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This research has dealt with various problems related to
high gain lasers including: gain and dispersion focusing of the
transverse modes, mode pulling and mode splitting of the longi-
tudinal modes, ultrashort pulse propagation, relaxation oscilla-
tions, spectral narrowing, dispersion effects on the oscillation
line width, and a saturation and power formalism for high gain
lasers. Most of these subjects had not been treated previously
and it is found that the properties of high gain lasers may differ
drastically from the properties of similar low gain lasers.
Besides the theoretical treatment of these subjects, experimental

verification has been obtained whenever possible. The experiments

were conducted using 3.51 micron xenon lasers.
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I. Intreduction

A conventional laser oscillator consists basically of a medium
which amplifies light located in s mirror arrangement which provides
positive feedback. The most important ingredient is the amplifying
medium, and it is necessary that the gain of this amplifier exceed the
losses of the optical cavity. The first lasers employed very high-Q
cavities enclosing media with single-pass gains of at most a few per-
cent.

Since the early lasers were low gain devices, the correspondin
theoretical developments are mostly sultable only for analysis of the
properties of such low gain lasers, It turns out that the sssumption
of small single pass gain leads tc a dramstic simplification of the
equations governing laser performance, More recently a variety of
lasers have been developed which have single-pasg gains of several
orders of megnitude. For the most part, the low gain theories can not
be applied to high gain lasers with any assurance of even gualitative
agreement,

The purpose of this thesis is to set down in a fairly systematic
and rigorous fashion a theoretical treatment of some of the more in-
teresting and important aspects of the behavior of high galin lasers.

As far as possible the conclusions are verified experimentally using
a high gain xenon laser. In many cases high gain lasers may exhibit
new effects which could not be anticipated from the low gain theories
and experiments. The subject of high gain lasers is extremely broad
and this treatment is not intended to be exhaustive., We have attempted

to demonstrate the basic principles underlying a variety of significant



high gain laser problems,
In Chapter II are derived the basic saturation equations for the

gain and index of refraction, which are useful for the theoretical work

[

of the succeeding chapters. It is precisely the unusual properties of
the gain and index of refraction in high gain media which lead to the
interesting optical behavior of lasers containing such media. This
chapter 1s included because many of the specialized saturation treat-
ments in the literature are either so elementary as to miss important
effects or so general as to be mostly unintelligible,

Chapter III is an investigation of some of the properties of the
high gain 3.51 micron transition in xenon, This is one of the highest
gain gas laser transitions known, and all of our experiments were con-
ducted using a xenon laser. Because of its narrow line width, the 3.51
micron transition also exhibits extreme anomalous dispersion, On the
basis of these investigations it is concluded that greater gain should
be attainable in a properly designed xenon laser than has yet been
reported.

The remaining chapters contain theoretical and experimental
results relevant to specific high gain laser phenomena, The theory is
specialized as necessary to show the effects of interest with a minimum
of mathematical obfuscation. Supporting experimental evidence is in-
cluded. Because of the relative independence of these chapters, there
is a brief concluding section with each but no concluding chapter at
the end of the thesis. Also, there is no particular significance to
the ordering of the chapbers.

Chapter IV is a discussion of the effects of strong anomalous
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dispersion on the longitudinal modes of a laser oscillator. In ordinary
low gain lasers mode pulling effects may either be ignored or treated as
a perturbation., In high gain lasers, on the other hand, the longitudinal
mode spectra may be entirely different from the spectra of low gein
lasers, A new mode splitting effect is anticipated in which three dif-
ferent frequenciles occur at the same wavelength in the laser medium,
Experimentally, we have observed a much greater mode pulling than has
previously been reported in good agreement with the theory.

The effects of a simple radial gain profile on the transverse
laser modes are investigated in Chapter V with particular emphasis on
gain and dispersion focusing effects. We have also obtained experimental
verification of the focusing theory. A useful matrix method for calculat-
ing the modes of a resonator containing a lenslike medium is described
in some detail., A discussion is also included on the modes of a new and
potentially useful cylindrical rescnator geometry.

In Chapter VI is a fairly thorough consideration of relaxation
oscillations in laser oscillators including the effects of in-
homogeneous broadening, The observation of undamped relaxation oscilla-
tions in a xenon laser is also reported. Experiments have been conducted
in both the time and frequency domains, and good agreement with the theory
has been obbtained.

A treatment of the oscillation linewidth of a high gain laser is
given in Chapter VII. Previous analyses of the laser linewidth have all
assumed that the gain per pass was small., Here we derive the linewidth
of a high gain laser including dispersion, A line broadening effect

resulting from hole burning is discussed qualitatively, and supporting



experimental evidence is presented.

The basic ideas of spectral narrowing in laser amplifiers are well
known, but a reasonably detailed theoretical study has not been given
previously. In Chapter VIIT is an analysis of spectral narrowing in
homogeneous and inhomogeneous amplifiers including the effects of
saturation, It is found that saturation slows the narrowing in a
homogeneous amplifier and causes a broadening of the spectrum in an
inhomogeneous amplifier.

In Chapter IX are reported some experiments with the spontaneous
mode~locking of the xenon laser, Ultrashort pulses have been observed
with a wide range of pulse widths and repetition rates in agreement
with theory. These pulses are found to propagate through the xenon
amplifier with velocities less than the vacuum speed of light by as
much as a factor of 2.5 in good agreement with the theoretical group
velocity of a dispersive medium, Previous experiments using low gain
lasers had only shown a deviation from the speed of light of less than
a part in a thousand.

Conventional treatments of the power in saturated laser oscil-
lators usually assume that the radiation filelds and amplifying media
are spatially uniform. This is an extremely poor approximetion in
high gain lasers. In Chapter X we derive some useful conservation
rules and saturation formulas which are valid in high gain lasers,
Simple expressions are obtained for the oulput power of a high gain

laser oscillator, and experimental evidence is included.



II. Saturation Theory

2.1 Introduction

The purpose of this chapter is to develon the gain and saturation
P 2 L 2

h

formalism which will be the basis for most of the calculations o he

[a

succeeding chapters. Initially the treatment is quite general. Rate
equations are developed for the interaction of a time varying electro-
magnetic field with a laser medium having an arbitrary coherence time
and an arbitrary inhomogeneous line width. For most of the situations
which we have studied the coherence effects may be neglected. The
coherent rate equations should, however, be useful in other applications
such as the study of short pulse propagation.

The coherent rate equations reduce to the much simpler incoherent
rate equations if the fields vary sufficiently slowly. The basic results
for the gain and index of refraction of a saturating high gain laser
medium are obtained from the steady state solutions of the incoherent
rate equations. The importance of level degeneracy is discussed. The
results are then specialized te the forms that will be useful in later
chapters with considerations of the limits of homogeneocus and inhomo-

geneous broadening. A section is alse included on spectral hole burning.

2.2 The coherent rate equations

The purpose of this section is to develop the equations governing
the population inversion and electromagnetic fileld in a laser, including
the effects of atomic coherence and inhomogeneocus broadening. In terms
of the familiar density matrix formalism for a two level gystem, the

equations governing the atoms in states a and b in the presence of the



electric field E(t,z) may be written

. -p.)
9 _ 2iUE(t,z) _ aa bb B
ot (paa pbb) - ( ab pba) (2.2-1)
’ﬁ T
1
3 - iUE(t,z) _ _ Pap _
3t Pab =~ TPy (Paa ™ Ppp (2.2-2)
% T
2
*
Ppa T Pap (2.2-3)

Here Tl and TZ may be regarded as phenomenological relaxation times. T1

represents the spontaneous decay time of the excited state and T, is

2
the transverse coherence time. p is the rate of excitation and U = er_y
is the dipole matrix element. Equations (2.2-1) to (2.2-3) hold for
any particular class of atoms in an inhomogeneously broadened medium.

@D

These equations are similar to equations (25) and (26) of Lamb
except for the notation and inclusion of a pumping term. The restriction
to a two level system is only done by convention for convenience. Some
generalizations will be treated in later sections.

If the atoms are distributed in frequency according to the

function f(w), then the macroscopic polarization is given by

o

P' = uN j dw £(w) [p , (w,t,2) + p (w,t,2)] (2.2-4)
0

where N is the total density of atoms and the frequency is related to
the energy levels by w = (E8~Eb)/ﬁ . The electric field and polarization

are assumed to be time harmonic at the frequency wﬁ in the form
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E(t,z) F(t,z) cos(kz - wﬂt) (2.2-5)

P'(t,z) = S(t,z)sin(kz - wﬁt) + C(t,z)cos(kz - wzt) (2.2-6)

where E(t,z), S(t,z), and C(t,z) are slowly varying functions of time

and space. In writing the field and polarization in this form we
implicitly assume that the phase is constant. This approximation will

be considered later. Also, only a one dimensional geometry is considered.
Some effects of spatial variations are tréated in chapters V and X.

Equation (2.2-2) is a linear first order differential equation

which can be integrated@'z)to obtain

!
i t ~E,f£— -iw(t-t")
B J e 2 e E(t',z)(paa - pbb)dt' (2.2-7)

Substituting equation (2.2-5) in equation (2.2-7) and neglecting

nonsynchronous terms leads to

gy ke Kt)r SEE i) ()

= _ (! =2
pab o © F(t',2)e e

- v
(oaa obb)dt

-0

(2.2-8)

Then from equation (2.2-4) the macroscopic polarization is found to be

o t t—t'
2 e
P' = BN dei‘(w)JE(t',z)e T2 sin[(kz-wﬂt)~(m-—wﬁ) (t:—t')](pa
H
0 —00

- 1
A PR dt

(2.2-9)

Therefore, the sine component S(t,z) and cosine component C(t,z) of

the polarization are given by



oo t t-t!
2 T
S(t,z) = y’ﬁ' def (M)JE(t',Z)elz COS[(W%) (t-t")] (Daa*pbb)dt' (2.2-10)
0 -0
o t t-t!
N [Ty
C(t,z) =- —;: def (w)'{E(t‘,Z)e 2 sin[ (w-w,) (t=t")1(p_ =Py, )dt’
O -—00

(2.2-11)

The response of the electromagnetic field to the polarization
of equations (2.2-10) and (2.2-11) is determined by the one-dimensional
wave equation, which in mks units may be written

32

ey
az C‘.

2
E P!
£ 1 ) 9 5 (2.2-12)
dt e c' ot

where ¢' is the velocity of light in the medium neglecting resonance
effects associated with the transition. Substituting equations (2.2-5)

and (2.2-6) leads to

w e e w n,.C wyn
J% [ e ) A -
k - C' l + c EN o <n0 -+ 2€ E>" c (2.2 13)
and
.ag . iq §£ ~ wﬂnqi
9z ¢ 3t 2 ¢ (22710

where the field and polarization components are assumed to vary slowly

in time compared to an optical cycle and slowly in space compared to a

wavelength, The free space speed of light is ¢, the nonresonant index

of refraction is ng» and the total index of refraction is n. BEvidently



the propagation "constant" k is generally a function of E, whereas in our
derivation it was assumed to be constant. This additional approximation
which is believed to be valid for our work, essentially involves the
s . (2.3,2.4)

neglect of small fluctuating phase terms as discussed by Close .
Moreover, for radiation at line center the in-phase component of polari-
zation vanishes identically as we now show.

If equation (2.2-8) is substituted in equation (2.2-1) and

nonsynchronous terms are neglected, one finds that the excitation is

governed by

t t—t'
2 — e
.@_.__ - - - E__ ' TZ 41 S
Nt (P Ppy) = P .3 E(t,z)JE(t s2)e "% cos[(w-wy) (t-t")](p_ -p,,)dt’
-0 p -p
_M (2.2__15)
Ty

Therefore, the excitation density is symmetrical about the optical
frequency wp - Then if the atomic distribution f(w) is also symmetrical
about w,, C(t,z) will be zero according to equation (2.2-11) because
sin(wwwz)(t~t') is antisymmetric about wﬂ' Thus for radiation at the
center of a symmetric pumping line the phase is constant. The stability

e L ‘ f5)
of this situation has been considered by Hopf and Scully .

Equations (2.2-10), (2.2-11), (2.2-13), and (2.2-14) may be

combined to yield

n w&nouzN m t St
ot , 0 of _ 4 ' : AT N e B '
5z + c ot o6 oh de[(w) Jf(tgz)e 2 cos|(w wﬂ)(t t )](paa pbb)dt
0 -0

(2.2-16)
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2 oo t t"t'
nou N 'f““
n-n. = - —---def(w) jE(t',z)e 2 sin[(w-w,) (t=t") 1 (o,

0 -0

-~ v
a Ppp)dt

(2.2-17)

It is useful to change to the frequency variable v and to introduce

the population inversion density n(v,t,z) = Nf(v)[paa(v,t,z)~pbb(v,t,z)],

HOUZ
BO = ———— _ and the
2ce R

the frequency independent "Einstein coefficient"

pumping rate P(v) = pNf(v). The same letter n is used to designate both
the population inversion and the index of refraction, but the refractive
index appears only in the n-n, qn the left side of the equations so
that confusion is unlikely. In terms of these definitions equations

(2.2-15) to (2.2-17) become respectively

5 ZCBOE E(t,z) ¢ "%:E'
s (v,t,z) = POV)- JE(t',Z)e 2 cos[2m(v-v,) (t=t") In(v,t',z) dt"
n, o
_nQ,t,z) (2.2-18)
T
1
. ® t _t=t!
oF 0 oF ' T ' oF
= + Z“g{: - BOh\)Z Jdv jE(t ,z)e 2 cos[Z'IT(\)*—\)'e) (t-t")In(v,t ,Z)dt"‘ 'i"‘
O —C0
(2.2-19)
o T
cBOh t “%“E
n_no - . Jd\) JE(t',Z)Q 2 sin[ZTf(\)“\)K) (t—t')]n(\),t',z)dt' (22"20)
O -

A loss term has been included in equation (2.2-19).
Equations (2.2-18) to (2.2-20) are the primary results of this

section. We refer to them as the inhomogeneous coherent rate equations



because they may be regavded as a generalization of the more familiar
rate equations to include inhomogeneous broadening and coherence
effects. These equations should be useful in problems involving short
pulse propagation, echoes, and high frequency relaXation phenomena.

This form of the results has a greater intuitive appeal than the equa-
tions of Hopf and Scullyk's)involving symmetric and antisymmetric
susceptibility functions. Evidently the inversion, gain, and refractive
index depend on the history of the system for a time of roughly T2 into

the past.

2.3 The incoherent rate equations

For slowly varying fields the rate equations simplify greatly.
In this section the conditions are considered under which these simpli-
fications can be made. Also, the results are generalized to include
four level laser media interacting with optical fields at many
frequencies.

The exponentials in equations (2.2-18) to (2.2-20) cut off the

time integrations for times much greater than T, into the past. Conse-

2

quently, if the field and inversion vary negligibly in the time T2,

they may be brought outside of the time integrals. The remaining

integrals can be performed according to

£ _t-t'
J e T2 cos[Zﬂ(V~v£)(t~t')dt' T=1t -t
b T
-1 T?
= e 2 Cos[Zﬂ(vwvz)T]dT = (2.3-1)

0 1+ [2ﬁ(V“V£)T2]



and

L T
J e Sin[ZW(v—Vz)(t—t')]dt'

< T
= J e sin[Zﬂ(v~VQ)T]dT
0

[2W(V—vZ)T2]T2

= 5 (2.3-2)
l—%[Zﬂ(v~v£)T2]
It is also useful to define the homogeneous line width Avh as
A (2.3-3)
h 7T
2
and the frequency dependent Einstein coefficient
2
(ﬂAVh)
B(\),\)Ql) = BO ?(\)__\)2) o (2.3'—4)
+
Avh |

Use of equations (2.3-1) to (2.3-4) reduces the coherent rate

equations (2.2-18) to (2.2-20) to the much simpler form

2
ce E .
M (y,6,2) = POV) = —— n(v,t,2) B(u,v,) - BOLE2 () 5 )
ot n, L T
6 1
hv E
ofF |, Mo o _ W& o of
'§Z'F'E_Eﬁf"‘"w§ f n(v,t,z) B(v,vz)dv -5 (2.3-6)
0
ch z(v—vﬂ)
n-ng = - ZE—J n(v,t,z) L(v,vg)(~ZG;~m~)dv (2.3-7)

0
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We refer to these as the incoherent rate equations. It is useful

2
ce b
further to introduce the intensity I = o and to write the lifetime
0
as T1 =1 . With these definitions equations (2.3-5) to (2.3-7) become

g%<(v,t,z) = P() - B(v,v) I(t,2) n(v,t,2) - ESYLELEZ (2.3-8)

n
31(t,z) | 0 91(t,2) _ hv, I(t,z) J B(V,v,) n(v,t,7)dv ~I(t,2)
0

oz c ot
(2.3-9)
ch 2(v—v2)
n - ng = - Z%'f B(v,vl) n(v,t,z)(-Z§;——) av (2.3-10)
0

Equations (2.3-8) to (2.3-10) govern the interaction between a two level
population inversion and a monochromatic radiation field which varies
slowly compared to the homogeneous line width. One can also show that
near threshold these results still hold if the variations are only slow
compared to the total line width.

The rate equations may be extended to include the interaction
of several radiation fields with a four level system. This cannot be
done rigorously in a straightforward fashion, so we make an approxima-
tion which is valid for all of our work. We assume that equations
(2.3-9) and (2.3-10) remain correct for any particular field even when
other fields are present. The population inversion n(v,t,z) of equa-
tion (2.3-8) will, of course, be influenced by the other fields. By
making this approximation coherence effects are again neglected.

(2.3)

Close has shown that the inversion actually may be modulated by

the beats between the various frequencies. The result of this



modulation is a frequency mixing with resultant combination tone gen-

s

¥

eration. The present theory will not predict combination tone genera-
tion., However, in most laser situations this modulation of the
inversion is completely unimportant. Combination tones have only been
observed in rather special circumstances. They require a small number
of intense monochromatic radiation fields separated in frequency by
less than the homogeneous line width. Even then the amplitudes of such
tones are usually negligible compared to the amplitudes of the saturat-
ing fields(2'6), In important applications involving widely separared
lines or continuous spectra the inversion modulation may be neglected,

In accordance with the previous discussion and equations (2.3-8)

to (2.3-10), the rate equations for a four level laser may be written

on
_3 - - y 1
at(\),t,z) = P3(v) n3(v,t,z)[A3-P ; B(v,vn)InJ
+ n,(v,t,2) g B(v,v )T (2.3-11)
on

5

_— = 3y - { 1
at(\),t,z) PZ(») n3\v,t,z)[A32-+ g B(vgvn)in,

- nz(v,t,z){A2+-z B(v,v )1 ] (2.3-12)

11

B(v,vz>{n3<vgt,z>

@
-t
(]
@
-
O 8

- nz(v,t,z)} dv - oI (2.3-13)

2



ch : 2(v=vy)
n - nO = - 'Z;%'T'Jb B(\)s\)z>{n3(\)ataz) - ,-2‘(\},1&,2}3( Ay )é\)
AV,
0

(2.3-14)

Equations (2.3-11) and (2.3-12) are a generalization of equations given

by Gordon, White, and Rigden(4'7)5 and the meaning of the coefficients

is obvious. If equation (2.3-12) is subtracted from equation (2.3-11},

one cbtains a result for the population difference n = N, = D, which,

except for the spontaneous emission terms, is similar in form to equa-

tion (2.3-8).



2.4 Steady state solutions

The only application in this work of the general time dependent
rate equations will be to the problem of relaxation oscillations dis-
cussed in Chapter VI, although the equations should be useful for
other problems such asz pulse propagation. In this section we obtailn
the basic solutions to the rate equations in the limit of steady state.
At steady state equations (2.3-11) and (2.3-12) may be solved for the

population inversion with the result

P3(v) _ Pg(v) A324-P2(v) A3
A AL A
n.(v,2) - n,(V,z) = — 2 (2.4-1)
3 2 A= A3y
VTR R, Ry L BT
28 A3/ 0

We only consider here the special case where the pump spectrum
1s the Gaussian function

2(v—v0) 2

0 e
A\ID

P (v) = P e
i

i0 (2.4-2)

This is the most important pump spectrum in practice. In particular,
it applies to the Doppler broadening of gas lasers such as the 3.51

micron xenon laser. AvD is the Doppler width of the atomic transi-

tion centered at the frequency Yo

The rate equations (2.3-13) and (2.3-14) may be written using

equations (2.3-4), (2.4-1), and (2.4-2) in the form



2 )
AV 2(v-v )
h - 0 ] In 2
Z(V"VQ,) 2 A\)D
dIQ @ 14[ AVh 1l e dv
o =8l J T ol (2.4-3)
0 1+ s g 20vv Y 2
n
1+ [ Y
2 ,[_Zfii\_)p.)_]zzn )
TFA\)h A\)D 2(v-v 2)
2(\)—\)9’) 2 © [ Av Jav
h
© 1+ [—“ A ]
cg vh
n-ny = - 4wv£ In - (2.4-4)
0 1+ s g vV ) 2
R e
b
where s 1is a saturation parameter given by
Bo A3 743
s :'TTA\) A A +K”‘ (2.4-5)
n L 273 3
and g dis defined by
-ty E {P:so CPyfap t on‘\%} (2. 169
£ 70 A3 A2 A3

It will become evident later that g represents the small signal line
center incremental intensity gain for an inhomogeneously broadened

medium.

Equations (2.4-3) and (2.4-4) simplify further to



o -82{z-z \2
dI gl 0
L [ e iz . S
dz - ki ‘} 2 T w',Q, o & ]
0 [1+(z-2)) 1[1+s ] L
oo £
n 1+ (z-z )
T
~€2(z—z )2
cg OF e 0 (z=z)dz
"Ry ST 7 i (2.4-8)
4y [1+(z-2) 11+ | — 2 3
r o0 ) y
n 1+ (z-2,)
L
using the new frequency parameter =z, = Zv:/Avh and the natural damp-
B .
ing ratio<2'8) Av
€ = b Yin 2
A\)D

which measures the relative importance of the homogeneous and inhomo-
geneocus broadening. The frequency parameter is not to be confused with
the distance in the spatial derivative which iz also called =z to con-
serve alphabet. These equations are the primary results of this
section. It is often possible to expand integrals of this type and
express the results in terms of the tabulated error function of complex
argument or the plasma dispersion function. However, in most practical
situations it is more useful to assume that the laser medium is pre-
dominantly either homogeneously or inhomogeneously broadened. In these
limits the integrals simplify greatly as is demonstrated in the next
two sections.

Sometimes it is necessary to regard the saturation as being due
to a continuum of radiation fregquencies rather than discrete lines.
Then equations (2.4-7) and (2.4-8) go over in an obvious fashion to the

expressions



‘v o ~€2(z—zn}2
@.:.(ZQ‘) gI(Zﬁl) ( e ("] d.Z ,
P = — J - ~ 01\22) (2.4-9)
: o r M/zq)dz
[1+ (z-zp) Hi+s | : “2}
§ L+ (zz)
o ~EZ(Z~ZO)2
e (z-z,)dz
nny = - —E [ 2 (2.4-10)
4 vy 6 9 ?> E(zn)dzm
{l-+{z~zz) }[1%—5 } "2}
14 -2z
o 1T (z ?n>

Here E(Zg) is the spectral density at the frequency =z

]

So far we have assumed that the energy levels of the laser tran-
sition are nondegenerate. In practice the energy levels commonly are
degenerate, so we discuss here the generalization of the preceding
results to the important situation of degenerate levels and linearly

(2.9

polarized radiation. According to Dienes , this generalization

would lead to the replacement of equations (2.4~7) and (2.4-8) by

—ez(z—zg>4

[en]
ar gl
Lok 72 { = dz ~ oI, (2.4-11)
dz )it m,m | . 2
o 0 2 2 “n
i+ (z—zQ} i+ s mom - 2}
o 14 (z-2 )
n
2 2
. -£ (z~zg) : o
e z-29)dz
nen. = - —=8 2 (2.4-12)
0 47 vz m,m I
m

2 2
0 [1+ (z=2z ) 1[1+sC" )
. Ty l-F(Z*zn)z

The coefficients for the transition from level 3 to level 2 of the four



level system are

t—3 _....—é‘...... !, 1 - "?2 R
Cm,m - ng-%l,[<j2’l’m’0§32’*’33:m> J (2.4-13)

The factor in the brackets is a Clebsch-Gordan coefficient, coupling an

angular momentum 32 having a z-component m with an angular momentum

of unity having a z-component of zero (corresponding to the linearly

polarized photon) te form a resultant angular momentum of having a

j?
z—component of m . In the summations of equations (2.4-11) and

(2.4-12) m tzkes on all integer values between -} and -+, .
3 3

Equation (2.4-13) may be rewritten in terms of the "Wigner 3ji-

symbol"(z'lg) as 2
i 1
AERER
2 - 3l | (2.4-14)
EI /
m -m 0

For the various possible transitions the 3ji-symbols can be evaluated

and the final results are

,  6UL ()
o= g+ = -
I3 7 37 “mm T (33,0 (25 (23 D) (2.4-15)
3 3 13
2
.o s o s 2 _ 12m .
1371273 G T TmEEO @G (2.4-16)

6(j 1+ m)(§ 1= m)

J3T I Tt G T @ D@ T ) (2.4-17)
-

These coefficients may be shown to satisfy the relation Cz 2
m,m -1, ~ 1

and the condition z C2 = 1,
o m,m
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The degeneracy coefficients are evaluated in Table 2.1 for i

values up to 5. For much of the discussion of later chapters only a

valitative understanding of the saturation process is reaquired. The
2 1

summation over m in the saturation equations (2.4~11) and (2.4-1

[
p—

is an added complication which turns out to be unnecessary for our pur—

“

poses. In particular, for 1 and for fairly small values cof

Cote
|

e
-}

30 -2 7
33 it is evident from Table 2.1 that the degeneracy coefficients do

not vary much with the permissible values of m (except for the diagonal
of zeros), Therefore, a reasonable approximation to equations (2.4-15)

and (2.4-17) is to assume that the ccefficients are independent of m .

2 .
Then retaining the relation Z Cm n 1 leads to the approximate
b

m

degeneracy factors

=3, + 1 —Gamixm<(Gml) 'Y =k (2.4-18)

137 12 Jamrame s mym - 23,- 1 .

ia=3, -1 -3, <m<3 cr? -t (2.4-19)
3 2 3 <3 m,m 2j3+1

Also, for the case 33 = j? it is evident from Table 2.1 that the coef-
ficient for Im = j is much larger than for the other values of m

3

provided that is not teoo large. Therefore, these two terms domi-

I3
nate the summation, and a reasonable approximation to equation (2.4~14)
is

3 = 4 = ng =

iy m,m (2.4-20)

o] b

These results are satisfactory for i, values of less than about four

3

or five.



Table 2.1: Degeneracy coefficients Cz

tm

1/2

3/2

5/2

7/2

9/2

- 22 .

3

from {a) eguation (2.4~15);

(b) equation (2.4-16); and (c) equation (2.4-17)

(a)
0 1/2 1 3/2 2 5/2 3 7/2 Lo 9/2 5
1/2 0
2/5 3/10 0
3/10 1/5 0
9/35 8/35 1/7 0
3/14 5/28 3/28 0
4721 5/28 1/7 1/12 0
1/6 3/20 7/60 1/15 0
5/33 3/20 7/55 16/165 3/55 0
(b)
o 1/2 1 3/2 2 5/2 3 7/2 & 9/2 5
1/2
0 1/2
1/20 9/20
0 1/10 2/5
1/70 9/70 25/70
0 1/28 1/7 9/28
1/168 3/56 25/168 7/24
0 1/60 1/15 3/20 4/15
1/330 3/110 5/66 £9/330 27/110
0 1/110 2/55 9/110 8/55 5/22




(c)

N o 1/2 1 3/2 2 5/2 3 7/2 4 o s
I3

1/2 1/2

1 2/5 3/10

32 | 3/10 1/5

) 9/35 8/35 1/7
5/2 3/14 5/28 3/28

3 4/21 5/28 1/7 1/2

7/2 1/6 3/20 7/60 1/15

4 5/33 8/55 7/55 16/165 3/55
9/2 3/22 7/55 6/55 9/110 1/22

5 |18/143 35/286  16/143 27/286 10/143 1/26
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With the above approximations the degeneracy summations in equa~-

tions (2.4~11) and (2.4-12) may be performed with the obvious results

A 2
—E“(z~z
dI,  gl, . (2=24) i
I
O 14 (-2 ) r14sci? T n__
2 m,m . 2
n l-r(z-Zz)
o ~€2(z—zo>2 .
cg { e (z~z£,dz
n-ng = - g - (2.4-22)
T0 14 (z-z)?[1+sC? T LI
2 m,m & 2
n 1+—(z~z£)

Thus the primary effect of the degeneracy is to modify the saturation
parameter provided that the total angular momentum quantum number 33
is small. Equations (2.4-21) and (2.4-22) would be identical to equa~-
tions (2.4-7) and (2.4-8) if the saturation paramerer s in the
earlier equations were replaced by s' = sc%%m .

The approximate equations (2.4~21) and (2.4~22) are adequate for
all our experimental work. The 3.51 micron transition in xenon (Chapter
= 3 and

III) is characterized by = 2 . Then from Table 2.1 and

iq i
equation (2.4-18) it is apparent that the approximation involves
replacing 9/35, 8/35, and 5/35 by 7/35. This accuracy is satisfactory
and we use equations {(2.4-7) and {(2.4-8) as our basic results. The
saturation parameter s is regarded as an experimentally determinable
number.

Only the four level laser has been considered in detail here.

However, from equation (2.3-8) it is evident that the steady state popu-~

lation inversion in a two level system has the same form as aguation



- 25 -
(2.4~1). In the important homogeneously broadened three level lasers

a1
3 . - 4,23_\ .
the inversion again takes the same form( 7/, Thus, equations (2.4-11)

and (2.4~12) are quite generally valid. It is only the gain, saturation
and degeneracy parameters which depend on the details of the atomic
model, These details are not of interest here

In this section we have obtained the hasic ecuations governing
the steady state gain and index of refraction of a laser medium. The
corrections for degeneracy of the laser levels have been considered and
the appropriate coefficients tabulated. Many treatments of the gain and
saturation neglect the dependence of the strength of the transition on

the m values and include only the degeneracy factors. Such treatments

are in error.



2.5 Homogeneous broadening

Here we consider the important limit of predominantly homo-
geneous line broadening. In this limit the homogeneous line width
Avh becomes much greater than the inhomogeneous Doppler line width

AvD so that the natural damping ratio
Av
€ = b Vin 2
A\)D

becomes large. For large € the integrands of equations (2.4-7) and

(2.4-8) vanish except for frequencies near z = zy - Thus the slowly

varying terms may be brought outside of the integrals with the results

o0 2 2
dIQ gIQ 1 f -€ (z—zo)
= e dz -aol
dz Xl 2 In L
[L+(z,-2 ) 1[1+s ) 10
0% (2.5-1)
1+(z. -z ) '
2 2
e (ZO“ZQ) f’ ~-£ (z—zo)
n-n, = - — e dz
0 47Tf\)2] I
[1+ (24~ ) ] [1+s ) 51 0 (2.5-2)

n l-%(z -z )

The value of the integrals is vT/€ so equations (2.5-1) and (2.5-2)

may be written simply as

a1
2 1
dz L .
z Y s yﬁ)(l-kq ) 2)
n 1%—y
y
cg' L
n-n = (2.5-4)
0  4nw Vo I
1+ yz)(]+ s ) -—~~2~
n l+~y

where g':'g/(/ffﬂ is the unsaturated line center incremental intensity
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gain for homogeneous broadening and y = z "2, is the homogeneous
jsi A

frequency difference.

If saturation is due to a continuum of frequencies rather than

discrete lines, then equations {(2.3-3)

jas]

md (2.5~4) are replaced by

dily )
—t C g L - a1 (2.5-5)
dz 2 ) I dy_ ) VeI
(1+Yﬁ(l+5 j “wafi%
-0 i."i"yﬂ
_cg' 78
n-n = o0
0 Ly VQ 2 { l(yj)dyn
QA+y )L +s | ——s) (2.5-6)
5 D12
0D

n

If saturation is due to a single monochromatic radiation field,

then equations (2.5-3) and (2.5-4) simplify to the results

AL ]

at !
— gVI,Q, - T (2.5"*7}
dz 1+y§ + sI, %
. y
n-n, = chrg\) % (2.5-8)
L 1 4+ vy + si,

In this section expressions have been obtained for the gain and
index of refraction of a homogeneously broadened laser medium. TIn all
cases the gain profile is Lorentzian in shape. The width of this

Lorentzian may be found by writing equation (2.5-~3) as



Iy ) )
dz  © "4 5 I B O,u%
(L+y)(L+s | —2)+ s1,
7 n#l 1+ y:: 7
g'l
- L__ L - oI (2.5-9)
i 5?_9 %
1+s ) —2 s 1+ )47,
LS 1+ )
n yn 1+s Z i 5
'} :
n#f 1 +y,
Thus the line width is
SIQ’
Av A\)h 1+ } 7 (2.5~10
l1+s ) P
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2.6 Inhomogeneous broadening

The purpose of this section is to obiain

line width AVD is much greater than the !
so that the natural damping ratic € = (A
We consider firet the important special c¢
the saturating lines is much greater than

associated with each line

imit of weakly interactin

1.1.

In the 1

depletes the population inversion over a limit

aed freque

nCcy Yange.

the
.
onnier
.
dth  Av,
n

line only

Con—

sequently the integrals in equations (2.4-7) and (2.4~8) mayv be broken

up into several integrals over the important

regions of the Doppler

=&y

spectrum. The appropriate way to do this is
2 2
[+ JEN— P — P
dI ({ £ ( 0) z (ﬁn e (z ZO)
/ e dz _ 5 | e
dZ L} 2 J 2
. 2 n#l (z~z )
+ A A A ;
0 1+ 5 (= 72} 5 & g
/ )
1 1
i1 = éz?-—@zI
\\ 1 = 2 ¥i
’3*‘?'(‘2,"2 )Z
n
2
B
o £ {z zo) , X
. e (z=2z,)dz
cg f g
e “’?f"i |
; 1 T — “
4mtvy | g LHsIpH (z-z,)
+
z +8n e (z~z0)2 ;
[ e - 1
- Zﬁ } , ) \L - .~
nd sn z-2 \ 14 n _
" 1+ (z=2 )"~

(2.6~-1)
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The first integrals on the right sides of equations (2.6~1) and (2.6-2)
are just the single frequency limits of egquations (2.4~7) and (2.4-8).
The other integrals provide corrections to the single fregquency results
due to depletion of the inversion in narrow regilons in the vicinity of
the other fregquencies. These integrals are assumed to extend only over
the narrow depleted regions. The condition for the validity of this
approximation is that the frequency spacing be much greater than the

Y

saturated homogeneocus widths Avh l1+sI, of two neighboring lines.

LitnikE

All of the factors in the correction integrals except the last
are approximately comstant in the immediate vicinity of a laser field,

so they may be removed from the integrals with the results

2
-%
dr L
2 ge 2eg
= - [1-2x Flx, )]
I, dz (1_+81£)1/2 TT1/2 )
—XZ o 2
€ e R ( e sl \
- =& z 7 |3 7| - (2.6-3)
‘ - - (%—
n#l {Xn Xg> et o+ sln) + (x Xn)
cg F(x,) ~x2
n-n, = — CEg{l—%SEn)l/z X, e .
0 3/2 2 L
VA IEAY)
2
..-X2 <o
. o ( £ sl |
S A B gy {\2 8 7] & (2.6-6)
Grive mAf n A0 L leT(LHsI) + (eex )"

(2.3

Here we have adapted the single frequency results of Close for
evaluation of the firgt integrals and introduced the useful inhomo-

geneous fregquency parameter x = e{zqwzg}. The range of integration

has been extended to infinity without appreciable error, since the



integrands vanish at frequencies far from x_

The function F{x) appearing in equations (2.6-3) and {2.6-4)

(2.12)
is sometimes referred to as Dawson's integral’ ’, and it may be

written as

F(x) = e

b4
_x2 [ t2
é e dr (2.6~-5)
0

Because of its importance In the mode pulling investigations of Chapter

IV, we consider here gome of the basic properties of this integral.

(2.12,2.13)

Dawson's integral has been tabulated For small values of

X it may be expanded as(z'la)

_ 2.3 2 5 2 7 .. _
F(x) = % - 3 x~ + 3.5 X - e X + (2.6~6)
(2.13)

For large x the asymptotic expansion is

_ 1 1 1-3 1-3:5 . ...
F(x) = T + 22X3 + 23x5 + 2&x7 + (2.

6-7)

An approximation to F(x) which agrees with the first order terms of
both series is

Fx) = ——— (2.6-8)

1+ 2x2

A better approximation which agrees with the second order terme cf both
series may be found by a bit of algebra and is
x + Gx’

Flx) = (2.6-9)
4, 2 4o 4
1+ Cg)x + (§>X

Equation (2.6-5) and the approximate equations (2.6-8) and (2.6-9) for
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Dawgon's integral are plotted in Figure 2.1. For mos!

o
]
o
o
b
}-J
O
M}
T
rw’
Q
3
N

the approximations are satisfactory. F(x) also satisfies the easily

verified relations
%—}-{— F(x) = 2% F(x) + 1, Fl-x) = -F(x) (2.6-10)

The integrations in equations (2.6-23) and (2.6~4) may be per—

formed and one obtains finally

2
-X
d1 L
1 2 ge 2eg [
= - 1-2x%, Flx,)]
IR dz (1+sI )1/2 ﬁl/Z 2 2
% 2
-
2 sl e
-£%¢ zn 7 ¢ (2.6-11)
n#l (Xn—xl) (l-+sIn)
Z
cg Fix,) -%
2 ceg 1/2 2
n-n, = - {(1+sI,) X, e
0 ZWS/Z'VO 2wv2 i 2
p. _xz
€ e sIne o
- ZEG& 73 (2.6-12)

2 n#l (xn~xz)(1 + Sln)l

These equations include the first order corrections to the gain and
index of refraction at the frequency vz due to saturating fields at
the frequency VQ and at the distant fregquencies vn . The interac-
tion correction to the gain is within the approximation of widely

. 2 -2
spaced lines due to the small factor ¢ (xn~xg) . The corresponding

refraction correction may be important as is shown in Chapter IV. If

the parameter € is sufficiently small these equations reduce to



oy
b

T
4 ¥
Figure 2.1 Dawson's integral according to (a) exact equation (2.6-5),

(b) equation (2.6-9), (c) equation (2.0-8).



1 L ge
= — - 2.6-13
Ig dz (1 +a7 >l/¢ & ( 13)
kS * '/Q/
) cg F(xg) R
no-ony = 377 (2.6-14)
LT \)Q,

It becomes apparent that the parameter g was chosen to correspond to
the small signal incremental gain for an inhomogeneously broadened
medium.

It should be pointed out that the approximations used in the
preceding derivation break down for sufficiently intense fields. The
homogeneous widths associated with the various fields eventually
overlap, and ultimately the entire gain line becomes effectively
homogeneously broadened. In the single frequency case the medium may
be regarded as inhomogeneously broadened only as long as the Doppler
width is much greater than the homogeneous width Avh /T~;~§fg

So far only the special case of widely spaced lines has been
considered. The opposite limit of a2 reasonably continuous spectral
distribution is alsoc important. This limit is appropriate to the
problem of spectral narrowing, for example, which is treated in Chap-
ter VIII. If the intensity spectrum I(zn) ig nearly uniform over

a spectral region of width Av then I(zn) may be removed from

h ¥
the denominator integrals of equations (2.4-9) and (2.4-10) leaving

~€2(z—zo)2

di(z,) &’

1 - e

= } - g (2.6-15)
0

I(zg) dz

[l-+(z—z2)2][l+-sl(z)

—
o g
o
+
~
™
!
N
S



0
e (z—z dz
n-n. = - S8 | 2) S (2.6-16)
0 [47{2\) 5 { dz

L 0 [1+(z-2z)"1[1+sI(z) | L
2 ! 2

< 14 (z-z )

O n

The value of the integrals in the denominator is T so that equations

(2.6-15) and (2.6-16) simplify to

2 2
oo — {
d1(z,) & (z-zy)
L - 5[ e ez _— (2.6-17)
I(zp)  dz T I+ (22 1114 s1(2)]
2 2
oo -7 (z=-2 )
0 (g
n-ng = - —S& r_e > (2-29) dz (2.6-18)
0 4T vz é {l%—(z—zg) Hi+msI(z)]

I(z) 1is assumed to vary negligibly over the homogeneous line
width, so the last factor in the denominators of equations (2.6-17) and

(2.6-18) may be taken outside the integrals, leaving

2 2
e -7 (z~2z )
Wz, dz z ~ ¢ (2.6-1
2 W{l-%ﬂsl{zg)} 0 1+ (Z_ZQ>
—52(z~z )2
cg ? e 0 (z-zg) dz
n-ng = - 2 J 5 (2.6~20)
4 V2{14~ﬁsl(z£)] 0 1+ (z—zg)

The integrals in these equations are analogous to the first integrals
appearing in equations (2.6-1) and (2.6-2), and one obtains the final

results
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2
~X
1 dI(xz) _ ge 2 i 2€g[l——2x£ F(xg)] Ly 2. 6-21)
I(XQ) dz 1-+ﬂ8gIXxL) ﬂl/2[14~ﬂsg I(Xg)]‘
—x2
cg F(x,) ceEg e
n-n, = 373 % - ! (2.6-22)
27 v£[1+-ﬁs€;(xl)] Zwvz [1+7se I<X2)]
for a line which is predominantly inhomogeneously broadened. The

relation I(z) =¢€I(x) was used in writing the saturation terms in
these equations.

If the first order correction is unimportant, then equations

(2.6-21) and (2.6-22) reduce to

2
a1 (x,) ™ |
1 . _ge - O (2.6-23)
I(XQ) dz 1+msel(x,)
2
cg F(xz)
no-ng = 372 (2.6-24)
21 vy [1 + ﬂSEI(XQ)]

Thus the form of the line center continuum gain saturation, equation
(2.6-23) for inhomogeneous broadening, is identical to the line center
monochromatic field result for homogeneous broadening, equation (2.5-7),
except for a factor of Te.

Results have been obtained in this section for laser media in
which the inhomogeneous line width is much greater than the homogencous
line width. The limit of discrete lines spaced widely compared to the
homogeneous width and the opposite limit of radiation spectra which are

uniform over the homogeneous width have been considered in some detail.
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2.7 Spectral hole burning

: , (2.15
The concept of "hole burning" was introduced by Bennett "'~ ).

The population inversion or gain in an inhomogeneously broadened medium
may be depleted over a localized spectrzl region as a vesult of a
strongly saturating monochromatic field. The depleted region is
referred to as a "hole." Discussions of this subject are generally
rather qualitative. However, a rigorous treatment of hole burning is
straightforward using the formalism of the preceding sections of this
chapter. The results will be useful in later chapters.

It is necessary to distinguish clearly between the hole burned
in the population inversion spectrum and the hole burned in the gain
spectrum by a saturating field. From equations (2.64-1), (2.4-2),

(2.4-5), and (2.4-6) the population inversion may be written

—82(z~zO)2
g e
Dy = 0y =7 S1. (2.7-1)
3 2 xviBO 1+ i .
l%—(z~zi)

where only a single field at the frequency z, 1s considered. If the
medium is strongly inhomogenecus (€ + 0), then the pcpulation inversion

in the vicinity of the field is

2 2
€ (%fzo) sI,

n, - n, = &2 - —) (2.7-2)

hvi BO l%—sli+( z-zi)

The second factor in the parentheses corresponds to the hole which is
subtracted from the unsaturated population inversion. Evidently the

hole is a Lorentzian of width
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Av, = Avh V1 + sii (2.7-3)

inv

We define the "normalized" population inversion as

A = 1 - = (2.7-4)

which is the ratio of Ny~ 0, in the presence of the field Ii to

that existing when Ii =0, Here § = z-z, measures the frequency
difference to the center of the hole. A plet of this function for
various values of in is given in Figure 2.2,

To study the gain and dispersion spectra in the vicinity of a
hole it is necessary to consider twe radiation fields. One is a fixed
intense field li at the frequency z, which creates the hole, and

the other is a weak field Ig of the frequency zg which samples the

gain and dispersion. Equations (2.4~7) and (2.4-8) become

2 2
dIz glg { e—e (z~z0) dz
dz | ) ST, (2.7-5)
0 f1+ (z~zz) {1 + =1
1+~(z—zj)4
2 2
? —€ (Z'ZQ> (z-z ) d=z
n-n, = -—8 ° L
0 2 ) ST,
4TV 2 i
20 [1 + <Z_Z£> 1{1 + -—-—-——7§} (2.7-6)

l%—(z~zi)

For strong inhomogeneous broadening these equations may be written for

frequencies near z, as
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dar row ~g£ {z-z )2 _ 2 o / 1
o 8L [ e 0 e (z,-2,) { . l . \A
dz 7 i 2 " ¢ | , 27 sT [SE
1 - J - ~ Shy

LO 1+ (z zg) 5 1+ (z Z) . ; |
l+(z-zj}
{(2.7~7)
2
-E7 (z~2z
[ e 0 (z~z,) dz
cg | 2
nTRg T TS E{
41 \)Q,Q.O 1+ (z~22,>

_gz(z,—zo)z % (z—zg) 1 \ 1
- e 1 j — |1 - I ;dzé (2.7-8)

1+ (z-2,)" sty foo

0 3 1+ 51

l%—(z—zi)

We write the equations in this form so as to confine the effects of
the hole to the last integrals. Tor a weak saturating field Ii these
integrals obviously vanish and there is no hole. In the following
analysis we evaluate these integrals. The results will be presented
in pairs with the first corresponding to the gain hole and the second
to the dispersion hole.

The last integrals of equations (2.7-7) and (2.7-8) may be

written

| &
BRI [S RS SR N

(2.7-9)

x>
[ y dy

5 5 (2.7-10)
o [T+ ML+ sI+ (v + 8)7]

where y = z - zZy s § = zy = z, measures the frequency difference from
the center of the hole and the factor Szi. has been removed. The inte-

grals may be expanded by partial fractions as
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T, + 82 % @
sty [ _dy 28 [ _yay
(sI,+ 62)“-:- 462 _;L 1+y2 (s1,+ 52>+ 4@2 _(fa 1 4 ),2
2 2 o
-4
_ (Szi+ 8 ) 8 { dy

(sT+ §2)%4 46%

+ 28

A 1+sI+ §%+ 28y + y°

yvdy

(in—E- 62)+ 462

and

28

sl,
i

o0
[

2 2
io 1+in+6+26y+y

ydy

[ee]
e
(s, + §%) %4 48° e 1+y°

26(1+sI+ 5%y

+ 52 J
(s1+ 8%+ 08”1 14y

Q0

(s, + §%)+ 482

sI, +62
i

[ 5
2 2
‘oo bt SIi+5 + 28y +y

(sl‘i+ 62)2+ 462

yay
2 2
1 +SIi+§ + 20y + vy

b
0O

(2.7-11)

(2.7-12)

These integrals are all well known and the results are, term by term

sI, + 62
i

T -0 -
(in+ 62)2+ 462/

262 T

(s1,+ §2)24 452 TTST,

2 2
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\ (s1,+ 224 4s? J

v1+in

(2.7-13)
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(sI, + 62)2 + 462 vVi+ sI,
Combining the terms yields
r
il ‘ o 8Ly - s* %
sI, + 87 - —=—— | 15
(eI, + §%% + 462 . Vi+ sI, | (2.7-13)
5 2+ sI, + 62 E
“2 5 512 - = (2.7-16)
(in + 87)° 4+ 46 V1+ in j

Consideration of equations (2.6-13), (2.6-14), (2.7-7), (2.7-8),
(2.7-15), and (2.7-16) shows that the final expressions for the gain and

index of refraction of a laser medium with a single spectral hole may

be written

-X .

2 i 2
dX -X sl, e sT. - §
1 g4 £z i 2 i
' =g je - sI, + &7 - —fe— %(207—17)
—x2 ;
2F(x,) sI, Se * [ 2 4+ 8T, + 8§
R 4%5 oy 2 ) 5 12 = m——————1}(2.7-18)
£ T (sT, + 6% + 48° | J1 o+ sT, ]

where again x = E(z~zo). If there are many widely spaced holes, there
will be many corresponding correction terms of the form of those included

in equations (2.7-17) and (2.7~18). We define the "normalized" gain and



index of refraction as

g1 { sI, - 62]
* _ i 2 i .
g =1 - 55 ) lsI, + 87 - j (2.7-19)
(szi+§) + 467 | 1+ sI,
r
" inﬁ é 2+ sI, + 62
(n-n) = 2 - | (2.7-20)
° (sI, + 892 + 48” | 1+sI, |

These are the ratios of the saturated gain and index of refraction te
their unsaturated values. Plots of g* and (n~n0}* appear in Figures
2.3 and 2.4 for various values of in.

Comparison of Figures 2.2 and 2.3 shows that the inversion and
gain holes are gqualitatively similar. Quantitatively, however, the
gain hole is wider and shallower than the corresponding inversion hole
due to the interaction width of the sampling signal. The depth of the

hole in the gain curve may be readily determined. With § = 0

equation (2.7~17) reduces to

2 -3
P 1 - 1 - e == —-—-—g~————~—--—_w_‘_ (2‘,7”‘21)
I dz 8¢ % g 1+ ST, E@ V1+e1,

For § = 0 the test signal Iz‘ané the saturating signal I,, see the same

gain. The hole depth is clearly

2
-X
hole depth = ge £ { L
L

1
1- ""”:""""Z (2.7-22)
P



Figure 2.3 Normallzed padn versus 6 for various yn e oft b



Figure 2.4 Normalized index of refraction versus &6 for various

values of sli
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The width of the hole in the gain profile may now be found by
setting the hole depth at the frequency &, from equation (2.7-17) equal

to one half of the line center hole depth from equation (2.7-22) or

r 21T 1
81 sI., - 64 i i
i . 2 i B 0L 1 } "
lel + 87 = —— ol BTl B A H (2.7-233
Il 1, f P2 :
(Sli”i)zwi L5 % yrwsr] | §1+er ]

The result after some algebra is

5, =1 +yf1 + s1, (2.7-24)
4 1

Thus the full width at half depth is

Avgain = Avh (1 +4/1 + in) (2.7-25)

This is the reasonable result that the hole width is equal to the width
of the hole in the inversion profile Avg§ 1+ in plus the interaction
width Avh of the sampling signal, Eguation (2.7-25) has been given
without proof by Clos§§'l62 Our expression for the depth of the hole,
equation (2.7-22), is in disagreement with the corresponding result of
Close. Bennetéé'lS}amd other authors make no clear distinction between
the inversion hole and the gain hole.

In this section analytical expressions have been obtained for

the spectral holes burned in the population inversion, gain, and index

of refraction profiles of a strongly inhomogeneous laser medium.

2.8 Conclusion

In this chapter a general set of coherent rate equations was



_1;7-

developed from the familjar density matrix formalism. These resulfs

were then gpecialized to the much simpler incoherent rate equations for
slowly varying fields and finally to the 1imit of gteady state.
Degeneracy effects were shown to be qualitatively unimportant in most
laser applications. The steady state solutions were considered in the
limits of homogeneous and inhomogeneous broadening, and various special
cases were treated in detail. In particular, an analvtical investigation
of the important aspects of spectral hole burning was included. The

results of this chapter form the basis of most of the theoretical

considerations of the succeeding chapters.
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I1I. The 3.51 Micron Xenon Laser

3.1 Introduction
Most of our experiments have been carried out using a xenon
laser. The 3.51 micron transition in xenon exhibits extremely high
optical gain, so that this medium is ideal for studying a variety of
gain and saturation effects. Helium-xenon lasers may have unsaturated
L. L o
gains of 400 dB/ , while the gain in pure xenon may be up to

(
70 an/i3 2

The pure xenon laser 1s somewhat easier to £1i11 and main-
tain than the helium-xenon laser, so we did not introduce helium.
Also, the gain using pure xenon proved to be adequate for our purposes.
A simplified energy level diagram for the 3.51 micron transition
is shown in Figure 3.1. The first subscript on the energy level designa-—
tion represents the intermediate quantum number k less %, and the second
subsecript is the total angular momentum in this modified Racah
notatio£3'32 The details of the inversion and decay mechaniems have
been studied by Freiberg and WEaveég'a} Essentially, the upper laser
level 5d3q is excited from the ground state by electron impact while
the lower laser level 6po, is populated only by the radiative decay of
higher lying s and 4 levels. The natural lifetimes of the laser levels

3.5)

have been calculated by Clark using the Bates and Damgaargb'6)coulomb
approximation. The results are that the 1lifetime of the upper level is
1.35 microseconds and the lifetime of the lower level is only 44 nano-

seconds. Essentially the same results were also obtained in a later

calculation by Allen et al(B'ﬂ. It is this favorable lifetime ratio
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) 5d33
~ N\ loser 3.5 microns
i 6p22
electron 3
impact g
% decay via metastables
¥ ground state
Figure 3.1 Schematic energy level diagram for the 3.51 micron

transition.



and the selective pumping which lead to the large gains which have
been observed at 3.51 microns in xenon. In the following sections some

of the details of the gain spectrum are considered.

3.2 Homogenecus line width

There are two line widths associated with the 3.51 micron transi-
tion. The first of these is the unsaturated homogeneous line width
resulting from the finite phase coherence lifetime of the excited states
of identical atoms. This lifetime is determined by the natural decay
rates of the states and possibly also by the collision lifetime (pressure
broadening). The natural line width depends on the lifetimes of the

energy levelés'g% and for this case it may be written

n 2T T

v o< 2oL (3.2-1)
3 T

where T3 =~ 1.35us is the calculated lifetime of the upper state and
T, & 44ns is the lifetime of the lower statég’5> The legs-than sign
results from the fact that a portlion of the decay goes directly from the
upper level to the ground state zlthough the branching ratio is very
nearly equal to unités°i) According to equation (3.2-1) the natural
line width is about 3.73 MHz.

The Holtsmark pressure broadening line width may be written

(3.9)

roughly as

_ 19 LR 2
= 1, . an -
A\)ﬂ 95 10 P 4 " 0£ (3.2-2)
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where we consider that Holtsmark broadening is but a special case of
Lorentz broadening. Here p is the pressure in mm., R ig the universal
gas congtant, T is the temperature, M is the atomic weight, and 02 is

the Lorentz cross section. At a pressure of 5 microns as used in our

experiments, and with M = 131.3 g/mole, T = 300°k, R = 8.31-107

-14
erg/mole°°k, and qz =~ 10 l'cmz one finds

szAz .05 MHz (3.2-3)

The value of 02 was obtained by a rough extrapolation to xenon of the
data of Mitchell and Zemansky's Table 21.

On the basis of the above considerations we would expect the
pressure broadening to be negligible, and the overall homogeneocus line

width should be about

Avb = Avn + szfz 3.7 MHz (3.2-4)

Schlossberg and Javaég'ld)have obtained the "rough estimate" Avh = 1.0 MHz
from a Zeeman effect measurement of the 3.51 micron line. The Lamb dip
measurement described in section 5.9 yielded a threshold dip width of
about 6 MHz in agreement with the width of 5 MHz reported by Wang et
alﬁ3°11) This width should be equal to twice the homogeneous width of
about 3 MHz, which is in reasonable agreement with equation (3.2-4). For
most of our work the precise value of the homogeneous line width ig

unimportant and we simply assume the width to be of the order of 4 MHz.

In the article of Wang et al. the theoretical homogeneous line



width is incorrectly given as 2 MHz. Also, we don't understand the
reason for those authors using both a high pressure helium-xenon dis=
charge and a low pressure xenon discharge in the same cavity when
investigating the Lamb dip. From Figure 5.10 we have obtained a dip
depth about twice as great as their "enhanced" dip of only 10 percent.
The asymmetry shown in Figure 5.10 could be removed by using a cavity

arrangement in which dispersion focusing is unimportant.

3.3 Inhomogeneous line width

Inhomogeneous broadening results whenever the atoms involved in
the laser transition are not identical. Doppler broadening due to the
relative motions of the atoms in the xenon discharge causes the gain
spectrum of a xenon laser to be inhomogeneously broadened. The Doppler

, . (3.12)
spectrum is a Gaussian .  The Doppler width AvD may be written
2RT

= 2 4| 2RT _
AvD =3 v In 2 (3.3-1)

where A is the wavelength, R is the gas constant, T is the temperature,
and M is the atomic weight. AvD is plotted as a function of T in

4cm, R = 8.31°107 ergs/mole‘ok, and

Figure 3.2 for A = 3.51°10
M = 131.3 g/mole.
.13 R
Pate has derived the value T = 515 k for a xenon discharge
independent of pressure and discharge condition based on measurements of
the line width of the 2.026 micron laser transition. This result seems

a little high and could be due partly to isotope shifts. For our

experiments the discharge tube walls only became perceptibly warm at
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Figure 3.2 Doppler width versus temperature Tor the 3.51 micron

transition.
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the higher discharge currents. The Doppler line width 1is not a very
sensitive function of temperature, and we choosge for our calculations
the approximate value 100 MHz, which corresponds to a temperature of
o

about 350 k.

We have not obtained a direct experimental measurement of the
Doppler width. Various indirect measurements seem to suggest a larger
value for the line width. The mode pulling measurements of section 4.5,
for example, suggest a Doppler width of about 160 MHz. There are
several possible reasons for this discrepancy which are discussed else-

where in this work.

3.4 Hyperfine structure

If Doppler broadening were the only mechanism causing the atoms
in a xenon discharge to be nonidentical, then the gain spectrum would
be a simple Gaussian function with a width of about 100 MHz as discussed
in the previous section. However, magnetic hyperfine splitting has been
found to be important for two of the naturally occurring isotopes of
xenon, so the situation is more complicated. The atomic weights,
percent abundances, and nuclear spins of the natural xenon isotopes are
listed in Table 3.63'1Q.

The energy shift of the hyperfine levels 1is governed by the

equatio£§'15>

a

B =B+ Ei [E(F +1) - 404 + 1) =3¢3 + 1)) (3.4-1)

if the electric quadrupole interaction is neglected. The letters £, 1,



Weight % abund. spin
124 .0%6 0
126 .090 0
128 1.92 0
129 26.44 1/2
130 4.08 s
131 21.18 3/2
132 26.89 0
134 10.4¢4 0
136 8.87 0

Table 3.1 Atomic weights, relative abundances, and nuclear

spins of the stable isotopes of xenon.
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and j are the guantum numbers assoclated respectively with the total
angular momentum vector of the atom %} the nuclear spin vector E} and
the electronic angular momentum J. The coefficients 2, are the magnetic

, (3.16)
hyperfine coupling constants. Sakural and Shimoda have measured
the coupling coefficients for the 3.51 micron transition for isotope
131 and obtained the frequency values ay = 174 + 15 MHz and ay = 96 + 15
MHz. The nuclear spin of this isotope is i = 3/2. Then using equation
(3.4-1) the hyperfine energy terms and the relative hyperfine frequencies
can be calculated. The coupling coefficients for isotope 129 are related
to those for isotope 131 by the ratioc of the nuclear magnetic moments.
According to Sakurai and Shimoda this ratio is ui(l29)/ui(131) = -1.10
(although the C.R.C. datég'l7>leads to the value -1.12). Thus for
isotope 129 the coupling coefficients are ay = ~191 MHz and a, = ~-106 MHz.
The even isctopes have zero spin and consequently, since £ = j, there is no
hyperfine splitting.

The relative intensities of the hyperfine components can also be
calculated. The results have been tabulated by White and Eliasogg'lé}
The values relevant to the 3.51 micron trangsition are listed in Table
3.2 together with the relative frequencies from equation (3.4-1). They
are graphed in Figure 3.3 as corrected for the percent abundances from
Table 3.1. This graph differs in some particulars from a similar
graph by Sakurai and Shimoda, but ours is believed to be correct.

The shape of the overall theoretical gain curve can be obtalned
by assigning to each of the hyperfine lines of Figure 3,3 a Gaussian

of width 100 MHz. The result is shown in Figure 3.4. Similarly, the

overall dispersion curve may be calculated by assigning to each line



Isotope 131

£ > £ rel. freq. MHz rel. int.

9/2 - 7/2 495 100

7/2 - 7/2 -288 11.4
7/2 - 5/2 48 68.6
5/2 - 7/2 -897 .6
5/2 - 5/2 ~-561 14.6
5/2 - 3/2 ~321 44,8
3/2 - 5/2 -996 .8
3/2 - 3/2 -756 11.2
3/2 - 1/2 -612 28.0

Isotope 129

f->f! rel. freq. MHz rel. int.
7/2 - 5/2 -182 100
5/2 - 5/2 490 5.0
5/2 - 3/2 225 70.0

Table 3.2. Relative frequencies and intensities of the 3.51

micron xenon hyperfine transitions.
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Dawson's integral F(x) as given approximately by equation (2.6-9). The
result is shown in Figure 3.5. In Fligure 3.6 is an expanded view
near line center of the galn and dispersion curves as compared to the
results which would be obtained if the odd isoctopes were not present.
Clearly, the odd isotopes contribute negligibly in a high loss laser
and may be ignored. A practical consequence of this result ig that a
laser filled with even isotopic xenon should have twice the incremental
gain of a laser filled with natural xenon and operated under identical
conditions. In other words, a 400 dB/m helium-xenon laser would become
an 800 dB/m laser.

We have performed experiments using both naturally occurring
xenon and pure xenon 136. The results, as indicated in section 4.5,
are that the gain is about 30 percent greater and the line width is
about 30 percent less when the monoisotopic xenon was used. It is
satisfying that the apparent "area' of the gain spectrum remained
unchanged for a fixed discharge level, but the magnitude of the gain
enhancement was much less than the above considerations would have led
us to expect. The reason for this discrepancy is unknown. We obtained
a mass spectrogram of the xenon to verify that it was indeed 91 percent
xenon 136 as specified by its manufacturer (Monsanto). Two other obvious
explanations are that either we erred in our experimental measurements
or else the hyperfine coupling constants of Sakurai and Shimodés'l6)

are incorrect.
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3.5 Isotope shifts

With the discrepancy between theory and experiment which was
described in the previous section it is perhaps pointless to investigate
in detail the possibility of isotope shifts of the 3.51 micron transition.
Nevertheless, we assume here that the preceding analysis is correct and
include some basic congiderations which might be useful in later work.

It was shown that the gain and dispersion profiles near line center in

a xenon laser should be determined primarily by the even isotopes. On
that basis one would expect the gain in an unsaturated laser to be

given essentially by a Gaussian of 100 MHz width. It turns out, however,
that the even isotopes themselves do not all occur at precisely the

same frequency because of isotope shift effects.

Isotope shifts are described in detail in section I-IV of
Kopfermanéa'lgz and shifts in the rare gases have been discussed by
Stonég'zdl Here we only give some elementary considerations based
mainly on the work of those authors. There are two basic types of
isotope shifts known as the mass effect and the volume effect. The
mass effect has two main contributions. The normal mass effect results
because the reduced mass of the electron depends slightly on the nuclear
mass. The specific mass effect results from an electron pair interaction
with the nucleus.

We consider first the normal mass effect. The hydrogenic term

values are

T = (3.5-1)



where R 1s the Rydberg constant, Z is the appropriate atomic number
in this Bohr atom model, n is the principal quantum number, and m and
m_are respectively the electronic and nuclear masses. From equation

(3.5-1) it follows in a straightforward fachion that the Bohr frequency

shiftr is given approximately by

[\\)B% ;n*e" RS TN \ (3.5-2)
P 1 2
where mp is the proton mass and M2 and Ml are the atomic weights of
two isotopes. Equation (3.5-2) describes the most important isotope
shift effect for light atoms.
For wvalues appropriate to the 3.51 micron transition equation

(3.5-2) becomes

M, - M

Avy = 4.66-10" <H MHz (3.5-3)
1 2

The heavier atoms are resonant at higher frequencies than the lighter
atoms. From Table 2.1 the dominant even isotope has the weight 132.
Assuming Ml:x MZ & 132, equation (3.5-2) simplifies to

Avat 2.68 AM  MHz (3.5~4)

Thus the frequency difference between isotoves 132 and 134 would be
about 5 MHz. Shifts of this magnitude would result in a slightly
broadened gain profile which was still essentially Gaussian in shape.

The specific mass effect is due to the term j ! \ 2: Pk Pg
1>£
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in the electronic Hamiltonian, where M is the nuclear wass and the
summation 1s over pairs of electrons. Evaluation of the specific mass
shift involves some complicated integrations of electromnic wave
functions which we have not attempted. The procedure is given by
Stonéé'zeg

The volume effect isotope shift results whenever the orbital
electronic charge density overlaps the nuclear volume. The electrons
are bound more weakly the larger the nuclear volume if the total nuclear
charge is constant. But the nuclear volume increases for increasing

isotopic weight, Thus the term value shifts are given approximately by
AT = C7 M (3.5-5)

where the constant C' depends on the details of the nuclear model and
the electronic configuration. The term spacings are nearly uniform as
indicated by equation (3.5-5) provided that quadrupole effects are

unimportant. The overlap is only appreciable for the s and p, electrons

{(in jj coupling). The lower state 6p22 of the 3.51 micron transition
(intermediate coupling) has some 6p¥ character so that volume effect

2

shifts are to be expected.

From equation (3.5-5) the frequency shifts for this transition

should be governed by the equation
Av = - CMM (3.5-6)

where C = C'/h and h 1is Planck's constant. Thus the volume effect shifts

have the opposite sign to the Bohr shifts with the heavier isotopes



occurring here at lower frequencies than the Hghter isotopes. These
arguments have been oversimplified, of course, and we make no attempt
at the difficult problem of calculating the constant C.

In xenon the Bohr shift is negligible but both the specific
mass effect and the volume effect are appreciable. Volume effect
shifts have been shown experimentally to be dominant for transitions
to the 6s 1eveé3'zi% For the 3.51 micron transition the specific mass
effect is most important and a shift of 78.2 MHz has been measured by
VetteﬁB"zz)between isotopes 132 and 136. If the isotope frequency
spacings were equal {(not always a good assumption), then the shift
constant would be 19.7 MHz/amu. Our information on the isotope shifts
in xenon is not sufficiently detailed to justify plotting theoretical
gain and dispersion curves for the even isotopes. However, from the
data of Vetter it is apparent that the effective line width should be
somewhat greater than the Doppler width estimated in section 3.3. These
shifts might also lead to an asymmetry in the gain spectrum. As
mentioned in the previous section, our experiments indicate an increase
in height and a decrease in width of the gain spectrum when the laser
is operated with pure xenon 136. This effect is due to the elimination

of both the hyperfine structure and the isotope shifts.

3.6 Conclusion
In this chapter it has been shown that reasonable values for
the homogeneous and inhomogeneous line widths of the 3.51 micron xenon

transition are 4 MHz and 100 MHz respectively. These results will be
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used in the succeeding chapters. Also, 1%t has been shown that the

odd isotopes of xenon are split up by the magnetic hyperfine interaction
into several weak components which should not contribute significantly
to the gain in a high loss laser.

Isotope shifts are probably also important in xenon with a
magnitude on the order of 20 MHz per amu. If these interpretations
were correct, then the laser gain would be determined primarily by
isotope 132, which has only a 27 percent natural abundance. Consequently
a laser using only xenon 132 would, in principle, have about three
times the incremental gain of an equivalent laser using natural xenon.
Thus c.w. gains in excess of 1000 dB/m should be readily obtainable.

The highest gain previously reported for a gas laser is 630 dB/ég'zﬁ
for a pulsed lead vapor system. Experiments with a monoisotopic xenon
laser show an increase in gain of only about 30 percent. The reason
for this discrepancy is not known.

Another tactic which is familiar in plasma work but which
evidently has not been employed in gas laser studies is the cooling of
the gas discharge. If all other factors were unchanged, cooling the
discharge should lead to a narrower line width and a larger line center
gain. In particular, at 77°% the line width would be halved and the

gain doubled from their room temperature values.
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Iv. Iongitudinal Modes

4.1 Tntroduction

The arrangement of longitudinal modes in a high gain laser oscil-
lator may differ substantially from those in more conventional lasers
where anomalous dispersion effects are unimportant(é'lg The basic
features of mode pulling in low gain lasers are well known(4'2"~4’5).
In particular, it is found that modes near the center of the gain
spectrum of the amplifying medium are pulled toward the gain center and
repelled from each other, These effects result from the anomalous dis-
persion associated with the gain line, and for most purposes they are
negligible, In typical low gain lasers the mode spacing may be reduced
by at most a small fraction of a percent from its empty resonator spac-
ing.

In a high gain helium-xenon laser, on the other hand, the mode
spacing may in principle be reduced by more than an order of magnitude,
Also, in a high gain laser oscillation may be obtained in the wings of
the gain line, Dispersion effects near the wings are different from
the effects expected near line center. The modes may split and display
an increase in frequency with decreasing mode order. In other words,
the frequency of radiation propagating through a highly dispersive
medium may increase with increasing wave length, We present here a
theoretical analysis of mode pulling in high gain lasers which are
predominantly either homogeneously or inhomogeneously broadened.
Saturation effects are included. Some of the conclusions are verified

experimentally using a high gain xenon laser., We have observed a
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saturation dependent reduction in mode spacing by a factor of 2.5 in

approximate agreement with the theory.

4,2 Inhomogeneous broadening

The laser systems in which the mode structure distortion is likely
to be most important are all inhomogeneously broadened. In an inhomo-
geneously broadened laser the homogeneous line width is much less than
the overall gain line width. In particular, we consider here Doppler
broadened gas lasers, where the combination of high gain and narrow
line width mskes anomslous dispersiocn effects especially significant,

As our starting point we use equation (2.6-14) for the frequency
dependent index of refraction of an unsaturated Doppler broadened ampli-
fying medium with a negligible homogeneous line width. This

equation for a low pressure gas laser is

n(v) = 1 + cg3F2x (4.2-1)
an v
where F(x) 1is Dawson's integral given by equation (2.6-5) | The
frequency is measured by x = Eégégiz€i5”§ and g is the small signal
incremental gain constant at line center. Equation (4.2-1) is valid
so long as (1 + SI)%<< 1 where ¢ = §§%¢iﬁ~§ is the natural damping

ratio, s is the saturation parameter, and I isg the intensity.
Saturation effects are considered in Section L.k,

The phase condition which must be satisfied by any oscillating mode
is that the real round trip phase delay be an integral multiple of 2ux,

or



2mm = §de

va

i

§n(v z)dz (4.2-2)

where Yy 1s the real part of the propagation constant. If the cavity

length is L and the length of the active medium is 4 , then equation

(4.2-2) Dbeconmes

2mm = hz\’“[ % (B(v) - 1)] (k,2-3)

where n(v) is the spatially averaged index of refraction of the

medium, In terms of the empty resonator mode frequencies Vp = %% 5
[
equation (4.2-3) may be written
vo=v[1e T @My - 1) (k.2-14)
m L d ’

This is the general result for the mode frequencies of a laser contain-
ing a dispersive amplifying medium.

Using equation (4.2-1) equation (4.2-4) becomes

2

L e
V-V =T ;;572 F(x)
or
X - X=8 F(x) (k.2-5)

where we define the dispersion parameter 3 as

B = % cg /1y 2 (b.2-6)
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Equation (%.2-5) may be used to determine the oscillation frequencies
of a laser in which the amplifying medium is predominantly Doppler
broadened.

For lines near gain center (x << 1), Dawson's integral simplifies
to F(x) ~ x according to equation (2.6-6) , With this approximation

equation (4.2-5) may be solved with the result

X
m

X = T B (h.2-7)

The mode spacing is reduced from its empty resonator value according to

AV
o)
1l+8

Av = (’4.2-—8)

For example, in a typical helium-neon laser at 6328 R the Doppler line
width is about 1800 MHz and the gain may be g = .1 m"l. Then from
equation (4.2-6) the dispersion parameter is roughly B = 201077 so
that mode pulling reduces the mode spacing by only about .2 percent. On
the other hand, in a high gain helium-xenon laser at 3.5l microns the
Doppler line width is about 100 MHz (Section 3.3) and the gain may be
Loo dB/m.b“6 or g = 92, In this case the dispersion parameter is about
B = 4O and the mode spacing is reduced by more than an order of
magnitude from its empty resonator value.

For low gain lasers near threshold one finds that B 1is approxi-
mately the ratio of the cavity line width Avc to the Doppler line
width. Then equation (4.2-7) may be used to write an expression for

the oscillation frequency

AvD vm + Avc v

AvD + Avc

vV =

(k.2-9)
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This result has been given by Bennett (4'2). It is not as general as
equation (4.2-7) which applies even for high gain lasers where
perturbation treatments are not valid. The first order saturation
corrections to equation (4.2-7) will be given in Section 4.4 .

So far attention has been restricted to frequencies near gain center
where the dispersion is linear. However, in high gain lasers oscilla-
tion may be obtained in the wings of a resonance line where the dispersion

effects are strikingly different, Equation (4.2-5) may be written

Xm - X
F(x) = —— (k.2-10)

Perhaps the simplest way to see the qualitative implications of this
equation is by a graphical solution. In Figure 4,1 graphical solutions
of equation (4.2-10) are shown for three values of B and for

Axm = 2. For B = 0 dispersion is unimportant and the mode frequencies
have their empty resonator values x, - for indeed the condition

B = 0 means that the resonator is empty. When B = 1 there is g
"pulling" of the modes near gain center. For B = 10 the mode struc-
ture bears little resemblance to its empty cavity form., Some of the
modes split and occur at three different frequencies as indicated by the
circled intersections in Figure 4.lc. In other words there may be three
frequencies which all correspond to the same number of half wavelengths
between the mirrors. Moreover, the modes occurring between approximately
x =1 and x = 2.5 are in reverse order with the higher frequency modes
having longer average wavelengths inside the resonator than lower fre-

quency modes,



Figure 4.1 Graphical solution for mode frequencies for three values of 8
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A1l of the features of Figure 4,lc should be obtainable in a
helium-xenon laser. From the figure it is clear that the condition for
mode splitting to be possible is that the slope of Dawson's integral at

the outer inflection points be less -1/B or

<-

El&
Wik
~~
=
o
¥
}~l
o
S

*inf.
Using equation (2.6-10) , this result may be written

B > £ (h,2-12)

2[xP(x)] -1
X.
inf.

The value of xF(x) at the inflection point (h.7) is 0.6L237 so that

the condition for mode splitting becomes

g > 3,51 (L.2-13)

This condition is readily satisfied in xenon and helium-xenon at 3.51
microns, In fact these are believed to be the only continuocus lasers in
which mode splitting could presently be observed,

For completeness we consider the possibility of oscillation far in
the wings of the resonance line., In this region Dawson's integral
simplifies to F(x) ~ #x according to equation (2.6-7) . Then

equation (4.2-5) becomes

X -x = =& (4, 2-1k)



or approximatzaly

XX - = (L.2-15)

Thus, even in the wings there is a pulling of the modes towsard line
center, This pulling becomes less important for increasing values of
[xm! . Oscillation cannot be obtained arbitrarily far into the wings,
of course, since the gain is falling off as e‘xz in this region.

These mode pulling effects have important consequences for laser
stability. It is evident from the foregoing that an order of magnitude
reduction in mode spacing implies an order of magnitude improvement in
stability with respect to mirror displacement. Specifically, if the
stability S 1is defined as the rate of change of frequency with mirror
position, then

5

S = ’ifg”ﬁ (L.2-16)

where SO is the rate in a similar laser which lacks dispersion, This
result is, of course, only valid in the linear region of the dispersion
curve near line center.

Also, any frequency dependent peculiarity in the output spectrum of
a laser can often be employed in a feedback arrangement to stabilize the
laser, We propose here a stabilization scheme for a xenon laser making
use of the mode splitting described above. Consider a high gain laser
(B = 10) of such a length as to support only the resonant frequencies
shown circled in Figure 4.lc, Suppose further that the highest of the
three frequenciles 1s below thresheold. The output then will consist of
two lines, the spacing between which will be a very sensitive function of

the cavity length. Shortening the cavity would reduce the beat frequency



between the two lines, and lengthening the cavity would increase the
beat frequency. Moreover, the beat frequency would go to zero and
oscillation would abruptly cease 1f the cavity were shortened too much
and the lines of Figure L.lc ceased to intersect. Arrangements to sense
the beat frequency and correct the mirror positions would yield an
absolute frequency standard. Such a feedback system would be simpler

(4.8)

than some schemes which have been employed Continuous vibration
of one of the mirrors is not required, and long term stability would be
limited by changes in the Doppler profile due, for example, to temper-
ature fluctuations. It would, however, be necessary to either operate
the laser very near to threshold or else maintain a constant saturation

power because of possible repulsion effects between the components of

the split mode.

4.3 Homogeneous broadening

Here we consider some conseqguences of anomalous dispersion in homo-
geneously broadened laser oscillators, For the most part homogeneous
lasers have either too small a gain or too large a line width for dis-
persion effects to be of much importance. The principal application of
these results would probably be to strongly saturated high gain Doppler
lines in gas lasers. Saturation may cause such lines to appear homoge-
neously broadened.

According to equation (2.5-8) the index of refraction of an un-

saturated homogeneously broadened material is
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cg’
n(v) = 1 + E% —-‘—*Z’mé' (h.B-—l)
1+ y
o 2(v - v )
where g' = —4/— 1is the line center gain and y = —»—ZG~—9~ is a
FiaS h

frequency parameter. Substituting this expression in equation (4.2-4)

yields

4 cg! y
YmT YT T I

or

Y, -y =8 —L— (4.3-2)

where we define the dispersion parameter B' as

v LG _ B
BY =1 Zoav = 2 (4.3-3)

Equation (4.3-2) is the general expression for the oscillation fre-
quencies of an unsaturated homogeneously broadened laser, The effects
of saturation are congidered in Section U L,

Equation (4.3-2) may be written

v ooyyt e (L) y - Vp = O (b.3-4)

A similar equation could be written for inhomogeneously broadened lasers
using the approximate form of Dawson's integral given in equation
(2.6-8). This is a cubic equation which may have either one or three
real roots, The case of three real roots corresponds to a splitting of
a particular mode into three frequencies, as discussed previously.
Equation (4.3-4)  may, with some difficulty, be solved analytically for

all of the oscillation frequencies in a particular laser configuration.



We do not do so here. Graphical solutions are of course possible as
before, but gqualitatively they are no different from the solutions of
Figure 4.1 for an inhomogeneous line and are also omitted.

Near gain center (y2 << 1) equation (L4.3-2)  becomes

This is the linear mode pulling approximation analagous to equation
(h.2-7) for inhomogeneous broadening. For large values of y 1t is
convenient to write equation (4.3-2)  as

?
v -y = —— (b.3-6)

1
y(1+ =)
y

Then the mode frequencies far in the wings are given approximately by

in analogy with equation (k.2-15)
The condition for mode splitting to be possible may be written as

before

d 1
o (—_l;ng) < o= (k.3-8)
1L+ y
int
One finds after a little algebre that the inflection point occurs at
Vv = /§— where the value of the derivative is «1/8. Therefore, equation
(4.3-8) yields

' > 8 (4.3-9)
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As an example of these results we consider the case of the homo-
geneously broadened 1.06 micron YALG laser. In YALG the unsaturated
line center gain may be about g' = 3 m ~ and the homogeneous line width
is approximately 1500 MHz. Then according to equation (L4.3-3) the dis-
persion parameter is at most about B = .1. Thus from eguation (k4.3-5)

a reduction in the mode spacing of about 10 percent is the most that

could be expected in a short unsaturated YALG laser.

L,L Saturation effects

In the preceding sections of this chapter saturation effects have
been assumed to be negligible. The purpose of this section is to in-
vestigate the influence of saturation on the location of the longitu-
dinal mode frequencies. Expressions are developed for saturation de-
pendent mode pulling which are roughly appropriate to the experiments
with a xenon laser which are described in section 4.5,

First we consider the important limit of predominantly inhomogene-
ous broadening (& << 1). As our starting point for this case we have

equation (2.6-12) for the index of refraction at the frequency Vv, of

2
a medium containing several weakly interacting radiation fields
2
ceF(x,) ceg -X
2 % 3
n(vz) =1+ 375 T (1 + SIQ) x, e
2T \)2 211\)2
egcg sIne n
" Ty, L (b.ls=1)

L n#l (xn - XQ)(l + sIn)%
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Equation (4.4-1) is valid so long as the
tion inversion by the various lines do not

Using equation (¥.2-4),  the coupled

frequencies X, may be written
X, =%, + B [F(x&) - fe (1 + SI{) X, €
i T T -X
T 2€ 5 S ln e n -y

J

> n#Fl 5
(1 + sIn) (x& - Xn)

where x
Lo

holes burned in the popula-
overlap significantly.

equations governing the mode

-X

(h.h-2)

is an empty resonator mode frequency and the bars indicate

spatial averages. These equations are generally difficult to solve.

Since we only seek qualitative agreement with experiment, several addi-

tional approximations are helpful.

The equations are simplified by assuming that all of the modes are

fairly near to gain center ( Ixnl $ 1 ). Then according to equation

(2.6-6)

equation (L4.h-2) reduces to

, % &
Xy =%y [l + B(1 - e (1 + SI&)%U

i s
e I n 1

et (1 s1 )F (x, - x_)

=

Dawson's integral can be approximated by F(x) ~ x and

(k.4-3)

To proceed with the solution, we now make the simplest possible

assumption consistent with our mode pulling

that there are two equal modes of intensity

experiments., We assume

I which are disposed



exactly symmetrically about a Gaussian gain profile. Then equation

(b.4-3)  pecomes

= 3y I 1
x. =%, |1+ B(Ll - 7% (1 + sI)®)| - e 5 A e
10 * [ J 2 (1 + sT)? *1 X2)

20}

(b bl
[ 1 [
3 % 2 I 1
Kon =X, | L+ B(L - 2®c(1 + sI)j - Br”e 5 e S
20 2 l: _I 2 (l + SI)E (Xg"xl)
(b.4-5)

The generalization for a nonsymmetric mode arrangement is straight-
forward but the solutions are more difficult to obtain.

Ordinarily each mode would burn two holes in the population inversion
spectrun due to the interaction by the left and right traveling wave
components with the Doppler broadened medium., By assuming that the two
modes are exactly symmetric about the line center, however, the problem
is simplified so that there are only two holes burned in the gain
profile altdgcther. This is the assumption made to obtain equations
(h.ﬁ;h) and (L. 4-5) . Experimentally the oscillation line widths
are many MHz wide and the mode pulling is found to be rather independent
of the actual mode locations (mirror position). Thus the equations are .
expected to agree qualitatively with experiments., They would be more
correct in a one-way traveling wave ring laser where each mode burns
only one hole,

The mode spacing A x = X, = ¥q is found by subtracting equation
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(L.h=k) from equation (L4.4-5) with the result

sl

-

1 1 1
Ax = Ax{l + B(1 - (1 + 81)2)} - BT %

1
(1 +s1)°

Equation (4.4-6) is a quadratic equation for x which may be solved

yielding
Axo
Ax = — T T
2
2§+ B(1 - moe(1 + sI) )_g
i
\ SRV a—
X L
+ 3 _ . S
+ B(1 - m2% (1 + 5172 1+ B(1 - moe(1 + 510 2)

(L. b-7)

If saturation effects are weak, as assumed in deriving equation (k4.L4-1),

then the square root may be expanded to obtain

Ax b —
Ax = o yBre ST (L.4-8)

i 1 3
1+ B(1 - 7% (1 + s1)?) Axo (1 + s1)™

This result could have been obtained from equation (4.L-6) by a single
iteration. The first term on the right side of equation (L4.4-8) can

also be expanded yielding

1
Ax Ax Bmee Y
b= = s~ (14 or)? 4 BLE L (4.4-9)

1+ 8B (1 + 8) Axo (1 + sI)™
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The first term on the right side of equation (4.k-9) is the unsatu-
rated mode pulling result given by eguation (4.2-8). The second term
represents self-saturation due to the effect of each line on the index
of refraction which it sees itself. The last term represents the
interaction of each line on the other.

If the laser medium is strongly saturated (sI >> 1) over much of

its length, then equation (4.%-9) bvecomes

Ax i N AXO 1
+ Brce(sI)® + (b.4-10)

Ax = >
1+8 (1 + )" Ax

Thus saturation weakens the mode pulling effect. It is perhaps worth
mentioning that the width of the holes burned in the inversion spectrum

is given in this limit by Av = Avh(sl)% according to equation

hole
(2.7-3). Thus the magnitude of the saturation term is proportional to
the average hole width. Saturation must not be so strong, of course,
that the entire Doppler line is "burned up", or else the original equa-
tion (k4.4-1) becomes invalid. Hence we have the two conditions on
pY

equation (4.4-10): sI>>1, e(l+ sI)®<<1 ., In our experiments
¢ 1is approximately ¢ ~ .03 so that these conditions are not inconsis-
tent.

For completeness we consider the opposite limit of strongly saturat-

ing fields e(1 + sI)% > > 1 where the entire Doppler line is affected.

The index of refraction in thls hamogeneous Limit 1g given by equation

(2.5-4) as

y
214 B L .
n o= 1+ Env& - SIn (boi-11)
L+ y,)" (1 + 8 ——)



. 88 -

Then using equation (L4.2-h), the coupled equations governing the mode

frequencies y, mey be written

B' vy
y, + L = (b h-12)
£ 2 . sT
I+ Yy 1+ .

1+ yi

DX
o)

For fields near to line center (yﬁ << 1) this equation may be solved

yielding
x, = Lo (h.4-13)
1 1+ Bt _— .
1+ 5 sk
o n

where we have switched to the inhomogeneous frequency parameter x = ¢ y.
As before we assume that there are two equal lines symmetrically

disposed about gain center. Then the mode spacing from equation

(4. 4-13) is

Ax
hx = S ORI
1+ 6' _....l-'...—._.
1+ 2sT
The condition of strong saturation leads to
bx = bx (1. - E5s1)™) (4 4-15)
Le”

For sufficiently high intensities the gain line is evidently completely
"burned down" and the mode spacing returns to its empty resonator value

as we should expect.



4.5 Experiment

In thig section we describe an experiment which has been done
to verify the theory of saturation dependent mode pulling. The
apparatus used is shown schematically in Figure 4.2. The mirrors were
flat. The left mirror was highly reflecting while the right mirror
reflected only about four percent. No confinement of the beam was
necessary since diffraction losses are small compared to other losses.
The left mirror could be uniformly translated along the axis of the
laser at one micron per second using a motor drive assembly. The
active region of the pure xenon discharge was 1.1 meters long and
5.5 mm in diameter. The pressure was maintained at about five microns

using a liquid nitrogen trap(é'g).

The detector was germanium doped
with mercury and cooled by liquid hydrogen.

With the arrangement shown in Figure 4.2, the oscilloscope
displays the beat spectrum of the laser output. Synchronous detection
was used to extract the weak signal from noise. A typical oscilloscope
display showing a mode spacing of about 45 MHz is given in Figure 4.3.
The dispersion is 5 MHz per centimeter. The null at D.C. on this
spectrum results from the decreasing sensitivity of the spectrum analy-
zer (Tektronix Type 1L20) below 10 MHz. The length of the cavity is
1.36 meters so that, excépt for dispersion, the mode spacing would be
¢/2L = 110 MHz.

In Figure 4.4 the mode spacing as a function of the square root
of the output power is given for a discharge current of 75 ma. These

beat frequency data were obtained from oscilloscope displays like

Figure 4.3. The power measurements were made by running the signal
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Figure 4.2 Experimental setup



Figure 4.3 Output beat spectrum at 62 ma discharge current, Dispersion
is 5 mc per centimeter with D.C. at the right edge of the

display.
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Figure 4.4 Mode spacing versus the square root of output power with a

75 ma discharge,



from the amplifier (HP 461A) of Figure 4.2 directly into the synchro-
nous detector (PAR Model HR-8). The output power was varied at fixed
discharge current by varying the attenuation in the cavity. The power
calibration indicated on the figure was obtained with an Eppley
thermopile.

Errors in the frequency measurements are typically about
4+ 2MHz due primarily to the large oscillation line width (up to 10 Muz).
Also, the power output varied by about 10 percent as the modes were
swept across the gain line and the indicated results are the maximum
values obtained for each setting of current and attenuation. In the

vicinity of lé(uw)l/z

the uncertainty in the frequency measurements was
much greater as the beat spectrum became sensitive to mirror position
and a third mode began to oscillate. Consequently data for this region
are omitted. At higher outputs the beat frequency again became stable.
The mode spacing approached its empty resonator value as it should
according to equation (4.4-15).

The features apparent from Figure 4.4 are that the mode spacing
may be much less than its empty cavity value, and that the spacing
increases with increasing power. These results are qualitatively in
agreement with equation (4.4-10). The mode spacing has roughly a square
root dependence on output power over two orders of magnitude of power
variations as suggested by the line drawn through the data. There are
presently too many uncertainties to attempt a detailed analysis of this
saturation behavior. The output power is not related simply to the

average of the square root of the intensity in the cavity needed for

comparison with equation (4.4-10), and the saturation parameter is not
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accurately known. However, Figure 4.4 suggests that at the minimum
power at which measurements could be made, saturation only increases
the mode spacing by about 15 percent. Hence we now neglect saturation
and consider in detail the gain dependence of the mode spacing at low
output intensities.
If saturation effects are neglected, the mode frequencies are
governed in accordance with equation (4.4-2) by
...xz
Xoo = %X B[F(xz) - Wl/ze X, e R] (4.5-1)
In Section 3.2 the homogeneous line width is estimated at Avh==4.0 MHz
and from Section 3.3 the Doppler line width is about AvD = 100 MHz.
Therefore the natural damping ratio is about ¢ = .03 and the last
term in equation (4.5-1) is negligible.
At the lower currents the condition on the mode frequencies
X << 1 begins to break down, so it is necessary to retain higher order
terms in Dawson's integral F(x) . From equation (2.2-6) the appro-

priate approximation is

F(x) = x -3 X (4.5~2)

Using equation (4.5-2), equation (4.5-1) may be solved for B yielding

B = B (4.5-3)
2
If two modes are assumed to be symmetrically spaced on the Doppler line

(which is the condition for maximum mode pulling), then equation

(4.5-3) may be written in terms of the mode spacing as



o
Ax 1
2 Ax, 2

—e (4.5-4)
1“3(2)

Equation (4.5-4) has been compared with the beat frequency data

using

Ax = 28y vlin 2
AvD

The resulting plot of B versus discharge current is in Figure 4.5.
Also in Figure 4.5 is a plot of the line center gain constant g
versus discharge current obtained by introducing a known attenuation
in the laser cavity and reducing the current until oscillation ceased.
It is essential in performing these threshold measurements to scan one
of the mirrors. Otherwise the lines may not be centered properly on
the Doppler curve, and the threshold current will be too large.

From equation (4.2-6) with the values appropriate to our
experiment we find the theoretical result B = .36g (mks). Examination
of the data of Figure 4.5 shows that at the lower currents B is very
nearly proportional to g but that the proportionality constant is
approximately .16 rather than .36 . In other words, the implied
Doppler width is about 225 MHz rather than 100 MHz. This result is
partially explained by the fact that saturation effects are not negli-
gible, even at the lowest measurable output powers. Much of the
discrepancy, however, is due to the isotope shifts and hyperfine
structure discussed in Chapter III. These shifts have the effect of
broadening the Doppler gain line. Also shown in Figure 4.5 is some
later data obtained using mono-isotopic xenon 136. An analysis of
these results shows that the gain is increased by about 30 percent and

the effective Doppler width is reduced by about 30 percent to 162 MHz
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Figure 4.5 The dispersion parameter B and gain g as functions of the

discharge current i . Solid lines are for natural xenon and
dashed lines are for xenon 136,
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when the mono~isotopic xenon is used.

At high currents the parameter B appears to saturate. A
possible explanation is that at the higher gains amplified spontaneocus
emission is significantly depleting the central portion of the Doppler
gain curve. This flattening of the gain curve can be regarded
roughly as an effective increase in the Doppler width.

To show that spontaneous emission is able to partially saturate
the gain, we operated the laser as a single mirror superradiant
source. The output power of this source at a current of 90 ma was
265 pw, which is greater than the saturation power PS = 100 uw<4'lo).

Thus at the higher currents we should expect a significant distortion

of the gain spectrum as evidenced by the B data.
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4.6 Profile effects

Throughout this chapter we have assumed that the laser had
only one dimension. In practice, of course, lasers have three dimen-
sions, and it is important to consider the possible effects of
profiles of the beam and of the laser medium. The experiment
described in Section 4.5, for example, employed a plane parallel
resonator in which the beam confinement was accomplished entirely by
the gain profile of the medium. The interpretation of those results
is only valid if profile effects can be shown to be negligible. 1In
this section we consider the effects of gain and beam profiles on the
longitudinal modes of a plane parallel laser of the sort described in
the previous section. The analysis of profile effects in any other
laser configuration would be similar.

In this investigation we make use of some results of Chapter
V. Equation (5.3-7) describes the electric field of a gain~confined
beam. Using this expression, one finds that the phase condition on
the longitudinal modes which is given in equation (4.2-2) should be

replaced by
27m = § Ydz + Re P (4.6-1)

where Y 1is the real part of the propagation constant and P 1is
an additional phase correction. From equations (5.2-25) and (5.3-6)

P is related to the beam parameter ¢ by

g_}i=_i(2p+2+l)
dz q

(4.6-2)
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where p and & are the indices of a Laguerre-Gaussian beam. We
assume in writing equation (4.6-2) that the medium has no z variations.
The beam parameter is defined in equation (5.3-6), and with this
definition the real part of P for the fundamental Gaussian beam

(p =2 =0) is simply

2

Re P = - § A4 (4.6-3)
™W

where w 1is the spot size of the beam. Therefore, equation (4.6-1)

becomes

2 = § v - 2 az (4.6-4)
W

To proceed with this derivation, an expression is needed for

the spot size. Equation (5.6-13) gives the spot size of a simple gain-

focused beam as

a,A
A1
5 < 3 J/ - (4.6~5)
where 0y is the coefficient of the quadratic term in the gain pro-
file. Equation (4.6-5) neglects dispersion focusing; but, as shown

in Section 5.8, dispersion focusing has only a small effect on the

spot size. For our purposes here dispersion is unimportant, and its

neglect simplifies the mathematics. For a gas laser o, is related
to o by equation (5.7-1), and equation (4.6-5) becomes
2.88 a A
A1 o
2 2r %/ b (4.6-6)
W o]

or in terms of the actual frequency depeéndent intensity gain
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2
A i} 1 [ 1.44 gok -x" /2 o6om)
2 2rO T e *

w

where g, is the line center incremental intensity gain.
With equation (4.6-7) for the spot size, equation (4.6-4) may
be written

2
D = é(YZHv n{(v) 1 /1'44 gol w* /2)
T = - e dz
c 2r T

(o}

or 2
1.4 g A -x"/2
S dz  (4.6-8)

2Tm = ZE!‘§ n(v) -

[o4

C
4y V \ T
(s}

where n(v) is the frequency dependent index of refraction. Following
the derivation of Section 4.2, we obtain finally the result that the
mode frequencies are governed by

cg F(x) 1.44 g A —x2/2
2 - == > e (4.6-9)
3/2 4T r m :

27 o

<
<
1

e

where we have made the approximation that the spot size 1s constant
even outside the laser medium. This equation should be valid for &
nearly equal to L . In terms of the dispersion parameter B of
equation (4.2-6) the result may be rewritten as

L [1.44) —x2/2
X - %= BIF(x) - ZrOQ z e (4.6-10)

o]

Equation (4.6-10) is the general equation governing the longi-

tudinal mode frequencies of a gain focused laser. Near line center

BL [ 1.44)
xm + e . ) (4.6-11)
(s} 8]

(x »~ 0) it reduces to

1+8
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Thus, we find that the primary effect of the beam profile is to shift
the mode frequencies upward slightly. This frequency shift would be

unimportant for all of our work. The mode spacing would be given by

Av
(o]
1+ B

(4.6-12)

which is the same as equation (4.2-8). We conclude therefore that

the neglect of profile effects is justified.
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4.7 Conclusion

A general theory has been developed for determining the longi-
tudinal mode frequencies of high gain lasers. It is found that the
mode configuration may differ drastically from that which would be
expected if dispersion effects were ignored. In particular, power
dependent mode pulling has been investigated theoretically and experi-
mentally. Semi-quantitative agreement between experiment and theory
has been obtained in the limit of weak saturation. The rather com-
plicated results for saturation effects have been verified qualita-
tively. Because of the small empty resonator mode spacing and
possible saturation by spontaneous emission, the present laser system
is not well suited to investigation of the extreme mode pulling and
mode splitting which should be observable in xenon and helium-xenon
systems. Additional experimental work in this area would probably

be justified.
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V. Transverse Modes

5.1 Introduction

The purpose of this chapter is to investigate the effects of
gain on the transverse structure of laser modes. In the preceding
chapter it was shown that the presence of a high gain medium within
the resonator cavity could have a drastic effect on the longitudinal
modes of a laser oscillator. Similarly, it will be shown here that
a high gain medium can significantly alter the transverse modes of
a laser. In particular, a gain focusing effect is studied which can

(5.1,5.2) 4

be important in media having a radial gain profile
persion focusing effect is also described which can have important
consequences for Lamb dip measurements in high gain lasers.

First the beam mode solutions of the wave equation are obtained
for lenslike media having at most a quadratic variation of the gain
and index of refraction with distance from the beam axis. Lenslike
media are common in practice. Experimentally, care may be necessary
to prevent gain saturation which would distort the gain profile and
possibly the refraction profile as well. The propagation characteristics
of the beams through such media and through other simple optical ele-
ments are studied by means of beam matrices. These matrix techniques
are then applied to the problem of determining the transverse modes of
simple laser resonators containing lenslike media. Finally, experiments
are described which verify some of the conclusions concerning gain

focusing and dispersion focusing.

A section is also included on a new cylindrical cavity geometry.
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The analysis procedure for these radially propagating waves is
essentially identical to that described for the more conventional
lasers. The cylindrical laser 1s of theoretical interest, and it
may also find some practical applications because of the extremely

high fields which should result at the center of the laser resonator.
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5.2 Beam modes

The scalar wave equation for a harmonically varying electric

field may be written

Vet K2E = 0 (5.2-1)

where k is the propagation constant defined by

k= wvye y (5.2-2)

In a medium including an atomic resonance the dielectric permittivity
€ 1s in general complex so that k 1is also complex. A lenslike
medium is defined as one in which k has a weak quadratic variation

with distance from the axis of propagation described by

k =k —-% k,r (5.2-3)

(5.3) has considered the propagation of the fundamental

Kogelnik
Gaussian beam through such media, and the notation used here will
agree as much as possible with his.

In all practical lasers the propagation constant varies by at

most a few percent over the cross section of the beam so that equation

(5.2-1) may be written

VE+ K E - k kr’E = 0 (5.2-4)
o) o 2

where equation (5.2-3) has been used. The solution for the beam
modes now involves a sequence of substitutions. This solution is
most easily performed in the conventional cylindrical or rectangular

Cartesian coordinates. Many important lasers have a predominantly
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axial symmetry, so the solutions in cylindrical coordinates are most
useful. The solutions in Cartesian coordinates will be considered
later.

One is interested mostly in waves which are nearly plane, and

a reasonable substitution is (following Kogelnik)

-ifk dz
E=19ye ° (5.2-5)

Then equation {(5.2-4) becomes

2 dk
19 (8%, 1 3y ésfz —2 - - -
= (r ar)+r2 " 24k iy k kor Zy= 0 (5.2-6)

where the second derivative of 1§ with respect to =z 1is assumed to
be negligible.
Only beams of finite transverse extent are of interest and a

useful substitution is
¢ = Se (5.2-7)

where Q(z) and S(r,é,z) are in general complex. Then equation

(5.2-6) becomes

2
-——-—-—-as+(-~—2Q)—-—21QS—QrS %_—32
Br L1
dk S
as _ dQ 2, o _ 2. _
- 2iko e k iz r’S i e kokzr §= 0 (5.2~-8)

The sum of the terms in rZS may be set equal to zero, since Q has

not been specified. This results in the two equations

Q + k_ g% Fkky= 0 (5.2-9)
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2.2 2 idk
r828+r(l—21 Qrz)g—s——ZiQrZS + 35 g 238 T 0 25
3r r 3¢2 o oz dz

(5.2-10)
Equation (5.2-9) is called the beam parameter equation and is consi-
dered in Section 5.4.

Equation (5.2-10) is simplified by the change of variables

o = iQr2 (5.2-11)
becoming
2 2 k dk
3”s 3s S 1 978 o 95 1 0 _
p-é—p—z-+(l°p>3p-2+4p ag? 203z 4Q S = 0 (5.2-12)

Now a useful substitution is

S(p,$,2z) = R(p) 2(9) Z(=) (5.2-13)
which leads to
odr,a-par_1, 1 d% %o az 1 T _ o,
R dOZ R dp 2 4pd d¢2 2QZ dz  4Q dz )

This equation may be separated into the three equations

2
é_% + 22@ = 0 (5.2-15)
d¢
a*r ar o z
dp
dk
dZz , 1 "o = -
k0€;+§'*~EEZ+ (2p+2+l) Qz = O (5.2-17)

where £ and p are separation constants.

The solutions of equation (5.2-15) may be written within
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multiplicative constants as

o = {510 29 (5.2-18)

go that £ must be an integer. Thus the field has a sinusoidal
variation about the axis of propagation.

It is helpful to make the substitution

R=p M2y (5.2-19)
in equation (5.2-16) with the result
3L 5L
p-—-—-—2-+(l+9,~—p)—é—+pL = 0 (5.2-20)
3 p
p
This is the Laguerre differential equation (5'4), and one has the final
result for the radial variation
R= 0 %% LA (5.2-21)

P

where Li(p) is an associated Laguerre polynomial. Since the coordi-
nate p is complex, one finds that the radial part R of the field is
also complex. However, one is usually most interested in the field dis-
tribution on a surface of constant phase. On the axis (p=0) the radial
part is real. Away from the axis the field on a phase surface may be
obtained by setting the imaginary part of R equal to zero. This
result is mathematically equivalent to the replacement of p by pr
where the subscript r will mean the real part and the subscript 1

will mean the imaginary part. Using equation (5.2-11) one finds

prp. =~ Qir2 (5.2-22)
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so that the radial amplitude distribution equation (5.2-21) becomes

2
R= (-0 2 LG qrh) (5.2-23)

The z dependence is most conveniently written in terms of a

complex phase parameter P given by

Z = e (5.2-24)

With this substitution equation (5.2-17) becomes

e (2p + 2 + 1)Q R < s
az K 2k dz (5.2-25)

This result will be referred to as the phase parameter equation.
Collecting together equations (5.2-5), (5.2-7), (5.2-13),

(5.2-18), (5.2-23) and (5.2-24), one finds that the beam modes in

lenslike media expressed in cylindrical coordinates are within multi-

plicative constants given by

2
_iQr —ifk dz
B(rz,0) = (ot (oM ? thqite T e T

(5.2-26)

where Q and P are given by equations (5.2-9) and (5.2-25)
respectively. These are usually referred to as Laguerre~Gaussian
modes and are the principal result of this section. The propagation
of these modes is determined entirely by the z dependence of the
parameters P and Q .

The beam modes considered so far are usgseful in lasers having
an axial symmetry. Some lasers, however, have a degree of rectangular
symmetry due to apertures, windows, etc. and then a different family

of modes is likely to arise. By an analysis entirely analogous to the
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preceding, one finds that the field distribution of these rectangular

modes is given by

_ip ~1[k dz

- %(x2+ yz)
e e

B(x,y,2) = H ( /=;%) B ( /=0,y) e
(5.2-27)
where Hm and Hn are the well known Hermite polynomials. The beam

parameter Q 1is again governed by equation (5.2-9) and the phase

parameter is given by

dk
dp _ i{ (mnt1)qQ , 1 0} (5.2-28)

dz k 2k dz
o fo)

The fields given by equation (5.2-27) are usually referred to as
Hermite~Gaussian modes.

All of the modes considered above have simple spherical phase
fronts. These results can be generalized to modes having phase fronts
with different radii of curvature in the x and y directions. The
propagation constant is also permitted to have differing variations in
the two directioms. The interested reader (if extant) may readily

show that the electric field for this case would be given by

1 2 2
- 2(Qxx + ny )e_iP e—ifkodz

E = Hm(V“QXiX) Hn(V“Qyiy) e (5.2-29)
where the beam parameters are determined from the two equations
Q2 +x i S (5.2-30)
X o dz o 2%
2, Sy
Qy + ko ot ko k2y = 0 (5.2-31)

and the phase parameter is described by
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ar _ y
az - Tt K tor Az
(o] O

. 1 1
(m + )0+ (n+ 5)Q dk
ar _ [ 27 % 2 1 % (5.2-32)

These astigmatic results might be useful in lasers containing asym-
metric lenslike media, Brewster windows, or other optical elements
having differing properties in the x and y directions. It is difficult
to visualize applications where astigmatism would actually be desirable.

An amusing special case of the above result would be the
situation where no variations are permitted in the y direction. Then
Q; = 0 and the fields are confined, more or less, to a plane rather

than to an axis. The results aEe

iQXx
- 5 —ip -1 kodz
E = Hm0/~QXiX) e e e (5.2-33)
with the beam parameter equation
2 de
Qx + ko - + ko kZX = 0 (5.2-34)
and the phase équation
(m + l)Q dk
. Culie S (5.2-35)
dz ko 2k0 dz ’

Elldiptical mirrors and lenses exist and it is possible that these
results could be useful.

In this section the forms of the electric field modes relevant
to several simple types of lenslike media have been considered. The
propagation of these modes through various optical systems is consi-
dered in the following sections. It should be emphasized that in all
of the rather diverse laser geometries mentioned above the beam

parameter equations are essentially identical as are also the phase
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equations. Consequently, in the investigations of beam propagation the

results will apply to all of the different beam geometries.
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5.3 The beam parameter

As shown in the previous section, the propagation of the
important Laguerre-Gaussian and Hermite-Gaussian beams is governed by
the z dependence of the complex parameters Q and P . It is useful
to express the beam parameter Q in terms of some more familiar fea-
tures of the wave. The evolution of Q as a function of =z will then
be considered in the following section.

First it is useful to consider a simple scalar outgoing spherical
wave in a homogeneous medium with propagation constant ko . The

amplitude and phase of such a wave are governed within constants by

—1kOR 5y

E(r,0,2z) =S e s R= yr+z (5.3-1)

ot

where R 1is the radius of curvature of the phase fronts of the wave
and cylindrical coordinates are used. If only a narrow region about
the positive z axis (r << z) is of interest, then R may be written

approximately

g +-§~R— (5.3-2)

and the spherical wave of equation (5.3-1) becomes
korz
~ik z -1
e ° e ZR (5.3~3)

e
i
50 | bt

But the Laguerre-Gaussian modes of equation (5.2-26) and the Hermite~-
2
Gaussian modes of equation (5.2-27) contain the factor e(-iQr )/2°

Thugs the real part of Q is related to the radius of curvature of the

phase fronts of the narrow Gaussian beams by



1
- 5, 34
R (3.3 )

The imaginary part of Q <characterizes the decrease in
amplitude away from the z axis. This dependence is Gaussian and
hence the beams are referred to as Gaussian beams. Clearly one may

write

A -2 _ (5.3-5)

where w 1is the "spot size" or radius at which the amplitude falls
to 1/e of its value on the z axis and Xm is the wavelength in the

medium. Thus one may define a new quantity g given by

A

1 _ o -
-Ci' - i 5 (5.3-56)

i
ote
[}
7 | =
|

Often q 1is referred to as the beam parameter rather than Q . The
above considerations assumed that the real part of ko is much greater
than the imaginary part. This assumption is valid in all practical
lasers, since the gain per wavelength is small.

Now the field distributions can be written in a somewhat more

familiar form. The Laguerre-Gaussian modes of equation (5.2-26)

become . 2
ik r
sin /2 L 2r 2R —rz/wz ~1ipP —ifkodz
E(r,z,¢) = {_° 1o < ) L&) e e e e
w (5.3-7)
and the Hermite-Gaussian modes of equation (5 2-27) become
k (x2 -%y ) 2
- ——— e ((x )/w
V2 x Y. 2R Y -ip
E(x,y,2) = Hm(*-;§ Hn(/§ w) e e e

~1fk dz
X e o (5.3-8)
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In these expressions the plane wave amplitude and phase are governed
by fkodz . The parameter P provides corrections to the amplitude
and phase resulting from the finite extent of the beam and the phase

front curvature.
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5.4 Lenslike media

In this section the propagation of the beam parameter through
lenslike media is considered and the stability condition for long dis-
tances is derived. The behavior of Q@ 1in other simple optical systems
will be treated in terms of beam matrices in the next section. The

starting point for this discussion is the beam parameter equation

(5.2-9)

o + k %§-+ kk, = 0 (5.4-1)

(5.3)

Following Kogelnik , this Ricatti equation may be transformed to a

second order linear equation by the substitution

dx
iz (5.4-2)

B

- 1
Q LN
with the result

(kox')' + kyx = 0 (5.4~3)

Equation (5.4-3) cannot be solved analytically for an arbitrary
z dependence of ko and kz . However, in most practical laser media

these parameters are roughly constant. Then equation (5.4-3) may be

rewritten as
k2
x" 4+ Ew‘x = { (5.4~4)
0

The solution of equation (5.4-4) for propagation through a distance d
is
X K
X, = a cos Ef-d + b sin [+ d (5.4-5)
\
o

2 k
o

Matching boundary conditions at the input yields
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= % cosJ/——‘d 4+ == J/- 51n\/--d (5.4~6)

Substituting this expression in equation (5.4-2) gives a simple (in

appearance at least) formula for the evolution of Q

/‘ﬁ; /"2; )
- [—8in [~ d + — cos /|— d
SZ ) k k ko k
ko

——-d + — —-31n — d

Equation (5.4-7) may be written in terms of the beam parameter ¢

(5.4-7)

using equation (5.3-6) with the result

1co8 / a +q/_~ sinj/ d
—q4 /--sin / d + cosJ/—~ d

Equation (5.4-8) suggests that 4, is a periodic function of

(5.4-8)

position. However, both ko and k2 may in general be complex, so
the interpretation of this result isn't so easy. The circular func-~

tions of complex argument are

cos(a + ib)

cos a cosh b - i sin a sinh b (5.4-9)

sin(a + ib) sin a cosh b + i cos a sinh b (5.4~10)

Thus equation (5.4-8) represents a sort of damped non-sinusoidal oscil-
latory behavior which may be characterized by a period p and a

damping length & given by



p = [ 6 TI e (5.4"‘11)

We write k in terms of its real and imaginary parts as

o
1

B + ia (5.4-12)

The real part B dis related to the refractive index by B = 2mwn/A
and the imaginary part is the plane wave electric field gain constant.

By using the easily verified result

va + ib = L VA/82+ b2 +a+ i V/Va2+ bz» a (5.4-13)
V2
equations (5.4-11) can be written explicitly as
p = 21 280, , O = 280
5T 2t ol -
@/BZ NN :, ﬁ/gz +a2 -8,
22 (5.4-14)

provided the gain per wavelength is small (ao << Bo).

Two important special cases are of interest. The first occurs

when there is no gain profile or o, = 0 . Then equation (5.4-14)
becomes
8o
p = 2 _é,.. R §d = o« (5.[}“15)
2
for 82 > 0 . Thus when there is only a refractive index profile, the

oscillations of the beam parameter arve undamped. The other special
case occurs when there is only a gain profile. FEquation (5.4-14)

becomes



p = 27 (5.4-16)

28| g
_° § = _°
S =

for o, > 0 so that the period of oscillation is equal to 27 times

the damping length.
It is interesting to inquire what happens to the beam parameter

at distances much greater than the damping length (d >> §). At large

distances k2 ’ k2
+Im /== d +Im j— d
. k e k
k2 e © kz e ©
cosh(Im if‘d) = T sinh(Im P d) = + 5T
[e) (o}
(5.4-17)

[k
where the upper sign is used if Im Eg > 0 and the lower sign when

o
k
th/;é < 0 . Now equations (5.4-8) to (5.4-10) and (5.4-17) may be
o

combined yielding at large distances

ql[cos(ReV/ d) ¥1i 31n(ReJ/_— d)]+J(::[s1n(ReJ[—N d)-kl.cos(ReJ[—_ d)1
q2=
-q; / [31n(Re/——-d) +1 cos (Ref d)]+ [COS(Ref‘d%F isin(Re /:d)]

WIN

k
+ i Re Eg~d " ¥ i Re\/i—(—z d
q, e © i 2 e °
.2 .
k k
-, 2 — 2
3 k2 + i Re ko d + Re ko d
+iq1—E~e + e
o
0
q £ 1 k, K
= = +1i T (5.4-18)
. kz 2
+ iqy E—»+ 1
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Thus at large distances the beam parameter becomes a constant indepen-—
dent of the initial beam parameter.
Next there is the question of stability. It is not immediately
obvious in what situations equation (5.4-18) implies a finite confined

beam. This equation may be rewritten using equation (5.3-6) as

1 Am -
. - — = 4 /= (5.4~19)
p 2 K

W [o]

b

?)

A finite beam must have a real spot size, so that from equation (5.4-19)

the stability condition may be written

ky
Re + /3% >0 (5.4-20)
(o]

From equation (5.4-20) and the sign convention adopted previously, it
is evident that stability results only when the real and imaginary
parts of /E;7E; are either both positive or both negative, but not
otherwise. But the real and imaginary parts of the square root of a
complex number have the same sign only if the number itself lies in the
first two quadrants of an Argand diagram. Thus the stability condition
is Kk

Im T > 0 (5.4-21)

Written in terms of the real and imaginary parts of the wave

number, this condition becomes

. 82 + iaz
0 ~ Im —————me (5.4-22)
Bo
or simply
6, > 0 (5.4-23)
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where the gain per wavelength has been assumed to be small (BO >> ao).
Thus 1f the gain does not fall off with increasing radius, the ampli-
fier is unstable, and the spot size of an incident beam will eventually
increase without bound as the beam propagates. Equations analogous to
equations (5.4-15) and (5.4-16) may be written for az <0 or
82 < 0 but then, of course, the "damping" length will correspond to
an exponential growth constant.

In one degenerate case the preceding stability analysis does

not apply. That is the situation where the input beam parameter is

given exactly by

k
o
q = + 1i/— (5.4-24)
1 k2
Then from equation (5.4-8) one obtains
ko
q, = *1i/— (5.4=25)
2 kz

independent of d . Thus if the input is exactly "matched" the beam
parameter remains a comstant. In any practical laser, however, the
input cannot be exactly matched, so the stability arguments of the pre-
ceding paragraphs are important.

Kogelnik(5°3)

obtained the matching input parameter differently.
The steady state beam modes may be obtained by setting dQ/dz equal

to zero in the original beam equation with the result

Q= +1ivkk, (5.4-26)

or

=

(5.4-27)

o
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which is the same as equation (5.4-25). It is impossible
the steady state solution obtained in this way whether or
limiting value of the spot size in a long laser amplifier
For this purpose one must use equation (5.4-21).

It is perhaps worth while to consider briefly the
special case of propagation through free space. Then Lk

2

equation (5.4~1) simplifies to

with the solution

A
I S f dz
Q(z) Q0) k
0

to tell from
not the

is finite.

important

= 0 and

(5.4-28)

(5.4-29)

If ko is independent of =z , this equation may be written

q = qo + z

(5.4~30)

Equation (5.4-30) together with the definition of q given in equation

(5.3-6) implies that the free space propagation of the spot size and

phase front curvature are governed by the well known equations

2
™ 2
T =z [1+ (%-) ] (5.4-31)
o
25,2
R = z[1+ 473) ] (5.4-32)
Trw2
where zO = ~X9~ and distance is measured from the beam waist.

In this section the problem of the propagation of Gaussian

beams through general lenslike media has been studied in detail. In
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particular, the stability of such wavegulides has been investigated.

It was shown that the spot size elither oscillates periodically or grows
without bound unless the medium has a positive gain profile (az > 0).
The amplification and damped focusing possible in high gain media would

be desirable properties for long distance beam propagation.
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5.5 Beam matrices
In passing through any simple optical element such as z lens,
mirror, or lenslike medium, the complex beam parameter transforms accord-

ing to the relation

Alql + Bl

4 = T ¥ D

(5.5-1)
141 1

where the coefficients depend on the details of the optical element in
question. Later in this section the values of the coefficients will be
. . . ., (5.3)

determined for some particular elements of interest. Kogelnik

refers to equation (5.5-1) as the ABCD law. If an element governed by

this equation is followed by a second element with the transformation

A g, + B
= -—-—--——-—-——--—-—-2 2 2 (5.5“2)

q
3 Cyay . Dy

then it is a matter of simple arithmetic to show that the net transform-
ation is

(AZAl + BZCl)ql + (A2Bl + Ble)

(AlC2 + ClDZ)ql + (BICZ + D1D2>

(5.5-3)

This is again a transformation of the form (5.5-1).
It turns out to be useful tc collect these coefficients into two
by two matrices. Suppose one takes the ordered product of the matrices

corresponding to equations (5.5-1) and (5.5-2) as follows

A2 B2 Al Bl A2A1+B2Cl AzBli-Ble

X = (5.5-4)

C2 D2 Cl Dl A1C2+C1D2 BlCz-\‘-DlD2
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The coefficients of the product matrix are seen to be just the same as
those of the net transformation equation (5.5-3). By induction the pro-
cedure is obvious for obtaining the net transformation for an arbitrary
sequence of lene elements. One merely writes the transformation coeffi-
cients for each element in the form of a matrix and then multiplies
together the matrices to obtain the coefficients for the net transforma-
tion. The order of multiplication is important, and the correct
arrangement is to have the element first encountered by the beam
correspond to the matrix farthest right. These matrix methods are not
essential. They are merely a formalism for simplifying the algebra
required in investigating beam propagation.

The matrices corresponding to various basic optical components
likely to be encountered in laser problems are shown in Figure 5.1. The
direction of propagation is always taken to be the positive z direction
and in the figure beams are incident from the left. The radius of
curvature of a surface is taken to be positive if the center of curva-
ture occurs at a smaller value of 2z than does the surface itself.

Diffraction effects may be assumed to be negligible in thin
lenses, mirrors, and across interfaces. Then the beam matrices for
these elements may be obtained immediately from well known results of
geometrical optics(s's). The result for a spherical mirror, when

expressed in terms of the radii of curvature of the phase fronts is

S T
R, R,

(5.5-5)

w | o

Since the spot size of the beam does not change in reflection from the

mirror, this can be written using equation (5.3-6) as



a. Mirror

b. Thin Iens

C. Spherical Interface

d, Plane Interface

e. Lenslike Medium

( complex profile )

f. Ienslike Medium

( real profile )

g. Short Medium
or Short Wavelength

or Weak Profile

h. Uniform Medium

Figure 5.1
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Beam mastrices for some basic optical elements.
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(5.5-6)

v} HaV)

or

o~
A
-
\J1
H
]
e

q_ F =R S ————
z 2
R4t
Using equation (5.5-1), the beam matrix for the mirror shown in
Figure 5.1a follows immediately. The formula for the thin lens is
obtained in the same way with R/2 replaced by f.

For the curved interface the optics formula is

n n, - n
._.]:. = ..._J:. .....J:.+ _(_._.2.._._.......?:..). (5 5__8)
R n. R n. R °
2 2 1 2
Therefore,
q
1
q = <5«5"9)
2 n2 - nl . f%
ql n? R n

remembering that A in equation (5.3-6) is the wavelength in the
medium. The matrix of Figure 5.lc follows from equation (5.5-9) and

the matrix for a plane interface is just the obviocus special case

The matrix for a general lenslike medium follows immediately from
equation (5.4-8) ., The last three matrices are special cases of the
medium matrix.

In this sectlon matrix methods have been described for studying
the propagation of Gaussian beams through simple optical systems. The
results are very useful in laser problems such as the calculation of

the transverse resonator modes described in the next seection, There
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are relations belween the beam matrices described here and the familiar
ray propegation theory of geometrical opbics. The ray theory is not of

interest in our work so we omit it,

5.6 Resonator nmodes

In the previous section a matrix method has been deseribed for
studying the propagation of Gaussian beams through sequences of simple
optical elements. Using thal method, it is straightforward to calculate
the transverse modes of an optical resonator. The resonator is regarded
as a closed sequence of such elements, and the modes are obtained from
a self-consistency requirement which we now describe.

The mode calculation procedure is most easily shown by means of an
example. Consider the simple empby half-symmetric resonator of Figure
5.2 with the input and output beam parameters as indicated. The total

matrix corresponding to one round trip through this resonator is

L

Cpedeaeaea - (o 0) e

Requiring that gq, = g, = q and solving equation (5.5-1) yields
1 D-A 1 / 2
i A A 1 - (D-A .0-2
3 5 T I L Be - (D-A) (5.6-2)

The sign must be chosen so that a confined beam is obtained.

The value of the beam parameter at the left mirror is found by substitut-

ing equation (5.6-1) into equation (5.6-2) ., The result is

T
Lo L i /af" 1 (5.6-3)
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Figure 5,2 Half-symmetric resonator.
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With the definition of the beam parameter given by equation (5.3-6)
one obtains the familiar expression for the mirror spot size of a half-

symmebtric resonator

—5 = Ty (5.6-k)

The beam parameter at any other location in the resonator may be found
by a similar derivation using a different reference plane, Alternatively
the result given by equation (5.6-3) may be used together with a free
space matrix transformation to the plane of interest. These matrix
methods are useful for lasers containing any of the optical elements
described in the previous section.

The modes determined by equation (5.6-2) satisfy the condition that
the beam parameter repeat itself after one loop through the resonator.
One may inquire whether additional modes might be possible which repeat
only after two or more loops. The uniqueness of the modes can be
established by substituting into equation (5.6-2) the matrix elements
corresponding to n passes through the resonator. One finds that the
resultant beam parameter is identical to that which is obtained when
enly a single pass is considered, and hence q 1s unique. The appro-
priate matrix elements are given by Yariv(5'6).

Actually there may be some pathological cases where the beam para-
meter as given by equation (5.6-2) is not unique. These occur when
either the real or imaginary parts of equation (5.6-2) reduce to zero
divided by zero. For example, in a simple free space confocal resonator
(@ = R) one readily finds that neither the phase front curvature nor

the spot size are well defined., This Tact 1s believed to be
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responsible for the instability and peculiar transient behavior of
resonators which are exactly confocal,

The gituation of greatest interest here is that of a laser
resonator filled with an unsaturated lenslike medium which is describ-
able by the matrix of Figure 5.le. For the resonator of Figure 5.2

filled with such a medium the round trip beam matrix becomes

k_ %~ %
cos —E 24 - E,/-—S 31n,J-¥§ 2d. !-~51n / ~—?é\\\
A B _ Kb R k? kb J

CD - . . - o o
k k ~" ].x
2 2 2 :

1/ = 51n,/ — 2d - 5 cos/J T 2d cos o 2d. ////

. o] o —
(5 A6"’5>

The output beam parameter for this laser may be found from equations

(5.6-2) and (5.6-5) with the result

ﬁ,\i/( E-“) + 2( F) cot E—- Zd) - L (5.ﬁ)~6)
o P o]

If both mirrors are flat (R— «), equation (5.6-6) reduces to

Iy

o

el bl

This equation is the same as equation (5.4-18) . For the plane
parallel laser filled with a lenslike medium the beam parameter is in-
dependent of position in the resonator.

Our primary interest here is in high gain lasers having a negligible

index of refraction profile (B, = 0, B = 2%). The limits of validity

of this approximation will be considered later, Then if the gain per
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wavelength is small (BQ >> ao) 5
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(5.6-9)

The cotangent function may be expanded into its real and imaginary parts

by means of

cot(a + ib) = (5.6-10)

; sin 2a - i sinh 2b
2

2 . 2 2 o 2

cosh” b sina + cos a sinh™ b

Then with equation (5.3-6) the output spot size at the curved mirror

can be written

—2~§-+snh§§ \

2 2. 2 2

cosh-61nii~+ cos < sinh é R//
X %

sin 2d | sinh 2 \\\%

-t

(5.6-11)
-1

i A 2 X X

2 2 2 P4 2
ex 2R cosh d sin é + oS d sinh %7/
X X X j

where x -,J =, This is solvable using
o A



Reva + ib

(5.6-12)

Plots of equation (5.6~11) are given in Figure 5.3 for three
different resonator configurations. It is evident from the figure that
for a sufficiently strong gain profile the spot size is independent of
the mirror curvature in contrast to the usual free space results. In

this limit the spot size may readily be shown to be governed by

(5.6-13)

Even the unstable and high loss resonators are rendered stable by the
amplifying medium. Low diffraction loss modes are thus possible in
resonators which otherwise could not support them. In the limit of low
gain the spot size approaches 1ts empty resonator value. The assymptotic

forms for the spot size in this limit may be obtained from a straight-

forward expansion of eguation (5.6-11). The results are
_R
2 4 d gl R
§ pus { - —_—< 14 -
lim o Zx mz) Z<1 (5.6-14)
oc2+0 3 d

o [0

> 1 (5.6-15)

Equation (5.6-14) describes the quadratically increasing behavior of
Figure 53.3(a), while equation (5.6-15) is in agreement with the stable
form of Figure 5.3(c). 1In the special case of the plane parallel laser

shown in Figure 5.3(b) the spot size is always given by equation (5.6-13).
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Figure 5.3 Theoretical curves showing the dependence of
the beam radius at the left mirror on the
gain constant 062



The spot size changes from its large az form to its small ¢

form at the value of a2 given roughly by

L B
a -3 Bey (5.6-16)

2 o

s R

RO
—_—5 %>J_ (5.6-17)

R
\_%/ 31

These expressions were obtained from a comparison of equations (5.6-13)
to (5.6-15) . They may be used to estimate whether the gain focusing
effect will be important for any particular laser systenm,

In the last few paragraphs we have assumed that the index of re-
fraction profile is unimportant compared to the gain profile., However,
it was shown in Chapter 2 that there is always anomalous dispersion
assoclated with an amplifying transition. Consequently it is important
to consider under what conditions the index effects are really negligible,
To do this we consider the simplest case of the plane parallel laser,
From equations (5.6-7) and (5.3-6) the spot size is governed ap-

proximately by

frmrmem e e e

/e% 4 o 4B
_2;5 - Re/E? %/ c 2 2 (5.6-18)
(o]

W ZBO

where equation (5.6-12) has been used and the gain per wavelength is
assumed small,
From eguation (5.6-18) it is clear that refraction focusing will

be unimportant as long as the condition



is satisfied. For example, if the transition is homogeneously broadened

then equations (2.5-7) and (2.5-8) imply
nz(v) = o (v) (5.6-20)

2(v - vo)

Avh

fore, equation (5.6-19) in the homogeneous limit becomes

where y = is the homogeneous frequency difference., There-

y < <1
or

Av
V- \)o<<——2—' (5.6—21)

A similar condition is obtained for inhomogeneously broadened

lasers. For this case equations (2.6-13) and (2.6-14) imply

A a, (v) x°

n,(v) = 7 F(x)e (5.6-22)
7T

2(v - v ) 3
where x = —n—K3~—9— (In 2)  is the inhomogeneous frequency difference,
D

F(x is Dawson's integral, and saturstion is assumed 4o be negligible.
. g2

Therefore, equation (5,6-19) in the inhomogeneous limit is
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1 2
. *
= > F(x)e
3 5 7 9
X X x X
> > x b - i — - - ~p4

X+ 3 B T Y g (5.6-23)
The power series expansion follows from equation (2.6-5) . A numerical

solution of equation (5.6-23) leads to the condition

X < << e "{32
or

V-v << Ll AvD (5.6-24)

The interpretation of the conditions given in equations (5.6-21)
and (5.6-24) is that for radiation reasonably near to line center gain
focusing is more important than the associated anomalous dispersion
focusing or defocusing effects, Nevertheless, dispersion can be im-
portant in some circumstances. Dispersion focusing is discussed in
detail in section 5.8.

There are, of course, other types of refraction focusing effects
which may sometimes be important. A matrix method of mode calculation
identical to ours was used in a recent paper by Schlie and Verdeyen(5'7)
to investigate the dependence of the transverse resonator modes on the
dispersion profile assoclated with an adjacent absorbing transition in
the 6401 £ helium-neon laser. These methods have also recently been
applied by McCaul(S’g)in a study of the dependence of the resonator
modes on the refraction associated with the free electron density in an
HCN laser at 337 microns. Thermal lens effects may also be treated

this way.



As an example of the application of the phase equation, one can
calculate the minimum gain required for oscillation. For the plane
parallel resonator with a fundamental Gaussien beam (p =4 = 0)

confined by the amplifying medium equations (5.2-25) and (5.4-26)

-
dap 2 [ ot
az " *[E‘ (5.6-22)

In a medium with only a positive gain profile the solution is

imply

o
P=- (l; *)/ i 2 (5.6-26)

Then according to equation (5.3-7) the amplitude of the beam is

governed by

E~Ee (5.6-27)
o
The gain required for oscillation is
aX 1n R,R
2 12 F on
20, - f?w -t (5.6-28)
where R, and R, are the effective right and left mirror intensity

1 2

reflectivities and d 1is the length of the resonator.

In this section matrix methods have been described which are useful
for the systematic analysis of the transverse modes of optical resonators
containing an assortment of lenses and lenslike elements. In particular,
the modes of a resonator containing a medium with a gain profile have

been derived, and the relative importance of the gain profile and the



associated dispersion profile has been investigated.

5.7 Gain focusing experiment

We have done an experiment to verify the conclusions of the previous
section regarding gain focusing in a plane parallel laser, The apparatus
is shown schematically in Figure 5.4, A D.C. xenon discharge may
exhibit very high optical galin at 3.51 microns as discussed in Chapter
ITI., The xenon pressdre was maintained at about 5 miecrons by means of

o]
(5'/)on a side arm of the discharge tube. The right

8 liquid nitrogen trap
mirror was highly reflecting and the output beam came through the partly
transmitting left mirror.

The spot size was determined by scanning the detector across the
output and plotting the power as a function of radius. Readings were
made using a PAR model HR-8 lock-in amplifier. It was necessary to
operate the laser very near to threshold to avoid distortion of the gain
profile by saturation. Threshold conditions were obtained by reducing
the discharge current until the output intensity was only slightly
larger than the superradiant output (obtained by misaligning the left
mirror). The mirror position had to be corrected from time to time to
ensure that the oscillating mode was near the center of the gain profile
in accordance with the condition given in equation (5.6-2k) ., Otherwise
dispersion effects would not necessarily be negligible.

Typical experimental curves are shown in Figure 5.5. The beam is
very nearly Gaussian and much smaller than the 5.5 mm discharge disweter,

We use as the spot size the radius at which the difference between the
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Figure 5.4 Experimental setup
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resonator output intensity and the superradiant intensity falls to
l/e2 of its maximum value.

The reason that gain focusing occurs in xenon is that the gain is
high near the center of the discharge and goes to zero at the tube
walls, It has been shown(slo)that in a gas discharge laser the radial
variation of the gain constant is described by a zero order Bessel
function if the excitation is low., If the Bessel function is approxi-

mated near the tube axis by a quadratic one Tinds

az = ) (5-7"1)

where T, is the radius of the discharge and ao is the gain at the
axis.

In Figure 5.6 the experimental spot size data are compared with the
theoretical plot of equation (5.6-13) . The good agreement provides a
verification of fhe theory. The gain constants were determined by
measuring the losses in the cavity. According to equation (5.6-28)

the galn required for oscillation may be written

an
2 In f
20, - d/ = - 5T (5.7-2)

7T

where £ is the fraction of the intensity left after a round trip

through the losses in the resonator (attenuators, windows, mirrors). All

J
of the losses can be measured, Eguations (5.7-1) and (5.7-2) can be

combined into a quadratic equation and solved for either ao or az for

various levels of attenuation. We did nob attempt an experimental
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Figure 5.6 Experimental spot size data compared with the
theoretical result,



investigation of curves of the sort shown in Figure 5.3{(a) and Figure
5.3(c) because of the greater uncertainties involved.
In this section we have presented experimental verification of

the theory of galin focusing in laser resonators. Good agreement was

obtained.
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5.8 Dispersion focusing theory

In the previous sectlons we have considered in some detail
the focusing and defocusing effects which can result from profiles
of the gain and index of refraction. For the most part it was
assumed that these two types of profiles could occur independently
of each other. However, it was pointed out in section 5.6 that
whenever there is a gain spectrum there must also be an associated
dispersion spectrum. Therefore, refraction focusing due to dis~-
persion must always accompany gain focusing. Within the conditions
given in equation (5.6-21) and (5.6-24) the spot size will be only
slightly affected by this refraction effect. Nevertheless, there
may be other significant consequences of dispersion. It is the
purpose of this section to study more carefully the relative
importance of gain and dispersion focusing. A simple experiment
is also described which demonstrates the occurrence of dispersion
focusing in a xenon laser.

The simplest laser geometry for studying focusing effects
consists of a medium with no 2z variations which is positioned
between a pair of plane mirrors. As shown previously, the beam
spot size and phase front curvature are independent of position in
such a configuration. TFrom equation (5.6-18) the spot size is

given by

(5.8-1)
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We have written the spot size in this form for comparison with the
basic gain focusing result of equation (5.6-13). If dispersion is

unimportant, 82 will be much less than o, and eguation (5.8-1)

2
reduces to equation (5.6-13) as we should expect.

From equations (5.6-20) and (5.8~1) the spot size in a
homogeneously broadened laser including both gain and dispersion

focusing is

2 %

W i ) -

2'm

From equations (5.6-22) and (5.8-1) the corresponding result for an

inhomogeneously broadened laser is

X2 ~;é
e | (5.5-9)
,ﬂ_2
In the limit of small x equation (5.8-3) reduces to
(5.8-4)

Thus, the homogeneous and inhomogenecus limits of the spot size are
qualitatively identical near line center.

For comparison with experiment we are most interested In the
limit of inhomogeneous broadening. The results for homogeneous
broadening are similar and will not be considered here. The gain
={Vv) 1in a Doppler broadened medium has a Gaussian spectrum. There-

fore, in accordance with equation (5.8-3) the normalized spot size



%
w = w(x)/w(o) is

The exponential factor results from the frequency dependence of ¢
Equation (5.8-5) is plotted in Figure 5.7 using the

approximation given in equation (2.6-9) for F(x). Also plotted

x2/4

in the figure is the function e which would represent the
frequency dependence of the normalized spot size if dispersion
focusing did not occur. From the graph it is apparent that dis-
persion focusing does not have a very drastic effect on the spot
size. The difference between the spot size for the two theories
is at most of the other of ten percent. Nevertheless, the dis-
persion focusing could, in principle, be detected directly by
scanning the output beam profile of a laser if the osecillation
frequency were known. We have not attempted this experiment.
Another aspect of Figure 5.7 is that the minimum spot size
occurs at a frequency of about x ~ .6 rather than at x = 0 as
it would if dispersion were neglected. This is due to the positive
refraction profile (focusing) which occurs at positive fre-
quencies. This asymmetry in the spot size spectrum leads to an
asymmetry in the spectrum of the total output power. In particular,
the maximum power output of the laser does not occur when the
oscillation frequency is at gain center (neglecting the Lamb dip,
of course) because the power output is a sensitive function of the
spot size. The asymmetry in the power output is easily measured
and provides a fairly direct indication of dispersion focusing.

There remains the problem of determining the output power
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Figure 5.7 Solid line is the normalized spot size as a function
of frequency. Dashed line 15 the npot nive nepleeling

dispersion focusing,
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spectrum of a laser oscillator jncluding gain ond dispersion
focusing. This calculation makes use of zome results of the
power saturation formalism of Chapter X. According to equation
(10.4-12), the total power P of a Gaussian beam in an inhomo-
geneously broadened medium with a quadratic gain profile is

governed by

g T
dp 0 2sP
FPi ”‘“g“““[(]-'+ ) A1)
Tw
1
S (1+ZS§>2+1
2 W 25PL sP
+ =5 —1{In Sep\ T 2-2(L+75) + In )
é.+ _»5)2 -1 (A W
Tw (5.8-6)

This equation can only be valid in this application as long as the
saturation is very weak, because we are assuming that the beam is
confined by the z-independent gain profile. Experimentally, this
means that the laser must be operated very close to threshold. In
this limit equation (5.8-6) can be greatly simplified.

For weak saturation equation (5.8-6) may be written to

second order in P (after some algebra) as

2
dp 1 sp, BV F 1 sp
FERR TS e M G A (5.8-7)
} v Tiw

This equation can be put in the more convenient approximate form



g 2
g P(1 - -2 %)
g
dp _ o 8-8
EE— g 2 (5' - )
1,__,2.EL
1+ 1l sP go 8
2 2 g, 2
W ]m —2 W
4

(o]

In a gas laser of the sort used in our experiment 89 is related

to g by
2.88
By = 8, 3 (5.8-9)
r
0
according to equation (5.7-1). Therefore, the power is governed
finally by
2
W
g P(l - .72 ﬁ)
dp .
e = - (5.8-10)
1-.36 —>
1+ 18P 3
w \Y
1-.72 —
T
o

Equation (5.8-10) is the general result for the weak
saturation of a Gaussian beam in a gas laser. It can be solved
analytically for the output power of a laser oscillator as a function
of frequency by using equation (5.8-3) for the fréquency dependent
épot size. However, we first make one further approximation to
simplify the mathematics. If the spot size is much less than the

discharge radius, equation (5.8-10) reduces to



T (5.8-11)

This is not always a terribly good approximation, but it is believed
to be adequate for our experiment and makes the results independent
of the tube radius. Comparison with equation (10.4-14) shows that
equation (5.8-11) is just the small signal limit (homogeneous

limit) of the ome dimension approximation for inhomogeneous broad-
ening. - The corresponding result for pure homogeneous broadening
would lack the factor *.

If one mirror is highly reflecting, equation (5.8-11) can be
integrated for one loop through the laser medium, and the result is
—5 (8, - P) =25 L - In 2 (5.8-12)
™ 1

poj

where £ 1is the length of the medium. If the reflectivity of the
output mirror is R and the transmission is T, then equation

(5.8~12) may be solved for the output power P as

P a._z-lw_.iz_(
o] s 1

1) (25 L+ In R (5.8-13)

We are most interested here in the frequency dependence of

P _. Substituting equation (5.8-3) into equation (5.8-13) leads to

s, [T x2\2 x2\"s
= 0 T 2F (x) 2F
P (x) S \/1. M‘:o \l_R)(2g0£+ 1nR) 1+< );1; > + (:})ﬁe

(5.8-14)
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where equation (5.8-9) has been used to replace gy = 2&2 by g .
The gain on the axis of a gas laser is a Gaussian function of
2
frequency of the form By = gée'x . With this substitution

equation (5.8-14) may be written as

' 2.2 2\-1
T Amg0< T ) o dnm ool o (meoe )| 2rgoe”
o s \ 1.4k\I-R 28L 5 s

™ /] it

(5.8-15)

This is the general expression for the frequency dependence of the
output power of a laser oscillator (neglecting the Lamb dip). It

is convenient to define the normalized power spectrum

2 2 x2 2 xz s
* -
Prx) = (e bye™ A 1+ (‘ZF(’?/E >+ 2F(x)e (5.8-16)
e ik

where
b= -~ m (5.8-17)

is a threshold parameter.

Equation (5.8-16) is plotted in Figure 5.8 for various
values of the parameter b. Evidently when the laser is above
threshold, the greatest output occurs at a slightly negative
frequency rather than at line center. The reason for this effect
is that the spot size of the confined beam is larger at negative
frequencies than at line center. Near threshold (b + 1) this

effect diminishes and the greatest output occurs near x = 0.

2
Also plotted in Figure 5.8 is the gain spectrum e



Figure 5.8 Normalized power output as a function of frequency

for various values of the threshold parameter.

Dashed line is the gain spectrum.
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The asymmetry of the power spectrum is most conveniently
characterized by the location in frequency of the power maximum.
In Figure 5.9 is a plot of this frequency as a function of the
threshold parawmeter b. The experimental points in the figure
are discussed in Section 5.9. The plots in Figuves 5.8 and 5.9,
are not quantitatively correct for all values of b. From equa-
tion (5.8-13) this homogeneous approximation is only valid in an
inhomogeneously broadened medium as long as the product (l—ﬁ§(2g02+lnR)
is small compared to unity. In a high gain laser this is the same as
requiring that b be nearly equal to uwnity. Nevertheless, these
results are expected to be qualitatively correct for most values of b.

It is possible to obtain a simpler approximate expression
for the output power as a function of frequency which is valid for

small values of x. One finds after some algebra that equation

(5.8-16) may be expanded to second order in x as

1-b - Ith, 2
=08 =0y

* 1-b
PO(X) x (1—b)~(ﬂ%;)x + (2Tr - ) (5.8-18)
The maximum of this spectrum occurs at the frequency
_ -1 1+b 3 -1
s (m = - 5 ) (5.8-19)
If b is nearly equal to unity, then the maximum is at
1-b
= - i (5.8-20)
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Figure 5.9 Frequency of the power maximum versus the threshold

parameter b ., The circles are experimental values,



- 157 -

This equation is plotted as a dashed line in Figure 5.9. The good
agreement between the two lines in the figure is an indication that
for most applications the approximate theory should provide suffi-
cient accuracy.

In this section we have discussed a focusing effect which
is due to the dispersion associated with a high gain laser transition.
It was shown that the spot size of a waveguided beam is greater for
frequencies below gain center than for frequencies greater than gain
center. As a consequence of this focusing asymmetry, the power out-
put maximum occurs at a frequency slightly below gain center. This
shift in the power maximum may have a serious effect on the inter-
pretation of Lamb dip measurements. Generally asymmetries in the
power output of simple gas lasers are attributed to collisions be-
tween the atoms(s'll’ 5'12). However, it is clear that in moderately
high gain lasers dispeision focusing must be considered as well. An

experimental verification of the theory is described in the next

section.
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5.9 Dispersion focusing experiment

In this section we describe an experiment which has been performed
using a high gain xenon laser to verify the dispersion focusing theory
of thé previous section. The apparatus was similar to that used in the
experiment of section 5.7, and most of the details are omitted here.
Monoisotopic xenon 136 was used so that unnecessary asymmetries in the
output would be avoided. The right mirror was highly reflecting and
could be translated uniformly by means of a motor drive. The cavity
length was 1.29 meters, so the empty cavity mode spacing would be about

5T = 116 MHz.

A typical plot of the power output for decreasing cavity length is
shown in Figure 5.10. The laser was operated very near threshold and the
peaks represent successive longitudinal modes. These peaks are to be
compared to the theoretical curves shown in Figure 5.8. In the experi-
mental plot there is a dip in the output power on the high frequency
side of the peak. This is the Lamb dip and it results from the interac-
tion of the left and right traveling beams with atoms which have zero
z-component of velocity. Thus the Lamb dip provides a convenient indica-
tion of the frequency x = 0.

Comparison of the experimental and theoretical plots shows that
the power maximum is shifted down in frequency by roughly the amount
predicted by the dispersion focusing theory. For a rigorous analysis
it is necessary to take into account mode pulling. Suppose that the

power shift indicated by a plot such as that in Figure 5.10 is Avo, Then

in the notation of Chapter IV the actual power shift is AvO/(14-8).
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current of 18 ma.
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The values of B for various discharge currents were determined from
mode pulling experiments like those described in Chapter IV. This
mode pulling cannot be neglected because B is of the order of unity.
The gain and the threshold parameter b were also determined as func-
tions of discharge current. Using this information and plots like
that shown in Figure 5.10, it was possible to determine the power
shift as a function of the threshold parameter.

In Figure 5.9 are experimental values of the power shift
versus b. The results are in agreement with the theory to within
the estimated experimental errors. The pressure was low enough in
these experiments (5 microns) that collision effects are believed
to be completely unimportant. For use in section 3.2 we mention
also that these experiments indicate that the threshold Lamb dip
in xenon has a width of about 6 * 1 Miz,

Another possible cause of asymmetry in the power measure-
ments is the mass motion of the emitting atoms(s'lg). Particularly
in a low pressure D.C. discharge one might expect a drift of the
ions toward the cathode compensated by a drift of neutral atoms
toward the anode. In a high gain laser the Doppler shifts result-
ing from this mass motion would result in an asymmetry of the output
power spectrum. However, the asymmetry for light emerging from one
end of the laser would be expected to be in the opposite direction
to the asymmetry for light emerging from the other end. To check
this possibility a resonator was constructed having equally trans-—
mitting mirrors at the two ends. It was found that the power
spectrum was identical at the two ends of the laser indicating that

for the conditions of our experiments drift of the atoms is complete-



- 161 -
ly uvnimportant.

The isotope shifts described in section 3.5 are another
potential source of asymmetry. These experiments were conducted
using "monoisotopic’ xenon 136, but small quantities of the other
isotopes were present nevertheless. Lamb dip measurements are
fairly sensitive to small amounts of impurity isotopes, so it is
conceivable that isotope shifts could affect the power spectrum.
To check this possibility the composition of the gas in the laser
was measured on a mass spectrometer. The results for the most
important isotopes were: 136 - 91%, 134 - 5.53%, 132 - 1.3%, 131 -
8%, 130 -~ ,1%, 129 - 1,1%Z. Thus the most important impurity is
isotope 134, From the discussion in section 3.5 it is expected
that the center frequency for isotope 136 would be about 40 MHz
greater than the center frequency for isotope 134. Unfortunately
this isotope shift leads to a power asymmetry which is similar in
form to the asymmetry resulting from dispersion focusing.

The approximate effect of the isotope shift can readily be
calculated. We assume that the dominant isotope has the relative
abundance a, and occurs at the frequency x = 0 while the second
isotope has the abundance a, and occurs at x = §. Then the

net unsaturated gain spectrum has the form

2 2
g =ae ™ +a e—(x_é)

o o 2 (5.9-1)

For small values of x and & the gain is given roughly by the

quadratic
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2
g =~ (ao+a2) + 2a26x - (ao+a2)x (5.9-2)
This function has its maximum at the frequency

a.g$

“nax T 3 ¥ a, (5.9-3)

In ordinary frequency units this relation becomes
- V) (5.9-4)

Therefore for the numbers appropriate to our experiments (a2 ~ .055,
Vy =V, ® -40 MHz), we find that the gain maximum is shifted down by
about 2.2 MHz due to isotope 134. This shift is small compared to
the observed shift, so we conclude that dispersion focusing is the
dominant source of asymmetry. Nevertheless, this isotope effect is
not entirely negligible and it would probably be worthwhile to per-

form more extensive measurements of dispersion focusing using a

purer sample of xenon 136.
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5.10 The cylindrical laser

As a final example of the usefulness of the mode formalism
developed in sections 5.2 to 5.6, we derive the optical modes of a new
type of laser resonator. The mirror consists of a short cylinder which

may be concave slightly toward the center of the resonator to provide

confinement of the fields. The radiation propagates primarily in the
radial r direction rather than in the axial 2z direction as in conven-
tional lasers. A sketch of this arrangement is shown in Figure 5.11.
Perhaps the most striking feature of such a laser is the high energy
density which occurs on the axis of the resonator. The analysis will
show that for low order modes essentially all of the power in the
resonator flows within a wavelength of that axis.
The wave equation (5.2-4) in cylindrical coordinates appropriate

to this problem including a lenslike variation in the z direction becomes

2 2 2

9E L LB 1 FE SE 25 il E=0 (5.10-1)
2 r Or 2 5,2 2 o o 2

or r” 2¢ dz

The ¢ dependence can be separated out by means of the substitution

E = F(r,z) ®(¢) (5.10~2)
with the results
2
e 2 + n%0 = 0 (5.10-3)
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Figure 5.11 Convex cylindrical laser cavity.
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IF L1 + 2 1P F ok, 2P =0 (5.10-4)
2 r or 2 o o 2

or T oz

F

o
2

where m is a separation constant. The solutions of equation (5.10-3)

are given except for multiplicative constants by

sin
o = g } m (5.10-5)

The solutions to equation (5.10-4) are most easily obtained by
solving in two regions and matching the solutions where these regions
overlap. The first region is from the z axis out to a distance com-
parable to the z '"thickness" of the beam. In this region diffraction
is unimportant and the z variation can be ignored. Then equation

(5.10-4) can be written

2 2
8F2+klr8(iFr)+ 1-—2—) r=o0 (5.10-6)
2(k r) o o (k 1)
(¢] o
where we assume for simplicity that ko is independent of r. But this
is Bessel's equation, so the solution for outgoing waves can be expressed

in terms of Hankel functions of the second kind

F = f(z) Hé?‘) (kor) (5.10-7)

where f(z) 1s an as yet undetermined slow function of z. This result
is analogous to the beam modes described in section 5.2. The asymptotic

form of this solution which will be useful later is
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O

— ~i(k.r - )]
F —& £(z) \/;E—r e o2 4 (5.10-8)
(o]

r *» ®

To find the solution in the outer region, one may try the

substitution
-ik r
F=ge ° (5.10-9)
in equation (5.10-4) with the result
2 ik ¥ 2 2
S AU P M. WL U A WM (5.10-10)
2 T o’ dr T 2 2 o2
ar T dz
) )
If ¢ is assumed to vary slowly with r 5 << 2koar this equation may
or
be written
ik ¢ 2
- Y __o , 2V _ 2, - -
Ziko T - + X ) kokzz Y =0 (5.10-11)
z
at distances much greater than m2 wavelengths from the z axis.
The substitution
2
_i9(x)z
2
y=5(r,2) e (5.10-12)

leads to

2 ik S
378 oS _ _n2. 2, as _ 2dQ . _ o) 2
E;E' 21Qz e iQs Q7z'S Ziko ™ koz ar S — - kok Sz” = 0

(5.10-13)
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Setting the coefficients of z2 equal to zero yields the two

equations
2, 49 i
Qe+ kodr * kokZ =0
2
39" S as
‘a-"z-"i - Zin-a—'z* - 1QS - Ziko

Equation (5.10-14) is a beam parameter equation identical to
equation (5.2-9), and the analysis of section 5.4 applies.

of course, any lenses and mirrors must wrap around the

The change of variables
£ = Y1Qz

simplifies equation (5.10-15) to

The substitution

s = T(E)Uu(r)

leads to the separation

a’r _ ,p dr

- 2E
dEz dg

S

+ 2nT = 0

1—3S

(5.10-14)

(5.10-15)

Here,

axis.

(5.10-16)

(5.10-17)

(5.10-18)

(5.10-19)



du n + %)QU
ar 2 m = 0 (5.10-20)

The acceptable solutions of equation (5.10-19) are the Hermite

polynomials
T = Hn (\/--Qi z) (5.10-21)
The substitution
~-iP

U=vVe (5.10-22)

transforms equation (5.10-20) to the form

av . v dP  (n + 3)QV _ _
i e Y A W 0 (5.10-23)

which can be arbitrarily separated into

dp _ _  (a+%)Q (5.10-24)
dr k

o]
av v _ _
-&—E"*‘-z—;* 0 (5.10~25)

Equation (5.10-24) is a phase parameter equation of the form of
equation (5.2-25). The integration can be performed when Q(r) is
known. Equation (5.10-25) has the solution

9

V ar (5.10-26)



- 169 -
Combining equations (5.10-9), (5.10-12), (5.10-18),

(5.10-21), (5.10-22), and (5.10-26) yields the solution in the

outer region in the form

-ik

e ° B (/=Q, 2)e e (5.10-27)

e

Comparison of equations (5.10-2), (5.10-5), (5.10-8), and (5.10-27)

gives the solution valid everywhere

2
18z

E(r,z,0) = {iiz}(m¢) Héz)(kor)Hn(/_Qi e 2 &P (s5.10-28)

with multiplicative constants omitted. In terms of the spot size
w and phase front curvature R of equation (5.3-6) the beam para-

meter may be written

A
Q 1L _; m (5.10-29)
k R 2
(s} ™
and the field is
k z2 2
e E
. r8in (2) . 2R w ~1iP
E(r,z,$) = {COS}(m¢) H_ (kor)Hn</§'w)e e e
(5.10-30)

If m is sufficiently large that the inequality kw0>> m2 is not
satisfied where LN is the spot size on the =z axis, then the two
regions of solution don't overlap and equation (5.10-29) is not
necessarily valid near the origin. Fields in the region 1t >> mz/k0

are always gilven by equation (5.10-29). Similarly the solutions
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for incoming waves are given by

1) T -qp

E(r,z,0) % {ii:} () Hm( (k,p)E_(/=Q, 2)e e

(5.10-31)

The parameters Q and P appearing in equation (5.10-28) are in
general different from those in equation (5.10-30) in a given
regonator if gain focusing 1is important.

Construction of such a cylindrical laser should not be
unreasonably difficult. The simplest gas laser construction would
probably involve a high gain medium pumped transversely to the
optical plane by a D.C. discharge. Solid and liquid lasers can
also be visualized which would be pumped from above and below the
optical plane by means of flashlamps. Even semiconductor lasers
of this style should be possible.

The most striking feature of the cylindrical laser is that
all of the power of the fundamental mode flows within approximately
one wavelength of the axis of the cavity. This fact follows from
the well known assymptotic traveling-wave behavior of the Hankel
functions in the outer region. Consequently, extremely high energy
densities may be obtainable on the axis of the resonator without
any additional focusing elements. These high energy standing waves
might be useful for studying various nonlinear optical effects.
Obviously, for this application a hole along the axis of the laser
medium would be necessary. Moreover, the axis could be somewhat
isolated from the laser itself if the resonator comsisted of two

concentric cylindrical mirrors. The output through the outside
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mirror for the fundamental mode would consist of a plane of light.
In this section the modes of a new cylindrical type of
laser resonator have been obtained from a solution of the wave
equation. As in conventional lasers, the basic propagation
characteristics of these modes are governed by beam parameter

equations and the matrix methods of the previous sections.
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5.11 Conclusion

The transverse optical beam modes appropriate to laser
problems have been obtained as solutions of the wave equation.
The analysis was sufficiently general to include the first order
corrections for lenslike variations of gain and refractive index
which commonly occur in practice. Matrix methods for studying the
propagation of these modes through sequences of optical elements
have been developed. 1In particular, the transverse modes of laser
resonators have been derived for resonators containing a lenslike
medium. Emphasis was placed on the analysis of the modes of a
resonator containing a medium with a strong gain profile, since
such an arrangement had not previously been studied. Experiments
were performed which verified the theoretical conclusions re-
garding gain and dispersion focusing. A cylindrical laser geo-

metry was also described.
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VI. Relaxation Oscillations

6.1 Introduction

Relaxation phenomena have been observed in essentially all types
of lasers. Such effects are characterized by a pulsing of the laser
power output on a time scale long compared to the cavity loop time. We
have observed regular undamped oscillations in a simple atomic xenon
gas laser system. The high gain xenon laser at 3.51 microns exhibits
these pulsations at frequencies between 106 and 1@7 Hertz.

A rate equation model provides good agreement with most of the
observed features of the oscillations. Conventional theorles usually

‘x e
assume that all of the atoms are identical(6°“’6 2>.

The validity of
this assumption in gas lasers is not cbvious, because the Doppler line
width is often much greater than the homogeneous line width. In par-
ticular, in xenon the Doppler line width exceeds the natural line
width by a factor of about thirty. Thus, the interaction between
the atoms and the field is much weaker for atoms whose center frequency
ig far from the optical frequency than for those which are close.

The rate equations used here include the effects of inhomogeneous
broadening. The consequences of the rate equation model are discussed
in the following sections. Experiments have been conducted in both the
time domain and the frequency domain, and satisfactory agreement with

the theory has been obtained. The effects of coherence in homogene-

ously broadened lasers are considered in Section 6.6.
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6.2 The inhomogeneous frequency equation

The purpose of this section 1s to investigate the effects of
inhomogeneous broadening on relaxation phenomena in laser oscillators.
Inhomogeneous broadening is common to many lasers, several of which are
known to exhibit relaxation oscillations. In particular, we obtain an
algebraic equation governing the complex frequency of small amplitude
relaxation oscillations in inhomogeneously broadened lasers.

The starting point for this derivation is the pair of rate equa-

tions

%g\il = PV - qB(V,Vy) n(v) - “é‘)) (6.2-1)
%% = q J B(v,V,) n(v) dv - -:‘9:-: (6.2-2)
0

These equations are essentially the same as equations (2.3-8) and
(2.3-9) except that the photon density q is used instead of the
intensity I , and the frequency dependent Einstein B coefficient is
slightly redefined. The pumping rate is P{V); n{v) is the population
inversion density in the frequency range between Vv and Vv + dv

vz is the laser frequency; T 1is the inversion lifetime; and tC

RN
0

the average photon cavity lifetime. It is assumed that spontaneous
emission does not contribute significantly to the photon density and
that coupling to other atomic energy levels is unimportant. If the
lifetime of the lower level of the laser transition were not negligible
compared to the lifetime of the upper level, it would be necessary to
write an additional rate equation governing the population density of

the lower level. It is also assumed that spatial variations of the
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H
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electromagnetic fields, which are substantial in 2 high

ui s

not affect the transient behavicr of the laser. It has heen shown by
1At (6'3) 1 1 " (6"4;} 3
Globus et al and by Polloni and Svelto that the nrimary effect
¥y T b

of nonuniform fields is a slight increase

®
}‘\‘
3
o
0
3
o
s
o)

Finally, equations (6.2-1) and (6.2-2) also neglect coherence
3 b 4

effects. The observed pulsation period is sometimes shorter than the

ransverse relaxation time, which is equal to twice the lifetime 1 in
& low pressure gas system, so that coherence could be important. The
rate egquations may be generalized to include a finite coherence time as
shown in Section 2.2, but solutions are more difficult to obtain. Near
threshold the coherent rate equations may be shown to reduce to egua-
tions (6.2-1) and (6.2-2), and other coherent solutions which are
derived in Section 6.6 do not differ gualitatively from the solutions
of these equations. The incocherent equations provide satisfactory
agreement with the experimental data obtained so far, and for simpli-
city we neglect coherence here.

The behavior of the sclutiong in the vicinity of the equilibrium

2

point is of greatest interest, so equations (6.2-1) and (6.2-2) are
linearized by the substitutions «aft) = 4, + g'(t), n(v,t) = ng(v) +

n'(v,t) . The primed quantities are regarded as small perturbations.

The first order results are

dn’ I Ly s ' ’ o
= - “)n' - Bn q' + (P - Bn q_ - (6.2-3)
P \qu + f)p BQOQ + ( Bn q - % 3 (6.2-3)
? { [ 4
dg . a { Bn'dv +(| Bn dvv—%-)q’-%(q B dv - —9} (6.2-4)
dt o j o tc 0 o £l

This pair of linear first order equations is expected to have two



.

independent solutions. The equilibrium point s described by the
steady state solutions
"o
P= Bng + — (6.2-5)
o0 3
r
e = | T ] ’ AN
T }I BDO av (6.2-6)
c
Equations (6.2-3} and (6.2-6) may be combined to
1 [ Pav
£ = J 1 (6.2-7)
9 BT
If the pumping spectrum is a Gaussian given by equation (2.4-2)
bl -t}
2(v v0)12
el rvemmn in 2
AONE
P(V) =P e (6.2-8)

and the homogeneous line shape is a Lorentzian given by equation

(2.3-4)
2
wﬁvh
B(v,vz) = BO YT (6.2-9)
i 2
Sl
e h o
then equation (6.2-7) may be rewritten as
FZ(v~v 1.2
w o in 2
Loy [e 7 v (6.2-10)
£ o r2(\)~\),,)‘1,2 :
C 0 1‘4'6 X i
S
4o ¥ 7B T
o
WAvh
If the radiation is at line center (vo = VQ> ., this equation may be
Z{v-v )
written in terms of the dimensionless freguency =z = ﬂ“-9~ as

by
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where € 1s the natural damping ratio ¢ = Rj*'(ln 2y
- v

. ™

f.5)
The result of the integration 13(6 23
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If the saturated homogeneous line width is much les
29 B T 1/2
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line width (1 + ey eva— € << 1, then equation {(6.2-12) simplifies
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This result still applies for a laser field at the

frequency v, ¢ vy
.__g‘/(\) -\ )Z b 4

if PO is replaced by P, = Poe & . Solwing equation (6.2-13)
for 9, yields
TAv TAV. Pt
h 2 . hiliec , 2
= -~ 1] = ~ 1 2-1k

9 ZBOT E(PQBOT tc> o 2a (a ) (6.2 )
where we define the dimensionless parameter a = UQPOT tc . The
threshold condition is clearly a = 1 . Equation (6.2-14) will be

used later in the derivation.

Using equations (6.2-5) and (6.2-6), eguations (6.2-3) and

(6.2-4) may be rewritten as



v 1 PBqgt
1%1? = *(qu + =)Int - - ;‘S_T {(6.2-15)
- Bq + =
0y t
dq'
~§E~: 9y | Bn' dv (6.2-16)

The solution of these equations is complicated by the pres

D
3
]
D
o
h
[y
ot
0

variable n' under the frequency integral. Equations (6.2-15) and

6.2~16) may be combined into the second order eguation
q

PBQ 4
dn' 1, dn’ : | -
5t (Bg + D) = - °— | Bn' dv (6.2-17)
dt Bq + =/
o T
. . . . N st ,
Substituting an exponential solution of the form n'{Vv) = n'"{(V)e and

solving for n'(V) leads to

PBq_ [ Bn" av

1 1
s(BqO + ?)(s + Bq + )

Multiplying by B(V) , integrating over frequency, and canceling the

factor f Bn''dv  gives

Pdv

i1 1 1
1 4+ —= (= 1 4 (g + =)
qos‘l BqO(T)} [1 qu(g T)J

(6.2-19)

[
laa—l
1
[

This integration can be performed and the results expressed in
terms of the error function of complex argument. The general solutions
are complicated and probably not very useful, so we make the approxima-
tion that the line broadening is strongly inhomogeneous and replace
P(v) by Pg , the wvalue of the pumping coefficient near the laser line.

Then using equation (6.2-9), equation (6.2-19) becomes
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where the dimensionless frequency has been used. Using

Ay,

the definition a = P,B T t  introduced in equation (6.2-14} and the

new defindition

equation (6.2-20) becomes

[ee]
Av, P r
1= 2l et (6.2-21)
qo 8 a2y (BT 27)
pNse]
Expanding the integrand in partial fractions leads to
Av, P r P rm
1= —2 Q7 el 1)% L [ dz_ .1 | gz } (6.2-22)
2g s P L2 2 2.2 2 21 2 21
o Lb-a _at+tz a"-b _; b "z

Performing the integrations gives

AV, P ]
he ,2 2 I Tm/a /b %
— - — ) — ?L A E $ 0
L= 50 s -0 - D55+
o b~ a a’ = b
) ﬂAthQ (32_ 1)(b2— 1) 6.-23)
Zqu ab{a + b) o

Using equation (6.2-14) to eliminate a_ yields

= Lo b2 1 )
stc b{a+b)

bz- 1+ stcbz = ~-st ab (6.2-24)



With the definition

becomes

both sides and simplify. The general result finally, is the quartic

equation

sétzfz + sgtz’taz - Zszt T - Zst 32 - {az~ 1) =
¢ c c

L]
o~
o
N
i
]
N
fN

Two of the roots of this egquation are nonphysical and result from the
squaring operation. It is useful to reduce the number of parameters
appearing in the frequency equation by introducing the dimensionless

frequency x = 8T and the ratio ¢ = 1/t . Then equation (6.2-26)

becomes

4 2.3 2 2 2 2
X 4+ ax” - 2cx” - 22"cx - (@~ 1) ¢ = 0 (6.2-27)
Equation (6.2-27) is the principal result of this section. It
is valid for small amplitude fluctuations as long as the hole burned
by the radiation field in the inhomogeneous spectrum is narrow compared
to the overall line width. From equations (6.2-11) and (6.2-14) the

hole width is

quBOT\l/Z
= 1 e = ( o L L
Avhole Avh\ 1+ ﬂAvh f a AVh (6.2-28)

Then the condition that the frequency equation be valld for a Doppler

broadened line is simply



In the xenon laser at 3.51 microns the ratio of the Dopplar line wi
to the homogeneous line width is of the order of 30, and equation

(6.2-29) 4s usually satisfied.

S
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6.3 Solutions of the frequency equation

In this section we consider wvarious solutinns of ¢

(4
ita

equation. In principle, rigorous analytic solutions are obtainable for

-

such a quartic equation. However, those solutions are genevally suffi-

ciently complicated as to be useless. Instead we present some computer

H ]

solutions and some approximate analytical results which

adeguate
for most applications.
Equation {(6.2-27) cannot be factored simply except in certain
limits. TFor small values of a the cubic term may be neglected. In
. 2 . . .
particular, for =x << 2¢/a the cubic term is small compared to the
R 2 .
quadratic term and for x >> a the cubic term is small compared to
the quartic term. Cowmbining these conditions, we find that for
4

a’ << Zc the cubic term is unimportant for all =x . The remaining

equation may be factored approximately into
2 \ 7 2 -
[¥x"= ax - c{a+1)] [x™+ ax + c{a-1)] = © (6.2-1)

. - 2
where we also use the less stringent condition a” << Z2c¢ .
The left hand factor of equation (6.3-1) yields two real roots
which are spurious. Thus for small a the natural frequencies are

determined simply by the equation

4
x2 + ax + c{a-1) = 0O a << Vie (6.3-2)

or in terms of the lifetimes

Z  as 1 4 /ZT
s b ( - = << ( o I
pal e iD)] 8] a J T (6.3~-23)



But equation (6.3-3) dis the same vesult that one would chtain

for relaxation cscillations in a laser having purely homogeneous line

broadening. To see this, one may solve eguations {(6.2-1) and
in the homogeneocus limit. If P{) and n{v) are strongly peaked at

the frequency Vo , then the rate equations may be written as

dN v
TS = P —~ gBN - "_‘ (6.3~4)
I (6.3-5)

o
e
¥

20
{

where N = n{(v) dv , P = J P{v} dv , and B = B(vﬁgvp) . The substi-
q

D Sy, 8

tutions N NO + N'(t) an

dN’
dt

it

1
-{ + —=IN' - BN g" + - N -
\qOB T)N B o4 (P QOB\O

i

\
Q%E‘ q BN + (BN - I)q" + (g BN - =) (6.3-7)
C [

The steady state solutions of equations {(6.3-6) and (6.3-7) are

governed by the equations

N
P= qBN +—<= (6.3-8)
o T
1
BN = — (6.3-9)
Te

~(g B +) - s ~BN
T

i
o
N
[¢31
(e

1
}J.....\
[
-



as
8" + RBRP tCs + (BP -~ ——} = O (6.3-11)
£
With the definition a = PBTt equation (6.2-11) becomes iden-
- !
tical to equation {(6.3-3). Thus, we will henceforth refer to equation
1 5\ / 2 !

(6.3-2) as the homogeneous limit of equation (6.2-27). This result is

reasonable since for weak saturation the frequency region of the spec-

N

D

tral line affected by the electromagnetic £

[

eld is essentially Ay, |

the homogeneous line width, indenendent of the intensity: and the line
b 3

ty

is effectively homogeneous. The validity of this approximation will
be clear from a consideration of Figure 6.1 later in this section.

The homogeneous frequency equation (6.3-2) is a simple quad-

ratic and the solutions are

x = - % * i/c(a—l) - (%)‘“ (6.3-12)
or
a . c"“l a2 2
S:-»vi:—{f 1\/:§t - {"2"%‘ (6.3""13)
c

It is helpful to express the threshold parameter a in terms of the
more familiar unsaturated gain coefficient g . From equation (6.2-2)
as written for a steady state lossless amplifier rather than an oscil-

lator, one finds

1 dI [ nBdv
= S = = | .3—
I dz & IcC (6.3-14)
‘ m
where I is the intensity and c is the speed of light in the

amplifying medium. Then if saturation is neglected in equation (6.2-1)

one finds n = Pt . Therefore, equation (6.3-14) becomes



PR dv (6.3-15)

If the Doppler line width is much greater than the homogencous line
< faed

width, equation (6.3~15) with equation (6.2-9) becomes simply

TPQBO a
g = c STt s oes, (6.2-16)

“r e

where iz the threshold value of the gain. Thus the parameter a

€th

may be replaced by g/gw1 or by PQIP in the results which have

2th
been derived.

Using equation (6.3-16), equation (6.3-13) may be written

ge t jgc g t 5
e _mc w 1 _Imec o~
s r - VTR Tt ( 2T ) (6.3-17)

In our experiment the last term under the radical is negligible. Thus,

for small perturbations the fluctuations take the form of damped

sinusoidal oscillations having a period

27
T = (6.3-183
© c
v/g'm 1
T Tt
o
and 2 damping time
2T
T, = i (6.3~19)
d ge  t
moc
One may obtain an estimate of the greatest number N of

max

pulses which should be observable in a single time constant of the

damped pulse train by maximizing the ratioc N

the gain g . The maximum number occurs when

threshold value or . The result is



1 T .
Nm’;y = ~——2~; \/ ~:——- (6.. 3“‘/_O>
LReL AN ka1 L=
c

In our experiment T 1 microsecond and t_ "™~ 1 nanosecond so that

N v 5 . This suggests that reasonably weak damping should be pos~

g

ible in a xenon laser.
If the laser system includes 2 broad band necise source, the

dominant factor in the laser intensity fluctuvation spectrum correspond-

AP (W) v — - (6.3-21)
B 1 2

T T

This result is obtained from a Fourier transform solution of the rate
equations. TFTor weak damping the center frequency of the fluctuation

spectrum is clearly

(6.3-22)

and the width at half-height of the fluctuation spectrum about this

center frequency is
Ao = —=5 (6.3-23)

So far only the near-threchold homogeneouns limit of equation
(6.2-27) has been considered. It turns out that the homogeneous
approximation is valid in our experiments except at the highest powers.
Far above threshold, however, hole burning becomes important, and the
hole width is intensity dependent. Then 1if the intensity is oscillating

fferent

[

¢

the properties of the oscillations should be significantly
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1

from the homogeneocus results. To Investigate this situvation we con-
el -

R

sider the opposite limit of large a . If the condition 2" >> c¢/2
iz satisfied (for ¢ >> 1), then equation (6.2-27) can be factored

approximately as

2
{(x + az)(xd— 2ex - cz) = 0 (6.3-24)

The real root is spurious, so that in this limit the natural frequen-

cies are governed by the cubic equation

i
o

x3 ~ 2cx -~ ¢ R a2 >> ¢f2 (6.3-25)

The solution of cubic equations is well known and the relevant

results are

(< < + 4

2/3 12 PR YE B R VENI:
7 ¢ 3

MO

Thus, in this inhomogenecus limit the relaxation oscillationsg exhibit
a strongly damped behavicor which is independent of the threshold
parameter a and hence independent of the pumping. This is in sharp

contrast to the strong a

ence of the homogeneous limit given

by equation (6.3-12).

In Figure 6.1 is a plot of the real and imaginary parts of x
found from equation (6.2-27) for ¢ = 1080 , which is a reasonable
value for our experiments with a xenon laser with no attenuators. The
behavior in the homogeneous and inhomogeneous limits is apparent in

the figure, where the limiting forms are determined from equations

(6.3-12) and (6.3-26). The real and imaginary paris of the complex
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Figure 6.1 Real and imaginary parts of the comvlex frequency

x versus a for ¢ = 1080
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frequency x are proportional respectively to the damping and fre-
quency of small amplitude relaxation eoscillations. ZIvidently the
ogscillation frequency reaches a maximum as the saturation is increased
and then approaches the inhomogenecus limit. FEventually, of course,
the width of the hole burned in the population inversion spectrum
becomes comparzble to the Doppler line width as the saturation is
continuously increased. When this occurs, the oscillation behavior
must return to a homogeneous limit, and the approximation of strongly
inhomogeneous broadening made in equation (6.2-20) breaks down. Speci-
fically, this failure occurs when the condition of equation (6.2-29)
ceases fo be satisfied.

In summary, we have obtained solutions for the small perturba-
tion frequencies in an inhomogeneously broadened (AvD >> hole width)
lagser. The important "homogeneous' and "inhomogenecus' limits of this
result were also considered. In our experiments we have used values
of the parameter a between one and about seven. For this range
Figure 6.1 shows that the homogeneous results should provide an ade-
guate description of the oscillation frequency, whereas the general
result would be needed to account for the damping. These conclusions

are checked in the experiment sections of this chapter,



highly reflecting while the right mirror reflected only about four

percent. No confinement of the beam was necessary, since diffract

[

Lon
losses are small compared to other losses. The left mirror could bhe
umiformly translated mechanically along the axis of the laser at
slownesses exceeding 10 seconds per wavelength. The detector was
germanium doped with mercury and cooled by liquid hydrogen. The
detector bandpass was measured to be in excess of 60 MHz. The dis-

charge diameter was 5.5 millimeters, and the pressure was about
5 microns(6'7).

An example of a pulsating output is shown in Figure 6.3. The
photograph was obtained at a discharge current of 40 ma with no addi-~

tional attenuation in the cavity. Many sweeps are recorded in the

picture to give an indication of the degree of stability of the puls-

[

ing. Blurring at the left of the picture represents primarily

amplifier noise, while the increasing fuzziness to the right of the

O]

icture shows that the pulsation period 1
P P .

née

not strictly constant in
this example.

It was found that the stability of the pulsations depends on
the length of the cavity. That is the reason the left mirror is mov-
able. In particular, the undamped pulsations only occur when there is
a longitudinal mode near the center of the gain curve. According to

Section 3.3 the Doppler line width is about 100 MHz, and under pulsing

conditions the laser can only support one or two longitudinal modes.
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Figure 6.2 Experimental setup for time domain measurements.



Figure 6.3 Relaxation osc



Hence the position of these modes can be inferred by monitoring the

&
power output as the mirror is translated. The power is a maximum when

a mode 1is near the center of the gain curve. The pulsation period

2

decreases sl

ehtly as the mode approaches galn center, as expected

from equation (6,3-18), and allof our data were taken near gain center.

In Figure 6.4 is another photograph of the pulsations having a
period of .3 microseconds. Here the fregquency stability is better than
in Figure 6.3, and another effect is also apparent. The pulses alter-
nate regularly in amplitude by about ten percent at half of the
dominant pulse rate. This effect was occasionally observed and may be
due to pulsation of two longitudinal modes at different pulse fre-
guencies.

Also evident in Figures 6.3 and 6.4 are damped secondary pulses
which always follow the dominant pulses. The period of the minor
pulses is always about one-sixth of the major period, and the damping
of the minor pulse train increases with increasing gain. The inter-
pretation of these pulses is not clear. They may be due to the non-
linearity of the rate equations, coupling to another laser level,
transient mode pulling effects, or possibly to pulse breakup resulting
from non-negligible coherence effects.

The depth of modulation is in excess of ninety percent as
determined by periodically blocking the laser beam. The maximum
average power output that could be obtained in the strongly pulsing
regime was about 100 pw as determined with an Eppley thermopile. The

peak power was of the order of one mw. Pulse widths as short as 20

nanoseconds could be obtained at the higher currents.



Figure 6.4 Relaxation oscillations at 50 ma and .5 us per division.



Typical experimental data are summarized in Figure 6.5. The
data were obtained from oscilloscepe displays like Figures 6.3 and 6.4.
The pulse period is plotted as a function of the number of 30 percent
transmission attenuators placed in the cavity for various values of

discharge current. The solid lines are theoretical curves obtained by

rewriting equation {6.3-18) as

(6.46-1)

where g, is the threshold value of gain for n attenuators, g
is the actual gain at the indicated discharge current, and the life-
time is taken to be 1T = 1.2 microseconds. The values of gain are
determined from Figure 6.6.

Figure 6.6 is a plot of gain g versus discharge current. The
experimental values of gain were determined by placing in the cavity
a known number of attenuators (indicated in the figure) and reducing
the discharge current until threshold is reached. The gain can then
be determined by considering the total amount of loss in the cavity.
The gain turned out to be essentially proportional to current and a
straight line was fitted to the data.

From Figure 6.5 it is apparent that the pulse period data
depart significantly from the theory for low levels of discharge
current and low loss. But this is just the regime where the pulsing
is strongest as indicated in Figures 6.3 and 6.4. This discrepancy

may be due to the linearization of the rate equations. When the
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Figure 6.5 Pulsation period versus attenuation for various discharge

currents. Solid lines are theoretical and dashed lines are

fitted to the data points, A typical error bracket is shown,



Figure 6.6 Gain versus discharge current. The number of attenuators

is indicated.
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linearization ceases to be valid, the pulsation period is expected to
be greater than that predicted by the linear theory * : . The fit is
good near threshold where the pulsing is weak and at high currents
where the pulsing is strongly damped.

In concluding this section we suggest that the rate equation
model of equations (6.2-1) and (6.2-2) in the homogeneous limit pro-
vides an adequate description of the pericd of the observed relaxation
oscillations in a high gain xenon laser as expected from the discus-—
sion in Section 6.3. Inhomogeneocus broadening would only be important
at higher saturation levels as shown in Figure 6.1. The value
T = 1.2 microseconds used in fitting the experimental data in Figure
6.5 is in agreement with the value 1.35 microseconds calculated

¢
theoretically by Clark et al‘6'8)

(6.9)

or 1.365 microseconds calculated
recently by Allen et al
The theory predicts weakly damped oscillations, whereas

experimentally the pulsing is sometimes apparently umdamped. There
are basically two possible explanations for the lack of damping.
First, there may be some subtle effect in the high gain laser which

we have not considered in the rate equations and which compensates for
the expected damping, making the equations unstable. The equations as

1
written may be shown by Liapounoff’'s second method(6 0

to be always
stable. Alternatively, the equations may be driven by some 'white'
noise source such as the quantum fluctuations or pump fluctuations

. (6.6) .
discussed by McCumber . One may distinguish between these pos-—

sibilities by examining the frequency spectrum of the laser power

output. If there is an instability in the rate equations, the output



spectrum should consist of well-defined lines at the pulsing frequencs
and its harmonics. However, if the rate equations are driven by
noise, the output gpectrum should resemble that given by equation
(6.3-21). In the following section we describe an experiment in which

SEE

the output spectrum has been measured.
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6.5 Frequency domain experiment

The apparatus used in the frequency domain experiments is
sketched in Figure 6.7. The mixer was used to shift the beat spectrim
upward to a region with less interference. Synchronous detection was

necessary because the signal to noise ratio was poor.

A typical spectrum for the case of pulsing at a discharge cur-
rent of 40 ma is shown in Figure 6.8, The dispersion is 5 MHz per
division and zero frequency is at the center of the displa Thus, the

pulsation frequency is 2.5 MHz, and the spectrum corresponds to the
pulsing shown in Figure 6.3. The spike expected at zero frequency
saturated the spectrum analyzer (Tektronix Type 1L20) and is absent
from the figure. Clearly the linear approximation to the rate equa-

tions is breaking down since six or seven harmonice of the fundamental

frequency are visible in
In Figure 6.9 is a
tions.

Here the spectrum

absent. Thus, the linear

the photograph.

typical spectrum for strongly damped pulsa-
is much broader and the higher harmonics are

approximation is presumably valid, and the

form of the spectrum is in excellent qualitative agreement with equa-
tion (6.3-21).

It is reasonable to inquire whether the rather discrete fre-
quencies of oscillation suggested by the beat spectra of Figure 6.8 are
associated in some way with the laser cavity modes.

First, it is clear

that the longitudinal mode coupling which has been suggested to explain

(6.11)

relaxation oscillations in GaAs cannot apply here, since only one

or two longitudinal modes are present. The other possibility is that

the spectrum observed represents beats between various transverse modes.
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Figure 6.7 Experimental setup for freguency domain measurements,
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Figure 6.8 Beat spectrum at 40O ma with 5 me per division dispersion.

Zero frequency is at the center of the display.
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Figure 6.9 Beat spectrum of strongly damped pulsations with 5 MHz

per division dispersion,
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However, scanning the output with a small aperture showed no change in
the pulsing behavior. Moreover, introducing an aperture inside of the
cavity was found to reduce the pulsation fregquency in exactly the same
fashion as introducing a uniform attenuator, so the laser was belileved
to be operating in a single transverse mode.

The importance of the beat spectrz data is that the width of
the beat lines should be related to the damping predicted by the rate
equations 1f the oscillations are driven by broadband noise. In the
simplest linear homogeneous approximation the line width should be
given by equation (6.3-23). The experimental line width data for zero
attenuation are summarized in Figure 6.10. When the pulsing is non-
linear we use the width of the fundamental beat. This is not
rigorously correct, of course, but it should be all right qualita-
tively.

Both the homogeneous result and the general result from equa-
tion (6.2-26) are plotted in Figure 6.10 for T = 1.2 microseconds and
using values of g determined from Figure 6.6. The data agree well
with the theory only for small currents. For strong saturation the
damping is greater than anticipated. The general theoretical result
provides a slightly better fit than the homogeneous result showing that
inhomogeneous broadening effects (spectral hole burning) are probably
important as expected from the discussion in Section 6.3. The remain-
ing discrepancy may be due partly to the spatial nonuniformity of the

fields which we have neglected here(6'3’6'4>

, low frequency fluctuations
(power supply), or the limited cavity linewidth. Since the observed

Spectra agree at least approximately with the theory, we conclude that
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Figure 6.10
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Pulsation line width as a Tunction of discharge current.
The solid lines are theoretical results and the dashed

line is drawn roughly through the data,
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the inhomogenecus rate equation model driven by broadband noise pro-

ty

vides an adequate explanation for the experimentally observed intens:

¥

fluctuations in a xenon laser.
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6.6 Coherence effects

The purpose of this section 18 to investigate theoretically the
effects of the coherence time on the relaxation of transients in lasers.
As our starting point we use equations (2.2-18) and (2.2-19). To keep
the mathematics tractable we make the approximation that the medium is
effectively homogeneously broadened. Then for radiation at gain center

the governing equations may be written

t—t'
t -—
T
%%.= P - B Vq(t) J e 2 VYq(t™) n(t')de' - %— (6.6-1)
& 1
v - t;t'
1G] [ e ZVAGED ae) ar' - L (6.6-2)

Cc

-0

where Tl and T2 are the phenomenological spontaneous decay time and

transverse coherence time respectively.,
. . (6.12)
Equations (6.6-1) and (6.6-2) may be differentiated and
combined with the original equations to obtain the pair of nonlinear

second order equations

2

d™n 1 1 1 dg, dn 1 1 dqg 1 1 dq
St Gt =D B - s - e
dt2 T2 Tl 2q dt’ dt Tle 2q dt T2 2q dt
(6.6-3)

d®q¢ . 1 . 1 1 dg, dq, ,1

+ (=t = - ) + ( - Bn)q = O (6.6-4)
dtz T2 2tC 2q dt’ dt thc
It ig useful to introduce the additional parameters m = %% and

p = %% . Then equations (6.6-3) and (6.6-4) may be written as the

system of four first order equations



@ 43%7%}:’*% - flﬂ;gxw%q-%%}n ¥ é;wz,:m

%E—= - (%+%Z'%§)p" (th ~ Bnlq

o,

gt

g%‘= b (6.6-5)

Equations (6.6-5) can't be solved in general, and we only
obtain here the solutions to the linearized equations. These
solutions yield the behavior of the population inversion and
photon density in the vicinity of an equilibrium point of the
system. With the substitutions m = m'(t), p =p'(t), n = n + n' (L),

= q, + q'(t), and the retention of only the terms through first
order in the primed quantities, equations (6.6-5) are changed into

the linear system
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Thus the steady state results are

o
e o RT
P T, ' BLZ 9, 7,
L. BT (6.6-7
£ 2% (6.6-7)

Combining equations (6.6-7) with equations (6.6-6) vields

the array

mt p’ a' q'

dm?® 1 1 1 a 1

Bor g+ GO AT )

at Tz Tl Ztc Tsz thc

_C}E.'. - 0 - _3:_ _,l.__ a-1 0

dt T2 ZtC Tsz

éﬁl = 1 0 0 0]

dte

dg' - -
P 0 1 0 0 (6.6-8)

where the parameter a = PBTletC has been introduced. This

parameter indicates the operating point of the laser with respect
to thresheld. From equations (6.6-7) the threshold condition
(qo = 0) is clearly a = 1.

The natural frequencies of equations (6.6-8) are ob-

tained as the eigenvalues of the corresponding matrix or



N 1 1 2 1
-7+ ) -s - S - -7
Tz .i.l ZtC Tsz J_ZEC
0 - s o 0
2 c “1v2
=0
1 0 -8 0
0 1 0 -3
(6.6-9)
Expanding equation (6.6-9) in cofactors leads to the quartic
equation
4 3.2 1 1 2,1 a-+ 1 1 1
g + a ( + + =) + 8 (= + + + )
TZ Tl ZtC TZLZ Tle 2T tc ZTltc
2a - 1 a a -1
+ s( + ) + =0 (6.6-10)
2T2Tltc TZTZTl TszTltc
One finds (eventually) that this equation may be
factored into
1 3 2,1 1 1 a 1 a - 1
s+ ==1ls” + o (G—+ 57—+ 55)+ s( + Y+ T 1=0
T2 Tz Tl 2tc Tle ZTltC TletC
(6.6-11)

The first factor represents a strongly damped real solution which

we need not consider further. Thus, the equation governing the
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natural relaxation frequenciles 1s the cubic

T = 0 (6.6-12)

Equation (6.6-12) cannot be factored simply, so we
consider instead two important limiting cases. First of all, if
the transverse relaxation time is short, Tz << tC (and tc << Tl)’

then equation {(6.6-12) may be factored approximately into

<s+%a<§-w%-s+§;l
2 1 17¢

Yy = 0 (6.6-13)

Again we discard the damped real solution and are left with the

quadratic

£+ 2 g4 = 0 (6.6-14)

But equation (6.6-14) is the same as equation (6.3-3), and one may
regard this result as the '"incoherent" limit of equation (6.6-12).
It is solved in section 6.3. That this result should be obtained

in the limit of small T2 is, of course, to be expected and

represents a check on the preceding mathematics.
Now we consider the "coherent' limit. If the transverse

relaxation time is long, T, >> atc, then equation (6.6-12) may

2

be factored approximately into

[s+ 5%~][s2 + %—~s +-3%§%£l] ~ 0 (6.6-15)
c 1 1°2
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The strongly damped real factor may be discarded and one is left

with the quadratic

& +%— 6+ 2—,%%1—)— -0 (6.6-16)
1 1%

The solutions are

(6.6-17)

Equation (6.6-17) is qualitatively similar to the incoherent

solution given by equation (6.3-13). In both results the

frequency increases as the laser is operated farther above thresh-
old. However, in equation (6.6-17) the damping is independent

of the operating point. In a low pressure gas laser pressure
broadening is unimportant and the two lifetimes are approximately
related by T2/2 ~ T. =T provided that the displacement of the atoms

1

in one lifetime is unimportant. Then equation (6.6-17) simplifies to

s=-tyilal, 2 -
& = 2Tifc§%}2a 7 (6.6-18)

In most laser systems which exhibit relaxation phenomena
the coherence time is much shorter than the cavity lifetime tc’
so that the incoherent approximation given in equation (6.6-14) is
valid. Possible exceptions might be the high gain semiconductor
or gas lasers where the cavity lifetime may be comparable to T2
and the condition T, << tC will fail. This derivation was in-—

2

cluded here primarily as a simple application of the coherent
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rate equations. The techniques of this chapter could be generalized
in a straightforward fashion to include both inhomogeneous broaden-
ing and a finite coherence time, but the mathematics would be more
complicated,

In our experiments with a xenon laser it was found that
equation (6.3-13) provides a much better fit to the data than does
equation (6.6-18) using the calculated values for the lifetime
16-8: 6.9)  mpe veason for this result is presumably that at thermal
velocities (~ 200 meters per second) the atoms move a half wavelength in

a time much shorter than the natural lifetime, and the ccherence time

T2 is reduced accordingly.
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6.7 Conclusion
In this chapter general theoretical results have been
derived for relaxation oscillations in inhomogeneously broadened
lasers. The behavior of the oscillations is conveniently classi~

fied as either "honogeneous" or "inhomogeneous"

depending on the
level of saturation. Relaxation phenomena have been observed
experimentally in a high gain xenon laser at 3.51 microns. At
low current levels there are regular undamped pulsations while
witﬁ large currents and strong saturation the pulsations are
damped. The period of these pulsations agrees well with the re-
sults of the rate equation theory. In the frequency domain the
beat spectrum changes gradually from several discrete lines in
the nonlinear pulsation regime to a single broad line as the
saturation increases. This behavior is in qualitative agreement
with the model if a broadband noise source is included. The
effects of a long coherence time on the pulsation behavior have
also been studied theoretically for a homogeneously broadened
laser. It turns out that even in this limit the pulsations should

be qualitatively similar to those in a simple incoherent homo-

geneous system.
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VII. 0Oscillation Line Width

7.1 Introduction

The purpose of this chapter is to investigate theoretically
and experimentally the effects of a high gain laser medium on the
output radiation line width of a laser oscillator. The results for
the oscillation line width of low gain lasers are well known.
Typically the calculations are carried out by analogy with a re-

(7'1>, One finds that the line width is

sonant electrical circuit
proportional to the square of the empty cavity line width and
inversely propoertional to the energy in the laser field.

In a high gain laser the results may be significantly
different. Under some conditions the line width may increase with
increasing power, which is the opposite of the low gain behavior.

The cause of these new effects is the dispersion which 1s associated
with a narrow high gain laser transition. We begin with a general
analysis of the oscillation conditions which must be satisfied in

a one dimensional laser independent of any dispersion considerations.
In the limit of low gain and no dispersion the theoretical line
width reduces to the well known value.

The oscillation line width in unsaturated high gain lasers
is then treated including dispersion effects. The osclllation line
may be much broader or narrower than the nondispersed value de-
pending on the relation of the oscillation center frequency to the
gain center frequency. If saturation is substantial in an inhomo-

geneously broadened medium, then hole burning effects must also be

considered. In a laser with a very intense oscillation line the
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dispersion associated with the burned hole may make it possible for
the cavity to support new oscillation frequencies in the wings of
the hole. The overall effect is believed to be a strong broadening
of the laser line whenever the gain is high and hole burning is
important. This conclusion is supported by an experiment which
shows a broadening of the oscillation line in a xenon laser by a

factor of sbout five as saturation is increased.



7.2 O0Oscilliation line width

In this section general expressions are obtained for the
oscillation conditions and the oscillation line width of a laser
oscillator containing a high gain amplifying medium. The analysis
is essentially one dimensional. It is based on the transmission
characteristics of a plane parallel Fabry-Perot resonator.

We assume that an electromagnetic wave of amplitude Ei
is incident on the resonator from the left and a wave of amplitude
Et is transmitted through the resonator. The propagation of the

wave is governed by a relation of the form

E=Ee
[0}

-ifkdz (7.2-1)

where Lk 1s the slowly varying complex propagation constant. The
transmission and reflection coefficients of the right and left
mirrors of the resonator are respectively tg’ Tps tos and r_.
One can write down immediately that the transmitted field is

related to the incident field by

L
—ij kdz

~i§kdz
E_= tpt Eie 0 (1 + (rzrr)e

—Ziékdz
+ (rzrr) e

(7.2-2)

where L 1s the length of the resonator and the closed integral
indicates one loop through the resonator. The first term in the
parentheses represents light which travels directly through the

resonator, the second term represents light which makes one extra

+ ..)
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loop through the resonator, and so on.
Equation (7.2-2) is a geometric series which may be readily

summed. The result may be written

{L
-t i
E ljgdz
t Te
= (7.2-3>
By, [
- ~iokdz
1 - Re
where the net transmission coefficient T d1s defined by T = t,t

and the net reflection coefficient R 1is defined by R = LyT .
Experimentally the intensity is z more useful quantity than the
electric field, But the intemsity is proportional to the sguare
of the absolute magnitude of the electric field. Therefore, the
Fabry-Perot intensity transmission coefficient may be found as the

product of equation (7.2-3) and its complex conjugate or

%*
* » .
T 5T ljkdz 1fk dz )
t tt Te Te (7.2-4)
T T % ‘ ,

The constant k 1s separated inteo 1lts real and imaginary

parts according to
k=vy+ ia (7.2-5)

Then equation (7.2-4) simplifies to



2Ja&z
EE., Tze 0
= . - -
Ii }gcxdz —-iéydz)< j?)oz,dz :;c;{)ydz‘
1 - Re e 1 -~ Re e
L
ZJudz
2
- TeO (7.2-6)
Zéadz éddz
J J
1+ Rze' -2Re cosoydz
Using a half-angle formula this becomes
L
ZJadz
I 2
£ Tel (7.2-7)
Ii

< %ad%)z %udz "
1 ~ Re + 4Re sinzfggz

Oscillation may be defined as the condition wherein there
is an output from the Fabry-Perot resonator in the absence of any
input. This is only possible when the denominator of equation (7.2-7)

vanishes. The denominator is zero if the gain condition
%adz
1 - Re = 0 (7.2-8)

and the phase condition

f
fydz = 2™Tm (7.2-9)
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with m an integer are both satisfied. This phase condition was
the basis of the discussion of longitudinal modes in Chapter IV.

The preceding analysis neglected the effects of spontaneous
emigsion. In any real laser oscilillator spontaneous emission adds
energy to the oscillation field. As a consequence, neither the gain
condition nor the phase condition of equations (7.2-8) and (7.2-9)
are rigorously satisfied. Equation (7.2~9) determines only the
center frequency of the oscillation field (Chapter IV), but it is
also possible for nearby frequencies to exist in the resonateor. In
other words, the radiation field has a nonzero frequency width.

To find the oscillation line width, we consider again
equation (7.2-7). The Fabry-Perot transmission falls to one half

of its line center value when Y 1g determined by

2
< ?{ond z> %ocdz 9 Ylé
1l - Re = 4Re sin % §~dz - mT (7.2-10)

If spontaneous emission is relatively weak, then the sine function
in equation (7.2-10) must be small. In this case the sine may be

replaced by its argument and equation (7.2-10) becomes

%adz
%Y;dz - 2m™m = 1 - Re (7.2-11)
2

This equation may also be written

[
?de
§Ay%dz = 2<; - Re > (7.2-12)
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where Ay,  is the full width of the resonance in units of .
2
The factor in parentheses represents the fraction of the field
which was not fed back by the mirrors and amplifying medium and
must therefore be due to spontaneous emission.
If the index of refraction is nearly independent of fre-

quency over the oscillation line width, equation (7.2-12) is

[

c\l - Re’

ﬂénéz

This is the general result for the oscillation line width of a

Av

il

(7.2-12)

laser provided that the spontaneous emission per pass is small
compared to the total laser field and dispersion effects are un-

important. In a low gain laser equation (7.2-13) reduces to

f
cél - R - éadz)

hv = (7.2-14)
Wéndz
d
If there is no gain at all we have simply
A\)c = M (7.2-15)

ﬂ%ndz

where AVC is referred to as the cavity line width.
Equation (7.2-13) is a general expression for the oscil-

lation line width, but it is not useful unleass the detailed =z
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dependence of the saturated gain o is known. This result can be

obtained, in principle, from the equation

et 201 + 2no (7.2-16)

where the saturated gain o 1s a function of the intensity 1.
Throughout this chapter distributed losses are assumed to be
negligible. The generalization to lasers with large distributed
losées is elementary and only clutters the mathematics. The last
term in equation (7.2-16) represents the contribution of spon-
taneous emission, which is proportional to the population inversion
and hence to the gain also. The factor N measures the relative
importance of spontaneous and stimulated emission. Some geo-
metrical considerations are necessary in determining 1n since in
typical lasers only a small fraction of the total spontaneous
emission is dirécted in such a way as to contribute to the total
laser field. We do not need numerical results so n isn't
evaluated here.

Equation (7.2-16) can be divided by I and "integrated"

to obtain

ya .
2f 2 a+ D az

21
1(22) = I(zl)e (7.2-17)

The oscillation gain condition for the intensity is that

the field reproduce itself after one round trip so that



[ n
2 2(%?0&(1 + ;’)dz
1 - R7e™ - = 0 (7.2-18)

Facteoring this equation yields the amplitude condition

%&{l + g}dz
4

1~ Re = 0 (7.2-19>

or
¢ \
é&dz é&dz @@g dz E
1 - Re’ = Re’ e’ —;/ (7.2-20)

Far above threshold the spontaneous emission is relatively weak

and equation (7.2-20) simplifies to

%adz o
1 - Re =7 é E—dz (7.2-21)

Then from equation (7.2-13) the oscillation line width of a high

gain laser is given by

Av (7.2-22)

it
=3

mondz

To evaluate equation (7.2-22), it is still necessary to know
the =z dependences of o and I. Less accuracy is needed, however,
than for evaluation of the small difference term in equation (7.2-13).

In particular, o and I can be determined from the equation



which is the same as equation (7.2-16) with spontaneous emission
neglected, The boundary conditions are provided by the laser
mirrors. Some solutions of equation (7.2-23) for specific types
of saturation are discussed in Chapter X, and they needn't be con-
sidered further here.

In & low gain laser these results simplify. The intensity

is approximately constant and equation (7.2-22) can be written

r
c@adz

Av = %-—?~n~ (7.2-24)
ﬂ?ndz

The loop gain is nearly equal to the mirror transmission losses

so that equation (7.2-24) becomes

1 -
py =D =R (7.2-25)
- ﬂ%ndz
4
Using equation (7.2-15), this is simply
nAvC
Ay = "“f"" (7.2—-26)

This result has the same intensity dependence as the solution of the

circuit model laser analogue(7°l). This comparison with the cir-

cuit model would probably provide the simplest means of evaluating



the coefficient n.

In this section the gain and phase oscillation conditions
have been derived for a one dimensional Fabry-Perot resonator con-
taining a2 high gain laser medium. General expressions have also
been obtained for the oscillation line width of such a resonator.
In the limit of a low gain medium with no dispersion the line width
is proportional to the square of the cavity line width and inverse-~
ly proportional to the energy in the laser cavity. This well
known result is ordinarily derived indirectly from a circuit model
analogy. The circuit model, however, is basically a zero dimen-
sional approximation, which is incapable of accurately treating

the high gain lasers of interest here.



7.3 Dispersion effects

In this section we consider the effects of anomalous
dispersion on the oscillation line width of an unsaturated laser.
The general implicit expression for the oscillation line width

is given, according to equation (7.2-12) by

%adz}
%A\q/dz = 2(1 - Re (7.3-1)
J 2

/
Also, the general expression for the longitudinal mode spacing,

equation (7.2-9), may be written
%Aydz = 21 (7.3-2)

These two equations are essentially identical in form provided that
the gain o in equation (7.3-1) is independent of frequency over
the oscillation line width. Thus, we have the reasonable result
that changes in mode spacing due to dispersion are accompanied by
proportionate changes in line width. In other words, the Fabry-
Perot finesse is unaffected by dispersion in any frequency interval
which is small compared to the overall gain line width.

We consider first the case of a Doppler broadened inhomo-
geneous gain line. For this purpose one may adapt the mode pulling
results of section 4.2 since the mode spacing is proportional to the
line width. Expansion of equation (4.2-5) to first order in a

Taylor series for a narrow line ylelds



e, = | & (BFG) + 0] Ax
or
Axo
by = (7.3-3)
aF
|1+ BE;'I

which expresses the relationship between the actual oscillation line
width Ax and the nondispersed line width AxO. F(x) 1is Dawson's
integral and B dis the dispersion parameter defined by Equation
(4.2-6).

The factor }l + B(c},}:"/d}‘:}f"l is plotted as a function of
frequency for three values of B in Figure 7.1. For B = 0 the
line width has 1ts nondispersed value. At higher values of B the
lines are narrowed near gain center and broadened in the gain wings.
When B 1is greater than 3.51 (by analogy with the mode splitting
results of Chapter IV), singularities appear in the dispersion
factor of equation (7.3-3). The line width cannot actually go to
infinity, of course. To properly study the behavior of the line in
the vicinity of a singularity of equation (7.3-3), it is necessary
to retain another term in the Taylor series expansion. Solution

of the resultant quadratic leads to the expression which is every-

where finite

2
dF dF. 2 d’F
l+8‘&"£~ (l+BE}~(—)+ZB;"~2—AXO
Ax = 5 X
8 d°F (7.3-4)
dxz




dF -1
+B—é‘3{-‘

Figure 7.1 Dispersion factor l 1 for three values of B
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Equation (7.3-4) is the same as equation (7.3-3) in the limit
Axo * 0. The derivative terms in these equations could be gim-
plified using equation (2.6-10). For the degenerate case
B = 3.51 the third derivative term in the Taylor series must be
retained to prevent ambiguity at the inflection point
dZF/dxz = 0.

So far only Doppler broadened lasers have been considered.
The results for homogeneously broadened lasers are qualitatively
the same. They may be obtained from equations (7.3-3) and (7.3-4)
by replacing Dawson's integral F(x) by y/(1+y2) and changing
B to B' in analogy with the analysis of Section 4.3. Thus

equation (7.3-3) becomes

Ay = l (7.3-5)

Since these results are similar to those for an inhomogeneously
broadened laser, we do not consider them further.

In this section we have considered the dependence of the
oscillation line width on the dispersion associated with an un-
saturated high gain transition. It was shown that the line width
may differ greatly from the line width which would be expected if
dispersion effects were neglected. The line width is either in-
creased or diminished depending on the relation of the oscillation

frequency to the transition center frequency.



7.4 Saturation effects

By this point it is probably clear that the calculation of
the oscillation line width may be quite complicated. In this section
we consider in a somewhat qualitative way an additional complication
which may result from saturation. The dispersion in a2 high gain
laser depends on the field intensity, and as a result the dispersion
sensitive line width may have a strong saturation dependence. This
effect is in addition to the basic intensity dependence described
in Section 7.2, which was caused by spontaneous emission. We find
that in a2 high gain inhomogeneously broadened laser the oscillation
line width may under some conditions be roughly equal to the width
of the spectral hole burned by the radiation.

If the oscillation line width is small compared to the
homogeneous line width, then the 1ndex of refraction of an inhomo-
geneously broadened medium with a single saturating field at the

frequency %y is governed by equation (2.7-18)

(7.4-1)

To simplify the problem, we assume that the radiation is at gain
center. Then Xp = £ and using equations (4.2-4) and (4.2-6) one

can write



X - x = BIF(x) +_1€§ / 2S§5 %) <; 2+ sl + 62\%
° % \s1 + 697 + 40 /TT5T /]
or
2\1
dm-5=ggiﬁé§l+ﬁ/ s18 \/__2+sl+<§__\§
i

I € 2 \¢a1 + 65% + 5%/ \ ST er /|

For radiation very near to gain center (§ + 0) equation

(7.4-2) simplifies to

6m—6=665{1+ i -——z—i-—si]; (7.4-3)
| 2esI /I sij|

Since the line width Av is proportiomal to AS, one finds

]

Av (7.4-4)

Av
o]
2 + s1

(s - )]

1+ B[1 +
e

The z dependence of the intensity is complicated, and for simplicity
we neglect the averaging which appears in equation (7.4-4). The
results should still be qualitatively correct.

A plot of the coefficient of Avo from equation (7.4-4) as
a function of sI is given in Figure 7.2 for B = 10, The natural
damping ratio € was chosen to be .0083, which is the value roughly
appropriate to a xenon laser at 3.51 microns (AvD ~ 100MHz,
Avh ~ IMHz). In the limit of no saturation (¢TI = Q) the line width

is reduced by a factor of eleven in agreement with the unsaturated



—

Figure 7.2 Dispersion factor at line center from equation (7.4-4)

versus sI for B = 10
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line width results of Figure 7.1. As saturation becomes important,
the line width increases past its nondilspersed value to infinity.
The line width doesn't actually go to infinity, of course, because
the analysis breaks down when the line width becomes comparable to
the radiation broadened homogeneous line width.

To look at the saturation broadening somewhat differently

we write equation (7.4-2) as

m _ F(eb) . {i g sI§ } {2 _ 2+ s8I+ 52
2e

B € (sI + 62)2 + 462j i

+ 81

[

| S——

(7.4-5)

Graphical solutions of equation (7.4-3) are shown in Figure 7.3
for various values of sl with £ = 10 and € = .0083. For
sI = 0 there is no saturation and the figure 1s the same (except
for scale) as Figure 4.lc. As sI increases the slopes of the Jeft
and right sides of equation (7.4-5) become more nearly equal and
the line broadening shown in Figure 7.2 results. For sufficiently
high intensity the right side is steeper than the left and as a
consequence the mode splits into three. Thus the presence of an
intense monochromatic field makes possible laser osclillation at
neighboring frequencies. This situation is not particularly
physical because the neighboring lines will themselves saturate
causing further modification of the dispersion profile.

The purpose of the preceding discussion has been to make
plausible the following assertion. The onset of saturation results

in a broadening of the oscillation line from its dispersion-narrowed
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Figure 7.3 Graphlcal solution for mode splitting caused by a single

intonse monochromatic fleld,
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value to a value comparable to the width of the hole burned in the
galn spectrum. With increasing intensity the line continues to
broaden following the increasing hole width. It is the hole width,
of course, which characterizes the frequency regime which is
affected by the saturation. A rigorous treatment of this problem
would require a complicated computer solution which we have not
attempted. The conslderations given here provide an adequate
description of the experimentally observed saturation broadening
which is described in the next section. From equation (7.4~4) it
is evident that if the natural damping ratio is too large, satu-
ration broadening cannot be important.

For extremely intense fields the entire gain line would be
burned down and dispersion effects would vanish. Thus in a very
high Q cavity the line width would return to its nondispersed
value. This situation is not conveniently attainable in our laser
system and we do not consider it further. Also, we have only
treated here the case of a strongly inhomogeneous laser transition.
For the opposite limit of a homogeneous transition the line re-
mains Lorentzian and the results of the previous section can, with
slight modifications, be applied.

In this section we have shown 1in a nonrigorous fashion
that the oscillation line width of a high gain inhomogeneously
broadened laser is expected to increase with increasing satu-
ration in contrast to the generally accepted theoretical behavior
which predicts a narrowing. The line width increases rapidly until
it is roughly equal to the width of the hole in the gain spectrum.

It is then expected to increase at the same rate as the average hole
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width. The hole width is given by equation (2.7-25) as

Avhole = Avh (1 + V1 + sI) (7.4~6)

Thus for intense fields the line width should grow as the square

root of the intensity.



7.5 Experiment

The apparatus used in the line width measurements was
identical to that described in Section 4.5 in connection with the
mode pulling experiments and the description is omitted here. If
the laser were oscillating in a single longitudinal mode, there
would be a beat spectrum pear D.C. the width of which would be
a measure of the oscillation line width. The spectrum analyzer
used was insensitive near D.C., however, so the line width mea-
surements could not be made in this way. Instead, the laser was
adjusted to operate on two longitudinal modes, and the line width
was inferred from the width of the beat between the modes.

The beat spectrum is related to the oscillation spectrum

by the convolution integral(7‘2)

S(V) ~ I”I(Q)I(g + v)dg (7.5-1)
o

In particular, if the oscillation spectrum is roughly Gaussian in
shape, one can show that the beat spectrum will also be a Gaussian
which is broader by a factor of the square root of two. In our
experiments the beat frequency is usually not especially Gaussian-
looking, but the width of the beat is nevertheless expected to be
a reasonable measure of the oscillation line width. The factor
Y2 is also ignored since only qualitative agreement with the satu-
ration broadening theory is sought.

A typical beat spectrum is shown in Figure 4.3. Thus, the
beat in this case occurs at about 46 MHz and has a width of about

1 MHz. Some experimental data are collected in Figure 7.4. The
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Figure 7.4 Beat line width versus the square root of output power

and some typical error brackets.
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values were obtained by varying the discharge current (gain) and
using no additional attenuation in the cavity. A straight line

is roughly fitted to the data in accordance with the high intensity
limit of equation (7.4-6).

Errors in the line width data are substantial, particularly
when the saturation is strong. The primary cause of these un-
certainties is the somewhat irregular shape of the beat spectrum.
These irregularities are not well understood. Probable contributors
are the non-Gaussian gain line resulting from isotope shifts and
hyperfine structure, and relaxation oscillations. It is presumably
this broad oscillation line width which makes possible the high
frequency relaxation oscillations described in Chapter VI. Addi-
tional work on the relation between the line width and the in-
tensity fluctuations would probably be justified.

The good agreement between the theory and the data supports
the conclusion that the saturating line width is roughly equal to
the hole width. According to equation (6.2-28), the hole width
is given by Avhole = aAvh where a is the threshold parameter.
With our apparatus values of a of up to six or seven should be
obtainable. This factor agrees well with the maximum amount of
saturation broadening we have observed. From section 3.2 the
howogeneous line width is about 4 MHz, so that the oscillation
line width is in semiquantitative agreement with the hole width
for strong saturation. For weak saturation the oscillation line
width may be less than the homogeneous line width since saturation
broadening is then unimportant. Measurements of the line width

at intensities far below the saturation level have not been possible



A

due to insufficient sensitivity of our equipment.
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7.6 Conelusion

It was shown in this chapter that the oscillation line
width of a high gain laser may differ widely from that expected
on the basis of a circuilt model treatment, even 1f dispersion
effects are ignored. Dispersion can lead to an additional nar-
rowing or broadening of the laser line. In a strongly saturated
laser which is primarily inhomogeneously broadened the line width
tends to follow the hole width. An experiment was performed which

supports this conclusion.
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VIII. Spectral Narrowing
8.1 Introduction

Spectral narrowing refers to the fact that under some circum-
stances radiation incident on a laser amplifier or generated within an
amplifier will emerge with a narrower spectrum than it started with.
In high gain lasers spectral narrowing may be substantial. This
phenomenon is well known and it has recently found application in high

: (8.1) . . L
resolution spectroscopy . Spectral narvowing con provide a highly
stable and monochromatic light source. The applications of such a

. (8.2) ,
frequency standard in metrology are well known . Comparison of
the input and output spectra of a laser amplifier might provide a sen~
sitive indirect measurement of the amplifier gain. The narrowing of
transition line profiles due to radiation fields has been considered

(8.3) .
by Feld and Javan . The narrowing of net gain in unsaturated
amplifiers has been treated experimentally and theoretically by
b
Hotz<8 ).

The purpose of this chapter is to study in some detail the
influence of an amplifying medium on a spectral continuum including
the effects of saturation and distributed loss. Emphasis is placed on
the important problem of superradiance, but narrowing in other ampli-
fiers and oscillators is also considered and limiting line widths are
determined. It is found that in unsaturated amplifiers the narrowing
is essentlally independent of the resonance broadening mechanism and

the narrowed line approaches g Gausszslan. The onset of saturation

slows or reverses the narrowing process. Attention 1s mostly
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restricted to illustrative limiting cases when the general solutions

become mathematically tedious and of limited practical interest.
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8.2 Unegaturated amplifiers

In an unsaturated amplifier the growth of an Intensity continuum
I(yz) is governed by

dI(y,,2)

—, = e(yy) I(y,,z) - elly,.2z) + nelyy) (8.2-1)
where Yy is the homogeneocus frequency difference which is defined
following equation (2.5-4) and I(yg) ig the intensity per unit fre-

S,

[N

quency range. The unsaturated incremental gain spectrum g(yz)
for simplicity, assumed to be independent of the distance =z . The
second term on the right side of eguation (8.2-1) represents distri-
buted losses. The last term is the spontaneous emission, which has
the same frequency dependence g(yz) as the incremental gain. This
one-~dimensional approximation is valid in narrow amplifiers. The
coefficient n 1is then proportional to the spontaneocus emission rate
and to a geometrical factor which depends on the amplifier dimensions.
Solving for an amplifier of length =z vyields
[e(yy) -alz  ngly,) lg(yy) -alz
i(yg,2) = I(yy,0) e + —(e - 1)

gly,) ~a
. (8.2-2)

Superradiance will be considered first. In a superradiant
source there is no input, and if losses are negligible equation

(8.2-2) simplifies to

g(yz)z
I(y%az) = ﬂ(e - l) (8'2"3}

Defining f(yz) as the fraction of the line center intensity at the



i

3}

=

\O
i

frequency Yy yields
v z
{:( Y - —.-..L(YQ,,Z) N eg(yz) - 1 (8 2-4)
TV T TI0E) T g0 T
From equation (2.4-9) one has an expression for g{yg) in the limit
l(yg/) - 0
2.2
k e i
g(y£> = ;f 5 dy (8.2-5)
_..ool+(y_y£>

Most lasers can be classed as

where k is the pumping constant.
either homogeneously or inhomogeneocusly broadened, so these important

limiting cases will be considered first.
For homogeneous broadening (€ >> 1) the Lorentzian in equation

(8.2-5) may be taken outside of the integral with the result
(8.2-6)

- ok L

g(y,) = —
%" hom /el + yi
1/2 leads to an expres-

Combining this with equation (8.2-4) for f =
sion for the line width as a function of =z
kz 1
Ayhom ZyQ% = 2 ~ T ~ 1 (8.2-7)
e 1, Jr e
1n'§(e + 1)
or
kz 1
2 -1 (8.2-8)

Avhom = Avh =
In %(e/F.e + 1)

For short distances ¢ kz << 1} the line width given by equation
T £
For long distances

(8.2-8) is just the homogeneous line width Avh
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(JEZ >> 1) where the narrowing effect becomes important, eguation
m e
{8.2-8) simplifies to
YT €
b (8,2~
Avhom Avh g in 2 (8.2-9)

A\)hom kz
iy is plotted versus the normalized distance Zhom e e

h ) /T e 1n 2

in Figure 8.1. The approximate result given by equation (8.2-9)
becomes valid after the width is narrowed to about one half of its
initial value.

For an inhomogeneously broadened amplifier (€ << 1) the
Gaussian in equation (8.2-53) may be taken outside of the integral with

the result

8(yg) oy = ke (8.2-10)

Combining this with equation (8.2-4) for f = 1/2 vyields

]

2 ; . 1, kz ,
Ayinhom = J/ln kz - In In 2(e +1) (8.2-11)

or

Av

1, kz
i nhom AvD J/ln kz - In In E(e + 1) (8.2-12)

For short distances (kz << 1) the width of the emission is equal to the

Doppler width AvD . For long distances (kz >> 1) one finds

- 1
Avinhom = AvD - (8.2-13)
A plot of Av, /Av_ versus the dimensionless distance Z, = kz
inhom D inhom

also appears in Figure 8.1.



Figure 8.1 Superradiant narrowing versus distance.
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The similarity of the plets in Figure 8.1 suggests the non-
intuitive result that narrowing proceeds in shout the same fashion
independent of the line broadening mechanisms. In fact, if the coef-
ficient f had been carried through the algebra, both equations

(8.2-9) and (8.2-13) could have been written in the form

[ - 1In f
AVES \)0 Y \ — (8.2-14)

where V 1is the frequency at which the spectrum is down to the frac-
tion f of its line center value. Solving equation (8.2-14) for
f(v—vo) shows that at large distances the spectrum becomes Gaussian
for both homogeneous and inhomogeneous broadening in contrast to a

(8'1). The reason for this behavior is that

conclusion of Parks et al
the narrowed line interacts only with the center of the resonance
line. For both the Lorentzian and Gaussian lines the center of the
line is roughly quadratic in frequency and a quadratic gain supports
a narrowing Gaussian spectrum.

To verify the preceding conclusions, one may consider a com-
pletely general incremental gain function g(yl) with a maximum at

the frequency Vo = 0 . Assuming that g(yz) is differentiable in

the neighborhood of zero, it may be expanded as

2 3 4
B(yp) =8, = 8y * 83¥p * 8, * - (8.2-15)

where g, and g, are positive. The spectrum of the superradiance

is given by equation (8.2-4) as



(8~ 8,5y + 84y, + +++12
£(y.) = e - 1
) 8,2
e -1
..(Z& 2 (Z_’QL 3 A
g 2 A, Aq ()
_ e e e e i _
= s 2 (8.2-16)
e ° . 1
1/n

where An = (zgn)
At large distances the zero order terms cancel, leaving

o2 Yy
)T G

4
2 3 )
f(yg) = 2 e e e (8.2-17)

Also, at very large distances one finds that An << An+l so that the
Gaussian factor is much narrower than the others. Cousequently, all

of the factors but the first may be replaced with their value at line

center. Therefore,

%2
AZ 1
£y = e , A, = (8.2-18)
Yo, .7
22

This is in agreement with the previous results for homogeneous and
inhomogeneous broadening as may be verified by expanding g(yz) of
equations (8.2-6) and (8.2-10) in power series in Yo to obtain g,

Tﬁe expression for the incremental gain g(yz) in a laser with
an arbitrary amount of Doppler broadening given by equation (8.2-5)

contains only even terms as can be seen by writing it as
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2 o« 22

gly,) =— e f —~————— cosh (2e7ty,)dt (8.2-19)

L T 1+ tz 2
s s

with t =y - y,. The first terms in the expansion for (y,) can then
) By

be written as

) (8.2-20)

This form for the quadratic may be useful when the integral for 8
can be approximated. Equation (8.2-20) can be shown to agree with
equation (8.2-6) in the homogeneous limit (€ >> 1) and with equation
(8.2-10) in the inhomogeneous limit (& << 1) near line center. More
generally if the incremental gain has several maxima, we expect the
emission to eventually resolve itself into narrowing Gaussian lines
centered on the gain maxima. This resolving effect has been observed
by Parks et 31(8.1).

So far only superradiance has been considered. If an amplifier
has an input I(yQ,O) and negligible spontaneous emission, equation

(8.2-4) for the output light spectrum is replaced by

I(YR,O) eg(YQ)Z
f (yg,z) = 10,0 i (8.2-21)
e

At large distances this is

V.2
' I(y,,0) ”(K;)
f (y,Q,’Z) ~ m*- e . A2 = (8.2-22)




- 255 -

If the input is reasonably smooth the output spectrum is simply

£'(y,,2) = e (8.2-23)

If the input is a narrow Gaussian of width Ain’ the output will be a

Gaussian of width A such that
out

1 .2, 1.2, 1.2 _

out in 2

The concept of gain narrowing is sometimes useful instead of
spectral narrowing. The two are obviously closely related. If one
assumes that the input spectrum in equation (8.2~-21) is white, then
the intensity factors cancel and f'(yz) is a general expression for
the gain spectrum of an amplifier normalized to unity on line center.
Expressions for the gain line width, for example, are then obtained
by setting f equal to one half and solving equation (8.2-21) for
Yg 1/2° For an inhomogeneously broadened amplifier the results may
be made to conform with those of Hotz(s'a).

In summary, one may conclude that in an unsaturated amplifier
the width of the amplified spectrum decreases with distance. The
shape of the spectrum approaches a Gaussian as the effective part of
the gain approaches a gquadratic. As an example, in a helium-xenon

discharge the gain may be 400 dB/m(g'S)

or nearly k = 100 so that
the spectrum of a superradiant source one meter long would be narrowed
according to equation (8.2-13) by a factor of ten provided saturation

did not occur. From Section 3.3 the Doppler width of xenon at room

temperature is about AvD = 100 MHz so the narrowed radiation would
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have a width of about 10 MHz. Since the frequency of the 3.51 micron
transition is about 108 MHz, the light would be monochromatic to a

part in 107. Jagseja et 31(8'6>

claim a better stability of one part
in 109 for a stabilized helium-neon ogscillator near threshold over
long times. Collimation in a long high gain gas laser is taken care
of by the gain profile of the medium itself (Chapter V), and there
should not be much difficulty in constructing a gas discharge ampli-

fier of arbitrary length. However, care is necessary to prevent

saturation as will be shown in the next section.
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8.3 Saturation effects

As saturation sets in, the behavior of the spectrum becomes
congiderably more complicated and for a completely general treatment
computer solutions are required. The details of the general problem
may be of limited practical interest, so only certain important limit-
ing situations will be considered here. The qualitative features of
the intermediate regions will be apparent.

For a homogeneously broadened amplifier the saturation is

governed by equation (2.5-5) which may be written

dI(YQ) kI(yz) 1
4 = = 5 (8.3-1)
m™ e h(z) 1+ Yo
where
¢ I(y_)dy
h(z) = 1+ s j ————‘—‘——-2-‘1 (8.3-2)

N 1+ v,

and distributed losses are ignored. Thus the gain profile remains
Lorentzian even with saturation, although its amplitude decreases.
The quadratic term in the expansion of the gain decreases in magnitude
and hence a narrow Gaussian beam will continue to narrow, but at a
reduced rate as saturation becomes important. Solving as before yields

for large distances

Av, =  Av M?‘. (8.3_3)
hom h
K dz
f h(z)

To proceed, expressions for h(z) must be obtained.
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For a narrow spectrum equation (8.3-2) becomes

o0
h(z) = 1+ s j I(yn)dyn =1 + sIt (8.3-4)
o0

where It is the total intemsity. Therefore, it is first necessary
to obtain expressions for It . Equation (8.3-1) may be integrated

over frequency yielding approximately

a1 kIt

—r = (8.3-5)
dz YT e(l + sIt)

Thus in an unsaturated amplifier the intensity grows according to

1 -1 ekz/fﬁe

. o (8.3-6)

while in a highly saturated amplifier the intensity is governed by

I o= 1 4 - (8.3-7)

Eventually distributed losses in the amplifier may become

important so that the intensity is determined from

dI kI
_t _ t -al = 0 (8. 3-8)

/T oe(l + sI.)

If the unsaturated gain is much greater than the loss, the steady

state intensity is

I = —K (8.3-9)

t
/T eas

These results may be collected as



- kz
I eJﬁ € unsaturated
to
kz
It = Ito $ —— saturated (8.3-10)
/T es
—k high loss
. YTeas
(8.7)

They are similar to Rigrod's solutions for monchromatic radiation

at gain center.
Using equations (8.3-4) and (8.3-10), equation (8.3-3) may be

written for large distances as

-
VT € In 2 unsaturated
kz
Avhom ) lngi
Avh in ——— saturated (8.3-11)
VT €
In 2 .
\ o high loss

As the gain is pulled down by saturation, the narrowing rate is
slowed. When losses become important, the gain curve is clamped and
narrowing speeds up again. In a practical situation it is possible
that these regimes of narrowing might not be distinct, but this
simplest situation is at least instructive. In a homogeneously
broadened amplifier neither saturation nor losses stop the narrowing
process.
For an inhomogeneously broadened amplifier (€ << 1) it will be

assumed that the intensity is nearly uniform over a natural line width



2 2
di(y,) ~& Yy
1 ) - k e (8.3-12)
I(yz) dz 1+ 7ms I(yg) T

The spectral density I(yg) is found in the various regions from
equation (8.3-12) in a manner essentially identical to the homogeneous

case. The results are

2 2

( I(YQ,O) eke z unsaturated
2,2

- k 2
I(YZ) = I(yQ,O)+-WS e z saturated (8.3-13)
2 2
k &Yy high loss
UTas ©

and consequently the spectral width for large distances is

!
unsaturated
vkz
A\)inhom
o = 1 saturated (8.3-14)
v
D
1 high loss

L

It is evident that the effects of saturation on narrowing in an
inhomogeneously broadened amplifier are significantly different from
the effects in a homogeneously broadened amplifier. In the inhomo-
geneous case the onset of saturation reverses the narrowing process
and restores the radiation to its Doppler line shape. This occurs
because the center of the line saturates first, while the wings con-

tinue to grow exponentially.
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The minimum line width for a simple inhomogeneous superradiant

A RN

source may be readily calculated. From equation (8.3-12) it is evi-
dent that saturation becomes important when I{(y ) = 1/7s . Then,
"o
using equation (8.2-3), one finds that saturation occurs at a distance
z iven b
sat © 7
k 1(1+l)
z = kg = In{(l
Eo%sat sat * Tsn
(8.3-15)

R
]
-1
o]
=
o
i

Use of this expression in equation (8.2-13) yields the minimum line
width

A\)D

v, e —
inhom e

R

Thus 1if, for example, N = 10_10 watts and s 3 XIO"A watts‘l,
then the Doppler line can be narrowed by at most a factor of about 5.5
before saturation becomes important at a distance in xenon (k = 15) of
about 2.0 meters. These wvalues for 1 and s are judged to be
reasonably wvalid for our xenon laser based on the data of Clark(8'8>
{assuming that I in our theory is the total power in units of watts.)
This narrowing is not too impressive, and decreasing n by orders of
magnitude doesn't help much, since the dependence on 7 involves a
logarithm and a square root.

A possible scheme for reducing the ultimate line width is to
place attenuators between sections of the amplifying medium. These

would cut down the intensity to prevent saturation without affecting

the narrowing process. Even in such a system, however, the spectral



i
0
N
v

1

line width could never approach zero because there is always broadband
background noise being added to the beam by spontancous emission. The

result of the background is that the spectrum must eventually approac
a narrow limiting line shape.

The narrowest possible line would be obtained in a long ampli-
fier with distributed losses which are just sufficient to keep the

line center intensity somewhat below the saturation intensity 1/7s .

To get an estimate of this limiting line shape one can write

0]
o
0
o
Cg
ot
e
C
=]

(8.2-1) for steady state with I = 1/ms as

23
0 = _o 9 + ng (8.3-17)
ms s 0

Thus, the appropriate value for the loss constant o

=
n

o = go(l + Tsn) (8.3-18)

Using this result, equation (8.2-1) away from line center can

be written at steady state as

0=12lyy) Iy - g (1 + msn) Ily,) + ngly,) (8.3-19)
with the solution
ng(y,) "

I = = §.3~20
R G P RO 5(r,) (8.3-20)

0 Y 5

1+ msn - ——
Q

Keeping the second order term in the power series expansion of g(yﬂ)

leads finally to the intensity spectrum



1/7s
I<YQ> = . (8.2-21)
. o9 2
i+ — v,
s g ‘4
als)
Therefore, the narrowest possible line is a Lorentzian of widrh
e —
iTsn g
Ay .= Ay R (8.3-22)
min h'g g,
2<V@‘ vo)
where we have used the definition v = %<7v~—~ .
L) 14

If the gain profile is the Gaussian given by equation (8.2-10)

2
then gy = gos
Av
= —= /T8N — (8.3-23
Avmin c YTsn D (8.3-23)

Using the approximate numbers given previously for s and n , one
finds that the Doppler line would be narrowed by a factor of about
-7 crer e - 8 . R . .
4x10 °, A Doppler width of Av_ = 10°Hz could yvield an intensity
spectrum of about 40 Hz width. If the oscillation frequency were
14, . . : )
about 10" 'Hz as in xenon, the output could be used as an absolute

13

-

frequency standard with a stability of about four parts in 10
Similar calculations can be carried out for the limiting line shape
in a laser incorporating discrete rather than continuous losses.

The preceding discussion suggests that a superradiant helium-
xenon laser could be useful as an extremely stable frequency standard.
Some practical limitations on such a system should be emphasized. The
intensity only approaches its limiting form at a rate given by equa-~

tion (8.2-13). Thus to obtain a line width of 40 }z for a gain con-

-1 ,
stant of k = 100 m the overall length of the laser would have to be
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greater than 105 meters which would be awkward in the laboratory.
Nevertheless, superradiant lasers of more reasonable lengths should
be competitive with stabilized laser oscillators as asbsolute frequency
standards.

We have described a scheme for obtaining extreme spectral nar-
rowing which consisted of a sequence of narrow band amplifiers
separated by absorbing filters. An obvious alternate construction
would consist of a sequence of narrow band rescnant filters separated
by laser amplifiers. In this case the narrowing would be accomplished
by the filters rather than by the amplifiers. This problem is also
straightforward and the details are omitted.

There 1is an interesting analogy between focussing of beams in
amplifiers and spectral narrowing which will conclude this section on
amplifiers. It has been shown here that a gain profile which is quad-
ratic in frequency supports a beam with a narrowing Gaussian spectrum.
It is also true that a gain profile which is quadratic in space sup-
ports a Gaussian beam profile (Chapter V). In fact, starting with the
beam matrix for a general lenslike medium in the limit of negligible
diffraction (Figure 5.1g), one can show that the spot size of a
narrowing plane Gaussian beam in a medium with a gain profile is

governed at large distances by

WV —— (8.3-24)

where o

5 is the quadratic term in the gain profile. This expres-

sion is the same as equation (8.2-18) governing spectral narrowing.



- 265 -

In this section we have studied the effects of saturation on
spectral narrowing in laser amplifiers. It turns out that the narrow-
ing is slowed by saturation in homogeneously broadened amplifiers and
reversed in amplifiers which are inhomogeneously broadened. Schemes
involving losses have been discussed for eliminating the saturation

effects.



8.4 Oscillators

shift the

scale the line widths as shown in Chanpters

2tors in whi

however, to design os

determined primarily by the amplifying medium, and

&

geometry is unimportant. Such a system would have
stability advantages and is the subject of this discussion.
In the previous section it was shown that narrowing effects

arce most pronounced in an unsaturated

will be assumed here that the oscillator is operated very near to
threshold. Then spatial hole burning and other saturation effects
are unimportant and the propagation "constant” may be assumed to

a constant.

The empty cavity mode fa
is c¢/2L . Then the actual mode spacing near line center is given by
equation (4.2-8) as
/21
\ . kot A
AV T8 (8.4-1)

where 8 1s the dispersion parameter. If the mode spacing is much

k!

less than the spectral width of the laser radiation

that there are discrete modes becomes unimportant for the purposes of

this discussion and the cavity is effectively nonresonant. This
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clearly is accomplished by making the cavity long according to

e e
b SRRy Ay (8.4-2)

where AV  1is now the minimum spectral width. Thus to achieve a line
width of one megacycle (for B << 1) the cavity length should be some-

long, but lasers

have been built much longer . Moreover, it is only the cavity

which must be long. The amplifying medium may be much shorter.

S9N HASIE B S 1) TS,

The previous paragraph described a2 necessary co tion on the
cavity in order for any particular amount of narrowing to be possible.
The gain and mirror reflectivities must then be chosen so as to main-
tain the laser intensity just below the strong saturation level. If
the medium were homogeneously broadened, saturation would not be so

disastrous because it was shown that narrowing continues even in a

saturated amplifier. Narrvowing could be limited the Doppler shift

(,(e

due to the velocity of the reflectors. Such metion might be reduced
by careful construction and perhaps cooling of the entire cavity. The
actual positions of the mirrors are unimportant, in contrast to the
situation in an ordinary resonant oscillater. Thus long term stabi-
lity and resettability are limited only by wvariations in the laser
medium’s composition or operating point.

Another possibility for cobtaining 'menrescnant’ feedback in
an oscillator has been described by Ambartsumyan et al UYL In it
one of the mirrors 1s replaced by a large number of scatterers. As a
result there are many closely spaced resonant frequencies and again

the radiation spectrum is determined mostly by medium
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instead of by the cavity. These authors alg

cation of such a scattering mirror to a high gain helium-xenon laser.

LA #4131

The spectral narrowing by a factor of five or six which they have
obgerved is about the same, however, as should be obtainable in a
similar simple helium-xenon superradiant amplifier.

Throughout this chapter it has always been assumed that the
laser was operating at steady state. To study the dynamics of narrow-
ing in oscillators, it is necessary to include time dependence. The
simplest possible case is the time dependent, spatially independent
intensity in a nonresonant oscillator. Then if there is no saturation
it is clear from equation (2.3-9) that one need only replace z by
ct/no in the results which have been obtained to get the time depen-

dence of the spectral width. For example, the gpectrum of an abruptly

started inhomogeneously broadened laser would narrow as

i
i, o ‘s
DALOFIRNS N A (8.4-72)

according to equation (8.2-13).
In this section we have considered briefly some possible

applications of the theory of spectral narrowing to nonresonant laser

oy

oscillators. The advantage of these schemes is that narvowing which
could otherwise only be obtained in unreasonably long amplifiers may

perhaps be possible in laboratory sized oscillators.



8.5 Conclusion

It has been shown in this chapter that a gain profile which is
gquadratic in freguency near its waximum can support 2 narrowing
Gaussian radiation spectrum. The spectral width varies inversely as
the square root of distance at long distances. In 2 homogeneously
broadened amplifier saturation slows the narrcowing process, while in

[2524

an inhomogenecusly broadened amplifier saturati

to its original inhomogeneous line shape.

oscillators are potentially useful

and anywhere a stable absolute freg
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1%. Ultrashort Pulses

2.1 Introduction

n

s

s of transien

There are basically two type

t
o]
.
ey
o
~y
IS
&)
)

occur in laser oscillators. The first of these are the relaxation
oscillations., Relaxation oscillations may be considered to include

all transients which have characteristic times which are long com—

pared to the laser cavity loop time. The

ultrashort pulsations, which are fast compared to the cavity lcop
time. We have discussed relaxation oscillations in Chapter VI, and
ultrashort pulses are the subject of this chapter.

Ultrashort pulses result from the phase locking of a large
number of longitudinal cavity modes. There are various well known
techniques for producing mode locking in lasers. Active mode locking
may be achieved by modulating the cavity losses at a frequency equal
to the intermode frequency spacing. Passive mode locking may result
from the presence in the cavity of suitable nonlinsar absorbing or
refracting media.

(9

Some lasers mode lock spontaneously. Helium-neon

(9.2

and
argon lasers , for example, are known to exhibit this behavior.

We present in Sections 9.2 and 2.3 some theoretical and experimental
considerations relevant to the observation of spontaneous mode locking
. . : (9.3) = N 5 .

in a high gain xenon laser . Extremely stable pulsations at
repetition rates between 5 and 50 MHz have been obtained. The gain

dependent pulse width varied from about 5 to 50 nanoseconds. Follow-

ing completion of this work we found that spontaneous mode locking of
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the 3.51 micron xenon laser had been reporied

In Section 2.4 the propagation of these ultrashort pulses

pulses travel through the amplifying medium at a velocity less than
the vacuum speed of light by as much as a factor of 2.5. The pulse

velocity is a function of the gain and agrees with the group velocity.



9.2 Mode locking theory

In this section we present some elementary considerations

regarding the mode locking of a high gain zenon laser. No rigorous

analysis is attempted. The most basic

assumed to be well known. The mode spacing and pulse vepetition rate
are equal to ¢/2L where L is the cavity length (if dispersion is
negligible)., Consequently, the first problem is the choice of cavity
length. There are some basic reasons why the cavity must be a good

deal longer than the 1.4 meter length which was used for most of our

1

experiments. In such a short laser only two or thres modes at most
will be able to oscillate because the Doppler line width is only about
100 MHz (Section 3.3). The modes could probably not be phase locked
anyway because of the very strong mode pulling effects described in
Chapter IV. Mode pulling makes the mode gpacings unequal.

With a much longer laser, on the other hand, the mode spacing
is reduced and the laser can support many more longitudinal modes.
Moreover, mode pulling effects become less important because, accord-
ing to equation (4.2-6), the dispersion parameter vanishes for a long
laser. There is no reason, of course, why the amplifying medium
should be as long as the optical cavity. It turns out to be conven-
ient to place a short (1.1 meters) amplifier tube at one end of the

cavity. The amplifier partially recovers between pulses.

Another reason for making the cavity long is to ensure that

¥

there is a strong coupling between the longitudinal modes. In a short
inhomogeneously broadened laser the modes would be so widely spaced

compared to the homogeneous line width that no mode locking could be



expected. The lef

[

each modo

interact with atoms Thus,
ith s sufficiently long cavity, it was anticipated that all of the
modes should be strongly coupled. There are some obvious practical

reasons for making the cavity no longer than necessary. Firgt, the
gize of the labeorateory is finite. Also, alignment becomes more dif-
ficult in a long laser.

The width of the ultrashort pulses is approximately equal to
the reciprocal of the frequency width of the mode locked spectrunm.
Thus if a spectrum 100 MHz wide could be mode locked, then the output
pulse width would be about 10 nanoseconds. If only two modes were
locked, the output would clearly have a sinusoidal envelope. In 2
high gain laser the width of the spectrum may effectively be wvaried.
The higher the gain, the greater the number of modes which can oscil-
late in a cavity of fixed length. Therefore, the outpur pulse width
is variable. Increasing the gain should narrow the pulse width,

A rough idea of the total lasing fregquency width can be
obtained by setting the frequency dependent Doppler intensity gain

equal to the loss or line center gain at threshold g

th #°
w(ﬁéﬁ 2 In 2
YD
g e = 8y (9.2-1)
The solution of this equation is
A\)D
Av = e /In g - 1n Ben, (9.2-2)

Near threshold the line width is approximately



Av, Vg - gz
AV VESI th (9.2-3)
in 2 ‘/;y
“th
Therefore, the pulse width should be
Ve
A lZvZ th (9.2-4)
D Vg - 8.4

This result is compared with some experimental data in the following
section.

In this section we have discussed in a gualitative way some
theoretical considerations relevant to the mode locking of a high gain
3.51 micron xenon laser. It was shown that mode locking might be

TRy

expected if the laser is of the appropriate length.



9.3 Mode locking experiment

]

hase locking has been observed experimentally in a

3.51 micron zenon laser. Experimen

ts have been performed in both the

time domain and the frecuency domain. The apparatus used in the time

domain studies is ghown schematically in Figure 9.1. The discharge

was 5.5 millimeters in diameter and the pressure was maintained at
- (9.5)

about 5 microns by means of a liguid nitrogen trap’ . Flat

surface aluminum mirrors were used, and the beam splitter was a

quartz flat.
Extremely stable pulses were cbserved, and the intensity of
the light goes essentially to zero between the pulses. A typical
pulse train is shown in Figure 9.2 for a cavity length of 10.7 meters.
The pulses were found to get shorter as the gain (discharge current)
is increased. This is in agreement with the discussion of the pre-
vious section, where it was indicated that increasing the gain
increases the number of modes which reach threshold. Some pulse
width data are collected in Figure 9.3 for this cavity. The gain was
determined from Figure 6.6. The threshold gain was about gtb==6,8m_l
and the rough proportionality of equation (9.2-4) was found to be
fairly well satisfied. The proportionality constant is about twilce
as large as expected indicating that, as usual, the Doppler width has
effectively been increased by isotope shifts or hyperfine structure.
The shortest pulses observed had a width of only about 8 nano-
seconds for a discharge current of 100 ma. The actual pulse width is
probably somewhat less than this value because of equipment limita-

tions. The risetime of the amplifier (H.P. model 462A) was specified
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Figure 9.1 Experimental setup for time domain measurements.



Figure 9.2 Ultrashort pulses at 68 ma, and 50 nanoseconds per division.
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At (ns)

Figure 9.3 Pulse width versus (g-¢

th>
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as less than 4 nanoseconds and the risetime of the oscillescope
(Tektronix type 585A with type 82 plug-in) was about 4 nanoseconds.
The room temperature InAs detector (Philco L4530) is alleged to have
a bandpass of several Glz. The average output power with a 100 ma
discharge and a cavity length of 10.7 meters was about 85 uw as
determined with an Eppley thermopile. Therefore, the peak power is
on the order of a milliwatt. Near threshold the output is sinusoidal
in time as shown in Figure 9.4. Altogether we have obtained pulses
in the range of about 5 to 50 nanoseconds pulse width.

The pulse repetition rate has been varied from 5 to 50 MHz by
varying the cavity length. With a very long cavity there is some
indication of double pulsing. This effect is shown in Figure 9.5 for
a cavity length of 33 meters. A small irregular pulse occurs half-
way between the dominant pulses indicating that for such a long
cavity the medium has time to partially recover between pulses.

With a "short" cavity of 5 or 6 meters length both relaxation
oscillations and ultrashort pulsations may be observed simultaneocusly.
The output then consists of g train of relaxation oscillations which
is itself modulated by the ultrashort pulses. An example of this
situation is shown in Figure 9.6.

The apparatus used in the frequency domain experiments is the
same as that shown in Figure 9.1 except that, as usual, the light beam
was chopped and a spectrum analyzer and synchronous detector were
inserted between the amplifier and oscilloscope. A typical spectrum
is shown in Figure 9.7 for a cavity length of 10.7 meters. The dis-

persion is 5 MHz per division and zero frequency is at the right side
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Figure 9.4 Sinusoidal output at 50 nanoseconds per division with a

47 ma, discharge.



Figure 9.5 Double pulsing at 100 nanoseconds per division with a

79 ma., discharge.



Figure 9.6 Relaxation oscillations and ultrashort pulses at .2

microseconds per division with a discharge of 61 ma,
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Pigure 9.7 Ultrashort pulse spectrum at 5 MHz per division.
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of the display. Excellent agreement has been obtained between the
form of the mode spectrum and the pulsing in time, which indicates
that all of the oscillating modes are locked in phase. Near threshold
with only two modes oscillating the sinusoidal output shown in Figure
9.4 was obtained. With ten or twenty modes oscillating the pulse

widths are reduced appropriately.



9.4 Pulse propagation

It has been argued theoretically(9'6’9’7)

that the velocity of
pulse propagation in amplifying or absorbing media is equal to the
classical group velocity dw/dk and is thus larger (in an absorbing
medium) or smaller (in a gain medium) than the phase velocity.

9
Experiments designed to verify this prediction{g'a’g”"g'lo)

utilized
the weak 63288 transition in neon, and the observed changes in velo-
city were less than a part in a thousand.

In what follows we report on the pulse velocity in a xenon
discharge near its amplifying 3.51 micron transition. In this case
the combination of high optical gain and narrow linewidth result in
extremely large dispersion. The observed pulse velocity is less
than c¢/2 . Furthermore, using an analytic expression for the gain
dependence of the index of refraction of the Doppler broadened
transition, we show that the pulse propagation velocity agrees with

the group velocity.

The group velocity may be written

v o= ———~—9«——5—£ (9.4~1)
& n+Vv-—_=
av

The frequency dependent index of refraction of a Doppler broadened
medium has been given in Section 2.6. If saturation is unimportant
and if the homogeneous linewidth is negligible compared to the Doppler
width AvD » the appropriate expression 1s equation (2.6-14)

a(v) = 1+ 53—3—%352- (9.4-2)
27 v
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where F(x) is Dawson's integral
272
F(x) = e = f e dt (9.4~3)

The frequency is measured by x = [2(V~vo)/AvD}(ln 2)1/2 and g is
the small-signal incremental intensity gain constant at line center.

Bquations (9.4-1) and (9.4~2) can in principle be combined to
obtain the frequency dependent group veleocity. We are most interested
in the behavior near line center where F(x) = x . Then equation

{(9.4~2) may be written

cg(v-y ) (In 212

3/2
T \)/_\\)D

n(v) = 1+ (9.4-4)

From equation (9.4~1) the group velocity is then given by

v 1
—% T 1T B (9.4-5)

where B is the dispersion parameter,

1/2
B = & éig 2) (9.4-6)
m AVD

It was shown in Section 4.2 that B can be much greater than unity
in xenon amplifiers, so a significant slowing of the pulses should be
possible. Equations (9.4~5) and (9.4~6) bear an obvious relation to
equations (4.2-7) and (4.2-6) respectively if & = L , because the
pulse repetition rate must equal the mode spacing.

The apparatus used in our experiment consisted of an optical

resonator of length L = 5.5 m containing an amplifying xenon dis-

charge section of length & = 1.1 m . Other details of the apparatus
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are discussed in Section 9.3. A measurement of the pulsation period
as a function of gain for a fixed cavity length provides a direct
indication of the pulse velocity in the xenon amplifier. The velocity
v of the pulses in the amplifying medium is related to the experi-

mentally measured pulsation period T by the expression

Lo (9.4-7)
et T o
1+ o (T TO)
where To = %L-= 37 nanoseconds would be the pulsation period if the

dispersive medium were not present in the cavlity. The pulse retarda-
tion effects are so strong in xenon that TO can be determined to
sufficient accuracy by simply measuring the cavity length.

Some experimental results are collected in Figure 9.8 using
equation (9.4-7) and the measured values of the pulsation period.
The gain calibration was obtained from Figure 6.6. The theoretical
curve in the figure is a plot of equation (9.4-5) with the Doppler
width taken as AVD = 270 MHz. This value is about twice as large
as that resulting from pure Doppler broadening and, as noted in
Chapter III, is probably due in part to isotope shifts and hyperfine
structure of the transition. The data were obtained by operating
very near threshold in order to minimize saturation, which would tend
to reduce the pulse retardation. The good agreement between the
data points and the theoretical plot shows that the pulse propagation

velocity is indeed given by the group velocity.
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Figure 9.8 Gain dependence of the relative pulse velocity,

Experimental data are indicated by circles.
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9.5 Conclusion

We have discussed here the observation of extremely regular
pulses in a continuous high gain xenon laser. The results indicate
a complete phase locking of all the modes which are above threshold.
The time domain and frequency domain results are in good agreement
with qualitative theoretical considerations. The theory does not give
a rigorous explanation of how the phase locking occurs, but it pro-
vided sufficient incentive for us to undertake the experiments.

The pulses which we have observed have repetition rates between
about 5 and 50 MHz, depending on the cavity length. The pulse widths
were readily varied from about 5 to 50 nanoseconds by varying the dis-
charge current. It is expected that much shorter pulses could be
obtained by increasing the amplifier gain and reducing the cavity
losses. This should also lead to higher power pulses.

For most of the experiments described in this thesis it would
have been advantageous to use monoisotopic xenon. The ultrashort
pulse width, on the other hand, is minimized by maximizing the overall
gain line width. Consequently to obtain the shortest possible pulses,
it would probably be desirable to use an appropriately enriched com—
bination of isotopes. According to Figure 3.4, the hyperfine
components of the odd isotopes are scattered over a frequency range of
about 1.4 GHz. Therefore, the narrowest pulses possible in xenon would
have a width of about .7 nanoseconds.

We have also observed a reduction by a factor of sbout 2.5 in

the propagation velocity of optical pulses due to the dispersion asso-

ciated with the 3.51 micron tramsition in xenon. These results are in
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agreement with theoretical considerations. The pulse slowing is, in
fact, the time domain manifestation ¢f the strong mode pulling dis-
cussed in Chapter IV. The slowing effect could be enhanced by using
monoigotopic xenon because of its higher gain and narrower linewidth.
The incorporation of a xenon absorbing section into the optical
resonator should make possible the observation of wvalues of vo/c

Lo g

considerably in excess of unity.
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X. Power in Laser Oscillators
10.1 Introduction

Conventional treatments of power and coupling in laser oscilla-
tors assume that the radiation intensity is uniform throughout the
resonator. Typically, the cavity losses are lumped together into a
single photon lifetime. For many applications this is a serious
approximation and, as a consequence, only qualitative agreement with
experiments can be obtained. In high gain lasers the assumption of
umiform intensity is especially inappropriate. We refer to the neglect
of all spatial variations as the zero dimension approximation. It is
considered first for reference purposes.

The next level of sophistication is the one dimension laser
approximation. A basic reason why the intensity cannot be uniform in
any practical laser is that there must be a power flow toward the
mirrors. Thus the energy density is necessarily higher near the ends
of a laser than near its center. The one dimension approximation takes
account of this variation and is expected to provide satisfactory
results for high gain lasers. Some consequences of the theory are
verified with a high gain 3.51 micron xenon laser.

The laser beam may also have an intensity profile. Typically,
the intensity is higher near the axis of a laser medium than near its
outside surface. Modifications of the basic one-dimensional saturation
equations are obtained for the important special case of beams with
Gaussian intensity profiles. Another type of spatial variation
regsults from the periodic standing wave nature of the electromagnetic

fields. If the spatial cross relaxation is "'slow", there may result
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spatial hole burning or small scale variations in the population

inversion density. Some consequences of spatial hole burning have

(10.1)

been considered by Tang et al and we assume here that these

effects are unimportant.



10.2 Zero dimensions

The purpose of this section is to derive the output power of
a laser oscillator in the gsimplest possible approximation. This
involves the assumption that all of the parameters of the laser includ-
ing the radiation fields are uniform throughout the cavity. This is
the approximation which is usually used in the treatment of oscilla-
tor problems. The results will be compared with those obtained by
more accurate treatments in the following sections.

The basic relation, equation (2.4-7), governing the saturation
at a point in a Doppler broadened laser medium which is illuminated

by several discrete lines at the fregquencies y, may be written

22
[s.e] —-gy
i _ i e dy _ _
o - T T aIi (10.2-1)
- ]

0 IL+ (y ) ML + s

2
nl+ (y—yn)

Here g, s, and O are respectively the gain, saturation and loss

parameters of the medium, In is the intensity of the nth line,

2(v_- V) Avh
vy = —2 2 is the normalized frequency, and €& = ——— VIn 2 is
n Avh AVD

the natural damping ratio. If € 1is sufficiently large, one obtains

the homogeneous limit given by equation (2.5-3)

dl, 1
mam—— — ' — -
g Ii aIi (10.2-2)

dz 2
[1+y 1M1+ 5
n

where g' = g/V7 e.
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We consider here only the simplest case of a single mode having
equal intensities travelling to the left and to the right. If the
radiation is at gain center and the one way intensity is I, then equa-
tion (10.2~2) becomes

ar . _g'T  _
dz T+ 2s1 " % (10.2-3)

If the radiation were not at gain center, g' and s should be replaced

by
k]
g* = —‘g'“”é‘ s g% = ‘*‘“SH*Z" (10.2-4)
1+ vi 1+ Vs

The intensity gained in a loop through the cavity is

- 28'IL__ -
AT = B2 - 20IL (10.2-5)

where it is assumed that the single pass gain is very small and L 1is
the length of the medium.

This intensity gain must equal the intensity lost at the mir-
rors. If the reflectivities of the left and right mirrors are R

L

and Rr respectively, then the intensity is governed by

- - _ _2g'IL -
(1 RQ)I + (1 Rr)I T % 551 201IL (10.2-6)

The solution of this equation is

1 B'L L
s (1 - RR) + (1 - Rr) + 2ol 2

(10.2-7)

The output intensities at the right and left ends of the laser are



T

+_ _r o', 1

Io T s {(l - Ry} + (1 - Rr) + 20l 23 (10.2-8)
T

- _& ; QQL *1_

T s ltaTRy ARy v T2 (10.2-9)

The plus and minus sign superscripts here denote beams travelling to
the right and left respectively and Tr and TQ are the mirror trans-

mission coefficients. For comparison with later work we also write

the obvious relation between the outputs at the two ends of the laser

oL
2.2 (10.2-10)
r o]

A1l spatial variations were neglected in deriving equations (10.2-7)
to (10.2-10), and we refer to these results as the zero dimension
approximation for a single mode homogeneocusly broadened laser oscilla-

tor.

If € dis sufficiently small, equation (10.2-1) reduces to the

inhomogeneous limit

b, aly "Ezyi dy

—— == - al

dz b ; l+(y——yi)2 i
o 1+ (y=y )+ s, +s )L [———]

2
n¥l n l+(y~yn)

(10.2-11)

This integration cannot be performed in general. A qualitative approxi-
mation can be obtained, however, by observing that the integrand is
nonzero only for y mnearly equal to Vi - Setting y = vy in the

last term in the denominator leads to



s 2.2 o
@ -~ ol
dz L J 2 . I 1
o }_4*(37-57{) 4+ al + @ Z 3 7
- ) nFEL Ly, -y
L3 }. Cyri _/n>
2.2
~£ ¥y,
- 1
gl.e
= = - Ok 10.2~
zn 17 o (10.2~12)
(1L+sI+s Y —)
n#i 1 +(y,-y_)

This approximation becomes rigorous in the limit of weak saturation.
In a Doppler broadened laser z single mode corresponds in
effect to two travelling wave fields on opposite sides of the gain
curve. This is because the right and left travelling waves interact
with atoms having opposite axial components of thermal velocity. For

this case the equation for the right travelling beam is

- ol (10.2-13)

If the gain is small, I+ = I = I and equation (10.2-13) reduces to

-€2y2
& Bl e - a1 (10.2-14)
[1 + sI(1 +~*--§)}
1+4y
The double pass intensity gain is
~€2y2
I 5 - 201L (10.2-15)
[1+sI(1 +-v-??]
1+4y

In terms of the mirror reflectivities this is
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N€2 2
2¢l. e Y

(1 - RQ) + (1 - Rr) = - 20L (10.2-16)
[1+sI(1 + —~——L-*z~)]
1+4y

1/2

Therefore, the one way intensity in the cavity is

—82 2
1 2gL e J 2 1}

I-= ( )
s(1 + 1 _5) [ 1 - RQ) + (1 - Rr)+ 2L

1+4y

(10.2-17)

We refer to this result as the zero dimension approximation for an
inhomogeneously broadened laser. When y goes to zero the output
clearly drops by a factor of two (neglecting the Gaussian). This
effect is, of course, the well known Lamb dip.

We have obtained here some approximate results for the inten-
sity in homogeneous and inhomogeneous lasers in which all spatial
variations can be neglected. This approximation is only valid if the
gain per pass is very small and if the beam and gain profiles are
uniform. In the next section we relax the condition of small gain,

and in Section 10.4 some profile effects are considered.



10.3 One dimension

The solutions of some one-dimensional amplifier problems have

10.2 . . .
( ) and others. In this section we consider

been obtained by Rigrod
the problem of a laser oscillator with arbitrarily large single pass
gain. At first sight this problem would seem to be quite complicated
because the left and right travelling waves may interact with the same
atoms. It turns out, however, that some simple and useful analytical
results can be obtained for the output intensity of a high gain laser.
In many situations it is found that the product of the right and left
travelling waves is a constant independent of position in the laser.

As our starting point we use again equation (10.2-1). We
consider the situation where the light travelling to the right inter-
acts with precisely the same atoms as the light travelling to the
left. This is the case for a homogeneously broadened transition and
also for one in which the inhomogeneous broadening is due to the
Stark or Holzmark effects. It is, of course, not valid for Doppler
broadened transitions. The Gaussian factor should be replaced by the
appropriate inhomogeneous spectrum for nonDoppler broadening.

Equation (10.2-1) for a line propagating to the right may be

rewritten

d + + ~€2 2
Ii __in e Y dy +
N - - al, (10.3-1)
dz il 9 13 + I i
= [1+ (y-y ) J[l+s ) = —
nl+(y-y)

vhere the superscripts + and - label the beams travelling to the right
and left respectively. A similar equation can be written for the cor-

responding beam travelling to the left



dI gl i ~€2y2
i e dy -
P = J + ali (10.3-2)

Mo

fl
{

2 IZ 1
[1+ -y 11+s | — ]

2
1 1%~(y~yn)

The signs in equation (10.3-2) are different from those in equation
(10.3~1) because by definition the left travelling beam grows in the
minus z direction.

By comparing equations (10.3-1) and (10.3-2) one obtains the

relation
+
a1 dl
1 i 1 i
— T = e T (10.3-3)
I+ dz I dz
i i

This equation may be expressed in terms of the logarithm as

d + - _
iz ln(Ii Ii> = 0 (10.3-4)

The solution of this equation is the simple theorem

I Ii = const. = a, (10.3~5)

Thus we have the important result that the product of the intensity to
the right and the intensity to the left for a single laser line is a
constant throughout the amplifying medium. Summing over all of the

lines yvields

J 1717 = const. (10.3-6)
n n 113

Equations (10.3-53) and (10.3-6) hold even for resonators con-

taining more than one amplifying (or absorbing) medium. This is so
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because the intensity product at the right end of one medium must bhe
the same as the product at the left end of the next, and from egquation
(10.3-5) the product is a constant throughout each medium. By letting
the segments of amplifying material become arbitrarily short, one can
conclude that equations (10.3-5) and (10.3-6) hold even if g, 8, and
& are functions of =z . This result is also evident by giving g, =,
and 0 a z dependence in equations {(10.3-1) and (10.3-2).

It is perhaps worthwhile to make equation (10.3-5) a litrle
more plausible by considering two speciszl cases. If the "medium’ con-—
sists of free space, then the intensity each way is a constant and so
is the intensity product. In a nonsaturating absorber the fields decay
exponentially for propagation in either direction. But the product of
these two exponentials is a constant as required by equation (10.3-5).
That this equation should hold also in saturating medium is a non-
trivial consequence of the basic laser saturation equations.

Equation (10.3-5) has immediate consequences for the laser
output. A potentially important practical problem in a high gain laser
is the question of what fraction of the energy output comes out of each
end of the resonator. Assume that the transmission and reflection of
the left and right mirrors are given respectively by T

R and T
r

L7 7R
Rr - The usual assumption that the intensity is uniform throughout the

resonator yields a simple relation between the output intensity at the

left of the resonator I; and the output intensity at the right end

I+
o]
P (10.3-7)
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which we have given in equation (10.2-10). This result holds only
when the reflectivities of both mirrors are nearly equal to umnity.,
The correct expression follows simply from equation (10.3-5) as we
now show.
The mirrors define relationships between the intensity to the

right and to the left at the ends of the resonator

I.,, = R,I, I, = R I, (10.3-8)

The notation may be clarified by Figure 10.1. As a consequence of

equations (10.3-8),

T o -2 -+ + .2

Iiglig = R (Iig) Iirlir = Rr(Iir) (10.3-9)
But from equation (10.3-5)

+ - -+

Liotin = Loty (10.3-10)

Combining equations (10.3-9) and (10.3-10) yields the relation

-2 + 2
R2<Ii£) = Rr(Iir) (10.3-11)
In terms of the output intensity this is

T2 T

I. .
io _ io _
Ry (—-~T£> = R (—--Tr) (10.3-12)

Taking the square root of both gides gives

I, = = T, (10.3-13)

Equation (10.3-13) may be summed over all of the modes to obtain as a
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Figure 10.1 Schematic of one dimensional laser.
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corollary of equation (10.3~5) the final result

M (10.3-14)

where IO = E Ino . Equation (10.3-14) is the same as the approximate
low gain reszlt, equation (10.3~7), in the limit that the mirror ref-
lectivities approach unity, as we should expect. It describes the
relation between the outputs at the left and right ends of a laser
having arbitrary mirror properties and unknown gain.

So far, of course, the actual values of the constants a; » or
more generally, the intensities I;(z) and Iz(z) have not been
determined. To obtain them, a detailed solution of the simultaneous
equations (10.3-1) and (10.3-2) is required. Needless to say, this is
in general an exceedingly difficult problem. Nevertheless, some
important practical problems can be solved. We consider the homogene-
ous limit of equations (10.3-1) and (10.3-2). For sufficiently large

values of € these equations become

‘”;L g'I_;; +
= = = - ol (10.3-15)
[1+y2](1+s Pl
+ 1
n L%-yn
dI; g'I: _
—_— = - = + ol, (10.3-16)
dz ) I+ z: *
[1+y 1[1+s ) —]
i
n 1+vy
n
where g' = g/Vy e is the line center unsaturated gain constant. To

simpliify the problem we assume that the laser is oscillating in only a
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single mode at gain center and distributed losses are negligible.

Then equations (10.3-15) and (10.3-16) reduce to

F L+
- " (10.3-17)
1+s(I + 1)
_ -
diz A - (10.3-18)

1+s(1” + 1

If the radiation were not at gain center, new frequency dependent gain

and saturation parameters should be introduced as

1
gk = B ot = S (10.3-19)

1+ y2 1+ y2

To find the intensity everywhere in the laser, equations
(10.3-17) and (10.3-18) must be solved simultaneously. By using
equation (10.3-5), some symmetry arguments, and a little hindsight,

one may be led to try a substitution of the form

1o /g 8 I = /& e ul®) (10.3-20)

With I+ =TI at z = 0 . This reduces equations (10.3-17) and

(10.3-18) to the single equation

F ]
Lo 8 (10.3-21)
) 1 + 2sVa cosh u
This equation can be integrated, and the result is
. =<§T [u(z) - u(0) + 2sva (sinh u(z) -sinh u(0))] (10.3-22)
+

This is a transcendental equation from which the z dependence of 1
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and I can in principle be determined. These implicit results do not
have much intuitive appeal. It turns out, however, that often one is
not interested in the intensity everywhere in the laser medium, but

only at the ends. A simple explicit solution is possible for the inten-
gity at the ends of the laser.

Using equation (10.3-5), equation (10.3-17) may be rewritten

+ ot
___..diz - g I+ - (10.3-23)
1+ s(I + —)
+
I
For an amplifying medium of length L this yields
I+
e + _ 4t L _5a , =2 -
g'lL = s(Ir 12) + 1n s - + T (10.3-24)
I I I
L T A
Using equation (10.3-5) again to eliminate a , this becomes
5 . .
'y X . I - -
g'L In i s[(Ir ~r) + (IQ IQ}] (10.3-25)
I
L
But I; - I; is just the net power flowing toward the right mirror
+ ¥ 1 - + =z - —
Io(l - Rr)/Tr , and similarly I2 - IR Io(l Rz)/Tz . Therefore,
equation (10.3-25) becomes
+
(L-R) (L-Rr,) I
IO T + Iio 7 = S(g L In +) (10.3-26)
r L Iz

Now if the ratio iz/i; were known, equation (10.3-26) together
with equation (10.3-14) would determine explicitly the output intensity

at both ends of the laser oscillator. Equation (10.3-5) implies



1t 17 /R
— = % - A i’ (10.3-27)
I, I R I
£ T r r
Therefore, one chtains
T,
= = (10.3-28)
I YR, R
2 £ Tr
and equation (10.3-26) is
(1 - R) (1 - Ry
+ T - & _ 1, ., 1
I P + I T, S(g'L + 5 In R)R ) (10.3-29)

Combining equations (10.3-14) and (10.3-29) gives the final

expressions for the output intensities

(T_/s)

+ r ' 1 ~
I = - (g'L + 7 ln R;R) (10. 3-30)

g, T

(1 - Rr) + -ﬁ"(l - RK)
2

_ (T,/s) 1
I = {(g'L + E-ln RQRr) (10.3-31)

O
Q/RSL
(r - RQ) + —»Rr(l - Rr)

Thus we have the nonintuitive result that the output of a one-
dimensional high gain laser varies linearly with the unsaturated gain.

If g' wvaries with =z due, for example, to nonuniform pumping, then

L
g'L in the preceding equations should be replaced by f g'dz . If

0
8 varies with 2z or if o 1is not negligible, then a simple explicit

sclution is not possible.
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Equations (10.3-30) and (10.3-31) are the principle results of
this section, and it is instructive to check them against known re-
sults. At threshold, for example, the output must go to zero. Then

from equation (10.3-30) one finds

S| s
g'L 5 in RE Rr (10.3-32)

or

(10.3-33)

But this is just the well known threshold condition for an oscillator
with exponential gain. Next one may consider the opposite limit of
an oscillator with small single pass gain. In this case the mirror
reflectivities must be nearly equal to unity. Then the logarithm in
equation (10.3-30) may be expanded and one obtains

+ (T_/s)

1 1
- [g'L - =(1-R.)~-=(1-R,)]  (10.3-34)
© @ -R) Q- Ry) 2 o2 .

But this is the same as equation (10.2-8) for the zero dimension
approximation provided that distributed losses are negligible, as we
should expect. Clearly the usual zero dimension approximation ceases
to be valid as soon as the mirror reflectivities are significantly
less than unity.

We have derived here expressions for the output of high loss
one~-dimensional lasers in which the waves travelling to the right
interact with the same atoms as the waves travelling to the left. The
output from the right end of such a laser is found to be always propor-

tional to the output from the left end as the gain is varied. In a
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low gain laser one expects the output to vary linearly with the

unsaturated gain as shown in Section 10.2. It was shown here that a

linear variation is obtained even in lasers with arbitrarily large

gain. Rate equations for a high gain laser have been written by
(10.3)

Hope . However, that author has only obtained analytic sclutions

in the limit of no saturation.



10.4 Gaussian modes in three-dimensional lasers

Ordinarily when calculating the growth of power in a laser
amplifier, one assumes that the intensity is roughly uniform over some
cross section. Then the usual one-dimensional saturation results are
used. In actual lasers, however, it is often the case that the pump
rate and beam intensity have a spatial dependence. Here the possibi-
lity of extending the saturation equations to three dimensions will be
investigated. The principle assumption made is that the form of the
laser beam is known and that only the total power growth is to be
determined. In some high gain systems the form of the beam is, of
course, affected strongly by saturation. For those cases analytic
solutions are generally impossible to obtain. Emphasis here will be
on the important and relatively simple problem of Laguerre~Gaussian
beam modes. The validity of the one-dimension approximation will be
checked. The new three~dimensional saturation equations could be
applied in the usual fashion to amplifier and oscillator problems, and
the solutions are mostly omitted here.

In most practical lasers the beams are nearly plane waves. Thus
the intensity at any point in the laser can be factored into two parts
as

I(r,8,z) = P(2) £(r,8,2) (10.4-1)

P(z) describes the z dependence of the power and f(r,0,z) is a
normalized function giving the variation of intensity over any cross
section of the beam. For this discussion £(r,0,z) , the mode struc~-

ture, is presumed known while P(z) 1is to be determined.
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From equations (2.5-7) and (2.6~13) the saturation equations

for a single laser line may be written in their simplest form as

4l _ el _ 10.4-
P T ST homogeneous (10.4-2)
a _ _gf inhomogeneous (10.4-3)

dz ¥l + sI

where here g 1s the unsaturated line center gain and s is a satu-
ration parameter. If the line is not on the center of the resonance,
both g and s will be frequency dependent as indicated previocusly.
In general g will depend on the radius r . For example, in a low

pressure gas discharge the dependence is often given approximately by

the Bessel function(lo'a)
gy @bory L Ltdr’ (10 4-0)
BT 8oVt S & 2 ’
o r

where r is the radius of the discharge.

In an ordinary axially symmetric low gain laser oscillator
with spherical mirrors, the modes are given by the well known
Laguerre-Gaussian functions. For the case of axial degeneracy the

intensity in a mode may be written in the form of equation (10.4-1)

as
2 4 2 o
?
I(r,2) = B(z2) —2— Ey @@’ e W (10.4-5)
™ (+p)! W P
L
f(r,z)

The spot size w 1is governed by diffraction and provides the =z depend-

ence in f(r,z). Equation (10.4-5) was obtained by normalizing the



intensity distribution, which is given by the square of equation

(5.3-7) 103

In the absence of saturation, equation (10.4-1) becomes

£ [p(2) £(r,0,2)] = g(x) P(2) £(r,8,2) (10.4-6)

Integrating equation (10.4-6) over the cross section of the beam yields

2m ®
-%; P(z) = P(z) f J rg(r) £(r,0,z) dr do (10.4-7)
00

since by definition f(r,8,z) is normalized. If the gain is assumed

to be the quadratic g(r) = g, ~ %-gzrz and f£(r,8,z) is given by

equation (10.4-5), the integral in equation (10.4-7) may be per-

formed<lo'6) with the result
g.W
dp _ 2
o P[go 4 2p + 2 + 1)1 (10.4-8)

Thus a Laguerre-Gaussian beam grows exponentially (for constant w),
but the gain is reduced because of the profile. Moreover, the lowest
order (smallest diameter) mode grows fastest. In the case of a laser
oscillator this means that because of the profile the fundamental wmode
(p = £ = 0) will reach threshold first. Equation (10.4-8) could also
have been obtained using the techniques of Chapter V. The spot size
w appearing in equation (10.4-8) may vary with z . For instance, in
free space it is governed by equation (5.4-31)

Az

Wz = =2 e (&
O

)2] (10.4-9)
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If losses are important they can be included by subtracting the term

2
P ( j 0f{r,8,z) £{(r,8,z)r dr d8 (10.4-10)
C 0

from the right side of equation (10.4-7) where o is the loss coeffi-
cient.

For inhomogeneous saturation one finds from equation (10.4-3)

27; ®
§§'= > | { rg(r) £(r,0,z) dr do (10.4-11)
o 0 JE;-sf(r,Q,z}P

This integral is of course considerably more complicated than the no

saturation expression, equation (10.4~7). For the case of the funda-

mental Gaussian beam one finds(lo'7), for example,
P
2 4 F (14—2S )12
g Tw oW
dP 0 2sP 1/2
dz s [+ 2) 2
z W ZSP /2 1
W Ww
- 201+ 255)1/2 - 1n =5 (10.4-12)
W 2ﬂw

This expression is too complicated to be of much use. For a uniform
gain it becomes simply

2
@ g,

dz

[+ 255 V2 (10.4-13)

™

. . . . 2
The one dimension approximation for a beam of area Tw would be from

equation (10.4-3)
P
@ _ 8

dz
/ sP
l+**‘~"2"
W

(10.4-14)
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The last two equations are compared in Figure 10.2. We see that they
agree well at low power levels (to second order in P) but differ for
strong saturation. Equation (10.4-13) can be used in the same way as
equation (10.4-14). For example, in an amplifier of length L with
an approximately constant Gaussian beam the output power is found to

be related to the input by

vl + 2x0 ~ 1
gL= V1+2x -/1+ in + 1n (10.4~15)
° © I+ 2%, - 1
where X = ~§§ .
W
For homogeneous saturation one finds from equation (10.4-2)
2T
dP _ rg(r) f(r,0,z) dr d6 _
dz P f f 1+ sf(r,8,z)P (10.4-16)
0 0
For wniform gain and a Gaussian beam this 13(10.8)
g “Wz
dP _ "o 2sP N
= - 7s In(l + ~—§D (10.4-17)
™
The one dimension approximation would be
g P
. o (10.4-18)
dz sP
1+—
2
™

These expressions are also compared in Figure 10.2 and again they agree

to second order in P . It is evident from the graph that in general

the one dimension approximation overestimates the effects of saturation.
In summary, the elementary one dimension saturation equations

have been extended to three dimensions for some simple but important
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laser situations. The results differ significantly when the saturation
is severe. Thus, in a saturated laser with a Gaussian transverse mode

one should use the new equations even 1f the gain per pass is small.



10.5 Experiment

In Section 10.3 expressions were obtained for the power out-
put of a laser having an arbitrarily large single pass gain. Here we
describe an experiment which has been performed in an effort to
verify the theoretical results. The laser used a high gain xenon
amplifier at a wavelength of 3.51 microns. Xenon is inhomogeneously
broadened, so it is not necessarily true that the light travelling to
the right interacts with the same atoms as the light travelling to the
left. However, if the laser cavity is made sufficiently long, the
mode spacing becomes comparable to the saturation broadened homogene-
ous line width. Then the light spectrum is effectively continuous
and the saturation is identical to homogeneous saturation (Section
2.6). 1If the laser is operated well above threshold, the addition of
new modes with increasing gain will have a negligible effect on the
output power. Then the output should be given approximately by equa-
tions (10.3-30) and (10.3-31).

For our experiments a cavity length of 10.7 meters was used.
The resulting mode spacing was about ¢/2L = 14 MHz. The results of
Section 10.3 should be applicable except near threshold. The appara-
tus is shown in Figure 10.3. The D.C. discharge was 5.5 millimeters
in diameter and the pressure was maintained at about 5 microns by
means of a liquid nitrogen trap(lo'g).

Some typical data are shown in Figure 10.4. Figure 6.6 was used
for the gain calibration, and the power was calibrated with an Eppley
thermopile. A straight line is drawn through the data in accordance

with equation (10.3-30). The agreement is good except close to
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threshold. The slight discrepancy there probably results from the
addition of new modes with increasing gain. This effect becomes
unimportant with strong saturation. In any case the agreement between
theory and experiment is regarded as satisfactory. For a more
rigorous test of the one-dimensional theory a high gain homogeneocusly

broadened laser should be used, but none was available to us.
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10.6 Conclusion

Spatial variations of the electromagnetic fields and gain are
often neglected in calculating the saturated power in laser amplifiers
and oscillators. As a consequence of these approximations, one can at
best hope for qualitative agreement between theory and experiment. In
this chapter we have obtained some generalizations of the usual zero
dimensional theory which include spatial variations. Simple expressions
have been derived for the output of a one~dimensional laser with
arbitrarily large gain, and experimental verification has been
obtained. The basic saturation formulas have also been generalized to
include the effects of a Gaussian beam profile. The analysis in this
chapter is not exhaustive. The purpose has been to introduce some
simple generalizations and solutions which should extend the useful-

ness of the familiar saturation results.
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