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Abstract

The chemical reactions involved in the regeneration step of a high tem-
perature SO; removal process have been investigated. In particular, the CO
reduction of supported alkali sulfates has been studied. Thermogravimetric
measurements have yielded the time-resolved composition of sorbent and
gaseous products during reduction with 10% CO at 700 and B800°C. FTIR was
used to identify reaction intermediates. A flow microreactor was used to
compare gaseous product selectivity between SO;, COS and elemental sulfur

of sorbents reduced with 1 and 10% CO at 700 and B800°C.

The experimental results show regeneration; i.e., sulfur removal is greatly
increased by the presence of lithium in the sorbent material. Reaction
between the support and the alkali material greatly influences the degree of
regeneration. Support materials are apparently active in the catalysis of the
reduction of SO, to elemental sulfur and the reaction between elemental sul-
fur and CO to form COS, and therefore, influences the product selectivity. A
reaction scheme which qualitatively explains the experimental results is pro-

posed.
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CHAPTER 1

INTRODUCTION
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Sulfur dioxide in the flue gas of coal burning power plants and the
exhaust of sulfide mineral smelters poses serious environmental and health
problems. Sulfur oxide removal is therefore an important operation in con-

nection with coal combustion, and other industrial processes.

Several processes for sulfur dioxide removal have been commercialized
and many others are at various stages of research and development (Pfeiffer,
1975). These processes utilize various sorbents in solution, slurry or solid
form and vary widely in their operating temperature. Some processes
involve sorbent regeneration, converting the removed sulfur to a useful
form, usually either sulfuric acid or elemental sulfur. Regenerable processes
have the advantage of not requiring sorbent disposal, but they tend to be

more complex than non-regenerable processes.

This work studies the chemistry involved in a high temperature, regener-
able process of SO; removal. Such a process could be used to scrub either
concentrated SOz streams, such as smelter exhausts, or dilute SO; streams
such as flue gas from coal combustion. The sorbent considered consists of
an alkali oxide distributed on a porous, solid support. Absorption and regen-
eration may both be conducted at temperatures of 700 to B00°C. Operating
in this temperature range, the sorbent is potentially interesting for in situ

sulfur removal in fluidized coal combustion.

Several types of sorbent have been investigated previously for in situ sul-
fur removal. The most commonly used sorbent is limestone, which upon
absorption of SO, produces calcium sulfate. Although sulfated limestone
sorbents have been found to be regenerable under certain conditions (Yang
and Shen, 1979), alternate sorbent materials are also being sought. This

search for alternate regenerable sorbents has centered around various
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metal oxides and supported metal oxides. Vogel et al. (1974) as well as Ruth
and Varga (1979) found alkali oxides and supported alkali oxides to be active
sorbents. Alkali aluminates and titanates have also been found to be active

(Ruth and Varga, 1979; Schlesinger and Illig, 1971).

The use of bulk alkali sorbents for sulfur oxide removal has been investi-
gated. Oldenkamp and Margolin (1969) report SO; removal in a molten bath
of alkali carbonate. The alkali sulfate formed remains in solution in the mol-
ten carbonate and regeneration is performed by reduction with CO or Ha.
The use of the melt in this fashion presents relatively large mass transfer
resistance and entails severe corrosion problems. Dispersing the alkali sor-
bent on a porous support eliminates corrosion and greatly enhances mass
transfer. A material of this type is the U.S. Bureau of Mines alkalized
alumina sorbent, a sodium deficient bulk sodium aluminate (Schlesinger and
Illig, 1971). A related material is alumina impregnated with alkali oxide. The
active sorbent is dispersed on the pore surface of the support and provides a
relatively large surface area for reaction. The rate of SO, absorption and the
available capacity for SO, (per sodium atom) are higher for alumina impreg-

nated with sodium oxide than for alkalized alumina (Vogel et al., 1974).

The goals of this research were to demonstrate the ability to use sup-
ported alkali oxide in regenerable sulfur dioxide sorbents, and to elucidate
the chemical mechanisms which occur during regeneration by reduction with
carbon monoxide. In particular, we investigated the effect of different alkali

oxides and supports on the reaction activity and product selectivity.
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CHAPTER 2

BACKGROUND CHEMISTRY AND THERMODYNAMICS



2.1 Sulfation

The sulfation of alkali metal oxide can be written in general form
1
Mz0 + 50, + -0 . MSO, (2-1)

where M = Li, Na, etc.

The process takes place through a series of elementary steps. At lower
temperatures (<200°C) or when low O, concentrations are used, sulfite may

also form (Schlesinger and Illig, 1971).
MO + SOz | MzSO;3 (2-2)
where M = Na, Li, etc.

At higher temperatures (>600°C), sulfite will disproportionate to sulfate

and sulfide (Foerster and Kubel, 1924).
4MzS0j3 + . 3MzSO, + MpS (2-3)

This disproportionation occurs through an as yet unknown series of steps.
Any sulfide formed will, under the oxidative conditions present during sulfa-

tion, react to form sulfate.

Oxide formed during the reduction of supported alkali sulfates will react
with the alumina support to form aluminate. Vogel et al. (1974) showed that
even in this case sulfation produces alkali sulfate and alumina from SO;, O,
and aluminate. Formation of a layer of sulfate through which SO; and O,

must diffuse to react with aluminate may slow the rate of sulfation.
2.1.1. Kinetics of Sulfation

Vogel et al. (1974) found sulfation to be first order in SO, for both sodium-

oxide supported on alumina and for the alkalized alumina sorbent produced



by the Bureau of Mines. Alkalized alumina was found to react more slowly
than alumina-supported Naz0 indicating that conversion from aluminate to
sulfate is slower than from oxide to sulfate. The oxide/alumina sorbent,
however, may also have been present as a surface aluminate, because it was
calcinated at 538°C for ten hours. The difference in sulfation rate is more
likely due to diffusional differences between the bulk and the supported

material.
2.1.2. Thermodynamics of Sulfation

The sulfation of both alkali oxides and alkali aluminates is very favorable
thermodynamically in the temperature range of interest. The equilibrium
vapor pressure of SO, in air above Na,0, Li;O, NaAlO, and LiAlO; is shown in
Fig. 2.1. Even for the least favorable lithium sulfate-lithium aluminate reac-

tion, the equilibrium SO, level is very low, approximately one ppm at 800°C.

The alkali sulfates show good stability in nitrogen as well as in air, Fig.

2.2. The level of SO; for all systems is below 100 ppm at 800°C.
2.2. Sorbent Regeneration

2.2.1. General Concerns

Regeneration of sulfated sorbents requires reduction of the sulfate to the
oxide. The reduction of sulfate may be accomplished using CO as a reducing

agent in the following reaction sequence.

M504 OO (M,0,M,S) + (S02,C0,) (2-2)
S%+2ar»%%+0% (2-5)

%— S, + CO * COS (2-6)
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Figure 2.1: Decomposition of Alkali Sulfates in Air
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where M = Na, 1i, etc.

Reduction produces both oxide and sulfide. Sulfide formation decreases
the ability of the reduced sorbent to reabsorb SO;, and is detrimental to the
overall regeneration process. Sulfur dioxide produced during reduction can
be reduced further to produce elemental sulfur and COS. Elemental sulfur is
the product of choice. The reduction reactions have not been fully charac-

terized. Several possible side reactions exist.
2.2.2. Reduction of Alkali Sulfates

The reduction of alkali sulfgtes and allied materials has been studied by
several investigators, under various reaction conditions and using various
reducing media. The reduction of sulfated alkalized alumina with pure CO
and pure H; was studied at temperatures between 620 and 680°C (Schles-
inger and Illig, 1971). Reduction with CO was found to produce a mixture of
sulfide and aluminate. The aluminate produced was 30% or less; the only
gaseous product reported was COS. Reduction with H; caused a higher frac-
tion of aluminate in the product than reduction with CO. The fraction of
aluminate increased with increasing temperature and was 0.8 at 680°C.
Hydrogen sulfide was the gaseous product. Iron was found to catalyze the
reduction with Hp. Schlesinger and Illig also investigated the reduction of
pure sodium sulfate in Hp or CO, and temperatures of 750°C or higher were
required for reaction to take place. This indicates that alumina or alkalized

alumina present in the sample may catalyze for the reduction reaction.

The reduction of unsupported sulfates has been studied by other investi-
gators. Ahlgren et al. (1967) investigated the reduction of bulk molten
sodium sulfate with CO and Hp. At 900°C, reduction of sodium sulfate with

CO for 80 minutes produced sodium oxide, which reacted with CO; present as
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a reaction product, to form sodium carbonate. Sodium sulfide and sodium
polysulfides were also produced. Thirty minutes of reduction under the
same conditions produced sodium sulfide only. The reactions appeared to be

autocatalytic. Reduction of sulfate with hydrogen produced only sulfide.

Sulfate dissolved in molten mixed alkali carbonate has been reduced with
CO and H; at 600°C (Oldenkamp and Margolin, 1969). Dissolved sulfide is
cited as the primary product in both cases. Birk et al. (1971) investigated
the same dissolved sulfate system using H; as the reductant at temperatures
from 600 to 900°C. Sulfide was again the major product. These investigators
found that the reaction was autocatalytic with respect to sulfide. The auto-
catalysis was attributed to a reaction between sulfide and sulfate. Several

metals were found to catalyze the reaction, iron being the most active.

The reduction of sodium sulfate, both alone and dissolved in molten car-
bonate has been studied with coal as the reductant (Budnikov, 1934; Cam-
eron and Grace, 1983). In both cases, the loss of sulfate was found to be

autocatalytic.

The electrochemical reduction of molten mixed alkali sulfates has been
investigated. The product selectivity depended on the exact reducing condi-
tions, and the duration of reduction. At 550°C the products consisted of a
small amount of sulfite with larger amounts of dissolved sulfur and oxide
(Johnson and laitenen, 1963). At 625°C, a mixture of sulfite and sulfide with
a small amount of sulfur was found after reduction, while sulfur, oxide and
S0, were found after prolonged reduction at this temperature (Lui, 1962;

Burrows and Hills, 1970).

These studies show a wide range of product variation with reaction condi-

tions. Aside from the desired oxide, reactions produce sulfide and possibly
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sulfite and polysulfides. Reactions in the molten phase appear to be autoca-

talytic. The exact nature of the reactions is not clear.

Some of the aspects of the reduction become clearer when reactions that
contribute to the overall reduction are treated separately. Such reactions
are those which may occur between sulfate and sulfide ions in a molten
phase. These types of reactions have been invoked as a cause of the
reduction’s autocatalysis (Budnikov, 1934; Birk et al., 1971). As early as
1924, Foerster and Kubel had observed the reaction of sulfate and sulfide to

form oxide and sulfur dioxide at temperatures above B00°C.

3NagS0,4 + NapS -» 4S0; + 4Nag0
(2-7)

This reaction is the reverse of the sulfite disproportionation reaction (Eq. 2-
3). combined with the dissociation of sulfite to oxide and SO;. The reaction
will not take place in a single step, but will be the sum of a series of ion-ion
reactions, driven by the ultimate evolution of sulfur dioxide. Manring et al.

(1967) found a more general set of reactions ranging from Eq. (2-7) to

NapSO, + NagS - 2Naz0 + SO, + S.
(R-8)

Manring et al. (1967), Kohlmeyer and Lohrke (1955) and Dearnaley et al.
(1983) observed that these reactions were facilitated by the presence of sil-
ica and other refractory oxides which can combine with the Naz0 and drive

the reaction.

Nag0 + SiOp -» NaySiOg
(2-9)

The presence of a support may then act to promote overall sulfur removal.
If CO; is present, these reactions might also be driven by the formation of

carbonate from the oxide.
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Nag0 + CO, » NapCOg
(2-10)

Aside from forming carbonate by direct reaction with oxide, the CO; pro-
duced during the reduction may contribute greatly to the overall reaction
scheme through secondary reactions, such as that converting sulfide to

oxide.

COz + NagS _ Nap0 + COS .
(2-11)

This reaction has been observed to proceed at low temperatures (435°C) and
is exploited as a separate step in the regeneration of sulfide produced during
the molten carbonate process (Oldenkamp and Margolin, 1969). Ahlgren et
al. (1967) observed the reaction of COz and Na,S at 900°C to form carbonate
and polysulfide. The presence of a solid support such as silica or alumina, or
the presence of excess COz, may once again drive the reaction by the forma-

tion of stable compounds from the oxide.

Polysulfides have been mentioned as possible reaction products by several
investigators (Ahlgren et al., 1967; Dearnaley et al., 1983; Birk et al., 1971).
Both lithium sulfide and sodium sulfide are known to form polysulfides by
reaction with elemental sulfur (Letoffe et al., 1976)

NaS + ’2‘— S, » NagS, .y

(R-12)

Lithium has only one known polysulfide, Li»S;, while sodium has several which
have been characterized (Oei, 1973). Under various reaction conditions,
polysulfides may form as intermediates. The decomposition pressure of sul-
fur above sodium polysulfide-sulfide mixtures of composition NapS; are

shown in Fig. 2.3.
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Figure 2.3:

Vapor Pressure of Sulfur Over NapSy
(Data from Janz, et al., 1979)
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2.3. Reactions of the Support Materials
2.3.1. Direct Support Interaction

The reaction of oxide with a support such as alumina or silica has been
cited as a possible driving force away from sulfide in the overall reaction
scheme. As early as 1910, Cobb studied the reaction of oxide with silica (Eq.

2-9) or alumina,

Nag0 + Al;O3 » 2NaAlO,
(2-13)

to form stable compounds. He found sodium carbonate decomposed in the
presence of either silica or alumina at temperatures around 700°C. The
aluminate formed decomposea when exposed to an oxidative atmosphere
containing sulfur oxides. Kovalenko and Bukin (1978) discovered that the
reaction between carbonate and alumina was dependent upon the defect
structure of the alumina present. 7y-alumina was more reactive than -
alumina. 7y-alumina reacted at 570-580°C while a-alumina did not react until
the temperature reached 620°C. Christie et al. (1978) found the rate of the
NapCOz/alumina reaction limited by the formation of a layer of sodium

aluminate through which cations and anions had to diffuse.

The alkali anion present affects significantly the formation of aluminate.
Lithium aluminate is more stable than sodium aluminate in comparison with

their respective carbonates (Fig. 2-4).
2.3.2. Catalysis of Secondary Reactions by the Support

In addition to reacting directly with alkali material, the support may act
as a catalyst for the further reduction of SO; by CO (Eq. 2-5), the reaction of

sulfur with CO to form COS (Eqg. 2-6), or the reduction of SO; with COS,
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2COS + SOz » 2C0p + =

(2-14)

These reactions and their catalysis by various materials have been the
subject of much study. The reduction of sulfur dioxide with carbon monox-
ide (Eq. 2-5) is known to proceed over metal, copper or iron, and alumina
catalysts at moderate temperatures, 400-500°C (Querido and Short 1973,
Khalafalla et al., 1971). This reaction proceeds at higher temperatures when
the gases are in contact with alumina or other surfaces. Lepsoe (1940)
observed that although this reaction proceeded slowly at BOO°C in the
absence of catalyst, almost any kind of surface was capable of catalysis at
this temperature. Alumina (boehmite) was an efficient catalyst at tempera-
tures above 300°C. Khalafalla and Haas (1972) found v-alumina active at
temperatures above 450°C, while a-alumina was not active until 650-700°C.
The basic function of a Bronsted site was suggested as being responsible for

SO, absorption.

The Claus reaction (Eq. 2-14) between COS and SO, is also known to
proceed over various surfaces. Lepsoe (1940) found that the reaction pro-
ceeded over almost any hot surface, and was approximately four times as
fast as the CO-SO,; reaction. Studying the catalysis of the COS-SO; reaction
at temperatures of 500-800°, Haas and Khalafalla (1973) found that the pres-
ence of transition metals on an alumina catalyst decreased the conversion.
Transition metals had been found to increase catalytic activity towards the

CO-S0; reaction.

Catalysis of the CO-SO; and COS-SO; reactions may be influenced by the
alkali phase present during reduction. Catalysis may also be affected by
reduction products or intermediates. Sodium oxide, sodium sulfide and

sodium carbonate have been cited as catalysts for the COS-SO; reaction
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(Ferm, 1957). The addition of alkali hydroxides to either silica or alumina
was found to increase the activity of the material as a Claus reaction catalyst
(Dudzik and George, 1980; George, 1975). In both cases the rate went
through a maximum with increasing alkali hydroxide loading. The nature of
the cation, Na*, Li* or K*, had an effect on the rate enhancement by alkali
hydroxide (George, 1975). He observed strong correlation between catalyst

activity and the polarizing power of the cation: Li* > Na* > K*.

Elemental sulfur formed during reaction has been found to activate
alumina catalysts for the CO-SO;, reaction (Khalafalla and Haas, 1972). Sul-
fate, on the other hand, has been found to be a poison for alumina Claus

catalysts (Pearson, 1973).

The decomposition of COS to sulfur and CO and its reverse reaction (Eq. 2-
8) is also catalyzed by common support surfaces. Akimoto et al. (1984)
found catalysis of the decomposition of COS by Al;03 (400°C), MgO (440°C),
TiOz (450°C) and SiOp (550°C). Haas and Khalafalla (1973) found the COS
decomposition reaction proceeded at temperatures above 500°C over o-
alumina, yx-alumina and silica gel. They found all these surfaces had the

same activity at temperatures above 500°C.

At reaction temperatures, all of the aforementined secondary reactions
may take place. The CO-SO; and COS-SO; (Claus) reaction activity will prob-
ably depend on the support and on the nature of the alkali component of the

sorbent. The COS-5S,-CO reaction will likely proceed with any support.

2.4. Thermodynamics of Regeneration
2.4.1. Reduction Reactions

The standard free energy changes for the various reactions involved in
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alkali sulfate reduction are shown for the sodium system in Fig. 2.5 and for
the lithium system in Fig. 2.6. The reduction to form sulfide is the most
thermodynamically favored in both systems. The reaction to form oxide is
the least favored thermodynamically. Reactions which form carbonate or
aluminate are significantly more favorable than those which form oxide. In
the sodium system the carbonate and aluminate formation reactions are
equally favorable, while in the lithium system the aluminate formation reac-
tion is more favorable than that which forms carbonate. All the reactions

may be driven to completion by an excess of CO.

The partition between sulfide and oxide, including carbonate and
aluminate, is important since it determines the degree of regeneration of the
sorbent. To determine the thermodynamic limits on this partition, the fol-

lowing reactions can be considered.

COz + MeS [ COS + M0

(2-15)
COz + MzS + a—Al;03 . COS + 2MAIO,
(2-16
2COz + MgS [ COS + MpCOs
(2-17)

where M = Li, Na. The standard free energy changes are shown as a function
of temperature in Fig. 2-7. In an excess of CO all sulfate will be completely
reduced to sulfide or oxide (aluminate, carbonate). Also in excess CO it can
be assumed that sulfur gases produced during the formation of oxides will be
primarily present as COS. Using these assumptions and the equilibrium
expressions for reactions (2-15) through (2-17) limitations on the sulfide
oxide partition were found. The equilibrium sulfide mole fraction under
excess CO is shown as a function of temperature in Fig. 2.8. At equilibrium,

the product is entirely sulfide if no compound forms with oxide. Carbonate
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and aluminate both increase the equilibrium sulfur removal. Aluminate,
however, is much more effective at reducing the sulfide fraction. When
lithium aluminate was allowed to form the sulfide is completely removed at
equilibrium. Increasing the temperature increases the sulfur removal for
the sodium aluminate material and decreases the removal for the carbonate
system. If CO; in excess of that formed during reduction is added, the sulfur
removal will be increased. Figure 2-9 shows the dependence of the equili-
brium sulfide fraction for the sodium sulfide-sodium aluminate system at
1100 K as a function of the carbon dioxide-sulfide ratio. A ratio of 4
corresponds to excess CO, as 4 moles of CO; are formed for each mole of

sulfide.
2.4.2. Gas Phase Reactions

The equilibrium of the gaseous species present during reduction: CO, SO,,
Sz, COS and CO, was examined using STANJAN, a program for calculating
equilibrium based on the minimization of free energy. This program was
developed by W. C. Reynolds at Stanford University. The distribution of sul-
fur between SO, COS and S; was determined for varying temperature,
CO/S0; ratio and gas dilution (amount of diluent N; added). The results are
shown in Figs. 2-10 through 2-12. Sulfur is the major product in a certain
range of CO/SO, ratios. Lower ratios give SO; as the major product, and
higher ratios give COS. Raising the temperature enlarges the range where

sulfur is the major product, as does increasing the dilution.
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