td>38</td> <td>4</td> <td>315 243</td> <td>46 -</td> <td>19 11</td> <td>5 -116</td> <td>ø</td> <td>13</td> <td>216</td> <td>279</td> <td>-23</td> <td>-10</td> <td>819</td> <td>810</td> <td>8</td> <td>1.0</td> <td>2.06</td> <td>-282</td> <td>-28</td>	4	875 838	38	4	315 243	46 -	19 11	5 -116	ø	13	216	279	-23	-10	819	810	8	1.0	2.06	-282	-28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	846 827	19	5	291 - 367	-56 -	18 25	0 -197	13	14	355	354	ø	-9	349	-304	23	11	217	-280	-22
8 721 708 13 10 -88 146 -32 -15 379 -396 -8 17 300 282 5 -6 1101 1138 -32 14 97 -200 -200 -200 -9 -72 17 -6 11 754 749 4 -14 165 -168 60 18 130 99 4 -5 494 -445 42 15 203 -200 90 10 991 -928 52 12 201 -225 -8 -13 508 542 -200 19 191 -206 -3 -4 969 -971 -2 16 2600 2000 14 11 434 433 00 13 623 -628 -4 -12 -600 118 -15 -3 599 646 -53 17 165 77 11 12 679 676 2 14 359 341 8 -621 19 1 4 <td< td=""><td>7</td><td>445 453</td><td>-8</td><td>ģ</td><td>1345-1294</td><td>35 -</td><td>16 24</td><td>2 232</td><td>-8</td><td>15</td><td>159</td><td>-289</td><td>~5</td><td>-8</td><td>388</td><td>-922</td><td>54</td><td>12</td><td>253</td><td>260</td><td>-2</td></td<>	7	445 453	-8	ģ	1345-1294	35 -	16 24	2 232	-8	15	159	-289	~5	-8	388	-922	54	12	253	260	-2
9 -72 17 -6 11 754 749 4 -14 165 -168 Ø 18 13Ø 99 4 -5 494 -445 42 15 2Ø3 -2Ø6 Ø 1Ø 991 -928 52 12 2Ø1 -225 -8 -13 5Ø8 542 -2Ø 19 191 -2Ø6 -3 -4 969 -971 -2 16 26Ø 2ØØ 14 11 434 433 Ø 13 623 -628 -4 -12 -6Ø 118 -15 -3 -4 969 -971 -2 16 26Ø 2ØØ 14 12 679 676 2 14 359 341 8 -11 643 -621 19 1 4 L -2 679 7Ø -3 13 322 -369 -23 15 275 267 2 19 -19 -1 341 -368 -19 1 7 L </td <td>8</td> <td>721 708</td> <td>13</td> <td>10</td> <td>-88 146</td> <td>-32 -</td> <td>15 37</td> <td>9 - 396</td> <td>- 8</td> <td>17</td> <td>300</td> <td>282</td> <td>5</td> <td>-6</td> <td>1101</td> <td>1138</td> <td>-32</td> <td>14</td> <td>97</td> <td>-2.04</td> <td>-20</td>	8	721 708	13	10	-88 146	-32 -	15 37	9 - 396	- 8	17	300	282	5	-6	1101	1138	-32	14	97	-2.04	-20
10 991 -928 52 12 201 -225 -8 -13 508 542 -20 19 191 -206 -3 -4 969 -971 -2 16 200 14 11 434 433 Ø 13 623 -668 -4 -12 -60% 118 -15 -3 599 646 -53 17 165 77 11 12 679 676 2 14 359 341 8 -11 643 -621 19 1 4 L -2 679 700 -23 13 322 -369 -23 15 275 267 2 -134 21 -19 -1 341 -368 -19 1 7 L	9	-72 17	-6	11	754 749	4 -	14 16	5 -168	ø	18	130	99	4	-5	494	-445	42	15	203	-206	Ø
12 679 676 2 14 359 341 8 -11 643 -621 19 1 4 L -2 679 700 -23 13 322 -369 -23 15 275 267 2 -10 -134 21 -19 -1 341 -368 -19 1 7 L	11	434 433	52	13	623 -628	-8 -	13 50	8 542 8 119	-20	19	191	-206	-3	-4	599	-9/1	-2	17	165	200	11
13 322 -369 -23 15 275 267 2 -18 -134 21 -19 -1 341 -368 -19 1 7 L	12	679 676	2	14	359 341	8 -	11 64	3 -621	19		1	4 L		-2	679	700	-23		103	16 * * **	
	13	322 -369	-23	15	275 267	2 -	10 -13	4 21	-19				-	-1	341	-368	-19		1	7 L	
14 644 634 6 16 7 -116 7 -2 650 753 -132 -20 -100 33 6 0 27 -53 -2 15 334 352 -7 17 277 -270 2 -1 175 45 37 -19 26 -223 -1 1 282 37 -37 -19 -85 8 -4	14	334 352	-7	17	277 -270	-/2	-2 65	5 45	-132	-19	-100	-223	-6	1	282	-53	-37	-19	-85	Ø	-4

-18 346 386 12 6 -17 -141 -58 -15 7 -16 482 -348 21 8 -15 212 199 3 9 -14 386 373 6 18 -13 217 -283 4 11	248 -3Ø3 -22 -6 377 -421 -22 -5 431 412 9 -4 1Ø2 147 -8 -3 542 -553 -6 -2 156 -74 12 -1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	347 463 -53 3 158 -174 -5 4 564 -619 -31 5 281 311 -11 417 457 -19 418 -462 -22	350 292 18 262 -278 -4 243 -224 4 1 15 L	11 2008 12 432 13 261 14 323 15 88	-2 25 -468 -15 91 31 322 Ø -169 -11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	429 416 5 8 -58 -138 -13 1 286 -267 5 2 -83 188 -18 3 4 1 9 L 5 6 139 118 3 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	314 -226 29 -8 599 613 -7 -7 243 181 17 -6 436 -396 17 -5 272 -223 14 -4 327 329 8 -3 171 4 18 -2 541 -552 -5 -1	116 - 1073 1 284 - 346 - 19 216 1807 7 321 349 - 9 272 - 219 13 327 - 3073 7 3207 262 16 316 205 28	2 - Ø 445 1 389 2 594 3 2Ø1 4 617 5 249	13 L -393 23 -314 30 609 -8 112 19 -609 4 -79 37
-4 232 -257 -11 -17 -3 534 5287 12 -16 -2 153 114 11 -15 -1 7287 -722 -1 -14 1 18/587 18/13 387 -13 2 149 32 21 -12	368 -342 9 8 -130 -38 -11 9 397 315 30 10 -1000 24 -7 11 481 -453 13 12 -52 -31 -2	315 321 -2 6 261 -249 3 7 2000 -152 10 8 229 211 4 9 -47 71 -4	147 42 11 8 378 391 -5 1 -128 -13 -8 123 -168 -5 1 13 L 8	343 -310 10 296 -182 26 2 -16 L 254 184 15	6 576 7 138 8 5ø4 9 146 1ø 546 11 4ø5	625 -27 -23 13 -538 -13 63 11 578 -16 -446 -18
3 10/54-10/07 38 -11 4 733 715 16 -10/ 5 647 627 17 -9 6 50/3 -50/8 -3 -8 7 393 -418 -13 -7 9 422 449 -9 -6	351 342 3 127 -127 8 569 -562 3 -16 468 441 18 -15 727 737 -8 -14 258 -262 -1 -13	1 11 L -14 168 157 1 -13 260 236 6 -12 363 -345 6 -11 193 -159 7 -10	266 -244 5 2 2407 199 9 3 327 288 11 4 258 -188 16 5 332 -319 4 5	449 -335 39 313 -22 48 362 338 8 2107 -48 22 377 -337 13 193 -25 19	12 436 13 317 14 316 15 39Ø 16 149	-442 -2 328 -3 314 Ø -352 13 -184 -6
9 206 243 -12 -5 10 300 -285 5 -4 11 359 -338 8 -3 12 441 435 2 -2 13 162 125 6 -1	542 -574 -20 -12 278 244 13 -11 329 293 16 -10 552 -538 8 -9 281 -206 28 -8	3800 383 -1 -9 2009 158 11 -8 473 -468 2 -7 223 -134 21 -6 635 685 -37 -5	3800 301 0 7 213 252 -10 8 331 -394 -25 9 248 -259 -3 10 443 452 -4	406 377 10 220 -59 23 330 -312 5 297 262 9	2 - Ø 767 1 359 2 812	12 L -766 Ø 291 28 816 -3
14 372 -386 -5 19 15 131 -17 9 1 16 194 218 -3 2 1 8 L 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	143 6 15 -4 564 -579 -8 -3 242 218 7 -2 6Ø2 632 -17 -1 218 -2Ø7 3 Ø 516 -521 -2 1	329 -320 2 329 -320 3 247 -230 4 87 358 363 -1 1 194 -46 22 2 487 -459 12 3	2 -15 L 249 -98 28 498 -515 -7 260 106 31 405 383 8	4 553 5 429 6 5ØØ 7 455 8 584 9 4Ø6	$\begin{array}{cccc} -601 & -26 \\ 391 & 18 \\ 549 & -28 \\ -477 & -11 \\ -618 & -19 \\ 397 & 3 \\ \end{array}$
-18 260 223 9 6 -17 297 -223 20 7 -16 2107 -198 2 8 -15 320 281 13 9 -14 -75 172 -25 10 -13 320 4 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128 179 -12 2 478 467 1 3 486 -333 31 4 485 -351 23 5 366 368 8 6 335 348 -5	191 88 17 4 442 448 -7 5 221 -79 24 6 321 -286 107 7 159 149 1 8	215 -164 11 326 -266 19 293 277 5 299 255 13 337 -285 16 228 -167 13	1Ø 345 11 484 12 217 13 417 14 273 15 453	366 -9 -533 -25 -278 -19 443 -11 255 5 -486 -14
-12 280 -291 -4 12 -11 478 448 15 13 -10 171 174 07 14 -9 795 -815 -16 -8 121 26 11 -7 901 909 -5	295 228 18 5 18 -177 -17 6 294 -225 17 7 1 18 L 9	406 - 397 3 387 - 346 16 206 261 - 15 - 12 142 154 -2 - 11 316 - 291 7 - 10 -123 - 41 - 10 - 9	1 14 L 19 11 266 186 17 12 298 -283 4 13 184 -60 16 285 303 -5	299 347 -16 251 21Ø 9 396 -426 -11 17Ø -128 6	16 76 17 385 2 -	-63 1 381 1 11 L
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	369 -327 13 11 -107 65 -9 249 264 -4 138 -136 Ø 416 -383 13 -15 212 245 -9 -14	277 294 -4 -8 -7 1 12 L -6 -5 178 94 18 -4 385 -384 8 -3	200 100 15 355 -385 -11 8 240 -115 24 1 376 434 -23 3 223 -132 18 4 483 -482 9 5	3#3 -256 14 36# -352 2 365 279 3# 439 -418 # 247 -259 -3	1 578 2 459 3 786 4 455 5 578 6 381	556 8 431 14 -698 6 -456 Ø 628 -31 259 16
1 536 536 Ø -11 2 563 -516 33 -10 3 469 -454 8 -9 4 717 714 2 -8 5 556 578 -14 -7	321 328 -2 -13 258 -251 2 -12 433 -442 -4 -11 421 391 14 -16 308 337 -12 -9	43 101 -5 -2 425 387 14 -1 -84 -68 -7 0 424 -429 -2 1 228 208 5 2	283 173 27 6 416 378 14 7 218 -85 22 8 395 -311 26 9 215 134 15 1Ø	373 414 -17 155 41 14 5Ø7 -52Ø -6 22Ø -67 26 581 58Ø Ø	7 564 8 277 9 725 1Ø 143 11 613	-587 -13 -216 21 746 -16 9 15 -6Ø7 3

12 13 14 15 16 17 18	76 13 488 515 216 -178 426 -418 164 192 458 424 24Ø -165	4 -13 9 3 -5 13 15	6 7 9 1Ø 11 12 13	926 -884 263 -182 79Ø 738 159 -3Ø 579 -579 1Ø8 -136 839 819 -97 -6Ø	36 31 44 21 0 -5 15 -10	18 19 2ø 1	158 -167 357 283 -77 8 2 -5 L 1510/1493 647 -660/	-1 24 -3 10 -15	6 1Ø 11 12 13 14 15 16	3072 313 241 256 648 644 418 -394 496 -497 578 577 -96 117 505 -492	-7 -19 -7 -19 3 -17 13 -10 8^{0} -19 1 -19 -18 -12 6 -12	240 -141 328 68 456 183 462 384	-184 32 254 -116 -425 248 423 -4ØØ	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-183 222 -154 354 -124 476 -158 351	-87 212 76 -302 -32 453 28 -373	-24 2 -19 19 -12 11 -22 -1Ø
1 3 5 6 7 8 9 1 Ø 1 1 1 2 3 5 6 7 8 9 9 1 1 1 1 2 3 5 6 7 8 9 9 1 Ø 8 1 1 1 1 2 3 5 6 7 8 9 1 1 1 1 1 2 1 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 -10 L 276 -113 274 82 545 -514 1011 1017 251 60 737 -751 136 96 458 500 334 -328 506 506 358 395 582 566 371 -389 290 -307 325 339 305 264 314 -356 166 -119	49 54 19 -46 -11 7 -24 87 -17 -6 5 12 -14 7	14 15 16 17 18 19 20 12 34 56 78 9 10	392 - 420 138 76 391 391 78 -190 226 -201 190 201 194 2 -7 L 878 843 932 880 725 -710 258 -200 715 645 459 405 1113-105 459 734 107 -55 734	- 13 9 7 - 19 6 - 12 1 32 47 14 28 67 37 44 22 19 38	2 3 4 5 6 7 8 9 9 1 1 1 2 3 4 5 6 7 8 9 9 1 1 1 2 3 4 5 6 7 8 9 9 1 1 1 2 3 4 5 6 7 8 9 9 2 1 1 2 3 4 5 6 7 8 9 9 2 1 1 2 5 6 1 7 8 9 9 2 1 1 2 5 6 1 7 1 8 9 9 2 1 1 2 5 6 1 7 1 8 9 9 2 1 1 1 2 5 6 1 1 1 1 1 2 5 6 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-7 126 159 76 45 -159 -25 -8 -18 -13 -3 13 -8 Ø	17 18 19 20 5 5 6 7 9 10 11 12 13 14 15 16 17 18	121 -137 375 331 33 114 367 -305 2 -2 L 224 63 178 -338 449 455 481 481 793 738 151 161 759 -744 -183 94 304 307 -145 32 461 -429 -63 7 407 368	-2 -1 16 -1 17 17 19 1 19 1	$\begin{array}{c} -88\\ y \ 429\\ y \ 262\\ z \ 653\\ z \ 148\\ z \ -148\\ z \ -148$	-91 439 255 -648 -2Ø2 488 -2Ø2 488 -2Ø2 488 -27 -28 47 2 L -194 132 219 -218	-14 -11 -6 -19 3 -9 4 97 -25 2 -26 3 -24 -24 -24 6 23 7 -6 9 6 9 -12 187 -11 11 14 15 -8 16 3 17 -7 18	-185 756 513 123# 126 1298 -111 -131 442 933 -11# 555 -2# 392 314 165 294 241 243	12 722 -634 1260 -234 1260 -234 18 67 923 -67 923 -67 923 -67 923 -67 923 -218 267 -284	-33 29 -157 -22 -511 -275 -277 -87 -14 -162 -33 -138 -118 -138 -138 -11
Ø 1 2 3 4 5 6 7 8 9 1 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 1 2 3 4 5 7 8 9 1 1 1 1 1 2 3 4 5 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 -9 L 322 244 908 866 411 -319 1116-1067 327 281 489 442 314 -268 631 -575 544 498 433 -575 544 498 433 -328 434 -441 574 566 338 304 105 -249 486 453 391 -366 88 -4 2 -8 L	35 35 35 32 22 21 47 -5 -5 -3 5 12 -35 15 1 9 4	111 12 13 14 15 16 17 18 28 12 34 56 78 99 101	507 492 718 693 385 - 408 413 -414 334 373 317 369 357 -349 178 -183 235 231 -73 143 2 -6 L 1409 1373 1107 -19 1334 -1340 370 375 1346 1234 394 -347 1031 -882 453 471 716 154 -161 898 -874 644 605	28 -11 0 -17 3 -1 0 -17 3 -1 0 -17 -14 -14 -14 -3 -4 -3 -4 -3 -1 -12 -12 -12 -14 -12 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -14 -15 -15 -15 -15 -15 -15 -15 -15	Ø 1 2 3 4 5 6 7 8 1 1 1 2 5 6 7 8 1 1 1 2 5 1 1 1 2 5 1 1 2 2 1 1 2 2 1 1 2 2 3 4 5 6 7 8 1 1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 -4 L 10/68 1132 718 -70/9 1443-1357 1481 1352 -68 160 931 -873 149 59 800 830 149 59 800 830 149 59 800 830 16 907 896 354 -335 888 -888 309 355 384 411 388 -827 234 -287 267 207 247 278 -242 143 -169 2 -3 L	- 57 58 583 - 40 56 25 47 1 99 07 - 13 - 18 - 17 214 94 - 4	19 2Ø 11 12 13 14 15 16 17 2Ø 11 20 11 20 11 20 11 12 13 14 15 16 17	-1005 -81 267 -255 2 -1 L -113 84 731 -732 213 289 512 527 113 -176 352 -378 373 366 1007 175 234 -251 145 -117 2 07 L 323 -352 383 -409 328 315 4107 426 4307 -4107 134 -174 428	-11 -123 -11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 % 6 2 18 - 3159 682 1 # 52 - 184 2 218 - 219 - 221 - 199 - 221 - 154 - 939 - 289 - 682 - 188 - 188 - 289 - 682 - 289 - 682 - 288 - 289 - 682 - 288 - 2	$\begin{array}{c} -2 & 19 \\ -22 \\ 19 \\ -34 \\ -34 \\ -57 \\ -18 \\ -15 \\ -17 \\ -59 \\ -16 \\ -18 \\ -15 \\ -116 \\ -18 \\ -12 \\ -159 \\ -11 \\ -14 \\ -42 \\ -159 \\ -11 \\ -14 \\ -42 \\ -159 \\ -11 \\ -14 \\ -42 \\ -159 \\ -11 \\ -14 \\ -53 \\ -16 \\ -18 \\ -12 \\ -16 \\ -18 \\ -12 \\ -16 \\ -18 \\ -12 \\ -16 \\ -18 \\ -12 \\ -16 \\ -18 \\ -12 \\ -16 \\ -18 \\ -12 \\ -16 \\ -18 \\ -10$	-131 2 46 3#2 -187 3152 448 124 48 124 48 124 48 397 361 214 465 465 7#8 202 -116 1#16 1#16 1#275 63	- 1005 4 L 666 - 548 2366 - 348 218 - 3935 221 - 731 - 731 - 7327 1194 - 111 3259	-15 -18 -26 -12 -234 -355 -257 -257
Ø 1 2 3 4	181 64 752 69Ø 7Ø5 -638 876 -889 893 87Ø 74Ø 68Ø	28 57 62 -12 2Ø 55	12 13 14 15 16	524 49Ø 671 -652 511 -522 619 623 136 263 26Ø -288	2Ø 15 -5 -2 -36	1 2 3 4 5	542 -569 806 -779 416 -294 2228 1999 662 -591 639 -587	-32 29 88 1Ø7 77 57	18 19 2Ø	-136 1Ø3 264 -279 -153 -15 2 1 L	-19 17 -4 18 -1'3 19	289 74 133 2	322 -111 -211 3 L	-11 3 -4 4 -14 5 6 8	671 94Ø 1Ø28 671 355 128	-72Ø 921 1Ø34 -66Ø 376	-54 17 -5 11 -12 -8

10 11 12 13	234 -267 -151 -39 451 451 126 133	-12 -11 -21 -100 00 -9 -1 -8 -15 -7	427 438 132 -245 664 -655 134 92	-5 12 -35 13 7 14 8 15	92 183 297 -3Ø7 -1Ø5 -1Ø6 197 177	$ \begin{array}{cccc} -16 & \cancel{0} \\ -3 & 1 \\ -13 & 2 \\ 4 & 3 \\ \end{array} $	223 284 553 -573 -7Ø 73 29Ø 255	$ \begin{array}{cccc} -24 & -3 \\ -11 & -2 \\ -8 & -1 \\ 13 & \emptyset \\ 19 & 1 \end{array} $	573 -618 213 156 452 428 276 -269	-26 4 14 5 11 6 2	327 - 388 275 175 299 388	6 23 -2
15 16 17	-108 -22 338 320 90 -26 295 -241	$ \begin{array}{r} -8 & -6 \\ 6 & -5 \\ 4 & -4 \\ 14 & -3 \end{array} $	651 -632 7Ø8 -726 885 878 782 797	17 -17 6 -18 -14 -17	2 8 L -162 -121 297 -241	-23 7 15 8	5%6 - 48% -49 -34 434 437 131 -87	13 2 -2 3 -1 4	123 92 531 49Ø 168 -211 359 -366	4 20 -10 -10 -9 -2 -8	257 243 214 17Ø 396 -327	3 8 23
-19	2 5 L	-2 -1 1	813 -855 175 -206 420 408 940 -929	-41 - 16 -12 - 15 7 - 14 16 - 13	167 154 192 194 175 -22Ø 2Ø7 -231	2 9 Ø 1Ø -11 11 -7 12	415 -392 217 143 334 29Ø	9 6 16 7 14 8	312 331 229 173 442 -4Ø6 229 -125	-6 -7 13 -6 14 -5	117 -79 347 327 155 -4	4 6 13
-18 -17 -16	2018 246 253 -199 2013 -278	-9 3 13 4 -22 5	122 -59 114Ø 1127 -84 Ø 855 -839	11 - 12 10 - 11 -6 - 10 22 - 9	431 393 -159 88 37Ø -376	17 13 -27 -2	299 - 29Ø 2 1Ø L	2 1.0	257 241 2 12 L	4 -3 -2 -1	157 -19 472 448 252 -43	13 9 32
-14 -13 -12	51 122 392 -357 124 -216	-9 7 15 8 -25 9	185 205 278 269 -106 -90	-6 -8 3 -7 -16 -6	741 728 1Ø4 -124 672 -672	10 - 16 -3 - 15 0 - 13	257 268 126 4 189 126 278 256	-2 -14 9 -13 11 -12	119 -36 327 313 118 47	6 1 4 2 6 3	12Ø 141 318 278 2Ø2 -156	-3 11 8
-10/-9	-67 - 101 899 - 934 144 - 141 1095 1035	-13 11 -31 12 Ø 13	39 -20 577 540 151 -185 293 -269	19 -4 19 -3 -7 -2 7 -1	864 89Ø 319 -272 437 -438	-22 -11 21 -10 0 -9	102 -154 371 -356 146 155 368 361	$-8 - 10^{-9}$ -1 - 8 3 - 7	1%4 51 424 431 98 -54 455 -475	-3 -3 4 10 -9 1	3 -16 L 287 -2 <i>0</i> 4 316 -117	28
-6 -5 -4	366 -387 841 -851 194 2Ø1 6Ø4 626	-13 15 -9 16 -3 -24	262 23Ø 122 148 2 7 1	8 Ø -3 1 2	693 692 455 -42Ø 765 -745 346 366	1 -7 19 -6 16 -5 -9 -4	227 -194 282 -285 437 456 128 139	9 -6 -1 -5 -9 -4 -2 -3	236 202 278 335 269 -292 370 -431	9 2 -2Ø 3 -8 4 -27 5	39Ø 419 331 147 524 -485 325 -1Ø8	-1Ø 43 16
-2 -1 Ø	-82 51 331 -362 295 353	-11 -21 -18 -38 -17 -22 -16	-89 15 387 -345 36 71	-4 5 14 6 -2 7	647 64Ø 546 -538 26Ø -222 564 553	5 -3 4 -2 13 -1 6	416 -432 165 -191 612 6Ø2 169 13Ø	-8 -2 -7 -1 6 Ø	342 37Ø 4Ø3 4Ø8 321 -29Ø 2Ø7 -179	-11 6 -2 7 11 9 6 10	346 38Ø 27Ø -73 294 151 397 4Ø4	-12 35 32 -2
2 3 4 5	711 -7Ø6 678 -66Ø 796 786 3Ø7 356	4 -15 17 -14 9 -13 -28 -12	278 238 1 <i>Ø</i> 4 -119 342 -317 197 175	12 8 -2 9 9 1Ø 6 11	3Ø5 313 532 -517 -16Ø -177 396 37Ø	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	521 -493 83 -54 319 296 239 -214	15 2 3 3 9 4 7 5	44Ø 382 165 18 419 -424 2Ø7 -114	24 11 16 -1 17	323 -179 3 -15 L	34
6 7 8 9	678 -679 547 -539 747 73Ø 122 161		258 272 228 -243 561 -575 819 812	-5 12 -5 13 -8 14 5	-1Ø2 -55 296 -323 -84 26	-8 5 -8 6 -4 7 8	437 -452 288 259 4Ø6 431 2Ø2 -159	-7 6 1Ø 7 -11 8 9 9	237 254 154 11Ø 274 -262 -115 46	-4 Ø 6 1 3 2 -8 3	432 -482 241 45 414 379 384 -213	11 31 13 26
1Ø 11 12 13	513 -533 -146 46 537 535 -95 -9Ø	$ \begin{array}{rrrrr} -13 & -7 \\ -19 & -6 \\ 1 & -5 \\ -12 & -4 \end{array} $	388 373 686 -684 355 -348 582 612	8 1 4 -17 -25 -16	2 9 L -111 -111 267 219	9 1Ø -14 11 12 12	288 -244 282 244 -99 120 150 -220	12 1Ø -14 -13 -12	2 13 L 154 -129	4 5 6 3 7	384 -4#4 312 191 334 297 214 -191	-7 33 12 5
14 15 16 17	333 -362 -74 1Ø2 264 218 153 -156	-11 -3 -10 -2 12 -1 0 0	274 299 87Ø -889 212 -13Ø 1Ø85 1Ø81	-12 -15 -17 -14 26 -13 2 -12	159 148 268 -285 -215 -64 351 361	2 -5 -36 -4 -15	2 11 L 186 -196	-11 -1ø -9 -2 -8	3Ø2 -282 225 2Ø3 288 248 294 -2Ø4	5 8 5 9 11 1ø 24 11	339 -260 343 296 307 322 445 -404	24 15 -5 16
-19	2 6 L 187 199	1 2 3 -2 4	219 17 712 -686 425 416 696 653	$\begin{array}{rrrr} 43 & -11 \\ 23 & -10 \\ 5 & -9 \\ 36 & -8 \end{array}$	-131 -86 434 -4Ø9 168 141 567 572	-18 -14 12 -13 6 -12 -2 -11	59 -223 296 288 241 223 461 -428	-26 -7 2 -6 4 -5 14 -4	324 -34Ø 317 231 356 349 39Ø -363	-5 12 25 13 2 14 1Ø	32Ø -245 328 335 -133 11Ø	21 -2 -16
-18 -17 -16 -15	193 158 324 -314 82 -1Ø1 333 347	6 5 3 6 -2 7 -5 8	546 -541 747 -743 396 38Ø 479 477	3 -7 3 -6 7 -5 1 -4	-81 5 428 -455 108 189 460 475	$ \begin{array}{rrrr} -5 & -1.0 \\ -1.4 & -9 \\ -1.9 & -8 \\ -8 & -7 \\ \end{array} $	179 -9Ø 358 346 163 89 411 -4Ø3	15 -3 4 -2 12 -1 3 g	206 -219 441 433 146 23 350 -359	-3 3 12 -3 1	3 -14 L 423 -373 353 34Ø	2.0
-14 -13 -12	-198 -9 514 -463 -162 92	-31 9 25 1Ø -29 11	337 -348 423 -397 458 465	-4 -3 12 -2 -3 -1	493 -53Ø 5Ø3 -513 556 542	-22 -6 -5 -5 8 -4	166 -72 6Ø8 628 75 -11	15 1 -11 2 4 3	247 -157 392 369 113 45	210 2 8 3 6 4	501 481 463 -436 376 -352	12

5	504 508	- 1	- 4	609 575	20				10	569 553	14			4	-172 -219	-189
6	2Ø7 95	21	5	624 6Ø3	14		3 -8 L		11	588 554	29	1	-132 -288	-132 6	315 -397	-62
7	488 -503	-7	6	750 -742	6	1.2		12.2	12	603 -595	7	3	-247 -80	-95 8	-108 42	-16
8	293 -234	18	8	769 746	18	ø	972 971	1	13	950 -921	22	5	413 -447	-34 10	270 -294	-11
9	460 473	-5	9	183 71	21	1	822 - 799	21	14	524 535	-6	6	1150 1016	102 11	583 -579	3
1Ø	182 1Ø9	13	1.0	394 -402	-3	2	859 -857	1	15	331 387	-25	7	-157 -79	-41 12	190 216	-8
11	377 -445	-28	11	162 -121	8	3	678 693	-14	16	361 - 363	ø	8	1105-1084	18 13	678 695	-14
12	206 32	23	12	569 601	-21	4	724 658	6.0	17	166 -220	-13	9	-158 3	-31 14	388 -421	-16
13	386 436	-19	13	123 -117	1	5	808 -729	/10	18	420 410	3	1.0	895 857	34 15	281 -289	-2
14	/5 -96	-2	14	542 -548	-2	5	3/8 -310	37	19	156 1	14	11	466 -441	15 16	462 451	5
15	361 - 393	-11	15	-159 64	-20	6	36 780	49	20	235 -25/	-5	12	425 -465	-24 17	169 197	-6
	2 12 1		10	116 -129	-10		719 - 659	52	21	-108 -90	-110	14	4/5 490	-9 19	307 - 328	- /
	3 -13 L		10	791 -767	5	19	172 -171	0		2 -5 1		15	221 -241	-9 20	242 221	- 5
a	285 - 225	24	10	301 -307	3	11	739 725	12		5 -5 L		16	363 -394	-14	242 231	2
1	517 480	18		3 -10 1		12	-128 93	-21	ø	284 -317	-21	17	475 502	-13	3 1 1	
2	412 297	46				13	512 -498	8	2	801 804	-3	18	219 211	1		
3	661 -691	-20	ø	197 128	18	14	-106 6	-9	3	2254 2089	76	19	330 -355	-8 -19	-248 49	-35
4	388 -322	27	1	352 291	28	15	520 519	ø	4	823 -740	8.0	20	143 -107	5 -18	246 197	11
5	577 643	-38	2	987 -967	16	16	207 -143	14	5	372 -335	26	21	329 272	15 -17	-152 -21	-15
6	235 175	16	4	973 948	20	17	309 -352	-16	6	69Ø 653	38			-16	300 -293	2
7	587 -6Ø1	-8	5	557 469	52	18	74 98	-2	7	218 164	23		3 -2 L	-15	-20 148	-15
8	163 86	13	6	778 -714	53	19	362 291	23	10	699 661	34	11.0	4.7% B.1.7	-14	386 383	1
9	550 583	-17	7	244 -112	36	2Ø	201 -211	-2	11	420 418	1	ø	653 -709	-66 -13	74 -122	-7
1.0	308 -289	6	8	687 669	14				12	/30 -716	12	1	276 433	-127 -12	362 -327	16
11	454 -490	-17	9	241 -221	24		3 -7 L		13	242 -314	-3.0	3	564 -572	-8 -11	-134 160	-39
12	245 195	13	1.0	627 -664	- 310		012 012	a	14	494 499	-2	5	191 315	-/8 -10	32/ 366	-20
13	334 435	-41	12	670 690	-6	1	520 -512	7	15	512 -542	-16	9	403 442	-19 -9	249 -229	-10
16	237 -330	-25	12	293 -296	-1	2	522 -535	-1	17	-145 37	-16	g	107 -212 904 772	30 -6	464 474	- 9
16	217 299	-22	14	395 -401	-2	3	918 909	8	18	497 489	7	11	425 -451	-16 -4	521 -583	-78
17	303 308	-1	15	294 330	-13	4	976 874	88	19	-108 -67	-10	12	-124 -183	-24 -2	218 358	-98
	0.00 0.00		16	445 424	9	5	1399-1252	95	2.0	358 -290	21	13	337 349	-5 Ø	-61 332	-148
	3 -12 L		17	367 -379	-4	6	95 -28	9	21	-159 68	-17	14	234 292	-22 1	44.8 562	-153
			18	262 -262	ø	7	691 615	7.0				15	573 -558	9 2	337 -388	-48
ø	232 79	33	19	221 218	ø	8	53 66	-1		3 -4 L		16	-91 -32	-7 3	1246-1250	-2
1	624 640	-9		1.011.011		9	980 -918	51	1.1		- 12	17	491 473	8 4	751 789	-42
2	213 -162	14		3 -9 L		10	347 321	13	ø	111 -287	-91	18	-114 -25	-9 5	892 957	-66
3	696 -684	8			11.21	11	793 758	29	1	551 -629	-97	19	355 -328	9 6	514 -510	3
4	398 317	36	ø	824 818	5	12	207 -244	-13	2	439 449	-11	210	-147 71	-16 7	437 -461	-21
5	723 766	-34	1	224 -38	43	13	643 -680	-26	3	1107 1046	50			8	8/10 88/	-15
6	232 -115	29	2	931 -929		14	464 489	-13	4	1245-1000	53		3 -1 L	10	452 438	-12
6	756 -771	-11	3	287 188	6.7	13	345 36/	-10	5	1155 1070	62	a	1262 1244	12 11	204 -224	-14
a	203 230 451 460	- 4	5	349 -262	37	18	226 280	-16	7	389 419	-23	10	82 -181	-27 12	302 328	-11
11	451 460	-19	6	1063-1017	36	19	215 160	11	Ŕ	1218-1093	91	11	712 -714	-1 13	211 286	-28
12	483 509	-12	7	415 370	25	20	195 -243	-11	9	81 136	-13	12	-154 92	-38 14	550 -532	9
13	390 384	2	8	642 597	34	2.0	190 240		11	-158 32	-26	13	512 543	-18 15	-67 -53	-5
14	514 -508	2	9	154 -53	17		3 -6 L		12	1042-1020	17	14	-118 -19	-10/ 16	474 476	Ø
15	183 -195	-2	10	540 -557	-9				13	190 247	-20	15	394 -412	-9 17	-99 78	-10
16	461 473	-5	11	485 497	-6	ø	181 116	23	14	421 468	-26	16	381 377	1 18	340 -351	-4
17	254 154	21	12	646 663	-11	1	849 -873	-24	15	332 -355	-10	17	316 300	5 19	-49 -10	-1
18	400 -420	-7	13	476 -490	- 7	2	-96 42	-14	16	466 -471	-2	18	205 -234	-7		
	5751 878		14	369 -409	-19	3	1469 1345	77	17	31Ø 369	-24	19	277 -284	-2	3 2 L	
	3 -11 L		15	584 598	-7	4	173 147	9	18	345 325	7	2Ø	-35 176	-18	10 100	
			16	39 140	-12	5	1508-1330	106	19	193 -173	4			-19	-13 196	-6
Ø	346 310	16	17	456 -437	8	6	559 535	24	20	246 -238	1		3 10 L	-18	150 1/1	-3
1	483 494	-6	18	20 -99	-5	6	962 884	68	21	18/ 215	- 5	0	-224 -146	-1/	207 -200	3
2	338 - 302	16	20	265 303	-11	8	-83 -100	-19		2 - 2 1		2	-224 -146	-90 -16	243 253	- 2
3	140 -148	10	6.10	-147 310	-13	7	140 -0/0	33		3 -3 L		6	140 102	07 -13	243 233	- 5

				-			410	100	2	1.7	70	~	2	-			-		100		
-14	2103 237	-110 1	5 2103	3.05	-33	- 1	4110	4100	2	-1/	-/6	10	- 3	/	519	513	3	1	-199	-83	-28
-13	277 -254	8 1	5 249	265	- 4	ø	813	829	-16	-16	3Ø3	236	19	8	519	-558	-21	2	288	287	ø
-12	247 -341	-41 1	280	-315	-11	1	-15	-75	-6	-15	-94	15	- 5	9	166	-168	1	3	-98	-66	-18
1.1	202 201	12 11	0 05	-122		2	755	-760	-11	-14	400	- 222	20	10	204	407	- 1 9		E 22	- 521	a
-11	292 201	12 1	5 65	-123	- 4	6	/ 33	-/00	-11	-14	400	-332	20	1.0	304	407	-10	2	522	-021	0
-1Ø	-67 92	-12				3	390	424	-22	-13	-146	111	-24	11	-33	9	Ø	5	-49	11	-1
- 9	435 -442	- 4	3	4 L		4	781	763	16	-12	413	380	14	12	378	-345	12	6	438	430	3
_ 0	-161 6	-28	-			5	731	-732	- 1	-11	281	-247	11	13	175	- 95	12	7	217	-172	107
-8	-101 0	-20					131	132	-	1.0	201	247	11	1.5	175	200	12	~	250	100	10
-6	141 -175	-12 -11	5 -1.02	-31	-ь	ь	622	- 918	3	-110	4/5	-45/	9	14	258	266	-2	в	2510	-188	15
- 4	99 231	-54 -1	7 369	-316	18	7	73Ø	7ØØ	25	-9	469	468	1					9	211	289	-22
- 2	12 -164	-37 -11	-157	29	-17	8	78	-80	Ø	-8	307	281	10		3	9 1		10	185	248	-15
	100 -100	-70 -11	221	220	- 2	ŏ	229	-797	-20	- 7	299	- 221	-14					11	166	-159	1
10	-190 -100	-//0 -1	5 331	333	-2		107	-203	20	-	250	551	14			150		11	100	133	1
2	203 -284	-49 -1	-109	-121	-19	1.0	13/	-166	- 6	- 6	564	-553	ь	-16	-82	153	-1/		1		
3	1008-1048	-38 -1	3 344	-351	-3	11	552	54Ø	7	- 5	792	781	9	-15	239	-218	5		3 1	1 L	
4	1384 1416	-22 -1	7 76	148	-12	12	-111	109	-18	- 4	332	333	Ø	-14	41	-93	-4				
	1004 1410	-20 -1	266	210	-22	12	400	- 420	-10	- 2	747	-766	-20	-12	202	242	-10	-14	122	167	-6
5	666 672	-20 -1	200	510	-23	13	400	-430	-10	- 3	743	-700	-20	-13	202	243	-10	- 1 -	166	107	- 0
6	589 -590	Ø -1)	0 1/3	-231	-18	14	-144	-15	-14	-2	338	-386	15	-12	143	910	/	-13	310.8	239	18
7	576 -578	-2 -	9 473	-490	-1Ø	15	258	252	1	- 1	751	735	13	-11	46Ø	-445	6	-12	268	-210	14
q	88 140	-11 -1	3 3 9 3	442	-29	16	104	-126	-2	Ø	325	302	11	-107	-131	27	-13	-11	234	-186	11
10	040 045		7 400	Ego	- 0	17	127	-102	-11	ĩ	772	-752	17		400	410	a	-19	207	200	
1.10	849 -845	3 -	470	506	- 5	1 /	121	-193	-11	-	113	-/33	17	- ,	400	410	10	-10	201	200	-
11	-100 -51	-12 -	5 138	-2108	-26					2	121	146	-5	~ 8	66	118	-/	-9	143	1/6	-6
12	845 857	-9 -	2 633	-681	-51		3	6 L		3	889	872	13	-7	396	-344	23	-8	45Ø	-394	23
13	-161 -15	-22 -	358	-412	-39					4	181	-163	5	- 6	247	229	5	-7	-108	-55	-18
1.4	E12 -E21		x 272	427	- 49	-10	261	-217	107	5	795	-764	17	- 5	420	447	- 9	-6	296	400	-5
14	512 -521		5 575	437		1 7	201	110	1.1	-	217	104	10		361	222	25		300	400	
15	-186 40	-28	1 111	1/8	-23	-1/	-/4	-118	-11	6	211	184	9	- 4	261	-322	-25	-5	- / 10	- 4.10	-4
16	37Ø 351	7	3 716	753	-38	-16	228	264	-1Ø	7	502	473	16	- 3	5.07	-527	-11	-4	382	-406	-10
17	-24 -126	-10	657	665	-7	-15	93	117	-3	8	378	-403	-12	-2	338	359	-10	-3	-127	-10	-12
10	202 -206	- 2	-141	- 25	-23	-14	369	- 767	2	q	477	-500	-16	-1	352	356	- 1	-2	478	500	-11
10	203 -290	- 5	-141	23	23	1.7	305	303	12		35.4	300	10		174	150		-	470	300	
19	-129 112	-16	9 901	-601	10	-13	-134	-22	-13	1.0	354	381	-11	10	4/4	-453	11	- 1	-62	-/9	-/
		ii in i	7 345	319	13	-12	435	397	18	11	327	287	14	1	276	-300	-9	ø	541	-548	-3
	3 3 1		125	107	3	-11	69	149	-13	12	129	-214	-18	2	382	342	18	1	25	74	-3
	0 0 2		1 4 9 4	-201	7	-10	667	-655	6	13	138	-188	- 9	3	197	169	5	2	410	424	- 6
				-391		-10	003	-035	0	1.5	150	100	,		107	100	5	5	410	924	
-18	-103 72	-9 1)	-134	-13/	-32	-9	-95	40	-9	14	165	180	- 3	-	3/10	-355	6	3	198	-203	-1
-17	280 -218	16 1	1 536	543	- 4	-8	668	678	- 8	15	-197	72	-26	5	87	-65	2	4	235	-228	1
-16	286 -158	10 1	2 158	185	- 6	-7	435	-433	1					6	362	340	9	5	281	231	14
-15	200 240	16 1	2 202	-361	-24	-6	738	-731	6		3	8 1		7	-131	38	-13	6	309	268	12
1.0	350 345	22 1	1113	100	17		410	445	- 21		•			à	ACE	-492	-12	7	212	-261	-12
-14	-151 84	-23 1	112	-180	-13	- 5	410	445	-21						403	-433	-13	-	212	-201	-13
-13	443 -416	13 1	5 318	289	9	-4	754	112	-16	-1/	-199	83	-21	9	-59	-15	-2	8	199	-263	-16
-12	-76 -166	-27 10	5 -148	45	-15	-3	438	-476	-25	-16	246	198	11	10	462	473	-4	9	281	276	1
-11	382 406	-12 1	7 291	-253	10	-2	530	-516	9	-15	162	-138	4	11	-141	-1	-12	10	57	140	-8
10	E4 -112	0 1		- 47	- 2	- 1	745	744	a.	-14	294	-227	10	12	200	-200	2				-
-10	54 -113	-0 1	-05	-4/	- 3	- 1	743		10		254	217	15	16	303	-233					
-9	373 -380	-3		1232		ø	586	597	-10	-13	252	213	1.0	13	-160	53	-16		3 1	2 L	
- 8	169 211	-14	3	5 L		1	935	-9Ø9	22	-12	147	186	-8								
- 6	494 -438	-28				2	190	-142	15	-11	425	-427	-1		3 1	Ø L		-12	359	-335	7
- 4	534 559	-27 -11	174	-136	6	2	595	598	-2	-10	127	-33	11		1.1.1	-		-11	52	-30	1
7	334 333	46 1	3 3 4 4	130	10		324	202	10		507	Eac	1	1.5	200	257	10	10	221	200	;
- 1	-198 - 61	-46 -1	3.09	-246	18		324	293	15	- 9	5.03	306	-1	-15	296	-25/	1.0	-110	331	303	
ø	457 502	-45 -10	5 -33	167	-18	5	417	-4.08	5	- 8	-79	3	-5	-14	174	5	16	~ 9	178	7	18
1	279 365	-61 -1	5 224	265	-12	6	202	-184	5	- 7	377	-398	-11	-13	350	323	9	-8	350	-331	6
2	670 -708	-42 -1	346	-331	6	7	515	539	-14	-6	- 33	-132	-15	-12	-191	-22	-6	-7	144	19	12
2	407 515	30 1	200	301	10	0	27	02	- 7	Ē	620	662	- 25	-11	4 9 1	-260	16	- 6	226	205	12
3	48/ -515	-310 -1.	5 200	-200	19	0	-21	36	- /	- 5	020	002	-35	-11	4.01	-300	10	-0	320	205	13
4	743 769	-26 -1	5Ø3	481	11	9	/53	-750	2	- 4	102	67	5	-10	132	167	-6	-5	164	-153	2
5	-39 143	-26 -1	110	134	-4	10	-47	-38	-2	- 3	656	-674	-14	-9	259	222	11	-4	445	-478	-14
6	945 -926	16 -11	392	-491	- 4	11	521	506	7	-2	-182	38	-18	-8	-31	-63	-3	-3	2.06	256	-14
7	46 146	-29 -1	210	- 265	-17	12	66	-190	-22	-1	985	992	-6	-7	186	-295	- 4	-2	252	321	-23
1	40 140	-20 -	219	-205	-1/	12	00	190	- 22	- 1	505	100	-0		100	203	4		247	222	2.5
8	954 928	21 -	580	583	-2	13	332	-309	8	N	4.03	-423	-11	-6	291	284	2	- 1	241	-232	
9	-118 57	-16 -	7 140	153	- 3	14	125	149	- 3	1	7Ø1	-71Ø	-7	-5	295	262	11	ø	235	-164	17
10	455 -435	11 -	5 817	-799	15	15	300	246	15	2	213	2.07	1	-4	474	-473	ø	1	277	278	ø
11	-192 -12	- 33 -	107	-164	-16	16	65	-145	- 9	2	A 1 0	417	-7	- 3	416	-392	11	2	391	249	18
1.7	FOI F12	55	1 0 2 0	040	10	10	05	143	5		103	-247	- 21	- 2	613	CE2	- 22	2	100	-254	-16
12	501 513	-6 -	829	849	~18					4	182	-24/	-21	- 2	013	653	-23	3	109	204	-10
13	285 -271	5 -	3 95	-163	-19		3	/ L		5	533	-534	ø	- 1	184	88	18	4	344	-298	23
14	157 -185	-14 -	586	-617	- 31					6	483	471	6	Ø	392	-350	18	5	272	264	2

6 7 8	226 42 245 -251 -130 79	26 -1 -12	Ø 1 2	233 11 335 292 117 -47	3Ø 14 7	2 4 5	535 -592 7Ø3 771 212 37	-33 -55 32	a	4 -9 L		11 13 14	-109 -44 341 347 488 508	-12 -2 -10	Ø 1	117Ø-1196 454 519	-21
	3 13 L		4	222 78	25	7	369 - 282	35	1	691 -687	3	16	433 -489	-28	3	1016 -985	28
			5	448 422	1Ø	8	699 725	-2Ø	2	181 -7	29	17	192 277	-25	4	734 -730	- 4
-10	279 276	1	6	319 -229	26	9	363 -316	19	4	208 72	33	18	263 299	-11	5	734 668	67
-9	240 -111	23	7	4/5 -450	11	10	624 -659	-20	5	1014 -966	63	19	229 -277	-13	6	662 590	72
-8	360 - 341	15	9	360 207 513 A99	34	12	390 399 A21 500	- 29	7	144 63	19	210	2107 - 21010	1	6	55 -126	-10
-6	161 232	-15	10	343 -327	5	13	359 -398	-16	8	196 -44	30		4 -6 1		9	1391 1294	63
-5	263 -223	1.0	11	384 -371	4	14	338 -342	- 1	9	987 -950	29				10	243 246	- 1
- 4	254 -216	9	12	290 275	4	15	575 577	- 1	10	389 373	8	Ø	537 -543	-5	11	1008-1006	1
- 3	3Ø5 318	- 4	13	219 202	3	16	218 205	3	11	683 685	- 1	1	247 -272	-14	12	342 386	-23
-2	264 270	-1	14	389 -442	-19	17	473 -477	-1	12	235 -308	-29	2	1464 1457	4	13	150 224	-22
~1	434 -401	12		4		18	82 -43	2	13	511 -565	-31	3	211 -202	4	14	45 -186	-26
1	249 -191	13		4 -14 L			4 -11 1		14	276 252	3	4	254 - 259	-3	17	365 -550	-18
2	191 -6	29	Ø	295 226	28				16	450 -485	-16	6	1316 1200	79	18	103 -137	-5
3	266 -197	16	1	403 426	-9	ø	510 524	- 7	17	196 -267	-19	7	295 -277	9	19	318 -373	-20
4	147 59	9	2	359 -313	17	1	271 -218	19	18	440 403	15	8	1306-1150	106	28	180 265	-20
5	345 308	11	3	337 -319	6	2	661 -689	-23	19	116 44	6	9	443 386	34	21	139 209	-12
	2 14 1		4	465 474	-4	3	481 512	-18	2.0	299 -341	-13	11	420 -404	8		4 . 2 . 1	
	3 14 L		5	565 -592	-14	5	544 -540	-14		A -8 I		12	258 332	-32		4 -3 L	
-7	263 259	ø	7	433 -445	-5	6	492 -480	6		4 0 1		14	466 467	Ø		267 -355	-64
-6	234 115	21	8	467 486	- 8	7	551 564	- 8	ø	312 -268	21	15	341 -361	- 8	1	268 316	-33
- 5	419 -384	12	9	259 91	35	8	446 425	11	1	660 -651	9	16	258 -305	-17	2	68 -209	-52
- 4	184 -3Ø	17	10	400 -419	-8	9	314 -334	-8	2	406 394	7	17	511 534	-11	3	578 -552	28
- 3	399 356	14	11	207 -75	22	10	163 -123	8	3	952 944	42	18	105 174	-12	- 2	492 -463	32
- 2	185 -/	18	12	215 95	21	12	120 54	- 6	5	783 -736 550 -530	43	20	198 -108	15	5	-164 137	-69
ø	219 30	24	14	385 -402	-6	13	539 -535	2	6	882 808	63	21	361 319	13	7	889 -816	66
ĩ	333 291	12	15	146 30	11	14	210 -173	9	7	521 459	39		1000 1000 100	210.0	8	-136 -52	-26
			16	368 417	-17	15	636 637	ø	8	691 -658	29		4 -5 L		9	988 942	39
	4 -17 L			· · · · · · · · · · · · · · · · · · ·		16	-77 -92	-9	9	454 -437	9				1Ø	327 -355	-16
1.	335 304	12		4 -13 L		17	424 -472	-20	1.0	362 340	1.0	10	1216-1305	-710	11	514 -558	-24
5	461 464	-1	ø	447 444	1	19	365 400	-12	12	179 -466	7	2	980 963	16	13	533 544	-6
6	367 260	30	ĩ	378 4Ø3	-11		000 420		13	241 -222	6	3	508 -520	-12	14	242 -308	-27
7	424 -358	22	2	549 -568	-1Ø		4 - 1 <i>8</i> L		14	520 563	-24	4	356 -343	9	15	448 -491	-28
			3	366 - 340	1.0	1			15	-99 -29	- 8	5	290 288	1	16	527 557	-16
	4 -16 L		4	521 549	-15	ø	333 309	10	16	415 -441	-12	6	1309 1192	79	17	266 313	-17
a	220 -200	24	5	738 -/62	-18	1	b33 -b23 729 -722	6	19	-144 54	-16	0	149/-1356	84	18	354 -398	-1/
1	382 356	9	Ŕ	659 708	-32	3	632 632	Ø	19	241 -225	3	9	548 525	21	20	203 283	-21
ż	320 222	26	9	230 -75	31	4	747 752	- 4	20	348 -308	12	10	731 724	7	2~	200 200	- 11
3	422 -402	7	10	479 -523	-22	5	780 -751	24				11	660 -641	17		4 -2 L	
4	336 -170	42	11	26Ø 117	32	7	981 955	20		4 -7 L		12	367 -355	5			
5	510 484	11	12	509 500	4	8	139 111	5	a	210 250	22	13	470 474	-1	Ø	-223 144	-196
7	252 -15	-16	13	252 -250 ANA -394	10	107	-108 -26	-10	10	318 -356	-23	14	637 -675	-12	2	314 -402	- 5/
8	250 -2	33	15	248 259	-3	11	562 572	-6	2	780 803	-23	16	-191 -47	-31	3	169 -262	-51
9	459 460	ø	16	427 432	-2	12	-57 -67	-6	3	1016 976	34	17	527 565	-19	4	-117 124	-41
10	253 -85	29	17	262 -250	3	13	544 -566	-12	4	993 -916	65	18	-114 36	-9	5	343 377	-24
11	388 - 344	14		NY 111		14	330 273	21	5	606 -560	44	19	452 -430	9	6	555 -568	-13
12	264 119	27		4 -12 L		15	459 523	-32	6	1090 1020	56	20	-24 98	-5	7	859 -823	34
	4 -15 1		a	397 374	10	19	298 - 363	-23	p	1575-1422	23	21	25/ 319	-14	9	344 351	-4
	- 15 L		ĩ	188 -69	22	19	324 278	13	9	92 -2	8		4 -4 1		10	503 -521	-14

	E 2	0		~	750 000	76						
11	-53 -8/	-9		Ø	/59 829	-/6	1 1 1 1 1 1 1 1 1 1 1 1	1	803 -815	-11 -13	333 347	- 5
12	325 337	-5 -18	-127 -19	-9 1	351 - 390	-28	4 4 L	2	485 502	-11 -12	68 -84	-2
13	410 415	-2 -17	243 -289	8 2	913 -955	- 4 1		3	677 678	9 -11	467 -414	24
1.4	401 450	12 -16	150 40	17 2	500 610	21 10	222 100		6// 6/8	0 -11	40/ -414	24
14	401 -459	12 -16	-130 49	-1/ 3	550 610	-21 -18	223 -198	5 4	522 -510	8 -10	312 309	1
15	-58 -134	-16 -15	228 247	-5 4	1176 1174	1 -17	-123 -16	-9 5	351 -338	6 - 9	481 495	-7
16	447 472	-12 -14	-120 -76	-15 5	578 -599	-22 -16	228 218	4 6	-69 39	-5 -8	245 -227	6
17	67 94	-2 -13	350 -334	6 6	719 -729	-19 -15	-194 5	-7 7	250 210	- 22 - 7	205 204	ä
10	100 446	2 13	100 222	20 7	1170 1103	15 15	104 5	-/ /	256 310	-22 -1	303 - 304	10
18	438 -446	-3 -12	108 222	-29 /	11/9 1193	-11 -14	400 - 34/	21 8	553 -558	-3 -6	293 305	- 5
19	-167 51	-19 -11	393 437	-23 8	263 269	-2 -13	108 168	-11 9	379 - 371	3 -5	287 311	-10
28	274 283	-2 -10	-84 -149	-25 9	899 -890	7 -12	298 277	7 107	691 706	-11 -4	392 -416	-12
		- 9	402 -495	-57 10	392 -317	-7 -11	212 -254	-14 11	-114 102	-10 -2	COL CAE	10
			270 224	26 11	502 517	F 10	215 -254	-14 11	-114 103	-10 -3	621 -645	-10
	4 -1 L	- 8	2/10 324	-26 11	68/ 694	-5 -110	435 -492	-32 12	347 - 346	10 -2	668 690	-18
		-7	567 583	-15 12	193 244	-17 -9	39 157	-19 13	-183 3	-24 -1	197 225	-9
	297 412	-93 -6	927 -925	2 13	497 -528	-17 -8	258 290	-13 14	254 244	2 8	913 -917	- 3
ĩ	574 609	-10 -5	460 -487	-20 14	17 - 174	-22 -7	192 -227	-15 15	-110 -24	-7 1	170 60	10
-	100 000	40 5	567 507	20 15	100 170	EL C	102 227	-13 15	-110 -24	-/ 1	170 00	19
6	136 -286	-82 -4	56/ 593	-28 15	4910 4/9	5 -6	336 -352	-8 16	291 -231	16 2	766 729	29
3	1679-1779	-62 -3	329 427	-74 16	130 -111	3 -5	629 622	6 17	-147 21	-12 3	-97 77	-13
4	1460 1465	-3 -2	1125-1218	-81 17	368 -360	2 -4	626 626	ø		4	475 -463	6
5	1276 1212	45 -1	-165 -95	-50 19	-147 62	-15 -2	466 -524	- 12	4 6 1	Ē	-145 -41	10
5	12/0 1213	45 1	105 55	34 10	147 02	10 0	400 -524	-42	4 0 L	5	-145 -41	-19
ь	1243-1209	25 10	1091 1130	-34 19	152 214	-12 -2	58 -63	Ø	1.5.87 - 685	6	486 4/9	3
7	627 -639	-12 1	244 258	-7		-1	687 684	2 -17	181 135	7 7	153 -177	-5
8	969 970	Ø 2	1139-1248	-93	4 3 L	Ø	-160 -40	-33 -16	8.0 8.8	0 8	587 -629	-21
9	127 212	-29 2	421 451	-29	1.0.0	ĩ	799 -977	-37 -15	225 -222	a a	204 200	
10	705 -715	-0 4	905 1004	-10 -10	160 -140	2 2	-22 -637	3/ -13	127 -147	25 17	204 200	0
110	105 -115	-9 4	985 1004	-18 -18	160 -148	6 6	-23 -62	-4 -14	-12/ -14/	-25 10	264 312	-17
11	-107 -175	-40 5	501 -508	-8 -17	175 -110	100 3	659 674	-14 -13	347 341	2 11	-88 -124	-15
12	551 557	-3 6	631 -610	20 -16	233 199	8 4	-129 123	-34 -12	126 183	-12 12	157 -196	-8
13	-158 -21	-22 7	629 636	-7 -15	166 148	3 5	678 -662	14 -11	561 -529	12 12	176 100	- 4
13	-150 -21	10 0	702 700	F 14	202 207	3 5	450 442	14 -11	361 -336	12 13	1/0 190	
14	319 -355	-16 8	192 198	-5 -14	283 -287	-1 6	458 443	8 -10	-166 -18	-23 14	212 135	14
15	241 311	-26 9	211 -249	-15 -13	-91 -95	-13 7	162 98	14 -9	656 626	22 15	203 -179	4
16	427 433	-2 10	566 -559	6 -12	418 37Ø	22 8	456 -493	-22 -8	-186 -25	-31		
17	136 -176	-8 11	338 351	-6 -11	-199 -51	-37 9	284 -265	7 -7	381 - 369	6	4 9 1	
10	212 251	10 10	222 220	7 .10	420 - 473	-10 10	220 203	20 5	110 00	17	4 0 1	
18	313 -351	-13 12	323 339	-/ -10	439 -4/3	-19 10	320 362	-20 -0	-110 88	-17		
19	-147 115	-21 13	511 -542	-17 -9	-176 -116	-41 11	251 293	-16 -5	645 637	7 -16	-159 -55	-16
20	97 174	-11 14	233 -286	-19 -8	558 562	-3 12	313 -300	4 -4	433 -420	7 -15	137 -134	ø
		15	365 376	-4 -7	315 -382	-37 13	300 -319	-7 -3	433 -481	-29 -14	195 146	9
	4 97 1	16	190 259	-19 -6	447 -452	-7 14	246 219	9 - 2	422 427	-9 -12	200 211	a
	4 <i>1</i> 0 L	10	150 233	-15 -0	447 -452	3 14	340 315	5 -2	423 437	-0 -13	203 211	
		17	387 -423	-15 -5	6.04 6.07	-2 15	134 169	-6 -1	528 549	-16 -12	206 -256	-14
ø	934 1041	-111 18	-157 -47	-16 -4	518 534	-16 16	228 -246	-4 Ø	591 -606	-9 -11	140 -172	-6
1	290 407	-93 19	320 281	11 -3	642 -671	-31 17	-134 -98	-16 1	501 -484	10 -10	414 39Ø	1.0
2	799 - 791	Ø		-2	-72 -132	-28		2	433 491	18 -9	331 321	4
2	462 -453	12	1 2 1	-1	474 512	- 75	4 5 1	2	479 453	15	404 -205	p
3	403 -452	12	4 <u>6</u> L	-1	4/4 312	55	4 0 L	3	4/5 453	15 -8	404 -303	0
4	14/3 1512	-38	1. 1. 1. 1. 1. 1.	Ø	861 925	-64		4	598 - 570	21 -7	1910 - 21010	-2
5	137 257	-56 -18	-17 -68	-2 1	778 -805	-27 -17	-123 96	-14 5	-23 -146	-18 -6	328 340	-5
6	1153-1168	-12 -17	215 -169	9 2	136 -227	-38 -16	92 158	-9 6	407 378	14 -5	30 24	Ø
7	307 -252	-30 -16	-126 199	-17 3	596 639	-46 -15	147 -295	-12 7	289 311	-9 -4	582 -575	4
6	307 -353	- 30 - 10	240 220	7 4	102 172	-21 -14	210 -200	1 0	727 -727	a	122 -02	7
8	1112 1106	4 -15	249 2210	/ 4	102 172	-21 -14	218 -202	4 8	131 -131	10 - 3	133 -92	
9	106 -219	-37 -14	119 -152	-6 5	839 -840	-1 -13	234 255	-6 9	74 -27	3 -2	701 735	-27
10	757 -734	20 -13	270 -278	-2 6	341 -365	-14 -12	194 213	-5 10	489 473	7 -1	-49 -82	-7
11	-22 128	-15 -12	482 368	16 7	893 899	-5 -11	295 -396	-4 11	-97 -113	-16 Ø	623 -653	-24
12	750 760	0 -11	102 101	-9 0	315 370	-29 -19	467 -494	-9 12	100 -110	-13 1	-91 16	-7
12	159 160	10 -11	103 151	- 5 8	315 370	-25 -10	40/ -484	12	407 -440	-13 1	10	- /
13	228 - 267	-14 -19	297 - 307	-4 9	/14 -692	19 -9	50/ 535	-16 13	152 148	10 2	66Z 643	14
14	332 -370	-17 -9	123 -273	-51 10	-162 149	-43 -8	-72 174	-30 14	257 275	-5 3	292 -328	-11
15	267 331	-25 -8	388 498	-11 11	643 648	-4 -7	240 -228	4 15	72 -104	-3 4	534 -528	3
16	260 254	2 -7	-100 -10	-10 12	260 -319	-23 -6	23 -91	-7 16	127 -122	Ø 5	285 252	12
10	300 334	12 -1	100 -10	17 12	EAE - 515	-11 .	EE0 E70	- 22	161 -132	0 5	437 447	-10
17	317 -408	-12 -6	636 -654	-1/ 13	545 -566	-11 -5	550 5/8	-22	10 C 10 C 10 C	6	42/ 44/	-10
18	167 -154	2 -5	-96 -187	-52 14	220 184	9 -4	86 45	5	4 7 L	7	272 -249	1
19	178 210	-6 -4	1050 1072	-19 15	316 324	-2 -3	506 -511	- 3		8	226 -225	Ø
20	-85 78	-7 -3	223 -250	-14 16	210 -238	-7 -2	-114 -24	-14 -16	-91 25	-5 9	338 493	-26
2.0	05 70	- 2	1100-1122	-27 17	105 -107	0 -1	1010 1000	-42 -15	201 -215	-2 10	221 244	-2
		-2	1100-1132	-2/ 1/	105 -187	0 -1	1010 1060	43 -15	204 -215	-2 10	100 400	-2
	4 1 1	- 1	399 478	-/6 18	10/3 158	-8 Ø	323 -321	10 - 14	-150 22	-15 11	436 -430	2

12	162 -160	Ø 10	-49 -100	-7		5 -17 1		1	353 -348	2	Ø	458 -483	-14	1	688 684	- 1
13	247 233	3						ż	397 -402	-2	ĩ	670 -666	3	2	1076 1101	-2
			4 11 L		4	297 254	11	3	476 478	- 1	2	334 324	4	3	794 -781	1
	4 9 L				6	320 -305	4	5	622 -719	-59	3	595 577	13	4	393 -378	1
		-12	212 -216	ø	7	293 -254	1Ø	6	239 -149	23	4	599 -613	-11	5	878 798	71
-15	103 -78	2 -11	206 201	1				7	772 814	-31	7	351 317	15	6	451 482	31
-14	254 210	10 -10	201 152	9		5 -16 L		8	158 39	16	9	1.00 6	8	7	1134-1034	71
-13	117 153	-5 -9	246 -283	-1Ø				9	631 -692	-34	1Ø	686 7Ø6	-16	9	764 729	31
-12	437 -358	30 -8	90 -134	-6	ø	227 255	-7	1Ø	133 57	9	11	-101 43	-1Ø	11	928 -910	1.
-11	-104 - 101	-13 -7	233 224	2	1	394 283	34	11	560 610	-26	12	625 -653	-16	12	-148 45	-2
-10	312 332	-7 -6	205 152	11	2	400 -322	26	12	159 -125	6	13	45 129	-11	13	530 503	1
-9	64 119	-6 -5	394 - 391	1	3	228 -239	-2	13	503 -495	3	14	510 505	2	14	-142 62	-1
-8	355 -341	5 -4	-93 -9	-5	4	39/ 355	15	14	131 48	9	15	-114 -10/	-1/	15	4/4 -449	1
-/	63 11	2 -3	522 495	12	5	2/8 105	35	15	101 - 220	1	10	493 -500	- 3	10	-10/ 138	- 21
-6	302 259	15 -2	205 -12	-12	0	404 402	-37	10	122 -250	-26	10	207 245	-12	10	3/6 300	1.1
-5	E20 - E22	-6 9	120 15	10	a	267 -3	27	11	122 -230	-20	10	120 -202	- 20	10	265 -297	_
- 4	217 249	-10 1	333 349	-6	11	193 58	18		5 -12 1		19	125 -255	-30	20	303 -307	-
-3	426 450	-11 2	135 -96	5	12	381 340	13		J 12 L			5 -9 1		2.0	307 200	-
-1	376 -314	26 3	398 -359	14		001 040		ø	241 192	14					5 -6 L	
ø	355 -331	1.0 4	134 132	ø		5 -15 L		1	615 -625	-5	ø	582 -485	1.0			
1	214 197	4 5	452 443	3				2	186 -184	ø	1	287 -296	-4	ø	462 -464	-
2	208 238	-9 6	279 -237	11	ø	380 310	23	4	251 143	30	5	262 -184	28	1	1245 1258	- :
3	219 -231	-3 7	290 -222	17	1	171 64	14	5	661 -729	-49	7	164 -72	18	2	278 281	-1
A	314 -264	18 8	198 229	-7	3	213 -58	24	6	3Ø3 264	14	9	405 437	-17	3	688 -658	2
5	422 410	5	10.000		4	332 318	5	8	313 -279	13	11	181 -143	9	4	578 -560	11
6	279 251	9	4 12 L		5	247 -69	32	1Ø	420 380	18	13	497 503	-3	5	1032 936	81
7	504 -510	-3			6	546 -625	-40	11	539 586	-25	14	316 361	-19	6	75 33	-
8	89 -37	4 -1.0	190 80	15	7	293 225	19	12	415 -397	8	15	352 - 387	-15	7	1540-1408	71
9	371 363	3 -9	320 -286	10	8	653 6/6	-11	13	4/4 -486	-5	16	389 -417	-12	8	1/4 14/	
10	-63 /5	-5 -8	93 -31	4	9	301 -234	19	14	483 488	-2	17	393 419	-110		1601 1536	3
11	258 -305	-13 -/	317 291	11	1.0	423 -435	24	15	344 350	-10	10	-123 /8	-13	1.0	1496-1257	-
12	-108 -11	-6 -6	146 -35	20	12	240 276	-7	17	159 -170	-15	20	-12 -119	-20	14	202 -205	- 1
	4 19 1	- 5	120 100	3.0	13	138 -373	23	18	133 177	-15	2.0	-13 -110	-0	16	487 513	-13
	4 10 L	-3	272 254	5	14	178 -227	-10	10	555 577	15		5 -8 1		17	246 324	-2
-14	284 230	13 -2	71 -107	-3	14	110 221	1.0		5 -11 1					18	296 -318	
-13	58 12	1 -1	401 -358	16		5 -14 L			• • • •		ø	781 -786	-4	19	101 -209	-21
-12	368 -278	27 Ø	334 294	13				Ø	286 -223	22	1	215 99	33	20	364 395	-1
-11	-81 -15	-4 1	340 310	1.0	ø	399 427	-12	1	447 -451	-1	2	699 714	-14			
-10	225 255	-8 2	240 -225	3	1	287 -250	11	2	203 224	-6	3	320 -300	1.0		5 -5 L	
-9	-99 -84	-11 3	27 -141	-11	2	486 -415	-4	3	592 63Ø	-27	4	568 -517	34			
-8	340 -341	Ø 4	180 143	6	3	330 330	ø	5	460 -475	- 8	5	193 151	13		158 -186	-11
-7	228 238	-3 5	168 88	11	4	364 411	-20	6	388 413	-13	7	484 -434	30	1	989 1018	-2
-6	267 232	100 6	131 -203	-12	5	282 -337	-20	7	287 230	21	9	596 589	5	2	258 -274	-
-5	300 -323	-8			6	427 -402	1.0	8	452 -496	-24	1.0	428 394	18	3	632 -625	
-4	243 -268	-8	4 13 L		2	435 444	-4	9	269 -219	17	11	494 -481	6		416 384	2
-3	340 342	-1 -1			8	318 2/3	15	1.10	002 020	-10	12	390 -415	-13	5	185 125	2
-2	291 285	1 -/	312 255	15	10	434 -435	- 2	12	512 -512	-12	14	3/6 353	-17	7	972 -997	7
-1	2/5 -295	-/ -0	205 -252	5	1.0	500 495	10	12	100 - 200	0	15	458 -451	-17		285 264	11
1	570 555	7 -4	299 272	7	12	239 213	6	14	583 651	-43	16	-136 -50	-15	11	614 -616	- 1
2	154 -12	16 -3	227 208		13	333 -346	-4	15	87 78	Ø	17	540 551	-5	12	669 636	21
3	460 -463	-1 -2	299 -281	5	14	224 -154	14	16	560 -581	-10	18	-99 -111	-14	13	354 387	-10
4	-60 -54	-4 -1	126 -141	-2	15	371 486	-46	17	148 -88	8	19	383 -388	-1	14	586 -479	14
5	268 243	5 Ø	217 206	2	16	-88 47	-5	18	448 474	-13	20	-66 76	-5	15	82 -194	-2:
6	-95 -37	-6 1	209 113	16				19	163 -89	9				16	559 521	1 9
7	245 -249	-1 2	240 -241	ø		5 -13 L						5 -7 L		17	148 244	-24
8	16Ø 135	4 3	174 -85	11			1		5 -1Ø L					18	506 -522	- 1
9	414 391	8			ø	422 413	3				ø	1059-1084	-20	19	-87 34	-!
2Ø	345 408	-23	1Ø	290 -326	-18 -15	-207 -7	-29 9	860 -861	Ø -9	541 484	36 14	-124 6	-9			
--------	---------------------	-----	------	-----------	------------------	-----------	----------	----------------------	---------	-----------	---------	-----------	-----			
	5 -4 L		11	432 428	2 - 14 9 - 13	-152 14	-17 11	170 240	-22 -7	457 -474	-9 16	-119 -54	-9			
			13	497 -519	-12 -12	400 348	22 12	461 -506	-24 -6	438 424	7					
1 1	484 524 727 738	-38	14	361 354	2 -9	178 244	-24 14	468 481	-6 -4	184 -144	11	5 6 L				
2	403 -444	-32	16	164 178	-3 -8	493 500	-3 15	-142 39	-15 -3	392 - 394	Ø -16	-143 -119	-19			
3	1087-1097	-9	17	482 -536	-26 -7	249 -274	-10 16	-125 -122	-21 -2	266 314	-22 -15	290 214	28			
5	347 373	-17	19	335 323	4 -4	769 793	-23 18	266 259	1 Ø	908 -873	30 -13	136 168	-6			
6	1364-1296	45	2Ø	-164 -2	-15 -3	829 -821	-72	5 2 1	1	89 -116	-5 -12	409 -361	19			
8	1478 1368	67		5 -1 L	-1	740 765	-25	5 5 6	3	-78 -100	-15 -10	428 397	1.0			
1.0	798 -771	16			8	128 236	-46 -17	-128 82	-13 4	440 -416	13 -9	-138 68	-16			
12	639 623	-8	1	562 -576	-15 2	117 189	-26 -15	193 -175	3 6	-168 -87	-33 -7	-1#3 121	-28			
13	-101 169	-33	2	1258-1272	-1Ø 3	654 657	-2 -14	87 -95	-1 7	-147 23	-19 -6	358 328	13			
14	654 -632	15	3	839 873	-33 4	318 350	-20 - 13	278 231	14 8	562 -574	-9 -5	-112 -87	-17			
16	506 487	9	5	393 -381	8 6	259 299	-21 -11	416 -392	11 10	617 618	-1 -3	-171 85	-32			
17	-184 -53	-26	6	717 -719	-2 7	730 686	40 -10	-174 46	-27 11	373 -353	8 -2	713 711	-12			
19	200 214	-2	8	185 269	-37 9	646 -618	24 -8	-182 -61	-33 13	293 281	4 Ø	475 -519	-26			
2.0	295 289	1	10	189 -239	-18 10	335 352	-8 -7	477 -452	17 14	252 250	Ø 1	487 528	-20			
	5 -3 1		11	-193 -91	-41 12	339 356	-5 -5	595 587	6 16	246 -184	14 3	491 -489	-/			
	5 5 2	1.0	13	493 -481	6 13	578 -605	-18 -4	106 -184	-21 17	253 247	1 4	351 -374	-11			
Ø	826 866	-41	14	-157 27	-21 14	310 327	-6 -3	666 -654	10	5 5 1	5	380 366	6			
ż	741 -755	-14	16	-188 -8	-26 16	367 -390	-9 -1	542 567	-24	5 5 2	7	597 -586	7			
3	531 -547	-18	17	391 - 395	-1 17	-140 -97	-18 Ø	569 -613	-43 -16	64 -73	8 8	-117 -32	-11			
5	-30 156	-32	19	166 213	-10 19	-102 51	-7 2	524 512	10 -14	87 121	-4 10	44 -48	ø			
6	683 -661	22	20	-216 -1Ø3	-34		3	771 785	-13 -13	274 288	-4 11	498 -487	1			
7	-68 -118	-22		5 17 1		5 Z L	5	930 -973 640 -638	-38 -12	336 -314	8 13	289 264	-1			
9	242 -292	-24	- 19	· · ·	-17	-158 17	-14 6	642 614	24 -10	422 369	23 14	-147 -78	-16			
10	751 -743	7	8	688 72Ø	-34 -16	140 166	-4 7	-114 81	-18 -9	237 230	2 15	169 -192	-4			
13	304 -363	-28	3	1058 1080	-18 -14	251 -213	1.0 9	-176 17	-28 -7	199 -262	-22	5 7 L				
14	452 -483	-17	4	734 748	-13 -13	102 126	-3 10	796 804	-6 -6	464 452	6 - 15	-116 -1	-7			
15	315 342 462 45Ø	-11	7	894 896	-1 -11	276 -271	1 12	594 -591	1 -4	390 -406	-9 -14	248 194	12			
17	294 -349	-20	8	-136 -46	-22 -10	284 -236	-10/13	55 83	-2 -3	-79 -121	-19 -13	-109 -41	-8			
18	235 - 290	-16	107	983 -935	-5 -8	297 330	-15 15	163 -170	-1 -1	165 -170	-1 -11	99 122	-3			
20	-158 68	-17	11	852 824	22 -6	64 -176	-25 16	198 -245	-11 Ø	641 -643	-1 -1Ø	359 324	13			
	5 -2 1		12	349 -378	-14 -4	-99 139	-31 17	155 103	-5 2	141 184	-12 -9	59 -90	-3			
	5 -2 L		14	256 237	6 -2	-103 -135	-33	102 100	3	253 -280	-11 -7	230 266	-12			
ø	551 567	-17	15	408 407	Ø -1	873 885	-11	54 L	4	595 -565	22 -6	373 360	- 6			
2	489 -518	-32	17	221 -227	-1 1	1353-1381	-19 -17	100 148	-6 6	249 307	-24 -4	384 -416	-16			
3	-225 27	-74	18	196 193	Ø 2	593 640	-49 -16	-198 17	-24 7	513 -518	-3 -3	484 505	-12			
4	675 664 389 -385	3	19	83 125	-4 3	385 - 392	-26 -15	-152 91	-21 9	487 510	-12 -1	538 -569	-18			
6	756 -749	6		5 1 L	5	647 -648	-1 -13	222 205	4 10	331 309	9 Ø	306 -316	-4			
7	507 511	-3	-17	-113 -40	-8 7	751 760	-7 -12	-211 11	-35 11	301 -340	-15 1	-52 139	-18			
9	305 -296	4	-16	210 174	7 8	636 -640	-3 -10	33 199	-30 13	435 388	19 3	630 -577	35			

4 5 7 8 9 1 Ø 11 12 13 14	$\begin{array}{ccccc} -136 & 22 \\ 535 & 524 \\ 87 & -45 \\ 380 & -933 \\ -48 & -6 \\ 340 & 338 \\ 150 & -186 \\ 281 & -381 \\ 246 & 232 \\ 214 & 236 \\ 179 & -193 \end{array}$	-15 3 6 4 4 5 -5 6 -1 7 Ø 8 7 9 -6 1Ø 3 11 -5 -2	237 -261 402 400 260 244 279 -221 243 -223 314 304 61 167 415 -356 -228 -38 5 10 L	-7 - Ø - 16 - 3 - -14 2Ø -32	5 	360 -312 -156 -4 327 306 149 -65 338 -257 -21 162 222 205 138 -11 270 -231 198 171 242 177	15 -14 6 1Ø 23 -15 3 1Ø 1Ø 5 13	8 9 1Ø 11 12 13 14 15 16	354 -301 437 -469 379 389 353 311 370 -359 263 -267 540 557 277 172 403 -435 6 -13 L	19 -14 -4 14 -1 -7 24 -11	7 9 10 11 12 13 14 15 16 17 18	322 -311 526 562 597 598 629 -646 483 -468 601 641 172 239 593 -604 263 -354 454 490 82 13 300 -373	4 -20 9 -10 7 -21 -17 -5 -31 -15 3 -23	3 4 5 6 7 8 9 1 <i>Ø</i> 11 12 13	562 -572 128 -51 448 453 365 -322 477 -438 672 652 548 -24 672 652 548 -536 263 -386 523 -532 253 288 615 -613	-7 12 -3 22 27 1 16 2 -18 -5 -19	
-14 -13 -12 -11 -1Ø -9 -8	5 8 L 183 144 216 -165 248 -213 196 223 3Ø9 266 29Ø -230 214 -216	-12 -11 6 -1 $\%$ 1 $\%$ -9 9 -8 -6 -7 13 -6 18 -5 % -4	-65 -39 255 233 70 -80 300 -236 88 121 303 268 -97 -118 431 -409 224 211	-3 5 18 -4 11 -15 9 3	5 6 7	6 -17 L 277 -176 225 -295 345 298 6 -16 L 376 346	22 -18 14	Ø 1 2 3 4 6 7 8 9	230 -302 471 -515 445 464 438 477 518 -545 617 620 229 245 616 -649 203 -57	-24 -22 -8 -19 -14 -1 -5 -18 25	1 2 3 4 5	6 -1\$ L 625 -662 356 385 572 629 522 -577 392 -387 599 616	-29 -14 -36 -34 2	15 16 17 18 19 2Ø	53 -73 55Ø 538 -33 138 388 -4Ø7 -66 -14 4Ø1 443 6 -7 L	-1 6 -13 -7 -2 -16	
-7 -6 -5 -4 -3 -2 -1 Ø	258 284 191 225 4Ø3 -39Ø1 248 -2Ø1 562 549 -1Ø5 -4Ø 473 -497 -78 -1 475 497	-9 -3 -9 -2 5 -1 14 Ø 7 1 -1Ø 2 -12 3 -4 4 -11 5	242 240 289 -268 192 -131 341 343 192 153 237 -256 149 -200 366 348 51 31	Ø 6 12 Ø 8 -5 -11 6 1 1	1 2 3 4 5 7 8 9	30/8 -273 326 -272 337 250 244 211 378 -357 394 440 202 78 411 -422 140 11	1Ø 15 25 8 7 -18 18 -4 1Ø	1ø 11 12 13 14 15 16 17	624 674 166 53 539 -555 222 -41 456 486 94 -1ØØ 359 -358 165 1Ø7	-27 15 -7 28 -12 Ø 8	6 7 8 9 1 Ø 11 12 13 14	411 388 691 -699 128 -154 609 627 113 100 812 -822 -78 -27 534 569 -111 80	11 -6 -5 -1Ø -7 -7 -19 -13	10 2 3 4 5 7 8 9 11	392 418 603 -597 654 -648 495 472 573 537 296 -238 467 438 248 200 -145 -17	-19 4 15 32 25 21 17 -18	
2 3 4 5 6 7 8 9 1 <i>Ø</i>	10/5 -163 475 -488 -123 43 529 550 264 -233 30/6 -277 430/418 231 260 248 -274	-11 6 -6 7 -13 8 -11 9 9 5 -8 $-1%-7$ -9	431 - 391 49 38 361 344 163 -43 5 11 L 136 -182 61 -182	15 1 Ø 1 5 13 -7 -16	Ø 1 2 3	30/8 354 20/3 -113 6 -15 L 30/3 193 366 -351 287 -124 349 369	-14 14 28 5 36 -7	1 2 3 4 5 6	6 -12 L 50/9 -561 348 -317 552 616 380/ 343 674 -740 239 -45 950/ 987	-28 12 -37 16 -51 39 -28	15 16 17 18 19	567 -612 -75 3 416 474 202 -156 427 -402 6 -9 L 396 -402	-23 -3 -25 9 9	12 13 14 15 16 17 18 19 2Ø	594 685 215 263 536 -568 -43 128 441 413 -62 31 547 -528 241 199 332 347	-7 -16 -16 -12 12 -3 8 10 -5	
-13 -12 -11 -1Ø	119 -195 71 14Ø 5 9 L 261 -187 1Ø3 -145 157 189 13Ø 18Ø	-13 -8 -8 -7 -6 -5 -4 16 -3 -5 -2 -6 -1 -9 Ø	237 207 244 153 353 -326 157 -127 243 256 234 172 297 -285 131 -52 423 409	7 19 9 4 -3 14 1 3 1 8 1 5 1	4 5 6 7 9 1 Ø 1 1 2 3	205 37 565 -610 225 50 520 554 400 -461 352 316 358 -370 349 -341	24 -22 27 -15 -25 12 -13 1Ø 2	7 8 9 1Ø 11 12 13 14 15	123 -28 833 -839 338 316 576 645 382 -361 679 -788 487 428 376 438 373 -385	11 -3 -39 -24 -18 -8 -26 -4	3 4 6 8 9 1 Ø 12 13 14	597 -596 30/3 -30/7 170/ 38 116 -64 913 890/ 40/1 -421 577 586 526 575 332 -30/8	97 -2 23 7 17 -197 -4 -27 9	Ø 1 2 3 4 5	6 -6 L 789 726 738 731 888 -797 685 -598 1845 959 -51 74	-15 7 1Ø 14 69 -8	
-9 -8 -7 -5 -4 -2 -1 Ø	329 -285 -161 -41 383 346 38 13 428 -418 -145 69 148 236 -181 -9 384 -357 68 78 359 349	14 1 -19 2 14 3 Ø 4 4 5 -19 6 -25 7 -7 11 Ø 4 -8	-141 -59 453 -402 205 141 301 319 47 -100 224 -201 146 99 5 12 L 181 235	-15 1 2Ø 12 -5 -5 5 6	Ø 1 2 3 4 5 6	366 329 6 -14 L 266 -164 358 -427 21 123 392 422 210 -75 378 -446 293 242	12 -29 -9 -12 24 -3Ø 16	16 17 18 Ø 1 2 4 5	337 - 3787 319 342 169 195 6 -11 L 597 -643 181 71 675 7187 357 - 367 285 148	-12 -7 -5 -27 4 -28 -5 17	15 16 17 18 19 2Ø	457 -489 358 4Ø3 2Ø3 22Ø 256 -286 41 -241 289 347 6 -8 L 162 -126 792 817	-15 -18 -4 -9 -32 -18	6 7 11 12 13 14 15 16 17 18	1113-1808 418 -385 382 298 638 645 489 -483 493 -588 359 358 383 486 182 -177 322 -338 312 329	81 14 5 -5 -41 -8 3 -18 -13 8 -5	

			13	707 -	722	-11	4	605	-594	11	-12	96	-121	- 3	12	108	136	- 4	1	679	681	-2
	C E 1		1.4	205	766	- 20	5	202	- 777	-17	-11	295	- 259	12	12	260	271	- 1	2	24	-147	-17
	6 J L		1 4	205	200	20	5	0.02	000	1 /	1 1	215	200	1 2.	1.5	300	371	1 0	2	0.74	266	11
			15	614	550	-23	6	831	829	2	-10	315	588	110	14	-129	-1193	-18	3	3/6	-366	4
Ø	717 708	8	16	210 -	219	-2	8	857	-855	2	- 9	233	221	4	15	271	-302	- 9	4	-117	100	-20
ĩ	-176 67	- 26	17	266 -	3017	-12	Q	-121	- 71	- 21	- 8	727	- 222	a	16	192	D 1	16	5	571	540	12
1	-136 63	-20	1 /	200	307	1.5		1.51	500	21	0	52 5	323		10	1 32	01	10	5	5/1	340	15
2	900 -873	25	18	91	14/	-8	10	6.01	288	9	- /	222	-242	- /	1 /	2/1	235	9	6	340	-370	-13
3	-199 -49	-17	19	-184	181	-41	11	169	-260	-31	- 6	598	545	41					7	553	-548	2
	042 002	E 7	20	107 -	227	- 0	12	524	-541		- 5	-100	120	- 20		6	4 1		0	212	200	- 22
4	742 002	36	6.0	1 57	6.57	5	10	364	091		5	100	1.5.5	2.0		0	4 L		0	213	2.00	23
5	-122 50	-24					13	2103	2101	- 1	- 4	360	-353	3					9	325	321	1
6	926 -852	63		6 -2	L		14	593	603	- 5	-3	142	-248	-37	-15	-198	-18	-24	10	315	-309	2
7	210 220	- 7			1.00		15	190	- 25 2	- 19	- 1	- 9 4	- 60	- 1 01	-14	195	150	7	1 1	-72	-110	-12
/	2110 220	- 3	~				15	1 3 0	-233	10	1	75.9	- 6.0	-10	14	195	135	,	11	-16	-115	-13
8	1189 1116	54	ø	342	399	-38	16	318	-329	- 4	N.	753	-753	N	-13	- 98	12	-9	12	316	339	- 8
9	486 -491	- 3	1	867 -	849	16	17	-133	109	-18	1	-100	4 1	-12	-12	288	-295	-2	13	145	152	- 1
10	127 - 495	11	2	1014	1 2 9	-10	10	154	196		2	242	- 796	- 20	-11	-194	46	- 29	1.4	91	-195	-17
1.0	427 -403	11	6	1 0 4	133	-10	10	154	100	0	3	243	- 300	- 30	- 1 1	-134	40	- 2 3	1 4	51	-135	-1/
11	252 270	-7	3	893	862	28	19	152	-198	- 8	4	974	-979	- 4	-1Ø	423	344	33	15	157	-156	P
12	592 610	-12	4	-149	68	-33					5	624	643	-17	-9	- 25	-72	- 4				
1 4	120 171	24		774	COC	26		c	1 1		c	707	757	22	- 0	404	- 414	24		c	6 1	
14	428 -4/4	- 2 4	5	134 -	020	20		0	I L		0	193	101	22	- 0	404	-414	34		D	D L	
15	520 548	-15	6	-1/2	-53	-38					/	4/9	-526	-29	-/	113	191	-18				
16	339 371	-13	7	644	634	9	-16	4.97	59	- 1	8	463	-498	-20	- 6	514	469	24	-14	151	156	Ø
17	E47 - E19	1.1	0	228 -	322	2	-15	225	-187	8	g	346	270	-11	- 5	244	-266	- 9	-17	292	-209	21
1 /	343 -519	11	0	320 -	CIN	20	1.0	122	107		10	340	010	11		239	200	10	10	2.52	205	C 1
18	-142 -85	-18	9	1103 -	6/10	29	-14	-132	-13	-11	1.0	309	355	-21	- 4	332	-2.38	15	-12	- 4.0	-/6	- 4
19	380 398	-6	1Ø	357	331	12	-13	227	212	4	11	419	-467	-25	-3	380	367	6	-11	258	252	1
20	-162 -12	-15	1 1	663	672	- 7	-12	-125	- 8	-11	12	282	- 323	-16	- 2	268	333	-39	-107	-9A	117	-15
2.10	-102 -12	-15		005	072	-	14	205	25.2		12	401	515	10	-	500	100	1.2	10	200	210	17
			13	311 -	328	-/	-11	385	-352	14	13	481	516	-18	- 1	507	-486	12	-9	388	-346	1/
	6 -4 L		14	472	490	-9	-10	-91	77	-11	14	-136	131	-25	ø	294	-359	-32	- 8	-111	-12	-9
			15	386	A 2 A	-17	- 9	541	466	39	15	288	-315	- 9	1	ART	409	- 3	-7	423	346	33
~		-	15	500	4 C 4	1.7	0	150	100		10	200	100	10	2	400	120	17	ć	110	20	10
ø	951 960	-/	16	5/6 -	.220	12	-8	159	-164	- 1	16	- 34	-169	-18	2	-23	136	-1/	- 6	-113	210	-110
2	1004 -966	33	17	-78 -	203	-31	-7	554	-515	26	17	202	288	-23	3	384	-368	8	-5	68Ø	-608	51
2	857 820	35	18	257	268	- 7	-6	458	438	11	18	46	35	P	4	-181	-98	-39	- 4	-199	88	- 41
3	637 626	55	10	100	200	1 5	5	271	375		10	40	55	N	-	204	220	22	2	445	461	
4	580 526	51	19	-126	1103	-15	-5	3/1	3/5	- 2					5	294	236	22	- 3	445	461	- 8
5	560 -513	45	20	264 -	3Ø1	-10	- 4	440	-460	-12		6	3 L		6	-186	31	-32	-2	186	-238	-16
c	921 -799	201					- 3	138	-222	-28					7	567	-571	- 3	- 1	471	-474	- 1
	021 755	4.7		· ·			2	210	250	17	10	10	110	7		120	100		à	110	172	12
7	932 882	4.3		6 -1	L		- 2	319	350	-1/	-16	-18	-116	-/	8	126	169	-9	10	118	1/2	-12
8	566 537	22					- 1	497	523	-25	-15	-9	-65	-2	9	393	428	-17	1	558	554	2
q	539 -523	12	Ø	185 -	229	-19	Ø	799	-816	-15	-14	102	108	Ø	10	-162	10	-29	2	253	-290	-14
1 0	00 140	27	~	100	COL		ĩ	11	115	14	12	-101	73	-10	11	624	- 522		2	450	- 465	- 2
110	-82 -149	-21	2	690	691	-1	1	11	-115	-14	-13	-104	12	-110	1 1	364	- 332	- 4	3	433	-400	- 2
11	673 674	- 1	3	1053 1	Ø36	15	2	798	802	- 3	-12	188	-187	ø	12	161	221	-15	4	461	463	- 1
12	201 292	- 34	4	590 -	581	9	3	22	182	-34	-11	-181	-123	-36	13	280	319	-13	5	311	315	- 1
1 4	172 171	a	E.	777	600	75		077	-017	12	- 10	4 01 1	247	22	1.4	220	-212		č	ADA	- Faa	- 2
14	1/2 -1/1	ю	3	121 -	630	35	4	021	-013	12	-10	401	347	23	14	230	-212	2	0	4 7 4	- 500	- 2
15	522 525	- 1	6	641	634	6	5	-105	43	-13	-9	-180	55	-29	15	218	-195	5	/	112	-111	10
16	-71 134	-16	7	190	255	-27	6	353	367	- 7	-8	466	-417	25	16	264	286	-6	8	368	484	-15
1 7	FCE ECA	2	0	270 -	260	5	7	6.0	197	- 21	- 7	- 00	52	- 7					9	187	227	-10
1/	303 -300	2	0	3/3 -	305	1 2	2	615	507	10		640	FOC				E 1		10	4.4.00	420	
18	-217 49	-34	9	377 -	399	-12	8	615	-593	19	-6	642	288	41		ь	5 L		1.10	440	-438	10
19	354 367	- 4	10	545	570	-18	9	-151	131	-36	-5	-76	-113	-16					11	63	- 7	2
20	107 -116	- 1	1 1	-120	12	-14	1 01	700	701	4	- 4	275	-253	8	-15	-76	45	- 4	12	249	259	-2
210	103 -110	- 1		130	12		1.0	250	222		2	104	110		1.4	200	240		1.7	0.5	40	č
			12	635 -	654	-15	11	268	-332	- 21	- 3	-104	-112	-21	-14	2810	248	8	13	- 95	- 4 9	- 6
	6 -3 L		13	-192	-74	-36	12	709	-727	-14	-2	629	619	8	-13	-131	-83	-15	14	276	-292	- 4
			1 4	613	601	9	13	A17	ATO	-26	- 1	84	-182	-24	-12	254	-231	6				
~	F10 F31	-	1	110	122	20	1.4	102	227	- 22	à	705	-705	a	- 11	- 24	172	- 20		c	7 1	
ю	518 521	- 2	15	-110	122	- 610	14	102	231	-32	10	103	-105	10	-11	- 24	112	- 2.10		0	/ L	
1	214 -265	-26	16	376 -	391	-6	15	386	-4.05	- 8	1	416	463	-29	-1Ø	292	284	2				
2	932 -909	21	17	-77 -	105	-11	16	222	-737	- 3	2	773	774	- 1	-9	250	-248	Ø	-14	-150	7	-12
2	671 636	24	10	202	272	Ē	17	207	204	a	2	900	-912	- 2	- 9	277	-217	10	-12	250	-216	0
3	6/1 636	34	18	292	6/3	5	1 /	201	204	0	3	309	2712	- 2	- 0	211	217	19	13	230	210	0
4	562 564	- 1	19	-182	-26	-20	18	127	186	- 1Ø	4	518	-2/4	-23	- /	440	383	26	-12	-117	38	-9
5	857 -805	47									5	192	152	11	- 6	93	142	-9	-11	293	253	11
c	205 - 200	- 3		6 0	1 1			6	2 1		6	179	222	-14	- 5	422	- 395	14	- 1 9	-161	-46	-18
0	305 - 389	- 3		0 10	L			0	e L		0	115	17.	14		42.3	393	14	10	201	210	21
7	1313 1245	47									/	466	-4/4	- 4	- 4	193	-223	-9	-9	368	-310	21
8	-163 -100	-39	ø	716 -	745	-29	-16	-181	- 5	-19	8	91	-169	-16	- 3	487	502	- 8	- 8	-149	118	-25
g	777 -696	4.4	1	135 -	445	- 7	-15	165	-172	- 1	9	618	636	-14	- 2	- 88	119	-18	-7	253	278	- 8
1 0	131 -000	44	2	433	640	10	14	127	E 3	- 1 3	10	010	103	1.0	- 1	600	-710	-12	- 6	60	-197	- 21
1.0	-144 - 3	-19	2	638	049	-16	-14	-13/	52	-13	1 10	92	183	-19	- 1	030	-/10	-11	- 0	09	10/	- 41
12	348 -385	-18	3	724	751	-26	-13	189	145	9	11	585	-638	-30	ø	-179	-74	-34	- 5	492	-4710	10

-4 -3 -2 -1 Ø 1 2 3 4 5 6 7 8 9 9 1 0 7 1 1 2 3 4 5 6 7 8 9 9 1 1 1 2 3	412 368 336 295 468 468 351 -307 488 477 -189 156 285 -309 208 -205 523 548 147 196 457 -470 3076 -33 3076 375 -114 -118 263 -279 -138 126 -76 -85	$\begin{array}{c} 23\\ 16\\ -4\\ 18\\ 5\\ -28\\ -9\\ 1\\ -13\\ -11\\ -6\\ -4\\ -27\\ -17\\ -4\\ -21\\ -5\\ -7\end{array}$	Ø 1 2 3 4 5 6 7 8 9 1 Ø - 1 Ø - 9 - 8 - 7	124 184 152 -146 2707 -315 123 155 391 382 255 -285 246 -259 368 366 192 164 274 -259 -807 -907 6 107 L 197 -163 1074 287 97 -125	-12 1 -15 -5 3 -9 -3 Ø 5 4 -7 6 5 7 -3	1 <i>Ø</i> 11 2 3 4 5 6 7 8 9 1 <i>Ø</i> 11 12	352 364 229 -44 7 -15 L 3077 -269 191 -158 420 424 429 147 557 -511 189 -163 451 490 118 -14 362 -486 287 283 454 478 294 -273 469 -465	-4 25 11 6 -1 17 20 14 -17 8 -53 1 -9 6	Ø 1 2 3 4 5 6 7 8 9 1 Ø 11 12 13 14	7 -12 L 442 -416 558 552 348 369 659 -722 206 -178 651 697 268 208 678 -708 148 35 646 690 223 -176 791 -838 345 380 392 395 333 -283	12 9 -48 7 -27 16 -227 14 -24 12 -34 -1 16	14 15 16 17 18 19 <i>Ø</i> 1 2 34 5 6 7 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-29 -15 -1 % -6 3 -9 -31 -44 % -15 22 8 % 14	56 7 8 9 1 <i>Ø</i> 11 12 13 14 15 16 17 18 19 2 <i>Ø</i>	485 -474 361 -318 502 456 604 561 743 -718 484 -482 604 567 241 234 583 -576 -76 50 608 589 109 124 596 -610 907 90 445 413 22 -39 7 -6 L	8 21 26 31 28 1 21 21 21 21 24 -6 18 -6 12 8
	6 8 L		-6	272 -252 185 142	5 8	13 14	29Ø 259 357 4Ø3	-16	15	417 -428 253 327	-22	9 1Ø	137 -128 842 -829	1 1Ø	ø	488 492	-7
-13	218 -166	1.0	-4	262 228 95 -64	3		7 -14 L		17	317 295 173 -254	-17	11	3Ø4 295 748 737	37	2	480 -506	-16
-12	-64 65 206 190	3	-2 -1 Ø	233 214	12 4 20	Ø	359 - 391	-12		7 -11 L		13	445 -468	-16	4	457 414	26
-9	156 -228	-16	1	311 -269	12	2	482 504	-10	Ø	163 -165	Ø	16	318 288	10	6	714 -646	59
- 7	128 188	-12	3	349 342	2	4	426 -427	ø	2	-53 120	-13	18	385 -412	-10	9	778 -732	38
-6 -5	383 -394 194 -166	-4	4	-114 15 357 -33Ø	-8	5	49Ø 519	-14	4	429 -473	-23	19	299 283	4	10	-69 162 584 567	-26
-4	381 355	11	6	116 -66 25Ø 25Ø	5 Ø	7	261 -1Ø8 476 -511	33	5	531 568	-21		7 -8 L		12	312 -328	-7
-2	350 -330	7		c	~	9	237 274	-11	7	691 -698	-5	ø	763 788	-20	14	138 238	-27
-1	443 467	-11		6 11 L		11	441 -442	ø	8	731 727	2	2	558 -551	-8	16	227 -269	-12
1	-190 39	-29	-7	195 -199	Ø -2	12	454 -375	30	10	421 -401	9	3	-80 -121	-19	17	297 -365	-25
3	9Ø 1Ø6	-2	-5	205 233	-6	14	238 173	14	12	646 653	-3	5	192 -135	15	19	248 282	-9
4	455 453 231 -279	-15	-4	282 202 300 -265	19	15	4.07 -425	-6	13	397 439 5Ø5 -523	-18	67	642 -586 71 -74	46 Ø	2Ø	197 -187	1
6	208 -251	-12	-2	131 -9	9		7 -13 L		15	364 -393	-11	8	666 610	44		7 -5 L	
8	443 422	-2	-1	-172 26	-18	ø	430 -466	-16	17	-73 49	-4	10	440 -425	5	Ø	61 128	-12
9	-87 -123	-14	1	289 -251	1Ø	1	321 36Ø	-15	18	414 -398	5	11	387 390	-1	1	845 -829	14
1.0	282 - 262	-12	3	-92 -41	-11	3	380 -446	-30		7 -10 L		12	462 494	-17	2	165 -206	-14
			4	65 -69	ø	4	358 -351	2				14	228 -254	- 8	4	-67 75	-10
	6 9 L			7 -16 1		5	439 481 324 337	-20	2	619 651	-22	15	517 568 2015 250	-26	5	866 -800	-34
-11	47 1Ø4	-4				7	545 -551	-3	3	541 -576	-21	17	465 -485	-8	7	1083 1007	59
-10	309 - 180 -104 - 64	31	10 1	254 - 184 352 - 314	15	8	196 -201	-197	4	463 471	-30	18	-151 -46	-15	8	-112 -12	-12
-8	256 222	9	2	236 241	- 1	1Ø	221 242	-5	6	567 -573	- 3		001 410		10	143 200	-16
-7	12 65	-2	3	314 260	15	11	517 - 545 285 - 159	-13	7	386 -400	-6 a		7 -7 L		11	681 671	8
-5	-144 -60	-16	5	285 -217	17	13	417 440	-9	9	520 470	26	ø	753 722	26	13	452 -437	7
- 4	368 341	10	6	355 352	1	14	89 -6	-12	10	675 -678	-2	1	303 - 304	Ø	14	489 484	2
-2	292 -299	-21	8	277 -319	-12	16	-38 46	-2	12	626 635	-6	3	576 566	7	16	587 -602	-7
- 1	168 187	- 4	9	219 -81	22	17	43Ø 413	6	13	242 240	ø	4	451 434	10	17	66 -15Ø	-11

18 19 2Ø 1 2 3 4	388 393 -83 86 487 -486 7 -4 L 228 -257 724 -786 289 299 848 888 378 -364	-5 -8 Ø -12 16 -43 35 35	7 9 1Ø 11 12 13 14 15 16 17	-145 81 860 -834 -163 -74 627 614 216 -235 517 -533 484 517 409 420 488 -513 138 -244 126 231	$\begin{array}{c} -27\\ 22 & -15\\ -30 & -14\\ 10 & -13\\ -6 & -12\\ -11 & -11\\ -18 & -10\\ -5 & -9\\ -12 & -8\\ -25 & -7\\ -22 & -6\end{array}$	-154 -11 179 158 -157 54 266 -229 -155 27 362 334 -138 -44 472 -436 285 25Ø 391 39Ø	7 -13 8 3 9 -17 10 10 11 -17 12 11 13 -16 14 18 15 13 16 0 17	535 -578 281 283 468 519 288 -352 423 -413 405 424 146 261 235 -285 194 -195 346 347 146 80	-21 -2 8 -1 -28 8 -27 1 4 2 -8 4 -38 5 -15 6 8 7 8 8 9	233 -265 4005 -386 4000 360 59 175 166 -149 276 293 -117 101 591 -589 60 -48 557 575 -49 70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	433 423 -84 -15 579 -517 1800 175 477 430 188 -145 263 -282 64 141 382 410 337 -364 310 -330	4 -5 32 -15 23 19 -6 -11 -13 -11 -7
5 6 7 9 1 Ø 11 12 13	9107 -848 715 696 421 426 191 -225 476 -468 574 537 417 425 482 -459 317 -312	510 17 -3 -12 4 25 -4 12 1	19 19 1 1 2 3	-72 187 224 -278 7 -1 L 974 -942 333 375 989 961 -56 -129	-24 $-5-11$ $-4-3-2-126$ $0-24$ 123 $2-20$ 3	105 - 191 363 - 335 537 516 91 218 584 - 563 304 - 332 528 520 395 417 792 - 796	$\begin{array}{r} -21\\ 13\\ 15\\ -34\\ -14\\ 17\\ -13\\ -14\\ -12\\ 5\\ -11\\ -13\\ -18\\ -4\\ -9\end{array}$	7 3 L -119 1Ø1 -114 -110 -97 -113 94 199 -164 85 376 -299	$ \begin{array}{r} 100 \\ 111 \\ 12 \\ -14 \\ 13 \\ -15 \\ 14 \\ -14 \\ 15 \\ -19 \\ -24 \\ 367 \\ \end{array} $	433 -435 162 165 252 219 -85 -148 114 -232 178 193 7 5 L	1 7 107 9 9 9 -18 107 -23 11 -3 12 13	117 452 167 224 356 -317 -129 -32 153 165 -180 16 332 -300 7 7 L	-15 -14 14 -11 -2 -19 9
14 15 16 17 18 19 2Ø	568 600 -153 137 667 -660 -131 -65 339 362 -152 -23 408 -395 7 -3 L	-18 -32 3 -14 -9 -14 4	4 5 6 7 9 1 Ø 11	887 -878 397 421 423 443 293 -339 685 -555 513 516 -146 44 328 -348 472 -489	14 4 -14 5 -12 6 -22 7 41 8 -2 9 -20 10 -8 11 -9 12	225 - 3Ø5 682 663 -93 146 818 -8Ø7 -82 138 612 599 -172 -23 597 -632 277 291	-35 -8 17 -7 -27 -6 8 -5 -22 -4 9 -3 -26 -2 -24 -1 -4 8	-148 -58 386 348 140 140 442 -386 -124 2 411 377 208 -277 458 -478 75 220	$\begin{array}{rrrrr} -2 & & & -13 \\ 16 & & -12 \\ y & & -11 \\ 27 & & -19 \\ -13 & & -9 \\ 17 & & -8 \\ -26 & & -7 \\ -11 & & -6 \\ -36 & & -5 \end{array}$	2008 - 2003 -143 500 242 188 -64 -119 212 -186 167 155 1700 212 272 - 259 369 - 357	97 -14 -12 13 -11 -11 -197 6 -9 2 -8 -197 -7 4 -6 5 -5	249 198 -61 24 288 -187 -283 -8 311 282 72 -123 386 -375 235 282	11 -2 -27 -27 9 -6 4 -14
Ø 1234567	216 -223 674 -641 583 56Ø 679 644 686 -651 47Ø -448 875 834 242 282	-2 3Ø 21 32 31 13 35 -17	13 14 15 16 17 18 19	528 575 92 184 425 - 4074 -112 -141 355 382 -114 40 237 -264 7 8 L	-26 13 -18 14 8 15 -21 16 -18 17 -8 18 -6	4 1/4 4 4 4 3 2/8 - 381 3 4 6 - 3 38 3 8 8 3 4 1 2 4 8 2 6/9 1 7 3 - 2 4 6 7 2 L	-13 1 -24 2 2 3 16 4 9 5 -16 6 7 8 9 -17 19	617 587 338 -368 298 -348 -131 141 391 482 629 -619 149 -179 587 536 192 228 228 -288	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	468 449 189 118 425 -422 -93 -146 499 471 -183 75 398 -336 121 22 627 628 244 - 289	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	268 262 116 -188 378 -345 238 268 293 387 231 -283 371 -334 457 457 -182 168 265 - 265	1 -14 19 -9 -4 -17 14 9 -25
9 1Ø 11 12 13 14 15 16	63 - 623 914 889 -81 - 189 568 - 589 -195 - 6 617 609 158 - 231 284 - 345 -69 99	-26 19 -35 -14 -32 -19 -22 -9	Ø 1 2 3 4 5 6 7 8	814 -888 387 448 839 832 797 -797 486 -425 718 682 235 292 689 -526	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-114 18/6 -91 -15 158 -166 -148 127 125 225 228 -288 251 -266 437 495 143 212	-14 11 -5 12 -1 13 -24 14 -24 15 5 16 -5 15 -19	-64 -34 388 428 -289 5 327 -333 -164 95 166 251 7 4 L	-13 -17 -38 -2 -2 -2 -22 -19 -19 -11 -12 -13 -13 -14	248 - 395 -7 151 266 332 171 - 192 238 - 256 166 193 281 248 182 - 165	-16 6 -16 7 -25 8 -4 9 -7 18 -6 11 -9 -18	-120 -45 258 331 -21 47 34Ø -327 -76 -68 3Ø7 323 7 8 L	-11 -24 -1 4 -6 -4
18 19 Ø 1 2 3 4 5	242 307 -166 -175 7 -2 L 628 -683 141 -149 815 797 467 589 -182 32	-19 -34 15 -2 16 -35 32 -37	9 10 11 12 13 14 15 16 17 18	436 446 -226 -2 669 -684 92 -14 650 688 -52 -241 266 -227 -72 89 299 294 11 -159	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	359 -327 -34 -128 -34 -128 -39 -526 238 -282 1888 989 492 -585 928 -896 385 446 562 578	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1879 62 213 -288 -99 -42 219 212 -186 17 354 -331 49 98 283 234 25 -43 398 -366 129 173	$\begin{array}{c} -9\\ 2\\ -7\\ 1\\ -13\\ 9\\ -11\\ -5\\ -10\\ 16\\ -9\\ 8\\ -8\\ 11\\ -7\\ -18\\ -6\end{array}$	7 6 L 1876 -139 262 164 -73 1187 217 -282 -72 -77 273 237 -76 114 484 -441	$ \begin{array}{r} -11 \\ -107 \\ -9 \\ -4 \\ -8 \\ 21 \\ -7 \\ -107 \\ -6 \\ 3 \\ -5 \\ -7 \\ -4 \\ 107 \\ -3 \\ -12 \\ -2 \\ 19 \\ -1 \\ \end{array} $	113 -71 -109 -122 -125 89 185 180 251 -217 275 -207 316 263 250 244 365 -315 118 -140 452 369	4 -15 -14 Ø 18 16 1 18 -3 33
6	523 495	24		7 1 L	6	155 -184	-8 -3	215 262	-16 -5	-138 -48	-16 Ø	-188 31	-

1	329 -305	8		8 -15 L		2	474 -533	-30		0 0		11	324 348	-10	2	6#9 576	28
2	-130 -63	-14	ø	233 -211	5	3	579 647	- 38		6 -9 L		13	254 -271	-5	3	864 -827	-34
4	-113 13	-8	1	361 344	6	5	71 162	-15		421 447	-13	14	602 619	-9	5	439 449	-6
5	466 -442	1.0	2	298 232	17	6	664 -693	-16	1	426 -428	3	15	306 332	-9	6	567 535	2:
6	118 113	ø	3	373 -456	-33	7	-52 -37	- 3	2	485 -502	-9	16	663 -673	-5	7	312 -255	24
7	417 443	-1Ø	4	233 -143	18	8	611 6Ø4	3	3	595 606	-8	17	-54 -42	-2	8	672 -658	1
8	234 -156	16	5	415 476	-26	9	91 -54	3	4	255 301	-19	18	366 401	-13	.9	4.02 417	-
9	203 -197	1	6	187 62	17	10	587 -612	-13	5	805 -803	1	19	-118 13	-8	1.0	457 465	- 2
1.0	12 610	10	6	172 76	13	12	467 501	-16	7	813 776	28		8 -6 1		12	432 -470	-10
	7 9 1		9	393 477	-34	13	278 -228	14	8	-118 24	-12		0 0 1		13	575 582	-1
	, , , ,		1.0	206 -129	14	14	532 -578	-22	9	656 -646	7	ø	318 -373	-27	14	258 311	-19
-9	139 136	ø	11	538 -568	-13	15	260 261	ø	10	39 46	ø	1	427 -423	2	15	630 -615	1
-8	-111 125	-16	12	230 204	5	16	328 352	-8	11	573 592	-1.0	2	844 839	4	16	38 -156	-14
-7	342 -274	20	13	441 482	-16	17	169 -183	-2	12	-190 -40	-30	3	617 597	17	17	407 424	-1
-6	-168 -50	-18		0 14 1			0 -11 1		13	429 -460	-14	4	938 -910	23	10	-191 12	- 24
-5	232 238	-14		8 -14 L			8 -11 L		15	A33 A74	-18	5	1225 1171	38	19	434 -435	_
- 3	295 -214	22	Ø	172 -99	11	ø	311 346	-14	16	-125 -60	-12	7	248 262	-8		8 -3 L	
-2	-43 19	-1	ĩ	4.85 417	-4	1	219 157	16	17	478 -474	-1	8	542 -506	27			
-1	298 269	8	2	184 88	15	2	353 -408	-26	18	250 252	ø	9	74 -178	-21	ø	378 -383	-:
ø	-96 -14	-6	3	425 -485	-26	3	-116 -76	-15	19	202 257	-13	1.0	743 708	26	1	163 194	-
1	473 -405	27	4	99 1	6	4	534 576	-23		0 .0 1		11	58 -1/6	-22	2	521 588	1:
2	116 147	-4	5	120 -64	-18	5	679 -709	-22		8 -8 L		12	-119 29	-11	3	509 -497	11
3	189 -224	-17	7	466 -512	-21	7	127 -15	11	ø	168 248	-26	14	573 589	-8	5	746 711	2
5	235 -250	-3	8	179 159	3	8	774 765	6	1	458 -498	-23	15	69 -167	-15	6	216 207	
6	245 259	- 3	9	405 420	-6	9	268 -268	2	2	160 -226	-20	16	521 -513	3	7	681 -636	3
7	289 287	ø	1Ø	427 -380	18	1Ø	630 -623	3	3	591 629	-28	17	8.0 119	-4	8	150 -224	-22
8	105 -167	-9	11	480 -498	-7	11	355 374	-7	4	-148 94	-27	18	371 378	-2	9	638 644	- 4
	7 10 1		12	4/5 495	-8	12	630 686	-31	5	535 -55/	-13	19	188 -189	10	1.0	-52 108	-14
	/ 10 L		13	433 -455	-8	14	329 -490	-29	7	712 663	38		8 -5 1		12	-117 -167	-3
-7	285 -282	ø	15	107 -167	-8	15	424 454	-12	8	-70 -17	-4				13	575 587	-6
-6	-63 23	-2				16	56 111	-5	9	607 -594	1.0	ø	391 -390		14	-66 -126	-14
-5	260 273	- 3		8 -13 L		17	373 -438	-25	1Ø	229 278	-14	1	-114 -15	-12	15	299 -362	-24
- 4	173 -111	9	1			18	1Ø3 -9Ø	1	11	643 669	-17	2	585 584	Ø	16	-22 98	-6
-3	257 -212	11	Ø	143 181	-7		0 10 1		12	54/ -53/	5	3	349 328	10	10	42/ 388	14
-2	-126 120	-21	2	465 506	-19		8 -10 L		14	A11 A22	-5	5	110 -128	-3	19	275 -307	_;
a	-101 -132	-16	3	326 -365	-15	ø	487 445	-19	15	326 369	-16	6	1043 992	4.0	15	213 301	
ĩ	201 -181	4	4	4.08 475	-31	ĩ	172 -191	-5	16	454 -491	-17	7	-186 3Ø	-33		8 -2 L	
2	248 225	5	5	328 369	-16	2	516 -543	-15	17	183 -110	12	8	643 -604	3Ø			
3	179 168	1	6	428 -425	1	3	215 254	-13	18	373 411	-14	. 9	-129 90	-21	ø	253 -235	-
4	287 -295	-2	7	309 -340	-11	4	437 487	-21	19	-167 91	-21	1.0	/82 /65	13	1	314 266	- 10
5	134 -132	10	8	214 212	9	5	530 -517	-16		8 -7 1		12	434 -431	26	2	700 -671	- 11
	8 -16 1		1.07	460 -476	-7	7	398 342	25		0 7 1		13	315 324	-3	4	-155 -97	-32
	0 10 1		11	244 -262	-5	8	552 571	-10	ø	-128 -144	-32	14	540 536	2	5	648 593	3
2	256 274	-4	12	477 517	-18	9	428 -451	-11	1	539 -538	1	15	595 -619	-14	6	153 265	-39
3	330 -272	16	13	147 121	4	1Ø	413 -381	14	2	296 342	-21	16	217 -212	1	7	911 -89Ø	10
4	349 -265	24	14	481 -561	-36	11	486 486	ø	3	478 486	-5	17	354 385	-11	8	-224 7	-4
5	224 266	-10	15	103 -14	5	12	512 514	- 1	4	118 -1//	-14	18	-122 158	-24	107	437 498	-10
7	298 -191	22	10	3/8 450	-21	14	-100 -107	-14	6	680 656	19	13	300 -3/1	-1	11	466 -586	-23
8	206 -160	8		8 -12 1		15	468 518	-23	7	834 805	22		8 -4 1		12	221 266	-19
9	247 279	- 8				16	195 128	12	8	510 -524	- 8		1.4		13	553 544	
1Ø	175 53	14	ø	409 384	1Ø	17	498 -562	-29	9	486 -540	-32	ø	478 -451	16	14	169 -260	-2!
			1	340 390	-21	18	84 71	1	10	378 358	9	1	214 266	-20	15	234 -320	-28

16 17 18 Ø 1 2 3	219 295 168 152 206 -283 8 -1 L 101 -230 576 563 -201 -4 703 -643	-22 -1 2 Ø -19 1 2 3 4 -16 5 10 6 -39 7 50 8	472 -487 274 29Ø 593 615 7Ø5 -689 15Ø -183 623 6ØØ 88 199 783 -7Ø3 -89 -161 646 631	-8 -8 -6 -7 -18 -6 13 -5 -8 -4 18 -3 -26 -2 -28 Ø 11 1	256 211 -177 76 359 -292 -170 -58 391 349 -111 -6 577 -524 111 171 512 463 171 -160	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55 60 209 160 128 -150 283 -264 277 272 219 233 330 -311 124 -209 403 353 48 36	10 -3 5 1 -4 7 -20 21	-1 2Ø2 249 Ø 182 -169 1 246 -224 188 195 3 198 195 3 198 195 5 199 -218 6 391 412 7 -159 65 8 387 -343	$ \begin{array}{cccc} -12 & 5 \\ 2 & 6 \\ 5 & 7 \\ -1 & 6 \\ 0 & 9 \\ -7 & 10 \\ -4 & 11 \\ -7 & 12 \\ -18 \\ 15 \\ \end{array} $	95 128 -4 4207 -488 -28 164 -11 15 418 401 6 167 18 15 457 -487 -12 222 16 25 405 418 -4 9 -14 L
4 5 7 8 9 1 8 1 1 1 1 1 2 1 3 1 4 15 16 17 18	333 366 463 459 493 -453 128 199 263 332 229 -240 533 -607 499 484 311 322 225 -326 151 -213 385 373 -27 23 260 -279	-17 9 2 18 22 11 -18 12 -29 13 -3 14 -43 15 7 16 -4 17 -34 8 -13 -5 -12 -11	679 - 67 <i>Ø</i> 249 275 397 41 <i>Ø</i> 6 <i>Ø</i> - 124 396 - 435 191 217 221 194 127 - 179 8 2 L 2 <i>Ø</i> 1 - 142 - 169 67	-16 2 -8 4 -5 5 -7 6 8 5 9 -8 10 11 12 13 10 14 -20 15	234 - 268 -142 83 352 324 416 - 449 363 - 369 381 419 424 431 459 - 477 -90 - 56 355 345 -144 79 183 - 252 -230 6 259 246	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	319 -272 -117 34 386 376 -159 -34 363 -388 -161 57 551 252 -269 259 -263 259 -263 259 81 250 222 67 -105 127 -223 8 6 1	-17 -20 -11 -21 -11 -5 -1 -100 7 -3 -18	9 132 -38 10 257 212 8 8 L -8 204 -109 -7 151 -170 -6 128 147 -5 212 225 -4 233 -211 -3 126 -126 -2 166 191 -1 228 185 0 258 -243 9 -146	8 10 11 15 4 -3 5 8 0 9 -5 18 11 4 12 -3 7 5 8 0 9 9 -5 18 11 4 12 -3 7 5 8 0 9 9 -3 7 5 8 9 9 -3 15 4 1 -3 5 5 -3 5 5 -3 5 5 -3 7 5 5 -3 7 5 5 -3 7 5 5 -3 7 5 5 5 -3 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ø	8 Ø L	-1Ø -9 -44 -8	-108 -109 -72 -196 237 202	-15 -29 1Ø -12	8 4 L 283 188	-11 22 -10	125 -137 199 -119	-1 13	2 379 314 3 19 41 4 413 -364	22 14 Ø 17	152 - 296 - 34 9 - 13 L
1 2 3 4 5 6 7 8 9 1 8 9 1 8 9 1 1 1 1 2 1 3 4 5 6 7 8 9 1 2 1 2 3 4 5 6 7 8 9 1 2 1 3 1 1 1 1 2 1 3 1 4 5 6 7 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 -7 -19 -6 -15 -5 -37 -4 23 -3 14 -2 -23 -1 6 Ø -37 -1 -37 -4 -23 -3 -1 6 Ø -37 -4 -23 -1 6 Ø -37 -1 -17 4 -28 3 -17 4 -55 5 5 13 6 -5 -5 -5 -17 -7 -2 8 -22 9 -2 10 7 -2 -2 8 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	2016 2015 224 - 265 279 - 290 430 390 163 2014 6014 - 591 -2017 - 46 770 719 -109 - 192 596 -530 -162 -123 6014 - 660 -162 -123 604 - 660 220 263 531 579 175 - 197 -747 - 445		-154 36 -154 36 -154 36 -172 126 -173 17 374 -319 122 124 328 316 83 -144 346 -313 164 188 158 282 67 -85 283 367 -113 188 588 -535 123 -159	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-24 -24 -22 -3 -22 -3 -22 -11 -19 -5 -10 -29 -20 -8 -16 -14 -1	413 35 5 -186 298 7 -58 -29 8 9 L -5 -112 134 -4 331 -254 -3 -169 14 -2 344 268 -1 -141 -3 9 256 239 14 -2 344 23 344 268 -1 -141 -3 9 -266 1 -176 18 272 3 -73 -655 4 379 -336 9 -16 L	-7 -11 -1 -1 2 3 -17 5 -17 5 -17 5 -7 7 -7 7 -7 -7 -7 -7 -7 -1 19 -18 11 9 -18 12 -19 -18 12 -19 -18 12 -19 -18 12 -19 -18 12 -19 -18 12 -18 12 -19 -18 12 -19 -18 12 -19 -18 12 -11 -18 12 -11 -18 12 -11 -18 -12 -11 -18 -12 -11 -18 -12 -11 -18 -12 -13 -14 -18 -15 -15 -15 -15 -15 -15 -15 -15 -15 -16 -15 -15 -16 -16 -15	33# 353 -0 141 -127 2 389 -434 -18 188 2878 -4 302 44# -25 192 -282 -26 416 -458 -10 222 288 -28 352 442 -38 368 -4#2 -5 321 -368 -17 386 -8#2 -5 321 -368 -17 386 -8#1 -16 29# 3#1 -3 5#7 -543 -16 211 -135 14 488 588 -44
-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2	8 1 L 271 -175 -175 -31 180 220 -36 40 302 -289 -140 95 400 341 195 -166 496 -399 216 -399 216 -399 216 -394 348 345 348 345 270 -331	$ \begin{array}{r} 11\\ 12\\ 22\\ 13\\ -19\\ 14\\ -9\\ 15\\ -1\\ 16\\ 4\\ -21\\ 25\\ 7\\ -13\\ 33\\ -12\\ 3-11\\ 1\\ -10\\ 7\\ -27\\ -9\end{array} $	2073 241 373 4074 1807 -244 312 -298 339 328 143 145 8 3 L -117 -87 252 137 -51 138 2007 -218 84 -93	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5507 542 -134 124 3507 -3507 -195 44 257 -3259 -124 -42 327 -335 81 139 8 5 L 88 167 111 -79 1907 -151	4 9 -24 10 9 11 -27 8 - -10 -7 -8 -7 -8 -7 -8 -7 -8 -5 -10 -5 -10 -2 -9 -7 -8 -5 -10 -5 -10 -2 -2	138 -126 -104 181 32 130 8 7 L 200 182 -125 -39 272 -207 42 59 370 326 -147 -109 387 -348 130 193	1 -25 -8 -1 <i>Ø</i> 16 -1 15 -21 14 -12	4 189 136 5 322 29% 6 2%3 -174 7 192 -187 8 255 2%9 9 -15 L % 222 213 1 268 296 2 295 -297 3 232 -233 4 344 398	8 9 9 5 1 9 2 18 3 5 6 1 7 7 8 9 9 9 9 9 10 -19 11	9 -12 L 34 <i>8</i> 35 <i>8</i> -3 271 -3 <i>0</i> 7 -12 386 -422 -15 422 492 -33 217 222 -1 498 -58 <i>8</i> -43 116 -151 -6 598 632 -18 -9 <i>8</i> 57 -7 537 -542 -2 53 32 1 437 494 -26

12 13 14 15 16	84 -5 575 -585 -11 124 471 498 1Ø4 -151	4 -4 -9 -11 -6	9 1Ø 11 12 13 14	10/5 -167 555 572 0/40/ 417 -40/2 -159 22 485 50/3	-12 -9 -1 6 -18 -8	3 4 5 6 7 8	488 -511 648 -637 725 7Ø9 389 387 425 -438 -72 -162	-13 8 12 Ø -7 -26	Ø 1 2	9 -3 L 108 190 541 520 195 -221	-19 12 -8	14 15 16 17	295 -337 371 348 -215 5Ø 256 -31Ø 9 Ø L	-15 8 -3Ø -15	-1Ø -9 -8 -7 -6 -5	275 -187 -82 95 262 151 109 -125 150 -188 218 231	21 -9 26 -2 -8 -3
	9-11 L		15 16	-146 -47 476 -501	-15 -1Ø	9 1Ø	64Ø 623 41 3	11	3	385 -412 329 375	-13	ø	653 593	44	-4	-74 180	-28
ø	174 188	-3	17	34 17Ø	-16	11	507 -498	5	5	368 371	-1	1	220 -175	13	-2	276 -268	2
1	288 -317	-11	18	31.0 375	-21	12	257 - 298 592 61Ø	-15	5	366 -406	-20	23	-146 113	-29	-1	633 563 83 47	43
3	523 567	-23		9 -8 L		14	-127 -14	-11	8	620 638	-12	4	369 348	1Ø	1	418 -384	15
4	-51 45	-3	Ø	217 -241	-8	15	496 -519	-11	10	35 118 498 -474	-10	5	331 - 345 - 80 - 141	-21	2	-119 -192	-40
6	-126 -9	-12	ĩ	174 -272	-32	17	444 466	-9	11	202 -217	-4	7	362 372	-4	4	-147 5	-17
7	771 804	-24	23	239 253	-4	18	121 -167	-7	12	-240 75	-49	8	393 396	-1	5	-43 Ø	-2
9	641 -668	-14	4	322 -309	5		9 -5 L		14	309 -343	-12	10	185 -162	5	7	642 647	-2
10	201 212	-2	5	355 -356	12	ø	411 -428	-9	15	4Ø -13Ø 542 535	-9	11	382 376	-26	8	-112 -119 541 -536	-19
12	286 -311	- 8	7	55 -1Ø1	-5	1	4.08 416	-4	17	-199 -78	-28	13	325 -283	14	1.0	163 253	-23
13	319 -345	-9	8	694 -657 194 242	-15	2	396 456	-33	18	305 -321	- 4	14	-191 -33 215 246	-24	11	352 383 197 -21Ø	-12
15	207 240	- 8	1Ø	602 599	1	4	144 -238	-29		9 -2 L		16	-195 -14	-23	13	324 -286	11
16	434 -487	-21	11	269 - 292 350 - 349	-8	6	201 250	-12	ø	295 338	-19		9 1 L		14	-108 241	-14
			13	289 234	-6	7	752 -725	20	1	377 484	-13		101 170				
	9 - 1 <i>1</i> 0 L		14	450 -476	-11	9	754 723	23	3	172 -271	-34	-11	-114 42	-8		9 3 1	
ø	-129 -41	-13	16	201 -192	2	1.0	92 -193	-22	4	497 497	ø	-10	279 -192	21 .	-11	212 -154	11
1	348 -362	-6	17	13Ø 235	-21	12	-78 153	-22	6	752 -705	-14	-9	192 201	-2	-10	67 111	-4
3	436 430	3				13	530 533	-1	7	-166 24	-24	-7	-122 -29	-11	-8	-78 98	-9
4	269 -242	-9		9 -/ L		14	286 -336	-14	9	-158 2	-20	-5	-158 108	-28	-6	137 -97	15
6	323 317	2	ø	472 -499	-15	16	317 3Ø8	3	10	729 -692	27	-4	4Ø1 336	27	-5	305 272	11
7	544 542	1	2	415 393	-210	18	349 -342	-10	12	569 557	-12	-3	642 -634	-28	-3	527 -459	-39
9	441 -477	-18	3	25 -78	-4				13	-165 -109	-28	-1	368 338	13	-2	-112 Ø	-9
1.0	47Ø 457 53Ø 563	-17	4	345 374	-14		9 -4 L		15	89 189	-17	1	453 -395	28	-1	-55 102	-10
12	427 -495	-32	6	713 782	8	ø	-194 -59	-37	16	178 243	-15	2	313 -294	7	1	369 -292	30
13	483 509	-12	8	539 -546	-4	2	-198 115	-48	17	206 -278	-18	4	330 353	-10	3	459 482	26
15	244 247	ø	9	309 302	2	3	686 -652	26		9 -1 L		5	466 -455	5	4	179 -246	-19
16	67.0 - 714 145 - 37	-22	11	409 450	-210	45	567 554	-43	ø	491 451	21	7	617 613	-28	5	208 244	-10
18	492 535	-17	12	495 -526	-16	6	40 -160	-20	1	-253 2	-61	8	115 129	-2	7	337 377	-16
	9 -9 1		13	469 494 362 371	-12	8	310 357	-22	3	-203 -125	-17	10	88 104	-2	9	-26 -146	-14
			15	524 -557	-15	9	461 474	- 7	4	372 350	10	11	462 452	.4	10	186 217	-7
Ø 1	26 -118	-1Ø	16	190 -188 475 466	3	10	718 -733	-1	5	470 -464	-45	12	417 -424	-15	12	279 -233	12
2	352 415	-30	18	-153 94	-19	12	565 569	-2	7	-27 212	-37	14	-182 92	-26	13	-185 -98	-26
3	263 218	15		9 -6 L		13	403 443	-18	9	310 -294	-2	16	-176 -121	-25	14	230 211	э
5	202 -243	-13				15	319 -308	3	10	548 -555	-4					9 4 L	
6	543 555	-6	10 1	622 -601	15	16	475 519	-19	12	350 408	-26		9 2 L	2	-10	-110 -61	-9
8	513 -524	-6	2	599 598	ø	18	470 -465	1	13	97 -158	-1Ø	-11	29 -68	-2	-9	219 146	14

-8 -76 -55 -43 -2 -1 8 1 23 4 56 78 99 18	-130 34 238 -200 -127 10 292 245 -235 -43 394 -368 93 163 290 249 376 308 236 -60 187 -189 376 308 235 -275 316 -329 3154 375 -80 147 440 -325 -90 -1 288 284 -149 -1	-11 9 14 -12 13 -11 8 -12 13 -11 8 -12 -12 -12 -12 -12 -13 -11 -12 -13 -1	4 5 -1 6 2 7 1 8 1 9 2 -6 2 -1 -5 -1 -1 -2 2 -1 -1 -2 2 -1 -1 -2 2 -1 -1 -2 2 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	338 -30/6 334 10/6 334 10/6 98 -221 99 -221 49 -149 247 226 90 7 228 -24 229 -24 254 -225 114 91 298 225 800 -62 655 10/9 237 20/0 237 20/0 263 -197	107 -18 4 -5 97 5 5 14 -9 77 -12 19 -6 26 26 -22 8 3 15	12 13 Ø 1 2 3 4 5 6 7 8 9 10 11 12 13 14	226 -209 243 -288 10 -13 L -141 -61 303 -336 147 21 394 423 -113 -63 416 -451 132 118 442 491 301 -292 437 -400 328 316 328 316 348 348 316 348 316 348 316 348 316 348 316 34	3 - 11 -14 -11 -12 -11 -10 -14 -21 -21 -21 -21 -18 -18 -1 -4	Ø 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 11 12 3 4 5 6 7 8 9 11 12 3 4 5 6 7 8 9 11 12 13 14 5 6 7 8 9 11 11 12 13 14 5 16 7 11 11 12 13 14 11 11 11 11 11 11 11 11 11 11 11 11	10 -10 L 429 -424 62 100 459 467 139 -144 498 -519 111 137 539 535 112 -176 579 -605 386 417 519 575 419 -427 350 -379 437 482 291 359 652 -658 130 -145	2 -4 -3 # -11 -4 -2 -12 -13 -13 -28 -3 -11 -23 -23 -22 -13	17 Ø 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	276 324 10 -7 L -206 -5 400 393 -165 67 578 -602 -142 110 604 594 -170 18 583 -553 261 266 347 379 421 -427 558 -570 356 379 501 474 467 -468 270 -287	-14 -34 2 -26 5 -26 5 -26 5 -26 5 -26 -13 -13 -13 -3 -6 -9 12 2 9 -5	14 15 16 17 <i>B</i> 1 2 34 56 7 89 1 <i>B</i> 11 12	385 -388 86 136 225 383 87 -211 18 -4 L 491 478 -144 46 686 -556 -135 -175 396 4808 -73 168 728 -698 114 159 533 514 129 -219 654 -634 478 456	$ \begin{array}{c} 1 \\ -6 \\ -22 \\ -20 \\ \hline 6 \\ -18 \\ 32 \\ -40 \\ -1 \\ -26 \\ 16 \\ -9 \\ 18 \\ -9 \\ 18 \\ -1 \\ -9 \\ 18 \\ -9 \\ 18 \\ -9 \\ 18 \\ -9 \\ 18 \\ -9 \\ 10 \\ 6 \\ \end{array} $
12	294 -278	4	5 6	7Ø 29Ø -54 98 7Ø -184	-5	5	1Ø -12 L			1Ø -9 L		16 17	411 438 -75 1Ø3	-1Ø -9	13	25Ø -275 358 -384 430 431	-7 -1.00 07
-99 -87 -54 -32 -1 87 12 34 56 78 9187 11	9 5 L 236 211 -106 -108 244 -185 166 143 84 207 240 -229 102 -149 231 249 -79 145 140 -170 -85 -145 467 416 -186 15 399 -372 -109 23 326 331 -116 -101 284 -2266 -89 -12 264 305 119 -149 9 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3 2 -2 1 -1 2 0 1 1 1 2 -1 3 -1 4 -1 3 -1 4 -1 3 -1 4 -1 5 -5 5 -5 6 -1 7 -5 8 - 7 -5 9 -4 10 -1 10 -1 -1 10 -1 10 -1 10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	76 -164 9 8 L 215 166 Ø9 Ø9 163 165 Ø9 163 196 175 -143 155 175 -143 155 168 -84 -84 Ø -15 L 181 269 177 181 269 177 181 269 177 181 357 86 111 357 86 111 -438 -95 Ø -14 L	$ \begin{array}{r} 9 \\ -8 \\ 6 \\ 5 \\ -71 \\ -12 \\ -17 \\ 10 \\ 7 \\ 9 \\ -14 \\ -8 \\ -10 \\ 14 \\ \end{array} $	8 1 2 3 4 5 6 7 8 9 1 8 1 1 1 2 3 4 5 6 7 8 9 1 8 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-19 6 11 -19 0 0 -9 -14 -89 4 -24 13 -55 -5 222 86 -25 -26 7 -75 -75	Ø 1 2 3 4 5 6 7 8 1 Ø 1 1 1 1 2 3 4 1 5 6 7 8 1 Ø 1 1 1 1 2 3 1 4 1 5 1 6 6 7 1 2 3 4	359 -325 323 337 228 240 189 -237 303 -345 370 368 353 342 360 -398 201 -228 -187 23 347 -371 97 -205 466 499 -207 54 463 -461 -188 75 447 476 10 -8 L 256 -237 175 218 367 362 382 -375	$ \begin{array}{r} 13 \\ -5 \\ -14 \\ -17 \\ g \\ -27 \\ -29 \\ -215 \\ -2 \\ g \\ -25 \\ -11 \\ -11 \\ -11 \\ -3 \\ g \\ -25 \\ -11 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$	87 1234 56789 98111 12314 1516 17 81	10 -6 L -90 193 637 626 213 -303 605 568 224 253 379 408 235 -568 225 -271 429 445 -10 77 463 -479 254 -297 555 550 -138 119 -124 -130 446 443 -78 -94 10 -5 L 279 332 559 -12 -10 -5 L 279 332	-35 8 -33 1-9 -14 -117 -8 -48 -152 -287 1 -8 -15 -287 1 -8 -15 -287 -15 -287 -128 -12	1667 123456789 112344567 11213144 15617	291 236 368 -388 10 -3 L 556 521 147 -269 512 -485 -99 146 534 528 329 -362 360 -343 220 265 262 308 334 -319 261 -287 546 507 74 221 343 -404 -55 -184 397 416 -70 111 303 -333 10 -2 1	$\begin{array}{c} 14\\ -6\\ 21\\ -38\\ 14\\ -25\\ -15\\ -17\\ -15\\ -17\\ -9\\ -28\\ -24\\ -7\\ -19\\ -28\\ -23\\ -7\\ -9\\ -9\end{array}$
-8 -7 -5 -4 -3 -2 -1 Ø 1 2 3	216 -189 86 -59 73 174 -128 132 311 -292 119 -43 321 -30 8 325 -290 31 111 134 207 -148 -53	5 2 -14 -2Ø 6 7 37 Ø 11 -7 -15 1 -16 1	9 4 10 1 2 2 3 3 4 1 5 3 6 7 4 9 4 10 1 11 3	93 179 846 -3Ø1 899 -2Ø3 331 388 43 132 374 -453 47 -23 157 52Ø 59 -159 126 -479 16 177 392 365	2 13 1 -2Ø 1 -32 1 -27 -12 -21 -1Ø 9	5 6 7 8 9 1 Ø 11 12 13 14 15 16	138 -286 698 721 -165 21 624 -688 137 141 639 682 217 -215 279 -332 173 225 377 354 337 -342 322 -364	-19 -14 -19 -35 Ø -22 Ø -17 -11 8 -1 -13	5 6 7 8 9 1 Ø 11 12 13 14 15 16	2 33 - 213 551 594 -33 67 565 -526 -64 45 534 522 214 -271 398 -401 -83 132 324 417 231 -310 250 -264 132 184	-24 -4 28 -18 -1 -16 -37 -24 -9	2 3 4 5 6 7 8 9 1 Ø 11 12 13	502 - 811 536 - 528 410' - 426 371 - 350' 335 - 353 633 - 608 -112 - 38 518 - 505 -192 - 33 593 - 604 146 - 141 507 - 534 120' - 184	4 -7 9 -8 18 -11 6 -29 -5 0 -13 -12	Ø 1 2 3 4 5 6 7 8 9 1Ø	369 354 501 -434 223 -247 324 316 380 396 383 -383 157 -164 368 377 -94 136 705 -683 143 138	6 33 -8 3 -7 Ø -1 -3 -2 Ø 15 Ø

16
 72
 2
 1
 8
 1
 8
 -45 Ø-00400/00000-0040 00400/00000-00400 00400/00000-00400 - NM4597898-10743
 1
 - 1384 - 1381 - 1381 - 1381 - 1381 - 1382 - 1383 - 1383 - 1383 - 1383 - 13844 - 13844 - 13844 - 13844 - 13844 - 13844 - 13844 - 13844 - 13844 20001001 P 000 Ø-N640070000-N6
 G
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 <thI</th>
 <thI</th>
 <thI</th>
 <thI</th>
 -118 -118 -118 -116 -183 -181 -181 -181 -181 -181
 1
 1
 1
 1
 1
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 110011 - 2551 - 19 8-N64597858-N6459 113113113113 ダークうゅう ちっかう うっちょう

16	-156 -98	-19		11 -1 L		-7	-113 55	-8	3	-169 -143	-28				5	248 -263	-6
	11 -4 1		a	399 -259	13	-6	199 166	- 1		12 -12 1		Ø	324 292	10	6	-67 176	-23
			ĩ	-121 -127	-21	-4	186 -153	6		12 13 1		2	396 - 348	17	8	249 -265	-4
ø	-65 16Ø	-21	2	387 343	17	-3	189 178	2	3	236 -3Ø4	-18	3	-77 43	-5	9	439 -427	5
1	396 - 370	11	3	-172 83	-26	-2	262 214	12	4	-159 -9	-14	4	383 304	27	10	3Ø1 367	-23
3	518 464	26	5	-124 -100	-17	ø	144 -149	Ø	6	104 - 42	-2	5	300 - 306	-7	12	298 -317	-9
4	-194 20	-29	6	565 492	34	1	313 281	10	7	376 -380	- 1	7	109 176	-11	13	-29 -220	-28
5	459 -436	10	7	-136 -30	-13	2	-142 57	-15	8	224 206	3	8	149 253	-24	14	385 4.02	-6
5	-1/6 38	-24	9	449 -41/	13	3	241 -2/3	-9	9	405 434	-10	10	120 -240	-25		12 5 1	
8	-43 -48	-2	10	388 392	-1	5	466 442	10		12 -12 L		11	304 351	-15		12 -5 L	
9	593 -602	-4	11	-127 -108	-17	6	-224 21	-33				12	94 173	-12	Ø	115 -140	-3
1.0	175 229	-13	12	253 -237	-19	2	338 - 341	-19	1	259 328	-20	13	364 -401	-13	1	338 -311	9
12	182 -221	-9	14	143 109	4	9	392 334	19	3	275 -282	-2	14	150 - 207	- 110	3	357 349	
13	373 -385	-4				1Ø	-181 -94	-24	4	231 164	14		12 -8 L		4	443 -394	2.0
14	393 420	-10		11 Ø L		11	256 - 261	- 1	5	242 236	1		266 201	11.	5	-123 -110	-18
16	238 -242	ø	ø	390 -289	36		11 3 L		7	310 - 302	2	1	301 -272		7	110 168	-107
		1.1	1	-21Ø 39	-33				8	337 349	-4	2	278 -282	- 1	8	489 -438	21
	11 -3 L		2	448 367	33	-6	210 139	12	9	232 264	-8	3	284 257	8	9	-87 -101	-11
9	-127 -84	-16	4	308 -287	-12	-4	-39 -55	-2	11	259 -241	-4	5	306 -297	-3	11	408 425	-24
ĩ	412 -377	15	5	-165 9Ø	-24	- 3	179 122	9				. 6	-166 -107	-26	12	378 -482	-8
2	-190 104	-36	6	432 426	2	-2	-145 112	-20		12 -11 L		7	253 263	-2	13	-187 31	-21
3	500 429	-14	8	334 -288	15	- 1	-154 -17	-14	Ø	237 308	-29	9	-102 104	-13	14	296 325	-8
5	280 -253	9	9	164 150	2	1	337 251	25	1	219 228	-2	10	-109 -91	-12		12 -4 L	
6	-148 8	-16	1.0	322 322	Ø	2	-150 -17	-14	2	242 -268	-7	11	373 405	-12			
8	261 - 293	-10	12	-58 -120	-19	4	425 - 365	4	3	327 282	-12	13	496 -411	-2	10	152 -228	-17
9	350 -317	12	13	84 151	-8	5	320 265	16	5	35 185	-19	14	-152 14	-13	ż	455 352	4.0
10	296 324	-9				6	52 -101	-4	6	389 -387	1		10 7 1		3	-99 96	-12
12	269 - 306	-11		II I L		8	-186 34	-21	8	353 409	-21		12 -/ L		5	41/ -365	-28
13	146 -224	-16	-7	-113 -58	-9	9	2.07 193	3	9	-176 -4	-19	ø	148 139	1	6	433 359	29
14	377 392	-5	-6	305 210	24				10	324 -362	-13	1	478 -434	18	7	-163 21	-18
15	-81 121	-11	-4	266 -271	-13		11 4 L		12	522 502	-13	3	410 384	1.0	9	159 164	-1
	11 -2 L		- 3	-221 110	-41	-4	-185 -32	-20			-	- Ā	-128 132	-22	1.0	449 457	-3
~	105 144		-2	257 247	3	- 3	189 128	10		12 -1 <i>8</i> L		5	431 -374	22	11	-106 -104	-13
1	396 - 341	22	ø	354 -298	19	-1	288 -210	19	ø	237 259	-5	7	401 378	- 3 3	13	232 285	-14
2	271 299	-1Ø	1	267 234	9	ø	-21 159	-14	1	176 138	6	8	-174 -50	-22	14	354 352	ø
3	343 294	18	2	207 237	-7	1	149 188	-7	2	339 -319	6	9	641 -623	8		10 0 1	
5	-126 -170	-32	4	317 - 329	-4	3	273 -254	5	4	399 374	- /	11	427 433	-8		12 -3 L	
6	271 259	3	5	395 364	12	4	142 144	ø	5	-78 41	-4	12	222 -216	ī	Ø	327 -257	22
7	181 228	-12	6	322 282	13	5	134 165	-5	6	473 -449	9	13	291 -389	-33	1	-207 5	-29
9	-150 - 100	-22	8	-175 -136	-31	7	103 - 131 194 - 191	~ 3 Ø	8	387 412	-10	14	262 326	-18	23	466 354	-11
1Ø	339 355	- 6	9	37Ø 332	13			~	9	150 -208	-12		12 -6 L		4	346 -261	27
11	-135 151	-26	10	3 122	- 8		11 5 L		10	467 -457	4	~	110 50		5	-254 47	-48
13	424 -384	-10	12	-59 -57	-3	- 1	110 -94	1	12	325 3/5	-16	1	424 - 376	18	7	338 314 140 -198	-12
14	-95 175	-23			5	ø	85 129	- 5	13	378 -401	- 8	z	-38 -3	ø	8	314 -270	13
15	71 -97	-2		11 2 L		1	206 148	10		12 - 9		3	399 350	18	9	215 199	3
						6	200 -230	b		12 -9 L		4	88 -112	- 3	1.10	4103 412	- 1

11	360 - 302	18	3	289 -254	10	1	-148 42	-13		13 -8 L		8	298 -295	Ø	3	155 -208	-10
12	213 -270	-13	5	102 266	13	3	-162 -200	-15	a	-62 -112	- 9	107	342 222	- 2	2	252 220	-20
15	3/1 330	11	6	-130 -70	-13	3	105 0	15	1	174 -250	-17	11	134 -191	-10	6	-74 -128	-12
	12 -2 1		7	284 -307	-7		13 -11 1		2	146 150	Ø	12	166 -208	-8	7	283 -331	-15
			8	-139 88	-16		10 11 1		3	267 243	6		100 200	0	8	-126 67	-11
Ø	300 -233	19	ğ	313 243	19	3	281 267	3	Ă	149 -211	-12		13 -5 1		9	420 386	12
ĩ	138 148	-1	10	184 -135	8	Ă	215 239	-5	5	135 -180	-8		10 0 2		10	258 -245	12
2	244 213	ŝ	.~			5	322 - 321	ø	6	198 182	3	Ø	337 -283	16		200 240	0
3	141 -129	2		12 1 L		6	213 -190	4	7	132 149	-2	ĩ	107 78	3		13 -2 1	
4	-28 -189	-23				7	271 297	- 7	8	219 -223	ø	2	284 257	7			
5	184 235	-12	-4	-91 -10	-4	8	-146 120	-20	9	-62 -158	-16	3	254 -210	11	8	139 48	9
6	169 197	-6	-3	173 203	-6				1Ø	211 287	-20	4	205 -192	3	1	200 189	2
7	309 -321	-3	-2	-92 -8	- 4		13 -1Ø L		11	77 113	- 3	5	217 241	-6	2	-172 -42	-18
8	30 -127	-9	- 1	276 -219	14							6	325 3Ø1	7	3	219 -172	9
9	250 270	-5	ø	69 65	ø	1	296 -272	6		13 -7 L		7	329 -302	8	. 4	198 192	1
10	-155 122	-23	1	235 210	6	2	-153 -111	-20				8	191 -185	1	5	27 164	-15
11	321 -299	6	2	126 -117	1	3	3Ø3 329	- 7	ø	245 -225	4	9	219 229	-2	6	221 -286	3
12	-234 46	-35	3	318 -293	7	4	18 76	- 3	1	207 -207	ø	1Ø	144 228	-17	7	225 -234	-2
			4	283 239	11	5	454 -391	23	2	287 230	15	11	271 -287	-4	8	194 188	1
	12 -1 L		5	270 246	6	6	-145 4	-12	3	-58 142	-14				9	-76 13Ø	-12
			6	300 -260	11	7	352 322	9	4	377 - 302	24		13 -4 L				
Ø	241 -168	16	7	185 -237	-11	8	-113 -96	-12	5	-98 -72	-8	~				13 -1 L	
1	315 212	29	8	253 253	10	9	413 - 384	110	6	424 380	16	10	2/5 -289	16		10 100	
2	-98 94	-11	9	32 144	-10	1.0	199 192	1		-134 50	-12	1	218 220	17	10	42 138	-8
3	235 -209	0		12 2 1			12 -0 1			440 -3/0	20	2	-35 141	-1/	1	153 115	5
	-120 -93	-14		12 2 6			13 -9 L		10	227 227	-10	3	517 -237	-7	2	172 -150	- 2
5	367 320	-1	- 2	-164 -65	-10	a	-152 20	-14	11	-200 -72	-27	2	449 292	24	3	207 244	14
7	227 -202	- 1	-1	95 -129	-10	1	292 -256	1 9	12	319 - 201	-27	6	70 70	a	Ē	-165 92	-21
é	-35 -82	- 4	â	-194 194	-12	2	-74 20	-3	16	510 501	5	7	414 -375	1.4	6	331 -247	23
q	352 310	13	ĩ	193 176	3	3	329 282	14		13 -6 1		Ŕ	-239 -56	-38	7	-169 -116	-24
1.07	-176 -89	-23	2	284 -256	7	4	-103 -51	-7				9	365 376	-3	8	295 241	13
iĩ	238 -192	8	3	155 -169	-2	5	302 -306	- 1	ø	209 -236	-6	1.0	-112 3	- 7			
12	92 79	ĩ	4	351 327	7	6	-93 76	-8	1	97 -132	-4	11	452 -434	6		13 Ø L	
		-	5	-173 42	-18	7	171 204	-6	2	352 286	2.0			-			
	12 ØL		6	131 -256	-26	8	-145 -82	-16	3	124 -31	8		13 -3 L		1	~86 86	- 8
			7	47 -76	- 1	9	298 -297	ø	4	355 -317	12				2	237 -218	6
ø	-78 -66	-6				10	113 218	-19	5	-149 1Ø3	-20	ø	130 -58	7	3	-187 -73	-23
1	323 235	25		12 3 L		11	201 219	- 3	6	447 396	19	1	277 237	1.0	4	271 273	ø
2	-20/3 -2	-26							7	-121 -116	-17	2	-105 54	- 8	5	-222 -39	-3Ø

Appendix C. Structure factor amplitudes (10F_o, 10F_c, 10 $\sigma_{\rm F}$; $\sigma_{\rm F}/k = [F_o + \sigma_{\rm F^2}]^{\frac{1}{2}} - |F_o|$, k = 1.0108; $F_o < 0$ means $I_o < 0$) for trans-Os(η^2 -HBA-TMI)₂Cl₂.

									100						-								
				10	2310	260	-14	Z	196	186	3	8	-33	-43	-3	8	242	282	-21				
-	13 Ø	L		12	26Ø	278	-9	3	34	31	ø	9	373	387	-10	9	78	38	5	3	-111	15	-12
				14	206	222	-6	4	268	264	2	10	59	-10	4	10	320	310	6	4	186	240	-21
2	163	135	8					5	39	-19	1	1 1	233	266	-17	11	- 25	34	- 2	5	122	96	7
	100	107	4		12 1			6	100	100	- 7	12	-117	- 40	10	12	200	220	17	5	123	275	
4	196	10/			12 1	L		0	100	1 50	- /	12	-11/	-49	-19	12	299	328	-17	ь	299	215	12
6	224	198	11			1.00		/	-87	16	-8	13	335	334	1	13	21	1Ø	ø	7	93	60	5
8	226	223	1	1	272	253	1Ø	8	189	169	7	14	80	-105	- 4	14	25Ø	267	-8	8	228	214	5
10	174	201	-107	2	-69	61	-9	9	78	41	4	15	334	346	- 7	15	139	54	17				
12	192	106	2	3	223	197	11	1 01	192	213	-11	16	79	27	É.	10	157	211	- 20	1.11	10 0		
12	155	100	2	4	62	22		11	105	213	11	17	276	272	5	10	155	211	-210		110 10	L	
				4	-03	32	-6	11	-37	32	-2	1 /	216	212	2								
-	13 1	L		5	188	188	ø	12	202	240	-15					- 1	11 5	L		12	377	382	- 4
				6	-43	-63	-7	13	38	32	ø	-	11 2	L						14	429	411	14
1	183	184	Ø	7	239	279	-29									1	237	210	12	16	201	277	
2	.03	104	- 7	ó	- 25	-60	- 5	-	12 E	1		1	-112	10	10	2	231	210	12	10	247	225	1
2	-03	1	- /	0	- 3 3	- 0.0	- 5	-	12 5	L		1	-113	-10	-16	4	-66	39	- 6	18	243	220	/
3	213	180	13	9	289	319	-18					2	327	343	- 1 Ø	3	271	291	-10				
4	71	53	2	1Ø	106	12	13	1	153	120	9	3	1Ø1	47	1Ø	4	54	51	ø	-	10 1	ι	
5	166	162	1	11	220	259	-18	2	58	4	3	4	298	306	-5	5	328	316	8				
c C	-100	- 5	-12	12	- 7 7	-10	- 1	3	224	188	14	5	- 96	10	_ 0	C	- 90	21	-11	12	- 95	- 74	- 1 1
	210	201	12	12	222	222	à		107	20	1.7	6	202	227	10	0	100	200	11	12	207	34	- 1 1
/	218	2104	5	13	222	666	10	4	-107	29	-12	6	3103	321	-16	/	162	2230	-24	13	391	3/8	14
8	3Ø	22	ø	14	1Ø1	-46	8	5	229	228	ø	7	31	67	- 4	8	56	46	1	14	45	21	1
9	200	220	- 8	15	265	256	4	6	-87	13	- 8	8	322	35Ø	-19	9	247	262	-7	15	346	383	-24
10	68	72	Ø					7	199	221	- 9	9	97	101	-1	101	80	50	A	16	21	24	Ø
11	150	100	- 2		12 2				-160	26	- 20	10	333	240	10	1 1	220	212		17	222	241	2
11	159	103	- 3		12 2	L .		0	-100	2.0	-30	1.0	332	340	-10	11	330	312	11	17	233	241	- 3
12	52	33	1					9	216	211	1	11	-114	-7	-15	12	-85	39	-9	18	98	24	9
				1	33	97	-9	1Ø	118	47	12	12	314	325	-7	13	213	257	-19	19	240	228	5
	13 2	- L		2	214	242	-12	11	250	278	-13	13	122	-56	13	14	38	51	- 1				
				3	134	34	19	12	119	69	g	14	299	276	-21	15	157	104	- 9		107 2		
2	100	100	0		215	212	1 2	16	115	0.5	5	1 5	60	330	- L I	13	157	104	- 0		10 2		
2	168	160	10	4	215	212	1					15	-69	-31	-6						122	1.1.2	
3	1.02	37	9	5	-14	25	-1	-	12 6	L		16	2/5	301	-13	-	11 6	L		11	7.0	- 9	6
4	194	163	11	6	195	237	-19					17	41	7Ø	- 3					12	394	411	-12
5	-66	6	-4	7	25	-33	ø	2	61	164	-21					1	43	57	- 1	13	-73	-24	-7
6	184	173	4	8	245	263	- 9	3	38	50	- 1	-	11 3			2	230	239	- 4	1 4	370	391	-14
0	104	175	č		122	40	-10		220	220	a		11 3			2	2.50	235	7	1.4	370	351	14
/	8.0	13	6		-122	40	-19	4	230	220	0					3	- 4 5	7.10	-/	15	25	-14	10
8	195	200	-2	10	216	263	-23	5	84	44	5	1	282	234	26	4	296	302	-3	16	355	339	9
9	-95	39	-11	11	ø	72	-5	6	199	231	-13	2	73	80	- 1	5	-63	112	-18	17	-34	54	- 4
10	177	191	- 5	12	198	215	- 7	7	-155	37	-26	3	349	354	- 3	6	281	275	3	18	312	301	5
1.1	-96	22	- 9	13	61	2		9	2017	197	5	4	9.01	- 7	10	7	-96	CA	-12				0
1 1	00	22	0	1.5	170	210	1.6	0	207	1 3 3	3	-	260	212	10	~	260	04	-12				
				14	1/6	219	-16	9	22	1	10	5	269	312	-26	8	268	250	9	-	10 3	L	
-	13 3	L		15	-83	12	-6	1Ø	218	2Ø8	3	6	-42	-22	-2	9	-64	7	- 4				
												7	265	295	-18	1Ø	294	286	4	10	117	112	1
3	127	165	-197	-	12 3	1		- 1	11 Ø	1		8	63	75	-2	11	116	36	13	11	394	399	- 4
Ă	- 95	E a	-10			-				11000		Q	242	246	- 7	12	266	2014	-19	12	-100	-51	-15
4	-05	5.0	10		221	212	-		245	240	-		100	340		12	200	304	- 1 5	12	272	357	13
5	134	141	- 1	1	231	213	/	2	246	2410	3	1.10	-109	86	- 22	13	-56	38	- 4	13	312	357	11
6	52	14	2	2	6Ø	79	-2	4	355	372	-13	11	349	365	- 1 Ø					14	61	- 8	4
7	191	160	11	3	235	259	-11	6	483	484	ø	12	36	-9	1	- 1	11 7	L		15	360	363	-2
9	-15	6	Ø	4	51	64	- 1	8	364	399	-26	13	248	233	7					16	132	BØ	11
0	103	101	a	Ē	264	266	- 1	10	216	227	E	1.4	27	-10	1	1	270	244	12	17	204	270	2
9	193	191	10	5	204	200	- 1	1.0	210	221	- 5	14	37	-15	1	1	2110	244	12	17	304	3/3	
10	61	34	Z	6	-49	-1.0	-2	12	245	275	-16	15	266	267	10	2	-88	4	-8	18	-118	17	-13
				7	201	219	~ 8	14	321	316	2	16	-41	105	-12	3	226	252	-11				
	13 4	1.		8	51	29	2	16	217	272	-25	17	232	258	-11	4	-91	60	-12	-	10 4	L	
		-		9	205	222	- 7								1.1.1	5	261	255	2			100	
c	162	100		1 0	126	76	1.01		11 1	1.1		-	11 4	1.1		c	07	02	1	1	04	70	1
ь	163	188	-8	1.0	120	10	1.0	-		L		-	11 4	L		0	97	36	1	1	84	19	1
7	83	1	7	11	177	2104	-10				1.1.2					/	212	288	- 8	2	351	361	- 6
				12	97	17	9	1	374	380	- 4	1	81	66	2	8	153	40	23	8	400	391	7
-	12 97	L		13	247	217	13	2	93	104	-3	2	277	284	- 4	9	312	294	9	9	172	115	20
	~ ~	-		14	50	12	3	3	324	333	-6	3	-59	29	- 5	10	90	5	8	10	132	436	- 3
2	100	104	2	1 4	55	1 4	5		127	555	17	4	222	270	- 24	11	260	200	a	11	- 24	-12	a
	1 24 14	194	- 2					4	127	34	17	4	233	2/3	-24	11	200	203	2	1 3	-24	275	0
2	105	100						5	191	312	- 4	5	14/	- 55	11	17	88	16	/	16	Shi	3/5	- 9
4	221	189	14	-	12 4	L				~ . ~	-												
4	221	189 3Ø9	14	-	12 4	L		6	-76	- 6	- 7	6	253	290	-21					:3	111	-39	12

15 16 17	-72 265 -1Ø5	59 291 5	-9 -13 -11	-1Ø 8 L 1 72 17	5	17 397 18 -65 19 316	396 Ø -1Ø -4 29Ø 13	1 92 2 283	-16	9 1 -1 1	5 -82 6 346 7 -88	6Ø 336 -6	-12 7 -8	1 2 3	-67 359 7Ø	56 364 122	-9 -3 -12
-	1Ø 5	L		2 212 228 3 -26 56	- 6 - 4	-9 4	L	3 113 4 35Ø	74 345	8 1 3 1	8 272 9 -88	281	- 4 - 8	4	454 125	454 85	Ø 1 Ø
1	310	315	-2	4 296 324 5 1Ø8 117 6 297 298	-15 -2 ø	12 367	363 3	5 127 6 351 7 60	127 363	и 21 - 8 - 0	Ø 274	274	Ø	6 7 8	353	3707	-12
3	423	435 7Ø	-9	7 -71 32 8 258 24Ø	-69	14 327 15 -111	335 -4 88 -22	8 226 9 116	246	-9 13 1	5 447	454	- 5	9 1Ø	72	-12	-1Ø
5 6	375 77	356 62	14	9 116 -60 10 224 199	1Ø 1Ø	16 34Ø 17 ~67	348 - 4 -19 -5	1Ø 226 11 126	223 71	1 1 11 1	6 42 7 429	57 449	-1 -14	11 12	32 3Ø1	1Ø4 335	-11 -2Ø
7	305	315	-6 19 a	11 68 -1 12 196 238	-16	18 318 19 -1Ø7	316 Ø -78 -16	12 278 13 131	281 55 251	$ \begin{array}{ccc} -1 & 1 \\ 15 & 1 \\ -2 & 2 \end{array} $	8 -71 9 261	-51	-8	13	143	303	-22
1Ø 11	-31	400 0 389	-1 -9	-1Ø 9 L		-9 5	L	-9 9		-5 21	-8 4	-2.0 L	- 1 1	16	213	266	-22
12 13	95 264	60 288	-13	1 21Ø 216 2 -7Ø 45	-2	11 439 12 -56	436 2 16 -4	1 242	220	10 1	4 352	359	-5		-8 9	L	
14	-88	208	-8 Ø 2	4 128 95 5 233 233	10 7 01	13 326 14 96 15 276	332 -4 55 7 2907 -7	2 -86 3 243 4 100	58 - 243 59	12 1 Ø 1 7 1	5 125 6 449 7 39	114 442 21	351	1 2 3	274 96 264	253 28 281	11
17	278	251	12	6 110 19 7 171 224	12 -19	16 -142 17 -342	33 -22 347 -2	5 315 6 -67	291	13 1	8 376 9 87	366	6	4	73	49	3-3
	10 6	L		8 67 -18 9 183 221	4 - 1 4	18 166	3 27	7 3Ø1 8 -4Ø	283	-2	-8 5	L		67	-43	-22	-2
1 2 3	-61 373	388	-11	-9 Ø L		-9 6	L 59 Ø	10 -53 11 254	265 - 54 -	10 -6 1 16 1	3 281	268	8	8 9 1 Ø	-55 268 -125	- 38 249 70	-5 1Ø -21
4	344 -14	351 57	-5 -4	14 55Ø 557 16 383 382	-5 Ø	8 4Ø4 9 3Ø	4Ø7 -2 Ø 1	12 67	92	-3 1	5 332 6 -142	346	-8	11	307	3Ø1 71	3 -1Ø
67	315	3Ø7 Ø	-3	18 296 269 20 299 295	14	10 422 11 20	437 -11 39 -1	-9 18			7 372 8 21	357	10	13 14	326 -154	31Ø 24	-22
9 10	-85 384	305 61 389	-12	-9 1 L		12 384 13 46 14 28Ø	71 - 3 71 - 3 787 - 3	2 172 3 86	147	8 7	-8 6	233 L	-15		-8 10	L	
11 12	51 361	110	-1Ø -5	14 78 32 15 4Ø6 412	- 4	15 21 16 251	1 Ø 274 -11	4 19Ø 5 1Ø7	177 57	5 8 1	1 137	85	14	12	-168 213	-12 172	-29 17
13	85 22Ø	95 236	-1	16 -57 73 17 222 263	-9 -2Ø	17 92	32 7	6 264 7 109	271 · 68	-3 1.	2 307 3 57	326	-12	3	42 26Ø	67 276	-2
16	208	210	ø	18 - 110 - 19 19 - 230 - 250 20 - 72 - 21	-13 -8 -5	1 262	285 -13	9 112	7.00 7.00	7 1	5 107 6 262	-61	8	67	330	317	-10
-	1Ø 7	Ľ		-9 2 L		2 -87 3 33Ø	-36 -1Ø 351 -14	-8 6	L.	1	7 -134 8 248	-34 259	-19 -5	9 8	188 -78	251 12	-26
1 2	284 Ø	300	-9 Ø	14 421 427	- 4	4 73 5 343	1Ø1 -6 331 8	16 264 18 326	278 -	-7	-8 7	ι		10	178	217	-15
4	-58	105	-16 Ø	16 306 311 17 62 70	-2 -1	7 392	374 13 3 4	-8 1	L .	1	9 416 or 98	421	-4	16	-8 11	L	24
6 7	128 285	14Ø 3Ø1	- 3 - 8	18 285 276 19 -51 28	- 3	9 399 1Ø -62	4Ø5 -4 58 -8	16 -108	13 -	14 1	1 368 2 35	343	17 Ø	1	241	204	16
8 9 1 Ø	33 326 -118	339	-7	-9 3 1	310	11 2/1 12 -77 13 250	79 - 13 79 - 13	17 294 18 62 19 316	-16	9 1 4 1 -5 1	3 298 4 137 5 282	-35	19	234	314	45 284 56	16
11	323	336	- 7 - 4	13 344 342	1	14 11Ø 15 2Ø3	-23 12 229 -10	2Ø -15 21 315	-46 -	-2 1	6 37 7 245	-53	- 1 - 9	5	315	3Ø7 86	4-8
13 14	276	275 20	Ø	14 121 -12 15 375 399 16 146 78	17 -16 17	16 -1Ø1	-15 -1Ø	-8 2	L		-8 8	L		7 8	231 97	259 106	-12 -1

-7 Ø L 2 564 5Ø8 43 4 876 967 -71 6 557 579 -17 18 319 315 2 2Ø 359 369 -6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 398 392 4 5 1000 93 1 6 414 423 -7 7 -39 75 -8 8 229 267 -18 9 36 45 0 100 251 291 -200 11 -59 63 -7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-6 7 L 13 396 401 -3 14 108 -59 9 15 390 403 -9 16 108 27 11 17 303 312 -5	9 300 284 8 10 154 20 25 11 326 330 -2 12 -47 -6 -2 -6 12 L 1 -34 27 -2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 111 -35 13 16 339 351 -7 17 -82 2 -7 18 212 228 -6 19 63 10 3 -7 7 L 11 303 323 -13 12 -46 69 -8 13 304 307 -1 14 122 -97 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
207 -111 207 -13 21 367 338 16 -7 2 L 1 707 88 -6 2 552 572 -23 3 118 -125 -3 4 709 745 -41 5 58 -66 -1 6 76 46 -82	15 345 374 -19 16 -86 -14 -7 17 342 337 3 18 -92 99 -17 -7 8 L 9 64 28 4 10 349 376 -19 11 90 95 -1 12 422 417 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 150 111 21 7 807 826 -20 8 88 26 14 17 494 457 29 18 61 -73 -1 19 265 252 6 20 -103 47 -13 21 200 219 -7 -6 4 L	-6 9 L 7 400 362 28 8 139 150 -3 9 395 407 -8 10 130 146 -5 11 486 465 16 12 -127 45 -19 13 425 416 6 14 69 5 5	6 753 798 -39 8 86Ø 923 -51 1Ø 963 1Ø18 -4Ø 18 577 552 21 2Ø 511 47Ø 3Ø 22 277 244 14 -5 1 L 1 1158 1241 -84 2 3Ø2 247 -45
17 121 -35 16 18 326 355 -18 19 -90 14 -9 20 316 313 1 21 107 9 11 -7 3 L 16 -67 12 -5	12 46 -1 2 14 339 334 3 15 57 1 3 16 277 3Ø3 -13 17 61 63 Ø -7 9 L 1 296 266 18	2 853 882 -23 4 834 906 -59 6 756 852 -81 8 727 783 -46 10 722 815 -74 18 499 485 11 20 396 391 3 -6 1 L	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17 432 426 4 18 -109 -56 -16 19 289 308 -9 20 46 26 1 21 240 186 20 -7 4 L 15 -80 69 -13	2 48 43 87 3 374 368 9 4 126 76 12 5 467 451 12 6 -987 5 -9 7 353 346 4 8 -69 22 -6 9 324 387 187 10 132 187 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 435 424 8 7 97 26 10' 8 312 298 8 9 -10'9 50' -16 10' 350' 341 6 11 132 90' 9 12 432 421 7 13 58 59 0' 14 258 273 -6	18 -59 -68 -9 19 458 436 15 20 114 61 10 21 309 294 8 22 142 -14 20 -5 2 L 1 149 -161 -9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 568 589 -25 17 446 425 16 18 59 10 4 19 472 455 13 20 128 63 13 21 331 307 13 -6 2 L 1 150 182 -23	19 228 227 Ø 2Ø 99 -49 7 -6 6 L 14 451 452 Ø 15 -59 2 -4 16 377 382 -3 17 -82 43 -9 18 233 229 2	-6 11 L 1 30/4 30/5 0/ 2 -39 28 -2 3 378 396 -12 4 57 56 0/ 5 356 346 6 6 114 34 13 7 260 260 0/	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 -109 13 -13	3 38 /6 -4	2 866 8/4 -9	19 80 41 4	8 -111 -2 -13	19 -54 50 -6

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 155 183 -8 -5 12 L 1 1072 18 11 2 318 316 1 3 -91 21 -9 4 333 324 5 5 -21 707 -5 6 289 292 -1 7 -1072 407 -12 8 295 282 6 9 977 - 307 8 107 265 258 3 -5 13 L 1 252 282 -133 2 -15 4 97 3 293 3074 -5 4 93 72 3 -4 07 L 2 17075 1789 -46 4 15407 1633 -55 6 10754 1169 -9 907 8 14071 129 -24 18 6433 6071 35 207 3407 324 107 22 192 225 -12 -4 1 L 1 1188 1274 -89 2 1348 1452 -98 4 459 546 -136 5 12757 1394 -117 6 3207 333 -16 7 581 59 07 -12 8 -307 61 -11 9 10707 11207 -51 107 115713 07 1 10724 981 41 1 10724 981 107	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3 689 763 -88 4 237 238 -1 5 813 791 23 6 106 95 4 16 75 -23 6 17 394 368 18 18 55 34 2 19 277 236 19	11 -33 59 -5 12 384 386 -1 13 -78 4 -6 14 247 246 Ø 15 -13Ø -3Ø -17 -5 11 L	6 320 333 -16 7 581 590 -12 8 -30 61 -11 9 1070 1120 -51 10 115 -113 0 11 1024 981 41 18 -60 -75 -11 19 489 427 45	18 376 328 31 19 -29 8 -1 20 402 347 34 21 109 -23 11 -4 5 L 1 915 925 -11	15 276 276 2 16 -49 41 -4 -4 16 L 7 53 82 -5 8 383 384 6 9 6 43 -2	8 1215 1219 -2 10 1240 1235 3 12 680 638 31 18 536 504 25 20 307 299 4 22 146 167 -6 -3 1 L
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	207 36 11 1 21 276 246 15 22 -74 -61 -9 -4 2 L 1 367 -417 -74 2 889 968 -98 3 -51 15 -8 4 1007 10098 -12 5 136 -124 8 6 628 661 -43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 460 443 12 11 92 49 6 12 383 379 2 13 123 -12 16 14 244 232 5 15 35 -28 0 -4 11 L 1 385 397 -8 2 73 17 6 3 52 529 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

12 18 20 22 22 12 22 22 12 22 22 12 23 45 67 78 90 10 11 11 18 20 22 1	77 -39 8 -63 37 -6 419 39Ø 2Ø -49 6 -2 228 219 3 -67 -41 -5 -3 2 L 61Ø -682 -111 1368 1398 -27 1ØØ 127 -18 765 756 11 57 37 5 1Ø12 1ØØ8 32Ø 25 47 -98 -17 64Ø 63Ø 11 222 216 4 461 421 31 126 1Ø6 4 316 294 12 -34 12 -1 -3 3 L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 2 3	938 995 -68 68 67 Ø 834 857 -29 316 291 31	15 59 66 -1 16 382 397 -11 17 85 -19 7 18 250 242 4	107 707 16 5 11 307 315 -4 12 67 91 -4 13 168 194 -9	-2 2 L 1 677 -730 -79 2 836 901 -86	4 84 43 13 5 110/8 10/75 32 6 443 351 99 7 70/6 615 98	8 434 432 Ø 9 1Ø7 -3 14 1Ø 386 391 -3 11 -45 -63 -7
567	1ø34 1ø36 -1 196 -119 55 915 86ø 59	19 120 -93 5 20 341 316 13	-3 12 L	3 1392 1279 97 4 1391 1251 118 5 396 -335 81	8 189 125 39 9 417 419 -1 16 -43 -13 -2	12 260 251 4 13 88 -29 7 14 271 260 4
8 9 1Ø	464 -419 51 892 893 Ø 153 156 -1	-3 / L 1 455 394 62	1 -65 13 -4 2 376 389 -8 3 143 77 17 4 249 225 9	6 1982 1918 66 7 304 -294 12 8 1180 1086 86	17 282 280 0 18 115 61 10 19 308 265 24	-2 11 L
18 19 20	115 76 9 349 302 * 28	2 12% 151 -17 3 669 695 -29 14 162 145 6 15 385 386 Ø	4 345 335 5 5 116 14 15 6 277 298 -11 7 109 -31 12	10 882 849 35 11 202 218 -13 18 410 382 20	-2 6 L	3 534 536 -1 4 74 29 6 5 393 394 Ø
21	289 250 19	16 1Ø9 115 -1 17 3Ø3 28Ø 12	8 338 336 1 9 43 -38 Ø	19 76 71 Ø 2Ø 3Ø1 278 13	1 306 240 62 2 785 745 45 2 65 -22 8	6 77 -1 7 7 344 357 -8 8 117 -68 10
1	95 53 18	19 262 275 -5	10 332 330 2	-2 3 L	4 1085 997 82 5 36 -42 0	9 377 379 ~1 10 108 50 10 11 254 284 -15
34	192 194 -1 109 127 -11 577 628 -70	13 116 -35 15	1 245 259 -6 2 61 -15 2	1 9Ø1 894 9 2 229 158 71 2 1221 1221 Ø	7 -29 49 -7 15 167 133 12 16 257 291 -17	12 57 64 Ø 13 227 213 6
67	1Ø43 918 171 179 119 38	15 52 99 -8 16 323 315 4 17 78 a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 85 9Ø -2 5 9ØØ 759 152 6 511 -434 95	17 -50 -8 -3 18 -361 -323 -24 19 -143 -60 -17	-2 12 L
9 1Ø	94 -99 -1 632 56Ø 75	18 277 262 7	6 -47 -3 -2 7 236 23Ø 2 8 133 -55 15	7 1162 11Ø4 55 8 324 -249 76 9 945 856 89	-2 7 L	2 387 391 -2 3 126 77 11 4 307 313 -4
18	32Ø 266 32 -51 1Ø8 -16	11 477 474 2	-2 Ø L	10 111 117 -3 11 734 656 81	1 723 666 6Ø 2 250 -157 66 2 666 596 74	5 -29 -3 Ø 6 35Ø 346 2 7 195 -113 28
20	-113 26 -13	13 327 347 -13	2 1009 1106 -85	18 49 9 2	4 206 -135 44	8 359 357 1

9 1Ø 11	108 -4 322 31 27 2	1 1Ø 3 5 2Ø Ø	21	-56	-91 3 L	-12	4 5 6 7	1165 41 1172 288	978 -78 1Ø31 245	162 -9 123 38	11 12 13	242 2 -46 189 2	45 39 31	-1 -4 -16	13 14 15	531 -38 611	536 -121 59Ø	-4 -19 14	1 2 3	74 185Ø 389	98 1475 327	-18 336 112	
	-2 13 L		1	1549	1381	131	15	110	85	6		-1 12	L		17	499	480	24	5	103	57	29	
	220 20	1 10	2	528	499	42	16	3Ø1	312	-6		1.00			18	151	96	23	6	1383	1244	161	
2	40 1	0^{-100}	4	503	428	102	18	339	315	13	2	369 3	73	-2	20	282	16	9	8	868	35	94	
3	293 29	9Ø 1	5	1146	1Ø78	67	19	-86	- 34	- 8	3	105	66	8	21	225	213	7	9	204	204	Ø	
4	172 7	26	6	342	-333	11		Ja is			4	320 3	30	-6		~ ~			1.0	782	849	-56	
5	76 -4	16 3	8	308	-271	39		-1	, L		5	379 3	74	13		10 2	L		12	697	-84	- 49	
7	233 23	30 1	9	929	9.07	23	1	681	555	131	7	63 -	68	ø	ø	844	7.07	17Ø	13	-83	-110	-22	
8	123 -6	58 10	1.0	389	342	48	2	468	-397	75	8	336 3	63	-16	1	196	167	47	14	402	414	- 8	
	-1 197 1		17	330	311	12	4	-42	-24	-4	10	254 2	96	-12	2	972	968	170	15	312	-100	-6	
			18	49	-12	2	5	1049	904	13Ø	11	-55	22	- 3	4	762	638	217	17	64	41	4	
2	2224 223	89 -6	19	299	240	32	14	45	91	-7			. 65		5	148	-131	20	18	399	396	2	
4	296 -15	38 16	210	230	225	1	16	60	-9	- 4		-1 13	L		7	435	-373	109	20	359	352	- 3	
8	1366 126	6 60					17	317	289	16	1	280 3.	Ø3	-13	8	1336	1246	198	2.0		002	Ŭ	
10	784 71	5 53		-1 4	L L		18	-34	-86	- 8	2	118	77	8	9	237	237	-1		Ø	5 L		
18	346 34	11 3	1	521	441	105		-1 1	B L		4	34	62	-2	11	65	121	-31	1	991	791	279	
20	192 18	37 2	2	1116	1Ø31	85	4.000				5	303 3	03	ø	12	627	638	- 8	2	137	88	4.0	
			3	265	190	76	13	-24	20	- 1	6	118 -	56	11	13	138	-176	-15	3	1651	1391	257	
	-1 1 1		4	293	-221	76	15	48	83	-5	8	115 -	40	-18	15	101	57	-22	5	1181	1009	216	
1	1233 117	3 61	6	1139	1047	87	16	299	315	- 8					16	465	459	4	6	175	-193	-20	
2	-31 -16	10 -47	7	-59	-40	-13	17	69	-60	1		-1 14	L		17	146	134	6	7	696	628	107	
4	322 -28	39 45	9	1022	-38	-2		-1 9	9 L		1	-78	3Ø	-7	19	79	-10	10	9	630	696	-29	
5	1143 101	5 127	1Ø	919	833	83		1.11							20	212	2.07	2	1Ø	35	- 9	1	
6	701 -62	24 98	17	0	13	ø	11	365	357	5		ØØ	L			a 2			11	885	941	-43	
8	182 -17	76 5	19	-122	320	-15	13	223	273	-26	2	2288 23	62	-45		10 3			13	606	648	-32	
9	1094 100	91 89	20	373	356	1Ø	14	85	14	7	4	1458 13	61	82	1	1783	1391	365	14	98	31	9	
10	280 25	51 28					15	315	290	14	6	1664 14	92	126	2	1034	827	298	15	361	373	-7	
18	187 13	32 20		-1 :	, L		10	144	-00	10	1.0	648 5	81	76	4	153	115	42	17	353	366	-13	
19	321 36	8 8	1	1109	976	128		-1 14	ð L		12	582 6	Ø3	-17	5	1761	1491	273	18	116	34	19	
20	60 -1	6 3	2	256	191	62	0	525	E22	2	14	740 7	66	-19	6	128	-91	31	19	368	351	14	
21	2/1 21	5 20	4	201	150	40	9	-50	27	-3	18	307 3	08	- 1	8	292	236	78		ø	ιL		
	-1 2 L		5	179Ø	1522	174	1ø	375	371	2	20	248 2	36	8	9	1071	1040	42					
1	970 8/	18 137	6	178	182	-2	11	261	240	107		Ø 1	r		1.0	276	278	-2	1	207	-164	209	
ż	1613 152	24 70	8	22	-12	ø	13	-30	-26	- 1		~ .	٠		12	64	-6	5	ź	1107	942	213	
3	318 32	-4	9	544	490	57	14	273	275	-1	1	2144 18	18	272	13	535	546	-9	3	443	-373	109	
4	1064 98	S 84	16	362	363	Ø	15	-101	-22	-10	23	515 -3	51	266	14	451	472	-14	4	1362	95	37	
6	1195 108	102	18	1.02	82	Ã		-1 11	L		4	289 2	32	99	16	-128	-16	-17	6	890	772	164	
7	486 -42	9 73	19	388	365	14			60	· ·	5	1405 13	04	123	17	323	302	19	7	88	76	6	
9	190 19	18 89 17 -6	210	-159	29	-24	4 5	322	331	-5	7	1224 11	46	104	19	277	257	15	9	167	-161	-6	
10	929 86	66		-1 6	5 L		6	-85	-61	-13	8	171 1	58	14	20	91	-58	7	10	508	543	-28	
11	282 25	58 20		25			7	453	441	10	9	1207 11	Ø9	124		a .			11	71	0	6	
19	179	15 27	1	941	757	178	9	358	378	-13	10	710 6	50	-22		10 4	L		13	154	87	-40	
20	226 22	-1	3	235	-194	35	10	-63	31	-5	12	57	69	-2	Ø	1107	899	199	14	497	467	- 39	

15 16 17 18 19	84 -9 267 286 12Ø -74 3Ø3 313 48 -29 Ø 7 L	13 -15 14 -8 2	11 12 13 14 15 16	362 391 59 45 314 338 37 -5 312 317 83 -67	-32 -23 -4 3	3 4 5 6 7 8	358 352 -125 11 344 347 -92 -67 258 289 19 Ø	5 -22 -2 -18 -2Ø Ø	7 8 9 1Ø 11 12 13	194 -189 997 948 441 413 807 75 -76 5 608 619 53 -73	4 5Ø 32 38 - 8 - 9 - 3	19 Ø 1 2	-31 -23 1 5 L 10/3 64 1336 1169 131 143	- 1 1 7 1 4 Ø - 7	11 12 13 14 15 16 17	536 594 21 133 298 337 -31 11 27Ø 286 143 -1Ø3 3Ø1 29Ø	-42 -19 -35 -1 -9 11 5
1 2 3 4 5 6 7	853 696 172 -119 12Ø9 1Ø35 131 127 971 883 13Ø 56 631 625	218 44 2Ø6 2 62 19 4	Ø 1 2 3 4 5	Ø 1Ø L 7Ø9 683 -76 52 686 659 151 66 522 5Ø1 54 33	18 -9 18 2Ø 13 1	Ø 1 2	97 14 L 174 189 1971 33 165 233 1 97 L	-5 13 -34	14 15 16 17 18 19 2Ø	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 -5 13 -7 17 Ø	3 4 5 6 7 8 9 1 Ø	1312 1155 332 -272 887 783 53 17 4Ø2 357 51 Ø 551 577 124 -153	132 66 1Ø8 6 48 7 -22 -11	Ø 1 2 3 4	1 8 L 1074 970 96 51 828 742 -86 33 536 470	69 8 63 -11 49
8 9 10 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 -23 -19 -51 1 -9 21 -9	6 7 8 9 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 1Ø -5 -3 -9 7 -13 7 -12	Ø 2 4 6 8 1Ø 12 14	1877 2368 1587 154Ø 1145 1Ø58 1769 17Ø9 1662 1557 685 612 674 687 752 739 424 430	-288 26 62 6Ø 53 56 -1Ø 9 -4	Ø 1 2 3 4 5 6	1 3 L 82 126 958 846 178 127 1685 1612 -35 -39 1057 1039 -83 33	-30 124 43 54 -8 19 -23	11 12 13 14 15 16 17 18	661 699 -69 -47 415 441 07 -26 299 323 192 5 327 332 -109 -19 331 314	-30 -8 -18 0 -17 13 -3 -13 10	5 6 7 8 9 1Ø 11 12 13	192 177 5Ø3 487 1Ø1 - 58 618 612 56 - 73 462 511 -121 - 14 356 374 1Ø2 76	6 11 7 4 -2 -35 -16 -14
17 18 Ø	319 304 58 -89 Ø 8 L 999 915 237 -232	12 -6 58 2	1 2 3 4	Ø 11 L 654 662 117 119 349 346 -44 7	-5 Ø 1 -4	18 2Ø Ø 1	30/2 292 271 271 1 1 L 486 -527 180/7 1888	6 Ø -79 -61	7 8 9 1Ø 11 12 13	1110/19/63 154/154 1186/1118 137/152 732/750/ 114/-100/ 631/640	46 Ø -9 -15 3 -7	Ø 1 2 3	1 6 L 1Ø7Ø 855 475 -391 1158 996 -38 -34	196 95 144 -6	14 15 16	364 371 42 -18 255 262 1 9 L 64 -28	-5 1 -3
23456789	876 786 211 -15Ø 674 660 86 27 747 7Ø8 -49 -6Ø 696 717 248 -221	65 27 53 8 28 -7 -15 12	5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-12 Ø -1 2 -13 16 -21 7	2 3 4 5 6 7 8 9	1457-1480 1406 1296 1434-1331 1386 1352 200 -191 1587 1518 -30 -20 881 820 169 175	-20 96 88 29 52 -3 66	14 15 16 17 18 19 20	$\begin{array}{c} -138 & -46 \\ 362 & 348 \\ 42 & 51 \\ 3\emptyset6 & 313 \\ -55 & 24 \\ 234 & 226 \\ 65 & -28 \end{array}$	-25 8 -1 -4 -4 3 3	4 5 6 7 8 9 1Ø 11	1075 982 136 103 920 837 37 -20 555 600 -31 -30 623 671 55 -54	87 16 82 1 -39 -2 -38 Ø	1 2 3 4 5 6 7 8	613 586 282 -252 565 543 125 93 694 686 68 132 625 622 107 -125	20 16 15 8 6 -14 2 -4
10 11 12 13 14 15 16 17	973 -98 93 -98 395 4Ø9 -25 28 325 333 111 13 299 29Ø 72 -91	-1 -17 -2 -7 2% 7 -4	Ø 1 2 3	Ø 12 L 516 531 106 51 436 448 -99 5 267 282	-12 14 -14 -16	11 12 13 14 15 16 17	537 529 25 -12 587 576 61 -121 6Ø9 6Ø6 7Ø 35 338 361 -54 24	7 Ø -12 2 3 -16	Ø 1 2 3 4 5	1241 1134 2Ø9 194 1713 1485 3Ø6 299 149Ø 14Ø1 532 -525	99 14 159 8 71 9	13 14 15 16 17 18	-142 -14 363 374 73 -53 3Ø4 311 146 -95 31Ø 3ØØ	-24 -11 3 -4 14 5	1Ø 11 12 13 14 15	73 -79 347 398 -54 9 349 356 -56 -34 288 312	-1 -41 -4 -5 -4 -13
1 2 3 4 5 6 7	Ø 9 L 833 784 3Ø5 -271 742 721 168 -17Ø 661 632 -43 87 793 761	35 18 15 Ø 21 -1Ø 21	5 6 7 8 9 1Ø 11	91 -77 366 366 110 -65 332 351 -105 47 235 253 31 30 Ø 13 L	3 Ø 12 -16 -19 -11 Ø	19 2Ø 1 2 3	265 256 8Ø -49 1 2 L 1354 1293 913 85Ø 875 847 338 -359	5 4 55 75 34 -32	7 8 9 1Ø 11 12 13 14	142 80 623 549 -67 21 750 779 -83 -27 629 648 142 -189 297 38	33 83 -13 -23 -1Ø -14 -17 -8 -15	Ø 1 2 3 4 5 6 7	-37 5 10/29 875 292 -241 10/58 970 152 146 889 836 115 146 612 613	-3 142 43 81 4 39 -8 Ø	Ø 1 2 3 4 5 6 7	649 605 -20 -7 504 479 152 90 552 539 130 -153 680 687 120 -97	3Ø Ø 16 16 8 -6 -2 4
8 9 1Ø	29 -39 615 637 134 -67	Ø -15 14	1	347 36Ø -79 45	-11 -12	4 5 6	1318 1269 664 -569 1386 1337	45 12Ø 43	16 17 18	342 337 43 32 38Ø 366	4 1 9	8 9 1Ø	275 -234 531 553 96 -132	23 -17 -9	8 9 10	590 602 99 -76 307 332	-1Ø 5 -17

11	88 -92 246 265	- 1 Ø	16 18	4Ø3 389 151 163	11 -4	9 1Ø	712 694 85 -117 723 738	24 -8	1 2 2	358 -346 1141 1Ø91	13	Ø	422 -40	12	9	67 1	3 4
14	288 311	-13		2 1 L		12	18Ø -2ØØ 4Ø8 423	-8 -1Ø	4	864 774 118 73	91 18	2	189 -23	-20	Ø	74 7	7 Ø
	1 11 L		Ø	142 81 885 863	45	14	104 -42	11	6	489 494	-4	4	27 61	-4	1	272 29	1 -9
ø	75 27	4	2	216 225	-12	16	-75 76	-14	8	717 753	-29	6	75 1	6	3	326 29	5 17
1	5Ø8 496 6Ø 32	2	4	571 620 150 - 204	-76	17	-110 -4	-14	10	130 -85 438 480	-31	8	484 471	-9	4	229 -15	7 28
3	367 358	8	5	1288 1288	ø	19	258 232	12	11	93 -19	10	.9	305 32	-15	6	-90 -7	Ø -13
5	417 4Ø7	- 7	7	780 795	-18		2 4 L		13	82 75	-25	11	232 263	-17		3 Ø L	
67	65 -58	Ø	8	-65 54 621 552	-18	ø	958 900	63	14	292 284	-3	12	-14 3	-1	Ø	1025 108	9 -52
8	98 -36	9	1Ø	-23 4	- 1	ĩ	541 560	-26	16	294 302	- 4	14	111 -70	7	2	555 57	3 -19
1Ø	-30 -15	-26	12	114 - 104	-11	3	132 81	28	17	-84 -56	-10		2 1Ø L		4	465 45	8 4
11	182 217	-15	13	624 622	17	4 5	1069 1050	19		2 7 L		ø	498 47	15	8	371 36	8 2
12	75 42		15	502 474	18	6	467 454	16	ø	154 -109	23	ĩ	-6Ø 8:	-11	12	484 49	2 -5
	1 12 L		16	13 36 264 289	-14	8	109 73 573 539	15	1	72 32	71	2	351 329 98 -33	12	14	535 53 2Ø6 21	2 2 4 -3
ø	454 465	-8	18	-36 -12	-1	9	-68 48	-10	3	1083 1003	54	4	430 391	19	18	187 17	6 4
2	374 406	-23	19	232 220	2	11	260 -258	-4.0	5	715 676	30	6	561 53	19		3 1 L	
3	-86 -44	-1Ø -1Ø		2 2 L		12	400 419	-13	6	-1Ø5 69 443 462	-22	7	93 -71 391 391	-2	ø	288 38	5 -24
5	-36 -104	-13	ø	1071 1108	-42	14	320 329	-5	8	304 -311	-4	9	-20 -5	-4	1	731 84	8 -171
7	83 -19	-5	2	1362 1366	-3	16	325 306	12	1Ø	-90 -36	-11	11	77 -5	-5	3	1136 116	2 -26
8	279 295	- 8	3	751 -714	47	17	-96 -14 316 294	-11	11	432 471	-27	12	270 260	-15	4	97 -9 787 81	2 - 30
1ø	162 213	-19	5	811 -770	49	19	31 -28	ø	13	303 338	-24		2 11 1	12	6	634 62	8 7
	1 13 L		7	118 -122	-2		2 5 L		15	322 3.08	-13		2 11 L		8	427 38	7 44
Ø	-56 -27	-4	8	1Ø49 1Ø3Ø 58 81	18	ø	68 51	5	16	59 -73 273 296	-12	Ø	116 14	13	9 1Ø	430 43	9 -12
1	296 302	- 3	1.0	651 667	-13	1	1236 1167	63		2 0 1		2	98 4	12	11	396 40	4 -5
3	379 346	21	12	414 457	-32	3	1236 1176	53	1	2 0 L		4	77 -23	7	13	496 51	2 -11
4	129 -157 336 333	-8	13	67 -78 514 5Ø7	-2	4	94 -32 691 694	19	1 1	732 659 177 -15Ø	54	5	37.0 389	-13	14	-107 2 343 35	3 -13 6 -12
6	89 -115	-5	15	129 120	2	6	198 -190	6	2	562 518	33	7	419 410	1 29	16	-53 1	4 -3
1	255 274	- 9	17	76 35	5	8	66 35	4	4	526 479	34	9	241 273	-16	18	30 -1	2 Ø
	1 14 L		18	245 233 159 -96	17	9 1Ø	6Ø1 653 32 78	-44	5	1Ø9 55 627 6Ø7	11	10	232 25	-18	19	196 19	5 10
ø	192 226	-13		2 3 1		11	578 597 52 -75	-14	7	61 5 523 53Ø	-5		2 12 L			3 2 L	
	2 Ø L		~	254 205		13	270 306	-19	9	-35 -81	-9	~	205 41		ø	1436 149	6 -53
ø	1788 1991	-112	1	415 406	13	15	188 215	-13	11	-97 62	-18	1	93 -10	-16	2	486 53	3 -71
2	256 -231	22	23	35 9Ø 945 921	-21	16 17	-65 -15 293 296	-5	12	268 318 -113 72	-32	23	290 30 154 -8	-8	3	414 -40	4 13
6	553 533	18	4	117 -70	25	18	-58 -25	- 4	14	279 292	-8	4	270 280	-10	5	344 -35	2 -10
10	316 323	-7	6	220 -157	51		2 6 L		16	188 213	-18	6	258 251	3	7	221 19	1 24
12	674 697 644 633	-18	7	894 851 -83 -4	46	ø	1047 919	122		2 9 1		7	100 -20	10	8	722 72	6 - 4 7 5

1 Ø 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 Ø 1 2 3	424 435 2077-219 430 451 207-16 402 387 -100 11 260 249 0 -14 223 208 3 3 L 265 280 449 508 255 249 1035 1031	-8 -5 -15 9 -13 6 Ø 6 -19 -89 9 4	4 5 7 8 9 1 Ø 11 12 13 14 15 16 17	171 -173 539 535 76 -40 435 439 43 110 691 734 112 -44 456 482 -71 -34 244 281 -160 -20 275 287 -92 -20 293 287 3 6 L	-1 5 11 -3 -14 -34 -7 -30 -32 -7 -10 3	2 3 4 5 6 7 8 9 1Ø 11 12 13 14 15	385 344 124 -83 443 391 79 -4% 49% 49% 222 -235 441 44% 46 -54 46 -54 359 377 1%5 42 3%8 3%2 61 -37 1%5 42 3%8 3%2 61 -32 61 -32 61 -32 3%9 L	27 11 35 5 Ø -6 Ø Ø -14 12 3 4 -3 3	9 1ø 1 2 3 4 5 6 7 8	161 179 84 -69 3 12 L 355 356 -14 402 394 -23 123 -85 273 300 21 -67 193 23 71 0 188 201 3 13 L L	- 6 2 Ø - 14 - 4 - 15 5 - 5	Ø 1 2 3 4 5 6 7 8 9 1 Ø 1 1 1 1 2 1 3 1 4	914 928 134 143 946 982 352 -399 974 1432 184 -147 855 864 447 446 5ø3 54ø 71 71 391 386 -1ø1 -14 313 338 -91 28 234 237	-16 -40 -62 -63 26 -10 -11 -31 0 -31 0 -13 -13 -14 -10 -1	17 Ø 1 2 3 4 5 6 7 8 9 1Ø 11	98 -9 4 5 L 197 169 982 974 127 -129 785 764 789 408 789 408 789 543 67 77 535 572 -48 -38 313 336	1Ø 2Ø 8 -1 22 8 -7 -5 Ø -1 -28 -4 -13
4 5 6 7 8 9 1 Ø 11 12	179 -195 801 825 96 35 806 755 42 35 638 691 323 -312 596 609 211 -202	-14 -23 19 55 1 -44 7 -9 3	Ø 1 2 3 4 5 6 7	852 834 260 -290 989 962 16 95 585 565 34 25 652 652 155 -158	19 -29 26 -18 27 Ø -1	Ø 1 2 3 4 5 6 7	-69 -42 418 4Ø3 13Ø -9 465 453 -74 19 538 515 124 -71 426 417	-7 1Ø 2Ø -6 15 11 5	Ø 1 2 3 4 5	109 69 277 273 69 -70 272 287 50 -114 257 262 4 8 L	7 1 Ø -7 -10 -2	15 16 17 Ø	-52 82 234 2066 -46 -60 4 3 L 203 252 782 795 456 -440	-11 13 -6 -53 -15 20	12 13 14 15 16	-72 -4 278 264 -118 -61 278 282 95 -52 4 6 L 799 835	-98 -22 -2 6 -4Ø
13 14 15 16 17 18	3Ø6 293 -131 5 249 271 -46 36 271 253 -86 -55 3 4 L	7 -19 -13 -4 9 -11	8 9 1Ø 11 12 13 14 15 16	573 584 188 -182 466 597 -29 38 244 274 -34 29 251 255 -54 -58 284 287 -21 -2	-8 3 -29 -2 -2 -24 -1 -1 -7 -1	8 9 1Ø 11 12 13 14	157 -153 2066 223 -10/4 -29 233 252 -58 Ø 232 24Ø 86 -78 3 1Ø L	2 -9 -14 -1Ø -3 -4 1	Ø 2 4 6 8 1Ø 12 14	469 498 657 764 954 1848 941 946 578 583 519 525 647 632 425 438	-21 -1%7 -7% -4 -11 -4 1% -4 -6	3 4 5 6 7 8 9 1Ø 11	68Ø 711 -55 -54 838 863 184 193 64Ø 696 113 -93 5Ø8 546 99 -153 452 428 109 -49	-38 -15 -27 -7 -48 5 -30 -17 16	1 2 3 4 5 6 7 8 9	76 29 767 729 240 191 372 358 64 21 382 371 210 -204 571 567 20 -12	12 41 26 1Ø 5 8 2 3 Ø
1 2 3 4 5 6 7 8 9	bbb 527 138 107 1134 1131 255 167 533 534 116 107 335 342 175 178 628 648 78 -3	-81 19 3 77 -1 5 -8 -2 -17 8	Ø 1 2 3 4 5	3 7 L 3 7 L 3 34 - 3Ø8 866 788 2Ø2 - 192 695 66Ø 85 - 5 489 45Ø	3Ø 58 4 28 1Ø 28	Ø 1 2 3 4 5 6 7 8	495 453 -112 56 38Ø 355 96 75 487 454 119 -76 432 424 53 -77 262 275	27 -17 14 3 2Ø 14 6 -3 -7	18 18 1 2 3 4	158 163 4 1 L 180 159 925 996 193 -260 850 886 240 -222	-1 19 -84 -78 -43 17	13 14 15 16 17	30/4 31/0 123 85 297 261 94 26 242 215 4 4 L 10/49 1136	-3 10 21 10 12	11 12 13 14 15 16	5 5 7 4 177 220 115 -47 239 260 -21 -53 294 271 4 7 L	6 -21 14 -11 -3 12
1Ø 11 12 13 14 15 16 17 18	589 631 69 -65 489 506 108 -88 286 302 101 42 322 307 -73 -31 224 242	-33 ø -12 4 -11 11 9 -7 -8	6 7 8 9 1Ø 11 12 13 14	134 -99 461 478 144 -156 495 493 97 6 366 407 77 74 260 282 99 -10 263 266	1Ø -12 -4 2 11 -43 Ø -13 12 -1	9 1Ø 11 12 Ø 1 2	119 3Ø 183 162 -57 -2Ø 189 2Ø1 3 11 L 13 19 283 29Ø 1Ø1 -17	17 8 -4 -4 -4 12	5 6 7 8 9 1 Ø 11 12 13 14	93Ø 942 37 62 748 733 1Ø2 36 417 415 41 75 5Ø9 522 -82 38 437 448 127 1Ø8	-13 -5 16 13 -5 -9 -9 -7 7	1 2 3 4 5 6 7 8 9 10	-30 -77 1032 1048 235 -251 560 582 -63 -30 389 403 136 -75 566 580 -56 9 631 652	-17 -16 -15 -27 -11 -10 18 -11 -4 -15	Ø 1 2 3 4 5 6 7 8 9	258 -207 721 662 130 -120 583 568 114 -114 369 359 124 -141 350 356 238 -253 420 419	28 45 3 11 Ø -5 -3 -6 Ø
Ø 1 2 3	3 5 L 173 156 943 9Ø7 1Ø3 111 812 791	12 37 - 3 22	16 Ø	-124 -73 3 8 L 609 564 215 -246	-22 34	3 4 5 6 7 8	269 252 -37 -42 395 4Ø5 41 -3Ø 3Ø7 316 45 -36	9 -3 -7 Ø -5	15 16 17 18	214 245 20 0 130 168 -107 -13 4 2 L	-16 Ø -11 -11	11 12 13 14 15 16	88 -142 334 341 76 -7 291 303 36 50 279 295	-14 -4 7 -7 -1 -8	1Ø 11 12 13 14 15	-96 -11 275 3Ø4 69 34 27Ø 237 -89 -57 2Ø8 222	-17 -19 4 18 -12 -5

Ø 1 2 3 4	4 8 L 679 62Ø 41 -22 569 551 187 128 698 656	7 8 9 43 1 12 21 Ø 29 1	226 257 - -34 -26 199 181 4 12 L 328 336 113 -29	15 3 -2 4 7 5 6 7 8 -4 9 13 1Ø	416 -43Ø 72Ø 76Ø -49 8Ø 6ØØ 637 222 236 6Ø8 652 94 -67 462 441	-17 3 -46 4 -19 5 -31 6 -7 7 -36 8 5 9 14 1Ø	737 697 53 -65 54Ø 542 37 -18 619 607 126 -96 5Ø1 491 -89 -19	31 -1 -1 8 7 6 -9	8 4.0/2 3.98 9 5.5 4.8 8 1.0 3.0/9 2.90' 1.1 1.3 1.2 3.0/7 2.97 1.3 -5.2 -6.6 5 9 L	3 Ø 12 6 5 ~7	2 771 828 -46 4 915 989 -81 6 514 534 -16 8 307 313 -3 10 421 398 14 12 391 388 2 14 2207 216 2
5 6 7 8 9 1Ø 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-6 2 12 3 1 4 13 5 Ø 6 11 7 15	334 331 -4Ø -62 271 287 121 -36 237 253 -161 18 - 4 13 L	1 11 -6 12 -8 13 14 14 -7 15 25 16	141 -100 369 354 94 71 274 264 -84 46 232 202 5 3 L	10 11 8 12 5 13 6 14 -11 15 13	317 311 -115 -62 234 246 94 -61 263 261 5 6 L	4 -21 -6 6 1	Ø 53 2Ø 1 376 366 2 128 93 3 5Ø2 487 4 -16 -31 5 49Ø 477 6 128 -144	2 6 8 9 -2 1Ø -5	6 1 L Ø 23 95 -2Ø 1 618 656 -45 2 83 -68 5 3 89Ø 9Ø4 -15 4 2ØØ -188 6 5 461 491 -24
13 14 Ø 1 2	78 -80 253 236 4 9 L -113 -68 -2 530 495 2 136 98	Ø 8 Ø 1 2 3 2 Ø 2 3 9	92 23 292 265 -5Ø -1Ø7 - 253 28Ø - 5 Ø L	8 Ø 14 1 13 2 13 3 4 5 6	91 -107 761 824 104 -103 773 754 -65 -26 789 811 Ø 26	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	941 882 -76 14 749 715 176 130 360 355 110 -113 483 469 103 -74	42 -8 25 18 3 Ø 9 6	7 34Ø 347 8 58 -6Ø 9 275 266 1Ø 86 21 11 3ØØ 287 5 1Ø L	-5 Ø 5 7 7	
3 4 5 6 7 8 9 1Ø	510 521 171 145 669 643 1 70 -52 392 406 -1 -31 -85 -1 254 269 - 47 -10	-7 Ø 8 2 17 4 3 6 11 8 10 10 -8 12 2 14	1008 1052 - 1074 1185 - 971 983 758 775 - 340 339 438 462 - 489 482 419 402	34 7 83 8 -8 9 19 10' 0' 11 17 12 4 13 12 14	545 568 -113 -39 377 38Ø 163 -163 386 373 -52 42 195 219 71 1Ø6	-18 8 -18 9 -2 10 0 11 7 12 -8 13 -12 14 -7	445 442 -46 -36 246 270 -74 29 111 147 36 -23 281 245	2 -3 -14 -8 -11 1 19	Ø 42Ø 417 1 87 -39 2 381 365 3 101 -101 4 417 427 5 82 -700 6 337 308 7 -84 -62	3 7 11 Ø -7 2 19 -12	14 39 -20 1 15 156 182 -9 6 2 L 0 834 889 -63 1 323 -308 15 2 750 751 0
11 12 13 Ø	291 306 - -90 -50 -1 232 250 - 4 10 L 449 437 -98 17 -1	-8 16 11 -8 Ø 1 7 2 1Ø 3	149 176 5 1 L -22 53 596 629 - 27Ø -286 - 965 1Ø25 -	-9 15 16 -9 44 Ø 17 1 65 2	238 196 -15 17 5 4 L 1192 1225 86 -51 1Ø61 1Ø45	20 0 -31 10 4 15 5	5 7 L 271 -2Ø7 766 736 37 -3Ø 535 547 1Ø7 61 468 447	33 22 Ø -8 9	8 195 223 9 -15 -28 10 217 225 5 11 L 0 126 -110 1 299 307	-12 -1 -3	3 187 -213 -24 4 587 622 -30 5 106 124 -6 6 588 593 -3 7 56 79 -4 8 421 436 -10 9 140 -128 3 10 397 364 19
2 3 4 5 6 7 8 9	389 345 2 48 -19 388 386 -44 -89 -1 370 402 -2 -129 -38 -2 229 257 -1 -74 9	24 4 3 5 1 6 12 7 23 8 22 9 15 10 ~6 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3 -6 4 19 5 23 6 17 7 13 8 11 9 16 1Ø	-28 -5Ø 572 548 -17 -5 534 54Ø -45 -79 733 72Ø 164 -154 465 449	-7 6 2Ø 7 Ø 8 -4 9 -1Ø 1Ø 9 11 3 12 1Ø 13	53 -106 447 434 37 9 371 387 73 47 224 247 80 -25 183 194	-9 8 1 -12 4 -12 7 -4	2 10/2 -112 3 358 372 4 89 -86 5 350/ 342 6 -48 -11 7 212 229 8 98 -45	- 2 - 9 Ø 4 - 2 - 7 8	11 32 -71 -7 12 355 339 11 13 90 8 10 14 206 228 -9 15 46 -12 2 6 3 L
1Ø 11 Ø 1 2 3	212 202 -65 -51 - 4 11 L 111 -3 1 225 220 40 -73 - 353 346	4 12 -7 13 14 15 16 15 17 2 -4 4	-118 -26 - 432 423 74 -16 270 221 -83 -56 - 235 182 5 2 L	16 11 6 12 6 13 26 14 11 15 22 16	130 -134 289 279 99 15 188 250 -130 -2 230 225 5 5 L	-1 14 6 12 -28 -19 Ø 2 1 2 3 4	83 -70 5 8 L 528 503 -89 12 617 573 -95 -8 589 570	2 17 -9 31 -1Ø 13	5 12 L Ø 288 272 1 -115 -73 2 257 292 3 64 -81 4 248 269 5 -55 -26	8 -19 -17 -2 -1Ø -3	Ø 54 -66 -3 1 10005 974 29 2 236 -238 -2 3 793 7900 2 4 49 19 2 5 797 793 3 6 182 217 -16 7 484 493 -6 8 132 -97 9
4 5 6	359 378 -1 96 -18	13 1 10 2	231 -24Ø 685 736 -	-9 1 64 2	-30 18 936 904 -93 -8	-2 5 38 6 -13 7	624 6Ø1 -79 -39	-3 15 -13	ь ю L Ø 584 57Ø	12	5 4/2 448 16 1Ø 131 -73 13 11 292 272 13

12 13 14 15	68 29 265 241 -85 36 139 177	5 12 -1Ø -12	Ø 1 2 3	111 -98 573 54Ø -62 -4 49Ø 481	3 24 -4 6	3 4 5 6	338 349 -65 -77 29Ø 282 -89 -26	-6 -1Ø 3 -8	Ø 1 2 3	221 -223 612 619 251 -256 586 581	-1 -5 -2 3	9 1Ø 11 12	1345425222978-13229221	18 11 6 3	2 3	31 272 8 Ø	-61 285 L	-2 -7
Ø 1 2 3 4 5 6 7 8 9 1 Ø 11 12 13 14	6 4 L 909 880 153 -130 750 735 -117 6 486 473 163 89 602 596 -19 -61 575 564 106 -116 325 330 66 -24 249 221 78 0 215	35 8 11 -19 9 24 -5 7 -2 -4 9 15 7 9	5 6 7 8 9 1 Ø 11 12 2 3 4 5 6 7	425 406 75 -57 476 460 132 69 93 44 295 245 15 -9 6 8 L 496 485 75 35 473 466 55 -6 543 518 138 -163 374 353	12 2 16 Ø 8 28 Ø 7 4 4 3 16 -11 14	Ø 1 2 4 6 8 1 Ø 12 14	6 12 L 269 258 -75 30/4 -75 310 7 Ø L 559 532 679 679 721 202 226 214 242 242 265 160 317 282 166 7 1 L	5 1 -3 -35 -10 5 -11 22 2 2	5 6 7 8 9 1 Ø 1 1 1 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5	549 538 1//2 9 4/9 476 86 -70 339 320 73 -33 274 264 -84 44 255 236 -78 2 7 4 L 647 639 112 -95 520 490 -77 5 408 375	7 12 2 17 5 5 -19 9 -6 6 4 22 -7 22	Ø 1 2 3 4 5 6 7 8 9 1 Ø 1 1 1	7 7 L 172 -149 465 455 109 -55 351 344 28 -79 421 390 1100 -43 338 322 378 24 278 238 811 -39 205 193 7 8 L 368 321 368 321 338 322 338	7 6 10 3 -9 23 13 10 1 21 5 4 21	Ø 2 4 6 8 1 Ø 1 2 3 4 5 6 7 2	4 Ø7 6 16 3 53 2 53 2 7 Ø 2 84 2 52 8 1 1 9 Ø - 4 4 3 2 6 5 1 3 1 7 3 1 7 4 2 8 4 2 6 5 1 3 1 7 4 2 8 4	411 615 383 219 275 22Ø L 175 456 8Ø 561 -11 3Ø9 31 253	-3 ø -19 16 -7 5 15 6 -9 -7 9 3 4 11
Ø 1 2 3 4 5 6 7 8 9 1 Ø 1 1 1 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 1 2 3 4 5 6 7 8 9 1 1 1 2 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 5 L 1107 19 609 76 -71 474 440 -32 -59 432 427 -133 -34 126 -76 405 393 807 -108 243 255 134 -63 265 234 -22 -50 6 6 L	16 7 25 -5 3 18 10 12 -6 17 16 -3	7 8 9 1 Ø 1 1 2 3 4 5 6 7 8 9 1 Ø	123 -63 266 237 47 28 217 225 150 -19 6 9 L 76 56 369 355 132 65 378 361 91 -111 402 408 109 -128 225 230 -94 -59 238 200 107 -25	13 15 1 -3 24 2 13 21 12 -4 -5 -2 -14 18 11	Ø 1 2 3 4 5 6 7 8 9 1 Ø 11 12 13 14	61 38 513 519 -99 -28 463 476 98 140 461 486 -81 -59 274 286 76 -5 348 344 -43 -14 341 311 -14 39 195 169 -60 -13 7 2 452 481	-5 -16 -9 -13 -18 -13 -6 7 2 20 -2 10 -4	5 7 8 9 1 8 9 1 1 1 1 2 3 4 5 6 7	-43 -44 525 493 140 -103 372 381 188 -74 257 220 71 -22 165 162 -22 0 75 L 128 66 445 443 425 -39 363 338 -86 -33 341 346 85 -29 417 299	-4 21 9-8 20 5 1 0 15 1 0 5 -3 7 2	1 2 3 4 5 6 7 8 9 1 Ø 1 2 3 4 5 6 7 8 9 1 Ø	-/3 2/ 460 442 -93 -69 377 351 126 -134 317 275 51 -24 113 174 1800 3 161 141 7 9 L 44 36 279 257 73 -74 353 346 118 -121 252 274	-6 -6 -16 -16 -2 -2 -2 -17 -17 -17 -17 -12 -0 -14	8 9 1Ø 11 12 13 Ø 1 2 3 4 5 6 7 8 9	91 30/5 98 253 146 175 8 2 583 10/6 489 -94 30/1 176 289 68 30/6 -10/8 9	95 56 236 48 132 L 6ØØ -65 493 292 158 292 158 288 -53 3Ø9 -232	-13 -14 -14
Ø 1 2 3	865 811 -45 1Ø 476 441 116 12	38 -2 25 17	Ø 1	6 1Ø L 315 281 -55 -91	21	1 2 3 4	453 + 461 159 - 120 563 + 574 0 - 8 451 + 466 122 + 122	-23 15 -9 Ø -11	8 9 1Ø 11	99 -122 208 221 -67 -27 227 188	-6 -6 17	7	190 189 -133 -38 7 107 L	Ø -20	11 12	106 205 8 3	31 156 L	12
4 5 6 7 8 9 1 Ø 1 1 1 2 1 3	385 383 133 - 87 500 482 163 -132 474 464 98 32 310 308 111 39 196 209 -51 -58 6 7 L	1 11 12 9 11 11 13 -5 -6	2345678 Ø12	319 340 78 -20 328 319 72 -71 276 256 38 -54 247 226 6 11 L 14 -54 287 272 141 -147	- 13 6 5 Ø 11 - 1 9 - 3 8 - 1	5 6 7 8 9 1 Ø 11 12 13 14	124 133 423 420 -56 34 430 398 129 -73 376 350 -90 -15 232 207 136 51 206 160 7 3 L	-2 -5 19 12 19 -1Ø 11 19 17	Ø 1 2 3 4 5 6 7 8	7 6 L 632 615 75 -43 372 367 -63 -50 381 345 192 -154 377 350 59 -63 367 365	12 4 3 -8 21 12 26 Ø	Ø 1 2 3 4 5 6 Ø 1	238 248 68 4 394 276 153 -53 277 229 105 -45 196 178 7 11 L -55 -50 271 246	-5 5 15 24 25 10 -19	Ø 1 2 3 4 5 6 7 8 9 1 0 1	221 - 421 -5Ø 372 63 384 83 249 -49 258 75 216	2Ø3 412 -8 367 51 35Ø 5 264 -86 211 -29 191	8 -3 3 1 2Ø 7 -11 -12 25 5 1Ø

12 Ø	-38 8 8 4 L 446 450 -90 -71	-1 -3 -16	Ø 1 2 3	8 8 L 374 4Ø2 -55 -36 378 378 84 -141	-20 -5 0 -14	Ø 1 2 3 4 5	441 44Ø 168 -191 459 436 114 75 328 311 43 -17	Ø -9 14 8 9 2	4 5 6 7 8	228 215 89 -24 256 191 -88 -16 193 165	6 8 3Ø - 8 9	Ø 1 2 3 4 5	418 93 346 -1Ø4 279 1Ø3	414 2 33Ø 15 245 -46	2 14 11 -14 19 10	2 3 4	119 181 99 1ø 8	-88 221 -26 L	7 -14 9
2 3 4 5 6 7	363 341 74 23 372 354 91 -17 4Ø1 375 97 -51	13 5 1Ø 25 9	4 5 6 7 8	275 3Ø2 137 -94 214 213 8Ø -22 143 131	-15 11 Ø 6 3	6 7 8 9 1 <i>Ø</i> 11	299 293 112 -87 227 241 70 -21 202 186 -31 13	3 -6 5 -1	Ø 1 2 3	9 7 L -85 71 194 225 32 21 198 21Ø	-15 -14 Ø -5	6 7 8 9	219 11Ø 274 74	197 -62 226 -27 L	9 9 23 5	Ø 1 2	16Ø 95 2Ø1 11 Ø	197 -52 216 L	-13 6 -6
8 9 1Ø 11 12	298 288 138 -96 158 132 43 1Ø 198 136	6 11 8 1 21	Ø 1 2 3	8 9 L 77 -12 317 3Ø2 92 -47 318 3Ø9	6975	Ø 1 2	9 3 L 97 -12Ø 282 295 116 -9Ø	-5	4 5 6 7	42 -42 188 2Ø5 -41 36 188 153 9 8 L	Ø -6 -3 12	Ø 1 2 3 4	-102 346 123 332 95	-27 334 49 317 8	-18 9 16 10 11	Ø 2 4 6	327 185 135 177 11 1	3Ø8 198 121 182 L	12 -5 4 -1
Ø 1 2 3 4 5	8 5 L 83 89 258 272 88 1Ø 249 216 -21 -2 4Ø6 376	-1 -7 9 15 Ø 28	4 5 6 Ø 1	154 -135 245 227 1ø4 -89 8 1ø L 223 218 155 -46 264 251	5 8 3 2 4	3 4 5 6 7 8 9 1Ø	326 314 78 39 241 246 -37 -21 242 216 59 -41 176 153 79 3	8 -3 -2 12 8 6	Ø 1 2 3 4 5	279 284 61 -33 300 294 -61 -55 287 265 100 -57	-3 3 -7 11 7	5678 Ø	282 135 245 163 10 4 364	252 -65 199 -31 L 355	16 15 2Ø 28 7	Ø 1 2 3 4 5 6	88 314 35 22Ø 116 167 35	-16 3Ø5 56 21Ø 13 156 -27	9 5 -2 4 15 3 Ø
7 8 9 1Ø 11	267 274 41 -71 15Ø 18Ø -75 -28 2Ø2 174 8 6 L	-4 -3 -1Ø -7 1Ø	2 3 4 Ø	95 -31 201 196 8 11 L -112 -58 9 Ø L	-15	Ø 1 2 3 4 5	9 4 L 365 375 99 - 48 335 319 58 -13 311 288 -148 -22 266	-6 8 9 5 15 -27	Ø 1 2 3	-40 -6 289 270 121 -92 273 268 9 10 L	-1 9 6 2	2345678	279 1Ø7 289 -51 238 133 166	275 -9 3Ø3 -7Ø 221 -45 129	2 14 -8 -8 16 10	Ø 1 2 3 4 5	11 2 383 71 314 120 207 -122	L 384 17 312 75 199 18	Ø 5 1 9 3 -15
Ø 1 2 3 4 5 6 7 8 9 1 Ø	301 295 -58 1 134 156 71 -56 268 233 121 -111 326 309 36 -16 234 227 -107 -2 193 169	2 -3 -6 3 21 2 1Ø 1 3 -12 8	Ø 2 4 6 8 1 Ø 1	443 454 397 368 325 320 198 188 228 235 307 252 9 1 L 110 -125 505 539	-8 18 2 5 -3 29 -4 -24	6 7 8 9 1 Ø 1 2 3	2 6 2 3 8 5 1 2 5 -71 1 6 2 1 6 7 - 2 6 8 1 8 2 1 8 3 9 5 L 1 3 4 -19 2 9 8 2 58 7 7 -72 2 4 7 2 7 4	-13 12 -1 Ø Ø	10 10 2 4 6 8 1	251 199 8 8 L 265 255 363 354 198 178 180 182 236 229 8 1 L	5 7 8 Ø 3	Ø 1 2 3 4 5 6 7	-77 199 -43 279 110 326 76 222	-9 223 -25 26Ø -69 294 -59 185 L	-7 -11 -3 10 8 18 2 14	Ø 1 2 3 4 5 6	210 11 3 230 -29 271 50 275 92	L 7 255 47 -1 225 -19	11 -12 -3 11 24 8
Ø 1 2 3 4 5 6 7 8	8 7 L 137 -72 269 259 46 -75 314 -75 314 -112 284 295 53 -41 228 237 -94 17	14 7 -4 16 Ø -6 1 -4 -1Ø	2 3 4 5 6 7 8 9 1 <i>Ø</i> 11	63 5 389 380 -55 40 30/4 294 77 -18 254 264 -38 -20 293 250 80 45 171 170	4 5 8 7 -3 -2 22 5 Ø	4 5 6 7 8 9 Ø 1	-81 -66 320 30/6 125 -78 241 220/ 10/2 -49 178 154 9 6 L 265 286 57 8	-13 8 11 1Ø 9 8 -12 4	Ø 1 2 3 4 5 6 7 8 9	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6 -8 -4 -5 9 -14 -6 1 -12 3	Ø 1 2 3 4 5 6	286 -126 291 90 281 107 205 10 7	286 -45 28Ø -23 255 -41 222 L	- 20 6 8 13 10 - 6	Ø 1 2 3 4 5	214 -83 262 -71 248 -5Ø 11 5	L 189 Ø 218 -37 221 -44 L	11 -7 22 -7 12 -4
9	2Ø6 167	14		9 2 L		2	115 163	-15	1	Ø 2 L		Ø	78 -	-32	5	Ø 1	139	-4 142	23

2 -1974 -21 -12 3 242 206 15 4 140 -21 20 3 55 -35 1 Ø 235 212 1Ø 2 2Ø9 178 11 Ø -84 -34 -8 12 5 L 1 22Ø 175 17 2 92 -36 7 Ø -57 -35 12 2 L 11 7 L 12 1 L Ø 257 231 12 Ø -57 -35 -4 Ø 44 -5Ø Ø 1 162 194 -1Ø 11 6 L
 Ø
 76
 46
 4

 1
 269
 211
 28

 2
 15
 49
 -2

 3
 1Ø4
 145
 -9
 12 4 L
 Ø
 152
 191
 -13

 1
 -49
 -19
 -2

 2
 152
 191
 -12
 12 Ø L Ø 114 154 -1Ø 1 -1Ø6 4 -11 12 3 L

Appendix D. Publications.

Reprinted from the Journal of the American Chemical Society, 1982, 104, 7352. Copyright < 1982 by the American Chemical Society and reprinted by permission of the copyright owne

Substrate Organometallic Chemistry of Osmium Tetraoxide: Formation of a Novel Type of Carbon **Dioxide Coordination**

Jay D. Audett, Terrence J. Collins,* Bernard D. Santarsiero,1 and George H. Spies

> Contribution No. 6695 from the Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena, California 91125 Received August 12, 1982

As part of our general interest in the chemistry available to oxidizing compounds we have begun to investigate the principal interactions available to osmium tetraoxide and related molecules with classical organometallic entities such as Vaska's complex. trans-IrCl(CO)(PPh₃)₂. In this communication we report on the result of the oxidative-addition reaction of osmium tetraoxide to Vaska's complex in the presence of pyridine bases, a reaction that yields a dinuclear carbon dioxide adduct. This result provides a first glimpse at the substrate organometallic chemistry of osmium tetraoxide. A new type of carbon dioxide coordination has been discovered here.2

When I equiv of Vaska's complex is added to osmium tetraoxide in toluene at -78 °C and the mixture is allowed to warm to room temperature, a gradual color change from yellow to orange-brown occurs. A brown powder can be isolated by precipitation with bexanes, and orange-brown crystals of the air stable compound I (see Scheme I) form upon recrystallization from dichloromethane-tert-butylpyridine-di-n-butyl ether. Compound I reacts readily at room temperature with tert-butyl isocyanide in dichloromethane to give the air-stable olive-green dinuclear salt, 11, in high yield. We assume the coordination environment at iridium in 11 is as depicted in the scheme since treatment of 11

Myron A. Bantrell Research Fellow, 1981-1983, the California Institute of Technology.
 Structurally characterized carbon dioxide complexes include N1(n²-CO₂)(PCy₃); (Aresta, M.; Nobile, C. F.; Albano, V. G.; Forni, E.; Manaszar, M. J. Chem. Soc., Chem. Commun. 1975, 636. Aresta, M.; Nobile, C. F. J. Chem. Soc., Chem. Commun. 1977, 708). [Co(pr-salen)K(u-CO₃)(THF)], (Fachinetti, G.; Porazi, P. F. J. Am. Chem. Soc 1978, 101, 74), [(Ph₂P₃)₂)]HO₃₅(CO)₁₀:O₂O₂₀(CO)₁₁) (Guy, J. J.; Sheldrick, G. M. Acta Crystallogr., Sect. B 1978, B34, 1718), and Nb(n²-C,H,Me)₂; C(H₂SiMe₃)(n²-CO₃) (Bristow, G. S.; Hitchoock, P. B.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1981, 1145.

0002-7863/82/1504-7352\$01.25/0 C 1982 American Chemical Society

Communications to the Editor

a Isolated and characterized as the perchlorate salt.

Figure 1. Molecular structure of the dication $[(PPh_3)_2(t-BuNC)(4-t-Bupy)]r(\mu-O)(\mu-C[OMe]O)Os(O)_2(4-t-Bupy)_2]^{2+}$.

with methyl trifluoromethanesulfonate in dry benzene yields a brown precipitate which, after perchlorate exchange, affords brown crystals of the air-stable carbene-containing compound III.³ An X-ray crystal structure analysis of III is consistent with methylation proceeding at the exocyclic oxygen atom of the bridging carbon dioxide moiety (see Figure 1).4 The O-methyl and nonmethylated oxygen atoms of the carbene ligand are cis, and NMR evidence (-70 to 40 °C) suggests either the presence of only one of the two possible carbene isomers in solution or free

J. Am. Chem. Soc., Vol. 104, No. 25, 1982 7353

Table L ³¹P and ¹³C NMR Data^d (b)

compd	sip,b 6	13C, 6	3/13 C-31 p. Hzd
1	-14.0	187.2	7.0
Ш	-18.2	207.5	8.8
111	-19.2	221.1	8.8

* JEOL FX 90Q, solvent CDCl₃. * Relative to external standard H₃PO₄. * Relative to internal standard Me₄Si. * Obtained from H,PO. CRelative ¹³C and ³¹P spectra.

nt Infrared Data (cm⁻¹) P.

(1997) 1997 - 1997 1997 - 1997	compd	₽C=0	₽C-0	POs0,	"N≡C	
1.5.5	1	1593	1022	820		
	1-12	1560	1010	820		
	1-10	1592	1010	780		
	11	1583	a	823	2180	
	11-1°C	1555	0	823	2180	
	11-180	1583	a	785	2180	
compd		CO ₂ Me		VO:0,	۳N≡C	
	111	1255		840	2200	
	111-130	123	30	840	2200	
	111-10	1255		800	2200	

rotation about the C1-O5 bond occurring in solution.

The formulation of compounds I and II as dinuclear bridging carbon dioxide complexes follows from the X-ray analysis of 111 and is additionally supported by the appropriate ¹H, ³¹P, and ¹³C NMR spectra and by IR experiments with ¹³C- and ¹⁸O-labeled materials (see Tables I and II). Label enrichment was based on the use of trans-IrCl(13CO)(PPh₃)₂ (99% enriched) and Os¹⁸O₄ (88% enriched), and the IR bands corresponding to the bridging CO2 ligand have been identified by the isotopically induced band shifts. The ν (C=O) band for I at 1593 cm⁻¹ shifts to 1560 cm⁻¹ upon ¹³C substitution. A similar shift is observed for II. A band at 1022 cm⁻¹ in I shifts to 1010 upon ¹³C or ¹⁸O substitution. confirming that the bridging carbon dioxide ligand is constructed from the iridium carbonyl ligand and the oxo ligand from osmium tetraoxide. The coordination at the osmium center is also well characterized from the IR spectral data. The very strong trans-Os16O2 asymmetric stretching band can be identified at 820. 823, and 840 cm⁻¹ for compounds I-III, respectively. These bands fall in the expected region⁵ and have been confirmed by isotopic substitution.

The ¹³C and ³¹P NMR spectra provide evidence for the presence of equivalent phosphine ligands in each compound. The 13Cenriched carbon dioxide signal in I is a triplet at δ 187.2 (²J_{13C-31p} = 7.0 Hz), which shifts to δ 207.2 in II and δ 221 in III.⁶ The ¹H NMR spectra of compounds I and II exhibit considerable temperature dependence. Our evidence suggests this feature is due to lability of the *tert*-butylpyridine ligands on osmium(VI) but not to lability at the iridium center. We will describe this chemical property more fully at a later date.

The X-ray crystal structure of III shows the expected existence of multiple bonding between the carbone carbon atom and the oxygen hetero atoms. It is interesting to note that the C1-O4 bond length [1.338 (16) Å] is significantly shorter than the C1–O5 bond length [1.418 (16) Å] suggesting that the CO₂Me unit might also be described as a bridging ester ligand.

t. We acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society. the Research Corp., the Atlantic Richfield Corp. of America, and Occidental Research Inc. for support of this research.

sentary Material Available: Listings of fractional atomic coordinates, Gaussian amplitudes, bond distances and angles. and structure factor amplitudes (62 pages). Ordering information is given on any current masthead page

⁽³⁾ Elemental analysis data all solvates quantified by NMR. Calod for 1-1/jBu;O: C, 53.97, H, 5.10; N, 2.83. Found: C, 54.15; H, 5.29; N, 2.80. Calod for 11-H₂O: C, 51.63; H 5.02; N, 3 49. Found: C, 51.49; H, 4.95; N, 3.53. Calod for 11-1.25H₂O (0.25; CH₂Cl₂): C, 48.34; H, 4.85; N, 3.21.

^{3.53} Calcd for 111-1.25H₂O (0.25, CH₂Cl₂): C, 48.34; H, 4.85; N, 3.21: Found C, 48.33, H, 4.81; N, 3.21: (4) Crystal data: space group P1, a = 21.20 (2) Å, b = 12.800 (5) Å, c = 14.470 (16) Å, a = 85.78 (9)^a, $\beta = 94.04$ (9)^a, $\gamma = 94.41$ (9)^a, V = 3496 Å³, Z = 2. Data were collected on a locally modified Syntex P2, diffractometer with graphite monochromator and Mo Ka radiation ($\lambda 0.71069$ Å) to $2e = 48^{\circ}$ ($+k \pm k \pm 1$). The averaged data (10222) were corrected for Lorentz and polarization effects. The Os and Ir atom positions were derived from the Patterson map, and subsequent Fourier maps revealed the remaining non-hydrogen atoms. Least-squares refinement of atomic coordinates and Bs, minimizing $\sum w[F_{2}^{-} - (F_{1}/k)]^{2}$ with weights $w = [\sigma^{2}(F^{a}) + (0.02 \times acan counts)^{2}]^{-1}$ gave $R_{F} = \sum ||F_{a}| - |F_{a}|| / \sum ||F_{a}| = 0.13$ (9268 reflections with $F_{2}^{-2} > 0$). Introduction of hydrogen atoms from difference maps with B = 5 Å² reflections with $F_{a}^{-2} > 3w(F^{2})$.

⁽⁵⁾ Schröder, M. Chem. Rec. 1980, 80, 187. (6) The 13 C NMR signal for the CO₂ ligand in Nb(η^{5} -C₅H₄Me)-(CH₃SiMe₃)(η^{2} -CO₂) occurs at 8 200.5.²

Complexation of Secondary Amides to Chromium(III): the X-Ray Structure of a Molecule with Two Modes of Monodentate Organic Amide Co-ordination

Terrence J. Collins,* Bernard D. Santarsiero, and George H. Spies

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, U.S.A.

The X-ray crystal structure of the dimer $[Cr{H(chba-Et)}(py)_2]_2 \cdot 2py [H_4(chba-Et) = 1,2-bis(3,5-dichloro-2-hydroxybenzamido)ethane, py = pyridine] establishes, for the first time, the existence of N-co-ordination of an organic amide to Cr^{III}, the N-atom and carbonyl O-atom of two separate amide groups being co-ordinated to each Cr^{III} centre [Cr–N 2.030(6) and Cr–O 1.976(5) Å]; the potentially tetra-anionic chelating ligand leads to a variety of co-ordination modes.$

NIH Grant No. GM 393801

Reprinted from the Journal of The Chemical Society Chemical Communications 1983

NIH Grant No. GM 393801

J. CHEM. SOC., CHEM. COMMUN., 1983

Complexation of Secondary Amides to Chromium(III): the X-Ray Structure of a Molecule with Two Modes of Monodentate Organic Amide Co-ordination

Terrence J. Collins," Bernard D. Santarsiero, and George H. Spies Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, U.S.A.

The X-ray crystal structure of the dimer $[Cr(H(chba-Et))(py)_2]_2 \cdot 2py [H_4(chba-Et) = 1,2-bis(3,5-dichloro-2-hydroxybenzamido)ethane, py = pyridine] establishes, for the first time, the existence of N-co-ordination of$ an organic amide to Crill, the N-atom and carbonyl O-atom of two separate amide groups being co-ordinated to each Crill centre [Cr-N 2.030(6) and Cr-O 1.976(5) Å]; the potentially tetra-anionic chelating ligand leads to a variety of co-ordination modes.

The co-ordination chemistry of organic amides is an important part of a number of current chemical problems.1-6 Of considerable interest is the lowering of reduction potentials of metal couples, i.e., stabilization of high oxidation states, that accompanies N-co-ordination of the organic amide ligand.1-4 Our interest in the stabilization of high-valent transition metal complexes has led to an exploration of the co-ordination chemistry of a new ligand, 1,2-bis(3,5-dichloro-2-hydroxybenzamido)ethane [H₄(chba-Et)] (1) (Figure 1), with a number of metals. The ligand (1) has been designed to be reasonably resistant to oxidation, to form five- and sixmembered chelate rings upon co-ordination, to be easily synthesized and derivatized, and to contain the organic amide ligating functional group. It is well recognized that co-ordination of the organic amide group can occur through the nitrogen atom, the oxygen atom, or both $^{1,\delta-7}$ We report here the crystal structure of an unusual chromium(III) dimer in which both possible types of co-ordination are found. This is the first structural example of the nitrogen atom from an organic amide being co-ordinated to a Cr¹¹¹ metal centre.⁸

Chromium trichloride hexahydrate (0.3 g) was added to pyridine (50 ml) and the mixture was heated under reflux until dissolution was complete. 1 equiv. of (1) was added to the boiling chromium-py (py = pyridine) solution, and after 2 min anhydrous sodium carbonate (5 g) was introduced. The mixture was stirred for 2 min and then filtered. Green crystals and a large amount of an amorphous green solid formed on leaving the filtrate in a sealed bottle for several weeks. † A roughly cubic crystal, edge length ca. 0.25 mm, was chosen for the X-ray study; oscillation photographs showed a small twin component, but other crystals of suitable size were grossly twinned.

Crystal data: $C_mH_{48}Cl_8Cr_3N_{16}O_8$, M = 1448.75, monoclinic, space group $P2_1/c$, a = 14.343(4), b = 14.225(3), c = 16.447(8) Å, $\beta = 104.28(3)^\circ$, U = 3252(2) Å³, Z = 2,

Figure 1. The ligand H₄(chba-Et), (1).

 \uparrow Important i.r. spectral data (Nujol, cm⁻¹): 3210 [br., w, w(N-H)], 1605 (s, sh), 1595 (s, sh), 1580 (sh), 1572 (w, sh), 1550 (br., m), and 1505 (br., s) (spectra identical for both crystalline and amorphous material).

 $D_c = 1.48 \text{ g cm}^{-3}, \ \mu = 7.4 \text{ cm}^{-1}; \ \text{data} \ (+h, \pm k, \pm l) \ \text{were}$ collected on a locally modified Syntex P2, diffractometer with Mo-K₂ radiation ($\lambda = 0.71069$ Å) up to $2\theta = 45^\circ$; a total of 8370 intensity measurements were made with θ -2 θ scans. The three standard reflections, remeasured after each block of 97 reflections, indicated a 5% linear decay over the exposure time of 206 h. The data were corrected for decomposition, but not for absorption; averaging gave 4279 reflections, 3685 with I > 0 and 2031 with $I > 3\sigma(I)$.

The positions of the chromium atoms were derived from a Patterson map, and the subsequent Fourier and difference Fourier maps indicated the locations of the remaining nonhydrogen atoms; the hydrogen atoms were placed in calculated positions and were not refined. The final cycle of refinement gave a goodness-of-fit of 1.38 and R = 0.122 $(R_{so} = 0.055).$

The structure consists of discrete dimers and disordered solvent molecules of pyridine. Figure 2 gives bond distances about the Cr centres, which are related by a centre of symmetry. The distorted octahedral environment includes the pyridine nitrogen atoms, an amide nitrogen atom, the phenolic oxygen atoms, and an amide-carbonyl oxygen atom; the co-ordinated pyridine ligands are cis and the phenolic oxygen atoms are trans.

The carbonyl C-O bond lengths are equal for both coordinated and unco-ordinated amide carbonyls 1.278(9) vs. 1.270(9) Å. The Cr-Namide bond length is 2 030(6) Å, and the two Cr-Ophenol bond lengths are 1.915(5) and 1.931(5) Å, cf., [Cr{N,N'-ethylenebis(salicylideneaminato))(H2O)2]CI: Cr-N 2.005(9) and 1.997(8) Å, Cr-O 1.916(8) and 1.952(8) Å. The Cr-Ocarbonyl bond length is 1.976(5) Å, cf., 1.91(2) Å found in mer-trichloro-(N,N-dimethylformamide)(1,10-phenanthro-line)chromium(m).¹⁰ The Cr-N_{py} bond lengths [2.145(6) Å, trans-to-N and 2.097(6) Å, trans-to-O] indicate a greater trans-influence of the N-co-ordinated vs. the O-co-ordinated amido ligand. The Cr-Cr distance in the dimer is 8.9 Å.

[‡] The CRYM computing system was used (D. J. Duchamp, California Institute of Technology). Least-squares refinement minimized $\Sigma \omega \Delta^{\pm}$ with weights $w = \{[\sigma(F^2)]^{\pm} + (0.02 \times \text{scan} \\ (\omega \Delta^{\pm})^{-1} \text{ and } \Delta = F_{\bullet}^{\pm} - (F_{\bullet}/k)^{\pm}$. The goodness-of-fit is $[\Sigma \omega \Delta^{\pm}/(n_{\bullet}p)]^{\pm/p}$, $R = \Sigma[F_{\bullet} - |(F_{\bullet}/k)|]/\Sigma_{\bullet}$ (for reflections with I > 0) and $R_{\infty} = R$ [for reflections with $I > 3\sigma(I)$]. The atomic co-ordinates from this work are available upon request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication. The structure factor table is available as Supplementary Pub-lication No. SUP 23676 (26 pp.) from the British Library Lending Division. For details of how to obtain this material, see Instructions to Authors, J. Chem. Soc., Dalton Trans., 1983, liaue 3.

J. CHEM. SOC., CHEM. COMMUN., 1983

Figure 2. Molecular structure of [Cr {H(chba-Et) }(py), 1.2py.

The ambidentate behaviour of the organic amide functional group is evident, showing that two types of monodentate co-ordination to Cr^{111} are possible, at least where the amide is part of a chelating system. In structural investigations with metals other than Cr. (1) has been found to co-ordinate through the two phenolic oxygen atoms and the two amide nitrogen atoms (all to one metal centre). The strong i.r. band at 1505 cm⁻¹ found for the title dimer is not observed in the i.r. spectra of these latter complexes, which exhibit no i.r. bands in the 1500-1520 cm⁻¹ region.

We thank the Donors of the Petroleum Research Fund, administered by the American Chemical Society, the Research Corporation, and the National Science Foundation for support of this work. B.D.S. acknowledges support from the California Institute of Technology as a Myron A. Bantrell Fellow in Chemistry, 1981-1983.

Received, 23rd February 1983; Com. 252

References

1 H. Sigel and R. B. Martin, Chem. Rev., 1982, 82, 385.

- 2 D. W. Margerum, L. F. Wong, F. P. Bosu, K. L. Chellappa, J. J. Czarnecki, S. T. J. Kirksey, and T. A. Neubecker, Adv. Chem. Ser., 1977, 162, 281.
- 3 E. Kimura, A. Sakonaka, and R. Machila, J. Am. Chem. Soc., 1982, 104, 4255.

- Soc., 1982, 104, 4255.
 A. Buttafava, L. Fabbrizzi, A. Perotti, and B. Seghi, J. Chem. Soc., Chem. Commun., 1982, 1166.
 F. A. Cotton, W. H. Ilsley, and W. H. Kaim, J. Am. Chem. Soc., 1980, 102, 3464, 3475; A. Bino, F. A. Cotton, and W. H. Kaim, Inorg. Chem., 1979, 18, 3030.
 G. H. C. Freeman, Adv. Protein Chem., 1967, 22, 257; H. C. Freeman, 'Inorganic Biochemistry, Vol. I,' ed. G. L. Eichorn, Elsevier, Amsterdam, 1973, p. 121.
 M. Muldi, E. S. Senbare, and R. S. Vang, Imm. Acta.
- Elsevier, Amsterdam, 1973, p. 121.
 7 M. Mulqi, F. S. Stephens, and R. S. Vagg. Inorg. Chim. Acta, 1981, 51, 9; F. S. Stephens and R. S. Vagg. ibid., 1981, 51, 149; R. S. Chapman, F. S. Stephens, and R. S. Vagg. Acta Crystallogr., Sect. B, 1981, 37, 75.
 8 Incomplete results suggest that V¹¹ may also replace amide protons in similar diphenol-diamide complexes. See: R. E. Bänninger, Ph.D. Thesis, University of Basel, Switzerland, 1967.
- 1967.
- P. Coggin, A. T. McPhail, F. E. Mabbs, A. Richards, and A. S. Thorley, J. Chem. Soc. A, 1970, 3296.
 J. A. Broomhead, J. Evans, W. D. Grimley, and M. Sterns,
- J. Chem. Soc., Dalton Trans., 1977, 173.

235

Complexation of a Tetradentate Tetra-anionic Ligand to Osmium(IV): a Step Towards the Development of Multianionic Chelating Ligands for Use in Stabilizing Oxidizing Inorganic Complexes

Judith A. Christie, Terrence J. Collins,^e Terry E. Krafft, Bernard D. Santarsiero, and George H. Spies Arthur Amos Noyes Laboratory of Chemical Physics, The California Institute of Technology, Pasadena, California 91125, U.S.A.

The compound 1,2-bis(3,5-dichloro-2-hydroxybenzamido)ethane [H₄(chba-Et)] (1) readily co-ordinates to osmium(vi) as a tetradentate tetra-anion; the X-ray crystal structure of the reduced complex, $K_2[{Os(\eta^4-chba-Et)(OPPh_3)}_2-O]$ (3), demonstrates that this ligand can bind as a tetradentate tetra-anion to the equatorial sites of a single octahedral metal centre and the potassium ion is found in two unusual co-ordination environments in complex (3).

Contribution no. 6925

Reprinted from the Journal of The Chemical Society

Chemical Communications 1984

Contribution no. 6925

J. CHEM. SOC., CHEM. COMMUN., 1984

Complexation of a Tetradentate Tetra-anionic Ligand to Osmium(IV): a Step Towards the Development of Multianionic Chelating Ligands for Use in Stabilizing Oxidizing Inorganic Complexes

Judith A. Christie, Terrence J. Collins,^e Terry E. Krafft, Bernard D. Santarsiero, and George H. Spies Arthur Amos Noyes Laboratory of Chemical Physics, The California Institute of Technology, Pasadena, California 91125, U.S.A.

The compound 1,2-bis(3,5-dichloro-2-hydroxybenzamido)ethane [H₄(chba-Et)] (1) readily co-ordinates to osmium(vi) as a tetradentate tetra-anion; the X-ray crystal structure of the reduced complex, $K_2[Os(\eta^4-chba-Et)(OPPn_3))_7-O]$ (3), demonstrates that this ligand can bind as a tetradentate tetra-anion to the equatorial sites of a single octahedral metal centre and the potassium ion is found in two unusual co-ordination environments in complex (3).

The variety of useful inorganic oxidizing agents presently available is limited by the lack of suitable ligands which can form stable highly oxidizing metal complexes. We are interested in exploring new reactivity in oxidation chemistry and our approach has been to design multianionic chelating ligands to generate new highly oxidizing inorganic complexes. The co-ordination chemistry of 1.2-bis(3.5-dichloro-2-hydroxybenzamido)ethane [H₄(chba-Et)]. (1) (see Scheme 1), has been investigated as a test case in our work. The ligand (1) has been designed to be reasonably resistant to oxidation, to form five- and six-membered chelate rings upon co-ordination, to be easily synthesized and derivatized, and to contain the organic amide functional group which is known to stabilize high oxidation states when N-co-ordinated.¹

198

We have recently shown² that it is possible to co-ordinate (1) as a bridging ligand between two chromium(III) centres in which both types of monodentate organic amide co-ordination were found. In this paper we report that it is also possible to co-ordinate (1) as a tetradentate tetra-anion to a single metal centre, an important preliminary objective.

Treatment of a colourless acetone solution of (1) with a blue solution of $K_2[OsO_2(OH)_4]$ dissolved in methanol results in a colour change to orange. Removal of solvents *in vacuo* followed by recrystallization of the residue from ethanol-diethyl ether affords a quantitative yield of the orange microcrystalline salt $K_2[OsO_2(\eta^4-chba-Et)]$ (2).⁺ This octahedral *trans*-dioxo osmium(v1) complex is diamagnetic as expected.³ Reduction of this compound with triphenylphosphine (2.5 mol per mol of osmium) in tetrahydrofuran followed by addition of CH_2Cl_2 resulted on one occasion in the deposition of dark crystals of the μ -oxo bridged osmium(v) dinuclear species. $K_2[(Os(\eta^4-chba-Et)(OPPh_3))_2-O]$ (3). which has been characterized by an X-ray crystal structure determination.

Crystal data for (3): $C_{68}H_{46}Cl_8K_2N_4O_{12}Os_2P_2$.³/₂ $C_3H_6O\cdot H_2O. M = 2004.45$, monoclinic, space group $P2_1/c$, a = 18.72(1), b = 15.290(9), c = 28.24(2) Å, $\beta = 107.49(5)^\circ$, U = 7709(9) Å³, Z = 4, $D_c = 1.727(2)$ g cm⁻³, $\mu = 3.98$ mm⁻¹; data (+h, +k, $\pm I$) were collected on a locally modified Syntex $P2_1$ diffractometer with Mo-K_a radiation ($\lambda = 0.7107$ Å) up to $2\theta = 36^\circ$; a total of 6065 intensity measurements were made with 6° min⁻¹ θ -2 θ scans. The three standard reflections, remeasured after each block of 97 reflections, indicated a 16% linear decay. The data were corrected for decomposition, but not for absorption: averaging gave 5331 reflections. 4900 with I > 0 and 3411 with $I > 3\sigma(I)$.

(3) Scheme 1. i. Acetone McOH: ii. Ph₃P. heat: iii. acetonetetrahydrofuran-O.

The positions of the osmium atoms were derived from a Patterson map, and the subsequent Fourier and difference Fourier maps indicated the locations of the remaining non-hydrogen atoms; the hydrogen atoms were placed at calculated positions and were not refined. The Gaussian amplitudes of the μ -oxo and H-atom co-ordinates (U = 0.035 and 0.063 Å²) and the population of the unco-ordinate acetone molecule (set to 0.5) were not refined either. The final cycle of refinement gave a goodness-cf-fit of 2.03 and

^{*} Satisfactory elemental analyses were obtained. I.r. (v. cm⁻¹) 820s $(Os^{16}O_2)$, 788s $(Os^{16}O_2)$, 14 N m r. (CD_1COCD_3) & 8.21 [d. 2 H, 4/(H-H) 3 Hz] and 7.27 [d. 2 H, 4/(H-H) 3 Hz] (aromatic C-H), 3.88 (s. 4 H) (N=CH_2CH_2=N).

J. CHEM. SOC., CHEM. COMMUN., 1984

Figure 1. Schematic representation of $K_2[{Os(\eta^4-chba-Et)(OPPh_3)}_2-O]$ (3), giving bond lengths (Å) and angles (°). O(3)-P(1)-C(av.) 110°, C-P(1)-C(av.) 108°

 $R = 0.111 \ (R_{30} = 0.076);$; the number of parameters was 503. Figure 1 gives the average (over the four sets of chemically equivalent) bond lengths and angles for the dianion of the molecule.

This structure exhibits the first examples of bonds between Os^{IV} and an N-co-ordinated organic amido ligand, a phenoxide ligand, and a phosphine oxide ligand; related structural studies have been performed.4 This study also reveals unusual co-ordination environments for the potassium ions. One potassium ion, centred in a square pyramid, is well within bonding distance for the four phenolic oxygen atoms [K+-O(phenol) av. = 2.87 Å] and one acetone solvate molecule $[K^*-O(acetone) = 2.80 Å]$; this potassium ion is further co-ordinated to the μ -oxo ligand $[K^*-O(oxo) = 3.16 Å]$. The second potassium ion is apparently four co-ordinate, situated at the centre of a distorted tetrahedron, linking adjacent anions by bonding with two pairs of eclipsed organic amido oxygen atoms, one pair from each dinuclear unit [K-O(amide) av. = 2.66 Å]. Low co-ordination numbers for potassium ions are rare.⁵ The close interligand contacts of the bis-hydroxybenzamido ligands in this eclipsed conformation are predominantly Cl...Cl contacts, ranging from 3.6 to 3.9 Å, close to the sum of van der Waals' radii for Cl (ca. 3.6 Å). Presumably the co-ordination of the potassium ions plays a significant role, and results in the observed eclipsed conformation of the two planar ligands. The dinuclear octahedral OslV oxo-bridged structure has been observed previously in the complex $Cs_4[(OSCI_5)_2-\mu-O]^6$ and a bent oxo-bridged dinuclear Os^{1V} complex, $Os_2(\mu-O)(\mu-O_2CMe)_2CI_4(PPh_3)_2$. has

also been structurally characterized.7 The general strategy of producing highly oxidizing inorganic complexes using specially designed multianionic chelating ligands has been successful in our work and will soon be reported.

We thank the Donors of the Petroleum Research Fund. administered by the American Chemical Society, the Research Corporation, the National Science Foundation, and the Atlantic Richfield Corporation of America for support of this work and Engelhard for a generous loan of precious metal compounds. B. D. S. acknowledges support from the California Institute of Technology as a Myron A. Bantrell Fellow in Chemistry, 1981–1983. T. E. K. is the Union Carbide Fellow in Chemical Catalysis.

Received, 19th October 1983; Com. 1377

References

- 1 H. Sigel and R. B. Martin, Chem. Rev., 1982, 82, 385, D. W. Margerum, L. F. Wong, F. P. Bosu, K. L. Chellappa, J. J. Czarnecki, S. T. J. Kirksey, and T. A. Neubecker, Adv. Chem. Ser., 1977, 162, 281; E. Kirnura, A. Sakonaka, and R. Machila, J. Am. Chem. Soc., 1982, 104, 4255; A. Buttafava, L. Fabrizzi, A. Perotti, and B. Seghi, J. Chem. Soc., Chem. Commun., 1982, 1166 2 T. J. Collins, B. D. Santarsiero, and G. H. Spies, J. Chem. Soc., Col. 2002, 621 (2002), 621 (20
- Chem. Commun., 1983, 681
- M. Schroder, Chem. Rev., 1980, 80, 187.
 J. Schroder, J. A. Christie, T. J. Collins, R. J. Coots, T. T. Furutani, S. L. Gipson, J. T. Keech, T. E. Krafti, B. D. Santarsiero, and G. H. Spies, submitted to J. Am. Chem. Soc.
 Examples include: K₂O (co-ordination number 4), average K⁻-O
- 2.79 Å. E. Zintl, A. Harder, and B. Dauth. Z. Electrochem , 1934. 40. 588; Ka[C₁₂H₁₄O₃₅Sa].⁷H₂O (co-ordination number 5). average K⁻-O 2.71 Å, Y. Nawata, K. Ochi, M. Shiba, K. Morita, and Y. litaka. Acta Crystallogr., Sect. B. 1981. 37, 246.
 6 K. F. Tebbe and H. G. von Schnering, Z. Anorg Allg Chem.
- 1973. 396. 66.
- 19 (5, 576, 60).
 7 J E. Armstrong, W. R. Robinson, and R. A. Walton. Inorg. Chem., 1983, 22, 1301.

[‡] The CRYM computing system was used (D. J. Duchamp. California The CVF interval of the computing system was used (D.). Dutating: Containing containing the contract of the computing system was used as the contract of the are available upon request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication

The Design of Multianionic Chelating Ligands for the Production of Inorganic Oxidizing Agents. Osmium Coordination Chemistry That Provides Stable Potent Oxidizing Agents and Stable Potent Reducing Agents

Fred C. Anson, Judith A. Christie, Terrence J. Collins,* Robert J. Coots, Tracy T. Furutani, Stephen L. Gipson, John T. Keech, Terry E. Krafft, Bernard D. Santarsiero,1 and George H. Spies

Contribution No. 6881 from the The Chemical Laboratories, California Institute of Technology. Pasadena, California 91125. Received December 9, 1983

Abstract: The design of multianionic chelating ligands for use in producing new oxidizing agents is discussed. Two potentially tetradentate tetraanionic ligands, 1,2-bis(3,5-dichloro-2-hydroxybenzamido)ethane (H₄CHBA-Et (1)) and 1,2-bis(3,5-dichloro-2-hydroxybenzamido)-4,5-dichlorobenzene (H4CHBA-DCB (2)) were synthesized and found to coordinate to osmium as tetradentate tetraanions. X-ray crystal structures of two osmium(IV) complexes of this ligand class are reported: octahedral $Os(\eta^4$ -CHBA-Et)(py)₂ (5) has axial pyridine ligands with the tetradentate tetraanion coordinated to the equatorial positions, whereas in $Os(\eta^4$ -CHBA-DCB)(bpy) (15) the bpy ligand occupies one axial and one equatorial position with one phenolic donor in an axial position and the remaining donors of the tetradentate tetraanion coordinated equatorially. Ligand 1 forms osmium complexes in oxidation states II, III, IV, and VI. Attempted electrooxidation of the osmium(IV) complex, 5, to an osmium(V) complex results in oxidation of the tetradentate tetraanion at the ethylene unit bridging the amide nitrogen atoms. In the presence of alcohol or water this oxidation proceeds in a stepwise manner and several key intermediates have been isolated, independently synthesized, and characterized. The first intermediate isolated results from dehydrogenation of the ligand bridge. In the second intermediate, the unsaturated bridge has been oxidized to a 1,2 diether. Finally, cleavage of the carbon-carbon bond and dealkylation of the two ethereal oxygen atoms yields two bidentate ligands bound through phenolic and organic imido donors. The cleavage product is produced as two diastereomers which differ in the coordination geometry at the metal. Both isomers have been characterized by X-ray crystal structure determinations. The diastereomeric distribution is determined primarily by the nature of the alcohol employed. The ligand oxidation can be prevented by replacement of the ethylene unit of 1 with the dichlorophenylene moiety of 2. Osmium complexes of 2 have been produced in oxidation states II, III, IV, VI, and presumably the very rare state V. The apparent $\operatorname{osmium}(V)$ complexes are stable but are potent oxidizing agents with potentials for the V/IV couples ranging from ca. 1.31 to 1.65 V vs. NHE. The complex $[\operatorname{Os}(\eta^4-CHBA-DCB)(\iota-Bupy)_2]^+$ forms as an apparent mixture of two diastereomers. The stable osmium(II) complexes of both ligands 1 and 2 are potent reducing agents.

The variety of useful inorganic oxidizing agents presently available is limited by the lack of appropriate oxidation resistant ligands. We have initiated an attempt to prepare a series of strongly oxidizing complexes by designing and synthesizing new oxidation-resistant ligands. Most suitable known ligands are monodentate species in which the donor atom is electronegative (e.g., O^{2-} , $C\Gamma$, F^{-}). Noteworthy exceptions include the π^2 -peroxo and π^4 -porphyrinato dianionic ligands.²³ Our approach has been to prepare multianionic chelating ligands that are capable of

Facethy been produce electrochemically in indue 50 subwing that aromatic ligands are capable of forming observable complexes that are potent oxidizing agents. Gaudiello, J. G.; Sharp, P. R.; Bard, A. J. J. Am. Chem. Soc. 1982, 104, 6373. Stable very highly oxidizing complexes have recently been re-ported. Sharp, P. R.; Bard, A. J. Inorg. Chem. 1983, 22, 2689.

forming stable strongly oxidizing complexes and to investigate the coordination chemistry of the ligands and the reaction chemistry of their metal complexes. Many classical oxidizing agents (e.g., CrO₃, KMnO₄) exhibit poor chemoselectivity when oxidizing organic substrates. For some reactions a fundamental reason for this behavior is that additional metal-based oxidizing agents are formed during the redox process which oxidize the organic substrate in a manner different from the initial oxidizing agent. An example is the chromic acid oxidation of cyclobutanol in which chromium(VI) cleanly oxidizes cyclobutanol to cyclobutanone, but the chromium(IV) generated in this process also attacks the cyclobutanol and produces ring cleavage. The final inorganic product is chromium(III).4 We believe that in searching for selective transition-metal oxidizing agents it is highly desirable to seek or design systems which allow one to control oxidation state changes at the metal site during an oxidation process. In particular, we wish to generate complexes that will undergo a single oxidation reaction with a specific organic substrate to give a

0002-7863/84/1506-4460\$01.50/0 C 1984 American Chemical Society

Myron A. Bantrell Research Fellow, 1981-1983, the California Institute of Technology.
 (2) For recent examples of the use of highly oxidized porphyrin complexes in oxidation reactions see: (a) Groves, J. T.; Watanabe, Y.; McMurry, T. J. J. Am. Chem. Soc. 1983, 105, 4489. (b) Groves, J. T.; Takahashi, T. Ibid. 1983, 105, 2073. (c) Smegal, J. A.; Schardt, B. C.; Hill, C. L. Ibid. 1983, 105, 3510. (d) Smegal, J. A.; Schardt, 1983, 105, 3515.
 (3) The extremely oxidized complexes [Fe(bpy),]⁴⁺ and [Ru(bpy),]⁴⁺ have recently been produced electrochemically in liquid SO, showing that aromatic ingands are capable of forming observable complexes that are optent oxidizing

⁽⁴⁾ Benson, D. "Mechanisms of Oxidation by Metal Ions"; Elsevier: New York, 1976, pp 178-193.
Scheme I

nonactive reduced inorganic product. Multianionic chelating ligands might provide the stabilization of the reduced inorganic product that is necessary for the achievement of this goal.

An important primary goal in our work has been to define the necessary structural features that make a multianionic chelating ligand compatible with very oxidizing metal centers and the environment necessary to generate them. These features include (i) resistance to oxidation, (ii) the formation of five- and sixmembered metallacycles upon coordination, (iii) negative charge sufficient to counter the positive charge of the metal center, (iv) chemically innocent binding sites that are resistant to hydrolysis and other displacement reactions, (v) ease of derivatization to vary the oxidizing power of the complex and to incorporate steric bulk or chiral centers to achieve regio-, enantio-, and stereoselective transformations, and (vi) convenient syntheses that will facilitate the use of interesting complexes. The complexes may need to be coordinatively unsaturated to allow the substrate to coordinate prior to oxidation or to facilitate reactions which expand the coordination shell such as β -hydrogen transfer.

Two ligands that have been designed and examined as possible candidates are the potentially tetradentate, tetraanionic ligands H4CHBA-Et (1) and H4CHBA-DCB (2).5.6 Note that these

(5) Ligand names are 1,2-bis(3,5-dichloro-2-hydroxybenzamido)ethane, H₄CHBA-Et (1); 1,2-bis(3,5-dichloro-2-hydroxybenzamido)-4,5-dichloro-benzene, H₄CHBA-DCB (2); 1,2-bis(3,5-dichloro-2-hydroxybenzamido)-trans-1,2-dimethoxyethane, H₄CHBA-t-1,2-diMeO-Et; N-formyI-3,5-di-chloro-2-hydroxybenzamide, H₃Fo-CHBA. Abbreviations: py = pyridine; t-Bupy = 4-tert-butylpyridine; bpy = 2,2'-bipyridine; Ph₃P = triphenyI-phosphine; t-BuNC = tert-butyl isocyanide; TFA = trifluoroacetic acid; BPG = basal plane pyrolytic; graphite; TBAP = tetrabutylamnonium perchlorate; H₂OEP = octaethylporphyrin; SCE = asturated calomel electrode.

Figure 1. Molecular structure of Os(n⁴-CHBA-Et)(py)₂ (5)

ligands contain organic amide functional groups which when N-coordinated are known to shift formal potentials of metal complexes to less positive values, i.e., to stabilize the higher ox-idation state.⁷⁻⁹ The chlorine substituents were introduced to protect the aromatic rings from oxidation.

Here we report that it is possible to coordinate 1 and 2 as tetradentate tetraanions to osmium and that stable highly reducing complexes of 1 and 2 and highly oxidizing complexes of 2 can be produced. Osmium complexes in the oxidation states 11, 111, IV, V, and VI are described. It is shown that 1 and 2 meet the criteria listed above with the exception that 1 is not sufficiently resistant to oxidation to allow formation of a strongly oxidizing complex. The site of oxidative sensitivity in complexes of 1 has been identified as the ethylene unit bridging the two organic amide mitrogens. It is important to note that it is a simple matter to block this oxidation of the ligand by replacing the ethylene group with the more robust dichlorophenylene unit of 2. Osmium is a particularly useful test metal since complexes in several of the higher oxidation states yield readily observable NMR spectra, a pleasant contrast with other metals we have investigated. This has proved

(6) (a) 1 forms a dimeric complex with chromium(III) in which both N-bound and O-bound organic amide ligands are found. Collins, T. J.; Santarsiero, B. D.; Spies, G. H. J. Chem. Soc., Chem Commun. 1983, 681.
(b) Coordination of 1 as a tetradentate tetraanion to osmium(IV) has been reported. Christie, J. A.; Collins, T. J.; Krafft, T. E.; Santarsiero, B. D.; Spies, G. H. J. Chem. Soc., Chem. Commun. 1984, 198.
(7) Sigel, H.; Martin, R. B. Chem. Rev. 1982, 82, 385.
(8) The use of multianionic chelating ligands containing organic amide functional groups to stabilize Cu(III) and Ni(III) has been extensively studied (a) Margerum, D. W. Pure Appl. Chem. 1983, 55, 22, 1021. (c) Kimura, E.; Sakonaka, A.; Machila, R.; Kodama, M. J. Am. Chem. Soc. 1982, 104, 4255.
(9) (a) Buttafava, A.; Fabbrizzi, L.; Perotti, A.; Seshi, B. J. Chem. Soc.

(9) (a) Buttafava, A.; Fabbrizzi, L.; Perotti, A.; Seghi, B. J. Chem. Soc.,
 Chem. Commun. 1962, 1166. (b) Fabbrizzi, L.; Perotti, A.; Poggi, A. Inorg.
 Chem. 1963, 22, 1411.

4462 J. Am. Chem. Soc., Vol. 106, No. 16, 1984

Figure 2. 90-MHz 'H NMR spectrum of 5 (CDCl3).

indispensible in characterizing the complexes described here.

Results and Discussion

Synthesis and Oxidation of an Ou(IV) Complex of Ligand 1. The ligands 1 and 2 can be synthesized in high yields from readily available starting materials and familiar organic reactions. Osmium insertion into 1 can be achieved quantitatively as shown in Scheme I. The orange osmium(VI) complex $K_2[Os(\pi^4-CHBA-Et)(O)_2]$ (3) contains trans-oxo ligands, as established by IR. Like other d² trans-dioxo osmium(VI) complexes this material is diamagnetic¹⁰ and provides a reference for NMR spectroscopy. The IR and 'H NMR data require equatorial coordination of the ligand 1 as a tetradentate tetraanion. Once bound in this fashion the ligand remains coordinated through a variety of chemical transformations. In all of the complexes described in this paper the ligand has thus far shown no sensitivity to hydrolysis or other displacement reactions. Complex 3 can be reduced by triphenylphosphine in the presence of pyridine to produce the paramagnetic osmium(III) complex K[Os(n4-CHBA-Et)(py)2] (4), and oxidation of 4 gives the deep blue neutral paramagnetic osmium(IV) complex $Os(\eta^4$ -CHBA-Et)(py)₂ (5) in high yield.

Complex 5 has been characterized by an X-ray crystal structure determination (Figure 1). This is the first structural study of an osmium(IV) pyridine complex. We recently reported on an Os(IV) dimer of ligand 1 which contained the first structurally characterized examples of Os(IV) bearing the host of instead of a sector of Os(IV) bearing the host of instead organic amido ligand or the phenoxide ligand.⁶⁶ In 5 the ligand 1 is coordinated as a tetradentate tetraanion to the equatorial positions of a distorted octahedron. The two pyridine ligands occupy the axial positions with a relative dihedral angle of 73°. It has been concluded that the relative orientation of trans-pyridine ligands in Co(acac)2(py)2 and Ni(acac)2(py)2, staggered for the former and eclipsed for the latter, is a function of crystal packing effects.¹¹ The paramagnetic complex 5 exhibits a well-resolved H NMR spectrum as shown in Figure 2. Spectra of this type have been previously observed for osmium(IV) complexes.12 The signal for the bridging ethylene protons is a singlet at 68.55 ppm.

pure 3. Cyclic voltammogram of 1 mM 5 in CH2Cl2, 0.1 M TBAP at 0.174 cm² BPG electrode. Scan rate = 200 mV s⁻

The aromatic protons of the chelate are found at 14.92 (d, 2 H, ${}^{4}J_{(H-H)} = 3 \text{ Hz}$ and 10.54 ppm (d, 2 H, ${}^{4}J_{(H-H)} = 3 \text{ Hz}$). The signals for the pyridine ortho and para protons are shifted upfield from the normal diamagnetic range (Ho, -6.29, d, 4 H, ³J(H-H) = 8 Hz; H_p, -1.39, t, 2 H, ${}^{3}J_{(H-H)}$ = 8 Hz), whereas the signal for the meta protons is not significantly affected (H_m, 7.72, t, 4 H, ${}^{3}J_{(H-H)} = 8$ Hz). It is probable that the magnitude of the paramagnetic contact shift of the pyridine signals is directly related to the nature of the second LUMO of pyridine, 3B₁, which is composed of p orbitals on nitrogen and on the ortho and para positions, but not the meta positions.¹³

Cyclic voltammetry was used to probe the redox chemistry of the new complexes and the oxidative stability of the coordinated ligands. A typical cyclic voltammogram of $5(1 \text{ mM in CH}_2\text{Cl}_2, 0.1 \text{ M TBAP}^5)$ at a BPG⁵ electrode is shown in Figure 3. Potentials were measured against the ferrocinium/ferrocene (Fc+/Fc) couple which we have consistently measured as ca. 0.48 V vs. SCE³ in the same medium. Two reversible diffusion-controlled oneelectron responses having formal potentials of -0.65 and -1.88 V are found. In addition, two irreversible responses appear at $E_p = +0.70$ V and ca. 1.00 V. Plots of peak current vs. the square root of scan rate rate over the range 20-500 mV s^{-1} are linear for the two reversible couples and the first oxidation, indicating

⁽¹⁰⁾ Schroeder, M. Chem. Rev. 1980, 80, 187.
(11) Elder, R. C. Inorg. Chem. 1968, 7, 1117; 1968, 7, 2316.
(12) (a) Pawson, D.; Griffith, W. P. J. Chem. Soc., Dalton Trans. 1975, 417. (b) Chart, J., Leigh, G. J.; Mingon, D. M. P.; Panke, R. J. J. Chem. Soc. A 1968, 2636; (c) Randall, E. W.; Shaw, D. J. Chem. Soc. A 1969, 2867.

⁽¹³⁾ Jorgensen, W. L.; Salem, L. "The Organic Chemist's Book of Orbitals"; Academic Press: New York, 1973; p 265.

Figure 4. 90-MHz 'H NMR spectrum of 7 (CDCl₃).

diffusion control. Controlled potential reduction of 5 at -0.90 V consumes one electron per molecule and produces 4 which can be reoxidized to pure 5. Reduction of 5 in acetonitrile at -2.10 V consumes two electrons per molecule and produces a purple solution of the corresponding osmium(II) complex that is stable under an inert atmosphere. Exposure to air causes rapid formation of 4. The formal potential of the osmium(III/II) couple, [Os-(η^4 -CHBA-Et)(py)₂]^{-/2-}, -1.88 V, is almost 2 V more negative than that of the corresponding porphyrin complex, $[Os(\eta^4-OEP)(py)_2]^{+/0}$, (0.0 V), in the same medium.^{5.14} The comium(III) complex $[Os(\eta^4-CHBA-Et)(py)_2]^{2^-}$ is thus a very powerful reducing agent. Clearly the tetraanionic ligand stabilizes osmium(III) much more strongly than does the dianionic octaethyl-porphyrinato ligand. We anticipate that this superior stabilization capacity will be a general property of the tetraanions.

The oxidative sensitivity of the ethylene unit bridging the amide nitrogens causes the oxidation of complex 5 to be irreversible. Electrochemical oxidation of 5 at 0.87 V in dichloromethane containing ROH (R = alkyl, H) (0.5 mol per mmol of osmium) consumes at least six electrons per osmium atom and gives quantitative conversion of 5 to either one of two new complexes, 9 and 9', or a mixture of both depending on the nature of R, vide infra (Scheme II). Thin-layer chromatography (TLC) of the anolyte solution monitored during the course of the electrolysis shows that the conversion proceeds through three distinct intermediates-6, 7, and 8. Comparison of TLC measurements when different alcohols are employed indicates that 6 and 8 contain the alcohol group while 7, 9, and 9' do not. We wished to understand these transformations for two reasons. First, there is an obvious connection between the goals mentioned in the introduction and a knowledge of any oxidative reactions of a complex of the new ligand 1. Second, it is possible to convert 9 and 9' to active catalysts for electrooxidation of alcohols, and our studies of these catalytic systems required a knowledge of the structures of possible participant complexes.

It was inconvenient to separate and isolate the complex mixtures of osmium compounds that form during the electrolysis. Accordingly we sought separate chemical syntheses of the various intermediates and discovered that compound 7 can be quantitatively produced by autoxidation of 5 adsorbed on silica gel (Scheme II). The structure of 7 has been established by ¹H NMR (Table I and Figure 4) and ¹³C NMR (Table II).¹⁵ The signal for the

Figure 5. Cyclic voltammogram of 1 mM 7 in 0.1 M TBAP/CH₂Cl₂ at 0.174 cm² BPG electrode; scan rate = 200 mV s⁻¹.

methylene protons of the metallacyclopentane ring of 5 is found at 68.55 ppm, whereas the signal for the metallacyclopentene ring methine protons of 7 is found at -15.52 ppm. The five-membered

unsaturated metallacycle of 7 can be represented by two contributing resonance structures in which the formal oxidation state of the metal is different. The cyclic voltammogram of 7 in the absence of alcohol is shown in Figure 5. Three reversible diffusion-controlled one-electron waves are found at $E^{\rm f} = -1.76$, -0.62, and 0.37 V, and an irreversible oxidation is found at $E_{\rm p}$ = 0.92 V. The oxidation of 7 at 0.37 V is reversible in the absence of alcohols, but it becomes irreversible at low scan rates if alcohol is present. Electrochemical oxidation of 7 at 0.87 V in the presence of alcohol or water produces 8 and then 9 and/or 9'. Complex

⁽¹⁴⁾ Brown, G. M.; Hopf, F. R.; Meyer, T. J.; Whitten, D. G. J. Am. Chem. Soc. 1975, 97, 5385.

⁽¹⁵⁾ A considerable number of ligand oxidative dehydrogenations have been previously reported. For examples of such reactions in osmium chemistry see: Lay. P. A.; Sargeson, A. M.; Skelton, B. W.; White, A. J. J. Am. Chem Soc. 1982, 104, 6161 and references therein. Oxidation of methylene units attached to the nitrogen atoms of chelating N-coordinated polypeptides to copper(III) has been reported. Rybka, J. S.; Margerum, D. W. Inorg. Chem. 1981, 20, 1453 and references therein. For a recent review of a,a-dilimine complexes including ligand oxidations see: Van Koten, G.; Vrieze, K. Adi. Organomet. Chem. 1982, 21, 151.

(L = py, t-Bupy)

6 is produced in very small concentrations as an intermediate in the electrooxidation of 5, but not 7. We have not been able to isolate and characterize this compound.

Chemical conversion of 7 to 8 can be effected in high yield by oxidation with dichlorodicyanobenzoquinone (DDQ) in dichloromethane in the presence of alcohol or water (Scheme II). The five-membered metallacycle in 8 is symmetrically substituted by trans-alkoxide groups, but if the oxidation with DDQ is performed in the presence of both alcohol and water the unsym-metrically substituted complex 8° bearing *trans*-alkoxide and hydroxide groups is produced in addition to the two symmetrical complexes 8 (R = H or alkyl). Complex 8° forms in very small concentrations in the electrooxidation process when alcohols are used implying the presence of small quantities of water. The structures of these complexes have been confirmed by 1H and 13C NMR (Tables I and II). The ¹H NMR spectrum of 8° shows the multiplicity of signals expected for two inequivalent pyridines and two inequivalent rings in the chelate ligand. For compounds 7 and 8 an alternative structure which would also satisfy the accumulated spectroscopic data involves axial phenoxide ligands with the nitrogen donors in the equatorial plane and the pyridine ligands in a cis configuration. However, this structure would probably be highly strained.

Electrochemical oxidation of \$ at 0.87 V in the presence of alcohol or water results in cleavage of the carbon-carbon bond of the five-membered metallacycle and dealkylation or deprotonation of the oxygen substituents to afford the two diastereomeric complexes 9 and 9' which differ in cis-trans ligand relationships only. Both complexes with L = t-Bupy have been characterized by X-ray crystal structure determinations (see Figure 6 for 9 and Figure 7 for 9'). These are the first structurally characterized N-coordinated organic imido complexes of osmium. The dia-

9

Figure 6. Molecular structure of $Os(\eta^2$ -Fo-CHBA)₂-cis-(t-Bupy)₂ (9).

stereomeric composition is a function of the R group and the ligand L. For L = py the transformations are 100% stereoselective. When R is methyl, ethyl, *n*-butyl, isopropyl, or benzyl, 9 is the sole product and is formed quantitatively. When R is *tert*-butyl, *tert*-ampl, or H, 9' is the quantitative product. It was not possible

4464 J. Am. Chem. Soc., Vol. 106, No. 16, 1984 Scheme II Anson et al.

Scheme III

Figure 7. Molecular structure of Os(72-Fo-CHBA)2-trans-(1-Bupy)2 (9).

to grow crystals suitable for structural analysis with L = py for either diastereomer. Consequently, the entire series of complexes was synthesized with L = t-Bupy. This substitution causes a change in the diastereomeric distribution of 9 and 9'. Thus the electrooxidation of 5 (L = t-Bupy) in the presence of isopropyl alcohol produces a mixture of 9 and 9' in the approximate ratio 7.3. Compound 9' can also be produced as the sole product by oxidation of 5 in dichloromethane with tetrabutylammonium periodate in the presence of excess trifluoroacetic acid (TFA). 9 and 9' have been characterized by NMR (Tables I and II).

At this juncture it might be helpful to suggest a mechanism for the combination of ligand and metal oxidations that we have described (Scheme III). One-electron oxidation of 5 might afford an osmium(V) complex which could undergo spontaneous reductive deprotonation to produce an osmium(III) monoimine

This would give a cationic osmium(IV) monoimine complex which upon reductive deprotonation would give 7. One-electron oxidation of 7 would produce a complex which possesses carbonium ion character at the carbon atoms of the metallacycle. Nucleophilic attack by alcohol followed by proton loss would lead to another osmium(III) monoimine whose electrooxidation would give 8 by a similar sequence. One-electron oxidation of 8 might induce ring cleavage and O-dealkylation to produce yet another osmium(III) complex whose further oxidation and dealkylation would lead finally to compound 9 or 9'. It is not clear at what stage in the conversion of 8 to 9 the isomerization occurs that gives the observed stereochemistry at the metal center. However, we suspect that isomerization might occur after one-electron oxidation of 8 and that the unusual stereochemistry could be related to the relative rate of this isomerization vs. the rate of ligand oxidation. Evidence presented below demonstrates that an octahedral osmium(IV) complex of ligand 2 can exist with nonplanar tetradentate tetraanionic coordination. Consequently, the isomerization which gives 9 might occur prior to cleavage of the carbon-carbon bond. The stoichiometric conversion of 5 to 9 or 9' would require exactly six electrons according to Scheme III. Experimentally the charge is variable, but it is always greater than or equal to six electrons per osmium atom.

In the presence of acid together with an alcohol or water 9 and 9 undergo two-step quantitative conversions to produce two final new blue complexes. The complexes prepared in this way are effective catalysts for the electrooxidation of alcohols.¹⁶

These studies demonstrate that it is possible to coordinate 1 as a nonlabile tetradentate tetraanion to osmium and that this type of coordination results in a significant stabilization of higher oxidation states. However, the ethylene unit of 1 is an unsuitable feature for ligands that are designed to resist strongly oxidizing

⁽¹⁶⁾ Anson, F. C.; Collins, T. J.; Gipson, S. L.; Krafft, T. E., manuscript in preparation.

4466 J. Am. Chem. Soc., Vol. 106, No. 16, 1984

conditions. At the outset of this work it was recognized that the ethylene unit was probably the most easily oxidized portion of 1, but it was not clear whether the sensitivity would be sufficient to preclude the formation of high oxidation state complexes. The major goal of building stable strongly oxidizing complexes has been achieved in a simple manner by replacing the ethylene unit of 1 with the more oxidation resistant dichlorophenylene bridge of 2.

Syntheses and Oxidations of Os(IV) Complexes of Ligand 2. Insertion of osmium into ligand 2 and entry into the chemistry of several oxidation states has been accomplished (Scheme IV). The conversion of the osmium(VI) complex $K_2[Os(\pi^4-CHBA DCB)(O)_2]$ (10) to the osmium(IV) complex Os($\pi^4-CHBA-$ DCB)(PPh₃)₂ (11) involves the unusual procedure of heating 10 under reflux in a triphenylphosphine/TFA solution. The reaction affords 11 in high yield. Compound 11 is a very versatile intermediate for ligand exchange reactions at osmium(IV), as illustrated in Scheme IV. The compounds shown in Scheme IV have been characterized by ¹H NMR (Table I).

The cyclic voltammogram of $Os(\eta^4 - CHBA - DCB)(t - Bupy)_2$ (13) is shown in Figure 8. The irreversible response observed upon oxidation of complex 5 (Figure 3) has been converted to a reversible couple at $E^r = +0.70$ V. Bulk electrolysis of dark blue 13 at 1.0 V in dichloromethane consumes one electron per osmium atom and produces a purple solution which apparently contains an equimolar mixture of two osmium(V) complexes. The cyclic voltammogram after electrolysis still contains the original reversible couple arising from 13, but the peak currents are only about half as large as they were originally. In addition, two new couples

Figure 8. Cyclic voltammogram of 1 mM Os(n⁴-CHBA-DCB)(*t*-Bupy); (13) in CH₂Cl₂, 0.1 M TBAP at 0.174 cm² BPG electrode. Scan rate = 200 mV s⁻¹.

Figure 9. Cyclic voltammogram of (a, top) 1 mM $Os(\eta^4-CHBA-DCB)(r-Bupy)_2$ (21) + 0.1 M TBA-BF₄ in CH_2Cl_2 and (b, bottom) 1 mM $Os(\eta^4-CHBA-DCB)(r-Bupy)_2]^*$ + 0.1 M TBA-BF₄ in CH_2Cl_2 : one-electron reduction restores cyclic voltammogram (a). Pt wire electrode; 200 mV s⁻¹,

appear several hundred millivolts negative and with peak currents also about half as large as the original couples (Figure 9). The open circuit potential of the electrode is positive of all of the couples showing that all of the original osmium(IV) complex has been oxidized. One-electron reduction of the mixture restores a pure solution of 13. We suspect that the oxidation products are a mixture of geometrical isomers.

A change to nonplanar coordination of the tetradentate tetrannion in 13 upon one-electron oxidation could give rise to an equilibrium mixture of diastereomers. The complex $Os(n^4$ -CHBA-DCB)(PPh₃)₂ (11) which contains *trans*-phosphine ligands might be expected to resist this isomerism since it would require cis coordination of the bulky phosphine ligands. Bulk electrolysis of 11 in acetonitrile at 0.86 V involves one electron per osmium atom and produces a dark green solution of what we assume to be the osmium(V) complex $[Os(n^4-CHBA-DCB)(PPh_3)_2]^*$. This oxidized material exhibits no additional waves in the cyclic voltammogram.¹⁷ In order to test the ability of ligand 2 to assume a nonplanar geometry, complex 11 was treated with 2,2'-bipyridine in toluene under reflux and the compound $Os(n^4-CHBA-$

Anson et al.

⁽¹⁷⁾ For a recent electrochemical study of the systems $[M(by)_{2}(OH_{2})_{2}]^{2*}$ (M = Ru, Os) see: Takeuchi, K. J.; Samuels, G. J.; Gersten, S. W.; Gilbert, J. A.; Meyer, T. J. Inorg. Chem. 1983, 22, 1407. For the osmium case stable complexes were found for oxidation states 11, 111, 1V, V, and VI with a small variation in E_{1/2} values, Os(III/II) = +0.16 V (SSCE), Os(VI/V) = +0.82 V. Oxidation is accompanied by deprotonation. For a recent electrochemical study of some osmium(IV) and (VI) complexes see: Armstrong, J. E.; Walton, R. A. Inorg. Chem. 1983, 22, 1545.

Figure 10. Molecular structure of Os(n⁴-CHBA-DCB)(n²-bpy) (15).

DCB)(bpy) (15) was isolated from the reaction mixture. X-ray crystal structure analysis of 15 (Figure 10) shows that the bipyridine ligand occupies one axial and one equatorial position of a distorted octahedron with one phenolic donor coordinated axially and the three remaining anionic donors coordinated equatorially. Clearly, under the steric influence of the bipyridine ligand the tetradentate tetraanion can be constrained to coordinate in a nonplanar fashion. We are further investigating these complexes in which the metal is apparently in the rare osmium(V) oxidation state. 18,19

It is possible to make stable complexes of this type with a number of different axial ligands. By changing the axial ligands we have been able to vary the potential of the osmium(V/IV)couple from +0.59 V to almost +1.00 V. The most potent oxidant generated so far is $[Os(\eta^4-CHBA-DCB)(t-BuNC)_2]^+$ (14) with a formal potential for the osmium(V/IV) couple of +0.93 V vs. Fc+/Fc, or ca. 1.65 V vs. NHE.

The results we have presented demonstrate the versatility of ligands such as $[\eta^4$ -CHBA-Et]⁴ and $[\eta^4$ -CHBA-DCB]⁴ in the formation of both highly oxidizing and highly reducing inorganic complexes. A set of ligand design features that are important in the preparation of stable complexes has been identified. We believe that chelate complexes of this class of ligands will find application in selective redox reactions, and we are actively pursuing such studies with a number of metals and oxidation reactions.

Experimental Section

Materials. All solvents were reagent grade (Aldrich, Baker Mallinckrodt, M.C.B. or U.S.I.) and were used as received unless otherwise noted. Acetic anhydride (reagent, Mallinckrodt), 2-acetylsalicylic acid (Aldrich), 2,2'-bipyridine (99.5%, Aldrich), tert-butyl isocyanide (>98%, (Fulka), 4-tert-butylpyrdine (99%, Aldrich), Cl.2 (Matheson), 2,3-di-chloro-5,6-dicyano-1,4-benzoquinone (98%, Aldrich), 3,5-dichlorosalicylic acid (Pfaltz and Bauer), glacial acetic acid (Aldrich), HClO₄ (60%, acid (riantz and bauer), gracial acid (Adrich), Holog (60%, Mallinckrodi), H₂O₄ (30% Superoxol, Baker), KOH (reagent, Baker), OsO₄ (99.8%, Alfa), H₂PO₄ (85%, Baker), pyridine (reagent, Mallinck-rodi), triethylamine (reagent, M.C.B.), trifluoroacetic acid (reagent, M.C.B.), and triphenylphosphine (99%, Aldrich) were all used as re-ceived. The oxalyl chloride and ethylemediamine (Aldrich) used in the ligand syntheses were both freshly distilled. 4,5-Dichloro-o-phenylenediamine was dried over Na₂SO₃ and recrystallized from hexane. Silica gel was 60-200 mesh (Davidson). Analytical and preparatory thin layer chromatography plates, 250 and 1000 µm, respectively, were silica gel

J. Am. Chem. Soc., Vol. 106, No. 16, 1984 4467

GF (Analtech). Molecular sieves (4 Å, Linde) were heated under vacusem at 300 °C for 4 h prior to use. Physical Measurements. ¹H NMR spectra were measured at 90 MHz

Project: Measurements. In NMR spectra were measured at 90 MHz on a Varian EM 390 or a JEOL FX90-Q spectrometer unless otherwise aoted. ¹³C NMR spectra were measured at 500 MHz on a Bruker WM 500 spectrometer. ¹H and ¹³C chemical shifts are reported in δ_{YS} . Mc₂Si with the solvent (CDCL) δ 7.25; CD₂Cl₁ δ 5.35; Mc₂SO-d, δ 2.50 or aostone-d₆ δ 2.05) as internal standard. Infrared spectra were recorded on a Beckman IR 4240 spectrophotometer. Raman data was recorded on a SPEX spectrometer. Elemental analyses were obtained at the Caltech Analytical Facility. Analytical thin layer chromatography results were obtained by elution with CH₂Cl₂/THF (9:1). Electrochemical Procedures. Dichloromethane (M.C.B. or Mallinck-

odt) used in electrochemical experiments was reagent grade and was further purified by passing it over a short column of activated alumina (Woelm N. Akt. I). Acetonitrile (Burdick and Jackson, distilled in glass) was dried over 3-Å molecular sieves. TBAP supporting electrolyte (Southwestern Analytical Chemicals) was dried, recrystallized twice from cetone/ether, and then dried under vacuum. The TBAP concentration in all solutions was 0.1 M. Alcohols were reagent or spectrophotometric grade and were used as received. BPG electrodes (Union Carbide Co., Chicago used for cyclic voltametry were cut and mounted as previously described.²⁰ The BPG electrode used for controlled potential oxidations was cut as a thin sheet ($\sim 1.7 \times 4.5 \times 0.07$ cm) from a rectangular block. The reference electrodes used were a saturated KCl silver-silver chloride electrode (Ag/AgCl), a saturated sodium chloride calomel electrode, and a silver wire quasireference electrode. In all cases ferrocene was added at the conclusion of the experiment as an internal potential standard. All potentials are quoted with respect to the formal potential of the ferrocinium/ferrocene couple, which under these conditions we have con-sistently measured as +0.48 V vs. SCE, or ca. 0.70 V vs. NHE. Cyclic voltammetry and controlled potential electrolysis were per-

formed on a Princeton Applied Research Model 173/179 potentiostat/ digital coulometer equipped with positive feedback IR-compensation and a Model 175 universal programmer. Current-voltage curves were recorded on a Houston Instruments Model 2000 X-Y recorder. Standard two- and three-compartment electrochemical cells were used. Controlled potential oxidations in dichloromethane in the presence of water or al-cohol were conducted at a BPG anode with the Ag/AgCl reference electrode placed in the anolyte solution near the anode to reduce the amount of IR-compensation needed. Controlled potential electrolyses in acetonitrile were conducted at a Pt gauze working electrode with the reference electrode isolated in a separate compartment. These experiments were performed in a helium atmosphere dry box (Vacuum/At-mospheres Co.).

X-ray Data Collection and Structure Determination of 5. A suitable crystal was obtained by slow crystallization from THF/water. Oscillation and Weissenberg photographs showed symmetry no higher than 1. The intensity data were collected on a locally modified Syntex P2; diffractometer with graphite monochromator and Mo Ka radiation (\$ 0.7107 Unit cell parameters (Table IV) from least-squares refinement of $\sin^2 \theta$ based on fifteen 20 values, each 20 an average of four values ($\pm 2\theta$. $\pm\omega, \varphi, \chi; \pm 2\theta, \pm\omega, \pi + \varphi, \pi - \chi$). The three check reflections indicated **no decomposition and the data were reduced** to F_0^{2} ; the variances of the intensities were obtained from counting statistics with an additional term $(0.02 \times \text{scan counts})^2$ The form factors were taken from ref 21.

The Os atom coordinates were derived from a Patterson map, and accessive electron density maps revealed the remaining atoms. Hydro-en atoms were introduced into the model at idealized positions with fixed gen atoms were introduced into the model at incalized positions with inter- $U = 0.063 \text{ Å}^2$. Several cycles of least-squares refinement, minimizing $\Sigma\omega\Delta^2$, with $w = \sigma^{-2}(F_c^{-1})$ and $\Delta = F_o^{-2} - (F_c/k)^2$, resulted in S = 1.92and $R_r = 0.034$.²² The final value for the isotropic extinction coefficient was 0.396 (36) $\times 10^{-5}$. The calculations were carried out on a Vax 11/780 with the CRYM system of programs.²³ X-ray Data Collection and Structure Determination of 9. A long control of $U = t_r Empty was obtained by slow crystallization from$

crystal of 9 (L = t-Bupy) was obtained by slow crystallization from CH_2Cl_2 /bexane. Diffractometer data (Nicolet diffractometer, graphite ochromator, Mo Ka radiation) indicated monoclinic symmetry and space group C2/c (Table IV). The six check reflections indicated no decomposition, and following an empirical correction for absorption, the data were reduced to F_0^{2} .

^{(18) &}quot;Gmelin Handbuch der Anorganischen Chemie"; Osmium Supple-ment: Springer-Verlag: New York, 1980; Vol. 1. (19) Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry"; 4th ed.; John Wiley and Sons: New York, 1980; pp 912-933.

⁽²⁰⁾ Oyama, N.; Anson, F. C. J. Am. Chem. Soc. 1979, 101, 3450
(21) Atomic scattering factors were taken from: "International Tables for X-ray Crystallography"; Witton. Birmingham, 1974; Vol. IV, pp 72-97.
(22) The goodness-of-fit S = [Σωδ²/n - 0]^{1/2}, n = number of reflections, p = number of parameters; R_F = Σ[ΔF]/Σ[F_a] (based on reflections with I > 0), ΔF = [F_a] - [F_a], R_F = R_F (based on reflections with I > 3σ_f).
(23) The CRVM computing system was used (D. J. Duchamp, California Institute of Technology).

		c	helate ligand	t		pyridine				
10.	compd	H ₁	Н,	н, ь	Ho	H _m	Hp	t-Bu	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	other
		3.70	7.54	7.74	<i>C</i>	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.			Anna an An Anna an	
	"++"	s, 4	d, 2	d, 2						
1	NH HN	3.88	7 27	8 21					3 77)	
		s, 4	d, 2	d, 2					5.7 H2O	
e	L = py	68.55	10.55	14.93	-6.29, d, 4	7.73, dd, 4	-1.39, t, 2		Let La solar	
		s, 4	d, 2	d, 2	$J_{o,m} = 8$ Hz	$J_{m,o} = 8 \text{ Hz}$	$J_{p,m} = 8 \text{ Hz}$			
e	L = t-Bupy	69 78	10.78	15 40	-7.26 d 4	$J_{m,p} = 8 HZ$ 7 38 d 4		0.18		
	L-I bupy	s, 4	d, 2	d, 2	$J_{0} = 7.5 \text{ Hz}$	$J_{mo} = 7.5 \text{ Hz}$		s. 18		
e	H, H,	-15.52	4.26	5.38	-1.12, d, 4	7.38, dd, 4	-2.29, t, 2			
)=(s, 2	d, 2	d, 2	$J_{o,m} = 8$ Hz	$J_{m,o} = 8$ Hz	$J_{p,m} = 8$ Hz			
	0.					$J_{m,p} = 8$ Hz				
•	L = t-Bupy	-14.30	4.89	5.61	-2.90, d, 4	7.11, d, 4		0.13		
	м	s, 2 6 01	d, 2	d, 2	$J_{o,m} = 7.5 \text{ Hz}$	$J_{m,o} = 7.5 \text{ Hz}$	1 (1 2	s, 18	A 64 11 4	
a	Ĩ /*•	s 2	d 2	d 2	-1.32, aa, 4	8.59, dd, 4	1.01, tt, 2		2.06, dd, 6	
	H. 0 C-C-H.	3, 2	u, 2	u, 2	$J_{o,m} = 1.5 \text{ Hz}$	$J_{m,p} = 7.5 Hz$	$J_{p,m} = 0.5 \text{ Hz}$		$J_{a,b} = J_{a,c} = 8 \text{ Hz}$	6 08 da 2)
	E10 + H, H, H.				0,p 110 110	-m,o	-p.0 - 1.5 Hz		$J_{ab} = 8 \text{ Hz}$ H_c	$J_{a} = 8 \text{ Hz} \left(\text{H}_{b} \right)$
	-N_N-								$J_{b,c} = 10 \text{ Hz}$	$J_{c,b} = 10 \text{ Hz}$ H _c
he	H. OMe	6 77	943	10.91	-175 d 4	8 60 dd 4	1.25.1.2		5.77)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Me0	s. 2	d. 2	d, 2	Jo m = 7.5 Hz	$J_{m,0} = 7.5 \text{ Hz}$	$J_{p,m} = 7.5 \text{ Hz}$		s, 6 } -CH,	
	-N N-		-, -	-, -	0,111	$J_{m,p} = 7.5 \text{ Hz}$	P.m.		17 -	
. e.s	Ha DMe		14.43	12.79	-2.59, dd, 2	8.94, dd, 2	-0.57, tt, 1		4.87	16.87. d. 1 1 at
	H0- (-H.		d, 1	d, 1	$J_{o,m} = 7.5 \text{ Hz}$	$J_{m,p} = 8.5 \text{ Hz}$	$J_{p,m} = 8.5 \text{ Hz}$		s, 3 '-CH,	$J_{c,d} = 3 \text{ Hz}$
	-N_N-		10.67	10.29	$J_{0,p} = 1.5 \text{ Hz}$	$J_{m,o} = 7.5 \text{ Hz}$	$J_{p.o} = 1.5 \text{ Hz}$		8.59 H	7.57, d, 1 }H
			d, 1	d, 1	-6.85, dd, 2	7.83, dd, 2	-1.00, tt, 1		s, 1) ····	$J_{d,c} = 3 Hz$
					Jo,m = 1.5 Hz	Jm,p = 0.5 Hz	$J_{p,m} = 0.5 \text{ Hz}$			
•	H.		7.65	9.52	5.33. d. 4	9.67, d, 4	· p,o = 1.5 Hz	1.67	10.44)	
	>=0		d, 2	d, 2	Jo, m = 7.5 Hz	$J_{m,o} = 7.5 \text{ Hz}$		s, 18	s, 2 } "a	
					2.1.4.1.1.1.1	1.				
	b_{i} L = t-Bupy									
	L = py		7.39	8.11	5.23, d, 4	9.20, dd, 4	6.26, t, 2		7.281	
			d, 2	d, 2	J _{o,m} = 8 Hz	$J_{m,o} = 8$ Hz	$J_{p,m} = 8$ Hz		s, 2 J Ha	
			7 20	7.04	402.4.4	$J_{m,p} = 8 \text{ Hz}$				
	L = t-Bupy		d 2	1.96 d 2	4.92, d, 4	9.08, d, 4		1.42	7.14 Ha	
h	ci ci	8.12	7.87	8.10	"o,m - 1.5 MZ	m,o = 1.5 MZ		3, 18	3, 2 1	
	X	8, 2	d, 2	d, 2						
	н,-(_)-н,									
	-NH HN-									

247

Anson et al.

Table [(Continued)								
10 ^c	9.47	7.40	8.39	(#.				
	s, 2	d, 2	d, 2					
11	4.54	8.39	9.33				8.05, m, 12] H	7.42. t. 6
	s, 2	d, 2	d, 2				6.95, dd, 12 IH	$J_{p,m} = 8 \operatorname{Hz} H_p$
121	5.60	9.31	11.64	-2.66. d. 2	7.48. d. 2	0.30	$J_{m,0} = J_{m,p} = 8 Hz J^{-m}$	1 70 dd 6
:	s, 2	d, 2	d, 2	$J_{o,m} = 6 \text{ Hz}$	$J_{m,o} = 6 \text{ Hz}$	s, 9	JP-H_ = 13 Hz Ho	$J_{m,0} = J_{m,0} = 8 H_z $ Hm
							Jo,m = 8 Hz	7.68, t, 3 HB
13/	7.50	9.78	11.10	-8.48, d, 4	7.96, d, 4	0.07		$p_{,m} = 8 Hz$
	8, 2	d, 2	d, 2	$J_{o.m} = 7 \text{ Hz}$	$J_{m,o} = 7 Hz$	s, 18		
14°	8.39	7.43	8.42				1.441.	
	8, 2	d, 2	d, 2				s, 18 Frbunc	
15*	8.28	7.11	8.20				8.58, d 2)	7.54. dd. 2)
	8, 2	d, 2	d, 2				J = 8 Hz	J = 8 Hz
							7.76. d. 2 (DPY	7.94. dd. 2 \ bpy
							J = 8 Hz	J = 8 Hz
^a The chemical shifts of	the paramagnetic	: Os(IV) spec	ies are somew	hat concentration	dependent. The values re	ported here are uncorre-	cted. b J. = J. = 3 Hz. c 6	in acetoned. d b in D.O. e b
In CDCI., Selective 'H c	lecoupling exper	iments have	confirmed the	ese assignments.	H _d readily exchanges on a	iddition of D ₃ O which c	auses collapse of the H _c signal to	o a singlet. h & in (CD.), SO.
1 6 in CD, CI,								

Production of Inorganic Oxidizing Agents

1

1

J. Am. Chem. Soc., Vol. 106, No. 16, 1984 4469

Table II. Selected 500-MHz ¹³C NMR Data

B O.	compd	C ₁ (proton coupled)	C ₁ (H ₁ or H ₂ selectively decoupled)
7*	HI HI FIEG	105.28, d ₁ J _{CH} = 187 Hz	105.28, s
8a'	E10-N. 00-N	51.76, d J _{CH} = 160 Hz	51.76, s
9"		196.46, d J _{CH} = 208 Hz	196.46, s

°s in CDCl₃.

Table III. Formal Potentials of Os Compounds

compd	III/II*	IV/IIIª	V/IVab
5	-1.88	-0.65	(+0.70)
5, $L = t - Bupy$	-1.96	-0.70	(+0.66)
7	-1.76	-0.62	+0.37
8b	-1.95	-0.64	(ca. +0.9)
9	-1.88	-0.46	d
9 ′	-1.88	-0.39	d
11	-1.72	-0.46	+0.59
13	-1.77	-0.51	+0.70
14	-1.05	-0.57	+0.92

Potentials were measured against the Fc/Fc couple which we have measured at cs. 0.48 V vs. SCE. *Potentials in parentheses are peak potentials of irreversible oxidations. *7 also exhibits an irreversible oxidation at +0.92 V. *No oxidations seen at potentials below +1.1 V.

Solution of the structure was by the Patterson map, and refinement was on |F|. The solvent molecule, CH_2Cl_2 , is disordered, and attempts to model it and refine the remainder of the structure gave $R_F = 0.031$ and $S' = [\sum w(\Delta F)^2 / \sum wF_o^2]^{1/2} = 1.60$; final average shift/error = 0.02, the maximum deviation in final ΔP map is 0.59 $e_1^{(A)}$. The data collection and refinement was carried out by Crystalytics Co.

tion and refinement was carried out by Crystalytics Co. X-ray Data Collection and Structure Determination of 9°. A thin modelelike crystal of 9° (L = r-Bupy) was obtained from a solution of CH₂Cl₂/EtOH. Oscillation and Weissenberg photographs showed symmetry no higher than 1. The unit cell parameters (Table IV) were determined from a refinement using fifteen 28 values with 25° < |28| < 35°, averaged from centered values at both +28 and -28. The intensity data were collected on a locally modified Syntex P2₁ diffractometer with graphite monochromator and Mo Ka radiation. The three check reflections indicated no decomposition, and the data were reduced to F_o^2 as above. The form factors of Os and Cl were corrected for anomalous dispersion.

Solution and refinement of the structure proceeded smoothly; the position of the Os atom was derived from the Patterson map, and the Fourier map phased on the Os atom revealed the remainder of the structure. The H atoms were introduced into the model with fixed coordinates at idealized positions (the methyl H atoms from ΔF maps) and fixed Gaussian amplitudes of $U = 0.10 \ A^2 - full-matrix least-squares$ $refinement of the non-H atoms with anisotropic <math>U_{ij}$'s with use of all reflections with I > 0,²² final average shift/error = 0.04 in the last cycle, and the datimum deviation in the final Δc map of 2.5 e $\{A^2\}$.

and index Gaussian amplitudes of U = 0.10 A⁻⁻full-matrix least-squares refinement of the non-H atoms with I > 0.72 final average shift/error = 0.04 in the last cycle, and the maximum deviation in the final $\Delta \rho$ map of 2.5 e/Å². X-ray Data Collections and Structure Deterministion of 15. A crystal of 15 was obtained from a solution of CH₃Cl₂/EtOH. Oscillation and Weissenberg photographs indicated that the space group was triclinic. A hemisphere of intensity data were collected as above with unit cell parameters obtained by least-squares refinement of the orientation matrix with use of fifteen reflections in the range 10.9 < 26 < 19.8° (Table IV) with positive 23 measurements only. The three check reflections, remeasured after every 100 reflections, indicated no significant decay over the 89 h of data collection. Absorption corrections were demend un-maccessary. The data were reduced for Os. The atomic position of the Os atom was derived from the Patterson map. Subsequent Fourier and difference mage reduced all non-hydrogen atoms.

Several cycles of full-matrix least-squares refinement on all non-hydrogen parameters yielded $R_F = 0.047$, $R_f' = 0.044$, and GOF = 3.44,²² final shift/errors < 0.10; and a data-to-parameter ratio = 11.0. All atomic coordinates as well as the scale factor, k, and Gaussian ellipsoids

Table IV.	Summary o	f Data	Collection	and	Refinement	Information
-----------	-----------	--------	------------	-----	------------	-------------

	ROOM		2	F.
~	noon	C1	u	

	5	9	y	15
formula	C2HISOSN404CL	C14H12OsN4OsCla-CH-Ch	CHH OSNO CL	CyoH14OsN4O4CL+1/2C2H4O
formula wt	782.47	1009.60	924.67	920.42
space group	PI	C2/c	PĪ	PĨ
a. A	10.083 (4)	19.907(6)	8.5333 (9)	10.860 (3)
b. Å	12.310 (5)	28.850 (7)	13.6879 (19)	12.633 (3)
c. Å	12.241 (4)	9.445 (3)	16.4148 (18)	12.844 (4)
o, deg	97.38 (3)	90	104.350 (13)	117.47 (2)
B. deg	96.49 (4)	131.79 (2)	97.329 (11)	90.42 (3)
v. deg	113.0 (3)	90	79,179 (12)	95.90 (2)
v. A ³	1364.7 (9)	4044 (2)	1817.8 (4)	1552.2 (7)
Z	2	4	2	2
Deniet. 8 cm ⁻³	1.90	1.66	1.69	1.97
crystal size, mm	$0.14 \times 0.19 \times 0.92$	$0.11 \times 0.20 \times 0.80$	0.10 × 0.23 × 0.42	$0.24 \times 0.27 \times 0.30$
λÅ	0.7107	0.7107	0.7107	0.7107
4. mm ⁻¹	5.11	3.60	3.86	4.68
scan type	0-20	ω	-20	0-20
20 limits	3 < 20 < 60°	3-43°. 43-55°	4-30°. 25-56°	4 < 28 < 40°
scan rate, deg/min	2	6.4	6.2	2
scan width, deg	2.4	0.9	2.0	2.0
total collected refl	12429		9710	3283
final refl	6630	4657	8315	2915
refinement on	F ²	F	F2	F ²
sec. extinction	$3.9(4) \times 10^{-7}$	5 × 10 ⁻⁵		Alternation of the second second second
final no. of parameters	353	264	442	264
final cycle "				
Re	0.034 (6435)		0.051 (7989)	0.047 (2888)
R's	0.029 (5805)	0.031 (3903)	0.043 (6871)	0.044 (2710)
S	1.92 (6630)	1.60 (3903)	2.16 (8315)	3.44 (2915)

"The number of reflections contributing to sums given in parentheses; see ref 22 for definitions.

(anisotropic for all atoms except carbon and hydrogen) were in one block. A difference map calculated after all non-hydrogen atoms have been located revealed the presence of additional electron density near a center of symmetry. This was measured to be an ethanol molecule with the two carbon atoms related by the center of symmetry and the two oxygen atoms disordered over two sites.

Hydrogen atoms were placed at a distance of 0.95 Å from their respective carbon or oxygen atoms by assuming ideal geometry and were not refined. The hydrogen atom temperature factors were set equal to the temperature factor of the atom to which they were attached

Syntheses. All reactions were carried out in air unless otherwise noted. $K_2[Os(OH)_4(O)_2]^{24}$ and 3,5-dichloroacetylsalicylic acid²³ were prepared as described in the literature.

H₄CHBA-Et (1).⁵ A 250-mL round-bottom flask with a stir bar was charged with 50.0 g (0.277 mol) of 2-acetylsalicylic acid and 50-60 mL of neat oxalyl chloride. The reaction flask was vented to a bood and maintained at 30 °C for 4 h. The remaining oxalyl chloride was distilled off in vacuo. The residue was dissolved in a 30-mL aliquot of CH_2Cl_2 which was also distilled off in vacuo; this step was repeated several times A 500-mL round-bottom flask, equipped with a stir bar, was charged with a solution of 9.28 mL (0.138 mol) of ethylenediamine in 100 mL of CH_2Cl_2 and immersed in an ice bath. The acid chloride residue was dissolved in 100 mL of CH_2Cl_2 . transferred to a dripping funnel and slowly added to the ethylenediamine solution with rapid stirring. The resulting slurry was stirred for 1 h. An excess of 1 equiv of triethylamine was added and the mixture stirred for an additional 0.5 h. This mixture was treated with ca. 100 mL of 6 M NaOH and heated in vacuo to remove the organic volatiles. The remaining aqueous solution was de-canted from the undissolved organic residues which were then dissolved in a minimal amount of acetone and retreated with 6 M NaOH solution. All aqueous portions were combined and cautiously acidified with concentrated HCl. The precipitate was collected, washed with water, and recrystallized from acetone/water: yield 33.3 g (80%). Chlorination proceeded as follows: The unchlorinated product (5.0 g) was dissolved in 80-100 mL of glacial acetic acid in a 500-mL filtration flask. Chlorine gas was bubbled through the stirred solution for 0.5 h. The precipitated product was collected washed with water, and recrystallized from according to the state of the 2.81; Cl, 32.59; N, 6.36. H_CHBA-DCB (2).⁵ 3,5-Dichloroacetylsalicyclic acid (12.55 g, 50.39 H, 2

mmol) was converted to the acid chloride with 10-15 mL of neat oxalyl chloride according to the procedure described for 1. 4,5-Dichloro-o-

envlenediamine (3.78 g, 21.35 mmol) was dissolved in 100 mL of CH2Cl2 and 15 mL of THF and cooled to 0 °C. The acid chloride was dissolved in 50 mL of CH₂Cl₂ and slowly added to the diamine solution. After the mixture was stirred for 1 h at 0 °C an excess of 1 equiv (12 mL) of triethylamine was added and the solution stirred for an additional 0.5 h at room temperature. This mixture was then treated with ca. 200 mL of 1 M NaOH and heated in vacuo to remove the organic volatiles. Ethanol was added to the resulting mixture until it became homogeneous. was collected, was then slowly acidified with 1 M HClO₂. The precipitate was collected, washed with water, and recrystallized from THF/ethanol: yield 7.28 g (61%); ¹H NMR (Table I). Anal. Calcd for $C_{28}H_{10}C_{18}L_{00}C_{2}$: C, 43.28; H, 1.82; N, 5.05. Found: C, 43.34; H, 1.95; N, 5.00.

K_JOU⁴-**CHBA-Et**)(O)₂]**H**₂O (3). Addition of a blue methanol so-lation of K₂[Os(OH)₄(OH)₂] (0.500 g in 100 mL) to a colorless acetone solution containing 1 equiv of pure H₄CHBA-Et (0.595 g in 80 mL) produced an immediate color change to deep orange. The solution was stirred at room temperature for 10 min and then evaporated to dryness to give a quantitative yield of the product. Recrystallization of 200 mg from accone/CH₂Cl₂ yielded 179 mg (90%) of orange microcrystalline product. After the sample was heated at 80 °C for 12 h under vacuum, NMR showed the presence of one H₂O per molecule of complex. On standing in air the compound reabsorbs ca. 3 additional molecules of H_2O per molecule of complex: Raman (aqueous) 870 cm⁻¹ ($\nu_s(OsO_2)$); IR (Najol) 820 cm⁻¹ (vs. v_m(OPO₂)); ¹H NMR (Table I). Anal. Calcd for $C_{16}H_{3}Cl_{4}K_{3}N_{2}O_{6}O_{6}(H_{2}O)$: C, 25.54; H, 1.34; N, 3.72. Found: C, 25.44; H, 1.50; N, 3.61. Incorporation of ¹⁶O was effected by letting the compound stand with H218O for 24 h: IR (Nujol) 788 cm⁻¹ (v s, vm (Os180,)).

Os(14-CHBA-Et)(19)2 (5). K2[Os(14-CHBA-Et)(0)2]-(H2O)4 (3) (0.540~g) was dissolved in 20 mL of pyridine and 15 mL of H₂O. Two equivalents of triphenylphosphine (0.356 g) in 15 mL of pyridine were added and the mixture was heated with stirring at 60 °C for 0.5 h. The reaction was accompanied by a color change to deep red-orange. The solution was evaporated to dryness and the residue warmed under vacuum for an additional 12 h to ensure complete removal of the solvents. The dry residue was washed with 20 mL of CH₂Cl₂ to remove the phosphines. The reduced intermediate, 4, was collected as a red-brown solid which was then redissolved in 50 mL of THF and 10 mL of H₂O To this solution was added 30% H_2O_2 (ca. 20 mL) in 20 mL of THF with while cooling in a 0 °C bath. The solution was stirred at room temperature for ca. 15 min or until the color change to deep royal blue was complete. Addition of 20 mL of methanol followed by slow removal of complete: Notified 0.405 g (17% based on 3) of the deep blue crystalling product. An analytical sample was obtained by slow crystallization from THF/bexane: ¹H NMR (Figure 2) (Table 1). Anal. Calcd for $C_{28}H_{15}Cl_N_Q_Q_{Q5}$: C, 39.91; H, 2.32; N, 7.16. Found: C, 39.93; H, 2.42; N, 7.14.

⁽²⁴⁾ Malin, J. M. Inorg. Synth. 1980, 20, 61. (25) Durst, H. D.; Gokel, G. W. "Experime McGraw-Hill: New York, 1980; p 256. ental Organic Chemistry";

Os(η^4 -CHBA-ethylese)(py), (7).⁵ Os(η^4 -CHBA-Et)(py), (5) (100 mg) was dissolved in 50 mL of THF and placed in a 250-mL roundbottom flask with 15 g of silics gel. The mixture was stirred and heated at reflux for 1 h and then evaporated to dryness. The dry silics was heated at 120 °C for 1 h and then placed on top of a small quantity of clean silics gel in a short column. Elution with CH₂Cl₂/acctone (4:1) removed the bulk of the product as a bright yellow band. Some starting material, 5, and what appeared to be some of the corresponding Os(III) salt, 4, remained on the column. Second and third fractions of the product were obtained by again heating the dry silics at 120 °C for 1 h and eluting on a short column as before. Filtration and removal of solvent from the combined fractions yielded the product as a dark goldbrown microcrystallization from CHCl₃/hexane: ¹H and ¹³C NMR (Tables I and II) (Figure 4). Anal. Calcd for C₂₉H₁₆Cl₄N₄O₄O₅: C, 40.01; H. 207; N, 7.18. Found: C, 39.93; H, 2.10; N, 7.18.

obtained by recrystallization from CHCl3/hexane: "H and "C NMR (Tables I and II) (Figure 4). Anal. Calcd for $C_{2d}H_1C(LN,O_2O_5: C, 40.01; H, 2.07; N, 7.18. Found: C, 39.93; H, 2.10; N, 7.18.$ Os(q⁴-CHBA-t-1,2-dEPCDE3)(gy); (Ba).⁵ Os(q⁴-CHBA-ethylene)-(py); (7) (100 mg) was dissolved in 20 mL of absolute thanol and 20 mL of CH₂Cl₂. Addition of 90 mg of dichlorodicyanobenzoquinone(DDQ) caused an immediate color change to deep royal blue. Afterremoval of the solvents by evaporation the product was extracted intoCH₂Cl₂ and purified on a short silica gel column by elution withCH₂Cl₂/actione (9:1). After recrystallization from CH₂Cl₂/pentane theproduct was obtained as a dark blue microcrystalline solid: yield 76 mg(68%); ¹H and ¹³C NMR (Tables I and II). Anal. Calcd forC₂GH₂Cl₄N₄O₄O₅: C, 41.39; H, 3.01; N, 6.44. Found: C, 41.23; H,2.96; N, 6.43.

Ou(q⁴-CHBA-t-1,2-diMeO-Et)(py)₂ (3b).⁵ Ou(q⁴-CHBA-ethylene)-(py)₂ (7) (100 mg) was dissolved in 20 mL of absolute methanol and 20 mL of CH₂Cl₂. The solution was treated with DDQ as for Sa and the crude product was purified on two successive short silica gel columns. Recrystallization from CH₂Cl₂/pentane yielded the product as a dark blue powder. NMR established the structure of the product but also showed the presence of a small impurity (<10%). The impurity was separated from the product on a preparatory thin layer chromatography plate with CH₂Cl₂/THF (5:1). ¹H NMR indicated that the impurity was an asymmetrically substituted compound with one hydroxy and one methoxy group on the ligand bridge. This compound, 8^{*}, was the first in this series that had inequivalent NMR signals for the two pyridine ligands and for the two aromatic rings in the chelating ligand. It was therefore deliberately synthesized as discussed below. After removal of the impurity, the major product, Sb, was again recrystallized from CH₂Cl₂/Qo₂O₅. C, 39.92; H, 2.63; N, 6.65. Found: C, 39.94; H, 2.69; N, 6.61.

Os(η⁴-CHBA-t-1-OH-2-MeO-Et)(py)₂ (8°).⁵ Os(η⁴-CHBAethylene)(py)₂ (7) (100 mg) was dissolved in 24 mL of CH₂Cl₂, 18 mL of absolute methanol and 3 mL of H₂O. The solution was oxidized with DDQ as for 8a and 8b. The reaction mixture was washed down a short silica gel column to separate out the quinones. TLC indicated that the crude product contained three blue compounds in the approximate ratio of 1:2:1. The three were separated on a preparatory thin layer chromatography plate with CH₂Cl₂/THF (4:1). One of the minor components was shown by NMR to be the dimethoxy-substituted compound 8b. The major component was presumably the dihydroxy-substituted compound 8b. The product was recrystallized from CH₂Cl₂/pentane and obtained as a dark blue microcrystalline solid: yield 35 mg (33%); ¹H NMR (Table 1) Anal. Caled for C₂H₂Cl₂N₂O₈Cs. (39.14; H, 2.43; N, 6.76. Found: C, 38.97; H, 2.56; N, 6.55. Ou(η²-Fe-CHBA)₂-cdi-(py)₂(9).⁵ Method a. Os(η⁴-CHBA-Et)(py)₂.

Ou(q^2 -Fe-CHBA)₂-cir-(py)₂ (9).³ Method a. Oa(η^4 -CHBA-Et)(py)₂, (40 mg, 0.051 mmol) was dissolved in 25 mL of CH₂Cl₂ containing 0.1 M TBAP and 1 M of a 1° or 2° alcohol (methanol, *w*-butyl alcohol, isopropyl alcohol, or benzyl alcohol). The solution was electrolyzed in a three-compartment electrochemical cell at a BPG anode at +1.40 V w. Ag/AgCl until the current had decayed to <5% of its initial value and TLC indicated that the reaction was complete. The anolyte was transferred to a beaker, and 65 mL of ether was slowly added. The precipitated TBAP was removed by filtration, and the solvents were evaporated from the filtrate. The resulting oil was dissolved in 25 mL of acetone, and the product was precipitated by addition of 50 mL of H₂O. The dark blue product was redissolved in CH₂Cl₂, dried over MgSO₄, and precipitated with hexane: yield 30 mg (72%). Anal. Calcd for C₂₄H₁₆Cl₄N₄O₄O₈: C, 38.44; H, 1.99; N, 6.90. Found: C, 38.41; H, 2.06; N, 6.88.

Method b. $Os(\eta^4$ -CHBA-ethylene)(py)₂ (7) (8 mg) was dissolved in 10 mL of CH₂Cl₂ containing 0.1 M TBAP and 0.5 M isopropyl alcohol. The solution was electrolyzed according to the procedure described in method a to give the desired product, 9, and a trace of 9'.

Several experiments were performed in which 9 was prepared from

J. Am. Chem. Soc., Vol. 106, No. 16, 1984 4471

1 mM 5 and 0.5 M benzyl alcohol and the product solution was analyzed by HPLC for benzyl ether. The HPLC analyses were performed on an IBM LC/9533 ternary gradient liquid chromatograph equipped with an octadecyl column and a 254-nm UV detector. The column was eluted with either ethanol/water (4:1) or isopropyl alcohol/water (3:2). Comparison of peak retention times with those of an authentic sample of benzyl ether indicated that in each case between 1 and 3 equiv of benzyl ether was detected.

Os (π^2 -Fe-CHBA)₂-trans-(py)₂ (9').⁵ Method a. Os (π^4 -CHBA-Et)-(py)₂ (5) was oxidized by the same method used in the synthesis of 9 except that the CH₂Cl₂ contained 1 M *tert*-butyl alcohol or 1 M *tert*-amyl alcohol or was saturated with water; TLC indicated that the product was formed in high yield, but difficulty in purification and isolation produced a low yield (<30%) of the dark blue product: ¹H NMR (Table I). Anal. Caled for C₂₉H₁₆Cl₂N₄O₆O₅: C, 38.44; H, 1.99; N, 6.90. Found: C, 38.63; H, 2.16; N, 6.79. Method b. Os(π^4 -CHBA-Et)(py)₂ (5) (8 mg, 0.01 mmol) was dissolved in 10 mL of CH₂Cl₂ containing 0.5 M methanol and 2 M tri-

Method b. Os(q*-CHBA-E1)(py); (5) (8 mg. 0.01 mmol) was dissolved in 10 mL of CH₂Cl₂ containing 0.5 M methanol and 2 M trifluoroacetic acid. To this solution was added a 0.1 M CH₂Cl₂ solution of tetrabutylammonium periodate which had been prepared from tetrabutylammonium hydroxide and periodic acid. TLC again indicated that 9 was produced in high yield.

(3) (0.540 g) was dissolved in 15 mL of 4-tert-butylpyridine and 20 mL (3) (0.540 g) was dissolved in 15 mL of 4-tert-butylpyridine and 20 mL of H₂O. Triphenylphosphine (0.445 g, 2.5 equiv) was added to this inhomogeneous solution, and the resultant reaction mixture was treated as described for the unsubstituted pyridine adduct of 5. This procedure yielded 0.505 g (84% based on 3) of product as a dark blue microcrystalline solid. An analytical sample was obtained by purification on a preparatory TLC plate using CH₂Cl₂/THF (3.2) followed by recrystallization from CH₂Cl₂/pentane: ¹H NMR (Table I). Anal. Calcd for C₂M₁M₂Cl₃N₄O₄O₅: C, 45.54; H, 3.83; N, 6.26. Found: C, 45.56; H, 3.83; N, 6.23.

On $(\eta^4$ -CHBA-ethylene) (*t*-Bupy)₂ (7). Os $(\eta^4$ -CHBA-Et)(*t*-Bupy)₂ (5) (100 mg) was heated on silica gel as described for the unsubstituted pyridine adduct of 7. The product was removed from the silica as a bright yellow band by elution with CH₂Cl₂/acctone (9:1). Three fractions were collected as before and recrystallization from CH₂Cl₂ yielded the product as a very dark brown microcrystalline solid: yield 61 mg (61%). Anal. Calod for C₂₄H₂Cl₄N₄O₄O₈: C, 45.75; H, 3.61; N, 6.28. Found: C, 45.53; H, 3.61; N, 6.18.

Context Control (1.1) Section (1.1) Section

Ou(η^2 -Fo-CHBA)-trans-(r-Bupy)₂ (9'). Method a. Os(η^4 -CHBA-Et)(*i*-Bupy)₂ (5) (25 mg) was oxidized in the presence of 0.5 M terr-butyl alcohol with use of the same procedure as for the pyridine adducts of 9 and 9'. TLC showed that the reaction was clean and that the product was formed in high yield. The high solubility of the dark blue compound led to a much lower yield of isolated material after recrystallization from boiling cyclohexane: yield 15 mg (58%); ¹H NMR (Table I). Anal. Calcd for C₂₄H₃C₄N₂O₆Os: C, 44.15; H, 3.49; N, 6.06. Found: C, 44.02; H, 3.53; N, 5.93.

Method b. Compound 9' was formed as a minor product in the above synthesis of 9. Ten milligrams (19%) of 9' were recovered from the TLC separation of the two isomers.

E_{1}Os(η^4 -CHBA-DCB)(O)_1 (10). K₂[Os(OH)₄(O)₂] (1.345 g. 3.65 mmol) was dissolved in 150 mL of warm methanol, and the solution was then bubbled with N₂ for 30 min. H₄CHBA-DCB (2.00 g. 3.60 mmol) was dissolved in 100 mL of THF and also bubbled with N₂ for 0.5 h. The blue osmate solution was added to the ligand solution at room temperature immediately producing the deep orange color indicative of product formation. The solution was stirred for 10 min under N₂ and then evaporated to dryness. The product was dissolved in a minimum of THF, filtered, and dried over molecular sieves. Addition of hexane followed by removal of THF yielded the product as a brown microcrystalline solid NMR indicated the presence of 1.5 molecules of H₂O per molecule of complex: yield 2.620 g (86%): H NMR (Table 1); IR (Nujol) 820 cm⁻¹ (v s. v_a(OsO₂)). Anal. Calcd for C₂₀H₄Cl₆K₂N₂O₄Os-1.5(H₂O): C. 27.40; H, 1.01; N, 3.20. Found: C, 27.60, H, 1.03; N, 3.19. Incorporation of Was effected by dissolving the complex in dry THF, adding access H₂¹⁴O, and placing the solution under N₂ for 3 days: IR (Nujol)

J. Am. Chem. Soc. 1984, 106, 4472-4478

782 cm⁻¹ (v s, $\nu_{as}(Os^{16}O_2))$. Os(η^4 -CHBA-DCB)(PPh_3)₂ (11). To a 50-mL Erlenmeyer flask with a stir bar were added K₂[Os(η^4 -CHBA-DCB)(O)₂] (10) (221 mg, 0.260 mmol), triphenylphosphine (450 mg), ca. 5 mL of trifluoroacetic acid, and 10 mL of THF. The orange solution was heated until most of the THF had evaporated and a dark green molten triphenylphosphine mixture remained (ca. 10 min). After cooling, the mixture was dissolved in 10 mL of CH₂Cl₂ and the solution was placed on a short silica gel column. Elution with CH₂Cl₂ removed the product as a green band. Column. Elation with Cr_2C_2 removed the product as a given band. Addition of hexane followed by removal of CH_2C_2 yielded the product as a dark green crystalline solid. yield 236 mg (72%); ¹H NMR (Table I). Anal. Calcd for $C_{se}H_{ss}Cl_eN_2O_eOsP_2$: C, 53.14; H, 2.87; N, 2.21. Found: C, 53.33; H, 2.94; N, 2.22. Os (q^4 -CHBA-DCB) (r-Bupy) (PPb₃) (12). Os (q^4 -CHBA-DCB)-(Pbb (q^4 -CHBA-DCB) (r-Bupy) (PPb₃) (12). Os (q^4 -CHBA-DCB)-

 $(PPh_{1})_{2}$ (11) (75 mg: 0.0593 mmol) was dissolved in 50 mL of $CH_{2}Cl_{2}$. Addition of 4-*tert*-butylpyridine followed by beating under reflux for 0.5 h produced a color change from dark green to light blue. Removal of solvents followed by recrystallization from CH2Cl2/hexane yielded the product as a dark blue crystalline solid. NMR showed the presence of 0.5 molecule of hexane per molecule of complex: yield 58 mg (86%); ¹H NMR (Table I). Anal. Calcd for C_{4} H_{3} C_{4} H_{3} O_{4} O_{8} O_{5} O_{6} H_{13} . C, 50.82; H, 3.50; N, 3.56. Found: C, 50.72; H, 3.51; N, 3.53.

Os(η⁴-CHBA-DCB)(t-Bupy)₂ (13). Os(η⁴-CHBA-DCB)(PPh₃)₂ (11) (200 mg, 0.158 mmol) was dissolved in 20 mL of neat t-Bupy. The solution was heated under reflux for 15 min during which time the color changed from dark green to very dark blue, almost black. The t-Bupy was removed under vacuum and the crude product recrystallized from CH2Cl2/hexane. This yielded the pure product as a very dark crystalline solid. NMR showed the presence of 0.25 molecule of hexa primate per molecule of complex: yield 108 mg (68%); ¹H NMR (Table I). Anal. Calcd for $C_{28}H_{12}C_6N_6O_6O=0.25$ (C₆H₁₄): C, 45.92; H, 3.46; N, 5.42. Found: C. 46.20; H. 3.52; N. 5.37.

 $O_{8}(\eta^{4}-CHBA-DCB)(t-BuNC)_{2}$ (14). $K_{2}[O_{8}(\eta^{4}-CHBA-DCB)(O_{2})]$ (10) (120 mg, 0.135 mmol), triphenylphosphine (90 mg, 2.5 equiv), and tert-butyl isocyanide (0.20 mL, 12 equiv) were dissolved in 10 mL of THF and heated under reflux for 1.25 h. The solution was evaporated to dryness and the orange residue dissolved in CH2Cl2 and transferred to the top of a short silica gel column. The phosphine was removed by eluting with 300 mL of CH_2Cl_2 , and the bright orange Os(III) intermediate was then removed with THF/acetone (1:1). This solution was inclusive was inclusive with the rest of with a dilute B_{T_2}/TH solution at room temperature. The oxidation to the blue Os(IV) product was followed by TLC, and upon completion the reaction mixture was evaporated to dry ness. The crude product was dissolved in 5 mL of CH2Cl2 and passed down a short silica gel column with CH2Cl2. Addition of hexane followed by removal of CH2Cl2 yielded the product as a dark blue crystalline solid:

yield 20 mg (16%); ¹H NMR (Table I). Anal. Calcd for C₁₀H₂₄Cl₄N₄O₄Os: C, 39.71; H, 2.67; N, 6.17. Found: C, 39.75; H, 2.70; N, 6.19.

Os(44-CHBA-DCB)(bpy) (15). Os(4-CHBA-DCB)(PPh3)2 (11) (120 mg, 0.095 mmol) and bipyridine (210 mg, 1.34 mmol) were solved in toluene (10 mL) and heated under reflux for 0.5 h during which time the color darkened. The cooled solution was placed on a short silica gel column and eluted with excess CH2Cl2 to separate the product from starting material and 62 mg (78%) of product was isolated and recrystallized from CH2Cl2/hexane. Crystals for X-ray analysis were grown by vapor diffusion employing CH2Cl2/EtOH.

Acknowledgment. We acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society, the Research Corporation, the Atlantic Richfield Corporation of America, and Occidental Research Inc. for support to T.J.C. and the National Science Foundation (Grant CHE-8107535 to T.J.C. and CHE 78-08716 to F.C.A.). S.L.G. is an NSF Predoctoral Fellow and T.E.K. is the Caltech Union Carbide Fellow in Chemical Catalysis. We thank John McNally for assistance with ligand preparations, Drs. William P. Schaefer and Richard E. Marsh for helpful discussions, and Engelhard Corporation for a generous donation of precious metal compounds. Operation of the Bruker WM-500 NMR spectrometer at the Southern California Regional NMR facility was supported by National Science Foundation Grant CHE-7916324.

Registry No. 1, 90791-62-1; 2, 90791-63-2; 3, 90791-45-0; 4, 90791-46-1; 5 (L = py), 90791-47-2; 5 (L = *t*-Bupy), 90791-53-0; 7 (L = py), 90791-48-3; 7 (L = *t*-Bupy), 90791-54-1; 8a, 90791-49-4; 8b, 90791-50-7; 90791-48-3; T(L = t-Bupy), 90791-54-1; 8a, 90791-49-4; 8b, 90791-50-7; 8°, 90791-51-8; 9 (L = py), 90865-92-2; 9 (L = t-Bupy), 90791-55-2; 9' (L = py), 90791-52-9; 9' (L = t-Bupy), 90865-47-7; 10, 90791-56-3; 11, 90791-57-4; 12, 90791-58-5; 13, 90791-59-6; 14, 90791-60-9; 15, 90791-61-0; TFA, 76-05-1; TBAP, 1923-70-2; H₄CHBA-tehylene, 90791-64-3; H₄CHBA-t-1,2-diMeO-Et, 90791-65-4; H₄CHBA-t-1,2-diEtO-Et, 90791-66-5; K₂[Os(OH)₄(O)₂], 77347-87-6; ¹⁶O, 32767-18-3; 2-acetylsalicyclic acid, 54223-75-5; 4,5-dichloro-o-phenylenediamine, 5348-42-5; tetrabutylammonium periodate, 65201-77-6.

Supplementary Material Available: Tables of data collection information, atom coordinates, Gaussian amplitudes, bond lengths and angles, and a listing of structure factor amplitudes (144 pages). Ordering information is given on any current masthead page.