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Abstract 

Enhancing the efficiency and reducing the cost of solar photovoltaic (PV) systems is critical for 

increasing their penetration into energy generation market. The intermittency of energy generation 

from such systems due to diurnal, seasonal, and weather-related variation of sunlight limits them to 

low capacity factors (typically ~ 25%). Therefore, despite the cost of electricity from solar PV 

systems being cost competitive, further reductions are necessary to incorporate storage and increase 

the fraction of solar energy in total energy generation. An integrated photoelectrochemical (PEC) 

system that can generate fuel directly from sunlight could potentially reduce the balance of systems 

cost that dominates current PV systems, and provide an alternative way for energy storage. PEC 

systems are currently in research stage.   

In this work conical and triangular micro-nano structures are utilized to explore optical solutions for 

maximizing the light absorption and therefore enhancing the efficiencies of both PV and PEC 

systems. Silicon (Si) based micro conical arrays demonstrate < 1 % Spectrum-and-Angle-Averaged 

reflection, and absorption nearing ray optic light trapping limit in a 20 µm effectively thick Si 

substrates. Si microcone based photocathodes prepared for performing hydrogen evolution reaction 

(HER) show that thick layers of light blocking Pt and Co-P catalysts can be incorporated with only 

a 6 % photocurrent loss. The light trapping properties of Si micro-cones are a result of efficient 

coupling of light to available waveguide modes in a conical geometry. Alternatively, TiO2 based 

dielectric nano-conical arrays are shown to couple the light to waveguide modes and transmit the 

light into a planar Si substrate despite covering 54 % of the planar front surface with a light blocking 

Ni catalyst as an alternative way of light trapping without texturing the light absorber.  

Triangular silver (Ag) front contacts in place of conventional flat contacts over PV cells are shown 

as another alternative for reducing front contact reflection losses and enhancing the efficiency by ~ 

1% in Si heterojunction solar cells. These structures are implemented using a polymer stamp 

prepared from a Si master with triangular groves, and by flowing Ag ink through them. A Si master 

fabrication method is shown for fabrication of multiple configurations of triangular Ag contacts 

which can potentially be applied to other PV and PEC systems to enhance their efficiency.   
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Higher resolution images at the top of the cone (center) shows no evidence of damage to the cone 

tip which was protected by the hard mask during growth. However, a high resolution imaging 

reveals a thin (~ 2-3 nm) region on the sidewalls (far right) which could correspond to damage 

introduced during the etching process. These data were collected at 300 kV in an FEI Technai TF30 

TEM. 23 

Figure 3.10: Schematic of home built microwave detected photoconductivity decay setup 24 

Figure 3.11:Microwave reflectivity of ALD Al2O3 passivated microcone arrays with in situ back 

surface passivation using 5.8M HCl measured using the microwave photoconductivity setup with 

0.75 µs carrier lifetime 26 

Figure 4.1: Linear sweep voltammogram (at a scan rate of 50 mV s-1) obtained with a p-Si microwire 

array with a ~ 3 µm wire diameter, 7 µm wire pitch, and 30 µm wire height in an aqueous solution 

of 0.010 M HAuCl4 and 0.100 M KCl under chopped illumination with a LED source having λavg = 

461 nm and an intensity of 77 mW cm-2. 32 

Figure 4.2: (a−d) Representative SEMs of p-Si microwire arrays with a ~ 3 µm wire diameter, 7 

µm wire pitch, and 30 µm wire height in a square lattice, upon which Au was photoelectrodeposited 

from a HAuCl4 solution with a charge density of 0.10 C cm-2 using narrow band LED illumination 

having λavg as indicated. 33 

Figure 4.3: (a−d) Representative SEMs of n-Si microwire arrays with with ~ 3 µm wire diameter, 7 

µm wire pitch, and 30 µm wire height in a square lattice, upon which Au was photoelectrodeposited 

from a HAuCl4 solution with a charge density of 0.10 C cm-2 using narrowband LED illumination 

having λavg as indicated. 34 

Figure 4.4: (a−d) Simulated relative photocarrier generation rates in Si microwires with a 3 µm 

wire diameter and 30 µm wire height in a square lattice with a 7 µm wire pitch under narrowband 

illumination with spectral profiles having λavg as indicated. 35 

Figure 4.5: (a−l) Simulated relative photocarrier generation rates in tapered Si microwires with a 

3 µm wire top diameter and 30 µm wire height in a square lattice with a 7 µm wire pitch under 

narrowband illumination with spectral profiles having λavg as indicated 38 

Figure 4.6: (a−l) Representative SEMs of tapered p-Si microwire arrays with with ~ 3 µm wire top 

diameter, 7 µm wire pitch, and 30 µm wire height in a square lattice, upon which Au was 

photoelectrodeposited from a HAuCl4 solution with a charge density of 0.10 C cm-2 using 

narrowband LED illumination having λavg as indicated. The ratio of the wire diameter at the base to 

that at the top (ϼ) is indicated. 39 

Figure 5.1:Schematic for the fabrication of n+p-Si μ cone array photocathodes with Pt selectively 

loaded on the tips of the μ-cones. (a) Aluminum oxide mask (yellow) patterned on p-type silicon 

(gray). (b) Controlled undercutting of the etch mask leads to aspect-ratio cones. (c) Removal of the 

etch mask followed by formation of an n+-emitter layer (green) via phosphorus doping. (d) Infilling 

with wax (transparent gray) followed by directional O2 etching to expose tips. (e) Uniform deposition 

of Pt via sputtering. (f) Removal of the wax with acetone leaves Pt only at the cone tips. (g)  Scanning-

electron micrograph of n+p-Si μ-cone photocathodes with Pt selectively deposited on the tips of the 

μ-cones. 46 

Figure 5.2: Effect of Pt loading on the J-E behavior of n+p-Si photocathodes with planar, µ-pyramid, 

and µ-cone array morphologies, as measured in contact with H2-saturated 0.50 M H2SO4(aq) while 

illuminated by 100 mW cm-2 of simulated Air Mass (AM) 1.5 illumination. (a) J-E performance of 

bare (no Pt) n+p-Si photocathodes with planar (black), µ-pyramid (blue), and µ-cone (red) 

morphologies. Representative J-E behavior for n+p-Si/Pt photocathodes with varied Pt loadings for 

the (b) planar, (c) μ-cone, and (d) μ-pyramid morphologies. 48 
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Figure 5.3: Performance of champion n+p-Si/Pt μ-cone photocathodes with 8 nm or 16 nm thick Pt 

loaded on the tips of the μ-cones. The photocathodes were tested in H2-saturated 0.50 M H2SO4(aq) 

under 100 mW cm-2 of simulated AM1.5 illumination, with rapid stirring of the electrolyte to remove 

bubbles from the electrode surface. 49 

Figure 5.4: Stability of n+p-Si/Pt photocathodes operated in contact with H2-saturated 0.5 M 

H2SO4(aq) while under 100 mW cm-2 of simulated AM1.5 illumination. For n+p-Si/Pt μ-pyramid 

photocathodes with (a) 4 nm of Pt, a decrease in fill factor was observed after the first potential 

scan.  For n+p-Si/Pt μ-cones, devices with (c) 4 nm of Pt on the μ-cone tips showed a decrease in fill 

factor with successive scans, whereas devices with (d) 16 nm of Pt did not show an improvement in 

Jph and no decay in fill factor with successive scans. 50 

Figure 5.5: (a) Scanning-electron micrograph (SEM) of as deposited Co/Co-P 

photoelectrodeposited onto the tips of p-Si μ-cones.  The Co/Co-P loading, as determined by the 

charge density passed during the photoelectrodeposition, was 400 mC cm-2. (b) SEM image of a 

cross section of a p-Si/Co-P μ-cone array after removal of excess Co by potential cycling in 0.50 M 

H2SO4 (aq). 51 

Figure 5.6: Evolution of the J-E behavior of a photocathode consisting of a p-Si/Co-P μ-cone array, 

when immersed in H2-saturated 0.50 M H2SO4(aq) and illuminated with 100 mW cm-2 of simulated 

AM 1.5 illumination with rapid stirring, compared to the same p-Si μ-cone array photocathode prior 

to catalyst deposition (a).  (b) Effects of extended potential cycling in contact with 0.50 M H2SO4(aq) 

under 1-sun illumination on the J-E behavior of a p-Si μ-cone array photocathode loaded with 

Co/CoP after 2, 4, 16, and 100 scans from -0.376 V to +0.224 V vs RHE at 50 mV s-1. The first and 

last scans were recorded after 20 s and 40 min, respectively. 52 

Figure 5.7: Performance of champion n+p-Si/CoP μ-cone photocathodes with 400 mC cm-2 Co-P 

deposited photoelectrochemically. The device was cycled from the initial open circuit potential to -

0.376 V vs RHE in H2-saturated 0.50 M H2SO4 (aq) under 100 mW cm-2 of simulated AM 1.5 

illumination, with rapid stirring of the electrolyte to remove bubbles from the electrode surface.

 53 

Figure 5.8: Reflectance measurement of bare Si μ-cone arrays, Si μ-cone arrays with 8 and 16 nm 

of Pt or Co-P on their tips, as measured using a Cary 5000 UV-Vis-NIR with an integrating sphere.

 55 

Figure 5.9: SEM of polymer embedded Si µ-cones removed from substrate, after deposition of Co-

P and potential cycling in 0.50 M H2SO4(aq). 56 

Figure 5.10: Representative J-E behavior of PDMS-embedded Si μ-cone array photocathodes 

decorated with Co-P and tested in 0.50 M H2SO4(aq) under 100 mW cm-2 of simulated AM1.5

 57 

Figure 6.1: (a), (b), and (c) show the schematics of the three configurations that are simulated

 62 

Figure 6.2: Simulated transmission (T), absorption (A), and reflection (R) spectra of the three 

configurations in Figure 6.1. (a), (b), and (c) plots the spectra in air for TiO2 cones on Si, TiO2 cones 

on Si with Ni, and Ni hole array on Si respectively. (d), (e), and (f) plot the same in water.62 

Figure 6.3: Area plot of simulated transmitted spectral photon flux in air and water for the three 

configurations in Figure 6.1. Blue represents AM 1.5G spectral photon flux. Orange, yellow, and 

purple plot the transmitted spectral photon flux into Si for nanocones on Si, nanocones with Ni on 

Si, and Ni hole array on Si respectively. 63 
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Figure 6.4: (c), (d), (e), and (f) show the electric field profiles along the cross section shown in (a) 

at maxima in transmission spectrum into Si with TiO2 nanocones and Ni in air. The selected 

wavelengths are highlighted using the yellow stars in (b). 64 

Figure 6.5: (c), (d), (e), and (f) show the electric field profiles along the cross section shown in (a) 

at minima in transmission spectrum into Si with TiO2 nanocones and Ni in air. The selected 

wavelengths are highlighted using the yellow stars in (b). 65 

Figure 6.6: (a) and (c) show the SEM images of TiO2 nanocones prior to Ni electrodeposition, and 

(b) and (d) show the SEM images taken after Ni electrodeposition. 68 

Figure 6.7: Real part of refractive index for ideal TiO2 is shown in (a), and of electron beam 

evaporated TiO2 in (b). 69 

Figure 6.8: Transmission (T), absorption (A), and reflection (R) plot for Si with TiO2 nanocones and 

50 nm Ni calculated with evaporated TiO2 refractive index data us shown in (a). (b) shows the area 

plot overlapped over AM 1.5G spectrum for the three different cases as shown in Figure 6.1 with 

evaporated TiO2 refractive index data. 69 

Figure 6.9: SEM image of the Ni hole array fabricated via electron beam patterning and dry etching 

of 50 nm thick Ni layer. Average diameter of the holes is ~ 500 nm. Image taken by Wen-Hui Cheng

 70 

Figure 6.10: (a) and (b) show simulated and measured reflectance of Si with TiO2 nanocones, with 

TiO2 nanocones and Ni, and with Ni hole array respectively 70 

Figure 6.11: J-V charectorisitcis of p+n Si homojunction photoanode with TiO2 nanocones and 300 

mC of electrodeposited Ni performing OER in 1 M KOH in dark and under 1 sun simulated 

illuminations 72 

Figure 7.1: Schematic for fabrication process of effectively transparent contacts. (a) shows the 

fabrication of triangular master as shown in (b) via 2-photon lithography. (c) shows the casting of 

PDMS over the master, which results in PDMS stamp after curing as shown in (d). The PDMS stamp 

is applied over solar cell substrate as shown in (e). Silver ink is applied to the sides of the stamp 

resulting in flow onto the substrate via capillary forces as shown in (f). After heating the at 60oC the 

stamp is peeled off resulting in silver triangles over the solar cell.  Image credit: Rebecca Saive

 74 

Figure 7.2: Current–voltage characteristics of silicon heterojunction solar cells with three different 

front contact. Inset: scanning electron microscope image of a triangular cross-section contact line.

 75 

Figure 7.3: Schematics of fabrication of an ETC superstrate staring from a Si master with triangular 

groves using PDMS. Figure credit: Sophia Coplin 77 

Figure 7.4: (a) and (b) show SEM images of the front surface of a rough Si homojunction solar cell 

recieved from UNSW. (C) shows the SEM image of an attempted ETC print on this rough surface 

resulting in Ag ink spillage all over the solar cell. 78 

Figure 7.5: SEM image of the triangular structure etched into a Si wafer for utilization as a master 

for making PDMS stamps for printing ETCs. 79 

Figure 7.6: (a) and (b) show SEM images of triangular groves etched via ICP-RIE at -120 OC and 

-80 OC respectively. 80 

Figure 7.7: (a), (b), and (c) show the SEM images of triangular groves etched vai ICP-RIE at -80 
OC, with a SF6 / O2 gas ratio of 70 sccm / 12 sccm for 7.5 mins, 15 mins, and 30 mins respectively.
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horizontal triangular groves can be see intersecting the triangular grove facing out of the plane of 

this page. Etching is performed at -80 OC. SF6 / O2 gas ratios utilized are 70 sccm /15 sccm, and 70 

sccm / 12 sccm for in case of (a) and (b) respectively. 81 
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ink and is connected to the triangular fingers with minor spills around the bus bar. (b) shows a 
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Figure 7.12: Schematic for incorporating ETC superstrates over textured Si homojunction solar 

cells. 84 

Figure 7.13: Cross sectional SEM image of an ETC superstrate showing the flow pattern of the ink.

 85 
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Introduction 

 Energy 

The ability of human beings to utilize energy creatively has seen the human civilization transform 

from being hunter gatherers to reach for the moon and beyond. Easy access to utilizable energy 

enabled human beings in their creative pursuits and scientific explorations as they could worry less 

about their basic needs for survival such as food, water, shelter, and clothing. Many studies show 

that energy consumption correlates to the standard of living and economic growth [1-3]. According 

to world bank data nearly a billion people have no access to electricity, which is the easiest way to 

access energy. Many nations seek to reach the standards of living of the “developed” countries and 

therefore the global energy demand is expected to raise by another 28 % by 2040 [4, 5]. Fossil fuels 

continue to dominate electricity generation at, therefore the net CO2 emissions from manmade 

sources and global temperatures. International climate agreement aims to limit the raise of global 

temperature to 2 0C, and in order to realize that goal, renewable energy sources must start dominating 

the electricity generation portfolio [6-8]. Solar energy conversion into electricity and fuels is one of 

the attractive alternatives especially given that the total solar insulation incident on the Earth’s 

surface in less than 2 hours is equivalent to total energy consumption of the world in 2014 [9, 10]. 

Despite the vast solar resource the current global electricity generation from solar cells is below 2% 

in 2017 [11]. 

 Solar Photovoltaics 

The solar photovoltaic (PV) market has taken off exponentially in the last decade with an installed 

capacity of ~ 400 GW [12]. Currently, crystalline Silicon (Si) solar cells dominatethe PV market and 

account for 95% of the global production. The boom in PV installations over the last 10 years 

coincided with a reduction in module prices, and an increase in cell efficiency, making PV cost 



 2 

competitive with conventional electricity generation. Currently the balance of systems cost, which 

includes installation, wiring, support structures, inverter, and permit costs, account for 70 % of the 

cost of a fully installed Si PV system [13]. Therefore, any increase in a solar cell efficiency will 

increase the module efficiency and implies systems that require less area to generate an equivalent 

amount of electricity. This reduction in area directly translates to a reduction in the balance of 

systems cost. Current laboratory efficiency record for a Si solar cell stands at 26.6 % [14], and the 

theoretical limit at 29.4 %, which means there still is some room for improvement. Pushing the 

efficiency towards the limit is an exciting challenge for scientists, and this thesis attempts to find 

some ways for achieving that. 

Another important limiting factor stopping solar photovoltaics from increasing their penetration into 

the electricity generation market is its intermittency. The seasonal and diurnal variation of solar 

insolation coupled with weather related effects limit the capacity factor of solar PV installations to 

~ 25 % in best case scenarios. This requires a way to redistribute the electricity generation from 

photovoltaics in time to match the demand. Currently by ramping up or down, the electricity 

generation from natural gas power plants which emit CO2 [15] achieves this redistribution. 

Alternative could be to store the excess electricity generated from solar when not required and to use 

it as per demand. A further reduction in PV systems cost is necessary to increase its grid penetration 

which requires utilizing storage technologies. Another solution could be to build integrated solar 

fuels system utilizing a photoelectrochemical (PEC) system that can convert sunlight directly into a 

fuel, which may have the potential for reducing the balance of systems cost. Such a technology is 

only at a research stage and thus requires many more breakthroughs to be realized in the energy 

market. 

 Thesis summary    

In this thesis various nano and micro architectures for optically enhancing the efficiencies of solar 

PV and PECs are explored. Below is the brief overview of each chapter in this thesis: 

Chapter 2 explores the primary factors determining the realistic efficiency limit of a Si based solar 

cell calculated by including effects of non-radiative recombination pathways using most recent 
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models, along with unavoidable effects such as radiative recombination, parasitic absorption, and 

bandgap narrowing due to bulk doping.    

Chapter 3 discusses texturing Si into a micro conical architecture that enables record low reflection 

(to my knowledge at the time of writing) and nearly ray optic limiting broadband absorption in a 20 

µm effectively thick Si for PV and PEC applications. The chapter elucidates these optical properties 

utilizing wave-optical simulations.  

Chapter 4 demonstrates a photoelectrochemical method for depositing Au which can act as a catalyst 

for CO2 reduction into CO on textured Si micro wire arrays. This method enables visualization of 

charge carrier distribution profiles by imaging Au deposition patterns and can potentially be 

extended to other architectures in the future. 

Chapter 5 shows the fabrication and characterization of Si microcone based photocathode for 

performing photoelectrochemical H2 evolution. This chapter shows that the Si microcones suffer a 

very minimal photocurrent loss when designs incorporate light blocking catalysts onto them, and 

therefore could potentially be able to improve the efficiency of a PEC system.  

Chapter 6 demonstrates a more general broadband light trapping using dielectric nanocones that is 

applicable to both PV and PEC systems. This design can incorporate high loadings of metallic front 

contacts or catalysts, and a proof of principle Si based photoanode system is demonstrated 

incorporating dielectric nanocones to perform photoelectrochemical oxygen evolution reaction. 

Chapter 7 explores another optical light management strategy utilizing triangular shaped Ag front 

contacts. These triangles were incorporated over Si heterojunction solar cells to demonstrate a ~1% 

efficiency boost. A fabrication method for facilitating multiple sizes and spacings of these triangular 

Ag contacts is developed to expand their applicability to other solar PV and PEC technologies. 

Chapter 8 concludes the thesis by discussing some ideas that could be an extension of these light 

management strategies towards improving the efficiencies of PV and PEC devices. 
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Realistic Limiting Efficiencies of Silicon Based 

Solar Cells 

 Context 

Realizing maximum efficiency in Si photovoltaics is of significant practical and fundamental 

interest. Shockley-Queisser limit for Si based single junction solar cells is ~ 32 %. This limit assumes 

that all the light above band gap energies is absorbed, and recombination occurs only radiatively 

[16]. Auger recombination, free carrier absorption, and bandgap narrowing effects are intrinsic to Si. 

The efficiency limit for Si including the unavoidable intrinsic effects is 29.43 %  [17]. Shockley-

Read-Hall (SRH) recombination, and surface recombination also occur in practical devices 

depending on the defects in the bulk and surfaces. Along with these the thickness of the Si substrate 

limits the absorption of light. There are various light trapping mechanisms to improve absorption in 

Si substrates [18, 19]. Lambertian limit [20] gives the maximum absorption in Si under ray optic 

considerations. Surface texturing is one way to increase absorption, but such a strategy increases the 

amount of surface area and thus the surface recombination. Reducing the thickness of Si while 

maintaining light trapping has the advantage of increasing the carrier density resulting in higher quasi 

fermi level splitting and therefore higher open circuit voltage, provided the surface recombination 

are kept low. This chapter discusses the effect of these mechanisms one by one [21, 22] for different 

material qualities, but the effect of bulk doping and thickness of a Si substrate on the maximum 

achievable efficiency considering all the recombination mechanisms is not explicitly dealt with. In 

this chapter we show that all these factors when included to calculate the maximum achievable Si 

solar cell efficiency, there still is room for reaching above the current efficiency record of 26.3 %  

[23] at an intermediate thicknesses of ~ 80 μm. The optimal bulk doping of Si depends primarily on 

the fraction of radiative recombination at open circuit voltage, and band gap narrowing, especially 

in thin Si substrates. 
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 Numerical Approach 

Optical generation in Si substrates was calculated using commercial software package Lumerical 

FDTD. A rectangular 2D slab of Si was constructed with periodic boundary conditions along x-axis 

and infinite boundary conditions rendered as perfectly matched layers along y-axis. Palik data 

provided by Lumerical was used for modeling Si optical properties. Broadband illumination from 

300 nm to 1200 nm was used to calculate absorption in the Si slab. Built in solar generation rate 

analysis group was used to obtain the photo generated carrier density profile in the Si slab. This 

optical data was input into a Sentaurus TCAD, a commercial software for device physics simulations. 

The absorption data was scaled to match the carrier density generated according to lambertian light 

trapping limit for a Si slab of given thickness to artificially introduce light trapping. The device 

physics simulations were performed in Sentaurus TCAD. A 2D rectangular slab of Si with varying 

doping density was constructed in Sentaurus structure editor. Insulator material was introduced at 

the top and bottom surfaces of the Si. The surface recombination velocity (SRV) was set at this 

interface and varied between 1 cm s-1 to 1000 cm s-1 in decade steps. The radiative recombination in 

the bulk of Si was calculated using a radiative recombination coefficient (Brad) of 4.7 x 1015 cm3 s-1 

[24]. Auger recombination was incorporated using the default auger coefficients in Sentaurus Device 

that include carrier injection level dependence of these auger coefficients [25]. Doping dependent 

SRH recombination model was used by incorporating empirical Scharfetter relation [26]. Finally the 

degradation of mobility due to doping was incorporated using the Masetti model [27] to simulate 

conditions for electron and hole transport to the surface and then undergo recombination. In our 

simulations we assumed a narrow selective contact; therefore, steady state recombination-generation 

at open circuit conditions can be obtained in the 2D slab of Si via iteratively solving Poissan, and 

electron and hole transport equations. Under steady state we obtain the distribution of electron and 

hole densities in Si along with recombination density. Due to thin selective contact approximation 

we can calculate the open circuit voltage from equation 1 below.  

 𝑉𝑂𝐶 = 𝐸𝑓𝑛 − 𝐸𝑓𝑝 =  
𝑘𝑇

𝑞
ln (

(𝑁𝐴+ ∆𝑛)∆𝑛

𝑛𝑖
2 ) (1) 

Short circuit current is extracted by integrating the total photogeneration, and the fill factor is 

calculated using the empirical model developed by Green, et.al., in an ideal device without series or 
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shunt resistances [28]. This calculation gives the maximum achievable efficiency of a solar cell using 

a Si wafer of typical quality available in the market for a given thickness under lambertian light 

trapping conditions at various SRVs. 

 Role of Recombination Pathways in Optimal Bulk Doping  

Figures 2.1 and 2.2 illustrate the effect of phosphorus (P) bulk doping optimization in n-Si on the 

maximum achievable efficiency. In Figure 2.1 the bulk doping was fixed at 1015 cm-3, where as in 

Figure 2.2 (a) the bulk doping was optimized to achieve the maximum efficiency. Figure 2.2 (b) 

plots the optimized bulk doping value at which the maximum efficiency was achieved. Figure 2.1 

and 2.2 together show that an increase in bulk doping counter acts the effect of surface 

recombination, and this effect is significant in thinner Si with higher surface recombination.  

 

When the bulk doping was fixed at 1015 cm-3, the maximum efficiency peaks at ~80 μm thickness at 

low surface recombination velocities (SRV) of 1 cm s-1 and 10 cm s-1. At 100 cm s-1 SRV the 

efficiency increases with increasing thickness while plateauing around 23.5%. When bulk doping is 

optimized at 1017 cm-3 the maximum achievable efficiency at SRV of 100 cm s-1 peaks at ~80 μm at 

25.6%, a considerable 2% more. This effect is even higher for thinner substrates. For 5 μm thick Si 

Figure 2.1: Efficiency vs Si Thickness plot for constant bulk P doping density of 1015 cm-3. Blue, 

orange, and yellow correspond to SRVs 1 cm s-1, 10 cm s-1, and 100 cm s-1 respectively. 
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at 100 cm s-1 SRV and constant doping of 1015 cm-3, maximum achievable efficiency is 19.9%, while 

at an optimized doping of 5 x 1017 cm-3 it is 23%, a 3% change in efficiency.  

 

Figure 2.3 explains the reason for increase in efficiency that comes with an increase in bulk doping. 

Figure 2.3 (a) and (b) plot the change in maximum open circuit voltage of 80 μm and 20 μm thick 

Si solar cells while the bulk doping was varied while the SRV is kept constant. Figure 2.3 (c) and 

(d) plot the fractions of radiative (Rad), auger (Aug), SRH, and surface (Sur) recombinations at open 

circuit voltage for the case of 100 cm s-1 SRV for 80 μm and 20 μm thick Si respectively under 

various bbulk doping densities. At open circuit voltage no current is flowing, therefore all the photo 

generated carriers are recombining via various pathways. At low bulk doping the primary 

recombination pathway at open circuit voltage is surface recombination accounting for nearly 50% 

of photo generated carriers. As the doping density increases, the fraction of auger and radiative 

recombination increase due to increase in the product of electron and hole concentrations. According 

to equation (1), this increases the numerator and thus the open circuit voltage. This is consistent with 

the results shown here [29]; where higher radiative emission corresponds to higher open circuit 

voltage. It was observed in Figure 2.3 (c) that open circuit voltage peaks at a bulk doping of 1017 cm-

3 for 80 μm thick Si and so does the radiative recombination. But for 20 μm thick Si the radiative 

recombination peaks at a higher doping of 5 x 1017 cm-3, while open circuit voltage peaks at 1017 cm-

Figure 2.2: (a) ad (b) plot optimum efficiency and corresponding optimized bulk P doping density 

respectively vs thickness with same color code as Figure 1 
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3. This discrepancy in case of thinner Si is a result of band gap narrowing effect that becomes 

prominent at very high bulk doping. Band gap narrowing results in an increase in intrinsic carrier 

concentration, thus increasing the denominator in equation (1) as shown in Figure 2.4 according to 

updated slotboom model employed in this case [30]. Therefore, a reduction in open circuit voltage 

appears.  

 

Figure 2.3: (a) and (b) plot the variation of maximum achievable open circuit voltage wrt. Bulk 

doping density for 3 different SRVs. (d) and (e) plot the fraction of each recombination pathway 

using which the photogenerated carriers recombine in 80 μm and 20 μm thick Si 



 9 

 Conclusion 

In conclusion we show that when we consider all radiative and non-radiative recombination 

pathways, the performance of a Si based solar cell was maximized by optimizing the bulk doping. It 

is shown such that the doping offsets the effect of high surface recombination by increasing the 

fraction of radiative recombination. In general, a change in the doping concentration can improve 

the open circuit voltage in cases where non-radiative recombination is high, as long as the doping is 

not too high for the band gap narrowing effect to start counteracting. Si solar cells typically employ 

surface texturing for light trapping, increasing the total surface area and thus the total surface 

recombination. Especially in case of thin silicon substrates to achieve lambertian light trapping 

elaborate high aspect ratio nano/micro structures [31, 32] are required. In such cases the surface area 

increase can be an order of magnitude. Therefore, the doping density in the bulk was optimized 

accordingly in these cases to achieve maximum voltage and hence efficiency. 

Figure 2.4: Plot of change in intrinsic carrier concentration according to slotboom model of band 

gap narrowing 
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Silicon Microcone Arrays 

 Introduction 

Reaching towards the ultimate conversion efficiency limits for Si photovoltaics is of considerable 

fundamental and practical interest and motivates research on thin Si solar cells with high minority 

carrier lifetimes and extremely efficient light management. While the limiting efficiency [16] for a 

single-junction crystalline Si solar cell under 1 sun illumination of 29.43% with the only constraints 

of free carrier and Auger absorption losses [33], [34], record experimental Si cells have reached 

efficiencies as high as 25.6% [35]. To achieve higher efficiencies, lower surface recombination 

velocities were to be achieved in structures with very efficient light management that enable a 

reduced bulk recombination by virtue of reduced absorber volume in the solar cell.  Current high-

efficiency Si solar cells utilize intrinsic amorphous silicon (i-a-Si) [36]or Al2O3 [37] surface 

passivation layers that produce very low surface recombination velocities, so that the cell 

performance is typically limited by the bulk carrier lifetime. Consequently, a further decrease in bulk 

recombination could lead to yet higher cell efficiencies. Heterostructure with intrinsic thin layer 

(HIT) Si solar cells have demonstrated an efficiency enhancement by the use of thinner substrates 

[36].  In such HIT cells, the dark current due to recombination is reduced compared to the current 

under illumination, increasing the quasi-Fermi level. Use of even thinner substrates would be 

desirable in order to reduce the bulk recombination volume, but the indirect band gap of Si yields 

reduced absorption in very thin samples.  Additionally, the surface/bulk ratio increases as the 

substrate becomes thinner. The optimal Si cell thickness thus depends strongly on the achievable 

surface recombination velocities as well as on the ability to achieve enhancements in light trapping. 

Optoelectronic transport calculations indicate that with realistic surface recombination velocities, 

and high bulk material quality, efficiencies as high as 24.4% was achieved in a 10 µm thick cell [38] 

if the light trapping were at the 4n2 Lambertian limit [20].  It was also suggested that modulated 

silicon nanowire photonic crystal architectures have the potential to reach 15 – 20 % solar cell 

efficiencies in only 1 µm equivalent thick silicon [39]. Previous demonstrations of thin film 
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crystalline Si cells with effective thickness under 50 μm with various light trapping schemes include: 

20.62% efficiency in a 35µm device[35], 19.1% in a 43µm thick device [40], 16.8% in a 20µm thick 

device [41], 15.7% [42] and 13.7% [43] in 10µm thick devices . 

Researchers have explored various nanostructured antireflection and light-trapping strategies for 

thin-film crystalline Si [44],[19]. Some recent studies have shown limitations in light-trapping 

structures arising from parasitic absorption, as opposed to limitations in the Si absorber material of 

the cell. Hence structuring the absorber layer to maximally harvest light while minimizing parasitic 

absorption and reflection losses, was required to maximize absorption in thin crystalline Si solar cells 

[45],[46],[47]. Si microwire arrays facilitate light absorption near the 4n2 limit for very small Si 

planar equivalent thicknesses, [48] with reports of absorption exceeding the 4n2 limit near the band 

edge.  However to date, Si microwires fabricated by vapor- liquid-solid growth methods using metals 

such as Au or Cu as growth catalysts have not demonstrated high minority carrier recombination 

lifetimes,  since these metals can produce defects that reduce the bulk recombination lifetime in Si 

[49],[48].  

We fabricate Si microwires with high minority carrier bulk lifetimes using cryogenic inductively 

coupled plasma reactive ion etching (ICPRIE), which is predominantly a chemical etch. The etching 

conditions were modified to taper the Si microwire shape to achieve extremely low, angle- and 

spectrally-averaged low reflectivity. These arrays were embedded in polydimethylsiloxane (PDMS) 

and peeled off of their substrate, which can then be reused to etch additional microwire arrays, 

provided the remaining wafer thickness is sufficient. Such peeled off films exhibited near 4n2 light 

trapping compared to the volumetric equivalent planar Si thin film. Electrodynamic simulations 

indicate that the tapered Si microwire structure facilitates highly effective coupling of incident light 

into waveguide modes and yield high optical absorption. 

 Fabrication 

Czochralski (CZ) and Float Zone (FZ) grown <100> Si wafers were photolithographically patterned 

into a square grid with 3µm circles of 200nm thick Al2O3 mask evaporated over it separated by 7µm. 

SF6/O2 etch chemistry was used in Oxford DRIE System 100 ICP/RIE to perform the etching. 
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Etching was performed at low capacitive coupled power of 5W to reduce damage due to momentum 

of ions. A high inductively coupled power of 900 W was used to increase the number of ions in the 

plasma to reach high rates of chemical etch. Flow of SF6 was fixed at 70 sccm, O2 flow was varied 

from 4.5 - 6.5 sccm, and etching was performed for 30 minutes. Figure 3.1 (b-f) show the change in 

microwire tapering profiles while O2 flow was varied in steps of 0.5 sccm from b to f. The tapering 

of the microwire sidewall vary from being slightly thinner at the bottom compared to the top of the 

wire to being broad. Increase in O2 content in the plasma improves the sidewall protection during 

the etching at low temperatures and therefore results in the change in the taper of the microwires.The 

rate of etching remained constant at 1 μm/min resulting in microwires with 30 μm height in all the 

cases. 

 

Figure 3.2 shows the optimized morphology of the microwires with a pointed tip and gradual taper 

to achieve minimum reflection. These tapered microwires have a top tip diameter < 100 nm, a bottom 

base diameter of 7 μm, and a height of 75 μm. These structures are fabricated by ICPRIE by etching 

Figure 3.1: (a) Photolithographically patterned Si substrates with Al2O3 etch mask. (b) - (f) show 

the etch profiles of the microwires as O2 flow during the etching varies from 4.5 – 6.5 sccm in steps 

of 0.5 sccm. Al2O3 mask can be seen at the top of the wires. 
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for 90 minutes while varying O2 flow at 0.5 sccm at every 30 minutes starting from 5 sccm to 6 

sccm. Post etching, the wafers were dipped in buffered hydrofluoric acid solutions to etch away the 

Al2O3 mask. The bar on the silicon microwires visible at 30 µm from the base of the wires was a 

result of stopping and starting the plasma during the transition from step 2 with 5.5 sccm O2 flow 

rate to step 3 with 6 sccm of O2 flow rate. The samples were then cleaned using modified RCA1 and 

RCA2 cleaning processes [50]. 

Figure 3.2: Si substrates with microcone arrays etched via ICPRIE. The inset shows the 

morphology of the microcone tip. 



 14 

 Optical Characterization 

Figure 3.3 plots the integrating sphere measurements for reflectivity from etched Si substrates after 

etching away the Al2O3 mask by dipping in 50 % HF solution for 1 minute. The curves labelled from 

(b) – (f) represent change in reflectivity from the etched substrates due to varying taper of microwire 

arrays in an order consistent with Figure 3.3 (b) – (f). The reflectivity decreases from (b) to (d) and 

starts going up for (e). A graded index can explain the changes in [51] since the average index of the 

medium increases as one moves down from top of the wires to the bottom. In Figure 3.3 (e) due to 

the broad bottoms the average index transitions from air to Si more gradually than in cases (b) to (d) 

and therefore has much lower reflectivity. In Figure 3.3 (f) the change in average index from air to 

Si on the substrate as one moves from top to bottom is quicker compared to Figure 3.3 (e), therefore 

the reflectivity starts increasing. In all cases discussed till now the top surface of microwires was flat 

and therefore the surface suffers an unavoidable top surface reflection.  

Angle-dependent reflectance measurements of the microcone arrays were performed using tunable 

monochromatic radiation from a supercontinuum laser and a Si photodetector [48]. Measurements 

were done on bare Si substrates with microcones and with antireflective SiNx coating. SiNx was 

deposited over the Si microcone substrates by plasma enhanced chemical vapor deposition (PECVD) 

Figure 3.3: Curves (b) – (d) show reflectance of Si substrates with etched microwires as shown 

in Figure 3.1 (b) – (d) after removal of etch mask 
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using an Oxford Instruments Plasmalab System 100. Silane and ammonia gas chemistry was used at 

350 oC and 1 torr at previously optimized conditions for microwire arrays [48].  

 

Figures 3.4 (a) and 3.4 (b) show the measured microcone array reflectance on linear and log scales, 

respectively, from 400 nm – 1100 nm, while the angle was varied from 00 to 50o. Averaged over 0o 

to 50o and over the range 400 nm-1100 nm, the integrated reflectance was 0.98 % for uncoated Si 

microcone arrays and 0.97 % for arrays coated with SiNx dielectric layers. During these 

measurements no back reflector was employed. The microcone arrays thus act as nearly ideal 

antireflection surfaces, not only at normal incidence but also at oblique incidence angles even 

without any anti reflection coating.  

Figure 3.4: (a) and (b) show the reflectance (0.98%) of Si substrates with microcone arrays 

measured using an integrating sphere plotted on a linear scale and log scale respectively. (c) and 

(d) show the reflectance (0.97%) of the arrays with a SiNx anti-reflection coating. 
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The angular reflectance without and with SiNx anti reflection coating is shown in Figure 3.4 (a), and 

(b) and Figure 3.4 (c), and (d) respectively in linear and log plots. The surface reflectance is 

comparable- -and in some cases lower than-- typical black Si front-surface texturing methods 

[52],[53],[54].  Notably, low reflection was achieved at wavelengths near the Si band gap, i.e., 1000 

nm – 1100 nm, where Si has a large absorption length. In the 1000 nm – 1100 nm wavelength range, 

where the absorption depth is of the order of hundreds of microns, the reflection varied from 3.6 % 

at normal incidence to 2.7 % at 50o for uncoated microcones, which is limited by reflection from 

back surface of the ~300 µm thick sample. In the 400 nm – 1000 nm range, the reflection varied 

from 0.7% - 0.5%. Although not all previous work has reported angular averages for reflectance, the 

present result of <1% angular averaged reflection is to our knowledge a record for low reflectance 

silicon structures and compares very favorably to other methods for reducing reflection in the range 

400 nm – 1100 nm, the wavelength range of interest for Si-based solar cells. 

In order to experimentally measure absorption in microcone arrays without effects due to the 

substrate, the uncoated arrays were embedded in ~120 µm thick Polydimethylsiloxane (PDMS) by 

spin coating a 1:1 by weight solution of Toluene : PDMS at 500 rpm so that all the cones were 

completely embedded in PDMS to avoid any damage to the tip while handling. The sample was 

heated on a hot plate at a temperature of 1200C for 5 hours. The microcone arrays embedded in 

PDMS were peeled off the surface using a razor blade to obtain flexible films as shown in Figure 

3.5 (a) and (b) [55]-[56]. The filling ratio of Si / PDMS in these films was ~1:5. The fill fraction of 

Si vs height is shown in Figure 3.6. These films were placed on a nearly ideal Lambertian back 

scattering BaSO4 (6080 White Reflectance Coating; LabSphere) coated sample holder in an 

integrating sphere, and reflection (R) measurements were performed. The absorption (A) was 

calculated from the reflectance (R) data by using A = 1 – R. Figure 3.5 (c) shows the absorption 

calculated from the reflection measurement in the integrating sphere from 400 nm – 1100 nm while 

the angle was varied from 0o to 50o. Averaged over 0o to 50o, such films showed an integrated 

absorbed solar spectrum photon flux as high as 89.1%, demonstrating the remarkable absorption 

properties of these tapered microwire arrays at various incident angles in the solar spectrum of 

interest. The effective planar thickness of these polymer-embedded arrays calculated assuming a 

truncated cone with tip radius of 25 nm, base radius of 3.5 µm, and a height of 70 µm is ~20 µm. 

Figure 3.5 (d) shows semitransparent area plots comparing the total incident photon flux (green), 
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absorbed solar flux under normal incidence in tapered microwire arrays embedded in PDMS (blue), 

and absorption for the 4n2 light -trapping limit [57] in a 20 µm thick Si slab, after correcting for 

reflection from the PDMS/air interface (~3%) (red). The grey color in the plot indicates the overlap 

region of all the three photon flux plots. The total calculated photon flux absorbed at normal 

incidence was 99.5% of the limit for an equivalent thick Si slab. Each of the films, fabricated by 

embedding the microcone arrays in PDMS and peeling the microcones off of their substrate and 

placed on a nearly ideal Lambertian back reflector, showed absorption slightly below the 4n2 limit 

for most of the solar spectrum, and exceeded the limit at wavelengths near the Si band gap (1050 nm 

– 1100 nm). 

Figure 3.5: (a) Optical photograph of the films with microcones embedded in PDMS, (b) cross 

section SEM of the film, (c) absorption measured in the film in the range 400nm – 1100nm while 

varying the angle of incidence from 00 to 50o, and (d) semitransparent area plot for comparison 

of absorbed photon flux at normal incidence with classical light trapping limit absorption of a 20 

µm thick slab 
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 Wave Optic Simulations 

The exceptionally low reflectivity of the arrays arises from the conical geometry. The fill fraction of 

the arrays at the light-incident interface is less than 0.01% and linearly increases extremely gradually 

along the extended length of the microcones to ~78% at their base. The remarkable optical 

characteristics – minimal reflection and high absorption-- of the Si microcone arrays cannot be 

completely explained by either effective medium concept or ray optic analysis especially at 

wavelengths near band gap of Si, and requires a wave-optical analysis for quantification. A previous 

theoretical study of Si microwire optical properties indicated that ray optical models are insufficient 

to explain the strong absorption observed experimentally in microwires with radii smaller than 4 µm. 

The microcones in this study have radii ranging from 50 nm to 3.5 µm. Therefore, we employed full 

wave simulations to accurately model the optical properties of the fabricated microcones [58].  

From this, the measured absorption is seen in this case to arise from efficient coupling of incident 

light into waveguide modes in the cones. We employed a combination of full wave electromagnetic 

simulations and analytic waveguide analysis to develop an understanding of the array optical 

properties. The strong symmetry overlap of specific waveguide modes also contributes to the low 

reflectivity, and is discussed in more detail below. Bloch modes, which often result in reflection 

Figure 3.6: (a) Si fill fraction variation from the top of the peeled off PDMS films with tapered 

microwires embedded in it. (b) SEM cross section image of the films showing the tapered 

microwires popping out of PDMS at the bottom of the film. 
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bands,[59],[60],[61] play an insignificant role in these structures due to an inter cone spacing that is 

much larger than the optical wavelength. Consequently, each microcone acts as an independent 

optical antenna and waveguide, consistent with previous findings [62],[63],[64].  

The high absorption arises from a combination of coupling into waveguide modes and the length of 

the microcones. Many groups have studied and demonstrated enhanced absorption in Si nanowire 

arrays due to coupling into waveguide modes with large extinction cross 

sections.[65],[66],[67],[68],[69] Owing to nanofabrication-imposed limitations to the achievable 

nanowire aspect ratio, the Si nanowire array absorption is typically much lower than that for optically 

thick planar Si absorbers, despite field enhancements due to the material volume required to achieve 

near-unity absorption in indirect bandgap materials [70]. Our microcone structures also capitalize on 

waveguide modes for optical absorption enhancement, while simultaneously incorporating long 

optical path lengths to achieve near-unity absorption. Efficient coupling into the optical waveguide 

modes of the Si microcone is the critical factor in the remarkable optical properties of these arrays. 

Three-dimensional full field electromagnetic wave simulations of microcone arrays were performed 

to characterize the waveguide modes. Rigorous 3D full field electromagnetic wave FDTD 

simulations of microcone arrays were performed using a commercial software package, Lumerical 

FDTD. The arrays were constructed using the 3D rectangular simulation region with periodic 

boundary conditions along x and y axes to depict 7 µm square lattice of the arrays, and infinite 

boundary conditions rendered as perfectly matched layers (PML) along z axis. In the simulation 

region microcones had a top diameter of 50 nm, bottom diameter of 7 µm, and height of 75 µm. 

Palik material data provided by Lumerical was used for modelling the material as Si. Single 

wavelength infinite plane wave sources at four different wavelengths (400 nm, 600 nm, 800 nm, and 

1000 nm) were used with a long pulse time of 50 fs to simulate steady state behavior. Generation 

rate in these structures was calculated by using the built in CW-generation (continuous wave 

generation) rate analysis group to obtain electron hole pair generation profiles under steady state 

illumination. Figure 3.7 displays carrier generation cross-sections for microcones at incident 

wavelengths of 400, 600, 800, and 1000 nm, respectively. Figure 3.7 (e)-(h) show complete cone 

cross sections on a logarithmic scale, marked with light blue squares indicating the bounds of Figure 

3.7 (a)-(d), which focus on the upper portion of the cone and are shown in linear scale.  
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All absorption profiles indicate light coupling into waveguide modes, but the modes are less obvious 

at λ = 400 nm (Figure 3.7 (a) and (e)), due to strong absorption above the direct gap of Si. Below the 

direct gap of Si, the waveguide characteristics become more apparent. Absorption occurs primarily 

in the microcone core, indicative of guided mode propagation in the cone, and exhibits semi-periodic 

longitudinal intensity oscillations that scale with incident wavelength; these longitudinal oscillations 

in field intensity are not representative of any longitudinal interference modes, but rather are 

indicative of the phase cycle of mode propagation. This distinction is critical because longitudinal 

interference modes would require long solar coherence lengths, whereas mode propagation does not. 

Figure 3.7: Longitudinal cross sections of power absorption for Si microcones at 400 (a,e), 600 

(b,f), 800 (c,g), and 1000 (d,h) nm wavelengths, respectively; (a-d) upper portion of microcone 

with linear intensity scale; (e-h) complete microcone with logarithmic intensity scale; light blue 

squares correspond to expanded cross sections in (a-d); different relative scales are used for each 

figure to highlight modes. 
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Additionally, the existence of significant intensity near the lower end of the microcone in the λ = 

1000 nm profile demonstrates long distance waveguide mode propagation to the bottom of the 

microcone, enabling near-unity absorption for wavelengths near the Si band edge. Simulations show 

that the reflection is < 1 % at wavelengths below 1000 nm agreeing with the measurements. Since 

carrier generation was observed to occur predominantly in the upper portion of the cones, the minor 

deviation from perfectly circular cone shape seen in Figure 3.2 at the base of the cones is not expected 

to give rise to a significant change in the optical properties relative to the circular cross sections 

assumed in our simulations. 

Figure 3.8: Detailed mode analysis of upper portion of a microcone at λ = 1000 nm; mode color 

key in (h) is applied throughout the figure; (a) longitudinal absorption cross section with dashed 

lines indicating radial cross sections; (b-g) radial cross section, exhibiting HE1n modes; (h) 

traditional dispersion curves for HE1n modes for n=3.577; (i) non-traditional dispersion curves, 

converted from (h) for λ = 1000nm. 



 22 

Detailed mode analysis reveals that light couples into the set of first azimuthal order waveguide 

modes, HE1n, as illustrated for λ = 1000 nm illumination in Figure 3.8. As previously 

reported,[71],[72] efficient coupling occurs into this set of modes due to the strong overlap in 

symmetry between the incident plane wave and the in-plane mode field profiles. Figure 3.8 (a) 

displays a longitudinal cross section marked with horizontal dashed lines colored to indicate their 

correlation with the radial cross sections in Figure 3.8 (b)-(g); the radial cross sections correspond to 

the first six HE1n modes, in ascending order. As expected, the first order HE11 mode appears at the 

top of the wire, and the higher order modes appear in sequence, as radius increases.  

 

         (1) 

The dispersion curves for these modes were calculated from the eigenvalue equation (Eqn. 1) for 

cylindrical dielectric waveguides,[73] where Jm and Hm are the cylindrical Bessel and Hankel 

functions of the mth order, k0 is the free space wavevector, kcyl(kout) is the transverse wavevector 

inside(outside) the cylinder, β is the mode propagation constant, εr,cyl (εr,out) and µr,cyl(µr,out) are the 

relative dielectric permittivity and permeability inside(outside) the cylinder, and a is the cylinder 

radius. Figure 3.8 (h) and Figure 3.8 (i) show the dispersion curve for a Si waveguide (n=3.577), in 

its tradition form, k0a(βa), and a non-traditional form, mode index vs. radius, respectively. The mode 

color key in Figure 3.8 (h) is consistent throughout the figure. The dashed lines on Figure 3.8 (i) 

indicate the radius of the mode cross sections in Figure 3.8 (b)-(g), revealing that the modes are most 

prominent between a mode index of 1 and 2. This moderate mode index is due to a tradeoff between 

ease of free space coupling and mode confinement mediated-absorption. Mode profiles, propagation 

constants and radius range are all consistent with analytic waveguide theory. These observations 

demonstrate the critical role of waveguide modes in the optical characteristics of the microcone 

arrays. 
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 Photogenerated Carrier Lifetime Measurements 

In order to evaluate quality of etched microcones/microwires and estimate the maximum achievable 

Voc, transmission electron microscopy (TEM) and lifetime measurements were performed. Etched 

microwires were removed from the host Si wafer by mechanical cleaving with a razor blade before 

being dispersed in isopropyl alcohol. The resulting solution was spun onto a Si wafer for 30 s at 2000 

rpm. The wire-coated wafer was then coated with ~ 20 nm of Al2O3 with atomic layer deposition. 

Axial cross sections were made in a FEI Versa dual-beam focused ion beam instrument, extracted 

with an FEI EasyLift NanoManipulator and welded to an Omniprobe Cu liftout TEM grid before 

Figure 3.9: Transmission electron microscopy (TEM) study of a single etched microwire 

immediately after ICPRIE with the Al2O3 mask intact on top and with no cleaning except a solvent 

rinse is aligned to the 001 zone axis. A large area corresponding to the tip of a cone was studied (far 

left). Bright field images (BF) are devoid of contrast within the etched wire other than bend contours 

introduced during sample preparation, and selected area diffraction (SAD) shows a clean pattern. 

Higher resolution images at the top of the cone (center) shows no evidence of damage to the cone 

tip which was protected by the hard mask during growth. However, a high resolution imaging 

reveals a thin (~ 2-3 nm) region on the sidewalls (far right) which could correspond to damage 

introduced during the etching process. These data were collected at 300 kV in an FEI Technai TF30 

TEM. 
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thinning to electron transparency. Electron microscopy images of the sidewall shown in the Figure 

3.9 shows minimal surface damage due to etching, and no lattice damage in the bulk, as expected 

from the low forward power (5W) and predominantly chemical nature of the dry etching process.  

In order to estimate the recombination at the surface of etched microwires, cylinders of 3, 15 μm 

diameters and height 50, 70 μm respectively were etched by ICPRIE in high lifetime (~1 ms) intrinsic 

Si wafers. Standard RCA 1 and RCA 2 clean processes followed by 20s damage removal in 5.4M 

KOH solution at around 70oC were performed on the etched samples. Microwires from these 

substrates were scraped off their substrates with a razor blade and were collected in a centrifuge tube. 

A further 10s etch in 3.6M KOH solution at room temperature is performed on these microwires to 

remove the back surface damage due to scraping, before neutralizing the etching solution to stop 

etching by addition of concentrated 5.8M HCl. The microwires were separated from the resulting 

solution by centrifuging the solution. The wires were rinsed three times in DI water to get rid of the 

solution. Various liquid passivation mechanisms including 3.6M HCl solution, 31.8M HF, 1.3M HF, 

and Iodine in Ethanol were added to the cleaned wires. Lifetime measurements of these wires were 

performed by a home built microwave detected photoconductivity decay (MW-PCD) tool with 

Nd:YaG laser illumination at 1064 nm as shown in Figure 2.10. Laser power was varied between 

30-120 μJ. Pulse width of 5 ns and spot size of 3 mm diameter was used at 50 Hz frequency during 

measurements.  

Figure 3.10: Schematic of home built microwave detected photoconductivity decay setup 
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While it is most informative to measure the lifetime at different, known injection levels, it is difficult 

to know the exact injection level in this configuration. 1064 nm is weakly absorbing in silicon, and 

therefore significant attenuation in intensity is not expected as light is absorbed. It is likely that some 

distribution of injection levels exist due to their varying optical environments. The injection level, 

and therefore the most relevant recombination mechanism can be estimated by measuring the change 

in lifetime as a function of laser intensity. All samples showed an increase in lifetime as pulse energy 

was increased from 30 μJ to 120 μJ, characteristic of transition from low level injection to high level 

injection [74]. 

Table 3.1 compares the various surface passivation mechanisms under which the carrier lifetimes 

were measured in 15 μm diameter, and 70 μm long silicon microwires at a laser pulse energy of 240 

μJ. Under 3.6 M HCl passivation a lifetime of 1.9 μs was measured in these microwires. Similar 

measurement for 3 μm diameter, and 50 μm long microwires measured carrier lifetimes of 0.67 μs. 

HCl is known to remove metallic impurities from silicon and therefore is used in processes such as 

RCA 2 cleaning. Therefore we hypothesize that HCl does a better job of removing the metallic 

impurities that contaminate the silicon microwires during the scraping off process using a metallic 

razor blade. Table 3.2 shows the estimated carrier lifetimes in the 3 μm and 15 μm diameter 

microwires under various surface recombination velocities assuming a bulk lifetime of 1 ms under 

low level injection conditions calculated from Synopsis Sentaurus TCAD simulations. The carrier 

lifetimes measured indicated that the surface recombination velocities at the surfaces were of the 

order of few hundreds of cm/s. 

Passivation 

Mechanism 

Carrier Lifetime 

(μs) 

Iodine in Ethanol 0.6 

1.3 M HF 0.4 

31.8 M HF 0.7 

3.6 M HCl 1.9 

 

Table 3.1 : Carrier lifetimes measured under various surface treatments 
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The carrier recombination lifetimes were measured for microcone arrays passivated by Al2O3 coated-

by atomic layer deposition (ALD) [37, 75]. Al2O3 was deposition on Si by atomic layer deposition 

using Trimethylaluminum and water as precursors at 150oC after standard cleaning procedure. The 

precursors were pulsed for 15 ms at 20 s intervals for 200 cycles. The Si samples then annealed at 

400oC for 10 minutes under nitrogen flow of 3 lpm. Al2O3 passivated tapered microwire arrays were 

embedded in PDMS and peeled from their respective substrates using a razor blade. During the 

measurements, the fractured back surfaces of the peeled microwires were passivated in situ using 

5.8M HCl, after a 20s damage removal etch in 3.6M KOH at room temperature. All the lifetime 

measurements resulted in continuously increasing lifetimes as a function of intensity, indicating that 

Wire Geometry: 

Diameter (d μm) Height (h μm) 

SRV (cm s-1) Calculated Lifetime (μs) 

d = 3 50 4 

h = 50 100 1.5  
500 0.75 

d = 15 20 16.5 

h = 70 100 6  
500 1.5 

Table 3.2: Estimated lifetimes based on SRVs 

Figure 3.11:Microwave reflectivity of ALD Al2O3 passivated microcone arrays with in situ back 

surface passivation using 5.8M HCl measured using the microwave photoconductivity setup with 

0.75 µs carrier lifetime 



 27 

measurements were done at the onset of high injection level [76]. Lifetimes of 0.75 µs were measured 

in these arrays with 240 µJ pulses as shown in Figure 3.11. 

An analytical model was implemented to estimate surface recombination velocity (SRV), implied 

Voc, and the corresponding maximum limiting efficiency achievable from the carrier lifetime 

measurements. The model was implemented in Microsoft Excel, using VBA to iteratively solve the 

transcendental equations for steady state carrier concentration. Equivalent planar thickness, surface 

area, total absorption, surface recombination velocity, radiative recombination coefficient, 

Shockley-Reed-Hall coefficients [77], and auger recombination coefficients[78] in the bulk were 

input parameters. This model gives the absolute theoretical maximum limiting Voc, and efficiency 

that can be achieved in principle from the microcone light trapping structures with the measured 

lifetimes. The average steady state excess carrier concentration was obtained by solving for 

equivalence of the total generation rate and sum of all recombination rates due to the four 

recombination mechanisms considered. In this model we ignored the effects of resistances and 

assumed a narrow selective contact, therefore the change in quasi fermi levels in the bulk of Si is 

very small. The quasi fermi level separation and maximum Voc achievable are obtained from 

equation 2. To estimate the total carrier generation, an internal quantum efficiency of 100 % was 

assumed, and the total photon flux absorbed was calculated from the measured absorption in tapered 

microwire arrays under AM 1.5 spectrum. Because the etching process was predominantly chemical 

and no bulk damage was observed in TEM analysis, the bulk lifetime was assumed to be 1 ms (same 

as the lifetime measured in the starting wafer in which the structures were etched into). Finally, an 

efficiency was extracted using the total generation as the Jsc and calculating a fill factor using the 

empirical model for a device without series resistance or shunting developed by M.A. Green [79]. 

In this model an intrinsic doping density (ni) of 9.7 x 109 cm-3, donor doping density (Nd) of 1017 cm-

3, and radiative recombination coefficient (Brad) of 4.7 x 1015 cm3s-1 were used. This model provides 

an estimate for the absolute maximum achievable efficiency. In realistic photovoltaic devices, 

resistances are expected to reduce the efficiencies relative to those calculated via this model. 

𝑉𝑂𝐶 = 𝐸𝑓𝑛 − 𝐸𝑓𝑝 =  
𝑘𝑇

𝑞
ln (

(𝑁𝐴+ ∆𝑛)∆𝑛

𝑛𝑖
2 )               (2) 

The SRV achieved was estimated to be 150 cm s-1, with the corresponding implied Voc to be 0.655 

V, and the maximum efficiency achievable to be 22.2 %. The microcone arrays are surface 
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recombination limited and a further decrease in SRV to 5 cm s-1 is shown to enhance the lifetime to 

> 15 µs, and the maximum limiting efficiency to > 25%.      

 Conclusion 

In conclusion, the microcone arrays fabricated in this work demonstrate superior light trapping 

properties with < 1 % angular averaged reflection, and absorption reaching the 4n2 light trapping 

limit due to enhanced coupling of incident light into the waveguide modes. The high absorption 

arises from a combination of coupling into waveguide modes and overall length of the microcones, 

resulting in absorption that approaches to the ray optic light trapping limit over most of the solar 

spectrum and absorption above the ray optic limit at wavelengths near the  Si energy band gap 

[80],[81]. These microcones show no bulk damage and minimal surface damage that can be removed 

by surface cleaning after fabrication. We measured carrier lifetime in these microstructures by 

microwave detected photoconductivity measurement, and measured lifetimes of 0.75 µs for wires 

under ALD deposited 20 nm thick Al2O3 sidewall passivation with 5.8 M HCl back surface 

passivation. In this work the performance of the arrays is limited by surface recombination and 

therefore further improvement in surface passivation methods to these arrays can push the 

performance of these arrays to reach Voc > 0.7 V and maximum possible efficiency > 25%. The 

efficiencies estimated by our model provide the absolute maximum possible limiting value that are 

in principle achievable given the material volume and surface area of the fabricated structure and the 

observed optical properties.  The real world device architectures we envision utilizing these 

microcone arrays include all back contact solar cells[37, 43, 75, 82] similar to previous 

demonstrations with an ultrathin Si substrate [83] or as a flexible solar cell with a conventional back 

contact and a transparent front contact [56], the effect of resistances in the structures and selective 

contacts are expected to reduce the estimated efficiency further.  In this study, ICPRIE was chosen 

as the fabrication technique because it offers significant optoelectronic performance advantages-- 

the electronic quality of the bulk wafer is preserved, and the fine control over the shape of etched 

structures enables optimal optical design. Due to the high surface area and superior light trapping 

these microcones are also excellent candidates for applications in photoelectrochemical cells and 

enhancing electrode efficiencies [84-88].        
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Photoelectrochemical Profiling Photoinduced 

Carrier Generation in Silicon Microwires  

 Introduction 

Semiconductor mesostructures have been studied extensively due to their unique band gap energies, 

absorption and reflectance properties, charge-transport pathways, and increased surface area, relative 

to their planar counterparts.[89-92] The ability to tailor such properties has made mesostructures 

attractive architectures for applications in areas including photonics[93-95], photovoltaics[96-99], 

electronics[100, 101], catalysis[102-104], and sensing[105, 106]. Mesostructured semiconducting 

wire arrays composed of elemental, binary compounds (e.g. group III-V, II-VI, IV-VI) and ternary 

compounds have been synthesized.[92, 107-114] The macroscopic optoelectronic and 

electrochemical properties of such wire arrays have been experimentally characterized[115-119], but 

nanoscale analyses that aim to provide a microscopic understanding of these properties have been 

mostly limited to theoretical and computational methodologies.[120-123] 

The optical excitation of photoactive semiconductor substrates immersed in a metal-ion solution can 

provide the driving force for deposition of a metal.[124] Photoelectrochemical metal deposition has 

been used to generate arbitrarily patterned metallic deposits on a semiconductor surface by use of a 

photomask or by use of scanning laser illumination.[125-129] The localized illumination results in 

the spatially confined generation of mobile charge-carriers that are transported toward the 

solid/solution interface, and subsequently drive localized electrochemical deposition. Herein, we 

demonstrate the use of such a photoelectrochemical deposition process to physically record the 

localization of carrier generation in three-dimensional semiconductor mesostructures under 

conformal illumination. Unlike planar materials, such structures display significant, inherent 

spatially anisotropic and complex, light absorption in three dimensions.[122, 123]  Si microwire 

arrays can be grown with a high degree of fidelity and control; provide superior optical absorbance 
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on a per unit mass basis than planar Si; and have shown potential for use in photovoltaic, fuel-

forming photoelectrochemical, and sensing applications.[88, 130-133] In this work, Au was 

photoelectrodeposited onto arrays of cylindrical or tapered Si microwires, using a series of 

narrowband light sources providing excitation at a variety of wavelengths. The localization of the 

Au deposition was examined by scanning-electron microscopy (SEM). Computer modeling of 

carrier generation in the same structures was performed to correlate the localization of the deposition 

with the expected spatial distribution of the carrier generation in the material. 

 Experimental Procedure 

S1813 positive photoresist was spin coated at 4000 rpm onto the top of Si wafers. The wafers were 

then heated on a hotplate at 115 ºC for 1 min. The photoresist was then exposed using UV 

illumination through a square lattice mask consisting of holes with a 3 µm diameter and a 7 µm pitch. 

The photoresist was developed using MF-319 developer and the wafers were baked for 10 min at 

115 ºC. A 200 nm thick Al2O3 mask was then deposited onto the patterned wafer using electron-

beam evaporation. PG-remover was used to liftoff the photoresist. After the liftoff, Fomblin oil was 

applied to the back of the wafers to act as a thermal contact material, and the wafers were loaded 

into the etching chamber. Wires were etched using a cryogenic inductively coupled plasma reactive 

ion etching process (ICP-RIE) with an Oxford DRIE 100 ICP-RIE system. Etching was performed 

at low capacitive coupled power of 5 W to reduce damage due to the momentum of the ions. A high 

inductively coupled power of 900 W was used to increase the number of ions in the plasma to achieve 

high rates of chemical etching. The chamber was maintained at -120 ºC and a pressure of 10 mTorr 

during the etching process. Etching was performed using SF6 : O2 ratios ranging from 70 sccm : 5.5 

sccm to 70 sccm : 8 sccm for 30 min. Variation of the O2 concentration in the plasma enabled control 

over the wire taper. After etching, the wafers were dipped in buffered HF to chemically remove the 

Al2O3 mask. 

Si microwire arrays were cut into ~ 1 cm x 1 cm sections. Immediately before deposition, each 

section was rinsed with CH3OH, followed by H2O, and then immersed in buffered HF(aq) for ~ 60 

s to remove any surficial SiOx from the Si. The sample was then rinsed with H2O and dried with a 

stream of N2(g). A Ga/In eutectic was scratched into the back side of each section using a carbide 
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scribe, and the section was mounted on a ~ 2 cm x 2 cm Ti plate using Cu tape. This assembly was 

then sealed with a Ti backplate into a single compartment O-ring compression that confined the 

contact region between the solution and the Si microwire array section to a circular area of 0.1 cm2. 

The cell was equipped with a pyrex window to enable illumination during deposition. A three-

electrode configuration was utilized with a graphite-rod counter electrode (99.999 %, Sigma-

Aldrich) and a Ag/AgCl reference electrode (3 M KCl, Bioanalytical Systems). Au was deposited 

from an aqueous solution of 0.010 M HAuCl4 and 0.100 M KCl. All depositions were performed 

using a Princeton Applied Research Model 273 potentiostat. Depositions were carried out at room 

temperature by biasing the illuminated microwire array potentiostatically at -1.25 V vs. Ag/AgCl 

until an integrated charge density of 0.10 mC cm-2 had been passed. The linear sweep voltammogram 

in Figure 3.1 for p-type Si microwires shows that at -1.25 V the photocurrent is > 4 times the dark 

current. 

Illumination for the photoelectrochemical depositions was provided by narrowband diode (LED) 

sources (Thorlabs) with respective intensity-weighted λavg values and spectral bandwidths (FWHM) 

of 461 and 29 nm (M470L2), 516 and 30 nm (M505L3), 630 and 18 nm (M625L3), and 940 and 30 

nm (M940L2), respectively. The output of each diode source was collected and collimated with an 

aspheric condenser lens (Ø30 mm, f = 26.5 mm). The light intensity incident on the electrode was 

measured by placing a calibrated Si photodiode (Thorlabs FDS10X10), in the photoelectrochemical 

cell with the electrolyte, at the location of the electrode, and measuring the steady-state current 

response of the Si photodiode. Depositions that utilized the diode with λavg = 461 nm as the 

illumination source were performed with a light intensity of 77 mW cm-2 at the electrode. 

Depositions using the diodes with λavg = 516, 630, and 940 nm, were performed with intensities of 

64, 50, and 33 mW cm-2, respectively. Scanning-electron micrographs (SEMs) were obtained with a 

FEI Nova NanoSEM 450 at an accelerating voltage of 5.00 kV and working distance of 5.00 mm 

using an Everhart-Thornley secondary electron detector. 

Photocarrier generation profiles in Si wire arrays under steady-state illumination with unpolarized 

light were simulated using three-dimensional full wave electromagnetic simulations via a finite-

difference time domain (FDTD) method. Modeling was performed using the FDTD Solutions 

software package (Lumerical). Si microwire arrays were simulated using a single three-dimensional 

unit cell with periodic boundary conditions along the x and y axes to depict a 7 µm square lattice 
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similar to the fabricated arrays, in conjunction with infinite boundary conditions rendered as 

perfectly matched layers (PML) along the z axis. Idealized microwire arrays corresponding to the 

four different fabricated shapes were constructed in the 3D simulation region by approximating the 

tapered microwires as truncated cones or multiple sections of truncated cones. The absorption was 

simulated under polarized illumination and then the CW-generation rate analysis group in the FDTD 

Solutions software was used to derive the generation rate per unit volume. The generation rate under 

unpolarized illumination was obtained by averaging the generation rate data with itself by 

interchanging the x- and y-axes as permitted by the square symmetry of the wire lattice. 

 

 

 

Figure 4.1: Linear sweep voltammogram (at a scan rate of 50 mV s-1) obtained with a p-Si 

microwire array with a ~ 3 µm wire diameter, 7 µm wire pitch, and 30 µm wire height in an aqueous 

solution of 0.010 M HAuCl4 and 0.100 M KCl under chopped illumination with a LED source having 

λavg = 461 nm and an intensity of 77 mW cm-2. 
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 Photoelectochemical Deposition Profiles 

Figure 4.2 (a) presents a cross-sectional scanning-electron micrograph (SEM) of a Si microwire array 

onto which Au was photoelectrodeposited using a LED with an intensity-weighted average 

wavelength, λavg, of 461 nm. The Au plating was radially symmetric, but enhanced deposition was 

observed at the tips of the wires, with the deposition diminishing rapidly along the axial dimension. 

Figures 4.2 (b)-(d) present analogous SEMs for depositions using LEDs having λavg values of 516, 

630, and 940 nm, respectively. Increasing λavg decreased the axial deposition gradient, with 

conformal deposition being approached for λavg = 940 nm. In contrast, deposition of Au proceeded 

conformally onto n-type Si microwire arrays that had nominally equivalent morphologies to the p-

type Si microwire arrays.  

 

Figure 4.2: (a−d) Representative SEMs of p-Si microwire arrays with a ~ 3 µm wire diameter, 7 

µm wire pitch, and 30 µm wire height in a square lattice, upon which Au was photoelectrodeposited 

from a HAuCl4 solution with a charge density of 0.10 C cm-2 using narrow band LED illumination 

having λavg as indicated. 
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Figure 4.3 (a)-(d) present representative cross-sectional SEMs of n-type arrays analogous to those 

presented for the p-type arrays in Figure 4.2 (a)-(d). Such behavior supports a notion that the 

anisotropic deposition observed on the p-type Si microwire arrays is directed by light absorption and 

photocarrier generation and transport, as opposed to solution-based transport limitations in the void 

volume of the Si microwire array. Electrodeposition at a p-type semiconductor interface using a 

sufficiently cathodic bias at room temperature without illumination is ineffective due to a scarcity of 

mobile electrons (minority carriers) in the material. Light absorption in p-type materials results in 

the generation of mobile electrons which can approach the interface and drive electrochemical 

reduction of a solution species. Thus, anisotropic light absorption may result in anisotropic 

deposition at the interface of a p-type material. In contrast, similar cathodic deposition at an n-type 

semiconductor interface does not require illumination to proceed at significant rates due to the 

presence of mobile electrons (majority carriers) in the material. 

Figure 4.3: (a−d) Representative SEMs of n-Si microwire arrays with with ~ 3 µm wire 

diameter, 7 µm wire pitch, and 30 µm wire height in a square lattice, upon which Au was 

photoelectrodeposited from a HAuCl4 solution with a charge density of 0.10 C cm-2 using 

narrowband LED illumination having λavg as indicated. 
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Figure 4.4 (a) depicts a two-dimensional representation (side-view) of the simulated photocarrier 

generation rates in a microwire under simulated illumination with λavg = 461 nm. The simulated 

generation in a well-defined, narrow region near the tip of the wire was at least an order of magnitude 

higher than in any other volume of the wire, including that directly below in the axial dimension. 

The photoelectrodeposition of Au at this wavelength (Figure 4.2 (a)) mirrored this localization in 

that the majority of the Au plated near the tip of the wire. Figure 4.4 (b)-(d) display representations 

of the photocarrier generation rates analogous to that presented in Figure 4.4 (a) but with values of 

λavg of 516, 630, and 940 nm, respectively. At these longer wavelengths, the carrier generation 

profiles displayed waveguide characteristics that are more readily apparent than for λavg = 461 nm, 

due to the high Si absorption coefficient at this wavelength. Waveguide behavior was observed 

despite micron-scale wire dimensions, consistent with previous reports on semiconductor nanowire 

absorption.[89, 134] For λavg = 516 nm, as with λavg = 461 nm, generation near the tip of the wire 

was generally at least an order of magnitude higher than at other axial locations in the microwire. 

For λavg = 516 nm, the region of high generation near the tip was thicker, and generation throughout 

the rest of the volume was mostly equivalent or higher, than the profile calculated for λavg = 461 nm. 

The localization of carrier generation for λavg = 516 nm was also similar to that observed 

experimentally for Au photoelectrodeposition, as shown in Figure 4.2 (b), where the plating was 

Figure 4.4: (a−d) Simulated relative photocarrier generation rates in Si microwires with a 3 µm 

wire diameter and 30 µm wire height in a square lattice with a 7 µm wire pitch under narrowband 

illumination with spectral profiles having λavg as indicated. 



 36 

concentrated axially in a region near the tip of the wire, but with diminished axial anisotropy relative 

to the deposition under λavg = 461 nm illumination. For λavg = 630 nm, the carrier generation profile 

was significantly more isotropic than for the shorter wavelength cases. However, the total generation 

in the ~ 5 μm axial sections at the top and bottom of the wire was greater than that in the center of 

the wire. This calculated generation profile matched the photoelectrodeposition profile observed 

experimentally (Figure 4.2 (c)), wherein significant Au plating was observed along the entire length 

of the wires, but with somewhat greater density at the tops and bottoms. For λavg = 940 nm, the 

calculated carrier generation was more uniform in the axial dimension than for λavg = 630 nm. The 

total generation was somewhat lower in the top and bottom ~ 5 µm of the wire relative to the 

generation in the center. The Au plating (Figure 4.2 (d)) mirrored this observation, with generally 

conformal deposition that was nevertheless lower at the very top and bottom relative to the center. 

Thus, the localization of photocarrier generation consistently matched the localization of the 

photoelectrodeposited Au, indicating that the cathodic metal plating is directed by carrier generation 

in the p-type material under the conditions utilized in this work. Such a phenomenon indicates that 

the micrographs of the metal deposition provide a spatially resolved image of the relative 

photocarrier-generation rates in structured semiconductors, provided that carrier transport occurs 

over sufficiently short distances to maintain the integrity of the linkage between the locations of 

volumetric carrier generation and the minority-carrier flux that produces surface-based metal 

deposition.  

To examine the capability of the photoelectrodeposition process to profile photocarrier generation 

in arbitrary mesostructured semiconductor arrays, several p-Si tapered microwire arrays were 

evaluated. As with the cylindrical microwires investigated herein, each tapered wire array consisted 

of structures that were ~30 µm in height on a 7 µm pitch in a square lattice. As with the cylindrical 

wires, the tapered wires had a diameter of ~ 3 µm at the tips of the wires. The tapered wires had 

however a ratio of their base diameter to tip diameter, ϼ, of 1.4, 1.6 or 2.3 (ϼ = 1 for cylindrical 

wires). For wires with ϼ = 1.4 and 1.6, the wire diameter tapered linearly from tip to base, whereas 

for wires with ϼ = 2.3, the diameter tapered nonlinearly, producing a bottle-like shape. Figure 4.5 

(a)-(c) depicts two-dimensional representations (side-view) of the simulated photocarrier generation 

rates in tapered microwires with ϼ = 1.4, 1.6, and 2.3, respectively, under simulated illumination 

with λavg = 461 nm. In each case, the simulations indicated the presence of a narrow, well-defined 



 37 

region at the very tip of the wires where the generation was approximately an order of magnitude 

higher than in any other region in the microwire volume, as observed for the cylindrical wire at this 

wavelength (Figure 3(a)). For ϼ = 1.6, a radially thin region of elevated generation, extending 10 µm 

down from the tip in the axial dimension, was observed in the radial center of the wire. This behavior 

was however not observed for other values of ϼ at this wavelength. For ϼ = 2.3, the generation at the 

wire sidewalls was enhanced compared to the other structures, in manner consistent with increased 

collection of normal incidence photons due to the significant taper.  

Figure 4.5 (d)-(f), (g)-(i), and (j)-(l), present data analogous to that in Figure 4.5 (a)-(c) but using 

simulated illumination with λavg values of 516, 630, and 940 nm, respectively. As with the case of 

the cylindrical wires, at these wavelengths, enhanced coupling to the waveguide mode was observed 

in the generation profiles. For λavg = 516 nm, and for wires with every value of ϼ, the simulations 

each exhibited an axially well-defined, radially thick, region of high generation near the top of the 

wire, with a radially thin region of similarly high generation extending for several µm directly below 

through the radial center of the wire. Such results were consistent with the cylindrical case (Figure 

4.4 (b)). However, for ϼ = 1.4, the region of radially thin high generation extending below the tip 

was more pronounced and extended > 5 µm down the axial dimension. For ϼ = 1.6, this same region 

extended approximately midway down the axial dimension of the wire, and a second, similarly 

shaped, high generation region was observed in the bottom quarter of the wire. For ϼ = 2.3, the region 

of high generation extending below the tip was axially shorter than observed for the other shapes, 

but an isolated, radially thin region of high generation, < 5 µm long in the axial dimension, was 

observed ~10 µm from the top of the wire. Enhanced generation at the sidewalls was also observed 

for ϼ = 2.3 relative to the other shapes, consistent with the observations for λavg = 461 nm. For λavg = 

630 nm, the simulated generation in the tapered wires was generally described by a region of radially 

thick high generation near the tips of the wires, with similarly high generation in a radially thin region 

at the wire center throughout the entire axial length. The region of radially thick high generation near 

the tips was longer in the axial dimension for all values of ϼ with λavg = 630 nm than with λavg = 461 

or 516 nm. However, the axial length of this region decreased as ϼ increased. For ϼ = 1.4, less 

generation in the second quarter from the top of the wire, and additional generation in the bottom 

quarter, was observed relative to the wires with greater ϼ values. For λavg = 940 nm, a significant 

concentration of generation in the wire tip relative to the rest of the microwire volume was not 
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observed for any value of ϼ. Rather, the carrier generation was generally consistent in the axial 

dimension, with highest generation concentrated in the center of the wire volume. However, as ϼ 

increased, the generation did appear to decrease somewhat in the bottom half of the wire. 

 

Figure 4.5: (a−l) Simulated relative photocarrier generation rates in tapered Si microwires with 

a 3 µm wire top diameter and 30 µm wire height in a square lattice with a 7 µm wire pitch under 

narrowband illumination with spectral profiles having λavg as indicated 
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Figure 4.6: (a−l) Representative SEMs of tapered p-Si microwire arrays with with ~ 3 µm wire 

top diameter, 7 µm wire pitch, and 30 µm wire height in a square lattice, upon which Au was 

photoelectrodeposited from a HAuCl4 solution with a charge density of 0.10 C cm-2 using 

narrowband LED illumination having λavg as indicated. The ratio of the wire diameter at the base 

to that at the top (ϼ) is indicated.  
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Figure 4.6 presents experimental data complementary to the modeling data shown Figure 3.5, and is 

arranged in an analogous fashion. Specifically, Figure 4.6 (a)-(l) present cross-sectional SEMs of 

tapered p-Si microwire arrays with values of ϼ = 1.4, 1.6 and 2.3, wherein Au was 

photoelectrodeposited with LEDs having λavg values of 461, 516, 630 and 940 nm, respectively, in 

the same manner as for the cylindrical wires (Figure 4.2). At every value of ϼ, photoelectrodeposition 

with λavg = 461 nm illumination resulted in very dense Au plating at the very tip of the wires, 

consistent with the well-defined, narrow high-generation region indicated by the simulations in this 

volume of the wires (Figure 4.5 (a)-(c)) and with the behavior observed for the cylindrical case 

(Figure 4.2 (a)). For ϼ = 1.6, photoelectrodeposition was also observed below the tip in the top half 

of the wires, consistent with elevated generation observed in the center and near the sidewalls in this 

volume of the wire via simulation (Figure 4.5 (b)). Similarly, for ϼ = 2.3, sparse deposition was 

observed over the full axial dimension below the tip, consistent with the simulated prediction of 

elevated sidewall generation (Figure 4.5 (c)). Photoelectrochemical Au plating with λavg = 516 nm 

illumination on wires with ϼ = 1.4 resulted in a gradient of deposition in the top half of the wire, 

wherein dense plating near the tip transitioned to sparse near the axial midpoint. For ϼ = 1.6, 

significant deposition was observed from the top of the wire down to the axial midpoint and also in 

the axial bottom quarter. This result is consistent with the simulations (Figure 4.5 (d)-(e)), which 

indicated significantly enhanced generation rates in the same axial segments for which Au plating 

was observed. For ϼ = 2.3, heavy plating was observed near the top of the wire, with substantial, but 

less dense, deposition in axial top half and sparse deposition in the bottom half. The relatively higher 

deposition in the top half of this structure is consistent with the prediction of generation concentration 

in this volume (Figure 4.5 (f)). Utilization of λavg = 630 nm illumination for deposition on wires with 

ϼ = 1.4 resulted in significant deposition over the axial top quarter and bottom half of the wires, and 

sparser deposition over the second quarter. Deposition with λavg = 630 nm illumination on wires with 

ϼ = 1.6 and ϼ = 2.3 resulted in a gradient of Au plating, with significant deposition at tops of the 

wires and sparse deposition near the bottoms. These results are consistent with the concentration of 

generation along the axial dimension of the wires, as predicted by the simulations (Figure 4.5 (g)-

(i)). Deposition with λavg = 940 nm illumination on wires with ϼ = 1.4 resulted in relatively conformal 

plating. This conformality matched the lack of axial generation concentration indicated by the 

modeling (Figure 4.5 (j)). Results for deposition with λavg = 940 nm illumination on wires with ϼ = 

1.6 and 2.3 were similar, but with sparser deposition in the axial bottom halves of the wires. The 
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simulations predict a similar amount of total generation in these structures as for those with ϼ = 1.4, 

but because the spatial volume is larger, the generation concentration is lower, consistent with the 

experimental observations.  

 Potential Applications 

The collective data suggest that the spatially varying relative charge-carrier generation rates in a p-

type semiconductor mesostructure under illumination can be physically recorded via cathodic 

photoelectrodeposition of a metal. For each p-Si microwire array and illumination spectrum 

investigated, the localization of Au deposited photoelectrochemically on the surface directly 

correlated with the relative concentration of carrier generation in the adjacent volume of the 

structure, as determined by computer simulation. In this work, computational assessment of the 

spatial dependence of charge-carrier generation was in part enabled by the high degree of uniformity 

and symmetry in the wire arrays. Each wire was considered as an identical element in a semi-infinite 

square lattice, and periodic boundary conditions were utilized to simulate a macroscopic array by 

considering only a microscale volume. Analysis of mesostructures without significant uniformity 

and order thus could be computationally intractable, but still carried out rapidly via the 

photoelectrochemical profiling technique described herein. This method may be of particular interest 

for interrogation of materials generated by low temperature, wet-chemical and maskless 

techniques.[135-140] In this work, Si was utilized for demonstration, but since the imaging relies 

only on the light absorption and charge separation abilities intrinsic to semiconductors, the method 

should be readily generalizable to a wide class of materials. Similarly, Au was utilized as the marker 

material, but any metal that can be electrochemically deposited in a potential window compatible 

with the semiconductor may also be utilized. Additionally, while in this work cathodic deposition 

was used to record generation on a p-type material, n-type materials may be similarly treated using 

oxidative deposition to apply the marker or even possibly by anodization of the material itself.[141, 

142] Anodic photoelectrochemical etching of semiconductor surfaces using illumination with 

spatially varying intensity has been used to generate microlenses, diffraction gratings, and 

transformation optics.[143-145] Moreover, the potential to direct spatially localized deposition on 

an array of semiconductor materials and morphologies suggests that photoelectrodeposition may be 

used as a template-free technique to selectively decorate semiconductor surfaces. This strategy could 
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utilize conformal illumination without a photomask and thus potentially generate features with sizes 

unconstrained by the optical diffraction limit. The deposition anisotropy could then be controlled by 

varying the excitation spectra to tune the spatial concentration of carrier generation in the 

structures.[146] Such a methodology may be utilized to place reflector materials for photovoltaic 

applications, catalysts for photoelectrochemical fuel generation systems, and conductive contacts for 

microelectronics [70, 147-151].  

In summary, photoelectrochemical deposition of Au onto cylindrical p-Si microwire arrays resulted 

in spatially anisotropic metal plating at the microwire surface, wherein the localization of the plating 

was a function of the illumination wavelength. The same deposition process was repeated with n-Si 

wire arrays, and conformal deposition was observed regardless of wavelength. The spatial 

distribution of the photoinduced charge-carrier generation rates in the wires, as derived from 

computer simulations using a FDTD method, correlated well with the localization of the metal 

deposition observed experimentally. Analogous simulations of the spatially resolved photocarrier 

generation rates in a series of related p-Si microwire arrays with tapered (non-cylindrical) wires was 

also performed. Photoelectrodeposition was then performed on wires arrays with equivalent 

morphologies to those simulated, and the metal plating at the wire surfaces was observed to be a 

function of carrier generation concentration in the adjacent wire volume. The photoelectrodeposition 

of metals on semiconductor mesostructures thus appears to be of use for profiling charge-carrier 

generation in such structures. Additionally, the technique appears to be of potential use for maskless, 

directed deposition of materials with subwavelength features. 
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Silicon Microcone Photocathodes 

 Status of Silicon Photocathodes 

Microstructured photoelectrodes have several advantages relative to planar electrodes, including the 

ability to optimize light absorption and carrier collection in impure, inexpensive semiconductors 

grown by scalable methods, as well as the ability to support high loadings of electrocatalysts without 

deleterious absorption of incident photons [88, 152].  The use of such microstructured materials with 

appropriately integrated electrocatalysts in flexible, ionically conductive, membrane-embedded 

devices allows for a fully integrated system for water splitting [153, 154], HI splitting [84, 155], 

photoelectrochemical CO2 reduction [156, 157], or N2 fixation [158, 159].  Electrocatalysts are 

generally deposited on the light-incident side of the photoelectrode, shadowing the underlying 

semiconductor and thereby reducing the light-limited current density.  The optimal catalyst loading 

is therefore determined by the balance between catalyst activity and optical losses due to reflection 

and parasitic absorption [160-162].  

Bare, planar Si photocathodes exhibit light-limited photocurrent densities |Jph| < 29 mA cm-2, due to 

front-surface reflection optical losses [163]. Jph can approach closer to theoretical maximum of ~ 44 

mA cm-2 for Si under 100 mW cm-2 of Air Mass 1.5 illumination [164] with the use of an 

antireflective coatings, combined with surface texturing such as micropyramids (μ-pyramids) by 

anisotropic wet-chemical etching or high-aspect-ratio structuring of the Si [31, 32, 52, 54]. 

Antireflective coatings such as SiO2, Si3N4, or Al2O3, as commonly used in photovoltaic devices are 

not catalytically not active and are therefore not ideal for photoelectrode systems [165]. Most of the 

highly active catalysts reflect and parasitically absorb light in the solar spectrum. These optical losses 

by the catalyst can be reduced by decreasing the catalyst loading to increase transmissivity [161]; by 

developing transparent and antireflective catalysts [166, 167]; by depositing the catalyst as islands 

rather than as a continuous film [168]; and/or by strategically placing the catalyst out of the path of 

incident light on three-dimensionally structured Si substrates [169].  The ideal electrode 
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microstructure would simultaneously minimize reflection and absorption losses in the catalyst while 

optimizing the catalyst loading to reduce the overpotential required to convert photogenerated charge 

carriers into fuel. 

H2-evolving Si photocathodes have been made using surface texturing such as μ-pyramids [167, 

170], nanowires [171-180], and microwires (μ-wires) [160-162, 169, 176-181].  Light-limited 

current densities as high as  |Jph | = 43 mA cm-2 have been reported for Si µpyramids coated with a 

highly transparent and potentially antireflective MoSxCly catalyst grown by chemical-vapor 

deposition [167]. A photocurrent density at the reversible hydrogen electrode potential (RHE), JRHE 

= -37.5 mA cm-2, was obtained using a transparent NiCoSex catalyst deposited via light-assisted 

electrodeposition onto Si nanowire array photocathodes [179].  For Si microwires (μ-wires), JRHE = 

-35.5 mA cm-2 was obtained by optimizing both the coverage of an electrodeposited Ni-Mo catalyst 

on the μ-wires and the pitch of the μ-wires [162].  Replacing the catalyst in these structures with thin 

Pt (~ 5 nm or less), which is widely used because of its high activity and stability in corrosive 

environments, leads to substantial optical absorption and reflection losses, and thus resulting in a 

decrease of 5–7 mA cm-2 in JRHE [162, 167, 179].  

Polymer-embedded Si μ-wires with an antireflective Si3N4 coating and scattering particles can 

absorb up to 84.4% of incident radiation at normal incidence, which is above the light trapping limit 

[20] for an equivalently thick Si substrate [182].  However, widely spaced Si μ-wires on a Si substrate 

reflect >30 % of normal-incident light due to the flat tops of the μ-wires.  In contrast, tapering the 

cylindrical shape of Si μ-wires into Si microcones (μ-cones) with a tip curvature of 25 nm enhanced 

the absorption of Si to > 90% at normal incidence, equivalent to 99.5% of the classical broadband 

light-trapping limit, with above-the-limit absorption observed at longer wavelengths [31, 32].  Such 

Si μ-cones reflect only ~1% of normal-incident light, which is comparable to reflection from black 

silicon substrates [52-54]. This is due to the coupling of broad-band light to multiple available 

waveguide modes whose resonance exists at various radii provided by the conical geometry [31, 

183, 184]. The high surface area for catalyst loading provided by the μ-cone geometry makes Si μ-

cones an attractive architecture for Si photocathodes in hydrogen-producing systems.  Herein we 

investigate the H2-evolution performance of Si μ-cone array photocathodes coupled with either a 

highly active but opaque Pt catalyst or with Co-P as an example of a highly optically absorbing 

electrocatalyst comprised of earth-abundant elements. 
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 Homojunction Si photocathodes with sputtered Pt catalyst 

Czochralski-grown p-type Si wafers with orientation <100> and with a resistivity of 0.6-0.8 ohm-

cm (Addison Engineering, Inc.) were photolithographically patterned with a square grid of Al2O3 

circles that were 3 μm in diameter with a 7 μm pitch. The Al2O3 was deposited to a thickness of 200 

nm via electron-beam evaporation. The μ-cones were etched from the masked p-Si wafer using an 

Oxford Dielectric System 100 ICP/RIE following a procedure described previously [185]. A 

capacitive coupled power of 7 W, and an inductively coupled power of 900 W, was used for etching.  

Etching was performed in three steps, in which the ratio of SF6 to O2 gas was varied stepwise from 

70 sccm : 6 sccm to 70 sccm : 7 sccm by increasing the rate of O2 flow by 0.5 sccm every 30 min. 

The chamber temperature and pressure were maintained at -130 oC and 10 mTorr, respectively. After 

etching, samples were cleaned via a modified RCA standard clean 1 (5:1:1 H2O:NH4OH:H2O2 at 70 

°C) followed by an RCA standard clean 2 (6:1:1 H2O:HCl:H2O2 at 70 °C).  The samples were dipped 

in HF in between the cleaning steps, which also resulted in removal of the Al2O3 etch mask.  

After cleaning, the samples were dipped in 10% HF(aq) for 1 min before thermal P diffusion using 

a Saint-Gobain PH-900 PDS diffusion-doping source at 850 oC for 15 min under N2 ambient, to 

yield an n+p homojunction. To reduce thermal stresses, the samples were inserted into, and removed 

from, the doping furnace over the course of one minute. The Si μ-cones were then heated to 150 oC 

on a hot plate, and mounting wax (Quickstick 135, South Bay Tech) was melted into the array as a 

mask. Excess wax was removed by reactive-ion etching using an O2 plasma at a forward power of 

400 W and 300 mTorr operating pressure. The wax was etched until 6-9 μm of the tips of the µ-

cones were exposed. The samples were then dipped in 10% HF for ~1 min to remove the native 

oxide over the Si μ-cones, and Pt was sputtered onto the samples. The samples were then immersed 

in acetone and sonicated for 15 min to completely remove the wax, resulting in Si μ-cones with Pt 

selectively deposited over the tips of the μ-cones.  

Figure 5.1 (a-f) schematically shows the fabrication process for the n+p-Si μ-cone array 

photocathodes, with the tips of the μ-cones supporting a Pt catalyst (n+p-Si/Pt μ-cones) for the 

hydrogen evolution reaction (HER).  Figure 5.1 (g) shows a scanning-electron micrograph (SEM) 

of a cross section of an as-prepared n+p-Si/Pt μ-cone-array photocathode with Pt covering 6-9 μm at 

the tips of the μ-cones. 
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To make bottom-facing electrodes, In-Ga (Alfa Aesar) was scratched into the back sides of Si μ-

cone chips, and a Cu-Sn wire was affixed to the In-Ga using Ag paint having a grain size < 1.0 µm 

(PELCO, Ted Pella) as an adhesive. The Cu-Sn wire was fed through 6 mm diameter borosilicate 

glass tubing, and the electronically contacted chips were sealed onto the end of the tubing using an 

opaque, insulating epoxy (Hysol 9460) that was allowed to cure at room temperature for at least 12 

h or at 80 °C for 6 h. The performance of photocathodes for photoelectrochemical hydrogen 

evolution was measured in H2-purged 0.50 M H2SO4(aq) (TraceMetals grade, Fisher) under 100 mW 

cm-2 of simulated AM1.5 illumination produced by a filtered Hg (Xe) lamp powered at 290 W. A 

Biologic SP-200 was used for the potentiostat in a three-electrode configuration. A Ag/AgCl 

(Saturated KCl) reference electrode was calibrated against the reversible hydrogen-evolution 

Figure 5.1:Schematic for the fabrication of n+p-Si μ cone array photocathodes with Pt selectively 

loaded on the tips of the μ-cones. (a) Aluminum oxide mask (yellow) patterned on p-type silicon 

(gray). (b) Controlled undercutting of the etch mask leads to aspect-ratio cones. (c) Removal of the 

etch mask followed by formation of an n+-emitter layer (green) via phosphorus doping. (d) Infilling 

with wax (transparent gray) followed by directional O2 etching to expose tips. (e) Uniform 

deposition of Pt via sputtering. (f) Removal of the wax with acetone leaves Pt only at the cone tips. 

(g)  Scanning-electron micrograph of n+p-Si μ-cone photocathodes with Pt selectively deposited on 

the tips of the μ-cones. 
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potential, RHE, using a platinum-black electrode, and a graphite rod behind a porous glass frit served 

as the counter electrode. Current density vs potential, J-E, data was obtained by sweeping the 

potential at 50 mV s-1 from open circuit to -0.2 V vs RHE. The electrolyte was stirred rapidly with a 

magnetic stir bar to remove hydrogen bubbles from the surface of the device. 

Figure 5.2 compares the current density vs potential (J-E) behavior under 100 mW cm-2 of simulated 

AM 1.5 illumination for varied thicknesses of Pt deposited onto as-fabricated n+p-Si/Pt µ-cone array 

photocathodes, planar n+p-Si/Pt photocathodes, and pyramidally-textured n+p-Si/Pt photocathodes 

(μ-pyramid), when operated in contact with H2-saturated 0.50 M H2SO4(aq).  Of the three 

photocathode geometries, the μ-cone array exhibited the highest light-limited photocurrent density 

|Jph | (at large negative biases, < -1.5 V versus RHE). As expected, the overpotential required for the 

HER decreased as Pt was added to the photocathodes. For the planar and μ-pyramid geometries, 

increasing the thickness of the Pt resulted in improvements to the fill factors (ff) of the J-E 

characteristic; however, increasing the thickness of the Pt catalyst beyond 2 nm resulted in reductions 

to |Jph | due to optical absorption and reflection losses associated with the Pt layer. For the planar and 

μ-pyramid geometries, -JRHE decreased to < 10 mA cm-2 when the thickness of the Pt layer reached 

8 nm or 16 nm, respectively. However, Si µ-cone array photocathodes with 8 nm of Pt yielded a - 

JRHE = 33 ± 2 mA cm-2, only ~6% less than -Jph   = -35.0 mA cm-2 observed for bare np+-Si μ-cone 

photocathode arrays (Figure 5.2 (c)). For n+p-Si/Pt μ-cone array photocathodes with 8 nm of Pt, the 

voltage required to drive the HER at a rate corresponding to a current density of -10 mA cm-2, V-10, 

was -70 mV relative to the open-circuit potential (Eoc).  Doubling the thickness of the Pt layer, from 

8 nm to 16 nm, on the tips of the μ-cones resulted in a slight decrease in - JRHE, to 31 ± 3 mA cm-2, 

but did not change V-10.  The values of  V-10 for planar Si and µ-pyramidal Si photocathodes were 87 

mV, and 80 mV respectively, were slightly higher than those observed for Si µ-cone arrays with at 

least 8 nm thick Pt, despite complete coverage of their surface with 4 nm of Pt. Further increases to 

the thickness of the Pt, to 8 nm on planar Si, and 16 nm on µ-pyramidal arrays, led to improved fill 

factors but resulted in -Jph< 10 mA cm-2. Despite the Pt catalyst covering just ~2% of the total 

microstructured Si μ-cone surface area, the µ-cone geometry maintained a relatively low 

overpotential while simultaneously maintaining -Jph that is higher than that can be achieved by bare 

planar or random µ-pyramidal textured Si photocathodes. 
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The ideal regenerative cell efficiency (ηIRC) [186] for n+p-Si/Pt μ-cone photocathodes with 8 nm of 

Pt was 5.8 ± 1.1 %, with a champion device yielded ηIRC = 6.9%. The ηIRC for n+p-Si/Pt μ-cone 

photocathodes with 16 nm Pt was 5.6 ± 1.1 %, with a champion device yielded ηIRC = 7.4% (Figure 

5.3).  The use of an n+p-Si homojunction with 8 nm or with 16 nm of Pt on Si μ-cones resulted in an 

open circuit voltage (Eoc) of 416 ± 15 mV and 402 ± 22 mV respectively vs RHE and allowed light-

limited photocurrent densities to be produced at potentials > 0 V vs RHE. The Eoc values for the 

Figure 5.2: Effect of Pt loading on the J-E behavior of n+p-Si photocathodes with planar, µ-

pyramid, and µ-cone array morphologies, as measured in contact with H2-saturated 0.50 M 

H2SO4(aq) while illuminated by 100 mW cm-2 of simulated Air Mass (AM) 1.5 illumination. (a) J-

E performance of bare (no Pt) n+p-Si photocathodes with planar (black), µ-pyramid (blue), and 

µ-cone (red) morphologies. Representative J-E behavior for n+p-Si/Pt photocathodes with varied 

Pt loadings for the (b) planar, (c) μ-cone, and (d) μ-pyramid morphologies. 
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champion device were 431 mV and 442 mV, for 8 nm and 16 nm Pt films, respectively. The primary 

difference between the performance of champion devices and average devices thus arose from the 

higher photovoltages of champion devices relative to average photocathodes as fabricated. The 

planar and µ-pyramid photocathodes showed higher photovoltages than the μ-cone photocathodes 

(Figure 5.2), even though all the photocathodes were diffusion doped by a nominally identical 

process. SEM images indicated that the Si μ-cone arrays had an ~12.5-fold increase in junction area 

compared to a planar Si electrode, leading to an expected decrease in Eoc of ~65 mV assuming a 

diode quality factor of 1.0 [187]. Diffusion-doped, etched Si μ-wire based photocathodes for HER 

have been reported to exhibit Eoc up to 480 mV [161].  The observed Eoc of 440 mV for the champion 

photocathodes thus suggests that further optimization in diffusion doping could increase further the 

ηIRC of the Si μ-cone arrays. 

 

Figure 5.3: Performance of champion n+p-Si/Pt μ-cone photocathodes with 8 nm or 16 nm thick 

Pt loaded on the tips of the μ-cones. The photocathodes were tested in H2-saturated 0.50 M 

H2SO4(aq) under 100 mW cm-2 of simulated AM1.5 illumination, with rapid stirring of the 

electrolyte to remove bubbles from the electrode surface. 
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When Pt was deposited to a thickness > 4 nm, n+p-Si/Pt photocathodes were stable under air exposure 

for a few days between fabrication and testing.  These electrodes also reversibly passed anodic 

current, indicating that the Pt layer protected the Si from forming an insulating interfacial oxide 

layer. After pauses at open circuit, photocathodes with 2-4 nm of Pt exhibited a decrease in ηIRC with 

successive scans, due to a decrease in the fill factor.  In contrast, n+p-Si/Pt µ-cone array 

photocathodes loaded with 16 nm of Pt did not show a decrease in fill factor with successive scans 

(Figure 5.4).  Even though the catalytic overpotential was not changed by increasing the thickness 

of Pt beyond 4 nm for n+p-Si/Pt photocathodes with planar or µ-pyramid geometries, the increased 

thickness of the Pt layer thus beneficially improved the stability of these electrodes. The increased 

Pt thickness needed for stability decreased the amount of light transmitted into the Si and limited the 

photocurrent densities obtainable from n+p-Si/Pt planar and µ-pyramid photocathodes. In contrast, 

little or no loss of Jph or fill factor accompanied the increase in Pt thickness (16 nm) required for 

stable performance of the n+p-Si/Pt µ-cone array photocathodes.  

 

 

Figure 5.4: Stability of n+p-Si/Pt photocathodes operated in contact with H2-saturated 0.5 M 

H2SO4(aq) while under 100 mW cm-2 of simulated AM1.5 illumination. For n+p-Si/Pt μ-pyramid 

photocathodes with (a) 4 nm of Pt, a decrease in fill factor was observed after the first potential 

scan.  For n+p-Si/Pt μ-cones, devices with (c) 4 nm of Pt on the μ-cone tips showed a decrease in 

fill factor with successive scans, whereas devices with (d) 16 nm of Pt did not show an improvement 

in Jph and no decay in fill factor with successive scans.  



 51 

 Heterojunction Si photocathodes with electrodeposited Co-P 

catalyst 

Co-P, an earth abundant, active HER electrocatalyst, was used to explore the compatibility of Si µ-

cone arrays with catalysts other than noble metals such as Pt.  On p-type Si, Co-P produces a 

photovoltage in the absence of a homojunction [188]. p-Si μ-cone arrays were fabricated via the 

above etching and cleaning procedures but were not doped with an n+ emitter layer. Bottom-facing 

electrodes were made from the p-Si μ-cones as described in the previous section, and Co/Co-P was 

photoelectrochemically deposited onto the surface of the p-Si μ-cones using illumination from a 

narrowband LED (Thorlabs) with an intensity-averaged wavelength of 625 nm until a charge density 

of 400 mC cm-2 was passed. The light intensity at the surface of the sample was ~200 mW cm-2. The 

Co/Co-P plating bath has been described elsewhere [189, 190], and was purged vigorously with 

Ar(g) prior to and during the deposition, with a gas stream in close proximity to the sample to drive 

local convection.  

 

 

Figure 5.5: (a) Scanning-electron micrograph (SEM) of as deposited Co/Co-P 

photoelectrodeposited onto the tips of p-Si μ-cones.  The Co/Co-P loading, as determined by the 

charge density passed during the photoelectrodeposition, was 400 mC cm-2. (b) SEM image of a 

cross section of a p-Si/Co-P μ-cone array after removal of excess Co by potential cycling in 0.50 

M H2SO4 (aq). 
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The bare p-Si μ-cone arrays predominantly absorbed light at 625 nm at the tips of the μ-cones [31]. 

Due to deposition at mass-transport-limited current densities, photoelectrodeposition of the Co/Co-

P film occurred preferentially at the tips of the Si µ-cones, producing clumps > 1 µm in diameter, 

shadowing the underlying array (Figure 5.5 (a)). To obtain an active Co-P catalyst, excess Co was 

removed by extended potential cycling in contact with 0.50 M H2SO4(aq) while under 100 mW cm-

2 of simulated AM1.5 solar illumination [188]. Potential cycling resulted in a restructuring of the 

catalyst film into nanoscale islands that were located predominantly at the tips of the μ-cones (Figure 

5.5 (b)). 

  

Figure 5.6 shows the J-E behavior of an illuminated bare p-Si μ-cone array photocathode, as well as 

the evolution of the J-E behavior of a p-Si/Co-P μ-cone array photocathode operated in contact with 

0.50 M H2SO4(aq). Both Jph and Eoc of the p-Si/Co-P μ-cone array photocathode improved with 

cycling and began to stabilize after ~ 16 voltammetric J-E cycles. Deposition of Co-P on planar, µ-

pyramid, or μ-wire Si photocathodes yielded -Jph  of 15 mA cm-2, 20 mA cm-2, and 25 mA cm-2 

Figure 5.6: Evolution of the J-E behavior of a photocathode consisting of a p-Si/Co-P μ-cone 

array, when immersed in H2-saturated 0.50 M H2SO4(aq) and illuminated with 100 mW cm-2 of 

simulated AM 1.5 illumination with rapid stirring, compared to the same p-Si μ-cone array 

photocathode prior to catalyst deposition (a).  (b) Effects of extended potential cycling in contact 

with 0.50 M H2SO4(aq) under 1-sun illumination on the J-E behavior of a p-Si μ-cone array 

photocathode loaded with Co/CoP after 2, 4, 16, and 100 scans from -0.376 V to +0.224 V vs 

RHE at 50 mV s-1. The first and last scans were recorded after 20 s and 40 min, respectively. 
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respectively [188], whereas p-type Si µ-cone/Co-P photocathodes exhibited -Jph = 32 ± 2 mA cm-2. 

Compared to bare p-type Si μ-cone array photocathodes, the deposition of Co-P on the Si μ-cone 

tips resulted in an average decrease in -Jph of 3 mA cm-2.  Si μ-cone array photocathodes exhibited -

Jsc =  29 ± 2 mA cm-2 compared to -Jsc = 13 mA cm-2, 18 mA cm-2, and 22 mA cm-2 from planar, µ-

pyramidal, and μ-wire array Si photocathodes, respectively [188], demonstrating the superior light 

trapping properties of the Si μ-cone morphology when coupled with the Co-P HER catalyst. 

 

The Eoc for the p-Si/Co-P µ-cone array photocathodes was 331 ± 50 mV vs RHE, and the highest 

observed Eoc for the p-Si/Co-P µ-cone photocathodes was 384 mV vs RHE. The p-Si/Co-P µ-cone 

array photocathodes did not require a diffusion-doped homojunction but yielded lower Eoc values 

than the n+p-Si/Pt µ-cone array photoelectrodes. The p-Si/Co-P µ-cone array photocathodes reached 

a benchmark solar-to-fuel current density of -10 mA cm-2
 at +197 ± 20 mV vs RHE. A champion 

device achieved the benchmark current density at +220 mV versus RHE, with ηIRC = 3.1% (Figure 

Figure 5.7: Performance of champion n+p-Si/CoP μ-cone photocathodes with 400 mC cm-2 Co-P 

deposited photoelectrochemically. The device was cycled from the initial open circuit potential to -

0.376 V vs RHE in H2-saturated 0.50 M H2SO4 (aq) under 100 mW cm-2 of simulated AM 1.5 

illumination, with rapid stirring of the electrolyte to remove bubbles from the electrode surface. 
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5.7).  This efficiency is comparable to the value obtained from the Si μ-wire morphology and is 

higher than the values reported for planar and µ-pyramid Si photocathodes (Table 4.1) [188].   

 

Device Type 
Jsc 

 
(mA cm

-2
) 

Jph   

 
(mA cm

-2
) 

Eoc 
 
(mV) 

𝜼𝐈𝐑𝐂 
(%) 

 𝜼𝐈𝐑𝐂* 
(%) 

n
+
p-Si −cones, 8 nm Pt -33 ± 2  -34 ± 3 416 ± 15  5.8 ± 1.1 6.9 

n
+
p-Si −cones, 16 nm Pt -31 ± 3 -32 ± 3 402 ± 22 5.6 ± 1.1 7.4 

n
+
p-Si Planar 4nm Pt -17 ± 1 -17 ± 1 539 ± 9 5.4 ± 0.4 5.7 

n
+
p-Si µ-pyramids, 4 nm Pt -24 ± 3 -24 ± 3 533 ± 18 6.9 ± 1.4  8.0 

n
+
p-Si µ-pyramids, 16 nm Pt -9.1 ± 1.5  -9.1 ± 1.5 519 ± 10  2.8 ± 0.4 3.0 

p-Si −cones, Co-P -29 ± 2 -32 ± 2 331 ± 50 2.7 ± 0.3  3.1 
p-Si μ-pyramids, Co-P** -18 ± 1 -20 286 ± 11 - - 

p-Si planar, Co-P** -13 ± 1 -15 265 ± 26 0.82 ± 1.3 0.98 

p-Si μ-wires, Co-P** -22 ± 2 -25 342 ± 24  2.4 ± 0.1 2.5 

p-Si µ-cones, Bare - -35 - - - 

p-Si µ-pyramid, Bare - -31 - - - 
p-Si planar, Bare - -28 - - - 

 

Table 5.1: Summary of performance metrics for planar, µ-pyramid, and µ-cone array 

photocathodes measured in contact with H2-saturated 0.50 M H2SO4 (aq).  Average values and 

standard deviations (in parentheses) were calculated from measurements of at least 5 separate µ-

cone arrays, and from at least 3 separate photoelectrodes for planar or μ-pyramid morphologies.  

The light-limited current density, Jph, was measured at -200 mV vs RHE; the current density at the 

formal potential of the H+/H2 redox system, JRHE, was measured at 0 V vs RHE. Eoc is reported 

relative to RHE. * indicates performance of champion devices, and ** indicates values from a 

previous study [188].  

Figure 5.8 compares the reflectance in the wavelength range of 400 nm - 1100 nm for bare Si μ-cone 

array, a Si μ-cone array with 8 nm or 16 nm of Pt selectively deposited at the tips of the μ-cones, and 

a p-Si/Co-P μ-cone array electrode. No substantial change was observed in reflectance between n+p-

Si μ-cone arrays with and without a Pt coating, indicating that the incident light that is typically 

reflected from planar or μ-pyramid Si surfaces was redirected into the Si substrate due to the conical 

geometry.  This behavior is similar to that observed previously in triangular transparent contacts over 
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solar cells [185, 191, 192].  The reflectance from the p-Si/Co-P μ-cone array was 5% higher than the 

reflectance from the n+p-Si/Pt μ-cone array because the Co-P islands were rough compared to the 

sputtered Pt coating, allowing relatively higher outward scattering of light from the Co-P islands on 

the tips of the μ-cones. Although p-Si/Co-P μ-cones exhibited higher reflectance than the Pt-loaded 

μ-cones, the average Jph was the same (-32 mA cm-2) for p-Si/Co-P μ-cone arrays and n+p-Si/Pt μ-

cone arrays with 16 nm of Pt, indicating that 16 nm of Pt has a higher parasitic absorption than to 

Co-P in the 400 nm – 1100 nm wavelength range. Hence even after deposition of the catalyst, the Si 

μ-cone arrays had superior light trapping properties relative to bare Si pyramid structures.  

 

p-Si μ-cones were embedded in PDMS by spin coating a 10:10:1 solution of toluene, PDMS 

elastomer, and curing agent (Dow SylgardTM 184) at 3000 rpm leaving the top ~15 μm of the µ-

cones exposed. The samples were cured on a hot plate at 150 oC for ~ 30 min. The μ-cones were 

peeled off their substrate using a razor blade. The flexible polymer membrane was held on its edges 

sandwiched between Kapton tape and a glass slide, with the back side of the μ-cones facing up. The 

thickness of the tape ensured that the tips of the μ-cones were not damaged. 500 nm of Au was 

deposited onto the backs of the μ-cones via electron-beam evaporation. Electrodes were made using 

these flexible substrates with Ag ink connecting the Au back contact to a Cu-Sn wire that was fed 

Figure 5.8: Reflectance measurement of bare Si μ-cone arrays, Si μ-cone arrays with 8 and 16 nm 

of Pt or Co-P on their tips, as measured using a Cary 5000 UV-Vis-NIR with an integrating sphere. 
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through 6 mm diameter borosilicate glass tubing.  The electrodes were then sealed using an opaque, 

insulating epoxy (Hysol 9460) that was allowed to cure at room temperature for at least 12 h or at 

80 °C for 6 h. Co-P was electrodeposited under similar conditions as used for the on-substrate 

samples.  

 

Figure 5.9 shows an SEM image of Si µ-cone arrays in PDMS with ~ 15 µm of the tips exposed, 

with the freestanding, polymer-embedded µ-cones arrays decorated with Co-P using the same 

procedure as described for the on-substrate p-type Si µ-cones. Free-standing devices were tested as 

photocathodes in 0.50 M H2SO4 (aq), to evaluate the performance of µ-cones in a membrane-

embedded photocathode for hydrogen generation. Figure 5.10 presents representative J-E data in 

0.50 M H2SO4 (aq) under 100 mW cm-2 of simulated AM1.5 illumination. These devices 

demonstrated an Eoc = 150 ± 36 mV and a Jsc = -0.94 ± 0.32 mA cm-2, with a champion device 

demonstrating a Jsc = -1.41 mA cm-2. At -200 mV vs RHE, free-standing Si µ-cones achieved Jph = 

-6.5 mA cm-2 and the champion device exhibited Jph   = -8.1 mA cm-2 and remained active for 3 h of 

testing.  The photoactivity indicates that many of the individual p-type Si µ-cones were successfully 

contacted with electrolyte during the Co-P catalyst deposition, and also while being tested as 

photocathodes. The photocurrent density was higher than previous demonstrations with Si µ-wires 

Figure 5.9: SEM of polymer embedded Si µ-cones removed from substrate, after deposition of Co-P 

and potential cycling in 0.50 M H2SO4(aq). 
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embedded in polymer membranes [56, 84, 160]. Further optimization of the placement of catalysts 

to reflect the local carrier generation rate could be achieved using light-guided deposition of catalysts 

[69]. 

 

The p-Si µ-cones/Co-P photocathodes do not require formation of a homojunction or emitter layer.  

Use of surface passivation and/or a homojunction on the Si µ-cone arrays could thus improve the 

efficiency while retaining the benefit of high light absorption in Si µ-cones. Si µ-cones with < 100 

cm/s surface passivation can in principle produce Eoc > 650 mV [31, 32] and membrane-embedded 

μ-cones absorb > 90% of the light relative to their on-substrate counterpart. Polymer-embedded Si 

μ-cone arrays could thus produce -Jph > 25 mA cm-2. Under standard conditions, HI splitting requires 

a minimum voltage of ~ 0.53 V, so utilizing a highly active catalyst such as Pt for the HER, along 

with improving the current collection, could lead to, flexible membrane-embedded photocathodes 

for HI splitting potentially reaching ηIRC > 10%. Electrodes in this work had a nominally equal 

density of μ-cones per unit area as that used in prior studies of μ-wires [7, 8, 38, and 39]. Future 

studies should investigate whether the light-scattering ability of µ-cones allows devices with reduced 

filling fractions to achieve comparable current densities, thereby relaxing the required ion current 

Figure 5.10: Representative J-E behavior of PDMS-embedded Si μ-cone array photocathodes 

decorated with Co-P and tested in 0.50 M H2SO4(aq) under 100 mW cm-2 of simulated AM1.5 
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density through the membrane. Future water-splitting photoelectrodes utilizing Si µ-cones could be 

implemented as a tandem junction with a wider band gap material deposited on the tips of the cones, 

in a similar fashion to previous studies that used a “Q-tip” design on Si microwire arrays [193, 194]. 

The improved light trapping in µ-cones can thus be beneficial in designing the current-matched top 

junction of a full fuel-forming photoelectrode system.  

 Conclusion 

High photocurrent densities were exhibited by n+p-Si/Pt and p-Si/Co-P µ-cone array photocathodes 

when either Pt or Co-P hydrogen-evolution catalysts were deposited over tips of the μ-cones.  N+p-

Si/Pt μ-cone array photocathodes yielded an average ηIRC of 5.7%, and champion n+p-Si/Pt μ-cone 

devices yielded ηIRC = 7.4%.  Thick (~16 nm) Pt and Co-P layer deposited onto Si μ-cone arrays 

produced only a 6% reduction in photocurrent density compared to bare photocathodes having the 

same morphology and microstructure.  However, the Si μ-cone arrays exhibited photovoltages that 

were lower by > 100 mV than the photovoltages obtained on planar or µ-pyramidally textured Si 

photocathodes. The photovoltage of the Si µ-cone arrays may be improved by optimizing the 

homojunction doping distribution. Greater than 90% of the incident light is absorbed in the μ-cones, 

as opposed to by the p-Si substrate at the base of the μ-cones [31, 32], so removal of the μ-cones 

from the substrate will result in confinement of light in an effectively thin silicon that will allow 

higher photovoltages to be achieved from the μ-cone arrays provided that surface recombination can 

be minimized [185]. The p-Si/Co-P devices showed an average open-circuit voltage of 331 mV vs 

RHE without an emitter, which, in combination with the high photocurrent densities of Jph = -32 mA 

cm-2, resulted in ηIRC = 3.1%. Si μ-cones were also embedded in a flexible polymeric membrane, 

allowing for high catalyst loadings with minimal losses in photocurrent due to catalyst obscuration 

in such systems. 
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Broadband Light Transmission Using Dielectric 

Nanocones  

 Introduction 

A universal strategy for designing ‘perfect’ antireflection coatings for an arbitrary broadband 

spectral range is highly desirable in many opto-electronic systems. Maximizing the broadband 

absorption is a fundamental requirement for high efficiency solar energy conversion devices like 

photovoltaics (PVs)[195-199], and photoelectrochemical cells (PECs)[87, 200, 201]. Many light 

trapping strategies such as anti-reflection coatings (ARCs)[19], surface texturing[54, 202-204], and 

high index light trapping structures[18, 205] were previously utilized for improving absorption in 

solar cells. In all the above cases solar cells require front metal contacts which induce shading 

losses[206]. All back contact design[23, 207] was previously utilized to prevent contact shading 

losses in crystalline Si solar cells, but such a design is not applicable to multi-junction solar cells that 

are typically utilized in space[208], and high efficiency photoelectrochemical cells (PECs) for solar 

fuels[209-211]. In PECs, light blocking metal catalysts are often employed over light absorbing 

semiconducting materials to overcome the kinetic barrier and overpotential losses to produce fuels 

at high efficiencies. Therefore, a general-purpose light management scheme that can incorporate 

thick and nontransparent metal contacts or catalysts while minimizing light obscuration has the 

potential to significantly increase the efficiencies of a wide range of device architectures. 

Dielectric nanostructures for broadband absorption in semiconductor devices are explored for many 

optoelectronic applications. These structures include nanowires,[67, 212, 213] inverted 

pyramids,[214] nanodomes,[215] nanoshells,[216] nanospheres,[217] nanopillars,[218, 219] and 

nanocones.[220] For many of these structures, electrical conductivity at the interface is achieved by 

depositing transparent conducting materials, such as sputtered indium-doped tin oxide (ITO). 

Nanostructured Si was shown to reduce angular and spectrally-averaged reflectivity through an 
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opaque and highly-conductive front-side metal contact with high surface coverage. [219] Patterned 

Au films on Si were used for metal-assisted chemical etching, resulting in square Si nanopillars with 

small aspect ratios. Together with a 50 nm SiNx antireflection coating, this structure displayed very 

high absorptance (> 90%) in both simulation and experiment, while achieving high surface 

conductivity across the 16 nm Au film that covered 65% of the Si surface.[219] However, the 

selective etching process limits this approach for use on very few interfaces like Au-Si, and precludes 

use on other device designs. Dielectric nanostructures with processing decoupled from other device 

components, and which do not require modification of the underlying semiconductor or contact 

interfaces, could increase the efficiencies of many planar PV and PEC devices. 

It is previously demonstrated that Si microconical arrays achieve near perfect angular and spectrally 

averaged reflectivity of < 1 %, and absorption of 89.1 % in 400 – 1100 nm wavelength, and 0O – 50O 

angular ranges [31]. It is also demonstrated that sparse nanoconical arrays of InP demonstrate optical 

absorption that is broadband (450−900 nm), angle-insensitive, and near-unity (>90%) [184]. The 

conical architecture allows various wavelengths of light to couple to the available waveguide modes 

enabled due to multiple available radii [183]. Therefore, the conical shape provides the ideal 

geometry for the design of “perfect” broadband absorbers and the top and bottom radii can be chosen 

specific to the broadband of interest. Therefore, a novel solution to the issue of metal obscuration in 

planar devices is to guide light directly to the light absorbing material using an array of dielectric 

nanocones placed on the semiconducting surface. Coupling into waveguide modes of high-index 

dielectric nanocones allows confinement of incoming light, bypassing opaque metal films on the 

surface of planar devices.  Such a versatile light management scheme could allow a large increase in 

conductivity of front-side metal contacts.  

Waveguide designs require a high-index material that can be deposited on planar surfaces using 

scalable methods. For fully-integrated PEC devices, this material must display chemical stability in 

aqueous environments. TiO2 was utilized extensively to protect high efficiency PEC devices in 

highly corrosive environments due to its chemical inertness and a high bandgap that allows for 

incident solar illumination to pass through [209-211, 221-225]. TiO2 has a higher index compared 

to many other dielectric materials, and was previously utilized for increased coupling of light into 

waveguide modes [226-231]. Compared to dielectrics such as SiO2 or Al2O3 that are typically 

utilized in solar cells, TiO2’s high index provides a higher index contrast in water, therefore making 
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it more applicable for light trapping in photoelectrochemical devices. Therefore, TiO2 is an ideal 

choice material for coupling of light to waveguides in nanocones. Ni metal is widely used as an earth 

abundant catalyst for oxygen evolution reaction (OER) which is an important part of both water 

splitting [209, 232, 233], and CO2 reduction devices [210],  therefore in this study we utilize Ni metal 

as the front contact deposited between hexagonally-packed TiO2 nanocones on Si. 

 Optical Simulation Results 

3D full-field electromagnetic wave finite difference time domain (FDTD) simulations of TiO2 

nanocone arrays and/or Ni hole arrays on Si were performed using a commercial software package, 

Lumerical FDTD. The nanocone arrays on Si were constructed using the 3D simulation region with 

periodic boundary conditions along x- and y-axes, and infinite boundary conditions rendered as 

perfectly matched layers along the z-axis. Palik materials data was used for Si and Ni. Material data 

from the Ioffe Institute’s is utilized for simulation of TiO2 nanocone optical properties. A plane wave 

illumination source was utilized to simulate steady state behavior of TiO2 nanocones and/or Ni arrays 

on Si substrate. Broadband simulations were performed in the 400 – 1100 nm broadband regime for 

two orthogonal polarizations. The unpolarized transmission spectra shown in Figure 1 were obtained 

by averaging the transmission spectra of both the orthogonal polarizations. These transmission 

spectra along with AM 1.5G were utilized to calculate the fraction of spectral photon flux that is 

transmitted into Si and thus the expected short circuit current density. Frequency-Domain Field and 

Power monitors were utilized to collect the steady state electric field data for plotting electric field 

profiles to understand the wave guiding properties.  

Figure 6.1 (a) – (c) show the schematics of the 3 different device configurations that were used to 

understand the optical properties of TiO2 nanocones. In (a) TiO2 nanocones that are placed over the 

Si substrate, in (b) Ni is incorporated between the nanocones covering all the exposed Si surface, 

and (c) shows the configuration with the same amount of Ni covering the Si surface but without the 

TiO2 nanocones. The bottom radius of the nanocones was chosen as 250 nm, and the height as 2300 

nm. The nanocones are arranged in a 2D hexagonal lattice with 700 nm pitch. The Ni is chosen to 

be 50 nm thick, which was much higher than the typically used (2-5 nm) in case of oxygen evolution 

photoanodes [209]. Ni covered about 46.3% of the front surface. 
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.   

 

 

Figure 6.2: Simulated transmission (T), absorption (A), and reflection (R) spectra of the three 

configurations in Figure 6.1. (a), (b), and (c) plots the spectra in air for TiO2 cones on Si, TiO2 

cones on Si with Ni, and Ni hole array on Si respectively. (d), (e), and (f) plot the same in water. 

Figure 6.1: (a), (b), and (c) show the schematics of the three configurations that are simulated 
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Figure 6.2 plots the transmission, absorption, and reflection spectra for the three cases in Figure 6.1 

in air and water. The simulations were performed with a background index of n = 1 and n= 1.33 to 

understand the behavior in air and water respectively. Figure 6.2 (a) and (d) show that the TiO2 

nanocones act as an excellent broadband antireflection structures that can enable 97.5%, and 96.9% 

of the total number of photons in 400 nm – 1100 nm range in air and water respectively. When 50 

nm of Ni was incorporated into the space between the nanocones over the Si substrate the transmitted 

photon flux was reduced to 86.2%, and 84.7% in air and water respectively. Compared to the 

structure in Figure 6.1 (c) with no nanocones and same amount of Ni loading as Figure 6.1 (b) the 

transmitted photon flux was 23.3% and 24.8% in air and water respectively. Therefore, the TiO2 

nanocones enable transmission of more than 3 times the amount of light to pass through in this 

specific configuration. In case of Ni hole array, the reflection and parasitic absorption account for 

above 75% of optical losses, whereas when coupled with TiO2 nanocones the total loss was < 15 % 

indicating that the TiO2 nanocones are enabling the light to be transmitted into the Si substrate below 

Ni with minimal interaction with Ni. Figure 6.3 plots the transmitted photon flux data along with 

AM 1.5 spectrum using which the percentage of transmitted photon flux was calculated. 

 

Figure 6.3: Area plot of simulated transmitted spectral photon flux in air and water for the three 

configurations in Figure 6.1. Blue represents AM 1.5G spectral photon flux. Orange, yellow, and 

purple plot the transmitted spectral photon flux into Si for nanocones on Si, nanocones with Ni on 

Si, and Ni hole array on Si respectively.   
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To understand the interactions of light with TiO2 nanocones, frequency domain field and power 

monitor was utilized to record electric field data in FDTD simulations. Figure 6.4 plots the electric 

field profiles along a nanocone cross section as shown in Figure 6.4 (a). In Figure 6.4 plots the field 

profiles at wavelengths 484 nm, 552 nm, 628 nm, and 770 nm. These wavelengths correspond to the 

maxima in transmission spectra into Si with TiO2 nanocones and Ni as shown in Figure 6.1 (b). It 

can be observed that most of the electric field is confined in the nanocone. Strong coupling of 

incident light occurs at different radii for different wavelengths as expected from a nanoconical 

Figure 6.4: (c), (d), (e), and (f) show the electric field profiles along the cross section shown in 

(a) at maxima in transmission spectrum into Si with TiO2 nanocones and Ni in air. The selected 

wavelengths are highlighted using the yellow stars in (b). 
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structure [31, 183, 184]. The light propagates in the nanocone and is transmitted into the Si substrate 

below, where decay in field intensity can be observed due to absorption. 

 

Similar plots are shown in Figure 6.5 and this time the wavelengths 442 nm, 584 nm, 738 nm, and 

940 nm are chosen from the minima of the transmission spectrum. Compared to field profiles in 

Figure 6.4 the profiles in Figure 6.5 show a higher intensity of electric field in the middle of the 

nanocones. The minima in transmission spectrum primarily correspond to absorption peaks in Ni 

and these peaks shift depending on the background index as shown in Figure 6.2 (b) and (e).   

Figure 6.5: (c), (d), (e), and (f) show the electric field profiles along the cross section shown in 

(a) at minima in transmission spectrum into Si with TiO2 nanocones and Ni in air. The selected 

wavelengths are highlighted using the yellow stars in (b). 
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The field profiles in Figure 6.5 show that even at the minima, the transmission is 60 % or above, 

which is still higher compared to the transmission spectra in case of Ni hole array on Si without TiO2 

nanocones as shown in Figure 6.2. This indicates that the incident light couples efficiently to the 

nanocones which guide the light into the underlying Si substrate. Depending on the slope of the 

nanocone, electric field associated with some wavelengths of the light are highly confined inside the 

TiO2 nanocone while some wavelengths are partially confined. Absorption in Ni is enhanced when 

the light is not completely confined inside the nanocones causing a potential photocurrent loss. Using 

the transmitted spectral photon flux, it can be estimated that in air the maximum photocurrent that is 

achievable in Si with TiO2 nanocones, in Si with TiO2 nanocones and Ni, and in Si with Ni hole 

arrays is 42.9 mA cm-2, 37.9 mA cm-2, and 10.9 mA cm-2 respectively. In water the photocurrent 

respectively corresponds to 41.8 mA cm-2, 36.5 mA cm-2, and 10.7 mA cm-2. Therefore, 

incorporation of Ni in between TiO2 nanocones results in ~ 5 mA cm-2 photocurrent loss but 

compared to a Ni hole array with no TiO2 nanocones the photocurrent enhancement was > 300%. 

This behavior of TiO2 nanocones cannot be explained using effective medium theory and wave-optic 

simulations show that the nanocones act as an antenna for the incoming radiation, coupling the light 

to the waveguide modes and providing a route for the light to reach underlying Si substrate despite 

54 % of the surface being covered by Ni. 

 Fabrication of TiO2 nanocone photoanodes 

Czochralski-grown n-type Si wafers with <100> orientation and resistivity 0.1-1 ohm-cm (Addison 

Engineering Inc.) were cleaned via  modified RCA standard clean 1 (5:1:1 H2O:NH4OH:H2O2 at 70 

°C) followed by an RCA standard clean 2 (6:1:1 H2O:HCl:H2O2 at 70 °C) sandwiched between 1 

min dips in 10% (v/v) HF.  Thermal boron (B) doping was performed to obtain an p+n Si 

homojunction using BN-975, B doping source from Saint-Gobain at 950 0C for 30 mins. Low 

temperature oxidation was performed in a tube furnace at 750 0C for 20 mins with 2 min dip in 10% 

(v/v) HF before and after the growth to remove defective layer on the Si surface. 5 – 10 nm of SiO2 

was deposited via electron beam evaporation prior to 2.3 µm of TiO2 was evaporated onto p+n Si 

wafers via electron beam evaporation. The 5 – 10 nm SiO2 electrically isolated the TiO2 from making 

an electrical contact to the SiO2 surface without any affect over the optics. Electron beam 

evaporation depletes the source of oxygen and becomes more conductive; therefore, the deposition 
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was performed in 3-4 steps while refilling the TiO2 source to maintain higher oxygen content. 495 

PMMA A4 and 950 PMMA A4 layers were spin coated sequentially over p+n Si homojunction 

samples with 2.3 µm TiO2 at 4000 rpm for 60 s with post baking at 80°C for 5 minutes to form 

bilayer of positive tone resist for easier lift-off. Direct electron beam lithography system (VISTEC 

electron beam pattern generator (EBPG) 5000+) at an acceleration voltage of 100 keV with a current 

of 5 nA was utilized to pattern the 100 nm diameter circular hexagonal array with 700 nm pitch size. 

After electron beam writing the samples were developed in MIBK (methyl isobutyl ketone) : IPA 

solution for 60 s at room temperature resulting in 100 nm diameter holes with 700 nm pitch in a 

hexagonal array in the PMMA layers. 200 nm of Cr was evaporated over these samples and lift-off 

was performed in acetone resulting in a hexagonal array of Cr that served as a hard mask for TiO2 

dry etching. Dry etching was performed using Oxford instruments plasma lab system 100 ICP-RIE 

using SF6 / C4F8 etch chemistry, where SF6 was the etching gas and C4F8 was the passivating gas. 

Etching was performed at a capacitively coupled power of 150 W, inductively coupled power of 

2500 W, SF6 / C4F8 gas ratio of 23.5 sccm / 40 sccm, chamber pressure of 7 mTorr, and table 

temperature of 00 C for 15 mins. The SEM image of the resultant TiO2 nancones is shown in the 

scanning electron microscope (SEM) image in Figures 6.6 (a) and (c). The resultant TiO2 nanocone 

arrays were ~ 2.3 µm high with a bottom radius of ~ 250 nm. The tips of such nanocones ended up 

being not as smooth as an ideal cone but did have < 50 nm top radius.   

Electrodes were prepared using these samples by first cleaving the edges off to avoid shorts due to 

doped layers. In-Ga eutectic was applied on the backside to form ohmic contact with p+n Si 

homojunction. Sn- plated Cu wire was attached to the In-Ga applied back side using Ag paste from 

Ted Pella. The samples were sealed to a glass tube with the wire running through it using epoxy 

(Loctite 9460), and annealed at 80 0C for ~ 6hrs. The Ni catalyst was electrodeposited in between 

TiO2 nanocones soon after the sample was dipped in buffered HF (40% NH4F to 49% HF volume 

ratio 6:1) for 10s using a commercially available Ni plating solution (Clean Earth Nickel Mirror, 

Grobet USA) at a potential of -0.956 V vs Ag / AgCl using Biologic SP-200 potentiostat until ~ 300 

mC cm-2 charge was passed. Since the TiO2 nanocones were electrically isolated using thin SiO2, Ni 

was preferentially deposited in between the TiO2 nanocones on the Si substrate with an increased 

concentration closer to the cone as shown in Figures 6.6 (b) and (d). The Ni deposition was uniform 

over a sample size of ~ 0.04 cm2. 
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 Optical and electrochemical measurements 

The reflective index n, k of TiO2 was characterized using ellipsometry (J.A. Woollam Co. model 

VASE). The real part of refractive index for evaporated TiO2 was considerably lower compared to 

the ideal TiO2 data from ioffe institute as shown in Figure 6.7. In order to estimate the expected 

photocurrent from as prepared sample, optical simulations were performed using the refractive index 

data of evaporated TiO2. The transmission, absorption, and reflection spectra in this case are plotted 

Figure 6.6: (a) and (c) show the SEM images of TiO2 nanocones prior to Ni electrodeposition, 

and (b) and (d) show the SEM images taken after Ni electrodeposition. 
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in Figure 6.8 (a) and are plots for transmitted photon flux are plotted in Figure 6.8 (b) for the three 

scenarios as in Figure 6.1. 

 

 

Figure 6.7: Real part of refractive index for ideal TiO2 is shown in (a), and of electron beam 

evaporated TiO2 in (b). 

Figure 6.8: Transmission (T), absorption (A), and reflection (R) plot for Si with TiO2 nanocones 

and 50 nm Ni calculated with evaporated TiO2 refractive index data us shown in (a). (b) shows 

the area plot overlapped over AM 1.5G spectrum for the three different cases as shown in Figure 

6.1 with evaporated TiO2 refractive index data. 
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The expected photocurrent calculated utilizing evaporated TiO2 refractive index data after correcting 

for reflection losses from air/glass/water interfaces that are unavoidable in an electrochemical testing 

setup is ~ 29.8 mA cm-2. This value is significantly lower than in the case of ideal TiO2 but is slightly 

higher than ~ 28 mA cm-2 that is expected from a bare flat Si surface. 

 

 

Figure 6.9: SEM image of the Ni hole array fabricated via electron beam patterning and dry 

etching of 50 nm thick Ni layer. Average diameter of the holes is ~ 500 nm. Image taken by Wen-

Hui Cheng 

Figure 6.10: (a) and (b) show simulated and measured reflectance of Si with TiO2 nanocones, 

with TiO2 nanocones and Ni, and with Ni hole array respectively 
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Reflectance measurements were done on the Si with TiO2 nanocone samples before and after Ni 

deposition for the ones shown in Figure 6.6, along with a Ni hole array prepared via electron beam 

patterning of PMMA over a 50 nm Ni sputtered Si sample. Figure 6.9 shows the SEM image of the 

patterned Ni hole array used for reflectance measurement. Figure 6.10 (a) and (b) plot the simulated 

and measured reflectance spectra taken using Cary 5000 UV-VIS spectrometer. The experimental 

and theoretical nominally match in order of magnitude. Simulations were done under a coherent 

illumination whereas the experimental measurement wasn’t, and the TiO2 nanocones and Ni as can 

be seen in the SEM images in Figure 6.6 are not perfect cones and perfectly flat layers respectively. 

Therefore, the simulated and measured experimental spectra have different features.   

Photoelectrochemical oxygen evolution reaction (OER) was performed using photoanodes 

fabricated as discussed in previous section. A three-necked glass cell incorporated with quartz 

window was utilized as a vessel for this experiment. The OER performance using a three-electrode 

setup in 1 M KOH (Sigma-Aldrich) using a saturated calomel electrode (SCE) as a reference, carbon 

as a counter electrode, and the p+n Si sample with TiO2 and Ni as the working electrode. 

Measurements were done under simulated sunlight in Oriel Instruments Solar Simulator equipped 

with a 1000 W Mercury Xenon lamp calibrated to 100 mA cm-2 illumination using a Si photodiode. 

The active area of the working electrodes was measured using image processing software ImageJ 

from a high-resolution image taken using a scanner. Typical electrode areas were ~ 0.04 cm2. The 

voltage was swept from -0.5 V to 1.5 V relative to SCE at a scan rate of 50 mV s-1 for current-voltage 

(J-V) measurement.     

Figure 6.11 plots the OER J-V characteristics on a p+n Si surface with TiO2 nanocones and 300 mC 

cm-2 electrodeposited Ni. 300 mC normalized to the exposed Si area between nanocones is 

equivalent to ~ 70 nm of flat Ni layer which is slightly higher than the 50 nm utilized in the 

simulations. The photocurrent calculated at ~ 1 V vs SCE by subtracting the dark current from light 

current was ~ 28 mA cm-2 matches well with the estimate using simulations. Despite the evaporated 

TiO2 having a much lower refractive index than an ideal TiO2 a photocurrent of ~ 28 mA cm-2 can 

be achieve. The magnitude of observed photocurrent is similar to what one would expect when the 

Si surface is completely bare. This shows that the TiO2 nanocones act as antireflective structures that 

can couple to the incoming light and enable transmission of light into the underlying Si light absorber 

in this case even when ~ 54 % of the surface was loaded with thick Ni layer. 
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 Conclusion 

In conclusion an alternative light trapping scheme utilizing dielectric nanocones was demonstrated. 

The nanoconical shape of dielectric structures efficiently couple incoming light to available 

waveguide modes and enable transmission into light absorbing semiconducting substrates even when 

~ 54 % of the front surface of the absorber was coated with light blocking catalysts. Proof of concept 

simulations and experiment were performed using TiO2 nanocones over Si substrate with Ni as the 

light blocking catalyst. A photocurrent of ~ 28 mA cm-2 was observed using non-ideal TiO2 towards 

OER reaction at 1 sun in 1 M KOH electrolyte. Simulations show that using an ideal TiO2 material 

with a higher refractive index can provide photocurrents up to 37.8 mA cm-2 in air and 36.5 mA cm-

2 in water under a 50 nm thick Ni coverage of 54 % Si surface. Since this effect depends primarily 

on optical constants of the materials similar photocurrent enhancement is expected from other light 

absorbers if used in place of Si. Therefore, incorporating high index dielectric nanocones over planar 

monolithic photoelectrochemical devices could enable incorporation of high loadings of highly 

active catalysts to enable higher efficiencies and longer stability. 

Figure 6.11: J-V charectorisitcis of p+n Si homojunction photoanode with TiO2 nanocones and 

300 mC of electrodeposited Ni performing OER in 1 M KOH in dark and under 1 sun simulated 

illuminations 
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Effectively Transparent Contacts (ETCs) for 

Solar Cells  

 Introduction 

Silicon (Si) based solar cells dominate the current photovoltaic market. The price decline in Si based 

solar modules has resulted in the balance of systems cost dominating the cost of solar installations 

[234]. Si based solar cell technology is very mature and laboratory efficiency record is currently at 

26.7 % [23], which is very close to the theoretical maximum of 29.43 % [17]. This record efficiency 

device utilizes Si heterojunction technology which is composed of high lifetime crystalline Si wafer 

coated with thin amorphous Si films that result in extremely low surface recombination, and selective 

carrier collection, therefore resulting in very high open circuit voltages. This device also employs 

interdigitated back contacts (IBC) in order to reduce front surface reflection losses due to front metal 

contacts to maximize the photocurrent. Most commercial solar panels do not employ IBC design due 

to cost constraints and thus suffer from front contact reflection losses. The surface coverage of 

metallic contacts is typically ~ 6 %, but some of the reflected light from contacts is harvested utilizing 

total internal reflection from front surface of cover glass. Transparent conducting oxides (TCOs) are 

employed as an alternative for front metal contacts, but they suffer from reduced conductivity, and 

increased parasitic absorption losses, and thus decrease the efficiency. One solution for mitigating 

the front contact reflection losses is by modifying the shape of contacts. In this chapter a triangular 

shape to the front contacts is explored. These triangular silver contacts were shown to demonstrate 

99.9 % transparency rendering them effectively transparent [191]. These contacts are employed over 

Si heterojunction solar cells as proof of concept demonstration. Finally, a fabrication method for 

various configurations of triangles is demonstrated opening up new avenues to utilize these contacts 

over various other solar cell technologies, opening the door to a potential way to set new efficiency 

records. 
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 ETCs on planar Si heterojunction solar cells 

 

The fabrication procedure for fabrication of silver triangles over a solar cell is shown in Figure 7.1. 

Effectively transparent contacts were prepared using imprint lithography. Using two-photon 

lithography triangular cross section polymer lines were written on silicon substrates. The width of 

the triangle was 4.5 µm, height 15 µm and period 80 µm. The lines were written to be up to 10 mm 

Figure 7.1: Schematic for fabrication process of effectively transparent contacts. (a) shows the 

fabrication of triangular master as shown in (b) via 2-photon lithography. (c) shows the casting 

of PDMS over the master, which results in PDMS stamp after curing as shown in (d). The PDMS 

stamp is applied over solar cell substrate as shown in (e). Silver ink is applied to the sides of the 

stamp resulting in flow onto the substrate via capillary forces as shown in (f). After heating the 

at 60oC the stamp is peeled off resulting in silver triangles over the solar cell.  Image credit: 

Rebecca Saive 
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long. These samples were used as a mold for the preparation of a PDMS stamps. The PDMS stamps 

were cut open on both sides of the line grid and put in isopropanol for 6–12 hours in order to obtain 

a favorable surface energy. Then, the stamp was placed on the ITO patch of the solar cell and silver 

ink was infilled from the sides via capillary action. This process ensured clean triangular cross-

section silver lines without unwanted silver residues between the lines. The samples were then 

annealed ~200 OC for a few minutes to make the silver ink in the triangular lines conductive. As 

prepared triangular contacts had a sheet resistance of 4.8 Ω sq-1. 

For proof of concept demonstrations, the ETCs were employed over silicon heterojunction cells. 

Silicon heterojunction (SHJ) solar cells were prepared in the same way as described by S. Y. 

Herasimenka [235]. The solar cells had textured back surfaces and flat front surfaces and were 

fabricated on 270 mm thick 4-inch wafers. These cells were cut to 1.4 cm x 1.4 cm pieces and 7 mm 

x 7 mm ITO patches defined the active area. ITO layers were 70 nm thick. Three different contact 

layouts were compared against each other: (i) an ITO layer with a flat metal grid of 6% surface 

coverage, (ii) an ITO layer without any metal contact and (iii) an ITO layer with effectively 

transparent contacts (ETCs). Figure 7.2 shows the current–voltage (J–V) characteristics of these 

three devices. The black curve shows the J–V characteristics of a cell with 70 nm ITO and a flat 

contact grid. The short circuit current density is 33 mA cm-2 and therefore, 2 mA cm-2 lower than the 

one of a cells with only the ITO layer and no metallic contacts (blue curve). This corresponds 

approximately to the 6% shading of the contact grid. The active area of the measured cells was 5 

Figure 7.2: Current–voltage characteristics of silicon heterojunction solar cells with three 

different front contact. Inset: scanning electron microscope image of a triangular cross-section 

contact line.  
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mm x 6 mm. Therefore, a metal contact grid is necessary to provide good lateral transport and cells 

with only ITO exhibited a low fill factor (59.3%) as can be seen from the blue curve. ETCs on top 

of the ITO layer (red curve) lead to short circuit current densities comparable to those for cells 

without any metal contact, which agrees with previously reported effective contact transparency of 

up to 99.9% [191]. Furthermore, fill factors of up to 80.7% were achieved. With a short circuit 

current density of 35.0 mA cm-2 and an open circuit voltage of 690 mV, this leads to an efficiency 

of 19.5 %, which is 1.4 % (absolute) higher than the cells with flat contacts. Table 7.1 compares the 

solar cell metric for the three cases shown in Figure 7.2. 

 70 nm ITO / Flat Contacts 70 nm ITO 70 nm ITO / ETCs 

VOC (mV) 693 697 690 

JSC (mA cm-2) 33.0 35.4 35 

FF (%) 79.0 59.3 80.3 

η (%) 18.1 14.6 19.5 

Table 7.1: Summary of efficiency (η), open circuit voltage (VOC), short circuit current (JSC), and 

fill factor (FF) for silicon heterojunction solar cells with different contact layouts. 

 ETC implementation over other solar cells 

Currently the application of ETCs on solar cells was limited to solar cell technologies with a flat 

front surface that can withstand the annealing process of the silver ink. The ink utilized over Si 

heterojunction cells is a low temperature ink that needs to be annealed ~ 200 OC. For solar cells that 

may not withstand the high temperature annealing processes like perovskite-based ones, an 

alternative way of implementing the ETCs is by fabricating the cell over an ETC “superstrate”. An 

ETC superstrate can be imagined as polymer with triangular gives on a glass handle for support, with 

the triangular groves filled with silver ink that is annealed prior to solar cell fabrication over it. Figure 

7.3 shows the schematics of an ETC superstrate fabrication.  

Implementing ETCs over textured Si solar cells which are the most widely used technology in the 

photovoltaics market has the potential to make ETCs a highly valuable technology. Printing ETCs 

over rough or textured Si solar cells is not trivial due to the ink leaking into areas in the middle of 
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triangular contacts resulting in more light blocking. Figure 7.4 shows one such attempt of printing 

ETCs over a rough (2 -3 µm surface roughness) Si solar cell. Metal contacts over Si homojunction 

cells are currently implemented utilizing screen printing. Such contacts are typically 30 – 50 µm 

wide. Any implementation of ETCs over these cells must be compatible with screen printing for the 

barrier of entry of ETCs into solar cell market is reduced. The superstrate way of implementing ETCs 

may have the potential to be applicable to very rough Si solar cells. Perovskite / Si tandems are being 

considered as a cheaper alternative way to improve the efficiency beyond the theoretical limit of Si 

solar cells. Therefore, being able to implement ETCs over the textured Si and perovskite solar cells 

may improve the light management and enable record efficiencies in a 4 terminal tandem device. 

The proof of concept implementation of ETCs so far has utilized one specific configuration of 4.5 

µm wide, and 15 µm high triangles with a spacing of 80 µm. It was shown recently that a dense array 

of ETCs over thin Si solar cells and the back of bifacial solar cell can improve the light trapping 

properties and lead to higher efficiencies [236, 237]. The fabrication of ETC masters via 2-photon 

lithography is very slow and not scalable to large triangle sizes that are ideal for a Si homojunction 

cell.  

Figure 7.3: Schematics of fabrication of an ETC superstrate staring from a Si master with 

triangular groves using PDMS. Figure credit: Sophia Coplin 
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Apart from solar cells the ETCs can also be very useful in photoelectrochemical devices. As 

mentioned in the previous chapter on Si microcone photocathodes the incorporation of metal catalyst 

onto semiconducting substrates is a very important issue in achieving high efficiencies in 

photoelectrodes. Ag is known for being able to act as catalysts for converting CO2 into CO. 

Therefore, Ag triangles so far implemented over solar cells can be utilized as an “effectively 

transparent catalyst” for photoelectrochemical CO2 reduction. Higher catalyst loadings typically 

improve the reaction kinetics as more sites become available for the reaction to take place. Therefore, 

in such a scenario increasing in the number of ETCs by reducing their spacing is very beneficial. In 

the following section the fabrication of ETC masters for a wide range of sizes, and spacings is 

explored keeping all these possibilities in mind. 

 Fabrication of Si masters for ETCs   

Inductively coupled plasma reactive ion etching (ICP-RIE) was utilized for fabricating triangular 

structures and then triangular groves into a Si wafer. Typical procedure includes 

photolithographically patterning a Si wafer to expose areas for etch mask deposition. Al2O3 etch 

mask is chosen similar to the etching process for Si microcones as discussed in the earlier chapters. 

For fabricating triangular structures, the mask covered the areas where the triangular structure is to 

be formed, and for triangular groves mask was deposited over its inverse structure.  

Figure 7.4: (a) and (b) show SEM images of the front surface of a rough Si homojunction solar 

cell recieved from UNSW. (C) shows the SEM image of an attempted ETC print on this rough 

surface resulting in Ag ink spillage all over the solar cell. 
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Triangular shaped structures etched into Si wafer are shown in Figure 7.5. First, an etch mask 

composed of Al2O3 was defined by lithography. Then cryogenic ICP-RIE was performed using SF6 

as etching gas and O2 as a passivation gas. The aspect ratio and taper of the triangular shaped lines 

etched into the silicon sample can be adjusted by varying the SF6 / O2 ratio in the plasma. Here we 

started with a line pattern with ~2.5 μm width and the etching was performed at 900 W of inductively 

coupled plasma power, 5 W of capacitive coupled plasma power, 70 sccm SF6, and 9 sccm O2 for 

10 min at −120 °C. Post etching the samples were etched briefly in isotropic Si etch utilizing HF / 

nitric acid / acetic acid (HNA) to sharpen the triangle tips. These structures turned out to be not as 

applicable for ETCs due to the unavoidable curvature that can be observed at the bottom of triangles. 

When PDMS stamps were made from these structures the curvature causes ink to spill between the 

ETCs. 

To overcome the ink bottom curvature related issues triangular groves can be etched into Si with 

Al2O3 mask covering all the areas that are between the triangles, and therefore the middle areas retain 

their flat nature enabling printing without spillage. Figure 7.6 (a) and (b) show the resultant structures 

of two different attempts of the triangular groves etched into Silicon wafer. Figure 6.6 (a) shows the 

SEM image of the structures etched with SF6 / O2 = 70 sccm / 12 sccm, for 15 mins at -120 OC, and 

(b) etched with same gas ratio for 7 mins at -80 OC. It was observed that at very low temperatures 

significant micro masking results in black Si inside the triangular groves.  

Figure 7.5: SEM image of the triangular structure etched into a Si wafer for utilization as a master 

for making PDMS stamps for printing ETCs. 
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Black Si can be reduced by decreasing the passivation gas or by increasing the table temperature. In 

this case, since we need to maintain the triangular shape of the etch, changing the amount of etch gas 

in the plasma change the slope of the sidewalls. Therefore, temperature was raised to -80 OC and 

structures shown in Figure 7.6 (b) were obtained. The reduced passivation of sidewalls enables faster 

etching and therefore ~ 7.5 µm depth was obtained in 7 mins. The two images in Figure 7.6 are 

designed for a 50 % coverage of ETCs designed via electron beam lithography. 

To demonstrate that this etching process is more general to different spacings, multiple aspect ratios, 

and even for a crossing grid lines, samples were prepared via photolithography to define 2.5 µm, 5 

µm, and 10 µm grid lines with various spacings. The resultant etch geometries are shown in Figure 

7.7. The ~ 1:3 aspect ratio of triangles is maintained under SF6 / O2 gas ratio of 70 sccm / 12 sccm 

for the three cases. The etch times were 7.5 mins, 15 mins, and 30 mins for the three cases 

respectively. It can be observed that for very long etch time like ~ 30 mins the walls of the triangles 

are not as smooth as for shorter etch times. Longer etch times result in deeper structures and therefore 

the products of etching during the etching have a harder task of escaping out. This results in mask 

undercut and rougher sidewalls as shown in Figure 7.7 (c). The dimensions of the base of triangles 

are slightly off from the expected dimensions of 2.5 µm, 5 µm, and 10 µm due to non-optimal 

lithography conditions. 

Figure 7.6: (a) and (b) show SEM images of triangular groves etched via ICP-RIE at -120 OC 

and -80 OC respectively. 
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Figure 7.8 shows SEM images of a grid of triangular groves etched using ICP-RIE. At SF6 / O2 ratio 

of 70 sccm / 15 sccm, 1:2 aspect ratio triangular groves were obtained and changing the ratio to 70 

sccm / 12 sccm results in 1:3 aspect ratio groves. The effect of etching for more than required time 

can be seen in Figure 6.8 (a). The tip of 1:2 aspect ratio triangle was slightly elongated as a result of 

over etching. Therefore, it is important to stop the etching process right when the grove reaches a 

triangular shape. Etching for a lower time results in blunt triangular tip. Figure 7.8 shows that etching 

doesn’t show any artifacts when a grid of lines was used in place of separated straight lines, thus 

expanding the scope of possible front contact designs.  

 

 

 

Figure 7.7: (a), (b), and (c) show the SEM images of triangular groves etched vai ICP-RIE at -80 

OC, with a SF6 / O2 gas ratio of 70 sccm / 12 sccm for 7.5 mins, 15 mins, and 30 mins respectively. 

Figure 7.8: (a) and (b) show SEM images of etched triangular groves of 5 um bases with 1:2 and 

1:3 aspect ratios respectively. These samples employed a grid of lines pattern, and therefore 

horizontal triangular groves can be see intersecting the triangular grove facing out of the plane 

of this page. Etching is performed at -80 OC. SF6 / O2 gas ratios utilized are 70 sccm /15 sccm, 

and 70 sccm / 12 sccm for in case of (a) and (b) respectively. 
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 Printing ETCs from etched Si masters 

In order to demonstrate that Ag triangles can be printed using the stamps fabricated from the etched 

Si masters, the contact pattern on a typical Alta Device’s GaAs solar cell pattern was utilized. The 

zoomed-out AutoCAD schematic of the contact pattern is shown in Figure 7.9. The busbar is in the 

middle and tapers from thick to thin as one moves away from the rectangular contact pad. Fingers 

extend perpendicular from the bus bar and are ~ 5 µm wide.  

 

Si wafer was photolithographically patterned and etched such that the fingers are of 1:3 aspect ratio. 

PDMS stamp was fabricated as described in Figure 7.3. The SEM image of as prepared stamp is 

shown in Figure 7.10.  Figure 7.10 (a) shows the part of the stamp with the contact pad extending 

into a bus bar, (b) shows the busbar with perpendicular triangular fingers somewhere in the middle 

of the contact pattern, and (c) zooms into one of the fingers and the triangular shape of the stamp can 

be observed. The bumps in the middle of the bus bar are a result of some unetched areas inside the 

bus bar due to photolithography artifacts resulting in the bumps in the stamp. This stamp was applied 

on a glass slide and Ag ink was injected into the contact pad area. The end of the fingers was opened 

to let the air come out and create space for the flowing Ag ink using a razor blade. This rested in the 

Ag ink that was applied to the contact pad flow into the bus bar and then into the fingers replicating 

the full contact pattern. SEM image in Figure 7.11 (a) shows the zoomed-out view of the middle of 

Figure 7.9: Screen grab of the AutoCAD pattern of Alta Device solar cell's contact pattern. Picture 

credit: Michael D. Kelzenberg. 
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the contact pattern demonstrating the Ag ink in the bus bar and fingers. Figure 6.11 (b) show the 

zoomed in SEM image of one of the fingers, and it can be observed that the triangular shape is well 

maintained after printing. 

 

 

Figure 7.11:. (a) and (b) show the SEM image of printed Ag triangles over a glass slide utilizing 

the Alta Device's contact pattern. (a) shows the zoomed-out view showing the busbar is filled with 

Ag ink and is connected to the triangular fingers with minor spills around the bus bar. (b) shows 

a zoomed in image of one of the fingers that shows the top view of the triangular morphology of 

the contact pattern. 

Figure 7.10: (a), (b), and (c) show the SEM images of different parts of the PDMS stamp fabricated 

using the Alta Device's contact etch pattern in Si. (a) shows the contact pad area, (b) shows an area 

in the middle of the pattern with bus bar in the middle and fingers perpendicular to it, and (c) shows 

the triangular morphology of a finger in the stamp 
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 ETC superstrates 

As discussed in previous section fabrication of ETC superstrates has the potential to solve the 

integration of ETCs onto very rough Si homojunctions solar cells that occupy majority of the 

photovoltaic market. Schematic in Figure 6.12 shows the ETC superstrate scheme for incorporating 

ETCs over textured Si solar cells. 

Figure 7.12 (a) shows a schematic of a superstrate made from PDMS or EVA (ethylene-vinyl acetate) 

with triangular groves over a glass handle. They were prepared in a way similar to making a PDMS 

stamp from Si master with an addition of a glass handle over the PDMS while it cures to be a stamp. 

(b) shows the schematic of the superstrate after infilling Ag ink. Ag ink infill was done by applying 

the Ag ink to the edges of the fingers. Capillary forces associated with the triangular grove allows 

for the ink to infill into the superstrate. It is observed that a 10 s oxygen plasma at 100 W and 300 

mTorr chamber pressure increase the travel distance of the ink in a superstrate. In best case scenarios 

ink travel length of 1 cm was observed. Optical photograph of one such sample is shown in Figure 

7.13. The superstrate appears visually transparent since the triangular Ag infilled allows for 

transmission of most of the incident light. Figure 7.14 shows the SEM cross sectional image of one 

such superstrate showing the flow pattern of the Ag ink. 

Figure 7.12: Schematic for incorporating ETC superstrates over textured Si homojunction solar 

cells.  
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The superstrates demonstrated so far utilized ETC patterns with 5 µm base. As mentioned previously 

the fabrication of Si masters with 30 – 50 µm width is yet to be realized, and therefore are not yet 

ready for application to Si homojunction solar cells. Currently efforts are ongoing to fabricate large 

size triangles in Si or utilizing 3D printing to realize hard masters with 1:3 aspect ratio triangles with 

a 30 – 50 µm base. 

 

 

Figure 7.14: Photograph of an ETC superstrate with Ag filled triangular groves in PDMS on glass. 

Picture credit: Rebecca Saive and Sophia Coplin 

Figure 7.13: Cross sectional SEM image of an ETC superstrate showing the flow pattern of the ink. 
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 Future Work on ETCs 

Until now ETCs were implemented over flat surfaces reliably and photocurrent enhancement was 

demonstrated when implemented over Si heterojunction solar cells. The ability to etch multiple sizes 

and spacings of triangular groves in Si and being able to print Ag triangles over flat substrates already 

provides an opportunity to utilize ETCs over bifacial flat Si heterojunction solar cells, III – V group 

based single and multijunction solar cells that are typically utilized in concentrated photovoltaic, and 

space applications. It was previously calculated that below 25 % coverage Ag usage does not exceed 

a standard cell[237] but is yet to be experimentally demonstrated.  

Previous theoretical calculations showed that up to 50 % coverage of ETCs on the front surface 

doesn’t significantly reduce the absorbed light in the substrate, and that 83 % coverage on the front 

can enhance light absorption in thin Si / Ag structures [236]. This opens new possibilities for using 

Ag triangles as “effectively transparent catalysts” over photoelectrochemical cells. Ag is known for 

being able to catalyze CO2 to CO [238], therefore high density of ETCs can provide a lot of surface 

sites to catalyze the reaction while simultaneously not compromising on light absorption. 

If one aims to bring ETCs into real world, future ETC research must be focused on building a tool 

that can reliably implement ETCs on various solar cells with minimum Ag waste. Current method 

of applying ink on the sides of a stamp wastes a lot of ink and depends on capillary forces for the ink 

to travel long distances. The longest travel distances observed till date are ~ 1 cm and therefore a 

system that can potentially incorporate an inlet and outlet such that pressure is controlled in a similar 

manner to microfluidic systems. 

ETC superstrate strategy can be an alternative for incorporating the ETCs over textured surfaces. For 

implementation over Si solar cells that occupy most of the photovoltaic market, PDMS must be 

replaced by EVA. EVA is known to last for > 20 years and is cheap for laminating solar cells while 

making solar panels. Preliminary studies with EVA showed that one can fabricate a superstrate 

utilizing EVA. Currently the biggest bottleneck is the realization of a hard master with large (30 – 

50 µm) triangular groves. Having the ability to fabricate large triangles enables trials of incorporating 

ETCs with screen printed contacts over conventional solar cells. 
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One other major question that is not explored is whether the ETCs can survive the laminating process 

after implementing over a solar cell. All the solar cell technologies are incorporated in a polymer for 

preventing physical and chemical degradation due to external factors and demonstrating that ETCs 

can withstand the process of lamination will be an important step in convincing us the researchers 

and the photovoltaics industry that they can be realized outside the lab for real world applications. 

In conclusion, ETCs provide an opportunity to reach new heights in efficiencies in principle for all 

the solar cell technologies, and potentially for photoelectrochemical solar fuel devices when 

implemented as a catalyst. Implementation over textured solar cells remains a challenge due to Ag 

ink spillage, and implementation over perovskite solar cells is a challenge to be solved since these 

cells don’t withstand high temperatures required for annealing the ink. ETC superstrate strategy can 

be a potential solution in these two cases.   
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Future and Outlook 

In summary this thesis deals primarily with optical strategies utilizing pointy structures for light 

trapping that is generally applicable to solar photovoltaics and/or photoelectrochemical systems. 

First few chapters discussed how to maximize absorption in a semiconducting conical light absorber, 

followed by a general light trapping strategy using dielectric nanocones which can enable high 

loadings of light blocking catalyst or metal front contact, and finally explored structuring the metal 

itself into a triangular shape to redirect incident light on to the substrate that is otherwise lost due to 

front surface reflection. In this final chapter I would like to point out some interesting unanswered 

questions that may be of interest for future energy research involving pointy structures. 

 Semiconducting micro- and nano- cones 

The physics and advantages of conical architecture was demonstrated in detail in this thesis. 

Semiconducting conical architecture provides an ideal design for maximizing the absorption. The 

choice of bottom and top radii of a conical architecture determines the broadband of illumination 

that can couple light efficiently to a nano cone. The cone must be long enough to maximize the 

absorption by providing enough length for light to propagate until it is absorbed. Therefore, for an 

indirect band gap material like Si the cone must be as long as ~75 μm as shown in this thesis, whereas 

in case of a direct band gap semiconductors such as GaAs or InP only a few microns are enough to 

absorb light effectively [183, 184].  

The impressive optical properties of conical semiconducting structures come at a cost of increased 

surface area. In case of Si cones the surface area increases by more than an order of magnitude. 

Therefore, any surface passivation mechanism that must be as many times lower in terms of surface 

recombination velocity. In terms of the possibility of just reaching the current efficiency record for 

Si based solar cells the surface recombination velocity must be ~ 1 cm/s or below, and it has to be 

as low even in places where one wishes to make a contact to get current out. This rules out any type 
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of direct metal contact to the Si cone since such an interface will act as a site for infinite surface 

recombination velocity. An infinite recombination velocity center will limit the average diffusion 

length of the carriers to a number smaller than its maximum dimension. Therefore any Si cone based 

device must employ a surface passivation and a carrier selective contact which can maintain < 1% 

SRVs throughout the surface.  

The conical arrays being embedded in a polymer, along with being able to incorporate catalysts on 

their tips without any significant photocurrent losses make these structures very attractive for a 

flexible integrated photoelectrochemcial device that could possibly be made roll to roll if this 

technology wishes to enter the real world. Currently the fabrication involves a cryogenic dry etching 

process which is a very costly way to manufacture at a large scale. This technique was chosen in this 

work due to the ability to control the shape precisely, and therefore demonstrate concepts in a 

scientific setting. If one envisions a path for a future Si microcone based device, a 

photoelectrochemical etching process similar to the porous Si etching process could be explored to 

manufacture these structures in a cheaper way [239]. 

Pt and Co-P hydrogen evolution catalysts were incorporated with Si microcones to demonstrate that 

high loadings of light blocking highly active catalysts can be employed with minimum photocurrent 

loss. This can easily be extended to photoanodes that perform oxygen evolution reaction given the 

abundance of many protection layers that can extend Si photoanode working lifetime [240]. In 

chapter 4 light directed photoelectrochemical deposition of Au was demonstrated. Au itself can act 

as a catalyst for reducing CO2 into CO electrochemically. Therefore, an array of photocathodes with 

Au deposited at multiple locations over a cone can be explored to figure out the best architecture for 

Si cones utilizing gold for CO2 reduction. One can also imagine photoelectrodepositing another 

material or electrodepositing it over the gold as possibilities for future designs. 

Another avenue of study can be understanding the optical effects of bubbles that are formed when 

H2 or O2 or CO or any other gas that can be evolved when these structures are utilized as 

photoelectrodes. According to reflection measurements Si cones are expected to deliver close to 43 

mA cm-2. But experimentally as photocathodes for H2 evolution these on an average gave only about 

35 mA cm-2 though an occasional sample might reach up to 38 mA cm-2. This begs the question of 

where are all those photons going? At such high current it was experimentally observed that a lot of 
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bubbles were formed and come of the light is being scattered away from the absorber surface. 

Therefore, an interesting future research problem could be the study of bubble evolution and how to 

engineer that to minimize the photocurrent loss due to scattering. 

Unlike Si, direct band gap semiconductor such as GaAs and InP demonstrate might higher light 

confinement. It was shown previously that the coupling of light to a nanocone of a direct band gap 

semiconductor depends on wavelength of light and the radius of the nanocone similar to Si, but the 

confinement is much stronger. Therefore, photoelectrochecmial Au depositions can be performed 

over these nanocones to experimentally show the region of high light confinement, which could 

potentially deposit Au at different radius on the nanocone depending on the wavelength of 

illumination.     

 Dielectric nanocones 

It was shown in this thesis that dielectric nanocones enable similar light trapping properties as 

semiconducting nanocones but since they don’t absorb light they can act as light trapping structures 

over an absorbing semiconductor. Since light was mostly confined inside the nanocones, light 

blocking catalyst can be incorporated in the middle of these nanocones, making this strategy a 

universal light trapping strategy for an arbitrary broadband of interest on light absorbers. In this case 

it was demonstrated primarily for a Si photoanode performing oxygen evolution reaction in basic 

environment. This strategy being general can be extended any photoelectrochemical reaction as long 

as the dielectric chosen is stable under operating conditions.     

It is well known that higher the dielectric constant higher the light confinement, therefore more 

detailed investigation is required on a case to case basis to investigate the ideal spacing of these 

nanocones over light absorbers. Utilizing these nanocones over photoelectrochemical devices can 

enable incorporate higher loadings of highly active light blocking catalysts, which can enhance the 

total length of the time the device is active and also enables a more optimum choice for the 

underlying absorbers tandems. Therefore, these nanocones could enable higher efficiencies than 

previously shown in the literature, and is an exciting opportunity to pursue in the future. 
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The nanocones utilized in the work presented in this thesis were fabricated utilizing dry etching. In 

terms of cost reduction, and scalability, these structures could in principle be fabricated utilizing 

nanoimprint lithography [241]. Nanoimprint could also be a gentler process than etching in terms of 

inducing damage on the underlying light absorber due to criticality of stopping the etching right 

when the dielectric is etched. In this case n-type Si wafer was utilized for the proof of principle 

demonstrations. Similar process on multijunction III–V solar cells could be disastrous if the etch was 

not stopped in time given the layers in such cases are 100s on nm to a few microns.  

 Metal Triangles 

One other way to overcome the front surface losses in a photovoltaic or a photoelectrochemical cell 

is to restructure the metal contacts into a triangular shape. Triangular shape redirects the light that is 

otherwise lost due to reflection, back onto the light absorbing substrate improving the photocurrent 

in a Si heterojunction cell by up to 2 mA cm-2 and an increase in the efficiency of ~ 1%.  Current 

demonstrations of such triangular metal contacts were limited to planar solar cell surfaces, and the 

dimensions were limited to 2.5 – 5 µm at the base and 7.5 – 15 µm height dimensions. By developing 

an etching process that was described previously in this thesis, the parameter space of triangles in 

terms of dimensions and spacing can now be varied, and therefore the triangles can be applied to 

other solar photovoltaic technologies. 

Incorporating the metal triangles over textured surfaces and over those surfaces that cannot withstand 

the Ag ink annealing temperatures are yet to be realized. “Superstrate” strategy previously discussed 

could potentially be a way to incorporate the Ag triangles in such cases. More work needs to be done 

in terms of alignment of these superstrates over existing contacts, and also in being able to fill the 

triangular channels in superstrates to an arbitrary level depending on need. One pathway that is 

currently being explored is electrodepositing Ag over the partially infilled Ag lines in a superstrate. 

Most of the current work in triangles was towards increasing efficiencies in photovoltaics. 

Application of triangular catalysts on to photoelectrochemical systems is to be explored. The ability 

to fabricate masters with high density of triangles and coupled with the availability of many nano-

particular inks of catalytic materials could enable incorporation of high catalyst loadings to reduce 
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overpotential while still maintaining high photocurrents in a photoelectrochemical cells. Inks for Ag, 

and Cu among others are available in the market, and both these are known catalysts for CO2 

reduction. Apart from optical enhancement, there may or may not be some structure related variation 

in reaction kinetics, that are yet to be explored. Previous study of Au, and Pd nanocones 

demonstrated a reduction in overpotential due to field induced reagent concentration [242]. Since 

triangles are also sharp structures similar effects may be applicable, which could enhance the overall 

photoelectrochemical device efficiency even higher. 

 Conclusion 

In conclusion the work demonstrated in this thesis demonstrates multiple light trapping strategies 

that are applicable to both photovoltaics and photoelectrochemical cells. Semiconducting or 

dielectric conical structures can be designed for an arbitrary broadband of illumination that is of 

interest for either absorption or transmission. Therefore, the semiconducting cones provide an ideal 

architecture for maximizing absorption and the dielectric cones for maximizing transmission. 

Alternatively, triangular metal contacts are a general strategy to render the front contacts of a solar 

cell effectively transparent, while fabrication challenges remain on textured surfaces. 
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Appendix A                                                                        

Limiting Efficiency Simulation Code 

The following provides the code for simulating limiting efficiencies for the case of a cone. It can be 

manipulated into a rectangle by changing coordinates and symmetry options. 

Sentaurus structure editor code 

(sde:clear) 

############### Silicon Cone Structure Defined ############### 

# Cone Surface Passivation Definition 

(define verticis2 (list (position 0 -1 0) (position 4.5 -1 0) (position 1.025 76 0) (position 0 76 0))) 

# Cone Surface Passivation Material Definition : material name 

(sdegeo:create-polygon verticis2 "Anyinsulator" "Cone_Surface") 

# Cone Structure Definition 

(define verticis1 (list (position 0 0 0) (position 3.5 0 0) (position 0.025 75 0) (position 0 75 0))) 

# Cone Material Definition : material name 

(sdegeo:create-polygon verticis1 "Silicon" "Cone_1") 

# Constant Doping Options : name species concentration 

(sdedr:define-constant-profile "BulkDoping" "PhosphorusActiveConcentration" @BulkDoping@) 

# Placing Doping Profiles in Cone : name profile region 

(sdedr:define-constant-profile-region "BulkDopingPlacement" "BulkDoping" "Cone_1") 

# Opt Gen Initializing to zero 

(sdedr:define-constant-profile "OptGen" "OpticalGeneration" 0.0) 

(sdedr:define-constant-profile-material "OptGen" "OptGen" "Silicon") 

(sdedr:define-constant-profile-material "OptGen" "OptGen" "Anyinsulator") 

##################### Meshing the Cone ######################## 

# Define Window  
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# (sdedr:define-refinement-window "Cone_EvalWindow1" "Rectangle" (position -1 -1 0) (position 

80 80 0))   

# Define Mesh Refinement : name max( x y z ) min( x y z )   

(sdedr:define-refinement-size "Cone_RefDef1" 1 1 0 0.1 0.1 0) 

# Defining Meshing Function : RefinementName Algorithm Material Interface begin ramp 

(sdedr:define-refinement-function "Cone_RefDef1" "MaxLenInt" "Silicon" "Anyinsulator" 0.001 

1.5) 

# Define the Region : Name RefinementName Material StructureName 

(sdedr:define-refinement-region "Cone_RefReg1" "Cone_RefDef1" "Cone_1") 

# Define Refinement Placement : Name Region 

# (sdedr:define-refinement-placement "Cone_RefPlace1" "Cone_RefReg1" "Cone_EvalWindow1") 

(sdedr:append-cmd-file "xy.cmd") 

# Build Mesh : Mesher Options filebase 

(sde:build-mesh "snmesh" "-numThreads 8" "n@node@") 

#Save Model 

(sde:save-model "n@node@_SiliconConePL") 

Sentaurus device code 

File { 

## Input Files 

Grid = "n@node|sde@_msh.tdr" 

Doping = "n@node|sde@_msh.tdr" 

Parameter = "@parameter@" 

OpticalGenerationInput = "n@node|sde@_optgen.tdr" 

## Output Files 

Plot = "@tdrdat@" 

Current = "@plot@" 

Output = "@log@" 

} 
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Electrode{ 

} 

Physics { 

## Recombination & Mobility Models 

Recombination (SRH Auger Radiative) 

Mobility(DopingDep) 

Optics( OpticalGeneration( ReadFromFile( Scaling=0) ) ) 

} 

Physics(Region = "Cone_1") { 

EffectiveIntrinsicDensity (BandGapNarrowing (Slotboom)) 

eQuantumPotential(LocalModel=SchenkBGN_elec) 

hQuantumPotential(LocalModel=SchenkBGN_hole) 

} 

Physics (MaterialInterface="Silicon/Anyinsulator") 

{ 

Recombination(SurfaceSRH)        

} 

Plot{ 

eDensity hDensity eCurrent/Vector hCurrent/Vector current/vector 

Potential SpaceCharge ElectricField/Vector 

SRH Auger RadiativeRecombination TotalRecombination SurfaceRecombination 

Doping DonorConcentration AcceptorConcentration EffectiveIntrinsicDensity 

ConductionBandEnergy ValenceBandEnergy 

eQuasiFermi hQuasiFermi 

OpticalGeneration   

} 

CurrentPlot{ 

OpticalGeneration(Integrate(Material="Silicon")) 

RadiativeRecombination(Integrate(Material="Silicon")) 

Auger(Integrate(Material="Silicon")) 
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SRH(Integrate(Material="Silicon")) 

SurfaceRecombinaiton(Integrate(MaterialInterface = "Silicon/Anyinsulator")) 

TotalRecombination(Integrate(Material="Silicon")) 

hDensity(Integrate(Material="Silicon")) 

eDensity(Integrate(Material="Silicon")) 

EffectiveIntrinsicDensity(Integrate(Material="Silicon")) 

DonorConcentration(Integrate(Material="Silicon")) 

} 

Math{ 

NumberOfThreads=maximum 

Extrapolate 

Derivatives 

RelErrControl 

Iterations=25 

Notdamped=30 

ExitOnFailure 

Wallclock 

CheckRhsAfterUpdate 

ExtendedPrecision(128) 

Digits=7 

RhsMin=1e-12 

StackSize = 5000000 

PeriodicBC(Direction=0 Coordinates=(0 10)) 

Method=Pardiso 

CurrentPlot (IntegrationUnit = cm) 

} 

Solve{ 

Coupled { poisson } 

Coupled { poisson electron } 

Coupled { poisson electron hole } 
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Save( FilePrefix="PLdark_n@node@" ) 

Quasistationary( InitialStep=0.1 MinStep=1e-10 MaxStep=1 Goal { ModelParameter = 

"Optics/OpticalGeneration/ReadFromFile/Scaling" Value = 0.000001637323944} ){ Coupled { 

poisson electron hole }} 

Plot( FilePrefix="PLlight_n@node@" ) 

} 

Sentaurus visual code 

set volumefactor [expr 2e6] 

set Thickness [expr 5e-4] 

echo "af = $volumefactor \[cm^2\]" 

set RECOMBINATIONS [load_file n@previous@_des.plt -name RECOMBINATIONS] 

set OPTgen [get_variable_data "IntegrSilicon OpticalGenerationFromFile" -dataset 

RECOMBINATIONS] 

set RADrec [get_variable_data "IntegrSilicon RadiativeRecombination" -dataset 

RECOMBINATIONS] 

set AUGrec [get_variable_data "IntegrSilicon AugerRecombination" -dataset 

RECOMBINATIONS] 

set SRHrec [get_variable_data "IntegrSilicon SRHRecombination" -dataset RECOMBINATIONS] 

set SURrec [get_variable_data "IntegrSilicon/Anyinsulator SurfaceRecombination" -dataset 

RECOMBINATIONS] 

set Hd [get_variable_data "IntegrSilicon hDensity" -dataset RECOMBINATIONS] 

set Ed [get_variable_data "IntegrSilicon eDensity" -dataset RECOMBINATIONS] 

set Ni [get_variable_data "IntegrSilicon EffectiveIntrinsicDensity" -dataset RECOMBINATIONS] 

set OPT [expr [lindex $OPTgen end]*$volumefactor] 

set RAD [expr [lindex $RADrec end]*$volumefactor] 

set AUG [expr [lindex $AUGrec end]*$volumefactor] 

set SRH [expr [lindex $SRHrec end]*$volumefactor] 

set SUR [expr [lindex $SURrec end]*$volumefactor] 

set hD [expr [lindex $Hd end]*$volumefactor] 

set eD [expr [lindex $Ed end]*$volumefactor] 
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set ni [expr [lindex $Ni end]*$volumefactor] 

set Voc [expr 0.02585*log(($hD*$eD)/($ni*$ni))] 

set Jsc [expr $OPT*(1.6e-19)*$Thickness*1000] 

set voc [expr $Voc*(1.6e-19)/(300*(1.38064852e-23))] 

set FF [expr ($voc - log($voc + 0.72))/($voc + 1)] 

set Eff [expr $Voc*$Jsc*$FF] 

puts "DOE: OPT [format %.2e $OPT]" 

puts "DOE: RAD [format %.2e $RAD]" 

puts "DOE: AUG [format %.2e $AUG]" 

puts "DOE: SRH [format %.2e $SRH]" 

puts "DOE: SUR [format %.2e $SUR]" 

puts "DOE: hD [format %.2e $hD]" 

puts "DOE: eD [format %.2e $eD]" 

puts "DOE: ni [format %.2e $ni]" 

puts "DOE: Voc [format %.2f $Voc]" 

puts "DOE: Jsc [format %.2f $Jsc]" 

puts "DOE: FF [format %.2f $FF]" 

puts "DOE: Eff [format %.2f $Eff]" 

exit 
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Appendix B                                                         

Fabrication Conditions for Si Microcones 

The etching parameters are subject to vary a little between etching machines. The conditions given 

here are the ones used at the time of writing this thesis. 

Following is the recipe on Oxford instruments plasmalab ICP/RIE 380 system 

Step 1 

CCP (W) ICP (W) SF6 (sccm) O2 (sccm) T (0C) P (mTorr) Time (min) 

7 900 70 6 -120 10 30 

 

Step 2 

CCP (W) ICP (W) SF6 (sccm) O2 (sccm) T (0C) P (mTorr) Time (min) 

7 900 70 6.5 -120 10 30 

 

Step 3 

CCP (W) ICP (W) SF6 (sccm) O2 (sccm) T (0C) P (mTorr) Time (min) 

7 900 70 7 -120 10 30 

 

Following is the recipe on Oxford instruments plasmalab DRIE system 

Step 1 

CCP (W) ICP (W) SF6 (sccm) O2 (sccm) T (0C) P (mTorr) Time (min) 

3 900 70 6 -130 10 30 
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Step 2 

CCP (W) ICP (W) SF6 (sccm) O2 (sccm) T (0C) P (mTorr) Time (min) 

3 900 70 7 -130 10 30 

 

Step 3 

CCP (W) ICP (W) SF6 (sccm) O2 (sccm) T (0C) P (mTorr) Time (min) 

3 900 70 8 -130 10 30 

 

 

Note on etching: If the voltage corresponding to CCP power is ~ 26 V the oxygen must increase in 

steps of 1 sccm in each step, and if it is ~ 19 V the oxygen must increase in steps of 0.5 sccm to 

maintain the conical shape utilized in this thesis. It is recommended that a 10 min oxygen plasma 

clean is done prior to cry etching, followed by a 30 min chamber conditioning run using the 

conditions of step 1 before loading the Si sample for cone etching using the 3 steps described here, 
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Appendix C                                          

Fabrication Conditions for TiO2 Nanocones  

Given the limited amount of information regarding dry etching of TiO2, multiple recipes were 

attempted before settling on the recipe utilized in this thesis.  

Table C 1:  Etching perfomed at 00C, 7 mTorr, and for 5 mins with a 150 nm Cr mask 

Sample SF6 Ar  C4F8 CH4 

1 15 0 40 0 
2 15 0 40 15 
3 15 0 40 30 
4 15 50 40 30 
5 15 50 20 15 
6 15 50 40 0 

*Flow rates in SCCM    

Figure C 1: SEM images of etchied TiO2 nanocones using recipes 1-6 
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Final Recipe for TiO2 cone etching is given below. The Cr mask used is ~ 200 nm thick to make it 

last longer to obtain taller cones. Increasing SF6 flow increases the cone taper.  

CCP (W) ICP (W) SF6 (sccm) C4F8 (sccm) T (0C) P (mTorr) Time (min) 

150 2500 23.5 40 0 7 15 

 

 

Figure C 2: SEM image of one of the samples with smooth uniform cones etched using the 

optimized recipe. 
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Appendix D                                          

Fabrication Conditions for Triangular Si Groves 

Following is the recipe for etching of 1:3 aspect ratio triangular groves using Oxford instruments 

plasmalab ICP/RIE 380 system.  

 

 

 

Following recipe is for etching 1:2 aspect ratio triangular groves using Oxford instruments plasmalab 

ICP/RIE 380 system 

CCP (W) ICP (W) SF6 (sccm) O2 (sccm) T (0C) P (mTorr) 

7 900 70 12 -80 10 

CCP (W) ICP (W) SF6 (sccm) O2 (sccm) T (0C) P (mTorr) 

7 900 70 15 -80 10 

Figure D 1: 1:3 aspect ratio triangular groves etched for ~ 14 mins 
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Figure D 2: 1:2 aspect ratio triangular groves etched for ~ 12 mins 
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Appendix E                                           

Fabrication Procedure for Metal Cones 

Fabrication of metal cones was attempted for fabricating 3-dimensional conical metal catalysts 

similar to a previous study that utilized evaporation [243]. This was explored as an alternative for 

effectively transparent catalyst. Schematic in Figure E1 shows the fabrication steps. Figure E2 shows 

the SEM image of as prepared Cu cones. The cones didn’t stick to the underlying Si surface and 

therefore can be seen to be scattered around. 

 

 

Figure E 1: Fabrication procedure for metal nanocones via evaporation 

Figure E 2: (a), (b), and (c) show the SEM images of Cu nanocones fabricated using electron 

beam evaporation. They have different heights due to different angles at which evaporation is 

done, which lead to closing of the hole in PMMA differ leading to different lengths. 
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