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ABSTRACT 

While we know the ages and tectonic histories of many critical geologic events in the 

history of the Earth, there are still questions regarding the timing of key events and structures 

that have and continue to influence life on this planet. This thesis includes three separate 

studies in Nevada and southern California: two potential new methods for 

measuring/organizing geologic time, and also an analysis of the long-term displacement 

along an active fault in the eastern California shear zone. In Chapter II, we used tectonic 

subsidence modeling to find that the Shuram carbon isotopic excursion in the Ediacaran 

Johnnie Formation likely occurred from 585-579 Ma, and that incision of the Rainstorm 

Member shelf occurred during the 579 Ma Gaskiers glaciation. The pre-Shuram-excursion 

chemostratigraphic carbon isotope profiles from the Khufai Formation in Oman and the type 

locality of the Johnnie Formation in Nevada are both generally positive and therefore 

possibly correlative. In Chapter III, we determined the cumulative tectonic offset along the 

Lavic Lake fault, an active structure that ruptured with >5 m of coseismic slip in the 1999 

Mw 7.1 Hector Mine earthquake. We calculated a net slip of 960 +70/-40 m, based on the 

slip vector formed by a vertically separated lithologic contact and a horizontally separated 

older cross fault. The net slip we calculated is significantly less than a previous estimate that 

was based on an offset magnetic gradient, a disparity that may be explained by considering 

off-fault deformation, as well as the unknown depth and nature of the source of the magnetic 

contrast. In Chapter IV, we explored using a new method for the relative dating of Quaternary 

geomorphic surfaces, which is based on the positive correlation between increased spectral 

contrast in thermal hyperspectral airborne imagery and surface age. With field data, we found 

that desert varnish scores, desert pavement scores, and vegetation spacing estimates also 
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correlate positively with surface age, implying that these factors could contribute to the 

increased spectral contrast in airborne remote sensing spectra. Additionally, the general 

increase in the band depth of airborne spectra at 9.16 μm could be due to increasing clay 

mineral abundance in progressively heavier desert varnish coatings on older surfaces. The 

positive correlation observed in this study between surface age and spectral contrast in 

airborne spectra can perhaps be used to develop a method for relative dating of varnished 

geomorphic surfaces elsewhere. All of the chapters in this thesis are broadly related by the 

concepts of geologic time and tectonic activity, which are two aspects of modern geology 

that are intrinsic to the science as a whole. 
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C h a p t e r  1  

 

INTRODUCTION 

 

One of the most fundamental goals of geological science is the identification and 

temporal organization of natural events that define the history of the Earth. While radioactive 

dating is a reliable method for determining ages of some terrestrial material, the required 

minerals and/or rock types are not always conveniently present. This has motivated the 

discovery of other methods, such as those based on tectonic subsidence of the crust of the 

Earth, for measuring geologic time. Another fundamental goal in geoscience is 

reconstruction of crustal movement. Many independent methods have allowed us to 

determine the motion of tectonic plates, which is nearly imperceptible on timescales relative 

to the human experience. Of great interest to Earth scientists are measurements of fault 

motion that has accumulated over geologic timescales, as well as other processes that have 

shaped the landscape. 

The geographic locations of the study areas in this thesis are all located in Nevada 

and southern California, but the research covers a variety of geologic settings. During the 

Ediacaran period, siliciclastic and carbonate sediments accumulated on a thermally subsiding 

passive margin on the equatorial coast of Laurentia; these sediments are now the lithified and 

tilted strata of the Johnnie Formation in Nevada. Sometime during the early Pliocene to 

Micoene, regional tectonic deformation triggered the inception of many distinct right-lateral 

faults, including the active Lavic Lake fault, in what is now the eastern California shear zone. 

Finally, geomorphic surfaces continue to develop due to San Andreas fault motion, coupled 
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with the warm and arid environment of the Coachella Valley in southern California. A 

diversity of time periods and tectonic activity were considered in this compilation of projects. 

In Chapter II of this thesis, we used tectonic subsidence modeling to investigate the 

specific timing and duration of a globally-recognized chemostratigraphic anomaly: the 

Shuram carbon isotope excursion. The Shuram excursion is an extreme deviation in the ratio 

of 13C to 12C found in carbonate rocks. Metabolic pathways involve mass-dependent fraction 

of carbon isotopes, so it is possible that the excursion signals an event that influenced the 

evolution of animals. While not well dated, the excursion is present in the Ediacaran Johnnie 

Formation, a section of siliciclastic and carbonate rocks located in southern Nevada and 

California. At the Johnnie Formation type locality near Pahrump, Nevada, we performed 

detailed field mapping and stratigraphic measurements. On carbonate rocks that we sampled, 

we performed carbon and oxygen isotope fraction measurements, which allowed us to 

correlate the chemostratigraphy of the Johnnie Formation with sub-Shuram-excursion 

chemostratigraphic profiles from the Khufai Formation in Oman. While the correlation in 

itself did not yield an age for the Shuram excursion, the correlation helped us bracket the age 

of the Shuram excursion within Johnnie Formation to somewhere between 600-550 Ma. We 

then combined the stratigraphic thickness we measured for the Johnnie Formation with the 

thicknesses of overlying formations (some of which have been dated) that span through end 

Devonian time. With the complete stratigraphic thickness, and some known ages at specific 

stratigraphic positions in overlying formations, we constructed a tectonic subsidence model 

for this ancient passive margin environment. We used this model to extrapolate ages for 

stratigraphic positions within the Johnnie Formation, and other key Ediacaran horizons of 

unknown age in the section. We found that the Shuram excursion within the Johnnie 
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Formation occurred from 585-579 Ma, and that incision of the Rainstorm Member shelf 

occurred during the 579 Ma Gaskiers glaciation.  

In Chapter III, we combined fieldwork with thermal hyperspectral airborne remote 

sensing imagery to investigate the long term cumulative slip of the Lavic Lake fault in eastern 

California. The Lavic Lake fault ruptured in the 1999 Mw 7.1 Hector Mine earthquake with 

>5 m of coseismic right-lateral slip, but the long-term bedrock offset is not well-defined. 

While the Lavic Lake fault is located on military-restricted government land, we gained 

access in 2012 and 2014 to collect new field data. The field lithologic samples we collected, 

in addition to field photographs, served as ground truth for geologic maps we produced using 

supervised and unsupervised classifications of airborne remote sensing imagery. We also 

incorporated data from older geologic maps of the same area into our analysis. In comparing 

our classification maps with older geologic maps, we discovered a boundary between units 

in our supervised classification map that correlated with a lithologic contact from the older 

map. This lithologic contact is cut and displaced by the Lavic Lake fault, and there is also an 

older cross fault that is cut and displaced by the Lavic Lake fault: we used these two displaced 

features to measure the vertical and horizontal components of the slip vector. The net fault 

slip of the Lavic Lake fault is 960 +70/-40 m, which is significantly less than a previous 

estimate of cumulative offset that was based on an offset magnetic gradient. The disparity 

between our measurement and the displaced magnetic gradient can be at least partially 

explained by off-fault deformation along proximal smaller structures, as well as the unknown 

depth and nature of the source of the magnetic contrast. Our cumulative displacement can be 

combined with bedrock ages to calculate the Lavic Lake fault’s geologic slip rate, and it can 

also be included in a tectonic reconstruction of the eastern California shear zone. 
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Chapter IV of this thesis is about a potential new method for the relative dating of 

Quaternary geomorphic surfaces. The development of features that increase with time, such 

as desert varnish coatings and smoothed topography known as desert pavement, are 

characteristic to many geomorphic surfaces. We used thermal hyperspectral airborne remote 

sensing imagery of geomorphic surfaces to investigate a spectral feature at 9.16 μm with 

band depth that generally increases with surface age. The 9.16 μm feature is indicative of 

clay minerals, which can be found in abundance in desert varnish. Supplemental field data 

show that desert varnish and desert pavement scores (where a higher score is given to more 

advanced development), as well as vegetation spacing estimates, all correlate positively with 

surface age. In ground-based lithologic spectra that we collected, an absorption feature at 

9.2-9.4 μm is also indicative of clay minerals, albeit at a slightly different position than that 

for the airborne data. All of the spectra indicate a mineral mixture that includes clay, quartz, 

and feldspars. Furthermore, ground-based vegetation spectra are generally flat and 

featureless: this could be why sparse vegetation correlates with increased spectral contrast in 

the airborne data. Taking everything into consideration, the positive correlation between 

surface age and spectral contrast in airborne spectra can perhaps be used for relative dating 

of varnished Quaternary geomorphic surfaces with desert varnish and desert pavement. 

While the individual chapters of this thesis cover disparate topics, the driving 

motivation in each is related to quantifying geologic time and/or tectonic displacement. 

Moreover, each chapter is a complete study, offering a unique contribution to the breadth of 

knowledge that we use to tell the story of the Earth. 
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C h a p t e r  2  

 

SUBSIDENCE HISTORY OF THE EDIACARAN JOHNNIE FORMATION AND 

RELATED STRATA OF SOUTHWEST LAURENTIA: IMPLICATIONS FOR THE 

AGE AND DURATION OF THE SHURAM ISOTOPIC EXCURSION AND 

ANIMAL EVOLUTION 

 

Witkosky, R., and Wernicke, B.P., 2018, Subsidence history of the Ediacaran Johnnie 

Formation and related strata of southwest Laurentia: Implications for the age and duration of 

the Shuram isotopic excursion and animal evolution: Geosphere, v. 14, n. 5, 

https://doi.org/10.1130/GES01678.1. 

 

ABSTRACT 

 

The Johnnie Formation and associated Ediacaran strata in southwest Laurentia are 

~3000 m thick, with a Marinoan cap carbonate sequence at the bottom, and a transition from 

Ediacaran to Cambrian fauna at the top. About halfway through the sequence, the Shuram 

negative carbon isotopic excursion occurs within the Rainstorm Member near the top of the 

Johnnie Formation, followed by a remarkable valley incision event. At its type locality in the 

northwest Spring Mountains, Nevada, the Johnnie lithostratigraphy consists of three 

distinctive sand-rich intervals alternating with four siltstone/carbonate-rich intervals, which 

appear correlative with other regional Johnnie Formation outcrops. Carbon isotope ratios in 

the sub-Rainstorm Member part of the Johnnie Formation are uniformly positive for at least 

400 m below the Shuram excursion and compare well with sub-Shuram excursion profiles 
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from the Khufai Formation in Oman. There is historical consensus that the Johnnie and 

overlying formations were deposited on a thermally subsiding passive margin. Following 

previous authors, we used Paleozoic horizons of known biostratigraphic age to define a time-

dependent exponential subsidence model, and extrapolated the model back in time to 

estimate the ages of the Shuram excursion and other prominent Ediacaran horizons. The 

model suggests that the Shuram excursion occurred from 585 to 579 Ma, and that incision of 

the Rainstorm Member shelf occurred during the 579 Ma Gaskiers glaciation. It further 

suggests that the base of the Johnnie is ca. 630 Ma, consistent with the underlying Noonday 

Formation representing a Marinoan cap carbonate sequence. Our results contrast with 

suggestions by previous workers that the Shuram excursion followed the Gaskiers event by 

some 20 - 30 m.y. We suggest instead that the Shuram and Gaskiers events were 

contemporaneous with the biostratigraphic transition from acanthomorphic to leiospherid 

acritarchs, and with the first appearance of widespread macroscopic animal life, 38 m.y. prior 

to the Ediacaran-Cambrian boundary. 

 

INTRODUCTION 

 

Ediacaran strata record a critical period in Earth history (635-541 Ma), during which 

metazoan life first appeared (Knoll et al., 2004, 2006; Narbonne et al., 2012). They also 

record a significant rise in atmospheric and oceanic oxygen (Fike et al., 2006; Canfield et al., 

2007; McFadden et al., 2008; Sahoo et al., 2012), which was a prerequisite to metabolic 

function in animals (Knoll and Carroll, 1999; Och and Shields-Zhou, 2012). Neoproterozoic 

oxygenation resulted in atmospheric levels generally interpreted as similar to those of the 
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present day (Holland, 2006; Kump, 2008). Today, atmospheric oxygen levels are maintained 

by photosynthesis from land plants and marine organisms in roughly equal proportions (e.g., 

Field et al., 1998). It has therefore long been enigmatic that land plants are not preserved in 

rocks older than ca. 400 Ma, or ~150 m.y. later than the first appearance of animals.  For that 

reason, it is widely presumed that the rise of animal life required sufficient oxygen 

production, from either marine photosynthesis, or perhaps some sort of “bootstrap” 

mechanism from animals themselves, to survive (e.g., Butterfield, 2009; Lenton et al., 2014).  

In any event, progress toward understanding the fundamental question, “what is the origin of 

animals?,” hinges in part on understanding how and when oxygen became sufficiently 

available to make animal metabolism possible (e.g., Nursall, 1959). 

Among the most fruitful avenues of research along these lines to date has been 

exploration of proxies for the chemistry of seawater in which animal life first appeared, 

primarily the stable isotope geochemistry of shallow-marine carbonate strata. The best-

preserved Ediacaran strata around the globe that contain carbonate all feature a singularly 

large (by about a factor of two) negative anomaly in the isotopic composition of carbon, 

which has been attributed primarily to the isotopic composition of ancient seawater itself 

(Fike et al., 2006; McFadden et al., 2008; but for an alternative view, see Swart and Kennedy, 

2012). The anomaly is best preserved and documented in the Ediacaran Shuram Formation 

in Oman (Burns and Matter, 1993; Le Guerroué et al., 2006a, 2006b; Osburn et al., 2015), 

and is generally referred to as the “Shuram excursion,” taking its name from the discovery 

formation. A similar excursion has been documented in Neoproterozoic sections on five of 

Earth’s seven modern continents, and it occurs only once in each section: Africa (Kaufman 

et al., 1991; Halverson et al., 2005), Asia (Burns and Matter, 1993; Condon et al., 2005; 
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Melezhik et al., 2005; Fike et al., 2006; McFadden et al., 2008; Macdonald et al., 2009; 

Osburn et al., 2015), Australia (Calver, 2000; Husson et al., 2015), Europe (Melezhik et al., 

2005; Prave et al., 2009), and North America (Myrow and Kaufman, 1999; Corsetti et al., 

2000; Corsetti and Kaufman, 2003; Kaufman et al., 2007; Bergmann et al., 2011; Petterson 

et al., 2011; Verdel et al., 2011; Macdonald et al., 2013). The Shuram excursion is the largest 

known Neoproterozoic or younger carbon isotope anomaly (Grotzinger et al., 2011), and its 

magnitude is among the largest recorded in Earth history (see, for example, the 

Paleoproterozoic Lomagundi-Jatuli excursion; Bekker and Holland, 2012). 

Global chemostratigraphic expression of the Shuram excursion is a remarkable 

discovery from at least three perspectives.  First, it represents a presumably isochronous 

fingerprint of a specific interval of time from sections with notoriously sparse age constraints.  

Second, it implies that a geologically extreme event of uncertain origin occurred at the same 

time as the rise of animals.  Last, the singular magnitude of the excursion contributes to the 

goal of creating a global composite time series of secular variations in marine carbon isotope 

ratios.  In regard to the third point, the duration of the anomaly raises the potential for using 

the shapes of the curves, rather than simply the magnitudes of the excursions, as a correlation 

tool from section to section; this of course presumes a relatively constant sedimentation rate 

at the hundred-meter scale (Halverson et al., 2005; Saltzman and Thomas, 2012).  For the 

Shuram excursion, δ13C values rapidly descend with stratigraphic position to < -11‰ 

followed by a recovery that is at first gradual and then moderate in slope, with the change 

occurring near -4 ‰ (Figure 2 in Condon et al., 2005; Figure 3 in Prave et al., 2009; Figure 

16 in Verdel et al., 2011; Figure 3 in Grotzinger et al., 2011; Figure 13 in Macdonald et al., 

2013; Figure 1A in Husson et al., 2015). 
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At present, the most significant impediment to understanding Ediacaran 

biostratigraphy is the lack of internal age control in most sections around the globe. The ages 

of the boundaries of the Ediacaran Period are well defined radiometrically in multiple 

sections. The base is defined by the lithologically distinctive post-Marinoan cap carbonate 

sequence, which is associated with a -6 ‰ δ13C excursion in carbonate and is precisely dated 

at 635 Ma in Namibia and China (Hoffmann et al., 2004; Condon et al., 2005). The top is 

defined by the first appearance of the trace fossil Treptichnus pedum (541 Ma), which is also 

associated with a -6 ‰ δ13C excursion in carbonate. Other than the first appearance of large 

Ediacaran body fossils, which usually occurs rather high in most sections relative to the 

Ediacaran-Cambrian boundary, the Shuram excursion has emerged as the single most 

distinctive stratigraphic datum that is globally recognized. However, its precise age is poorly 

constrained, precluding any attempt to meaningfully subdivide some 94 m.y. of Ediacaran 

time, and creating first-order uncertainties in the relative timing of major environmental and 

biostratigraphic events (Xiao et al., 2016). A second major stratigraphic feature, largely 

restricted to sections in the North Atlantic region, is the Gaskiers glaciation (Myrow and 

Kaufman, 1999), which, in contrast to the Shuram event, is precisely dated at 579 Ma 

(Bowring et al., 2003a, 2003b; Pu et al., 2016). The mismatch between sections with 

glaciogenic rocks and precise radiometric ages on one hand, and the Shuram excursion in 

carbonate strata on the other, has left it uncertain whether or not these two events are 

correlative (Xiao et al., 2016). A 580 Ma age for the Shuram excursion provides an obvious 

correlation between the two most conspicuous events in the Ediacaran record (e.g., Xiao et 

al., 2004; Fike et al., 2006; Zhou et al., 2007; Halverson et al., 2005, 2010; Loyd et al., 2012; 

Schiffbauer et al., 2016). Alternatively, the stratigraphic proximity of the Shuram excursion 
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to the Precambrian-Cambrian boundary, and a 551 Ma ash bed near the apparent upper zero 

crossing of the excursion in the Doushantuo Formation of China, suggests that it may be as 

much as 20-30 m.y. younger than the Gaskiers glaciation (Condon et al., 2005; Bowring et 

al., 2007; Cohen et al., 2009; Sawaki et al., 2010; Narbonne et al., 2012; Macdonald et al., 

2013; Tahata et al., 2013; Xiao et al., 2016). 

One chronological tool that has heretofore only been sparingly applied to Ediacaran 

strata is thermal subsidence analysis (e.g., Le Guerroué et al., 2006b). It is well known that 

thermal subsidence associated with seafloor spreading is a useful chronometer that can 

predict the age of the ocean floor based on the exponential decay of its elevation with respect 

to the abyssal plains for lithosphere older than 20 m.y. (e.g., Equation 22 in Parsons and 

Sclater, 1977). The same principle also applies to models of the subsidence history of 

passive-margin basins, which include an initial thickness of newly stretched continental crust 

and substantial sediment loading (McKenzie, 1978). The decay is predicted by laws of 

diffusive heat transport of physical rigor that are on par with laws of closed-system 

radioactive decay used to date the timing of crystallization of minerals. The principal 

limitations in using thermal conduction as a chronometer are (1) the requirement that 

subsidence records thermal relaxation without significant mechanical modification of the 

lithosphere, such as extension, flexural loading, instability of a thermal boundary layer, or 

unmodeled sources of dynamic topography; and (2) correction of the observed stratigraphic 

subsidence for the compaction and lithification of sediment after deposition, and for water 

depth and changes in sea level (e.g., Steckler and Watts, 1978; Allen and Allen, 2005). 

In comparison with Phanerozoic sedimentary basins, published subsidence analyses 

of Ediacaran strata have been limited, with most of the effort thus far concentrated on the 
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western Laurentian continental margin (Stewart and Suczek, 1977; Bond et al., 1983; Armin 

and Mayer, 1983; Levy and Christie-Blick, 1991; Yonkee et al., 2014). The focus on this 

region as a testing ground for thermal subsidence modeling was due to the fact that it is 

perhaps the best-preserved example of an ancient passive margin, analogous to present-day 

Atlantic-type margins, but with virtually complete surface exposure of apparent synrift and 

postrift sedimentary archives spanning several hundred million years (Stewart, 1972; 

Gabrielse, 1972; Burchfiel and Davis, 1972, 1975; Stewart and Poole, 1974; Dickinson, 

1977; Monger and Price, 1979). Because these sequences span the Ediacaran-Cambrian 

boundary, such that roughly half their thickness is Proterozoic in age, temporal control on 

subsidence has been restricted mainly to the Phanerozoic portion of subsidence curves. The 

lack of age control on the lower part of the section precludes precise definition of the 

transition from mechanical extension to pure thermal subsidence. Fortunately, the accurate 

definition of an exponentially decaying system, in particular, extrapolating stratigraphic age 

backward in time from a curve with known ages, is independent of the timing of onset and 

total amount of purely thermal subsidence. 

Here, we address the problem of the correlation and age of the Shuram isotopic 

excursion through lithostratigraphic and chemostratigraphic study of the type locality of the 

Ediacaran Johnnie Formation in the Spring Mountains of southern Nevada. The Johnnie 

Formation is at least 1800 m thick at the type locality, and it makes up more than half of the 

maximum known thickness of ~3000 m of total Ediacaran strata exposed in this region. The 

underlying Noonday Formation provided the first isotopic match between the Marinoan cap 

carbonate sequence in Namibia (Hoffman et al., 1998) and a section from another continent 

(Petterson et al., 2011). The overlying Stirling and Wood Canyon Formations contain 
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Ediacaran and Lower Cambrian fossil assemblages that define the Cambrian-Precambrian 

boundary within the lower part of the Wood Canyon Formation (Corsetti and Hagadorn, 

2000; Hagadorn and Waggoner, 2000), 1200 m above the top of the Johnnie Formation in 

the Spring Mountains. The uppermost 300 m of section of the Johnnie Formation contains 

the best expression of the Shuram excursion in Laurentia (Corsetti and Kaufman, 2003; 

Kaufman et al., 2007; Bergmann et al., 2011; Verdel et al., 2011). Therefore, to the extent 

that the section was deposited at or very near sea level on a thermally subsiding continental 

shelf, subsidence analysis may be used to estimate the age of the Shuram excursion and 

perhaps even broadly constrain the overall age of the Johnnie Formation. 

 

GEOLOGIC SETTING 

 

Neoproterozoic-Cambrian strata in western Laurentia are divisible into two principal 

components, including a lower diamictite and volcanic sequence, and an upper terrigenous 

detrital sequence (Stewart and Suczek, 1977; Poole et al., 1992). The Johnnie Formation is 

the lowest siliciclastic formation in the upper terrigenous detrital sequence, forming the basal 

deposits of a westward-thickening continental margin terrace wedge, widely regarded to 

have developed in the wake of late Neoproterozoic rifting of the Rodinian supercontinent (Li 

et al., 2008, 2013). The formation is a few hundred meters thick near its eastern pinchout 

beneath Lower Cambrian cratonic strata, systematically increasing to at least 1500 m thick 

in its westernmost exposures, where the base is not definitively exposed (Stewart, 1970; this 

report). Lithologically, it is primarily variegated siltstone and very fine-grained sandstone 

that contains varying amounts (10-40%) of carbonate and orthoquartzite, distinguishing it 
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from the carbonate-dominated Noonday Formation below and coarse siliciclastic rocks of 

the Stirling Formation above (Figure 1).  

The Johnnie Formation was first defined and described in the northwest Spring 

Mountains in the Johnnie Wash area (Figure 2; Nolan, 1924, 1929), where its contact with 

the underlying Noonday Formation is apparently not exposed, and hence its thickness is a 

minimum for this location. Nolan’s (1924) thickness and description were included in the 

regional stratigraphic synthesis of Stewart (1970). The type locality was subsequently 

mapped and briefly described by Burchfiel (1964, 1965), and relatively complete 

lithostratigraphic sections were measured by Hamill (1966) and Benmore (1978). The type 

locality has since received little attention in comparison to the much thinner sections in the 

Nopah Range and environs 70 km to the south, or equivalents 100 km to the west in the 

Panamint Range, where its basal contact with the Noonday Formation is extensively exposed 

(e.g., Hazzard, 1937; Wright and Troxel, 1966; Labotka et al., 1980; Albee et al., 1981; 

Benmore, 1978; Summa, 1993; Fedo and Cooper, 2001; Corsetti and Kaufman, 2003; 

Kaufman et al., 2007; Verdel et al., 2011). With the exceptions of detailed studies of parts of 

the formation (Summa, 1993; Abolins, 1999; Bergmann et al., 2011), no systematic attempt 

has yet been made to describe and interpret the entire formation at its type locality in terms 

of key bed forms, depositional environments, sequence architecture, or chemostratigraphy, 

at the level of more southerly or westerly sections. 

The uppermost part of the Johnnie Formation, the Rainstorm Member, is a 

lithostratigraphically distinctive unit that can be correlated with confidence over a broad 

region of southwestern North America, including eastern California and southern Nevada 

(Stewart, 1970), and it probably occurs as far south as northern Sonora, Mexico, where it 
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forms a part of the Clemente Formation (Stewart et al., 1984). The basal strata of the 

Rainstorm Member are its most distinctive part. They include a thin (~2 m), siltstone-

enveloped, regionally extensive oolitic marker bed known as the “Johnnie oolite” (e.g., 

Bergmann et al., 2011). The oolite is underlain by greenish gray siltstone, and it is overlain 

by distinctive pale-red, fine-grained sandstone with or without associated sandy or silty 

micrites (“liver-colored limestones”). The overlying units characteristically contain groove 

marks, flute casts, intraformational conglomerate, and other indicators of shallow water, 

high-energy currents. These carbonates record the onset and most negative part of the 

Shuram excursion in eastern California and southern Nevada (Corsetti and Kaufman, 2003; 

Kaufman et al., 2007; Verdel et al., 2011), as well as in the Sonora sections (Loyd et al., 

2012). Similar to formation-scale thickness variations in the terrigenous detrital sequence as 

a whole, the Rainstorm Member generally thickens westward from as little as 20 m in the 

thinnest measured section to more than 300 m in the thickest sections (Stewart, 1970; Verdel 

et al., 2011). 

Lower and middle Johnnie Formation strata are sufficiently variable in their 

lithostratigraphy, that recognition of regionally mappable members is not as straightforward 

as in the case of the Rainstorm Member. As noted by Summa (1993), sub-Rainstorm Member 

depositional settings of the Johnnie Formation are interpreted as inner-shelf to tidally 

influenced nearshore environments that were highly susceptible to sea level fluctuation 

(Benmore, 1978; Fedo and Cooper, 2001; Schoenborn et al., 2012). As we describe herein, 

depositional environments tend to be more landward to the south and east in these units, as 

suggested by the abundance versus absence of dessication features, fluvial versus marine 

deposition, and medium- to coarse-grained sandstones versus fine- to medium-grained 



15 
 

sandstones. Although this variability complicates simple lithostratigraphic correlation, if 

interpreted correctly, it can be used as an effective indicator of sea-level rise and fall. 

Reported age constraints from the Johnnie and correlative Clemente Formations 

include (1) a 640 Ma U-Pb age from a single detrital zircon grain in sub-Rainstorm Member 

siltstones in the Panamint Range of eastern California (Verdel et al., 2011), and (2) potential 

Ediacaran body and trace fossils (e.g., Cyclomedusa plana and Palaeophycus tubularis, 

respectively) ~75 m below the oolite in the Clemente Formation (McMenamin, 1996). The 

U-Pb age, because it is based on a single grain, is subject to the uncertainty of contamination 

during mineral processing and needs to be confirmed with duplicate analyses. The putative 

fossils have been questioned after examination by other paleontologists (e.g., J.W. Hagadorn, 

2017, personal communication), and they have generally not been accepted in subsequent 

stratigraphic studies of the region (e.g. Loyd et al., 2012, 2015). Latest Ediacaran fossils have 

been recovered from the uppermost Stirling Formation and the Lower Member of the Wood 

Canyon Formation in the Spring Mountains and neighboring Montgomery Mountains to the 

south (e.g. Cloudina and Swartpuntia; Hagadorn and Waggoner, 2000; Smith et al., 2017), 

from sections in stratigraphic continuity with the type Johnnie Formation. These are 

succeeded immediately upward by Lower Cambrian trace fossils (Treptichnus pedum), 

which places the Ediacaran-Cambrian boundary in the Lower Member of the Wood Canyon 

Formation (Figure 1; Corsetti and Hagadorn, 2000). 

The underlying Noonday Formation has been interpreted as the cap carbonate 

sequence of the Marinoan “snowball Earth” glaciation (Petterson et al., 2011), which by 

definition would place its base at the beginning of the Ediacaran period (635 Ma; Knoll et 

al., 2004, 2006; Narbonne et al., 2012). The Johnnie Formation’s basal contact with the 
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Noonday Formation is lithostratigraphically gradational, transitioning from sandy dolostones 

of the upper Noonday Formation (Mahogany Flats Member of Petterson et al., 2011), to 

interstratified dolomitic sandstone and orthoquartzite in the lower Johnnie Formation 

(Transitional Member of Stewart, 1970). Although traditionally regarded as a conformable 

contact on the basis of this gradation (Hazzard, 1937; Stewart, 1970; Wright and Troxel, 

1984), the identification of local karstic surfaces along the contact raises the possibility that 

it is a disconformity with a substantial depositional hiatus (Summa, 1993). 

In terms of chemostratigraphic constraints on age, the conspicuous excursions to -6 

‰ at the base and top of the Ediacaran section are well expressed in the south Laurentian 

sections (e.g., Petterson et al., 2011; Smith et al., 2016). The presence of the Shuram 

excursion in the Rainstorm Member, despite its value as a correlation tool, does little to 

constrain the depositional age, because unlike the tightly constrained boundary excursions, 

hard chronological constraints are lacking, as noted already. 

For almost a century, the terrigenous detrital sequence has been studied extensively 

on many different levels. Much of the early work focused on stratigraphic group-level 

packages that record the transition from Precambrian to Cambrian time (Nolan, 1929; 

Burchfiel, 1964; Stewart, 1970). More recent work on the Johnnie Formation has focused 

largely on outcrops in eastern California (Summa, 1993; Fedo and Cooper, 2001; Verdel et 

al., 2011; Schoenborn and Fedo, 2011; Schoenborn et al., 2012), or on specific features 

related to the Rainstorm Member, such as an incision-related conglomeratic member 

(Summa, 1993; Abolins, 1999; Abolins et al., 2000; Clapham and Corsetti, 2005; Verdel et 

al., 2011), giant ooids (Trower and Grotzinger, 2010), or detailed chemostratigraphy of the 

Johnnie oolite (Bergmann et al., 2011). The lower and middle portions of the Johnnie 
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Formation have not been given as much detailed attention, except in areas close to the craton 

miogeoclinal hinge where the Johnnie Formation is only a few hundred meters thick. The 

1600 m stratigraphic thickness of sub-Shuram excursion Johnnie Formation at the type 

locality exceeds the thickness of any globally correlative Ediacaran strata of which we are 

aware. Furthermore, total Ediacaran stratigraphic thickness in southwest Laurentia measures 

over 3000 m, greater than the approximate thicknesses of sections in Australia (2500 m), 

Oman (1500 m), and China (300 m). Strata of the lower and middle Johnnie Formation at its 

type locality therefore represent one of the best opportunities among sections globally to 

provide a relatively complete record of Ediacaran time prior to the Shuram excursion. An 

important gap in our understanding of Ediacaran chemostratigraphy is the paucity of 

carbonate strata below the Shuram anomaly in most sections.  Of the major global sections 

that contain it, only the Oman example contains abundant carbonate in immediately 

underlying strata, the Khufai Formation.  Discovery of correlative carbonate-bearing strata 

in one or more sections around the globe would thus represent a significant step in expanding 

the global inventory of chemostratigraphic time series for a critical interval in 

Neoproterozoic time. 

 

METHODS 

 

Lithostratigraphy 

 

To identify a structurally intact section of the Johnnie Formation, we performed geologic 

mapping at 1:10,000 scale in the northwest Spring Mountains, Nevada, both of the type 
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locality at Johnnie Wash, and in an area ~4 km to the southwest near Nevada Highway 160, 

3 km west-southwest of Mount Schader (Figure 2). We used the Mount Schader, Nevada 

1:24,000 quadrangle map (U.S. Geological Survey, 1968) as a topographic base. Our field 

mapping spanned 9 days total between 21 April 2015 and 2 May 2015. The geologic maps 

were used to identify optimum transects for measuring stratigraphic section. The Mount 

Schader section was measured and sampled in detail using a Jacobs staff mounted with a 

Brunton® compass set to the dip of bedding. For each stratigraphic subunit, we recorded (1) 

fresh and weathered color of lithology using a Munsell color chart, (2) grain size, and (3) 

bedding thickness (supplemental text). Section was measured to the resolution of ~0.5 m (or 

finer in some instances, if warranted). The Johnnie Wash section was measured using 

geologic cross sections, and the general lithologic characteristics were recorded in the field 

during geologic mapping (see Appendix for unit names and descriptions). 

 

Chemostratigraphy 

 

For carbon and oxygen isotope chemostratigraphy, we collected samples at 0.3-1 m 

resolution in carbonate units. Samples from the upper ~400 m of sub-Rainstorm Member 

lithostratigraphic units were collected from the Mount Schader section during stratigraphic 

logging. Samples from two prominent carbonate horizons that occur below the deepest 

exposed strata of the Mount Schader section were collected in the Johnnie Wash locality of 

the Spring Mountains, and at a location ~3 km north of Johnnie Wash (Locality A in Figure 

2A). In total, 107 centimeter-scale sample chips were collected for carbon and oxygen 

isotopic analysis, including 36 from the Johnnie Wash section and Locality A and 71 from 



19 
 

the Mount Schader section. In the laboratory, sample chips were sliced open using a 

diamond-bladed wet saw to expose fresh, unweathered surfaces. From the fresh surfaces, a 

high-speed rotary tool with a diamond-tipped drill bit was used to powder the sample. We 

carefully extracted ~0.1 mg of analyte from each sample chip, taking care to avoid any visible 

alteration or veining. Sample powder was loaded into vials and the air was purged and 

replaced with helium gas, and then the powder was digested in phosphoric acid at 72° C for 

at least one hour to evolve sufficient CO2 gas for analysis. Carbon and oxygen isotope ratios 

were measured at Caltech using a Delta V Plus Isotope Ratio mass spectrometer (“gas 

bench”). Our values for δ13C and δ18O are reported relative to the Vienna Pee Dee Belemnite 

(VPDB) standard in per mil notation. We used Caltech’s laboratory working standards, 

which were calibrated to NBS 18 and NBS 19 and have uncertainties of +/-0.1 ‰. Standards 

were measured once for every nine samples to assess systematic error. 

 

Subsidence Analysis 

 

Our tectonic subsidence analysis is based on stratigraphic thicknesses compiled from 

multiple sources for the northwest Spring Mountains, Nevada. The inner shelf to fluvial-

deltaic facies of virtually all units within the terrigenous detrital sequence in this region 

suggest shallow water deposition, removing the need for paleobathymetric correction (Levy 

and Christie-Blick, 1991). We used thicknesses from this study combined with thicknesses 

for overlying formations principally based on Stewart (1970) and Burchfiel et al. (1974). Our 

analysis encompasses known time points ranging from the Ediacaran-Cambrian boundary in 

the Lower Member of the Wood Canyon Formation (Corsetti and Hagadorn, 2000; Hagadorn 
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and Waggoner, 2000; Smith et al., 2016, 2017) at 541 Ma, up through the Devonian-

Mississippian boundary at the top of the Devils Gate Formation (Burchfiel et al., 1974) at 

359 Ma (Ogg et al., 2016). The only previous attempt at a geohistory analysis of the Spring 

Mountains (Levy and Christie-Blick, 1991) was temporally constrained mainly by the 

Lower-Middle and Middle-Upper Cambrian boundaries, which were then deemed to be ~30 

m.y. older than their currently accepted ages. We followed methods described in Allen and 

Allen (2005) to delithify and progressively unload (backstrip) the stratigraphic column in 

order to obtain the tectonic component of subsidence. Delithification parameters for 

siliciclastic rocks were taken from Table 9.1 in Allen and Allen (2005), and parameters for 

carbonate rocks were taken from Equation 3 in Halley and Schmoker (1983). Tectonic 

subsidence curves were calculated using Backstrip, an open-source software for 

decompaction and tectonic subsidence calculations (Cardozo, 2009). Results for our earliest 

model runs were verified by hand using a spreadsheet program (e.g., Larrieu, 1995). 

 

RESULTS 

 

Lithostratigraphy 

 

The most salient feature of the Johnnie Formation in the Johnnie Wash type locality 

(Figure 3) is that, although very fine-grained sandstone and siltstone is present in all 

mappable units (distinguishing it from the overlying Stirling and underlying Noonday 

formations), three intervals are characterized by an abundance of fine- to medium-grained 

sandstone (identified with Roman numerals I, II, and III on Figure 4). The sand-rich intervals 
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range from 160-430 m thick, form distinct, resistant ridges within the otherwise recessive 

Johnnie Formation, and establish a basis for subdividing it into mappable units. Each sand-

rich interval exhibits characteristics that readily distinguish it from the other two, in terms of 

either bedforms (intervals I and II) or parasequence architecture (interval III). Further 

subdivision of the formation is afforded by a conspicuous, 30 to 40 m-thick cherty carbonate 

unit near the middle of the section, and by lithological variation within sand-rich interval III. 

Our subdivision into map units includes the Rainstorm Member at the top, underlain by 

twelve informal units designated A through L (Figures 4 and S1). Sand-rich intervals I and 

II define units B and D, and their enveloping sand-poor strata define units A, C, and E. The 

cherty carbonate marker and overlying sand-poor strata define units F and G. The upper sand-

rich interval exhibits rhythmic variations of sandstone, siltstone, and carbonate that are 

divided into five units, H through L, each of which is defined at the base of a 30 to 100 m-

thick sand-rich subinterval (Figures 3, 4, and S1). 

At the Johnnie Wash type section, bedding strikes approximately north-south and 

dips moderately to steeply eastward (Figure 3). The total thickness of sub-Rainstorm strata 

is 1595 m. The lowest stratigraphic unit (unit A) encountered is a recessive, slope-forming 

phyllitic siltstone which contains a continuous cleavage at high angle to bedding. The base 

of unit B is defined by the lowest occurrence of meter-scale orthoquartzite beds, which are 

abundant in the unit. Unit B is readily distinguished from higher sand-rich intervals by 

pervasive penecontemporaneous deformation. Nearly every sandstone horizon is affected, 

principally by ball-and-pillow structure, so much so that individual orthoquartzite beds are 

difficult to trace along strike for more than a few tens of meters. Individual ball-and-pillow 

structures are up to meter-scale in size (roughly equal to orthoquartzite bed thickness) and 



22 
 

occur where fine-grained sandstone and siltstone underlie coarser sandstone. The ball-and-

pillow structure is in places manifested as simple load casts with folded lamination (Figure 

5A), and in others as completely detached sand bodies that have slumped downward into the 

underlying siltstone, surrounded by flame structure developed within the siltstone (Figure 

5B). At the type locality, the occurrence of ball-and-pillow structure in the Johnnie Formation 

is restricted to unit B, but was also observed along one horizon at the top of the Rainstorm 

Member in the Mt. Schader section (Figures 6 and 7).  

Unit C marks a return to generally inconspicuous, slope-forming siltstone with a 

prominent orthoquartzite marker horizon near the middle of the unit. The uppermost beds 

include a brown, resistant, 2-m-thick dolostone bed, which marks the lowest occurrence of 

carbonate in the type section. 

Unit D includes orthoquartzite and less abundant siltstone. The sedimentary 

characteristic that distinguishes unit D from the other two sand-rich intervals is abundant 

high-angle cross-stratification, preserved in medium- to thick-bedded orthoquartzite (Figure 

8A). Millimeter- to centimeter-scale laminae or thin beds are preserved in foresets within 

decimeter- to meter-scale beds that can be followed for tens of meters along strike. Foreset 

lamination is consistently truncated at high angles, ranging from 20-30°, by overlying beds 

(Figure 8B). In stratigraphic coordinates (corrected by tilting to horizontal about the line of 

strike), poles to foreset lamination are strongly unimodal, dispersed in trend by more than 

90° around a mean vector of ~N30°E 65° (Figure 8B). We measured grain-size variation 

with stratigraphic height across a sequence of about ten foreset layers (Figure 8C and 8D), 

to test for the presence of reverse grading, which is characteristic of dry grain flows on the 

lee side of dunes (e.g., Hunter, 1977; Boggs, 2012). The result indicated that the mean grain 
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size of ~200 microns varies little through the sample, if anything fining slightly upward. In 

general, the lamination is not defined by concentrations of detrital heavy minerals. Opaque 

phases in these quartzites are largely diagenetic and relatively uniformly distributed 

throughout the rock.  

The boundary between Units D and E is among the most readily mappable in the area 

and is also associated with a color change on remote imagery from dark brown to light brown, 

which is the most conspicuous color contrast in the section (Figure 2A). Unit E is about 280 

m thick, and is dominated by very fine-grained sandstone and siltstone, generally lacking the 

mature, fine- to medium-grained quartzitic sandstone characteristic of unit D. Near the top, 

unit E contains an interval of about 30 medium-bedded cycles that alternate between massive, 

immature fine-grained sandstone and laminated siltstone. Unit F is a conspicuous, 30 to 40 

m-thick, gray cherty dolostone (Figure 5C) that can be followed for at least 5 km along strike, 

albeit with some minor faulting. Unit G, 135 m thick, returns to siltstone and very fine-

grained sandstone similar to unit E, with a few inconspicuous orthoquartzite beds. 

The overall lithostratigraphic character changes beginning at the base of unit H, from 

relatively thick, homogeneous sandstone-, siltstone-, or carbonate-dominated units below, to 

the far more compositionally heterogeneous units above. From the base of unit H up to the 

base of the Rainstorm Member, the section contains abundant orthoquartzite, defining the 

uppermost of the three sand-rich intervals in the Johnnie Formation (Figure 4). For mapping 

purposes, the most straight forward subdivision of sand-rich interval III in the Johnnie Wash 

area is defined by five quartzite-dominated subunits ranging from 10 to 100 m thick, which 

define the lower parts of units H, I, J, K, and L (Figures 4 and S1). Each of these subunits is 

overlain by variable thicknesses of recessive, variegated siltstone (Figure 5E). The 
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occurrence of carbonate is sporadic. In the section in Johnnie Wash units I, J, and K are each 

capped by a resistant, 1 to 3 m-thick subunit of brown-weathering, laminated dolostone 

(Figure 5D), and units H and L do not contain carbonate (Figure 4). The Mt. Schader section 

contains a lesser proportion of quartzitic sandstone and a greater proportion of carbonate and 

siltstone (Figures 6 and 7), which is the basis for selecting it, instead of the type locality, for 

detailed measurement and chemostratigraphic sampling. Even within the Johnnie Wash area, 

the distribution of quartzite, siltstone, and carbonate changes along strike, on a scale of a few 

kilometers (Abolins, 1999). Although orthoquartzite beds in units H through L locally exhibit 

some high-angle cross-stratification in the Johnnie Wash section, they contrast with unit D 

(sand-rich interval II) in mainly being parallel-bedded or, in the case of the Mt. Schader 

section, hummocky cross-stratified. Orthoquartzite in units H-L is generally fine- to medium-

grained, and appears to contrast with lower sand-rich intervals in containing a greater 

proportion of medium-grained and locally coarse-grained sand. 

Our informal unit nomenclature ends at the base of the formally defined Rainstorm 

Member which, as noted earlier, is readily identified throughout the region on the basis of 

lithologic characteristics. In the northern Spring Mountains, the Rainstorm Member contrasts 

with the underlying units H through L in lacking fine- to medium-grained orthoquartzite 

beds. At the base of the Rainstorm Member, a fissile, phyllitic siltstone is overlain by the 

ochre-colored, 2 m-thick Johnnie oolite. The ooids are up to about 2 mm in diameter (Figure 

5F) and exhibit local cross-stratification. The oolite horizon has erosional basal and upper 

contacts, locally including intraformational breccia and conglomerate, containing cobbles 

and small boulders of the oolite. Above the Johnnie oolite, pale-red limestones locally 

contain dispersed, coarse quartz grains interstratified with carbonate-cemented, fine-grained 
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sandstone. These carbonate-rich rocks are overlain by argillaceous mudstone with 

interbedded limestones, with scattered horizons of intraformational conglomerate. The 

uppermost part of the Rainstorm Member in the Mt. Schader section contains a 4 m-thick 

triad of quartzite, siltstone, and dolostone, in which the quartzite is disrupted by locally 

intense ball-and-pillow structure (Figure 5G and 5H). The base of the overlying A Member 

of the Stirling Formation is marked by highly resistant, massively textured to cross-stratified, 

medium- to thick-bedded, medium- to coarse-grained orthoquartzite. The principal contrast 

between the Stirling Formation’s A Member and any of the orthoquartzites in the Johnnie 

Formation is the coarse grain size, including the common occurrence of granules and small 

pebbles of vein quartz and jasper in the Stirling Formation A Member. Neither the Johnnie 

Wash nor the Mt. Schader sections appear to preserve incised valley fill characteristic of the 

conglomeratic member of the Johnnie Formation (Abolins, 1999; Verdel et al., 2011). 

 

Chemostratigraphy 

 

Carbon isotope ratios range from a low of -4.4 ‰ (VPDB) to a high of 4.9 ‰ (Table 

S1). The data are mainly concentrated in carbonate beds in units H through L, which 

constitute the uppermost 400 m of pre-Rainstorm Member strata (Figure 7). Within the 

underlying c. 1100 m of exposed Johnnie Formation strata, carbonate intervals are present 

only in units C and F, approximately 1440 m and 860 m below the base of the Rainstorm 

Member, respectively (Figures 4 and 9). The lowest and highest values of δ13C occur in the 

stratigraphically highest samples, and define a strong negative trend, beginning near the top 

of unit K and ending at the top of the Johnnie oolite bed. Below this marked trend in the data, 
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there is otherwise no general trend. More than 90% of the values recorded from the bottom 

of unit K to the unit C carbonate are positive, averaging 1.5 ‰ with a standard deviation of 

1.2 ‰. The scatter in values within individual carbonate intervals is approximately the same 

as variations in the average values between carbonate intervals (Figure 7). However, 

variation in δ13C values with stratigraphic position within each relatively thin carbonate 

interval does not appear to be entirely random (Figure 10). For example, carbonates from 

units C and the lower part of unit K show decreasing δ13C values stratigraphically upward 

(R2 = 0.74, 0.88 respectively), whereas values from the lower two carbonates in unit H and 

the upper carbonate interval in unit J suggest increasing δ13C values stratigraphically upward 

(R2 = 0.26 - 0.83). 

Oxygen isotope ratios range from a low of -16.0 ‰ (VPDB) to a high of -5.0 ‰, with 

an average value of -9.4 ‰ (Table S1). There is no general trend in the mean values for each 

individual carbonate interval with stratigraphic position (Figure 7C). The range of values 

within the carbonate intervals is as great as 6 ‰, i.e., greater than the variation of mean values 

for each interval. Correlation of δ18O and δ13C is poor for the dataset as a whole (Figure 11). 

Plots of δ18O versus stratigraphic position with side-by-side comparison with δ13C values are 

presented in the Supplemental Items (Figure S2). Correlation of δ18O values with 

stratigraphic position within each interval is also generally poor. Of twelve beds with > 3 

samples, R2 > 0.5 only for beds Zjj1, Zji2, and Zjc (see Table 1 for nomenclature). In regard 

to correlation of δ18O with δ13C, only the carbonate in unit C shows good positive correlation 

(R2 = 0.9), but this interval only has four data points. Intervals with 10 or more data points 

all show poor (R2 < 0.1) intrabed correlation of δ18O with δ13C (Figure S2). 
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Subsidence Analysis 

 

Our analyses focused on modeling the tectonic component of subsidence for strata in 

the Spring Mountains section: Johnnie unit A through the Devonian Devils Gate Formation 

(Table 1). The model results define the relationship between the stratigraphic thickness S, 

and the tectonic component of subsidence Y (Table 2), which yields a resulting curve for the 

function Y(S) (Figure 12). This curve depends on parameters that describe lithification and 

isostatic adjustment due to sediment loading (Tables 2 and 3), and is independent of time 

(Eqs. 1 and 2 in Steckler and Watts, 1978). We will model the time dependence of subsidence 

in the Discussion section below.  

Our determinations of Y(S) include the effects of some 3000 m of Mississippian 

through Triassic overburden that lay above the Johnnie-Devils Gate interval during Jurassic 

and Early Cretaceous time (Giallorenzo et al., 2017). They also include two major sources 

of uncertainty. The first is the possible effect of a significant sedimentary substrate, pre-

dating Johnnie unit A, on the calculated tectonic subsidence. The substrate may either have 

been (1) limited to the Noonday Formation or its equivalents, which are at most a few 

hundred meters thick and may be represented by the lowest units of the Johnnie Wash section 

(values Yns indicate “no substrate”); or (2) a thick succession of Proterozoic Pahrump Group 

strata (Crystal Spring through Kingston Peak formations), which could be present at depth 

beneath the northwest Spring Mountains (values Yws indicate “with substrate”; note that in 

Figure 12, Yws values were plotted using the base of the Spring Mountains section as a datum 

for zero, for a direct comparison to Yns). The oldest Pahrump Group strata, the Crystal Spring 

Formation, were c. 500 m.y. old in Ediacaran time, and therefore these models may 
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somewhat overestimate its effect on late Cryogenian-Ediacaran subsidence. The second 

major source of uncertainty lies in the resulting density of the delithified sediment column 

(Bond and Kominz, 1984; Bond et al, 1988). We simulated this error by varying sediment 

grain density by ±5%, and note that the effect of sediment unloading is such that the lowest 

assumed density results in the highest tectonic component of subsidence and vice-versa. This 

density range yields variations in values of Y for a given S (Ylow or Yhigh; Table 4) that are 

similar to those obtained by Bond and Kominz (1984) and Levy and Christie-Blick (1991). 

The resulting plots for Y(S) (Figure 12) show a decreasing ratio of tectonic subsidence 

per meter of sediment thickness, with slopes (ΔY/ΔS) ranging from values near 1.0 at the 

base of the section for the “no substrate” curves, to as little as 0.1 near the middle of the 

section for the “with substrate” curve. More typically, slopes range from 0.3 to 0.6. There is 

an abrupt change in slope at S ≈ 3500 m, where the section transitions from predominantly 

siliciclastic to predominantly carbonate sedimentation. On the no-substrate curve, the slopes 

defined by the five values closest to S = 3500 m are 0.5 (S < 3500 m) and 0.2 (S > 3500 m), 

with each of the two arrays appearing quite linear. Corresponding values on the “with 

substrate” curve are 0.4 and 0.1. Thus, although there is a degree of gradual curvature above 

and below S = 3500 m, most of the flattening of Y(S) is associated with the lithologic 

transition. 

The effect of including a thick substrate of Pahrump Group strata is to greatly reduce 

our estimate of Y for any given S. In other words, by not accounting for the substrate, we 

overestimate the tectonic component of subsidence by 50% or more, particularly in the early 

phases of subsidence. Physically, the reason for this is that the no-substrate model 

inadvertently places incompressible basement rocks where a compacting substrate exists; in 
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the event that there is substrate, the model incorrectly assigns the compaction of the substrate 

to tectonic subsidence, resulting in an overestimate.  

The uncertainties in Y due to sediment grain density are generally in the ± 10 to 15% 

range. And, to the extent that a thick sedimentary substrate is present below the lowest 

exposures of the Johnnie Formation in Johnnie Wash, tectonic subsidence may be 

overestimated by several tens of percent. Despite the sensitivity of both the density and 

substrate effects on the absolute value of Y, as we will discuss in the next section, their effects 

on estimating the age of tectonic subsidence are not large, because these estimates depend 

mainly on relative, not absolute values of Y. Specifically, (1) errors arising from density and 

substrate are correlated,  such that Y(S) retains its shape even though Y may vary significantly, 

and (2) the exponential equation describing time dependence of Y is defined by ratios 

between values of Y, rather than their absolute magnitudes. 

 

DISCUSSION 

 

Perhaps the most basic question in regard to the origin of the Johnnie Formation is 

whether the sub-oolite interval contains recognizable sub-units that can be correlated across 

its region of exposures, and the extent to which the section contains major unconformities. 

These issues are best addressed through lithostratigraphic characteristics and comparisons 

between the Spring Mountains section and the two other major sections in the region, the 

Desert Range to the north and the Nopah Range to the south. A second important question is 

whether or not the sub-oolite (sub-Shuram excursion) interval is a chemostratigraphic 

correlative with the sub-Shuram excursion Khufai Formation in Oman. A third significant 
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issue is whether continuous Johnnie Formation (and subsequent) deposition occurred 

through most or all of Ediacaran time, because this aspect is critical to dating the Johnnie 

using thermal subsidence modeling. A time-dependent exponential thermal subsidence 

model, applied to our decompacted and backstripped subsidence model, Y(S) (Figure 12), 

implies continuous sedimentation along the southwest Laurentian passive margin through 

the whole of Ediacaran time (i.e., from basal Noonday to early Wood Canyon time, or 635 - 

541 Ma). If such a model is correct, it provides an independent estimate of the age and 

duration of the Shuram excursion, and whether or not it occurred near the time of the Gaskiers 

glaciation. 

 

Lithostratigraphy 

 

Although lithostratigraphic correlation of sub-Rainstorm Member Johnnie Formation 

units is not as straightforward as for the overlying intervals, neither is it particularly complex. 

The two thickest sections, which both lie in Nevada, the northern part of the Johnnie outcrop 

belt, include the northern Spring Mountains and Desert Range sections. Both sections are 

readily divisible into alternating sand-rich and siltstone/carbonate-rich intervals, each of 

order one hundred to a few hundred meters thick (I, II, III in Figure 13 on the northern Spring 

Mountains section). The three sand-rich intervals of the Johnnie Formation are succeeded by 

four additional sand-rich intervals that have long been recognized as regionally correlative 

units (IV-VII in Figure 13 on the northern Spring Mountains section), of which the top three 

have paleontological age constraints. The two sections each contain three sand-rich intervals 

below the Rainstorm Member that are of proportionate relative thickness. Further, the 
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siltstone/carbonate-rich interval between sand-rich intervals II and III contains a c. 40 m-

thick cherty dolostone unit in both sections, strengthening correlation, as noted by Stewart 

(1970) and Benmore (1978). We correlate sand-rich interval I of the Spring Mountains (unit 

B) with the Carbonate member in the Desert Range section, on the basis of stratigraphic 

position. We note, however, that the pervasive soft sediment deformation in unit B has not 

been reported from orthoquartzites in the Carbonate member, and that unit B does not contain 

carbonate. Unit A, which is predominantly siltstone, would therefore correlate with siltstones 

and oolitic limestones underneath the Carbonate member. The oolitic limestone unit at the 

base of the Desert Range section has been considered to be correlative with the Noonday 

Formation (Longwell et al., 1965; Gillett and Van Alstine, 1982), implying that unit A in the 

Spring Mountains may also be a Noonday correlative (Figure 13). 

The southern Nopah Range section is approximately half the thickness of the 

northern Spring Mountains and Desert Range sections, and contains a number of subaerial 

erosion surfaces that thus far have not been observed in the thicker Nevada sections (Summa, 

1993). Like the Nevada sections, however, it does contain three sub-Rainstorm sand-rich 

intervals, suggesting lithostratigraphic correlation (Figure 13). Specifically, the lower part of 

the Transitional, Quartzite, and Upper carbonate-bearing members of Stewart (1970) would 

correspond to sand-rich intervals I, II, and III, respectively, in the Spring Mountains. The 

correlation is strengthened by: 1) the alternating orthoquartzite/carbonate cycles evident in 

sand-rich interval III in both the northern Spring Mountains and southern Nopah Range 

sections; 2) the lack of carbonate and abundance of high-angle cross stratification in interval 

II in all three sections (Quartzite member = upper part of Lower quartzite and siltstone 

member = unit D, Figure 13); 3) the consistency of unimodal, south-southwest directed 
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paleoflow directions in pre-Rainstorm orthoquartzites in the Spring Mountains and Desert 

Range sections (Figure 14); and 4) the lithological similarity between the lowest sand-rich 

intervals in the southern Nopah Range and Desert Range sections, both of which contain a 

mixed carbonate-siliciclastic assemblage. Militating against these lithostratigraphic 

correlations are the observations that: (1) the interval III correlative in the Desert Range lacks 

carbonate; (2) interval I in the Spring Mountains (unit B) also lacks carbonate; and (3) the 

proposed Noonday substrate of interval I is lithostratigraphically dissimilar in the three 

sections, ranging from pale-gray quartz-rich dolomite boundstone in the Nopah Range, to 

phyllitic siltstone in the Spring Mountains to medium-gray oolitic limestone in the Desert 

Range. Regardless of the details of these correlations, the most important facets of the two 

sections in Nevada are (1) the sub-Rainstorm sections are at least twice as thick as the Nopah 

Range section, and (2) evidence for subaerial erosion, such as grikes, paleosols, channel 

scour, and dessication cracks, which is conspicuous in the Nopah Range section, appears to 

be lacking. Although significant depositional hiatuses within the Nevada sections cannot be 

ruled out, the overall lithostratigraphic uniformity or “monotony” of these sections (siltstone 

and fine- to medium-grained sandstone and orthoquartzite, with sporadic thin carbonate 

beds) is consistent with conformable sedimentation on a stably subsiding continental shelf 

(Stewart, 1970; Fedo and Cooper, 2001; Schoenborn et al., 2012).  

The pervasive ball-and-pillow and other paleoliquefaction structures in sand-rich 

interval I (unit B) are most simply interpreted as reflecting a period of high sediment flux in 

early Johnnie Formation deposition. These structures may have significance for the timing 

of transition from mechanical stretching of the lithosphere to purely thermal subsidence, 

because 1) rapid subsidence is characteristic of both the rift phase and early thermal 
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subsidence phase of passive margin formation (e.g. Sawyer et al., 1982), and 2) such 

structures could be evidence for seismic shaking (e.g. Sims, 2012). The observation that 

essentially the entire 160 m thickness of unit B is affected implies that, whatever its cause, it 

was persistent over a sustained period of time. The other significant observation is that with 

only one exception, paleoliquefaction structures do not appear anywhere else higher in the 

section, despite the ubiquity of meter-scale interbeds of fine- to medium-grained sandstone 

overlying fine-grained sandstone or siltstone throughout the section. Thus, the cause, or 

causes, of soft-sediment deformation appears to be temporally restricted to, at most, sand-

rich interval I and enveloping siltstone units A and C, and presumably ended by the time of 

deposition of sand-rich interval II (unit D). If it is assumed that the cause is earthquakes, then 

sand-rich intervals I and II record a transition from frequent seismic shaking to apparent 

seismic quiescence. Such an interpretation is consistent with previous suggestions that the 

end of mechanical stretching may have occurred near the base of the Johnnie Formation 

(Summa, 1993; Fedo and Cooper, 2001; Schoenborn et al., 2012). A ready alternative to a 

seismic trigger, however, is the effect of pressure contrasts from storm waves, which have 

also been shown to induce liquefaction and soft sediment deformation, including ball-and-

pillow structure (Alfaro et al., 2002).  

 

Chemostratigraphy 

 

A composite plot of δ13C values of carbonate from the Johnnie Formation in 

southwest Laurentia (Verdel et al., 2011; this study) yields an overall pattern that is similar 

to profiles in Oman that contain the Shuram excursion, including a period of positive values 
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as high as 4 - 6 ‰, rapid descent to values as low as -11 to -12 ‰, and a more gradual rise 

back to positive values (Figure 15). The uniformly positive δ13C values below the excursion 

in southwest Laurentia, generally of 1 - 3 ‰, invite detailed comparison with 

chemostratigraphic profiles in the carbonate-rich Khufai Formation in Oman, which lies 

immediately below the type Shuram excursion. The stratigraphic thickness of units between 

the zero crossings of the Shuram excursion in Oman and southwest Laurentia are similar, 

approximately 500 - 700 m (Verdel et al., 2011). We therefore compared our profile to those 

from Oman without any modification to the vertical scaling (stratigraphic height), fixing the 

zero crossings at the base of the Shuram excursion at the same height. The Khufai sections 

in general are positive in δ13C and show considerable variation, depending on the degree of 

diagenetic alteration. In least altered sections (Mukhaibah Dome area), maximum values 

range up to 6 ‰, averaging 4 - 5 ‰ (Figure 16A), considerably more positive than the 

Johnnie profile. In more-altered sections (Buah Dome area, Figure 16B), the profiles are 

quite similar to that of the Johnnie Formation. Given the close correspondence between the 

Johnnie profile and most of the Oman profiles (Figure S3), we conclude that the data are 

consistent with, but do not absolutely demonstrate, temporal correlation of the upper part of 

the sub-Rainstorm Johnnie Formation (units H through L in the Spring Mountains) and the 

Khufai Formation. 

The least altered Khufai sections are generally considered to be representative of sea 

water carbon isotopic composition, defining a prolonged interval of δ13C values in sea water 

near 6 ‰. Therefore, it seems clear that subsequent diagenesis is primarily responsible for 

reducing δ13C values, in both Oman and the sub-Rainstorm Mt. Schader section by as much 

as 4 - 5 ‰. In the Pleistocene environment, such reduction has been shown to result from 
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carbon isotopic exchange between carbonate beds and meteoric water, often resulting in δ13C 

values decreasing stratigraphically upward at the scale of a few meters in beds exposed to 

erosion (Allan and Matthews, 1977; 1982; Quinn, 1991; Melim et al., 1995; Melim et al., 

2001). The strong intrabed variations in δ13C values in 1 - 2 m-thick carbonate intervals in 

the Johnnie Formation (Figure 10) could potentially be explained by this mechanism, 

although δ13C values of meteoric water at that time are poorly constrained and may not have 

been as strongly negative as modern values. Further, the intrabed trends in δ13C values both 

increase and decrease downward, and there is no evidence of subaerial exposure on the tops 

of any of the beds. As with most Neoproterozoic carbonates, determining the mechanisms of 

depletion of δ13C values and their relationship to diagenetic textures and the biosphere is a 

difficult and controversial issue (Knauth and Kennedy, 2009; Derry, 2010a; 2010b; 

Grotzinger et al., 2011), beyond the scope of this paper to resolve. One thing we can say, 

however, about the Mt. Schader data set is that it displays no clear correlations between δ18O 

and δ13C (Figure 11), as predicted by various isotopic exchange models (Figure 4 in Osburn 

et al., 2015). Despite this controversy, the good match between the type Johnnie sub-

Rainstorm Member section and the Khufai Formation supports the hypothesis that regardless 

of the origin of the anomalies, they nonetheless appear to be a useful correlation tool 

(Grotzinger et al., 2011). Tectonic reconstructions of the Neoproterozoic continent Rodinia 

put both the Shuram and Johnnie formations roughly at the equator in Ediacaran time, but 

the two formations were located anywhere from 10,000 - 15,000 km away from each other 

(Li et al., 2008; Li et al., 2013), making the isotopic correlation of the Shuram and sub-

Shuram intervals all the more impressive. 

One of the hallmarks of Neoproterozoic glacial cap carbonates is their frequent 
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occurrence as thin, isolated intervals amid large thicknesses of enveloping strata that are 

entirely siliciclastic. Below unit H, there are two such isolated carbonate intervals, one in 

unit C and the other composing the entirety of unit F. Given their stratigraphic position 

between the Marinoan cap carbonate sequence (Noonday Formation, Figure 1) and the base 

of the Cambrian, it is possible that either one of these units represents post-glacial carbonate 

“rainout,” for example, as might be expected in the more southerly latitudes in the wake of 

the Gaskiers glaciation at 579 Ma (e.g. Pu et al., 2016). The generally positive δ13C values 

in the unit C and unit F carbonates, averaging between 1 - 2 ‰, argue strongly against either 

of these intervals representing a Gaskiers cap carbonate, which in Newfoundland yielded 

δ13C values of -8 to -2 ‰ (Myrow and Kaufman, 1999). Further, textural features widely 

described from cap carbonates (e.g. sheet cracks, tubes, teepee structures, etc.) are not 

observed in either of these intervals. 

 

 Subsidence Analysis 

 

The substantial thickness of the Johnnie Formation, lack of evidence for 

unconformities in the Nevada sections, and the strengthened isotopic tie to the type Shuram 

excursion, motivate the hypothesis that the Noonday through Lower Wood Canyon interval 

records continuous deposition through most or all of Ediacaran time. In the last section, 

backstripping and decompaction defined tectonic subsidence Y as a function of stratigraphic 

position S, independent of time. In this section, we model the element of time as exponential 

subsidence, assuming that Johnnie and subsequent deposition of the passive-margin wedge 

occurred as a result of conductive cooling of rifted lithosphere. Subsidence analysis with 
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well-defined ages at the Cambrian-Precambrian boundary (541 Ma) and at the base of 

Cambrian Age 5 (509 Ma) creates a considerably improved basis over previous studies for 

estimating stratigraphic age in Ediacaran strata by extrapolating the subsidence history back 

in time. 

Regardless of the absolute elevation following mechanical extension of the 

lithosphere, once thermal subsidence begins, the elevation e of the surface, above its 

equilibrium value at t = ∞, is closely approximated by: 

 

𝑒(𝑡) ≅ 𝐸0𝑟e−
𝑡
𝜏, (1) 

 

where E0r is the elevation of stretched lithosphere above its equilibrium depth at infinite time 

(or in the case of infinite stretching, the height of the ocean floor above the abyssal plains), t 

is time, τ is the characteristic time (time at which 
𝑒

𝐸0𝑟
 = 

1

e
), and: 

 

𝑟 =  
𝛽

𝜋
sin

𝜋

𝛽
, (2) 

 

where β is the stretching factor (Figure 17; eqns. 10 and 11 in McKenzie, 1978). E0 and r are 

not parameters of interest when using subsidence as a chronometer, because we are 

attempting to use the late history of post-rift subsidence, which is well dated, to constrain the 

earlier history of post-rift subsidence, which is not. The simple exponential formula for 

elevation versus time e(t) of Equation 1 is converted to subsidence depth Y versus time by 

substituting (E0r - Y) for e, yielding: 
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𝑌(𝑡) ≅ 𝐸0𝑟 (1 − e−
𝑡
𝜏) . (3) 

 

In the case of mid-ocean ridges, where β = ∞ and r = 1, E0r is empirically shown to 

be within a few percent of 3.2 km (Parsons and Sclater, 1977).  We note that this value does 

not correspond to the actual ridge elevation above the abyssal plain, which is much higher 

for oceanic crust less than 20 m.y. old. The characteristic time τ, which depends on the 

thermal diffusivity and thickness of equilibrium lithosphere, shows somewhat greater 

variation depending on the ridge (±10% for the best-constrained ridges; Table 1 in Parsons 

and Sclater, 1977), but a generally accepted value in subsidence analyses of passive margins 

is 50 - 65 m.y. (McKenzie, 1978; Allen and Allen, 2005).  This corresponds to a “half-life” 

of thermal subsidence of 35 - 45 m.y.. Even though this key parameter may vary 

significantly, we can estimate τ directly from our subsidence model, as an independent test 

of the hypothesis that the margin is in a state of exponential thermal subsidence, comparable 

to well-studied Mesozoic and Cenozoic examples. If our estimate of τ lies significantly 

outside the range of 50 - 65 m.y., it would falsify the thermal subsidence hypothesis. 

Even though we do not know E0r, estimation of τ and extrapolation of the curve back 

in time requires as few as two known elevation-time pairs, (e1, t1) and (e2, t2) (Figure 17). 

Substituting these pairs into Equation 1, differencing the equations and solving for τ yields: 

 

𝜏 =  
(𝑡2 − 𝑡1)

ln(
𝑒1
𝑒2

)
. (4) 
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The differencing of the two equations eliminates E0r, and hence the most important 

parameters in estimating both τ and the thermal subsidence curve itself are the elevation of 

two points relatively well separated in time from each other, and an estimate of zero 

elevation, i.e., where e(∞) = 0 or the slope of Y(t) is negligible. The thermal subsidence curve 

is then presumably applicable back in time to whatever point in the section we are still 

confident that the margin is in a state of pure thermal subsidence. As noted above, this level 

is probably no higher in the section than the lower part of the Johnnie Formation, and it may 

be much deeper, perhaps within the upper part of the underlying Pahrump Group. 

Temporal constraints on the younger part of the subsidence curve are fairly similar 

to those used by Levy and Christie-Blick (1991) with the exception of their two oldest points, 

the base of the Cambrian Age 5 (~Middle Cambrian, 509 Ma, Walker et al., 2013) and the 

base of the Paibian (~Upper Cambrian, 497 Ma, Walker et al., 2013), which at the time were 

estimated to be 540 Ma and 523 Ma, respectively. Critically for this study, both the position 

and age of the Ediacaran/Cambrian boundary are well defined, lying within the Lower 

Member of the Wood Canyon Formation with an age of 541 Ma (Corsetti and Hagadorn, 

2000). The 541 and 509 Ma constraints thus function as points (e1, t1) and (e2, t2) respectively 

in our initial analysis, defining an exponential subsidence curve. As the oldest reliable 

temporally constrained points on the curve, they are the strongest constraints on extrapolating 

the curve back in time.  

Points younger than 509 Ma are also well-dated. These points clearly postdate the 

Sauk marine transgression, which marks a transition from predominantly siliciclastic to 

carbonate sedimentation due to flooding of the craton through middle and late Cambrian 

time. Associated with the transgression, the average deposition rate (the time derivative of 
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S(t), dS/dt) increases markedly from c. 20 m/m.y. from 541 to 509 Ma to c. 80 m/m.y. from 

509 to 497 Ma (Table 4). Clearly, a four-fold increase in accumulation rate appears 

incompatible with any form of exponential subsidence. As explained below, the remarkable 

increase in subsidence rate owes its origin to the combination of sea level rise and carbonate 

sedimentation, not renewed tectonism. The important point here is to note that the 541 and 

509 Ma data points occur within the Lower Wood Canyon and Lower Carrara formations, 

respectively, both of which are shallow water, mixed carbonate-siliciclastic facies 

associations that were probably deposited at similar points in global sea level. Both were 

deposited during highstand intervals relative to their transgressive substrates (the Stirling E 

Member and Zabriskie Formation respectively). In the case of the Lower Wood Canyon 

Formation, the system evolved into a glacial drawdown of sea level (Smith et al., 2016). In 

the case of the Lower Carrara Formation, sea level kept rising to a level that generally 

exceeded those of Ediacaran-early Cambrian time (Palmer, 1981). 

The late subsidence history is characterized by very slow accumulation in Silurian 

and Early Devonian time (<3 m/m.y., Table 4), and hence the difference between Silurian 

and Devonian values of Y to those at 541 and 509 Ma provides firm estimates of e1 and e2. 

We note that with these constraints, the precise values of time and elevation for Paibian 

through Upper Ordovician strata provide little additional constraint on the form of the 

exponential subsidence curve. 

 

Temporal Model 

 

We present a temporal model of both observed subsidence S(t) (i.e., stratigraphic 
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thickness) and tectonic subsidence Y(t) using a novel mode of presentation that orthogonally 

projects Y(t) and t(S) onto a graph of the numerically determined function Y(S) (Figure 18). 

In this approach, Y(S) is plotted in the upper left corner, Y(t) in the upper right corner, t(S) in 

the lower left corner, and S(t) in the lower right corner. The plot shows a simultaneous 

projection of Y and S onto their respective temporal models, graphically showing the 

influence of the slope of Y(S) on the observed subsidence rates. The graph shows that, 

between 509 and 485 Ma, the increase in compressibility of the carbonate sediment (lower 

slope on Y(S)), combined with the accelerated schedule of subsidence caused by the flooding 

of the craton (higher slope on Y(t)), resulted in a dramatic increase in sediment accumulation 

rate (lower slope on t(S) and higher slope on S(t)), even though exponential subsidence was 

slowly decreasing. This result is critical because it obviates the primary reason that most 

previous workers have cited in favor of Cambrian rifting along western Laurentia (e.g., Bond 

and Kominz, 1984; Levy and Christie-Blick, 1991; Yonkee et al., 2014). 

 

Parameter Estimates and Sensitivities 

 

Estimates of the exponential time constant τ vary according to two main uncertainties, 

firstly the sediment grain density assumed in our delithification model, and secondly whether 

or not a thick substrate of Pahrump Group strata is present at depth beneath the exposed 

Spring Mountains section. We calculated values of τ for values of tectonic subsidence Y in a 

series of models that encompass these parameter variations (Table 5). In addition, we defined 

Y according to two different assumptions for the point at which mechanical stretching ends 

and purely thermal subsidence begins, where Y = 0 (i.e. e = E0r). One is at the lowest exposed 
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stratum (base of unit A), and the other is within unit C, above the youngest ball-and-pillow 

structure at the top of unit B, assuming seismic shaking ended near this point. In Table 5, 

models with no Pahrump Group substrate are designated Yns, and those that include the 

substrate are designated Yws; intermediate density models contain no additional subscript, 

and low and high density models are also subscripted “low” and “high” respectively. Models 

with superscript “4” define Y = 0 within unit C, and models with no superscript assume Y = 

0 at the base of unit A. We defined the value of Y for which e = 0 to be the average of Y(393 

Ma) and Y(383 Ma), designated Y(c. 388) in Table 5. The results are insensitive to this choice 

because there is so little variation in Y between 444 and 383 Ma. We cannot choose the next 

younger point in the subsidence profile (359 Ma) because it clearly reflects the onset of 

subsidence associated with Antler foredeep sedimentation.   

The contrast in τ between models Yns and Yws is only 3 m.y., with τ = 55 and 52 m.y. 

respectively. As expected from Equation 4, the definition point of Y = 0 has no effect, because 

we define e1 and e2 on the basis of differences in Y values late in the subsidence history. For 

models with no substrate, varying the density between Yns, low and Yns, high (corresponding to 

the assumption of high and low sediment grain density respectively), has a substantial effect 

on τ, which ranges from 42 to 65 m.y., respectively. For models Yws, low to Yws, high, the 

sensitivity is even greater, with τ varying from 36 to 63 m.y., respectively. Clearly, the upper 

part of these ranges accords with subsidence patterns in Mesozoic and Cenozoic basins. 

Despite the nearly 30 m.y. variation in τ among these models, we note that there is relatively 

little variation in the modeled age and duration of the Shuram excursion (Table 5). Among 

this suite of models, the onset varies by 12 m.y. (from 569 to 581 Ma), the termination by 9 

m.y. (from 566 to 575 Ma) and the duration varies by 3 m.y. (from 3 to 6 m.y.). 
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A further consideration in estimating τ is the fact that because the Sauk transgression 

was well underway by 509 Ma, relative sea level may have been slightly higher than at 541 

Ma. To the extent that it was, a significant systematic error is introduced in our estimate of 

τ. For example, for the model with no substrate and intermediate density, a correction in 

Y(509) of just -50 m to account for the change in sea level (+50 m in e2) changes the estimate 

of τ from 55 to 69 m.y. (Equation 1 in Steckler and Watts, 1978; Equation 4 herein). Thus, 

although the suite of models used for our sensitivity analysis may suggest an estimate of 50 

± ~15 m.y. for τ, the systematic error introduced by the Sauk transgression, and the range of 

values indicated by models of Mesozoic and Cenozoic basins, both suggest a value toward 

the upper end of this range. We further note that the earliest empirical fits to long-term 

seafloor subsidence data suggested a value of 62.8 m.y. (Equation 22 in Parsons and Sclater, 

1977; Table 1 in McKenzie, 1978). 

Based on these considerations, we develop a second suite of models for estimating 

pre-541 Ma ages of various horizons within the Johnnie Formation. For this suite, we chose 

a “midrange” model using what are perhaps the simplest set of assumptions: 1) intermediate 

sediment grain density values; 2) negligible Pahrump Group substrate; and 3) a time constant 

of τ = 65 m.y. Using these assumptions, we tie the subsidence curve to the oldest dated time 

point at 541 Ma, minimizing both the amount of extrapolation back in time, and the degree 

to which the data reflect sea level rise due to the Sauk and subsequent cratonic flooding 

events. The resulting subsidence model for the Spring Mountains section is shown in Figure 

18, and in Table 6 in the second column from the right hand side. The remaining columns in 

Table 6 and Table S2 demonstrate the sensitivity of our resulting age estimates for the 

Shuram excursion and other horizons in the Johnnie and Stirling formations to variations in 
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density, τ, and the presence or absence of a substrate. Varying only sediment grain density, 

limits on the Shuram excursion (tops of units Zjr1 to Zjr2) are 581 - 575 Ma (low density 

case), 585 - 579 Ma (intermediate density), and 592 - 585 Ma (high density) (Figure S4). 

Thus, we see that the end of the excursion varies from 575 - 585 Ma, a range which is 

centered on the timing of the Gaskiers glaciation. We also note that the duration of the 

excursion is 6 - 7 m.y., and it is therefore insensitive to variations in sediment grain density. 

With regard to sensitivity to the time constant, the end of the Shuram excursion for 

intermediate density values is 579, 576, and 573 Ma for τ = 65, 60, and 55 m.y. respectively 

(Figure S5). In terms of the error introduced by the presence of a Pahrump Group substrate 

(Figure S6 and Table S2), for τ = 65 m.y. and intermediate values of density, the Shuram 

excursion occurs from 584 - 578 Ma, which is only 1 m.y. later than, and of the same duration 

as, the case of no substrate. The duration of the Shuram excursion, across all models in this 

suite ranges from 4 - 7 m.y. If we exclude with-substrate models (Table S2), the variation 

decreases to 5 - 7 m.y., and if we further restrict the time constant to 65 m.y., it decreases to 

6 - 7 m.y. These estimates are consistent with recent estimates of 8 - 9 m.y. for the Johnnie, 

South Australia (Wonoka), and central China (Doushantuo) sections, based on rock magnetic 

chronostratigraphy (Minguez et al., 2015; Minguez and Kodama, 2017; Gong et al., 2017). 

These estimates are all considerably shorter than the subsidence-based estimate of 50 m.y. 

for the Shuram excursion in Oman (Le Guerroué et al., 2006b), which has been called into 

question on the basis that the Khufai/Shuram interval was probably not deposited on a 

thermally subsiding continental shelf (Bowring et al., 2007). 

In sum, because the timing of the Shuram excursion is within c. 0.5τ of 541 Ma, 

varying parameters in the exponential subsidence model yields variations in our estimate of 
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age and duration of the Shuram excursion of just a few million years. The fact that a fairly 

broad range of parameters leads to estimates of the end of the Shuram excursion centered on 

579 Ma, suggests that the valleys incised into the Rainstorm Member are indeed a 

manifestation of the Gaskiers glaciation at equatorial latitudes. To conclude otherwise strains 

credulity, because Johnnie/Stirling sequence architecture is relatively uneventful for 400 - 

500 m both above and below the Rainstorm Member (Stirling Member A/B and Johnnie 

units H through L, respectively). If incision was unrelated to the Gaskiers glaciation, it 

requires (1) that the most dramatic stratigraphic event in the Johnnie/Stirling interval was 

close in time, but unrelated to, glaciation, and (2) that the Gaskiers glaciation itself had 

virtually no impact on the section. In essence, the subsidence analysis provides a relatively 

coarse estimate of age that “registers” the section with possible correlatives elsewhere. The 

detailed stratigraphy then fine tunes the age estimate based on a specific correlation with 

well-dated events elsewhere: in this case, shelf-incision and the Gaskiers glaciation. 

The overall consistency of exponential subsidence models with the hypothesis that 

incision of the Rainstorm Member shelf is an expression of the Gaskiers glaciation suggests 

that modeled ages of other horizons in the Johnnie/Stirling interval may also be accurate to 

within a few million years. The overall accuracy of this model can be further tested by 

assessing how well it estimates the age of the lowermost Johnnie and Noonday interval. As 

noted above in our discussion of the possible correlation of unit A with the Noonday 

Formation, we would expect the age of this unit to be close to the age of the base of the 

Noonday Formation, or 635 Ma (Petterson et al., 2011). The range of modeled ages for the 

base of unit A are 639 - 608 Ma (Table 6), with the “mid-range” model shown in Figure 18B 

predicting an age of 628 Ma. As shown in Figure 18D, linear extrapolation below the deepest 
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exposed strata of unit A, assuming a linear deposition rate, would require only an additional 

288 m of “sub-unit A” strata to bring the section to the base of the Noonday Formation and 

the Ediacaran Period. This thickness, plus the 125 m thickness of unit A yields a total 

thickness of 413 m, which is consistent with maximum known thicknesses of the Noonday 

Formation (Petterson et al., 2011). The apparent success of exponential subsidence models 

in predicting the age of both the Gaskiers event and the base of the Ediacaran Period at their 

most likely stratigraphic levels, supports the hypothesis that Ediacaran deposition on the 

southwest Laurentian margin was largely continuous, and that the Noonday through Wood 

Canyon interval in its thickest, most basinal exposures does not contain unconformities with 

significant depositional hiatuses. 

 

CONCLUSIONS 

 

Lithostratigraphic and chemostratigraphic details of the Johnnie Formation at its type 

locality in the northwest Spring Mountains of southern Nevada provide a basis for regional 

lithostratigraphic correlation, global chemostratigraphic correlation, and subsidence analysis 

of the southwest Laurentian continental margin. The regional lithostratigraphy of Ediacaran 

through Cambrian Age 4 strata defines seven sand-rich intervals separated by siltstone- and 

carbonate-rich intervals, the upper two of which are the Sauk I and Sauk II sequences of 

Cambrian age (Palmer, 1981). The great overall thickness of the Johnnie Formation at its 

type locality (c. 1800 m), and the apparent absence of subaerial exposure surfaces or other 

evidence of erosion that are well expressed in more cratonic sections such as the Nopah 

Range section, support the hypothesis of continuous deposition. Nonetheless, the 
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lithostratigraphy is strongly cyclic at kilometer scale, suggesting that significant hiatuses, or 

at least greatly reduced rates of sediment flux, may be associated with the base of each of the 

seven sand-rich intervals, even in the more basinal sections. We therefore caution that the 

true slope of the observed sediment accumulation curve S(t) is almost certainly more variable 

than shown in Figure 18D, especially for the segment between 635 Ma and 541 Ma. This 

concern is tempered by the fact that sediment flux was sufficient in Ediacaran and Paleozoic 

time to fill the accommodation space to within a few meters to a few tens of meters of sea 

level, implying that the tectonic component of subsidence is fully recorded.  

Carbon isotopic data from sub-Rainstorm Member (sub-Shuram excursion) units in 

the Mt. Schader section are generally positive, and support correlation of Johnnie units H 

through L with the Khufai Formation in Oman, but they do not require it. If correlative, the 

Mt. Schader section would provide the first confirmation of an extended period (represented 

by 300 – 400 m of section) of positive δ13C values prior to the Shuram excursion in both 

Oman and Nevada. 

The Gaskiers glaciation marks the beginning of widespread preservation of 

macroscopic Ediacaran animals (Xiao et al., 2016), and the Shuram excursion is the largest 

known carbon isotopic excursion in the geological record. A central issue in animal evolution 

is thus whether or not the Shuram excursion was approximately synchronous with the 

Gaskiers event, because it suggests that the Shuram excursion, whatever its cause, was 

genetically related to creating a surface environment that could support the metabolic 

requirements of macroscopic animals. A second consequence of Shuram-Gaskiers 

correlation is that it places the transition from diverse, ornamented acritarchs to a lower 

diversity, unornamented assemblage in synchronism with the appearance of macroscopic 



48 
 

animals, rather than at some later time. The issue is addressable in southwest Laurentia, to 

the extent that deposition of Johnnie and related strata occurred more-or-less continuously 

on a thermally subsiding passive margin. 

Based on this assumption, subsidence analysis strongly suggests that the end of 

Johnnie Formation deposition, at the time of valley incision and subsequent fill with the 

conglomeratic member, was correlative with the Gaskiers glaciation at 579 Ma. The analysis 

also suggests that the onset of the Shuram excursion near the base of the Rainstorm Member 

occurred at ~585 Ma. The implied 6 m.y. duration of the Shuram excursion is consistent with 

paleomagnetic and other proxies from sections in Laurentia and Australia. The subsidence 

analysis further indicates that if the assignment of the Gaskiers event to uppermost Johnnie 

time is correct, then the base of the Johnnie Formation is approximately 630 Ma. If so, then 

the Johnnie through lower Wood Canyon interval in the Spring Mountains represents a 

relatively complete, 3000 m-thick section that records most or all of Ediacaran time. 
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APPENDIX. DESCRIPTION OF MAP UNITS 

 

Descriptions apply to geologic maps and stratigraphic columns shown in Figures 3, 4, 6, and 

7. 

 

Qa: Alluvium and colluvium in active/ephemeral channels and piedmont-forming slopes. 

QTl: In Johnnie Wash, a topographically prominent ridge of coarse, poorly-sorted debris, 

here interpreted as a landslide deposit. 

Zsa: Stirling Formation. A Member (labeled “Zs” in map). Very pale orange, grayish-black 

weathering, medium-grained orthoquartzite, laminated to massive, medium- to thick-bedded, 

with trough cross-stratification. Contains some interbedded carbonate-cemented sandstone. 

In places, bedding is destroyed by secondary brecciation and recementation, forming 

irregular dark weathering masses. Unit forms resistant ridges relative to underlying Johnnie 

Formation. 

Zjr: Johnnie Formation. Rainstorm Member. Includes four distinct subunits, from bottom 

to top: (1) green phyllitic siltstone, (2) highly-resistant, ochre-colored oolitic dolostone 

(”Johnnie oolite,” indicated by red open-dotted line, c. 2 meters thick), (3) pale red, 

carbonate-cemented fine-grained sandstone and sandy limestone, and (4) a heterogeneous 

upper unit that includes siltstone, carbonate-rich sandstone, flaser-bedded sandy carbonate, 

and intraformational limestone breccia. In the Mt. Schader section, a c. 4 m-thick triad of 

orthoquartzite, siltstone, and dolostone immediately underlies the Stirling Formation. 

Orthoquartzite is affected by m-scale ball-and-pillow structure. 

Zjl: Orthoquartzite and variegated siltstone. Generally a recessive/slope-forming unit. Red 
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dotted line in Mt. Schader  map indicates a resistant, laminated, brown dolomitic marker bed, 

c. 2 meters thick. 

Zjk: Orthoquartzite, variegated siltstone, and dolostone. Orthoquartzite is parallel bedded 

and forms erosionally resistant base; siltstone locally contains ripple laminations; resistant, 

brown, dolomitic marker bed, indicated by red dotted line in Mt. Schader map area, is 

hummocky cross-stratified, and contains chert in its lower portion. 

Zjj: Orthoquartzite, variegated siltstone, and minor dolomitic sandstone. Orthoquartzite and 

siltstone occur in ~5 meter cycles. Orthoquartzite is white, resistant, locally granular and 

contains high-angle (c. 20°) cross-stratification; dolomitic sandstones are thick, brown, 

resistant, fine- to medium-grained beds. Red dotted line on both maps indicates a hummocky 

cross-stratified, brown dolomite marker bed. 

Zji: Orthoquartzite, variegated siltstone, and dolomitic sandstone. Parallel bedded in the 

Johnnie Wash section, hummocky cross-stratified in the Mt. Schader section. Orthoquartzite 

is fine-grained and occurs as conspicuous thick bedded intervals in 5-10 meter cycles with 

siltstones. Red dotted line on Mt. Schader map indicates a hummocky cross-stratified, brown 

dolomitic sandstone marker bed. 

Zjh: Orthoquartzite and variegated siltstone. Red dotted lines on Mt. Schader map indicate 

brown, hummocky cross-stratified dolomite marker beds that contain stromatolitic mounds. 

Zjg: Variegated fine-grained sandstone and siltstone, weakly cemented. Also occasional 

interstratified orthoquartzite, fine to medium-grained, medium- to thick-bedded. 

Zjf: Dolostone with centimeter- to decimeter-thick, centimeter- to meter-long chert nodules 

and lenses. The dolostone forms a conspicuous pale-weathering ridge. Finely laminated to 

massive texture. Microcrystalline varieties weather gray, coarser grained, secondary 
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dolomite weathers dark gray to brown. 

Zje: Massive, fine-grained sandstone and laminated siltstone. Upper part contains several 

dozen rhythmic cycles, c. 2 m-thick, of sandstone and siltstone. Each cycle has a sharp, load-

casted bottom and grades upward from sandstone to siltstone. Generally an olive hued, 

recessive/slope-forming unit, with occasional beds of cross-stratified sandstone, similar to 

unit D. 

Zjd: Well-cemented, fine-grained orthoquartzite in meter-scale beds featuring cross-

stratification with steep truncation angles (up to ~30°), interstratified with medium-grained, 

weakly hematite-cemented ferruginous sandstone and variegated siltstone. Unit forms 

resistant ridge that is conspicuously darker weathering than unit E. 

Zjc: Siltstone (as Zja) with a calcareous, medium-grained orthoquartzite marker bed, similar 

to unit D, indicated on Figure 3 by green dotted line. The lowest carbonate in the Johnnie 

Wash section appears near the top of this unit as a brown, medium-grained, fabric-retentive 

dolostone. 

Zjb: Interstratified fine-grained orthoquartzite and phyllitic siltstone. Orthoquartzite occurs 

in meter-scale beds with parallel lamination, pervasively disrupted by soft sediment 

deformation, primarily ball-and-pillow structure, such that individual beds are difficult to 

trace along strike. 

Zja: Phyllitic siltstone, with a distinct crenulation cleavage at high angle to bedding. 

Generally a recessive unit. 
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FIGURE CAPTIONS 

 

Figure 1 (p. 90): Generalized stratigraphic column of Precambrian-Cambrian strata; 

thicknesses represent sections in the northwest Spring Mountains, Nevada (from Stewart, 

1970). Cryogenian-Ediacaran boundary (635 Ma) is based on the interpretation that the 

Noonday Dolomite is the Marinoan cap carbonate sequence (Petterson et al., 2011) and the 

definition for the base of the Ediacaran period (Knoll et al., 2004; Knoll et al., 2006; 

Narbonne et al., 2012). Precambrian-Cambrian boundary (541 Ma) is based on paleontology 

(Hagadorn and Waggoner, 2000; Corsetti and Hagadorn, 2000). The Noonday Formation 

and Stirling Formation are generally resistant, cliff-forming units, in contrast to the recessive, 

slope-forming Johnnie and lower Wood Canyon Formations. The letter C indicates the 

conglomeratic member of the Johnnie Formation, which fills local valleys incised into the 

Rainstorm Member. 
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Figure 2 (p. 91): (A) Google Earth image and (B) corresponding geologic map of 

Precambrian-Cambrian strata in the northwest Spring Mountains, Nevada, in the vicinity of 

the type locality of the Johnnie Formation in Johnnie Wash. GF- Grapevine fault; JW- 

Johnnie Wash; MA- Montgomery anticline; NV-160- Nevada State Highway 160; PF- 

Paddy’s fault. Dotted line labeled d/e indicates the conspicuous surface trace of the contact 

between informal members D and E of the Johnnie Formation. Data were compiled from 

Abolins (1999), Burchfiel et al. (1974, 1983), and this study. 

 

Figure 3 (p. 92): Geologic map and cross sections of Johnnie Wash and environs. Definitions 

of unit labels and the description of map units are given in the Appendix. 

 

Figure 4 (p. 93): Generalized lithostratigraphic column of the Johnnie Formation at its type 

locality in Johnnie Wash, with thicknesses based on cross sections A - A’ and B - B’ in Figure 

3 for units A through L, and Stewart (1970) for the Rainstorm Member. Roman numerals on 

left side of column indicate the three sand-rich intervals discussed in text. 

 

Figure 5 (p. 94): Photographs of selected lithostratigraphic elements of the Johnnie 

Formation. (A) Load cast with folded laminae in sandstone bed, unit B, Johnnie Wash area. 

Hammer is 28 cm long. (B) Ball-and-pillow structure in unit B, with light-colored siltstone 

(just above pocket knife) protruding upward between bulbous masses of fine-grained 

sandstone. Pocket knife is 9 cm long. (C) Gray cherty dolostone, unit F, Johnnie Wash. Pencil 

is 15 cm long (D) Brown-weathering, laminated dolostone, typical of carbonate beds in units 
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H through L. Hammer is 28 cm long. (E) Variegated siltstone typical of all units in the 

Johnnie Formation. Pocket knife is 9 cm long. (F) Johnnie oolite, Johnnie Wash, ooids are 1 

- 2 mm in diameter. (G) Large, bulbous mass of orthoquartzite (left of hammer), surrounded 

by smaller masses lying in a matrix of siltstone, uppermost bed of the Rainstorm Member, 

Mt. Schader section. Hammer is 33 cm long. (H) Base of orthoquartzite bed in (G), showing 

load cast structures with underlying siltstone. Hammer is 33 cm long. 

 

Figure 6 (p. 95): Geologic map of the Mt. Schader section, showing measured and sampled 

transects. Definition of unit labels and description of map units are given in the Appendix. 

 

Figure 7 (p. 96): (A) Detailed lithostratigraphic column of the Mt. Schader section, from unit 

G of the Johnnie Formation through the lowermost part the A Member of the Stirling 

Formation, showing thicknesses based on Jacobs staff measurements (transects shown in 

Figure 6). Detailed description of subunits 1 - 48 are given in the Supplemental Text. (B) and 

(C), carbon and oxygen isotope ratios, respectively, in carbonate, as a function of 

stratigraphic position. Numerical values are found in Table S1. VPDB- Vienna Peedee 

Belemnite 

 

Figure 8 (p. 97): (A) Photograph of tabular planar cross-stratification in unit D, Johnnie 

Wash. Notebook is 13 cm wide. (B) Equal area stereogram of poles to foreset laminations 

measured at Locality A (Figure 2A), with bedding tilt removed. Dots are data (n = 65), larger 

square in circle is the mean vector. Plotted using Stereonet software (Allmendinger et al., 

2012; Cardozo and Allmendinger, 2013), with Kamb contours at 2σ intervals (Kamb, 1959). 
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(C) Photograph of steep foreset laminations (bedding parallel to base of photograph), 

showing 9 cm scale bar at location of petrographic measurements of mean grain size in (D). 

(D) Mean grain size as a function of stratigraphic height in sample of foreset laminations, 

showing relatively constant value of 200 µm. 

 

Figure 9 (p. 98): (A) and (B), carbon and oxygen isotope ratios, respectively, in carbonate as 

a function of stratigraphic position, for units C and F in the Johnnie Wash area. Numerical 

values are found in Table S1. VPDB-Vienna Peedee Belemnite. 

 

Figure 10 (p. 99): Carbon isotope ratios as function of stratigraphic position, expanding the 

vertical scale within each carbonate bed, to reveal any intrabed trends. Beds are numbered 

from bottom to top within a given unit, e.g. Zjj1 is the lowest carbonate bed in unit J. VPDB- 

Vienna Peedee Belemnite. 

 

Figure 11 (p. 100): Cross plot of δ18O versus δ13C, color coded by stratigraphic unit, showing 

linear regression lines. VPDB- Vienna Peedee Belemnite. 

 

Figure 12 (p. 101): Plot showing calculated tectonic subsidence Y as a function of observed 

stratigraphic thickness S. Lower curve shows results assuming unit A of the Johnnie 

Formation at the type locality is immediately underlain by crystalline basement. Error bars 

show range of estimates of Y produced by a ±5 % variation in sediment grain density. Upper 

curve shows results assuming unit A is underlain by c. 2000 m of hypothetical Pahrump 

Group strata. 
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Figure 13 (p. 102): Lithostratigraphic columns of the Johnnie Formation and enveloping 

Ediacaran-Cambrian formations at three key localities in Nevada and California, indicating 

the stratigraphic distribution of sand-rich intervals versus siltstone/carbonate-rich intervals. 

Informal member and unit designations in the southern Nopah and Desert Range sections are 

after Stewart (1970); note that the informal “Carbonate member” in the Desert Range section 

is predominantly sand-rich carbonate and fine- to medium-grained orthoquartzite with no 

siltstone. Bold numbers to the left of the scale bar are ages in Ma as follows: 509, base of 

Middle Cambrian (Palmer and Halley, 1979); 514 and 520, base of Bonnia-Olenellus and 

Fallotaspis trilobite zones respectively (Hunt, 1990; Hollingsworth, 2005); 541 and 550, 

base of Cambrian and first-appearance datum of cloudinids (Corsetti and Hagadorn, 2000; 

Smith et al., 2016; Narbonne et al., 2012); 579, 585, and 624, model age estimates from this 

study; 635, base of Ediacaran (Petterson et al., 2011). Roman numerals indicate sand-rich 

intervals beginning with unit B of the type Johnnie Formation. 

 

Figure 14 (p. 103): Paleoflow rosettes showing foreset lamination dip directions, corrected 

for bedding dip. Upper two rosettes compare data from sand-rich interval II (Figure 8B) with 

data from all sub-unit H strata (p. 224 in Benmore, 1978). Bottom rosette shows data from 

all pre-Rainstorm orthoquartzites in the Desert Range (p. 221 in Benmore, 1978). 

 

Figure 15 (p. 104): Composite chemostratigraphy of the upper Johnnie Formation, showing 

carbon isotopic ratios in carbonate from unit H up to the oolite marker horizon in the 

lowermost Rainstorm Member (Mt. Schader section, this study) and values from just below 
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the base of the Rainstorm Member to the top of the member (southern Panamint Range, 

Verdel et al., 2011). VPDB- Vienna Peedee Belemnite. 

 

Figure 16 (p. 105): Chemostratigraphic profiles comparing carbon isotopic data from the 

Johnnie Formation from unit H through the lowermost Rainstorm Member (ending at the top 

of the oolite marker bed, Figure 7), with profiles from (A) the Mukhaibah Dome (MD5); and 

(B) the Buah Dome (BD5) areas of Oman (Osburn et al., 2015). Vertical axis shows 

measured stratigraphic height in all profiles. Six additional profile comparisons are presented 

in Figure S3. VPDB- Vienna Peedee Belemnite. 

 

Figure 17 (p. 106): Plot showing an exponential subsidence model Y(t), based on conductive 

cooling of extended lithosphere (McKenzie, 1978). Plotted on curve are the onset of thermal 

subsidence at t = 0, and two arbitrary points in the history of subsidence. Note that so long 

as the stratigraphic position of e(∞) = 0 is well defined, the form of the subsidence curve, 

including the exponential decay constant τ, is uniquely determined, and does not depend on 

e(0) = E0r. 

 

Figure 18 (p. 107): Plots showing subsidence data and model for northwest Spring Mountains 

section of southwest Laurentia: (A) observed subsidence (stratigraphic thickness) S versus 

tectonic subsidence Y; (B) temporal control on tectonic subsidence Y versus time applied to 

Cambrian and younger points (solid circles), temporal model shown with plus symbols; (C) 

same as (B), except showing S versus t; and (D) same as (C) with axes inverted. Dotted red 

line and number in (B) show projected age of the base of Johnnie unit A; Dotted red line and 
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circle in (D) show the amount of additional, hypothetical strata that would be needed below 

unit A in the Spring Mountains in order for sedimentation to extend linearly back in time to 

635 Ma. 
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TABLES 

Table 1: Nomenclature of stratigraphic units used in subsidence analysis tables 

Stratigraphic unit: can be partitioned/combined formations (Fm) and/or 

members (Mbr) 

Abbreviation 

Spring Mountains section  

Carbonate overburden MzPzco 

Devils Gate Fm Ddg 

Nevada Fm Dn 

Laketown Fm (upper 50%) Dl 

Laketown Fm (lower 50%) Sl 

Ely Springs Fm Oes 

Eureka Fm Oe 

Pogonip Group (upper third) Op2 

Pogonip Group (lower two thirds) Op1 

Nopah Fm (upper third) OЄn2 

Nopah Fm (lower two thirds) OЄn1 

Dunderberg Fm Єd 

Bonanza King Fm (Banded Mountain Mbr, upper 36%) Єbk2 

Bonanza King Fm (Mbrs: Papoose Lake & Banded Mountain, lower 64%) Єbk1 

Carrara Fm (upper two thirds) Єc2 

Carrara Fm (lower third) Єc1 

Zabriskie Fm Єz 

Wood Canyon Fm (Ediacaran/Cambrian boundary to top) ЄZwc2 

Wood Canyon Fm (to Ediacaran/Cambrian boundary) ЄZwc1 

Stirling Fm (members A through E) Zsa - Zse 

Johnnie Fm (Rainstorm Mbr, oolite bed’s base to top of Mbr) Zjr2 

Johnnie Fm (Rainstorm Mbr, base to oolite bed’s base) Zjr1 

Johnnie Fm (members A through L) Zja - Zjl 

Pahrump Group substrate (hypothetical)  

Johnnie Fm (Presumed equivalent to the Transitional Mbr of Stewart, 1970) Zjt 

Kingston Peak Fm (Mbr: South Park, sub-Mbr: Wildrose) Zkpw 

Kingston Peak Fm (Mbr: South Park, sub-Mbr: Thorndike) Zkpth 

Kingston Peak Fm (Mbr: South Park, sub-Mbr: Mountain Girl) Zkpmg 

Kingston Peak Fm (Mbr: South Park, sub-Mbrs: Sourdough & Middle Park) Zkpsmp 

Kingston Peak Fm (Limekiln-Surprise Mbr) Zkpls 

Beck Springs Fm/Kingston Peak Fm (lower) Zbs 

Horse Thief Springs Fm Zhs 

Crystal Springs Fm (upper) Ycs2 

Crystal Springs Fm (lower) Ycs1 
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Table 2: Nomenclature of parameters used in 
delithification and backstripping analysis1 

ϕ0 Surface porosity (%) 

c Porosity depth coefficient (km-1) 

ρsg Sediment grain density (kg m-3) 

h Stratigraphic thickness (m) 

S Cumulative stratigraphic thickness (m) 

S* Delithified/decompacted thickness (m) 

Y Tectonic subsidence (m) 

 
1Subscripts for S, S*, and Y:  

ns, no Pahrump Group substrate;  

ws, with Pahrump Group substrate; 

low, low subsidence from using +5% ρsg;  

high, high subsidence from using -5% ρsg. 
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Table 3: Parameters used in delithification and backstripping analysis of the Spring Mountains section1 

Unit Age2 (Ma) Lithology ϕ0 (%) c (km-1) ρsg (kg m-3) h (m) Sns (m) Sws (m) 

MzPzco3 Ca. 243 l/d 43 0.58 2785 3000 9720 11745 

Ddg 359 d 43 0.58 2710 286 6720 8745 

Dn 383 d 43 0.58 2860 286 6434 8459 

Dl 393 d 43 0.58 2860 71.5 6148 8173 

Sl 419 d 43 0.58 2860 71.5 6076.5 8101.5 

Oes 444 d 43 0.58 2860 95 6005 8030 

Oe 458 s 49 0.27 2650 71 5910 7935 

Op2 - l 43 0.58 2710 230 5839 7864 

Op14 470 l 43 0.58 2710 460 5609 7634 

OЄn2 - d 43 0.58 2860 95 5149 7174 

OЄn1 485 d 43 0.58 2860 191 5054 7079 

Єd - sh 63 0.51 2720 48 4863 6888 

Єbk2 - d 43 0.58 2860 197 4815 6840 

Єbk1 497 d 43 0.58 2860 637 4618 6643 

Єc2 - sh 63 0.51 2720 286 3981 6006 

Єc1 509 sh 63 0.51 2720 143 3695 5720 

Єz - s 49 0.27 2650 24 3552 5577 

ЄZwc2 - s/slt 49 0.27 2650 523 3528 5553 

ЄZwc1 541 s/slt 49 0.27 2650 144 3005 5030 

Zse - s 49 0.27 2650 340 2861 4886 

Zsd5 - d 46 0.43 2755 10 2521 4546 

Zsc - slt/s 49 0.27 2650 190 2511 4536 

Zsb - s/slt 49 0.27 2650 90 2321 4346 

Zsa - s 49 0.27 2650 369 2231 4256 

Zjr26 - slt/s/l/d 47 0.37 2695 250 1862 3887 

Zjr17 - slt 49 0.27 2650 17 1612 3637 

Zjl - s/slt 49 0.27 2650 60 1595 3620 

Zjk - s/slt 49 0.27 2650 95 1535 3560 

Zjj - s/slt 49 0.27 2650 190 1440 3465 

Zji - s/slt 49 0.27 2650 55 1250 3275 

Zjh - s/slt 49 0.27 2650 60 1195 3220 

Zjg - slt 49 0.27 2650 135 1135 3160 

Zjf8 - d 43 0.58 2860 40 1000 3025 

Zje - s/slt 49 0.27 2650 280 960 2985 

Zjd9 - s 49 0.27 2650 300 680 2705 

Zjc2 - slt 49 0.27 2650 45 380 2405 

Zjc110 - slt 49 0.27 2650 50 335 2360 

Zjb11 - s 49 0.27 2650 160 285 2310 

Zja - slt 49 0.27 2650 125 125 2150 

Zjt12 - d/s 46 0.43 2755 125 - 2025 

Zkpw13 635 ss 49 0.27 2650 100 - 1900 

Zkpth - d 43 0.58 2860 100 - 1800 

Zkpmg - s 49 0.27 2650 100 - 1700 

Zkpsmp - slt 49 0.27 2650 200 - 1600 

Zkpls - s/cgl 49 0.27 2650 400 - 1400 

Zbs - d 43 0.58 2860 200 - 1000 

Zhs14 <787 s 49 0.27 2650 200 - 800 

Ycs2 >1087 d 43 0.58 2860 200 - 600 

Ycs115 - s 49 0.27 2650 400 - 400 
 

1Values from table 9.1 in Allen and Allen (2005), Equation 3 in Halley and Schmoker (1983), Deer 

et al. (1992), or weighted averages for lithologic mixtures. Abbreviations for lithology are: s, 

sandstone; slt, siltstone; l, limestone; d, dolostone; sh, shale; cgl, conglomerate. See Table 2 for 

parameter definitions. 
2Ages are at top of unit. 
3Lithologic ratio used is 50/50; average for ρsg. 
4Carbonate is mostly limestone (fig. 2 in Burchfiel et al., 1974). 
5Dolostone is sandy (stratigraphic column for Spring Mountains, plate 2 in Stewart, 1970). 
6Shuram excursion ends. Lithologic ratio is slt+s/l/d = 67/16.5/16.5 (table 3 in Stewart, 1970). 
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7Shuram excursion begins. 
8Cherty dolostone. 
9High-angle cross-bedding. 
10Onset of thermal subsidence (based on interpretation of ball-and-pillow structure, see text). 
11Ball-and-pillow structure. 
12Lithologic ratio is d/s = 50/50. 
13Age from Petterson et al. (2011). 
14Maximum age from Mahon et al. (2014). 
15Minimum age from Heaman and Grotzinger (1992). 
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Table 4: Results from delithification and backstripping analysis of the Spring Mountains section1 

Unit Age2 
(Ma) 

Sns S*ns Yns,  low Yns Yns, 

high 
Sws S*ws Yws, low Yws Yws, high 

MzPzco Ca. 243 9720 9714 2670 3193 3715 11745 11736 3128 3768 4406 

Ddg 359 6720 7489 2412 2791 3169 8745 9548 2905 3401 3895 

Dn 383 6434 7246 2380 2743 3105 8459 9310 2878 3358 3836 

Dl 393 6148 7002 2367 2713 3058 8173 9071 2871 3334 3795 

Sl 419 6076.5 6940 2364 2706 3046 8101.5 9011 2869 3328 3785 

Oes 444 6005 6881 2361 2699 3035 8030 8953 2868 3322 3776 

Oe 458 5910 6799 2357 2689 3020 7935 8874 2866 3315 3763 

Op2 - 5839 - - - - 7864 - - - - 

Op1 470 5609 6541 2320 2636 2950 7634 8622 2836 3269 3700 

OЄn2 - 5149 - - - - 7174 - - - - 

OЄn1 485 5054 6070 2280 2564 2846 7079 8167 2811 3212 3611 

Єd - 4863 - - - - 6888 - - - - 

Єbk2 - 4815 - - - - 6840 - - - - 

Єbk1 497 4618 5694 2264 2522 2778 6643 7804 2809 3183 3556 

Єc2 - 3981 - - - - 6006 - - - - 

Єc1 509 3695 4798 2125 2327 2528 5720 6949 2710 3029 3347 

Єz - 3552 - - - - 5577 - - - - 

ЄZwc2 - 3528 - - - - 5553 - - - - 

ЄZwc1 541 3005 4024 1844 2009 2173 5030 6220 2475 2757 3037 

Zse - 2861 3865 1786 1943 2100 4886 6072 2428 2702 2975 

Zsd - 2521 3481 1642 1781 1919 4546 5718 2313 2570 2824 

Zsc - 2511 3469 1638 1777 1914 4536 5708 2311 2566 2821 

Zsb - 2321 3250 1553 1682 1809 4346 5507 2245 2490 2735 

Zsa - 2231 3144 1512 1635 1758 4256 5411 2213 2454 2693 

Zjr2 - 1862 2706 1337 1441 1544 3887 5018 2083 2304 2523 

Zjr1 - 1612 2400 1221 1311 1399 3637 4748 2004 2210 2415 

Zjl - 1595 2379 1212 1301 1388 3620 4730 1997 2203 2407 

Zjk - 1535 2303 1179 1264 1349 3560 4663 1973 2176 2377 

Zjj - 1440 2179 1125 1204 1284 3465 4556 1936 2133 2329 

Zji - 1250 1930 1012 1082 1150 3275 4343 1859 2046 2231 

Zjh - 1195 1856 978 1045 1110 3220 4280 1836 2020 2203 

Zjg - 1135 1775 941 1004 1066 3160 4212 1812 1992 2171 

Zjf - 1000 1589 853 909 964 3025 4058 1756 1929 2101 

Zje - 960 1537 835 889 941 2985 4015 1747 1918 2087 

Zjd - 680 1132 633 671 709 2705 3689 1624 1779 1933 

Zjc2 - 380 664 385 406 427 2405 3331 1486 1624 1762 

Zjc1 - 335 591 344 363 382 2360 3278 1465 1601 1736 

Zjb - 285 507 297 313 329 2310 3217 1441 1574 1707 

Zja - 125 230 138 145 152 2150 3024 1365 1489 1612 

Zjt - - - - - - 2025 2871 1304 1422 1538 

Zkpw 635 - - - - - 1900 2722 1255 1365 1475 

Zkpth - - - - - - 1800 2597 1204 1308 1412 

Zkpmg - - - - - - 1700 2480 1173 1271 1368 

Zkpsmp - - - - - - 1600 2349 1116 1209 1300 

Zkpls - - - - - - 1400 2086 1000 1081 1162 

Zbs - - - - - - 1000 1546 756 815 873 

Zhs <787 - - - - - 800 1288 669 716 762 

Ycs2 >1087 - - - - - 600 993 523 558 593 

Ycs1 - - - - - - 400 707 408 431 453 

 
1See Table 2 for parameter definitions. For subscript “ns,” S was measured relative to the base of 

Zja, and for “ws,” relative to the base of Ycs1. 
2Ages are at top of unit. 
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Table 5: Estimates for the time constant τ1 

Model Y(541) Y(509) Y(393) Y(383) Y(c. 
388)2 

τ 
(m.y.) 

SE3 begin 
(Ma) 

SE3 end 
(Ma) 

Yns 2009 2327 2713 2743 2728 55 578 573 

Yns
4 1646 1964 2350 2380 2365 55 578 573 

Yws 2757 3029 3334 3358 3346 52 575 570 

         

Yns, low 1844 2125 2367 2380 2374 42 574 569 

Yns 2009 2327 2713 2743 2728 55 578 573 

Yns, high 2173 2528 3058 3105 3082 65 581 575 

         

Yns, low
4 1500 1781 2023 2036 2030 42 574 569 

Yns
4 1646 1964 2350 2380 2365 55 578 573 

Yns, 

high
4 

1791 2146 2676 2723 2700 65 581 575 

         

Yws, low 2475 2710 2871 2878 2875 36 569 566 

Yws 2757 3029 3334 3358 3346 52 575 570 

Yws, high 3037 3347 3795 3836 3816 63 578 573 

 
1Units for τ are millions of years (my). Units for all Y values are in meters (m). 
2Mean value of Y(393 Ma) and Y(383 Ma). 
3SE = Shuram excursion. 
4Y values were adjusted by assuming a zero datum that represents a specific point in the 

stratigraphic column inferred to represent cessation of mechanical stretching and inception of 

passive-margin thermal subsidence. 
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Table 6: All ages modeled using no substrate 

  Model ages (Ma) 

  τ = 55 m.y. τ = 60 m.y. τ = 65 m.y. 

Unit Age1 
(Ma) 

Min Int Max Min Int Max Min Int Max 

MzPzco Ca. 
243 

- - - - - - - - - 

Ddg 359 - - - - - - - - - 

Dn 383 - - - - - - - - - 

Dl 393 341 328 303 323 309 281 305 289 260 

Sl 419 363 349 323 347 332 303 331 314 283 

Oes 444 378 364 337 363 348 319 348 332 300 

Oe 458 393 381 352 380 366 335 366 352 317 

Op1 470 435 428 415 425 418 404 416 407 393 

OЄn1 485 467 460 446 460 452 437 453 445 429 

Єbk1 497 481 472 455 475 466 447 470 460 439 

Єc1 509 514 509 499 511 506 496 509 503 492 

ЄZwc1 541 541 541 541 541 541 541 541 541 541 

Zse - 545 546 547 546 546 547 546 547 548 

Zsd - 555 556 559 556 558 560 557 559 562 

Zsc - 555 556 559 556 558 561 557 559 562 

Zsb - 560 562 565 561 563 567 563 565 569 

Zsa - 562 564 568 564 566 570 565 568 573 

Zjr2 - 570 573 578 573 576 581 575 579 585 

Zjr1 - 575 578 584 578 582 588 581 585 592 

Zjl - 575 579 584 578 582 588 581 586 592 

Zjk - 576 580 586 580 584 590 583 587 594 

Zjj - 579 582 588 582 586 592 585 590 597 

Zji - 582 587 593 586 591 598 590 595 602 

Zjh - 584 588 594 587 592 599 591 596 604 

Zjg - 585 589 596 589 593 601 593 598 606 

Zjf - 588 592 599 592 597 604 596 601 610 

Zje - 588 593 600 592 597 605 597 602 610 

Zjd - 594 599 606 599 604 612 603 609 618 

Zjc2 - 600 605 614 605 611 620 611 617 627 

Zjc1 - 601 606 615 606 612 622 612 618 628 

Zjb - 602 608 616 607 614 623 613 620 630 

Zja - 605 611 620 611 618 627 617 624 635 

(base) - 608 614 623 614 621 631 620 628 639 

 
1Ages are at top of unit. 
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SUPPLEMENTAL ITEMS 

 

Figure Captions 

 

Figure S1 (p. 114): (A) Google Earth image looking c. 60° down-dip to the east along section 

B - B’ in Figure 3, showing traces of mapped unit boundaries (dashed lines) for units E 

through L and the Rainstorm Member, using unit designations from the Appendix. Width of 

view at level of Zji is c. 400 m. (B) Google Earth image looking c. 40° down-dip to the east 

along section A - A’ in Figure 3, showing traces of mapped unit boundaries for units A 

through I. Width of view at unit D/E boundary is c. 1200 m. 

 

Figure S2 (pp. 115-130): Plots of δ13C and δ18O versus stratigraphic position with side-by-

side cross plots of δ18O versus δ13C, for each individual carbonate interval designated in 

Figure 10 of the main text. 

 

Figure S3 (pp. 131-138): Chemostratigraphic profiles comparing carbon isotopic data from 

the Johnnie Formation from unit H through the lowermost Rainstorm Member (ending at the 

top of the oolite marker bed, Figure 7) with profiles from the Buah Dome (BD1, BD4, BD5, 

BD6); Khufai Dome (KDW); and Mukhaibah Dome (MD5, MD6, MDE) areas of Oman 

(Osburn et al., 2015). Vertical axis shows measured stratigraphic height, from the Mt. 

Schader section, in all profiles. 
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Figure S4 (p. 139): Plot showing tectonic subsidence data and models as a function of age 

(small points and curves, respectively), showing the effect of varying sediment grain density 

on estimates for the age and duration of the Shuram excursion (large points). Red: high-

density; blue: intermediate density; green: low density. 

 

Figure S5 (p. 140):  Plot showing tectonic subsidence data and models as a function of age 

(points and curves, respectively), showing the effect of varying the exponential time constant 

τ. Models are fit to the 541 Ma data point and assume intermediate sediment grain density. 

 

Figure S6 (p. 141): Plot showing calculated tectonic subsidence Y as a function of observed 

stratigraphic thickness S for the backstripping and delithification model that includes a 

hypothetical Pahrump Group substrate below the lowest exposed Johnnie Formation strata 

(unit A) in the Spring Mountains section. Error bars show range of estimates of Y produced 

by a ±5 % variation in sediment grain density. 

 

Tables 

 

Table S1: Chemostratigraphy results 

Unit Sample Stratigraphic 

position (m) 

Bed 

position 

(m) 

δ13C (‰, 

VPDB) 

δ18O (‰, 

VPDB) 

Notes 

Zjc collection site* located at 36°30'35.05" N, 116°00'58.55" W (within rectangle labeled “Locality A” in 

Figure 2A) 

Zjc J72 - 0.00 1.8 -14.5  

 J73 - 1.00 1.6 -15.2  

 J74 - 2.00 1.5 -15.1  

 J75 - 3.00 0.0 -16.0  

Zjf collected along a transect beginning at  36°28'53.96" N, 116°01'30.13" W; ending at  36°28'53.79" N, 

116°01'28.97" W (at the beginning of cross section line B-B’ in Figure 3: Johnnie Wash geologic map) 
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Zjf J76 - 0.00 2.1 -10.1  

 J77 - 0.50 2.0 -10.9  

 J78 - 1.00 2.1 -9.6  

 J79 - 2.00 2.2 -9.7  

 J80 - 2.50 1.2 -10.7  

 J81 - 3.00 1.7 -9.6  

 J82 - 3.50 1.6 -9.2  

 J83 - 4.00 1.7 -8.9  

 J84 - 6.00 1.6 -8.4  

 J85 - 8.00 1.9 -8.5  

 J86 - 11.00 -0.9 -12.8  

 J87 - 11.50 1.3 -11.9  

 J88 - 12.00 1.5 -8.8  

 J89 - 13.50 1.5 -9.2  

 J90 - 14.00 1.6 -9.7  

 J91 - 14.50 1.7 -8.2  

 J92 - 15.00 1.5 -9.1  

 J93 - 15.50 1.0 -9.2  

 J94 - 16.50 0.8 -9.2  

 J95 - 19.00 1.0 -8.4  

 J96 - 19.50 0.8 -8.5  

 J97 - 20.00 1.1 -9.4  

 J98 - 20.50 0.9 -9.8  

 J99 - 21.00 1.0 -7.8  

 J100 - 21.50 0.6 -9.4  

 J101 - 22.00 0.6 -9.6  

 J102 - 22.50 1.6 -7.7  

 J103 - 23.00 0.4 -11.3  

 J104 - 23.50 2.8 -8.4  

 J105 - 26.00 1.5 -12.7  

 J106 - 27.00 1.8 -12.4  

 J107 - 28.00 2.0 -12.9  

Transect a-a’ in Figure 6: Mt. Schader geologic map (begins at 36°27'31.70" N, 116°05'43.38" W; ends at  

36°27'30.30" N, 116°05'33.92" W) 

Zjh J1 63.00 0.00 1.0 -6.5  

 J2 63.50 0.50 0.4 -7.2  

 J3 64.00 1.00 1.6 -6.5  

 J4 64.50 1.50 2.6 -6.9  

 J5 87.00 0.00 -1.4 -5.4  

 J6 87.50 0.50 -0.3 -10.6  

 J7 88.00 1.00 0.8 -8.2  

 J8 88.50 1.50 1.4 -9.5  

 J9 89.00 2.00 1.5 -9.5  

 J10 89.50 2.50 0.4 -10.1  

 J11 90.00 3.00 0.7 -7.2  

 J12 90.50 3.50 0.0 -10.9  

 J13 91.00 4.00 1.0 -8.5  

 J14 91.50 4.50 -0.8 -11.2  

 J15 93.00 6.00 1.2 -10.6  

 J16 93.33 6.33 2.7 -9.4  

 J17 93.66 6.66 0.5 -10.4  
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 J18 94.00 7.00 1.9 -10.2  

 J19 107.00 - 3.4 -5.0  

 J20 109.00 - 2.9 -6.2  

 J21 125.75 - 1.3 -8.8  

 J22 126.75 - 2.2 -9.6  

 J23 140.00 0.00 2.9 -7.8  

 J24 140.50 0.50 3.9 -8.4  

 J25 141.00 1.00 3.7 -9.0  

 J26 141.50 1.50 3.7 -10.5  

 J27 142.00 2.00 2.6 -11.1  

 J28 142.50 2.50 2.7 -11.1  

 J29 143.00 3.00 3.1 -10.2  

 J30 143.33 3.33 2.5 -8.2  

 J31 143.66 3.66 3.3 -7.2  

 J32 144.00 4.00 2.3 -7.4  

Transect b-b’ in Figure 6: Mt. Schader geologic map (begins at 36°27'18.37" N, 116°05'39.60" W; ends at 

36°27'17.54" N, 116°05'33.18" W) 

Zji J33 152.00 - -3.7 -9.9  

 J34 241.00 0.00 1.4 -9.1  

 J35 241.50 0.50 1.4 -9.7  

 J36 242.75 1.75 0.0 -11.4  

 J37 243.25 2.25 1.2 -11.5  

 J38 243.50 2.50 1.6 -11.2  

 J39 244.00 3.00 0.6 -11.4  

Transect c-c’ in Figure 6: Mt. Schader geologic map (begins at 36°26'50.85" N, 116°05'53.02" W; ends at 

36°26'45.94" N, 116°05'46.85" W) 

Zjj J40 284.00 0.00 1.7 -8.6  

 J41 284.50 0.50 1.2 -7.6  

 J42 285.00 1.00 1.6 -7.6  

 J43 328.00 0.00 -0.6 -11.7  

 J44 328.50 0.50 0.2 -9.8  

 J45 329.00 1.00 -0.6 -10.1  

 J46 329.50 1.50 2.3 -9.0  

 J47 330.00 2.00 2.8 -10.2  

 J48 330.50 2.50 3.2 -9.7  

 J49 331.00 3.00 3.9 -9.6  

 J50 332.00 4.00 3.8 -9.8  

Zjk J51 347.50 0.00 2.3 -5.0  

 J52 347.75 0.25 2.1 -7.0  

 J53 348.00 0.50 2.1 -7.1  

 J54 348.50 1.00 1.4 -5.4  

 J55 367.00 0.00 4.9 -7.0  

 J56 367.50 0.50 4.2 -8.3  

 J57 368.00 1.00 4.5 -8.2  

 J58 368.50 1.50 3.0 -13.6  

 J59 369.00 2.00 3.4 -10.8  

 J60 369.50 2.50 4.1 -8.2  

 J61 370.00 3.00 2.1 -10.6  

 J62 370.50 3.50 1.9 -10.9  

 J63 371.00 4.00 1.7 -8.8  
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Transect d-d’ in Figure 6: Mt. Schader geologic map (begins at 36°27'28.71" N, 116°05'16.42" W; ends at 

36°27'24.47" N, 116°05'10.44" W) 

Zjl J64 438.00 0.00 -1.0 -7.3  

 J65 438.50 0.50 -0.2 -6.9  

 J66 439.00 1.00 -0.6 -7.7  

 J67 439.50 1.50 -0.6 -8.3  

 J68 440.00 2.00 -1.9 -7.0  

Zjr J69 457.00 0.00 -3.2 -7.2 Johnnie oolite 

 J70 458.00 1.00 -4.0 -9.8  

 J71 459.00 2.00 -4.4 -8.7  

*All locations recorded using GPS with the WGS84 coordinate system 
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Table S2: All ages modeled using hypothetical Pahrump Group substrate 

  Model ages (Ma) 

  τ = 55 my τ = 60 my τ = 65 my 

Unit Age 

(Ma) 

Min Int Max Min Int Max Min Int Max 

MzPzco ~243 - - - - - - - - - 

Ddg 359 - - - - - - - - - 

Dn 383 - - - - - - - - - 

Dl 393 342 327 288 324 307 265 306 288 242 

Sl 419 364 349 310 348 332 289 331 314 268 

Oes 444 378 365 318 363 349 298 348 333 278 

Oe 458 393 379 332 380 364 313 366 350 294 

Op1 470 436 429 413 427 419 401 417 409 390 

OЄn1 485 468 460 440 461 452 431 454 445 422 

Єbk1 497 481 470 442 475 464 433 470 457 424 

Єc1 509 513 507 492 511 504 488 508 501 483 

ЄZwc1 541 541 541 541 541 541 541 541 541 541 

Zse - 545 546 547 546 546 548 546 547 548 

Zsd - 554 556 560 556 558 561 557 559 563 

Zsc - 554 556 560 556 558 562 557 559 563 

Zsb - 559 562 566 561 563 568 562 565 571 

Zsa - 561 564 569 563 566 571 565 568 574 

Zjr2 - 569 572 579 571 575 582 574 578 585 

Zjr1 - 573 577 584 576 580 588 579 584 592 

Zjl - 574 577 584 577 581 588 580 584 592 

Zjk - 575 579 586 578 582 590 581 586 594 

Zjj - 577 581 588 580 584 592 583 588 596 

Zji - 580 585 592 584 589 597 587 592 602 

Zjh - 581 586 594 585 590 598 588 594 603 

Zjg - 582 587 595 586 591 600 590 595 605 

Zjf - 584 589 598 588 594 603 592 598 608 

Zje - 585 590 598 589 594 603 593 599 608 

Zjd - 590 595 604 594 600 609 598 605 615 

Zjc2 - 594 600 609 599 605 616 604 611 622 

Zjc1 - 595 601 610 600 606 617 605 612 623 

Zjb - 596 602 611 601 607 618 606 613 624 

Zja - 598 604 614 603 610 621 609 616 627 

Zjt - 600 606 616 605 612 623 611 618 630 

Zkpw 635 602 608 618 607 614 625 613 620 632 

Zkpth - 603 609 620 609 615 627 614 622 634 

Zkpmg - 604 610 621 610 617 628 615 623 635 

Zkpsmp - 605 612 622 611 618 630 617 625 637 

Zkpls - 608 615 626 615 622 634 621 629 641 

Zbs - 614 621 633 621 628 641 627 636 649 

Zhs <787 616 623 635 623 631 643 630 638 652 

Ycs2 >1087 619 627 638 626 634 647 633 642 656 

Ycs1 - 621 629 641 629 637 650 636 645 659 

(base) - 628 637 649 636 645 659 644 654 669 
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Figures 

 

Figure S1 
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Figure S2: Zjr (j69-71) 
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Figure S2: Zjl (j64-68) 
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Figure S2: Zjk2 (j55-63) 
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Figure S2: Zjk1 (j51-54) 
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Figure S2: Zjj2 (j43-50) 
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Figure S2: Zjj1 (j40-42) 
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Figure S2: Zji2 (j34-39) 
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Figure S2: Zji1 (j33) 
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Figure S2: Zjh6 (j23-32) 
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Figure S2: Zjh5 (j21-22) 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

-9.6 -9.4 -9.2 -9 -8.8 -8.6

d
1
3
C

d18O



125 
 

 

 

Figure S2: Zjh4 (j20) 
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Figure S2: Zjh3 (j19) 
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Figure S2: Zjh2 (j5-18) 



128 
 

 

 

Figure S2: Zjh1 (j1-4) 



129 
 

 

 

Figure S2: Zjf (j76-107) 
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Figure S2: Zjc (j72-75) 
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Figure S3: BD1 
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Figure S3: BD4 
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Figure S3: BD5 
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Figure S3: BD6 
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Figure S3: KDW 
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Figure S3: MD5 
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Figure S3: MD6 
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Figure S3: MDE 
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Figure S4 
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Figure S5 
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Figure S6
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Supplemental Text 

 

Lithologic descriptions regarding the Mt. Schader stratigraphic section for the Ediacaran 

Johnnie Formation, Montgomery Mountains, Nevada 

 

Thickness of stratigraphic units were measured with a Jacob’s staff and recorded to the 

nearest 1/4 or 1/3 of a meter. Care was taken to avoid structural complexities (i.e. by moving 

to locations where faults and/or folds are not present). Color names and numerical 

designations were recorded using a Geological Society of America Rock Color Chart with 

genuine Munsell color chips. Grain sizes were recorded using an American/Canadian 

Stratigraphic reference card. Bed thicknesses use the following general designations: thin, 

<20 centimeters; medium, >20 centimeters; and thick, >50 centimeters. Total thickness of 

section measured is 538 meters for the Johnnie Formation, and 54 meters for the Stirling 

Quartzite (grand total of 592 meters). 
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Locality 1 (section 4, d-d’) 

 

Northeast part of Montgomery Mountains, measured about 3 kilometers west/southwest of 

Mt. Schader, starting at UTM zone 11S 0581729 m E 4035133 m N, and ending at UTM 

zone 11S 0581879 m E 4035004 m N. 

 

Stirling Quartzite (incomplete): 

Zsa member (incomplete):   

Meters 

48. Breccia and conglomerate. Breccia and conglomerate are very 

pale orange (10YR 8/2); weather to dark yellowish orange (10YR 

6/6) and grayish black (N2); grains are poorly sorted coarse sand, 

pebbles, gravel; massive bedding; irregular cliff-forming 

protrusions; slickenlines on slickensided surfaces. Samples 

20BW15 (590 m breccia) and 21BW15 (591 m). Incomplete 

measurement of bed.  

4 

47. Massive orthoquartzite. Orthoquartzite is pinkish gray (5YR 

8/1); weathers to moderate yellowish orange (10YR 7/6); medium-

coarse well-sorted grains; massive bedding with conjugate 

fractures; some cliff-forming protrusions on mostly recessive 

slopes. Sample 19BW15 (583 m-orthoquartzite). 

14 
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46. Dolomitic sandstone. Dolomitic sandstone is grayish orange 

pink (5YR 7/2); weathers to grayish brown (5YR 3/2); fine-grained; 

laminated medium beds; trough cross strata; resistant cliff-forming 

unit.  

8 

45. Orthoquartzite and carbonate cemented sandstone. 

Orthoquartzite is very pale orange (10YR 8/2); weathers to dark 

yellowish orange (10YR 6/6); fine- to medium-grained; thick 

bedded; some laminations with fractures both along laminations 

and sub-orthogonal to laminations; channel fill with normal grading 

near base. Carbonate cemented sandstone is pale reddish brown 

(10R 5/4); weathers to olive black (5Y 2/1); fine-grained; medium-

thick bedded; sometimes laminated. 

28 

----- 

Total of incomplete Zs member   54 

----- 

Total of incomplete Stirling Quartzite   54 

 

Johnnie Formation (incomplete): 

Zjr member: 
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44. Sandstone and siltstone in ball-and-pillow structure, and 

dolostone. Ball-and-pillow structure is 1-2 m thick; light brown 

(5YR 6.4); weathers to dusky yellowish brown (10YR 2/2); 

sandstone is fine- to medium-grained; siltstone casted around 

sandstone. Other sandstone is pale red (5R 6/2); weathers to dark 

yellowish orange (10YR 6/6); fine-grained; medium bedded. 

Siltstone is typical VSS with additional new hue of pale red (5R 

6/2); weathers to light greenish gray (5GY 8/1); speckled by 1 mm 

hematite grains; laminated.  Dolostone is medium light gray (N6); 

weathers to yellowish orange (10YR 6/6) and light brown (5YR 

6/4). Base of dolomitic sandstone is moderate yellowish brown 

(10YR 5/4); weathers to dusky yellowish brown (10YR 2/2) 

medium grains; some south-dipping foresets. 

           4         

43. VSS and calcite-cemented sandstone. VSS as previous. Sandy 

limestone is pale red (10R 6/2); weathers to pale reddish brown 

(10R 5/4); very fine-grained; thin lenses of flaser beds. 

8 

42. Limestone breccia and sucrosic limestone. Limestone breccia is 

light gray (N7); weathers to light olive gray (5Y 5/2). Sucrosic 

limestone is pale red (10R 6/2); weathers to pale reddish brown 

(10R 5/4). Sandy limestone and calcite cemented sandstone with 
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laminated thin interbeds of sucrosic limestone; recessive, slope-

forming unit. 

24 

41. Mixed siltstone and carbonate-rich sandstone. Siltstone as VSS; 

finely laminated. Sandstone is pale red (10R 6/2); weathers to dark 

yellowish brown (10YR 4/2); fine-grained, thin- to medium-

bedded. Siltstone and sandstone form recessive slope-forming unit.  

18 

40. Argillite and limestone. Argillite is medium dark gray (N4); 

weathers to medium gray (N5); very fine mica, phyllitic texture. 

Limestone is laminated, as in unit 38. 

5 

39. Folded limestone. Same as liver limestone (38): pale reddish 

brown (10R 5/4); weathers to grayish red (10R 4/2); varnish is very 

dusky red (10R 2/2); folded top to west, pitted dissolution surfaces. 

1 

38. Liver limestone. Limestone is pale reddish brown (10R 5/4); 

weathers to grayish red (10R 4/2). Fine-grained with interspersed 

quartz grains; thinly to medium bedded, massive to laminated beds; 

occasional brecciation near top. 

11.5 

37. Carbonate-rich sandstone. Sandstone is grayish red (10R 4/2); 

weathers to pale reddish brown (10R 5/4) and dark yellowish 
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orange (10YR 6/6) and various similar hues; fine-medium grains; 

thinly bedded and finely laminated with rare north-dipping foresets. 

7.5 

36. Dolomitic oolite; “Johnnie Oolite”. Oolite is pale yellowish 

brown (10YR 6/2); weathers to grayish orange (10YR 7/4); very 

coarse-grained. 

2 

35. VSS. VSS is finely laminated, occasionally phyllitic, with rare 

N-dipping foresets and occasional quartz veins. 

17 

----- 

Total of Zjr member   98 

 

Zjl member (combine with Zjl from section 3): 

 

34. Laminated dolostone. Dolostone is pale yellowish brown 

(10YR 6/2); weathers to moderate yellowish brown (10YR 6/4); 

thick, laminated beds. 

2 

33. VSS and dolomitic sandstone (incomplete). VSS as previous. 

Dolomitic sandstone is medium gray (N5); weathers to moderate 

yellowish orange (10YR 5/6); fine-grained. Beds are massive with 

varnish of dark gray (N3). 
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6 

 

Locality 1 (section 3, c-c’) 

 

Northeast part of Montgomery Mountains, measured about 3 kilometers west/southwest of 

Mt. Schader, starting at UTM zone 11S 0580829 m E 4033958 m N (approximate), and 

ending at UTM zone 11S 0580984 m E 4033808 m N. 

 

Meters 

Johnnie Formation (incomplete):  

Zjl member (combine with Zjl from section 4): 

 

32. Orthoquartzite and siltstone (VSS) as in 31. Sample 18BW15 

(430 m), medium-grained orthoquartzite (incomplete).  

36 

31. Orthoquartzite and minor siltstone. Light brownish gray (5YR 

6/1); weathers to moderate brown (5YR 4/4) and grayish black 

(N2); siltstone is fine-medium grained; thin-thick parallel beds with 

some hummocky cross-strata. 

12 

30. Siltstone and fine sandstone with minor orthoquartzite. Siltstone 

and fine sandstone, as VSS, are variegated; bluish white (5B 4/1) 

weathers to blackish red (5R 2/2) and green (undocumented), thin 
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beds. Orthoquartzite is medium light gray (N6); weathers to 

moderate reddish brown (10R 4/6). 

13 

----- 

Total of Zjl member   69 

 

Zjk member:  

 

29. Dolostone with chert. Dolostone is medium gray (N5); weathers 

to light olive gray (5Y 5/2) and medium yellowish brown (10YR 

6/4). Dolostone is medium bedded with chert in lower third of 

section. Chert is medium light gray (N6); weathers to grayish black 

(N2). Hummocky cross-stratified mounds with anastomosing 

laminations in middle of section. Samples J63 (371 m), J62 (370.5 

m), J61 (370), J60 (369.5), J59 (369), J58 (368.5), J57 (368), J56 

(367.5), and J55 (367). 

4 

28. Siltstone and orthoquartzite, mainly parallel bedded. 

18 

27. Dolostone. Medium gray (N5); weathers to moderate olive 

brown (5Y 4/4) and moderate yellowish brown (10YR 5/4). 

Medium bedded with basal sandy dolostone. Samples J54 (349 m), 

J53 (348.5 m), J52 (348 m), and J51 (347.5 m). 
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2 

26. Siltstone and orthoquartzite.  Siltstone is typical variegates 

sandstone and siltstone, bluish white (5B 4/1) and blackish red (5R 

2/2) and green (undocumented color), thinly bedded with thin beds 

or orthoquartzite. Orthoquartzite is medium light gray (N6); 

weathers to moderate reddish brown (10R 4/6), ripple laminations. 

15 

----- 

Total of Zjk member   39 

 

Zjj member (combine with Zjj from section 2):  

 

25. Dolostone and sandy dolostone. Dolostone is medium-dark gray 

(N4); weathers to olive gray (5Y 4/1); medium-thick bedded; some 

hummocky cross-stratified structures. Sandy dolostone is medium 

gray (N6-N8); weathers medium yellowish brown (10 YR 5/4); 

medium-thick beds with pure dolostone blebs and no chert. Samples 

J50 (332 m), J49 (331.5 m), J48 (331 m), J47 (330.5 m), J46 (330 

m), J45 (329.5 m), J44 (329 m), and J43 (328.5 m).  

5 

24. Orthoquartzite and Siltstone. 2-4 m thick orthoquartzite and 

siltstone beds in rhythmic sets every 5 m. Siltstone coarsens upward 

into top (final) orthoquartzite bed.  
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23 

23. Siltstone and sandstone. Siltstone is variegated (variegated 

sandstone and siltstone=VSS); mainly bluish white (5B 4/1); 

weathers to blackish red (5R 2/2); also typically green 

(undocumented color); thinly bedded. Sandstone is orthoquartzite; 

medium light gray (N6); weathers to moderate reddish brown (10R 

4/6); minor in abundance. 

19 

22. Dolomitic sandstone marker bed. Light olive gray (5Y 6/1); 

weathers to moderate brown (5YR 4/6); fine to medium sand; some 

hummocky cross stratification (HCS). Samples J42 (285 m), J41 

(284.5 m), and J40 (284 m). 

1 

21. (combine with unit 21 in section 2) Orthoquartzite, sandstone 

and siltstone. Orthoquartzite is medium light gray (N6); weathers to 

moderate reddish brown (10R 4/6); fine sand; thickly bedded. 

Sandstone and siltstone are variegated (VSS); “both “green-brown” 

and “lt. blue-red” shades of variegation present in VSS”-green color 

undocumented; bluish white (5B 4/1); weathers to blackish red (5R 

2/2); fine sand; thinly bedded; some hummocky cross stratification 

(HCS). 

27 
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Locality 1 (section 2, b-b’) 

 

Northeast part of Montgomery Mountains, measured about 3 kilometers west/southwest of 

Mt. Schader, starting at UTM zone 11S 0581155 m E 4034809 m N, and ending at UTM 

zone 11S 0581315 m E 4034785 m N. 

 

Meters 

Johnnie Formation (incomplete): 

Zjj member (combine with Zjj in section 3): 

 

21. (combine with unit 21 in section 3) Orthoquartzite, sandstone 

and siltstone. Orthoquartzite is medium light gray (N6); weathers to 

moderate reddish brown (10R 4/6); fine sand; thickly bedded. 

Sandstone and siltstone are variegated (VSS); “typical green fine 

sand of VSS”-green color undocumented; thinly bedded. Samples 

17-BW-15 (247 m-sandstone) and 16-BW-15 (246.5 m-siltstone). 

13 

----- 

Total of Zjj member   88 

 

Zji member (also see Zji from section 1):  
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20. Dolomitic sandstone. Medium gray (N5); weathers to pale 

reddish-brown (10R 5/4) and moderate yellowish-brown (10YR 

5/4); fine to medium sand; medium bedded. Hummocky cross 

stratification (HCS), with an east-west trend in one well-exposed 

hummock. Samples J39 (244 m), J38 (243.5 m), J37 (243.25 m), 

J36 (242.75), J35 (241.5 m), J34 (241 m), and 15-BW-15 (242 m-

dolomitic sandstone). 

3 

19. Orthoquartzite and siltstone. Orthoquartzite is medium light 

gray (N6); weathers to moderate reddish brown (10R 4/6); fine 

sand; thickly bedded. Siltstone has some sandstone (~25%) and is 

variegated (VSS); mainly bluish white (5B 4/1); weathers to 

blackish red (5R 2/2); fine sand; medium bedded. Orthoquartzite 

and siltstone occur in relative abundances of 75%/25% 

(respectively) throughout this section. Hummocky cross 

stratification is very prominent at ~190 m (most sandstone beds 

involved) and good hummocks in cross section at ~184 m; 

sandstone is more commonly medium-grained and micaceous at 

~210 m; conspicuous thickly bedded intervals in 5-10 m cycles 

begin at ~215 m and continue through ~240 m. Sample 14-BW-15 

(210.5 m-orthoquartzite; light purplish gray (5P 8/1); weathers to 

dark yellowish brown (10YR 4/4) and dusky yellowish brown 

(10YR 2/2); medium sand; thickly bedded). Thickness is 
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approximate; contact is covered in talus; bed surfaces in the float 

contain asymmetric ripples. 

63 

18. Orthoquartzite and siltstone. Orthoquartzite is grayish red (5R 

4/2); weathers to very dusky red (10R 2/2); fine to medium sand 

(borderline); bedding thickness unknown. Siltstone is variegated 

(VSS); mainly blush white (5B 4/1); weathers to blackish red (5R 

2/2); thinly bedded. Siltstone occurs in decimeter partings on ~30-

70 cm sandstone beds. 

14 

17. Sandstone (dolomitic at the base of this unit) and siltstone. 

Sandstone can be light bluish gray (Munsell code unknown), 

grayish red purple (5RP 4/2) where carbonate-poor, and light brown 

(5YR 5/6) where carbonate-rich; weathers to moderate yellowish 

brown (10YR 5/4) where carbonate-poor, and moderate/light 

brown (5YR 4/6) where carbonate-rich; fine to medium sand; 

medium to thickly bedded. Siltstone is variegated (VSS); mainly 

bluish white (5B 4/1); weathers to blackish red (5R 2/2); thinly 

bedded. Carbonate cement occurs in lowest 2-3 sand beds; some 

hummocks observed, mainly parallel laminations. Sample J33 (152 

m). 

20 
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Locality 1 (section 1, a-a’) 

 

Northeast part of Montgomery Mountains, measured about 3 kilometers west/southwest of 

Mt. Schader, starting at UTM zone 11S 0581057 m E 4035219 m N, and ending at UTM 

zone 11S 0581293 m E 4035178 m N. 

 

Meters 

Johnnie Formation (incomplete): 

Zji member (also see Zji from section 2): 

 

16. Orthoquartzite and siltstone. Orthoquartzite is light gray (N7); 

weathers to brownish black (5YR 2/1); fine to medium sand; thin to 

medium bedded, mainly low angle hummocky cross stratification 

and parallel lamination. Siltstone is variegated (VSS); mainly 

medium to light bluish gray (5B 6/1), moderate red (5R 4/3 or 5R 

5/4?), grayish orange pink (5YR 7/2), and grayish orange (10YR 

7/4); weathers to light greenish gray (5GY 8/1), and brownish gray 

(5YR 4/1); laminated to massive. At the bottom, mainly low angle 

hummock cross stratification and parallel lamination; at the top, 

unit forms uniform, fairly steep hillsides and is predominantly 

parallel bedded with some hummocky cross stratification. Sample 

13-BW-15 (198 m-coarse orthoquartzite from highest thick bed). 
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Note: unit 16 is omitted because for section 2, we restart at the base 

of the Zji member and repeat the same stratigraphy. 

(58) 

----- 

Total of Zji member   100 

 

Zjh member: 

 

15. Dolostone; medium gray (N5) and dark gray (N3); weathers to 

moderate yellow brown (10YR 5/4) and medium gray (N5); fine-

grained to sucrosic; thickly bedded. Some evidence of hummocky 

cross stratification, but not as pronounced as in lower carbonate. 

“Colors vary; reddish gray top and bottom from alteration; more 

conspicuous here than in most markers.” Samples J32 (144 m), J31 

(143.66 m), J30 (143.33 m), J29 (143 m), J28 (142.5 m), J27 (142 

m), J26 (141.5 m), J25 (141 m), J24 (140.5 m), and J23 (140 m). 

5 

14. Sandstone and siltstone. Sandstone is medium light gray (N6); 

weathers to brownish gray (5YR 4/1); fine sand; thin to medium 

bedded. Siltstone is variegated (VSS); mainly medium to light 

bluish gray (5B 6/1), moderate red (5R 4/3 or 5R 5/4?), grayish 

orange pink (5YR 7/2), and grayish orange (10YR 7/4); weathers to 
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light greenish gray (5GY 8/1), and brownish gray (5YR 4/1); 

laminated to massive. Mainly parallel bedding. 

12.25 

13. Sandy limestone; medium reddish brown (10R 4/6) and 

moderate yellowish brown (10YR 5/4); weathers to moderate 

brown (10YR 5/4); fine sand; medium bedded. No well-developed 

lamination or internal structure. Samples J22 (126.75 m), and J21 

(125.75 m). 

1 

12. Very fine sandstone (vfs) and siltstone. Very fine sandstone is 

medium light gray (N6); weathers to dusky yellowish brown (10YR 

2/2); thinly bedded. Siltstone has several “modes”: brown and light 

green (Munsell codes unknown); pale red and light green (Munsell 

codes unknown). Photo of light green and red vfs at ~118 m. 

14.75 

11. Sandstone with minor carbonate (carbonate occurs in two 

separate decimeter-scale beds). Sandstone is light bluish gray (5B 

7/1); weathers to grayish orange (10YR 7/4) or light brown (5YR 

5/6); fine sand; thinly to medium bedded. Carbonate is grayish red 

(5R 4/2); weathers to grayish red (10R 4/2); fine sand; thinly to 

medium bedded. Overall, this unit forms a resistant interval; mostly 

parallel bedded with some cross stratification; intense hummocky 

cross stratification (HCS); hummocks are apparently cross-
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stratified with decimeter-scale “mounds” similar to unit 9 

carbonates. Samples J20 (109 m; moderate yellowish brown (10YR 

5/4); weathers to moderate brown (5YR 5/4)), and J19 (107 m). 

7 

10. Very fine/fine sandstone and siltstone. Very fine/fine sandstone 

is pale yellowish brown (10YR 6/2); weathers to dark yellowish 

brown (10YR 4/2); thinly bedded. Siltstone is variegated (VSS); 

mainly light bluish gray (5B 6/1), moderate red (5R 4/3 or 5R 5/4?), 

grayish orange pink (5YR 7/2), and grayish orange (10YR 7/4); 

weathers to light greenish gray (5GY 8/1), and brownish gray (5YR 

4/1); laminated to massive. Photo of “brown-light green VSS” at 

~96 m. 

10 

9. Stromatolitic dolostone; light olive gray (N4 or 5Y 6/1) or grayish 

red (10R 4/2); weathers to light olive gray (N5) or moderate 

yellowish brown (10YR 5/4); “macroscopically, unit tends to 

whether brown, lesser olive gray”; fine-grained/very fine-grained to 

micritic; medium to thickly bedded. Dolostone is laminated with 

variably steep-sided mound structures ~0.5-1 m across (three 

photos at ~89 m and ~92 m). Truncations of mounds observed at 

bedding interfaces. Samples J18 (94 m), J17 (93.66 m), J16 (93.33 

m), J15 (93 m), J14 (91.5 m), J13 (91 m), J12 (90.5 m), J11 (90 m), 
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J10 (89.5 m), J9 (89 m), J8 (88.5 m), J7 (88 m), J6 (87.5 m), and J5 

(87 m). 

7 

8. Sandstone; thin to medium beds are medium light gray (N6), and 

weather to medium dark gray (N4) or moderate yellowish brown 

(10YR 6/4); basal bed is light greenish gray (5GY 6/1), and 

weathers to dark greenish gray (5GY 4/1); fine to medium sand. 

Inconspicuous orthoquartzites, sandstone, and variegated 

sandstones and siltstones (VSS) occur near the top of this unit; near 

the bottom, sands are thinly bedded with no/minor cross 

stratification (not orthoquartzite, somewhat friable and porous in 

places). 

18.5 

7. Very fine sandstone and siltstone. Very fine sandstone is light 

purplish blue (5PB 8/1), or “white”; weathers to dark reddish brown 

(10R 4/4); thinly to medium bedded. Siltstone is variegated (VSS); 

mainly light bluish gray (5B 6/1), moderate red (5R 4/3 or 5R 5/4?), 

grayish orange pink (5YR 7/2), and grayish orange (10YR 7/4); 

weathers to light greenish gray (5GY 8/1), and brownish gray (5YR 

4/1); laminated. 

4 

6. Dolostone; dark gray (N3); weathers to moderate yellowish 

brown (10YR 5/4); fine-grained; medium bedded with laminations 
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and thin (~1-2 cm) siliceous stringers; some dispersed quartz grains; 

complex structures; disruptions in laminations. Samples J4 (64.5 

m), J3 (64 m), J2 (63.5 m), and J1 (63 m). 

1.5 

5.  Very fine sandstone and siltstone. Very fine sandstone is light 

purplish blue (5PB 8/1), or “white”; weathers to dark reddish brown 

(10R 4/4); thinly to medium bedded; interbeds are massively 

textured, with a fair degree of induration. Siltstone is variegated 

(VSS); mainly light bluish gray (5B 6/1), moderate red (5R 4/3 or 

5R 5/4?), grayish orange pink (5YR 7/2), and grayish orange (10YR 

7/4); weathers to light greenish gray (5GY 8/1), and brownish gray 

(5YR 4/1); laminated. Overall, this is a recessive, slope-forming 

unit. 

17.5 

4. Orthoquartzite and very fine sandstone/siltstone. Orthoquartzite 

is medium light gray (N6); weathers to medium gray (N5); fine to 

medium sand; thickly bedded at base, medium to thinly bedded 

higher in unit; heavy desert varnish and cross-stratified higher in 

unit; silty “caps” on sandstone beds have abundant grooves/tool-

markings, and small current ripples. Very fine sandstone/siltstone 

can be moderate red/grayish red (5R 4/3), light brown (5YR 5/6), 

or medium light bluish gray (5B 6/1); weathers to moderate 

red/grayish red (5R 4/3), moderate brown (5YR 4/4), or light 
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greenish gray (5GY 8/1) and darker hues. Generally, orthoquartzite 

is resistant, while very fine sandstone is recessive. 

6.5 

----- 

Total of Zjh member   105 

 

Zjg member (incomplete) 

 

3. Interstratified variegated sandstone and siltstone (VSS), and 

orthoquartzite. Siltstone has various hues and is “patchy” or 

“pinstriped”; hues include medium light bluish gray (5B 6/1), 

grayish orange pink (5YR 7/2), and grayish orange (10YR 7/4); 

weathers to brownish gray (5YR 4/1), light greenish gray (5GY 

8/1), and darker hues. Sandstone is moderate red to grayish red (5R 

4/3); weathers to moderate red/grayish red (5R 4/3); fine-grained. 

VSS is interstratified on the cm-scale. Orthoquartzite is medium 

gray (N6); weathers to medium dark gray (N4); thinly to medium 

bedded; 0.5 m foresets with steeply truncated laminatiosn observed 

near base at ~16 m. VSS is generally recessive and slope-forming 

unit; orthoquartzite beds are resistant. 

22 
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2. Orthoquartzite; medium light gray (N6); weathers to medium 

dark gray (N4); thinly bedded. Thickness of this unit is certainly >2 

m because there is a minor break in section (due to poor exposure). 

2 

1. Interstratified variegated sandstone and siltstone (VSS), and 

orthoquartzite. Sandstone is light brown (5YR 5/6); weathers to 

moderate brown (5YR 4/4); medium to fine sand; thinly to medium 

bedded. Siltstone is medium to light bluish gray (5B 6/1); weathers 

to light greenish gray (5GY 8/1) and darker hues; laminated to 

massive. Orthoquartzite is medium gray (N6); weathers to medium 

dark gray (N4); medium sand; thin to medium parallel bedding, 

with low-angle trough cross stratification observed at ~3 m. 

15 

----- 

Total of incomplete Zjg member   39 

----- 

Total of incomplete Johnnie Formation   538 
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C h a p t e r  3  

 

THE LAVIC LAKE FAULT: A LONG TERM CUMULATIVE SLIP ANALYSIS VIA 

COMBINED FIELD WORK AND THERMAL HYPERSPECTRAL AIRBORNE 

REMOTE SENSING 

 

Rebecca A. Witkosky1, Joann M. Stock1, David M. Tratt2, Kerry N. Buckland2, Paul M. 

Adams2, Patrick D. Johnson2, David K. Lynch2, and Francis J. Sousa3 

 

1California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. 

California Blvd., MC 170-25, Pasadena CA 91125 

2The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo CA 90245 

3Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS 

Administration Building, Corvallis, OR 97331-5503 

 

ABSTRACT 

 

The 1999 Mw 7.1 Hector Mine earthquake was a major surface-rupturing event in 

the Mojave Desert region of eastern California, with coseismic right-lateral slip in excess of 

5 m along the Lavic Lake fault. The cumulative long-term bedrock offset and geologic slip 

rate of this fault are not well defined, which inhibits tectonic reconstructions of the Eastern 

California shear zone (ECSZ). Furthermore, access to the fault is restricted, which 

complicates field work to study the fault’s geological history. We gained access to the area 

in 2012 and 2014 to collect new field data, and in 2013, we collected new thermal 
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hyperspectral airborne imagery with a 2 m pixel size. With this new data, and auxiliary 

information from older geologic maps, we created lithologic maps of the area using 

supervised and unsupervised classifications of the remote sensing imagery. Based on our 

own field observations, we defined end member rock classes for the supervised 

classifications over a small test area. The high spatial and spectral resolution of the airborne 

sensor, along with a lack of significant vegetation, allowed us to optimize a data processing 

sequence for supervised classifications, resulting in lithologic maps of the test area with an 

overall accuracy of 71 ± 1%. For the unsupervised classifications, we first relied on an 

algorithm to define classes based on spectral information within the complete swath of 

remote sensing imagery, and then assigned rock types to these classes using information from 

a previous map of the area. To identify bedrock offset by the fault, we used the unsupervised 

lithologic classification map. A boundary between units in our unsupervised classification 

map correlated very well with a lithologic boundary that is displaced by the fault in a 

previously published geologic map.  The lithologic boundary, a depositional contact between 

two volcanic units, pre-dates the Lavic Lake fault, thus capturing the entire cumulative long-

term offset. We used the displaced depositional contact to calculate the vertical component 

of slip along the main Lavic Lake fault, and an older cross fault to measure the horizontal 

component of slip along the main fault. We then combined the vertical and horizontal 

components to derive a net fault slip of 960 +70/-40 m. We interpret that value as a maximum 

due to uncertainty in the dip angle of the cross fault. Our value is significantly less than a 

previous estimate of cumulative offset (3.4 ± 0.8 km) that was based on an offset magnetic 

feature, which we suggest may be partially due to off-fault deformation along proximal, 

smaller ECSZ structures. Our data corroborate past suggestions that transient tectonic 



165 
 

activity in the ECSZ may be responsible for the observed discrepancy between the higher 

current, measured geodetic slip rate and the total geologic rate since ~750 ka. 

 

INTRODUCTION 

 

The 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes resulted in two 

major surface ruptures in the Mojave Desert region of eastern California (Figure 1). The 

faults that ruptured in the 1992 Landers event were mostly located on publicly accessible 

land, allowing considerable subsequent geologic investigation (e.g. Sieh et al., 1993; Johnson 

et al., 1993; Arrowsmith and Rhodes, 1994; Unruh et al., 1994; Spotila and Sieh, 1995; 

Zachariasen and Sieh, 1995; Savage and Svarc, 1997; McGill and Rubin, 1999; Rockwell et 

al., 2000). However, faults that ruptured in the 1999 Hector Mine event (Figure 1), which 

include the Lavic Lake fault, and portions of the Calico-Hidalgo, Mesquite Lake, Pisgah-

Bullion faults (Figure 2A), lie within the United States Marine Corps Air Ground Combat 

Center (MCAGCC), Twentynine Palms, and therefore received only limited field-based 

study (Treiman et al., 2002).  

Remote sensing methods can yield additional useful data for studying these faults. 

The coseismic slip of the 1999 Hector Mine earthquake has been investigated with several 

remote sensing methods: InSAR from Fialko and Simons (2001); InSAR from Sandwell et 

al. (2002); InSAR and GPS from Simons et al. (2002); lidar-based offset measurements from 

Hudnut et al. (2002); lidar-based offset measurements from Chen et al. (2015); lidar-based 

(as well as field-based) offset measurements from Sousa (2016). Results of these studies 

generally concur with the principal field-based slip measurements (Treiman et al., 2002).  
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In this paper we use a new and more detailed remote sensing data set, thermal 

hyperspectral airborne imagery, to produce a geologic swath map and estimate the 

cumulative long-term tectonic offset of bedrock along the Lavic Lake fault. With this 

imagery, it is possible to differentiate various minerals and lithology within a scene by 

comparison of their spectra via supervised and unsupervised classifications. These are 

algorithmic classification methods for grouping pixels in an image by quantifying and 

comparing spectral similarity. We first used supervised classifications, which require the user 

to have some knowledge of ground cover (for lithologic mapping, the composition of rocks 

exposed at the surface) over an area to “train” the algorithm by deciding a priori what end 

member components will be mapped within an image. These classifications allow the user 

to quantify the accuracy of the mapping algorithm through comparison with ground-truth 

data. Ultimately, we also used unsupervised classifications that do not require any knowledge 

of ground cover but still group and map pixels into classes based on spectral similarity. 

Unsupervised classifications are more subjective and exploratory, but a quantitative accuracy 

analysis is not possible without ground truth data. We took a hybrid approach to exploit the 

advantages of both methods, by mapping a small example site in the field and then using 

supervised classifications to find the optimum hyperspectral image data processing sequence. 

This allowed us to use our dataset for remote geologic mapping via unsupervised 

classifications over a much larger area.  

The thermal infrared wavelength range, λ = 8-15 μm, is appropriate for mapping 

volcanic lithologies, such as those along the Lavic Lake fault, due to a silica absorption 

feature known as the Reststrahlen band. The Reststrahlen band appears as a minimum in 

emissivity spectra for silicate rocks and minerals and shifts to longer wavelengths as the 
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degree of silica polymerization in a rock or mineral decreases (Launer, 1952). The base unit 

in silicate minerals is the silica tetrahedron (SiO4). Polymerization occurs as silica tetrahedra 

in a crystal structure share an increasing number of oxygen ions, which increases the Si:O 

ratio and resultant weight percent silica. The Reststrahlen band is positioned at a longer 

wavelength for olivine (found in basaltic or ultramafic rocks), a silicate mineral that lacks 

Si:O polymerization, than for quartz (found in rhyolite or granite), in which polymerization 

and resultant weight percent silica is maximized. Since differences in volcanic lithology are 

defined by variations in weight percent silica (e.g., Le Bas et al., 1986), the shift in the 

Reststrahlen band can be used to map geochemical variation in volcanic rocks (Hook et al., 

2005). Therefore, spectra measured in the thermal infrared are ideal for categorizing and 

mapping the volcanic lithologies present along the Lavic Lake fault. 

Our goal in mapping the geology and total tectonic offset of the Lavic Lake fault is 

to expand and improve the information relevant to active tectonics and related seismic 

hazards in southern California. The fault is located in the Bullion Mountains of the Mojave 

Desert, California, but there is limited information on the geology of this area. The long-term 

cumulative offset along the Lavic Lake fault is not well resolved; in older maps, the Lavic 

Lake fault had not been formally named, the sense of displacement was unknown, and much 

of the fault’s surface trace was only mapped as an approximate location (Kupfer and Bassett, 

1962; Dibblee, 1966 (republished in 2008); Dibblee, 1967a; 1967b; 1967c).  

The 1999 earthquake and surface rupture provided key new information about this 

fault and also motivated additional studies. Treiman et al. (2002) were able to map the surface 

trace and determine that the fault slip was generally right lateral. The Hector Mine 

Earthquake Geologic Working Group (1999) formally named the fault after the Lavic Lake 
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playa, a geographic feature crossed by the northern end of the fault (Figure 2A). A cumulative 

offset measurement for the Lavic Lake fault was then determined via geophysical methods: 

Jachens et al. (2002) estimated 3.4 ± 0.8 km of dextral offset from offset magnetic anomaly 

pairs within the Bullion Mountains. Because the age of these offset magnetic anomaly pairs 

is unknown, a geologic slip rate could not be calculated. The geologic slip rate would be 

useful because of the discrepancy between integrated geologic fault slip rates and current 

geodetic crustal motion (~6 and 12 mm/yr, respectively) in eastern California (Oskin et al., 

2008). Long-term average geologic slip rates for the eastern California shear zone (ECSZ) 

range from 8.3 ± 1 mm/yr since 12 Ma (McQuarrie and Wernicke, 2005), to ≤6.2 ± 1.9 mm/yr 

since ~750 ka (Oskin et al., 2008). While Oskin et al. (2008) refer to their value as “geologic” 

rate, it could instead be considered a “geomorphic” rate, since it is averaged over a time 

interval of 103-106 years (e.g, see Table 2 in Friedrich et al. (2003), where “geologic” rates 

are defined as averages over 106-107 years). The discrepancy between geologic and geodetic 

slip rates in the eastern California shear zone could be minimized by including more accurate 

active fault slip rates into the total.  

Paleoseismology on the Lavic Lake fault in the playa area following the 1999 

earthquake also yielded several important results: the surface trace of the 1999 event had not 

previously ruptured for at least 7000 years, but another strand with geomorphic evidence 

(vegetation lineaments and uplifted basalt exposures) for recent activity ruptured sometime 

within the past ~1750 years (Rymer et al., 2002). Rymer et al. (2002) suggested that 

deformation has not yet been fully localized onto a single strand, suggesting that the Lavic 

Lake fault is relatively young. Since fault roughness and cumulative offset vary with age, a 

young fault provides an important data point for evaluating seismic hazard as a function of 
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fault maturity. Our objective is to measure the cumulative offset, which can be combined 

with bedrock ages to calculate a minimum geologic slip rate, and can also be used for 

palinspastic reconstructions of eastern California (e.g., McQuarrie and Wernicke, 2005). 

 

GEOLOGIC SETTING 

 

The Lavic Lake and Bullion faults are located in the Bullion Mountains, Mojave 

Desert, California. The Bullion Mountains have some 200 to 400 meters of topographic relief 

in bedrock outcrops. These include extrusive Tertiary and Quaternary igneous rocks, and 

underlying hypabyssal and intrusive lithologies of pre-Tertiary age (Kupfer and Bassett, 

1962). Surficial weathering of the volcanic bedrock has resulted in alteration to abundant 

clay and zeolite minerals, and erosion has created Quaternary surficial deposits of colluvium 

and fanglomerate. In the northwest portion of the Bullion Mountains where Miocene (?) to 

Oligocene igneous extrusive rocks crop out, the 1999 Hector Mine earthquake surface 

rupture along the Lavic Lake fault (Figures 1 and 2) reached a maximum right-lateral 

displacement exceeding 5 m (Treiman et al., 2002). Lithologic composition ranges from 

andesitic to basaltic, with massive and porphyritic textures (Dibblee, 1966). Bedding is right-

side up in this area, and attitudes generally strike northwest with ≤30° dip to the northeast. 

Many small faults are present that strike approximately northwest and show some right-

lateral separation, and there are also faults that strike generally east-west, with either left-

lateral or unknown sense of motion (Kupfer and Bassett, 1962). The other major named 

structure in the area, the Bullion fault, strikes approximately northwest and bounds the 

southwestern extent of the Bullion Mountains. This fault is sometimes combined with others 
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to define the Bullion-Rodman-Pisgah fault (e.g., Richard, 1993) with net slip estimates that 

range from 6.4-14.4 km (Dokka, 1983), up to 20-40 km (Garfunkel, 1974).  

Immediately north of the Bullion Mountains lies the Lavic Lake playa, which is 

composed mainly of hard packed clay (Kupfer and Bassett, 1962) and contains decameter-

scale surficial fractures and fissures that are linear and polygonal in shape. The fractures 

persist through multiple rainy seasons, and are likely caused by some combination of 

desiccation and crustal deformation (some from the 1999 Hector Mine earthquake). Farther 

north, the 22.5 ± 1.3 ka Pisgah basalts (Phillips, 2003) are in contact with Lavic Lake playa 

deposits. Paleoseismic trenching and dating of Lavic Lake playa strata (Rymer et al., 2002) 

show that the shallowest sediments postdate the Pisgah lavas.  But because the thicknesses 

of these units are unknown, an interfingering contact between these two units cannot be ruled 

out. 

The Lavic Lake fault is one of many faults comprising a tectonic province formally 

named the Eastern California shear zone (ECSZ) by Dokka and Travis (1990a; 1990b). 

Estimates for the inception age of ECSZ faulting vary widely, but some straightforward 

constraints come from cross-cutting field relationships. A minimum age for the onset of at 

least some ECSZ faulting is provided by a 3.77 ± 0.11 Ma basaltic lava that drapes over a 

fault scarp in the Black Mountains, near the Garlock fault (Oskin and Iriondo, 2004). 

Schermer et al. (1996) found that <11.7 Ma Miocene fan deposits and their older substrate 

are cut and displaced the same amount by component faults in the northeastern Mojave 

Desert with left-lateral offset. A palinspastic restoration model of mountain ranges in the 

southwestern United States concurs with the upper age limit of Schermer et al. (1996), 

finding ECSZ right-lateral displacement along faults oriented on average N25°W, since c. 
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12 Ma (McQuarrie and Wernicke, 2005). Several other estimates of ECSZ inception age 

utilize disparate methods, but all fall in the range of 5-6 Ma. Regional deformation in eastern 

California transitioned from extensional to right-lateral shear from 6-8 Ma (Snow and 

Wernicke, 2000), and this generalized right-lateral shear occurs from the Death Valley region 

across the Garlock fault into the northern extent of the ECSZ. Modeling the deflection of the 

Garlock fault suggests that right-lateral shear has deformed the region since 5.0 ± 0.4 Ma 

(Gan et al., 2003). Miller and Yount (2002) suggest that the proliferation of east-west striking 

left-lateral faults within the ECSZ controlled topography and consequently the flow direction 

of 5-6 Ma basaltic lavas. Woodburne (2015) couples ECSZ inception with, or possibly as a 

byproduct of, the opening of the Gulf of California at c. 6 Ma (Atwater, 1992; Atwater and 

Stock, 1998; Oskin and Stock, 2003; Bennett et al., 2015), and also cites a period of non-

deposition in the Mojave Desert region until c. 6 Ma to strengthen the argument of tectonic 

quiescence prior to that time. Constraints for the age of inception of the ECSZ are 

summarized in Table 1. 

In compiling the tectonic history of the ECSZ, the addition of cumulative net slip 

across all faults can be combined with age of inception to infer long-term geologic slip rates 

across the region. Earlier estimates of cumulative net slip across all right-lateral faults, 

striking approximately northwest, generally varied between 25-65 km (Dokka, 1983; Dokka 

and Travis, 1990a; Jagiello, 1991; Richard, 1993), but more recent estimates increase to 

about 100 km (McQuarrie and Wernicke, 2005; Bennett et al., 2016). The models used to 

derive net slip typically invoke clockwise rotation of fault blocks or considerable off-fault, 

continuous strain (Richard, 1993; McQuarrie and Wernicke, 2005), as this also can explain 

left-lateral slip along east-west striking faults within the ECSZ (e.g., see the model of 
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Luyendyk et al., 1980), although some opposing views imply counter clockwise rotation of 

the fault blocks bounded by right-lateral faults (Garfunkel, 1974; Dokka and Travis, 1990a). 

Although some groups (Golombek and Brown, 1988; Ross et al., 1989) have shown 

compelling paleomagnetic evidence for early Miocene clockwise rotation of some areas in 

the Mojave Desert, MacFadden et al. (1990a; 1990b) also pointed out that paleomagnetic 

results can vary locally and temporally, showing that caution is required in invoking a single 

generalized model of uniform rotation across the entire region. 

Tallied net slips have been combined with age of inception to calculate the long-term 

geologic slip rate across the entire region, but results vary widely, anywhere from 3-12 

mm/yr since the Early, Middle, or Late Miocene (Dokka and Travis, 1990b). A more recent 

and precise approach, however, involves extensive field work to find dateable offset piercing 

points along as many of the active faults in the region as possible, then integrating these 

results into a single value. Such an approach was undertaken by Oskin et al. (2008), who 

combined geologic slip rates from six major faults with Quaternary slip to arrive at a “sum 

geologic Mojave ECSZ slip rate” of ≤6.2 ± 1.9 mm/yr since ~750 ka. The inequality marker 

indicates that they used maximum possible offset values (and subsequent rates) for six 

specific faults to derive the summed rate. But in another sense, the value also represents a 

minimum, since data do not exist for every single active fault strand within the area of the 

integration, and do not account for continuous, off-fault strain (e.g., McQuarrie and 

Wernicke, 2005). Nonetheless, this result highlights a discrepancy between results from 

geology and geodesy, whose scientists often collaborate to study earthquake science and 

seismic hazards in southern California. With GPS tracking of tectonic motion, geodetic slip 

rate estimates across the ECSZ are usually >10 mm/yr (Sauber et al., 1994; Dixon et al., 



173 
 

1995; Miller et al., 2001; McClusky et al., 2001; Becker et al., 2005; Spinler et al., 2010; 

McGill et al., 2015), much faster than the sum geologic rate from Oskin et al. (2008). Some 

geodetic slip rates are <10 mm/yr and more closely agree with the summed geologic rate, but 

they are either based on older data (Sauber et al., 1986; Savage et al., 1990), alternative 

methods (Peltzer et al., 2001), or are modeled with greatest effort to agree with and thus solve 

the discrepancy between the sum geologic rate (e.g. Chuang and Johnson, 2011). Meade and 

Hager (2005), Oskin et al. (2008), and Spinler et al. (2010) have all pointed out that although 

there may have been a post-seismic flare-up following the 1992 Landers and 1999 Hector 

Mine earthquakes, this does not explain the discrepancy, because a relatively fast geodetic 

rate (Sauber et al., 1994) had already been observed prior to those two major events. Another 

explanation for the discrepancy is the incorporation of off-fault deformation into either the 

sum geologic rate, the geodetic model used, or both. In this case much of the shear strain in 

the ECSZ could be distributed over the entire region and not confined to the fault segments 

portrayed in models. Analyses that considered off-fault deformation have minimized the 

discrepancy significantly (e.g., McQuarrie and Wernicke, 2005; Bird, 2009; Shelef and 

Oskin, 2010; Johnson, 2013). The assumption that some of the fault slip is absorbed by 

distributed shear (i.e., off fault deformation) increases the geologic rate (e.g., Chuang and 

Johnson, 2011). Analogously, designing the geodetic data inversion model to incorporate 

off-fault deformation decreases the geodetic rate (Herbert et al., 2014). In the end, both 

approaches minimize the discrepancy. Even with these approaches, though, a discrepancy of 

a few mm/yr often remains (depending on which values are compared). Therefore, there must 

still be more unaccounted-for active faults with geologic slip rates that should be integrated 

into the sum geologic slip rate, taking into account strain compatibility with the surrounding 
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region, before comparing with geodetic results (McQuarrie and Wernicke, 2005). The Lavic 

Lake fault, having the largest and most recent surface rupturing event in the ECSZ, is a good 

candidate to consider, making a logical starting point for this type of analysis. 

 

METHODS 

 

Hyperspectral data collection 

 

Hyperspectral airborne imagery was collected on 27 August 2013 (at 11:00 am 

Pacific daylight savings time) using Mako, a whiskbroom-type sensor developed by The 

Aerospace Corporation. Mako measures emitted surface radiance in the thermal infrared at 

128 bands covering wavelengths from 7.6-13.4 μm (Hall et al., 2011; Buckland et al., 2017). 

We used a 1.8 km wide, 11 km long swath with 2 m pixel resolution, from a flight at 12000 

feet above ground level (c. 15000 feet altitude). The footprint of the swath was centered along 

the Lavic Lake fault and covered the 1999 maximum slip zone of the earthquake in the 

Bullion Mountains (Figure 2A, 2B).  

 

Mako sensor calibration 

 

The Mako airborne hyperspectral infrared sensor underwent radiometric and 

wavelength calibration. For radiometric calibration, two onboard blackbody sources were 

observed immediately before and after the scene was acquired. These were stabilized at 

different temperatures that spanned the expected radiance values of the scene. A linear 
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relation between the known blackbody radiance input and the digital counting output was 

assumed so that the sensor response could be modeled with multiplicative gain and additive 

offset terms. The gain and offset terms for the pre- and post-collect calibrations were then 

time-interpolated to match the actual collection time of the data. 

The wavelength calibration was done by observing blackbody sources covered by 

National Institute of Standards and Technology (NIST) traceable transparent polymer films 

(with calibrated absorption features), and performing a least-squares fit across the full extent 

of the focal plane array. For more detailed descriptions of the calibration processes, see Hall 

et al. (2011) and Buckland et al. (2017). 

 

Ground truth field mapping of the Red Flake site 

 

Using a specific field site, we quantified the accuracy to which lithology along the 

Lavic Lake fault can be mapped with pixel-based image classifications (Figures 2B-2F, 3, 

and 4A). Limited access to the field site was granted by the Marine Corps Air Ground 

Combat Center (MCAGCC) in December 2012 and April 2014 (Figure 3A-3C). The ground 

truth site was c. 5000 m2 in size, and centered at 34.586078° north, 116.288492° west. We 

refer to it as the “Red Flake” site after the presence of a prominent, 1-m-tall scarp of red 

feldspar porphyry that protrudes from the 1999 earthquake surface rupture (Figure 3C). The 

site was well suited for remote sensing due to the variety of geologic units that are very well 

exposed with little vegetative overgrowth. We identified primary mineralogy and mapped 

out the contacts between distinct lithologic units. The lithologic contacts between units are 

diffuse over a scale smaller than the hyperspectral image pixel size (2 m), making conditions 
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favorable for unequivocally identifying the boundaries between distinct units with remote 

sensing classification methods. At the Red Flake site, we identified and mapped the 

following four lithologic units to guide a supervised classification: 1) tuff (and tuff breccia), 

2) detritus (colluvium), 3) feldspar porphyry, and 4) microcrystalline lava (Figure 4A).  

While mapping the Red Flake site, hand samples were also collected for laboratory 

methods: x-ray diffraction (XRD) mineral identification, and laboratory thermal infrared 

spectroscopy. XRD was performed with a PANalytical X’Pert Pro MPD diffractometer using 

copper radiation and an X’Celerator strip detector in theta 2-theta mode. Thermal infrared 

laboratory spectra were taken from the upward-facing weathered surfaces of the sample chips 

using the biconical reflectance method. Reflectance spectra were measured using a Thermo-

Nicolet 6700 FTIR Spectrometer, with a Harrick Scientific “Praying Mantis” diffuse 

reflection accessory. All laboratory spectra were measured with a spot size of 1-2 mm, and 

each final spectrum was an average of 150 scans taken over 4-6 minutes. The laboratory 

spectra were converted to emissivity using Kirchhoff’s law (Robitaille, 2009) and are shown 

in Figure 5. Although Kirchhoff’s law cannot be used to convert biconical reflectance spectra 

to emissivity for quantitative purposes (Salisbury and Walter, 1989; Christensen and 

Harrison, 1993; Salisbury et al., 1994), the same qualitative shape results when compared to 

direct spectral emissivity measurements (e.g., Figure 3b in Christensen and Harrison, 1993; 

Figure 4 in Christensen et al., 2000).  

 

Supervised classification of the Red Flake site 
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We developed the following image processing sequence to create a final supervised 

classification with the highest possible accuracy (Figure 6, left hand path). All processing 

steps, unless otherwise specified, were completed using the Environment for Visualizing 

Images Software, version 4.8 (ENVI, Exelis Visual Information Solutions, Boulder, 

Colorado). We began with data cubes of airborne thermal hyperspectral imagery that had 

undergone radiometric and wavelength calibration, bad pixel replacement, and spectral smile 

removal. 

 In regard to the terminology used herein regarding hyperspectral image data from 

the Mako whiskbroom sensor, each single whisk is a single data cube, so the words “whisk” 

and “data cube” are used interchangeably. The spatial extent of a single whisk relative to the 

complete image swath can be seen in Figure 7: in the c. 100 m-scale sawtooth pattern along 

the side of the image swath, the point of each tooth is the boundary between two whisks (two 

adjacent whisks generally have a small amount of overlap).  When multiple data cubes (or 

whisks) are concatenated, the set of combined data cubes can be called a “super cube.” 

Although a set of combined super cubes can still be called a super cube, the full hyperspectral 

imagery data set presented here consists of two super cubes with different flight line 

azimuthal directions (to accommodate the change in strike of the Lavic Lake fault’s surface 

trace), and when those two super cubes are combined, we call this the “complete image 

swath.”  

For the hyperspectral image data presented here, we also removed the bands that 

covered wavelengths from 7.6-8.4 μm because they were dominated by noise. At this point, 

under normal circumstances, we would concatenate as many data cubes (whisks) as 

necessary to cover the area of interest and carry out the subsequent processing steps in bulk; 
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however, this was not necessary for the Red Flake site because the extent of the area was 

imaged in a single whisk. Next, we performed an in-scene atmospheric compensation (ISAC 

algorithm from Young et al., 2002), setting the regression pixels to maximum hit, the fitting 

technique to normalized regression, and using for the noise equivalent spectral radiance 

(NESR), the median value for the data cube(s). Then, we did a principal component analysis 

(PCA) to identify any variance throughout the image that resulted from noise or data artifacts 

(Richards, 2013). A gradation through each individual data cube was present along the flight 

direction, producing a spurious spectral signal that we discarded in a PCA inverse 

transformation (Richards, 2013). Next, we converted the data from at-sensor radiance to 

emissivity with the emissivity normalization method (Kealy and Hook, 1993).  

We then performed the supervised classification on emissivity spectra using the 

spectral angle mapper (SAM, described in Kruse et al., 1993). To remain objective, “end 

member” spectra for each class were defined by randomly choosing 2% of the pixels from 

each lithologic area in the geologic map and averaging their spectra (Figure 4B, 4C). For the 

SAM, we imposed a maximum angle threshold of 0.1 radian, leaving very few pixels 

unclassified. Post-classification, we used the “sieve” and “clump” functions in ENVI (i.e, 

replace single pixels that were classified differently from surrounding pixels) to correct for 

pixel classification errors due to small desert scrub or transported lithology. We repeated this 

procedure ten times. The ten results were tallied via error matrices (Congalton, 1991), and 

then used to calculate a mean and standard deviation for classification accuracy values 

(Tables 2 and 3). For more detailed information about supervised classifications, see 

Appendix: ‘Background on supervised classifications and how they were applied to this 

work,’ and ‘Guide for interpreting error matrices.’ 
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Unsupervised classification of the complete image swath 

 

The data processing flow chart for our hyperspectral airborne image unsupervised 

classification is shown in Figure 6, right-hand path. For the unsupervised classification, we 

first concatenated the 70 data cubes (whisks) that made up the complete aerial image swath 

into a single super cube, and then performed the ISAC. Then, instead of performing a PCA 

like we did for the supervised classification, we used a minimum noise fraction (MNF) 

transformation (Green et al., 1988; note that it is called a “maximum noise fraction” in that 

paper; also, see Lee et al., 1990). The MNF transformation involves a PCA that is performed 

on the data set after: 1) the noise in the data is estimated (or if known, the noise can be 

declared); 2) any correlations between bands are removed; and 3) the data noise variance is 

normalized (Kruse, 1996). The resulting principal components are then ordered by 

decreasing signal-to-noise ratio (as opposed to decreasing variance, as in the standard PCA). 

MNF performed better than PCA here, possibly due to improved noise statistics when using 

the entire image swath versus a single data cube for supervised classifications of the Red 

Flake site (where PCA was used in place of MNF because the former resulted in a higher 

overall classification accuracy). Figure 7 shows the complete image swath of MNF 

components in false color. 

We found that unsupervised classifications on the complete image swath worked 

qualitatively better when classifying the MNF components directly without inverting back 

to radiance and then converting to emissivity (we still discarded any components clearly 

dominated by noise or data artifacts). For classifying, we used the K-Means clustering 
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algorithm (described in Tou and Gonzalez, 1974) with a change threshold of 5%. To ensure 

that every pixel would be classified, we applied no value to the “maximum standard deviation 

from mean” and “maximum distance error” parameters. The cluster centers stabilized below 

our indicated change threshold after seven iterations. Finally, we used information from 

Dibblee (1966) to identify the lithology that each class represented, and to superimpose 

lithologic contact lines for a qualitative comparison with our class boundary lines.  

Within our hyperspectral image footprint, Dibblee (1966) mapped twelve separate 

lithologic units. While we could have used Dibblee’s lithologic units as “ground truth” to 

perform supervised classifications (like at the Red Flake site) on the complete image swath, 

we wanted to pursue a more objective and exploratory method for the larger area, that could 

potentially identify details that had not yet been discovered. Using the same number of 

classes (or more) as lithologic units from Dibblee (1966) would have been ideal, but as we 

experimented with increasing the number of classes with the K-Means classification 

algorithm, the product generally became more difficult to interpret. Ultimately, we settled on 

using six classes (Table 4). Using six classes yielded a clear distinction between the main 

bedrock units in the image without making our map overly detailed, to the extent that it would 

be impossible to generalize broadly and interpret.  

 

RESULTS 

 

Ground truth field mapping of the Red Flake site 
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A geologic map for the Red Flake site is shown in Figure 4A, and laboratory spectra 

for the hand samples are shown in Figure 5. The lithologic descriptions that follow are based 

on a combination of field identification, hand sample description, and laboratory XRD 

analyses. Note that the lithologic units we identified and used for these supervised 

classifications are from our own on-site geologic mapping, and therefore do not necessarily 

correlate with any specific lithologic units from the geologic maps of Dibblee (1966; 1967a; 

1967b; 1967c; 2008), which will be referenced and discussed further in subsequent sections. 

 

Tuff (and tuff breccia) 

  

The tuff and tuff breccia are generally white- to tan-colored, containing <1 mm grains 

of biotite, hornblende laths, and quartz in a microcrystalline matrix of silicate ash. Additional 

minerals identified with XRD are plagioclase feldspar solid solutions (andesine), potassium 

feldspar solid solutions (sanidine and possibly microcline), zeolites (clinoptilolite), and the 

high-temperature quartz polymorph cristobalite (exact quantity not determined with our 

methods). Laboratory spectra for the tuff and tuff breccia are shown in Figure 5A. 

 

Detritus (colluvium) 

  

A portion of the Red Flake site is covered in a thin veneer of detrital material. We 

define this as a ground truth unit because in attempts at identifying lithology from an airborne 

platform, only the immediate surficial material can be observed and classified. The detritus 

is a heterogeneous mixture of volcaniclastic sand and gravel derived from proximal lithologic 
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units: primarily quartz and other weathering-resistant minerals with clasts ranging from <1 

mm up to 2 mm in diameter, and also some larger cobbles and boulders up to 50 cm. 

Additional minerals identified with XRD are calcite, plagioclase feldspar solid solutions 

(albite and andesine), potassium feldspar solid solutions (sanidine), and cristobalite. A 

laboratory spectrum for the detritus is shown in Figure 5B. 

 

Feldspar porphyry 

  

The feldspar porphyry may be massive or banded, and has a pinkish to dark red fine-

grained matrix, with 1-10 mm phenocrysts of feldspar, occasional biotite, and rare quartz. 

Additional minerals identified with XRD are plagioclase feldspar solid solutions (albite), 

potassium feldspar solid solutions (sanidine), and cristobalite. Laboratory spectra for the 

feldspar porphyry are shown in Figure 5C. 

 

Microcrystalline lava 

  

The microcrystalline lava can be massive or banded. This unit has a very dark purple 

to grayish-brown microcrystalline matrix with some feldspar, glass, and vesicles up to 3 mm 

(vesicles can be calcite-, quartz-, or zeolite-filled). Additional minerals identified with XRD 

are pyroxene solid solutions (augite and diopside), and plagioclase feldspar solid solutions 

(andesine, bytownite, and anorthite). Laboratory spectra for the microcrystalline lava are 

shown in Figure 5D. 
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Thermal infrared laboratory spectra 

 

We can use the Reststrahlen position (minimum in an emissivity spectrum) to 

compare relative silica weight percent for each of the lithologies at the Red Flake site (e.g., 

Launer, 1952; Hook et al., 2005. Emissivity minima wavelength positions for laboratory 

spectra from Red Flake site lithologies descend in the following order (followed in 

parentheses by the average, with one standard deviation, wavelength positions from Figure 

5): microcrystalline lava (9.56 ± 0.06 μm, n = 2), detritus (9.50 ± 0.00 μm, n = 1), tuff and 

tuff breccia (9.26 ± 0.02 μm, n = 4), and feldspar porphyry (9.17 ± 0.44 μm, n = 3). Therefore, 

it is likely that the silica weight percent increases in the same order for the suite of Red Flake 

site lithologies. This interpretation could be complicated by weathering, alteration, and/or 

surficial coatings (e.g. desert varnish), since the spectra were collected from the upward-

facing weathered surfaces of the sample chips.  

 

Supervised classification of the Red Flake site 

 

The results for the ten supervised classifications we performed are shown in Figure 

8. Mean and standard deviation (one sigma) accuracy percentage values (all rounded to the 

nearest integer), for each lithology we defined in the field, were calculated using error 

matrices from the ten supervised classifications we performed, each with its own randomly 

generated set of end member spectra (see Figure 4B for example). The ground truth in this 

case was our geological map from field work (Figures 2C-2F, 3, and 4). Producer’s, user’s 

and overall accuracies are tallied in error matrices and summarized in Tables 2 and 3 (also 
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see Appendix: ‘Background on supervised classifications and how they were applied to this 

work,’ and ‘Guide for interpreting error matrices’). The statistical spread for overall accuracy 

of the final supervised classification analysis was 71 ± 1% (1σ, n = 10). The microcrystalline 

lava had the smallest difference between producer’s and user’s accuracies at 89 ± 3% and 86 

± 1% respectively (Table 3). This means that on average, the method correctly classified 89% 

of the pixels labeled microcrystalline lava on our geologic map, and 86% of the pixels 

classified as microcrystalline lava across the entire Red Flake site fell within our lithologic 

boundaries for the unit. In contrast, the detritus had the largest difference between producer’s 

and user’s accuracies, with 71 ± 24% and 19 ± 6% respectively. Again, the method correctly 

classified 71% of the pixels labeled detritus on our geologic map, but only 19% of the pixels 

classified as detritus across the entire Red Flake site fell within our lithologic boundaries for 

the unit. The accuracy ratings for the tuff, and feldspar porphyry were often <50%. 

 

Unsupervised classification of the complete image swath and interpretation as a 

geologic map 

 

The complete (unsupervised classification) geologic swath map is shown in Figure 

9. With the unsupervised classification, our main goal was to identify features suitable for 

cumulative offset measurements. Thus, we were concerned with discerning the apparent 

contact lines between units as revealed by the classification map. To facilitate this analysis, 

we took into account lithologic contact lines from published geologic maps (Dibblee, 1966; 

1967a; 1967b; 1967c; 2008). Note that in this section, references to the work of Dibblee 

include all of those publications, but the primary reference is the 1966 map. We 
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superimposed the lithologic contacts from Dibblee onto our classification map, to visually 

check by inspection whether lithologic boundaries apparent in the unsupervised classification 

were true. We also added Dibblee’s approximate surface trace for the Lavic Lake fault 

because it provided a single line for annotation that approximates the highly detailed line set 

of the 1999 earthquake surface rupture (Treiman et al., 2002) very well. We qualitatively 

evaluated the unsupervised classification evaluated by visual inspection and comparison with 

the lithologic contacts from the Dibblee maps, so some of these results required broad 

generalizations and interpretation.  

We used Dibblee’s maps to define lithologic compositions for our unsupervised 

classification units, and to compare our class boundaries with the lithologic contacts. In some 

areas, the class boundaries we observed in our classification map correlate very well with the 

lithologic contacts, but in other places they did not. A lithologic contact line between a tuff 

breccia and a basalt correlates well with a boundary between two of the classes from our 

unsupervised classification map (west-central portion of zoom inset in Figure 9, Figures 10, 

11, and Table 4). The unsupervised classification also produced a unique class that spatially 

correlated with a felsite unit (east-central portion in Figure 9). In this case, the felsite unit 

also forms a topographic ridge (labeled with white arrow in main part of Figure 9), and the 

class extends a few hundred meters to the west and south beyond the felsite contact. The 

mismatch in spatial correlation is probably due to erosion and transport of rocks away from 

the ridge, akin to accuracy issues we described previously for the detritus in the supervised 

classification. 

We found that in general, each one of Dibblee’s bounded lithologic units contained 

a range of our classes (Figure 9). This was also the case for the multi-lithologic Red Flake 
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supervised classification site, the majority of which was more broadly mapped as andesite 

by Dibblee. It is possible that one or more of the lithologic units at the Red Flake site are 

andesitic in composition, but the precise geochemical measurements required to apply that 

name correctly (e.g., Le Bas et al., 1986) were outside of the scope of this study. The 

occurrence of multiple lithologic classes from our map included within a single one of 

Dibblee’s bounded lithologic units could be due to topography coupled with erosion and 

transport of lithologic material beyond the bedrock contact lines that Dibblee mapped. 

Similarly, each of our classes correlated with more than one of Dibblee’s lithologic units 

throughout the maps (Table 4), but we expected this since we used fewer classes than the 

number of units that he mapped in our scene. In summary, our final product is limited by the 

extent to which bedrock is exposed at the Earth’s surface and not concealed by eroded and 

transported detrital material. 

Ground truth lithologic units from the Red Flake site that also ended up being classes 

in the unsupervised analysis were the tuff and tuff breccia (“tuff breccia” in the unsupervised 

classification), and the detritus or colluvium (“alluvium” in the unsupervised classification). 

Therefore, it was possible to quantify the producer’s and user’s accuracies in an error matrix 

for those lithologic classes in the unsupervised classification at the Red Flake site. The 

unsupervised classification error matrix for the Red flake site is in Table 5. While the 

producer’s accuracies in this analysis were both relatively noteworthy at >70 %, the user’s 

accuracies were both <30 %, and the overall accuracy was 60%. 

 

DISCUSSION 
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Supervised classification of the Red Flake site 

 

The Red Flake site was chosen for the supervised classification analysis because it 

has excellent bedrock exposure and lacks significant vegetation. In general, lithologic 

alteration, erosional transport, and vegetation can create mixtures of materials for larger 

ground sampling distances, resulting in lower accuracy ratings for supervised classification 

maps. The Mako thermal airborne sensor has a pixel size of 2 m, and hyperspectral resolution 

(Hall et al., 2011; Buckland et al., 2017), which also helped minimize problems with the 

error sources that could result from spectra collected over a larger pixel size. Larger pixel 

sizes, with their larger ground sampling distances, can inherently incorporate greater 

heterogeneity of materials and create more complex spectral mixtures. Hyperspectral 

resolution allows for greater detail in the spectral signatures of the materials, which increases 

the uniqueness of spectra.  

For the supervised classifications presented here, some disparities exist between the 

producer’s and the user’s accuracy ratings for individual lithologies (see Table 3, and 

Appendix: ‘Background on supervised classifications and how they were applied to this 

work,’ and ‘Guide for interpreting error matrices’). The highest disparity between accuracies 

found for a single lithology occurred with the detritus class. The low user’s accuracy for the 

detritus class may be caused by transported sediment if surficial deposits of detrital material 

are large enough to dominate the spectra for groups of pixels that we mapped as exposed 

outcrop of other classes. The heterogeneity of the detritus may also contribute to its internal 

inconsistency in the producer’s accuracy, as it is intrinsically produced by weathering, 

transport, and mixing of adjacent units. Geometric surface roughness and erosion to smaller 
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grain sizes can also suppress spectra for pure end members by reducing spectral contrast 

(Cooper and Mustard, 1999; Kirkland et al., 2001; Horgan et al., 2009), weakening signatures 

and further decreasing accuracy. Therefore, a primary conclusion from the supervised 

classification analysis is that the presence of detrital material (e.g., colluvium/alluvium/etc.), 

which is inevitable in natural settings, will lower the accuracy of lithologic classification 

maps. 

Average values for the producer’s accuracies of the tuff and tuff breccia (38 ± 16 %), 

and of the feldspar porphyry (34 ± 4 %), are both <50% (Table 3). The tuff is often incorrectly 

classified as detritus, and the feldspar porphyry is often incorrectly classified as 

microcrystalline lava. The incorrect classifications could be due to compositional similarity 

between lithologies. The average value for the user’s accuracy of the tuff and tuff breccia (25 

± 5 %) is also <50%, but the feldspar porphyry has a user’s accuracy (62 ± 6 %) that is nearly 

double its producer’s accuracy. For practical applications, the user’s accuracy can be a more 

important statistic, given that it is the probability that a material, when field-checked, will 

actually be what the map claims that it is (e.g., Congalton, 1991).  

The performance of the microcrystalline lava is generally excellent with both 

producer’s and user’s accuracies (89 ± 3 % and 86 ± 1 %, respectively) >85%. Given the 

classification performance problems described above with respect to weathering, it is 

possible that the microcrystalline lava was classified better due to the unit being relatively 

less susceptible to erosion. Overall, our statistics show that out of the four lithologic units 

that we used as ground truth, the microcrystalline lava is probably the most dependable for 

classification mapping. 
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Lavic Lake fault piercing lines and cumulative offset 

 

To estimate the cumulative long-term offset along the Lavic Lake fault, we needed 

to identify a piercing line within older bedrock units that was subsequently cut by the fault. 

The intersection of the piercing line with the fault then defines a piercing point, which then 

can be used to define the net slip. Piercing lines such as offset stream channels are often used 

for measuring coseismic displacement from earthquakes that occur in the present time, but 

such ephemeral features do not capture long-term offset that has accumulated since inception 

of the Lavic Lake fault. In offset bedrock units, linear geologic features are relatively rare, 

but the intersections between two planar features that can be confidently correlated across 

the fault are typically used. For example, the intersection of a lithologic contact (or specific 

bedding plane) with an igneous dike, the hinge surface of a fold, or a fault that clearly pre-

dates the fault offset in question, are typically used. For our purposes, we looked for a 

lithologic contact and older fault plane that could be clearly identified on both sides of the 

Lavic Lake fault. This was the primary motivation for discerning the apparent boundaries 

between lithologic units as revealed by our classification maps. Superimposing Dibblee’s 

(1966) lithologic contacts onto our remote sensing imagery products served as a qualitative 

assessment to reinforce the validity of any lithologic boundaries apparent in the unsupervised 

classification. As discussed below, two such intersections or piercing lines were identified 

that may serve as displaced features to constrain the net slip vector, which gives the 

magnitude of displacement. 

Our analysis is based on some key observations from the geologic maps (Figures 9, 

10, 11, and also see Table 4), high-resolution satellite imagery (Figure 12), and ground-based 
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field photographs (Figure 13). Of primary importance in the volcanic stratigraphy are a tuff 

breccia (Dibblee’s “Tt,” see Figures 9, 10, 11C, and Table 4) and a basalt (Dibblee’s “Tb,” 

see Figures 9, 10, 11C, and Table 4). Note that these units are designated and referenced 

from the combined analysis of our unsupervised classification with Dibblee’s (1966) 

geologic map, rather than any similar or identically-named units from our supervised 

classification analysis at the Red Flake site. We determined that bedding in Tt and Tb is right-

side up, based on attitudes plotted on the Dibblee map (Figure 10) for crude bed forms within 

these units that are apparent in the oblique view satellite imagery (Figure 12), and field 

photographs (Figure 13). In true color, Tt is a very light shade of tan, and Tb is an overlying, 

very dark brown to black shade (Figures 12 and 13). Thus, Tt is older than Tb by stratigraphic 

superposition.  

We were interested in using the lithologic depositional contact between Tt and Tb as 

part of an offset piercing line, so hereafter, we refer to this feature as the “Tt/Tb contact,” 

after the abbreviated lithologic letter codes from the Dibblee (1966) map. In our unsupervised 

classification map (Figure 9, see lower left zoom inset, and Figure 11B), the Tt/Tb contact is 

revealed as a generalized boundary between the green-color-coded “tuff breccia” (Tt) and 

the blue-color-coded “basalt” (Tb). With Dibblee’s lithologic contacts superimposed onto 

our unsupervised classification (Figures 9, 10, and 11), the general designation between the 

tuff breccia and basalt becomes more evident (also see Figure 7), albeit somewhat obfuscated 

by scattered alluvium and other lithologies (i.e., weathering, erosion, and transport of the 

various rock types that coexist in proximity to one another). Tt and Tb strata, and their contact 

boundary, generally dip 15-30º east/northeast (Figure 10 and 11C). At the location where we 

used the maps to measured fault offset (west-central portion of zoom inset of Figure 9, and 
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Figures 10 and 11), a younger lithologic unit, the fanglomerate of andesitic detritus 

(Dibblee’s “Tfa,” see Figure 10 and Table 4), overlies Tb in angular unconformity. Tfa’s 

base appears relatively flat, as indicated by the fact that its basal contact with older units 

follows topographic contours. This relationship between Tb and Tfa is also clearly defined 

on Dibblee’s map at a location some 5 km west of the location shown in Figure 10.  

Another younger lithologic unit overlies the volcanic bedrock (including Tt, Tb, and 

their depositional contact) in angular unconformity, a rhyolitic felsite (Dibblee’s “QTr,” see 

Table 4). QTr’s base also appears relatively flat, because its basal contact also follows 

topographic contours. Note that QTr is not the same lithology as the felsite class shown in 

Figure 9; that felsite is correlated with an intrusive felsite (Dibblee’s “Tif,” see Table 4). One 

bedrock exposure labeled “QTr” in Dibblee’s maps is now known to be Peach Spring Tuff 

(Wells and Hillhouse, 1989), which has implications for age control on aspects of the system 

we are considering here. The age of the Peach Spring Tuff is 18.78 ± 0.02 Ma (Ferguson et 

al., 2013). ECSZ age of inception is generally considered to be 5-10 Ma (Table 1), much 

younger than the Peach Spring Tuff. Thus, the Peach Spring Tuff is older than the ECSZ and 

the Lavic Lake fault. Therefore, we are confident that the Tt/Tb depositional contact pre-

dated inception of the Lavic Lake fault, so using the contact as a component plane of our 

piercing line captures the complete offset of the Lavic Lake fault. 

 

Displaced Tt/Tb contact: the vertical component of slip 

 

On the west side of the main Lavic Lake fault, the Tt/Tb contact appears in our remote 

sensing maps (Figures 7, 9, and 11), Dibblee’s mapped lithologic contacts (Figure 10), and 
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also an additional published geologic map (Kupfer and Bassett, 1962). Although the 

displaced Tt/Tb contact has apparent right-lateral map-view separation in Dibblee’s map 

(Figure 10), because the contact is a planar geologic feature, it cannot, as a matter of 

definition, be used as an offset feature to measure net slip across the Lavic Lake fault. On the 

west side of the main Lavic Lake fault, Dibblee’s Tt/Tb contact is depicted as depositional, 

but we discovered by using our ground-based field photographs and satellite imagery, that 

the contact line is actually a separate and distinct, smaller cross fault where the feature 

intersects the main fault (Figures 12 and 13). On the east side of the main fault, the Tt/Tb 

contact is also depositional, but does not clearly align with a distinct class boundary from our 

remote sensing map (Figure 9, southeast portion of the zoom inset, and Figure 11). This is 

partly because the Tt/Tb contact does not intersect the main fault on its east side, as depicted 

in Dibblee’s map (Figure 10); instead, the contact is truncated by a separate and distinct, 

smaller cross fault. The smaller cross fault that truncates the Tt/Tb contact on the east side 

of the Lavic Lake fault is apparent in satellite imagery (Figure 12). The southernmost portion 

of the area mapped as Tt along the Lavic Lake fault on Dibblee’s map (Figure 10) is mapped 

as basalt on another published geologic map, and shown in fault contact with Tt (Kupfer and 

Bassett, 1962). Figure 12 shows Dibblee’s depiction of the Tt/Tb contact compared to our 

depiction of the same feature. In Figure 12B, Dibblee’s Tt/Tb contact is depicted as wholly 

depositional, except where the two lithologic units are in fault contact along the main fault. 

Figure 12C shows our observations of the smaller additional structures that exist in relation 

to the Tt/Tb contact and the main fault.  On the west side of the main fault, the contact is 

partly depositional and partly fault. On the east, the depositional contact is truncated by a 

distinct, smaller cross fault. 
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As noted above, the apparent horizontal separation of a planar feature is insufficient 

to indicate the true displacement vector of net fault slip. The separation of a stratigraphic 

plane, versus true net slip, is a classic problem in structural geology, because a linear feature 

can appear to have been tectonically displaced in a specific way when viewed in a two 

dimensional perspective (such as an overhead map view), but the three dimensional 

consideration shows that a given separation can result from a wide variation in net slip. For 

example, a dipping stratum can appear to be offset laterally by a fault in map view, but the 

observed separation can actually result from pure dip-slip (e.g., Figure 8.6 in Fossen, 2010; 

Figure 6.48 in Davis et al., 2012). The variety of possible spatial orientations and 

intersections between strata, contact boundaries, and fault planes will inevitably create 

ambiguity when considering separation versus slip.  

Bedding attitudes given in the Dibblee maps show that the strike of Tt and Tb bedding 

(and by extension, their depositional contact) is fairly consistent in proximity to the main 

Lavic Lake fault (Figure 10).  The angle of intersection between bedding and the fault is 

about 70 to 75°, and the map-view trace of the Tt/Tb depositional contact is mainly 

subparallel to the trend of the main fault trace (Figure 10). The subparallel geometry between 

the Tt/Tb contact trace and the main fault trace would lead to significant error if considering 

horizontal map-view separation of the contact versus true fault slip. The very low angle of 

intersection between the Tt/Tb depositional contact trace and the fault trace contributes to an 

exaggerated amount of perceived lateral separation, and the cross section that traverses the 

main fault at this location (line A-A’ in Figure 10) shows that the Tt/Tb depositional contact 

has apparent vertical separation. The cross section reveals a solution that invokes a purely 

vertical offset of the Tt/Tb contact, but the map-view separation allows a purely horizontal 
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strike-slip offset also, depending on the dip direction of the contact prior to offset. The 

topographic relief and broad surface elevation are greater on the east side of the main Lavic 

Lake fault than on the west side, which we interpret to represent a component of cumulative 

and significant pre-1999 vertical fault displacement, with the east block upthrown relative to 

the west block (cross section A-A’ in Figure 10). 

The apparent vertical separation that we measured in the cross section (Figure 10) is 

240 m. We derived an error range for that measurement by considering variability in the 

cross-section-projected dip of the Tt/Tb contact, and also a relatively small amount of 

variability in the dip of the main Lavic Lake fault (as described below). Average cross-

section-projected dip domains on the west and east side of the Lavic Lake fault are 13º and 

23º (both east/northeast), respectively, and this variation in dip affects the vertical separation 

estimate. We also considered variation in the dip of the Lavic Lake fault itself. Geodetic 

inversion models show that some portions of the Lavic Lake fault dip 75-90º east/northeast 

(Simons et al., 2002). With all of the data combined, we calculated the minimum apparent 

vertical separation by assuming that the Tt/Tb depositional contact had minimum cross-

section-projected dip on both sides of the fault (13º east/northeast), and the fault had 

maximum dip (90º). We calculated the maximum by assuming that the contact had maximum 

cross-section-projected dip (23º east/northeast) and the fault had minimum dip (75º 

east/northeast). We derived the intermediate value by assuming the average cross-section-

projected dip domains for the west and east sides of the main fault (13º and 23º, respectively), 

and that the fault had a 90º dip. The value for apparent vertical separation is: minimum 210 

m, intermediate 240 m, and maximum 370 m, or 240 +130/-30 m. 
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We note that on the basis of the apparent vertical separation of the Tt/Tb contact 

alone, the vertical component of net slip cannot be resolved.  For example, if the contact 

dipped northeast prior to faulting, then purely left-lateral net slip would produce a vertical 

separation of the contact with the east side upthrown. However, at the location in discussion, 

the strike of bedding in Tt/Tb is nearly parallel to the fault trace, or said in another way, the 

dip direction of the Tt/Tb contact is very close to perpendicular to the fault trace (Figure 10). 

With the very small acute angle (5-10º) between bedding strike and the trace of the Lavic 

Lake fault (Figure 10), left-lateral slip of at least a few kilometers would be required to 

produce the apparent vertical separation of 240 m. Left-lateral slip in that amount is very 

large and, and in the wrong sense of the coseismic slip of the 1999 earthquake. Furthermore, 

for any area where the fault trace and bedding strike are parallel, no amount of strike slip in 

either direction can produce a net vertical separation of the contact. If we assume that, like 

all of the other major northwest trending faults in the ECSZ, the Lavic Lake fault has net slip 

that is mainly right-lateral strike slip, then the vertical separation is probably the result of a 

true component of vertical slip. Thus, we interpreted the apparent vertical separation as the 

vertical component of the slip vector, which we then combined with a horizontal component, 

to solve for the magnitude of displacement. 

 

Displaced cross fault: the horizontal component of slip  

 

As stated previously, much of the Tt/Tb contact trace is depositional, but west of the 

main fault, the Tt/Tb contact intersects the main fault as a separate and distinct, smaller cross 

fault (Figures 12C and 13). In proximity to the main fault, on its west side, the Tt/Tb contact 
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trends along a 5-10º azimuth. However, at a point c. 200 m from the main fault trace, the 

contact line makes an abrupt 120º turn immediately before intersecting the main fault trace. 

There is not actually an abrupt change in azimuth along the Tt/Tb depositional contact right 

before it intersects the main fault; instead, we attribute the sudden and drastic change in 

azimuth to the smaller cross fault. The Tt/Tb fault contact here is further evidenced by the 

structural juxtaposition of older Tt on top of younger Tb. Figure 13B and 13D shows ground-

based field photographs where this portion of the Tt/Tb contact is a smaller cross fault, as 

evidenced by how the older, light-hued Tt strikes at high-angle into, and structurally overlies, 

the younger, dark-hued Tb. While we interpreted this field relationship as a fault contact, we 

note the possibility that the Tt and Tb units interfinger with one another, as implied by 

Dibblee’s interpretation, and by Kupfer and Bassett (1962). 

On the east side of the Lavic Lake fault, the Tt/Tb depositional contact does not 

intersect the main fault as shown by Dibblee (southern center portion of Figure 10, Figure 

11), because as noted above it is cut by a separate and distinct, smaller cross fault (Figure 

12C; Kupfer and Bassett, 1962). The cross fault that truncates the Tt/Tb contact on the east 

side of the main fault could be the same fault as the cross fault on the west. This correlation 

is strengthened by the fact that both cross faults have a separation that is downthrown to the 

south, juxtaposing the younger basalt on the south side with the older tuff on the north side.  

If the two cross faults on each side of the main fault are indeed the same (that is, an older 

fault that pre-dates inception of the Lavic Lake fault) then the older cross fault has been cut 

and displaced by the main fault, and the older cross fault’s surface trace defines a feature that 

is independent of offset of the Tt/Tb contact. Because the fault trace strikes at a high angle 

to the Lavic Lake fault, if it has a steep dip (see below), then its offset serves as a fairly 
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accurate estimate of horizontal displacement.  Any purely dip slip solution for the net slip 

vector would require many kilometers of vertical displacement, which would violate the 

modest vertical separation defined by the shallowly dipping Tt/Tb contact.  We therefore 

interpret the map-view lateral separation of the cross fault as an accurate estimate of the 

horizontal component of slip along the Lavic Lake fault. 

The apparent map-view right-lateral separation of the cross fault by the main Lavic 

Lake fault is 930 m, and we estimate an error of ±30 m based on possible variation of its 

precise intersection lines with the main fault. The cross fault on the east appears to have steep 

dip, based on its relatively straight surface trace. The cross fault on the west, though, could 

have a low dip angle, as suggested by its highly meandering surface trace (Figure 12C). 

While it is possible that the cross faults are not correlative (which would completely 

invalidate the horizontal separation measurement), tectonic deformation by the main fault 

could have resulted in different dip angles for the cross fault’s displaced, complementary 

components. But if the cross fault originally had, or does have a shallow dip, then we again 

encounter the nonuniqueness in the separation versus slip problem, where a small amount of 

vertical fault motion along the main fault could have produced significant apparent lateral 

separation of the cross fault’s surface trace. We do not have any subsurface or other data to 

determine if the cross fault has a low dip, but we can assign the horizontal separation as a 

maximum value, where less total slip can be inferred to the extent that the fault dip is very 

shallow. 

 

Slip vector and off-fault deformation 
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We used our estimates of the horizontal and vertical separation components (both at 

the same location) to estimate a total slip vector and solve for the magnitude of displacement. 

The vertical separation of the Tt/Tb contact is 240 +130/-30 m down on the west, and the 

horizontal separation of the cross fault is 930 ± 30 m right-lateral.  By the Pythagorean 

theorem, we therefore estimate the net slip to be 960 +70/-40 m (error range from solving for 

the maximum/minimum vertical and horizontal values).  

We assumed that the Lavic Lake fault as a whole has predominantly experienced 

strike-slip displacement since its inception, similar to other components of the ECSZ that 

have locally large components of dip slip (e.g., Spotila and Sieh, 1993), and concluded that 

the slip vector and displacement magnitude presented here represent the cumulative long-

term offset of bedrock. Unresolvable uncertainties remain regarding prehistoric slip on the 

main fault (e.g., lateral/strike slip versus dip slip) and structural geometry of the cross fault 

(e.g., the dip angle), so we consider the cumulative offset value presented here to be a 

maximum (since ECSZ inception at 5-10 Ma, see above, and Table 1). Our value of <1 km 

is significantly less than the magnetic gradient offset estimate of 3.4 ± 0.8 km (Jachens et al., 

2002), but our measurement is from a different location that is 3-5 km away to the north from 

theirs. We are confident that we captured the entire cumulative offset recorded at the surface 

by the Lavic Lake fault, because the Lavic Lake fault is younger than the piercing lines (Tt/Tb 

contact is >18.78 ± 0.02 Ma from overlying QTr = Peach Spring Tuff, see above) that we 

used to derive the slip vector. The difference between our surface measurement and the 

magnetic measurement, then, may be due to factors of 3D basement geometry, as well as off-

fault continuous deformation, or tectonic displacement along discrete, smaller adjacent 

structures.  
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Off-fault deformation has been cited as a potentially significant source of error in 

considering the discrepancy between long-term geologic and current geodetic slip rates 

(Bird, 2009; Shelef and Oskin, 2010; Chuang and Johnson, 2011; Johnson, 2013; Herbert et 

al., 2014). Off-fault continuous deformation is more likely to occur in unconsolidated 

sediments (e.g., the Lavic Lake playa to the northwest, or alluvium to the southeast), than in 

the bedrock where we performed a cumulative slip analysis. In alluvium to the southeast of 

the cumulative offset area presented in this study, Treiman et al. (2002) observed off-fault 

continuous deformation: 7 cm of right-lateral offset in a 7-m wide zone. Smaller, discrete 

adjacent faults can also contribute to off-fault deformation. For example, in the southernmost 

portion of the 1999 earthquake surface rupture, where offset was recorded along three distinct 

fault traces, up to ~2 m of fault-parallel lateral displacement was recorded in the field on 

secondary structures (Figure 3 in Treiman et al., 2002).  

While the cumulative long-term offset along smaller faults are unlikely to be as large 

as that of the main Lavic Lake fault, if there are a number of these smaller faults, their 

integrated displacements could be significant. However, the uncertainties associated with 

smaller, ambiguous structures might be so high as to render such measurements meaningless. 

Also, it is possible that considering increasingly smaller features with increasingly smaller 

displacements would yield diminishing returns, akin to the Gutenberg-Richter Law, which 

shows the contribution of smaller earthquakes to cumulative seismic moment. For all of the 

reasons cited above, it is unlikely that off-fault deformation contributes significantly to the 

cumulative offset measurement presented here for the Lavic Lake fault.  

 

Relative merits of the remote sensing methods used in this study 
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The supervised classifications we did were at a location (the Red Flake site) distant 

from the cumulative fault offset analysis area, but the supervision process helped us 

accomplish the goals in this study by allowing us to experiment with the processing sequence 

for quantifying and maximizing lithologic mapping accuracy values. The supervised 

classification overall accuracy was maximized at 71 ± 1%, by classifying the bands with 

wavelengths from 8.4-13.1 μm, on the emissivity data product. However, we also attempted 

supervised classifications on other products of the same data, including with atmospheric 

compensation only, the PCA components, the MNF components, and subsets of bands from 

those data products. The supervision process did not directly contribute to the cumulative 

fault offset analysis, but due to the limited access to the area for field work, experimenting 

with the processing sequence gave us experience and knowledge about how effectively we 

could differentiate some of the volcanic rocks in the area with remote sensing data and 

methods. We could have gone on to attempt supervised classifications of the complete image 

swath, using lithologic identifications and contact line work from the Dibblee (1966) map as 

ground truth. However, we chose to instead perform unsupervised classifications on the 

complete image swath because we were interested in using a more exploratory method that 

had the potential to highlight any features that had not been previously discovered, and could 

potentially assist in our cumulative fault offset analysis. Still, including the supervision 

process (if possible) could be an integral component to future studies that use remote sensing 

for geologic mapping.  

In mapping the lithology along the complete image swath, we could have also opted 

to use the MNF false color image in a similar way to how we used the unsupervised 
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classification image to visually and qualitatively compare class boundaries with Dibblee’s 

(1966) contact line work. The MNF image (Figure 7) is based on a continuous spectrum of 

false color to depict lithologic variation, whereas the unsupervised image (Figure 9) is based 

on discrete colors to represent a finite number of lithologic classes. With a finite number of 

discrete color assignments, the unsupervised classification method had the potential to 

simplify and clean up the MNF image by categorizing and sorting all of the lithologic 

material into a smaller set of units, which could assist in image interpretation for a more 

effective and synoptic summary. 

Figure 11 shows a side-by-side comparison of the cumulative fault offset analysis 

area that we focused on for this study: the MNF components in false color (Figure 7), the 

unsupervised classification (Figure 9), and a portion of the Dibblee (1966) map (Figure 10). 

While each of the images has its own individual merits, it would not have been possible to 

accomplish the goals of this study without each of the three images used together. In the 

MNF components image, the Tt/Tb depositional contact is clearly visible on the west side of 

the Lavic Lake fault by a boundary between false color assignments. This boundary aligns 

almost perfectly with Dibblee’s contact line from the 1966 map, and the lithologic 

descriptions from the 1966 map provided information about what type of rocks these are. 

However, the Tt/Tb depositional contact on the east side of the Lavic Lake fault, while 

depicted to be very straight forward in Dibblee’s map, is not readily apparent in the MNF 

image. As stated above, performing the unsupervised classification provided an opportunity 

to simplify the MNF image into a data product that would be more straight forward to 

interpret. Since the unsupervised image did not yield that desired result in this case, the MNF 

image was optimal for the purposes of this study. In general, though, it is ideal to experiment 
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with and incorporate as many of the data products as possible (e.g., to see where they might 

agree/disagree with each other, and reveal/obscure features) into a more conclusive 

summary. This is why we also used the data from the Kupfer and Bassett (1962) map, which 

depicts the cross fault on the east side of the Lavic Lake fault. We verified the location of the 

east cross fault using true color Google Earth satellite imagery (Figure 12C), and went on to 

discover that the east cross fault is possibly correlative to the west cross fault that we verified 

from our field data (Figure 13), and therefore could be used as a cumulative offset marker 

along the Lavic Lake fault.  

 

Implications for estimates of slip rate on the Lavic Lake fault 

  

In regard to the discrepancy between ECSZ geologic (~6 mm/yr) and current 

geodetic (>10 mm/yr) slip rates, the c. 1 km cumulative displacement that we calculated is 

relatively small, and would not make a significant contribution to minimizing the difference. 

As noted above, the summed geologic ECSZ slip rate (based on six major faults across the 

Mojave Desert with Quaternary slip) is ≤6.2 ± 1.9 mm/yr since ~750 ka (Oskin et al., 2008), 

and most geodetic studies find an overall contemporary slip rate of >10 mm/yr (Sauber et al., 

1994; Dixon et al., 1995; Miller et al., 2001; McClusky et al., 2001; Becker et al., 2005; 

Spinler et al., 2010). One of the more recent publications even cited a geodetic value of >15 

mm/yr (McGill et al., 2015). The Lavic Lake fault would require a geologic slip rate of at 

least 4 mm/yr (i.e., bring the ~6 mm/yr total up to ~10 mm/yr) to make a significant 

contribution in minimizing the difference. With a slip rate hypothesized or determined, and 

the cumulative offset known from this study, the age of inception of the Lavic Lake fault can 
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be calculated. A 4 mm/yr slip rate with 1 km of cumulative offset suggests that inception of 

the Lavic Lake fault occurred c. 250 ka. Most of the research suggests that the ECSZ age of 

inception is >5 Ma (Table 1), so if the 4 mm/yr slip rate is correct, the Lavic Lake fault is a 

very young structure in the overall ECSZ architecture. Paleoseismological studies in the 

Lavic Lake playa area after the 1999 earthquake suggest that the Lavic Lake fault is a 

relatively young structure, with deformation that has not yet been fully localized onto a single 

strand (Rymer et al., 2002). A separate, proximal strand of the Lavic Lake fault that did not 

rupture in 1999 had ruptured within the past c. 1750 years (Rymer et al., 2002). If earthquakes 

occurred once every 1750 years for 250,000 years, each event with 5 m of slip, only c. 700 

m of slip would accumulate (i.e., somewhat less than our estimate of c. 1 km). 

If tectonic motion along the Lavic Lake fault initiated much earlier, though, for 

example at 1 Ma, then the geologic slip rate (using 1 km cumulative offset) would be 1 

mm/yr. A 1 mm/yr slip rate for the Lavic Lake fault would be too low to significantly 

minimize the difference between geologic and geodetic slip rates. Furthermore, the Lavic 

Lake fault appears to be one of the few remaining major faults whose geologic slip rate is 

unknown and needs to be integrated into the summed geologic Mojave ECSZ rate. As this 

study on analyzing the geologic slip rate for an additional major structure in the ECSZ 

suggests, it seems unlikely that the discrepancy between geologic and geodetic slip rates can 

be resolved by simply finding and analyzing more faults for geologic slip rates to integrate.  

Geologic slip rates are often minimum values, because of uncertainty in the time lag 

between the age of the displaced feature and inception of fault motion. Assuming this error 

source manifests consistently, that in itself could explain the discrepancy, because the true 

geologic rate would be larger than any value calculated with available methods. On the other 
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hand, if the geologic rates are accurate and the discrepancy really does exist, perhaps the 

ECSZ is currently experiencing some type of transient, or permanent, accelerated 

deformation rate.  

 

CONCLUSIONS 

 

Thermal hyperspectral airborne imagery and remote sensing techniques greatly 

supplemented our geologic field mapping within a restricted area along the Hector Mine 

earthquake surface rupture in the eastern Mojave Desert. We could not conduct an extended 

campaign for detailed field mapping along the entire Lavic Lake fault, but with supervised 

classifications over a small test site, we processed the remote sensing data to maximize 

accuracy in lithologic classification mapping of the volcanic rocks in the area. We also 

compared an unsupervised classification over the complete aerial image swath with a 

published geologic map of the same area. This served as a qualitative accuracy check for 

both the unsupervised classification map and the published geologic map. We were able to 

map generally the same variation and distribution of lithology with classification errors 

occurring mainly due to erosion and transport of heterogeneous detrital material, and 

possibly because the materials were similar in composition. 

We used available geologic maps, along with satellite imagery, and field work to 

identify and measure the separations of planar features by the Lavic Lake fault. Some of the 

class boundaries in our remote sensing map displayed compelling correlation with lithologic 

contacts that were previously mapped. A mapped lithologic contact between a tuff breccia 

(Tt) and a basalt (Tb) correlated well with a boundary between two of the classes from our 
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remote sensing map. This Tt/Tb contact is cross cut and displaced by the Lavic Lake fault, 

with a vertical separation of 240 +130/-30 m. On the west side of the main Lavic Lake fault, 

the Tt/Tb contact intersects the main fault as a separate, smaller cross fault, and on the east 

side, the depositional contact is truncated by another separate, smaller cross fault. The right-

lateral horizontal separation of this cross fault by the main Lavic Lake fault is 930 ± 30 m.  

Neither the apparent vertical or horizontal separation measurements individually 

represent the cumulative slip along the Lavic Lake fault, but they occur at the same location, 

so we used them to construct the complete slip vector and calculate the magnitude of 

displacement. The magnitude of displacement is 960 +70/-40 m. This value is an upper limit, 

since some uncertainty exists regarding prehistoric slip and structural geometry. However, 

the magnitude of displacement that we calculate is much less than another independent 

cumulative offset estimate (~3 km) that was based on an offset magnetic gradient. The 

geologic features that we used to estimate the slip vector pre-date inception of the main Lavic 

Lake fault, so we are confident that the magnitude of displacement is the cumulative long-

term offset of bedrock, expressed at the surface, along the main fault, since 18-19 Ma. The 

difference between our surface measurement and the magnetic measurement might be due 

to 3D basement geometry, as well as off-fault deformation accommodated by continuous 

strain or other smaller, discrete structures adjacent to the fault. 

The magnitude of displacement that we calculate can assist in reconstructing fault 

histories in eastern California, and can be combined with bedrock ages to calculate the 

geologic slip rate. Fortunately, with its remote and inaccessible location, the Lavic Lake fault 

does not currently pose a major threat to society and infrastructure. Calculation of a geologic 

slip rate for the Lavic Lake fault may help in resolving the discrepancy between current 



206 
 

geodetically measured tectonic motion and integrated geologic slip rates over faults across 

eastern California, but based on the relatively small cumulative long-term slip that we infer, 

it does not appear that the Lavic Lake fault will contribute significantly to the sum geologic 

Mojave ECSZ slip rate. 
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APPENDIX 

 

Background on supervised classifications and how they were applied to this work 
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After compiling our ground-truth data into a geologic map, we used this information 

to perform supervised classifications on the portion of the hyperspectral imagery that covers 

the Red Flake site. A supervised classification is a common remote sensing product where 

pixels in an image are organized into a set of classes defined a priori by a user who has 

knowledge of materials or land cover present in the image. In defining the classes, a few 

pixels are chosen to represent each class as “end members.” Then, the other pixels in the 

image are each grouped with the end member with whom it shares the greatest spectral 

similarity. For our case, the classes are the four main lithologic units that we observed in the 

field. 

After pixels are organized into classes, physical boundaries between classes are 

superimposed on the image in order to determine how many pixels in each area were assigned 

to their correct class. Results for correctly and incorrectly identified pixels are tabulated and 

offer a quantitative summary—as the percentage of pixels mapped correctly in relation to 

ground truth—for the accuracy to which the classes can be mapped using a remote sensing 

data set. For our purpose, the supervised classification was a test to establish how well 

spectral information embedded within the thermal airborne imagery allowed for 

differentiation of distinct lithologic units on the scale of the pixel size. 

For further clarity, we present an example case: a lithologic unit is observed and its 

boundary mapped in the field. A remote sensing image completely covers the map view 

extent of this unit, so the lithologic boundary is digitized and superimposed on the image. 

Spectra from a few pixels within the boundary are chosen to represent the lithologic unit. In 

an ideal supervised classification, all of the other pixels within the boundary should be 

grouped, based on spectral similarity, with the chosen representative pixels. In the real world. 
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However, complications exist that make a 100% accuracy rating for a supervised 

classification highly unlikely. Compositional heterogeneity of surficial material due to 

alteration, vegetation, transport, and/or incomplete knowledge often results in mixtures of 

materials for each pixel. Geometric surface complexity (intrinsic roughness and/or erosion 

to small angular grains) can also complicate spectra for pure end members by reducing 

spectral contrast, resulting in weak signatures (Cooper and Mustard, 1999; Kirkland et al., 

2001; Horgan et al., 2009). Nonetheless, our choice of sensor and site minimized these 

problems. The Mako sensor has a pixel size of 2 m, with hyperspectral resolution (Hall et al., 

2011; Buckland et al., 2017), and the Red Flake site offers excellent bedrock exposure with 

a lack of significant erosion or vegetation. 

The spectral angle mapping algorithm (SAM, described in Kruse et al., 1993) 

calculates the n-dimensional angle, where n is the number of bands, between the spectrum 

for each pixel and the spectrum for each end member using the geometric definition of an 

inner product. Each pixel is then classified as the end member for which the minimum angle 

is calculated. Finally, lithologic contacts from our geologic map were superimposed to assist 

in visualizing the classification accuracy, and we assessed the accuracy of the supervised 

classification via error matrices (Congalton, 1991). Figure 8 shows the results for the ten 

supervised classifications (labeled A through J), and the corresponding error matrices are in 

Table 2.  

 

Guide for interpreting error matrices 
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Here we provide a detailed explanation, with examples, for how to interpret error 

matrices and calculate producer’s, user’s, and overall accuracies. All of the following 

explanations reference numerical values in the error matrix from supervised classification A 

(see Figure 8 and Table 2). 

Reading down a column of the error matrix shows the distribution of classified pixels 

within each ground truth class. For example, the first column shows that in the bounded 

region that we mapped as tuff, 25 pixels were correctly classified as tuff, but 11, 13, and 13 

pixels were incorrectly classified as detritus, feldspar porphyry, and microcrystalline lava, 

respectively. Thus, summing over a column gives the total number of pixels contained in 

each bounded ground truth area. The total number of pixels classified correctly as a fraction 

of the total number of pixels in a column gives the “Producer’s accuracy.” The name is in 

reference to a scenario where the producer of the classification map wishes to assign a grade 

to their product, so they simply quantify how many pixels are correct in each bounded class 

area. For the tuff, this is 25/62 = 0.40 or 40%. 

Reading across a row of the error matrix shows how many pixels for each type of 

lithology were classified into each ground truth class. For example, the first row shows that 

25 true tuff pixels were correctly classified as tuff, but 2 true detritus, 56 true feldspar 

porphyry, and 4 true microcrystalline lava pixels were incorrectly classified as tuff. Thus, 

summing over a row gives the total number of pixels classified as a given lithology 

throughout the entire classification map. The total number of pixels classified correctly as a 

fraction of the total number of pixels in a row gives the “User’s accuracy.” The name is in 

reference to a scenario where a user of the classification map field-checks every pixel and 
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then assigns a grade based on misclassified pixels across the entire scene, not just grading 

within the individual class boundaries. For the tuff, this is 25/87 = 0.29 or 29%. 

Taking the sum of the diagonal of the error matrix gives the total number of pixels 

classified correctly in relation to ground truth. The total number of pixels classified correctly 

across all classes, as a fraction of the total number of pixels in the classification map gives 

the “Overall accuracy,” which is the lowest entry to the right. For supervised classification 

A and its accompanying error matrix, this is 25 + 28 + 125 + 747 = 925, then 925/1297 = 

0.71 or 71%. 
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FIGURE CAPTIONS 

 

Figure 1 (p. 243): Overview map of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine 

earthquake surface ruptures, and territory with access restricted by the MCAGCC (United 

States Marine Corps Air Ground Combat Center, Twentynine Palms) as of 1999 (solid line) 

and as of 2018 (dashed line). Other major faults shown are the Pinto Mountain fault (PMF) 

and the Mission Creek strand of the San Andreas fault (SAF). Base map is an SRTM 1 arc-

second DEM hillshade (from the USGS Earth Resources Observation and Science website, 

https://eros.usgs.gov/, accessed on 09/02/2017). Faults are from U.S. Geological Survey and 

California Geological Survey (2006). Map was produced using QGIS software (QGIS, 

2018). 
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Figure 2 (p. 244): (A) Overview of the Lavic Lake fault, mapped by its 1999 earthquake 

surface rupture. Arrows indicate relative fault motion, rectangular boxes are the extent of 

ground coverage of the hyperspectral airborne imagery used in this study, and LLP denotes 

the Lavic Lake playa, the geographic feature after which the fault is named (Hector Mine 

Earthquake Geologic Working Group, 1999). GIS data (base map and fault) is same as in 

Figure 1. Portions of other faults that ruptured in the 1999 earthquake are letter-coded as 

follows: CH- Calico-Hidalgo fault zone; ML- Mesquite Lake fault; BP- Bullion-Pisgah fault 

zone. (B) Overview of the portion of the Lavic Lake Fault covered by the hyperspectral 

airborne imagery footprints. “RF” denotes the Red Flake site, an area that was ground-truthed 

for supervised classifications. GIS data is same as in Figure 1. (C)-(F) Overview maps of the 

Red Flake site, centered at 34.586078° north, 116.288492° west. (C) Lidar 10 cm DEM 

hillshade (from the Open Topography website, http://www.opentopography.org/, accessed 

September 2017). Fault scarps from the 1999 earthquake are annotated by the dotted lines. 

(D) Polygon representing the area ground-truthed at the Red Flake site. Base map same as 

(C). (E) Elevation contour map of the Red Flake site (contour interval is 1 m). Polygon same 

as in (D). (F) Google Earth true color satellite image of the Red Flake site (imagery date: 2 

January 2015). Polygon same as in (D). Maps in (A)-(E) were produced using QGIS software 

(QGIS, 2018). 

 

Figure 3 (p. 245): Field photographs of the Red Flake site (located at 34.586078° north, 

116.288492° west), an area where we ground-truthed the lithology as part of the supervised 

classification process. The lithologic variety at the Red Flake site is distinguishable by 

distinct differences in rock color, due to good exposure and little vegetative overgrowth. (A) 
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Overview facing west; circle denotes the location where the people seen in (C) are standing 

(photograph date / time / credit: 21 December 2012 / 9:49 am Pacific standard time / Joann 

Stock). (B) Overview facing north from helicopter; circle denotes location where the people 

seen in (C) are standing (photograph date / time / credit: 26 December 2012 / 1:14 pm Pacific 

standard time / Ken Hudnut). (C) View facing north of the 1999 earthquake fault scarp, 

showing the 1-m-tall protrusion of red feldspar porphyry (center of image, to right of scarp) 

from which the site derives its name. People on the horizon are circled for scale (photograph 

date / time / credit: 21 December 2012 / 10:30 am Pacific standard time / Ken Hudnut). 

 

Figure 4 (p. 246): (A) Geologic map of the Red Flake site (located at 34.586078° north, 

116.288492° west), with lithologic names and color assignments on the right. (B) Example 

of pixels randomly generated to produce end-member spectra for a supervised classification. 

Random generation is stratified (samples randomly chosen from individual classes) and 

proportionate to the area defined by a lithologic boundary (we used 2% of the area; e.g. if a 

certain lithology occupied 100 pixels of image area, two pixels would be randomly chosen 

for spectral sampling and averaged to define a representative end-member spectrum for said 

lithology. (C) Example remote sensing spectra derived from the randomly generated pixel 

selections shown in (B). 

 

Figure 5 (p. 247): Thermal infrared laboratory spectra for lithologic hand samples collected 

at the Red Flake site. Spectra were measured on a Thermo-Nicolet 6700 FTIR Spectrometer 

using the biconical reflectance method. (A) Tuff and tuff breccia (four spectra), (B) 

detritus/colluvium (1 spectrum), (C) feldspar porphyry (3 spectra), and (D) microcrystalline 
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lava (2 spectra). All spectra were measured with a spot size of 1 - 2 mm, and each spectrum 

shown is an average of 150 scans taken over 4 - 6 minutes.  

 

Figure 6 (p. 248): Data processing flowchart for our hyperspectral airborne image 

classifications. Based upon our knowledge of the site, we chose to perform standard 

classification techniques commonly available. We used the Environment for Visualizing 

Images Software, version 4.8 (ENVI, Exelis Visual Information Solutions, Boulder, 

Colorado). User-specified parameters are indicated by how they are input in dialogue boxes 

for each of the image processing steps. NESR- noise equivalent spectral radiance. 

 

Figure 7 (p. 249): Overview of the complete hyperspectral airborne image swath, displayed 

in the following false color assignment: red, third MNF component; green, sixth MNF 

component; and blue, eighth MNF component. A subtle along-track gradation is present, and 

some clouds that were present during acquisition have been masked. The Red Flake site is 

annotated by a star, and located at 34.586078° north, 116.288492° west. Rectangular outline 

is the area shown in more detail in Figures 9, 10, and 11. GIS data is same as in Figure 1. 

Map was produced using QGIS software (QGIS, 2018). 

 

Figure 8 (p. 250): (A)-(J) Ten supervised classifications of the Red Flake site (located at 

34.586078° north, 116.288492° west). Lithologic contacts are superimposed for comparison 

with the ground-truthed geologic map (Figure 4A), and to visually assess the classification 

accuracy. Ground truth lithologic names, with color assignments, are shown at the bottom 
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for ready interpretation. Quantified results for the producer’s, user’s, and overall accuracies 

are in Tables 2 and 3, designated by the corresponding capital letters (A)-(J). 

 

Figure 9 (p. 251): Geologic swath map of the Lavic Lake fault from an unsupervised 

classification of thermal hyperspectral airborne imagery. Thin lines are lithologic contacts; 

thick line is the approximate surface trace of the Lavic Lake fault (linework from Dibblee, 

1966). Arrows indicate relative fault motion. Lithologic names shown in key are from 

correlating our classes with the units from Dibblee (also see Table 4). The Red Flake site is 

annotated by a star, and located at 34.586078° north, 116.288492° west. Upper right inset 

map (produced using Generic Mapping Tools, see Wessel et al., 2013) shows the footprint 

of the airborne imagery and the 1999 Hector Mine earthquake surface rupture (Treiman et 

al., 2002; U.S. Geological Survey and California Geological Survey, 2006). Lower left zoom 

inset (centered at 34.551116° north, 116.264804° west) shows a boundary between our 

classes that correlates well with a lithologic contact between tuff breccia and basalt (Dibblee, 

1966). Note that some clouds that were present during image acquisition have been masked. 

 

Figure 10 (p. 252): Portion of the Dibblee (1966) geologic map, zoomed to approximately 

the same area shown in the zoom inset of Figure 9. The map was modified by adding the line 

A-A’ (with the representative cross section shown above the map), and also adding the 

asterisk symbol where the Tt/Tb contact was depicted as depositional, but is actually be a 

fault. The legend contains the relevant lithologic units and symbols featured here and 

discussed in the text. In the cross section, dip of the Tt/Tb depositional contact is from the 
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average of cross-section-projected dip domains on the east and west side of the Lavic Lake 

fault are 13º and 23º (both east/northeast), respectively. 

 

Figure 11 (p. 253): Side-by-side comparison of the cumulative fault offset analysis area, as 

portrayed in (A) the MNF components in false color (from Figure 7), (B) the unsupervised 

classification (from Figure 9), and (C) the Dibblee (1966) map (from Figure 10). All panels 

are at the same scale (scale bar and north arrow in (A) apply to all three panels) and location 

(centered at 34.551116° north, 116.264804° west), with Dibblee’s line work superimposed 

on the remote sensing imagery products in (A) and (B). 

 

Figure 12 (p. 254): Oblique-view Google Earth satellite image (imagery date: 2 January 

2015) of the location (centered at 34.551116° north, 116.264804° west) where we measured 

separation of piercing lines by the Lavic Lake fault (note that the scales are not accurate 

everywhere in the images, due to the oblique viewing geometry). (A) Image without 

annotation. (B) Thick black line is the Lavic Lake fault surface trace, thin red lines are 

Dibblee’s Tt/Tb lithologic depositional contact, which separates the lighter-hued lithology 

(Tt, the older tuff breccia), from the darker-hued lithology (Tb, the younger basalt, which 

overlies Tt). (C) Thick black line is the Lavic Lake fault surface trace, thin green lines are 

the Tt/Tb depositional contact (modified from Dibblee’s depiction), and the smaller cross 

faults are also depicted by a thick black line. We used the smaller cross faults to measure 930 

m of horizontal, right-lateral map-view separation for the horizontal component of the slip 

vector. Note that the smaller cross fault on the west side of the Lavic Lake fault is depicted 
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in (B) as a portion of the Tt/Tb depositional contact. The yellow double-headed arrows white 

stars are the ground-based field photograph locations in Figure 13.  

 

Figure 13 (p. 255): Ground-based field photographs of the cross fault (Tt/Tb fault contact) 

on the west side of the main Lavic Lake fault. Figure 12C shows the photograph locations as 

white stars. Person (Ken Hudnut) provides scale. (A) date: 3 April 2014; time: 4:09 pm 

Pacific daylight savings time; location: 34.556183º north, 116.267204º west; viewing 

direction: north/northwest; taken by Joann Stock. (B) date: 2 October 2012; time: 10:55 am 

Pacific daylight savings time; location: 34.557096º north, 116.266962º west; viewing 

direction: south/southwest; taken by Frank Sousa. (C) same as (A), but annotated with 

lithologic letter codes (see Table 4). (D) same as (B), but annotated with lithologic letter 

codes (see Table 4). In (A), bedding in Tt can be observed dipping to the east/northeast. In 

(C) and (D), note that the older Tt unit is structurally above the younger Tb unit. 
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TABLES 

Table 1: ECSZ age of inception 

Author(s) Age Basis 

Dokka and Travis (1990a; 
b) 

6 - 10 Ma Initiation of Garlock Fault c. 10 
Ma (Burbank and Whistler, 
1987), which is cut by younger 
ECSZ faults in the east (Davis 
and Burchfiel, 1973; Plescia 
and Henyey, 1982); age 
relations from Stewart (1983), 
which may indicate that some 
ECSZ faults initiated c. 6 Ma; 
Paleomagnetic data from 
Carter et al. (1987), which may 
indicate that regional 
deformation began after c. 6 
Ma 

Schermer et al. (1996) <11.7 Ma Fan deposits dated at 11.7 Ma 
have left lateral offset 

Miller and Yount (2002) >5 - 6 Ma Left lateral faults controlled 
topography and subsequently 
the flow direction of 5-6 Ma 
basalts 

Gan et al. (2003) 5.0 ± 0.4 Ma Modeling the deflection of the 
Garlock Fault’s once straight, 
but now curved surface trace 

Oskin and Iriondo (2004) >3.77 ± 0.11 Ma Dated basalt flow that drapes a 
fault scarp in the Black 
Mountains 

McQuarrie and Wernicke 
(2005) 

c. 12 Ma Right lateral shear, oriented 
N25°W since c. 12 Ma is based 
on palinspastic restoration 
modeling of mountain ranges in 
the southwestern U.S.A. 

Woodburne (2015) c. 6 Ma Coupled with, or possibly as a 
byproduct of the opening of the 
Gulf of California (Atwater, 
1992; Atwater and Stock, 1998; 
Oskin and Stock, 2003; 
Bennett et al., 2015); also cites 
a period of non-deposition in 
the Mojave Desert Region until 
c. 6 Ma to argue for tectonic 
quiescence up until that time. 
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Table 2: Red flake site supervised classification error matrices 

Classified Ground truth Total User’s 
accuracy 

(A) Tuff Detritus Feldspar 
porphyry 

Microcrystalline 
lava 

  

Tuff 25 2 56 4 87 0.29 

Detritus 11 28 69 3 111 0.25 

Feldspar 
porphyry 

13 0 125 89 227 0.55 

Microcrystalline 
lava 

13 0 112 747 872 0.86 

Total possible 62 30 362 843 1297  

Producer’s 
accuracy 

0.40 0.93 0.35 0.89  Overall 
accuracy = 
0.71 

(B)       

Tuff 30 17 85 2 134 0.22 

Detritus 2 3 12 0 17 0.18 

Feldspar 
porphyry 

18 10 161 121 310 0.52 

Microcrystalline 
lava 

12 0 105 719 836 0.86 

Total possible 62 30 363 842 1297  

Producer’s 
accuracy (%) 

0.48 0.10 0.44 0.85  Overall 
accuracy = 
0.70 

(C)       

Tuff 41 6 97 24 168 0.24 

Detritus 13 23 53 22 111 0.21 

Feldspar 
porphyry 

0 0 128 88 216 0.59 

Microcrystalline 
lava 

8 0 85 709 802 0.88 

Total possible 62 29 363 843 1297  

Producer’s 
accuracy (%) 

0.66 0.79 0.35 0.84  Overall 
accuracy = 
0.69 

(D)       

Tuff 36 5 81 13 135 0.27 

Detritus 4 24 43 1 72 0.33 

Feldspar 
porphyry 

9 0 114 68 191 0.60 

Microcrystalline 
lava 

13 0 124 761 898 0.85 

Total possible 62 29 362 843 1296  

Producer’s 
accuracy (%) 

0.58 0.83 0.31 0.90  Overall 
accuracy = 
0.72 

(E)       

Tuff 13 2 26 7 48 0.27 

Detritus 29 24 87 2 142 0.17 

Feldspar 
porphyry 

11 3 117 59 190 0.62 
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Microcrystalline 
lava 

8 0 132 775 915 0.85 

Total possible 61 29 362 843 1295  

Producer’s 
accuracy (%) 

0.21 0.83 0.32 0.92  Overall 
accuracy = 
0.72 

(F)       

Tuff 19 1 44 61 125 0.15 

Detritus 28 24 103 5 160 0.15 

Feldspar 
porphyry 

1 5 124 45 175 0.71 

Microcrystalline 
lava 

14 0 92 731 837 0.87 

Total possible 62 30 363 842 1297  

Producer’s 
accuracy (%) 

0.31 0.80 0.34 0.87  Overall 
accuracy = 
0.69 

(G)       

Tuff 28 1 70 36 135 0.21 

Detritus 23 26 68 5 122 0.21 

Feldspar 
porphyry 

1 3 109 45 158 0.69 

Microcrystalline 
lava 

10 0 116 756 882 0.86 

Total possible 62 30 363 842 1297  

Producer’s 
accuracy (%) 

0.45 0.87 0.30 0.90  Overall 
accuracy = 
0.71 

(H)       

Tuff 15 4 20 7 46 0.33 

Detritus 22 16 86 3 127 0.13 

Feldspar 
porphyry 

10 10 133 63 216 0.62 

Microcrystalline 
lava 

15 0 124 769 908 0.85 

Total possible 62 30 363 842 1297  

Producer’s 
accuracy (%) 

0.24 0.53 0.37 0.91  Overall 
accuracy = 
0.72 

(I)       

Tuff 15 1 27 22 65 0.23 

Detritus 34 23 98 11 166 0.14 

Feldspar 
porphyry 

4 6 116 55 181 0.64 

Microcrystalline 
lava 

8 0 122 755 885 0.85 

Total possible 61 30 363 843 1297  

Producer’s 
accuracy (%) 

0.25 0.77 0.32 0.90  Overall 
accuracy = 
0.70 

(J)       

Tuff 16 1 26 10 53 0.30 

Detritus 22 20 83 6 131 0.15 
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Feldspar 
porphyry 

9 8 101 37 155 0.65 

Microcrystalline 
lava 

15 0 152 790 957 0.83 

Total possible 62 29 362 843 1296  

Producer’s 
accuracy (%) 

0.26 0.69 0.28 0.94  Overall 
accuracy = 
0.72 
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Table 3: Red flake site supervised classification accuracy summary* 

Lithology # of 4-m2 
pixels 

Area (m2) Producer’s 
accuracy (%) 

User’s 
accuracy (%) 

Tuff (and tuff 
breccia) 

62 248 38 ± 16 25 ± 5 

Detritus 
(colluvium) 

30 120 71 ± 24 19 ± 6 

Feldspar 
porphyry 

364 1456 34 ± 4 62 ± 6 

Microcrystalline 
lava 

845 3380 89 ± 3 86 ± 1 

*Standard deviation = 1σ; all values rounded to nearest integer 
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Table 4: Correlation of unsupervised classification units with lithologic units 
from the Dibblee (1966) geologic map1 

Class 
color 

Lithologic 
name 
given here 

Letter codes and lithologic names 
from Dibblee (1966)2 

Class also 
includes these 
units2 

Yellow Alluvium Qa: alluvium 
Qf: fan gravel 
Qoa: older alluvium 
Qof*: older valley sediments, 
fanglomerate and gravel 

QTr: rhyolitic 
felsite, (and all 
others) 

Red Felsite Tif: intrusive felsite Ta, Tt 

Magenta Andesite Ta*: andesite 
Tap: andesite porphyry 
Tfa: fanglomerate of andesitic 
detritus 

Qof, QTr, Tif, Tb, 
Tt 

Purple Weathered 
basalt 

Tb*: basalt 
Tib: intrusive basalt 

Tt 

Blue Basalt Tb*: basalt 
Tib: intrusive basalt 

QTr, Ta, Tt 

Green Tuff 
breccia 

Tt: tuff breccia Qof, Tif, Ta 

1See Dibblee (1966; 1967abc; 2008) for complete lithologic descriptions; 
correlations are broad generalizations that do not necessarily cover every 
possible detail/variation 
2Q: Quaternary, T: Tertiary; when multiple units appear in column three, asterisks 
indicate the predominant correlative unit 
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Table 5: Unsupervised classification error matrix for the Red flake site 

Classified Ground truth Total User’s 
accuracy 

 Tuff Detritus Other   

Tuff 41 7 99 147 0.28 

Detritus 1 20 351 372 0.05 

Other 13 0 631 644 0.98 

Total 
Possible 

55 27 1081 1163  

Producer’s 
accuracy 

0.75 0.74 0.58  Overall 
accuracy = 
0.60 
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ABSTRACT 

 

Well-developed varnish and pavement are usually characteristic of relatively older 

geomorphic surfaces: the environment must be broad, flat, and stable for extended periods 

of time for these features to reach advanced stages of development. However, varnish and 

pavement formation rates are not understood well enough for those features alone to be used 

as a reliable chronometer. In this research, we combine the known ages for a set of terraced 

geomorphic surfaces along the Mission Creek strand of the southern San Andreas fault in the 

Coachella Valley, southern California, to explore the use of thermal hyperspectral airborne 

remote sensing imagery for identifying age-dependent characteristics of spectral emissivity 
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features. In spectra from an airborne sensor, the band depth of an emissivity minimum at 

9.16 μm generally increases with age of geomorphic surface. The spectral position of this 

feature is within the wavelength range for clay minerals (9.1-9.6 μm), which suggests 

increasing abundance of clay minerals on older surfaces. Desert varnish is known to contain 

clay minerals, so it is possible that the increased clay band depth with age manifests from 

increasing desert varnish development on older surfaces. We collected field data to test for 

other effects that might contribute to the increased band depth with age. Our field results 

show that desert varnish and desert pavement scores (higher numerical score assigned to a 

greater degree of development), and vegetation spacing estimates all display some positive 

correlation with surface age. Ground-based spectra from hand samples that we collected 

display a spectral feature at 9.30 μm, which also indicates clay content, but does not occur at 

the exact same wavelength position as that in the airborne spectra. Most of the airborne and 

ground-based spectra indicate the presence of clay mineral(s), along with quartz and 

feldspars. Ground-based vegetation spectra are generally flat and featureless over the 

wavelengths covered in remote sensing imagery. In summary, it appears that while a clay 

mineral signal in the airborne spectra is plausible, the overall spectral contrast increases with 

surface age due to the combination of varnish development, topographic smoothing 

associated with pavement formation, and increase in vegetation spacing (net decrease in 

vegetation). This suggests that the positive correlation between spectral contrast in airborne 

remote sensing spectra and surface age can potentially be used to determine relative ages of 

Quaternary geomorphic surfaces. 

 

INTRODUCTION 
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The southern San Andreas fault is a major tectonic plate boundary that is especially 

hazardous due to its location near many major population centers in southern California. 

Tectonism in this desert region influences the health and safety of millions of people, so the 

numerous specific sections and strands of the southern San Andreas fault have been 

rigorously studied to assess prehistoric and current seismic activity. To assess the risk, we 

need to know about the slip rates of the faults. To estimate fault slip rates on the basis of 

tectonic geomorphology, the ages of geomorphic surfaces must be known. Relative ages of 

surfaces can be assigned using the degree of development of surficial coatings on gravel 

clasts (desert varnish) and/or surficial smoothing (desert pavement), to characterize and 

differentiate faulted geomorphic surfaces (alluvial fans or terraces). The degree with which 

desert varnish and desert pavement has developed over time can indicate the relative or 

absolute ages of distinct geomorphic units; this type of analysis has been applied to features 

that have been cut and offset by California’s southern San Andreas fault (e.g., Keller et al., 

1982; Shifflett et al., 2002; van der Woerd et al., 2006; Behr et al., 2010). In this study, we 

incorporate both developmental criteria to evaluate relative ages from the perspective of 

remote sensing imaging spectroscopy. 

Desert varnish is a potential chronometer for estimating the ages of geomorphic 

surfaces, but to accurately employ the chronometer, we need to know how the lithologic 

coating forms and develops. The formation and development of desert varnish (from herein, 

sometimes referred to as just “varnish” for brevity) has long attracted interest from 

geologists, biologists, and others. Varnish can also form in non-arid environments, and is 

therefore sometimes more generically referred to as “rock varnish.” Ideas for the primary 
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formation mechanism are usually either 1) inorganic chemical alteration of, and addition to, 

lithologic surfaces, or 2) microbiologic activity (note that (1) and (2) are not mutually 

exclusive). For both cases, primary formation will also depend on whether the constituent 

material of the varnish was derived in situ or had been transported to the present site. A 

combination of these factors likely vary in relative contribution based on the specific regional 

and local environment. Regardless of the source of origin materials, petrographic 

observations of varnish usually reveal a microstratigraphy (Perry and Adams, 1978; Reneau 

et al., 1992), indicating it is an accretionary process, and encouraging attempts to calculate 

some type of accretion/sedimentation/growth rate (Liu and Broecker, 2000).  

In order to use varnish as a chronometer, empirical knowledge about its growth rates 

is needed. Rates of growth, based on varnish thickness and the age of surfaces determined 

radiometrically, have been calculated with very broad results. Calculated rates range from 

<1 to 40 μm/ky (ky = one thousand years), with the caveat that those rates are certainly 

minima due to an unknown time lag between deposition and inception of growth, and the 

observation that older samples tend to exhibit slower growth rates (Liu and Broecker, 2000; 

Spilde et al., 2013). The time lag required for initiating varnish growth has been observed in 

a number of cases, with estimates of as little as 25 years (Engel and Sharp, 1954), up to about 

100 years (Whitley and Dorn, 1987). In specific cases, faster growth rates can be attributed 

to an environment conducive to accelerated growth (Krinsley et al., 2012), such as more 

frequent and consistent moisture (Hunt, 1954; Thiagarajan and Lee, 2004). The high 

variability in growth rates, and the fact that a maximum varnish thickness of c. 200 μm is 

usually observed (Liu and Broecker, 2000; Spilde et al., 2013), precludes the use of thickness 

alone as a chronometer.  
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The idea of using varnish as a chronometer has stimulated various ideas and methods 

aimed at measuring the formation process. In a given region, a calibrated relationship to 

geologic time can be established, and then potentially used for future work (e.g., Helms et 

al., 2003). A rigorous and widely tested application of this method involves establishing a 

calibrated, standard regional time scale for the Late Pleistocene to which varnish 

microstratigraphy can be correlated (Liu and Broecker, 2013). This calibrated method has 

yielded ages that agree with those from independent surface exposure dating methods used 

on the same lithologic units (Marston, 2003; Phillips, 2003; Liu, 2003). Some other 

methodologies for using varnish as a chronometer, namely cation ratios, and direct dating 

using accelerator mass spectrometry, are not yet reliably developed (e.g., see reviews by 

Beck et al., 1998; Watchman, 2000). 

Desert varnish often includes a high relative abundance of clay minerals (Potter and 

Rossman, 1977), so perhaps geomorphic surfaces with varnished clasts can be 

spectroscopically distinguished by measuring relative clay content. Due to their 

predominantly submicroscopic size, clay mineral grains are commonly detected and 

identified via laboratory methods, including x-ray diffraction (XRD) and spectroscopy. 

Remote sensing data and methods (i.e., imaging spectroscopy) are an extension of laboratory 

spectroscopy, and with recent technological development, the limitations of low spectral and 

spatial resolution have been overcome on many modern platforms.  

For this study, we are focusing on distinguishing varnish that has accumulated on a 

chemically dissimilar (mineralogic/petrologic) substrate material. We can take advantage of 

previous work that used spectroscopy and remote sensing to determine the mineralogy and 

petrology of substrate material that lies beneath coatings of desert varnish. Formative 
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research in lithologic remote sensing has typically involved examining the way varnish 

represents “noise” that complicates and/or conceals the signal from its 

mineralogic/petrologic substrate in laboratory and imaging spectroscopy (Kahle and Goetz, 

1983; Gillespie et al., 1984; Kahle, 1987; Bartholomew et al., 1989; Rivard et al., 1993; 

Christensen and Harrison, 1993). In this research, we are focusing on varnish as “signal,” 

exploiting the fact that it is both opaque from manganese and iron oxide content, and contains 

clay minerals not always present in a substrate material, and so can be detected and identified 

via remote sensing methods.  

Ultimately, we want to relate remote sensing of lithology and active tectonics in a 

way that benefit society: the age-dependent development of geomorphic surfaces, and the 

overprinting of continuous tectonic displacement present an opportunity to capture 

measurements of both time and distance. Desert varnish and related desert pavement surfaces 

can provide an idea of geologic age (or at least the passage of time into a current state), and 

tectonics can provide an idea of physical displacement, which together provide the quantities 

needed for a geologic fault slip rate. Varnish and pavement are often associated with 

Quaternary unconsolidated lithologic units, and geologic fault slip rates from these relatively 

young displaced features can have greater relevance for guiding risk and hazard assessment 

on the current state of a tectonic system. 

 

GEOLOGIC/TECTONIC SETTING  

 

The southern San Andreas fault in the northern Coachella Valley offsets a number of 

geomorphic surfaces with well-determined exposure ages (Blisniuk and Sharp, 2014). There 
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is also an abundance of observations of both modern and ancient seismic activity. The 

prehistoric, historic, and modern seismic activity have been analyzed in three main ways: 1) 

paleoseismic trenching to establish earthquake recurrence intervals (and in rare cases, 

calculate fault slip rates); 2) methods in tectonic geomorphology to establish geologic fault 

slip rates; and 3) Global Positioning System (GPS) and interferometric synthetic aperture 

radar (InSAR) data and modeling to establish present-day geodetic fault slip rates. All of 

these types of data can be incorporated into modeling and analyses of seismic hazards along 

the San Andreas fault (e.g., Jones et al., 2008; Porter et al., 2011; Davis and O’Rourke, 2011). 

Of these types of seismic hazards analysis mentioned above, our research is most closely 

related to the tectonic geomorphology approach. An overview of the other two approaches 

may be found in the Appendix. 

 

Tectonic Geomorphology 

 

The Coachella Valley region contains numerous Late Pleistocene to Holocene 

recognizable geomorphic features indicating a tectonically active landscape. The Indio Hills 

(Keller et al., 1982), Mecca Hills, Edom Hill, and Durmid Hill (Bürgmann, 1991) are all 

archetypal examples of how the Earth’s surface responds to active strike-slip fault motion, 

transpression, and various modes of tectonic buckling. Fluvial channels and alluvial fans are 

cut and displaced, revealing both historic and prehistoric strike-slip fault motion. Those 

geomorphic features have been used to estimate geologic slip rates for the southern San 

Andreas fault, which vary widely, depending on the specific location and/or fault strand(s) 
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considered. For this research, we chose to analyze the Mission Creek strand of the southern 

San Andreas fault at Pushawalla Canyon (Figure 1). 

 

Thousand Palms Oasis and Pushawalla Canyon areas in the Indio Hills 

 

The remote sensing data used here includes thermal hyperspectral airborne imagery 

that covers a set of alluvial/fluvial deposits near the Thousand Palms Oasis and Pushawalla 

Canyon (Figure 1). These deposits are offset by the Mission Creek strand of the San Andreas 

fault, and have been dated recently using the 10Be cosmogenic exposure and uranium-series 

methods (Blisniuk and Sharp, 2014). That study yielded a slip rate of 22-25 mm/yr, 

somewhat faster than rates from the same fault in nearby areas (e.g., see Behr et al., 2010; 

Fletcher et al., 2010). By combining our remote sensing data and techniques with their 

geochronology, we have a prime opportunity to perform mineral spectroscopy on varnished 

gravels in an area of known geomorphic surface exposure ages. This area is located within 

the Coachella Valley Preserve in southern California. The Coachella Valley Preserve is a 

protected, environmentally sensitive area. Thus, an important advantage of using 

hyperspectral airborne imagery for this type of research is its minimal environmental impact. 

 

CHARACTERIZING ALLUVIAL/FLUVIAL DEPOSITS WITH REMOTE 

SENSING DATA AND METHODS 

 

The Quaternary alluvial fans and fluvial terraces in this region formed in response to 

a combination of climatic and tectonic processes. Deposition of the detrital material can 
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occur under varying climatic influences, including glacial (Owen et al., 2014; Cyr et al., 

2016), interglacial (Bull, 1991; Reheis et al., 1996), or transitional glacial-interglacial 

conditions (e.g., Bull, 1991; Friedrich et al., 2003; Pazzaglia, 2013). When deposition occurs 

along active faults, the tectonic influence is coupled with the climatic, affecting depositional 

patterns and the overall structure of the formation. Along the southern San Andreas fault, 

tectonic activity has contributed to uplifting broad, detrital surface deposits into uplands, 

forming a series of terraces. After deposition ceased and the geomorphic surfaces stabilized, 

the influence of the arid desert conditions set in, and the surfaces evolved with age. 

The prevailing methods that are currently used for dating Quaternary deposits include 

analyses of cosmogenic radionuclides, luminescence, and Uranium-Thorium decay series (or 

“U-series,” in this context, usually performed on carbonate formed in soil). All of those 

methods are rigorous and costly, which has encouraged other researchers to seek new dating 

methods that consider other physical and chemical aspects of geomorphic surface 

development. Here, we explore the applicability of using remote sensing data and methods, 

which have an economic advantage, and also, potential to characterize whole regions, 

particularly if they are poorly accessible. Remote sensing data and methods can be more 

accessible because they only require a computer and some software (albeit after significant 

costs and efforts to launch a platform), instead of a full laboratory setup.  

Features of geomorphic surfaces relevant to age that are best characterized via remote 

sensing include mineralogy/petrology, and topographic surface roughness. Because older 

fans include a higher fraction of relatively erosion-resistant clasts (Gillespie et al., 1984), 

multispectral thermal infrared (8-12 μm wavelengths) airborne images produce spectra that 

are sensitive to compositional changes. Furthermore, as discussed below, the spectral 
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emissivity minimum moves to a longer wavelength as desert varnish develops on the clasts 

(Gillespie et al., 1984).  

To quantify topographic surface roughness, digital elevation models (DEMs) 

produced from radar or lidar data are typically employed. With these data, Frankel and Dolan 

(2007; also see Frankel et al., 2007) found that topographic smoothing at the scale of 5-10 m 

wavelengths, the typical wavelength of bar and swale structures on alluvial surfaces, appears 

to occur over a time period of about ≤70 ky, after which roughness can increase if new 

channels begin to incise the surface as the base level of streams becomes lower. They also 

noted that a decrease in clast size due to weathering over time might also contribute to the 

overall smoothing at shorter wavelengths. Data from ground-based lidar, which is sensitive 

to variation in smaller clast sizes, has also been used to show that Quaternary geomorphic 

surfaces become topographically smoother over time (Mushkin et al., 2014).  

Mushkin et al. (2014) attributed clast size reduction on geomorphic surfaces 

predominantly to salt weathering and shattering (e.g., Hunt and Mabey, 1966), in addition to 

the effects of clast exfoliation, and dissolution of carbonate rocks. Their study area was in 

the Jordan Rift Valley, which also includes the hypersaline Dead Sea. Salt weathering is also 

a dominant component in alluvial fan surface development at a site in China, where it may 

have hindered the advanced desert varnish and pavement development that can be 

comparatively observed in southern California (Farr and Chadwick, 1996). Our study area in 

the Coachella Valley does not consist primarily of carbonate rocks, and although there is 

currently a hypersaline water body in the region (the Salton Sea, and also possibly the 

prehistoric Lake Cahuilla; see the interpretations of Van de Kamp, 1973), salt weathering 
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does not appear to have played a large role in clast size reduction in the Pushawalla Canyon 

area. 

Many previous studies have combined multiple remote sensing data types to look at 

the combined effects of compositional varnish and topographic smoothing. Combined 

approaches can take many forms, one of which used visible wavelength imagery for 

lithologic character, and a backscatter metric from satellite-borne radar for surface roughness 

(Farr and Chadwick, 1996). Jayko et al. (2005) used the panchromatic band (0.5-0.9 μm 

wavelengths) of the Landsat 7 satellite, and surface slope and curvature quantities derived 

from DEMs. The combined methods of Jayko et al. (2005) worked well in arid regions with 

minimal vegetation, but faltered in the following areas: 1) where the substrate lithology either 

quickly develops varnish, or might already resemble the ubiquitous dark color of a substantial 

varnish (for both cases, mafic volcanic rocks); 2) where varnish-resistant carbonate rocks 

abound; and 3) where rapidly-eroding fissile shales abound, presumably because higher 

erosion rates inhibit the stabilization necessary for a substantial coating. It is encouraging for 

future work that the mapping of geomorphic surfaces, at least to first order, can be fully 

automated using algorithms for classifying surfaces based on varying roughness and 

lithologic content (Jayko et al., 2005). 

 

DESERT VARNISH 

 

The primary chemical constituents of desert varnish are typically manganese and iron 

oxides (Hunt, 1954; Engel and Sharp, 1958; Perry and Adams, 1978), clay minerals (Hunt, 

1954; Potter and Rossman, 1977; 1979), and silica (Perry et al., 2006; Aulinas et al., 2015). 
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Its characteristic black- and red-hued colors result from manganese and iron content (Perry 

and Adams, 1978). The specific metal oxide minerals can include hematite and birnessite, 

respectively (Potter and Rossman, 1979). Birnessite ((Na,Ca,K)Mn7O14·3H2O) is a 

manganese oxide mineral that has a layered crystal structure, and is therefore similar to the 

phyllosilicate clay minerals that can also be present in significant abundance. Clays can 

compose up to 70% of the varnish (Potter and Rossman, 1977), but samples from some 

regions do not include a significant clay fraction. Clay-poor samples have been found instead 

to have main phases that include quartz polymorphs and amorphous silica (Aulinas et al., 

2015). Some studies interpreted the silica to have played an important role in overall varnish 

formation (Perry et al., 2006). Varnishes that are predominantly silica (i.e., resemble more 

of a silica glaze) have been termed “Si-rich rock varnish” (Aulinas et al., 2015). 

The amount of moisture present in the atmosphere, and/or within the microscopic 

aqueous realm on the lithologic surface, greatly affects the potential development of desert 

varnish (Hunt, 1954; Thiagarajan and Lee, 2004). Wet zones along river banks are also 

known to support significant varnish development (Krinsley et al., 2012; references therein). 

Despite the dependence on regional environmental conditions and ecology, the specifics on 

the chemical makeup of a given varnish strongly suggest that the varnish material itself does 

not appear to be derived from its lithologic substrate (Engel and Sharp, 1958; Potter and 

Rossman, 1977; 1979; Thiagarajan and Lee, 2004; Macholdt et al., 2015). Formation and 

development thus appears to be independent of the substrate lithology. The metal oxides are 

likely transported by water (Potter and Rossman, 1979), whereas the provenance of the clay 

minerals is more likely based on aeolian transport and deposition (Potter and Rossman, 1977; 

1979; Perry and Adams, 1978). Some workers support the idea that for long-term stability 
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and ongoing accretion, the clays and metal oxides must both be present (Potter and Rossman, 

1977), while others suggest that the manganese-rich component predates clay deposition 

(Krinsely et al., 2012).  

A microstratigraphy is commonly present in varnish (Perry and Adams, 1978; 

Reneau et al., 1992; Liu and Broecker, 2000; Liu, 2003; Liu and Broecker, 2013), indicating 

that formation is primarily depositional or accretionary (however, for a case where 

microlaminations are absent, see Aulinas et al., 2015). The layered structure can also contain 

botryoidal or stromatolitic structures (Perry and Adams, 1978), organic compounds (Perry et 

al., 2006), and/or microbial-sized forms (Krinsely et al., 2012); all of those features suggest 

that microbiologic activity may be integral to the formation process.  

The continuous accretion of varnish into a microstratigraphic structure suggests that 

increasing thickness might have a systematic dependence on time, but, as in the case of 

stratigraphy, a number of studies indicate that this is not the case. Difficulties include: 1) 

some substantial varnish coatings have apparently grown within a few decades to a century 

(Engel and Sharp, 1958; Krinsley et al., 2012); 2) younger varnishes often appear to have 

faster accretion rates (Liu and Broecker, 2000; Spilde et al., 2013); 3) those faster accretion 

rates do not appear to be sustainable for a long time, since varnish thickness >200 μm is 

rarely observed (Spilde et al., 2013); 4) varnished surfaces at higher elevations might not 

have survived the effects of glacial erosion during the Late Pleistocene, which means that a 

maximum age has been imposed for many locations (Quade, 2001); and 5) it might be nearly 

impossible to account for all of the variation in regional and local environmental factors that 

control the balance of accretion, erosion, and preservation at any given location.  
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Microtopography of the lithologic substrate has significant control over varnish 

accretion rates (Reneau et al., 1992) and resulting thickness (Liu and Broecker, 2000). Both 

accumulation rates and thickness increase in local topographic troughs and decrease on local 

peaks (Reneau et al., 1992), analogous to macro- and regional-scale accumulation of 

sediment in basins. The rapid early accretion model of Reneau et al. (1992), where 

differential varnish accumulation causes an overall smoothing of the lithologic micro-

surface, could explain some instances where higher varnish accumulation rates are found on 

younger geomorphic surfaces (Liu and Broecker, 2000; Krinsley et al., 2012; Spilde et al., 

2013). 

 

THE RELATIONSHIP BETWEEN DESERT VARNISH AND DESERT 

PAVEMENT 

 

Based on reconnaissance images (field photographs, and visible wavelength satellite 

imagery), the older geomorphic surfaces in our study area generally have a darker overall 

color index, which is likely due to a greater degree of desert varnish and desert pavement 

development. A relatively smooth and well compacted macroscopic desert/stone pavement 

surface is often associated with moderate to heavy varnish development on coarse gravels. 

The way that a desert pavement forms has implications for the validity of using varnish as a 

chronometer. A classical hypothesis regarding desert pavement formation invokes the idea 

that a geomorphic surface can experience overall deflation, where the coarser interlocking 

clasts in a pavement have progressively become exposed, agglomerated, and compacted at 

the surface of the Earth over a long period of time, all while finer sediment is winnowed via 
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aeolian processes. In this case, a lithologic surface coating of varnish would not be a valid 

chronometer, since not all of the clasts were exposed at the surface when it first formed. An 

alternative hypothesis is the “born at the surface” model (Wells et al., 1985; 1995; McFadden 

et al., 1987), where the coarse, interlocking surficial clasts have been exposed continuously 

since formation of the geomorphic surface commenced. The “born at the surface” model 

explains data for pavements with exposure ages similar to those of proximal bedrock source 

material (Wells et al., 1995). Under this model, any lithologic surface coatings have 

potentially accumulated continuously over the entire age span of the surface. In that case, the 

overall varnish development could be a chronometer that records the entire life span of the 

surface.  

Regardless of the pavement formation model, other processes must also be 

considered. Bioturbation by plants and animals can disrupt the protracted development of 

substantial desert varnish coatings and associated pavement surfaces. It is also possible that 

the varnish can undergo diagenesis, including dissolution, and this might always be a state 

of disequilibrium (Garvie et al., 2008), analogous to erosive forces acting during aggradation 

in sedimentary basins. While these complications might hinder attempts to see varnish 

accretion as a chronometer on the microscopic scale, the remote sensing data and methods 

that we employ here take into account a much broader sample of the overall geomorphic 

surface. Desert varnish accretion, coupled with desert pavement development, might result 

in specific characteristics of the geomorphic surface that can be observed and quantified via 

the synoptic view that airborne hyperspectral imagery provides. 

 

SPECTROSCOPY OF CLAYS AND OTHER RELEVANT MINERALS 
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The ability to identify submicroscopic clay minerals via spectroscopy is intrinsic to 

this research. Electromagnetic energy from the Sun interacts with the crystal structure of 

minerals to produce diagnostic spectral features seen in infrared reflectance and emission 

spectroscopy. Furthermore, clays are often present in significant abundance on planetary 

surfaces, yielding strong signals that can be rigorously quantified and interpreted (e.g., 

Michalski et al., 2006; Ehlmann et al., 2009).  

The clay minerals montmorillonite and illite were identified in significant abundance 

within desert varnish from southern California, using laboratory infrared absorbance spectra 

(Potter and Rossman, 1977). Montmorillonite is part of the di-octahedral smectite group, 

which has the general chemical formula: (½Ca,Na)0.7(Al,Mg,Fe)4[(Si,Al)8O20](OH)4·nH2O 

(Deer et al., 1992). The montmorillonite in desert varnish from southern California was c. 

50% of a mixed-layer clay component that also included illite (Potter and Rossman, 1979a). 

Illite has spectral features nearly identical to those of montmorillonite in thermal infrared 

emissivity spectra (Figure 1a in Michalski et al., 2006), so in this research we are focusing 

primarily on montmorillonite’s spectral features to guide our interpretations of clay mineral 

content in desert varnish. 

Clays and all other silicate minerals display the most prominent spectral feature, the 

Reststrahlen band, which appears in the thermal wavelength regime (λ = 8-15 μm). The 

Reststrahlen band occurs as a minimum in emissivity spectra, and is due to Si-O asymmetric 

stretching vibrations in the crystal lattice (Thomson and Salisbury, 1993). The exact spectral 

position of the Reststrahlen band is dependent on the degree of silica tetrahedra 

polymerization in a crystal lattice (Launer, 1952). For the nesosilicate minerals (and the rocks 
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they form) that have a lower degree of Si-O polymerization (e.g., olivine, garnet, dunite, 

basalt), the Reststrahlen band generally occurs at longer wavelengths. In contrast, silicates 

(and rocks) with higher polymerization (e.g., quartz, feldspars, granite, rhyolite) have a 

Reststrahlen band at shorter wavelengths (see Figure 2 in Hook et al., 2005). The 

phyllosilicate clay minerals in the smectite group (and kaolinite) have intermediate silica 

polymerization. These clays have a major spectral feature at a position somewhere in the 

range 9.1-9.6 μm (Keller and Pickett, 1950; Hunt et al., 1950; Launer, 1952; Farmer, 1974; 

Bishop et al., 2002a; Frost et al., 2002; Michalski et a., 2006; Bishop et al., 2008). The 9.1-

9.6 μm feature is due to Si-O stretching (Bishop et al., 2002a; Frost et al., 2002; Michalski 

et a., 2006), and therefore represents the Reststrahlen band position for these minerals. 

Highly polymerized tectosilicate spectral features are likely to be observed in remote 

sensing spectra, and they may overlap with features from clay minerals. In general, spectral 

data must be evaluated on the basis of considering mixtures of minerals that might possibly 

have spectral features at similar, overlapping, or identical wavelengths. Some of the common 

tectosilicate minerals were significantly represented in the desert varnish substrate lithology 

(detrital clasts) from our study area. Figure 2 illustrates that both quartz and montmorillonite 

clay have a spectral feature near 8.8 μm (also see Figure 5 in Michalski et al., 2006; Bishop 

et al., 2008). For quartz, this is the primary feature, but for clays, this is a minor, secondary 

feature. Quartz also has a diagnostic spectral feature, a very distinct doublet (or two 

Reststrahlen bands, as described by Thomson and Salisbury, 1993) with emissivity minima 

at 8.4-8.6 μm and 8.8-9.0 μm (Figure 2 in this study; Figure 1 in Conel, 1969; Figure 4 in 

Christensen et al., 2000; Figure 5 in Michalski et al., 2006). Potassium feldspar has prominent 
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spectral features at c. 8.7, 9.2, 9.5, and 9.9 μm (Figure 2 in this study; Figure 1b in Thomson 

and Salisbury, 1993; Figure 5 in Michalski et al., 2006).  

The minor spectral features at longer wavelengths are less important to this research. 

Smectite clays have minor features from 10-13 μm (Keller and Pickett, 1950; Hunt et al., 

1950; Launer, 1952), due to aluminum/magnesium/iron hydroxide bending vibrations 

(Farmer, 1974; Sposito et al., 1983; Bishop et al., 1994; Bishop et al., 2002a; 2002b; Frost et 

al., 2002; Michalski et al., 2006; Bishop et al., 2008). Other clays (kaolinite and illite) have 

minor spectral features from 12-13 μm (Keller and Pickett, 1950), as does quartz (Figure 2 

in this study; Keller and Pickett, 1949; Hunt et al., 1950; Launer, 1952; Lippincott et al., 

1958; Lyon, 1965; Michalski et al., 2006), and feldspars (Thomson and Salisbury, 1993). 

Tectosilicate spectral features from 12-13.5 μm are due to a symmetric stretching mode in 

the Si-O molecules, and various Si-O-Al combinations for feldspars (Thomson and 

Salisbury, 1993). We did not consider minor features from clays at longer wavelengths, 

partly because some of the other studies were based on transmission spectra, which can 

sometimes be more revealing than emission spectra (e.g., Michalski et al., 2006).  

Furthermore, even though the manganese and iron oxides (birnessite and hematite, 

respectively) are significant components in desert varnish, we also gave these metal oxides 

little consideration, because in the wavelengths that our data covered (λ = 7.6-13.2 μm) their 

infrared absorbance spectra are relatively flat (Figures 3 and 6 in Potter and Rossman, 1979a; 

Figure 14 in Potter and Rossman, 1979b), and lack any fundamentally diagnostic spectral 

features. 

 

SPECTRAL MIXTURE MODELS 
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The combination and mixing of spectral features shows how progressively heavier 

coats of desert varnish will alter the spectrum of a substrate lithology, including changes in 

band depth and positions of minima. When a lithologic mixture includes a greater fraction of 

a certain mineral, the wavelength positions where distinct features occur for that mineral will 

usually display a greater depth in spectra. When a quartz-rich substrate has a coating of 

varnish, the minimum in emissivity spectra shifts to a longer wavelength (Gillespie et al., 

1984), due to the clay mineral’s lower degree of silica polymerization and resultant influence 

on the Reststrahlen band position. In laboratory and field spectra, spectral features for quartz 

are progressively modified and obscured by an increasing varnish coating. If the varnish is 

present in sufficient quantity, its own spectral features, which bear a striking resemblance to 

those of clay minerals, will completely mask those of the substrate (Figure 13 in Kahle, 1987; 

Figure 9 in Bartholomew et al., 1989; Rivard et al., 1993). 

The results mentioned above from previous research on spectroscopy of desert 

varnish coatings can be recreated by modeling the spectral effect of mixing clay with 

tectosilicate minerals. We created linear spectral mixture models using laboratory thermal 

emission spectra (Christensen et al., 2000), to exemplify the results from previous research 

(Figure 2). These models also helped guide our own hypotheses on how desert varnish might 

alter remote sensing spectra from our study area. Linear mixture models of laboratory spectra 

are accurate in the wavelength range that includes Reststrahlen band positions if surface 

scattering is prevalent, a condition that is met if the particle sizes of the single mineral 

components are much larger than the wavelengths in measured spectra (Thomson and 

Salisbury, 1993). To represent a typical varnish substrate lithology (detrital clasts) from our 
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study area, we mixed spectra from three common tectosilicates in roughly equal relative 

abundances: 33% quartz (125-2000 μm), 34% andesine plagioclase feldspar (710-1000 μm), 

and 33% microcline potassium feldspar (710-1000 μm). Spectral features from each of the 

three tectosilicates, the deepest of which are in the range 8.5-9.2 μm, are represented in this 

synthetic “granite” spectrum (Figure 2A). To represent the clay minerals found in desert 

varnish, we used a spectrum from montmorillonite, which was taken from a pressed pellet 

(Cooper and Mustard, 1999, noted that clay crystal aggregates behave spectrally like larger 

particles). As more clay is added to the “granite” substrate, the spectral features of the clay 

alter and ultimately conceal the granite’s spectral features. The clay’s major spectral feature 

at 9.36 um begins to dominate the spectrum at adding as little as 33% to the mixture, and 

deepens substantially as more is added, representing a heavy coating of desert varnish (Figure 

2B). 

Based on the results from previous research and from our own spectral mixture 

modeling, we expect to see in our data a spectral feature in the range 9.1-9.6 μm, due to clay 

minerals in desert varnish. Different minerals and materials can have spectral features at 

similar spectral positions (Figure 13 in Launer, 1952), creating some ambiguity when 

attempting to interpret remote sensing observations. We need to take into account the 

chemical aspects of other minerals that are known to be present, as well as variation in the 

physical aspects of lithology (e.g., clast size and topographic surface roughness), and other 

natural features (e.g., vegetation), that can also contribute to the spectral emission signal. 

Even if the signal is present and real, we consider various ways for why it changes on the 

geomorphic surfaces of varying ages and characteristics. 
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METHODS 

 

Some of the text in the following subsections is copied verbatim from Chapter 2 of 

this thesis (on remote sensing of the Lavic Lake fault). The wording is identical, or almost 

identical, because the sensor calibration procedure and the image data processing sequence 

were the same for the two study areas.  

 

Thermal Hyperspectral Airborne Imagery Acquisition 

 

We collected thermal hyperspectral airborne imagery on 24 September 2015 (at c. 

10:45 am to 10:55 am, Pacific daylight savings time) using Mako, a “whiskbroom”-type 

sensor developed and operated by The Aerospace Corporation. The Mako sensor measures 

surface radiance in the thermal regime at 128 bands (Hall et al., 2011). For the data used in 

this study, the wavelength range was 7.6-13.2 μm, with one-meter ground sampling distance 

(or image pixel resolution), from a flight at 6000 feet above ground level (c. 6800 feet 

altitude). For the terminology used herein regarding the hyperspectral image data from the 

Mako whiskbroom sensor, each single “whisk” (or linear track) is a single data cube, so the 

words “whisk” and “data cube” are used interchangeably. When multiple data cubes (or 

whisks) are concatenated into a larger image, the set of combined data cubes can be called a 

“super cube.” The full hyperspectral imagery data set presented here consisted of two super 

cubes (or image swaths) with parallel, adjacent flight lines that were flown in opposing 

azimuthal directions. The two neighboring super cubes were combined for greater spatial 

coverage in a single scene. Although a set of combined super cubes can still be called a super 
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cube, when the two super cubes used here are combined into a single image, we call this the 

“complete image scene.”  

The complete image scene covered portions of both the Mission Creek and Banning 

strands of the southern San Andreas fault. The complete image scene covers a rectangular 

area, c. 6.1 km along the flight path (roughly parallel to and centered on the Mission Creek 

strand), and c. 4.7 km wide. The complete image scene consists of 114 whisks total, with 57 

whisks in each of the two parallel, adjacent flight swaths. The spatial extent of a single whisk 

relative to the complete image scene can be seen in Figure 3: in the saw tooth pattern along 

the sides of the image swath (sides that are parallel to the fault traces), the tip of each tooth 

is the boundary between two whisks. Two adjacent whisks generally have a small amount of 

overlap, and for this data, the two parallel, adjacent swaths also have a small amount of 

overlap.   

 

Mako Sensor Calibration 

 

The Mako airborne hyperspectral infrared sensor underwent radiometric and 

wavelength calibration. For radiometric calibration, two onboard blackbody sources were 

observed immediately before and after the scene was acquired. These were stabilized at 

different temperatures that spanned the expected radiance values of the scene. A linear 

relation between the known blackbody radiance input and the digital counts output was 

assumed so that the sensor response could be modeled with multiplicative gain and additive 

offset terms. The gain and offset terms for the pre- and post-collection calibrations were then 

time-interpolated to match the actual collection time of the data. 
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The wavelength calibration was done by observing blackbody sources covered by 

National Institute of Standards and Technology (NIST) traceable transparent polymer films 

(with calibrated absorption features), and performing a least-squares fit across the full extent 

of the focal plane array. For more detailed descriptions of the calibration processes, see Hall 

et al. (2011) and Buckland et al. (2017). 

 

Hyperspectral Airborne Imagery Data Processing 

 

All of the steps in the following image processing sequence, unless otherwise 

specified, were completed using the Environment for Visualizing Images Software, version 

4.8 (ENVI, Exelis Visual Information Solutions, Boulder, Colorado). We began with data 

cubes of airborne thermal hyperspectral imagery that had undergone radiometric and 

wavelength calibration, bad pixel replacement, and spectral smile removal. We first 

concatenated the 114 data cubes (whisks) that made up the complete image scene into a 

single “supercube.” After that, we could carry out the subsequent processing steps in bulk. 

For the hyperspectral image data presented here, we had to remove the first ten bands 

that covered wavelengths from 7.56-7.96 μm because they were dominated by noise. We 

proceeded to use bands 11-128 (118 total), with wavelengths from 8.01-13.15 μm. We 

performed an in-scene atmospheric compensation (ISAC algorithm from Young et al., 2002), 

setting the regression pixels to maximum hit, the fitting technique to normalized regression, 

and using for the noise equivalent spectral radiance (NESR), the median value of the super 

cube. Then, we used a minimum noise fraction (MNF) transformation (Green et al., 1988; 

note that it is called a “maximum noise fraction” in that paper; also, see Lee et al., 1990) to 
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identify noise or data artifacts in the imagery. A gradation perpendicular to the flight 

direction (across track) was present near the edges of each individual data cube, so we 

discarded this spurious spectral signal in an MNF inverse transformation. 

Next, we converted the data from at-sensor radiance to emissivity with the emissivity 

normalization method (Kealy and Hook, 1993). With the emissivity image, we could extract 

spectra of the geomorphic surfaces for analyses, since we were characterizing spectra in 

relation to known surface ages (Table 1). 

Before extracting the emissivity spectra, we needed to mask younger, ephemerally 

active channels that cut into the older surfaces. To achieve this, we used a digital elevation 

model (DEM) with 1.5 m spatial resolution (created by Ryan Gold) to first calculate from 

the DEM a slope map, and then use the slope map to mask areas with high slopes (which 

represent relatively steep walls of the younger channels). The parameters for creating the 

slope mask were topographic kernel size of 5 to create the slope map (with slope in degrees), 

and we then masked pixels with a slope value greater than 3 degrees. The slope mask was 

then intersected with the digitized polygons that represented the mapped geomorphic 

surfaces with known ages (Figure 4). 

To produce a single representative spectrum for each distinct geomorphic surface, 

we averaged (arithmetic mean) a random sampling for 1% of the total number of pixels 

within each surface’s digitized boundaries. We performed the 1% random spectral sampling 

a total of five times to capture statistical variability in the spectral data. We also removed the 

continuum from all of the representative emissivity spectra, so that they could be compared 

against one another with a normsalized baseline (i.e., with respect to the band depth/strength 

at wavelength positions for spectral features of interest, see Clark and Roush, 1984). From 



280 
 

herein, we will refer to any hyperspectral airborne imagery emissivity spectra as “airborne 

remote sensing spectra.” The airborne remote sensing spectra were plotted after being 

smoothed with a moving average over a three band interval (Figure 5).  

We hypothesized that the older surfaces contain a greater fraction of clay minerals 

(in varnish), and will therefore display a greater band depth somewhere in the wavelength 

range where the Reststrahlen bands are predicted to occur for clay minerals, which is 9.1-9.6 

μm (Bishop et al., 2002a; Frost et al., 2002; Michalski et a., 2006). We chose to focus on the 

wavelength position at 9.16 μm, because in our airborne remote sensing data, the greatest 

number of spectra had an emissivity minimum at 9.16 μm. Figure 6 is a plot of airborne 

spectra band depth at 9.16 μm versus surface age. Whether or not this spectral feature at 9.16 

μm corresponds to the fraction of clay minerals present or not will be discussed later, but we 

analyzed the order of increasing/decreasing relative band depth based on this wavelength 

position. 

If we assume the above hypothesis, then older surfaces will have increased band 

depth at 9.16 μm. In the following Results section, we will use the phrases “in position” and 

“out of position” to describe whether the band depth at 9.16 μm for each spectrum is in 

sequence with the others with respect to the sequence of known surface ages (e.g., a spectrum 

for the oldest geomorphic surface would be “in position” if it displayed the greatest band 

depth at 9.16 μm, a spectrum for the second oldest surface would be “in position” if it 

displayed the second greatest band depth at 9.16 μm, etc.). Interpretations of those results 

will be discussed in a later section. 

 

Ground Truth Field Work 
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We also needed field measurements to compare with our airborne remote sensing 

spectra interpretations. We did field work in the study area from March 2017 through May 

2017 to collect ground truth information. We arbitrarily chose from two to four sites located 

on each geomorphic surface with known age to collect field data. At each site, a square plastic 

frame, one meter on edge, was placed on the ground to collect data within a confined area 

that represented the hyperspectral airborne imagery pixel size. First, we took two types of 

field photographs at each sample site: 1) an overhead (bird’s eye) view of the sample square 

meter (or sample area field photograph); and 2) an overview perspective of the geomorphic 

surface (or site overview field photograph). To describe the lithologic characteristics of each 

sample square meter, we collected petrologic data, including primary mineralogy and 

textures of detrital surface clasts that make up the alluvial fan deposits. We used a 

combination of field observations and the sample square meter photographs to estimate the 

dominant (>50% relative abundance) clast size ranges, for sizes down to 1 mm mean 

diameter (when possible), using percentage diagrams for estimating composition by volume 

(see Appendix 3 in Compton, 1985). We also collected up to ten lithologic sample chips from 

most of the field sites. 

To assess the degree of desert varnish, and desert pavement development, we 

established a numerical scale to give each a score, from 1-4, for each sample site (the scores 

are not single values, but ranges). In the numerical scale, a higher number is a greater degree 

of development, as follows:  1 = absent/rare, 2 = light/weak, 3 = moderate, and 4 = 

heavy/strong. Varnish scoring was based mainly on darkening color, and pavement scoring 

was based mainly on smoothness and compaction (compaction assessed by placing the ball 
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of a booted foot on the surface and twisting to see how easily clasts broke free from their 

interlocking arrangement). We acknowledge that these numerical scores are subjective, but 

our experience in the field allowed us to develop a sense of varnish and pavement 

development in a relative sense to other sites visited and analyzed. 

To quantify the variable presence of vegetation between the surfaces, we estimated 

the average spacing between desert scrub bushes or other plants, as a proxy for vegetation 

abundance/density. We also collected several vegetation leaves and branches from a few of 

the sites. 

 

Rock Area Fraction: Analysis Using Ground-based Field Photographs 

 

We also assessed whether clast size variation existed between surfaces with another 

independent method. Larger clasts are less susceptible to induced motion, and therefore are 

more stable and conducive to extended periods of varnish development. Along these lines, 

we were interested in deriving a quantitative measurement for the fraction of clasts that were 

above some size threshold. We defined this quantity as the “rock area fraction.” Since the 

terms “rock, sediment, and grains” are undefined with respect to size, we established a 

definition to quantify our data. To decide which clasts qualify as “rocks,” we chose a 

threshold size of 2.5 cm mean diameter. The edge of the plastic frame that was used to define 

each sampling area had a thickness of 2.5 cm, so this served as a consistent reference scale 

in all of the field photographs. With a value defined for size cutoff, we could determine the 

areal percentage of each sample square meter that was occupied by the larger clasts that were 

more likely to have a greater degree of varnish development. The remaining lithologic 
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detrital material, with sizes below 2.5 cm, represented clasts that were generally not large 

enough (i.e., not kinematically stable) for protracted varnish development. 

To complete this analysis, we used the ground-based field photographs of the sample 

square meter sites. On a printout of each photograph, clasts that were within the sample 

square meter, and above the size threshold of 2.5 cm, were outlined by hand with vellum 

tracing paper on a light table (these larger outlined clasts would be included in the “rock” 

fraction). The tracing paper sheets were scanned to digital image files, and the digital image 

files were then processed with ImageJ software (Schneider et al., 2012). With ImageJ, we 

established the scale size in each image, automatically filled all of the clast outlines that were 

traced, then calculated the fraction of the sample square meter area occupied by the filled 

clast outlines (i.e., the integrated area occupied by all of the clasts with mean diameter greater 

than c. 2.5 cm). The remaining fraction of unfilled area was then smaller clast sizes that 

would not be large and stable enough for protracted varnish development. This analysis 

allowed us to quantify the fractional area (in percent) of a single airborne remote sensing 

pixel that was available for varnish development. Note that the total rock area fractions that 

we calculated are minimum values, because our analysis was inherently subjective, and it is 

possible that we did not capture every single clast that exceeded the size threshold. 

 

Ground-based Spectra 

 

To observe spectral variation among the geomorphic surfaces on a smaller scale, we 

used a hand held field spectrometer to directly measure lithologic spectra from the exposed, 

top (and sometimes varnished) sides of single clast surfaces. In addition to measuring the 
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single clast lithologic spectra, we also measured spectra from samples of finer, 

unconsolidated lithologic detrital material (from herein, we will refer to these as “sand” 

spectra, where “sand” does not imply a technical definition of clast size), and vegetation 

samples, since these materials were included in noteworthy abundance in our study area. The 

apparatus we used was an Agilent 4100 ExoScan™ portable Fourier Transform Infrared 

spectrometer (spot size: 3-5 mm), which measures diffuse reflectance by active source. From 

herein, we will refer to any spectral measurements that we made with this apparatus as 

“ground-based spectra.” Some of the ground-based spectra were collected in situ, but due to 

difficulties in the field (e.g., inability to transport all of the equipment to distal field sites, 

and/or equipment failure), most were collected later, on samples that we brought back. We 

collected up to ten ground-based spectra from a variety of materials at each site (Table 2). 

To compare the general shape and wavelength positions of prominent spectral 

features between airborne remote sensing and ground-based spectra, the ground-based 

reflectance spectra were converted to emissivity using Kirchhoff’s law. In a general form, 

Kirchhoff’s law states that reflectance and emissivity sum to unity (Robitaille, 2009). The 

ground-based spectra were diffuse reflectance measurements, which is similar to a conical-

hemispherical measurement (see Case 6 from Table 2 in Schaepman-Strub et al., 2006). If 

seeking quantitative spectral measurements, directional-hemispherical reflectance spectra 

are usually considered acceptable (assuming isothermal conditions) for converting to 

emissivity via Kirchhoff’s law (Salisbury and Walter, 1989; Salisbury et al., 1994). However, 

the simple conversion offered by Kirchhoff’s law is not generally considered appropriate for 

converting some other types of reflectance spectra to emissivity (Christensen and Harrison, 

1993). Still, other types of spectral reflectance measurements converted to emissivity via 
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Kirchhoff’s law do generally maintain the same general spectral shape as direct spectral 

emissivity measurements (Figure 3b in Christensen and Harrison, 1993; Figure 4 in 

Christensen et al., 2000). We did not assume that the ground-based spectra were quantitative 

to begin with, and since we were mainly concerned with the qualitative aspect of this 

analysis, we accepted the error involved in converting ground-based diffuse reflectance 

spectra to emissivity via Kirchhoff’s law.  

Finally, all of the ground-based spectra were plotted for each site, along with the site 

average (arithmetic mean), to show how spectra from a mixture of materials within the 

hyperspectral airborne imagery’s pixel size might manifest as a single remote sensing 

spectrum. From herein, when we refer to any ground-based spectra, we are referring to the 

single representative site average, unless otherwise specified. 

 

RESULTS 

 

Airborne Remote Sensing Spectra 

 

The results here will be presented according to their respective geomorphic surface 

names (Table 1). We separated the airborne remote sensing spectra into two groups: from 

surfaces that are located upstream, and downstream, of the southern San Andreas fault, 

Mission Creek strand. The spectra were then further subdivided by surface age. The R2 

correlation coefficient between all airborne spectra band depth at 9.16 μm and surface age is 

0.59 (Table 3). 
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For the upstream sets of spectra (Figure 5), the oldest surface, Qt0 (>95 ka), is in 

position (greatest band depth at 9.16 μm) for four of the five subsets. The two youngest 

surfaces, Qt3 (13 ka) and Qt4 (<11 ka), are together in position for all five subsets, with the 

caveat that Qt3, not Qt4, has the least depth for four of the five subsets. In all five of the 

sampling sets, Qt2 (74 ka) is always out of position, with a greater 9.16 μm band depth than 

Qt1 (87 ka). 

For the downstream sets of spectra (Figure 5), the oldest surface, C0 (>95 ka), is in 

position (greatest band depth at 9.16 μm) for three of the five subsets, and we note that for 

the remaining two sets, C2f (26 ka) has the greatest band depth. The youngest surface in the 

downstream group, C3 (13 ka), is in position (least band depth at 9.16 μm) for all five of the 

subsets. The downstream group of surfaces are in complete ideal sequence (according to our 

increasing-band-depth-with-age hypothesis) for two of the five subsets. 

 

Ground Truth Field Work 

 

Primary Mineralogy and Lithologic Textures of Detrital Surface Clasts 

 

Surficial clasts at all of the sample sites had generally similar primary mineralogy 

and lithologic textures. Quartz/alkali feldspar/plagioclase (QAP) clast compositions of 

phaneritic (individual crystals generally 1-5 mm) igneous rocks included granite, 

granodiorite, quartz monzodiorite, and quartz monzonite. Some other types of clasts and/or 

textures included conglomerate/breccia, gneiss, schist (rich in amphibole and/or biotite 

mica), pegmatite, porphyry with feldspar megacrysts, and fine-grained mafic (pyroxene-rich) 
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rocks. At a site on the oldest downstream surface, C0p2 (>95 ka), we noted that the lithologic 

substrate for some of the most heavily varnished clasts was a mafic schist. 

 

Clast Size Measurements 

 

The results for the dominant (>50% relative abundance, down to 1 mm) clast size 

ranges are shown in Figure 7. We do not observe any trends, such as a general monotonic 

increase or decrease, between the dominant clast size ranges and surface age. The R2 

correlation coefficient between mean of dominant (>50%) clast size ranges and surface age 

is 0.10 (Table 3). The largest range was recorded at a site on the youngest downstream 

surface, C3p2 (13 ka). In the field, we also observed fewer larger clasts (>30 cm long axis) 

at a site on one of the older upstream surfaces (Qt1, 87 ka, see site overview field photograph 

for Qt1p2, Figure S8 in the Supplemental Items). 

 

Desert Varnish and Desert Pavement Development Scores 

 

The scores for degree of desert varnish and desert pavement development are plotted 

in Figures 8 and 9, respectively. For both sets of scores, we observe a general monotonically 

increasing trend between score and surface age, with the lowest scores for the youngest 

surfaces, and the highest for the oldest. The Spearman’s rank correlation coefficients (used 

for categorical variables, see Simspon, 2015) between varnish and pavement scores, and 

surface age are 0.90 and 0.90, respectively (Table 3). For the downstream surfaces, the 

general monotonic increase in desert varnish and desert pavement scores is interrupted by a 
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decline in score for the site C2fp4 on the C2f (26 ka) surface. From our field inspections, we 

observed that varnish was absent/rare even on larger, more stable boulders, on the younger 

surfaces on either side of the fault. 

 

Vegetation Abundance 

 

The estimates for average vegetation spacing are shown in Figure 10. There is a 

generally monotonic increasing trend between average vegetation spacing and surface age. 

The R2 correlation coefficient between vegetation spacing and surface age is 0.34 (Table 3). 

 

Additional Field Observations 

 

On the younger upstream surfaces (Qt4, <11 ka, and Qt3, 13 ka), we also observed 

meter scale bar and swale (hummocky) topography, which was composed of larger clasts 

(10-20 cm long axes) concentrated on channel bars (see field photographs for Qt4p2 (which 

was a site directly located on one of the channel bars with larger clasts), Qt3p1, and Qt3p2, 

Figures S2, S3, and S4 in the Supplemental Items).  

At the upstream site Qt1p2 (87 ka), we observed a conspicuous higher relative 

abundance of red-orange micro- or cryptocrystalline iron-oxide minerals (likely included 

hematite and goethite; see field photographs for Qt1p2, Figure S8 in the Supplemental 

Items). It is possible that many of the clasts at the Qt1p2 site were flipped over, because an 

orange coat on the buried bottom of varnished clasts is often present due to iron oxide 

formation at soil or sub-soil level (Figures 2 and 3 in Engel and Sharp, 1958; Potter and 
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Rossman, 1977; 1979a). On the oldest upstream surface Qt0 (>95 ka), we observed the best 

examples of extremely well-developed, smooth, resistant, heavily varnished desert pavement 

(see field photographs for Qt0p2, Figure S10 in the Supplemental Items). 

At the downstream site C2fp1 (26 ka), we noted a distinct, light pink oxidation on 

clasts (see sample square meter field photograph for C2fp1, Figure S15 in the Supplemental 

Items). At the site C0p1 (>95 ka) on the oldest downstream surface, we noted that the 

dimensions for broader areas with the greatest degree of varnish and pavement development, 

had their longest dimension parallel to the direction of channel drainage (see site overview 

field photograph for C0p1, which was taken facing southwest, parallel to the channel 

drainage direction, Figure S25 in the Supplemental Items). In a view perpendicular to the 

drainage direction, more vegetated areas were observed in channel rills. The implication of 

these observations is that channel bars of larger clasts (e.g., gravel/cobbles/boulders) could 

have ended up being the most heavily varnished and strongly developed pavement surfaces. 

 

Rock Area Fraction 

 

The results for the rock area fraction (minimum, %), calculated for each of the 1-m2 

field sampling sites using image processing software, are shown in Figure 11. There is no 

general monotonic increase or decrease between the rock area fraction and surface age, and 

the R2 correlation coefficient is 0.00 (Table 3). This implies that, for our airborne remote 

sensing data, the fraction of area for a single pixel that was at least fundamentally available 

for varnish development did not increase for older surfaces. 
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However, we noted that for the upstream surfaces (upper panel in Figure 11), the 

youngest and oldest surfaces had sites with the highest and lowest rock area fractions, 

respectively: Qt4p2 (<11 ka, a site directly located on one of the channel bars with larger 

clasts, Figure S2), and Qt0p2 (>95 ka, Figure S10). For the downstream surfaces (lower panel 

in Figure 11), the sites C2p3 (74 ka, Figure S21) and C2fp4 (26 ka, Figure S18) have the 

highest and lowest rock area fractions, respectively. Additionally, for the downstream 

surfaces, the two sites (for which rock area fraction was measured) on the youngest surface 

(C3, 13 ka, Figures S11 and S12), both have rock area fractions that are greater than any of 

those from the three sites on the oldest surface (C0, >95 ka, Figures S25-S27). Furthermore, 

the upstream and downstream surfaces that have the greatest difference for rock area fraction 

between sites are Qt4 (<11 ka, Figures S1 and S2) and C2 (74 ka, Figures S19-S22), 

respectively. The upstream and downstream surfaces that have the least difference for rock 

area fraction between sites are Qt3 (13 ka, Figures S3 and S4) and C3 (13 ka, Figures S11 

and S12), respectively. See field photographs for all of the sites referenced above in the 

Supplemental Items. 

 

Ground-based Spectra 

 

Ground-based spectra for all 27 field sites, along with accompanying sample square 

meter, and site overview field photographs, are in the Supplemental Items, and a summary 

of which materials were measured at each site is in Table 2. Figures 12 and 13 are two 

examples of the ground-based spectra for the sites Qt4p1 (<11 ka) and C0p1 (>95 ka), 

respectively. Some additional ground-based spectra that are relevant to the discussion of clast 
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size effects are from the following sites (see Table 2, and the Supplemental Items): Qt4p1 

(<11 ka; Figure 12), spectra 1-5; C3p1 (13 ka, Figure S11), spectra 1,8,9; C3sand (13 ka, 

Figure S13), spectra 1-10; and C2fp4 (26 ka, Figure S18), spectra 4-9. Ground-based spectra 

of relevance to the consideration of vegetation effects include: Qt4p1 (<11 ka; Figure 12) 

spectra 6-10; Qt2p2 (74 ka, Figure S6), spectrum 1; and C3veg (13 ka, Figure S14), spectra 

1-4. Note that both of these material variation considerations were covered at the upstream 

site Qt4p1 (<11 ka, Figure 12). 

For the ground-based averaged spectra, a first order observation is that measurements 

from the youngest surfaces (see sites from Qt4 (<11ka) and C3 (13 ka), Figures S1, S2, and 

S11-S14 in the Supplemental Items) can be relatively flat in the range 9-10 μm, or they can 

contain a prominent, deeper feature at 9.30 μm. Compare this to ground-based spectra for 

the oldest surfaces (see site C0p1 (>95 ka) in Figure 13, sites from Qt0 and C0 (both >95 

ka), Figures S9, S10, and S25-S27 in the Supplemental Items), which all contain a prominent, 

deeper feature at 9.30 μm. As stated previously, the ground-based spectral measurements are 

not quantitative, so we did not expect to see any correlation with surface age for the band 

depth of any specific features. For completeness, though, the R2 correlation coefficient 

between ground-based spectra band depth at 9.30 μm and surface age is 0.04 (Table 3). 

The feature at 9.30 μm in ground-based spectra is at odds with the 9.16 μm feature 

in airborne spectra. Spectra from the oldest surfaces are generally the most representative for 

maximum band depth at either of the respective wavelength positions, so we plotted a few 

of the oldest typical airborne and ground-based spectra together on the same axes to illustrate 

the systematic difference in shape and position of minimum (Figure 14). 
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DISCUSSION 

 

In our airborne remote sensing spectra, we observed a general increase in band depth 

(also known as band strength or spectral contrast) of the 9.16 μm feature with age. As 

reported above in the Results section, some of the remote sensing spectra for geomorphic 

surfaces display a band depth at 9.16 μm that is in position with respect to the relative band 

depth for older/younger surfaces. For example, the upstream oldest surface Qt0 (>95 ka) has 

the greatest band depth at 9.16 μm for four of the five subsets, and the downstream oldest 

surface C0 (>95 ka) has the greatest band depth for three of the five subsets (Figure 5). The 

two youngest upstream surfaces, Qt3 (13 ka) and Qt4 (<11 ka), together have the least band 

depths for all five subsets, and the youngest downstream surface C3 (13 ka) has the least 

band depth for all five subsets (Figure 5). Furthermore, the downstream surfaces are in 

complete ideal sequence (band depth at 9.16 μm strictly increases with age) for two of the 

five subsets (Figure 5). However, there are a number of remote sensing spectra for surfaces 

that are out of position. Along with airborne spectra band depth at 9.16 μm, the other 

parameters with correlation coefficients >0.30 include desert varnish and desert pavement 

scores, and vegetation spacing (Table 3 and Figure 15). 

 

The Effect of Petrology 

 

The likely bedrock sources for alluvial/fluvial deposition in the Indio Hills are in the 

Little San Bernardino Mountains located immediately to the north east, which generally 

consist of intrusive crystalline rocks (hornblende diorite-gabbro, and various granitoids), and 
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metamorphic rocks, various politic and mafic schists (Dibblee, 2008; Lancaster et al., 2012). 

We expected similarity of clast compositions between surfaces, because they are all 

alluvial/fluvial deposits (now sets of terraces) along the same source drainage through 

Pushawalla Canyon. There has only been about 2 km of displacement of the Pushawalla 

Canyon drainage in the past c. 100 kyr (Blisniuk and Sharp, 2014), so it is unlikely that the 

eroding bedrock source for the system has shifted to a drastically distant and different source 

during that time. Therefore, we rule out fundamental petrologic differences in clasts as a 

reason to explain the spectral variation between surfaces. 

 

The Effect of Other Minerals 

 

We examined the effect of other minerals by comparing the airborne remote sensing 

(Figure 5), ground-based averaged (Figures 12, 13, 14, Table 2, and Supplemental Items), 

and the library laboratory spectra (from Christensen et al., 2000; Figure 2 in this study). As 

discussed previously, the spectral emissivity spectral features that we expected to see were 

at the following wavelength ranges (in μm, with the attributable mineral(s) in parantheses): 

8.2-8.6 (quartz+microcline+andesine), 8.6-9.0 (quartz+microcline+andesine), 9.0-9.4 

(microcline); 9.2-9.4 (montmorillonite clay); two separate and distinct features from 9.4-10.0 

(microcline+andesine), and two separate and distinct features from 12.4-13.0 (quartz). 

Nearly all of the airborne remote sensing and ground-based averages have prominent 

spectral features at the following wavelengths (μm): 8.2-8.6, 8.6-9.0, two separate and 

distinct features from 9.4-10.0, and two separate and distinct features from 12.4-13.0 

(Figures 5, 12, 13, 14, and Supplemental Items). We correlate these features to the following 
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corresponding features observed at wavelengths (μm) for specific minerals in the library 

laboratory spectra, and their synthetic “granite” mixture spectrum (Figure 2): 8.2-8.6 

(quartz+microcline+andesine), 8.6-9.0 (quartz+microcline+andesine), two separate and 

distinct features from 9.4-10.0 (microcline+andesine), and 12.4-13.0 (quartz). 

For the Reststrahlen band of clay minerals, the wavelength range of interest is 9.1-

9.6 μm (Keller and Pickett, 1950; Hunt et al., 1950; Launer, 1952; Farmer, 1974; Bishop et 

al., 2002a; Frost et al., 2002; Michalski et a., 2006; Bishop et al., 2008). But we see a 

particular difference between airborne remote sensing and ground-based average 

measurements in the range 9.1-9.6 μm. In the majority of the airborne remote sensing spectra 

(mainly from older surfaces), a distinct spectral feature is present with a minimum at 9.16 

μm, and the band depth of that feature generally increases with surface age (Figures 5, 6, 15, 

and Table 3).  

In the majority of the ground-based averaged spectra (Figures 12, 13, 14, and 

Supplemental Items), a distinct spectral feature is present with a minimum at 9.30 μm. As 

expected, this 9.30 μm ground-based feature does not generally increase in absolute band 

depth with surface age in site-averaged spectra, because the ground-based spectrometer is 

not quantitative (as discussed previously), and furthermore, broad variations exist for the 

microscopic surface roughness of lithologic sample chips measured, as well as their 

temperatures at the time of measurement. Yet, it appears that some of the older surfaces 

might generally exhibit a greater band depth at 9.30, if measured relative to the band depth 

of the quartz feature from 8.2-8.6 μm.  

The library laboratory spectrum for montmorillonite clay (Figure 2B) has its 

Reststrahlen band at 9.36 μm, and there is another laboratory spectrum from montmorillonite 
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(Figure 5 in Michalksi et al., 2006) with a Reststrahlen band at 9.33 μm. Considering these 

observations, the ground-based 9.30 μm feature correlates more closely than the airborne 

9.16 μm airborne feature to the 9.36 μm library laboratory montmorillonite Reststrahlen 

band. The difference in the emissivity minimum at 9.16 μm for airborne spectra and 9.30 μm 

for ground-based spectra is real and unexplained (Figure 14), so we do not assert that this 

aspect is unimportant. However, the difference does not completely rule out that the 9.16 μm 

remote sensing feature could be from clay minerals, so we considered some reasons why the 

two data sets do not agree.  

Our analysis is complicated by the following spectral features from other minerals 

that overlap with the clay features: the laboratory synthetic “granite” spectrum has a spectral 

feature centered at about 9.2 μm from microcline and quartz (Figure 2). The synthetic 

“granite” spectrum has a distinct feature at 8.8 μm that directly overlaps with a feature at the 

same position from the library laboratory montmorillonite clay spectrum (Figure 2B). 

Additionally, there is another quartz feature that has been observed at 9.2 μm (Launer et al., 

1952). The 9.2 μm feature observed by Launer et al. (1952) was not discussed in detail in 

that study, so it is possible that they observed a shoulder of one the quartz features, from 9.0-

9.4 μm (Figure 2A). It is also possible that smaller particles might shift the minimum of the 

quartz feature at 8.86, to 9.09 μm (e.g., see models in Figure 6D and 6E in Moersch and 

Christensen, 1995). The quartz feature from 8.6-9.0 μm (Figure 2A) is clearly present in the 

majority of our spectra, but it appears to be overprinted by the addition of another spectral 

feature that extends this limb over into higher wavelengths, up to about 9.30 μm. The addition 

of this extension into higher wavelengths is probably due to the combined addition of a clay 

feature from 9.1-9.6 μm, and the microcline feature at 9.2 μm. 
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If the increased 9.16 μm band depth in airborne remote sensing spectra is only a result 

of other lithologic factors, such as clast/particle size, surface roughness, degree of 

clast/particle size sorting, and rock area fraction, then it remains compelling that the spectral 

signal occurs at the Reststrahlen band for clay minerals. All of our spectra show that minerals 

with similar and/or overlapping spectral features are present in the overall lithologic 

mixtures. All in all, both the remote sensing and ground-based spectra represent a similar 

mixture of minerals, with quartz, feldspars, and clay(s) present, but the problem remains 

between the 9.16/9.30 μm features, and this will require further investigation. Only the band 

depth at 9.16 μm in airborne spectra varies systematically with surface age, and the majority 

of all of the spectra can be explained by similar mineral mixtures, where the mixture does 

not vary with age. While the increasing band depth (or spectral contrast) with age in airborne 

remote sensing spectra cannot be explained by varying mineral mixtures alone, the difference 

between the 9.16/9.30 μm features in airborne/ground-based data sets remains a problem that 

needs to be addressed. 

 

Definitions of Clast and Particle Size 

 

For the purposes of this discussion and here after, we need to define how we are using 

terms that refer to the size of lithologic material in loose surficial regolith. The best resolution 

of our ability in the field to analyze sediment size is limited to ~ ≥1 mm. We use the term 

“clast(s)” to refer to macroscopic sediment sizes that are ≥1 mm, and “particle(s)” to refer to 

microscopic sediment sizes that are <1 mm. Following the Wentworth scale for sediment 

size (e.g., Boggs, 2012), terms for macroscopic clasts ≥1 mm are very coarse sand, 
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granule(s), pebble(s), cobble(s), and boulder(s), whereas terms for microscopic particles <1 

mm are coarse/medium/fine/very fine sand, coarse/medium/fine/very fine silt, and clay. Note 

that since much of this manuscript involves a detection of clay mineralogy, the reader can 

assume that when we refer to “clay(s)”, we are referencing mineralogy and not particle size. 

We will avoid using the term “clay(s)” to refer to particle size, but it will be clearly indicated 

if necessary. Although the majority of the sediment sizes that we were able to analyze were 

macroscopic clasts ≥1 mm, we acknowledge that our hypothesis is based on a spectral 

contribution from clay minerals, which are likely present in abundance in smaller size 

fractions. Thus, there will also be some discussion regarding how microscopic particles <1 

mm might also contribute to the remote sensing signals and trends that we observe. 

 

The Effect of Clast and Particle Size 

 

Infrared laboratory spectra show that as microscopic particle size increases, often so 

does spectral contrast/band depth (Lyon, 1965; Hunt and Vincent, 1968; Conel, 1969; Figure 

1 in Salisbury and Walter, 1989; Salisbury and Wald, 1992; Bishop et al., 1994; Cooper and 

Mustard, 1999; but for examples where this is not always the case, see Hunt and Vincent, 

1968; Salisbury et al., 1987). Horgan et al. (2009) acquired similar results in short-

wavelength infrared spectra (1.0-2.5 μm), but they also included in their analysis sediment 

sizes >1 mm to the same effect. The decrease in spectral contrast with decreasing particle 

size can be partially attributed to volume scattering, where the size of smaller particles causes 

them to become optically thin and have lower overall opacity (Salisbury and Wald, 1992).  
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If the effect of spectral contrast and band depth increasing as particle size increases 

continues to scale up to even larger macroscopic clast sizes, then it is possible that the 

observed trend in our data is due to variation in dominant clast size on the different 

geomorphic surfaces. Based on the general pattern of increasing band depth with age in our 

remote sensing spectra, it follows that this might be due to increasing dominant clast size 

with age on the Quaternary geomorphic surfaces. Figure 7 shows estimates for dominant 

(>50%) clast size range for each of the sampling sites on the upstream and downstream sets 

of surfaces. The correlation coefficient between dominant clast size (mean value of each 

range) and age is very small, R2 = 0.10 (Figure 15 and Table 3). The dominant clast size 

varies over the different surfaces, but it fluctuates unpredictably. 

Clay minerals could be more abundant in the smaller clast size fraction, below our 

ability to resolve. Our clast size analysis is limited to fragments that are ≥1 mm, yet we are 

concerned with looking for evidence that the remote sensing signal is influenced primarily 

by clay mineralogy. Even though our field data for dominant size of macroscopic individual 

surficial clasts do not show an increase in size with age, microscopic clay particles can 

increase in size in a few different ways. Individual clay crystals could grow and increase in 

size with age as part of their initial formation mechanism via weathering and alteration of 

existing minerals. Alternatively, individual clay crystals can agglomerate and increase in 

aggregate size, which is, however, likely for clays that accrete on surfaces to form desert 

varnish. In addition to increasing band strength with increasing particle size, Cooper and 

Mustard (1999) also observed that, in coarser samples, the larger clay particles were not 

individual crystals, but rather amalgamations of smaller particles. As surficial coatings of 

desert varnish grow, constituent clay particles amalgamating into larger single masses might 
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result in spectra that are consistent with larger single particles, which is the obvious source 

of the increasing band depth at 9.16 μm in the airborne spectra.  

Most of the ground-based spectra that we collected were from single lithologic 

sample chips, where clay minerals might be underrepresented. Therefore, spectra of specific 

relevance to the consideration of clast size effects include “sand” spectra, from finer, 

unconsolidated lithologic detrital material (see Table 2). In many of the ground-based spectra 

for single clasts, there is an apparent signal, and remarkable band depth for a feature at 9.30 

μm (Figures 13, 14, and Supplemental Items). However, in “sand” spectra, there is also 

always an apparent signal, but not always remarkable band depth at 9.30 μm (Figures 12, 

and S11, S13, and S18 in the Supplemental Items). 

We wanted to assess whether the smaller clast size fraction had higher clay mineral 

content. To check this, we observed the spectral behavior at a field site located within an 

ephemerally active channel (C3sand, 13 ka, Figure S13 in the Supplemental Items). The 

dominant (>50%) clast size range for C3sand is <1 mm (Figure 7, labeled “(sand sample)”). 

Interestingly though, for C3sand the ground-based spectra do not have a pronounced band 

depth at the expected position for clays, from 9.1-9.6 μm (see Figure 1 in Michalski et al., 

2006). This supports ruling out a higher relative abundance of any clay minerals in the 

smaller clast size fractions. Although a noticeable emissivity trough is present in ground-

based spectra for C3sand at about 9.30 μm, the feature does not have a significant band depth, 

especially relative the main quartz doublet located from 8-9 μm. For reference, see a 

remarkable band depth at about 9.30 μm, relative to the quartz doublet from 8-9 μm, in 

ground-based spectra for the increasingly older upstream (Qt2, Qt1, Qt0) and downstream 

(C2, C1, C0) surfaces. Any clay minerals at the site C3sand may have been removed by 
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fluvial and/or aeolian processes. Or, it is possible that the effects of particle size reduction 

(reduction in spectral contrast) compete with increasing clay abundance (increasing band 

depth of features attributable to clay minerals). In any case, a significant band depth is also 

absent in airborne remote sensing spectra for the C3 surface, which could be why C3 is “in 

position” for all five sets of spectra (see Results: Airborne Remote Sensing Spectra). 

Our data do not show strong correlation between macroscopic clast size and surface 

age (Figure 15 and Table 3), so we exclude this as a factor that is primarily causing the 

increasing-band-depth-with-age trend in our remote sensing spectra. However, even though 

the macroscopic dominant clast size does not generally increase with age, it is likely that the 

individual microscopic clay crystals are agglomerating with age to manifest as larger 

particles. These larger particles or coatings could cause the increased band depth for the older 

surfaces if the agglomeration process occurs via protracted and continuous desert varnish 

growth. By proxy, this means that the trend in our data could be at least partially dependent 

on time. 

 

The Effect of Macroscopic Topographic Surface Roughness and Degree of Clast Size 

Sorting 

 

We did not expect individual clasts to increase in size with age, since rocks at the 

Earth’s surface undergo physical and chemical weathering processes that almost always 

result in size reduction. Instead, we could hypothesize that clast size would decrease over 

time, but this by itself would likely decrease spectral contrast and band depth, opposite to the 
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general trend in airborne remote sensing spectra. Therefore, we must instead consider how 

clast size and surface morphology are related in a way that could increase band depth. 

Figures 8, 9, 15, and Table 3 show that desert varnish and desert pavement scores 

generally increase with surface age. For surface morphology in general, the term ‘desert 

pavement’ is used to describe the primary topographic characteristic of surfaces in warm, 

arid regions when they become relatively smooth and compacted, which occurs over 

thousands to tens of thousands of years. McFadden et al. (1987) propose an evolutionary path 

in which bombardment of larger clasts by eolian dust assists in physical weathering, while 

the dust also accumulates with other smaller clasts in topographic depressions to form soil 

that eventually underlies a surficial veneer of stone pavement. The overall effect is a 

smoothing of the surficial topography, which can increase spectral contrast and band depth. 

Relatively smooth pahoehoe-style lava flows have been shown to exhibit increased spectral 

contrast in relation to their rougher, aa-style counterparts of the same composition (Kahle et 

al., 1988). Similarly, an increase in spectral contrast was also observed for smooth obsidian 

glass relative to more uneven surfaces on vesiculated pumice (Ramsey and Fink, 1999). 

Spectral variation due to surface roughness is known as the cavity effect. With this 

effect, spectral emissivity increases at all wavelengths, due to energy being reflected multiple 

times when it encounters internal surfaces of a hollow cavity (Kirkland et al., 2001). The 

cavity effect on lithology is in play at all scales of physical size, from macroscopic (≥1 mm) 

hollows due to the random orientations of surficial regolith, down to microscopic (<1 mm) 

roughness that might be present even on deceptively smooth-appearing lithic fragments 

(Kirkland et al., 2001). For our purposes, it is possible that for the older surfaces that have 

smoothed topography coincident with a significant desert pavement formation, the relative 
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smoothness could be contributing to the increasing 9.16 μm band depth (in airborne spectra) 

with age. 

The evolution towards a smoother surface also involves, to some degree, the effect 

of clast size sorting. The sorting process likely involves some transport and/or removal of 

smaller, more labile particles, while larger particles are broken down into smaller fragments 

by weathering processes. This convergence in clast size for the ultimate surficial material 

will cause the dominant clast size range to decrease, resulting in a higher degree of sorting. 

Given the overall character of older, stable terrace surfaces where a moderately- to well-

developed desert pavement surface has developed (usually along with substantial coatings of 

desert varnish on clast surfaces), we could hypothesize a relationship between age and degree 

of clast size sorting.  

The dominant (>50%) clast size range graphs (Figure 7) might show a weak 

correlation between age and degree of sorting, in the sense that the ranges are generally 

smaller for sites on older surfaces. If only taking the largest range for each surface, the 

correlation becomes slightly more compelling. In a youngest/oldest age binary sense for both 

the upstream and downstream sets of surfaces, the smallest range for the oldest surface is 

exceeded by the largest range for the youngest surface. Furthermore, the youngest upstream 

and downstream surfaces (Qt4 and C3 respectively) exhibit both the largest and smallest 

dominant clast size ranges, which shows a lower overall degree of sorting for the entire 

surface. This age and sorting relationship is also somewhat qualitatively evident by viewing 

all of the field site images and noting the relatively chaotic surface morphology of the 

younger surfaces that results from mixtures of larger clasts, finer particles, and also a greater 

amount of vegetation (which will be discussed below). On the younger surfaces, our data 
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show that there can be a greater degree of sorting (smaller range) for individual 1-m2 pixels 

(e.g., see C3sand in Figure 7), but the higher variability between sites on single surfaces 

exhibits greater overall variation (overall lesser degree of sorting).  

The youngest upstream and downstream surfaces exhibit the largest difference 

among dominant (>50%) clast size ranges for multiple sample sites (Figure 7). This implies 

a lower degree of sorting for younger surfaces, which increases macroscopic roughness and 

the cavity effect, and ultimately reduces spectral contrast. Although this conclusion implies 

that the increasing 9.16 μm band depth with age is not necessarily (or entirely) dependent on 

clay minerals accumulating in desert varnish, the spectral effect is still related to age. It is 

plausible that a relationship between topographic smoothing and age exists (e.g., see 

Mushkin et al., 2014), and it is also likely that the relationship is concomitant with desert 

varnish and pavement development. The topographic smoothing with age can be one of the 

reasons that there is increased spectral contrast and 9.16 μm band depth with surface age in 

airborne remote sensing spectra. Topographic smoothing with age is also apparent for the 

surfaces that we are studying at the meter-scale level: bar and swale hummocky topography 

was only observed at sites on the younger upstream surfaces (see field photographs for sites 

Qt4p2 (<11 ka), Qt3p1 and Qt3p2 (13 ka), Figures S2-S4 in the Supplemental Items).  

 

The Effect of Vegetation 

 

It is outside of the scope of this study to consider the identifications, nuances, and 

associated thermal infrared spectroscopy of specific vegetation types that can be found in the 

study area. Also, much of the area is usually sparsely vegetated to begin with, given the 
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regional desert environment. Therefore, we speak with broad generality regarding vegetation 

species that are present and contributing to remote sensing spectra, and we usually only refer 

to vegetation in this arid region in the most general sense as “desert scrub.” However, we do 

provide a limited assessment when such data were collected in the field for our purposes. 

The desert scrub mainly includes an abundance of common, non-deciduous chaparral plants, 

such as creosote and sage, and other species that are also likely present.  

The period that we performed field work in the area (March 2017 through May 2017) 

followed a very wet winter season; precipitation was the heaviest seen in probably at least a 

decade in southern California. Thus, many of the field images contain lots of 10 to 50 cm tall 

plants, including flowers, shrubs, and grasses, in various states of desiccation: these were 

only present in the spring for a few weeks, following a brief cycle of sprouting, blossoming, 

and then dying off. This relatively small, flowering vegetation can dominate the scene during 

spring blooms that follow rainy winter seasons. But due to their ephemeral nature, this 

vegetation will not play a significant role in contributing to remote sensing spectra, unless 

the acquisition occurs during a spring bloom. Our airborne remote sensing imagery was 

collected during the height of summer heat and aridity extremes (the norm for Coachella 

Valley summers), at 10:45-11:00 am (Pacific daylight savings time), on 24 September 2015. 

In the study area, vegetation is generally sparse or absent where desert pavement is 

well-developed, which coincides with older surfaces (Figures 8, 9, and 10). If present on 

older surfaces, vegetation is usually localized in/near channels, or flanking areas with 

pavement (e.g., see field photographs from sites on Qt2 (74 ka) and Qt1 (87 ka), Figures S5-

S8 in the Supplemental Items). Vegetation is also absent in the youngest, most active 

channels on younger surfaces (e.g., see field photographs from C3sand, Figure S13 in the 
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Supplemental Items). Vegetation found on older surfaces are mostly 1-2 m scrub bushes, but 

vegetation on younger surfaces is much more abundant and diverse, also including 10-30 cm 

shrubs, 10-50 cm cacti, and some dead wood. 

In our analyses, we included some ground-based spectra of the larger (1-2 m scale), 

woody, desert scrub bushes that are more drought tolerant and likely to persist year round. 

At the upstream site Qt4p1 (<11 ka, Figure 12), five ground-based spectra from vegetation 

were combined with five lithologic spectra into the “Average” mixture spectrum for the 1-

m2 sample area. For Qt4p1, ground-based vegetation spectra samples included: 1) two 

spectra from some very light green to whitish broad leaves (see sample square meter field 

photograph in Figure 12A: the small, 10-30 cm light green/white broad-leaved plant included 

in the upper right corner of the sampling area, possibly Encelia farinosa, or white 

brittlebush?); 2) two spectra of white, leafless (at time of collection), dry, woody, branches 

from the 30-50 cm white branchy plant (located in the lower right corner of the site overview 

field photograph in Figure 12B); and 3) one spectrum from a branch of dead wood (located 

just to the left of the sample square meter in Figure 12B). Also present on the Qt4 surface 

were 1-2 m green woody scrub, and 10-50 cm cacti. Ground-based spectra for the upstream 

site Qt2p2 (74 ka) included one vegetation measurement that is averaged with eight other 

lithologic spectra from within the sample square meter (see Table 2, and Figure S6 in the 

Supplemental Items). The ground-based vegetation spectrum at Qt2p2 is from a c. 10 cm 

desiccated ephemeral flowering plant. The downstream site C3veg (13 ka) consists of a 

single 1-2 m desert scrub bush (see Table 2 and Figure S14 in the Supplemental Items). The 

bush was light green to yellow, partially desiccated, with woody branches, 1-2 cm thorns, 

and very narrow (almost needle-like) leaves; this type of plant was commonly encountered, 
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and it is possibly Psorothamnus arborescens (Mojave indigo bush), or Psorothamnus schottii 

(Schott’s dalea, personal communication with botanist Jean Pawek). 

The ground-based averaged spectra are simplified models that show qualitative 

effects for how mixtures might manifest in airborne remote sensing spectra that include 

multiple heterogeneous materials within the 1-m2 pixel size. We acknowledge that the 

simplified models presented here are at odds with actual remote sensing spectra (which 

intrinsically capture greater heterogeneity over a larger sample area), because the latter likely 

include effects from non-linear mixing of vegetation with a lithologic background (Ray and 

Murray, 1996). However, these results still give us a broad sense of how the inclusion of 

vegetation might affect any lithologic signal that is present. 

There is a common misconception that vegetation spectra in the thermal infrared 

wavelength regime (8-14 μm) tend to be flat and featureless (Elvidge, 1988; Ullah et al., 

2012). Kahle et al. (1987) did find that desert vegetation had completely flat spectra, but this 

and other similar observations could be due to the fact that fresh green plant material can 

contain a significant amount of water weight (40-80%, Elvidge, 1988), and water is flat and 

featureless in the thermal infrared. We did not make any assumptions about what spectra 

from vegetation in our study area would look like, but our ground-based measurements for 

sites Qt4p1 (Figure 12), Qt2p2 and C3veg (Figures S6 and S14 in the Supplemental Items), 

all show that vegetation spectra are relatively flat and featureless in comparison with the 

lithologic spectra. Despite the fact that the spectra were collected from distinctly different 

plants, the five vegetation spectra taken from site Qt4p1 and the single vegetation spectrum 

taken from site Qt2p2, all are very similar and have very broad emissivity peaks from 8-10 

μm wavelengths, which is the specific range where we are looking for distinct emissivity 
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troughs/minima, and variation in Reststrahlen feature positions (from varying silica-based 

mineralogy). In our ground-based average spectra that include vegetation, the broad 

vegetation emissivity peaks from 8-10 μm flatten lithologic Reststrahlen features in the same 

range, effectively reducing spectral contrast. The similarly flat spectra from C3veg would 

also produce similar results if incorporated into our models. 

The relatively flat ground-based spectra from C3veg (13 ka, Figure S14 in the 

Supplemental Items), with its needle-like leaves, can be attributed to the cavity effect. In 

thermal infrared spectroscopy of vegetation, small and/or needle(-like) leaves increase the 

cavity effect, which, as discussed previously, reduces spectral contrast, especially relative to 

species with larger and flatter leaves (Ribeiro da Luz and Crowley, 2010; Ullah et al., 2012). 

Due to higher variability in individual leaf orientations, needle-shaped or needle-like leaves 

are thought to increase the cavity effect and minimize spectral contrast (Salisbury, 1986; 

Ribeiro da Luz and Crowley, 2007). Furthermore, there could also be a reduction in spectral 

contrast due to the cavity effect from microscopic surface roughness on plant surfaces 

(Ribeiro da Luz and Crowley, 2007).  

In considering the effect of vegetation, there also exists the complication that some 

plant material can be silicified (Ribeiro da Luz and Crowley, 2007; 2010), which could 

produce the same Reststrahlen features that we are interested in (but from silica-based 

lithology). Silica present in plants could complicate our spectral analysis, because several 

specific species (although unlikely to be present in our study area) are known to become 

silicified and exhibit spectral features in the same 9-10 μm range (Ribeiro da Luz and 

Crowley, 2010), where we are looking for clay mineral Reststrahlen features. 
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Because the ground-based vegetation spectra are relatively flat and featureless, we 

conclude that the effect of vegetation is to reduce the spectral contrast in airborne remote 

sensing imagery pixels. In the study area, vegetation is more abundant, prominent, and 

diverse on younger surfaces. Estimates for average spacing of 1-2 m desert scrub bushes 

generally increase with surface age (Figures 10, 15, and Table 3), so if a silica is present in 

vegetation and contributing to spectra, we expect a greater contribution to the 9-10 μm 

feature in younger surfaces. However, we observe that the 9-10 μm spectral feature becomes 

more prominent in older surfaces with less vegetation. Thus, increased vegetation on younger 

surfaces is likely responsible for reducing their spectral contrast. It is also plausible that the 

correlation between increasing band depth at 9.16 μm and surface age can be a manifestation 

of increased spectral contrast on older surfaces that are more sparsely vegetated. Although 

this does not directly relate to our hypothesis that clay minerals in desert varnish are mainly 

responsible for the increase spectral contrast on older surfaces, it still strengthens the positive 

correlation between increasing spectral contrast and surface age. Therefore, independent of 

the cause, it is nonetheless still valid that spectral contrast correlates positively with age for 

geomorphic surfaces in this study area. 

 

The Effect of Rock Area Fraction 

 

Solid and particulate forms of materials exhibit transmission spectra that can vary 

considerably (Keller and Pickett, 1949), and similarly, when considering the effect of particle 

size on spectral contrast, the bulk density of the particulate matter must also be taken into 

account. For example, quartz exhibits greater spectral contrast in Reststrahlen bands not only 
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when particle size is increased, but also when the particulate is packed as opposed to being 

left in its loose, unconsolidated form (Salisbury and Eastes, 1985; Salisbury and Wald, 1992). 

Decrease in either particle size, or in the density of a particulate mass, will result in increased 

porosity, which can increase the cavity effect (Salisbury and Eastes, 1985) and volume 

scattering (Salisbury and Wald, 1992), both of which reduce spectral contrast. Therefore, we 

must also consider the coupled effects that particle size and packing (or density of material) 

have on our data. 

To consider the packing/density effect, we looked at the rock area fraction (minimum, 

%) at each of our 1-m2 field sampling sites (Figure 11) (i.e., “solid rock” being larger lithic 

fragments that represent the material with highest density/lowest porosity, versus smaller, 

loose sediment grains). On the basis of the arguments stated above and empirical data from 

previous work, we could hypothesize that the general positive correlation between increasing 

spectral contrast with surface age in airborne remote sensing spectra might be due to the solid 

rock (i.e., highest density/lowest porosity) area fraction increasing with surface age. 

However, we observe no general monotonically increasing trend, or mathematical 

correlation (Figure 15 and Table 3) for rock area fraction with surface age. Conversely, for 

the upstream surfaces (upper panel in Figure 11), the highest rock area fraction occurred at a 

site on the youngest surface (Qt4p2, <11 ka), and the lowest rock area fraction occurred at a 

site on the oldest surface (Qt0p2, >95 ka). Similarly, for the downstream surfaces, the two 

sites on the youngest surface (C3, 13 ka) both have rock area fractions that are greater than 

any of those from the three sites on the oldest surface (C0, >95 ka). 

The increased rock area fraction on younger surfaces might be due concentration of 

larger cobbles and boulders (which quickly add up to a larger fraction), that have not yet been 
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weathered into smaller clasts. The inherent increase in surface roughness, and subsequent 

cavity effect, from a greater number of larger clasts, could outweigh the increase in rock area 

fraction, and ultimately reduce spectral contrast for younger surfaces. In a different way, the 

older surfaces that have well-developed desert pavement can also have a greater degree of 

compaction, which also results in higher density/lower porosity. Because increasing spectral 

contrast can be the effect of increasing density (not necessarily to the point of complete 

lithification to a solid), it is possible that the increased spectral contrast on older surfaces 

might be due to the greater degree of compaction found on older surfaces with well-

developed desert pavement. Our rock area fraction analysis does not test for this variability, 

so it is still possible that the greater spectral contrast on older surfaces is caused by decreasing 

porosity (cavity effect), but not because of a greater rock area fraction. 

 

Other Effects 

 

When analyzed in detail, airborne remote sensing spectra from the downstream C2f 

(26 ka) surface, were problematic. The C2f surface is located on a steep ridge, directly on the 

surface trace of the Mission Creek strand (Figures 3 and 4). Not only did we observe the 

greatest standard deviation in airborne spectra band depth at 9.16 μm (see data point for 26 

ka surface age in Figure 6), we also observed great variation when we sampled spectra from 

the C2f surface by different slope values. With its relatively drastic changes in slope, the C2f 

surface is dissimilar to any of the other surfaces, with their relatively broad, flat, and stable 

topography, which is conducive to protracted varnish and pavement development. Recall that 

in the downstream airborne remote sensing spectra, the oldest C0 (>95 ka) surface is in 
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position with the greatest band depth at 9.16 μm for three of the five subsets, and for the 

remaining two sets, C2f (26 ka) has the greatest band depth. This anomaly could be attributed 

to the spectral variation in C2f caused by increased and variable topographic slope. Thus, we 

note that the methods used in this research should not be applied to surfaces that lack a 

relatively broad, flat, and stable topography. 

Above, in the Results section (see Ground Truth Field Work: Additional Field 

Observations), we also noted a distinct, light pink oxidation on clasts at the downstream site 

C2fp1 (26 ka) site, and a conspicuous higher relative abundance of red-orange oxidation at 

the upstream site Qt1p2 (87 ka). Oxidization is likely to occur on the buried bottoms of 

varnished clasts, due to iron oxide formation at soil or sub-soil level (Figures 2 and 3 in Engel 

and Sharp, 1958; Potter and Rossman, 1977; 1979a). Therefore, it is possible that the greater 

degree of oxidation observed at these sites represents many of the clasts being flipped over, 

especially on the steep and topographically unstable downstream C2f (26 ka) surface (see 

above). Oxides related to desert varnish development likely reduce spectral contrast due to 

their lack of spectral features in the wavelengths that our data covered (λ = 7.6-13.2 μm, see 

Figures 3 and 6 in Potter and Rossman, 1979a; Figure 14 in Potter and Rossman, 1979b). 

This effect could have caused the great spectral variation for the Qt1 and C2f surfaces. In 

airborne remote sensing spectra, the unexplained variation in the C2f (26 ka) surface was 

discussed above, and Qt1 (87 ka) was never in position, twice with very shallow band depth 

at 9.16 μm relative to the other older surfaces. Thus, we note that surfaces with a great degree 

of iron oxides also might not be suitable for the methods used in this research. 

Bishop et al. (1994) observed another factor that could affect spectral contrast for 

montmorillonite clay: laboratory spectra from montmorillonite clay increased in band depth 
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with increasing grain size when lab samples were left unpacked, but when packed, the largest 

size fraction did not display the greatest band depth for a spectral feature at 1.9 μm. Although 

that wavelength position is outside of the range covered in this research (λ = 7.6-13.2 μm), 

they mentioned that their packing process resulted in lab samples with a variable degree of 

alignment and orientation among the particles. Thus, we note that when comparing any 

spectra to library standards, care should be taken to identify and consider the particle size 

and degree of packing used for measurements. Namely, when using linear mixture models, 

particle size should be much larger than the wavelengths in measured spectra (a condition 

that was met for our models in Figure 2, see caption). 

 

CONCLUSIONS 

 

In airborne remote sensing spectra of geomorphic surfaces along the southern San 

Andreas fault, we observed positive correlation (R2 = 0.59) between increasing spectral 

contrast and band depth at 9.16 μm with surface age (Figures 5, 6, 15, and Table 3). We 

hypothesized that the increase in band depth at 9.16 μm was related to an increasing relative 

abundance of clay minerals (clay crystal aggregates) in progressively thicker coatings of 

desert varnish on older surfaces. To test our hypothesis, we conducted fieldwork to evaluate 

variation among surfaces in: clast size range, desert varnish and pavement development, 

vegetation spacing (proxy for abundance or sparsity), and rock area fraction. Of the quantities 

that we measured, there are no systematic trends related to increasing age for either mean of 

dominant (>50% relative abundance) clast size range (R2 = 0.10) or rock area fraction (R2 = 

0.00). The quantities that had a stronger positive correlation with increasing surface age 
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(Figure 15 and Table 3) were: desert varnish scores (Spearman’s rank = 0.90), desert 

pavement scores (Spearman’s rank = 0.90), and vegetation spacing (R2 = 0.34). 

Ground-based field spectra from single lithologic clasts displayed a spectral feature 

at 9.30 μm that did not generally increase with surface age. While this 9.30 μm ground-based 

feature is still within the 9.1-9.6 μm range that typifies clay minerals, further analyses will 

be required to investigate why the main ground-based feature is not at the exact same position 

as the airborne remote sensing spectral feature at 9.16 μm. Furthermore, ground-based 

spectra from finer-grained, unconsolidated detrital material did not display increased band 

depth for the 9.30 μm feature, indicating that clay minerals are not necessarily more prevalent 

in the smaller clast/particle size fraction. While most of our spectra indicate the presence of 

some clay mineral(s), the spectra are overprinted with spectral features from common 

tectosilicate minerals (quartz and feldspars) characteristic of the varnish substrate. Also, 

ground-based vegetation spectra are very flat and featureless in the thermal wavelengths that 

correspond to those covered in the airborne remote sensing spectra. Therefore, we conclude 

that the increasing development of desert varnish and desert pavement, combined with 

decreasing vegetation, increase spectral contrast in airborne remote sensing spectra. The 

development of varnish and pavement usually takes a significant amount of time, and often 

generally decreases vegetation abundance, so an increase in spectral contrast based on these 

variables is generally related to the passage of time.  

While this research does not outline a methodology to derive absolute ages for 

Quaternary geomorphic surfaces, the ideas presented here might make it possible in the 

future to determine relative ages, based on relative spectral contrast of geomorphic surfaces. 

Stricter age constraints could perhaps follow, if an age is known for at least one set of 
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geomorphic surfaces in a terraced (or otherwise related) series, as a calibration for a larger 

area or region. The methodology can be expanded to include varying spectral contrast/band 

depth in spectral features from other minerals (e.g., quartz features at 12.4-13.0 μm), and 

applied to other known geomorphic surface ages (e.g., see Gray et al., 2014). With the spatial 

component of tectonic displacement from an overhead perspective (i.e., offset feature 

identified, then separation distance measured), information derived regarding the time 

component from relative ages of geomorphic surfaces could potentially be used to estimate 

a fault slip rate from a single airborne remote sensing image. 
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APPENDIX 

 

Literature Review on Seismic Activity along the Southern San Andreas Fault 

 

Paleoseismic Trenching 

 

Paleoseismic trenching along the southern San Andreas fault at sites in the Coachella 

Valley has yielded recurrence intervals of c. 200 years (Fumal et al., 2002; Philibosian et al., 

2011), while a recurrence interval calculated at the Wrightwood site (>100 km to the 

northwest) is roughly half of that value (Scharer et al., 2007). While it might appear that 

large, surface-rupturing earthquakes in the Coachella Valley occur less often than on other 

segments, the paleoseismic data consistently drive the message that the southern San Andreas 

might be due for a major seismic event soon, since it has been more than 300 years since the 

most recent large earthquake in the region (Sieh et al., 1989; Sieh and Williams, 1990; Fumal 

et al., 2002; Philibosian et al., 2011). 

 

Tectonic Geomorphology 

 

Methods in tectonic geomorphology have been used extensively to estimate geologic 

slip rates for the Coachella Valley segment of the southern San Andreas fault. However, 

these geologic slip rates can vary widely due to the complexity of the fault zone at some 

localities. A well-known offset alluvial fan used for fault slip rate analyses is located in the 

Indio Hills, near Biskra Palms (unfortunately, anthropogenic excavation has now almost 
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completely obliterated this natural asset). The Biskra Palms site yielded a geologic slip rate 

of 15.9 ± 3.4 mm/yr (van der Woerd et al., 2006) for the Mission Creek strand of the San 

Andreas fault. This rate was later updated to about the same central value in a range but with 

larger uncertainty (12-22 mm/yr), on the basis of greater net slip and more robust age 

constraints that broadly agreed across multiple independent dating methods (Behr et al., 

2010; Fletcher et al., 2010; Benedetti and van der Woerd, 2014). Southeast of Biskra Palms 

at the Mecca Hills, Shifflett et al. (2002) calculated a significantly slower slip rate of 5-8 

mm/yr. To the immediate northwest of Biskra Palms, the overall San Andreas fault structure 

becomes complex as the parallel Banning strand (located southwest of the Mission Creek 

strand) comes into play. The slip rate for the Mission Creek strand increases to 22-25 mm/yr 

at Pushawalla Canyon (Blisniuk and Sharp, 2014), then remarkably decreases to 4 ± 2 mm/yr 

at Thousand Palms Oasis (Fumal et al., 2002); all of this variation occurs within a distance 

of <10 km from the Biskra Palms site (Figure 1). Farther to the northwest, the Banning strand 

has a Holocene slip rate of 4-5 mm/yr (Gold et al., 2015), and the fault structure becomes 

more complex with the parallel Garnet Hill strand somewhat enigmatically coming into play 

to the southwest of the Banning strand (e.g., Cardona et al., 2015; Cardona, 2016). At the 

northwest terminus of the Coachella Valley, the San Andreas fault zone’s structure becomes 

very complex, as multiple strands with opposing left lateral (Kendrick et al., 2015) and 

oblique right lateral with reverse/thrust (Huerta, 2015; 2017) relative fault motion interact 

through the San Gorgonio Pass (Yule, 2009). 

 

Tectonic Geodesy 
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While geologic fault slip rates are averaged over centuries to millennia (or even 

greater time periods), geodetic fault slip rates are averaged over years to decades. Also, 

geologic fault slip rates are usually strict minima when based on reconstructing piercing 

points, such as an offset lithologic contact or stream channel. These fundamental data type 

differences could perhaps explain why geodetic slip rates for the southern San Andreas fault 

are generally faster than the geologic rates. A current geodetic slip rate for the southern San 

Andreas fault from combined InSAR and GPS was 25 ± 3 mm/yr (Fialko, 2006). With that 

rate significantly higher than those found from the geology, a revised fault geometry in the 

structural model used slowed the geodetic rate to 18 ± 1 mm/yr (Lindsey and Fialko, 2013), 

putting it closer to the geologic rates mentioned above (usually <20 mm/yr). Slip rates for 

the southern San Andreas fault from GPS data agree to some extent with geologic rates 

because they generally decrease to the northwest from a maximum of c. 23 mm/yr in the 

southeast (Spinler et al., 2010). Note that this observation only holds if the aforementioned 

result of Shifflett et al. (2002) is ignored. 
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FIGURE CAPTIONS 

 

Figure 1 (p. 349): Overview map of the study area, which is located in the Coachella Valley 

of southern California. Base map is Google Earth satellite imagery in true color (imagery 

date: 14 July 2016). Image was annotated to show the main strands of the southern San 
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Andreas fault (arrows represent relative fault motion), which is the main boundary between 

the Pacific and North American tectonic plates at this location. The rectangle is the footprint 

of the thermal hyperspectral airborne imagery used for this research. Interstate 10, and the 

Palm Springs International Airport are shown for geographic markers. BP: Biskra Palms; IH: 

Indio Hills; PC: Pushawalla Canyon; SAF-B: San Andreas fault, Banning strand; SAF-MC: 

San Andreas fault, Mission Creek strand; THAIF: thermal hyperspectral airborne imagery 

footprint; TPO: Thousand Palms Oasis. 

 

Figure 2 (p. 350): Examples of laboratory thermal infrared emission spectra, and linear 

spectral mixture models for minerals relevant to this research. Spectra used here are from the 

library of Christensen et al. (2000), and mineral names are accompanied by the sample 

numbers (in parentheses) from that library. We used the linear “checkerboard” model 

(Christensen and Harrison, 1993) to calculate spectra for the mixtures shown. (A) Single 

tectosilicate mineral components combined to make a synthetic “granite,” which represents 

a typical desert varnish coating substrate lithology found in the study area. Ratio of 

quartz/andesine/microcline is 33/34/33, and particle size ranges are: quartz = 125-2000 μm; 

andesine = 710-1000 μm; microcline = 710-1000 μm. (B) Montmorillonite clay (proxy for 

desert varnish coating) combined with the “granite” substrate to model the anticipated effect 

of a progressively heavier desert varnish coating (“granite/mont” is the mixing ratio for the 

two endmember components). The clay’s major absorption feature at 9.36 um begins to 

dominate the spectrum as more is added to the mixture. The montmorillonite sample was a 

pressed pellet (Cooper and Mustard, 1999, noted that clay crystal aggregates behave 

spectrally like larger particles). (C) Field photograph (for scale, hammer is 33 cm long) that 
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exemplifies the variable degree of varnish development observed on clasts. Some of the 

clasts are circled and labeled to relate physical specimens to the spectral models shown in 

(A) and (B): the synthetic “granite” spectrum could represent the clast labeled “‘granite’ 

endmember” (which is not varnished); the granite/mont = 67/33 (or 33/67) spectra could 

represent the clasts labeled “intermediate mixtures” (which have light/moderate varnish); 

and the montmorillonite spectrum could represent the clast labeled “montmorillonite 

endmember” (i.e., with its heavy varnish coating, a spectrum of this clast might resemble the 

spectrum for montmorillonite clay, which can be a significant component in a typical varnish, 

see text for further explanation and references). As heavier varnish coatings tend to have 

greater physical thickness, a roughly linear relationship between increasing spectral band 

depth and varnish thickness has been observed in laboratory spectra of varnish-coated 

samples (Christensen and Harrison, 1993), which supports the linear spectral mixture models 

in (A) and (B). 

 

Figure 3 (p. 351): Thermal hyperspectral airborne imagery of the Thousand Palms Oasis 

area, Coachella Valley, southern California (for larger spatial context, imagery footprint can 

be seen in Figure 1). The complete image scene is shown here, and displayed in false colors 

assigned to band ratios, which remove the effects of varying illumination due to topography 

(Kahle et al., 1980; Gillespie et al., 1987). Band ratio assignments are: red, 11.1/9.5; green, 

11.5/9.1; blue, 12.4/8.6 (all values are wavelengths in microns). The false color assignments 

highlight geological features (such as the varnish we are studying), and other forms of land 

surface cover. General false color interpretation is as follows: red represents younger 

sediments, green represents older varnished surfaces, and blue represents vegetation. Thick 
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black lines are faults: only the main splays are shown here, so the imagery is not overly 

obscured. Arrows indicate relative fault motion. PC: Pushawalla Canyon; SAFMCS: San 

Andreas fault, Mission Creek strand; SAFBS: San Andreas fault, Banning strand; TPO: 

Thousand Palms Oasis. Lower left photograph is of Mako, the Aerospace Corporation’s 

thermal hyperspectral sensor, mounted in the belly of an airplane and ready to fly (photo 

taken by David Tratt). Mako is essentially a large camera that takes aerial images of thermal 

radiation emitted by land surfaces. Lower left illustration shows the Mako sensor’s viewing 

geometry. Base map is an SRTM 1 arc-second DEM hillshade (from the USGS Earth 

Resources Observation and Science website, https://eros.usgs.gov/, accessed on 09/02/2017). 

Map was produced using QGIS software (QGIS, 2018). 

 

Figure 4 (p. 352): Same as Figure 3, but with color-coded digitized polygons for the mapped 

and dated geomorphic surfaces (Kate Scharer, personal communication; Blisniuk and Sharp, 

2014) that we used for this research. The surface ages were derived with a combination of 

methods: cosmogenic exposure (beryllium-10) dating, and also uranium-series dating (ages 

shown in lower left key; ka: kiloannum). To the north east, upstream from where the San 

Andreas fault, Mission Creek strand, intersects Pushawalla Canyon, we grouped the cluster 

of surfaces for analyses, and we referred to this group as the “upstream” set of surfaces (or 

surface deposits). Similarly, to the south west, downstream from the San Andreas fault, 

Mission Creek strand, we grouped all of these other surfaces, and referred to this group as 

the “downstream” set of surfaces (or surface deposits). 
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Figure 5 (p. 353): Airborne remote sensing emissivity spectra of the geomorphic surfaces 

(for surface names and ages, see Table 1, for locations, see Figure 4). To display spectral 

variability, there are five subsets of randomly generated spectra for each of the upstream and 

downstream sets of surfaces (single spectra shown here are the average of multiples, see 

text). The continuum has been removed from all spectra, and they were also smoothed over 

a three band interval. 

 

Figure 6 (p. 354): Airborne spectra band depth at 9.16 μm versus surface age. Error bars in 

surface age are from values in Table 1. Error bars in band depth are from the standard 

deviation of values calculated from all of the spectra in Figure 5. 

 

Figure 7 (p. 355): Dominant (>50% relative abundance) clast size range plots for field sites 

on the upstream (upper panel) and downstream (lower panel) sets of surfaces. Clast sizes 

were not measured at the downstream sites C3sand and C3veg. 

 

Figure 8 (p. 356): Desert varnish scores for field sites on the upstream (upper panel) and 

downstream (lower panel) sets of surfaces. A higher number is a greater degree of 

development, as follows:  1 = absent/rare, 2 = light/weak, 3 = moderate, and 4 = heavy/strong. 

 

Figure 9 (p. 357): Desert pavement scores for field sites on the upstream (upper panel) and 

downstream (lower panel) sets of surfaces. A higher number is a greater degree of 

development, as follows:  1 = absent/rare, 2 = light/weak, 3 = moderate, and 4 = heavy/strong. 
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Figure 10 (p. 358): Vegetation spacing estimates for field sites on the upstream (upper panel) 

and downstream (lower panel) sets of surfaces. The values for upstream sites Qt0p1 and 

Qt0p2 are off the chart, and noted numerically (30 and 50 m, respectively). The higher 

spacing means that older surfaces are less vegetated.  

 

Figure 11 (p. 359): “Rock” area fraction values for field sites on the upstream (upper panel) 

and downstream (lower panel) sets of surfaces. Values are minimums, in percent. 

 

Figure 12 (p. 360): Upstream field site Qt4p1 (<11.3 ka). (A) sample square meter field 

photograph (frame is 1 meter on edge, with a thickness of 2.5 cm). Site name/age seen on 

clipboard (lower right) is obsolete. Gray card (upper right) is present for a potential color 

analysis that was not completed for this study. Clasts on clipboard and gray card are not 

representative, but were placed to secure items from heavy wind. (B) Site overview field 

photograph (sample frame is 1 meter on edge). (C) Ground-based spectra are from sand and 

vegetation samples. Site name and age are in the upper right corner. The final, thicker 

spectrum is the site average (arithmetic mean) for all spectra. 

 

Figure 13 (p. 361): Downstream field site C0p1 (>94.5 ka). (A) sample square meter field 

photograph (frame is 1 meter on edge, with a thickness of 2.5 cm). Site name/age seen on 

clipboard (lower right) is obsolete. Gray card (upper right) is present for a potential color 

analysis that was not completed for this study. Clasts on clipboard and gray card are not 

representative, but were placed to secure items from heavy wind. (B) Site overview field 

photograph (sample frame is 1 meter on edge). (C) Ground-based spectra are from arbitrarily 
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chosen lithologic clast samples that were distributed across the sampling area. Site name and 

age are in the upper right corner. The final, thicker spectrum is the site average (arithmetic 

mean) for all spectra. 

 

Figure 14 (p. 362): Airborne (blue) and ground-based (red) spectra plotted on the same axes 

to show the systematic difference in shape and position of the emissivity minimum for each 

of the data sets. The emissivity minimum is at 9.16 μm in airborne spectra, and 9.30 μm in 

ground-based spectra. Airborne spectra are from Figure 5: “Airborne 1” is Qt0 (>95 ka), 

from the second of the five (counting down from the top) upstream sets, and “Airborne 2” is 

C0 (>95 ka), from the first of the five downstream sets. “Ground 1” is the field site Qt0p2 

(>95 ka, Figure S10) average spectrum, and “Ground 2” is the field site C0p1 (>95 ka, Figure 

13) average. For the most direct comparison, we performed the exact same processing steps 

on the ground-based spectra as we did on the airborne spectra (ground-based spectra 

resampled to the airborne wavelengths, continuum removal performed, then smoothed). We 

also vertically scaled (stretched) all of the spectra shown here to the one that had the greatest 

emissivity range (which was Qt0p2). 

 

Figure 15 (p. 363): Summary of correlation coefficients between each parameter and surface 

age. All values are R2, except for those for desert varnish and desert pavement scores, which 

are Spearman’s rank correlation coefficient (used for categorical variables, see Simpson, 

2015). Exact numerical values are in Table 3. 
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TABLES 

Table 1: Geomorphic surface names and ages1 

Surface names   

Upstream2 Downstream2 Age (ka) Age (ka) used in 
text3 

Qt4 - <11.3 <11 

Qt3 C3 12.7 ± 1.4 13 

- C2f 26.00 ± 7.55 26 

Qt2 C2 74.40 ± 5.15 74 

Qt1 C1 87.3 ± 7.2 87 

Qt0 C0 >94.5  >95 

 
1Names and ages are from Blisniuk and Sharp (2014), and Kate Scharer, 
personal communication. See Table 4 in Owen et al. (2014) for a detailed 
comparison of the nomenclature of geomorphic surfaces and their ages, and how 
they compare from area to area in the desert southwest. 
2Upstream and downstream are relative to the Mission Creek strand of the 
southern San Andreas fault, see Figures 3 and 4. 
3In most cases where the name of a surface is cited in the text, the age is also 
included for reference, with the age rounded to the nearest whole number, in ka 
units, and the uncertainty discarded, for brevity. 
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Table 2: Summary of ground-based spectra 

Field 
site 

Age 
(ka) 
used 
in 
text1 

GPS 
easting2 

GPS 
northing2 

Single 
clast 
spectra 
#’s 

“Sand”3 
spectra 
#’s 

Vegetation 
spectra #’s 

Total 
usable 
spectra 
(not 
including 
site 
average) 

Qt4p14 <11 0566905 3743636 - 1-5 6-10 10 

Qt4p2 <11 0566647 3743466 1-10 - - 10 

Qt3p1 13 0566949 3743509 1-10 - - 10 

Qt3p2 13 0566794 3743443 1-9 - - 9 

Qt2p1 74 0567024 3743301 1-10 - - 10 

Qt2p2 74 0567019 3743375 2-9 - 1 9 

Qt1p1 87 0567179 3743334 1-10 - - 10 

Qt1p2 87 0567122 3743351 1-9 - - 9 

Qt0p1 >95 0567424 3743166 1-10 - - 10 

Qt0p2 >95 0567455 3742949 1-10 - - 10 

C3p1 13 0564570 3741612 2-7 1,8,9 - 9 

C3p2 13 0565467 3742974 1-9 - - 9 

C3sand 13 0564681 3741973 - 1-10 - 10 

C3veg 13 0565037 3742861 - - 1-4 4 

C2fp1 26 0565089 3743300 1-10 - - 10 

C2fp2 26 0564947 3743239 1-8 - - 8 

C2fp3 26 0564803 3743250 1-10 - - 10 

C2fp4 26 0564885 3743129 1-3 4-9 - 9 

C2p1 74 0564630 3742626 1-10 - - 10 

C2p2 74 0564533 3742720 1-9 - - 9 

C2p3 74 0564731 3743148 1-9 - - 9 

C2p4 74 0564482 3743238 1-10 - - 10 

C1p1 87 0564226 3743652 1-9 - - 9 

C1p2 87 0564299 3743682 1-10 - - 10 

C0p15 >95 0564320 3743216 1-10 - - 10 

C0p2 >95 0564223 3743046 1-10 - - 10 

C0p3 >95 0564039 3743231 1-10 - - 10 

 
1See Table 1. 
2All GPS locations are given in UTM coordinates, zone 11S. 
3”Sand” refers to spectra measured from samples of finer, unconsolidated lithologic 
detrital material, and does not imply a technical definition of grain size. 
4Figure 12. 
5Figure 13. 
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Table 3: Summary of correlation coefficients1 between each parameter and surface 
age 

Parameter (units) Correlation 
coefficient 

Mean of dominant (>50%) clast size ranges (cm) 0.10 

Varnish score (dimensionless)2 0.90 

Pavement score (dimensionless)2 0.90 

Vegetation spacing (m) 0.34 

“Rock” area fraction (percent) 0.00 

Airborne spectra band depth at 9.16 μm (emissivity, dimensionless) 0.59 

Ground-based spectra band depth at 9.30 μm (emissivity, 
dimensionless) 

0.04 

 
1All values are R2, unless otherwise specified. 
2Spearman’s rank correlation coefficient. 
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SUPPLEMENTAL ITEMS 

 

Figure Captions 

 

Figures S1-S27 (pp. 365-391): Field photographs and ground-based spectra for all 27 field 

sites (see Tables 1 and 2 in main text, site locations included in Table 2). (S1)-(S10), 

upstream field sites, in chronological order from youngest to oldest. (S11)-(S27), 

downstream field sites ordered from youngest to oldest. For each supplementary figure: (A) 

sample square meter field photograph (frame is 1 meter on edge, with a thickness of 2.5 cm). 

Site name/age seen on clipboard (lower right) is obsolete. Gray card (upper right) is present 

for a potential color analysis that was not completed for this study. Clasts on clipboard and 

gray card are not representative, but were placed to secure items from heavy wind. (B) Site 

overview field photograph (sample frame is 1 meter on edge). (C) Ground-based spectra. 

The accurate site name and age are in the upper right corner. The final, thicker spectrum is 

the site average (arithmetic mean) for all spectra. 
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