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ABSTRACT 

Because of coulomb interactions and complex surface morphologies, rigorous methods for 

heterogeneous electrochemical catalysis were not well-established. Thus, for different types 

of electrochemical systems, a specific strategy must be adapted. In this thesis, we first used 

the cluster model to study the chemistry on a 1D chain of MoS2 edges. Then, a rigorous 

grand canonical potential kinetics (GCP-K) method was developed for general crystalline 

systems. Starting from quantum mechanical calculations, the method gave rise to a 

different picture from the traditional description given by the Butler-Volmer kinetics. Next, 

we studied the chemical selectivity of CO2 reduction on polycrystalline copper 

nanoparticles. Because of the complexity of the reaction sites, we combined the reactive 

force field, density functional theory, and machine learning method to predict the reactive 

sites on 20,000 sites on a roughly 200,000-atom nanoparticle. Such a strategy opens up new 

way to understand chemistries on a much wider range of complex structures that were 

impossible to study theoretically. Lastly, we formulated a machine learning force field 

strategy using atomic energies for amorphous systems. We have shown that such a method 

can be used to reproduce quantum mechanical accuracies for molecular dynamics. This 

method will enable the accurate study of the dynamics of heterogeneous systems during 

electrochemical reactions. In summary, we have developed quantum chemical methods and 

machine learning strategies to reformulate rigorous ways to study a wide range of 

heterogeneous electrochemical catalysts.  
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C h a p t e r  1  

INTRODUCTION 

1. Background 

Energy is essential for human activities. The ability to control and generate energy 

contributes to the development of sophisticated human society1-2. As the average quality of 

life is improving throughout the world and the total population is on the rise, the demand for 

energy is projected to increase accordingly3-5. Since the industrial revolution, fossil fuels 

including coal, petroleum, and natural gases have been used to generate energy1,6. These 

sources were the result of natural photosynthesis over millions of years7-8. Without adequate 

replenishment, the ever-increasing usage of limited natural resources is unsustainable. 

Therefore, to meet energy needs in the long term, energy must be harvested directly from 

much larger energy sources9. Thermal10, biological11 and photoelectrochemical12 approaches 

have been suggested and employed to harvest solar energy. In additional to harvesting energy 

directly from the sun, other renewable sources like hydropower, geothermal power, and wind 

power can be exploited13. Because all of these processes generate electricity, developing 

efficient electrochemical processes to store the renewable energy in chemical forms is 

universally applicable and can be easily integrated into these systems.  

The application of electrochemistry in energy includes batteries14, fuel cells15, 

supercapactors16, and electrochemical chemical productions17. Because of the abundance of 

H2O and CO2 on Earth, they are promising for large-scale energy conversion into chemical 

fuels in the form of H2
18 or carbon based fuels19. To perform efficient chemical 

transformations, catalysts are used to lower the energies of the reaction intermediates and 

reaction barriers.  

Developing an efficient electrocatalyst for water splitting and CO2 reduction to chemical 

fuels requires an atomistic understanding of the catalytic site. There are two main classes of 

catalysts, molecular or homogeneous catalysts and heterogeneous catalysts. Homogeneous 



 

 

2 

catalysts are isolated molecules dissolved in solution and typically involve metal centers. 

They are easier to study because the intermediates can be transferred and isolated for 

analysis. However, in electrochemistry, electrons tunnel from or to the electrode to drive 

reactions, and only the molecular catalysts near the electrode are directly electrochemically 

active20-22, resulting in ineffective use of molecular catalysts in electrochemical applications.  

On the other hand, heterogeneous catalysts are in a different phase as the reactants, making 

them easy to handle and suitable for large-scale industrial applications. In addition, 

heterogeneous catalysts can be assembled in different scales for further optimization23. 

However, because catalytic sites on heterogeneous catalysts cannot be isolated for chemical 

analysis, surface science techniques are generally used to study these catalytic sites24. Due to 

the limitations of current experimental techniques in determining the active sites and reaction 

intermediates during the reactions, theoretical insights are necessary to understand the 

underlying electrochemical processes.   

2. Quantum Chemical Approach  

Chemical properties are governed by the Schrodinger equation. Because the motions of 

electrons follow the Schrodinger equation, the solution of this equation describes bond-

breaking and formation in molecules. However, an exact solution to the Schrodinger 

equation is computationally prohibitive for large systems, because for N electrons in 2K one-

electron spin orbitals, there are (2K)!/(2K-N)!N! slater determinants in the full configuration 

interaction solution25-26. Thus, for most systems, the Schrodinger equation can only be solved 

approximately27-28. The Hartree-Fock method is the simplest approximation to the 

Schrodinger equation based on the mean field theory. In this approach, electrons interact with 

each other via any average potential such that the overall wave function is the anti-

symmetrized product of the orthogonalized eigenstates. To obtain chemical accuracies, post-

Hartree Fock methods can be employed.  

Another method similar to the Hartree-Fock approach is the Density Functional Theory 

(DFT), which approximates the Schrodinger equation using an energy functional based on 



 

 

3 

the total electronic density. In the original formulation, Hohenberg and Kohn established 

the uniqueness of the ground state electron density in the presence of external potentials29. 

One of the simplest form of such orbital free DFT approach is the Thomas-Fermi functional 

based on the Fermi gas of metallic systems30. However, such an approximation still performs 

poorly for general systems. An important breakthrough was made by Kohn and Sham, who 

re-formulated the mathematical proof using electronic orbitals rather than electronic 

densities31. Practical functionals including the local density approximation (LDA), PBE32, 

and B3LYP33 functionals have been used to study a wide range of chemical systems.  

The application of quantum mechanical calculations to catalysis typically involves 

calculating the relative energies of reaction intermediates and the transition states between 

these intermediates. Because a catalyst will be regenerated after each reaction, the overall 

catalytic process consists of a catalytic cycle, in which the catalyst interacts with the 

reactants, performs catalytic transformation, and then releases the products to regenerate 

itself for the next cycle.  

For reactions in solution, temperatures and pressures are typically held constant. Thus, the 

appropriate thermodynamic potential is the Gibbs free energy34:  

G = U – TS + pV = E + ZPE + Hvib– TSvib + Gsolv 

Where E is the electronic energy calculated from the Schrodinger equation, ZPE is the 

quantum mechanical zero point energy, Hvib and Svib are thermodynamic contributions due 

to the vibrational modes, and Gsolv is the solvation energy35.  

For homogeneous catalysis, experimental methods can be used to isolate and identify stable 

reaction intermediates. By adding electrons and protons in separate steps, the corresponding 

reduction potential and pKa for each intermediate can be obtained. In theoretical calculations, 

because homogeneous catalysts are isolated molecules, net charge can be placed on these 

molecules, which also allows the addition or removal of electrons and protons. Thus, the 

intermediate species can be calculated and compared with experimental observations.  
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On the other hand, heterogeneous catalysts are relatively more complicated because each 

reactive site is small compared to the overall structure. Perfect crystalline heterogeneous 

catalysts can be represented by a simple unit cell, which can be repeated to obtain the actual 

large scale structure. However, unlike molecular calculations, net charge cannot be applied 

directly to the periodic calculation because charge interactions between periodic cells result 

in infinite energy36-37. Many developments have been employed in recent years to solve this 

problem by including counterions from solutions to neutralize the net charge on the periodic 

reactive surface38-43.   

3. Overview of the thesis 

In electrochemistry, electrolytes are needed to transport charges between the cathode and the 

anode for conducting electricity. Since electrolytes are mobile ions in solution, 

heterogeneous catalysts in electrochemistry are typically in the solid phase. Solid catalysts 

can take many different forms, including perfect crystals, polycrystalline films or particles, 

and amorphous structures, with increasing complexity. Because chemical reactions take 

place at the interface between the heterogeneous catalysts and the reactants in the solution, 

the surface morphology directly determines the interfacial chemistry. However, because the 

complexities of the surface morphology differ in different categories of materials, the study 

of each type of catalysts require specific treatments.  In this thesis, we employed quantum 

mechanical methods to study the three main categories of catalysts, as shown in Figure 1 

below:  

 

Figure 1. Systems and the corresponding methods studied in this thesis. GCP-K: grand 

canonical potential-kinetics; ML: machine learning.  
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First, quantum mechanical calculation is applied to study the simple low-index surface of 

crystalline materials. For extended systems, usually the periodic boundary condition is used, 

such that compounds in the forms of chains, slabs, or bulks are described by their dimensions 

as 1D, 2D, and 3D systems. The cluster model is first used on the 1-dimensional edge of 

crystalline MoS2. In the calculation, the catalytic region of the linear edge is extracted to 

form a cluster by including a sufficient number of nearby atoms. Since the catalytic site is 

isolated from the extended system as a cluster, it can be treated as a homogeneous catalyst 

such that well-established molecular calculations can be used on this cluster model to study 

the catalysis. Using this method, we placed net charges on the catalyst as we did for the 

homogeneous catalysts. We found that the hydrogen evolution reaction takes place via the 

Heyrovsky mechanism involving a molybdenum hydride and a solvated hydronium water 

cluster. This work is summarized in Chapter 2 of the thesis.  

Although the cluster model is useful for 1D systems, for higher dimensions, a cluster will 

contain a large number of atoms, making the method less effective. Thus, a different strategy 

is needed for more general and higher dimensional systems.   

In our study of 2D and 3D catalytic systems, we re-formulated a macroscopic theory called 

the grand canonical potential kinetics (GCP-K) model to provide a foundation to relate 

quantum mechanical calculations to macroscopic analysis of reaction kinetics. By taking the 

Legendre transformation of the Gibbs free energy using the charge-voltage conjugate pairs, 

we obtained the grand canonical potential (GCP) that is quadratically dependent on the 

applied voltage. Then, by extending GCP for transition states during electrochemical 

reactions, we found that the reaction barriers could be calculated from either the constant 

charge or the constant applied voltage conditions. As the consequence of the new theory, the 

quadratic dependence on the applied voltage for species on the surface of an electrochemical 

heterogeneous catalyst is different from the conventional linear relationships given by the 

Nernst equation and Butler-Volmer kinetics for isolated molecules or reaction intermediates. 

Using this new methodology, we elucidated the hydrogen evolution reaction mechanism on 

the sulfur vacancy of MoS2, as described in Chapter 3.  
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Although perfect crystalline surfaces are the simplest surfaces to study and to provide 

insights about the reactivity in certain chemical environments, under experimental 

conditions, more complex structures like polycrystalline and thin film structures are 

synthesized and used. Thus, to directly relate quantum mechanical calculations with actual 

experiments, theoretical calculations must be extended to consider various irregular 

morphologies on the surface.  

To study the surface sites on polycrystalline systems, we combined the reactive force field 

(ReaxFF), quantum chemical calculations, and machine learning approaches. An important 

example of such systems is the copper nanoparticles on which the electrochemical CO2 

reduction is driven favorably towards C2+ products. The first difficulty in studying 

polycrystalline systems is to computationally generate a realistic particle for study. Here, the 

ReaxFF is specifically trained to match the dynamics of copper to simulate a realistic particle. 

With this nanoparticle, we can sample the surface sites for interactions with reaction 

intermediates using the cluster model. However, for a nanoparticle with 200,000 atoms and 

20,000 surface sites, it is too computationally expensive to sample every site using quantum 

mechanics. Thus, an efficient machine learning algorithm is developed to predict the relevant 

properties of all the surface sites using only hundreds or thousands of random surface sites. 

Using this approach, we found that the favorable C2+ selectivity is due to the presence of a 

twin boundary site near the step surfaces involving the (100) and (111) surfaces, and we 

designed a new catalyst that will be more selective than the developed copper nanoparticles.  

The above strategy for polycrystalline structure can easily be extended to amorphous 

structures. However, for the machine learning model to be self-consistent, in addition to be 

able to predict the adsorption energies, machine learning can also be used to model 

dynamical effects. For amorphous systems, accurate dynamics can be used to sample the 

complicated surface sites and their chemical environments.  In this part of the thesis, the 

machine learning method is used to fit the potential energy surface (PES) of the system, such 

that forces are obtained by differentiating the total energy with respect to the atomic 

coordinates.  We developed a new method to partition the total energy to each individual 
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atom for effective training of the neural network model. We showed that we could obtain 

errors as low as 1meV/atom in energy and 0.1eV/A in force using 10 times less data than the 

conventional approaches. To verify the methodology, we implemented and performed 

molecular dynamics simulation using the trained machine learning force field to calculate 

the heat conductivity of amorphous silicon, which requires a long molecular dynamics 

simulation that is not possible in typical quantum mechanical calculations. Such 

methodology can be easily extended to catalytically relevant systems.  

In summary, we have used quantum mechanics and machine learning to study a wide range 

of heterogeneous catalytic systems, from simple crystalline structure, to polycrystalline 

structure, and to amorphous structures. In the development of these new approaches, we 

found that the surface electrochemistry is governed by more complex quadratic relations, 

rather than the simple Nernst equation and the Butler-Volmer type kinetics for homogeneous 

systems. In addition, machine learning methods have been shown to be promising to extend 

quantum mechanical results for more complex systems. We believe that the novel approaches 

used in the above systems will enable new insights to guide further developments of 

electrochemistry.  
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C h a p t e r  2  

THE REACTION MECHANISM WITH FREE ENERGY BARRIERS FOR 

ELECTROCHEMICAL DIHYDROGEN EVOLUTION ON MOS2 

Abstract 

We report Density Functional Theory (M06L) calculations including Poisson-Boltzmann 

solvation to determine the reaction pathways and barriers for the hydrogen evolution reaction 

(HER) on MoS2, using both a periodic two-dimensional slab and a Mo10S21 cluster model. 

We find that the HER mechanism involves protonation of the electron rich molybdenum 

hydride site (Volmer-Heyrovsky mechanism), leading to a calculated free energy barrier of 

17.9 kcal/mol, in good agreement with the barrier of 19.9 kcal/mol estimated from the 

experimental turnover frequency. Hydronium protonation of the hydride on the Mo site is 

21.3 kcal/mol more favorable than protonation of the hydrogen on the S site because the 

electrons localized on the Mo-H bond are readily transferred to form dihydrogen with 

hydronium. We predict the Volmer-Tafel mechanism in which hydrogen atoms bound to 

molybdenum and sulfur sites recombine to form H2 has a barrier of 22.6 kcal/mol. Starting 

with hydrogen atoms on adjacent sulfur atoms, the Volmer-Tafel mechanism goes instead 

through the M-H + S-H pathway. In discussions of metal chalcogenide HER catalysis, the S-

H bond energy has been proposed as the critical parameter. However, we find that the sulfur-

hydrogen species is not an important intermediate since the free energy of this species does 

not play a direct role in determining the effective activation barrier. Instead we suggest that 

the kinetic barrier should be used as a descriptor for reactivity, rather than the equilibrium 

thermodynamics. This is supported by the agreement between the calculated barrier and the 

experimental turnover frequency. These results suggest that to design a more reactive catalyst 

from edge exposed MoS2, one should focus on lowering the reaction barrier between the 

metal hydride and a proton from the hydronium in solution. 
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1. Introduction 

A major challenge in renewable energy technology is water splitting; that is, using solar 

radiation to photoelectrochemically convert water molecules into H2 and O2. Here, both the 

hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) present 

challenges for the catalysts. The detailed reaction mechanisms have not yet been established 

for either one. Here, we consider the easier case of HER.  

Platinum is the most efficient inorganic HER catalyst; however, the cost of platinum has 

motivated an extensive search for earth abundant HER catalysts1. Hinnemann et al.2 reported 

DFT calculations suggesting that molybdenum disulfide (MoS2) can catalyze HER because 

of its nearly thermoneutral hydrogen adsorption energy. Indeed, Jaramillo et al.3 synthesized 

MoS2 on Au(111) and showed that the activity for HER correlates linearly with the total 

length of the exposed edges of crystalline MoS2. Since then, numerous experimental 

synthetic techniques have attempted to synthesize MoS2 catalysts that carry out HER more 

efficiently4. Molecular analogues were also studied5.  

Although the hydrogen adsorption energy has been a useful descriptor for screening materials 

to identify candidates for HER, it is reaction barriers that determine the rates. Thus, to design 

the most efficient HER catalysts, we must determine the reaction barriers for the various 

reaction sequences that can convert protons and electrons to H2. Here, the pathway with the 

lowest rate-determining step (RDS) is expected to dominate the reaction rate.  

In this study, we perform Density Functional Theory (DFT) quantum mechanics calculations 

to determine the reaction pathway for HER on the Mo-edge (101̅0) of MoS2. To enable the 

use of the most accurate DFT for reaction barriers  while describing solvation effects at the 

Poisson Boltzmann level, we describe the Mo-edge of MoS2 using a Mo10S21 cluster model. 

This allows us to consider the introduction of protons and electrons separately and report free 

energies as a function of electrochemical potential and pH. 
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2. Computational Methods 

2.1 Finite Cluster. For the finite clusters, we used the M06L6 flavor of DFT, which has been 

found to give reliable energy barriers for reaction mechanisms of organometallic catalysts7. 

In these calculations, we use the small core angular momentum projected effective core 

potential8 from Hay and Wadt9 to replace the inner 28 core electrons, so that 14 explicit 

electrons are described on each Mo (denoted LACVP**). All electrons are included for each 

S and H using the 6-31G** basis set10 for structure optimization, and the 6-311G**++ basis 

set11,12 (hydrogen and oxygen) and the 6-311G-3df basis set12,13 (sulfur) for the final 

electronic energy. The solvation energy was calculated by solving the Poisson-Boltzmann 

equation (PBF)14 at the optimized geometry (using a solvent radius of 1.4A and a dielectric 

constant of 80.37). The vibrational frequencies used in obtaining the zero point energy, 

entropy, and enthalpy were calculated using the CPHF technique at the optimized geometry. 

All cluster calculations were performed with JaguarTM 15. 

 



 

 

15 

 

Figure 1. (a) Top view of the 2D MoS2 sheet. The two horizontal dashed lines indicate 

terminations along the (101̅0) Mo-edge and (1̅010) S-edge. The two triangles represent the 

terminations for Mo-edge and S-edge clusters; (b) Schematic representation of the 50% S 

coverage Mo-edge cluster; (c) Optimized triangular Mo-edge cluster with stoichiometry of 

Mo10S21. (d) Optimized structure of a 12Mo x 6Mo slab, where the Mo-edge (top edge) 

clusters into groups of 3 Mo. The same structure is obtained for the 3Mo and 6Mo wide slab. 

The free energy of an H2 molecule at 1atm and 298K was calculated as above.  The free 

energy of H+ at 1M in water (G = -270.3 kcal/mol) was taken to be its gas-phase value (G(H+, 

1atm) = H – TS = 2.5 kBT – T * 26.04 = -6.3 kcal/mol) plus the empirical hydration energy 

(G(H+, 1atm→1M) = -264.0 kcal/mol)16. Using the definition of the standard hydrogen 

electrode (SHE) condition where e- and H+ (pH=0) are in equilibrium with 1atm H2, the free 

energy of an electron at SHE can be determined as the difference between the free energies 

of ½H2 and H+. The chemical potential of electrons and protons away from the SHE 

condition are then calculated as  

            μe(E) = μe(SHE) - 23.06 × E, and 

            μH(pH) = μH(pH=0) - 1.36 × pH, both in kcal/mol. 
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With these reference values, the free energies of the cluster with various numbers of 

electrons and protons can be compared. 

2.2 Periodic Slab. For the periodic slab calculations we consider a single MoS2 slab 

terminated on the (101̅0)(Mo-edge) and (1̅010)  (S-edge) boundaries with three Mo per 

unit cell as shown in Figure 1. Here we used the PBE17 flavor of DFT with a plane wave 

basis set extending to 300eV for geometry optimization and 500eV for the final electronic 

energies. We used the projected augmented wave (PAW)18 method for pseudopotentials to 

represent the effects of the inner 36 core electrons of Mo and the 10 electrons of the S, so 

that only the outmost 6 electrons of both Mo and S are described explicitly. Slab calculations 

are performed in VASP19.  

Since the slab model consists of only a single S-Mo-S tri-layer with both the Mo-edge and 

the S-edge exposed, we used the Monkhorst-Pack 4 × 1 ×1 k-point mesh, where 4 k-points 

are used in the periodic direction. The electronic energy was minimized within 0.1 mH, and 

the geometry was optimized to 0.1 mH/A.  

For these periodic calculations, the reference H2 molecule is calculated in a 15A × 15A × 

15A cubic vacuum space with only the Γ point. 

3. Model Systems 

3.1 Periodic Slab. The dominant phase for bulk crystalline MoS2 is the 2H phase with AB 

stacking of the graphene-like hexagonal 2D sheets20. Upon synthesis, the exposed surfaces 

are generally the (001) basal plane of the S-Mo-S tri-layer, the Mo-edge (101̅0) and S-edge 

(1̅010). It was shown experimentally that the activity of the catalyst correlates directly with 

the total length of the exposed edges3. A recent experiment confirms this observation by 

comparing the activities between the edges and the basal plane21. In addition, we expect the 

chemistry of the edges of bulk MoS2 to be similar to that of a single MoS2 layer. It has been 

shown that additional layers decrease the current density due to electron hopping across the 

layers, such that the top layers are not as active as the bottom layers22. The exchange current 
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density (0.6 × 10-7A/cm2)22 reported for triangular pyramidal MoS2 platelets is in the same 

order of magnitude as monolayer MoS2 (1.3 × 10-7 A/cm2)3. The edges from the top layers 

contribute little to the activity, thus the monolayer MoS2 is sufficient to understand the 

chemistry of HER on MoS2 edges.   

STM studies of MoS2 crystals show three stable edge configurations: 100% S coverage of 

the Mo-edge, 50% S coverage of the Mo-edge, and the S-edge23. Under the sulfiding 

conditions appropriate for hydrodesulfurization (HDS) processes, the Mo-edge has been 

established experimentally as the dominant form; however, under HER conditions with no 

external sulfur = 50% S coverage of the Mo-edge is the most stable form24-26. This has also 

been observed in a recent HR-STEM study27.  This structure was assumed in the previous 

DFT studies of HER on MoS2
2. Thus, to study HER electrocatalysis, we chose to examine 

the 50% coverage case for the Mo-edge. 

Experimental studies have observed finite MoS2 clusters ranging from 1 nm to bulk. 

However, for systems of such large sizes, it is convenient to use periodic boundary conditions 

in the x direction, exposing the Mo-edge in the +y direction and the S-edge in the -y direction 

(Figure 1). We carried out DFT calculations for such periodic slabs and found that models 

that are three or six unit cells long in the periodic direction relax to structures 0.1 eV/Mo 

lower than models that are either two or four unit cells long. This has also been observed in 

other studies of the 50% S coverage Mo-edge calculations but not yet explained25,28. 

This 3-Mo periodicity can be understood in terms of simple electron counting arguments. In 

the bulk, the oxidation state of each Mo atom is +4 with bonds to 6 sulfur atoms, each of 

which bonds to 3 Mo.  Thus we can consider there to be 2/3 electrons from each Mo in each 

bond. In the valence bond description, this is described in terms of resonating structures. 

However, the surface stabilizes Mo-S valence bond structures with local 2-electron bonds. 

Thus, for the Mo terminated surface each edge sulfur contributes 1 electron to each Mo-S 

bond.  Therefore each edge Mo contributes 2×1+ 4×2/3 =14/3 electrons to its six S neighbors. 

This implies that each triad of 3 Mo atoms on the edge contributes a total of 14 electrons for 

bonding. This would correspond to a d2 configuration on one Mo and a d1 configuration on 
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the other two. Alternatively, one can say that the full d2 band of the bulk system leads to 

a surface d2 band that is only 2/3 full. This leads to a Peierls distortion that has a periodicity 

of 3. Therefore, periodic calculations for slabs should always have a multiple of 3 edge Mo 

slab because it leads to an integer number of bonding electrons on the edge.  In this 

reconstruction, three consecutive Mo atoms draw together (Mo-Mo distances of 2.96 A), 

leaving a larger separation (3.59A) between the triads.  Indeed, the calculations on an edge 

with 6 and 12 Mo periodicity in the x- direction show the same triad reconstruction, as shown 

in Figure 1d. 

3.2 Cluster Model. Using molecular clusters to model a periodic system for determining 

reaction mechanisms allows more flexibility in the accuracy of the methods (allowing us to 

use M06L, which is more accurate for reaction barriers and bond energies than PBE7, the 

most common method for periodic calculations). It is straightforward to use clusters with net 

charges (difficult in PBC), and we can use the PBF (Poisson Boltzmann) continuum 

solvation method that has been well-validated for aqueous solvation energies29.   Indeed,  

experiments can be carried out on supported MoS2 to validate predictions. 

Figure 1a shows how we extract a triangular cluster from the periodic array to expose only 

the Mo edges.  Figure 1b shows the schematic representation of the finite cluster and Figure 

1c shows the optimized structure. 

3.3 Validation of the Cluster Model. To validate that the cluster model has the same 

chemical properties as the periodic Mo-edge, we calculated the binding energy of a hydrogen 

atom to both the cluster and the periodic slab, both under vacuum conditions. In both cases, 

we reference the free H atom energy to that of ½ H2 molecule. The results in Figure 2 show 

that the bond energies calculated using the cluster and slab models differ by 0.03, 0.06, 0.01, 

and 0.03 eV for the four stoichiometries.   
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Figure 2. Hydrogen adsorption on the Mo-edge. Eperiodic is the relative electronic energy 

calculated from periodic calculations using ½ H2 as the reference energy for H atom. Ecluster 

is the relative electronic energy from cluster calculations, and Gcluster is the relative free 

energy from cluster calculations. This indicates that the first H strongly prefers to bind to S 

by 0.8 eV, but the 2nd H prefers to bind to a Mo instead of binding to a 2nd S by 0.42 eV. 

4. Result and Discussion 

We next describe the predicted energetics for the various reaction steps relevant for HER.  

Using the cluster model, we can now add or subtract electrons and protons independently in 

discrete steps. First, we calculate the free energies of the most likely intermediates to serve 

as a basis for describing the thermodynamics of HER. Then, we examine the barriers of the 

various reaction steps to locate the rate limiting step. 

4.1 Thermodynamics of the Mo-edge. Figure 2 shows that the first hydrogen strongly 

prefers to bind to the edge sulfur atom rather than the molybdenum atom by 0.8 eV 

(electronic energy) and leads to a net binding energy relative to H2 of 0.05 eV. However, 

after including solvation effects, vibrational corrections, and entropy corrections, the free 

energy for adding a hydrogen atom to the edge S atom is 5.7 kcal/mol uphill relative to H2.  

Adding a 2nd H to the Mo is only 11.4 kcal/mol uphill compared to 16.9 kcal/mol uphill for 

adding it to a 2nd S. This disagrees with the previous assumption that the 2nd H would go 

onto a 2nd S2, but the Mo-H case was not calculated. 



 

 

20 

 

Figure 3. Thermodynamics (free energies at 298K, pH=0, and E=0V vs. SHE) for the most 

stable configurations as a function of the number of protons and electrons added. Here we 

start with the Mo-edge cluster at equilibrium at the SHE potential. Each structure to the right 

has one additional proton. Each structure along the ordinate has one more electron, 

representing a reduction step. 

In order to evolve an H2 molecule, protons and electrons must be added to the cluster. Here, 

it is useful to examine first the most stable structures with each number of extra electrons and 

each number of extra protons to understand the free energy differences between intermediate 

states, and ultimately find the lowest-barrier pathway. These free energies are shown in 

Figure 3. 

1. At SHE conditions with E=0V and pH=0, the most stable state is [MoS2], the bare neutral 

Mo-edge.  

2. The first reduction potential to obtain [MoS2]-, is only -140mV, leading to a negatively 

charged cluster solvated in water.  
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3. Protonating [MoS2] leads to [MoS2]HS
+ (subscript s indicates the hydrogen atom is 

bound to a S atom) with an energy cost of 7.2 kcal/mol. 

4. Instead of Step 3, we can add a proton to the edge S having an extra electron, [MoS2]-, 

to form [MoS2]HS, which costs ΔG=2.4 kcal/mol, corresponding to a pKA of -1.8. 

Comparing to [MoS2] the cost of adding an H atom (a proton and an electron 

simultaneously) is ΔG=5.7 kcal/mol as in Figure 2. If instead we put the H on the Mo to 

obtain [MoS2]HMo, the energy is 25.7 kcal/mol relative to [MoS2], corresponding to an 

excitation energy of ΔG=20.0 kcal/mol.  

5. Adding now an electron to [MoS2]HS to form [MoS2]HS
- occurs at a potential of –0.07 

V. Moving the H from the S to the Mo, to form  [MoS2]HMo
-, costs ΔG=5.9 kcal/mol. 

6. Starting with [MoS2]HS
- from Step 5 we can add a proton to obtain [MoS2]HSHMo at a 

cost of 9.7 kcal/mol (pKA = -7.3). 

7. Thus, the [MoS2] → [MoS2]- → [MoS2]HS → [MoS2]HMo
- →[MoS2]HSHMo pathway 

may proceed with no highly endergonic steps. 

We can also consider the case with more hydrogen on the cluster, which would be required 

by a Volmer-Tafel mechanism. However, as shown in Figure 3, an extra hydrogen is 

thermodynamically much more difficult, with a cost of about 11 kcal/mol ([MoS2]Hs → 

[MoS2]HSHMo).  

Based on this thermochemistry, the highest-free energy intermediates for either a Heyrovsky 

([MoS2]H-) or Tafel ([MoS2]HSHMo) mechanism are the last intermediates in the cycles.  

Therefore, we searched for rate-limiting transition states by considering the H-H bond 

forming steps, then confirmed that the barriers connecting the preceding lower-energy 

intermediates are indeed lower. 



 

 

22 

 

Figure 4. Calculated Pourbaix diagram for the surface states of the Mo-edge cluster. 

4.2 Pourbaix Diagram. The intermediate species considered in Figure 3 lead to the Pourbaix 

diagram in Figure 4, showing the dominant phases as a function of pH and external potential. 

It is sufficient to use only the species in Figure 3, since only the most stable structure for a 

given stoichiometry appears on the Pourbaix diagram. 

In the range of pH and potentials that are relevant to HER, 5 states are present. Starting from 

SHE at pH=0 and E=0V, and applying increasingly negative potentials, the cluster is reduced 

first to [MoS2]- to become negatively charged. Further reducing the potential leads to the 

[MoS2]Hs
- structure (at pH=0) rather than the -2 charged state.  At very negative pH and 

potential, the [MoS2]Hs structure is the most favorable, since the potential is not sufficiently 

strong to further reduce the structure.   
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4.3 Transition States Analysis. Two types of transition states are considered in this study: 

the Volmer-Tafel mechanism in which two adsorbed hydrogens react to form H2, and the 

Volmer-Heyrovsky mechanism with one adsorbed hydrogen reacting with a solvated proton. 

The calculated free energy barriers are shown in Figure 5, at a potential of 0V and pH = 0. 

4.3.1 Volmer-Tafel Mechanism. In the Volmer-Tafel mechanism, two adsorbed hydrogens 

next to each other react to form a dihydrogen molecule. Since there are two types of atoms, 

S and Mo, on the edge, we considered reactions of the type S-H + H-S and Mo-H + H-S. 

However, constraining the H atoms on two adjacent sulfurs to move toward a possible 

transition state, the hydrogen on one sulfur instead first moves onto the nearby Mo atom, 

forming a Mo-H species. Thus, a transition state of the type S-H + H-S is electronically 

unreasonable. Thus, the Volmer-Tafel reaction on the Mo-edge takes place between 

hydrogens on adjacent Mo and S atoms. Beginning from a relaxed geometry in which the H-

H distance was constrained to 1.0 angstrom, eigenvector following was used to locate a 

transition state with a single imaginary frequency. This transition state geometry was found 

to have bond distances of  

 1.78 A for Mo-H (compared to the equilibrium Mo-H bond of 1.67A);  

 1.08 A for H-H (compared to a final H-H bond of 0.74A), and  

 1.56 A for S-H (compared to a normal S-H bond of 1.35A).  

The free energy at the transition state is 28.7 kcal/mol relative to the [MoS2] ground state. It 

is 11.6 kcal/mol above the preceding intermediate [MoS2]HSHMo. 

4.3.2 Volmer-Heyrovsky Mechanism. The Volmer-Heyrovsky mechanism is more 

complicated because it is necessary to solvate the H3O
+ source of the proton along the 

reaction pathway. We find that obtaining accurate results requires the use of a cluster of 4 

waters, one of which is protonated at the beginning but all of which are neutral at the end. 

However, in the reaction between an adsorbed hydrogen atom and the hydronium bound 

proton, the water cluster must rearrange to expose the proton for reaction.  
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Figure 5. Schematics of the transition state structures considered for H2 formation. Bond 

lengths and imaginary frequencies confirm transition state searches did not relax to products. 

The hydronium water cluster used for the Heyrovsky step is also shown. The red H indicates 

the reacting hydrogen atoms.  
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First, we examined the hydronium reacting with an adsorbed hydrogen atom bound to the 

edge sulfur atom. Again, transition state structures were located by following imaginary 

modes from constrained initial guesses.  The transition state found for S-H + H-OH2 has a 

free energy of 46.5 kcal/mol, which is too high for hydrogen evolution on the Mo-edge. 

Using the same strategy, we found that the transition state free energies for reacting with the 

Mo hydrides [MoS2]HMo
- and [MoS2]HMoHS are 26.7 and 23.6 kcal/mol. The barriers for 

this process are much lower than the S-H case, making them the most favorable transition 

structures to form H2. The free energy profile for these reactions shows that protonation of 

the edge S atom promotes hydride transfer, resulting in a lower barrier for hydride transfer 

from [MoS2]HMoHS (G=17.1kcal/mol) than from [MoS2]HMo
- (G=13.2kcal/mol). The bond 

distances for the [MoS2]HMoHS case are 1.93 A for Mo-H,  0.85 A for H-H, and 1.51 A for 

H-OH2, which correspond to a late transition state. 

4.3.3 Overall Reaction. For the Mo-H + H-OH2 transition state to be rate-limiting, we must 

confirm that the barriers in the previous steps are smaller. Choosing the [MoS2] → [MoS2]- 

→ [MoS2]Hs → [MoS2]HMo
- → [MoS2]H2  path described in the thermodynamic section, 

we calculated transition states for the protonation and migration steps that are of smaller 

energy than the Heyrovsky barrier, as shown in Figure 6. 

This mechanism gives insights on why MoS2 is a good catalyst. The direct protonation of the 

Mo atom leads to a calculated high barrier of 28.1 kcal/mol, but in the presence of the S atom, 

the hydrogen adsorbs first on the chalcogenide, then migrates to the Mo atom (barrier = 20.5 

kcal/mol), and finally reacts with a proton from solution to form H2. These multiple steps 

lower the barrier for the whole process.   

Toulhoat et al. computationally examined the dissociation of H2 on MoS2 edges in the context 

of hydrodesulfurization (i.e., water free)30. In the absence of a protic solvent, our results are 

consistent that, among reaction mechanisms for the cleavage/formation of the H-H bond, the 

Tafel reaction of the type Mo-H + H-S provides the lowest energy pathway.   
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Figure 6. Overall reaction mechanism for HER on the Mo-edge cluster. The edge is first 

reduced by one electron, followed by a protonation to create a sulfur-bound hydrogen with a 

small barrier of 6.3 kcal/mol. The structure is further reduced by one more electron, followed 

by the migration of hydrogen onto the Mo atom with a relatively high barrier of 20.5 

kcal/mol. The edge is protonated again by hydronium with a barrier of 18.0 kcal/mol. Finally, 

the metal hydride reacts with a proton from solution, forming dihydrogen with a barrier of 

23.6 kcal/mol. All the free energies are relative to the ground state with no adsorbed 

hydrogens.  

Finally, our result can be compared with estimates from Jaramillo’s experimental study3. At 

a potential of -150mV and pH = 0.24, he estimated a turnover frequency (TOF) of 1.64⨯10-

2 s-1 per edge molybdenum atom for hydrogen evolution on the Mo edge clusters. Using 

transition state theory, 
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This TOF corresponds to a barrier of 19.9 kcal/mol. After adjusting our theoretical 

calculations for the chemical potentials due to the applied potential and pH, the ground state 

shifts to the negatively charged unprotonated structure, as shown in Figure 4. From the new 

resting state, we calculate an adjusted barrier of 17.9 kcal/mol, very close to the 19.9 kcal/mol 

from the experimental estimate.  

The Tafel slope b can also be estimated from the theoretical calculation, assuming electron 

transfer from the support to the catalyst does not limit the rate. We expect that 

b=2.3RT/nF≈60mV/n, where n is the difference in the number of electrons between the 

ground state and the transition state. Under reaction conditions, n=1 since the ground state 

has shifted to the negatively charged structure, as shown in the Pourbaix diagram in Figure 

4. In this case, the Tafel slope is 60 mV/dec, in agreement with the value of 55~60mV/dec 

from the experimental Tafel plot3. Different polymorphs of MoS2 have been shown to have 

different Tafel slopes, likely due to the effects of conductivity, which are minimized in the 

case of single MoS2 layers on Au(111). For example, Chhowalla et al. measured a lower 

Tafel slope of 40mV/dec using 1T-MoS2, but proposed a different active site in the basal 

planes was responsible for HER31. Cao et al. also reported that the transition from crystalline 

MoS2 to amorphous MoS3 resulted in a change of Tafel slope from c.a. 90mV/dec to 40 

mV/dec32. 

5. Conclusion 

Modeling the Mo-edge of a single MoS2 sheet with a Mo10S21 cluster model, we found that 

the HER mechanism takes place through the Volmer-Heyrovsky mechanism involving an 

electron rich molybdenum hydride and a hydronium cation. This leads to an estimated barrier 

of 17.9 kcal/mol in good agreement with the experiment, in which the barrier 19.9 kcal/mol 

is estimated from the turnover frequency (TOF).   

We find hydronium protonation of the hydride on the Mo site is 21.3 kcal/mol more favorable 

than protonation of the hydrogen on the sulfur because the electrons localized on the Mo-H 

bond are readily transferred to form dihydrogen with hydronium.   
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The S-H + H-S Volmer-Tafel mechanism and the S-H + H-OH2 Volmer-Heyrovsky 

mechanisms attempt to combine highly acidic hydrogen (i.e., two protons) to form H2, 

leading to a higher barrier for transfer of electrons from the bulk. The Volmer-Tafel 

mechanism between molybdenum hydride and sulfur hydrogen has a relatively low barrier 

of 28.7 kcal/mol, for the same reason that electrons are easily transferred from hydride to 

form the hydrogen-hydrogen bond. Indeed, it is possible that tuning the pKA of the edge 

chalcogenide could lower the barrier for this mechanism.  

Based on the volcano plot concept33, it is widely believed that the binding energy of hydrogen 

on sulfur is the most important factor towards HER on crystalline MoS2. However, we find 

that the sulfur-hydrogen species is not the critical intermediate since the free energy of this 

species does not play a role in determining the effective activation barrier.  

In fact, we find that the predicted activation barrier for reaction between molybdenum 

hydride and hydronium is in agreement with the experimental rate of per-site TOF. This 

indicates that kinetic parameters should be used as a descriptor for reactivity, rather than 

equilibrium thermodynamics. 

In conclusion, to design a more reactive catalyst from exposed MoS2 edges, one should focus 

on lowering the reaction barrier between the metal hydride and a positively charged proton, 

either from the sulfur hydrogen species on the edge or from the hydronium in solution.  
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Supporting Information 

S1 – Free Energy Barrier from Experimental Estimate 

From [1], the experimental turnover frequency (TOF) is estimated to be 1.64 x 10-2 s-1 per 

edge Mo atom on the (101̅0) Mo-edge. Since the MoS2 used in this study models the 3-Mo 

wide segment of the edge, we have TOF ≈ (kBT/h) ⨯ exp(-∆G‡/RT). Using kB = 1.38 x 10-23 

m2 kg s-2 K-1, T = 298K, h = 6.63 x 10-34 J·s, R = 1.987 x 10-3 kcal/(K·mol), ∆G‡ is found to 

be 19.9 kcal/mol.  
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1. Jaramillo, T., Jørgensen, K., & Bonde, J. (2007). Science, 317(5834), 100–2. 
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C h a p t e r  3  

THE REACTION MECHANISM FOR THE HYDROGEN EVOLUTION 

REACTION ON THE BASAL PLANE SULFUR VACANCY SITE OF 

MOS2 USING GRAND CANONICAL POTENTIAL KINETICS 

Abstract 

We develop the grand canonical potential kinetics (GCP-K) formulation based on 

thermodynamics from quantum mechanics calculations to provide a fundamental basis for 

understanding heterogeneous electrochemical reactions. Our GCP-K formulation arises 

naturally from minimizing the free energy using a Legendre transform relating the net charge 

of the system and the applied voltage. Performing this macroscopic transformation explicitly 

allows us to make the connection of GCP-K to the traditional Butler-Volmer kinetics. Using 

this GCP-K-based free energy, we show how to predict both the potential and pH dependent 

chemistry for a specific example, the hydrogen evolution reaction (HER) at a sulfur vacancy 

on the basal plane of MoS2. We find that the rate determining steps in both acidic and basic 

conditions are the Volmer reaction in which the second hydrogen atom is adsorbed from the 

solution. Using the our GCP-K formulation, we show that the stretched bond distances 

change continuously as a function of the applied potential. This shows that the main reason 

for the higher activity in basic conditions is that the transition state is closer to the product, 

which leads to a more favorable Tafel slope of 60mV/dec. In contrast, if the transition state 

were closer to the reactant, where the transfer coefficient is less than 0.5, we would obtain a 

Tafel slope of almost 150mV/dec. Based on this detailed understanding of the reaction 

mechanism, we conclude that the second hydrogen at the chalcogenide vacant site is the 

most active towards the hydrogen evolution reaction. Using this as a descriptor, we 

compare to the other 2H group VI metal dichalcogenides and predict that vacancies on 

MoTe2 will have the best performance towards HER.   
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1. Introduction 

 

Figure 1. Schematic showing how voltage dependent electrochemical reactions described 

by grand canonical potential kinetics (GCP-K). (b) and (d) differs from the more standard 

view of Butler-Volmer kinetics (a) and (c). As the voltage is changed from U0 to U1, the 

energy profiles shift as in (a) and (b), while the relevant reaction coordinate changes from R0 

to R1. The Butler-Volmer picture in (c) can be considered as a special case of the GCP-K 

scheme (d) in which the electron transfers instantaneously. 

The field of heterogeneous electrochemistry has been growing rapidly, particularly with a 

focus on electrochemical water splitting and CO2 reduction to efficiently convert electrical 

energy generated from traditional and renewable energy sources to recyclable energy carriers 

like H2 or carbon based fuels1-4. Simultaneously, advances in Quantum Mechanics (QM) 

based methods now enable the detailed reaction mechanisms to be determined for simple 

low index models of the catalytic surfaces5. Electrocatalysis is driven by applying a voltage 

across the reaction cell, providing a sensitive control of the rate not available with traditional 

heterogeneous thermal catalysis in which only the temperature and pressure can be used to 
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drive the chemical reactions. Recently, we have developed modifications in the traditional 

QM (fixed numbers of electrons) to enable the applied voltage (U) to be fixed, Grand 

Canonical QM (GC-QM)6. In GC-QM, the charges change continuously during the 

electrochemical reaction to keep the applied U constant. This provides a new way (Grand 

Canonical Potential Kinetics, GCP-K) to understand the kinetics, completely different from 

the traditional Butler-Volmer description of electrochemistry in which the potential surface 

is followed for each species keeping an integer number of electrons, from which the system 

can transform to a product state by tunneling between the electrode and the reacting 

molecule. This is illustrated in Figure 1. 

Although the voltage dependent grand canonical potential can be obtained from quantum 

mechanical calculations, the connection to the Butler-Volmer kinetics is non-trivial as the 

latter theory is formulated for integer-charged solvated molecules. In this paper, we provide 

a macroscopic theoretical foundation for a new understanding of heterogeneous 

electrochemistry based on GPC-K and compare it to the traditional Butler-Volmer 

description.  

Particularly, we will show that the voltage-dependent grand canonical potential (GCP) for 

surface states can be derived from traditional fixed-electron based free energies by using a 

Legendre transformation. As a result, we find that GCP depends quadratically on the applied 

potential U and on the number of electrons allowing a continuous description of the evolution 

of the reaction intermediates and transition states.  

To illustrate the concepts underlying this new theoretical formulation, we applied the GCP-

K to study the detailed reaction mechanism for the hydrogen evolution reaction (HER) on 

the basal plane of MoS2. Over the past decade, many theoretical and experimental studies 

have shown that MoS2 and other transition metal dichalcogenides can produce hydrogen gas 

efficiently7-8. Initially, it was believed that hydrogen atom adsorption energy on the edge 

sulfur (S-H bond) provided the most active site9-10. However, our QM study of the HER 

mechanism11 showed that the rate determining step (RDS) for dihydrogen formation at edge 

sites takes place via the Heyrovsky reaction, in which a hydrogen (proton) from the solution 
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(H3O+) reacts with the Mo−H metal hydride bond at the edge to form H2. The S−H bonded 

site is not a kinetically important intermediate.  

In addition to the edges of MoS2, the HER has been studied extensively for other reactive 

sites. This includes the 1T phase of MoS2
12,13 and amorphous MoSx

14-17. Activating the basal 

plane of MoS2 is of interest because of the potentially abundant number of active sites. Early 

studies showed that the untreated basal plane performs some HER catalysis, but the 

performance is less favorable than the edge sites18-21. Later, it was found that artificially 

creating sulfur vacancies using Ar plasma showed a correlation between the number of 

vacant sites and HER activity22. However, the experimental conclusion of this study is 

controversial, since others showed that the creation of sulfur vacancy by plasma is not 

responsible for the HER23. Later, it was found that under electrochemical conditions sulfur 

vacancies are created without the use of Ar plasma24. However, the interpretation is 

complicated because the observed reactivity might also arise from the presence of edge sites 

since they are known to be active towards HER. This complicates the experimental 

identification of the true nature of the active sites. Thus, although many studies have been 

performed to optimize the basal plane for HER, the reaction mechanism is not yet 

established. 

In this study, we performed QM calculations using our new grand canonical potential (GCP-

K) formulation to determine the reaction steps as a function of applied potential involved in 

HER at sulfur vacancies on the basal plane of MoS2. By accounting for all HER related 

chemical processes, we predict the Tafel plots and onset potentials in both the acidic and 

basic conditions.  

Particularly, we resolved the difference in activity between the acidic and basic conditions25. 

We focus the detailed discussions on MoS2, but we report the results for these new methods 

applied to the other transition metal dichalcogenides having the 2H structure, predicting that 

MoTe2 is the best and MoS2 is the worst for HER via basal plane vacancies. 
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In contrast to the simplistic view in which the performance descriptor is protonation of the 

reactive site, we find that it is the addition of the second hydrogen to the reactive site that is 

the important step. Indeed, this Volmer step determines the reaction rates in both acidic and 

basic conditions. Thus, we conclude that the adsorption energy of the second hydrogen 

atom can be used as the proper descriptor to assess performance for the class of group VI 

transition metal dichalcogenides.  

2. The Grand Canonical Potential (GCP) formulation using the constant charge 

condition 

Quantum mechanics (QM) calculations, such as density functional theory (DFT), are nearly 

always performed with a fixed number of electrons. To appropriately account for 

electrochemical conditions at a specified applied voltage, we must modify the methodology 

for the QM. Early methods to correct the QM for electrochemical systems obtained a 

relationship between the number of electrons and the work function of the slab surface, where 

surface coverage26, explicit ions, or uniform background charges27,28 were introduced to 

modulate the work function of the system. Later, it was found that counter ions can be 

included in the implicit solvation model to provide a combined solvent-slab free energy, 

where the corresponding grand canonical potential is defined as in (1) so that 

electrochemistry processes can be obtained directly using G(n; U)29-31. 

𝐺(𝑛;  𝑈) = 𝐹(𝑛) − 𝑛𝑒(𝑈𝑆𝐻𝐸 − 𝑈)                                      (1) 

where G is the grand canonical free energy, which depends on the applied voltage U vs. SHE, 

n is the number of electrons, e is unit electron volt in energy, F is the total free energy as a 

function of n, and USHE = μe,SHE/e is the electronic energy at the standard hydrogen electrode 

(SHE) condition. The signs are chosen such that U is directly related to the experimentally 

defined value, i.e., U=−0.1V corresponds to −0.1V vs. SHE. Changing to the reference 

hydrogen electrode (RHE) shifts the reference fermi level further depending on the pH of the 

solution. 
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However, for G(n; U) to be used as a thermodynamic potential, the number of electrons in 

the system must be equilibrated to the applied voltage. To do this, the QM self-consistent 

approach is to match the electronic fermi level to that of the applied potential by changing 

the occupation of the electronic bands, thus varying the number of electrons32-33. 

Mathematically, this is 

𝜇𝑒 =
𝑑𝐹(𝑛)

𝑑𝑛
= 𝑒(𝑈𝑆𝐻𝐸 − 𝑈) or 

𝑑𝐺(𝑛;𝑈)

𝑑𝑛
= 0  (2) 

Thus, we define the macroscopic thermodynamic Grand Canonical Potential (GCP) as in 

(3). 

GCP(𝑈) = min
n

𝐺(𝑛;  𝑈) = min
n

(𝐹(𝑛) − 𝑛𝑒(𝑈𝑆𝐻𝐸 − 𝑈))                (3) 

Since experimental observations typically involve the response of a chemical system as a 

function of the applied voltage, we recommend using GCP(U) directly as an explicit function 

of U in QM calculations modeling electrochemical processes. In contrast, many recent 

studies have assumed a GCP(U) that depends linearly on U 34-35.  

Instead, our definition of the GCP(U) in the form of minimization as in Equation (3), makes 

it immediately obvious that the linear approximation is not correct. The form of F(n) must 

be at least quadratic in n in order to describe the minimization of GCP(n; U). As reported 

previously27-28, the form of GCP(U) is in fact approximately quadratic. Hence, we expand 

F(n) in a quadratic form  

F(n) = a(n – n0)
2+b(n − n0) + c,  

where a, b, and c are fitted parameters. Substituting and performing the minimization, we 

have  

GCP(𝑈) = −
1

4𝑎
(𝑏 − 𝜇𝑒,SHE + 𝑒𝑈)

2
+ 𝑐 − 𝑛0𝜇𝑒,𝑆𝐻𝐸 + 𝑛0𝑒𝑈     (4) 

Using this form, we relate the parameters a, b, and c to physical quantities as follows:  
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 First, when the system is neutral, F(n = n0) = c.  

 Second, the number of electrons is 𝑛(𝑈) = −
1

𝑒

𝜕𝐺𝐶𝑃(𝑈)

𝜕𝑈
= 𝑛0 −

1

2𝑎𝑒
(𝑏 − 𝜇𝑒,SHE + 𝑒𝑈). 

Thus at the potential of zero charge, n(UPZC)=n0, and we obtain b = μe,SHE – eUPZC.  

 Finally, the differential capacitance is 𝐶diff =
𝜕𝑛

𝜕𝑈
= −

1

2𝑎
, which gives 𝑎 = −

1

2𝐶diff
.  

Summarizing, the grand canonical potential and the free energy have the following form in 

terms of physical quantities: 

GCP(𝑈) =
𝑒2𝐶diff

2
(𝑈 − 𝑈PZC)2 + 𝑛0𝑒𝑈 + 𝐹0 − 𝑛0𝜇𝑒,𝑆𝐻𝐸         (5a) 

𝐹(𝑛) = −
1

2𝐶diff
(𝑛 − 𝑛0)2 + (𝜇𝑒,𝑆𝐻𝐸 − 𝑒𝑈PZC)(𝑛 − 𝑛0) + 𝐹0  (5b) 

where  

 Cdiff is the differential capacitance, calculated from parameter a, 

 UPZC is the potential of zero net charge, calculated from parameter b, 

 F0 is the free energy at zero net charge, calculated from parameter c, 

 n0 is the number of electrons at zero net charge, summing all valence electrons in the 

QM, 

 μe,SHE is the chemical potential of an electron vs. SHE, and 

 e is the energy of an electron volt, which is for unit conversion from voltage to energy 

The quadratic dependence in the free energy F(n) and the grand canonical potential GCP(U) 

implies that the capacitive effects will participate in the electrochemical processes. 

Fundamentally, this is due to the fact that heterogeneous systems allow electrons to 
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delocalize into broad electronic bands, resulting in fractional occupations. Thus, the 

number of electrons can be vary continuously, leading to the capacitive contributions.  

We note that a similar quadratic form  

G(U) = F(n(U)) – ne(USHE−U)  

was proposed previously36, but the relationship between n and U was established via the 

work function rather than a proper thermodynamic minimization.  

Our approach shows that the work function is not needed to calculate the grand canonical 

potential since we define GCP(U) rigorously from the free energy F(n) via a Legendre 

transform. Using the Legendre transform allows us to write F(n) and GCP(U) in terms of 

physical parameters, with the connection to Butler-Volmer kinetics as discussed below.  

    

0 or [MoS2] 1 or [MoS2] 2 or [MoS2] 3 or [MoS2] 

Figure 2. Four possible states for Hydrogen adsorption at the sulfur vacancy site. Blue: 

hydrogen atom; yellow: sulfur atom; cyan: molybdenum atom.   

3. Simulation Model for the Basal Plane of MoS2 

To predict the QM properties of a sulfur vacancy on the basal plane of MoS2, we used a 3x3 

MoS2 periodic slab. Removing a sulfur atom exposes three molybdenum atoms that become 

available for bonding. This leads to four possible intermediate states with 0 to 3 hydrogen 
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atoms at the vacant site. We label them as 0, 1, 2 and 3 or [MoS2], [MoS2]H, [MoS2]H2 

and [MoS2]H3 in Figure 2. A detailed description of the quantum mechanical calculations is 

provided in the supplementary information. 

To illustrate the quadratic behavior of the grand canonical potential, we examined the voltage 

dependence for [MoS2]H in detail. [MoS2]H is used here because we find below that it is 

both the most stable intermediate thermodynamically and most populous for the steady state 

reaction. Figure 3(a) shows that the solvated free energy F(n) as a function of accumulated 

charges appears to be linear. However, this is due to the large contribution from the free 

energy of an electron at SHE. Rearranging Equation (5), leads to (6), 

𝐹(𝑛) − 𝜇𝑒,𝑆𝐻𝐸𝑛 = −
1

2𝐶𝑑𝑖𝑓𝑓
(𝑛 − 𝑛0)2 − 𝜇𝑒,𝑆𝐻𝐸𝑛0 − 𝑒𝑈𝑃𝑍𝐶(𝑛 − 𝑛0) + 𝐹0  (6) 

Equation (6) reveals the quadratic dependence on charge, as shown in Figure 3(b). We see 

that the minimum is approximately at n=n0.  

Under electrochemical conditions, a nonzero voltage, U, is applied to drive the reaction. This 

shifts the free energy in Equation (6) by neU, leading to G(n, U), as defined in Equation (1). 

Figure 3(c) shows that applying a voltage of U= −0.5V vs. SHE shifts the minimum of G(n; 

U) towards more electrons, indicating that the slab becomes more negatively charged.  

Thus, although the free energy F(n) appears to be linear in Figure 3(a), the 

thermodynamically relevant potential G(n; U) or GCP(U) in Figure 3(c) is clearly quadratic. 

4. Relationship between grand canonical potential reaction kinetics and Butler-Volmer 

reaction kinetics 

The above formulation can be used for stable states because the equilibrium geometries 

usually change little as the applied potential changes. However, since the transition state (TS) 

is the maximum along the minimum energy path (MEP) for the reaction coordinate, the TS 

geometry will change as the applied voltage changes.  



 

 

42 

 

 

   

Figure 3. The free energy and grand canonical potential as a function of the number of 

electrons. The DFT energies are indicated by blue dots, the dashed curve is the polynomial 

fit. (a) a linear fit to F(n) , (b) a quadratic fit to F(n) – n × μe,SHE , (c) a quadratic fit GCP(n, 

U).  

Fig 1 (b) shows schematically that as the voltage is changed from U0 to a more negative U1, 

the negatively charged product becomes more stable, shifting the potential energy surface 

downward for the species. However, this energy changes as the geometries change along the 

MEP. Because the reactant has fewer electrons, the stabilization is less effective, resulting in 

a leftward shift of the transition state towards the reactant. The coordinate along the reaction 

coordinate changes from R0 to R1 in Figure 1(b). In comparison, for Butler-Volmer kinetics37-

39, only two states are involved, and the shift from R0 to R1 is the result of the shift in energy 

for the final state, as shown in Figure 1(a).  
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The difference between the grand canonical potential reaction kinetics (GCP-K) and 

Butler-Volmer kinetics is more obvious for the reaction path in the charge-reaction 

coordinate or (n, R) plane as shown in Figure 1(c) and 1(d). In the Bulter-Volmer picture, an 

electron is transferred through tunneling from the electrode to the product, resulting in a 

discontinuity in the (n, R) plane. However, in extended systems where intermediates are 

adsorbed on the surface, there can be fractional charges per unit area since electrons are 

delocalized. As a result, the surface species can charge or discharge continuously, leading to 

a smooth reaction path in the (n, R) plane, as shown in Figure 1(d). Thus, the Bulter-Volmer 

picture in the (n, R) plane can be considered as the special case of the GCP-K picture in 

which the electron transfer takes place instantaneously as in Figure 1(c).  

In the GCP-K picture, the reaction path changes continuously in the (n, R) plane. Thus, both 

the charge n and the spatial reaction coordinate R are relevant coordinates. Because the 

constant charge free energy F(n) is used to transform to GCP(U), we must prove that the 

grand canonical potential for the transition state obtained from the constant charge F(n) 

coincides with the grand canonical potential obtained from constant voltage calculations.  

The transition state grand canonical potential GCPTS,n(U) can be found explicitly by 

transforming FTS(n), where FTS(n) is the barrier for each fixed charge n such that  

FTS(n)=maxRF(n,R), with RIS < R < RFS 

Then,  

GCPTS,n(U) = minR(FTS(n) – ne(USHE – U)) 

On the other hand, including the spatial dependence in Equation (1), leads to  

G(n, R; U) = F(n, R) – ne(USHE−U) 

Thus, the barrier calculated from the explicit voltage dependent grand canonical potential is 

defined as  
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GCPTS,U(U) = maxRGCP(U, R) = maxRminnGCP(n, R; U) 

To show that the two approaches, GCPTS,U(U) and GCPTS,n(U), are equivalent, we employ 

the minimax theorem40: 

Given:  

1. F(n, R) is quadratic and thus convex in n, then so is GCP(n, R; U) = F(n, R) – ne(USHE 

– U),  

2. The reaction path is smooth in extended systems since the charges transfer 

continuously at the electrode.  By the definition of the transition state, the reaction 

path is concave in R in the neighborhood of RTS.  

Then, 

        GCPTS,U(𝑈) = max
𝑅

min
𝑛

(GCP(𝑛, 𝑅; 𝑈))  

                             = min
𝑛

max
𝑅

(GCP(𝑛, 𝑅; 𝑈))  

                             = min
𝑛

max
𝑅

(𝐹(𝑛, 𝑅) − 𝑛𝑒(𝑈𝑆𝐻𝐸 − 𝑈)) 

                             = min
𝑛

(𝐹TS(𝑛) − 𝑛𝑒(𝑈𝑆𝐻𝐸 − 𝑈)) 

                             = GCP𝑇𝑆,𝑛(𝑈) 

Thus, the transition states obtained from the constant charge barriers and the constant 

voltage barriers are indeed equivalent. This relationship allows us to calculate the barriers 

for a system with a fixed number of electrons (standard QM) and then use the Legendre 

transform to obtain the voltage dependence for the transition state. Figure 1(d) shows that 

for each voltage (U), there corresponds a transition state with a specific charge (n) and 

spatial distance (RTS). Thus, RTS is a function of charge (n), or RTS(n) = argmaxRF(n, R). 
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Because the grand canonical potential of the transition state is found by minimization in 

n and maximization in R, at the transition state we then have 

𝑑

𝑑𝑅

𝑑

𝑑𝑛
GCP(𝑛, 𝑅; 𝑈) = 0  (7) 

As discussed above, GCP(n, R; U) depends on R and U quadratically around the transition 

state, the derivatives in n and R reduce the dependence from order 2 to order 1. As a result, 

Equation (7) implies that RTS(n) depends linearly on n. This linear dependence is shown 

qualitatively as the dashed line in Figure 1(d).  
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Figure 4. The transition states as the system evolves from [MoS2]H to [MoS2]H2. (a): the 

transition state structure in basic conditions. (b): the transition state structure in acidic 

conditions. (c): relationships between the transition state charge (n) and spatial coordinates 

(RTS) in basic conditions. (d): relationships between the transition state charge (n) and spatial 

coordinates (RTS) in acidic conditions. The linear relationships in (c) and (d) agree with the 

qualitative picture in Figure 1(d).  

To show this linear relationship quantitatively, we studied the transition state of hydrogen 

transfer from the solution to [MoS2]H to produce [MoS2]H2, as shown in Figure 4. We show 

below that this is the rate determining step (RDS) for HER at the sulfur vacancy site on the 

basal plane of MoS2. In this primary step, the hydrogen atom gradually moves from the 

oxygen atom of the water molecule towards the molybdenum atom at the reaction center. As 

a result, two spatial coordinates are important. One is the Mo−H distance and the other is 
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O−H distance, such that in the forward direction, the distance of Mo−H becomes shorter 

and the distance of O−H is becoming longer. Figure 4 (e)-(h) shows that the relationship 

between R and n for the transition state is linear as predicted by the GPC-K approach. 

5. Discussion of the HER mechanism on MoS2 basal plane  

5.1The Hydrogen Evolution Reaction in Acidic Conditions 

 

Figure 5. The free energies at 298K under acid conditions for all reaction intermediates and 

transition states involved in the HER at the sulfur vacancy on the basal plane of MoS2. Black: 

U = −500mV vs RHE, blue: U = −700mV vs. RHE. 

 

Using the information from Figure 5, we can calculate the grand canonical potential of all 

the relevant intermediates and their connecting transition states at any given applied 

potential. In this reaction, the sulfur vacancy site can bind up to three hydrogen atoms.  

 At U=−500mV, the most stable state is 1, or [MoS2]H.  

 However, at a more negative potential, U=−700mV, the most stable state becomes 2, or 

[MoS2]H2.  

This is expected, because the grand potential G(n, U) = F(n) – neU is smaller for more 

negative charge (larger n) when a negative potential (more negative U) is applied. Thus, the 

[MoS2]H2 becomes more stable than [MoS2]H with a more negative charge.  

5.1a starts with the sulfur vacant site with no hydrogen atom adsorbed:  
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 At U= −500mV, we first adsorb a hydrogen atom from the solution at TS01 with a 

barrier of 1.7 kcal/mol, 

 At U= −700mV, we first adsorb a hydrogen atom from the solution at TS01 with a barrier 

of and 0.8 kcal/mol.  

5.1b starts with one hydrogen atom adsorbed at the site: 

This site can react with another hydrogen from the solution to generate an H2, while leaving 

behind the empty site with  

 A barrier (TS10) of 22.6 kcal/mol at U=−500 mV and  

 A barrier (TS10) of 20.3 kcal/mol at U=−700 mV,  

Or, it can abstract a second hydrogen from the solution to form [MoS2]H2 with 

 A barrier of 15.3 kcal/mol (TS12) at U=−500 mV and  

 A barrier of 13.6 kcal/mol (TS12) at U=−700 mV.  

5.1c starts with two hydrogen atoms adsorbed at the site: 

They can react with each other to generate an H2 while leaving behind the empty site with  

 A barrier (TS20) of 17.9 kcal/mol at U=−500 mV, and 

 A barrier (TS20) of 18.2 kcal/mol at U=−700 mV.  

or one of the hydrogen atoms can react with another hydrogen atom from water to generate 

H2 while leaving behind [MoS2]H with  

 A barrier of 8.8 kcal/mol at U=−500 mV (TS21). and  

 A barrier of 7.5 kcal/mol at U=−700 mV (TS21).  

or [MoS2]H2 can abstract another hydrogen solution to form [MoS2]H3 via TS23. However, 

we found that this step involves the same transition state as TS21, thus the barriers are 8.8 

and 7.5 kcal/mol.  

For [MoS2]H3, no more hydrogen can be added, thus it can generate H2 via the Volmer step 

(TS31) with a barrier of 3.8 and 5.3 kcal/mol, or it can generate H2 via the Heyrovsky step 

(TS32) with a barrier of 14.3 and 13.3 kcal/mol.  
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5.2 Hydrogen Evolution Reaction in Basic Conditions 

 

Figure 6. The free energies at 298K under basic conditions for all the reaction intermediates 

and transition states involved in HER at the sulfur vacancy on the basal plane of MoS2. 

Black: −500mV vs RHE, blue: −700mV vs. RHE.  

 

Similarly, we can use the GCP-K method in basic conditions to calculate the GCP energy of 

each species and the barrier for each reaction. However, because we use RHE, the reference 

fermi energy of the electron is shifted by pH × 0.059 eV. As shown in Figure 6, at U = 

−500mV vs RHE, the relative stabilities of [MoS2]H, [MoS2]H2 and [MoS2]H3 are very 

similar, while [MoS2], the state with no hydrogen atom adsorbed, is much less stable. Thus, 

under basic conditions, we conclude that there is always at least a hydrogen atom adsorbed 

at the reaction site. Specifically, 

 At U= −500 mV, the most stable state is 1, or [MoS2]H, the same as the acidic case,  

at U= −700 mV, the most stable state is shifted to 3, or [MoS2]H3. 

This shows that at high applied potential, there is a bias toward the intermediate species with 

more electrons, making them more stable. 

5.2a starts with no hydrogen adsorbed: 

 At U = −500mV, the barrier TS01 leading to [MoS2]H is very low at 3.3 kcal/mol,  

 At U = −700mV, TS01 is even lower at 2.4 kcal/mol.  

Such a low barrier is due to the large thermodynamic force, so that [MoS2]H is −15.9 and 

−19.5 kcal/mol downhill from [MoS2] for −500mV and −700mV, respectively. However, the 
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kinetics at [MoS2]H is more unfavorable because it is relatively too stable. It has to 

overcome a large thermodynamic force to react with another water molecule to form H2 and 

[MoS2] via TS10.  

5.2b starts with one hydrogen atom adsorbed: 

Different from the vacant state [MoS2], the kinetics at [MoS2]H is more unfavorable because 

it is relatively much more stable. To react with another water molecule to form H2 and [MoS2] 

via TS10, it has to overcome a large thermodynamic force: 

 At U = −500mV, the barrier TS10 leading to [MoS2] is 28.8 kcal/mol,  

 At U = −700mV, the barrier TS10 is 27.1 kcal/mol.  

On the other hand, it is much easier to form two adsorbed hydrogen atoms at the reaction site 

(TS12), since [MoS2]H2 is similar in energy to [MoS2]H.  

 A barrier (TS12) of 15.1 kcal/mol at U = −500mV,  

 A barrier (TS12) of 13.6 kcal/mol at U = −700mV.  

5.2c starts with two hydrogen atoms adsorbed:  

Having two adsorbed hydrogen atoms for [MoS2]H2 allows the H2 molecule to be formed 

via the Heyrovsky mechanism (TS21) or the Tafel mechanism (TS20). However, both steps 

have to overcome a ~20kcal/mol barrier at −500mV and −700mV.  

 At U = −500mV, the Tafel barrier (TS20) is 19.5 kcal/mol and the Heyrovsky barrier 

(TS21) is 21.6 kcal/mol,  

 At U = −700mV, the Tafel barrier (TS20) is 20.1 kcal/mol and the Heyrovsky barrier 

(TS21) is 18.6 kcal/mol.  

Instead of forming H2 directly, [MoS2]H2 prefers to abstract one more hydrogen atom from 

the solution,  

 A barrier (TS23) of 10.8 kcal/mol at U = −500mV,  

 A barrier (TS23) of 5.9 kcal/mol at U = −700mV.  

5.2d starts with three hydrogen atoms adsorbed: 

At last, H2 molecule can be formed from [MoS2]H3 via the Heyrovsky step (TS32) or the 

Tafel step (TS31). However, the Tafel step wins since the barrier is only 9.5 kcal/mol 

(−500mV) and 10.8 kcal/mol (−700mV), much lower than the activation energy for the 

Heyrovsky step with a barrier of almost 25 kcal/mol.  
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To summarize, our analysis shows that hydrogen formation at the sulfur vacant site in 

basic conditions starts from [MoS2]H, and continues to bind two hydrogen atoms 

sequentially, leading to [MoS2]H3. Then H2 molecule is formed via the Tafel mechanism 

while [MoS2]H3 returns to the initial state [MoS2]H. 

6. Overall kinetics 

 

                                  (a) 

 

                                  (b)                                                                        (c) 

Figure 7. (a) QM predicted I-V curves for acidic and basic conditions. (b) Tafel plots for 

acidic and basic conditions. (c) Comparison between our QM predictions and the 

experimental interpolation from [A24]. This shows excellent agreement. 

Since all the energies of the relevant reaction intermediates and transition states are 

calculated as functions of applied potential using the quadratic grand canonical potential, the 
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potential dependent rate constants are obtained using the Eyring rate equation. Once all 

rate constants are found, a microkinetic model is used to calculate the overall reaction rates 

and species concentrations.  

First, we write the rate equations for all species as: 

            
𝑑𝑥0

𝑑𝑡
= −𝑘01𝑥0 + 𝑘10𝑥1 + 𝑘20𝑥2  

            
𝑑𝑥1

𝑑𝑡
= 𝑘01𝑥0 − 𝑘10𝑥1 − 𝑘12𝑥1 + 𝑘21𝑥2  

            
𝑑𝑥2

𝑑𝑡
= 𝑘12𝑥1 − 𝑘21𝑥2 − 𝑘20𝑥2 + 𝑘32𝑥3  

            
𝑑𝑥3

𝑑𝑡
= 𝑘23𝑥2 − 𝑘32𝑥3 − 𝑘31𝑥3  

and the Eyring rate equation as: 

𝑘𝑖𝑗(𝑈) =
𝑘𝐵𝑇

ℎ
exp (−

∆𝐺𝑖𝑗
‡ (𝑈)

𝑘𝐵𝑇
) 

where xi is the concentration for each intermediate species, kij(U) is the voltage dependent 

rate constant. However, the above set of equations is linearly dependent. We must include 

an additional constraint, ∑ixi = 1.  If we are concerned only with the steady state chemistry, 

we can set the left hand sides of the above equation to zero. We then obtain the corresponding 

rates and concentrations by solving the system of linear equations. This then leads to the I-V 

plot and the Tafel plot as shown in Figure 7 (a) and (b).  

Typically, experimental studies report the applied voltage at 10mA/cm2 as the onset potential 

for the catalyst. As shown in Figure 7(a), we found that the onset potential for the 11.1% 

sulfur vacancy to Mo atom ratio is −0.62V in acidic conditions, and −0.52V in basic 

conditions, agreeing qualitatively with experimental findings that the basal plane of MoS2 is 

more active in basic conditions than in acidic conditions.  

To correlate directly with experimental onset potentials, the experimental number density of 

the sulfur vacancies must be known. However, if the same sites are responsible for HER in 
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both acidic and basic conditions, the onset potentials should scale linearly between acid 

and base. Indeed, this exact linear relationship is found for all reported onset potentials for 

various samples25, which are plotted in Figure 7(c). Our predicted onset potentials for base 

and acid are also plotted in Figure 7(c), which agree very well with our fitted line across the 

experimental samples. The Tafel slope in acidic conditions is reported to be 127mV/dec, 

corresponding to a transfer coefficient of 0.47, which is similar to our predicted transfer 

coefficient of 0.39 derived from our Tafel slope of 155mV/dec in Figure 7(b). No Tafel slope 

has been reported for HER on the basal plane of MoS2. We predict the Tafel slope to be 62 

mV/dec.  

Condition [MoS2] [MoS2]H [MoS2]H2 [MoS2]H3 

Acidic (pH0) 0.0(−500mV) 

0.0(−700mV) 

0.9999 

0.9998 

7.976 ×10-6 

1.480 ×10-5 

1.119 × 10-9 

2.544 × 10-7 

Basic (pH14) 0.0(-500mV) 

0.0(-700mV) 

0.9992 

0.6542 

6.791 ×10-4 

1.100 ×10-4 

7.323 ×10-5 

0.3457 

Table 1. Predicted species concentrations in fractions at the sulfur vacancy during hydrogen 

evolution reaction. The concentrations are normalized to sum to 1.  

As shown in Table 1, the dominant reaction intermediate is [MoS2]H, the reaction site with 

one hydrogen atom adsorbed, agreeing with our discussions of Figure 5 and 6 where we 

conclude that [MoS2]H is the starting point of the catalytic cycle. Although the energetics of 

[MoS2]H is nearly identical to [MoS2]H2, as shown in Figure 5 and 6, the near unity 

concentration is mainly the result of the rate determining step in which [MoS2]H is 

protonated to [MoS2]H2.  

However, in basic condition, when the applied voltage is high, e.g., −700mV vs. RHE, the 

concentration of [MoS2]H3 increases to a nontrivial amount. This is mainly because the 

activation energy of the Tafel reaction (TS31) becomes e nearly as high as the original 

Volmer rate determining step of TS12.   
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7. Comparison with other Group VI Transition Metal Dichalcogenides 

Since the adsorption of the second hydrogen atom to the sulfur vacant site is the general rate 

determining step, we can use its adsorption grand potential as the descriptor to compare the 

hydrogen evolution reaction activity at the basal plane across the class of group VI transition 

metal chalcogenides. The conventional adsorption energy is calculated at neutral charge, but 

since the number of electrons is not equilibrated to an applied voltage, this approach 

corresponds to intermediate states having different voltage. Such an approach is 

inappropriate for electrochemistry because the energy difference between two arbitrary 

voltages does not have any physical or chemical significance.  

Instead, we compare the GCP of the intermediate species at the same voltage. We have also 

used the GCP approach to predict successfully the hydrogen adsorption energies at the same 

voltage (V=0 vs. SHE) to explain the hydrogen evolution relationships on MoSSe/NiSe2
41 

and FeP/NiP42.  

 

Figure 8. Required applied potential to obtain a zero reaction energy for the rate determining 

Volmer step from [MX2]H to [MX2]H2. We predict that this lowest required voltage will 

correspond to the best HER performance.  
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Since we have shown that the rate determining step is the Volmer reaction from [MoS2]H 

to [MoS2]H2, we can use the reaction energy of this step to compare the reactivity across 

materials with similar structures.  However, the reaction energy, ∆GH2(U) = G2(U) – G1(U) 

between 2 and 1, depends on voltage. Instead of comparing ∆GH2(U), we calculate the 

voltage necessary to obtain ∆GH2(U)=0, then the material with the lowest required voltage 

will be the most active towards HER. The corresponding voltages for different transition 

metal dichalcogenides are reported in the first numerical column in Table 2.  

 Voltage when  

G([MX2]H) = 

G([MX2]H2) 

∆G([MX2]) 

 

∆G([MX2]H3) 

MoS2 η  = 0.521V 0.82 eV 0.17 eV 

MoSe2 η  = 0.372V 0.83 eV 0.065 eV 

MoTe2 η  = 0.0902V 0.69 eV 0.046 eV 

WS2 η  = 0.367V 0.61 eV 0.26 eV 

WSe2 η  = 0.241V 0.65 eV 0.21 eV 

Table 2. The relative grand canonical energies of [MX2] and [MX2]H3 at the optimal 

voltages. The relative energies ∆G([MX2]) and ∆G([MX2]H3) referenced to [MX2]H (or 

[MX2]H2) indicate whether the species might be important for the actual reaction mechanism. 

In addition to the required potentials, we also calculated the relative energies of [MX2] and 

[MX2]H3 to determine whether they will interfere with the proposed stable states of [MX2]H. 

As shown in Table 2, all of the relative energies of [MX2] are greater than 0.6 eV from the 

[MX2]H species, reaffirming that the vacant site [MX2] is not an important intermediate 

during HER at the basal plane. On the other hand, the [MX2]H3 are relatively much more 

stable, which allows the HER to proceed and complete the catalytic cycle from [MX2]H3 

back to the original state of [MX2]H.  

Based on these calculations, we predict that MoTe2 will have the best per site activity across 

the stable 2H group VI metal dichalcogenides, with η=0.09 V. Next is WSe2 with η=0.24V, 

followed by WS2 and MoSe2 with η=0.37V, with MoS2 last at η=0.52V. Our predicted trend 

agrees with the observed trend25 that for single crystal MoS2 and MoSe2, the onset potential 

for MoSe2 is −0.78V vs. RHE in acidic condition, which is 0.47V lower than the onset 
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potential of −1.25V vs. RHE for MoS2. If a transfer coefficient of 0.5 is assumed, the onset 

potential of MoTe2 will be 0.22V less negative than MoS2 for the same density of 

chalcogenide vacancies. 

8. Conclusion 

In conclusion, we have shown that our formulation of the grand canonical potential kinetics 

(GCP-K) in terms of thermodynamics provides a fundamental basis for understanding 

electrochemical processes. Our GCP-K formulation arises naturally from minimizing the free 

energy using a Legendre transform. As the result, the free energies and the grand canonical 

potentials of the reaction intermediates include a quadratic term that depends on the 

differential capacitance Cdiff. We use the minimax theorem to show that the barriers in the 

constant charge picture and constant potential picture describe the same transition states. 

Using this GCP-K-based free energy, we showed how to predict both the potential and pH 

dependent chemistry of the hydrogen evolution reaction at the sulfur vacancy of the basal 

plane of MoS2.  

We find that the rate determining steps in both the acidic and basic are the Volmer reaction 

in which the second hydrogen forming is adsorbed from the solution. Using our GCP-K 

formulation, we show that the stretched bond distances change continuously as a function of 

the applied potential. This shows that the main reason for the higher activity in basic 

conditions is that the transition state is closer to the product, leading to the much more 

favorable Tafel slope of 60mV/dec. In contrast if the transition state were closer to the 

reactant, where the transfer coefficient is less than 0.5 we would obtain a Tafel slope of 

almost 150mV/dec.  

Based on this detailed understanding of the reaction mechanism, we conclude that the 

second hydrogen at the chalcogenide vacant site is the most active towards the 

hydrogen evolution reaction. Using this as a descriptor, we compared the rest of the 2H 

group VI metal dichalcogenides and predict that MoTe2 will have the best performance 
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towards HER among the 2H group VI transition metal dichalcogenides considered 

here.  
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Supporting Information 

1. Computational Method 

In the GCP-K formulation, both constant charge or constant potential calculations can be 

used to obtain the parameters for the free energy F(n) and GCP(U). In this study, we first 

calculated F(n) at different charges, and then fitted for the quadratic form F(n) = a(n-n0)
2 + 

b(n-n0) + c, where a, b, and c are fitted parameters. Once these parameters are fitted, physical 

parameters are obtained by setting c = F0, b = μe,SHE – eUPZC, and a = –1/(2Cdiff). The last 

parameter, μe,SHE, depending on the underlying quantum method, is described below. With 

these, the Equations 5(a) and 5(b) can be written out explicitly.  

The free energies used in this study are calculated using the PBE-D3 functional [1-3], with 

geometry optimized in VASP [4-9], and a single point calculation at the end using jDFTx 

(v.1.2.1) [10]for the CANDLE solvation model [11].  

The geometries are optimized in VASP, in which a conjugate gradient is used to search for 

the stable states, and the VTST package [12] is used to obtain the transition states. The 

VASPsol [13,14] solvation model is also used in VASP to include the effect of solvation. 

The wavefunction includes contributions up to a kinetic energy cutoff of 300eV. Since we 

use a 3x3 periodic slab of MoS2, we use a gamma-center 4x4 Monkhorst-Pack k-point grid. 

The electronic energies are converged to 1E-5 eV, and the geometries are optimized to 0.01 

eV/A.  

The single point joint density function functional theory calculation is used to obtain the 

combined DFT and solvation energy after the geometry is optimized. The CANDLE 

solvation model is used to describe solvation implicitly. Using this scheme, μe,SHE = 4.66 eV, 

which is used for all structures. A kinetic energy cutoff of 13 Hartree is used for the 

wavefunction, and a k-point mesh of 4x4 is used. The free energies are converged to 1E-7 

Hartree.    
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2. Parameters for the Grand Canonical Potential or Free Energy  

Acid: 

Species a 

(Hartree/electron2) 

b 

(Hartree/electron) 

c (Hartree) vibrational 

contribution 

 (ZPE + Hvib- Tsvib) 

Unit: kcal/mol 

[MoS2] or 0 0.008566 -4.035820 -

323.556000 

0.000000 

[MoS2]H or 

1 

0.008773 -4.148660 -

308.916000 

3.170408 

[MoS2]H2 or 

2 

0.008606 -4.085280 -

314.974000 

8.310925 

[MoS2]H3 or 

3 

0.012046 -5.761100 -

111.340000 

13.522096 

 

Base: 

Species a 

(Hartree/electron2) 

b 

(Hartree/electron) 

c (Hartree) vibrational 

contribution 

 (ZPE + Hvib- Tsvib) 

Unit: kcal/mol 

[MoS2] or 0 0.008566 -4.035820 -

323.556000 

0.000000 

[MoS2]H or 

1 

0.008773 -4.148660 -

308.916000 

3.170408 

[MoS2]H2 or 

2 

0.008606 -4.085280 -

314.974000 

8.310925 

[MoS2]H3 or 

3 

0.012046 -5.761100 -

111.340000 

13.522096 

 

The complete kinetic model including all the parameters is attached at the end of the 

document. Python3 with the numpy library and the matplotlib library is needed to run the 

script.  
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C h a p t e r  4  

IDENTIFICATION OF THE SELECTIVE SITES FOR 

ELECTROCHEMICAL REDUCTION OF CO TO C2+ PRODUCTS ON 

COPPER NANOPARTICLES BY COMBINING REACTIVE FORCE 

FIELDS, DENSITY FUNCTIONAL THEORY, AND MACHINE 

LEARNING 

Abstract 

Recent experiments have shown that CO reduction on oxide derived Cu nanoparticles (NP) 

is highly selective towards C2+ products. However, understanding of the active sites on such 

NPs is limited, because the NPs have ~200000 atoms with more than 10,000 surface sites, 

there are far too many for direct quantum mechanical calculations and experimental 

identifications. We show here how to overcome the computational limitation by combining 

multiple levels of theoretical computations with machine learning. This approach allows us 

to map the machine learned CO adsorption energies on the surface of the copper nanoparticle 

to construct the active site visualization (ASV). Furthermore, we identify the structural 

criteria for optimizing selective reduction by predicting the reaction energies of the potential 

determining step, ΔEOCCOH, for C2+ product. Based on this structural criterion, we design a 

new periodic copper structure for CO reduction with a theoretical faradaic efficiency of 97%. 

1. Introduction 

Rapid progress is being made in developing new catalysts that are highly active and selective 

to electrochemically reduce CO or CO2 to specific chemical fuels and feedstocks1-2. 

Improved selectivity and activity in reducing CO2 and CO to valuable hydrocarbons and 

alcohols will enable the conversion of intermittent or remote renewable energies into 

complex chemical forms for storage and delivery3. At the same time, using sequestrated CO2 

as the feedstock would reduce the amount of excess atmospheric CO2 by completing the 
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carbon cycle with carbon fixation via artificial photosynthesis or other forms of renewable 

energy sources4-5. 

However, CO2 is quite stable, making it very challenging to optimize catalytic efficiency due 

to the difficulty in activating CO2
6. After decades of development, copper remains the only 

catalyst that can reduce CO or CO2 by more than two electrons to generate valuable products 

in nontrivial amounts. Recently, oxide derived copper nanoparticles (NP) have been shown 

to greatly improve both the activity and selectivity of CO and CO2 reduction towards C2+ 

products7. Based on early temperature programmed desorption (TPD) experiments, the 

improved performance of the oxide derived metal NP was hypothesized to arise from strong 

CO adsorption sites8. However, later experiments have found that selectivity correlated 

linearly with the grain boundary (GB) density9-10. In this work, we focus on elucidating which 

local Cu structures lead to the optimum properties for CO reduction to C2+ products.  

2. Machine learning and CO adsorption 

We previously used Density functional theory (DFT) with full solvent and Grand Canonical 

techniques to determine the reaction mechanisms for CO reduction to C1 and C2 products 

on Cu (100) and Cu (111) surfaces, leading to an excellent agreement with experiments 

(overpotentials within 0.05 V)11-12. However, the experimental 10nm NP involves ~200,000 

atoms with ~10,000 possible surface sites, well beyond the capabilities of DFT.  To 

circumvent the limitation of the direct application of DFT, we subsequently utilized the 

reactive force field (ReaxFF)13-14 to computationally grow the 10nm nanoparticles and then 

used DFT to sample only 84 surface sites for ECO and 4 surface sites for EOCCOH
15-16. In 

order to extract a quantitative understanding of the variations of the chemistry over the whole 

nanoparticle, we propose here a methodology to combine limited numbers of DFT 

calculations with machine learning to train a machine learning model that accurately predicts 

the binding energies for all sites.  
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Figure 1. Schematics of the machine learning model. For each surface site (red), we extract 

a copper cluster including all the atoms within 8Å from a copper NP. The adsorption energy 

is calculated using DFT and is used as the target property for training. We use Behler-

Parrinello17 type neural network model. In this study, we describe the copper cluster by a 

set of 2-body and 3-body molecular descriptors about the surface atom. We then used these 

descriptors as input to a multilayer neural network for fitting. 

First, we used ReaxFF to computationally synthesize a 10 nm copper nanoparticle (NP) that 

closely resembles the experimental NP [S1.1 in SI]. The predicted structure leads to XRD 

spectra and TEM images that match those of the experimental NP structures. Next, we 

selected 400 random surface sites and calculated their CO adsorption energies using DFT 

[S1.2 in SI]. We previously found that including atoms up to 8Å from the surface site is 

sufficient to represent the local environment15. We integrated this local environment into a 

neural network in which the surrounding atoms are transformed into 12 two-body and 18 

three-body molecular descriptors as inputs to a 2-layer neural network with 50 nodes in each 

layer, as shown in Figure 1. Further details of the descriptor definition are in Section S1.3 

of the Supporting Information. We partitioned the 400 surface sites into training set, 

validation set, and test set with an 8:1:1 ratio. Here the validation set is used to terminate the 

training sufficiently early to avoid overfitting. Section S2 of the Supporting Information 

shows that the root mean squared error (RMSE) of the CO binding energy (ΔECO) on the 

training set is 0.111eV while for the validation set RMSE= 0.117eV, and for the test set 

RMSE= 0.123eV. We refer to this as the ReaxQM-Machine Learning strategy, or RxQM-
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ML. This is much lower than the RMSE=0.2eV for a similar study of the crystalline 

surface of the NiGa binary alloy18.  

After training this accurate neural network model, we used RxQM-ML to predict the CO 

adsorption energies for all 10,000 surface sites. The statistical distribution of the CO 

adsorption energies is shown in Figure 2(a). Overall, the CO adsorptions range from -0.55 to 

-1.43 eV, showing the wide variety of surface sites on the copper NP. As expected, most 

energies are clustered around the values for such low index surfaces, as (111), (100), and 

(211)15. However, we find a significant number of surface sites with much stronger CO 

adsorption energies. This is shown by the distribution to the left of the (211) line. These 

results are consistent with the TPD experiments, which show a broad peak centered at 275K 

only for the copper NP, indicating that ~7-15% of the surface leads to stronger CO 

adsorptions than low index copper surfaces8.  

 

                                     (a)                                                                       (b) 

Figure 2. (a) Distribution of CO binding energies (ECO) on the 10nm copper nanoparticle. 

The three vertical dashed lines correspond to the CO adsorption energies of single crystal 

surfaces of (211), (100) and (111)15. (b) Active site visualization (ASV) of the predicted 

CO adsorption energies on the nanoparticle. As indicated by the colored bar, the red sites 

correspond to strong CO adsorption, the white sites correspond to moderate CO adsorption, 

and the blue sites correspond to weak CO adsorption. The common surfaces of (100), (111), 

and (110) are indicated in the figure. 

Furthermore, the low-cost of RxQM-ML model makes it possible to establish the quantitative 

structure-activity relationship (QSAR) such that the machine-learned CO adsorption energies 

Cu(111)

Cu(100)
Cu(110)

-1.43eV                                                                                     -0.55eV

Strong CO adsorption                                         Weak CO adsorption
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can be remapped back to the copper nanoparticle, as shown in Figure 2(b). Here, red 

indicates low ECO, white indicates moderate ECO, and blue indicates unfavorable ECO. 

The (100), (111) and (110) surfaces are all colored light blue, indicating that they are near 

the mean values of the adsorption energy distributions as in Figure 2(a). The sites in solid 

blue are not fully exposed, making them difficult for CO to bind. The sites in red are of most 

interest because they correspond to more favorable adsorptions of CO than the low-index 

surfaces. As shown in light red in the figure, the moderately strong CO adsorption sites are 

typically along the step edges, and as shown in solid red, the strong CO adsorption sites are 

mostly isolated surface sites or kink sites.  

The ASV in Figure 2 shows clearly that favorable CO adsorption sites are scattered across 

the whole nanoparticle surface. This is consistent with experimental observations that the 

surface areas corresponding to GBs are not sufficiently large to account for the number of 

strong CO adsorption sites8. Using RxQM-ML, we now directly show that the strong CO 

adsorption energies are not just at GBs.   

3. C2 coupling  

Although we have demonstrated that the CO binding energy is not necessary to correlate 

with GBs, there is a great deal of experimental evidence suggesting that increasing the GB 

density can significantly improve the C2+ selectivity. Another descriptor is needed to describe 

selectivity of these nanoparticles. As shown experimentally19 and theoretically20-22, the 

selective step towards C2+ products involves C-C coupling in which *OCCOH is formed. 

Thus, the most plausible descriptor is the reaction energy for forming *OCCOH,  

EOCCOH = E[*OCCOH] – E[*CO, *CO] – 0.5×E[H2], 

which we have shown previously to be the potential determining step for ethanol production.  

Then, we started with ~180 randomly sampled surface site and calculated the formation 

energy for *OCCOH, EOCCOH. The distribution is shown in the blue histograms in Figure 

3(a). As shown in the figure, the range of EOCCOH spans by more than 1eV, implying that 
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some sites are much more selective than others. We could sample additional sites to 

develop a similar machine learning model for EOCCOH. However, we examined the sites 

with the lowest EOCCOH, and found that all of them are involved square sites, similar to those 

of the (100) surface. To test this hypothesis, we further sampled 100 square sites, leading to 

the distribution for EOCCOH shown in orange in Figure 3(a). Comparing to the random sites 

on the surface of the copper nanoparticle, we found that the square sites were indeed more 

favorable, as shown by the shift in the distribution in EOCCOH in Figure 3(a).  

 

Figure 3. (a) Distributions of EOCCOH on the surface of the copper nanoparticle. Blue: 180 

random surface sites; orange: 100 random square sites. (b) The four square structures with 

the lowest EOCCOH sampled randomly from the copper nanoparticle. The dashed ellipses 

indicate the locations of the twin boundaries.  

With the new distribution of just the square sites, we extracted the common features of the 

most selective sites by further examining the square sites with the lowest EOCCOH. We found 

that a step (111) surface is always next to these favorable square sites, as shown in Figure 

3(b). These sites are similar to the Cu(S)[n(100) × (111)] edge step sites where the (111) 

surface and the (100) surface intersect. In fact, experiments23-24 showed that these step sites 

have higher selectivity than either the (100) and (111) surface. To confirm this theoretically, 

we calculated EOCCOH on (100), (111), (311), and (511) surfaces to be 0.44eV, 0.64eV, 

0.52eV and 0.41eV.  The calculated trend agrees very well the experimental selectivity trend 
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in which (511) > (100) > (311) > (111) [Section S3 in SI]. This comparison with 

experimental findings on the Cu(S)[n(100) × (111)] surfaces confirms the validity of using 

EOCCOH as the descriptor for the selectivity towards C2+ products. It is also consistent with 

our finding from sampling the NP that favorable sites for EOCCOH or C2+ selectivity must 

involve a (111) step surface next to a (100) site where *OCCOH is formed.  

In addition, twin boundaries are associated with the square surface sites having the lowest 

EOCCOH. Figure 3(b) shows that these twin boundaries are all next to the site where 

*OCCOH is formed. This implies that the selectivity towards C2+ products is directly related 

to twin boundaries which are a special type of GBs.  

Building on the idea that the above common features lead to the best *OCCOH sites, we 

constructed the smallest periodic structure possessing these features. This is shown in Figure 

4. We expect that this periodic surface will behave chemically in the same way as these 

selective sites. Because it is a smallest periodic structure containing these sites, the density 

of active sites will be much higher than the randomly and sparsely distributed active sites on 

a nanoparticle.  

(a): 
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(a) EOCCOH = 0.55eV 

 

(b) EOCCOH = 0.57eV 
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(c) EOCCOH = 0.35eV 

 

(d) EOCCOH = 0.41eV 

 Top View: 

 

Figure 4. (a) The shaded area is the minimal periodic structure of FCC copper containing 

the (100) planes, (111) planes, and twin boundaries. Terminating this structure to expose the 

(100) and (111) surfaces leads to sites that are concave or convex with respect to the (100) 

planes. (b) The four types of sites for adsorbed *OCCOH on the surface of the minimal 

periodic structure. The structure that is concave with respect to the (100) planes has the most 

favorable EOCCOH for C2+ selectivity. The top and side views of this structure are shown on 

the right column of (b). More details on these sites are shown in Section S4 of the supporting 

information. Note, for structures (c) and (d), the other carbon and oxygen atoms are not 

shown since they overlap with the foreground atoms in the side view. The full *OCCOH 

structure for (c) is revealed in the top view, as shown on the right column.  

This minimal periodic structure is shown in Figure 4(a). From the ABC stacking of the FCC 

copper, the smallest grain size must contain at least 6-layer, corresponding to ABCACB 

C

C

H

C

O

H
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stacking, where the A layers are twin boundaries. Since the step surfaces involving the 

(100) and (111) are of interest, they are shown by double lines and dash lines in the figure.  

Based on the configurations of the adsorbed *OCCOH on the copper clusters, there are 4 

ways of placing the intermediate on this surface, as shown in Figure 4(b). The first two 

structures, (a) and (b), with the *OCCOH adsorbed in the cross sectional plane show 

unfavorable energies. Thus, the in-plane *OCCOH adsorption is not responsible for the 

increased in C2+ selectivity. On the other hand, *OCCOH adsorbed perpendicular to the page 

(or out-of-plane) are much more favorable, with only 0.41 eV for the convex site and 0.35 

eV for the concave site, which is better than all the single crystal surface sites considered 

here. In fact, the same configuration is also found for the copper nanoparticle. As shown 

again in Figure 3(b), *OCCOH are all adsorbed perpendicular to the page. Thus, we predict 

that the (100)-like square sites next to a (111)-like step surface and on-top of a twin boundary 

that binds *OCCOH parallel to the twin boundary will have the most favorable EOCCOH, 

which corresponds to the most selective sites.    
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Figure 5. Predicted faradaic efficiency (FE) of the concave site on the minimal periodic 

structure compared to experimental data. An experimental copper structure with abundant 

twin boundaries25 is also extrapolated based on the densities of the boundaries.  

For the most favorable structure, the faradaic efficiency towards C2+ product is predicted to 

be 97% using experimental data in which the current density for C2+ production increases 

linearly as the density of GBs, and the current for hydrogen production remains the same10. 

The prediction is shown in Figure 5, which also includes a prediction for an experimental 

copper structure in which a high density of twin boundaries is synthesized25, assuming that 

the structure exposes the twin boundaries in the preferable configuration. Details of this 

prediction are summarized in section S4 of the Supporting Information.   

4. Conclusion 

In conclusion, we used machine learning to fit the structure-activity relationship between the 

local structures of the copper nanoparticle and the theoretical CO adsorption energies. By 

extrapolating the energies back to the nanoparticle, we found that strong CO adsorption 

energies are not just on GBs, implying that CO adsorption energies are not an appropriate 

descriptor for C2+ selectivity. Rather, we show that EOCCOH, the transition state for forming 

ethanol of C2+ products in C-C coupling, is the appropriate descriptor. This explains the 

selectivity on Cu(S)[n(100) × (111)] surfaces and the twin-related step square sites on the 

nanoparticle. To illustrate how to use this information, we designed the minimal periodic 

structure. This minimal periodic structure has a super high density of selective sites that we 

expect will lead to near unity selectivity based on extrapolations of theoretical and 

experimental data.   
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S1. Methods 

S1.1 ReaxFF 

The copper nanoparticle investigated in this study is computationally synthesized in the 

same way as in [1]. The embedded-atom model (EAM) [2] was used to model the 

interactions between copper atoms. To simulate the chemical vapor deposition (CVD) 

synthesis, copper atoms are added to the simulation box in a rate of 3.2A/ns for 30ns. After 

the nanoparticle condenses, a total of 38 simulated annealing cycles are applied to relax the 

initially formed structure. Each cycle involves a heating step from 300K to 1200K in 5ps, 

high temperature step at 1200K for 5ps, cooling step from 1200K to 300K in 5ps, and room 
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temperature step at 300K. Last, the final copper nanoparticle is relaxed using the reactive 

force field [3] at 300K for 20ps. 

S1.2 DFT 

The density functional theory (DFT) calculations are performed in VASP [4]. The PBE 

functional [5] is used to obtain electronic energy. The plane wave basis up to a kinetic 

energy cutoff of 400eV is used to describe the wave function. Since copper is metallic, the 

method of Methfessel-Paxton of order 1 is used for smearing. The smearing width is 0.2eV. 

The convergence criteria for electronic energies is 1e-5eV, and the geometries are 

optimized until the force converged to be within an error of 0.01eV/A.  

ECO and EOCCOH are calculated in the same way as in [1]: 

ECO =  E[*CO] – E[*] – E[CO] 

EOCCOH = E[*OCCOH] – E[*CO, *CO] – 0.5×E[H2] 

S1.3 Neural Network Machine Learning Model 

The neural network used in this study is of the type by Behler and Parrinello [6]. However, 

instead of summing up contributions from all atoms, only the contribution from the target 

surface atom is used. In this study, instead of the atomic energy, the quantity to be fitted 

using machine learning is the CO adsorption energy.  

As we have shown earlier [1, 7], the CO adsorption energy can be sufficiently described on 

the surface of the nanoparticle by considering all the atoms within 8A of the surface site. 

Thus, a copper cluster of 8A radius about each surface atom is extracted from the 

nanoparticle to compute the CO adsorption energy. Subsequently, the same cluster is used 

as the input to the machine learning model. Since we are only considering the chemical 

behavior of the chosen surface site, only molecular descriptions about that site are used as 

input to the neural network. Similar to our previous model, two-body and three-body 
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features are used. The overall structure of the neural network machine learning model is 

shown as below: 

And mathematically, the above model is represented as follows:  

𝐺𝑖𝛼
(2)

= ∑ 𝜙𝛼
(2)

(𝒑𝑖𝑗)𝑗  , 𝐺𝑖𝛽
(3)

= ∑ 𝜙𝛽
(3)

(𝒑𝑖𝑗 , 𝒒𝑖𝑗𝑘  )𝑗𝑘   (1) 

𝐸𝐶𝑂 = 𝐹𝑁𝑁 ({𝐺𝑖𝛼
(2)

, 𝐺𝑖𝛽
(3)

} ; 𝒘, 𝒃)  (2) 

Where 𝐺𝑖𝛼
(2)

 and 𝐺𝑖𝛽
(3)

 are the 2- and 3-body descriptors from the 2- and 3-body geometrical 

features pij and qijk, e.g., the 2-body term can include the interatomic distance pij = Rij, and 

the 3-body term can include the angle formed by three atoms qijk = θijk. Finally, the function 

FNN(G; w, b) represents the network that transforms the input descriptors G into a single 

value using the parameters with weights w and biases b. The final value calculated from the 

whole model is the CO adsorption energy, as represented by equation (2).  

The molecular descriptors as input to the neural network can be extracted in many ways. In 

this study, the set of piecewise cosine functions is used because it is a more systematic way 

of constructing locally based symmetry functions.  

𝑅𝛼
𝑘 = 𝑅𝑖𝑛𝑛𝑒𝑟 + (𝛼 − 1)ℎ𝑘  where  = 1, 2, …, Mk  

𝜑𝛼
(𝑘)(𝑅𝑚𝑙) = {

1

2
cos (

𝑅𝑚𝑙−𝑅𝛼
𝑘

ℎ𝑘
𝜋) +

1

2
, |𝑅𝑚𝑙 − 𝑅𝛼

𝑘| < ℎ𝑘

0                                    , Otherwise
   (3) 

𝐺𝛼,𝑙 
(2)

= ∑ 𝜑𝛼
(2)

(𝑅𝑚𝑙)𝑚  (4)  

𝐺𝛼𝛽𝛾,𝑙
(3)

= ∑ 𝜑𝛼
(3)

(𝑅𝑚𝑙)𝜑𝛽
(3)

(𝑅𝑛𝑙)𝜑𝛾
(3)

(𝑅𝑚𝑛)𝑚,𝑛   (5) 

where:  
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        𝜑𝛼
(𝑘)(𝑅𝑚𝑙) is the piecewise cosine function over the interatomic distance 𝑅𝑚𝑙 

        k=2,3 corresponds the 2-body and 3-body terms, and  

        ℎ𝑘 = (𝑅outer − 𝑅inner)/𝑀𝑘  is the width of the piecewise cosine functions.  

The set of piecewise cosine functions are described by 4 quantities: the inner cutoff Rinner, 

the outer cutoff Router, the number of two-body functions M2, and the number of three-body 

functions M3. Here, the M2=12 and M3=3 are used, corresponding to a set of 30 unique 

descriptors for each copper cluster. Because each cluster is only of 8 angstroms, we can 

include all the atoms in the descriptor. Thus, Router is set to 8A. Since only 12 two-body 

functions are used, the width of each piecewise cosine function is relatively large, thus, 

Rinner can be set to 0. Once the input atomic descriptors are assembled about the target 

surface site, it is fed through a two-layer neural network each with 50 nodes to produce one 

output, which is then fitted to the adsorption energy.  

S2. Implementation and Training of the Neural Network Model 

The above neural network is implemented in Python and is freely available on our Gitlab 

page at: https://gitlab.com/yufeng.huang/cunp_coads. Instructions on how to use the neural 

network model is described on the website. 

Once the structure of the neural network is constructed, the weights and biases of the neural 

network model are initialized using the Xavier initializer [8]. Then using the 8:1:1 split of 

the data set for training, validation and testing, we obtain the following RMSE as a function 

of training iterations, as shown in Figure S2(a). The final RMSE of the training set, 

validation set, and test set are 0.111eV, 0.117eV and 0.123eV. The overall distributions 

between the DFT energies and the neural network predicted values also agree, as shown in 

Figure S2(b).  

https://gitlab.com/yufeng.huang/cunp_coads
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Figure S1. RMSE of the training set and validation set as functions of the training iterations.  

 

Figure S2. Distribution of the energies between the DFT values and the neural network 

predicted values for the training set, validation set, and the test set.  

Unit: eV DFT range NN range 

Training Set [-1.284, -0.458] [-1.262, -0.715] 

Validation Set [-1.276, -0.543] [-1.158, -0.820] 

Test Set [-1.314, -0.433] [-1.278, -0.761] 

Table S1. Energy ranges between DFT and neural network for the training set, validation 

set, and test set. Because CO does not adsorb on certain unfavorable sites, these sites are 

treated as high adsorption energies. Due to this, the upper end of the range has much larger 

error to include the unfavorable outliers than the lower end. However, NN predicts the 

lower end of the ranges very well, indicating that good CO adsorption sites are well 

identified.  



 

 

86 

NN sizes Training set RMSE Validation set RMSE Test set RMSE 

30x2 0.110 eV 0.123  0.140 

40x2 0.115 0.118 0.135 

50x2 0.108 0.119 0.122 

60x2 0.103 0.116 0.117 

Table S2. RMSEs of the training set, validation set, and test set as functions of the neural 

network sizes. The notation nx2 indicates two hidden layers with n nodes are used in the 

neural network. Although the training set and validation set are fitted in similar accuracies 

between different sizes, the test set error is smaller when the size of the neural network 

increases. The neural network size of 50x2 is used to allow enough flexibility.  

S3. Relationship between EOCCOH and C2 products selectivity  

Hori et al. (2002) [9] reported the selectivity for C2 products on different crystalline 

surfaces of copper. Using their reported values and our theoretical *OCCOH reaction 

energy, EOCCOH, we found that the log of the ratio between C2H4 and CH4 correlates almost 

linearly EOCCOH, as shown in the following figure. This is not surprising because the 

reaction rates are typically exponentially dependent on energy as in the Eyring equation or 

Arrhenius equation. However, the good fit between the selectivity and EOCCOH implies that 

EOCCOH is a good descriptor for the selectivity of C2 products.  

 

Figure S3. Experimental C2H4:CH4 ratio and the reaction energy of EOCCOH. Note that the 

logarithm of the ratios is used for the y-axis.  
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S4. Surface terminations of the Twin boundaries  

Based on the configurations of the adsorbed *OCCOH on the copper clusters, there are 4 

ways of placing the intermediate on the surface, as shown in the following figure, Figure 

S4. This is due to two factors. First, the (100) surfaces intersecting at the twin boundary can 

be concave or convex, as indicated by the purple figure in Figure 4(a) in the main text and 

the side view in Figure S4. Second, the plane formed by the adsorbed *OCCOH can be in 

the same plane as the page, or perpendicular to the page, as shown in top view in Figure S4. 

Schematics 
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Figure S4. The four configurations of *OCCOH binding at the twin boundary of copper. 

(a): *OCCOH adsorbed in-plane at the concave site; (b): *OCCOH adsorbed in-plane at the 

convex site; (c) *OCCOH adsorbed out-of-plane at the concave site; (d) *OCCOH 

adsorbed out-of-plane at the convex site.  

S5. Prediction of Faradaic Efficiencies 

The data for currents JC2+ and JH2 as functions of the grain boundary density dGB are 

obtained from Figure 3(d) and (g) of reference [10]. First, since JH2 does not depend on 

dGB, and the terminal value is 3.1 mA/cm2 for large dGB, we then keep JH2 constant for this 

approximation. For C2+ production, JC2+ is fitted linearly as in the experimental data. Then 

we have: 

JC2+ = 0.18 * dGB – 0.399  

JH2 = 0.31 

Where dGB is in units of μm-1, JC2+ and JH2 are in units of mA/cm2.  

Our periodic structure has twin boundary density of 649.5 μm-1. Thus, the faradaic 

efficiency is then JC2+ / (JC2+ + JH2) = 97.4% 

Also, [11] reported a copper structure with a large abundance of twin boundary sites with 

spacing of 5~70nm, which corresponds to densities of 14.3 to 200 μm-1. The corresponding 

faradaic efficiencies are 41.2% to 92.0%. 

The results are summarized in Figure 5 of the main text. 
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C h a p t e r  5  

DFT BASED NEURAL NETWORK FORCE FIELDS FROM ENERGY 

DECOMPOSITIONS 

Abstract 

In order to develop force fields (FF) for molecular dynamics simulations that retain the 

accuracy of ab initio density functional theory (DFT), we developed a machine learning 

(ML) protocol based on an energy decomposition scheme that extracts atomic energies from 

DFT calculations. Our DFT to FF (DFT2FF) approach provides almost hundreds of times 

more data for the DFT energies, which dramatically improves accuracy with less DFT 

calculations. In addition, we use piecewise cosine basis functions to systematically construct 

symmetry invariant features into the neural network model. We illustrate this DFT2FF 

approach for amorphous silicon where only 800 DFT configurations are sufficient to achieve 

an accuracy of 1meV/atom for energy and 0.1eV/A for forces. We then use the resulting FF 

model to calculate the thermal conductivity of amorphous Si based on long molecular 

dynamics simulations. The dramatic speedup in training in our DFT2FF protocol allows the 

adoption of a new simulation paradigm where an accurate and problem specific FF for a 

given physics phenomenon is trained on the spot through a quick DFT pre-calculation and 

FF training. 

1. Introduction 

Machine learning methods have rapidly developed to solve scientific problems in biology, 

chemistry, physics and engineering [1-6] in recent years. In the field of atomic and molecular 

studies, one of the major applications of machine learning is to obtain the quantitative 

structure-activity relationships (QSAR) [7-9]. In molecular simulations, the relationship 

between the total energy of a system and its atomic or molecular structure is one of the most 

important properties because derivatives of the total energy with respect to atomic positions 

give rise to forces, which can be used to perform molecular dynamic simulations [10, 11]. 
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Such a relationship is described by the potential energy surface (PES) of the system. The 

PES is difficult to obtain in experiment; rather, it is typically sampled by solving the 

Schrodinger equation. In practice, density functional theory (DFT) approximation to the 

Schrodinger Hamiltonian is used.  Once the information about the system is calculated using 

DFT, machine learning models can be applied to fit the PES.   

Many PES machine learning models have been developed over the last decade, including 

generalized symmetry functions [12], smooth overlapping of atomic potentials (SOAP) [13], 

bag of bonds (BoB) [14], Gaussian approximation potentials (GAP) [15], deep tensor neural 

networks (DTNN) [16]. Among them, the most widely used model is the high-dimensional 

neural network potential (HDNNP) model proposed by Behler et al [17]. They employed 

symmetry functions to collectively map the chemical environment of individual atoms to a 

set of descriptors (called features), which are subsequently fed into a multilayer neural 

network to yield the total energy of the system. However, the mapping of the atomic 

environment to descriptors is not unique, and many choices of symmetry functions have been 

reported in the literature [12, 18-20]. 

Compared with the conventional classical molecular force fields, the neural network force 

field (NNFF) can be more accurate in the atomic configuration space where it is fully trained, 

but it can fail catastrophically in regions where it is not exposed [21]. One way to make a 

proper use of this feature of NNFF is to train the NNFF, if not on the flight, but at least on 

the spot. For each target physical phenomenon, one can first carry out an ab initio DFT 

simulation on a smaller system for a shorter time, while at the same time ensuring that the 

DFT simulation covers all the possible local atomic configurations essential to the physical 

phenomena to be studied. This will be followed by a standard and quick NNFF training, and 

the resulting NNFF can then be used to simulate a much larger system for a much longer 

time. To make this procedure practical, one has to satisfy the following requirements: (1) a 

quick generation of large amount of DFT data; (2) a universal NNFF model; (3) a 

corresponding quick training procedure of this model; and (4) finally, the ability to yield 

accurate NNFF results compared to DFT data within the desired configurational region.  
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In this work, we present a new model to fit NNFF which satisfies the above requirements 

by using atomic energies decomposed from a DFT calculation and piecewise cosines for 

systematic symmetry features. The model is implemented in TensorFlow® to utilize directed 

acyclic graph (DAG) to accelerate computation. The resulting NNFF for a test amorphous 

silicon system has an accuracy of 1.0 meV/atom in energy and 0.1eV/A for the forces. We 

also show how the resulting NNFF can be used to calculate material properties which could 

be too expensive to calculate directly using DFT.  

Our work follows closely to the HDNNP model [17]. However, in the current HDNNP 

approach, typically, ~10,000 DFT trajectory steps will be used to fit the HDNNP models [17, 

22]. These can take many days for the DFT calculation.  A major advance in the current study 

is to decompose the DFT total energy of a given system into atomic energies belonging to 

each atom. Importantly, such atomic energy only depends on the positions of the nearby 

atoms. As a result, a unified single atom neural network potential (SANNP) model can be 

used taking into account the data from all atoms. In comparison, in HDNNP, only the total 

energy of the system is used in the training set although the atomic energies are implicitly 

assumed in the model. Due to the increase of the data set, we found that ~1000 molecular 

dynamics (MD) steps are sufficient to train an accurate SANNP. This makes it practical to 

carry DFT calculation and SANNP training overnight, allowing for an on-the-spot SANNP 

development.  

Combining the energy decomposition method with the piecewise cosine functions model, we 

show that the training of the SANNP using TensorFlow running on a GPU workstation only 

takes a few hours (requirement 3) and the resulting SANNP has an accuracy of ~ 1meV/atom 

for the energy (of a 256 atom system) and 0.1eV/A for the forces (requirement 4). As an 

example, we have performed MD simulations to calculate the thermal conductivity of 

amorphous Si (a-Si), which is difficult to obtain using direct DFT calculations [23]. Although 

we have calculated Si in different temperatures, from low to melt liquid temperature, and 

found the procedure equally applicable, in the current study, we will focus on the results of 

the amorphous Si (a-Si) structure. The a-Si structures can be generated from the random bond 
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switching model [24], followed by DFT MD simulations at different temperatures. It is 

also worth noting that the current SANNP can be easily extended to systems with 𝑀𝑒 type 

of atoms. In such cases, each type of center atom will have its own SANNP model, and for 

a given SANNP model, the number of atom pair features increases by a factor of 𝑀𝑒, while 

the number of three atom features increases by a factor of 𝑀𝑒
2. The extension of SANNP to 

such systems (an ongoing project) further exemplifies the importance of more DFT data, 

which can be provided by our energy decomposition scheme.   

2. Method 

2.1 High Dimensional Neural Network Potential (HDNNP) 

The HDNNP is a machine learning model developed by Behler et al. [17]. In this model, the 

total energy of a given system is assumed to be the simple sum of the atomic energies 𝐸𝑡𝑜𝑡 =

∑ 𝐸𝑖𝑖 . However, the DFT values of 𝐸𝑖 are not known, and only 𝐸𝑡𝑜𝑡 is obtained for a given 

system. Nevertheless, such an assumption allows the construction of a HDNNP model as 

shown in Figure 1(a), where each horizontal bar is a small multilayer (typically 2 hidden 

layers) neural network, and the edge weights on the last step connecting 𝐸𝑖 to 𝐸𝑡𝑜𝑡 are fixed 

at 1. More importantly, the neural network parameters for each small network (horizon bar) 

are the same, such that the whole network consists of N identical smaller networks (for single 

specie systems), where N is the number of atoms in the system.   
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Figure 1. Schematics of the neural network models. (a) High dimensional neural network 

potential (HDNNP), (b) single atom neural network potential (SANNP). The leftmost box is 

the simulation system, the second column represents the atomic descriptors including 

interatomic distances, and three-body angles, the third column represents the symmetry 

functions, the fourth column represents the neural network for the model, and the fifth 

column represents the energy term(s) to be trained for.  
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Mathematically, let {𝒑𝑖𝑗 j, 𝒒𝑖𝑗𝑘} be a set of structural descriptors including the interatomic 

distances (𝑅𝑖𝑗) and angles (𝜃𝑖𝑗𝑘) between atom j and atom k about atom i, ∅𝛼
(2)

 and ∅𝛽
(3)

 be 

the 𝛼th 2-body symmetry function and 𝛽th 3-body symmetry function, and 𝐸𝑁𝑁({𝐺𝑖𝛼}; 𝒘, 𝒃) 

be the multilayer neural network model with descriptors {𝐺𝑖𝛼
(2)

, 𝐺𝑖𝛽
(3)

} as its input, and weight 

parameters w and bias parameters b being its fitted model parameters.  Then the general 

mathematical form of the original HDNNP is: 

𝐺𝑖𝛼
(2)

= ∑ 𝜙𝛼
(2)

(𝒑𝑖𝑗)𝑗 ;  𝐺𝑖𝛽
(3)

= ∑ 𝜙𝛽
(3)

(𝒑𝑖𝑗 , 𝒒𝑖𝑗𝑘 )𝑗𝑘   (1) 

𝐸𝑖 = 𝐸𝑁𝑁 ({𝐺𝑖𝛼
(2)

, 𝐺𝑖𝛽
(3)

} ; 𝒘, 𝒃)  (2) 

𝐸tot = ∑ 𝐸𝑖𝑖   (3) 

As shown in Equation (1), the summation over atomic index j and j, k enforces permutation 

invariance, while the proper constructions of 𝜙𝛼
(2)

 and 𝜙𝛽
(3)

 ensure the translational and 

rotational invariance of the descriptors  𝐺𝑖𝛼
(2)

 and 𝐺𝑖𝛽
(3)

.   

2.2 Atomic Energies 

As an improvement to energy fitting using the total energy, we propose a way to actually 

calculate Ei from the DFT calculations. As a result, our network is simplified and consists of 

only one small network (one bar in Figure 1), thus the dataset is increased by N fold, where 

N is the number of atoms in the DFT system, which is typically around 100-200.  

To expand the dataset for training, the DFT total energy is partitioned into atomic energies 

outlined in Kang and Wang [23]. The critical point is to rewrite the DFT energy terms 

(kinetic, electrostatic) as the spatial integration of their respective energy densities [25], such 

that a Hirshfeld style spatial decomposition can be used to decompose the energy into atomic 

contributions. More specifically we have:  
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𝑈𝐷𝐹𝑇 = ∑ [𝑈𝑖
𝐷𝐹𝑇 + 𝐸𝑖

(𝑁𝐿)
− 𝐸self] + ∑ 𝑉𝑃(|𝑹𝑖𝑗|)𝑖≠𝑗𝑖    

With 

𝑈𝑖
𝐷𝐹𝑇 = ∫ 𝑑𝑟[𝑡0(𝒓) + 𝑒xc(𝒓) + 𝑒CC(𝒓)]

𝑤𝑖(|𝒓−𝑹𝑖|)

∑ 𝑤𝑖(|𝒓−𝑹𝑗|)𝑗
  (4)  

Where wi(r) is the radial charge density function [26] of the neutral atom at site i, 𝑡0(𝒓) is the 

electronic kinetic energy density, 𝑒xc(𝒓) is the exchange-correction energy density, 𝑒CC(𝒓) 

is the Hartree energy density, 𝐸𝑖
(𝑁𝐿)

 is the nonlocal contribution from the pseudopotential for 

atom i, 𝐸self is an onsite energy integral constant,  and 𝑉𝑃(|𝑹𝑖𝑗|) is the Coulomb interaction 

between ion pairs. Summarizing, individual atomic energy 𝐸𝑖 has the following expression: 

𝐸𝑖
𝐷𝐹𝑇 = 𝑈𝑖

𝐷𝐹𝑇 + 𝐸𝑖
(𝑁𝐿)

− 𝐸self + 1/2 ∑ 𝑉𝑃(|𝑹𝑖𝑗|)𝑗≠𝑖   (5) 

It is noted that the above energy decomposition is not unique. But for our SANNP 

development, this is not critical, as long as the sum of 𝐸𝑖 agrees with the whole system total 

energy, and  𝐸𝑖 is a local property that only depends on the atomic configuration near atom 

i. It is known that there are remaining challenges for NNFF when long range Coulomb 

interaction is strong. In such cases, atomic charges might need to be fitted [27], and the 

corresponding energy contribution needs to be subtracted before applying the above 

decomposition scheme. As shown in Supplementary Materials S1, for non-polarized systems 

like amorphous Si, the atomic energy 𝐸𝑖 is indeed a local property of its atomic configuration.  

2.3 Piecewise cosine symmetry functions 

In order to use an artificial neural network to fit the atomic or total energies, the surrounding 

chemical environment of each atom has to be mapped to a set of descriptors using symmetry 

invariant functions. To capture the complicated correlation within such an environment, 

symmetry functions involving two body pairs and three atom triplets are used, as described 

in Equation (1). In addition to the Gaussian-like symmetry functions, other approaches have 

been developed in literature, including Zernike [18], Bispectrum [19], and Chebyshev radial 
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distributions [20]. However, the resulting atomic descriptors are typically nontrivial 

functions of the atomic coordinates, which makes the derivative with respect to the atomic 

position complicated. In general, there are two approaches to construct the descriptors or 

features. One is to use some spectrum functions (e.g., the Bispectrum and Chebyshev), which 

are smooth and might have some transferability in real space, and the other one is to use 

spatially localized functions that are invariant with respect to translation, rotation and 

permutation.  We have adopted the later approach. 

One example of local representations in numerical calculation is the piecewise linear 

functions in finite element analysis. These piecewise linear functions are defined on a set of 

nodes, such that any continuous function defined on this domain can be approximated as 

linear combinations of these local functions.  For our purpose, in order to calculate the force, 

the derivative of the piecewise function with respect to the atomic position is needed. As a 

result, the piecewise linear shape functions are modified to differentiable piecewise cosine 

functions for our neural network model. The shapes of these piecewise cosine functions are 

shown in Figure 2 (a).   

Using the piecewise cosine functions, the symmetry functions can be constructed in simple 

forms as follows: 

𝑅𝛼
𝑘 = 𝑅𝑖𝑛𝑛𝑒𝑟 + (𝛼 − 1)ℎ𝑘          where  = 1, 2, …,Mk  

𝜑𝛼
(𝑘)(𝑅𝑚𝑙) = {

1

2
cos (

𝑅𝑚𝑙−𝑅𝛼
𝑘

ℎ𝑘
𝜋) +

1

2
, |𝑅𝑚𝑙 − 𝑅𝛼

𝑘| < ℎ𝑘

0                                    , Otherwise
  (6) 

𝐺𝛼,𝑙 
(2)

= ∑ 𝜑𝛼
(2)

(𝑅𝑚𝑙)𝑚   (7) 

𝐺𝛼𝛽𝛾,𝑙
(3)

= ∑ 𝜑𝛼
(3)

(𝑅𝑚𝑙)𝜑𝛽
(3)

(𝑅𝑛𝑙)𝜑𝛾
(3)

(𝑅𝑚𝑛)𝑚,𝑛   (8) 

where:  

 k=2,3 specifies the 2-body and 3-body terms respectively,   
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 ℎ𝑘 = (𝑅outer − 𝑅inner)/𝑀𝑘  is the width of the piecewise cosine function, with 

𝑀2 being the number of piecewise cosine basis functions for the 2-body term, and 

𝑀3 being the number of basis functions for each side of the 3-body term, 

 𝑅𝑚𝑙 = |𝑅𝑙 − 𝑅𝑚| are the interatomic distance between atom l and atom m, and  

 Σ𝑚 and Σ𝑚,𝑛 are sums over all atoms within the 𝑅outer cutoff of atom l.  

Once the inner and outer cutoff radii are determined, the two-body symmetry functions are 

completely determined by a single number 𝑀2. However, it is not practical to set 𝑀3=𝑀2 for 

the number of three-body cosine basis functions because the number of three body symmetry 

functions will scale as O(𝑀3
3). Therefore, we have used a balanced set of symmetry functions 

characterized by a single number M, where 𝑀2 = 𝑀2and 𝑀3= M.  

Our symmetry functions have similar forms as the Gaussian symmetry functions used in 

HDNNP [17] for the 2-body term, but with important simplifications. First, we no longer 

need to multiply the symmetry function by an arbitrary decay function to ensure that the 

symmetry function goes to 0 smoothly at 𝑅outer (and also at 𝑅inner if it is not 0 already), 

because these symmetry functions are local and the rightmost function already decays to 0 at 

𝑅outer. In a way, these functions are more local than the Gaussian functions since they go to 

zero outside their perspective ranges.  Moreover, in the three-body term, all three sides of 

each atomic triplet are treated equally, and an arbitrary cosine term is no longer needed to 

describe the angle dependence.  These piecewise cosine functions are shown in Figure 2(a).  

Physically, the values of the 𝐺𝛼,𝑙
(2)

 simply represent the pair correlation function for the atom 

l with α being the distance from the center atom l. This is shown in Figure 2(b). Note, if we 

have an infinitely large number of 𝑀2 and 𝑀3 (infinitely localized functions), one can show 

that, if all the  𝐺𝛼,𝑙
(2)

 and 𝐺𝛼𝛽𝛾,𝑙
(3)

 are determined, the local atomic positions within 𝑅outer will 

be completely determined (up to the translation, rotation and permutation degree of 

freedoms). Thus  𝐺𝛼,𝑙
(2)

 and 𝐺𝛼𝛽𝛾,𝑙
(3)

 in combination is a complete descriptor of the local atomic 
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configuration for atom l. Should there be different atom types, the α, β, γ index should also 

include the information of atom types, besides the distance ℎ(α,β,γ) .  

 

(a) 

 

(b) 

Figure 2. Piecewise cosine functions as basis functions to construct the symmetry functions. 

(a) graphical representation of the piecewise cosine functions when M=12 basis functions 
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are used. (b) comparison of the radial distribution and the normalized values of the two-

body piecewise cosine features with their respective nodes with M=100.  

In summary, the original HDNNP formulation is modified in two major ways. First, since 

the total energy is decomposed to atomic energies, the neural network will be trained against 

the individual atomic energies directly. Second, the piecewise cosine functions are used as 

basis functions constructing symmetry functions to obtain the descriptors of the chemical 

environment.  

2.4 Training procedure 

In traditional classical force fields, although the functional form of the energy contributions 

or forces is known, the number of corresponding parameters is small and difficult to train 

because different force fields are based on different functional forms. Thus, classical force 

fields are usually trained with chemical and physical intuition on carefully selected quantum 

mechanical trajectories. On the other hand, neural network based machine learning models 

have many more parameters to flexibly fit any configurations, and the fitting is made possible 

by the back-propagation procedure [28]. Thus, an efficient training procedure is crucial to 

realize the on-the-spot SANNP development strategy.  

Since our dataset contains both atomic energies and forces, a multi-step procedure is used to 

train the neural network potential more effectively. Because of the large amount of atomic 

energies obtained from energy decomposition, and the straightforward back-propagation 

algorithm, the neural network is first trained with the atomic energies using stochastic 

gradient descents. Since the atomic descriptors are used thousands of times as the training 

loops through the dataset repeatedly, it is much more preferable to store the descriptors 

obtained from the piecewise cosine symmetry functions on disk to avoid wasteful repeating 

calculations. Once the model is finished pre-training with energies, forces can be added to 

further adjust the parameters of the neural network for a smooth fitting of the PES.  

For our amorphous silicon system with 256 atoms, a large set of features can be stored 

directly in memory to avoid excessive I/O on the hard drive. Therefore, initially, atomic 
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descriptors of a 100 randomly chosen DFT configurations along the MD trajectory, which 

correspond to 25,600 atomic energies, are calculated and stored in memory to pre-converge 

the parameters of the artificial neural network. However, to avoid overfitting, the artificial 

neural network is only trained 5000 iterations with these 100 configurations. After the initial 

training, all the atomic energies in the training set are used to train the neural network for 

another 500 iterations.   

After the neural network potential has been trained against the DFT energies 𝐸𝑖, DFT forces 

can be used to fine-tune the neural network to obtain accurate forces. For each trajectory, we 

can define a loss function that includes both atomic energies and atomic forces as L = 

MSE({𝐸𝑖}) +  × MSE({𝑭𝑖}), where the SANNP forces on each atom are obtained by 

analytical differentiation of the total neural network energy with respect to the atomic 

coordinates, and MSE() is the mean squared error. The training using L with respect to the 

neural network parameters w and b can be carried out using the TensorFlow® library. For 

this study, a two-hidden-layer neural network model with 500 nodes in each layer is used. 

The Adam optimizer [29] with a learning rate of 0.0001 is used to minimize the MSE loss 

function.  

At last, to perform MD simulations at a certain temperature 𝑇𝑜, the neural network training 

must be supplemented with a higher temperature simulation data to cover a larger area of the 

configurational space. Thus, after training the neural network with DFT trajectories from the 

target temperature, higher temperature DFT trajectories are included to train for another 100 

iterations for the combined training set.  

The above model is implemented in our publicly accessible custom code [Supplementary 

Materials S2]. Similar to quantum mechanical calculations in which near-complete basis sets 

are used when comparing different methods, a large two-layer neural network with 500 nodes 

each is used here to avoid the finite size effects of the neural network on the SANNP method. 

As shown in [Supplementary Materials S3], the neural network potential is well converged 

using 500 nodes, and the error is comparable to the case with only 40 nodes. The training set 

has 800 DFT configurations, each with 256 silicon atoms. The piecewise cosine functions 
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with M=10, or equivalently 550 features in which 𝑀2 = 𝑀2 and 𝑀3 = 𝑀, are used. The 

calculations are performed on an NVIDIA Titan X GPU. Each training iteration through the 

whole training set takes about 4.5 minutes when both atomic energies and forces are used. 

The forces converge to 0.1eV/A in the validation set after 150 training iterations, which takes 

about 11.4 GPU hours. When M=5, or equivalently 100 features, is used, it takes 2.4 minutes 

per training iteration. The forces converge to 0.13 eV/A in 200 iterations, which correspond 

to about 8.1 hours.   

To compare the accuracy and training speed between the SANNP and the HDNNP 

approaches, we construct an HDNNP model with the same set of features as our SANNP 

model and train them with the same data, but with HDNNP training on the total energies, 

𝐸tot, and with SANNP training on atomic energies, 𝐸i. Mathematically, if the training is long 

enough, the HDNNP will give the same result as SANNP. However, because the models are 

trained on different data, the convergence will be different. Using the same procedure and 

after training for 200 iterations using forces, the HDNNP results in an error of 0.17 eV/A, 

and the SANNP results in an error of 0.13 eV/A. The reason of the larger error of HDNNP 

is due to a much slower convergence, since the HDNNP over-fits on the 800 total energies, 

while the SANNP is trained appropriately with 800 × 256 = 204600 atomic energies.  

3. Results and Discussion 

3.1 Comparison between DFT and neural network potential 

To validate our SANNP model using energy decomposition, piecewise cosine symmetry 

functions, and the proposed training procedure, we train the corresponding neural network 

for a periodic system of amorphous silicon, which is initially generated with a random 

covalent band switching model [24].  A set of 1000 DFT configurations is obtained from an 

ab initio molecular dynamics simulation of a periodic box with 256 silicon atoms 

[Supplementary Materials S4], such that 800 points are used for training, 100 points are used 

for validation, and 100 points are used for testing. By decomposing the total energy into 

individual energies, the training set contains 204,800 atomic energies and 614,400 atomic 
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forces. After training with the procedure described above, the test set errors in atomic 

energies, total energies, and forces are shown in Figure 3.  

 

                                (a)                                                               (b) 

 

(c) 

Figure 3. Comparison between the fitted SANNP model and DFT for the test set with 100 

configurations. (a) comparison of SANNP atomic energies and DFT atomic energies in the 

test set. (b) comparison of the SANNP total energies and DFT total energies in the test set. 

(c) comparison of the SANNP forces and DFT forces in the test set. Note that none of the 

test set data are used in training the SANNP model. 

Overall, the neural network potential is in good agreement with the DFT results, with the 

RMSE’s in {𝐸𝑖}, 𝐸tot and {𝑭𝑖} being around 50meV, 1.0meV/atom, and 0.10eV/A 

respectively in the test set. It is important to note that the RMSE per atom for 𝐸tot is𝑁−1/2  

of the RMSE for 𝐸𝑖 due to error cancellations. It should also be noted that the neural network 

was not trained directly against 𝐸tot,  and yet an extremely small 𝐸tot RMSE of 1.0meV/atom 



 

 

103 

was recovered. All these indicate that our new approach using atomic energies 𝐸i can 

achieve high accuracy with a small number of DFT trajectories.  

3.2 Application of the cosine-based symmetry functions  

To evaluate the effectiveness of the piecewise cosine localization model, we have compared 

our model with the Gaussian-like symmetry functions used in the original HDNNP model. 

Except the change from the cosine like function to Gaussian function, all the other procedures 

are the same (however, only 𝐸i is used in the training, atomic force 𝐹i is not used in this test). 

As shown in Table 1, when training against the atomic energies, the piecewise functions with 

M=4 (or a total of 56 feature functions 𝑀2 = 𝑀2 and 𝑀3 = 𝑀) achieve a similar accuracy 

as the case with more than 100 Gaussian-like symmetry functions. When more piecewise 

cosine functions with M=5 or a total of 100 functions are used, the energies can be fitted even 

better.   

Basis sets 

(Total number of functions) 

RMSE of 𝐸i on the test set MAE of 𝐸i on the test set 

Gaussian (110) 54.8 meV 43.5 meV 

M=4 cosine (56) 57.7 meV 45.7 meV 

M=5 cosine (100) 45.9 meV 36.1 meV 

Table 1. Comparison of the symmetry functions for the training atomic energy 𝐸i.  

In fact, the quality of the piecewise cosine functions can be systematically improved by 

adjusting one parameter, M, with the number of two-body symmetry functions is 𝑀2 = 𝑀2, 

and the number of three-body symmetry functions is (𝑀2+𝑀3)/2. As shown in Figure 4, both 

the energies and forces are converging towards certain limits as M increases. In addition, the 

quality of the basis set can also be adjusted by changing the inner cutoff distance. In the case 

of amorphous silicon, the interatomic distance between any two Si atoms is rarely less than 

1.9A. By increasing this inner cutoff, the piecewise cosine functions are more concentrated 

in the region of interest, thus allowing a better description and resulting in a more accurate 

model. As shown in Figure 4, the neural network potential with an inner cutoff of 1.9A is 

consistently better than inner cutoff of 0A. In summary, the piecewise cosine functions can 
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be adjusted by tuning the number of functions (M) and the range of interatomic distances, 

which are both intuitive parameters to be adjusted in practice.  

 

Figure 4. Errors in (a) total energies and (b) forces as functions of the size M of the piecewise 

cosine functions. Inner cutoffs of 𝑅inner=0.0A (or no cutoff) and 𝑅inner=1.9A are also 

compared.  

3.3 Comparison of DFT and NN for MD 

One of our main goals is to use the SANNP to perform molecular dynamic simulation. In 

addition to having small errors in energies and forces in the test set, an accurate neural 

network potential must also be able to reproduce similar quantities along its MD trajectory. 

In particular, the smoothness of the potential as well as the atomic forces is important. For 

this test, we have performed an NVE molecular dynamics simulation on another amorphous 

silicon structure (not in the training set) using DFT for 1ps, and a random trajectory interval 

of 100 fs is chosen to compare the energies and forces between DFT and the previously 

trained SANNP. As shown in Figure 5(a), along the AIMD trajectories, the energies between 

DFT and SANNP match almost perfectly, with an RMSE of total energy of 1.1meV/atom, 

which is only slightly higher than that of the test set. Since the forces at each trajectory 

include all components of all atoms, to compare the DFT forces and the SANNP forces, we 

have projected the forces along the MD trajectory directions, as shown in Figure 5(b), and 

have also calculated the unit vector dot product between the DFT and SANNP forces, as 

shown in Figure 5(c). Overall, the projected forces agree well between DFT and SANNP 

with an RMSE of 0.13eV/A, and the scaled dot product indicates that the SANNP forces 

recover almost 99% of the DFT forces throughout the trajectory. Such a near unity dot-
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product means the forces for almost all atoms are in the same directions between SANNP 

and DFT.   

Since silicon is an important material, many empirical force fields have been developed. The 

energies for these classical force fields can also be calculated along the above AIMD 

trajectories. As shown in Figure 5(d), energies obtained for all methods have the same overall 

trend and local extrema, but the variation in energy at each trajectory is quite large for 

different force fields, as well as to the DFT energies. This indicates a much superior SANNP 

accuracy compared to other classical force fields, if the DFT energy is used as the reference.   

The SANNP can also be compared to DFT with different practical parameters 

(pseudopotentials and exchange-correlation functionals). As shown in Figure 5(e), the 

energies for different DFT are calculated along the same AIMD trajectories, and they are 

relatively close to each other. By zooming in onto the first 10 time steps of the trajectories, 

the differences between different DFT runs can be shown more clearly. As shown in Figure 

5(f), the SANNP follows the original DFT results very closely, while different levels of DFT 

give much bigger errors. This indicates that the SANNP is already within the errors between 

different choices of DFT. 

 
                                 (a)                                                             (b) 
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                                 (c)                                                             (d) 

 
                                 (e)                                                             (f) 

Figure 5. Comparison of DFT, neural network potential, and empirical force fields along a 

sequence of AIMD trajectories. (a) total energies between DFT and NNP (b) projected forces 

between DFT and neural network forces (c) scaled dot product between DFT and neural 

network forces (d) total energies between DFT, NNP, and classical force fields (with constant 

shifts for force field energies); (e) total energies between the neural network potential and 

various levels of DFT over 100fs (e) total energies between the neural network potential and 

various levels of DFT over 10fs  

Although the neural network fits the DFT trajectory well, it is still necessary to compare the 

dynamics between DFT and SANNP to ensure that similar structural properties are 

generated. Starting from the same structure and initial velocities, NVE simulations are 

performed using DFT and SANNP independently. After 1ps, the radial distribution function 

and the normalized angular distribution are compared. The radial distribution is obtained 

from the total bond distribution normalized by 𝑟2, the angular distribution is normalized by 

sin(). As shown in Figure 6, both distributions are almost indistinguishable between DFT 

and SANNP, confirming that the SANNP is capable of reproducing the DFT results through 

MD simulations.  
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                                 (a)                                                             (b) 

Figure 6. Comparison of (a) radial distributions and (b) angular distributions between DFT 

(blue) and single atom neural network potential, SANNP (orange).  

3.4 Application of the NNP to thermal conductivity calculations 

As shown in the previous sections, the SANNP is capable of performing MD simulations 

with DFT level of accuracy. Since the SANNP is significantly less computationally intensive 

than DFT, long time and large-scale simulations can be performed. One class of problems 

that is difficult to be calculated with DFT level of accuracy is the classical transport 

properties, e.g., the thermal conductivity of amorphous silicon. By employing the SANNP 

to perform molecular dynamics simulations over a long time scale, the heat current auto-

correlation function (HCACF), 〈𝑱(𝑡)𝑱(0)〉, can be obtained. Using the Green-Kudo 

formulation, the thermal conductivity equals the integration of the HCACF,  

𝜿 = ∫ 〈𝑱(𝑡)𝑱(0)〉𝑑𝑡
𝑡

  (9) 

Although there is no unique spatial origin of 𝑹𝑖 to calculate the heat current 𝑱(𝑡) =

𝑑

𝑑𝑡
∑ 𝑹𝑖𝐸𝑖𝑖 , an alternative formulation [30] can be used to avoid this non-uniqueness as long 

as the atomic energies are explicitly represented as a function of the atomic coordinates, as  

in the SANNP. For this, we have: 
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𝑱(𝑡) =  ∑ 𝒗𝑖 (
1

2
𝑚𝑖𝑣𝑖

2 + 𝐸𝑖)𝑖 + ∑ ∑ 𝑹𝑖𝑗𝛁𝑖𝐸𝑗 ∙ 𝒗𝑖𝑗≠𝑖𝑖   (10) 

Where 𝐸𝑖 is the atomic energy from the SANNP.  

To obtain the HCACF by taking ensemble average of the heat current in Equation (10), we 

first shift the temperature of the system to the target temperature using the Andersen 

thermostat such that the canonical ensemble is correctly sampled. After the system is further 

stabilized at the target temperature for another 1ps, an NVE simulation is performed to 

sample the dynamics and obtain J(t).  

The HCACF for amorphous silicon at 300K is shown in Figure 7(a), in which most of the 

correlation is within the first few hundred femtoseconds, and it quickly decays to zero. By 

integrating over the HCACF, the corresponding thermal conductivity κ is integrated to be 

1.59 ± 0.1 W/m·K, as shown in Figure 7(b). This can be compared with the direct DFT 

calculated value of 1.4 ± 0.3 W/m·k [23] at the same temperature, as well as the experimental 

range of 1 to 2 W/m·K [31-33].  We have also calculated the temperature dependence of κ as 

shown in Figure 7(c). We see that κ decreases in a power law rate as temperature increases, 

the same trend as found in crystal Si structure [34]. However, the rate of decreasing is much 

slower in our case, a result of the randomness in the amorphous Si, where the phonon 

scattering is caused mostly by the structure randomness instead of by the temperature 

dependent nonharmonic scattering. As a result, the temperature dependence is much smaller.  

The accurate computation of the thermal conductivity using the SANNP implies that the heat 

current 𝑱(𝑡) =
𝑑

𝑑𝑡
∑ 𝑹𝑖𝐸𝑖𝑖 , and thus the local atomic energies, are properly obtained using 

our atomic energy decomposition scheme and accurately trained using our neural network 

model.  

 



 

 

109 

 

                                 (a)                                                             (b) 

 

                                 (c)             

Figure 7. (a) The time evolution of the heat current auto-correction function (HCACF), 

〈𝐽𝑥(𝑡)𝐽𝑥(0)〉, for amorphous silicon at 300K; (b) The time integration of the HCACF using 

Equation (9) at 300K; (c) The temperature dependence of the thermal conductivity from 

150K to 600K.  

4. Conclusion 

In this study, we developed a machine learned based scheme to partition the DFT total energy 

into atomic energies that depend only on the atoms nearby to a given atom. This leads to a 

unified single atom neural network potential (SANNP) model that uses the data for all atoms 

in training this SANNP. Compared to the traditional HDNNP method using only the total 

energy of the system, SANNP acquires hundreds of times more energy information from the 

same DFT. As a result, we found that only 1000 MD steps (which takes about half day to 

finish using GPU by the PWmat code [35-37]) are sufficient to train an accurate SANNP, 

which dramatically reduces the training time while dramatically increasing the accuracy.   
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In addition, we have deployed a new universal set of symmetry invariant feature functions 

using local piecewise cosine basis. We show that using piecewise cosine functions to 

construct the symmetry features provides a systematic and mathematically efficient way to 

represent the atomic configuration of nearby atoms for a given central atom.  This provides 

a universal model applicable to any system.  Combining the energy decomposition method 

with the piecewise cosine functions model, we show that the training of the SANNP using 

TensorFlow running on GPU workstation takes 1/10 the time of standard methods while 

attaining total energy accuracy of ~1meV/atom (of a 256 atom system) and force accuracy 

of 0.1eV/A. This accuracy is comparable, or even higher, than the uncertainties from using 

different pseudopotentials in DFT calculations. We anticipate that the dramatic reduction in 

the number of DFT pre-calculations (with smaller number of steps) with the dramatic 

decrease in NN training time, plus the high accuracy and systematics of the SANNP model, 

will enable DFT accuracy for large scale simulations.  
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Supporting Information 

S1. SANNP code and Training data 

Figure S1(a) shows how neighboring 𝐸𝑖  changes when a center atom j has a displacement. 

One can see that the change of 𝐸𝑖 decays exponentially with the distance 𝑅𝑖𝑗 = |𝑹𝑗 − 𝑹𝑖|. 

Figure S1(b) shows how the atomic energy 𝐸𝑖 of a center atom changes when the nearby 

atoms within a 𝑅cutoff are fixed while the outside atoms are moving in a MD simulation at 

300K. Several center atoms i are chosen for the tests, and different 𝑅cutoff are also examined. 

When 𝑅cutoff=6A, there are roughly 60 atoms within the cutoff radius, and the variation in 

𝐸𝑖 due to the motions of the outside atoms has a RMSE of 10 meV or less. This will thus be 

the upper limit of our SANNP fitting when 𝑅cutoff=6A is used. The analyses of 𝐸𝑖 here 

provide another advantage of our SANNP method: the upper limit of accuracy can be 

obtained prior to the training of SANNP, thus 𝑅cutoff can be chosen based on the target 

accuracy.  

 

                               (a)                                                            (b) 
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                               (c)                                                            (d) 

Figure S1. Fluctuation in the employed atomic energy 𝐸𝑖. (a) change of energy of atom j 

when a chosen atom i displaces. (b) change of energy of atom i with its neighboring atoms 

within 𝑅cutoff frozen and the surrounding atoms outside of 𝑅cutoff moving according to an 

NVE ensemble. (c) schematics of atomic motions for (a). (d) schematics of atomic motions 

for (b).  

S2. SANNP code and Training data 

We have written a custom machine learning code containing all of the calculations reported 

in the manuscript. The code is freely available at: https://gitlab.com/yufeng.huang/sannp. 

The training, validation, and testing data used in the manuscript are also included in the Data 

folder.  

Detailed description about running the code is on the Gitlab website. Datasets used in this 

study have been provided in the example calculations.   

S3. Convergence of the neural network errors in the size of the neural network 

In the paper a large system with 550 input features and a 2-layer neural network with 500 

nodes per layer is used. The reason for the large system is to avoid errors due to 

incompleteness. In the manuscript, the convergence with respect to the basis set size is shown 
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in Figure 4. Here we show how the forces converge when the number of nodes in the 

neural network increases. For this test, the M=4 piecewise cosine basis set, which 

corresponds to 56 input features, is used. The simplest case has 40 nodes in each layer in the 

2-layer neural network. Changing the number of nodes only reduces the error by about 

0.014eV/A.  

 

S4. DFT data generation 

The computational method used here is the same as in Kang and Wang [1].  

The amorphous Si structure is first equilibrated in LAMMPS [2] using the ReaxFF reactive 

force-field [3], which allows for long simulations of amorphous structures with bond 

breaking and formation. We start with the 4 × 2√2 × 2√2 supercell of the crystalline diamond 

structure of silicon consisting of 256 atoms. Then the system is heated to 4300 K in 170 ps 
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with the NPT ensemble. After equilibrating the system for another 150 ps at 4300 K, the 

system is cooled down to 10 K in 1.1 ns. Amorphous Si is formed during the annealing 

process. Using the LAMMPS results at the initial structures, we perform DFT calculations 

in PWmat to relax the geometries. The results are consistent with experimental observations 

[4]. 
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