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ABSTRACT

Machine learning-guided protein engineering is a new paradigm that enables the
optimization of complex protein functions. Machine-learning methods use data to
predict protein function without requiring a detailed model of the underlying physics
or biological pathways. They accelerate protein engineering by learning from infor-
mation contained in all measured variants and using it to select variants that are likely
to be improved. We begin with a review of the basics of machine learning with a
focus on applications to protein engineering and protein sequence-function datasets
(Chapter 1). We used the entire machine-learning guided engineering paradigm to
engineer the algal-derived light-gated channel channelrhodopsin (ChR), which can
be used to modulate neuronal activity with light. We build models that discover
ChRs with strong plasma membrane localization in mammalian cells (Chapter 2)
and unprecedented light sensitivity and photocurrents for optogenetic applications
(Chapter 3). Machine learning-guided evolution requires a machine-learning model
that learns the relationship between sequence and function. For machine-learning
models to learn about protein sequences, protein sequences must be represented
as vectors or matrices of numbers. How each protein sequence is represented
determines what can be learned. We learn continuous vector encodings of se-
quences from patterns in unlabeled sequences (Chapter 4). Learned encodings are
low-dimensional, do not require alignments, andmay improve performance by trans-
ferring information in unlabeled sequences to specific prediction tasks. Alternately,
we demonstrate an interpretable Gaussian process kernel tailored to biological se-
quences (Chapter 6). In addition to a model to predict function from sequence,
engineering requires a method to use the model to choose sequences for the next
round of evolution. Most machine-learning guided engineering strategies assume
that selected sequences can be queried directly. However, in directed evolution it is
common to design a library of sequences and then sample stochastic batches from
that library. We propose a batched stochastic Bayesian optimization algorithm for
iteratively designing and screening site-saturation mutagenesis libraries (Chapter
5).
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1.1 Directed evolution with and without machine learning. (a) Directed

evolution uses iterative cycles of diversity generation and screening
to find improved variants. Information from unimproved variants is
discarded. (b) Machine-learning methods use the data collected in
each round of directed evolution to choose the mutations to test in
the next round. Careful choice of mutations to test decreases the
screening burden and improves outcomes. (c) Directed evolution
is a series of local searches on the fitness landscape. (d) Machine
learning-guided directed evolution often rationally chooses the initial
points (green circles) to maximize the information learned from the
fitness landscape, allowing future iterations to quickly converge to
improved sequences (violet stars). . . . . . . . . . . . . . . . . . . . 3

1.2 Examples of model interpretation. (a) Local approximation. The
original model’s decision function is represented by the violet/green
background, and is clearly nonlinear. The black dot is the instance
being explained, and a linear model (dashed line) that approximates
the original model well in the vicinity of the instance is learned. Note
that the explanation is not accurate globally, but is accurate locally
around the instance. (b) Most important contacts for predicting chan-
nelrhodopsin localization to the plasmamembrane. Contacts with the
largest positive and negative weights in a Bayesian ridge regression
approximation to a Gaussian process regression model are depicted
on the channelrhodopsin crystal structure40. Each set of two balls and
a stick represents two contacting amino acids. The amino acids are
colored according to the source parent. The bound retinal cofactor is
shown in cyan. (c) Convolution weights. Visualization of one convo-
lutional filter from amodel trained to predict the intracellular location
of proteins88. The size of each amino acid represents its importance
at that position in the k-mer. (d) Attention activations. Importance
weights assigned to different regions of proteins in a model trained
to predict intracellular location88. . . . . . . . . . . . . . . . . . . . 11
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1.3 Gaussian Process Upper Confidence Bound algorithm. At each it-
eration, the next point to be sampled is chosen by maximizing the
weighted sum of the posterior mean and standard deviation. This
balances exploration and exploitation by exploring points that are
both uncertain and have a high posterior mean. . . . . . . . . . . . . 15

1.4 Autoencoder. An autoencoder consists of an encoder model and a
decoder model. The encoder converts the input to a low-dimensional
vector (code). The decoder reconstructs the input from this code.
Typically, the encoder and decoder are both neural network models,
and the entire autoencoder model is trained end-to-end. The learned
code should contain sufficient information to reconstruct the inputs
and can be used as input to other machine learning methods, or the
autoencoder itself may be used as a generative model. . . . . . . . . 17

2.1 General approach to machine learning of protein (ChR) structure-
function relationships: diversity generation, measurements on a train-
ing set, andmodeling. (1) Structure-guided SCHEMArecombination
is used to select block boundaries for shuffling protein sequences to
generate a sequence-diverse ChR library starting from three parent
ChRs (shown in red, green, and blue). (2) A subset of the library
serves as the training set. Genes for these chimeras are synthesized
and cloned into a mammalian expression vector, and the transfected
cells are assayed for ChR expression and localization. (3) Two dif-
ferent models, classification and regression, are trained using the
training data and then verified. The classification model is used to
explore diverse sequences predicted to have ‘high’ localization. The
regression model is used to design ChRs with optimal localization to
the plasma membrane. . . . . . . . . . . . . . . . . . . . . . . . . . 34
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2.2 GP binary classificationmodels for expression and localization. Plots
of predicted probability vsmeasured properties are divided into ‘high’
performers (white background) and ‘low’ performers (gray back-
ground) for each property (expression and localization). (A) & (D)
Predicted probability vs measured properties for the training set (gray
points) and the exploration set (cyan points). Predictions for the train-
ing and exploration sets were made using LOO cross-validation. (B)
& (E) Predicted probabilities vs measured properties for the verifi-
cation set. Predictions for the verification set were made by a model
trained on the training and exploration sets. (C) & (F) Predicted prob-
ability of ‘high’ expression, and localization for all chimeras in the
recombination library (118,098 chimeras) made bymodels trained on
the data from the training and exploration sets. The gray line shows
all chimeras in the library, the gray points indicate the training set,
the cyan points indicate the exploration set, the purple points indi-
cate the verification set, and the yellow points indicate the parents.
(A–C) Show expression and (D–F) show localization. For all plots,
the measured property is plotted on a log2 scale. . . . . . . . . . . . 37

2.3 Comparison of measured membrane localization for each data set.
Swarm plots of localization measurements for each data set com-
pared with parents: training set, exploration set, verification set, and
optimization set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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2.4 GP regression model for localization. (A) Predicted vs measured
localization for the combined training and exploration sets (gray
points), verification set (purple points), and the optimal set (green
points). Predictions for the training and exploration sets were made
using LOO cross-validation; predictions for the verification and op-
timal sets were made by a model trained on data from the training
and exploration sets. There is clear correlation between predicted
and measured localization. The combined training and exploration
sets showed good correlation (R > 0.73) as did the verification set
(R > 0.9). (B) Predicted localization values of all chimeras in the
recombination library (118,098 chimeras) based on the GP regres-
sion model trained on the training and exploration sets. The gray line
shows all chimeras in the library, the gray points indicate the training
set and exploration sets, the purple points indicate the verification
set, and the yellow points indicate the parents. Error bars (light gray
shading) show the standard deviation of the predictions. For all plots,
the predicted and measured localization are plotted on a log2 scale. . 40

2.5 Sequence and structural contact features important for prediction of
ChR localization. Featureswith positive (A) and negative (B)weights
are displayed on the C1C2 crystal structure (grey). Features can be
residues (spheres) or contacts (sticks) from one or more parent ChRs.
Features from CsChrimR are shown in red, features from C1C2 are
shown in green, and features fromCheRiff are shown in blue. In cases
where a feature is present in two parents, the following color priorities
were used for consistency: red above green above blue. Sticks connect
the beta carbons of contacting residues (or alpha carbon in the case
of glycine). The size of the spheres and the thickness of the sticks are
proportional to the parameter weights. Two residues in contact can be
from the same or different parents. Single-color contacts occur when
both contributing residues are from the same parent. Multi-color
contacts occur when residues from different parents are in contact.
The N-terminal domain (NTD), C-terminal domain (CTD), and the
seven transmembrane helices (TM1–7) are labeled. . . . . . . . . . . 43
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2.6 GP regression model enables engineering of localization in CbChR1.
(A) Block identities of the CsCbChR1 chimeras. Each row represents
a chimera. Yellow represents the CbChR1 parent and red represents
the CsChrimR parent. Chimeras 1c, 2n, and 3c have 4, 21, and 17mu-
tations with respect to CsCbChR1, respectively. (B) Plot of measured
localization of CsCbChR1 compared to three CsCbChR1 single-
block-swap chimeras and the CheRiff parent. (C) Two representative
cell images of mKate expression of CbChR1 and CsCbChR1 com-
pared with top-performing CsCbChR1 single-block-swap chimeras
show differences in ChR localization properties–chimera 2n and
chimera 3c clearly localize to the plasma membrane. Scale bar:
20 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.S1 Chimera sequences in training set and their expression, localization,
and localization efficiencies. (A) (top) shows blocks (different colors)
for the contiguous (contig) and non-contiguous (non-contig) library
designs and also shows block boundaries (white lines) for the com-
bined contiguous and non-contiguous library designs on the three
parental ChRs aligned with a schematic of the ChR secondary struc-
ture. (bottom) Sequences of training set chimeras showing block
identities. The colors represent the parental origin of the block
(red–CsChrimR, green–C1C2, and blue–CheRiff). (B) Cumulative
distributions of the measured expression, localization, and localiza-
tion efficiency of all 218 chimeras with the three parental constructs
highlighted in color (5). . . . . . . . . . . . . . . . . . . . . . . . . 54

2.S2 Chimera expression and localization cannot be predicted from sim-
ple rules. Expression and localization measurements are plotted with
chimeras grouped based on (A) signal peptide sequence identity and
(B) hydrophobicity in the transmembrane (TM) domains. (A) Each
chimera in the training set is grouped based on its signal peptide
identity, which could be the CheRiff (0), C1C2 (1), or CsChrimR
(2) signal peptide. The measured expression and localization are
shown for each chimera in each of the three groups. (B) The mea-
sured expression and localization with respect to the calculated level
of hydrophobicity within the 7-TM domains of each chimera. Hy-
drophobicity was calculated in the region of the protein highlighted
in the surface rendering on the ChR structure. . . . . . . . . . . . . . 55
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2.S3 GP binary classification model for localization efficiency. Plots of
predicted probability vs measured localization efficiency are divided
into ‘high’ performers (white background) and ‘low’ performers (gray
background) for localization efficiency. (A) Predicted probability vs
measured localization efficiency for the training set (gray points)
and the exploration set (cyan points). Predictions for the training
and exploration sets were made using LOO cross-validation. (B)
Predicted probabilities vs measured localization efficiency for the
verification set. Predictions for the verification set were made by a
model trained on the training and exploration sets. (C) Probability
of ‘high’ localization efficiency for all chimeras in the recombination
library (118,098 chimeras) made by a model trained on the data from
the training and exploration sets. The gray line shows all chimeras in
the library, the gray points indicate the training set, the cyan points
indicate the exploration set, the purple points indicate the verification
set, and the yellow points indicate the parents. For all plots, the
measured localization efficiency is plotted on a log2 scale. . . . . . . 56

2.S4 Chimera block identities for exploration, verification, and optimiza-
tion sets. Block identity of chimeras from each set ranked according
to their performance for localization with the best ranking chimera
listed at the top of the list. ‘High’ and ‘low’ indicates those chimeras
had a high predicted probability of localization vs a low predicted
probability of localization. Each row represents a chimera. The
three different colors represent blocks from the three different par-
ents (red–CsChrimR, green–C1C2, and blue–CheRiff). The number
of mutations from the nearest parent and the number of mutations
from the nearest previously tested chimera from the library are shown
for each chimera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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2.S5 ROC curves for GP classification expression, localization, and lo-
calization efficiency models. ROC curves show true positive rate vs
false positive rate for predictions from the expression (A), localiza-
tion (B), and localization efficiency (C) classification models. The
gray line shows the ROC for the combined training and exploration
sets. The purple line shows the ROC for the verification set. The ver-
ification sets consist exclusively of chimeras with ‘high’ expression
so no verification ROC curve for expression is shown. Predictions
for the training and exploration sets were made using LOO cross-
validation, while predictions for the verification set were made by a
model trained on the training and exploration sets. Calculated AUC
values are shown in the figure key. . . . . . . . . . . . . . . . . . . . 58

2.S6 Comparison of measured expression and localization efficiency for
each data set. Swarm plots of expression (A) and localization effi-
ciency (B) measurements for each data set compared with parents:
training set, exploration set, verification set, and optimization set. . . 59

2.S7 Cell population distributions of expression, localization, and local-
ization efficiency properties for each chimera in the verification and
optimization sets compared with parents. The distribution of ex-
pression (A), localization (B), and localization efficiency (C) for the
population of transfected cells is plotted for each parent (top row),
each chimera in the verification set (middle row), and each chimera
in the optimization set (bottom row) using kernel density estimation
for smoothing. Parents are plotted in red (CsChrimR), green (C1C2),
and blue (CheRiff). Chimeras in the verification set are plotted in
gray if they were predicted to be ‘low’ or purple if they were predicted
to be ‘high’ in each property. The vertical, gray, dashed line indicates
the mean behavior of the CheRiff parent for each property. . . . . . . 60
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2.S8 Predictive ability of GP localization models as a function of training
set size.We trained GP models on random training sets of various
sizes sampled from our data and evaluated their predictive perfor-
mance on a fixed test set of sequences for the classification (A) and
regression (B) localization models. The predictive performance of
the classification model is described by AUC for the test set (A),
while the predictive performance of the regression model (B) is de-
scribed by the correlation coefficient (R-value) for the test set. For
each training set size, the results are averaged over 100 random samples. 61

2.S9 Important features for prediction of ChR localization aligned with
chimeras with optimal localization. Features with positive weights
from the localization model (Figure 2.5) are displayed on the C1C2
crystal structure which is colored based on the block design of two
different chimeras, (A) n1_7 and (B) n4_7, from the optimization
set. Features can be residues (spheres) or contacts (sticks) from one
or more parent ChRs. Features/blocks from CsChrimR are shown
in red, features/blocks from C1C2 are shown in green, and fea-
tures/blocks from CheRiff are shown in blue. Gray positions are
conserved residues. Sticks connect the beta carbons of contacting
residues (or alpha carbon in the case of glycine). The size of the
spheres and the thickness of the sticks are proportional to the param-
eter weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.S10 GP regression model for ChR expression. Shows the GP regression
model predicted vs measured expression for the combined training
and exploration sets (gray points). Predictions for the training and ex-
ploration sets were made using LOO cross-validation. The predicted
and measured expression are plotted on a log2 scale. The combined
training and exploration sets showed good correlation (R > 0.70). . . 63
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2.S11 Sequence and structure features important for prediction of ChR
expression. Features with positive (A) and negative (B) weights
are displayed on the C1C2 crystal structure (grey). Features can be
residues (spheres) or contacts (sticks) from one or more parent ChRs.
Features from CsChrimR are shown in red, features from C1C2 are
shown in green, and features fromCheRiff are shown in blue. In cases
where a feature is present in two parents, the following color priorities
were used for consistency: red above green above blue. Sticks connect
the beta carbons of contacting residues (or alpha carbon in the case
of glycine). The size of the spheres and the thickness of the sticks are
proportional to the parameter weights. Two residues in contact can be
from the same or different parents. Single-color contacts occur when
both contributing residues are from the same parent. Multi-color
contacts occur when residues from different parents are in contact.
The N-terminal domain (NTD), C-terminal domain (CTD), and the
seven transmembrane helices (TM1-7) are labeled. . . . . . . . . . . 64

2.S12 Localization of engineered CbChR1 variant chimera 3c. Represen-
tative cell confocal images of mKate expression and GFP labeled lo-
calization of CsCbChR1 compared with top-performing CsCbChR1
single-block-swap chimera (chimera 3c), and top-performing parent
(CsChrimR). CsCbChR1 shows weak expression and no localization,
while chimera 3c expresses well and clearly localizes to the plasma
membrane as does CsChrimR. Gain was adjusted in CsCbChR1 im-
ages to show any low signal. Scale bar: 10 µm. . . . . . . . . . . . . 65
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3.1 Machine learning-guided optimization of ChR photocurrent strength, off-
kinetics, and wavelength sensitivity of activation. (a) Upon light exposure,
ChRs rapidly open and reach a peak inward current; with continuous light
exposure, ChRs desensitize reaching a lower steady-state current. Both
peak and steady-state current are used as metrics for photocurrent strength.
To evaluate ChR off-kinetics, the current decay after a 1 ms light exposure
is fit to a monoexponential decay curve and the decay rate (τoff) is used
as a metric for off-kinetics. We also use the time to reach 50% of the
light-exposed current after light removal as a metric for off-kinetics. ChRs
are maximally activated by one wavelength of light and less activated as
one shifts the light further from that optimal wavelength. Most ChRs
are ‘blue shifted,’ with their wavelength of peak activation at ∼450 – 480
nm. Some ChRs are ‘red shifted,’ with a wavelength of peak activation
between 520 – 650 nm. We use the normalized photocurrent with green
(560 nm) light as a metric for wavelength sensitivity of activation. Variant
selection was carried out in tiers, (1) using trained classification models to
predict whether ChRs would localize correctly to the plasma membrane and
function (2) using regressionmodels to approximate the fitness landscape for
each property of interest for the recombination library. Sequences from the
recombination library predicted to localize and function by the classification
models and predicted to have an optimized set of functional properties by
the regressionmodels were selected for further characterization. Models are
trained with photocurrent properties for each ChR in the training set such
that the model predicted properties correlate well with measured properties
(plots show 20-fold cross validation on the training set). (b) Schematic
of the trajectory of the machine learning-guided engineering of designer
ChRs. The classification function model was trained with 102 variants
from the recombination libraries (Dataset 2) and 61 previously-published
ChRs (Dataset 1). The regression models were trained with 124 variants
from the recombination libraries (Dataset 2). . . . . . . . . . . . . . . . 69
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3.2 Training machine-learning models to predict ChR properties of interest
based on sequence and structure enables design of ChR variants with col-
lections of desirable properties. (a) Measurements of training set ChR
and model-predicted ChR, peak photocurrent, off-kinetics, and normalized
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ChR_11_10, orange, ChR_28_10, pink, ChR_5_10. . . . . . . . . . . . 72
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3.4 High-conductance ChR variants in cultured neurons (a – c) and in acute
brain slices (d –f) outperform the commonly used ChR2(H134R). (a) High-
conductance ChRs and the ChR2(H134R) control were cloned into an AAV
vector with a trafficking signal (TS), eYFP, and WPRE and then packaged
into rAAV-PHP.eB for expression in culture and in vivo. Cultured neurons
expressing hi-ChR1, hi-ChR2, hi-ChR3, and ChR2(H134R). (b) Voltage
traces of hi-ChR1, hi-ChR2, hi-ChR3, and ChR2(H134R) at 2 Hz with 5
ms pulsed low-intensity blue light stimulation (3×10−2 mW mm−2) shows
robust neuronal firing for the high-conductance ChRs while ChR2(H134R)
exhibits only sub-threshold light-induced depolarization. (c) Spike fidelity
with varying intensity light of high-conductance ChRs and ChR2(H134R)
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delivery (1 × 1011 vg/animal). vg, viral genomes. . . . . . . . . . . . . . 77
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C h a p t e r 1

MACHINE LEARNING FOR PROTEIN ENGINEERING

1. Kevin K Yang, Zachary Wu, and Frances H Arnold: Machine learning in protein
engineering (2018). eprint: https://arxiv.org/abs/1811.10775.

1.1 Introduction
Protein engineering seeks to design or discover proteins whose properties, useful for
technological, scientific, or medical applications, have not been needed or optimized
in nature. We can envision the mapping of protein sequence to a desired function
or functions as a “fitness landscape” over the high-dimensional space of possible
protein sequences1. The fitness represents a protein’s performance: expression
level, catalytic activity, or other properties of interest to the protein engineer. The
landscape determines the range of properties available to different sequences as well
as the ease with which they can be optimized. In one limit, convex landscapes
that climb smoothly to a global maximum are easy to search. In the other, rugged
landscapes with many local maxima are much more difficult to traverse. Protein
engineering seeks to identify sequences corresponding to high fitnesses on these
landscapes.

Identifying optimal locations on a fitness landscape is extremely challenging. The
space of possible protein sequences is too large to be searched exhaustively naturally,
in the laboratory, or computationally2. The problem of finding optimal sequences
is NP-hard, meaning that there is no known polynomial-time method for searching
this space3. Functional proteins are also extremely scarce in this vast space of
sequences. Moreover, as the threshold level of fitness increases, the number of
sequences having that fitness decreases exponentially4,5. As a result, highly fit
sequences are vanishingly rare and overwhelmed by nonfunctional and mediocre
sequences.

Until recently, the two main approaches for finding high-fitness protein sequences
have been directed evolution and rational design. Rational design uses physics-based
models to guide the search for improved sequences. These models typically contain
an atomic structural representation of a protein and energy-based scoring functions
to quantify the target function6,7. Rational design has been successful in identifying

https://arxiv.org/abs/1811.10775
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sequences that fold into desired static structures8. This is an important advance, and
useful when a single stable structure dictates function8. However, because proteins
are marginally stable, even small inaccuracies in energy-based scoring functions can
lead to very poor performance9.

Many protein functions such as binding, catalysis, allostery, and signalling, are
mediated through recessed cavities, mobility, or multiple low-energy states10. For
example, computational enzyme design currently proceeds by designing an idealized
active site for the desired reaction, matching the active site residues to stable back-
bones, and then using molecular dynamics (MD) simulations to winnow designs
with flaws not apparent from static evaluations. MD simulations require enormous
computational resources (100s of CPU hours for each variant) and are not appropri-
ate for testing many variants. This process generally yields sequences with modest
activity that are finally improved with directed evolution11.

Inspired by natural evolution, directed evolution climbs a fitness landscape by accu-
mulating beneficial mutations in an iterative protocol of mutation and selection, as
illustrated in Figure 1.1a. The first step is sequence diversification using techniques
such as random mutagenesis, site-saturation mutagenesis, or recombination to gen-
erate a library of modified sequences starting from the parent sequence(s). The
second step is screening or selection to identify variants with improved properties
for the next round of diversification. The steps are repeated until fitness goals are
achieved.

Directed evolution is limited by the fact that even the most high-throughput screen-
ing or selection methods only sample an insignificant fraction of the sequences that
can be made using most diversification methods, and developing efficient screens is
nontrivial. Moreover, directed evolution requires at least one minimally-functional
parent and a locally-smooth fitness landscape for stepwise optimization1. Recom-
bination methods may allow for bigger jumps in sequence space while retaining
function12, but sequences designed using recombination are by definition restricted
to exploring combinations of previously-explored mutations. No matter the diversi-
fication technique, directed evolution is energy-, time-, and material-intensive, and
multiple generations of evolution may be required to achieve meaningful perfor-
mance improvements.

More recently, researchers have begun using statistical, or machine-learning, meth-
ods to approximate sequence-function relationships. Machine-learning methods
learn functional relationships from data13,14. Machine-learning models of protein
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Figure 1.1: Directed evolution with and without machine learning. (a) Directed
evolution uses iterative cycles of diversity generation and screening to find improved
variants. Information from unimproved variants is discarded. (b) Machine-learning
methods use the data collected in each round of directed evolution to choose the
mutations to test in the next round. Careful choice of mutations to test decreases
the screening burden and improves outcomes. (c) Directed evolution is a series
of local searches on the fitness landscape. (d) Machine learning-guided directed
evolution often rationally chooses the initial points (green circles) to maximize the
information learned from the fitness landscape, allowing future iterations to quickly
converge to improved sequences (violet stars).

function can be predictive even when the underlying mechanisms are not well-
understood. As shown in Figure 1.1b, machine-learning models can guide directed
evolution by learning from the information contained in all measured variants. This
new paradigm for protein engineering enables engineeringwith fewermeasurements
and fewer generations of evolution. Here, we cover the basics of machine learning
with a focus on applications to protein engineering and protein sequence-function
datasets, discuss how machine learning can be integrated with directed evolution to
accelerate protein engineering, and consider the developments that are required to
enable wider applications.

1.2 A brief introduction to machine learning on proteins
In most computational methods, the user provides a hard-coded algorithm and
inputs, and the computer executes the steps provided by the human expert. In
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contrast, machine-learning models infer patterns from data, which can then be used
to make predictions on unobserved data. The user must collect the training data,
represent it in a form amenable to machine learning, decide what type of machine-
learning algorithm to use, and train and interpret the model.

Protein function databases
The broadest protein datasets are UniProt, which aims to catalog all known protein
sequences15, the Protein Data Bank16, which catalogs all known protein struc-
tures, and BRENDA, which catalogs natural enzymes and their functions17. These
databases do not specifically store sequence-function relationships.

Protein engineering experiments have generated a growing collection of well-
characterized libraries. Databases that collect and organize specific categories
of sequence-function data include ProTherm and ProNit for protein stability and
protein-nucleic acid interactions, respectively18, and SKEMPI19, AB-Bind20, and
PROXIMATE21 for protein-protein complexes. The Protein Mutant Database22, an
early attempt to catalog the effects of mutations from protein engineering studies
across different proteins and functions, has not been updated in over a decade. Cur-
rently, Protabank is an actively-maintained and updated database for general protein
design and engineering data23.

ProTherm is the oldest and most mature of these databases, but has not been updated
since 2013. There have been many efforts to use the sequence-function information
in ProTherm to train machine-learning models to predict the effects of mutations on
stability24–35. However, Yang et al. found that ProTherm contains many errors and
cautions against using entries as training sets without proper validation36.

Datasets derived from protein engineering experiments tend to be small (102 - 103

variants) and focused on high-performing variants derived from a small number of
sequences. Furthermore, the variants sampled in a protein engineering study are
limited by the bias and intent of the study23. This may make it more difficult to
generalize models trained on one dataset to other variants of even the same protein
generated in different ways or with a different objective. In contrast, datasets of
natural variants can be quite large, with examples from many families of proteins.
However, the variant distribution in natural datasets is biased by evolution and the
fact that not all organisms are equally likely to be studied and sequenced. This
can lead to difficulty generalizing to the non-natural sequences often encountered in
protein engineering.
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Vector representations of proteins
For machine-learning models to learn about protein sequences, protein sequences
must be represented as vectors or matrices of numbers. How each protein sequence
is represented determines what can be learned37,38. Even the most powerful models
produce poor results if an inappropriate representation is used. An ideal encoding
would perform well across different proteins and functions, not require alignments,
structures, or feature selection, and transfer the information contained in unlabeled
sequences to specific prediction tasks. Unfortunately, such an encoding does not
exist.

In general, a protein sequence is a string of length L where each residue is chosen
from an alphabet of size A. The simplest way to encode such a string is to represent
each of the A amino acids as a number. However, the assignment of each residue to
a number enforces an ordering on the amino acids that has no physical or biological
basis. Instead of representing each position as a single number, a one-hot encoding
represents each of the L positions as A− 1 zeros and one 1, with the position of the
1 within the series denoting the identity of the amino acid at that position. Given
structural information, the identity of pairs of amino acids within a certain distance
in the structure can also be one-hot encoded39,40. Single mutations can also be
encoded as a 20-dimensional vector where the original amino acid is denoted by -1,
the new amino acid by 1, and all others by zero41. One-hot encodings are inherently
sparse, memory-inefficient, and high-dimensional. In a one-hot encoding, there is
no notion of similarity between sequence or structural elements: they are either
identical, or not. Furthermore, one-hot encodings of the primary sequence require
that all sequence variants of interest are aligned. This alignment must be updated
as sequences are added to the model. Nevertheless, one-hot encodings offer good
performance for little complexity and can be considered a good baseline encoding.

A protein can also be encoded by its physical properties by representing each
individual amino acid with a collection of physical properties, such as its charge or
hydrophobicity, and each protein with a combination of those properties. Properties
such as predicted secondary structures can also be used to represent proteins. The
challenge is that there are a large number of physical properties that could be used
to describe each amino acid or protein. Furthermore, the molecular properties
that dictate functional properties are unknown, highly constrained, and dependent
on the specific function considered. Therefore, selecting informative properties is
challenging because it is difficult to know a prioriwhat properties will be predictive
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for a particular task. Most representations using physical properties also require
alignments of the input sequences.

AAIndex42 attempts to systematically collect descriptors of protein sequences.
AAIndex comprises three sections: AAIndex1 contains 554 amino acid features,
AAIndex2 contains 94 amino acid substitution matrices, and AAIndex3 contains
47 amino acid contact potential matrices. ProFET is another encoding system that
considers physical properties of the bulk protein, the individual residues, and sub-
sequences of residues43. There have also been attempts to describe each amino acid
using two reduced dimensions based on volume and hydrophobicity44 and to com-
bine physical properties with structural information30,45 by encoding each position
in the sequence as a combination of the properties of amino acids in its geometric
neighborhood.

While there are a vast number of known protein sequences, only a tiny fraction
are labeled with measured properties relevant to any specific prediction task. The
number of unlabeled sequences will continue to rise asmore sequences are deposited
into public databases. These unlabeled sequences contain information about the
frequency and patterns of amino acids selected by evolution to compose proteins,
information that may be helpful across prediction tasks. The simplest examples are
BLOSUM46 or AAIndex2-style substitution matrices based on relative amino-acid
frequencies. However, more sophisticated continuous vector encodings of sequences
can be learned from patterns in unlabeled sequences47–52. These representations
are known as embedded representations. Conceptually, through sequence context,
these representations learn a mapping from a space with one indicator (one-hot)
dimension per k-mer or protein sequence to a continuous vector space with a much
lower dimension such that similar sequences are close together in the continuous
space. When modeling large (> 104 examples) datasets with neural networks,
embeddings for individual amino acids or k-mers can be learned simultaneously
with the model weights. Learned encodings are low-dimensional, do not require
alignments, and may improve performance by transferring information in unlabeled
sequences to specific prediction tasks. However, it is difficult to predict which
learned encoding will perform well for any given task.

Just as no model will be optimal across all machine learning tasks, there is no
universally optimal vectorization method53. Because computational resources are
finite, researchersmust use a combination of domain expertise and heuristics to select
a set of encodings to compare. For small datasets, one-hot encodings offer superior
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performance to general sets of protein properties51, although careful feature selection
informed by domain knowledge may yield more accurate predictions. If accuracy is
insufficient, learned encodings may be able to improve performance. The encoding
should ultimately be chosen empirically to maximize predictive performance.

Models for protein data
A wide range of machine-learning algorithms exist, and no single algorithm is opti-
mal across all learning tasks53. Machine-learning methods can be broadly classified
as supervised, unsupervised, or semi-supervised. In supervised learning, the train-
ing data consist of inputs and their associated output values (labels). Supervised
methods learn a mapping from input space to output space that enables them to
accurately predict outputs from new inputs. Supervised learning can be further di-
vided into regression, which aims to predict real-valued outputs, and classification,
which aims to predict class membership. In unsupervised learning, the training data
consist only of input values. Unsupervised methods learn to find patterns, such as
trends or clustering, in the inputs. In semi-supervised learning, the training data
consist of inputs, of which a subset has associated output values. Semi-supervised
methods leverage information in the unlabeled training inputs to improve their abil-
ity to predict outputs from inputs. Supervised learning is the most developed of
these approaches, and is used in the majority of applications to protein engineering.
We outline some common supervised machine-learning algorithms below.

The simplest machine-learning models apply a linear transformation of the input
features, such as the amino acid at each position, the presence or absence of a
mutation54, or blocks of sequence in a library of chimeric proteins made by re-
combination55. Linear models are simple and the learned parameters are easily
interpreted by the user. Linear models are commonly used as baseline predictors
before more powerful models are tried.

Classification and regression trees56 use a decision tree to go from input features
(represented as branches) to labels (represented as leaves). Decision tree models are
often used in ensemble methods, such as random forests57 or boosted trees58, which
combine multiple models into a more accurate meta-predictor. For small biological
datasets (< 104 training examples), including those often encountered in protein
engineering experiments, random forests are a strong and computationally efficient
baseline, and have been used to predict thermostability24–26.

Kernel methods, such as support vector machines59 and kernel ridge regression60,
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employ a kernel function, which calculates similarities between pairs of inputs, to
implicitly project the input features into a high-dimensional feature space without
explicitly calculating the coordinates in this new space. The choice of kernel
profoundly affects the accuracy of these methods. While general-purpose kernels
can be applied to protein inputs, there are also kernels designed for use on proteins,
including spectrum and mismatch string kernels61,62, which count the number of
shared sub-sequences between two proteins, and weighted decomposition kernels33

and other graph kernels, which account for three-dimensional protein structure.
Support vector machines have been used to predict protein thermostability24–31,
enantioselectivity63, and membrane protein expression64.

Gaussian process regression and classification combine kernelmethodswithBayesian
learning to produce probabilistic predictions65. These models rigorously capture
uncertainty, which, combined with methods from Bayesian optimization, can pro-
vide principled ways to guide experimental design in optimizing protein properties.
The run-time for exact GP regression scales as the number of training examples
cubed, making it unsuitable for large (> 103) datasets, but there are now fast and
accurate approximations66. Gaussian processes have been used to predict ther-
mostability32,33,39, enzyme substrates67, fluorescence68, membrane localization40,
and channelrhodopsin photo-properties69.

Deep learning models, also known as neural networks, stack multiple linear layers
connected by non-linear activation functions, allowing them to extract high-level
features from structured inputs. Neural networks are well-suited for tasks with large
labeled datasets with examples from many protein families, such as protein-nucleic
acid binding70–72, protein-MHC binding73, binding site prediction74, protein-ligand
binding48,75, solubility76, thermostability34,35, subcellular localization77, secondary
structure78, functional class79,80, and even 3D structure81. Deep learning networks
are also particularly useful in metabolic pathway optimization82 and genome anno-
tation83–85, which have been reviewed elsewhere.

k-nearest-neighbor86 methods make predictions on new data points by taking the
majority (for classification) or mean (for regression) labels for the k nearest training
points. The quality of the predictions can be affected by setting the neighborhood size
k as well as the distance metric used to identify the nearest neighbors. Alternatively,
predictions can be made as a linear combination of the training labels weighted
by their closeness to the test point. Because calculating distances between protein
sequences can be non-intuitive (have little meaning in the problem context) or
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computationally expensive, k-nearest-neighbor methods are not commonly applied
to protein datasets.

Model training and evaluation
All model families have hyperparameters that determine the form of the model.
Unlike model parameters, hyperparameters cannot be learned directly from the
data. These may be set manually by the practitioner or determined using a procedure
such as grid search, simulated annealing, random search, or Bayesian optimization.
Hyperparameters may be discrete or continuous. For example, in support vector
machines, the type of kernel is a hyperparameter, as are the number of layers
and learning rate in a deep neural network. The vectorization method is also
a hyperparameter. Even modest changes in the values of hyperparameters can
improve or diminish accuracy considerably, and the selection of optimal values is
often challenging, as each set of hyperparameters considered may require training a
new version of the model.

The key test for a machine-learning model is the ability to accurately predict labels
for inputs it has not been trained with. Therefore, when training models by learning
their parameters and selecting model hyperparameters, it is necessary to estimate the
model’s performance on data not in the training set. Thus it is essential to initially
remove a set of data, called the test set, to be set aside until the absolute end for model
evaluation. Typically, the test set comprises approximately 20% of the data. In order
to compare models and select hyperparameters during a study, the remaining data
should be split into a training set and a validation set. The training set is used to
learn model parameters, while the validation set is used to choose between models
with different hyperparameters. If the training set is small, cross-validation may be
used instead of a constant validation set. In n-fold cross-validation, the training set
is partitioned into n complementary subsets. Each subset is then predicted using a
model trained on the remaining subsets. Averaging accuracy across the withheld
subsets provides an estimate of predictive accuracy over the entire training set.

Care must be taken when selecting the training/validation/test sets that the splits
allow an accurate estimate of model performance under the conditions where it
will be used. Datasets from mutagenesis studies tend to be small and focused. In
this case, the best practice is to train on variants characterized in earlier rounds
of mutagenesis and to evaluate model performance on later rounds in order to
recapitulate the iterative engineering process. When dealing with large, diverse
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datasets containing examples from different protein families, the best practice is to
ensure that all examples in the validation and test sets are some minimum distance
away from all the training examples in order to test the model’s ability to generalize
to unrelated sequences. In the machine learning context, generalization refers to a
model’s ability to accurately predict a test set drawn from the same distribution as
the training set after training, in contrast to its colloquial meaning of transferring
knowledge from one distribution to another, such as from an experimental setting to
a real application87.

Model interpretation
Once a machine-learning model has been built for a certain protein function, the
model itself can be a source of knowledge about the underlying physical or biological
processes. Model interpretation is the process of determining why or how a model
makes its predictions, and allows practitioners to draw biological insights from the
knowledge captured by the model. Furthermore, model interpretation can lead to
greater user confidence in a model’s predictions or a better understanding of when
and how a model can fail.

Some machine-learning algorithms are inherently easier to interpret. For example,
the learned weights in a linear model indicate which mutations, sequence blocks, or
other features are beneficial or detrimental for a function of interest54,55,89,90, and the
splits in a decision tree naturally map to human-interpretable information about the
features used tomake predictions. However, interpretation is less straightforward for
complex models with many parameters (such as neural networks) or non-parametric
models (such as Gaussian processes). Unfortunately, this complexity is also what
gives these models the capacity to make accurate predictions on complex systems.
One way to interpret these complex models is to build local or global approxima-
tions. Local approximations, such as LIME (local interpretable model-agnostic
explanations)91 build a simple, interpretable approximation to the original model
in the neighborhood of a single example, as illustrated in Figure 1.2a. In contrast,
a global approximation attempts to simplify the complex model over all examples;
for example, a sparse global linear approximation to a Gaussian process regression
model can be used to determine which contacting amino-acid pairs are important for
channelrhodopsin membrane localization, as shown in Figure 1.2b40. Alternatively,
the layer activations and weights within a neural network can be directly exam-
ined for inputs of interest. Convolution weights indicate the relative importance
of sequence motifs to the property predicted (a convolution layer scans across a



11

Figure 1.2: Examples of model interpretation. (a) Local approximation. The
original model’s decision function is represented by the violet/green background,
and is clearly nonlinear. The black dot is the instance being explained, and a linear
model (dashed line) that approximates the original model well in the vicinity of
the instance is learned. Note that the explanation is not accurate globally, but is
accurate locally around the instance. (b) Most important contacts for predicting
channelrhodopsin localization to the plasma membrane. Contacts with the largest
positive and negative weights in a Bayesian ridge regression approximation to a
Gaussian process regression model are depicted on the channelrhodopsin crystal
structure40. Each set of two balls and a stick represents two contacting amino
acids. The amino acids are colored according to the source parent. The bound
retinal cofactor is shown in cyan. (c) Convolution weights. Visualization of one
convolutional filter from a model trained to predict the intracellular location of
proteins88. The size of each amino acid represents its importance at that position
in the k-mer. (d) Attention activations. Importance weights assigned to different
regions of proteins in a model trained to predict intracellular location88.
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sequence looking for the presence of a learned motif). Activations within attention
layers indicate the sections of each input sequence that were most important to the
prediction. Figure 1.2c and d visualize a convolution layer and attention activations,
respectively, for predictions of protein subcellular localization77.

1.3 Machine learning as a guide to directed evolution
Directed evolution accumulates beneficial mutations in iterations of mutagenesis
and selection or screening. There are an enormous number of ways to mutate any
given protein: for a 300-amino acid protein there are 5700 possible single amino
acid substitutions and 32,381,700 ways to make just two substitutions with the
20 canonical amino acids. Additionally, screening is expensive, time-consuming,
and often limited in throughput. While directed evolution discards information
about unimproved variants, machine-learning methods can use this information to
expedite evolution and expand the properties that can be optimized by intelligently
selecting new variants to screen. The only added costs are in computation and DNA
sequencing, both of which are decreasing rapidly. Figure 1.1 compares directed
evolution with and without machine learning as a guide, and Table 1.1 summarizes
some studies that have used machine learning to guide directed evolution.

However, machine learning is not beneficial in all applications. In cases where
the fitness landscape is smooth enough (i.e. essentially additive), machine learning
may not significantly decrease screening burden or find better variants. In these
cases, the added cost of sequencing DNA to form sequence-function relationships
is unnecessary. Because one major benefit of machine learning is in reducing the
quantity of sequences to test, machine learning will be especially useful in cases
where the lack of a high-throughput screen limits or precludes directed evolution.

A machine learning-guided evolution strategy requires a method for generating
diversity, a screen to evaluate diversity, a machine-learning model that learns the
relationship between sequence and function, and a method to use the model to
choose mutations for the next round of evolution. Examples of each are discussed
here, with the exception of choosing a machine-learning model, which was outlined
above.

Generating diversity
A straightforward method of generating diversity is to make random mutations
throughout the length of the protein by error-prone polymerase chain reaction (PCR).
In most directed evolution strategies, beneficial mutations are discovered by screen-



13

ing and accumulated until a satisfactory level of performance is reached. However,
multiple mutations with error-prone PCR can occur, in which case mutations that
are generally beneficial may be masked by co-occurrence with (more prevalent)
detrimental mutations. Fortunately, even a simple linear model can be sufficient
to recover accurate classifications of mutations as beneficial, deleterious, or neu-
tral, allowing more beneficial mutations to be fixed more quickly than by directed
evolution alone54,92,93.

Site-saturation mutagenesis randomizes selected locations within the sequence de-
termined to be most responsible for function or most likely to tolerate mutation.
These sites are identified through previous studies or by knowledge of the protein’s
structure and mechanism. If only one or two pre-identified sites are considered, then
machine learning is not necessary, as the entire library can be screened to identify
optimal variants. If limited sets of amino acids are tested at each position, more
positions can be explored simultaneously94.

Recombination methods can make larger jumps in sequence space while preserving
a large fraction of functional sequences by only considering diversity from within
a set of related proteins95. The sequence elements to be swapped may be chosen
randomly or rationally. Structure-guided recombination uses a 3D structure to
choose the boundaries of sequence blocks to swap in order to balance maximizing
diversity, minimizing disruption to the structure, and having evenly-sized blocks96.

Using machine learning to select new variants
An initial set of variants to screen can be selected at random from the library54,
to maximize information about the mutations considered89,97,98, or to maximize
information about the remainder of the library40,69,99. Further rounds of learning
and selection can be done either by collecting mutations believed to be beneficial or
by directly optimizing over sequences in the library. To label mutations as beneficial,
linear models of the mutational effects can be learned and the parameters can be
directly interpreted to classify mutations as beneficial, neutral, or deleterious. The
most beneficial mutations can then be fixed, deleterious mutations can be eliminated
from the pool of considered mutations, and new mutations can be added to the pool
of considered mutations54.

Alternatively, learning and selection can be performed directly over sequences in
the library. Typically, this is done using a non-parametric model. Instead of
choosing the form of a function and learning parameters that best fit the data,
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non-parametric models directly learn a function that explains the data well without
assuming its form. This makes non-parametric models useful for problems such as
predicting protein properties from protein sequence, where the form of the function
is not obvious (and indeed may not be possible to write down and parameterize).
Non-parametric models used in protein engineering include adaptive substituent
reordering, or more commonly, Gaussian process models. Adaptive substituent
reordering algorithms (ASRAs) account for epistasis by constructing a function-
free model of the underlying fitness landscape. In ASRA, a protein of length L

resides in an L-dimensional space and can be described by a vector of substituents
x1, x2, ..., xL . Each substituent xi is an integer between 1 and 20 indicating the
amino acid at that position. Given sequence-function measurements, properties of
unmeasured sequences can be estimated by interpolation within this space. The
ordering of the substituents, however, defines the smoothness of the space and
therefore also the accuracy of the interpolations. In ASRA, an ordering at each site
is learned that balances smoothness and training set accuracy100,101.

In addition to being non-parametric, Gaussian processes are also probabilistic: they
provide an estimate of uncertainty. This allows a principled trade-off between
exploiting the information learned from previous iterations and exploring the re-
mainder of the library at each iteration. For example, the Gaussian Process Upper
Confidence Bound (GP-UCB) algorithm balances exploration and exploitation by
selecting variants that maximize the weighted sum of the predictive mean and stan-
dard deviation102, and is guaranteed to asymptotically minimize the cumulative
regret (difference between sampled variants and best variant) over infinite iterations.
Figure 1.3 demonstrates two iterations of the GP-UCB algorithm. Alternatively, the
model and data can be fully exploited using the Gaussian Process Lower Confidence
Bound algorithm, which selects variants that maximize the weighted difference be-
tween the predictive mean and standard deviation. These approaches have been
combined with a structure-guided recombination library to optimize cytochrome
P450 thermostability39, channelrhodopsin localization to mammalian cell mem-
branes40, and channelrhodopsin light-activated conductance69. Because there is no
high-throughput screen for the channelrhodopsin properties, they would have been
difficult or impossible to optimize with directed evolution alone. Alternately, the GP
model can be used to select combinations of mutations in a multi-site site saturation
library that has a high probability of containing improved variants68.
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Figure 1.3: Gaussian Process Upper Confidence Bound algorithm. At each iteration,
the next point to be sampled is chosen by maximizing the weighted sum of the
posterior mean and standard deviation. This balances exploration and exploitation
by exploring points that are both uncertain and have a high posterior mean.

Table 1.1: Comparison of selected studies using machine learning to guide directed
evolution

Protein Property n screened Model
halohydrin dehydrogenase volumetric productivity 60,000 linear54,92,93

epoxide hydrolase enantioselectivity 20,000 ASRA101

proteinase K activity, heat tolerance 95 linear89
glutathione transferase catalytic activity 95 linear97
glutathione transferase catalytic activity 95 linear98

cytochrome P450 thermostability ∼200 GP39
channelrhodopsin membrane localization ∼200 GP40

green fluorescent protein fluorescence 296 GP68
channelrhodopsin spectral properties 119 GP69

1.4 Conclusions and future directions
Supervised machine-learning methods have already demonstrated their utility in
directed protein evolution. The biggest obstacle to future applications of machine
learning to protein engineering is a lack of high-quality data. Protein mutation
datasets are heavily influenced by experimental conditions such as buffer compo-
nents, temperature, expression system, and baseline thresholds. While ProtaBank23

is spearheading the development of a centralized collection of these variants with
their experimental conditions, there is currently no organized way to collect protein
mutation data from various experiments to use as benchmarks in machine learn-
ing experiments. The collections that do exist are plagued by inconsistencies and
errors36, and significant resources must be dedicated to maintaining the quality of
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these databases. As demonstrated by Jokinen and coworkers, one way to circum-
vent limited labeled data is to augment with computationally-generated examples33.
However, accurate physics-based predictors for properties more complicated than
stability and binding do not yet exist. Collections of robust protein sequence-
function data would allow researchers to benchmark machine-learning methods for
protein functions against a variety of proteins and functions.

Deepmutational scanning103 combines a high-throughput screenwith next-generation
sequencing to generate large sequence-function datasets. In deep mutational scan-
ning, variants are sorted by a selection criterion, such as fluorescence or binding
affinity. The sequences are sorted into bins, and the frequency of each mutation is
compared before and after selection to infer relative fitness values. There is thus no
direct measurement of the property of interest for each variant, and if the gene is
longer than the sequencing read length, deconvoluting the interactions of multiple
distant mutations requires a DNA barcoding scheme. Nevertheless, deep muta-
tional scanning provides large datasets that map a significant fraction of the single
and some double mutants to a fitness measure. Alternatively, a deep mutational
scanning dataset may map a complete multi-site site-saturation library. There are
now deep mutational scanning datasets for a variety of proteins and properties, in-
cluding green fluorescent protein104, amidase105, β-lactamase106, β-glucosidase107,
HIV envelope protein108, influenza nucleoprotein109, influenza hemagglutinin110,
PhoQ111, GB1112, the DNA-binding domain of a steroid hormone receptor113, and
Gal4 transcription factor114. These datasets provide test beds for machine-learning
methods that learn to predict the effects of small numbers of mutations or aim to
improve on directed evolution for protein optimization115.

Large quantities of unlabeled sequence data may also enable machine-learning
models to generate artificial protein diversity leading to novel protein functions.
Only a tiny fraction of the amino acid landscape encodes a functional protein, and
the complete landscape is littered with cliffs and holes, where small changes in
sequence result in complete loss of function. Natural and designed proteins are
samples from the distribution of functional proteins. Selectively sampling from the
distribution of possible proteins would enable large jumps to previously unexplored
sections of sequence space that may contain novel functions. Generative models of
the distribution of functional proteins would enable these large jumps and provide
an attractive alternative to de novo design methods116.

Unlike discriminative models that learn p(y |x) in order to predict labels y given
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Figure 1.4: Autoencoder. An autoencoder consists of an encoder model and a
decoder model. The encoder converts the input to a low-dimensional vector (code).
The decoder reconstructs the input from this code. Typically, the encoder and
decoder are both neural network models, and the entire autoencoder model is trained
end-to-end. The learned code should contain sufficient information to reconstruct
the inputs and can be used as input to other machine learning methods, or the
autoencoder itself may be used as a generative model.

inputs x, generative models learn to generate examples that are similar to those in
the training set but are not in the training set: they learn the generating distribution
p(x) for the training data. Tantalizingly, generative models in other fields have
been trained to generate new faces117, sketches118, and even music119. Variational
autoencoders additionally allow interpolation between examples or the ability to
mix and match properties120.

Instead of using neural network models to directly learn the mapping from protein
sequence to function, Sinai et al. and Riesselman et al. trained variational au-
toencoders to learn the distribution of allowed mutations within functional protein
families115,121. An autoencoder is a neural network that learns to encode an input
as a vector (encoding) and then reconstruct the input from the vector (decoding)
(Figure 1.4. By learning an encoding with smaller dimensionality than the original
input, the model extracts the most important information from the input. The encod-
ing can then be used as an information-dense input to other learning algorithms. In
a variational autoencoder120, the learned encoding is further constrained to encour-
age the encodings to be densely embedded in the encoding space, allowing smooth
interpolations in that space. Applied to aligned families of protein sequences, vari-
ational autoencoders can learn complex epistatic relationships among mutations,
allowing semi-supervised predictions of variant functionality based only on existing
sequences without a need for individual measurements. Recently, recurrent neural
networks and generative adverserial networks122 have been used to generate novel
antimicrobial peptides123,124 and protein structures125, and there has been an effort
to develop a mathematical framework for using a generative model to sample se-
quences with one or more specified properties126. These early examples show the
potential of generative models to discover sequences with novel desired functions.
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This remains a promising and largely unexplored field.

Machine-learning methods have already expanded the proteins and properties that
can be engineered by directed evolution. As researchers continue to collect sequence-
function data in engineering experiments and to catalog the natural diversity of
proteins, machine learning will be an invaluable tool to extract knowledge from
protein data. Advances in both computational and experimental techniques, in-
cluding generative models and deep mutational scanning, will also allow for better
understanding of fitness landscapes and protein diversity.
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C h a p t e r 2

MACHINE LEARNING TO DESIGN INTEGRAL MEMBRANE
CHANNELRHODOPSINS FOR EFFICIENT EUKARYOTIC

EXPRESSION AND PLASMA MEMBRANE LOCALIZATION

1. Claire N Bedbrook, Kevin K Yang, Austin J Rice, Viviana Gradinaru, and
Frances H Arnold: Machine learning to design integral membrane
channelrhodopsins for efficient eukaryotic expression and plasma membrane
localization. PLoS Computational Biology 13(10) (2017), e1005786. doi:
10.1371/journal.pcbi.1005786.

2.1 Introduction
As crucial components of regulatory and transport pathways, integral membrane
proteins (MPs) are important pharmaceutical and engineering targets1. To be func-
tional, MPs must be expressed and localized through a series of elaborate sub-
cellular processes that include co-translational insertion, rigorous quality control,
and multi-step trafficking to arrive at the correct topology in the correct sub-cellular
location2–4. With such a complex mechanism for production, it is not surprising that
MP engineering has been hampered by poor expression, stability, and localization
in heterologous systems5,6. To overcome these limitations, protein engineers need a
tool to predict how changes in sequence affect MP expression and localization. An
accurate predictor would enable us to design and produce MP variants that express
and localize correctly, a necessary first step in engineering MP function. A useful
predictor would be sensitive to subtle changes in sequence that can lead to drastic
changes in expression and localization. Our goal here was to develop data-driven
models that predict the likelihood of a MP’s expression and plasma membrane
localization using the amino acid sequence as the primary input.

For this study, we focus on channelrhodopsins (ChRs), light-gated ion channels
that assume a seven transmembrane helix topology with a light-sensitive retinal
chromophore bound in an internal pocket. This scaffold is conserved in both
microbial rhodopsins (light-driven ion pumps, channels, and light sensors–type I
rhodopsins) and animal rhodopsins (light-sensing G-protein coupled receptors–type
II rhodopsins)7. Found in photosynthetic algae, ChRs function as light sensors in
phototaxic and photophobic responses8,9. On photon absorption, ChRs undergo a

https://doi.org/10.1371/journal.pcbi.1005786
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multi-step photo-cycle that allows a flux of ions across the membrane and down the
electrochemical gradient10. When ChRs are expressed transgenically in neurons,
their light-dependent activity can stimulate action potentials, allowing cell-specific
control over neuronal activity11,12 and extensive applications in neuroscience13. The
functional limitations of available ChRs have spurred efforts to engineer or discover
novel ChRs10. The utility of a ChR, however, depends on its ability to express and
localize to the plasma membrane in eukaryotic cells of interest, and changes to the
amino acid sequence frequently abrogate localization5. A predictor for ChRs that
express and localize would be of great value as a pre-screen for function.

The sequence and structural determinants for membrane localization have been a
subject of much scientific investigation14–16 and have provided some understanding
of the MP sequence elements important for localization, such as signal peptide se-
quence, positive charge at the membrane–cytoplasm interface (the “positive-inside”
rule17), and increased hydrophobicity in the transmembrane domains. However,
these rules are of limited use to a protein engineer: there are too many amino acid
sequences that follow these rules but still fail to localize to the plasma membrane
(see Results). MP sequence changes that influence expression and localization are
highly context-dependent: what eliminates localization in one sequence context has
no effect in another, and subtle amino acid changes can have dramatic effects5,15,18.
In short, sequence determinants of expression and localization are not captured by
simple rules.

Accurate atomistic physics-based models relating a sequence to its level of expres-
sion and plasma membrane localization currently do not exist, in large measure due
to the complexity of the process. Statistical models offer a powerful alternative.
Statistical models are useful for predicting the outcomes of complex processes be-
cause they do not require prior knowledge of the specific biological mechanisms
involved. That being said, statistical models can also be constructed to exploit prior
knowledge, such as MP structural information. Statistical models can be trained
using empirical data (in this case expression or localization values) collected from
known sequences. During training, the model infers relationships between input
(sequence) and output (expression or localization) that are then used to predict the
properties of unmeasured sequence variants. The process of using empirical data to
train and select statistical models is referred to as machine learning.

Machine learning has been applied to predicting various protein properties, includ-
ing solubility19,20, trafficking to the periplasm21, crystallization propensity22, and
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function23. Generally, these models are trained using large data sets composed of
literature data from varied sources with little to no standardization of the experi-
mental conditions, and trained using many protein classes (i.e. proteins with various
folds and functions), because their aim is to identify sequence elements across all
proteins that contribute to the property of interest. This generalist approach, how-
ever, is not useful for identifying subtle sequence features (i.e. amino acids or amino
acid interactions) that condition expression and localization for a specific class of
related sequences, the ChRs in this case. We focused our model building on ChRs,
with training data collected from a range of ChR sequences under standardized con-
ditions. We applied Gaussian process (GP) classification and regression24 to build
models that predict ChR expression and localization directly from these data.

In our previous work, GP models successfully predicted thermal stability, substrate
binding affinity, and kinetics for several soluble enzymes25. Here, we asked whether
GP modeling could accurately predict mammalian expression and localization for
heterologous integral membrane ChRs and how much experimental data would be
required. For a statistical model to make accurate predictions on a wide range of
ChR sequences, it must be trained with a diverse set of ChR sequences24. We
chose to generate a training set using chimeras produced by SCHEMA recombi-
nation, which was previously demonstrated to be useful for producing large sets
(libraries) of diverse, functional chimeric sequences from homologous parent pro-
teins26. We synthesized and measured expression and localization for only a small
subset (0.18%) of sequences from the ChR recombination library. Here we use
these data to train GP classification and regression models to predict the expression
and localization properties of diverse, untested ChR sequences. We first made pre-
dictions on sequences within a large library of chimeric ChRs; we then expanded
the predictions to sequences outside that set.

2.2 Results
The ChR training set
The design and characterization of the chimeric ChR sequences used to train our
models have been published5; we will only briefly describe these results. Two
separate, ten-block libraries were designed by recombining three parental ChRs
(CsChrimsonR (CsChrimR)27, C1C228, and CheRiff29) with 45–55% amino acid
sequence identity and a range of expression, localization, and functional properties
(Figure 2.S1)5. Each chimeric ChR variant in these libraries is composed of blocks
of sequence from the parental ChRs. These libraries were prepared by the SCHEMA
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algorithm to define sequence blocks for recombination that minimize the library-
average disruption of tertiary protein structure30,31. One library swaps contiguous
elements of primary structure (contiguous library), and the second swaps elements
that are contiguous in the tertiary structure but not necessarily in the sequence (non-
contiguous library32). The two libraries have similar, but not identical, element
boundaries (Figure 2.S1A) and were constructed in order to test whether one design
approachwas superior to the other (they gave similar results). These designs generate
118,098 possible chimeras (2 × 310), which we will refer to as the recombination
library throughout this paper. Each of these chimeras has a full N-terminal signal
peptide from one of the three ChR parents.

Two hundred and eighteen chimeras from the recombination library were chosen
as a training set, including all the chimeras with single-block swaps (chimeras
consisting of 9 blocks of one parent and a single block from one of the other two
parents) and multi-block-swap chimera sequences designed to maximize mutual
information between the training set and the remainder of the chimeric library. Here,
the ‘information’ a chimera has to offer is how its sequence, relative to all previously
tested sequences, changes ChR expression and localization. By maximizing mutual
information, we select chimera sequences that provide the most information about
the whole library by reducing the uncertainty (Shannon entropy) of prediction for the
remainder of the library, as described in33,34. The 112 single-block-swap chimeras
in the training set have an average of 15 mutations from the most closely related
parent, while the 103 multi-block-swap chimeras in the training set have an average
of 73 mutations from the most closely related parent (Table 2.1). While the multi-
block-swap chimeras provide the most sequence diversity to learn from, they are
the least likely to express and localize given their high mutation levels. The single-
block-swap chimeras offer less information to learn from due to their sequence
redundancies with other chimeras in the training set, but are more likely to express
and localize.

Genes for these sequences were synthesized and expressed in human embryonic
kidney (HEK) cells, and their expression and membrane localization properties
were measured (Figure 2.S1B)5. The expression levels were monitored through a
fluorescent protein (mKate) fused to the C-termini of the ChRs. Plasma-membrane
localization was measured using the SpyTag/SpyCatcher labeling method, which
exclusively labels ChR protein that has its N terminus exposed on the extracellular
surface of the cell35. The training set sequences displayed awide range of expression
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Table 2.1: Comparison of size, diversity, and localization properties of the training
set and subsequent sets of chimeras chosen by models in the iterative steps of model
development

Set n Mutations‡ % good localizers* Localization‡
training – parents 3 0 100 5.6 ± 3.0
training – single-block swap 112 15 ± 9 33 3.2 ± 3.4
training – multi-block swap 103 73 ± 21 12 1.5 ± 2.5
exploration 16 69 ± 12 50 4.8 ± 4.7
verification – high performing 4 29 ± 17 100 8.0 ± 1.6
verification – low performing 7 67 ± 12 0 0.89 ± 0.73
optimization 4 43 ± 6 100 14 ± 3.5

‡mean ± standard deviation
* Localization at or above that of the lowest-performing parent, CheRiff

and localization properties. While the majority of the training set sequences express,
only 33% of the single-block-swap chimeras localize well, and an even smaller
fraction (12%) of the multi-block-swap chimeras localize well, emphasizing the
importance of having a predictive model for membrane localization.

First we explored whether ChR chimera properties could be predicted based on
basic biological properties, specifically, signal peptide sequence and hydrophobicity
in the transmembrane (TM) domains. Each chimera in the library has one of
the three parental signal peptides. Although the signal peptide sequence does
affect expression and localization (Figure 2.S2A), chimeras with any parental signal
peptide can have high or low expression and localization. Thus, the identity of
the signal peptide alone is insufficient for accurate predictions of the ChR chimera
properties. We then calculated the level of hydrophobicity within the 7-TM domains
of each chimera. With veryweak correlation between increasing hydrophobicity and
measured expression and localization (Figure 2.S2B), hydrophobicity alone is also
insufficient for accurate prediction of ChR chimera properties. These models do not
accurately account for the observed levels of expression or localization (Figure 2.S1).
Therefore, we need more expressive models to predict expression and localization
from the amino acid sequences of these MPs.

Using GP models to learn about ChRs
Our overall strategy for developing predictive machine-learning models is illustrated
in Figure 2.1. The goal is to use a set of ChR sequences and their expression and
localization measurements to train GP regression and classification models that de-
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scribe how ChR properties depend on sequence and predict the behavior of untested
ChRs. GP models infer predictive values from training examples by assuming
that similar inputs (ChR sequence variants) will have similar outputs (expression
or localization). We quantify the relatedness of inputs (ChR sequence variants)
by comparing both sequence and structure. ChR variants with few differences
are considered more similar than ChR variants with many differences. We define
the sequence similarity between two chimeras by aligning them and counting the
number of positions at which they are identical. For structural comparisons, a
residue-residue ‘contact map’ was built for each ChR variant, where two residues
are in contact if they have any non-hydrogen atoms within 4.5 Å. The maps were
generated using a ChR parental sequence alignment and the C1C2 crystal structure,
which is the only available ChR structure28, with the assumption that ChR chimeras
share the overall contact architecture observed in the C1C2 crystal structure. The
structural similarity for any two ChRs was quantified by aligning the contact maps
and counting the number of identical contacts25. Using these metrics, we calculated
the sequence and structural similarity between all ChRs in the training set relative
to one another (218 × 218 ChR comparisons).

These similarity functions are called kernel functions and specify how the functional
properties of pairs of sequences are expected to covary (they are also known as
covariance functions). In other words, the kernel is a measure of similarity between
sequences, and we can draw conclusions about unobserved chimeras on the basis of
their similarity to sampled points24. The model has high confidence in predicting
the properties of sequences that are similar to previously sampled sequences, and
the model is less confident in predicting the properties of sequences that are distant
from previously sampled sequences.

To build a GP model, we must also specify how the relatedness between sequences
will affect the property of interest, in other words how sensitive the ChR proper-
ties are to changes in relatedness as defined by the sequence/structure differences
between ChRs. This is defined by the form of the kernel used. We tested three
different forms of sequence and structure kernels: linear kernels, squared exponen-
tial kernels, and Matérn kernels (see Methods). These different forms represent the
kinds of functions we expect to observe for the protein’s fitness landscape (i.e. the
mapping of protein sequence to protein function). The linear kernel corresponds to
a simple landscape where the effects of changes in sequence/structure are additive
and there is no epistasis. The two non-linear kernels represent more rugged, com-
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Figure 2.1: General approach to machine learning of protein (ChR) structure-
function relationships: diversity generation, measurements on a training set, and
modeling. (1) Structure-guided SCHEMA recombination is used to select block
boundaries for shuffling protein sequences to generate a sequence-diverse ChR
library starting from three parent ChRs (shown in red, green, and blue). (2) A subset
of the library serves as the training set. Genes for these chimeras are synthesized
and cloned into a mammalian expression vector, and the transfected cells are assayed
for ChR expression and localization. (3) Two different models, classification and
regression, are trained using the training data and then verified. The classification
model is used to explore diverse sequences predicted to have ‘high’ localization.
The regression model is used to design ChRs with optimal localization to the plasma
membrane.



35

plex landscapes where effects may be non-additive. Learning involves optimizing
the form of the kernel and its hyperparameters (parameters that influence the form
of kernel) to enable accurate predictions. The hyperparameters and the form of
the kernel were optimized using the Bayesian method of maximizing the marginal
likelihood of the resulting model. The marginal likelihood (i.e. how likely it is
to observe the data given the model) rewards models that fit the training data well
while penalizing model complexity to prevent overfitting.

Once trainedwith empirical data, the output of theGP regressionmodel is a predicted
mean and variance, or standard deviation, for any given ChR sequence variant. The
standard deviation is an indication of how confident the model is in the prediction
based on the relatedness of the new input relative to the tested sequences.

We used GP models to infer links between ChR properties and ChR sequence and
structure from the training data. We first built GP binary classification models. In
binary classification, the outputs are class labels i.e. ‘high’ or ‘low’ localization,
and the goal is to use the training set data to predict the probability of a sequence
falling into one of the two classes (Figure 2.1). We also built a GP regression
model that makes real-valued predictions, i.e. amount of localized protein, based
on the training data (Figure 2.1). After training these models, we verify that their
predictions generalize to sequences outside of the training set. Once validated,
these two models can be used in different ways. A classification model trained from
localization data can be used to predict the probability of highly diverse sequences
falling into the ‘high’ localization category (Figure 2.1). The classification model
can only predict if a sequence has ‘high’ vs ‘low’ localization, and it cannot be used
to optimize localization. The regression model, on the other hand, can be used to
predict sequences with ‘optimal’ properties; for example, a regression model trained
from localization data can predict untested sequences that will have very high levels
of localization (Figure 2.1).

Building GP classification models of ChR properties
The training set data (Figure 2.S1) were used to build a GP classification model that
predicted which of the 118,098 chimeras in the recombination library would have
‘high’ vs ‘low’ expression, localization, and localization efficiency. The training set
includes multi-block swaps chosen to be distant from other sequences in the training
set in order to provide information on sequences throughout the recombination
library. A sequence was considered ‘high’ if it performed at least as well as the
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lowest performing parent, and it was considered ‘low’ if it performed worse than
the lowest performing parent. Because the lowest performing parent for expression
and localization, CheRiff, is produced and localized in sufficient quantities for
downstream functional studies, we believe this to be an appropriate threshold for
‘high’ vs ‘low’ performance. For all of the classification models (Figure 2.2 and
Figure 2.S3), we used kernels based on structural relatedness. For the expression
classification model, we found that a linear kernel performed best, i.e. achieved
the highest marginal likelihood. This suggests that expression is best approximated
by an additive model weighting each of the structural contacts. Localization and
localization efficiency required a non-linear kernel for the model to be predictive.
Thismore expressive kernel allows for non-linear relationships and epistasis and also
penalizes differing structural contacts more than the linear kernel. This reflects our
intuitive understanding that localization is a more demanding property to tune than
expression, with stricter requirements and a non-linear underlying fitness landscape.

Most of the multi-block-swap sequences from the training set did not localize to the
membrane5. We nonetheless want to be able to design highly mutated ChRs that
localize well because these are most likely to have interesting functional properties.
We therefore used the localization classification model to identify multi-block-swap
chimeras from the library that had a high predicted probability (>0.4) of falling
into the ‘high’ localizer category (Figure 2.2D). From the many multi-block-swap
chimeras predicted to have ‘high’ localization, we selected a set of 16 highly diverse
chimeras with an average of 69 amino acid mutations from the closest parent and
called this the ‘exploration’ set (Figure 2.S4). We synthesized and tested these
chimeras and found that the model had accurately predicted chimeras with good
localization (Figure 2.2 and Figure 2.3): 50% of the exploration set show ‘high’
localization compared to only 12% of the multi-block-swap sequences from the
original training set, even though they have similar levels of mutation (Table 2.1
and S1 Data) (chimeras in the exploration set have on average 69 ± 12 amino acid
mutations from the closest parent, versus 73 ± 21 for the multi-block-swap chimeras
in the training set). The classification model provides a four-fold enrichment in
the number of chimeras that localize well when compared to randomly-selected
chimeras with equivalent levels of mutation. This accuracy is impressive given that
the exploration set was designed to be distant from any sequence the model had
seen during training. The model’s performance on this exploration set indicates its
ability to predict the properties of sequences distant from the training set.
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Figure 2.2: GP binary classification models for expression and localization. Plots
of predicted probability vs measured properties are divided into ‘high’ performers
(white background) and ‘low’ performers (gray background) for each property (ex-
pression and localization). (A) & (D) Predicted probability vs measured properties
for the training set (gray points) and the exploration set (cyan points). Predictions for
the training and exploration sets were made using LOO cross-validation. (B) & (E)
Predicted probabilities vs measured properties for the verification set. Predictions
for the verification set were made by a model trained on the training and exploration
sets. (C) & (F) Predicted probability of ‘high’ expression, and localization for all
chimeras in the recombination library (118,098 chimeras) made by models trained
on the data from the training and exploration sets. The gray line shows all chimeras
in the library, the gray points indicate the training set, the cyan points indicate the
exploration set, the purple points indicate the verification set, and the yellow points
indicate the parents. (A–C) Show expression and (D–F) show localization. For all
plots, the measured property is plotted on a log2 scale.

The data from the exploration set were then used to better inform our models about
highly diverse sequences that localize. To characterize the classification model’s
performance, we calculated the area under the receiver operating characteristic
(ROC) curve (AUC). A poorly performing model would not do better than random
chance, resulting in an AUC of 0.5, while a model that perfectly separates the
two classes will have an AUC of 1.0. The revised models achieved AUC up to
0.87 for “leave-one-out” (LOO) cross-validation, indicating that there is a high
probability that the classifiers will accurately separate ‘high’ and ‘low’ performing
sequences for the properties measured. The AUC is 0.83 for localization, 0.77 for
localization efficiency and 0.87 for expression for LOO cross-validation predictions
(Figure 2.S5).



38

Figure 2.3: Comparison of measured membrane localization for each data set.
Swarm plots of localization measurements for each data set compared with parents:
training set, exploration set, verification set, and optimization set.

To further test the models, we then built a verification set of eleven chimeras, de-
signed using the localization model. This verification set was composed of four
chimeras predicted to be highly likely to localize, six chimeras predicted to be
very unlikely to localize, and one chimera with a moderate predicted probability
of localizing (Figure 2.S4). The measured localization (Figure 2.2E) and local-
ization efficiency (Figure 2.S3B) of the chimeras in the verification set show clear
differences, ‘high’ vs ‘low’, consistent with the model predictions (Table 2.1 and
S1 Data). The verification sets consist exclusively of chimeras with ‘high’ mea-
sured expression, which is consistent with the model’s predictions (Figure 2.2B).
The model perfectly classifies the eleven chimeras as either ‘high’ or ‘low’ for each
property (expression, localization, or localization efficiency) as shown in plots of
predicted vs measured properties (Figure 2.2B and 2.2E and Figure 2.S3B) and by
perfect separation in ROC curves i.e. AUC = 1.0 (Figure 2.S5). These models
are powerful tools that can confidently predict whether a chimera will have ’high’
or ’low’ expression (Figure 2.2C), localization (Figure 2.2F), and localization effi-
ciency (Figure 2.S3C). Of the 118,098 chimeras in the recombination library, 6,631
(5.6%) are predicted to have a probability > 0.5 of ‘high’ localization, whereas the
vast majority of chimeras (99%) are predicted to have a probability > 0.5 of ‘high’
expression.

Building a regression model for ChR localization
The classification model predicts the probability that a sequence falls into the ‘high’
localizer category, but does not give a quantitative prediction as to how well it
localizes. Our next goal was to design chimera sequences with optimal localization.
Localization is considered optimal if it is at or above the level of CsChrimR, the best
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localizing parent, which is more than adequate for in vivo applications using ChR
functionality to control neuronal activity27. A regression model for ChR plasma
membrane localization is required to predict sequences that have optimal levels of
localization. We used the localization data from the training and exploration sets to
train a GP regression model (Figure 2.4A). The diversity of sequences in the training
data allows the model to generalize well to the remainder of the recombination
library. For this regression model, we do not use all of the features from the
combined sequence and structure information; instead, we used L1 linear regression
to select a subset of these features. The L1 linear regression identifies the sequence
and structural features that most strongly influence ChR localization. Using this
subset of features instead of all of the features improved the quality of the predictions
(as determined by cross-validation). This indicates that not all of the residues and
residue-residue contacts have a large influence on localization of ChR. We then
used a kernel based on these chosen features (specific contacts and residues) for GP
regression. The regression model for localization showed strong predictive ability
as indicated by the strong correlation between predicted and measured localization
for LOO cross-validation (correlation coefficient, R > 0.76) (Figure 2.4A). This was
further verified by the strong correlation between predicted and measured values
for the previously-discussed verification set (R > 0.9) (Figure 2.4A). These cross-
validation results suggest that the regression model can be used to predict chimeras
with optimal localization.

We used the localization regression model to predict ChR chimeras with optimal
localization using the Lower Confidence Bound (LCB) algorithm, in which the
predicted mean minus the predicted standard deviation (LB1) is maximized36. The
LCB algorithm maximally exploits the information learned from the training set by
finding sequences the model is most certain will be good localizers. The regression
model was used to predict the localization level and standard deviation for all
chimeras in the library, and from this the LB1 was calculated for all chimeras
(Figure 2.4B). We selected four chimeras whose LB1 predictions for localization
were ranked in the top 0.1% of the library (Figure 2.S4). These were constructed
and tested (Figure 2.3 and Figure 2.S6 and S1 Data). Measurements showed that
they all localize as well as or better than CsChrimR (Figure 2.3 and Figure 2.4A
and Table 2.1). Cell population distributions of the optimal set show properties
similar to the CsChrimR parent, with one chimera showing a clear shift in the peak
of the distribution towards higher levels of localization (Figure 2.S7). These four
sequences differ from CsChrimR at 30 to 50 amino acids (Figure 2.S4).
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Figure 2.4: GP regression model for localization. (A) Predicted vs measured
localization for the combined training and exploration sets (gray points), verification
set (purple points), and the optimal set (green points). Predictions for the training
and exploration sets were made using LOO cross-validation; predictions for the
verification and optimal sets were made by a model trained on data from the training
and exploration sets. There is clear correlation between predicted and measured
localization. The combined training and exploration sets showed good correlation
(R > 0.73) as did the verification set (R > 0.9). (B) Predicted localization values
of all chimeras in the recombination library (118,098 chimeras) based on the GP
regression model trained on the training and exploration sets. The gray line shows
all chimeras in the library, the gray points indicate the training set and exploration
sets, the purple points indicate the verification set, and the yellow points indicate
the parents. Error bars (light gray shading) show the standard deviation of the
predictions. For all plots, the predicted and measured localization are plotted on a
log2 scale.

Wewere interested in how predictive the GP localization models could be with fewer
training examples. To assess the predictive ability of the GP models as a function
of training set size, we sampled random sets of training sequences from the dataset,
trained models on these random sets, then evaluated the model’s performance on a
selected test set (Figure 2.S8). As few as 100 training examples are sufficient for
accurate predictions for both the localization regression and classification models.
This analysis shows that the models would have been predictive with even fewer
training examples than we chose to use.

Sequence and structure features that facilitate prediction of ChR expression
and localization
In developing the GP regression model for localization, we used L1-regularized
linear regression to identify a limited set of sequence and structural features that
strongly influence ChR localization (Figure 2.4). These features include both inter-
residue contacts and individual residues and offer insight into the structural determi-
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nants of ChR localization. To better gauge the relative importance of these features,
L2-regularized linear regression was used to calculate the positive and negative
feature weights, which are proportional to each feature’s inferred contribution to
localization. While not as predictive as the GP regression model because it cannot
account for higher-order interactions between features, this linear model has the
advantage of being interpretable.

When mapped onto the C1C2 structure, these features highlight parts of the ChR se-
quence and structural contacts that are important for ChR localization to the plasma
membrane (Figure 2.5). Both beneficial and deleterious features are distributed
throughout the protein, with no single feature dictating localization properties (Fig-
ure 2.5). Clusters of heavily weighted positive contacts suggest that having struc-
turally proximal CsChrimR-residue pairs are important in the N-terminal domain
(NTD), between the NTD and TM4, between TM1 and TM7, and between TM3
and TM7. CsChrimR residues at the extracellular side of TM5 also appear to aid
localization, although they are weighted less than CheRiff residues in the same
area. Beneficial CheRiff contacts and residues are found in the C-terminal domain
(CTD), the interface between the CTD and TM5–6, and in TM1. C1C2 residues
at the extracellular side of TM6 are also positively weighted for localization, as are
C1C2 contacts between the CTD and TM3–4 loop. From the negatively weighted
contacts, it is clear that total localization is harmed when CheRiff contributes to the
NTD or the intracellular half of TM4 and when CsChrimR contributes to the CTD.
Interestingly, positive contacts were formed between TM6 from C1C2 and TM7
from CheRiff, but when the contributions were reversed (TM6 from CheRiff TM7
from C1C2) or if CsChrimR contributed TM6, strong negative weights were ob-
served. Not surprisingly, the sequence and structure of optimal localizers predicted
by GP regression (Figure 2.4) largely agree with the L2 weights (Figure 2.S9).

Using this strategy for model interpretation (L1 regression for feature selection
followed by L2 regression), we can also weight the contributions of residues and
contacts for ChR expression (Figure 2.S10 and Figure 2.S11). There is some over-
lap between the heavily weighted features for ChR expression and the features for
localization, which is expected because more protein expressed means more protein
available for localization. For example, both expression and localization models
seem to prefer the NTD from CsChrimR and the extracellular half of TM6 from
C1C2, and both disfavor the NTD and the intra-cellular half of TM4 from CheRiff.
While the heavily-weighted expression features are limited to these isolated sequence
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regions, localization features are distributed throughout the protein. Moreover, the
majority of heavily-weighted features identified for expression are residues rather
than contacts. This is in contrast to those weighted features identified for localiza-
tion, which include heavily-weighted residues and structural contacts. This suggests
that sequence is more important in determining expression properties, which is con-
sistent with the largely sequence-dependent mechanisms associated with successful
translation and insertion into the ER membrane. In contrast, both sequence and
specific structural contacts contribute significantly to whether a ChR will localize
to the plasma membrane. Our results demonstrate that the model can ‘learn’ the
features that contribute to localization from the data and make accurate predictions
on that property.

Using the GP regression model to engineer novel sequences that localize
Wenext tested theChR localization regressionmodel for its ability to predict plasma-
membrane localization for ChR sequences outside the recombination library. For
this, we chose a natural ChR variant, CbChR1, that expresses in HEK cells and
neurons but does not localize to the plasma membrane and thus is non-functional27.
CbChR1 is distant from the three parental sequences, with 60% identity toCsChrimR
and 40% identity toCheRiff andC1C2. WeoptimizedCbChR1by introducingminor
amino acid changes predicted by the localization regression model to be beneficial
for membrane localization. To enable measurement of CbChR1 localization with
the SpyTag-based labeling method, we substituted the N-terminus of CbChR1 with
the CsChrimR N-terminus containing the SpyTag sequence downstream of the sig-
nal peptide to make the chimera CsCbChR135. This block swap did not change the
membrane localization properties of CbChR1 (Figure 2.6C). Using the regression
model, we predicted localization levels for all the possible single-block swaps from
the three library parents (CsChrimR, C1C2 and CheRiff) into CsCbChR1 and se-
lected the four chimeras with the highest Upper Confidence Bound (UCB). These
chimeras have between 4 and 21mutations when compared with CsCbChR1. Unlike
the LCB algorithm, which seeks to find the safest optimal choices, the UCB algo-
rithm balances exploration and exploitation by maximizing the sum of the predicted
mean and standard deviation.

The selected chimeraswere assayed for expression, localization, and localization effi-
ciency (S1Data). One of the four sequences did not express; the other three chimeras
expressed and had higher localization levels than CsCbChR1 (Figure 2.6B). Two
of the three had localization properties similar to the CheRiff parent (Figure 2.6B).
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Figure 2.5: Sequence and structural contact features important for prediction of
ChR localization. Features with positive (A) and negative (B) weights are displayed
on the C1C2 crystal structure (grey). Features can be residues (spheres) or contacts
(sticks) from one or more parent ChRs. Features from CsChrimR are shown in
red, features from C1C2 are shown in green, and features from CheRiff are shown
in blue. In cases where a feature is present in two parents, the following color
priorities were used for consistency: red above green above blue. Sticks connect
the beta carbons of contacting residues (or alpha carbon in the case of glycine). The
size of the spheres and the thickness of the sticks are proportional to the parameter
weights. Two residues in contact can be from the same or different parents. Single-
color contacts occur when both contributing residues are from the same parent.
Multi-color contacts occur when residues from different parents are in contact. The
N-terminal domain (NTD), C-terminal domain (CTD), and the seven transmembrane
helices (TM1–7) are labeled.
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Figure 2.6: GP regression model enables engineering of localization in CbChR1.
(A) Block identities of the CsCbChR1 chimeras. Each row represents a chimera.
Yellow represents the CbChR1 parent and red represents the CsChrimR parent.
Chimeras 1c, 2n, and 3c have 4, 21, and 17 mutations with respect to CsCbChR1,
respectively. (B) Plot of measured localization of CsCbChR1 compared to three
CsCbChR1 single-block-swap chimeras and the CheRiff parent. (C) Two represen-
tative cell images of mKate expression of CbChR1 and CsCbChR1 compared with
top-performing CsCbChR1 single-block-swap chimeras show differences in ChR
localization properties–chimera 2n and chimera 3c clearly localize to the plasma
membrane. Scale bar: 20 µm.

Images of the two best localizing chimeras illustrate the enhancement in localiza-
tion when compared with CbChR1 and CsCbChR1 (Figure 2.6C and Figure 2.S12).
This improvement in localization was achieved through single-block swaps from
CsChrimR (17 and 21 amino acid mutations) (Figure 2.6A). These results suggest
that this regression model can accurately predict minor sequence changes that will
improve the membrane localization of natural ChRs.

2.3 Discussion
The ability to differentiate the functional properties of closely related sequences is
extremely powerful for protein design and engineering. This is of particular interest
for protein types that have proven to be more recalcitrant to traditional protein design
methods, e.g. MPs. We show here that integral membrane protein expression and
plasma membrane localization can be predicted for novel, homologous sequences
using moderate-throughput data collection and advanced statistical modeling. We
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have used the models in four ways: 1) to accurately predict which diverse, chimeric
ChRs are likely to express and localize at least as well as a moderately-performing
native ChR; 2) to design ChR chimeras with optimized membrane localization that
matched or exceeded the performance of a very well-localizing ChR (CsChrimR);
3) to identify the structural interactions (contacts) and sequence elements most
important for predicting ChR localization; and 4) to identify limited sequence
changes that transform a native ChR from a non-localizer to a localizer.

Whereas 99% of the chimeras in the recombination library are predicted to express
in HEK cells, only 5.6% are predicted to localize to the membrane at levels equal
to or above the lowest parent (CheRiff). This result shows that expression is robust
to recombination-based sequence alterations, whereas correct plasma-membrane
localization is much more sensitive. The model enables accurate selection of the
rare, localization-capable, proteins from the nearly 120,000 possible chimeric library
variants. In futureworkwewill show that this diverse set of several thousand variants
predicted to localize serves as a highly enriched source of functional ChRswith novel
properties.

Although statistical models generalize poorly as one attempts to make predictions
on sequences distant from the sequences used in model training, we show that it
is possible to train a model that accurately distinguishes between closely related
proteins. The tradeoff between making accurate predictions on subtle sequence
changes vs generalized predictions for significantly different sequences is one we
made intentionally in order to achieve accurate predictions for an important and
interesting class of proteins. Accurate statistical models, like the ones described in
this paper, could aid in building more expressive physics-based models.

This work details the steps in building machine-learning models and highlights their
power in predicting desirable protein properties that arise from the intersection of
multiple cellular processes. Combining recombination-based library design with
statistical modeling methods, we have scanned a highly functional portion of protein
sequence space by training on only 218 sequences. Model development through
iterative training, exploration, and verification has yielded a tool that not only pre-
dicts optimally performing chimeric proteins, but can also be applied to improve
related ChR proteins outside the library. As large-scale gene synthesis and DNA
sequencing become more affordable, machine-learning methods such as those de-
scribed here will become ever more powerful tools for protein engineering offering
an alternative to high-throughput assay systems.



46

Materials and methods
The design, construction, and characterization of recombination library chimeras
is described in Bedbrook et al.5. Briefly, HEK 293T cells were transfected with
purified ChR variant DNA using Fugene6 reagent according to the manufacturer’s
recommendations. Cells were given 48 hours to express before expression and
localization were measured. To assay localization level, transfected cells were
subjected to the SpyCatcher-GFP labeling assay, as described in Bedbrook et al.35.
Transfected HEK cells were then imaged for mKate and GFP fluorescence using a
Leica DMI 6000 microscope (for cell populations) or a Zeiss LSM 780 confocal
microscope (for single cells: Figure 2.S12). Images were processed using custom
image processing scripts for expression (mean mKate fluorescence intensity) and
localization (mean GFP fluorescence intensity). All chimeras were assayed under
identical conditions.

For each chimera, net hydrophobicitywas calculated by summing the hydrophobicity
of all residues in the TM domains. The C1C2 crystal structure was used to identify
residues within TM domains (Figure 2.S2B), and the Kyte & Doolittle amino acid
hydropathicity scale37 was used to score residue hydrophobicity.

GP modeling
Both the GP regression and classification modeling methods applied in this paper
are based on work detailed in25. Romero et al. applied GP models to predict
protein functions and also defined protein distance using a contact map. We have
expanded on this previous work. Regression and classification were performed
using open-source packages in the SciPy ecosystem38–40. Below are specifics of the
GP regression and classification methods used in this paper. The hyperparameters
and the form of the kernel were optimized using the Bayesian method of maximizing
the marginal likelihood of the resulting model.

GP regression In regression, the problem is to infer the value of an unknown
function f (x) at a novel point x∗ given observations y at inputs X . Assuming that
the observations are subject to independent identically distributed Gaussian noise
with variance σ2

n , the posterior distribution of f∗ = f (x∗) for Gaussian process
regression is Gaussian with mean

f̄∗ = kT
∗ (K + σ

2
n I)−1y (2.1)
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and variance

v∗ = k(x∗, x∗) − kT
∗ (K + σ

2
n I)−1k∗ (2.2)

Where

1. K is the symmetric, square covariance matrix for the training set, where
Ki j = k(xi, x j) for xi and x j in the training set.

2. k∗ is the vector of covariances between the novel input and each input in the
training set, where k∗i = k(x∗, xi).

We found that results could be improved by first performing feature selection with
L1-regularized linear regression and then only training the GP model on features
with non-zero weights in the L1 regression. The hyperparameters in the kernel
functions, the noise hyperparameter σn and the regularization hyperparameter were
determined by maximizing the log marginal likelihood:

log p (y|γ, X) ∝ −yT (Kγ + σ
2
n I)−1y − log |Kγ + σ

2
n I | (2.3)

where n is the dimensionality of the inputs.

GP classification. In binary classification, instead of continuous outputs y, the
outputs are class labels yi ∈ {+1,−1}, and the goal is to use the training data to
make probabilistic predictions π(x∗) = p(y∗ = +1|x∗). Unfortunately, the posterior
distribution for classification is analytically intractable. We use Laplace’s method
to approximate the posterior distribution. There is no noise hyperparameter in the
classification case. Hyperparameters in the kernels are also found by maximizing
the marginal likelihood.

GP kernels for modeling proteins. Gaussian process regression and classifica-
tion models require kernel functions that measure the similarity between protein
sequences. A protein sequence s of length l is defined by the amino acid present at
each location. This information can be encoded as a binary feature vector xse that
indicates the presence or absence of each amino acid at each position. The protein’s
structure can be represented as a residue-residue contact map. The contact-map can
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be encoded as a binary feature vector xst that indicates the presence or absence of
each possible contacting pair. The sequence and structure feature vectors can also
be concatenated to form a sequence-structure feature vector.

We considered three types of kernel functions k(si, s j): linear kernels, squared
exponential kernels, and Matérn kernels. The linear kernel is defined as:

k(s, s′) = σ2
p xT x′ (2.4)

where σp is a hyperparameter that determines the prior variance of the fitness
landscape. The squared exponential kernel is defined as:

k(s, s′) = σ2
p exp

(
‖x − x′‖22

l2

)
(2.5)

where l and σp are also hyperparameters and ‖ · ‖2 is the L2 norm. Finally, the
Matérn kernel with ν = 5

2 is defined as:

k(s, s′) =

(
1 +

√
(5‖x − x′‖22)

l
+

5‖x − x′‖22
3l2

)
exp

(
−

5‖x − x′‖22
l

)
(2.6)

Where l is once again a hyperparameter.

L1 regression feature identification andweighting. To identify those contacts in
the ChR structure most important in determining chimera function (here, localiza-
tion) we used L1 regression. Given the nature of our library design and the limited
set of chimeras tested, there are certain residues and contacts that covary within our
training set. The effects of these covarying residues and contacts cannot be isolated
from one another using this data set and therefore must be weighted together for
their overall contribution to ChR function. By using the concatenated sequence and
structure binary feature vector for the training set we were able to identify residues
and contacts that covary. Each individual set of covarying residues and contacts
was combined into a single feature. L1 linear regression was then used to weight
features as either zero or non-zero in their contribution to ChR function. The level of
regularization was chosen by LOO cross-validation. We then performed Bayesian
ridge linear regression on features with non-zero L1 regression weights using the
default settings in scikit-learn41. The Bayesian ridge linear regression weights were
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plotted onto the C1C2 structure to highlight positive and negative contributions to
ChR localization (Figure 2.5) and ChR expression (Figure 2.S11).
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Supplemental Information
Dataset 1: Localization and expression characterization of ChR chimeras predicted
by the models. Measured localization and expression properties for each chimera
tested and associated chimera_name, set, number of mutations, chimera_block_ID,
and sequence. Chimera names and chimera_block_ID begin with either ‘c’ or ‘n’
to indicate the contiguous or non-contiguous library. The following 10 digits in
the chimera_block_ID indicate, in block order, the parent that contributes each
of the 10 blocks (‘0’:CheRiff, ‘1’:C1C2, and ‘2’:CsChrimR). For the contiguous
library, blocks in the chimera_block_ID are listed from N- to C-termini; for the
non-contiguous library the block order is arbitrary. The set for which the chimera
was generated is listed. The number of mutations (m) from the closest parent
for each chimera is included. Sequences list only the ChR open reading frame,
the C-terminal trafficking and mKate2.5 sequences have been removed. The table
shows mean properties (mKate_mean, GFP_mean, and intensity_ratio_mean) and
the standard deviation of properties (mKate_std, GFP_std, and intensity_ratio_std).
ND: not detected, below the limit of detection for our assay.
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Figure 2.S1: Chimera sequences in training set and their expression, localization,
and localization efficiencies. (A) (top) shows blocks (different colors) for the con-
tiguous (contig) and non-contiguous (non-contig) library designs and also shows
block boundaries (white lines) for the combined contiguous and non-contiguous
library designs on the three parental ChRs aligned with a schematic of the ChR
secondary structure. (bottom) Sequences of training set chimeras showing block
identities. The colors represent the parental origin of the block (red–CsChrimR,
green–C1C2, and blue–CheRiff). (B) Cumulative distributions of the measured
expression, localization, and localization efficiency of all 218 chimeras with the
three parental constructs highlighted in color (5).
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Figure 2.S2: Chimera expression and localization cannot be predicted from sim-
ple rules. Expression and localization measurements are plotted with chimeras
grouped based on (A) signal peptide sequence identity and (B) hydrophobicity in
the transmembrane (TM) domains. (A) Each chimera in the training set is grouped
based on its signal peptide identity, which could be the CheRiff (0), C1C2 (1), or
CsChrimR (2) signal peptide. The measured expression and localization are shown
for each chimera in each of the three groups. (B) The measured expression and
localization with respect to the calculated level of hydrophobicity within the 7-TM
domains of each chimera. Hydrophobicity was calculated in the region of the protein
highlighted in the surface rendering on the ChR structure.
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Figure 2.S3: GP binary classification model for localization efficiency. Plots of
predicted probability vs measured localization efficiency are divided into ‘high’
performers (white background) and ‘low’ performers (gray background) for local-
ization efficiency. (A) Predicted probability vs measured localization efficiency
for the training set (gray points) and the exploration set (cyan points). Predictions
for the training and exploration sets were made using LOO cross-validation. (B)
Predicted probabilities vs measured localization efficiency for the verification set.
Predictions for the verification set were made by a model trained on the training and
exploration sets. (C) Probability of ‘high’ localization efficiency for all chimeras
in the recombination library (118,098 chimeras) made by a model trained on the
data from the training and exploration sets. The gray line shows all chimeras in
the library, the gray points indicate the training set, the cyan points indicate the
exploration set, the purple points indicate the verification set, and the yellow points
indicate the parents. For all plots, the measured localization efficiency is plotted on
a log2 scale.



57

Figure 2.S4: Chimera block identities for exploration, verification, and optimization
sets. Block identity of chimeras from each set ranked according to their performance
for localization with the best ranking chimera listed at the top of the list. ‘High’ and
‘low’ indicates those chimeras had a high predicted probability of localization vs a
low predicted probability of localization. Each row represents a chimera. The three
different colors represent blocks from the three different parents (red–CsChrimR,
green–C1C2, and blue–CheRiff). The number of mutations from the nearest parent
and the number of mutations from the nearest previously tested chimera from the
library are shown for each chimera.
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Figure 2.S5: ROC curves for GP classification expression, localization, and local-
ization efficiency models. ROC curves show true positive rate vs false positive rate
for predictions from the expression (A), localization (B), and localization efficiency
(C) classification models. The gray line shows the ROC for the combined train-
ing and exploration sets. The purple line shows the ROC for the verification set.
The verification sets consist exclusively of chimeras with ‘high’ expression so no
verification ROC curve for expression is shown. Predictions for the training and
exploration sets were made using LOO cross-validation, while predictions for the
verification set were made by a model trained on the training and exploration sets.
Calculated AUC values are shown in the figure key.
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Figure 2.S6: Comparison of measured expression and localization efficiency for
each data set. Swarm plots of expression (A) and localization efficiency (B) mea-
surements for each data set compared with parents: training set, exploration set,
verification set, and optimization set.
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Figure 2.S7: Cell population distributions of expression, localization, and localiza-
tion efficiency properties for each chimera in the verification and optimization sets
compared with parents. The distribution of expression (A), localization (B), and
localization efficiency (C) for the population of transfected cells is plotted for each
parent (top row), each chimera in the verification set (middle row), and each chimera
in the optimization set (bottom row) using kernel density estimation for smoothing.
Parents are plotted in red (CsChrimR), green (C1C2), and blue (CheRiff). Chimeras
in the verification set are plotted in gray if they were predicted to be ‘low’ or purple
if they were predicted to be ‘high’ in each property. The vertical, gray, dashed line
indicates the mean behavior of the CheRiff parent for each property.
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Figure 2.S8: Predictive ability of GP localizationmodels as a function of training set
size.We trained GP models on random training sets of various sizes sampled from
our data and evaluated their predictive performance on a fixed test set of sequences
for the classification (A) and regression (B) localization models. The predictive
performance of the classification model is described by AUC for the test set (A),
while the predictive performance of the regression model (B) is described by the
correlation coefficient (R-value) for the test set. For each training set size, the results
are averaged over 100 random samples.
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Figure 2.S9: Important features for prediction of ChR localization aligned with
chimeras with optimal localization. Features with positive weights from the lo-
calization model (Figure 2.5) are displayed on the C1C2 crystal structure which is
colored based on the block design of two different chimeras, (A) n1_7 and (B) n4_7,
from the optimization set. Features can be residues (spheres) or contacts (sticks)
from one or more parent ChRs. Features/blocks from CsChrimR are shown in red,
features/blocks from C1C2 are shown in green, and features/blocks from CheRiff
are shown in blue. Gray positions are conserved residues. Sticks connect the beta
carbons of contacting residues (or alpha carbon in the case of glycine). The size of
the spheres and the thickness of the sticks are proportional to the parameter weights.
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Figure 2.S10: GP regression model for ChR expression. Shows the GP regression
model predicted vs measured expression for the combined training and exploration
sets (gray points). Predictions for the training and exploration sets were made using
LOO cross-validation. The predicted and measured expression are plotted on a
log2 scale. The combined training and exploration sets showed good correlation
(R > 0.70).
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Figure 2.S11: Sequence and structure features important for prediction of ChR
expression. Features with positive (A) and negative (B) weights are displayed on
the C1C2 crystal structure (grey). Features can be residues (spheres) or contacts
(sticks) from one or more parent ChRs. Features from CsChrimR are shown in
red, features from C1C2 are shown in green, and features from CheRiff are shown
in blue. In cases where a feature is present in two parents, the following color
priorities were used for consistency: red above green above blue. Sticks connect
the beta carbons of contacting residues (or alpha carbon in the case of glycine). The
size of the spheres and the thickness of the sticks are proportional to the parameter
weights. Two residues in contact can be from the same or different parents. Single-
color contacts occur when both contributing residues are from the same parent.
Multi-color contacts occur when residues from different parents are in contact. The
N-terminal domain (NTD), C-terminal domain (CTD), and the seven transmembrane
helices (TM1-7) are labeled.
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Figure 2.S12: Localization of engineered CbChR1 variant chimera 3c. Represen-
tative cell confocal images of mKate expression and GFP labeled localization of
CsCbChR1 compared with top-performing CsCbChR1 single-block-swap chimera
(chimera 3c), and top-performing parent (CsChrimR). CsCbChR1 shows weak ex-
pression and no localization, while chimera 3c expresses well and clearly localizes to
the plasma membrane as does CsChrimR. Gain was adjusted in CsCbChR1 images
to show any low signal. Scale bar: 10 µm.
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C h a p t e r 3

MACHINE LEARNING-GUIDED CHANNELRHODOPSIN
ENGINEERING ENABLES MINIMALLY-INVASIVE

OPTOGENETICS

1. Claire N Bedbrook, Kevin K Yang, J Elliot Robinson, Viviana Gradinaru, and
Frances H Arnold: Machine learning-guided channelrhodopsin engineering enables
minimally-invasive optogenetics (Submitted).

3.1 Introduction
Channelrhodopsins (ChRs) are light-gated ion channels found in photosynthetic
algae. Transgenic expression of ChRs in the brain enables light-dependent neuronal
activation1. These channels have been widely applied as tools in neuroscience
research2; however, functional limitations of available ChRs prohibit a number
of optogenetic applications. In their algal hosts, ChRs serve as sunlight sensors in
phototaxic and photophobic responses1. Because these channels have evolved to use
sunlight for functional activation, they have broad activation spectra in the visible
range and require high-intensity light for activation [∼1 mW mm−2]. ChRs are
naturally low-conductance channels requiring approximately 105 - 106 functional
ChRs expressed in the plasma-membrane of a neuron to produce sufficient light-
dependent depolarization to induce neuronal activation3. When applied to the
mouse brain, ChRs require ∼1 - 15 mW light delivered ∼100 µm from the target cell
population to reliably activate action potentials4–6. This confines light-dependent
activation to a small volume of brain tissue [∼1 mm3]7. Enabling optogenetics for
large brain volumes without the need to implant invasive optical fibers for light
delivery would be highly desirable for neuroscience applications.

Our goal has been to engineer available ChRs to overcome limits in conductance and
light sensitivity and extend the reach of optogenetic experiments. Engineering ChRs
requires overcoming three major challenges. First, rhodopsins are trans-membrane
proteins that are inherently difficult to engineer because the sequence and structural
determinants of membrane protein expression and plasma-membrane localization
are highly constrained and poorly understood8,9. Second, because properties of
interest for neuroscience applications are assayed using low-throughput techniques,
such as patch-clamp electrophysiology, engineering by directed evolution is not
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feasible10. And third, in vivo applications require either retention or optimization
of multiple properties in a single protein tool; for example, we must optimize ex-
pression and localization in mammalian cells while simultaneously tuning kinetics,
photocurrents, and spectral properties6.

Diverse ChRs have been published, including variants discovered from nature11,
variants engineered through recombination9,12 and mutagenesis13,14, as well as vari-
ants resulting from rational design15. Studies of these coupled with structural infor-
mation16 andmolecular dynamic simulations17 have established some understanding
of the mechanics and sequence features important for specific ChR properties1,15.
Despite this, it is still not possible to predict the functional properties of new ChR
sequences and therefore not trivial to design new ChRs with a desired combination
of functional properties.

Our approach has been to leverage the significant literature of ChRs to train statistical
models that enable design of new, highly-functional ChRs. These models take as
their input the sequence and structural information for a given ChR variant and
then predict its functional properties. The models use training data to learn how
sequence and structural elements map to ChR functional properties. Once known,
that mapping can be used to predict the functional behavior of untested ChR variants
and to select variants predicted to have optimal combinations of desired properties.

We trained models in this manner and found that they accurately predict the func-
tional properties of untested ChR sequences. We used these models to engineer
30 ‘designer’ ChR variants with specific combinations of desired properties. A
number of variants identified from this work have unprecedented conductance and
light sensitivity. We have characterized these low-light sensitive, high-conductance
ChRs for applications in the mammalian brain and demonstrate their potential for
minimally-invasive activation of populations of neurons in the brain enabled by
systemic transgene delivery with engineered AAV, rAAV-PHP.eB18. This work
demonstrates of the power of a machine learning-guided approach to engineering
this difficult-to-engineer class of proteins.

3.2 Results
Dataset of ChR sequence variants and corresponding functional properties for
machine learning
In previous work, we explored structure-guided recombination19,20 of three highly-
functional ChR parents [CsChrimsonR (CsChrimR)11, C1C216, and CheRiff21 by
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designing two 10-block recombination libraries with a theoretical size of ∼120,000
(i.e. 2 × 310) ChR variants9. Measuring expression, localization, and photocurrent
properties of a subset of these chimeric ChRs showed that these recombination
libraries are a rich source of functionally diverse sequences9. That work produced
76 ChR variants with measured photocurrent properties, the largest single source
of published ChR functional data. In subsequent work, we generated an additional
26 ChR variants selected from the same recombination libraries8, which we have
now characterized for functional properties. Together, these 102 ChR variants from
the recombination libraries provide the primary dataset used for model training in
this work. We supplemented this dataset with data from other published sources
including 19 ChR variants from nature, 14 single-mutant ChR variants, and 28 re-
combination variants from other libraries (Dataset 1). As the data produced by other
labs were not collected under the same experimental conditions as data collected
in our hands, they cannot be used for comparison for absolute ChR properties (i.e.
photocurrent strength); however, these data do provide useful binary information on
whether a sequence variant is functional or not. Thus, we used published data from
other sources when training binary classification models for ChR function.

Our primary interest was modeling and optimization of three ChR photocurrent
properties: photocurrent strength, wavelength sensitivity, and off-kinetics (Fig-
ure 3.1a). Enhancing ChR photocurrent strength would enable reliable neuronal
activation even under low-light conditions. As metrics of photocurrent strength,
we use peak and steady-state photocurrent (Figure 3.1a). As a metric for the ChR
activation spectrum, we use the normalized current strength induced by exposure
to green light (560 nm) (Figure 3.1a). Different off-rates can be useful for specific
applications: fast off-kinetics enable high-frequency optical stimulation22, slow
off-kinetics is correlated with increased light sensitivity3,13,14, and very slow off-
kinetics can be used for constant depolarization (step-function opsins [SFOs]13).
We use two parameters to characterize the off-kinetics: the time to reach 50% of
the light-activated current and the photocurrent decay rate, τoff (Figure 3.1a). In
addition to opsin functional properties, it is also necessary to optimize or maintain
plasma-membrane localization, a prerequisite for ChR function8.

As inputs for the machine-learning models, we consider both ChR sequence and
structure. ChR sequence information is simply encoded in the amino acid sequence.
For structural comparisons, we convert the 3D crystal-structural information into a
‘contact map’ form that is convenient for modeling. Two residues are considered to
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Figure 3.1: Machine learning-guided optimization of ChR photocurrent strength, off-
kinetics, and wavelength sensitivity of activation. (a) Upon light exposure, ChRs rapidly
open and reach a peak inward current; with continuous light exposure, ChRs desensitize
reaching a lower steady-state current. Both peak and steady-state current are used as metrics
for photocurrent strength. To evaluate ChR off-kinetics, the current decay after a 1 ms
light exposure is fit to a monoexponential decay curve and the decay rate (τoff) is used as a
metric for off-kinetics. We also use the time to reach 50% of the light-exposed current after
light removal as a metric for off-kinetics. ChRs are maximally activated by one wavelength
of light and less activated as one shifts the light further from that optimal wavelength.
Most ChRs are ‘blue shifted,’ with their wavelength of peak activation at ∼450 – 480
nm. Some ChRs are ‘red shifted,’ with a wavelength of peak activation between 520 –
650 nm. We use the normalized photocurrent with green (560 nm) light as a metric for
wavelength sensitivity of activation. Variant selection was carried out in tiers, (1) using
trained classification models to predict whether ChRs would localize correctly to the plasma
membrane and function (2) using regression models to approximate the fitness landscape for
each property of interest for the recombination library. Sequences from the recombination
library predicted to localize and function by the classification models and predicted to
have an optimized set of functional properties by the regression models were selected for
further characterization. Models are trained with photocurrent properties for each ChR
in the training set such that the model predicted properties correlate well with measured
properties (plots show 20-fold cross validation on the training set). (b) Schematic of the
trajectory of the machine learning-guided engineering of designer ChRs. The classification
function model was trained with 102 variants from the recombination libraries (Dataset 2)
and 61 previously-published ChRs (Dataset 1). The regression models were trained with
124 variants from the recombination libraries (Dataset 2).
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be in contact and potentially important for structural and functional integrity if they
have any non-hydrogen atoms within 4.5 Å in the C1C2 crystal structure16.

Training Gaussian process (GP) classification and regression models
Using the ChR sequence/structure and functional data as inputs, we trained Gaus-
sian process (GP) classification and regression models (Figure 3.1). GP models
have successfully predicted thermostability, substrate binding affinity, and kinetics
for several soluble enzymes23, and, more recently, ChR membrane localization8.
For a detailed description of the GP model architecture and properties used for
protein engineering see refs [8, 23]. Briefly, these models infer predictive values
for new sequences from training examples by assuming that similar inputs (ChR
sequence variants) will have similar outputs (photocurrent properties). To quantify
the relatedness of inputs (ChR sequence variants), we compared both sequence and
structure. We defined the sequence and structural similarity between two chimeras
by aligning them and counting the number of positions and contacts at which they
are identical23.

We trained a binary classification model to predict if a ChR sequence will be
functional using all 102 training sequences from the recombination library as well as
data from61 sequence variants published by others (Dataset 1). AChR sequencewas
considered to be functional if its photocurrents were > 0.1 nA upon light exposure,
a threshold we set as an approximate lower bound for conductance necessary for
neuronal activation. We then used this trained classificationmodel to predictwhether
uncharacterized ChR sequence variants were functional (Figure 3.1a). To verify that
the classification model is capable of accurate predictions, we performed 20-fold
cross validation on the training data set and measured an area under the receiver
operator curve (AUC) of 0.78, indicating good predictive power (Table 3.1).

Next, we trained three regression models, one for each of the ChR photocurrent
properties of interest: photocurrent strength, wavelength sensitivity of photocur-
rents, and off-kinetics (Figure 3.1a). For these, we exclusively used data collected
from our ChR recombination libraries (Dataset 2). Once trained, these models
were used to predict photocurrent strength, wavelength sensitivity of photocurrents,
and off-kinetics of new, untested ChRs sequence variants. Again, to test whether
these models make accurate predictions, we performed 20-fold cross validation on
the training dataset and observed high correlation between predicted and measured
properties as indicated by Pearson correlations between 0.65 – 0.9 for all models,
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Table 3.1: Evaluation of prediction accuracy for different ChR property models.
Calculated AUC or Pearson correlation after 20-fold cross validation on training set
data for classification and regression models. The test set for both the classification
and regression models was the 28 ChR sequences predicted to have useful combina-
tions of diverse properties. Accuracy of model predictions on the test set is evaluated
byAUC (for classificationmodel) or Pearson correlation (for the regressionmodels).
The Matérn kernel is with ν = 5

2 .

Model type ChR property Kernel Cross validation Test
GP classification function Matérn AUC = 0.78 AUC = 1.0
GP regression current strength Matérn R = 0.65 AUC = 0.92
GP regression off-kinetics Matérn R = 0.75 AUC = 0.97
GP regression wavelength sensitivity Matérn R = 0.90 AUC = 0.96

as shown in Table 3.1.

Selection of designer ChRs using trained models
A ‘designer’ ChR is a ChR predicted by our models to have a useful combinations
of properties. We used a tiered approach (Figure 3.1b) to select designer ChRs.
The first step was to eliminate all ChR sequences predicted to not localize to the
plasma membrane or predicted to be non-functional. To do this, we used the ChR
function classification model along with our previously published ChR localization
classification model8 to predict the probability of localization and function for each
ChR sequence in the 120,000-variant recombination library. Not surprisingly, most
ChR variants were predicted to not localize and not function. To focus on ChR
variants predicted to localize and function, we set a threshold for the product of the
predicted probabilities of localization and function; any ChR sequence above that
threshold would be considered for the next tier of the process (Figure 3.1a). We
selected a conservative threshold of 0.4 (Figure 3.1a). Only 1,161 sequence variants
passed the 0.4 threshold (Figure 3.1).

The model training data made clear that the higher the mutation level (mutation
distance from one of the three parent proteins), the less likely it was that a sequence
would be functional; however, we expect that the more diverse sequences would
also have the most diverse functional properties. We wanted to explore diverse
sequences predicted to function by the classification models. We selected 22 ChR
variants that passed the 0.4 threshold and were diverse multi-block-swap sequences
(i.e. containing on average 70 mutations from the closest parent). After these 22
sequences were synthesized, cloned in the expression vector, and expressed in HEK
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Figure 3.2: Training machine-learning models to predict ChR properties of interest based
on sequence and structure enables design of ChR variants with collections of desirable
properties. (a) Measurements of training set ChR and model-predicted ChR, peak photocur-
rent, off-kinetics, and normalized green current. Each gray-colored point is a ChR variant.
Training set data are shaded in blue. Mean number of mutations for each set is above the
plots. (b) Model predictions vs measured property for peak photocurrent, off-kinetics, and
normalized green current of the 28 designer ChRs shows strong correlation. Specific ChR
variants are highlighted to show predicted and measured properties for all three models:
blue, ChR_12_10, green, ChR_11_10, orange, ChR_28_10, pink, ChR_5_10.

cells, their photocurrent properties were measured with patch-clamp electrophys-
iology. 59% of the tested sequences were functional (Figure 3.2a), compared to
38% of the multi-block swap sequences not selected by the model and having the
same average mutation level. This validates the classification model’s ability to
make useful predictions about novel functional sequences, even for sequences that
are very distant from those previously tested.

For the second tier of the selection process, we used the three regression models
trained on all functional variants collected up to this point to predict the photocur-
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rent strength, wavelength sensitivity of photocurrents, and off-kinetics for each of
the remaining 1,161 ChR sequence variants above the predicted localization and
function thresholds. From these predictions, we selected ChR sequence variants
predicted to have the highest photocurrent strength, most red-shifted or blue-shifted
activation wavelengths, and variants with a range of off-kinetics from very fast to
very slow. We selected 28 designer ChRs with different combinations of properties
that were all predicted to be highly-functional (photocurrents > 0.2 nA) and capable
of good membrane localization (Figure 3.S1).

Genes encoding the 28 selected designer ChR variants were synthesized and cloned
into expression vectors, expressed in HEK cells, and characterized for their pho-
tocurrent properties with patch-clamp electrophysiology. For each of the designer
ChR variants, the three measured photocurrent properties correlated very well with
the model predictions (R > 0.9 for all models) (Figure 3.2b, Table 3.1). This
outstanding performance on a novel set of sequences demonstrates the power of
this data-driven predictive method for engineering designer ChRs. As a negative
control, we selected two ChR variant sequences from the recombination library
that the model predicted would be non-functional (ChR_29_10 and ChR_30_10).
These sequences resulted from a single-block swap from two of the most highly
functional ChR recombination variants tested. As predicted, these sequences were
non-functional (Figure 3.3b), demonstrating how easily ChR functionality can be
attenuated by incorporating even minimal diversity at certain positions.

Sequence and structural determinants of ChR functional properties
We used L1-regularized linear regression models to identify a limited set of residues
and structural contacts that strongly influence ChR photocurrent strength, spectral
properties, and off-kinetics. We can assess the relative importance of these sequence
and structural features by weighting their contributions using L2-regularized linear
regression and have included important features and their weights in Dataset 3
and Figures 3.S2-3.S3. For each functional property, we identified a set of im-
portant residues and contacts. Residues and contacts most important for tuning
spectral properties are generally proximal to the retinal-binding pocket, with some
exceptions (Supplemental Figure 3.3). Residues important for conductance reside
between transmembrane (TM) helix 1 and 7 (Figure 3.S2). The C1C2 crystal struc-
ture shows TM helices 1, 2 and 7 form a cavity which allows water influx for
the cation-translocation pathway. Interestingly, residues important for ion conduc-
tance also appear in to be important for kinetic properties (Figure 3.S2), consistent
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Figure 3.3: The model-predicted ChRs exhibit a large range of functional properties often
far exceeding the parents. (a) Current trace after 0.5 s light exposure for select designer ChR
variants with corresponding expression and localization in HEK cells. Vertical colored scale
bar for each ChR current trace represents 0.5 nA, and horizontal scale bar represents 250
ms. Different color traces are labeled with each variant’s name. The variant color presented
in (a) is kept constant for all other panels. (b) Designer ChR measured peak and steady-state
photocurrent with different wavelengths of light. 383 nm light at 1.5 mW mm−2, 485 nm
light at 2.3 mW mm−2, 560 nm light at 2.8 mW mm−2, and 650 nm light at 2.2 mW mm−2.
(c) Designer ChR off-kinetics decay rate (τoff) following a 1 ms exposure to 485 nm light
(2.3 mW mm−2). Parent ChRs are highlighted in light gray. Inset shows current traces with
1 ms light exposure for select ChRs compared with CheRiff. (d) Selected ChR variants’
peak and steady-state photocurrent strength with varying light irradiances compared with
parental ChRs. (e) Wavelength sensitivity of activation for select ChRs compared with
parental ChRs.
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with previous findings that light sensitivity is inversely proportional to off-kinetic
speed3,13,14.

Machine-guided search identifies ChRs with a range of useful functional prop-
erties
We assessed photocurrent amplitude, wavelength sensitivity, and off-kinetics of
the designer ChRs and the three parental ChRs [CsChrimR11, CheRiff21, and
C1C216 (Figure 3.3). In addition to the 28 regression model-predicted ChRs, we
also assessed the top performing ChRs from the classification models’ predictions
[ChR_9_4 (predicted from the classification localization model) and ChR_25_9
(classification function model)], for a total of 30 highly-functional model-predicted
ChRs as well as the two negative control ChRs (ChR_29_10, ChR_30_10). Of the
30 model-predicted ChRs, we found 13 variants with significantly higher blue-light
activated photocurrents than the top-performing parent (CheRiff) (Figure 3.3b).
Six variants exhibit significantly higher green-light activated photocurrents than
CsChrimR (Figure 3.3b). Eight variants have larger red-light activated photocur-
rents when compared with the blue-light activated parents (CheRiff and C1C2),
though none significantly out-perform CsChrimR (Figure 3.3b). Both ChR variants
predicted to be non-functional by the models produce < 0.03 nA currents.

Characterization of the 30 designer ChRs revealed that their off-kinetics span 4
orders of magnitude (τoff = 10 ms – 1 min) (Figure 3.3c). This range is quite
remarkable given that all designer ChRs are built from sequence blocks of three
parents that have very similar off-kinetics (τoff = 30 – 50 ms). We found that 5
designer ChRs have significantly faster off-kinetics than the fastest parent, while 16
are significantly slower (Figure 3.3c). Four ChRs have particularly slow off-kinetics
with τoff > 1 s. Short 1 ms-exposures to blue light elicits distinct profiles from
selected ChRs: ChR_21_10 turns off rapidly, ChR_25_9 and ChR_11_10 turn off
more slowly, and ChR_15_10 exhibits little decrease in photocurrent 0.5 s after
the light was turned off (Figure 3.3c). Three designer ChRs exhibit interesting
spectral properties. ChR_28_10’s red-shifted spectrum matches that of CsChrimR,
demonstrating that incorporating sequence elements from blue-shifted ChRs into
CsChrimR can still generate a red-shifted activation spectrum (Figure 3.3e). Two
of the designer ChRs exhibit novel spectral properties: ChR_11_10 has a broad
activation spectrum relative to the parental spectra, with similar steady-state current
strength from 400 – 560 nm light and even maintain strong currents (0.7 ± 0.1 nA)
when activated with 586 nm light (Figure 3.3e). ChR_25_9, on the other hand,
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exhibits a narrow activation spectrum relative to the parental spectra, with a peak at
485 nm light (Figure 3.3e).

We assessed the light sensitivity of the designer ChRs with enhanced photocur-
rents by measuring photocurrent strength at various irradiances (Figure 3.3d). We
refer to these high-photocurrent ChRs as ‘high-conductance’ ChRs. All high-
conductance ChRs have ≥ 9-times larger currents at the lowest intensity of light
tested (10−1 mW mm−2) as well as larger currents at all intensities of light tested.
The high-conductance ChRs also demonstrate minimal decrease in photocurrent
over the range of intensities tested (10−1 – 101 mW mm−2), suggesting that pho-
tocurrents were saturated at these intensities and would only attenuate at much lower
light intensities (Figure 3.3d). The high-conductance ChRs are expressed at levels
similar to the CsChrimR parent (the highest expressing parent) (Figure 3.S4).

We also compared high-conductance designer ChRs with ChR2(H134R)6,24, an en-
hanced photocurrent singlemutant of ChR2 commonly used for in vivo optogenetics,
and CoChR (from Chloromonas oogama)11, which was reported to be one of the
highest conducting ChRs with blue light. Three of the top high-conductance ChRs
(ChR_9_4, ChR_25_9, and ChR_11_10) show significantly larger peak and steady-
state currents compared with ChR2 and significantly larger steady-state currents
when compared with CoChR when exposed to 2 mW mm−2 485 nm light (Fig-
ure 3.S5). Although CoChR produced peak currents of similar magnitude to the
high-conductance ChRs, rapid decay to amuch lower steady-state level was observed
for this opsin (Figure 3.S5). At lower light intensities (6.5 × 10−2 mW mm−2), the
high-conductance ChRs show significantly larger peak and steady-state photocur-
rents than both ChR2(H134R) and CoChR (Figure 3.S5). These opsins have the
potential for optogenetic activation with very low light levels.

Validation of designer ChRs for neuroscience applications
For further validation in neurons we selected three of the top high-conductance
ChRs, ChR_9_4, ChR_25_9, and ChR_11_10, and renamed them hi-ChR1, hi-
ChR2, and hi-ChR3, respectively (Figure 3.S6). For validation in cultured neurons
and acute brain slices, the hi-ChRs and ChR2(H134R) were cloned into AAV
vectors with a hSyn promoter, Golgi export trafficking signal (TS) sequence5, and
enhanced fluorescent protein (eYFP) marker and packaged in the engineered rAAV-
PHP.eB capsid18 (Figure 3.4a and Table 3.S1). When expressed in cultured neurons,
the hi-ChRs display robust membrane localization and expression throughout the
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Figure 3.4: High-conductance ChR variants in cultured neurons (a – c) and in acute brain
slices (d –f) outperform the commonly used ChR2(H134R). (a) High-conductance ChRs
and the ChR2(H134R) control were cloned into an AAV vector with a trafficking signal
(TS), eYFP, and WPRE and then packaged into rAAV-PHP.eB for expression in culture and
in vivo. Cultured neurons expressing hi-ChR1, hi-ChR2, hi-ChR3, and ChR2(H134R). (b)
Voltage traces of hi-ChR1, hi-ChR2, hi-ChR3, and ChR2(H134R) at 2 Hz with 5 ms pulsed
low-intensity blue light stimulation (3×10−2 mW mm−2) shows robust neuronal firing for
the high-conductance ChRs while ChR2(H134R) exhibits only sub-threshold light-induced
depolarization. (c) Spike fidelity with varying intensity light of high-conductance ChRs
and ChR2(H134R) for 5 ms and 1 ms light pulses with 2 Hz stimulation. (d) High-
conductance ChR and ChR2(H134R) photocurrent strength with varying light irradiances
in acute brain slice after direct injection of rAAV-PHP.eB packaged ChR constructs into the
PFC. (e) Systemic delivery of rAAV-PHP.eB packaged hi-ChR2 or ChR2(H134R) (5× 1011

vg/animal) results in broad expression throughout the cortex. (f) The fraction of light
excitable neurons in the PFC after systemic delivery of rAAV-PHP.eB packaged hi-ChR2
or ChR2(H134R) (1 × 1011 vg/animal) measured by cell-attached recording in acute slice
targeting only neurons expressing the eYFP marker. Spike fidelity with varying intensity
light of high-conductance ChRs after systemic delivery (1 × 1011 vg/animal). vg, viral
genomes.
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neuron soma and neurites (Figure 3.4a). We assessed neuronal spike fidelity with
varying irradiance using ChR2(H134R) for comparison and observed a 10 – 100-
fold decrease in the light intensity required to induce reliable spiking by 1 and 5
ms 485 nm light pulses (Figure 3.4b,c). These results demonstrate that the designer
hi-ChRs require 1 – 2 orders of magnitude lower light intensity than ChR2(H134R)
for neuronal activation. The hi-ChRs permit robust optically-induced firing at
rates between 2 – 20 Hz, although spike fidelity was reduced at higher frequency
stimulation.

Next, we performed direct intracranial injections into the mouse prefrontal cor-
tex (PFC) of rAAV-PHP.eB packaging either hi-ChR1, hi-ChR2, hi-ChR3, or
ChR2(H134R). After 3 – 5 weeks of expression, we measured light sensitivity in
ChR-expressing neurons in acute brain slices. Consistent with the pervious experi-
ments, we observe a large increase in the light sensitivity for the hi-ChRs compared
with ChR2(H134R) (Figure 3.4d). All high-conductance opsins tested exhibit > 200
pA photocurrent at the lowest irradiance tested, 10−3 mWmm−2, while at the equiv-
alent irradiance ChR2(H134R) exhibits undetectable photocurrents (Figure 3.4d).
The hi-ChRs reach > 1 nA photocurrents with ∼10−2 mW mm−2 light, a four-fold
improvement over ChR2(H134R)’s irradiance-matched photocurrents (Figure 3.4d).
Our characterization of ChR2(H134R)’s light sensitivity and photocurrent strength
is consistent with previously published results from other labs6,21.

Designer ChRs and systemic AAVs enable minimally-invasive optogenetic excita-
tion We investigated whether these light-sensitive, high-conductance ChRs could
provide optogenetic activation coupled with minimally-invasive gene delivery. Re-
cently, we described the novel AAV capsid rAAV-PHP.eB18 that produces broad
transduction throughout the central nervous systemwith a single minimally-invasive
intravenous injection in the adult mouse25. Systemic delivery of rAAV-PHP.eB
vectors results in brain-wide transgene delivery with expression throughout large
brain volumes without the need for invasive intracranial injections18,25. The use
of rAAV-PHP.eB for optogenetic applications has been limited, however, by the
lower multiplicity of infection with systemically delivered viral vectors than with
direct injection. This results in insufficient opsin expression and light-evoked cur-
rents to evoke neuronal firing with lower-conductance channels (e.g. ChR2). We
hypothesized that the high-conductance ChRs could overcome this limitation and
allow large-volume optogenetic excitation following systemic transgene delivery.
We systemically delivered rAAV-PHP.eB packaging either hi-ChR1-TS-eYFP, hi-
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ChR2-TS-eYFP, or ChR2(H134R)-TS-eYFP under the hSyn promoter and observed
broad expression throughout the brain with expression strongest in the cortex (Fig-
ure 3.4e). We then measured the fraction of opsin-expressing cells with sufficient
opsin-mediated currents for light-induced firing (Figure 3.4f). Only 1/36 neurons
expressing ChR2(H134R) produced light-induced firing, while 8/9 neurons express-
ing hi-ChR1 produced light-induced activity and 9/9 neurons expressing hi-ChR2
produced light-induced activity. We also observed high spike fidelity with low light
levels in hi-ChR1 and hi-ChR2, consistent with observations in neuronal cultures
(Figure 3.4f). These results demonstrate the need for high-conductance opsins for
applications where systemic delivery is desired.

We next evaluated the optogenetic efficiency of the high-conductance opsins after
systemic delivery using a well-established behavioral paradigm: optogenetic in-
tracranial self-stimulation (oICSS) of dopaminergic neurons of the ventral tegmental
area (VTA)26. We used systemic delivery of rAAV-PHP.eB packaging a double-
floxed inverted open reading frame (DIO) containing either hi-ChR2-TS-eYFP or
ChR2(H134R)-TS-eYFP into Dat-Cre mice (Figure 3.5a and Table 3.S1). Three
weeks after systemic viral delivery and stereotaxic implantation of fiber-optic can-
nulas above the VTA, mice were placed in an operant box and were conditioned
to trigger a burst of 447 nm laser stimulation via nose poke. Animals expressing
hi-ChR2 displayed robust optogenetic self-stimulation in a frequency-dependent
and laser power-dependent manner. Higher frequencies (up to 20 Hz) and higher
light power (up to 10 mW) promoting greater maximum operant response rate (Fig-
ure 3.5a). Conversely, laser stimulation failed to reinforce operant responding in
ChR2(H134R)-expressing animals (Figure 3.5a); these results were consistent with
results in acute slice where the light-induced currents of ChR2(H134R) are too
weak at the low copy number produced by systemic delivery for robust neuronal
activation.

In order to determine if hi-ChR2 would enable both minimally-invasive transgene
delivery and minimally-invasive optical excitation, we assayed directional control
of locomotion in freely moving animals by optogenetic stimulation of the right sec-
ondary motor cortex (M2), a well-established behavioral paradigm previously used
to validate optogenetic tools27. In this assay, unilateral stimulation of M2 disrupts
motor function in the contralateral lower extremities, causing mice to turn away
from the stimulation side. We systemically administered rAAV-PHP.eB packaging
either hi-ChR2-TS-eYFP or ChR2(H134R)-TS-eYFP under a CaMKIIa promoter
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for transgene expression in excitatory pyramidal neurons in the cortex (Figure 3.5b
and Table 3.S1). We secured a fiber-optic cannula guide to the surface of the thinned
skull above M2 without puncturing the dura and therefore leaving the brain intact
(Figure 3.5b). Despite the presence of the highly optically scattering calavarial
bone, stimulation with 20 mW 447 nm light induced left-turning behavior in ani-
mals expressing hi-ChR2 but not in animals expressing ChR2(H134R) (Figure 3.5b
and Supplemental Video 1 – 2). Left-turning behavior terminated upon conclusion
of optical stimulation (Supplemental Video 1). Behavioral effects were seen at
powers as low as 10 mW, but the most consistent turning phenotypes were seen
with 20 mW laser power. In order to ensure that turning behavior was not due to
unexpected visual stimuli or heating caused by the stimulation laser, we repeated
treadmill experiments using 671 nm light, which is outside the excitation spectrum
of both opsins. 20 mW 671 nm light failed to induce turning in both hiChR2 and
ChR2(H124R). Overall, these experiments demonstrate that hi-ChR2 in compatible
with minimally-invasive systemic gene delivery and can enable minimally-invasive
optogenetic excitation.

3.3 Discussion
We have outlined and demonstrated a data-driven approach to engineering ChR
properties that enables efficient discovery of highly functional ChR variants based
on data from relatively few variants. In this approach we approximate the ChR
fitness landscape and use it to efficiently search sequence space and select top-
performing variants for a given property10,23. By first eliminating the vast majority
of non-functional sequences, we can focus on local peaks scattered throughout the
landscape. Then, using regression models, we predict which sequences lie on the
fitness peaks.

Designing useful ChRs for in vivo applications requires simultaneous optimization
of multiple properties; machine learning provides a platform for such optimization
and allows us to identify designer variants with combinations of properties that
follow engineering specifications. Using a limited sequence space of ∼120,000
chimeric ChRs, we were able to generate variants with large variations in off-
kinetics (10 ms to 1 min) and photocurrents that far exceed any of the parental or
other commonly used ChRs. We also use the machine-learning models to identify
the residues and contacts most important for ChR function. We have designed high-
conductance ChRs (hi-ChR1, hi-ChR2, and hi-ChR3) with unprecedented light
sensitivity and have validated hi-ChR2’s application for in vivo optogenetics. The
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Figure 3.5: Validation of high conductance hi-ChR2 for minimally-invasive optogenetic
behavioral modulation. (a) Minimally-invasive, systemic delivery of rAAV-PHP.eB pack-
aged CAG-DIO hi-ChR2-TS-eYFP or ChR2(H134R)-TS-eYFP (3 × 1011 vg/mouse) into
Dat-Cre animals coupled with fiber optic implantation above the VTA enabled blue light-
induced intracranial self-stimulation (ten 5 ms laser pulses) exclusively with hi-ChR2 and
not ChR2(H134R) with varying light power and varying stimulation frequencies. hi-ChR2,
n = 4; ChR2(H134R), n = 4. (b) Minimally-invasive, systemic delivery of rAAV-PHP.eB
packaged CaMKIIa hi-ChR2-TS-eYFP or ChR2(H134R)-TS-eYFP (5×1011 vg/mouse) into
wild type (WT) animals coupled with surgically secured 2 mm long, 400 µm fiber-optic
cannula guide to the surface of the skull above the right M2 that had been thinned to create
a level surface for the fiber-skull interface. Three weeks later, mice were trained to walk
on a linear-track treadmill at fixed velocity. Unilateral blue light stimulation of M2 induced
turning behavior exclusively with hi-ChR2 and not ChR2(H134R) (10 Hz stimulation with
5 ms 447 nm light pulses at 20 mW). hi-ChR2, n = 5; ChR2(H134R), n = 5. No turning
behavior was observed in any animal with 10 Hz stimulation with 5 ms 671 nm light pulses
(20 mW). Error bars represent standard error of the mean. vg, viral genomes.
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high-conductance properties of these ChRs have overcome limitations of low per-
cell copy number after systemic delivery. hi-ChR2 enabled neuronal excitation
with high temporal precision without invasive intracranial surgery for virus delivery
or fiber optic implantation for superficial brain areas extending what is currently
possible with optogenetics experiments.

Methods
Construct design and characterization
The design, construction, and characterization of the recombination library of
chimeras is described in detail in Bedbrook et al.9. The 10-block contiguous
and 10-block noncontiguous recombination libraries were designed and built using
SCHEMA recombination9. Software packages for calculating SCHEMA energies
are openly available at cheme.che.caltech.edu/groups/fha/Software.htm. Selected
ChR variant genes were inserted into a constant vector backbone [pFCK from Ad-
dgene plasmid #5169321] with a CMV promoter, Golgi export trafficking signal
(TS) sequence (KSRITSEGEYIPLDQIDINV)5, and fluorescent protein (mKate).
All ChR variants contain the SpyTag sequence following the N-terminal signal pep-
tide for the SpyTag/SpyCatcher labeling assays used to characterize ChR membrane
localization9,28. For characterization in neurons, selected ChR variants [hi-ChR1,
hi-ChR2, hi-ChR3, CoChR11, and hChR2(H134R)] were inserted into a pAAV-
hSyn vector backbone [Addgene plasmid #26973], a pAAV-CamKIIa vector back-
bone [Addgene plasmid #51087], and a pAAV-CAG-DIO vector backbone [Addgene
plasmid #104052]. In all backbones, each ChR was inserted with a Golgi export
trafficking signal (TS) sequence (KSRITSEGEYIPLDQIDINV)5, and fluorescent
protein (eYFP). ChR variant sequences used in this study are documented in Dataset
2. All selected ChR genes were synthesized and cloned in the pFCK mammalian
expression vector by Twist Bioscience. HEK293T cells were transfected with puri-
fied ChR variant DNA using FuGENE®6 reagent according to the manufacturer’s
(Promega) recommendations. Cells were given 48 hours to express the ChRs before
photocurrent measurements. Imaging of ChR variants expression in HEK cells
was performed using an Andor Neo 5.5 sCMOS camera and Micro-Manager Open
Source Microscopy Software. Imaging of ChR expression in neuronal cultures and
in brain slices was performed using a Zeiss LSM 880 confocal microscope and Zen
software.
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Primary neuronal cultures
Primary hippocampal neuronal cultures were prepped from C57BL/6N mouse em-
bryos 16-18 days post-fertilization (E16-E18 Charles-River Labs) and cultured at 37
◦C in the presence of 5% CO2 in Neurobasal media supplemented with glutamine
and B27. Cells were transduced 3 - 4 days after plating with rAAV-PHP.eB pack-
aging ChR2(H134R), hi-ChR1, hi-ChR2, or hi-ChR3. Whole-cell recordings were
performed 10 - 14 days after transduction.

Patch-clamp electrophysiology
Whole-cell patch-clamp and cell-attached recordings were performed in transfected
HEK cells, transduced neurons, and acute brain slices to measure light-activated
inward currents or neuronal firing. For electrophysiological recordings, cultured
cells were continuously perfused with extracellular solution at room temperature (in
mM: 140 NaCl, 5 KCl, 10 HEPES, 2 MgCl2, 2 CaCl2, 10 glucose; pH 7.35) while
mounted on themicroscope stage. For slice recordings, 32 ◦C artificial cerebrospinal
fluid (ACSF)was continuously perfused over slices. ACSF contained 127mMNaCl,
2.5 mM KCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 12 mM d-glucose, 0.4 mM
sodium ascorbate, 2 mM CaCl2, and 1 mM MgCl2 and was bubbled continuously
with 95% oxygen / 5% CO2.

Patch pipettes were fabricated from borosilicate capillary glass tubing (1B150-4;
World Precision Instruments) using a model P-2000 laser puller (Sutter Instruments)
to resistances of 3–6MΩ. Pipetteswere filledwithK-gluconate intracellular solution
containing the following (in mM): 134 K gluconate, 5 EGTA, 10 HEPES, 2 MgCl2,
0.5 CaCl2, 3ATP, and 0.2GTP.Whole-cell patch-clamp and cell-attached recordings
weremade using aMulticlamp 700B amplifier (Molecular Devices), a Digidata 1440
digitizer (Molecular Devices), and a PC running pClamp (version 10.4) software
(Molecular Devices) to generate current injection waveforms and to record voltage
and current traces. Patch-clamp recordings were done with short light pulses to
measure photocurrents. Light pulse duration, wavelength, and power were varied
depending on the experiment (as described in the text). Light pulses were generated
using a Lumencor SPECTRAX light engine and quad band 387/485/ 559/649 nm
excitation filter, quad band 410/504/582/669 nm dichroic mirror, and quad band
440/521/607/700 nm emission filter (all SEMROCK). Photocurrents were recorded
from cells in voltage clamp held at -70 mV. Neuronal firing was measured in current
clamp mode with current injection for a -70 mV holding potential.
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Electrophysiology data were analyzed using custom data-processing scripts written
using open-source packages in the Python programming language to do baseline
adjustments, find the peak and steady state inward currents, perform monoexponen-
tial fits of photocurrent decay for off-kinetic properties, and quantify spike fidelity.
Plotting and statistical analysis were done in Python and GraphPad Prism 7.01. For
statistical comparisons, we performed one-way ANOVA (which assumes a Gaus-
sian distribution) and corrected for multiple comparisons with statistical hypothesis
testing using Dunnett’s multiple comparisons post hoc test.

AAV production and purification
Production of recombinantAAV-PHP.eBpackaging pAAV-hSyn-X-TS-eYFP-WPRE,
pAAV-CAG-DIO[X-TS-eYFP]-WPRE, and pAAV-CaMKIIa-X-TS-eYFP-WPRE (X
= ChR2(H134R), hi-ChR1, hi-ChR2, and hi-ChR3) was done following the method
described in Deverman et al.29. Briefly, triple transfection of HEK293T cells
(ATCC)was performed using polyethylenimine (PEI). Viral particles were harvested
from the media and cells. Virus was then purified over iodixanol (Optiprep, Sigma;
D1556) step gradients (15%, 25%, 40% and 60%). Viruses were concentrated and
formulated in phosphate buffered saline (PBS). Virus titers were determined bymea-
suring the number of DNase I–resistant viral genomes using qPCR with linearized
genome plasmid as a standard.

Animals
All procedures were approved by the California Institute of Technology Institutional
Animal Care and Use Committee (IACUC). Dat-Cre mice (006660) and C57Bl/6J
mice (000664) were purchased from Jackson Laboratory.

Intravenous injections, stereotactic injections, and cannula implantation
Intravenous administration of rAAV vectors was performed by injecting the virus
into the retro-orbital sinus at viral titers indicated in the text. Local expression
in the prefrontal cortex (PFC) was performed by direct stereotactic injection of 1
µl of purified AAV vectors at 5×1012 vg ml−1 targeting the following coordinates:
anterior-posterior (AP), -1.7; media-lateral (ML), ±0.5; and dorsal-ventral (DV),
-2.2. For stimulation of the VTA, stereotaxic implantation of 300 µm outer di-
ameter fiber-optic cannulas 200 µm above the VTA was targeted to the following
coordinates: AP, -3.44 mm; ML, ±0.48 mm; DV, 4.4 mm. For stimulation of the
right secondary motor cortex (M2), 2 mm long, 400 µm fiber-optic cannula guide
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were surgically secured to the surface of the skull above M2 (unilaterally) targeted
to the following coordinates: AP, 1 mm; ML, 0.5 mm. Skull was thinned ∼40 – 50%
with a standard drill to create a level surface for the fiber-skull interface. Light was
delivered from either a 447 nm or 671 nm laser (Changchun New Industries [CNI]
Model with PSU-H-LED) via optical fiber through a fiber-guide cannula. Cannula
guides were secured to the skull with Metabond (Parkel, SKU S396) and dental
cement. Before each behavioral session, animals were connected to an optical fiber
for optical stimulation through the previously implanted cannula guide.

Analysis of behavioral experiments was performed using the open-sourceMATLAB
program OptiMouse30 to track mouse nose, body, and tail position while the mouse
was running on the treadmill.

Gaussian process modeling
Both the GP regression and classification modeling methods applied in this pa-
per are based on work detailed in ref [8, 23]. For modeling, all sequences were
aligned using MUltiple Sequence Comparison by Log-Expectation (MUSCLE)
(https://www.ebi.ac.uk/Tools/msa/muscle/). For modeling, aligned sequences were
truncated to match the length of the C1C2 sequence, eliminating N- and C-terminal
fragments with poor alignment quality due to high sequence diversity (Dataset 1
and Dataset 2). Structural encodings use the C1C2 crystal structure (3UG9.pdb)
and assume that ChR chimeras share the contact architecture observed in the C1C2
crystal structure. For a given ChR, the contact map is simply a list of contacting
amino acids with their positions. For example, a contact between alanine at position
134 and methionine at position 1 of the amino acid sequence would be encoded
by [(‘A134’), (‘M1’)]. Both sequence and structural information were one-hot en-
coded. Regression models for ChR properties were trained to predict the logarithm
of the measured properties. All training data was normalized to have mean zero and
standard deviation one.

Gaussian process regression and classification models require kernel functions that
measure the similarity between protein sequences. Learning involves optimizing
the form of the kernel and its hyperparameters (Table 3.S2). The Matérn kernel was
found to be optimal for all ChR properties (Table 3.1).

GP regression In regression, the goal is to infer the value of an unknown function
f (x) at a novel point x∗ given observations y at inputs X . Assuming that the
observations are subject to independent and identically distributed Gaussian noise
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with variance σ2
n , the posterior distribution of f∗ = f (x∗) for Gaussian process

regression is Gaussian with mean

f̄∗ = kT
∗ (K + σ

2
n I)−1y (3.1)

and variance

v∗ = k(x∗, x∗) − kT
∗ (K + σ

2
n I)−1k∗ (3.2)

Where K is the symmetric, square covariance matrix for the training set: Ki j =

k(xi, x j) for xi and x j in the training set. k∗ is the vector of covariances between the
novel input and each input in the training set, and k∗i = k(x∗, xi). The hyperparam-
eters in the kernel functions and the noise hyperparameter σn were determined by
maximizing the log marginal likelihood:

log p (y |X) = −
1
2
yT (K + σ2

n I)−1y −
1
2

log |K + σ2
n I | −

n
2

2π (3.3)

where n is the dimensionality of the inputs. Regression was implemented using
open-source packages in the SciPy ecosystem[31-33].

GP classification In binary classification, instead of continuous outputs y, the
outputs are class labels yi ∈ {+1,−1}, and the goal is to use the training data to
make probabilistic predictions π(x∗) = p(y∗ = +1|x∗). We use Laplace’s method to
approximate the posterior distribution. Hyperparameters in the kernels are found by
maximizing the marginal likelihood. Classification was implemented using open-
source packages in the SciPy ecosystem31–33.

GP kernels for modeling proteins Gaussian process regression and classifica-
tion models require kernel functions that measure the similarity between protein
sequences. A protein sequence s of length L is defined by the amino acid present
at each location. This can be encoded as a binary feature vector xse that indicates
the presence or absence of each amino acid at each position resulting in a vector
of length 20L (for 20 possible amino acids). Likewise, the protein’s structure can
be represented as a residue-residue contact map. The contact map can be encoded
as a binary feature vector xst that indicates the presence or absence of each pos-
sible contacting pair. We used both the sequence and structure feature vectors by
concatenating them to form a sequence-structure feature vector.
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We considered three types of kernel functions k(si, s j): polynomial kernels, squared
exponential kernels, and Matérn kernels. These different forms represent possible
functions for the protein’s fitness landscape. The polynomial kernel is defined as:

k(s, s′) = (σ2
0 + σ

2
p xT x′)d (3.4)

where σ0 and σp are hyperparameters. We considered polynomial kernels with
d = 3. The squared exponential kernel is defined as:

k(s, s′) = σ2
p exp

(
‖x − x′‖22

l2

)
(3.5)

where l and σp are also hyperparameters and ‖ · ‖2 is the L2 norm. Finally, the
Matérn kernel with ν = 5

2 is defined as:

k(s, s′) =

(
1 +

√
(5‖x − x′‖22)

l
+

5‖x − x′‖22
3l2

)
exp

(
−

5‖x − x′‖22
l

)
(3.6)

Where l is once again a hyperparameter.

L1 regression feature identification and weighting We used L1 regression to
identify residues and contacts in the ChR structure most important for each ChR
functional property of interest. Using the concatenated sequence and structure bi-
nary feature vector for each of the training set ChR variants, we identified residues
and contacts that covary. Each set of covarying residues and contacts was combined
into a single feature. L1 linear regression was used to select the features that con-
tribute most to each ChR functional property of interest. The level of regularization
was chosen by maximizing the log marginal likelihood of the Gaussian process
regression model trained on the features selected at that level of regularization. We
then performed Bayesian ridge regression on the selected features using the default
settings in scikit-learn34. Residues and contacts with the largest absolute Bayesian
ridge linear regression weights were plotted onto the C1C2 structure (Figures 3.S2
- 3.S3).
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Supplemental Information
Dataset 1. ChR sequence and photocurrent data from published sources including
19 natural ChR variants, 14 point-mutant ChR variants, and 28 recombination
variants from various recombination libraries. The source of the photocurrent data
is included (‘Reference’). When possible, we use references with side-by-side
measurements of multiple ChRs. For modeling, all sequences were aligned and
truncated to match the length of the C1C2 sequence (Methods). The truncated and
aligned sequences are included ( ‘Aligned_amino_acid_sequence’) as well as the
full-length sequence (‘Amino_acid_sequence’).

Dataset 2. ChR sequences and functional properties for designed chimeric sequences
from our ChR recombination libraries. Functional properties were tested in HEK
cells. Measurements of peak and steady-state photocurrent (nA) with 485 nm
light at 2.3 mW mm−2 (‘cyan peak’ & ‘cyan_ss’), 560 nm light at 2.8 mW mm−2

(‘green_peak’ & ‘green_ss’), and 650 nm light at 2.2 mW mm−2 (‘red_peak &
‘red_ss’) are included. The maximum peak (‘max_peak‘) and maximum steady-
state (‘max_ss’) photocurrent (nA) obtained with any wavelength are included.
Measurement of the time (ms) to reach 50% of the light-exposed photocurrent after
light removal is included (‘kinetics_off’). The ratio of peak photocurrent with 560
nm light to maximum photocurrent was calculated per each cell and average for each
ChR variant (‘norm_green’). Off-kinetics (‘kinetics_off’) and spectral properties
(‘norm_green’) were only included for ChR variants with photocurrent strength
> 0.02 nA. Each ChR recombination variant has a chimera identity (‘block_ID’)
beginning with either ‘c’ or ‘n’ to indicate the contiguous or non-contiguous library
followed by 10 digits indicating the parent that contributes each of the 10 blocks (‘0’:
CheRiff, ‘1’:C1C2, and ‘2’:CsChrimR). Each ChR variant’s number of mutations
away from the nearest parent (‘m’) is included. For modeling, all sequences were
aligned and truncated to match the length of the C1C2 sequence (Methods). The
truncated and aligned sequences are included (‘Aligned amino acid sequence’) as
well as the full-length sequence (‘Amino acid sequence’).

Dataset 3. Limited set of amino acid residues and structural contacts important
for model predictions identified with L1-regularized linear regression. The rel-
ative importance (‘weight’) of these sequence and structural features is learned
using Bayesian ridge regression. We found a different limited set of features for
each of the three functional properties of interest (‘norm_green’, ‘off_kinetics’, and
‘peak_photocurrent’). Features are either amino acid residues (i.e. a sequence fea-
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ture [‘seq’]) or contacts. The feature position is indicated with numbering according
to the aligned and truncated ChR sequence. We also include the parental features
at each position with numbering according the parental sequence. Highly-weighted
features highlighted in color in Figures 3.S2 – 3.S3 are indicated by their corre-
sponding color. Features not highlighted in Supplemental Figures 3.S2 – 3.S3 are
listed as gray.

Supplementary Video 1. hi-ChR2-expressing mouse running on a treadmill while
receiving optogenetic stimulation exhibits clear left-turning behavior [10 Hz stimu-
lationwith 5ms 447 nm light pulse (20mW)].Minimally-invasive, systemic delivery
of rAAV-PHP.eB packaged CaMKIIa hi-ChR2-TS-eYFP (5 × 1011 vg/mouse) into
wild type (WT) animals coupled with surgically secured 2 mm long, 400 µm fiber-
optic cannula guide to the surface of the skull above the right M2 that had been
thinned to create a level surface for the fiber-skull interface (∼40 – 50%). Video
shows multiple runs with the same animal.

Supplementary Video 2. ChR2(H134R)-expressing mouse running on a treadmill
while receiving optogenetic stimulation does not exhibit left-turning behavior [10Hz
stimulation with 5 ms 447 nm light pulse (20 mW)]. Minimally-invasive, systemic
delivery of rAAV-PHP.eB packaged CaMKIIa ChR2(H134R)-TS-eYFP (5 × 1011

vg/mouse) into wild type (WT) animals coupled with surgically secured 2 mm long,
400 µm fiber-optic cannula guide to the surface of the skull above the right M2 that
had been thinned to create a level surface for the fiber-skull interface (∼40 – 50%).
Video shows multiple runs with the same animal.
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Figure 3.S1: Thirty model-predicted ChR chimeras aligned with the three parents
and the secondary structure. Blocks of ChR chimeras are colored according towhich
parent each block came from. CsChrimR is red, CheRiff is blue, and C1C2 is green.
(*) highlights the Schiff base. ChRs are divided into categories based on their
predicted properties. Twenty-eight ChR chimeras are predicted to be optimized
for one or more properties. Two ChR chimeras are predicted to be non-optimal
and produce low currents. A number of chimeras appear twice because they were
optimal for multiple categories.
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Figure 3.S2: Specific residues (amino-acid sticks) and contacts (dark gray lines)
most important for model prediction of off-kinetics and photocurrent strength over-
laid on the C1C2 crystal structure in light gray (3ug9.pdb).
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Figure 3.S3: Specific residues (amino-acid sticks) and contacts (dark gray lines)
most important for model prediction of red-shifted light sensitivity and blue-shifted
light sensitivity overlaid on the C1C2 crystal structure in light gray (3ug9.pdb).

Figure 3.S4: HEK cell expression of selected high-conductance ChR variants. Plot
of measured expression in HEK cells for each variant (CheRiff, n = 17 cells; C1C2,
n = 14 cells; CsChrimR, n = 12 cells; ChR_10_10, n = 5 cells; ChR_11_10, n = 15
cells; ChR_12_10, n = 11 cells; ChR_9_4, n = 9 cells; ChR_25_9, n = 11 cells).
Plotted data are mean ± SEM. No significant difference between CsChrimR and the
high-conductance ChR variants with ANOVA and Dunnett’s post hoc test.
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Figure 3.S5: (a) Construct design for each ChR tested with a trafficking sequence,
eYFP, and WPRE under the hSyn promoter. (b) Peak and steady-state photocurrent
comparison between high-conductance ChRs, ChR2(H134R), and CoChRwith both
high-intensity and low-intensity light. Multiple HEK cells were recorded from for
each ChR: ChR2(H134R), n = 11 cells; CoChR, n = 7 cells; 11_10, n = 9 cells;
25_9, n = 12 cells; 9_4, n = 9 cells. Plotted data are mean ± SEM. There is a
significant difference between the high-conductance ChR variants and ChR2 with
low intensity light (P < 0.0001 for 11_10, 25_9, and 9_4); ANOVA and Dunnett’s
post hoc test, with ChR2 as a reference. There is a significant difference between
the high-conductance ChR variants and CoChR with low intensity light (P = 0.007
for 11_10, P < 0.003 for 25_9, and P < 0.0005 for 9_4); ANOVA and Dunnett’s
post hoc test, with CoChR as a reference.
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Figure 3.S6: Top five high-conductance ChRs predicted by the machine-learning
models aligned with the three parents and the secondary structure. (*) highlights
the Schiff base. Blocks of ChR chimeras are colored according to which parent each
block came from. CsChrimR is red, CheRiff is blue, and C1C2 is green.

Table 3.S1: List of different constructs made for validation of the high-conductance
ChRs.

Vector Insert (X) Virus tested
pAAV-hSyn-X-TS-eYFP-WPRE hChR2(H134R) Yes

CoChR
hi-ChR1
hi-ChR2
hi-ChR3

pAAV-CaMKIIa-X-TS-eYFP-WPRE hChR2(H134R) Yes
hi-ChR1
hi-ChR2
hi-ChR3

pAAV-CAG-DIO[X-TS-eYFP]-WPRE hChR2(H134R) Yes
hi-ChR1
hi-ChR2
hi-ChR3

Table 3.S2: GP regression model hyperparameters for each ChR property of interest
for the Matérn kernel.

Model type ChR property Noise hyperparameter: σn Length hyperparameter: l
GP regression current strength 0.04848652 19.65389071
GP regression off-kinetics 0.02902597 19.72715834
GP regression off-kinetics 0.10927067 37.7883682
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C h a p t e r 4

LEARNED PROTEIN EMBEDDINGS FOR MACHINE
LEARNING

1. Kevin Yang, Zachary Wu, Claire Bedbrook, and Frances Arnold: Learned Protein
Embeddings for Machine Learning. Bioinformatics (2018). doi:
10.1093/bioinformatics/bty178.

4.1 Introduction
Machine learning (ML) has been used to predict protein properties from protein
sequences to enable protein design and engineering1–3. ML models are useful for
predicting the outcomes of complex processes, such as how a protein sequence
encodes function, because they do not require prior knowledge of specific physical
or biological mechanisms. Instead, after training with measured sequences, ML
models infer the properties of unseen sequences. A model capable of predicting
the properties of unseen protein sequences enables prediction and discovery of
sequences with optimal properties. ForMLmodels to learn about protein sequences,
we must encode the protein sequence in a form compatible with the mathematical
operations used in ML models. Generally, this requires that the protein sequence be
encoded as a vector or matrix of numbers. How each protein sequence is encoded
determines what can be learned4. Even the most powerful models produce poor
results if an inappropriate encoding is used. We show that learning these encodings
from data can streamlinemachine-learning pipelines while achieving high predictive
accuracies.

A protein sequence can be encoded by its physical properties or directly by its
amino acids1–3,5–8. When using physical properties to encode a protein sequence,
each individual amino acid is represented by a collection of physical properties,
such as its charge or hydrophobicity, and each protein is taken to be a combination
of those properties. Properties of the bulk protein, such as its predicted secondary
structures, can also be used to represent the protein. However, there are countless
physical properties that could be used to describe each amino acid/protein, and
the molecular properties that dictate functional properties are unknown, highly
constrained, and differ between different functional properties. Therefore, selecting

https://doi.org/10.1093/bioinformatics/bty178
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informative properties is challenging because it is difficult to know a priori what
properties will be predictive for a particular task.

Instead of representing a protein with physical properties, one can directly encode
its amino acid sequence. A protein sequence of length L can be encoded as an Lyn

matrix, where n is the number of amino acids. Each row in thematrix consists of (n –
1) 0s and a single 1, with the position of the 1 indicating the amino acid residue at that
position in the protein. This vectorization method for categorical data is known as
one-hot encoding. One-hot encodings are inherently sparse, memory-inefficient, and
high-dimensional. In a one-hot encoding, there is no notion of similarity between
sequence or structural elements: they are either identical, or not. For example, in a
one-hot encoding ofwords, thewords “king”, “prince”, and “pot” are all not identical
and thus equidistant from each other even though “king” and “prince” are intuitively
more similar in meaning than “king” and “pot” or “prince” and “pot.” Similarly,
to the biologist, an amino acid sequence of DDD is more similar in meaning to
EEE than to PPP or HHH. Furthermore, one-hot encodings of the primary sequence
require that all sequence variants of interest are aligned. This alignment must be
updated as sequences are added to the model. If updating the alignment changes
its length, or even if amino acids are added or removed, the dimensionality of the
encoding changes. Multiple sequence alignments between distantly-related proteins
require visual validation because there is no universal standard for choosing the
best alignment. Even with visual validation, it is challenging to confidently align
distantly-related sequences. If the sequences are misaligned, the inputs toMLmodel
are flawed, and there can be little expectation of success.

While there are a massive number of known protein sequences, only a tiny fraction
have measured properties relevant to any specific task. Sequences with a mea-
surement for the prediction task are known as labeled sequences, while those that
do not are unlabeled sequences. The number of known unlabeled sequences will
continue to rise as the cost of DNA-sequencing decreases, but there is no universal
method for measuring all relevant protein properties. Therefore, the gap between
the number of unlabeled and labeled sequences will continue to grow. However,
even unlabeled sequences contain information about the frequency and patterns of
amino acids selected by evolution to compose proteins. Information contained in
unlabeled sequences may be helpful when predicting properties for a specific set of
sequences, especially if the set in question is small. Specifically, instead of selecting
physical properties or using a one-hot encoding of the sequence, a continuous vector
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encoding of each sequence can be learned from unlabeled sequences. This repre-
sentation contains relevant information about the protein sequence learned from
the distribution of sequences in the unlabeled set and is known as an embedded
representation because it embeds the protein sequences in a vector space.

The process of using unlabeled data to learn an embedded representation has been
well-established by recent work in natural language processing, where word and
document embeddings are used as an efficient way to encode text for use in sentiment
analysis, machine translation, and other tasks9. These examples learn an embedded
representation from a large collection of unlabeled texts by assuming that words that
appear in similar contexts have similar meanings. The unlabeled texts are analogous
to the large number of unlabeled protein sequences. For example, the word2vec
model10,11 uses a shallow two-layer neural network to learn embeddings using one
of two architectures: skip-gram and continuous bag-of-words. In the skip-gram
architecture, the model uses the current word to predict its surrounding context
words. In contrast, in the continuous bag-of-words architecture, the current word
is predicted from its surrounding context words. The doc2vec model12 extends
word2vec by learning embeddings for entire sentences, paragraphs, or documents.

There have been efforts to apply word2vec and doc2vec to represent protein se-
quences13–16. These embeddings treat the amino acid sequence as a document and
fragments of the amino acid sequence of constant length k (k-mers) as words. As
shown in Figure 4.1, a sequence of 9 amino acids can be divided into 3 sets of
non-overlapping 3-mers. The learned k-mer embeddings place k-mers that occur
in similar contexts near each other in the embedded space by learning to predict
a k-mer from its surrounding context k-mers and the sequence embedding. These
embeddings have achieved high accuracy in differentiating ordered and disordered
proteins and modest accuracy in classifying proteins from SwissProt into families
based only on their primary sequence13. Our goal was to test if such embeddings
can be used in ML to predict specific properties of related proteins. This is a fun-
damentally different problem than classifying proteins into families or predicting a
universal binary property across all proteins because the model must tease apart the
effects of subtle sequence changes from limited labeled data for a specific property.

In this work, we train embedded representations for four protein property prediction
tasks. These tasks cover a range of protein families, measured properties, and library
designs. We show that the predictive power of models trained using these embed-
dings is comparable to and sometimes exceeds those trained on one-hot encodings,



101

Step 3:  Break sequences into k-mers

GFDELAKGA
1 32

1

3

2

GFD,ELA,KGA

FDE,LAK

DEL,AKG

Step 4: Infer embeddings
1

3

2

GFD,ELA,KGA

FDE,LAK

DEL,AKG

Step 5: GP regression

Supervised learning 

trained
embedding

model

embedding X
n x 64

predictions

X, y  GP model Trained GP model

X' Trained GP model

Step 1:  Break sequences into k-mers

ADTIVAVET
1 32

1

3

2

ADT,IVA,VET

DTI,VAV

TIV,AVE

Step 2:  Train embedding model

embedding
model

trained
embedding

model

1

3

2

ADT,IVA,VET

DTI,VAV

TIV,AVE

Unsupervised learning 

ADTADTIVAVET

average
predict

IVA

VET

doc2vec:

ADT,   ,VETIVA

w w

Figure 4.1: The modeling scheme. First, an unsupervised embedding model is
trained on 524,529 unlabeled sequences pulled from the UniProt database. The
UniProt sequences are broken into k lists of non-overlapping k-mers (Step 1), and
then the lists are used to train the embedding model (Step 2). The doc2vec embed-
ding model learns to predict the vectors for center k-mers from the vectors for their
surrounding context k-mers and the sequence vectors. These sequence vectors are
then the embedded representations of the sequences. Next, information learned
during the unsupervised phase is applied during supervised learning with labeled
sequences. The labeled sequences for each task (localiza-tion, T50, absorption,
and enantioselectivity) are first broken into k lists of non-overlapping k-mers (Step
3). An embedding is then inferred for each se-quence using the trained embedding
model (Step 4). n is the number of labeled sequences. Finally, during GP regression
(Step 5), the inferred training embeddings X′ and the training labels y are used to
train a GP regression model, which can then be used to make predictions.

physical amino acid properties, or string mismatch kernels17. This suggests that
embeddings enable accurate predictions despite having orders of magnitude fewer
dimensions and being simpler to obtain because they do not require alignments,
structural data, or selection of relevant amino-acid properties. Finally, we visualize
the geometry of the embedding vectors, which captures meaningful relationships
be-tween the embedded proteins.
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4.2 Methods
Modeling Scheme
Figure 4.1 shows the two-part modeling scheme. Unsupervised doc2vec embedding
models were trained on 524,529 protein sequences with lengths between 50 and
999 amino acids (mean length 326) obtained from UniProt using the distributed
memory architecture18. In the distributed memory architecture, the model learns
to predict the central k-mer based on the sequence embedding and the embeddings
for a context window of k-mers on either side of the central k-mer. The size of
the context, i.e. how many k-mers on either side to consider, is the window width
(w), which can be adjusted in the embedding model. Each sequence was broken
into k lists of non-overlapping k-mers. For example, for k = 3, there are three lists
and each list begins at one of the first three amino acid positions of the sequence,
as shown in Figure 4.1. Unsupervised embedding model train-ing was performed
using the lists derived from the UniProt sequences. After unsupervised embedding
model training, the embedding model was used to infer encodings of sequences for
input to supervised Gaussian process (GP) regression models19. Embeddings for
the sequences relevant to each task were de-termined by averaging the embeddings
for the k lists of k-mers corresponding to each task sequence. It was found that
GP performance was highly dependent on the order in which the embeddings for
these sequences were inferred. Therefore, embeddings for each of the three tasks
studied were calculated as the average of 100 inference runs with random input
orders. These embeddings represent each task sequence in a very compact, low-
dimensional form. We learn embeddings with between 4 and 128 dimensions.
By comparison, the other representations used for comparison in this work have
between 103 and 105 dimensions. In addition, sequences from disparate protein
families are embedded in the same vector space, allowing comparisons between
distant sequences and streamlining down-stream modeling. All doc2vec training
and inference was performed in Gensim20.

For some tasks, it was found that randomizing the UniProt sequences by shuffling
or resampling before unsupervised embedding model training improved down-
stream performance. Shuffling refers to scrambling the order of amino acids
for each sequence. Alternatively, resampling refers to drawing sequences of the
original lengths according to the overall observed amino acid frequency for the
UniProt sequences (resample-UniProt) or according to uniform amino acid fre-
quency (resample-uniform). The embedding model is then trained on these ran-
domized sequences instead of the original UniProt sequences. We suspect that this
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has a regularizing effect on the embedding model: randomization prevents the em-
beddingmodel from overfitting to a set of protein sequences that is not representative
of those in the task. This also suggests that one of the key pieces of information the
unsupervised embedding model learns is the frequency with which different amino
acids occur in the same proteins.

The data for each task are taken from different protein engineering projects. When
building a model that must generalize across diverse families of proteins, the best
practice is to minimize sequence redundancy between the training and test sets21.
However, protein-engineering projects typically generate data in a stepwise manner,
where each subsequent set of sequences characterized is determined by previously
characterized sequences. Therefore, we split the training and test sets such that the
training sets contain sequences from earlier steps than those in the test sets, which
come from later steps. This provides a realistic simulation of machine learning
usage in protein engineering.

All embedding models were trained for 25 epochs. Embedding hyperparameters
were chosen using 20-fold cross-validation on the training set. We set the dimension
to 64 and considered values of k between 1 and 5, and values of w between 1
and 7. We used GP regression models with Matérn kernels with ν = 5

2 . The
noise and kernel hyperparameters were optimized by maximizing the marginal
likelihood19. A GP model trained on the entire training set was then used to predict
the relevant properties for test set sequences. GP models trained on embedded
representations were com-pared to models trained on one-hot representations of
amino acid sequence, mismatch string kernels with k = 5 and m = 1, ProFET8, and
a subset of AAIndex22. ProFET represents each sequence by extracting elementary
biophysical and sequence-derived features. AAIndex is a set of 553 properties
for each of the 20 amino acids. 64 of these properties were chosen by greedily
maximizing the average cosine distance between the chosen properties. Each amino
acid is therefore represented by a vector of 64 properties, and each protein is
represented by concatenating the property vectors for its amino acid sequence. For
two of the three tasks, structural information was available. For those tasks, models
were also compared to a GP model trained on a one-hot representation of both the
sequence and the structure. The structure was encoded in these cases by a binary
indicator vector for the identity of each pair of amino acids within 4.5 Å in the
crystal structure1.
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Tasks
We tested embeddings on three tasks with diverse proteins, different measured
properties, and various methods of generating the original library. The data for
these tasks were collected from previous studies and will only briefly be described
here.

Channelrhodopsin (ChR) localization (‘Localization’) Two separate, ten-block
recombination libraries were designed from three parental ChRs (CheRiff, C1C2,
and CsChrimsonR). Each chimeric ChR variant in these libraries is composed of
blocks of sequence from the parental ChRs. The data for this task comprise a total of
248 sequences. Genes for these sequences were synthesized and expressed in human
embryonic kidney (HEK) cells, and their membrane localization was measured2.

CytochromeP450 thermostability (‘T50’) An eight-block recombination library
was designed from three parental cytochrome P450s (CYP102A1, CYP102A2, and
CYP102A3)23. The data for this task include 242 sequences from this library and 19
chimeric cytochrome P450s generated from other parents or cross-over points1, for a
total of 261 sequences. Genes for these sequenceswere expressed inEscherichia coli
and their T50s (temperature at which half of the protein was irreversibly inactivated
after a 10-minute incubation) were measured.

Rhodopsin absorptionwavelength (‘Absorption’) Amino acid substitutionswere
made in the retinal-binding pocket of Gloeobacter violaceus rhodopsin (GR) in or-
der to tune its peak absorption wavelength. GR is a light-activated proton pump24.
The data for this task consist of GR and 80 blue- and red-shifted variants with 1-5
mutations generated in the course of tuning its absorption wavelength, for a total of
81 sequences.

Epoxide hydrolase enantioselectivity (‘Enantioselectivity’) Amino-acid sub-
stitutions were made in the binding pocket of the epoxide hydrolase (EH) from
Aspergillus niger in order to improve its preference for the (S)-enantiomer of gly-
cidyl phenyl ether. The data for this task consist of EH and 151 variants with 1-8
mutations generated in the course of improving its enantioselectivity, for a total of
152 variants25.

These three tasks include light-sensitive integral membrane proteins (ChR and
GR) and soluble enzymes (cytochrome P450 and EH). The tasks include libraries
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Table 4.1: Summary of tasks used to evaluate embedded representations

Task n Protein Library Property
Localization 248 Channelrhodopsin Recom. Plasma membrane localization

T50 261 Cytochrome P450 Recom. Thermostability

Absorption 81 Bacterial rhodopsin SSM Peak absorption wavelength

Enantioselectivity 152 Epoxide hydrolase SSM Enantioselectivity

Notes: Recom. and SSM denote library design by recombination and site-saturation muta-
genesis, respectively.

constructed via recombination and site-directed mutagenesis and examine a variety
of protein properties. The diversity of tasks allows us to evaluate the generality
of embedded representations. Table 4.1 summarizes the tasks. Sequences and
measurements are provided as Datasets 1-5 in the Supplementary Information.

4.3 Results and Discussion
Wecompared the quality of predictions forGPmodels trained on different encodings.
Table 4.2 compares the GP regression results on the test set for each task using
embeddings, physical properties from AAIndex, ProFET, a mismatch kernel with
k = 5 and m = 1, and one-hot encodings. Figures 4.S1 – 4.S4 compare the actual
test values to those predicted by GP regression models trained using each encoding.
The embedding hyperparameters chosen for localization are shuffled, k = 3, and
w = 5. For T50, they are no randomization, k = 3, and w = 7. For absorption, they
are resample-uniform, k = 4, and w = 1. For enantioselectivity, they are resample-
UniProt, k = 3, and w = 7. The cross-validation metrics for each task and each set
of embedding hyperparameters are included as Datasets 5-8 in the Supplementary
Information. GP regression predicts a Gaussian distribution, defined by its mean and
variance, for each evaluation sequence. Predictions were evaluated using the mean
absolute error (MAE), Kendall’s τ (τ), and the Gaussian log-likelihood (log P). The
MAE measures deviation between predicted and actual values, τ measures ordinal
accuracy, and log-likelihood provides a probabilistic measurement of model fit.
Together, these three metrics provide a multifaceted comparison between different
models.

For localization, embeddings trained on UniProt sequences slightly outperform one-
hot encodings of sequence and structure. Previously, we showed that models built
on one-hot encodings were sufficiently accurate to identify sequences that maximize
localization2. For T50, embeddings achieve the best MAE and τ, while AAIndex
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Table 4.2: Comparison of learned, dense, embedded representations, ProFET,
AAIndex properties, mismatch string kernels and one-hot representations of se-
quence and structure for predicting protein properties using GP regression

Task ntrain ntest Representation d MAE τ log P
Localization 215 33 Embedding 75 0.73 0.60 -43.5

Seq. and struct. 600747 0.76 0.60 -43.2
Sequence 7161 0.76 0.59 -43.7
Mismatch kernel - 0.86 0.55 -54.6
ProFET 1173 1.03 0.32 -54.9
AAIndex 21824 0.76 0.55 -44.3

T50 242 19 Embedding 64 2.91 0.61 -59.5
Seq. and struct. 994890 2.98 0.53 -57.3
Sequence 9786 2.94 0.57 -57.2
Mismatch kernel - 4.03 0.38 -58.5
ProFET 1173 4.93 0.43 -63.7
AAIndex 29824 2.95 0.51 -56.2

Absorption 62 19 Embedding 64 23.3 0.57 -109.2
Sequence 6258 22.1 0.63 -111.0
Mismatch kernel - 17.8 0.68 -103.9
ProFET 1173 53.5 0.32 -174.7
AAIndex 19072 30.1 0.35 -116.4

Enantioselectivity 136 16 Embedding 64 9.14 0.64 -64.5
Sequence 8358 8.16 0.50 -63.3
Mismatch kernel - 7.50 0.46 -65.1
ProFET 1173 27.9 0.27 -76.7
AAIndex 25472 12.5 0.25 -65.7

Notes: ntrain and ntest are the number of training and test examples, respectively. d is the
dimension of the representation. MAE is the mean absolute error between predicted test
values and the actual test values. τ is the Kendall’s between the predicted test values and
the actual test values. log P is the log Gaussian likelihood of the actual test values given
the predicted distributions. All reported metrics are for the held-out test set. All embedding
hyperparameters were chosen using 20-fold cross-validation on the training set. The best
performance on each metric for each task is shown in bold.
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achieves the highest log-likelihood. The one-hot encodings are comparable, while
the mismatch kernel and ProFET perform much worse. Likewise, models built on
one-hot encodings were previously shown to be sufficiently accurate in identifying
sequences that maximize the T501. For absorption, the mismatch kernel achieves
the best performance across metrics, embeddings and the one-hot sequence encod-
ing are comparable, while ProFET and AAIndex perform much worse. Finally,
for enantioselectivity, embeddings achieve comparable performance to the one-hot
sequence encoding and the mismatch kernel while ProFET and AAIndex are much
worse.

For three of the four tasks, the embeddings are the most accurate by at least one
metric even though they have several orders of magnitude fewer dimensions than
the other representations. Mismatch string kernels are calculated directly from the
amino acid sequences without an intermediate vector representation and therefore
have no dimension. This shows that embeddings can be used as a low-dimensional
representation of protein sequences for building machine-learning models of protein
function. The training time for GP regression is dominated by the O(n3) time to
invert the covariance matrix. However, on a 2016 Macbook Pro, models using
64-dimensional embeddings train approximately 10 times faster than those using
one-hot embeddings of sequence and structure.

To better evaluate the information gained by the embedding model, we performed
three negative controls, which are summarized in Table 4.3. First, we trained
embedding models only on those sequences used in the task: during unsupervised
embeddingmodel training, we replaced the 500,000UniProt sequenceswith the 81 –
261 sequences to be inferred. This decreasedGP regression performance, suggesting
that information from the unlabeled sequences improves predictions and therefore
that the unsupervised embedding model is learning sequence-specific information
from the unlabeled sequence data. Second, we confirmed that scrambling the order
of the amino acids in the task-specific sequences before inferring their embeddings
also decreases regression performance. This demonstrates that the embedding
model is encoding useful information about the task sequences during the inference
step, including information related to the order of the amino acids. Finally, we
shuffled the training labels (i.e. the measured properties) for each sequence in the
training set but not the test labels, which should remove the model’s ability to learn
anything about the test set from the training set. These negative controls show that
the embedding model is applying information from the unlabeled sequences to learn
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Table 4.3: Negative controls

Task Control MAE τ log P
Localization - 0.73 0.60 -43.5

Task sequences only 0.86 0.50 -50.0
Shuffled task sequences 1.21 0.16 -57.4
Shuffled training labels 1.16 -0.39 -58.3

T50 - 2.91 0.61 -59.5
Task sequences only 5.02 0.45 -63.3
Shuffled task sequences 4.49 0.31 -61.8
Shuffled training labels 5.72 -0.35 -67.1

Absorption - 23.3 0.57 -109.2
Task sequences only 61.4 0.34 -162.1
Shuffled task sequences 61.4 -0.03 -162.0
Shuffled training labels 61.4 -0.43 -162.0

Enantioselectivity - 9.14 0.64 -64.5
Task sequences only 41.3 -0.06 -85.2
Shuffled task sequences 42.7 0.27 -84.7
Shuffled training labels 42.8 0.06 -84.8

meaningful embeddings for the labeled sequences.

In order to determine how many dimensions are required to represent a protein
sequence, we comparedGPmodel performance for embeddings inferred from lower-
dimensional models with other hyperparameters held constant. Figure 4.2 shows
that τ and MAE tend to worsen gradually as d decreases until d = 16, and then
worsen very steeply. It is likely that predictive performance could be improved
by optimizing d simultaneously with the other embedding hyperparameters. These
results suggest that ∼32 dimensions encode enough information about a 250 – 500
amino acid sequence to make predictions of the protein’s functional properties.

Likewise, we compared GP model performance for embeddings inferred from sub-
sets of the UniProt sequences with other hyperparameters held constant in order to
determine the number of unlabeled sequences necessary for unsupervised embed-
ding model training. Figure 4.3 illustrates that for localization and T50, both τ and
MAE show little improvement as the number of unlabeled sequences increases past
100,000. However, for absorption, MAE continues to decrease as the number of
unlabeled sequences increases. For enantioselectivity, τ continues to increase as
the number of unlabeled sequences increases. The training sets for absorption and
enantioselectivity are smaller than those for localization and T50. In addition, the
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Figure 4.2: Effect of embedding dimension on predictive accuracy. For each task,
embeddings of varying dimensions were trained and then used for GP regression.
The resulting model quality was then evaluated using the Kendall’s τ and MAE.
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Figure 4.3: Effect of number of unlabeled sequences on predictive accuracy. For
each task, embeddings were trained on subsets of the UniProt sequences and then
used for GP regression. The resulting model quality was then evaluated using the
Kendall’s τ and MAE.

localization and T50 tasks use data from recombination libraries, and the training
sets for these tasks are chosen to maximize information about the unseen members
of these libraries, including those in the test sets. However, the absorption and enan-
tioselectivity tasks use data from site-directed mutagenesis experiments, and the
training sets are not designed to be in-formative about the test sets. Therefore, these
tasks may benefit more from the additional information gained by unsupervised
model training.

To visualize the geometry of the learned embeddings, we used t-distributed stochas-
tic neighbor embedding (t-SNE)26 to project the inferred embeddings, AAIndex,
ProFET, and one-hot encodings of sequence onto a 2-dimensional space. Pro-
jections for ProFET use perplexity 10; the other projections use perplexity 50.
Compared to other methods for dimensionality reduction, t-SNE focuses on local
structure and tends to extract clustered local groups. Projections were calculated
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Figure 4.4: Visualization of learned vector representations of protein sequences.
Vector representations projected onto 2 dimensions using t-SNE with perplexity
50 (embeddings, AAIndex, sequence) or 10 (ProFET). The sequences for the lo-
calization, the T50 and the enantioselectivity tasks are colored by the number of
mutations from the nearest parent. The sequences for the absorption task are colored
by peak absorption wavelength. Parents for localization, T50 and enantioselectivity
are indicated by red triangles.

using scikit-learn’s implementation of t-SNE with default parameters except where
otherwise specified. Figure 4.4 shows these 2-dimensional projections.

The embeddings for localization cluster around each of the three re-combination
parents, and variants with fewer mutations from the parents are closer to the par-
ents. The projections for the AAIndex properties, ProFET, and one-hot encoding
for localization show a similar pattern. The embeddings for T50 also cluster around
each of the three recombination parents, and variants with fewer mutations are also
closer to the parents. The projections for the AAIndex properties and one-hot en-
coding for T50 also place variants with fewer mutations closer to the parents, but
there are not three clear clusters. The projection for ProFET does not show any
clear structure. The embeddings for absorption roughly separate red-shifted and
blue-shifted sequences, with the most blue-shifted sequences in a separate cluster.
The projections for the AAIndex properties, ProFET, and one-hot encoding for ab-
sorption show the same blue-shifted cluster and rough separation. The embeddings
for enantioselectivity place the sequences with the fewest mutations closest to the
parent. The projections for the AAIndex properties, ProFET, and one-hot encoding
also place variants with fewer mutations closer to the parent. Across the four diverse
tasks, the inferred embeddings capture relationships between the sequences in the
library.

The embedding model embeds sequences for all four tasks into the same vector
space, so relationships between all the task sequences can also be interrogated.
Figure 4.5 shows a 2-dimensional projection obtained using t-SNE with perplexity
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Figure 4.5: Combined visualization of vector representations for each of the four
tasks. Sequences are colored to show separation between the embeddings for each
task.

50 for all of the embedded representations. The embeddings for each protein family
form their own cluster. Figure 4.S5 shows that the clustering of sequences most
similar to each parent can still be observed for localization and T50, the absorption
sequences still roughly separate by whether they are blue- or red-shifted, and the
enantioselectivity sequences are roughly separated by their enantioselectivity.

4.4 Conclusions
This work shows that embedding models trained on proteins from UniProt can be
applied to predict the functional properties of a small number of related proteins,
such as those often encountered in protein engineering. Models trained using em-
beddings are comparable to and often outperform those trained on one-hot encodings
of sequence and structural contacts, mismatch string kernels, or amino acid physical
properties across four tasks, showing that embeddings generalize across protein fam-
ilies, library designs, and protein properties. As few as 32 dimensions are sufficient
to achieve competitive model performance. However, the optimal embedding hyper-
parameters are highly dependent on the specific task. Negative controls show that
the unsupervised embedding model incorporates information from the unlabeled
sequences. Furthermore, the inferred embeddings show patterns consistent with
the library designs when visualized in a 2-dimensional space. While the number
of known protein sequences is rapidly increasing, it remains time-consuming and
difficult to measure many protein properties of interest. By first training an unsu-
pervised embedding model on unlabeled protein sequences, we are able to transfer
information encoded in these unlabeled sequences to a specific task. This allows
predictive models while bypassing many of the difficulties associated with using
one-hot encodings and physical properties to represent protein sequences.
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Supplemental Information

Figure 4.S1: Test predictions for ChR localization. Predicted vs measured values
on test sequences using GP regression models trained using each encoding method.

Figure 4.S2: Test predictions for P450 T50. Predicted vs measured values on test
sequences using GP regression models trained using each encoding method.
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Figure 4.S3: Test predictions for rhodopsin absorption. Predicted vs measured
values on test sequences using GP regression models trained using each encoding
method.

Dataset 1: localization.txt. This dataset contains the sequences and measurements
for the localization task. The columns are name: the nameof the sequence; sequence:
the amino acid sequence; log_GFP: the localization measurement in arbitrary units;
is_train: whether the measurement is part of the training set; and m: the number of
mutations from the closest parent sequence. The three recombination parents are
named cschrimson, c1c2, and cheriff.

Dataset 2: T50.txt. This dataset contains the sequences and measurements for the
T50 task. The columns are name: the name of the sequence; sequence: the amino
acid sequence; T50: the T50measurement in ◦C; is_train: whether themeasurement
is part of the training set; and m: the number of mutations from the closest parent
sequence. The three recombination parents are named 00000000, 11111111, and
22222222.

Dataset 3: absorption.txt. This dataset contains the sequences andmeasurements for
the absorption task. The columns are name: the name of the sequence; sequence:
the amino acid sequence; peak: the peak absorption wavelength in nanometers;
is_train: whether the measurement is part of the training set; and m: the number of
mutations from the closest parent sequence.
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Figure 4.S4: Test predictions for epoxide hydrolase enantioselectivity. Predicted vs
measured values on test sequences using GP regression models trained using each
encoding method.

Figure 4.S5: t-SNE visualizations calculated for all embeddings. Visualizations
for localization and T50 are colored according to the closest recombination parent.
Visualizations for absorption are colored according to whether the peak absorption
wavelength is blue- or red-shifted compared to the parent. Visualizations for enan-
tioselectivity are colored by whether each sequence is above or below the median (e
= 46).

Dataset 4: enantioselectivity.txt. This dataset contains the sequences and mea-
surements for the enantioselectivity task. The columns are name: the name of the
sequence; sequence: the amino acid sequence; e-value: the enantiomeric ratio;
is_train: whether the measurement is part of the training set; and m: the number of
mutations from the closest parent sequence.

Dataset 5: cv_localization.txt. This dataset contains the 20-fold cross-validation
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results for all embedding hyperparameters on the localization task. The columns
are task: the measurement predicted; embedding: the embedding used; kernel: the
Gaussian process kernel used; R: the Pearson correlation; R2: the coefficient of de-
termination; kendalltau: Kendall’s τ; log_loss: the log likelihood loss; and SE: the
mean squared error. The embedding name always begins with ‘X_’ followed by the
name of the unlabeled sequences used in embedding model training, then the k-mer
size k and the window width w. The possible unlabeled sequences are ‘original’
(the full unrandomized UniProt dataset), ‘random’ (resample-UniProt), ‘scrambled’
(shuffled), ‘uniform’ (resample-uniform), ‘small’ (1000 sequences randomly sam-
pled from the full UniProt dataset), ‘P450_data’ (the labeled P450 sequences enu-
merated in T50.txt), ‘P450_all’ (all possible chimeras in the recombination library
from which the sequences in T50.txt are sampled), ‘peak’ (the sequences enumer-
ated in absorption.txt), ‘ChR_data’ (the sequences enumerated in localization.txt),
‘ChR_all’ (all possible chimeras in the recombination library from which the se-
quences in localization.txt are sampled), and ‘aneh’ (the sequences enumerated in
enantioselectivity.txt).

Dataset 6: cv_T50.txt. This dataset contains the 20-fold cross-validation results
for all embedding hyperparameters on the T50 task. The columns are task: the
measurement predicted; embedding: the embedding used; kernel: the Gaussian
process kernel used; R: the Pearson correlation; R2: the coefficient of determina-
tion; kendalltau: Kendall’s τ; log_loss: the log likelihood loss; and SE: the mean
squared error. The embedding name always begins with ‘X_’ followed by the name
of the unlabeled sequences used in embedding model training, then the k-mer size k

and the window width w. The possible unlabeled sequences are ‘original’ (the full
unrandomized UniProt dataset), ‘random’ (resample-UniProt), ‘scrambled’ (shuf-
fled), ‘uniform’ (resample-uniform), ‘small’ (1000 sequences randomly sampled
from the full UniProt dataset), ‘P450_data’ (the labeled P450 sequences enumer-
ated in T50.txt), ‘P450_all’ (all possible chimeras in the recombination library
from which the sequences in T50.txt are sampled), ‘peak’ (the sequences enumer-
ated in absorption.txt), ‘ChR_data’ (the sequences enumerated in localization.txt),
‘ChR_all’ (all possible chimeras in the recombination library from which the se-
quences in localization.txt are sampled), and ‘aneh’ (the sequences enumerated in
enantioselectivity.txt).

Dataset 7: cv_absorption.txt. This dataset contains the 20-fold cross-validation
results for all embedding hyperparameters on the absorption task. The columns
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are task: the measurement predicted; embedding: the embedding used; kernel: the
Gaussian process kernel used; R: the Pearson correlation; R2: the coefficient of de-
termination; kendalltau: Kendall’s τ; log_loss: the log likelihood loss; and SE: the
mean squared error. The embedding name always begins with ‘X_’ followed by the
name of the unlabeled sequences used in embedding model training, then the k-mer
size k and the window width w. The possible unlabeled sequences are ‘original’
(the full unrandomized UniProt dataset), ‘random’ (resample-UniProt), ‘scrambled’
(shuffled), ‘uniform’ (resample-uniform), ‘small’ (1000 sequences randomly sam-
pled from the full UniProt dataset), ‘P450_data’ (the labeled P450 sequences enu-
merated in T50.txt), ‘P450_all’ (all possible chimeras in the recombination library
from which the sequences in T50.txt are sampled), ‘peak’ (the sequences enumer-
ated in absorption.txt), ‘ChR_data’ (the sequences enumerated in localization.txt),
‘ChR_all’ (all possible chimeras in the recombination library from which the se-
quences in localization.txt are sampled), and ‘aneh’ (the sequences enumerated in
enantioselectivity.txt).

Dataset 8: cv_enantioselectivity.txt. This dataset contains the 20-fold cross-
validation results for all embedding hyperparameters on the enantioselectivity task.
The columns are task: the measurement predicted; embedding: the embedding
used; kernel: the Gaussian process kernel used; R: the Pearson correlation; R2:
the coefficient of determination; kendalltau: Kendall’s τ; log_loss: the log likeli-
hood loss; and SE: the mean squared error. The embedding name always begins
with ‘X_’ followed by the name of the unlabeled sequences used in embedding
model training, then the k-mer size k and the window width w. The possible un-
labeled sequences are ‘original’ (the full unrandomized UniProt dataset), ‘random’
(resample-UniProt), ‘scrambled’ (shuffled), ‘uniform’ (resample-uniform), ‘small’
(1000 sequences randomly sampled from the full UniProt dataset), ‘P450_data’ (the
labeled P450 sequences enumerated in T50.txt), ‘P450_all’ (all possible chimeras
in the recombination library from which the sequences in T50.txt are sampled),
‘peak’ (the sequences enumerated in absorption.txt), ‘ChR_data’ (the sequences
enumerated in localization.txt), ‘ChR_all’ (all possible chimeras in the recombina-
tion library from which the sequences in localization.txt are sampled), and ‘aneh’
(the sequences enumerated in enantioselectivity.txt).
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C h a p t e r 5

BATCHED STOCHASTIC BAYESIAN OPTIMIZATION VIA
COMBINATORIAL CONSTRAINTS DESIGN

5.1 Introduction
Bayesian optimization techniques leverage regularity assumptions, such as smooth-
ness and continuity, to sequentially optimize unknown utility functions. Bayesian
optimization offers efficient solutions across high-dimensional problem settings in-
cluding experimental design and recommender systems. Bayesian optimization
techniques typically assume that items can be directly queried at each iteration.
However, in many applications, this is not true: instead, a library of items is speci-
fied, and then batches of items from the library are stochastically queried.

As a prototypical example, let us consider site-saturation mutagenesis (SSM) [1],
a protein-engineering strategy that mutates a small number of critical sites in a
protein sequence (cf. Fig. 5.1). At each round, a combinatorial library is designed
by specifying the allowed amino acids at the specified sites (step (1-3)), and then
a batch of sequences from the library is sampled with replacement (step 4). The
sampled sequences are evaluated for their ability to perform a desired function (step
5), such as a chemical reaction. To uncover non-linear effects, it is desirable to
simultaneously mutate multiple sites in each round. Ideally, at each iteration, the
amino acids to be considered at each site should be chosen to maximize the number
of improved sequences expected in the stochastic batch sample from the resulting
library.

Finding the such libraries is highly non-trivial: it requires solving a combinatorial
optimization problem over an exponential number of items. Libraries are designed
by choosing the allowed amino acids at each site (‘constraints’) from the set of all
amino acids at all sites. Adding allowed constraints results in an exponential number
of items in the library. Furthermore, due to the uncertainty in the predictions, and the
fact that the queries will be randomly selected with replacement from the resulting
library, one must devise a new optimization scheme as well as new theoretical and
algorithmic tools for addressing such problem.
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Figure 5.1: Data-driven site-saturation mutagenesis. (1) Machine learning model
for predicting certain protein properties ; (2) site-saturation library design; (3)
synthesize protein sequences according to the site-saturation libraries; (4) randomly
sample proteins for sequencing; (5) sequence and measure the properties of the
sampled proteins.

Our contribution In this paper, we investigate Batched Stochastic Bayesian Op-
timization (BSBO), a novel Bayesian optimization scheme for choosing a library
design in order to guide exploration towards items with greater utility. This scheme
is unique in that we choose a library design instead of directly querying items,
and the items are queried in stochastic batches (e.g. 10s – 1000s at a time). In
particular, we focus on library design for site-saturation mutagenesis, and identify
a natural objective function that evaluates the quality of a library design given the
current information about the system. We propose Online-DSOpt, an efficient on-
line algorithm for optimization over stochastic batches. In a nutshell, Online-DSOpt
assembles each batch by decomposing the objective function into the difference of
two submodular functions (DS) [2]. This allows us to employ DS optimization
tools to greedily identify sets of constraints that increase the likelihood of finding
items with high utility. We demonstrate the performance of Online-DSOpt on both
synthetic and two experimentally-generated protein datasets, and show that our al-
gorithm in general outperforms conventional greedy heuristics and efficiently finds
rare, highly-improved, sequences.

5.2 Related Work
Gaussian process Bayesian optimization Our work addresses a specific setting
for Gaussian process (GP) Bayesian optimization. GPs are infinite collections of
random variables such that every finite subset of random variables has a multivariate
Gaussian distribution. A key advantage of GPs is that it is very efficient to perform
inference, which makes it one of the most popular theoretical tools for Bayesian
optimization [3–5]. Notably, [4] introduce the Gaussian Process Upper Confidence
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Bound (GP-UCB) algorithm for Bayesian optimization, which provides bounds on
the cumulative regret when sequentially querying items. [6] generalize this to batch
queries. In contrast to our setting, these algorithms require the ability to directly
query items, either sequentially or in batches.

GP optimization for protein engineering GP-UCB has been used to find im-
proved protein sequences when sequences can be queried directly [7, 8]. A GP has
been used to select constraints for an SSM library [9]. However, although this work
empirically finds improved sequences by constraining the amino acids at each site, it
do not provide a general procedure for selecting their constraints. Instead, they take
advantage of a fortuitous observation, which will not generalize to other systems or
even replicate experiments on their system.

Information-parallel learning In addition to the bandit setting [6], there is a large
body of literature on various machine learning settings that exploit information-
parallelism. For example, in large-scale optimization, mini-batch/parallel training
has been extensively explored to reduce the training time of stochastic gradient de-
scent [10, 11]. In batch-mode active learning [12–14], an active learner selects a set
of examples to be labeled simultaneously. The motivation behind batch active learn-
ing is that in some cases it is more cost-effective to request labels in large batches,
rather than one-at-a-time. This setting is also referred to as buy-in-bulk learning
[15]. In addition to the simpler modeling assumption of being able to directly issue
queries, these approaches also differ from our setting in terms of the objective: the
batch-mode active learning algorithms aim to find a set of items that are maximally
informative about some target hypothesis (hence to maximally explore), whereas we
want to identify the best item (i.e., to both explore and exploit).

Submodularity and DS optimization The importance of submodularity [16] has
been widely recognized in recent years in theoretical computer science and machine
learning and is key to solving many discrete problems. While there has been a
growing number of problems that can be expressed as submodular minimization [17]
or maximization [18, 19] problems, it still only captures a small subset of discrete
optimization problems. [2] show that any set function q can be decomposed as the
difference of two submodular functions h and g. Replacing h with its modular upper
bound, g with its modular lower bound, or both reduces the problem of minimizing
q to a series of submodular minimizations, submodular maximizations, or modular
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minimizations, respectively, that are guaranteed to reduce q at every iteration and
to arrive at a local minimum of q [20]. In general, DS decomposition requires
exponential time. We prove two polynomial-time decompositions of our objective
function.

5.3 Problem Statement
Wepropose the batched stochastic Bayesian optimization (BSBO) problem, inwhich
an algorithm iteratively optimizes an unknown utility function f : X → R (Fig. 5.2,
step (1)).

• The algorithm designs a library by choosing a set of constraints S ⊆ C based
on its current knowledge about f (Fig. 5.2, step (2)). We will use a GP to
model f . This generates a library: Q(S), where Q : 2C → 2X denotes the
physical process that produces items under these constraints (Fig. 5.2, step
(3)).

• A batch of n queries: BQ(S, φ) ⊆ X where φ represents the random state
of the sampling procedure, is randomly selected from the library Q(S) via
a stochastic sampling procedure (Fig. 5.2, step (4)). Each query x achieves
utility f (x) and incurs some cost c({x}), where c : 2X → R denotes the cost
function of a set of items (Fig. 5.2, step (5)).

• The results of the query are used to update our GP posterior for f .

This setting presents the dual challenges of needing to optimize over the space of
constraints (which generate a library) instead of directly over items and of stochastic
sampling instead of exact queries. If at round t we pick constraints St , then the
expected utility of the tth batch is F(St) , Eφ

[∑
x∈BQ(St,φ) f (x)

]
.

The goal in BSBO is to identify improved items as efficiently as possible. Assume
that we have a budget of querying n items for each batch of experiments and that
each batch BQ is selected by sampling uniformly from the library. At each iteration,
we wish to select the constraints S that will maximize the (expected) number of
improved items observed in the next stochastic batched query. If the current best
item has a value τ, then this objective is

F(S) = Eφ


∑

x∈BQ(S)

1( f (x) > τ)

 (5.1)
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Figure 5.2: The batched stochastic Bayesian optimization setting. (1) Bayesian
modeling (2) combinatorial constraints design; (3) candidate query generation; (4)
random sampling; (5) batched queries.

Here, 1 is the indicator function. This objective is intractable under the GP pos-
terior, as the dependencies between f (x) preclude a closed form. We ignore the
dependencies between the utilities to arrive at the following surrogate function

F̂(S) =
∑

x∈Q(S)

ρ(x)
[
1 −

(
1 −

1
|Q(S)|

)n]
(5.2)

The rewards ρ(x) = P( f (x) > τ) can be computed for all x ∈ Q(C) from the
GP posterior for each item using the Gaussian survival function by ignoring off-
diagonal entries in the predictive posterior covariance. Note that the surrogate
objective F̂ captures the expected reward under an independence assumption. As
we will demonstrate later in §5.5, despite such an assumption, we observe a strong
correlation between F̂ and F on the experimental datasets we study, which are
known to have high dependencies between the rewards ρ(x) of different items.

We now consider the site-saturation library design problem as a special case of
batched stochastic Bayesian optimization. In SSM, the utility function f (x) specifies
the utility of a protein sequence x, and the constraint set C =

⋃L
`=1 C

(`) specifies the
set of amino acids allowed at each site of the protein sequence. Here, L denotes the
number of sites, and C(`) denotes the set of all possible amino acids1 at site `. We
denote the set of amino acids selected for site ` by S(`); hence S =

⋃L
`=1 S

(`). The
candidate query pool (library) Q consists of all possible protein sequences that can
be generated w.r.t. the constraints S:

Q (S) =
L∏̀
=1
S(`) (5.3)

Note that adding constraints generally increases the number of allowed items.
1In SSM, C(`) corresponds to the 20 canonical amino acids.
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Algorithm 1: Online Batched Constraints Design via DS Optimization (Online-
DSOpt)

1 Input: Constraints set C =
⋃L
`=1 C

(`); number of rounds T ; budget on each batch
n; GP prior on f
begin

2 A ← ∅

/* iteratively select the next batch */

for t in 1, . . . ,T do
/* compute the reward matrix M = { f (x)} */

3 M ← ComputeReward(posterior on f ,A)
4 S ← DSOpt(C, M, n)

/* posterior update */

5 A ← A ∪ BQ(S, φ)

6 Output: Optimizer of f

5.4 Algorithms
WenowpresentOnline-DSOpt (Algorithm1), an effective online learning framework
for (online) batched stochastic Bayesian optimization. Our framework relies on a
novel discrete optimization subroutine, namely, DSOpt, which aims to maximize
the expected reward for each batched experiment. At each iteration, Online-DSOpt
uses a GP trained on previously-observed items to compute the reward for each item
x ∈ Q(C) (cf., Line 3) and then invokes DSOpt to select constraints. Pseudocode for
DSOpt is presented in Algorithm 2. A batch of items is then sampled stochastically
from the resulting library and used to update the GP.

A key component of the DS optimization subroutine DSOpt is a DS decomposition
of the objective. Note that in general, finding a DS decomposition of an arbitrary set
function requires searching through a combinatorial space and can be computation-
ally prohibitive. As one of our main contributions, we present two polynomial time
algorithms, DSConstruct-SA (Algorithm 3) and DSConstruct-DC (Algorithm 4), for
decomposing our surrogate objective. Both algorithms exploit the structure of the
objective function: DSConstruct-SA decomposes the objective via submodular aug-
mentation [2]; DSConstruct-DC decomposes the objective via a difference of convex
functions (DC) decomposition.

DS Optimization
After it obtains the submodular decomposition F̂ = −(h − g) from either of the
DS construction procedures, DSOpt (Algorithm 2 proceeds to optimize the DS
function via an iterative greedy algorithm. For example, let us consider running the
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Algorithm 2: DS Optimization (DSOpt)
1 Input: Constraints set C =

⋃L
`=1 C

(`); reward matrix M = { f (x)}; budget on each
batch n
begin

2 Set up F̂ from the inputs (M, n)
/* Decompose F̂ into diff of submod funcs. */

3 h, g ← DSConstruct-SA(F̂, C)
(or h, g ← DSConstruct-DC(F̂, C))
/* Initiliaze the starting position */

4 Scand ← ∅
5 S ← Init(C)

/* Optimize h − g using ModMod or SupSub. */

while S not converged do
/* Keep track of local search solutions */

6 Scand ← Scand ∪ LocalSearch(F̂,S, C)
/* Make a greedy move from S */

7 S ← ModMod(h − g,S, C)
(or S ← SupSub(h − g,S, C))

8 Scand ← Scand ∪ {S}
/* pick the best among candidate solutions */

9 S∗ ← arg minS∈Scand
{
F̂(S)

}
10 Output: Set of selected constraints S∗

Modular-modular procedure (ModMod) [20] for making a greedy move at Line 7
of Algorithm 2. Since our goal is to maximize −(h − g) (i.e., to minimize h − g),
we will seek to minimize the upper bound on h − g. The ModMod procedure
constructs a modular upper bound on the first submodular component, denoted by
ubh ≥ h, and a modular lower bound on the second submodular component, denoted
by lbg ≤ g. Both modular bounds are tight at the current solutionS: ubh(S) = h(S),
lbg(S) = g(S). ModMod then tries to solve the following optimization problem,
starting from S:

S∗ ∈ arg min
S

(
ubh(S) − lbg(S)

)
.

To ensure that we find a better solution, we augment the ModMod procedure with a
sequence of additional local search solutions, and in the end pick the best among all.
The local search procedure, LocalSearch (cf. Line 6 of Algorithm 2), sequentially
makes greedy steps (by adding or removing a constraint from the current solution)
until no further action is improving the current solution. The following theorem
states that our DS optimization subroutine DSOpt is guaranteed to find a “good”
solution:
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Algorithm 3: DS Construction via Submodular Augmentation (DSConstruct-SA)
1 Input: Constraints set C =

⋃L
`=1 C

(`); surrogate objective function F̂, budget on
each batch n; selected constraints S
begin

2 v(x) ←
√

x for x ∈ {1, . . . , |C|}
3 α← v(n − 2) + v(n) − 2v(n − 1)

/* compute β′ of Eq.(5.5) */

foreach x ∈ {1, . . . , |Q(C)|} do
4 r1(x) ←

(
1 − 1

s

)n
−

(
1 − 1

2s

)n

5 r2(x) ← maxT :|T |≤s
∑

x∈T f (x)
6 β′← −maxx r1(x)r2(x)
7 h1(S) ←

|β′ |
α v(|S|)

8 g1(S) ← F̂(S) + |β
′ |

α v(|S|)

9 Output: DS decomposition F̂ = −(h1 − g1)

Theorem 1 (Adapted from20) Algorithm 2 is guaranteed to find a set of constraints
that achieves a local maximum of F̂.

DS Construction via Submodular Augmentation
It is well-established that every set function can be expressed as the sum of a
submodular and a supermodular function [2]. In particular,20 provide the following
constructive procedure for decomposing a set function into the DS form: Given
a set function q, one can define β = minS⊆S′⊆C\ j ∆q( j | S) − ∆q( j | S′), where
∆q( j | S) := q(S ∪ { j}) − q(S) denotes the gain of adding j to S. When q is not
submodular, we know that β < 0. Now consider any strictly submodular function p,
with α = minS⊆S′⊆C\ j ∆p( j | S) − ∆p( j | S′) > 0. Define h(S) = q(S) + |β

′ |

α p(S)

for any β′ < β. It is easy to verify that h is submodular since minS⊆S′⊆C\ j ∆h( j |

S)−∆h( j | S′) ≥ β+ |β′| ≥ 0. Hence q(S) = h(S)− |β|α p(S) is a difference between
two submodular functions.

We refer to the above decomposition strategy as DSConstruct-SA (where SA stands
for “submodular augmentation”), and present the pseudo code in Algorithm 3. As
suggested in [20], we choose the submodular augmentation function p(S) = v(|S|),
where v(x) is a concave function, and therefore α = minx≤x′;x,x′⊆Z v(x + 1) − v(x) −
v(x′+1)−v(x′). This leads to the following decomposition of our surrogate objective
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Algorithm 4: DS Construction via DC Decomposition (DSConstruct-DC)
1 Input: Constraints set

∏L
`=1 C`; budget on each batch n; selected constraints S

begin
2 u(x) ← x2

2 , α← 1
3 r(x) ←

(
1 − 1

x

)n
,

4 β← |minx r′′(x)| for x ∈ {1, . . . , |Q(C)|}.
5 h2(S) ← −

(
1 + β

αu(Q(|S|))
) ∑

x∈Q(S) f (x)

6 g2(S) ← −
(
r(|Q(S)|) + β

αu(Q(|S|))
) ∑

x∈Q(S) f (x)

7 Output: DS decomposition F̂ = −(h2 − g2)

F̂:

F̂(S) =
(
F̂(S) +

|β′|

α
v(|S|)

)
︸                    ︷︷                    ︸

g1(S)

−
|β′|

α
v(|S|)︸      ︷︷      ︸

h1(S)

(5.4)

where h1, g1 by construction are submodular functions, and β′ is a lower bound on
β:

β′ ≤ β = min
S⊆S′⊆C\ j

∆F̂( j | S) − ∆F̂( j | S
′). (5.5)

The key step of the DSConstruct-SA algorithm is to construct such a lower bound β′.
The following lemma, which is proved in the Appendix, shows that one can compute
β′ in polynomial time, and hence can efficiently express F̂ as a DS as defined in
Eq. (5.4).

Lemma 2 Algorithm 3 returns a DS-decomposition of F̂ in polynomial time.

DS Construction via DC Decomposition
We now consider an alternative strategy for decomposing the surrogate function
F̂, based on a novel construction procedure that reduces to expressing a contin-
uous function as the difference of convex (DC) functions. Concretely, we note
that F̂(S) consists of two (multiplicative) terms: (i) a supermodular set function∑

x∈Q(S) f (x), and (ii) a set function that only depends on the cardinality of the in-
put, i.e.,

∑
x∈Q(S) f (x)

(
1 −

(
1 − 1

|Q(S)|

)n)
. As is further discussed in the Appendix,

we show that one can exploit this structure, and focus on the DC decomposition
of term (ii). We provide the detailed algorithm in Algorithm 4, and refer to it as
DSConstruct-DC (where DC stands for “difference of convex decomposition”).
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It is easy to check from Algorithm 3 that DSConstruct-SA runs in quadratic time
w.r.t. |Q(C)|. In contrast, DSConstruct-DC only requires finding the minimum of
an array of size |Q(C)|, which, in the best case, runs in linear time w.r.t. |Q(C)|. At
the end of the algorithm, DSConstruct-DC outputs the following DS function:

F̂(S) =
∑

x∈Q(S)

(−ρ(x)) ·
(
r(|Q(S)|) +

β

α
u(Q(|S|))

)
︸                                                  ︷︷                                                  ︸

g2(S)

−
∑

x∈Q(S)

(−ρ(x))
(
1 +

β

α
u(Q(|S|))

)
︸                                     ︷︷                                     ︸

h2(S)

(5.6)

where u(x) is a non-negative, monotone convex function2, α = minx u′′(x), r(x) =(
1 − 1

x

)n
, and β = |minx r′′(x)|. We then prove the following results:

Lemma 3 With the decomposition as defined in Eq. (5.6), both functions h, g are
submodular and hence we obtain a DS-decomposition of F̂.

5.5 Experiments
In this section, we empirically evaluate our algorithm on both synthetic and real
protein datasets. First, we compare DSOpt against two intuitive greedy heuristics
on synthetic datasets (§5.5). We then justify the choice of our surrogate objective
(Eq. (5.2)) with numerical simulations on real protein datasets in §5.5, and demon-
strate the performance of our batched online optimization algorithm Online-DSOpt
in §5.5.

Synthetic Examples for Batched Optimization
Baseline Algorithms

For simplicity, we refer to the two versions of DSOpt as DSOpt-SA (i.e., DSOpt
with subroutine DSConstruct-SA) and DSOpt-DC (i.e., DSOpt with subroutine
DSConstruct-DC), respectively. We compare against two intuitive greedy search
heuristics: Greedy-Add, which greedily adds constraints and Greedy-Rem, which
greedily removes constraints until the objective stops improving. Because the empty
set is a local optimum (adding any single constraint still results in no valid queries), it
is necessary to begin the optimization at a set of constraints that yields a non-empty
set of queries.

2For example, in practice we set u(x) = x2

2 and thus α = 1.
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Figure 5.3: The cell values for the synthetic dataset with L = 2 and |C(`) | = 26 ∀` ∈
{1, 2}.

Synthetic Datasets

To demonstrate the performance of DSOpt under various configurations, we evaluate
the algorithms on two synthetic datasets designed to have multiple local minima. As
shown inFig. 5.3, our first synthetic dataset consists of two siteswith |C(1) | = |C(2) | =
26. Values for the items in the library are constructed such that there are disjoint
blocks of items with non-zero ρ(x) separated by regions where ρ(x) = 0. This
guarantees that there are multiple local optima in the constraint space. Similarly, we
create a second synthetic dataset with L = 15 and |C(`) | = 2 ∀` ∈ [L]. The library
is structured such that only cells representing subsequences containing specific
substrings have non-zero values. Therefore, it is likely that the dataset containsmany
local optima, which makes it challenging for finding the optimal set of constraints.

Results on Synthetic Datasets

We compare the algorithms across a range of batch sizes n. At each batch size,
we initialize each algorithm at C, the constraints that result in the single best
query, and 18 randomly selected sets of constraints. Fig. 5.4a shows the results
for the compared algorithms on the first dataset (L = 2, |C(`) | = 26), when we
vary n ∈ [0, 1200], and Fig. 5.4b shows the results on the second dataset (L =
15, |C(`) | = 2) for n ∈ [0, 2000]. We observe that DSOpt-SA and DSOpt-DC
consistently outperform Greedy-Add and Greedy-Rem across all values of n, under
both dataset configurations. At small n, the optima tend to have few constraints,
so Greedy-Add performs particularly poorly. As n approaches infinity, the optimum
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Figure 5.4: Performance of each algorithm on finding constraints on synthetic
datasets. Error bars are standard errors. F̂ is the approximate objective, and n is the
batch size.

approaches the ground set C, and so Greedy-Rem performs particularly poorly.
DSOpt-SA and DSOpt-DC perform very similarly across all values of n. In theory,
DSOpt-SA and DSOpt-DC can escape local optima to find better solutions than the
local search algorithm (although this appears to be rare on our synthetic datasets).

Real Experiments for Batched Online Optimization
Protein Datasets

Wefurther evaluate our algorithms on two experimental protein-engineering datasets.
The experimental datasets consist of measured fitness values for every sequence in
four-site SSM libraries for protein G domain B1 (GB1) [21], an immunoglobulin
binding protein, and the protein kinase PhoQ [22]. These fitness landscapes are
known to be highly non-additive (mutations have different effects in combination
than individually). Having measurements for every fitness value in each library
allows us to simulate engineering via multiple rounds of SSM.

Suitability of the Surrogate Objective

Online-DSOpt uses a GP posterior to model the unobserved utilities. However, there
is no closed form for the true batch constraint design objective F as defined in
Eq. (5.1), which is to choose constraints S that maximize the expected number of
improved observations found by querying Q(S). The surrogate objective function F̂

(Eq. (5.2)) ignores dependencies between items, and thus will overestimate the true
objective. To test the suitability of the surrogate objective function, we selected an
initial batch of sequences from each of the protein datasets consisting of all the single
mutants plus 100 randomly-selected sequences, trained a GP regression model, and
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Figure 5.5: Comparing F̂ (Eq. (5.2)) against the Monte Carlo estimates of F
(Eq. (5.1)). Error bars are standard errors for the Monte Carlo estimates. The
approximate objective correlates well with Monte Carlo estimates of the exact ob-
jective.

used the posterior to compute the rewards ρ(x). In Fig. 5.5a and Fig. 5.5b, we plot the
values of the surrogate objective function F̂ (using ρ(x) computed from the previous
step) against the Monte Carlo estimates of the true objective values F for the two
protein datasets. As can be observed from both plots, even though the independence
assumption leads to overestimating the number of improved sequences that will be
found, the values for the surrogate are well-correlated with the true objective, and
hence one can use F̂ as a proxy to identify protein sequences of high fitness values.

Results on Real Protein Datasets

We test Online-DSOpt on the PhoQ and GB1 datasets to demonstrate its ability
to select constraints that result in libraries enriched in improved sequences. For
both PhoQ and GB1, we evaluate Online-DSOpt by varying the batch sizes n ∈

{10, 50, 100, 200}. For each batch size n, we initiated the experiments by selecting
an initial batch of n randomly-selected sequences. We then ran k = 400/n − 1
iterations of the algorithm with batch size n, resulting in k more batched queries.
This simulates an SSM experiment with k rounds of diversification, screening, and
selection. At each iteration, we train a GP regression model using a Matérn kernel
with ν = 5

2 in order to compute the rewards ρ(x). Results for each experiment are
shown in Fig. 5.6.

For both GB1 and PhoQ, Online-DSOpt finds improved sequences. Importantly, it
finds much better sequences than combining the best mutation at each site in the
wild-type background or the best sequence with a single mutation from the wild-
type, as shown in Fig. 5.6a and Fig. 5.6b. These are common experimental heuristics
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Figure 5.6: Results on (a) GB1 and (b) PhoQ when running Online-DSOpt with
different batch sizes, with a total budget of 400 samples. In the left plots, each
colored line corresponds to a different batch size, and every marker corresponds to
the maximal value of f found at the end of that batch. The solid horizontal lines
show the fitnesses for the wild-type sequences (wt) as the baseline of the batched
experiments. The dashed horizontal lines show the fitnesses for the best sequences
with exactly one mutation from the wild type (single). The dotted horizontal lines
show the fitnesses for the sequences that combine the best amino acid at each site
determined in the wild-type background (recombine). The plots on the right show
the probability mass of each fitness value in the corresponding dataset.

for dealing with multi-site SSM libraries where the library is too large to reasonably
screen.

Our results imply that in comples landscapes such as for GB1 and PhoQ, considering
multiple sites simultaneously is necessary to escape local optima in the sequence-
function landscape. In GB1, only looking at single mutations or recombining the
best mutations at each site results in very poor fitnesses with no improvement over
the wild-type. In PhoQ, the best single mutant (the dashed line) has a higher fitness
than recombining the best mutations at each site (the dotted line).
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Figure 5.7: Fitness values f for the sampled protein sequences when runningOnline-
DSOpt over four rounds. Each round contains 100 samples (n = 100). Different
rounds are represented with different colors, and each point represents a protein
sequence sampled in the corresponding round.

In contrast, the probability mass function plots in Fig. 5.6a and Fig. 5.6b show that
Online-DSOpt finds extremely-rare (> 99.9th percentile) sequences that would be
extremely difficult to find by randomly sampling < 500 sequences from the entire
library. Perhaps surprisingly, Online-DSOpt is even able to find the optimal protein
sequence on both the datasets for small batch size n = 10 over 40 rounds batched
queries. Note that in practice it is desirable to keep a low number of rounds. Fig. 5.7
illustrates the sampled protein sequences when running Online-DSOpt under a more
practical setting (with batch size n = 100, which is approximately the number of
samples that fit on a 96-well plate). Online-DSOpt significantly reduces the library
size for a multi-site SSM library in order to increase the probability of finding
sequences with improved fitness values.

5.6 Conclusion
In this paper, we investigated a novel Bayesian optimization problem: batched
stochastic Bayesian optimization. This problem setting poses two unique challenges:
optimizing over the space of constraints instead of directly over items and stochastic
sampling. We proposed an effective online optimization framework for searching
through the combinatorial design space of constraints in order to maximize the
expected number of improved items sampled at each iteration. In particular, we
proposed a novel approximate objective function that links a model trained on the
individual items to the constraint space and derived two efficient DS decompositions
for this objective. Our method efficiently finds sequences with improved fitnesses
in fully-characterized SSM libraries for the proteins GB1 and PhoQ, demonstrating
its potential to enable engineering via simultaneous SSM even in cases where it is
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not feasible to measure more than a tiny fraction of the sequences in the library.
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Proofs

Lemma 4 Let g(S) =
∑

x∈Q(S) f (x), where Q(S) is defined in Eq. (5.3). If
∀x, f (x) ≥ 0, then g is monotone supermodular.

Proof Let ` ∈ [L], and j ∈ C(`) be any constraint at site `. For S ⊆ C \ { j}, define
∆g( j | S) =

∑
x∈Q(S∪{ j}) f (x) −

∑
x∈Q(S) f (x) to be the gain of adding j to the set S.

By definition of Q(S), we have Q(S) =
∏L

k=1 S
(k), and

Q(S ∪ { j}) =
(
S(`) ∪ { j}

)
×

∏
k,`

S(k)

=

(
{ j} ×

∏
k,`

S(k)

) ⋃ (
S(`) ×

∏
k,`

S(k)

)
=

(
{ j} ×

∏
k,`

S(k)

) ⋃ (
L∏

k=1
S(k)

)
(5.7)

Then,

∆g( j | S) =
∑

x∈Q(S∪{ j})

f (x) −
∑

x∈Q(S)

f (x)
Eq. (5.7)
=

∑
x∈{ j}×

∏
k,` S

(k)

f (x)

Now let us consider S′ such that S ⊆ S′ ⊆ C \ { j}. Clearly ∀k ∈ [L], S(k) ⊆ S′(k).
Therefore, ∆g( j | S′) − ∆g( j | S) =

∑
x∈{ j}×

∏
k,`(S′(k)\S(k))

f (x) ≥ 0 and hence g is
supermodular.

Proof of Lemma 2
We now show that Algorithm 3 leads to a polynomial algorithm for constructing
a lower bound on Eq. (5.5), and hence on constructing a DS-decomposition of the
surrogate objective function F̂ (Eq. (5.2)).

Proof [Proof of Lemma 2] Let g(S) =
∑

x∈Q(S) f (x). By definition we have

F̂(S) = g(S)

(
1 −

(
1 −

1
|Q(S)|

)n)
= g(S)︸︷︷︸

F̂1(S)

− g(S)

(
1 −

1
|Q(S)|

)n

︸                  ︷︷                  ︸
F̂2(S)

= F̂1(S) − F̂2(S)

We know from Lemma 4 that F̂1 is supermodular. Let j ∈ C and S ⊆ C \ { j}. The
gain of j on F̂1, denote by ∆1( j | S), is monotone decreasing.
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Let ∆2( j | S) = F̂2(S ∪ { j}) − F̂2(S). Our goal is to find a lower bound on

β = min
S⊆S′⊆C\ j

(
∆F̂( j | S) − ∆F̂( j | S

′)
)

= min
S⊆S′⊆C\ j

©«∆1( j | S) − ∆1( j | S′)︸                      ︷︷                      ︸
≥0

+∆2( j | S) − ∆2( j | S′)
ª®®¬ (5.8)

Therefore, it suffices to find a lower bound ∆2( j | S) − ∆2( j | S′). The gain of j on
F̂2 is

∆2( j | S) = F̂2(S ∪ { j}) − F̂2(S)

=
∑

x∈Q(S∪{ j})

f (x)
(
1 −

1
|Q(S ∪ { j})|

)n

−
∑

x∈Q(S)

f (x)
(
1 −

1
|Q(S)|

)n

=
∑

x∈Q(S∪{ j})\Q(S)

f (x)
(
1 −

1
|Q(S ∪ { j})|

)n

+

∑
x∈Q(S)

f (x)
((

1 −
1

|Q(S ∪ { j})|

)n

−

(
1 −

1
|Q(S)|

)n)
Let r(S) =

(
1 − 1

|Q(S)|

)n
. Then, the above equation can be simplified as

∆2( j | S) = F̂2(S ∪ { j}) − F̂2(S)

=
∑

x∈Q(S∪{ j})\Q(S)

f (x)r(S ∪ { j})︸                                  ︷︷                                  ︸
T1(S)

+
∑

x∈Q(S)

f (x) (r(S ∪ { j}) − r(S))︸                                   ︷︷                                   ︸
T2(S)

It is easy to verify that T1(S) is monotone increasing function of S. Let us consider
S′ such that S ⊆ S′ ⊆ C \ { j}. We have

∆2( j | S′) − ∆2( j | S) ≥ T2(S
′) − T2(S)

T2≥0
≥ −g(S)(r(S ∪ { j}) − r(S))

Therefore, it suffices to find a lower bound on −g(S)(r(S ∪ { j}) − r(S)). Further
notice that

0 ≤ g(S) ≤ max
T :|T |≤|Q(S)|

∑
x∈T

f (x) (5.9)

and it is not hard to verify that

0 ≤ r(S ∪ { j}) − r(S) ≤
(
1 −

1
|Q(S)|

)n

−

(
1 −

1
2|Q(S)|

)n

(5.10)
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Therefore, combining term (5.9) with (5.10), we get a lower bound on β:

β ≥ − max
s∈{1,...,|Q(C)|}

©«
((

1 −
1
s

)n

−

(
1 −

1
2s

)n)
max
T :|T |≤s

∑
x∈T

f (x)︸             ︷︷             ︸
Term 2

ª®®®®®®¬
(5.11)

Note that term 2 is a modular function and can be optimized greedily. Therefore,
computing the RHS of Eq. 5.11 can be efficiently done in polynomial time w.r.t.
|Q(C)|.

Proof of Lemma 3: Difference of Convex Construction of DS Decomposition

Lemma 5 Let g : 2C → R≥0 be a non-negative, non-decreasing supermodular
function, and u : R → R be a non-decreasing convex function. For S ⊆ C, define
h(S) = g(S) · u(|S|). Then h is supermodular.

Proof Let j ∈ C and S ⊆ C \ { j}. The gain of j is

∆h( j | S) = h(S ∪ { j}) − h(S)

= g(S ∪ { j}) · u(|S ∪ { j}|) − g(S) · u(|S|)

= (g(S ∪ { j}) − g(S)) · u(|S ∪ { j}|) + g(S) (u(|S ∪ { j}|) − u(|S|))

Let us consider S′ such that S ⊆ S′ ⊆ C \ { j}. We have

∆h( j | S) = (g(S ∪ { j}) − g(S)) · u(|S ∪ { j}|) + g(S) (u(|S ∪ { j}|) − u(|S|))
(a)
≤ (g(S′ ∪ { j}) − g(S′)) · u(|S′ ∪ { j}|) + g(S) (u(|S ∪ { j}|) − u(|S|))
(b)
≤ (g(S′ ∪ { j}) − g(S′)) · u(|S′ ∪ { j}|) + g(S′) (u(|S′ ∪ { j}|) − u(|S′|))

= ∆h( j | S′)

where step (a) is due to g being monotone supermodular (i.e., g(S′∪ { j})− g(S′) ≥
g(S ∪ { j}) − g(S) ≥ 0) and u being monotone (i.e., u(|S′ ∪ { j}|) ≥ u(|S ∪ { j}|));
step (b) is due to g being non-negative monotone (i.e., g(S′) ≥ g(S) ≥ 0) and u

being convex (i.e., u(|S′ ∪ { j}|) − u(|S′|) ≥ u(|S ∪ { j}|) − u(|S|)). Therefore h is
supermodular.
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Lemma 6 Let w : R → R be a convex function and u : R → R a convex non-
decreasing function, then u◦w is convex. Furthermore, if w is non-decreasing, then
the composition is also non-decreasing.

Proof By convexity of w:

w(αx + (1 − α)y) ≤ αw(x) + (1 − α)w(y).

Therefore, we get

u(w(αx + (1 − α)y))
(a)
≤ u (αw(x) + (1 − α)w(y))
(b)
≤ αu(w(x)) + (1 − α)u(w(y)).

Here, step (a) is due to the fact that u is non-decreasing, and step (b) is due to the
convexity of u. Therefore u ◦ w is convex. If w is non-decreasing, it is clear that
u ◦ w is also non-decreasing, hence completes the proof.

Lemma 7 (Horst and Thoai [1]) Let r : R→ R be a non-decreasing, twice contin-
uously differentiable function. Then r can be represented as the difference between
two non-decreasing convex functions.

Proof Let u : R → R be a non-decreasing, strictly convex function, and α =
minx u′′(x); clearly, α > 0.

Let β = |minx r′′(x)|. Define

v(x) = r(x) +
β

α
u(x) (5.12)

It is easy to verify that

v′′(x) = r′′(x) +
β

α
u′′(x) ≥ r′′(x) + β ≥ 0.

Hence, v(x) is convex. Furthermore, since both r and u are non-decreasing, v is
also non-decreasing. Therefore, r(x) = v(x) − β

αu(x) is the difference between two
non-decreasing convex functions.
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Lemma 8 Let r : R → R be a non-decreasing, twice continuously differentiable
function, and w : R → R a convex non-decreasing function, then r ◦ w can be
represented as the difference between two non-decreasing convex functions.

Proof By Lemma 7, we can represent r(x) = v(x) − β
αu(x), where u, v are non-

decreasing convex functions, and α, β are as defined in Eq. (5.12). Therefore,

r ◦ w(x) = v ◦ w(x) −
β

α
· u ◦ w(x)

By Lemma 6, v ◦w and u ◦w are both non-decreasing convex, which completes the
proof.

Now we are ready to prove Lemma 3.

Proof [Proof of Lemma 3] Let g(S) =
∑

x∈Q(S) f (x). By definition we have

F̂(S) = g(S)

(
1 −

(
1 −

1
|Q(S)|

)n)
= g(S) − g(S)

(
1 −

1
|Q(S)|

)n

Let r(x) =
(
1 − 1

x

)n
, and w : R → R be a convex function, such that w(|S|) =

|Q(S)|. Note that such function w exists, because the set function h(S) := |Q(S)|
is supermodular. Therefore, we have

F̂(S) = g(S) − g(S) · r ◦ w(|S|)

Furthermore, note that r is non-decreasing, twice continuously differentiable at
[1,∞). By Lemma 8, we get

F̂(S) = g(S) − g(S) ·

(
v ◦ w(|S|) −

β

α
· u ◦ w(|S|)

)
= g(S)

(
1 +

β

α
· u ◦ w(|S|)

)
− g(S) · (v ◦ w(|S|)) , (5.13)

where u : R → R can be any non-decreasing, strictly convex function, α =
minx u′′(x), β = |minx≥1 r′′(x)|, and v(x) = r(x) + β

αu(x).

We know from Lemma 4 that g is supermodular. Since both 1 + β
α · u ◦ w(x) and

v ◦ w(x) are convex, then by Lemma 5, we know that both terms on the R.H.S. of
Eq. (5.13) are supermodular, and hence we obtain a DS decomposition of function
F̂.
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C h a p t e r 6

LEARNED DECOMPOSITION KERNELS FOR
SEQUENCE-FUNCTION PREDICTION

6.1 Introduction
Gaussian processes (GPs) are Bayesian non-parametric models widely applied
across problem domains because of their flexibility and probabilistic interpretation.
The central component of a GP is the kernel (covariance) function, which deter-
mines the similarity between inputs and projects the inputs into a high-dimensional
feature space without explicitly calculating the coordinates in this new space. The
choice of kernel profoundly affects the accuracy of Gaussian process models.

Recently, there has been much interest in using GPs to model biological sequences,
such as the relationship between protein sequence and function1–3. Generic kernels,
such as polynomial, squared exponential, or Matérn kernels, are most natural in
continuous input spaces, but do not exploit the discrete string or graph properties
present in structured inputs. Kernels tailored to exploit these properties should lead
to predictive and interpretable GPs.

In many applications, it is also important to be able to interrogate and interpret
the model, as the model itself can be a source of knowledge about the underlying
physical or biological processes. The non-parametric nature of GPs, which allows
them to grow in expressiveness with the data available, can make them very difficult
to interpret unless the kernel is tailored to the input structure.

Variants of a sequence can be considered as strings where one or more positions have
been substituted. It is therefore natural for a kernel to evaluate at each position the
effect of the substitutions (if any) along with the effect of substitutions at contacting
positions. The effects of substitutions can be encoded in one or more (positive
definite) substitution matrices Sp, where Sa,b

p denotes a penalty for substituting token
a for token b. Substitution matrices can be compiled from empirical observations
of substitution frequency across a corpus of related sequences, but these may not
be well-suited to the desired prediction task. Likewise, the contact map between
positions can be computed from 3-dimensional structural data4. However, structural
data is not always available, and effects between positions in the sequence are not
limited to positions in close physical proximity. We propose a learned decomposition
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(a) Position-specific substitution matrices

(b) Soft pairwise contacts between positions

Figure 6.1: Example of a learned decomposition kernel between two sequences of
length 4. (a) The position-specific substitution matrices at each position. The entry
in each matrix corresponding to the tokens present is boxed. (b) Each position is
fractionally in contact with each other position. The solidity of the edges denotes
the strength of the contact.

kernel (LDK)which learns a substitutionmatrix Sp at each position p in the sequence.
In addition, the LDK learns position-wise contact weights directly from data. These
weights range from 0 to 1 and can be interpreted as describing how much two
positions effect each other. The LDK is illustrated in Figure 6.1.

First, we review GP regression and discuss related work. We then describe the
learned decomposition kernel. Finally, we show that LDKs can achieve comparable
accuracy to deep kernel learning5 on two protein mutation datasets and demonstrate
that the learned kernel parameters can be visualized and interpreted to draw insights
into which substitutions and positions the model considers to be important when
comparing sequences.

6.2 Gaussian processes
We briefly review the posterior predictive equations and marginal likelihood for GP
regression. A full treatment can be found in [6]. A Gaussian process is a distribution
over functions. If f (x) ∼ GP(µ, kγ), then any finite subset collection of function
values has a joint Gaussian distribution

f(X) = { f (x1, ..., f (xn}
T ∼ N

(
µ,KX,X

)
(6.1)
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with a mean vector µi = µ(xi) and a covariance matrix (KX,X)i, j = kγ
(
xi, x j

)
determined by the mean function and covariance kernel of the Gaussian process.
The covariance, or kernel function, kγ is parametrized by γ. Without loss of
generality, we take the µ to be uniformly 0.

The goal in GP regression is to learn an unknown function f : RD 7→ R given a
datasetD consisting of n input vectors X = {x1, ..., xn} of dimension D correspond-
ing to a n×1 vector y of targets. If we assume a Gaussian process prior and additive
homoscedatic Gaussian noise, y(x) ∼ N ( f (x, σn)), then the posterior predictive
distribution at n∗ text points X∗ has mean

E(f∗) = KX∗,X

(
KX,X + σ

2
n I

)−1
y (6.2)

and covariance

cov(f∗) = KX∗,X∗ − KX∗,X

(
KX,X + σ

2
n I

)−1
KX,X∗ (6.3)

KX,X is the n × n covariance matrix calculated between the training inputs X , while
KX∗,X , for example, is the n∗ × n covariance matrix between the test inputs X∗ and
the training inputs X . All the covariance matrices depend implicitly on the kernel
hyperparameters γ. The structure of the data is modeled by choosing the kernel and
learning γ. The marginal likelihood of the dataD, the probability of generating the
data from aGPwith the kernel specified by hyperparameters γ, provides a principled
probabilistic framework for choosing hyperparameters:

log p (y|γ, X) ∝ −yT (Kγ + σ
2
n I)−1y − log |Kγ + σ

2
n I | (6.4)

Kγ is shorthand for KX,X evaluated at γ. Learning is achieved by maximizing the
marginal likelihood over γ and the noise hyperparameter σn.

6.3 Related work
Kernels for biological sequences
A variety of GP kernels have been previously used to predict functional properties
from sequence, including linear1, Matérn2,7, and squared exponential3. These
kernelsmake no effort to account for the string and graph structure of proteins. String
spectrum kernels8 count the number of matching substrings of length k between
pairs of sequences, while mismatch string kernels9 count the number of matching
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substrings of length k allowing for up to m mismatches. These take advantage of
the string structure of biological sequences, but not their graph structure nor the fact
that not all substitutions have equal effects.

Weighted decomposition kernel The weighted decomposition kernel compares
two sequences by considering, at each position, the substitution (if any) at that
position and at all positions considered to be its contacts. For two sequences of
length L, the weighted decomposition (WDK)10 is:

k(x, x′) =
L∑

i=1

Sxi,x′i

∑
j∈nbs(i)

Sxj,x′j

 (6.5)

Where xi is the ith token in sequence x, S is a positive semi-definite substitution
matrix such that Sa,b is the penalty for replacing token a with token b, and nbs(i)
denotes the set of positions in contact with position i. The WDK defines the
similarity between two variants as the average position and neighborhood similarity
over all positions. The kernel matrix is normalized such that

k̂(x, x′) =
k(x, x′)√

k(x, x)k(x′, x′)
(6.6)

Multiple substitution matrices can be combined using multiple kernel learning. For
M kernels computed using M substitution matrices, the combined kernel matrix is

Kφ =

M∑
m=1

wmKm (6.7)

where wm are learnable hyper-parameters.

WDKs take into account the 3-D structure of the inputs while also incorporating a
substitution matrix that intuitively encodes the notion of similarity between pairs
of tokens. However, they require a contact map for the sequences. Furthermore,
their performance depends strongly on the choice of substitution matrices. Jokinen
et al. use 21 substitution matrices from AAIndex211. In contrast, the learned
decomposition kernel does not require pre-set substitution matrices or structural
information.
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Deep kernel learning
Deep kernel learning (DKL) combines the expressive power of neural networks with
the probabilistic GP framework. DKL composes a base kernel kb(xi, x j |θ)with a
neural network embedding g(x,w):

kDKL(xi, x j |θ,w) = kb(g(xi,w), g(x j,w)|θ) (6.8)

The neural network thus learns an embedded representation for the base kernel.
The kernel parameters θ and w are jointly learned by maximizing the log marginal
likelihood of the GP (Eq. 6.4). While DKL learns very expressive kernels that
combine the advantages of neural networks and GPs, the kernels can be difficult or
impossible to interpret.

6.4 Learned decomposition kernels
Instead of using a pre-determined substitution matrix and contact map derived from
the structure, LDKs learn the substitution matrices and an adjacency matrix from
the data. Specifically, an LDK has learnable hyperparameters A ∈ RL×m×dA and
W ∈ RL(L−1)/2, where m is the number of tokens and L is the length of the sequences.
The substitution matrix Sp for the pth position is then calculated as

Sp = Ap ApT (6.9)

Defining Wi, j as the contact weight between positions i and j, the LDK is

k(x, x′) =
L∑

i=1

[
Si

xi,x′i

∑
j,i

sigmoid(Wi, j)S
j
xj,x′j

]
(6.10)

Thus, the LDK learns an embedded representation for each token at each position,
which is then used to calculate the substitution matrices for each position. Instead
of considering a predetermined set of contacts at each position, the LDK learns the
degree to which each pair of positions is in contact. Figure 6.1 illustrates the LDK.

6.5 Experiments
We evaluated the performance of GPs with LDKs on two experimental protein
datasets consisting of all the variants made by randomizing 4 positions in the
sequence. We compare performance against a DKL model with a similar number
of kernel parameters, and then we interpret the LDK parameters.
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Table 6.1: Experimental results

Dataset τ MAE
LDK C P WDK DKL LDK C P WDK DKL

PhoQ 0.625 0.623 0.625 0.623 0.618 0.595 0.620 0.600 0.623 0.582
GB1 0.547 0.543 0.546 0.452 0.550 0.465 0.468 0.467 0.471 0.450

LDK: learned decomposition kernel; C: learned pairwise contacts but only one learned substitution matrix; P: learned
substitution matrix for each position but pre-set contacts; WDK: one learned substitution matrix and pre-set contacts; DKL:
deep kernel learning

Datasets
The experimental datasets consist of function measurements for every sequence in
four-site site-saturation libraries for protein G domain B1 (GB1)12, an immunoglob-
ulin binding protein, at positions 39, 40, 41, and 54, and the protein kinase PhoQ13 at
sites 284, 285, 288, and 289. These datasets are known to have strong higher-order
effects: the effects of substitutions depends strongly on the context in which they
occur. Each dataset contains measurements for 160,000 sequences. There were
randomly divided into a training set of 96,000 sequence-function pairs, a validation
set of 32,000 sequence-function pairs, and a test set of 32,000 sequence-function
pairs.

Model comparisons
Table 6.1 comparesKendall’s τ andmean absolute error (MAE) forGPswith learned
decomposition kernels and deep kernels. All GPmodels were trainedwith stochastic
batch gradient updateswith batchsize 8000. The learning rates and number of epochs
were tuned using accuracy on the validation set. The LDKs learn a 64-dimensional
embedding for each amino acid at each position along with 6 pairwise contact
weights for a total of 1286 parameters. The embedding dimension does not have
a strong effect on the accuracy. This is expected, as the substitution matrix is
full rank for any d greater than the number of tokens. For numerical stability, all
of the embeddings were initialized so that the resulting substitution matrix fit the
‘isomorphicity of replacements’14 substitutionmatrix fromAAIndex211. Themodel
is not sensitive to initialization to other substitution matrices from AAIndex2. The
deep kernels consist of a neural networkwith layer sizes [80-16-8] (1432 parameters)
and a squared exponential kernel. Following Wilson et al.5, the neural networks
were pretrained on the training data. For both Kendall’s τ and MAE, GPs with
LDKs are within 5% of GPs with DKL for both datasets.
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In addition to comparing to DKL, we also compared to the following variants of
LDKs: (1) a weighted decomposition kernel with one learned substitution matrix
for all the positions and a pre-determined binary pairwise contact map (WDK); (2)
an LDK that learns a contact map at each position but uses a pre-determined binary
pairwise contact map (P), and (3) an LDK that learns one learned substitution matrix
for all the positions but learned pairwise contact weights (C). For kernels that require
a pre-determined binary contact map, cross-validation determined that setting all
possible contacts to ‘True’ resulted in the most accurate predictions. This makes
sense because the positions randomized were chosen to be in close proximity to each
other. GPs with LDKs are more accurate than any of the control variants, showing
that learning pairwise contact weights improves accuracy over using pre-set binary
contacts and that having a substitution matrix for each position improves accuracy
over having one shared substitution matrix.

Visualization and interpretation
One advantage of the LDK is that both the learned substitution matrices and the
learned pairwise contacts are interpretable. Figure 6.2 shows that although the
substitution matrices for every position in PhoQ and GB1 were initialized to the
same values (Figure 6.2e), the final learned matrices are qualitatively different from
each other and from the initial values. Strikingly, the learned matrices generally
penalize substitutionsmuch less than the initial matrix; in these systems, themajority
of possible tokens at each position either have small effects or effects that are highly-
dependent on context.

Figures 6.2c and 6.2d show the learned pairwise contacts for PhoQ and GB1,
respectively. It has been previously found that the strongest coupling in PhoQ
occurs between positions 284 and 285 and positions 284 and 288, likely due to
physical constraints on packing. Positions 284 and 288 are separated by three
residues in the primary sequence of PhoQ but are adjacent to each other within an
α-helix13. In GB1, the four randomized positions were chosen because they are in
close physical physical proximity in the core of the protein. The learned pairwise
contacts reflect the close physical proximity between positions 39 and 40 as well as
41 and 5412. The LDK recapitulates this from sequence-function data alone.

6.6 Discussion
In this paper, we investigated a novel kernel for learning sequence-function rela-
tionships. Learned decomposition kernels are well-suited to describe differences
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(a) Substitution matrices for PhoQ

(b) Substitution matrices for GB1

(c) Contacts for PhoQ (d) Contacts for GB1 (e) Initial substitutions

Figure 6.2: Learned substitution matrices and pairwise contacts for PhoQ and GB1.

between sequences of discrete tokens. By learning a substitution matrix at each
position in addition to pairwise substitution weights, they combine expressiveness
and interpretability. LDKs achieve comparable accuracy to deep kernel learning
with a similar number of kernel parameters over two experimental protein datasets.
Furthermore, the learned substitution matrices and pairwise contact weights can
be visualized to interpret the resulting model. In theory, LDKs can be composed
with neural networks. For example, a neural network can be used to learn position-
specific substitution matrices for each pair of sequences from the sequences. Higher
order effects could then be learned by the neural network instead of being coded into
the base kernel. This approach may be able to combine the ability of neural net-
works to learn higher-order and hierarchical relationships with the interpretability
of a substitution kernel.
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