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ABSTRACT

In general relativity, black hole is the simplest macroscopic object in the universe:
any black hole can be completely described by its mass, charge and angular mo-
mentum. However, such a simple picture might be changed if the gravitational
field equations are modified or quantum effects are taken into consideration. These
additional hairs of black hole, if exist, may provide valuable information to reveal
the deepest mystery of the universe: quantum theory of gravity.

In this thesis, we try to relate the hypothetical extra hairs of black hole with the ob-
servational evidence as gravitational waves – another prediction of general relativity
and are recently detected. In Chapter I, we provide a pedagogical introduction to
the black hole hairs introduced by modified gravity and quantummechanics, and lay
out a mathematical framework to describe the gravitational wave emission with the
existence of near-horizon quantum hair. In Chapter II we show that in scalar-tensor
theory of gravity, the formation process of a black hole from gravitational collapse
is accompanied with the emission of scalar hair. This mechanism gives rise to a
scalar type memory effect of gravitational wave, which does not exist in general
relativity. This phenomenon can further be used to study the parameter space of
the scalar-tensor theory. In Chapter III, we find the scalar gravitational memory
effect from stellar collapses provide the strongest sources for the stochastic gravita-
tional wave background with scalar polarization in Brans-Dicke theory. The energy
density spectrum for this background is provided and its model dependencies are
studied. In Chapter IV, we provide a Green’s function method to study the echoes,
which are the gravitational waves reflected by the quantum hair near the event hori-
zon of a black hole. In Chapter V, we build phenomenological models to describe
the near-horizon quantum hair and predict its implication to the binary black hole
stochastic gravitational wave background. Our study indicates that the existence of
the quantum hair will significantly increases such a background and pins down the
most relevant model parameter to be the area under the effective potential. Further,
we also demonstrate that the result is rather robust against the uncertainties about the
nature of the near-horizon quantum hair. In the end, a field theory based treatment
to the gravitational waves in general relativity is provided as the appendix.
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1

C h a p t e r 1

INTRODUCTION

Four fundamental interactions exist in the universe: the electromagnetic interaction,
which governs everything about electricity, magnetism and light; the weak interac-
tion, which is related to the conversion of a neutron into a proton through beta decay;
the strong interaction, without which the atomic nuclei cannot be tied together; and
gravitational interaction, which governs the falling of an apple on the earth as well
as the motion of stars in the sky.

Among the four interactions, only electromagnetic and gravitational interactions can
propagate on a cosmological scale. Until very recently, almost everything we know
about the universe is from the information conveyed by the electromagnetic wave.

In the year of 1610, Galileo Galilei pointed his self-made telescope to Jupiter and
discovered four moons of this planet. 400 years later, Galileo’s simple telescope
has evolved into giant telescopes, observatories and satellites, receiving signals
across the whole spectrum, from radio to gamma ray. From these signals, we have
establishedmodern cosmology and astronomy. In themeantime, we should be aware
that all of this information is emitted from electromagnetic interaction. What is our
next step?

On February 11, 2016 the LIGO and Virgo collaboration announced the first direct
detection of gravitational-wave from the merger of binary black hole, which marks
the beginning of gravitational-wave astronomy and opens up a new window to the
Universe. Since then, moreGWevents both from themerger of binary black hole and
binary neutron star are detected by the Advanced LIGO/Virgo network (Table 1.1).
Besides these resolvable individual GW sources we have discovered, a stochastic
gravitational-wave background, which arises from the population of unresolved GW
events at large distance, is anticipated to be detected in the upcoming years. These
gravitational-wave events observed so far and will be detected in the future, not only
prove the great success of Einstein’s general theory of relativity, but also provide us
a test field for other topics of fundamental physics, such as modified gravity theories
as well as quantum properties of black holes.

In general relativity, the gravitational effect is described by the curve of spacetime



2

GW event Source Distance Chirp Mass Energy Radiated
GW150914 BH-BH 440 Mpc 28.2 M� 3.0 M�
LVT151012 BH-BH 1000 Mpc 15.1 M� 1.5 M�
GW151226 BH-BH 440 Mpc 8.9 M� 1.0 M�
GW170104 BH-BH 880 Mpc 21.1 M� 2.0 M�
GW170608 BH-BH 340 Mpc 7.9 M� 0.85 M�
GW170817 NS-NS 40 Mpc 1.12 M� 0.03 M�

Table 1.1: Observed gravitational-wave events

Figure 1.1: Geometry of Minkovski spacetime

geometry, which is characterized by the infinitesimal line element:

ds2 = gµνdxµdxν . (1.1)

The metric tensor gµν is related to the distribution of matter via Einstein field
equation:

Rµν −
1
2
gµνR = 8πG Tµν , (1.2)

where Rµν is the Ricci tensor associated with the metric gµν and Tµν is the stress-
energy tensor of matter. The physical essence of Einstein field equation is sum-
marized as "Spacetime tells matter how to move, while matter tells spacetime how
to curve." [J.A.Wheeler]. In the vacuum where there is no matter to curve the
spacetime, one solution to the Einstein field equation is the Minkovski spacetime
(Fig. 1.1):

gµνdxµdxν = −dt2 + dx2 + dy2 + dz2 (1.3)
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ℎ",× = 0

ℎ" ≠ 0

Figure 1.2: Upper: The geometry of spacetime with no gravitational-wave. Lower:
The geometry of spacetime when gravitational-wave is passing by with the + polar-
ization mode.
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This flat spacetime is the platform for special relativity.

Under the weak field approximation (and after properly choosing the gauge), the
Einstein’s field equation has the form of a wave equation for the perturbation of the
metric. It suggests that the change of gravity caused by the motion of matter will
propagate as a wave in the speed of light, as opposed to the picture of Newton’s
gravity in which the impact to the distant observer is instantaneous. Such a ripple
of spacetime is called gravitational wave, whose existence was first predicted by
Einstein in 1916. Imagine a gravitational wave propagating along the z-axis, the
spacetime geometry is described by

gµνdxµdxν = −dt2 + (1 + h+) dx2 + (1 + h×) dy2 + dz2 . (1.4)

When a gravitational wave passes by, it stretch and squeeze the spacetime in the
plane perpendicular to the wave propagating direction, as sketched in Fig. 1.2. In the
equation above, the two wave functions correspond to the two polarization modes:

h+ = h+(t − z) : + mode

h× = h×(t − z) : × mode
(1.5)

For the plus mode, if a wave is propagating along z axis it stretches and squeezes
the spacetime along x and y axis alternatively. The other mode (cross mode) is a
45 degree rotation of the plus mode. The vibrations of these two modes are shown
in Fig. 1.3. Any tensor polarizations can be expanded as an overlap of these two
modes.

Next consider the gravitational field caused by an object with spherical symmetry.
It can be proved that such a spacetime is described by the Schwarzschild geometry
(Fig. 1.4):

ds2 = −

(
1 −

2M
r

)
dt2 +

1
1 − 2M

r

dr2 + r2dθ2 + r2 sin2 θdφ2 (1.6)

Suppose an observer and a source of light located at r = ro and r = re respectively,
the time (as measured from null infinity) between a photon is emitted from the
source and detected by the observer is

∆t =
∫ ro

re

1
1 − 2M

r

dr = ro − re + ln
(
ro − 2M
re − 2M

)
. (1.7)

We find ∆t → ∞, as re → 2M . This result indicates that the signal emitted at the
surface r = 2M will never reach to the outside observer. Such a surface separate
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• +	mode • ×mode

Figure 1.3: The two polarization modes of the gravitational wave which propagates
along the z-axis.

Figure 1.4: Geometry of Schwarzschild spacetime

the interior spacetime with the outside universe, as no information can escape from
it. Such a spacetime region is called a Black Hole and its boundary is called Event
Horizon.

In general relativity, these black holes are the simplest macroscopic objects in the
universe. From the no-hair theorem, any black hole can be described by three
observables: mass M , angular momentum J and charge Q. All types of black holes
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are summarized in Table 1.2.

BH Observables Solution to the Einstein equation
M , 0 Schwarzschild solution

M, Q , 0 Reissner-Nordstrom solution
M, J , 0 Kerr solution

M, J, Q , 0 Kerr-Newman solution

Table 1.2: Zoology of black holes

Two assumptions of the no-hair theorem are I. Gravity is governed by the Einstein
equation, and II. Both the spacetime and the matter are treated classically. What if
one of these two assumptions does not hold? Will it bring forth new observables of
black hole? Will it cause other theoretical problems? These questions are partially
answered in the following sections.

1.1 Black Hole’s Hair in Modified Gravity
In the year of 1961, Brans and Dicke put forward a new set of equations to describe
gravity which reconciles both the relativity principle as well as theMach’s principle.
In this equation, the gravitation is not only described by the metric tensor gµν, but
also by a univeral scalar field φ. The Brans-Dicke field equation reads:

φ
(
Rµν −

1
2gµνR

)
−

(
φ;µν − gµνφ

ρ
;ρ

)
= 8πTµν + ω

φ

(
φ,µφ,ν −

1
2gµνφ,ρφ

ρ
,

)
(3 + 2ω)φ µ

;µ = 8πT µ
µ − ω,φφ,µφ

µ
,

(1.8)

Now consider a spherical and homogeneous Newtonian star (p � ρ) with mass M

and radius R. The source term in the second Brans-Dicke field equation is

T µ
µ = −

3M
4πR3 (1.9)

In the Brans-Dicke limit (ω = ωBD = Const.). Under the boundary conditions

φ(r →∞) = φ0, φ(r → 0) < ∞

φ(R+) = φ(R−), φ′(R+) = φ′(R−) (1.10)

where φ0 is the asymptotic value of the universal scalar field at null infinity, the
external solution for the scalar field is

φ(r > R) =
2

2ω + 3
M
r
. (1.11)
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This result indicates that every star in the universe is a source to the universal scalar
field. A simple estimation shows on large scale

φ(r →∞) '
c
ω

∫ rH
0 4πr2ρdr

rH
'

c′

ω

1
G
, (1.12)

where ρ = ρc = H2
0/(8πG) is the critical density of the universe, rH = 1/H0

is the Hubble distance. This equation relates the Gravitational constant with the
asymptotic value of the scalar field at the cosmological scale, which is determined
by the total mass distribution in the universe. This is a reemergence of Mach’s
principle.

Apparently such a result does not apply to black holes, whose stress-energy tensor
is zero outside the event horizon. Then what is the contribution to the universal
scalar field from black holes? If it is non-zero, does it indicate besides M , J, and Q

black holes also have a scalar hair?

A negative answer to this question is found in 1971 by S. Hawking, by proving the
no scalar hair theorem:

The stationary black holes in Brans-Dicke theory is exactly described by the solution
to Einstein’s field equation. In other words, black hole is not a source to the scalar
field.

A proof of this theorem is as follows. First consider a conformal transformation of
the Brans-Dicke field equation by introducing

g∗µν = G0φ gµν , (1.13)

where G0 is a constant to balance the dimension. In this conformal frame, the
Brans-Dicke field equation without source converts to

R∗µν −
1
2g
∗
µνR∗ = 2ω+3

16πG0φ2

(
∇∗µφ∇

∗
νφ −

1
2g
∗
µν∇
∗
ρφ∇

ρ
∗φ

)
∇∗µ∇

µ
∗ ln φ = 0

, (1.14)

where R∗µν and ∇∗µ are correspondent to g∗µν. The spacetime outside a axially
symmetric stationary black hole contains two Killing vectors: ξµ, corresponding to
time translation; and ζ µ, corresponding to rotation. Due to symmetry, the scalar
field φ must be constant along the two Killing vectors, which gives

ξµ∇∗µ ln(φ/φ0) = 0 , ζ µ∇∗µ ln(φ/φ0) = 0 . (1.15)
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The first equation further indicates that the vector ∇∗µ ln (φ/φ0) is space-like and
hence

∇∗µ ln(φ/φ0) ∇
µ
∗ ln(φ/φ0) ≥ 0 . (1.16)

As shown in Fig. 1.5, volume V is the spacetime region bounded by two Cauchy
hypersurfaces, a portion of black hole event horizon and a time-like 3-surface at
infinity. Consider an integral over V :∫

V
d4x
√
−g∗

[
∇∗µ ln(φ/φ0) ∇

µ
∗ ln(φ/φ0)

]
=

∫
∂V

d3x
√
γ∗

[
ln(φ/φ0) ∇

∗
µ ln(φ/φ0)

]
nµ −

∫
V

d4x
√
−g∗

[
∇∗µ∇

µ
∗ ln(φ/φ0)

]
.

(1.17)

Here we used the Stokes’s theorem. The second term vanishes as a result of the
Brans-Dicke field equation in conformal frame. Now let us consider the integral on
the boundary:∫

∂V
d3x
√
γ∗

[
ln(φ/φ0) ∇

∗
µ ln(φ/φ0)

]
nµ

=

∫
S1

d3x
√
γ∗

[
ln(φ/φ0) ∇

∗
µ ln(φ/φ0)

]
nµ1 +

∫
S2

d3x
√
γ∗

[
ln(φ/φ0) ∇

∗
µ ln(φ/φ0)

]
nµ2

+

∫
I

d3x
√
γ∗

[
ln(φ/φ0) ∇

∗
µ ln(φ/φ0)

]
nµ +

∫
H

d3x
√
γ∗

[
ln(φ/φ0) ∇

∗
µ ln(φ/φ0)

]
nµ

(1.18)

The first two integrals are canceled out since nµ1 = −nµ2 . The third integral vanishes
because at infinity φ = φ0. Since the normal vector for the event horizon is a
combination of Killing vectors ξµ and ζ µ, from Eq. (1.15) the last integral is also
zero.

Now all the surface integrals vanish, the volume integral in Eq. (1.17) is zero.
Together with the non-negative condition Eq. (1.16) and at infinity φ = φ0, we have

∂µ ln(φ/φ0) = 0 ⇒ φ = φ0 , ∀x ∈ V . (1.19)

When the scalar field is a constant, the Brans-Dicke field equation recovers to the
Einstein field equation. Consequently, the black hole solutions to Einstein field
equation also describe the black holes in Brans-Dicke theory.

This no scalar hair property of black holes raises a question: according to the
field equation the energy contained in the scalar field is conserved in the universe,
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Figure 1.5: Spacetime of an axially symmetric stationary black hole.

but such energy is lost when a black hole forms. The only possibility is that the
scalar energy is radiated away during the black hole formation from gravitational
collapse. Is such a phenomenon observable? What is the mechanism of scalar wave
emission? Can we use it to study modified gravity theory or to test the no scalar
hair theorem? How can it relate to the stochastic gravitational wave background
with scalar polarization? Does the scalar GW background produced by the same
source as the tensor background? The answers to these questions are the main topic
of Chapter II and Chapter III.

1.2 Black Hole’s Hair in Quantum Mechanics
Imagine an observer located on a particle entering a black hole from free fall, is
there anything different when it passes through the event horizon? The answer is no
in classical general relativity, as required by the equivalence principle.

Will such a picture be changed after quantummechanics is taken into consideration?
To answer this question, a quantum theory of gravity is required. Although until
todaywe are still looking for a complete theory of quantumgravity, some phenomena
have been discovered by considering the quantum field in curved spacetime. In this
framework, the matter is quantized while the spacetime is described classically. Just
like fields have no absolute identification in special relativity (for example, electric
field and magnetic field are transforming into each other as observed from different
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reference frames), there is no unique definition of vacuum in curved spacetime.

This result changes the view from the falling observer, who now will see something
different: particles are created near the event horizon, even if he is in the vacuum
as observed from an inertial frame. Such a phenomenon was first discovered by
S.Hawking in 1975 and is later called the Hawking Radiation:

As a quantum effect near the event horizon, black holes are creating and emitting
particles as a hot body with a temperature proportional to the inverse of the surface
gravity.

A simple derivation of this phenomenon is as follows. Consider a black hole formed
fromgravitational collapse. For a spherical collapse, the exterior spacetime is always
described by the Schwarzschild solution as a proposition of Birkhoff’s theorem.
In Schwarzschild spacetime, the future and past null geodesics are described by
u = Const . and v = Const . respectively, with

u = t − r∗

v = t + r∗
,

where the tortoise coordinate is used:

r∗ = t + 2M ln
( r
2M
− 1

)
. (1.20)

As a result, an event on the hypersurface of future null infinity (I+) or the past null
infinity (I−) is described by coordinate (u, θ, ϕ) or (v, θ, ϕ) respectively.

Next consider a mass less Klein-Gordon field in Schwarzschild spacetime:

� Φ =
√
−g∂µ

[√
−ggµν∂νΦ

]
= 0 . (1.21)

After introducing the mode decomposition

Φ(t, r, θ, ϕ) =
1
r
φ(t, r)Ylm(θ, ϕ), (1.22)

where Ylm are the spherical harmonics. Then the radial function is governed by the
equation

∂2φ

∂t2 −
∂2φ

∂r2
∗

+ Vl(r)φ = 0 , (1.23)

with the effective potential

Vl(r) =
(
1 −

2M
r

) [
l(l + 1)

r2 +
2M
r3

]
, (1.24)
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notice at infinity Vl = 0.

The field φ can be described by the information on the Cauchy surfaces I− or I+∪H

(event horizon). Hence it can be quantized as

φ =
∑

i

( fi ai + f ∗i a†i )

=
∑

i

(pi bi + p∗i b†i + qi ci + q∗i c†i ) , (1.25)

where fi, pi and qi are wave functions satisfying the wave equation Eq. (1.23), and
(ai, a†i ), (bi, b†i ), (ci, c†i ) are the creation annihilation operators for a particle with
momentum ®ki on I−, I+ and H respectively. The wave functions and operators on
the past and future null infinity are related via Bogoliubov transform:

pi =
∑

j[αi j f j + βi j f ∗j ]

bi =
∑

j[α
∗
i ja j − β

∗
i ja
†

j ]
(1.26)

The completeness relation for the coefficients αi j and βi j resulted from the com-
mutation relation of bi and b†i will no longer hold in this case. This is because for
wave with finite energy, only a portion can penetrate through the effective potential
caused by the Schwarzschild spacetime. Now the complete relation changes to∑

j

[
|αi j |

2 − |βi j |
2] = |Tωi |

2 . (1.27)

HereT is the transmissivity of Schwarzschild potential, whichwill be further studied
in the following chapters.

Applying the particle number operator of vacuum I+ onto the vacuum state of I−,
from the Bogoliubov transform we have

〈0I− |b
†

i bi |0I−〉 =
∑

j

|βi j |
2 . (1.28)

This result indicates that the initial vacuum state will be filled with particles as
observed from I+. To find the Bogoliubov coefficients we start from the in-going
and out-going wave functions at the past and future infinities:

fω(v) ∼ eiωv , u→ −∞ and pω(u) ∼ eiωu , v → +∞ . (1.29)

As we know fω is complete on I−, to compare the two wave functions in the same
spacetime region we need to push pω back to I−. Consider a null geodesics starting
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from v at I− and ending with u(v) at I+. In Kruskal coordinates:
V =

√ r
2M − 1e

r+t
4M

U = −
√ r

2M − 1e
r−t
4M

, (1.30)

let V0 = v0 be the critical coordinate at I− that the geodesics marginally enters
the event horizon, which relates to the coordinate U0 = 0 at the future infinity.
Apparently all geodesics with v ≥ v0 will be captured by the event horizon. On the
other hand the geodesics with V1 = v < v0 will escape to the future null geodesics,
and the corresponding Kruskal coordinate on I+ is U1 = −Ce(r−t)/4M = −Ceu/4M .
Since the separation between two null geodesics in Kruskal coordinate remains a
constant, as a result

U1 −U0 = V1 − V0 ⇒ u =

−1
κ ln

( v0−v
C

)
for v < v0

0 for v ≥ v0
. (1.31)

Here, κ = 1/4M is the surface gravity of Schwarzschild black hole. Applying this
result to the wave functions leads to

fω(v) = eiωv

pω(v) = Ke−iωκ ln v0−v
C Θ(v0 − v)

, (1.32)

on the past null infinity I+. Notice the constant is chosen so that fω satisfies the
normal relation

∫
fω f ′ω dv = δωω′. Accordingly, the Bogoliubov coefficients

αi j =

∫ +∞

−∞

dv pi f ∗j =
∫ v0

−∞

dv Ke−iωiκ ln v0−v
C −iωjv

= Ke−iωjv0

∫ ∞

0
dz e−iωiκ ln z

C+iωj z

βi j =

∫ +∞

−∞

dv pi f j =

∫ v0

−∞

dv Ke−iωiκ ln v0−v
C +iωjv

= Ke+iωjv0

∫ ∞

0
dz e−iωiκ ln z

C−iωj z (1.33)

To compute the integral we consider the integration contour in Fig. 1.6, from the
analyticity inside the contour we have∮

C
dz e−iωiκ ln z

C+iωj z = 0 (1.34)

Since on the arc of the contour the integrand is zero for Im(z) → ∞, we have∫ +∞

0
dz e−iωiκ ln z

C+iωj z

= −

∫ 0

−∞

dz e−iωiκ ln ( zC+iε)+iωj z = −

∫ +∞

0
dz e−iωiκ ln (− z

C+iε)−iωj z . (1.35)
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Figure 1.6: The integration contour C in complex z plane.

Notice that ln(−z/C + iε) = ln(z/C) + iπ, then the coefficients can be calculated as

αi j = K Ciωiκ e−iωjv0(−iω j)
iωiκ −1

Γ

(
1 − i

ωi

κ

)
, (1.36)

βi j = −e2iωjv0 e−π
ωi
κ αi j . (1.37)

Combining Eq. (1.27), (1.28) and (1.37), the expected number of particle with
energy ωi is

ni =
∑

j

|βi j |
2 =

|Tωi |
2

e
2πωi
κ − 1

(1.38)

This is the Hawking’s formula, which describes the distribution of particles created
by black holes as a hot body with a temperature :

T =
κ

2π
. (1.39)

One direct implication of this result is that such temperature reveals the entropy of
a black hole. Start from the formula of the surface area of event horizon:

A =
∫

dθdφ
√
γ = 4πr2

s , (1.40)

where γi j is the induced metric on the event horizon: ds2 = r2
s dθ2 + r2

s sin2 θdφ2 .
If we take derivatives for both sides of equation A = 16πM2, we find

dM =
κ

2π
d(A/4) . (1.41)
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Relating it with the first law of thermodynamics: dE = TdS gives us the Bekenstein-
Hawking entropy:

S =
1
4

A (1.42)

In classical GR, the surface area of a black hole will never decrease: ∆A ≥ 0. This
coincides with the second law of thermodynamics: ∆S ≥ 0. However, quantum
mechanics can decrease the mass of a black hole due to Hawking radiation. From
the Stefan-Boltzmann law, the emitted power is given by

P = A · J = A · σT4 ⇒
dM
dt
= −P = −

σ

1024π3 M−2 , (1.43)

where σ is the Stefan-Boltzmann constant. This equation indicates the black hole
mass is changing with time as

M(t) = M0

[
1 −

3σt
1024π3M3

0

] 1
3

, (1.44)

where M0 is the initial mass of the black hole. Apparently, all the mass will be
evaporated away within a finite time t = 1024π3M3

0 /3σ.

Does the evaporation send out additional information besides the macroscopic quan-
tities such as M , J,Q? The answer is negative, from the fact that the only information
contained in the black-body radiation spectrum is the temperature. However, the
temperature is determined by the surface gravity, which is solely dependent on the
three hairs of black hole. This result presents a quantum version of no-hair theorem.

However, such an argument will lead to paradox if one considers the information
loss during the black hole formation from gravitational collapse. To elucidate this,
let’s consider the Hilbert space at the past null infinity I−, the future null infinity I+,
the horizon H and there related bases states:

|A〉 ∈ HI+ , |B〉 ∈ HH, |C〉 ∈ HI− . (1.45)

The initial and final state are expanded into wave functions:

|ΨI−〉 =
∑

C

ξC |C〉 , 〈ΦI+∪H | =
∑

A

∑
B

χAζB〈A|〈B | . (1.46)

Suppose the state is evolved with an S matrix: |ΨI+∪H〉 = Ŝ |ΨI−〉. The scattering
amplitude is then given by

A = 〈ΦI+∪H |ΨI+∪H〉 =
∑

A

∑
B

∑
C

χAζBξCSABC . (1.47)
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However, as we will see such a scattering amplitude is not observable since the
horizon H acts as a hidden surface. The initial and final system can be described by
a density operators:

ρ̂I− = |ΨI−〉〈ΨI− |, ρ̂I+∪H = |ΨI+∪H〉〈ΨI+∪H | . (1.48)

However, we can only make observation on HI− and HI+ but not on HH , which
means the final density operator is given by the partial trace:

ρ̂I+ = trH ρ̂I+∪H =
∑

B

〈B |ΨI+∪H〉〈ΨI+∪H |B〉 , (1.49)

with the density matrix element given by

ρI+
AA′ =

∑
B

〈A|〈B |ΨI+∪H〉〈ΨI+∪H |B〉|A′〉 =
∑

B

∑
C

∑
C ′

SABC S̄A′BC ′ξC ξ̄C ′ . (1.50)

This is the density matrix for a mixed state. Given the initial system is described by
pure state, it indicates that a portion of information is lost to the hidden surface.

Where does this part of information go? Since Hawking radiation does not take
away additional information, onemay conjecture that the information is stored inside
the black hole, especially at the singularity. However, a direct contradiction to this
hypothesis is from the proposition discussed above: the black hole will evaporate
completely in a finite time, nothing will be left behind including the singularity.
Now that the information is stored neither inside nor outside the black hole, this
leads ’t Hooft conjecture that the holography principle: the information about the
microscopic states is completely written on the boundary, i.e. the event horizon of
a black hole [G.’t Hooft 1993]. This hypothesis also aligns with the fact that the
entropy of a black hole is proportional to its surface area instead of the volume. Now
consider the Bekenstein-Hawking entropy and relate it with the Boltzmann’s entropy
formula: S = k log W , (with W representing the total number of microscopic states
of the system) which gives

W = e
c3A
4G~ = 2

A
A0 . (1.51)

This equation suggests that each unit area A0 contains one bit of information, with

A0 = 4 log 2 l2
p ' 2.773 l2

p , (1.52)

where l2
p represents the Planck area.

How the information is stored on the boundary is still an open question. However,
this picture leads one to question the equivalence principle at the event horizon: when
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an observer crosses enters a black hole from free fall, he may observe something
nontrivial at the boundary. As a result, it is speculated that quantum gravity effects
may give rise to spacetime structures at Planck scale near the event horizon of a
black hole.

How is the quantum structure, if it exists, related to observational evidence? Can
it reflect gravitational waves which propagate towards the event horizon to the
null infinity? Can we build a mathematical model to describe this phenomenon?
What is its implication to other observables such as stochastic gravitational wave
background? The answers to these questions are the main topics of Chapter IV and
Chapter V. Next section will provide a framework for these topics.

1.3 Quantum Hair Near the Event Horizon and Gravitational Wave Echoes
in the Black Hole Perturbation Theory

Black Hole Perturbation Theory provides a framework to study the gravitational-
wave emitted from a test particle plunging into a black hole along a certain trajectory.
This approach can also be applied to binary systems from the Effective One-Body
(EOB) formalism.

The master equation for the perturbations of the Schwarzschild geometry is given
by the generalized Regge-Wheeler (Aka. Sasaki-Nakamura) equation [Sasaki and
Nakamura 1981]: [

∂2
r∗ + ω

2 − Vl(r)
]

Xlm(ω, r∗) = Slm(ω, r) . (1.53)

In this equation, r∗ is the tortoise radius, which is related to the Schwarzschild radius
via dr/dr∗ = 1− 2M/r , with M denoting the mass of the Schwarzschild black hole.
The effective potential Vl is caused by the Schwarzschild geometry near the black
hole and is expressed as

Vl(r) =
(
1 −

2M
r

) (
l(l + 1)

r2 −
6M
r3

)
. (1.54)

The source term Slm is determined by the trajectory of the plunging particle. If the
particle is moving in the θ = π/2 plane, the trajectory is described by its coordinates
as functions of the radius: t = T(r), r = R(r), θ = π/2, ϕ = Φ(r). The source term
is related to a new function Wlm via

Slm(ω, r) = e−iωr∗ r
2 − r
r5 Wlm(ω, r) , (1.55)
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and the function Wlm = W1 +W2 +W3 is given by differential equations and the
corresponding asymptotic boundary conditions:


W1(r) = eiωV(r)h1(r)
d
dr

W2(r) = eiωV(r)h2(r)

d2

dr2 W3(r) = eiωV(r)h3(r)

,



W2(r →∞) = −
eiωV(r)

iωV ′(r)
h2(r)

W3(r →∞) =
eiωV(r)

(ωV ′(r))2
h3(r)

W′3(r →∞) = −
eiωV(r)

iωV ′(r)
h3(r)

. (1.56)

Here, V(r) = T(r) + r∗(r) and the h functions are given by

h1(r) =

√
λ(λ + 2)
2(iω)2 0 f (r) +

√
λ

iω
r2
−1 f (r) +

r4

2 −2 f (r)

h2(r) =

√
λ(λ + 2)
2(iω)2 0 f ′(r) +

√
λ

iω
[
r2
−1 f (r)

]′
+ r3

−2 f (r)

h3(r) =

√
λ(λ + 2)
2(iω)2

[ 0 f ′(r)V ′(r)]′ + r2
−2 f (r)

, (1.57)

where λ = (l − 1)(l + 2) and the s f functions are related to the spin-weighted
spherical harmonics sYlm via

0 f (r) = − ÛR(r) 0Ȳlm
[
π
2,Φ(r)

]
−1 f (r) = −i ÛΦ(r) −1Ȳlm

[
π
2,Φ(r)

]
−2 f (r) = −

[
ÛR(r)

]−1 [
−i ÛΦ(r)

]2
−2Ȳlm

[
π
2,Φ(r)

] , (1.58)

with Ûx denoting dx/dτ.

In the limit r →∞, the radial function Xlm is related to the observables such as the
waveform and the energy spectrum via

h+ + h× =
∑
lm

8
r −2YlmXlm(t) , (1.59)

dE
dω
=

∑
lm

16πω2 |Xlm(ω)|
2 , (1.60)

where the Fourier transform is given by

Xlm(t) =
∫ +∞

−∞

dω e−iωt Xlm(ω) . (1.61)

When the source term is available, the master equation can be easily solved by the
Green’s function method:

Xlm(ω, r∗) =
∫ +∞

−∞

dr′∗ G(0)(ω, r∗, r′∗)Slm(ω, r′∗) (1.62)
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Figure 1.7: The two homogeneous solutions X (0)in and X (0)out.

where G(0) is the Green’s function:[
∂2

r∗ + ω
2 − Vl(r)

]
G(0)(ω, r∗, r′∗) = δ(r∗ − r′∗) . (1.63)

The Green’s function can be constructed from two homogeneous functions with
boundary conditions:

X (0)in ∼ e−iωr∗ , r∗ → −∞ (1.64)

X (0)out ∼ e+iωr∗ , r∗ → +∞ (1.65)

These two homogeneous solutions are shown in Fig. 1.7. As can be easily proved,
the Green’s function can be constructed as
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G(0)(ω, r∗, r′∗) =
X (0)out(r∗)X

(0)
in (r

′
∗) Θ(r∗ − r′∗) + X (0)out(r

′
∗)X
(0)
in (r∗) Θ(r

′
∗ − r∗)

W[X (0)in , X (0)out]
. (1.66)

Here Θ(·) is the step function and the Wronskian

W[X (0)in , X (0)out] = X (0)in ∂r∗X
(0)
out − X (0)out∂r∗X

(0)
in (1.67)

is a constant due to the homogeneous master equation. With the help of the Green’s
function, the radial function approaching the null infinity (X0) and the event horizon
(XH) are then given by

X0
lm(ω, r∗ → +∞) = Z0

lm(ω) e+iωr∗

XH
lm(ω, r∗ → −∞) = ZH

lm(ω) e−iωr∗
, (1.68)

where Z0 and ZH are the corresponding amplitudes at the null infinity and the event
horizon respectively, with

Z0
lm(ω) =

1
W (0)

∫ +∞
−∞

dr′∗ X (0)in (ω, r
′
∗)Slm(ω, r′∗)

ZH
lm(ω) =

1
W (0)

∫ +∞
−∞

dr′∗ X (0)out(ω, r
′
∗)Slm(ω, r′∗)

. (1.69)

Now let’s apply this method to an example: consider a particle with mass µ is
radially plunging into a Schwarzschild black hole with mass M . The trajectory
(E = 1) is given by

T(r)
M
= −

4
3

( r
2M

) 3
2
− 4

( r
2M

) 1
2
+ 2 ln

([( r
2M

) 1
2
+ 1

] [( r
2M

) 1
2
+ 1

]−1)
. (1.70)

This trajectory is plotted in Fig. 1.8. Inserting the trajectory to Eq. 1.55 - 1.58 gives
the source term, then the radial function can be calculated from direct integration
from Eq. 1.68 - 1.69. The resulting waveform and energy spectrum for the 22 mode
are shown in Fig. 1.9 and Fig. 1.10. The energy spectrum is peaked at the leading
quasinormal mode of Schwarzschild spacetime: Re(ωQNM) = 0.37M−1.

The two amplitudes at event horizon and null infinity are compared in Fig. 1.11.
One can see that the horizon wave is several order of magnitudes larger than the
infinity wave at both low and high frequencies.

Now suppose a quantum structure exists near the event horizon. It can be modeled
as an additional effective potential (Planck potential) centered at rp = rs + ε , with
ε ∼ lp. As shown in Fig. 1.12, the existence of the Planck potential renders the
in-going homogeneous solution now following a reflective boundary condition:
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Figure 1.8: The trajectory of a particle radially plunges into a Schwarzschild black
hole. The inner black sphere with radius 2M represents the horizon of the black
hole. The outer translucent sphere with radius 3M represents the photon sphere,
which is the location of the peak of Regge-Wheeler potential.
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Figure 1.9: The l,m = 2, 2 waveform from a test particle radial plunging into a
Schwarzschild black hole.
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Figure 1.10: The l,m = 2, 2 energy spectrum from a test particle radial plunging
into a Schwarzschild black hole.
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particle radial plunging into a Schwarzschild black hole.
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X (R)in ∼ e−iωr∗ + Re+iωr∗ , r∗ → rp
∗ (1.71)

X (0)out ∼ e+iωr∗ , r∗ → +∞ . (1.72)

Here R is the reflectivity of the Planck potential. Formally, the reflectivity and
transmissivity of the Planck potential as well as the Regge-Wheeler potential can be
defined by: 

RBH =
B−(ω)
B+(ω)

TBH =
1

B+(ω)


RBH =

A+(ω)
A−(ω)

TBH =
1

A−(ω)

(1.73)

where the coefficients are from the homogeneous radial functions satisfying the
boundary conditions:

XRW ∼


e+iωr∗ , r∗ → +∞

B−(ω)e−iωr∗ + B+(ω)e+iωr∗ , r∗ → −∞
(1.74)

XBH ∼


e−iωr∗ , r∗ → −∞

A−(ω)e−iωr∗ + A+(ω)e+iωr∗ , r∗ → +∞
(1.75)

We have no prior knowledge about the properties of the Planck potential, except that
it must be localized at r∗ = rp

∗ . For example, one simple model would be the Dirac
δ-potential:

Vp = A δ[(r∗ − rp
∗ )/M] , (1.76)

where the parameter A is defined as the area under potential. The corresponding
reflectivity is then given by

R =
Ae−2iωrp∗

2iω − A
. (1.77)

Now with the help of the transmissivity and reflectivity, we can relate the reflective
Green’s function with the original one:

G(R)(ω, r∗, r′∗) = G(0)(ω, r∗, r′∗) +
TBHR

1 − RBHR

X (0)out(r∗)X
(0)
out(r

′
∗)

W (0)
. (1.78)

This result can be obtained from the relation between X (R) and X (0):

X (R)in = (1 − RBHR)X
(0)
in + TBHRX (0)out , X (R)out = X (0)out . (1.79)
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Figure 1.14: The l,m = 2, 2 waveform from a test particle radial plunging into a
Schwarzschild black hole with quantum structure.

Integrating the reflective Green’s function with the source term, the inhomogeneous
solution with reflectivity is expressed by

X R
lm = Z0

lm e+iωr∗ +
TBHR

1 − RBHR
ZH

lm e+iωr∗ (1.80)

The physical implication of this formula is clearer if one expands the second term
in terms of echoes:

TBHR

1 − RBHR
ZH

lm =

∞∑
n=1

Zn
lm , with Zn

lm = TBHR (RBHR)
n−1 ZH

lm , (1.81)

where Zn represents the amplitude of the n-th echo of gravitational-wave. As shown
in Fig. 1.13, the echoes are generated by the horizon wave reflecting between the
two potential barriers.

Using this approach, the waveform and energy spectrumwith the existence of Planck
potential are shown in Fig. 1.80 and 1.15, where A = 0.2 . The resonant peaks in
the energy spectrum with separation ∆ω = π/rp

∗ are translated to the echoes in the
time domain, with separation ∆t = 2rp

∗ .
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Figure 1.15: The l,m = 2, 2 energy spectrum from a test particle radial plunging
into a Schwarzschild black hole with quantum structure.
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Figure 1.16: The squared changing rate of the l,m = 2, 2 waveform from a test
particle radial plunging into a Schwarzschild black hole with quantum structure.
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Simple calculation shows that the energy contained in the echoes is even larger than
that contained in the main wave:

E R
tot/E

0
tot = 2.473 , with Etot =

∫ +∞

0
dω

dE
dω

(1.82)

This result can be explained by Fig. 1.11: since the energy goes into the horizon is
several times larger than that goes to the infinity, even if only a small fraction of the
horizon wave is reflected it may render greater energy in the echoes. An apparent
paradox appears in Fig. 1.80: the amplitude of the echo which contains more energy
than the main wave is even smaller. The explanation lies in the fact that the energy
of radiation is dependent on the changing rate instead of the amplitude of the wave.
As shown in Fig. 1.16, the changing rate of the 1st echo | ÛX1

lm(t)|
2 is indeed greater

than the main wave | ÛX0
lm(t)|

2.

This result suggests potential observable evidence for the existence of near-horizon
quantum structures of black holes. However, to find a reliable observable one needs
to consider the gravitational-wave emitted from the inspiral-merger-ringdown stages
of binary black holes, instead of an over simplified model as radial plunge which
describes the head-on collision of two black holes. A more detailed study along this
direction is presented in Chapter V.
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C h a p t e r 2

GRAVITATIONAL WAVE MEMORY: A NEW APPROACH TO
STUDY MODIFIED GRAVITY

It is well known that two types of gravitational wave memory exist in general
relativity (GR): the linear memory and the non-linear, or Christodoulou memory.
These effects, especially the latter, depend on the specific form of Einstein equation.
It can then be speculated that in modified theories of gravity, the memory can differ
from the GR prediction, and provides novel phenomena to study these theories. We
support this speculation by considering scalar-tensor theories, for which we find two
new types of memory: the T memory and the S memory, which contribute to the
tensor and scalar components of gravitational wave, respectively. In particular, the
former is caused by the burst of energy carried away by scalar radiation, while the
latter is intimately related to the no scalar hair property of black holes in scalar-
tensor gravity. We estimate the size of these two types of memory in gravitational
collapses, and formulate a detection strategy for the S memory, which can be singled
out from tensor gravitational waves. We show that (i) the S memory exists even
in spherical symmetry, and is observable under current model constraints, and (ii)
while the T memory is usually much weaker than the S memory, it can become
comparable in the case of spontaneous scalarization.

2.1 Introduction
The discovery of GW150914 [8] by advanced LIGO marks the beginning of a new
era in gravitational physics, and brings forth new opportunities to study properties
of black holes and to test theories of gravity. In this letter, we will show that both
objectives can be met using gravitational wave memory.

The gravitational wavememory is a permanent change in spacetime geometry, which
in general relativity (GR) is a jump in the transverse-traceless part of the spacetime
metric ∆hTTi j before and after a burst event [45]. Gravitational-wave memory was
first predicted in the 1970s as originating from an overall change in the source term
of the linearized Einstein equation [43, 44, 94, 133, 151]. This is now referred to
as the “linear memory”. Decades later, Christodoulou found that nonlinearities of
the Einstein’s equation lead to another memory [64], which is now referred to as
the nonlinear or Christodoulou memory. Shortly after, the nonlinear memory was
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interpreted as sourced by bursts of gravitational radiation [138, 147].

Since both memories depend on the specific form of the field equation, one can
speculate that other types of memory may arise in modified theories of gravity.
Modifications to GR seems inevitable if one considers general relativity as a low-
energy effective theory to a quantum theory of gravity, which adds new terms to the
Einstein-Hilbert action, such as higher-order curvature terms, or extra scalar degree
of freedom coupled to the tensor degrees of freedom [40, 65]. In this letter, we carry
out a proof-of-principle discussion for new memory effects in scalar-tensor theories
of gravity. Using a perturbative treatment, we will first show that a T memory
arises in the tensor components of gravitational wave due to energy carried away
by scalar radiation. We will then point out that the no scalar hair property of black
holes in scalar-tensor theories will give rise to the S memory, a scalar component of
gravitational wave. We will go on to estimate the size of both memories using the
simplest progenitormodel. Finally, wewill formulate a detection strategy that targets
the S memory, and consider detectability using the current and next generations of
ground-based gravitational wave detectors.

2.2 T memory and S memory in scalar-tensor gravity
Scalar-tensor theories are a simple but attractive class of modified theory, e.g., they
can be viewed as arising from dimensional compactification of higher dimensional
theories [81]. Let us consider a single scalar field φ and a φ-dependent coupling
constant ω(φ), with an action of

S =
∫

d4x
{
√
−g

(
φR −

ω(φ)

φ
∂µφ∂µφ

)
+ 16πLM

}
,

where R is the Ricci scalar associated with the spacetime metric gµν, LM is the
matter-sector Lagrangian which depends on gµν and matter fields. We start by
expanding the metric and the scalar field as

gµν = ηµν + hµν

φ = φ0 + δφ,
(2.1)

where ηµν = diag(−1, 1, 1, 1) and φ0 is the value of the scalar field at null infinity,
which is related to Newton’s constant via

Gφ0 = (2ω(φ0) + 4)/(2ω(φ0) + 3). (2.2)

The action is then expanded as:

S =
∫

d4x
{
L0

ST + L
1
ST + 16πL0

M + 16πL1
M + ...

}
.
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Here L0
M is the matter Lagranian in flat spacetime and

L0
ST =

φ0
2

HµνVµνρσHρσ −
α−2

0
2φ0

∂µδφ∂µδφ , (2.3)

L1
M =

1
2

HµνTµν −
1
2
δφ

φ0
T , (2.4)

L1
ST =

α−2
0

2φ0

(
Hµν −

1
2
ηµνH

)
∂µδφ∂νδφ

−
α−4

0 β0

2φ2
0
δφ ∂µδφ∂µδφ , (2.5)

where L0
ST and L1

M are kinetic and source terms of hµν and δφ respectively, while
we kept the leading coupling term between them and the leading self-interactive
term of δφ in L1

ST. Here all indices are raised and lowered by ηµν, and Tµν is
the stress-energy tensor of matter. In order to eliminate the kinetic term crossing
between hµν and δφ in the original expansion, we redefined the physical degrees of
freedom as

Hµν = hµν + ηµνφ−1
0 δφ. (2.6)

The operatorVµνρσ is given by

2Vµνρσ =(ηµρηνσ − ηµνηρσ)∂
2 + ηµν∂ρ∂σ + ηρσ∂µ∂ν

− ηµρ∂ν∂σ − ηνσ∂µ∂ρ. (2.7)

Up to leading order, we expand ω(φ) as ω(φ0) + ω
′(φ0)δφ and adopt the often used

parameters: 
α0 = (2ω(φ0) + 3)− 1

2

β0 = 2φ0ω
′(φ0)/(2ω(φ0) + 3)2.

(2.8)

Note that all terms in Eqs. (2.34)–(2.37) are invariant under infinitesimal diffeo-
morphisms: 

H′µν = Hµν − ∂µξν − ∂νξµ

δφ′ = δφ.
(2.9)

The first term of Eq. (2.34) gives the vacuum field equation for Hµν:

VµνρσHρσ = 0 , (2.10)
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the same as in GR. We can then similarly take the Lorenz gauge

∂µHµν − ∂νH/2 = 0 (2.11)

and use infinitesimal diffeomorphisms to gauge away redundant degrees of freedom.
In this way, only two physical degrees of freedom are left for Hµν. However,
gravitational-wave detectors are sensitive to hµν, which depends on both Hµν and
δφ. We can further gauge away remaining non-physical degrees of freedom which
leaves hi j = hTi j + hSi j , where

hTi j = h+e+i j + h×e×i j, hSi j = h◦e◦i j . (2.12)

Here the polarization tensors are defined by
e+i j = m̂im̂ j − n̂in̂ j

e×i j = m̂in̂ j + n̂im̂ j

e◦i j = m̂im̂ j + n̂in̂ j ,

(2.13)

where m̂, n̂ are spatial unit vectors orthogonal to the wave propagation direction Ω̂.
The amplitudes are related to the tensor Hµν and the scalar δφ via

h+ = ei j
+HTT

i j /2

h× = ei j
×HTT

i j /2

h◦ = −φ−1
0 δφ,

(2.14)

where HTT
i j denotes the transverse-traceless part of Hi j [109]. We shall refer to the

+, × modes as tensor (T) modes, and the ◦ mode as the scalar (S) mode.

The first term of Eq. (2.35) indicates that Hµν is sourced by the stress-energy tensor
Tµν. In addition, coupling between Hµν and the quadratic terms of δφ in Eq. (2.37)
provides another source for Hµν. In fact, we can define

8πTµν =
∂L1

ST
∂Hµν

=
ω(φ0)

φ0

(
∂µδφ∂νδφ −

ηµν

2
∂ρδφ∂ρδφ

)
(2.15)

as the effective stress-energy tensor of the scalar radiation. Just as the Christodoulou
memory is caused by the burst of gravitational radiation, we expect the burst of
scalar radiation would generate a new gravitational wave memory, which we call
the T memory in scalar-tensor gravity since it contributes to the tensor components
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of gravitational wave. Following a similar argument as [147], the T memory can be
expressed as

∆hTi j =
4
φ0r

∫
dΩ̂′

∫
dt r2T 0k

Ω̂
′k

(
Ω̂′iΩ̂′j

1 − Ω̂′ · Ω̂

)TT
. (2.16)

Here the spatial vector Ω̂ is the wave-propagation direction, Ω̂′ is a unit vector
integrated over all sky directions, and T 0k is the effective energy flux of scalar
radiation. Note that the T memory vanishes in spherical symmetry.

Let us turn now to the scalar degree of freedom. From the second term in Eq.(2.35),
the scalar field δφ is sourced by the trace of stress-energy tensor of matter. This
means any cold matter (p � ρ) can change the scalar field from its value at null
infinity φ0. We shall refer to the resulting φH inside and outside a star as its scalar
field profile. However, in 1972 Hawking discovered that black holes in Brans-Dicke
theory are the same as in GR: they have no scalar hair and φH = φ0 everywhere [87].
This was also shown to be true for general scalar tensor theories [135]. The no
scalar hair theorem has the following consequence: in any gravitational collapses
resulting in black holes, the scalar field outside the collapsing star changes from φH

to φ0, and (2.12) and (2.39) this causes a permanent change in the scalar component
hS

i j :

∆hSi j = φ
−1
0 (φH − φ0) e◦i j . (2.17)

We shall call this the S memory . Differently from other memories, the S memory:
(i) exists even in spherical symmetry, and (ii) has a reverse temporal feature — it
begins with a non-zero initial value, and drops down to zero.

2.3 Analytic results of a simplified model
To estimate the size of the S and T memories, let us analyze a spherically symmetric
and homogeneous Newtonian star (p � ρ), by solving the linearized field equation
for δφ obtained from Eqs. (2.34)–(2.37), which reads:

∂2δφ = 8π(α2
0 − φ

−1
0 β0δφ)T . (2.18)

Here the trace of stress-energy tensorT is−3M/4πR3 inside the star and 0 outside the
star, where M and R are the mass and radius of the star respectively. In this equation
we dropped the non-linear terms which are lowered by a factor of M(φ0R)−1. By

0Recently the extra memory effect due to the radiation of scalar energy is discussed in the
circumstance of compact binary systems in [96], which is equivalent to our T memory.
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taking the continuity condition for the scalar field profile and its first-order derivative
at the boundary (r = R), the asymptotic condition φH(∞) = φ0 at the null infinity
and requiring that there is no singularity inside the star, the stationary interior scalar
field profile δφH(r) = φH(r) − φ0 is given by

δφH(r < R) =
φ0α

2
0

|β0 |
×


1 − sinh κr

κr cosh κR β0 > 0
sin κr

κr cos κR − 1 β0 < 0
(2.19)

while the stationary external scalar field profile is

δφH(r > R) =
φ0α

2
0

|β0 |

R
r
×


1 − tanh κR

κR β0 > 0
tan κR
κR − 1 β0 < 0

(2.20)

where we defined

κ ≡ (6M |β0 |φ
−1
0 R−3)1/2 . (2.21)

Next we consider a progenitor with M = 10M� and R = 100M� as in [86]. We
plot the scalar field profile in Fig. 3.1 for different values of β0 while saturate α0

to the Cassini bound [40]. As we can see from the figure, the scalar field profile is
amplified for negative values of β0 and is depressed for positive β0. This feature
agrees with the results from numerical simulations [82, 86, 116].

From Eqs. (2.17) and (2.20), the S memory is given by

∆hSi j = N(β0, µ)[2α2
0 M/(φ0r)]e◦i j . (2.22)

Here µ ≡ M/φ0R and the β0-scale factor N(β0, µ) is defined as:

N(β0, µ) =
1

2|β0 |µ
·


1 − tanh

√
6µ|β0 |

√
6µ|β0 |

β0 > 0

tan
√

6µ|β0 |
√

6µ|β0 |
− 1 β0 < 0

.

For the Brans-Dicke [46] limit β0 = 0, N(0, µ) = 1. We also find that N(β0, µ) is
singular at

βcrit0 = −
π2

24µ
, (2.23)

which is −4.11 for the Newtonian star in Fig. 3.1. For β0 < βcrit0 , solving Eq. (2.18)
for a time dependent scalar field profile δφH(t, r) = f (r)e−iωt will give a quasinormal
mode ω1 with a negative imaginary part, which means the solution is not stable
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Figure 2.1: The stationary interior and exterior scalar field profile of an M = 10M�
and R = 100M� Newtonian star for different values of β0.

under small perturbations. Some negative values of β0 are also inconsistent with
the cosmological evolution of the scalar field and Solar System experiments, as
explained in Appendix A of [127]. Physically, this corresponds to the effect called
“spontaneous scalarization", which was first discovered by Damour and Esposito-
Farese [69]. For this reason, for β < βcrit0 , we should use the fully nonlinear
field equation instead of our leading-order approximation. Previous numerical
simulations [85, 117] indicate that scalarization changes the asymptotic value of the
scalar field profile from δφH ∼ α

2
0 M/r to δφH ∼ α0M/r . Thus for α0 ∼ 10−3, the

scalar field profile for a scalarized star is enhanced by about 3 orders of magnitude.

Another important parameter is the time τ it takes hSi j to change from ∆hSi j to zero.
In our case, τ is the time for the progenitor collapse into a black hole. The time a
star collapsing into a black hole is infinite long for an exterior observer, but here we
use the effective collapse time, which is the time a star collapsing into its light ring
as observed at null infinity. The gravitational collapse process for homogeneous
spherical dust is described by Oppenheimer-Snyder model [119], which gives

τ ' πR[(8GM/R)(1 − 2GM/R)]−
1
2 . (2.24)

For M = 10M� and R = 100M�, τ = 1.93ms, the cut-off frequency of the memory
[140] is fc = 1/τ ' 500Hz. This means that although the exact waveforms of scalar
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radiation in gravitational collapses have been studied from numerical simulations
[82, 86, 116, 132], for ground based gravitational wave detectors, most of the
detection band is dominated over by the memory as the “zero-frequency limit"
[43, 133].

The T memory for compact binary systems has been discussed in [96], here we
consider T memory in gravitational collapses and compare it with S memory. From
Eq. (2.15), a burst of energy flux carried by scalar field is generated when the scalar
hair is radiated away in a short duration τ, which means both S memory and T
memory appear in gravitational collapses. The amplitude of T memory can be
estimated from Eq. (2.16):

∆hT '
4ε
φ0r

+∞∫
−∞

dt r2T 0k
Ω̂
′k =

8ε
φ0r

+∞∫
0

df
π f 2r2

4φ0α
2
0
|δφ̃( f )|2

= N2(β0, µ)
2εα2

0 M2

πφ2
0rτ

. (2.25)

Here the energy-flux

T 0k = (16πα2
0φ0)

−1δ Ûφ2(t)Ω̂′k , (2.26)

and the Fourier transform of the scalar field in the zero-frequency limit is

δφ̃( f ) = δφH/(2πi f ), for | f | < fc , (2.27)

with δφH given by Eq. (2.20). The coefficient ε comes from the angular part of the
integral and as a result of the asymmetric distribution of the scalar field profile.

In Fig. 5.1, we plot amplitudes of the T and S memory from Eq. (2.22) and (2.25).
In the Brans-Dicke limit, T memory is lower than S memory by about three orders
of magnitude. However, since ∆hS ∝ N(µ, β0) while ∆hT ∝ N2(µ, β0), T mem-
ory becomes comparable to S memory near βcrit where the scalar field profile is
significantly magnified by the spontaneous scalarization.

2.4 Detection Strategies
Since T and S memories contribute to the tensor and scalar components of gravita-
tional wave, respectively, and mixed in observed data, we need a mode separation
method [88] to detect each component. Because the S memory is always larger than
T memory in gravitational collapse processes as shown in Fig. 5.1, and the existence
of non-tensor polarized gravitational wave is a strong evidence for modification to
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Figure 2.2: Scales of T memory and S memory from gravitational collapse of an
M = 10M�, R = 100M�,ε = 0.1 and r = 10kpc Newtonian star.

Einstein’s theory [72], we focus on the S memory hereafter. Notice that different
gravitational wave detectors on various locations have distinct responses to the three
polarizations in Eq. (2.12), hence it is possible to find linear combinations of the
outputs from three or more detectors which only respond to the scalar mode.

For a network of N detectors, the combined filtered output WN can be written as

WN = ®α · ®w , (2.28)

with ®α = (α1, ..., αN ) the combination coefficients and ®w = (w1, ...,wN ) the match-
filtered outputs of each detector [140]. The signal-to-noise ratio (SNR) of the
combined filtered output is defined as

ρ =
E(WN )

Var(WN )
1
2
. (2.29)

In order to optimize SNR as well as to make it insensitive to + and × polarization
modes, we should choose

®α = ®F◦ −
( ®F× · ®F×)( ®F+ · ®F◦) − ( ®F+ · ®F×)( ®F× · ®F◦)

( ®F+ · ®F+)( ®F× · ®F×) − ( ®F+ · ®F×)2
®F+

−
( ®F+ · ®F+)( ®F× · ®F◦) − ( ®F+ · ®F×)( ®F+ · ®F◦)

( ®F+ · ®F+)( ®F× · ®F×) − ( ®F+ · ®F×)2
®F×,
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where ®FP =
(
F1

P(Ω̂), ..., F
N
P (Ω̂)

)
, and Fn

P(Ω̂) is the angular pattern function of
detector n = 1, ..., N for polarization P = ◦,+,×. The explicit expressions of these
functions can be found in [88]. The maximized SNR for the detection of S memory
in Eq. (2.22) is then given by

ρ = F
1/2

N (Ω̂)
2α2

0 MN(β0, µ)

πφ0r

[∫ fc

0
df

1
f 2Sn( f )

] 1
2

. (2.30)

Here for simplicity we suppose the N detectors have approximately the same noise
spectral density Sn( f ) and fc = 1/τ is the cut-off frequency of memory as explained
above. We describe the dependence of the SNR on the direction of the source by
introducing the N-detector effective angular pattern function FN (Ω̂) and is given by

FN (Ω̂) = [®α · ®F◦(Ω̂)]2/®α2. (2.31)

We should notice that FN is non-zero only for N ≥ 3. We plot F3(Ω̂) and F4(Ω̂) for
network H-L-V and H-L-V-K respectively in Fig. 5.3, where H, L, V and K stand for
LIGO-Hanford, LIGO-Livingston, Virgo and KAGRA, respectively. For F3(Ω̂), the
peak value and the angularly averaged value are 0.485 and 0.087. For F4(Ω̂), these
values are 0.511 and 0.240. It means that although the inclusion of a fourth detector
does not significantly improve the maximal SNR, it does improve substantially the
sky coverage of the network.

We next consider the detectability of S memory from our analytic model with
M = 10M�, R = 100M� and r = 10kpc. In Eq. (2.30), we take the threshold
SNR to be 10, the effective angular pattern function to be the peak value of network
H-L-V-K. We use the design noise spectrum of Advanced LIGO to compute the
SNR for second generation detectors and the proposed Einstein Telescope for third
generation [129]. The detectable region of model parameters are shown in Fig. 5.4,
where we also present current constraints from the solar system (the Cassini mission)
and from pulsar timing (PSR J1738+0333, PSR J0348+0432) [40]. From the
figure, the discoverable curves with SNR = 10 surpass the current constraints. The
gravitational collapse rate is commonly thought to be as low as ∼1–3 events per 100
years in r < 10kpc. However, we need to point out that this rate, which is deduced
from the SNe rate, is underestimated since more massive stars tend to collapse into
black holes directly with no supernova explosion [80]. Besides, such a phenomenon,
which, once detected, will provide definitive evidence for the need to modify GR,
should not be omitted by future searches in gravitational wave detector data. Hence
we propose to add a new search pipeline for the S memory to the upcoming global
gravitational wave detector network.
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Figure 2.3: The effective angular pattern function F3(Ω̂) for network H-L-V (upper
panel) andF4(Ω̂) for networkH-L-V-K (lower panel) as a function of Ω̂, the direction
of the source. The x axis is the longitude as observed on the earth and y axis the
latitude.

2.5 Discussions
In this letter, we have discussed how extra terms in the actions of scalar-tensor
theories of gravity and the particular property of black holes in such theories give
birth to two new types of gravitational memory, and how these effects can be used as
a test of modifications to GR. Another important class of modified gravity is theories
with higher order curvature terms, such as Gauss-Bonet theory and Chern-Simons
theory [40, 65]. We expect: (i) the h3

µν terms in the actions of these theories to
be distinct from GR and hence lead to modifications to the Christodoulou memory,
(ii) scalar radiation will continue to cause the T memory, and (iii) since black holes
have hair in these theories, the S memory will differ from scalar-tensor theories. We
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Figure 2.4: Discoverable curves of Smemory from a collapsing star with M = 10M�
R = 100M� and r = 10kpc for 2nd generation detectors (Red) and 3rd generation
detectors (Green). The current constraints on the model parameters are from the
Cassini Mission (Grey), PSR J1738+0333 (Orange) and PSR J0348+0432 (Blue).

leave the details for further research.
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2.7 Appendix A: Scalar-tensor theory of gravity, scalar gravitaional wave and
relation to Einstein frame

The action for scalar-tensor theory of gravity is given by

SST =
∫

d4x
√
−g

1
16π
(φR −

ω(φ)

φ
∇µφ∇µφ) + SM[gµν,Ψ] (2.32)
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The field equations are driven from δSST = 0, which gives
Rµν −

1
2gµνR = 8π

φ Tµν +
ω(φ)

φ2 (∇µφ∇νφ −
1
2gµν∇

ρφ∇ρφ) +
1
φ (∇µ∇νφ − gµν∇

2φ)

∇2φ = 8π
3+2ω(φ)T −

ω′(φ)
3+2ω(φ)∇

µφ∇µφ

(2.33)

To study the gravitational wave solution and its polarizations, we linearize the fields
gµν and φ and start from the linearized field equations:

gµν = ηµν + hµν

φ = φ0 + δφ
⇒

R(1)µν −
1
2
ηµνη

ρσR(1)ρσ =
8π
φ0

Tµν + ∂µ∂ν
δφ

φ0
− ηµν∂

2 δφ

φ0
(2.34)

∂2 δφ

φ0
=

8π
φ0

1
3 + 2ω0

T (2.35)

Introduce h̄µν = hµν − 1
2ηµνhλλ , then from eq.(2.34),

∂2 h̄µν − ηµν∂2 δφ

φ0
+ ηµν∂

σ(∂ρh̄ρσ − ∂σ
∂φ

φ0
) − ∂µ(∂ρh̄ρν − ∂ν

δφ

φ0
)

− ∂ν(∂ρh̄ρµ − ∂µ
δφ

φ0
) = −

16π
φ0

Tµν . (2.36)

Adding the gauge condition: ∂ρh̄ρµ − ∂µ
δφ
φ0
= 0, and recall eq.(2.35),

∂2 h̄µν = −
16π
φ0
(Tµν −

1
6 + 4ω0

ηµνT) (2.37)

From eq.(2.35) and eq.(2.37), the wave equations in vacuum are:
∂2 h̄µν = 0

∂2Φ = 0
(2.38)

where we define Φ = − δφφ0
. The gauge transformation:

h̄′µν = h̄µν − ∂µξν − ∂νξµ + ηµν∂λξλ

Φ′ = Φ
(2.39)

Then for the gauge condition to be held after the gauge transformation:

∂µh̄′µν + ∂νΦ
′ = 0 ⇒ ∂µhµν + ∂νΦ − ∂2ξν = 0 ⇒ ∂2ξµ = 0 (2.40)
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Then h̄µν(x),Φ(x), ξµ(x) can be expanded by plane wave solutions:

h̄µν(x) =
∫

d3k
(2π)3

[ ˜̄hµν(®k)eik ·x + ˜̄h∗µν(®k)e−ik ·x] (2.41)

Φ̄(x) =
∫

d3k
(2π)3

[Φ̃(®k)eik ·x + Φ̃∗(®k)e−ik ·x] (2.42)

ξµ(x) =
∫

d3k
(2π)3

[ξ̃µ(®k)eik ·x + ξ̃∗µ(®k)e
−ik ·x] (2.43)

Symmetric tensor ˜̄hµν has 10 DOF:

˜̄hµν =

©­­­­­«
˜̄h00

˜̄h01
˜̄h02

˜̄h03
˜̄h01

˜̄h11
˜̄h12

˜̄h13
˜̄h02

˜̄h12
˜̄h22

˜̄h23
˜̄h03

˜̄h13
˜̄h23

˜̄h33

ª®®®®®¬
(2.44)

Take the GWpropagating direction ®n as the 3rd axis, estabalish a spatial orthonormal
coordinate system: 

uµ = (0, 1, 0, 0)

vν = (0, 0, 1, 0)

nν = (0, 0, 0, 1)

(2.45)

In this coordinate system, the 4-momentum of GW becomes k µ = k(1, 0, 0, 1). The
gauge condition k µ ˜̄hµν + kνΦ̃ = 0 in this coordinate system is

˜̄h00 +
˜̄h30 = Φ̃,

˜̄h01 +
˜̄h31 = 0, ˜̄h02 +

˜̄h32 = 0, ˜̄h03 +
˜̄h33 = −Φ̃ (2.46)

Then only 10 − 3 = 7 DOF left:

˜̄hµν =

©­­­­­«
˜̄h33 + 2Φ̃ − ˜̄h13 −

˜̄h23 −
˜̄h33 − Φ̃

− ˜̄h13
˜̄h11

˜̄h12
˜̄h13

− ˜̄h23
˜̄h12

˜̄h22
˜̄h23

− ˜̄h33 − Φ̃
˜̄h13

˜̄h23
˜̄h33

ª®®®®®¬
(2.47)

When a specific coordinate is choosen, it is not possible to make a global Lorentz
transformation without changing the basis vectors. However, we are still free to
make a coordinate-dependent translation, i.e. the gauge transformation for h̄µν and
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Φ. Recalling eq.(2.39), which give ˜̄h′µν = ˜̄hµν − ikµξ̃ν − ikν ξ̃µ + iηµνkλ ξ̃λ, in our
coordinate system,

˜̄h′11 =
˜̄h11 + ik(ξ̃0 + ξ̃3),

˜̄h′13 =
˜̄h13 − ik ξ̃1,

˜̄h′12 =
˜̄h12

˜̄h′22 =
˜̄h22 + ik(ξ̃0 + ξ̃3),

˜̄h′23 =
˜̄h23 − ik ξ̃2,

˜̄h′33 =
˜̄h33 + ik(ξ̃0 − ξ̃3) (2.48)

We can choose the following gauge transformation:

ξ̃0 =
i

4k
( ˜̄h11 +

˜̄h22 + 2 ˜̄h33 + 2Φ̃), ξ̃1 = −
i
k

˜̄h13, ξ̃2 = −
i
k

˜̄h23

ξ̃3 =
i

4k
( ˜̄h11 +

˜̄h22 − 2 ˜̄h33 − 2Φ̃) .

Then only 7 − 4 = 3 DOF remain, this choice of coordinates is often called the
transverse tracless (TT) gauge and in the (®u, ®v, ®n) system,

˜̄hµν =

©­­­­­«
Φ̃ 0 0 0
0 h̃+ h̃× 0
0 h̃× −h̃+ 0
0 0 0 −Φ̃

ª®®®®®¬
(2.49)

Where h̃+ = 1
2 (

˜̄h11 −
˜̄h22), h̃× = ˜̄h12. They are gauge invariant. Then

h̃µν = ˜̄hµν −
1
2
ηµν

˜̄hλλ =

©­­­­­«
0 0 0 0
0 h̃+ + Φ̃ h̃× 0
0 h̃× −h̃+ + Φ̃ 0
0 0 0 0

ª®®®®®¬
(2.50)

Under this gauge, the polarization of gravitational wave can be expressed as

hi j(x) = h+(x)e+i j + h×(x)e×i j + Φ(x)e
S
i j (2.51)

Where the polarization tensors can be expressed as

e+i j = uiu j − viv j, e×i j = uiv j + u jvi, eS
i j = uiu j + viv j (2.52)

In order to calculate the scalar wave amplitude Φ, it is more convinient to work in
the so called Einstein frame, which is obtained from a conformal transformation:

gµν −→ g∗µν = Ωgµν (2.53)
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Then under this transformation:

R = ΩR∗ + 3∇2
∗Ω −

9
2
(∇

µ
∗Ω)

2

Ω
√
−g =

√
−g∗

1
Ω2

gµν = Ω g
µν
∗ (2.54)

Then the action eq.(3.1) becomes,

SST =
∫

d4x
√
−g∗

1
16π
{
φ

Ω
(R∗ +

3∇2
∗Ω

Ω
−

9
2
(∇

µ
∗Ω)

2

Ω2 ) − ω(φ)
(∇

µ
∗ φ)

2

Ω
} + SM[

1
Ω
g∗µν,ΨM]

=

∫
d4x
√
−g∗

1
16πG∗

{R∗ − (ω(φ) +
3
2
)
(∇

µ
∗ φ)

2

φ2 } + SM[
1

G∗φ
g∗µν,ΨM]

=

∫
d4x
√
−g∗

1
16πG∗

(R∗ −
1
2
g
µν
∗ ∂µϕ∂νϕ) + SM[A2(ϕ)g∗µν,ΨM] (2.55)

Here we define Ω = G∗φ and 1
G∗φ
= A2(ϕ) in the second and the third line respec-

tively. For the third equal sign to be held, A(ϕ) should satisfies
A′(ϕ)
A(ϕ)

≡ α(ϕ) =
1√

2ω(φ) + 3
(2.56)

In practice, α(ϕ) is often parameterized as

α(ϕ) = α0 + β0(ϕ − ϕ0) + ... (2.57)

From A(ϕ) = 1√
G∗φ

, we have the relation between δϕ = ϕ − ϕ0 and the scalar
gravitational wave amplitude Φ:

δϕ = −
1
2

(
A′(ϕ0)

A(ϕ0)

)−1
δφ

φ0
⇒ δϕ =

1
2α0

Φ (2.58)

Fromeq.(2.56), we obtain the relation betweenα0, β0 withω0 ≡ ω(φ0),ω1 ≡ ω
′(φ0):

α0 =
1√

2ω0+3

β0 =
2ω1φ0
(2ω0+3)2

(2.59)

From the action eq.(2.55), we can write down the field equations in Einstein frame:
R∗µν −

1
2g
∗
µνR∗ = 8πG∗(T∗µν + Tϕ

µν)

∇2
∗ϕ = −4πG∗α(ϕ)T∗

(2.60)

Where

T∗µν =
2
√
−g∗

δSM

g
µν
∗

Tϕ
µν =

1
4πG∗

(∇∗µϕ∇
∗
νϕ −

1
2
g∗µν∇

∗ρϕ∇∗ρϕ) (2.61)
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2.8 Appendix B: Detection strategy for scalar gravitational wave memory
effect by correlating 3 detectors

In scalar-tensor theory, a monochrome gravitational wave can be expanded as

hi j(t, ®x) =
∫ +∞

−∞

df e−2πi f (t−Ω̂· ®x)[h̃+( f )e+i j(Ω̂) + h̃×( f )e×i j(Ω̂) + Φ̃( f )e
S
i j(Ω̂)] (2.62)

Where ®x is the position of the detector. Ω̂ is the unit vector pointing from the GW
source to the detector.

The total output of one GW detector is the sum of the GW signal and detector’s
noise.

Sa(t) = sa(t) + na(t) (2.63)

Where a denotes the ath detector. The signal by definition is sa(t) = hi j(t, ®xa)D
i j
a

and its Forier transformation is

s̃a( f ) = e2πi f Ω̂· ®xa[h̃+( f )F+a (Ω̂) + h̃×( f )F×a (Ω̂) + Φ̃( f )F
S
a (Ω̂)] (2.64)

Where Di j
a =

1
2 (û

i
aû j

a − v̂
i
av̂

j
a) is the detector tensor, and the angular pattern functions

are defined by

F+a (Ω̂) = e+i j(Ω̂)D
i j
a ; F×a (Ω̂) = e×i j(Ω̂)D

i j
a ; FS

a (Ω̂) = eS
i j(Ω̂)D

i j
a (2.65)

We can combine three detectors to respond only the scalar polarization of a GW
burst.

WS =

∫ +∞

−∞

df [(F+2 (Ω̂)F
×
3 (Ω̂) − F×2 (Ω̂)F

+
3 (Ω̂))S̃1( f )e−2πi f Ω̂· ®x1

+(F+3 (Ω̂)F
×
1 (Ω̂) − F×3 (Ω̂)F

+
1 (Ω̂))S̃2( f )e−2πi f Ω̂· ®x2

+(F+1 (Ω̂)F
×
2 (Ω̂) − F×1 (Ω̂)F

+
2 (Ω̂))S̃3( f )e−2πi f Ω̂· ®x3]Q̃( f )

=

∫ +∞

−∞

df [εabcF+a (Ω̂)F
×
b (Ω̂)S̃c( f )e−2πi f Ω̂· ®xc ]Q̃( f ) (a, b, c = 1, 2, 3)

(2.66)
And its expected value and variance are

E(WS) =

∫ +∞

−∞

df [FS
1 (Ω̂)(F

+
2 (Ω̂)F

×
3 (Ω̂) − F×2 (Ω̂)F

+
3 (Ω̂))

+FS
2 (Ω̂)(F

+
3 (Ω̂)F

×
1 (Ω̂) − F×3 (Ω̂)F

+
1 (Ω̂))

+FS
3 (Ω̂)(F

+
1 (Ω̂)F

×
2 (Ω̂) − F×1 (Ω̂)F

+
2 (Ω̂))]Φ̃( f )Q̃( f )

=

∫ +∞

−∞

df [εabcF+a (Ω̂)F
×
b (Ω̂)F

S
c (Ω̂)]Φ̃( f )Q̃( f ) (2.67)
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Var(WS)

=

∫ +∞

−∞

df df ′ [(F+2 (Ω̂)F
×
3 (Ω̂) − F×2 (Ω̂)F

+
3 (Ω̂))

2 < ñ1( f )ñ1( f ′) > e−2πi( f− f ′)Ω̂· ®x1

+(F+3 (Ω̂)F
×
1 (Ω̂) − F×3 (Ω̂)F

+
1 (Ω̂))

2 < ñ2( f )ñ2( f ′) > e−2πi( f− f ′)Ω̂· ®x2

+(F+1 (Ω̂)F
×
2 (Ω̂) − F×1 (Ω̂)F

+
2 (Ω̂))

2 < ñ3( f )ñ3( f ′) > e−2πi( f− f ′)Ω̂· ®x3]

×Q̃( f )Q̃( f ′)

=
1
2

∫ +∞

−∞

df [(F+2 (Ω̂)F
×
3 (Ω̂) − F×2 (Ω̂)F

+
3 (Ω̂))

2Sn1( f )

+(F+3 (Ω̂)F
×
1 (Ω̂) − F×3 (Ω̂)F

+
1 (Ω̂))

2Sn2( f )

+(F+1 (Ω̂)F
×
2 (Ω̂) − F×1 (Ω̂)F

+
2 (Ω̂))

2Sn3( f )]|Q̃( f )|
2

=
1
2

∫ +∞

−∞

df [ε cabε cdeF+a (Ω̂)F
×
b (Ω̂)F

+
d (Ω̂)F

×
e (Ω̂)Snc ( f )]|Q̃( f )|

2 (2.68)

where we used < ña( f )ñb( f ′) >= 1
2δabδ( f + f ′)Sna( f ). In order to maximize the

signal-to-noise ratio, the optimal filtering function Q̃( f ) should be

Q̃( f ) =
[εabcF+a (Ω̂)F

×
b (Ω̂)F

S
c (Ω̂)]Φ̃

∗( f )

ε cabε cdeF+a (Ω̂)F×b (Ω̂)F
+
d (Ω̂)F

×
e (Ω̂)Snc ( f )

(2.69)

Then the signal-to-noise ratio is(
S
R

)2
=

E(WS)2

Var(WS)
= 4

∫ +∞

0
df

[εabcF+a (Ω̂)F
×
b (Ω̂)F

S
c (Ω̂)]

2 |Φ̃( f )|2

ε cabε cdeF+a (Ω̂)F×b (Ω̂)F
+
d (Ω̂)F

×
e (Ω̂)Snc ( f )

(2.70)

From the Fourier transform:∫ +F

−F

1
2πi

1
f − iε

e−2πi f t df =
1
2
−

1
π

∫ 2πFt

0

sin x
x

dx ' θ(−t) (2.71)

This means for scalar gravitational wave memory, Φ̃( f ) = ΦI
2πi

1
f−iε for | f | < 1/τ,

and the noise spectra of the three detectors are taken to be the same,

Q̃( f ) = −
F (Ω̂)

2πi
ΦI

f Sn( f )
(2.72)

(
S
R

)2
=
F (Ω̂)

π2 Φ
2
I

∫ 1/τ

0
df

1
f 2Sn( f )

(2.73)
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where the correlated angular pattern function F (Ω̂) is defined by

F (Ω̂) =
[εabcF+a (Ω̂)F

×
b (Ω̂)F

S
c (Ω̂)]

2

ε cabε cdeF+a (Ω̂)F×b (Ω̂)F
+
d (Ω̂)F

×
e (Ω̂)

(2.74)

Next we want to compute F (Ω̂) for three ground based GW detectors: LIGO
at Hanford, LIGO at Livingston and Virgo. First we need to specify the unit
vectors pointing along the two arms of these detectors. In order to do this, we
establish a coordinate system (θ, ϕ) where the north pole is defined at θ = 0◦, and
ϕ denots the longitude. The detector orientation angle α is the angle between the
local east direction and the bisecting line of two arms of each detector measured
counterclockwise. Where

x̂′1 = (cos ϕ1, sin ϕ1, 0)

ŷ′1 = (− sin ϕ1, cos ϕ1, 0)

ẑ′1 = (0, 0, 1)


x̂1 = cos θ1 x̂′1 − sin θ1 ẑ′1
ŷ1 = ŷ′1

ẑ1 = sin θ1 x̂′1 + cosθ1 ẑ′1


û1 = sin ( π4 − α1)x̂1 + cos ( π4 − α1)ŷ1

v̂1 = − cos ( π4 − α1)x̂1 + sin ( π4 − α1)ŷ1
(2.75)

where

H : θ1 = 43.5◦, ϕ1 = −119.4◦, α1 = −45.0◦

L : θ2 = 59.4◦, ϕ2 = −90.8◦, α2 = −243.0◦

V : θ3 = 46.4◦, ϕ3 = 10.5◦, α3 = 116.5◦

K : θ4 = 53.6◦, ϕ4 = 137.3◦, α4 = 74.9◦

Let Ω̂ denote the unit vector pointing towards the GW propagating direction. The
coordinates of three orthogonal unit vectors (m̂, n̂, Ω̂) are

m̂′ = (cos θ cos ϕ, cos θ sin ϕ,− sin θ)

n̂′ = (− sin ϕ, cos ϕ, 0)

Ω̂′ = (sin θ cos ϕ, sin θ sin ϕ, cos θ)


m̂ = cosψ m̂′ + sinψ n̂′

n̂ = − sinψ m̂′ + cosψ n̂′
(2.76)

With all of these settings, we find the correlated angular pattern function F (Ω̂) as a
function of lattitude θ and longitude ϕ (F (Ω̂) is independent of angle ψ).

The optimal direction for the source is located at (54.5◦N, 142.5◦E) and its opposite
(54.5◦S, 37.5◦W). The optimal value of F (Ω̂) at these directions is 0.485.
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2.9 Appendix C: Detection strategy for scalar gravitational wave memory
effect by correlating N detectors

Let’s consider N ground-based GW detectors. Let a denote the a-th detector
(a = 1, ..., N), then the Fourier transformed total output of detector a is a sum of its
signal and noise:

S̃a( f ) = s̃a( f ) + ña( f ) (2.77)

with expectations:

E[S̃a( f )] = s̃a( f ) = e2πi f Ω̂· ®xa[F+a (Ω̂)h̃+( f ) + F×a (Ω̂)h̃×( f ) + FS
a (Ω̂)Φ̃( f )] (2.78)

E[S̃a( f )S̃b( f ′)] =< ña( f )ñb( f ′) >=
1
2
δabδ( f + f ′)Sna( f ) (2.79)

Let the filtered output of detector a be

wa =

∫ +∞

−∞

df e−2πi f Ω̂· ®xa S̃a( f )Q̃( f ) (2.80)

We can construct a linear combination of the 4 detectors

W =
∑

a

αawa =

∫ +∞

−∞

df

[∑
a

e−2πi f Ω̂· ®xaαaS̃a( f )

]
Q̃( f ) (2.81)

Its expectation is

E(W) =
∫ +∞

−∞

[
®α · ®F+ h̃+( f ) + ®α · ®F× h̃×( f ) + ®α · ®FSΦ̃( f )

]
Q̃( f ) (2.82)

where ®FA = (w1, ...,wN ) and ®α = (α1, ..., αN ). We want it respond only to the scalar
polarization, then we require that ®α · ®F+ = ®α · ®F× = 0 and in this case

E(W) =
∫ +∞

−∞

df

(∑
a

αaFS
a (Ω̂)

)
Φ̃( f )Q̃( f ) (2.83)

Var(W) = E(W2) =
1
2

∫ +∞

−∞

df

(∑
a

α2
aSna( f )

)
|Q̃( f )|2 (2.84)

In order to maximize the SNR, the optimal filtering function should be

Q̃( f ) =

(∑
a αaFS

a (Ω̂)

)
Φ̃∗( f )∑

a α
2
aSna( f )

(2.85)

In this case, the SNR is(
S
R

)2
=

E2(W)
Var(W)

= 4
∫ +∞

0
df

(∑
a αaFS

a (Ω̂)

)2
|Φ̃( f )|2∑

a α
2
aSna( f )

(2.86)
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For scalar gravitational wave memory, Φ̃( f ) = ΦI
2πi

1
f−iε and for convinience we take

the noise spectra of the four detectors to be the same,

Q̃( f ) = −
F (Ω̂)

2πi
ΦI

f Sn( f )
(2.87)(

S
R

)2
=
F (Ω̂)

π2 Φ
2
I

∫ 1/τ

0
df

1
f 2Sn( f )

(2.88)

where the correlated angular pattern function F (Ω̂) is defined by

F (Ω̂) =

(
®α · ®FS(Ω̂)

)2

®α · ®α
(2.89)

We find that the mode of ®α is irrelevant to the value of F , hence we can simply set
| ®α | = 1. Then our aim is to maximize

F =
(
®α · ®FS

)2
(2.90)

while requiring that 
®α · ®F+ = 0

®α · ®F× = 0
(2.91)

The solution is 
®α = ®F′S/| ®F

′
S |

F = ®F′S · ®F
′
S

(2.92)

where we defined

®F′S = ®FS −
( ®F× · ®F×)( ®F+ · ®FS) − ( ®F+ · ®F×)( ®F× · ®FS)

( ®F+ · ®F+)( ®F× · ®F×) − ( ®F+ · ®F×)2
®F+ (2.93)

−
( ®F+ · ®F+)( ®F× · ®FS) − ( ®F+ · ®F×)( ®F+ · ®FS)

( ®F+ · ®F+)( ®F× · ®F×) − ( ®F+ · ®F×)2
®F× .

In order to have a non-zero ®F′S, we should have at least 3 detectors. The maximized
angular pattern function F (Ω̂) = ®F′S(Ω̂) · ®F

′
S(Ω̂) as a function of lattitude θ and

longitude ϕ (F (Ω̂) is independent of angle ψ) by correlating detectors HLV and
HLVK are shown in . For HLV, the optimal direction for the source is located at
(54.5◦N, 142.5◦E) and its opposite (54.5◦S, 37.5◦W). The optimal value of F3(Ω̂)

at these directions is 0.485. For HLVK, the optimal direction for the source is
located at (33.2◦N, 2.3◦W) and its opposite (33.2◦S, 177.7◦E). The optimal value
of F4(Ω̂) at these directions is 0.511. The averages of the correlated angular pattern
function are

∫
F3(Ω̂)dΩ̂/4π = 0.0865 and

∫
F4(Ω̂)dΩ̂/4π = 0.240.



49

2.10 Appendix D: Gravitational Collapse in Oppenheimer-Snyder model
In theDamour-Esposito-Farese approximation, the collapse process can be described
by the Oppenheimer-Snyder model. Let’s consider a collapsing star with an initial
mass M and radius R. The interior space-time is described by comoving coordinate
(t, r, θ, ϕ):

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdϕ2
]

(2.94)

where k ≡ 2GM/R3. Inside the star, the stress-energy tensor is

T µν =
M

4
3πR3

©­­­­­«
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ª®®®®®¬
(2.95)

Soving the Einstein field equation gives the Oppenheimer-Snyder solution:

√
kt =

√
(1 − a(t))a(t) +

1
4

[
π + 2 arctan

(
1 − 2a(t)

2
√
(1 − a(t))a(t)

)]
(2.96)

Let ts be the interior time when the star collapses into a singularity. At this time
a(ts) = 0, then ts =

π

2
√

k
.

From Birkhoff’s theorem, the exterior space-time can be described by Schwarzchild
coordinate (t̄, r̄, θ̄, ϕ̄):

ds2 = −

(
1 −

2GM
r̄

)
dt̄2 +

1(
1 − 2GM

r̄

) dr̄2 + r̄2dθ̄2 + r̄2 sin2 θ̄dϕ̄2 (2.97)

By matching the exterior and interior space-time at the boundary, we find θ̄ = θ,
ϕ̄ = ϕ. At the boundary, r̄ = Ra(t). And

dt̄
dt
=

√
1 − 2GM

R

1 − 2GM
Ra(t)

. (2.98)

The slope is approximately 1√
1−2µ

with µ ≡ GM
R . We use t0 denotes the interior time

when the boundary is inside the event horizon: a(t0)R = 2GM , and

√
kt0 =

√
(1 − 2µ)2µ +

1
4

[
π + 2 arctan

(
1 − 4µ

2
√
(1 − 2µ)2µ

)]
(2.99)
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For µ = 0.20, t0 = 1.376√
k
, which is approximately equal to ts =

π

2
√

k
. Then the

collapsing time observed by an exterior observer is

τ '
ts√

1 − 2µ
=
π

2
GM

µ
√

2µ(1 − 2µ)
(2.100)

For M = 2M�, µ = 0.25, the collapsing time τ ' 0.12ms. This time is approxi-
mately equal to the numerical simulation in J. Novak’s paper.

2.11 Appendix E: SNR and the detectable region in the parameter space
Now we can use eq.(40) to compute the SNR of a scalar GW memory effect.
The noise spectral density Sn( f ) for advanced LIGO is taken from Table I of
arXiv:0903.0338. We numerically compute the integral:∫ 1

0.12×10−3

0

1
f 2Sn( f )

df = 2.3171 × 1045 (2.101)

If we take the correlated angular pattern function at its optimal value, then the SNR
is

S
R
=

√
F (Ω̂)

π

[∫ 1
0.15×10−3

0

1
f 2Sn( f )

df

] 1
2

ΦI = 1.067 × 1022
ΦI (2.102)

In the paper, we have given

ΦI(r) = −
2α2

0GM

r |β0 |µ
×


1 − tanh

√
3µ|β0 |

√
3µ|β0 |

(β0 > 0)

tan
√

3µ|β0 |
√

3µ|β0 |
− 1 (β0 < 0)

(2.103)

If we set the level of SNR to be 10, then

|ΦI | =
2α2

0GM

r |β0 |µ
×


1 − tanh

√
3µ|β0 |

√
3µ|β0 |

tan
√

3µ|β0 |
√

3µ|β0 |
− 1

= 9.372 × 10−22 (2.104)

For M = 2M� = 4 × 1030 kg, µ = 0.25, r = 1 Mpc = 3.086 × 1022 m, this equation
gives lgα0 as a function of β0:

lgα0 =


1
2 lg [ 1.22×10−3β0

1− tanh
√

0.75β0√
0.75β0

] (β0 > 0)

1
2 lg [−1.22×10−3β0

tan
√
−0.75β0√
−0.75β0

−1
] (β0 < 0)

(2.105)

Fig[4] shows the constraints on α0 and β0 from solar system, pulsar timing as well
as scalar GW memory.
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C h a p t e r 3

SCALAR STOCHASTIC GRAVITATIONAL-WAVE
BACKGROUND IN BRANS-DICKE THEORY OF GRAVITY

We study the scalar stochastic gravitational-wave background (SGWB) from astro-
physical sources, including compact binary mergers and stellar collapses, in the
Brans-Dicke theory of gravity. By contrast to tensor waves, we found the scalar
SGWB to predominantly arise from stellar collapses. These collapses not only have
higher astrophysical rates, but also have larger energy emitted per event. This is
because unlike tensor radiation, which mainly starts from quadrupole order, the
scalar perturbation can be excited by changes in the monopole moment. In particu-
lar, in the case of stellar collapse into a neutron star or a black hole, the monopole
radiation, at frequencies below 100Hz, is dominated by the memory effect. At low
frequencies, the scalar SGWB spectrum follows a power law of ΩS ∝ f α, with
α = 1. We predict that ΩS is inversely proportional to the square of ωBD + 2, with
(ωBD + 2)2ΩS( f = 25Hz) = 2.8 × 10−6. We also estimate the detectability of the
scalar SGWB for current and third-generation detector networks, and the bound on
ωBD that can be imposed from these observations.

3.1 Introduction
The first direct detection of gravitational waves (GWs) from the merger of binary
black holes (BBHs) by the LIGO-Virgo collaboration [10] marks the beginning of
gravitational-wave astronomy and opens up a new window to the Universe. Since
then, more GW events, both from BBHmergers and from binary neutron star (BNS)
mergers, are detected by the Advanced LIGO/Virgo network [12–15]. Besides
these resolvable, individual GW sources we have discovered so far, a Stochas-
tic Gravitational-Wave Background (SGWB), which arises from the population of
unresolved GW events at larger distances, is anticipated to be detectable in the up-
coming years [17, 20]. GW signals provide us with unprecedented opportunities to
test general relativity (GR) and study modified theories of gravity [10, 11, 13, 16].

One significant prediction of general relativity is that gravitational waves only con-
tain two tensor polarization modes (+ mode and × mode). On the other hand,
additional polarization modes do exist in modified theories of gravity; if directly
detected, they would become a strong evidence for extensions to Einstein’s original
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theory [73, 74]. For example, the Brans-Dicke (BD) theory [46], which minimally
extends Einstein’s gravity by incorporating a scalar field (Brans-Dicke field) coupled
to the metric tensor, predicts the existence of a transverse scalar polarization mode
(also referred to as the breathing, or the “◦ mode”). Previously, several detection
strategies for the non-tensorial SGWB have been proposed [51, 100, 113]. A recent
study [21], based on the method in [51] and the data from LIGO’s O1 observing run,
has placed the first constraints on the contributions from non-tensorial polarizations
to the SGWB.

All the works so far have assumed general, power-law models for the energy spectra
of the non-tensorial SGWB—without considering its specific origins. However, in
order to theoretically estimate the plausible magnitudes of the non-tensorial SGWB,
and to experimentally make statistical inferences on parameters of modified gravity
models from detector data, it is necessary to consider the astrophysical origins
of the non-tensorial SGWB. Furthermore, obtaining astrophysicically motivated
energy spectra may allow us to more efficiently search for the non-tensorial SGWB
using a more optimal matched filtering technique [28] — than simply assuming a
power-law spectrum.

In this paper, we focus on the SGWB in the transverse scalar mode of the Brans-
Dicke (BD) theory: identifying its astrophysical origins, and obtaining its energy
spectrum (as a function of the BD coupling constant). Candidates for sources of
the SGWB include gravitational stellar collapses and compact binary mergers. As
we will see, the existence of monopole scalar radiations makes stellar collapses by
far the major contributor to this SGWB. This differs significantly from the tensorial
SGWB in GR, which is dominated by BBH and BNS mergers.

This paper is organized as follows: In Sec. II, we will give an overview of the
scalar GW in Brans-Dicke theory and its relation to scalar SGWB. In Secs. III
and IV, we will calculate the contributions to the scalar SGWB from compact
binary coalescences, including BBH and BNS mergers, as well as the contribution
from gravitational stellar collapses. In Sec. V, we will explore how the scalar
SGWB depends on variations in the underlying population models. In Sec. VI, we
will discuss the detectability and possible constraints on the BD coupling constant
ωBD from the current and future observations. Finally, in Sec. VII, we will draw
conclusions and suggest prospective research directions.
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3.2 Scalar GW in Brans-Dicke Theory and Relation to SGWB
In the Brans-Dicke (BD) theory, the Lagrangian density of the gravity sector in the
original conformal frame is given by

LBD =
√
−g

[
φR − ωBD

∂µφ∂µφ

φ

]
, (3.1)

where the Ricci scalar R is associated with the spacetime metric tensor gµν. The
scalar field φ is related to the gravitational constant G via the relation

Gφ0 =
2ωBD + 4
2ωBD + 3

(3.2)

where φ0 is the value of the scalar field at the null infinity. The matter sector
Lagrangian density remains the same as in GR, which means the scalar field does
not couple to the matter fields directly. When the model parameter ωBD approaches
to infinity, Brans-Dicke theory recovers to GR. In this rest of this section, we shall
discuss the polarization content of GWs in the BD theory, and describe the energy
content of the scalar SGWB. Details can be found in Refs. [46, 100].

GWs in the BD Theory
To study GWs in Brans-Dicke theory, we perform a perturbation of the metric
tensor and the scalar field around the Minkowski spacetime and the null infinity
value, respectively:

gµν = ηµν + hµν, φ = φ0 + δφ, (3.3)

where components of the metric tensor in Minkowski spacetime is chosen to be
ηµν = diag(−1, 1, 1, 1). The perturbative Lagrangian contains a quadratic cross
term: hµν(∂µ∂ν − ηµν�)δφ. [Here we use � as a shorthand for ηαβ∂α∂β.] To
eliminate this term we redefine the following physical degrees of freedom:

Hµν = hµν + ηµν
δφ

φ0
. (3.4)

Under these treatments, the perturbative Lagrangian is expressed as:

LBD = L
kin
BD + L

S
BD + L

other
BD ,

Lkin
BD =

φ0
2

HµνVµνρσHρσ +
ωBD + 3/2

φ0
ηµνδφ ∂µ∂νδφ ,

LS
BD =

ωBD + 3/2
φ0

(
Hµν −

1
2
ηµνH

)
∂µδφ∂νδφ . (3.5)



54

Here Lkin
BD represents the kinetic terms for the tensor field Hµν and the scalar field

δφ, where the operator Vµνρσ is defined as:

Vµνρσ =
1
2

[
(ηµρηνσ − ηµνηρσ)∂

2 + ηµν∂ρ∂σ

+ ηρσ∂µ∂ν − ηµρ∂ν∂σ − ηνσ∂µ∂ρ

]
.

The Lagrangian LS
BD contains the leading interaction terms between the scalar and

the tensor fields. Later we shall show that it relates to the scalar stress-energy
tensor. The third term Lother

BD contains other higher order interaction terms. Notice
that the Lagrangians in Eq. (3.5) is invariant under the infinitesimal diffeomorphism
transformation xµ → x′µ = xµ + ξµ(x):

Hµν → H′µν = Hµν − ∂µξν − ∂νξµ

δφ→ δφ′ = δφ .

(3.6)

The vacuum field equation for Hµν is obtained from δLkin
BD/δHµν = 0, which gives

V µνρσHρσ = 0. If we choose the harmonic coordinate condition, this equation is
reduced to 

∂2Hµν = 0

∂µHµν −
1
2∂νH = 0 .

(3.7)

Notice that the vacuumfield equationEq. (3.7) and the gauge transformationEq. (3.6)
have the same form as in GR, hence we can similarly gauge away redundant degrees
of freedom which leave only two physical ones.

However, GW detectors respond directly to the change in the spacetime metric, i.e.
hµν, which depends both on Hµν and δφ. As a result, three physical degrees of
freedom remain for hµν [100]. More specifically, within a spatial slice, let ΣΩ be the
2-D plane perpendicular to the wave propagation direction Ω̂, and let m̂, n̂ be two
the orthogonal unit vectors in ΣΩ, then we can find a gauge in which the plain wave
can be expanded as,

hi j(x) = h+(x)e+i j + h×(x)e+i j + hS(x)eSi j . (3.8)

Here, the amplitudes are related to Hi j and δφ via

h+ = ei j
+HTT

i j /2, h× = ei j
×HTT

i j /2, hS = −δφ/φ0, (3.9)
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here HTT
i j is the transverse-traceless part of Hi j [139]. The polarization tensors are

expressed as

e+i j = m̂im̂ j − n̂in̂ j, e×i j = m̂in̂ j + n̂im̂ j,

eS
i j = m̂im̂ j + n̂in̂ j . (3.10)

Here e+,× and eS represent tensor and scalar polarizations of GW respectively
because under an SO(2) rotation in ΣΩ plane: m̂′ + in̂′ = exp(iθ)(m̂ + in̂), they
behave as e+′ + ie×′ = exp(2iθ)(e+ + ie×) and eS′ = eS.

The scalar SGWB
We expect the presence of the scalar GWwould give rise to a stochastic background
with scalar polarization, which is described by the dimensionless energy density
spectrum:

Ω̃S( f ) =
1
ρc

dρS
d ln f

. (3.11)

In this equation, ρc = 3H2
0/8πG is the critical density to close the Universe with H0

representing the Hubble constant. The energy density of the scalar GW ρS relates
to the scalar stress-energy tensor T µν

S via ρS = T00
S , with

T µν
S =

1
8π

∂LS
BD

∂Hµν
=
ωBD + 2

8πG

(
∂µhS∂νhS −

ηµν

2
∂ρhS∂ρhS

)
. (3.12)

Combining with the field equation ∂2hS = 0 and averaging over several wave length,
we obtain [100]

ρS =
ωBD + 2

8πG
〈
Ûh2
S(x)

〉
(3.13)

Under the assumption that the stochastic background is stationary, isotropic and
Gaussian, the ensemble average of the Fourier transformed amplitude h̃S( f , Ω̂)

satisfies 〈
h̃∗S( f , Ω̂)h̃S( f

′, Ω̂′)
〉
=

5
8π
δ(Ω̂ − Ω̂′)δ( f − f ′)HS( f ). (3.14)

Here h̃S( f , Ω̂) relates to h(t, x) via

hS(t, x) =
∫

d3k
(2π)3

e−iω(k)t+ik·x h̃S + c.c. (3.15)

with ω(k) = |k|/c, and
k = 2π f Ω̂/c (3.16)
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where Ω̂ is the unit vector along the direction of k. The quantity HS is defined as
the spectral density for scalar GW. The factor of 5/8π follows the same convention
in [21, 51].

Under this definition, H̃S is related to the scalar spectral density Ω̃S
GW [Defined in

Eq. (3.11)–(3.13)], via

Ω̃S( f ) = (ωBD + 2)
20π2

3H2
0

f 3HS( f ) . (3.17)

As we shall see later in Sec. 3.5, the quantity HS is directly related to the detectability
of the scalar SGWB [see Eq. (5.1)]. In this way, even though Ω̃S is directly
proportional to the energy density of the scalarwave, detectability of the background,
given the same Ω̃S, still depends on the coupling BD coupling constant ωBD . This
is related to the violation of the Isaacson formula in BD theory [28, 91]. Instead,
following the same convention as Ref. [21], we define a new quantity

ΩS( f ) =
Ω̃S( f )
ωBD + 2

=
20π2

3H2
0

f 3HS( f ) , (3.18)

In the following discussions, we will keep using this redefined energy density
spectrum to describe the scalar SGWB.

3.3 Scalar and Tensor SGWB from Mergers of Compact Binary System
Tensor SGWB from Compact Binary Mergers in BD Theory
In GR, the SGWB has only tensor polarization and the major contribution within
the bandwidth of ground based GW detectors is from the mergers of BBH, with
ΩT( f = 25Hz) ' 1.1 × 10−9 [20]. Besides BBH, the mergers of BNS has a
comparable contribution to the SGWB, with ΩT( f = 25Hz) ' 0.7 × 10−9 [17]. In
BD, we expect the tensor SGWB takes approximately the same value as in GR,
which is predicted from the relation [47, 118]:

P(BD)
T =

2ωBD + 3
2ωBD + 4

P(GR)
T , (3.19)

where P(BD)
T and P(GR)

T denote the power emitted inGWwith tensor polarization from
a system of binary stars in BD and in GR respectively, at the same orbital frequency.
For a large ωBD, we expect the ratio between the two powers is approximately equal
to one. As will be shown later in the next section, in BD most of gravitational
radiation by binary stars is from tensor GW — with scalar radiation suppressed by
ωBD. Consequently, the coalescing trajectory of the compact binary system which is
mainly a result from GW radiation, as well as the spectrum of tensor GW radiation,
is nearly unchanged as in GR.
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Scalar Radiation from a Compact Binary in BD Theory
As for the scalar part, the story is completely different: the contribution to the scalar
SGWB from the mergers of BBH is exactly zero. This is a direct implication from
Hawking’s no scalar-hair theorem of black holes in BD theory of gravity [87]. The
theorem states that for black holes in BD the exterior spacetine geometry is the same
as in GR and the scalar field φ takes a constant value. Since hS = 0 everywhere,
there is no scalar GW radiation from the merger of BBH.

On the other hand, the no scalar-hair theorem does not forbid scalar GWs emitted
from mergers of BNS. Within the bandwidth of ground based GW detectors, the
background is mainly from the inspiral stage, since BNS merger frequency is above
2 kHz [17]. The power of scalar GW emission from inspiraling binary systems has
been studied in [47, 118]. Contrary to the tensor case, the scalar GW has monopole
and dipole radiations in addition to quadrupole radiation. In the limit of vanishing
eccentricity e → 0 (this assumption should be valid since the orbital angular mo-
mentum should have been radiated away from GW emission for coalescing binary
systems as they enter the band of ground-based detectors) the scalar energy spectrum
for the monopole radiation ( j = 0) is negligible (binary systems with circular orbit
have no monopole moment), while the dipole ( j = 1) and quadruple ( j = 2) are
given by

dE j=1
S

df
=

1
ωBD + 2

5
48

(
BE1
m1
−
BE2
m2

)
m1m2

m1 + m2
f −1

dE j=2
S

df
( f ) =

1
ωBD + 2

(πG)
2
3

36
m1m2

(m1 + m2)
1
3

f −
1
3 . (3.20)

Here f represents the frequency of GW, m1 and m2 the masses of the two neutron
stars in the binary system. The energy spectrum is derived from the relation to
the power: dE j

S/df = P j
S/
Ûf , where we adopt the power of scalar GW emission P j

S
calculated by Brunetti et al. [47]. In the limit of e→ 0, the orbital frequency F and
the GW frequency f are related by f = jF for j = 1, 2. The rate of change of the
orbital frequency due to GW emission is the same as in GR [110]:

ÛF =
48π 8

3 G
5
3

5
m1m2

(m1 + m2)
1
3
(2F)

11
3 (3.21)

In Eq. (3.20), BE represents the binding energy of neutron stars and we adopt the
model by Lattimer and Prakash [97], which reads

BE
m
'

0.6 β
1 − 0.5 β

, (3.22)
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where β = Gm/R with R denoting the radius of the neutron star.

Scalar SGWB from Compact Binaries in BD Theory
The energy density spectrum of the produced SGWB can be obtained from the
emission spectrum of a single BNS merger event via [20, 123]

Ω
j
S( f ) =

1
ωBD + 2

f
ρc

∫ zmax

0
dz

Rm(z)
dE j

S
df ( fz)

(1 + z)H(z)
, (3.23)

where fz = (1+ z) f is the frequency at emission. Note that the factor of 1/(ωBD+2)
is from the definition of Eq. (5.31). Here we adopt the ΛCMD cosmological model,
with

H(z) = H0[ΩM(1 + z)3 +ΩΛ]1/2, (3.24)

where the Hubble constant H0 = 70km/s Mpc, ΩM = 0.3 and ΩΛ = 0.7. The
redshift cutoff is chosen as zmax = 10. In Eq. (3.23), Rm(z) is the BNS merger rate
per comoving volume at redshift z. We adopt the same merger rate as in [17], which
is expressed as

Rm(z) = Rm(0)

∫ tmax
tmin

dtd R f [z f (z, td)]p(td)∫ tmax
tmin

dtd R f [z f (0, td)]p(td)
. (3.25)

Here, td denotes the time delay between formation and merger of BNS and p(td) is
its probability distribution function. We assume p(td) ∝ 1/td for tmin < td < tmax,
with tmin = 20 Mpc and tmax equal to the Hubble time H−1

0 . The BNS formation rate
R f (z) is assumed to be proportional to the star formation rate (SFR): R f (z) ∝ Ûρ∗(z).
As in [17, 20] we adopt the GRB-based SFR model given in [142], which is inferred
from observed gamma-ray burst data at high redshift [93]. The local BNS merger
rate is inferred from GW170817 [15] with Rm(0) = 1540 Gpc−3yr−1, and z f (z, td)

is the redshift at the binary formation time t f = t(z) − td , with t(z) the age of the
Universe at merger.

In Eq. (3.23), the energy spectrum is given by Eq. (3.20) with the observed GW
frequency f replaced by the frequency at emission fz. The frequency cutoff is at the
innermost stable circular orbit (ISCO) [153]: fmax = fISCO ' 4400/(m1 + m2) Hz,
with the mass in the unit of M�. As in [17], the neutron star masses m1 and m2 in
the binary are assumed to follow a uniform distribution ranging from 1 to 2 M�. We
adopt the neutron star mass-radius relation from the baseline model of Steiner et al.
[136]. Within our range of m, the radius is around R ≈ 12 km.
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Figure 3.1: The scalar SGWB from compact binary systems. The yellow curve is
the contribution from mergers of BNS with j = 1, at low frequencies it follows a
power law of f 0. The blue curve is the contribution from mergers of BNS with
j = 2, at low frequencies it follows a power law of f 2/3. The green curve is the total
BNS scalar SGWB. The mergers of BBH has no contribution to the scalar SGWB,
which is a direct consequence of Hawking’s no scalar-hair theorem [87].

We show the resulting scalar SGWB inFig 3.1. Note that the energy density spectrum
ΩS we have chosen to use scales with the BD parameter as ΩS ∝ (ωBD + 2)−2. For
BNSmergers, we predict (ωBD+2)2 Ω j=1

S ( f = 25Hz) = 1.1×10−11 with a power law
of f 0 at low frequencies and (ωBD+2)2 Ω j=2

S ( f = 25Hz) = 6.0×10−11 with a power
law of f 2/3 at low frequencies. For f > 10Hz, the dipole ( j = 1) contribution to
the scalar SGWB is much less than the quadrupole ( j = 2), which is a consequence
from the small asymmetry between the two neutron stars in the binary system. Also,
as discussed earlier BBH has no contribution to the scalar SGWB.

3.4 Scalar SGWB from Stellar Gravitational Core Collapse
It is well known that massive stars end their lives through gravitational core collapse.
In GR, stellar core collapses only contribute a minor fraction to the total SGWB.
For example, Crocker et al. [67] predict an SGWB from the black hole ringdown
following the collapse withΩT( f = 25Hz) ' 2×10−12, (Fig. 6 of [67], model 2& 3).
In [48] Buonanno et al. predict the background from the neutrino burst associated
with the core collapse withΩT( f = 25Hz) ' 1×10−13, (Fig. 1 of [48], the optimistic
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model). The small contribution to the SGWB given the greater event rate of stellar
collapses compared to binary mergers can be explained by the fact that in GR, the
tensor GWs are emitted through secondary effects of stellar collapse: only the small
asymmetry in the collapse gives rise to a non-zero quadrupole moment.

Scalar Emission from Gravitational Core Collapse
However, we expect a different picture in BD: the scalar GW emission starts from
the monopole order, which indicates even the perfectly spherical collapses are able
to emit scalar GW. Further, the progenitors of collapse are sources of the scalar field,
with a monopole moment proportional to m/(2ωBD + 4) [132]. As the progenitor
collapses, this scalar monopole is radiated away. In this way, the scalar GW is
dominated by the memory effect at low frequencies [71]: the scalar GW slumps
from a nonzero initial value hiniS to a zero final value if the collapse remnant is a
black hole or a different nonzero final value if the remnant is a neutron star. The
change in the amplitude of the scalar field is expressed as [71]:

∆hi j =


−

1
ωBD + 2

G m
r

eSi j black hole remnant

−
1

ωBD + 2
G(m − mNS)

r
eSi j neutron star remnant

. (3.26)

Here, m and mNS represent the mass of the progenitor and the mass of the remnant
neutron star, respectively.

As discussed in [71], for ground-based GW detectors, most of the detection band is
dominated over by the memory as the “zero-frequency limit". The resulting scalar
energy spectrum from the memory effect is

dES
df
=

G [m − mNSΘ(MBH − m)]2

ωBD + 2
Θ(m − MC)Θ( fcut − f ), (3.27)

where MC is the minimum mass for the progenitor to end its life via core collapse
and MBH is the mass threshold above which the final product from collapse is a
black hole instead of a neutron star. As suggested in [134], we choose MC = 8M�
and MBH = 25M�. The NS mass is chosen as MNS = 1.4M�. The cutoff frequency
of the memory effect is fcut ' 1/τc, where the collapsing time is approximated from
the Oppenheimer-Snyder model [119]:

τc ' Gm
π√

8β3(1 − 2β)
, (3.28)
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where β is the same as in Eq. (3.22). Here we choose β = 0.1 for the progenitor as
in [71, 132].

Scalar SGWB from Core Collapse
From the individual energy spectrum, the total scalar SGWB energy density spec-
trum can be obtained using knowledge of collapse rates throughout the age of the
universe [67],

ΩS( f ) =
1

ωBD + 2
f
ρc

∫ zmax

0
dz

∫ Mmax

MC

dm
dRc

dm (z,m)
dES
df ( fz,m)

(1 + z)H(z)
. (3.29)

In this equation, Mmax is the upper limit of massive stars and here we choose
Mmax = 100M� reference. The energy spectrum is from Eq. (3.27) and the other
parameters are the same as in Eq. (3.23). The collapse rate density dRc/dm (the
number of collapses per unit proper time, per unit co-moving volume and per
progenitormass) is related to the Star FormationRate (SFR) and initialmass function
ξ via [77, 152]

dRc

dm
(z,m) =

Ûρ∗(z)ξ(m)∫ Mmax
Mmin

dµ µ ξ(µ)
. (3.30)

Here we use the same SFR as in Section III, and choose the Salpeter IMF: ξ(m) ∝
m−2.35, with Mmin = 0.1M� and Mmax = 100M� [142]. The total merger Rc(z)

rate between MC and Mmax together with the BNS merger rate Rm(z) are shown in
Fig 5.1.

In Fig. 5.3, we show the resulting scalar SGWB from core collapse. Same as
the BNS scalar SGWB, the predicted energy density spectrum scales with the BD
parameter as ΩS ∝ (ωBD + 2)−2. At the reference frequency, (ωBD + 2)2 ΩS( f =

25Hz) = 2.8 × 10−6. At frequencies below ∼ 40Hz, ΩS follows a power law of
f α, with α = 1. Note that the core collapse scalar SGWB is around four orders
of magnitude greater than BNS mergers. This difference can be accounted for by
considering two factors. First, the collapse rate is much larger than the merger rate:
at their peak values Rc ' 106 Gpc−3yr−1 and Rm ' 5× 103 Gpc−3yr−1. Second, the
energy emitted from scalar GW radiation for a single collapse event is much larger
than a merger event: notice that ES ∝ m2, for mergers m ∼ 1M� and for collapses
m ∼ 10M�.

In Table 3.1 we summarize the energy densities of SGWB with scalar polarization
from varied sources, compared with the tensor SGWB.
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Figure 3.2: Comparison between the BNS merger rate Rm(z) and the core collapse
rate Rc(z).

ΩT ( f = 25Hz) (ωBD + 2)2ΩS( f = 25Hz)
BBH 1.1 × 10−9 [20] 0
BNS 0.7 × 10−9 [17] 7.1 × 10−11

Collapse 2 × 10−12 [67] 2.8 × 10−6

Table 3.1: Energy density of tensor and scalar SGWB at 25Hz, from various origins.

Model dependence of the Core Collapse Scalar SGWB
In this section we want to explore the influence to the core collapse scalar SGWB
from alternative models. From now on we refer the model described in Section IV
as the Baseline model. More specifically, we consider four alternative models that
follow.

(i) The TimeDelaymodel. In this model we take into account the time delay between
the formation of a massive star and its core collapse. In this case, the collapse rate
is modified as

dRc

dm
(z,m) =

∫ tmax
tmin

dtd Ûρ∗[z f (z, td)]ξ(m)p(td)∫ Mmax
Mmin

dµ µ ξ(µ)
. (3.31)

With the other parameters the same as in Eq. (3.30), we assume the distribution as
p(td) = δ(td−T(m)), withT(m) the lifetime of a star withmassm. In addition, we use
the relation T(m) = T�(m/M�)−2.5 for main sequence stars, with M� representing
the solar mass and T� = 104 Myr.
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Figure 3.3: Red curve: The scalar SGWB from core collapse. Themodel parameters
are given in Section IV. Green curve: The scalar SGWB from BNS merger, which
is a sum of j = 1 and j = 2 radiation. The model parameters are given in Section
III.

(ii) The AltSFR model. In the baseline model we adopt an SFR model which is
based on the GRB rate. In the AltSFR model we consider an alternative SFR model
[142], which based on the luminosity of star-forming galaxies [36]. This model is
more conservative than the GRB-based SFR at high redshifts. We compare the two
SFR models in Fig. 5.4.

(iii) The BHonlymodel. In this model we only consider the scalar SGWB from core
collapses into BHs. In this case the scalar energy spectrum is given by

dES
df
=

G m2

ωBD + 2
Θ(m − MBH)Θ( fcut − f ), (3.32)

where the BH mass threshold MBH and the cutoff frequency fcut are the same as in
the Baseline model.

(iv) The HighMass model. To reflect the recent observations of massive stars with
M ∼ 200−300M� [68], we replace the mass upper limit Mmax to 200M�, with other
parameters remaining the same.

We show the scalar SGWB from the alternative models in Fig. 3.5. We can see
that TimeDelay and AltSFR have negligible influence on the background inside the
detection band of ground-based detectors. The BHonly and HighMass alter the
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Figure 3.4: Comparison between the GRB-based SFR and the Luminosity-based
SFR.

background in low and high frequencies respectively. At the reference frequency
f = 25 Hz, HighMass predicts a value of ΩS that is 1.1 times the Baseline value,
while BHonly predicts 0.7 the baseline value. At this frequency, the impact from
TimeDelay and AltSFR to the scalar SGWB spectra is less than 1%. At frequencies
below ∼ 10Hz, the HighMass model predicts somewhat higher ΩS, due to contri-
butions from collapses of higher-mass objects. At frequency f > 100 Hz, the only
non-negligible change to the spectrum is from the BHonly model. This is because
the stars which collapse into NSs have lower mass compared to those collapse into
BHs. The cut-off frequency in Eq. 3.32 is related to the collapsing time in Eq. 3.28
which is shorter for collapsing stars with lower mass. As a result, the high frequency
part of the spectrum is depressed from the missing low mass progenitors.

3.5 Detectability
Since the dominant contribution to the scalar SGWB in BD theory is from the core
collapses, in this section we will focus on the scalar background predicted by the
baseline core collapse model as described in Section IV.

A resent analysis [21] based onAdvancedLIGO’s first observing run (O1) has put the
first upper limit on the scalar SGWB, with ΩS( f = 25Hz) < 1.1 × 10−7. Compared
with our prediction (ωBD + 2)2 ΩS( f = 25Hz) = 2.8 × 10−6, it is straightforward
to obtain ωBD > 3. Much better upper limits are expected since the O1 data only
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Figure 3.5: The scalar overlap reduction function γS for LIGO/Voyager and Einstein
Telescope.

includes an observation time of four months and the detectors are running below the
designed sensitivity.

Next we want to explore the detectability from Advanced LIGO at its designed
sensitivity and the planed future ground based GW detectors. The optimal signal-
to-noise ratio (SNR) for the scalar SGWB between a pair of detectors is given by
[51, 113]

SNR =
3H2

0
10π2

√
2T

(∫ ∞

0
df

γS( f )2ΩS( f )2

f 6P1( f )P2( f )

)1/2

, (3.33)

where P1,2( f ) are the detectors’ noise spectral density and γS( f ) is the scalar overlap
reduction function between the detectors [100]. Here we recall that it was the choice
we had made in Eq. (5.31) for ΩS that would lead to this expression for the SNR,
which is similar to that for a tensor gravitational wave background.

Here we consider the design sensitivity of Advanced LIGO [27] and the planed
sensitivities of LIGO Voyager [2] and Einstein Telescope (ET) [129]. The scalar
overlap reduction function between the detectors at Hanford and Livingston is cal-
culated in [51, 113], here we adopt the normalization convention as [51]. Voyager
has the same overlap reduction function as LIGO. The co-located ET detectors have
a constant γS = −1/16 for f < 1000Hz (see Appendix for more details). These
overlap reduction functions are shown in Fig. 3.6. Note that our γS for LIGO is
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Figure 3.6: The scalar overlap reduction function γS for LIGO/Voyager and Einstein
Telescope.

one half of [51], which is due to the fact that, as explained in Section II, only the
breathing (traverse) and no longitudinal part of the scalar polarization exist in BD
theory.

We show the maximal detectable ωBD for LIGO, Voyager and ET to reach an SNR
threshold of 3 in Table 3.2 with observation times of 1 year and 5 years — and in
Fig. 3.7 for a range of observation times. With 5-year integration, to reach SNR > 3
at ET, the BD parameter should be no less than 264. On the other hand, the current
cosmological constraints on BD set ωBD > 692 [33] and the solar system data from
the Cassini mission put a stronger constraint that ωBD > 40000 [42, 146].

T LIGO Voyager ET
1 yr 10.8 54.1 175.8
5 yrs 17.1 81.8 263.8

Table 3.2: Maximal detectable BD parameter ωBD to reach an SNR threshold of 3
from the scalar SGWB with observation times of 1 year and 5 years.

3.6 Conclusions and Discussions
In this paper, we studied the scalar SGWB in BD theory, from astrophysical sources,
in particular compact binary mergers and stellar collapses. Unlike the tensor SGWB
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from the scalar SGWB as a function of observation of time.

in GR, we found that the scalar SGWB in the BD theory is dominated by stellar
collapses, by roughly 4 orders of magnitude, over compact binary mergers. We have
attributed this dominance to the higher rate of gravitational collapses than binary
mergers, as well as the fact that scalar radiation does not require asymmetry.

Further more, scalar radiation from stellar collapses, in the LIGO band, is mainly
dominated by the memory wave — as pointed out in an earlier paper [71]. Since
the memory wave has a simple frequency dependence of h( f ) ∼ 1/ f , this has lead
to a ΩS( f ) ∝ f , which differs from the tenor SGWB, which as ΩT ∝ f 2/3.

For the dominant stellar-collapse scalar SGWB, we have studied a range of models,
which had lead to consistent predictions, with the most significant uncertainty lying
at low frequencies: up to within 30% at f = 25 Hz, mainly due to possible existence
of heavier stars and the exclusion of the collapses whose remnant are NSs.

Upon obtaining the SGWB, we have estimated the detectability for current and
future detector networks. It is estimated that 3rd-generation ground-based detectors
can pose upper limit for ωBD around ∼ 300.

The potential bound for ωBD from our calculation is low compare with solar-system
bounds, and somewhat lower than cosmological bounds, this nevertheless provides
an independent test. More importantly, having established that the scalar SGWB
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mainly arise from stellar collapses, we can further investigate other models that lead
to scalar radiations, e.g., scalar-tensor theories inwhichω(φ) depends on the value of
φ instead of being a constant. Aswe had shown inRef. [71], in suchmodels the scalar
memory, which dominates scalar radiation during collapse, can be significantly
enhanced by such dependencies through scalariation [69], therefore might lead to
much stronger SGWB enhanced by several orders of magnitude [85, 117]. In this
case, we expect a considerable increase in the detectability from the current and the
next generation of detectors. We leave these for further studies.
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3.8 Appendix A: Scalar Overlap Reduction Function For Einstein Telescope
In this appendix we calculate the scalar overlap reduction function γS( f ) for Einstein
Telescope (ET). The configuration of ET is shown in Fig. 3.8. The coordinate system
for the detectors are 

x̂ = (1, 0, 0)

ŷ = (0, 1, 0)

ẑ = (0, 0, 1)

(3.34)

In this coordinate system, the unit vectors for the ET detector arms are

l̂11 = x̂, l̂12 =
1
2

x̂ +

√
3

2
ŷ,

l̂21 = −
1
2

x̂ +

√
3

2
ŷ, l̂22 = −l̂11,

l̂31 = −l̂12, l̂32 = −l̂21, (3.35)

The detector tensors for ET are express by

Di j
a =

1
2
(l̂i

a1 l̂ j
a1 − l̂i

a2 l̂ j
a2), (3.36)

where a = 1, 2, 3.
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Figure 3.8: Configuration of Einstein Telescope.

Suppose the GW is propagating along the angle (θ, φ), the GW coordinate system
can be constructed as

m̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ

n̂ = − sin φ x̂ + cos φ ŷ

Ω̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ

(3.37)

Then the angular pattern functions for scalar polarization are [28, 113]

FS
a (Ω̂) =

∑
i j

Di j
a ei j

S , (3.38)

where the scalar polarization tensor ei j
S are given in Eq. (3.10). It is straightforward
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to find that

FS
1 (Ω̂) =

1
8

sin2 θ(−3 cos 2φ +
√

3 sin 2φ)

FS
2 (Ω̂) =

1
8

sin2 θ(3 cos 2φ +
√

3 sin 2φ)

FS
3 (Ω̂) = −

√
3

4
sin2 θ sin 2φ (3.39)

The scalar overlap reduction function is defined as [51, 113]

γSab( f ) =
5

8π

∫
dΩ̂ e2πi f Ω̂·∆xFS

a (Ω̂)F
S
b (Ω̂). (3.40)

Here we use the same normalization as [51]. For ET, the separation |∆x | is equal
to the arm length d = 10 km. Hence, for f < 103 Hz, the exponential function
e2πi f Ω̂·∆x ' 1. In this case,

γS12 =
5

8π

∫ π

0
dθ

∫ 2π

0
dφ

[
−

3
64
(1 + 2 cos 4φ) sin5 θ

]
= −

1
16
. (3.41)

Similarly, we can show γS23 = γ
S
31 = −1/16 for f < 103 Hz.
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C h a p t e r 4

A GREEN’S FUNCTION APPROACH TO GRAVITATIONAL
WAVE ECHOES

Gravitational wave astronomy provides an unprecedented opportunity to test the
nature of black holes and search for exotic, compact alternatives. Recent studies
have shown that exotic compact objects (ECOs) can ring down in a manner sim-
ilar to black holes, but can also produce a sequence of distinct pulses resembling
the initial ringdown. These “echoes” would provide definite evidence for the exis-
tence of ECOs. In this work we study the generation of these echoes in a generic,
parametrized model for the ECO, using Green’s functions. We show how to re-
process radiation in the near-horizon region of a Schwarzschild black hole into the
asymptotic radiation from the corresponding source in an ECO spacetime. Our
methods allow us to understand the connection between distinct echoes and ringing
at the resonant frequencies of the compact object. We find that the quasinormal
mode ringing in the black hole spacetime plays a central role in determining the
shape of the first few echoes. We use this observation to develop a simple template
for echo waveforms. This template preforms well over a variety of ECO parameters,
and with improvements may prove useful in the analysis of gravitational waves.

4.1 Introduction
The existence of event horizons is one of the most astonishing predictions of Gen-
eral Relativity. Horizons generically [137] form during the gravitational collapse of
classical matter and are expected to be common occurrences in our universe. Obser-
vations of black holes are undergoing a revolution, with the advent of gravitational
wave astronomy [3–5, 7] and the promise of very-long-baseline radio observations
of supermassive black holes by the Event Horizon Telescope [76, 92]. While black
holes are consistent with all electromagnetic and gravitational wave observations to
date [5–7, 148, 150], no experiment has been able probe spacetime near the event
horizon [26, 53, 75]. Moreover, the event horizon is at the heart of the BH informa-
tion paradox [141], and the role of black holes in a quantum theory of gravity is an
open question.

These puzzles have inspired proposals for horizonless alternatives to black holes
including gravastars [107], boson stars [130], wormholes [111], fuzzballs [105] and
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others [34, 35, 90]. Many of these exotic compact objects (ECOs) can be ruled out on
theoretical grounds. ECOs with angular momentum often suffer from a superradiant
instability, although this instability can quenched by tuning the compactness and
other parameters describing the ECO [89, 99]. Cardoso et al. [55] have conjectured
that any ECO with an unstable photon orbit may suffer from nonlinear instabilities.

While the gravitational wave astronomy has the potential to probe black holes (BHs)
like never before [148], distinguishing BHs from highly compact ECOs will be
difficult. The problem is that astrophysical processes are usually insensitive to
the spacetime geometry near the horizon, and highly compact ECOs behave very
similarly to BHs [26]. Attempts to distinguish merging BHs from merging ECOs
using inspiral waveforms are plagued by the strong equivalence principal, which
means that the properties of extended self-gravitating bodies only appear in the
equations of motion at high post-Newtonian order. Nonetheless, several promising
studies [59, 102] predict tidal distortion and tidal heating effects will allow LISA
[30] to distinguish merging black holes from highly compact, merging ECOs (see
also e.g. [95, 122] for tests incorporating inspirals).

Spacetime near the event horizon has an especially interesting effect on the ring-
down waveform of the merging objects. Standard tests of the nature of the final
merged object call for the black hole’s resonant frequencies [37, 114], known as
quasinormal mode (QNM) frequencies, to be extracted from the ringdown portion
of the waveform and compared to theoretical calculations [38, 41, 70, 120, 149].
Working in the test particle limit, Cardoso et al. [57] pointed out that in the case
of highly compact wormholes, the ringdown of the final ECO is initially nearly
identical to that of a BH despite the fact that QNM spectrum is radically changed
[63, 115, 121]. A naive application of the QNM based tests would be fooled by a
highly compact ECO.

However, Cardoso et al. [57] also realized that the later portion of the ringdown
of highly compact ECOs contains a train of decaying echo pulses. The time delay
between the echoes is related to the ECO compactness while the decay and shape of
each pulse encodes the reflective properties of the ECO.

Further work established that this picture was robust across many different ECO
models with many different test particle sources, but breaks down for less compact
ECOs, which sometimes have ringdowns consistent with the resonant frequencies of
the ECO [58, 126]. Price and Khanna conjectured that the echoes can be considered
as a superposition of the resonant modes of the ECO [126]. Volkel and Kokkaotas
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[143] then provided a method for inferring the exact details of the ECO model from
the ECO modes. Namely, they demonstrated that the effective scattering potential
experienced by the gravitational waves could be approximately reconstructed with
a knowledge of ECO spectrum.

Recently, it has been proposed that LIGO has observed echoes in the binary black
hole waveforms [23, 25]. While there has been much skepticism in the community
[32], such tests will only become more definitive as LIGO accumulates binary
merger observations.

Most of the past studies have been in the context of a particular ECO model, using
specific orbits for the merging objects. The goal of this work is explicitly relate
waveforms from black holes to waveforms from ECOs. We study evolution of test
scalar fields as a proxy for gravitational perturbations, which allows us to replace
a generic ECO with simple reflecting boundary conditions in a BH spacetime. We
use this formalism to show that the ECO waveform can be understood either as a
superposition of echo pulses or as a superposition of ECO modes and illustrate the
types of behavior that can arise. We investigate which features of the BHwaveforms
shape the first few echoes, leading to a simple template for the ECO waveform.

In Sec. 4.2we review the basic equations obeyed by the scalar field. We parameterize
(completely) the influence of the ECO on scalar waves in the exterior vacuum
region by a complex frequency-dependent reflectivity (a slight generalization of the
models used in [89, 99, 112]). In Sec. 4.2 we relate the ECO and BH waveform by
determining the relationship between the ECO and BH Green’s function. We find
that the ECOwaveform can be constructed from the BHwaveform and a reprocessed
version of the waveform observed on the BH horizon. In Sec. 4.3 we show how the
extra piece of the ECO waveform can be expressed as sum of echoes. In Sec. 4.4
we discuss the relationship between the ECO QNMs and the BH QNMs and study
the ECO mode spectrum numerically for two particular ECO models. In Sec. 4.4
and Sec. 4.4, we show how the difference between the ECO waveform and the
BH waveform can be expressed as a superposition of ECO modes. In Sec. 4.5 we
determine general properties of the individual echoes and develop a simple template
for the ECOwaveform. We also study the energy in the ECOwaveform, discovering
a simple relationship to the energy in the black hole waveforms reaching infinity
and passing through the horizon.

During the final stages of this work, we learned of the work of Nakano et al. [112],
who discussed gravitational perturbations in the Kerr spacetime and arrived at a
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similar expression for ECO waveforms by different means.

4.2 Waves near a compact object
Wave Equation and Boundary Conditions
We focus on static, spherically symmetric exotic compact objects. In this setting,
an ECO consists of an exterior Schwarzschild spacetime patched to a spherically
symmetric interior metric at an areal radius r = r0.

We study a massless scalar field Φ(xµ) that obeys the sourced, curved spacetime
wave equation,

�Φ = −ρ . (4.1)

If we define the scalar ψ(xµ) = rΦ and decompose this scalar into frequency and
spherical harmonics [60],

ψ(xµ) =
∫ ∞

−∞

dω
2π

∑̀
,m

ψ̃`m(ω, r)Ỳ m(θ, φ)e−iωt , (4.2)

ρ(xµ) =
∫ ∞

−∞

dω
2π

∑̀
,m

ρ̃`m(ω, r)Ỳ m(θ, φ)e−iωt , (4.3)

then the wavefunctions ψ̃`m obey the following radial equation,

d2ψ̃`m

dx2 +
(
ω2 − f V

)
ψ̃`m = S̃ , (4.4)

S̃(ω, x) ≡ −r(x) f ρ`m(ω, x) . (4.5)

Here x is the usual tortoise coordinate, defined through

dx
dr
=

1
f (r)

, (4.6)

while the metric component f (r) and the potential V(r) depend on the particular
spacetime. In the exterior, Schwarzschild portion of the spacetime,

f = 1 −
2M
r
, V =

`(` + 1)
r2 +

2M
r3 , (4.7)

and we treat f and V as implicit functions of x through r(x), with

x = r + 2M ln
(
r − 2M

M

)
. (4.8)

From here we suppress the harmonic indices (`,m).
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The scalar field ψ̃ obeys an outgoing wave boundary condition ψ̃ ∼ eiωx as x →∞.
In addition, it obeys a boundary condition inside the ECO, such as regularity at
r = 0. For wormholes, one would instead insist that the waves were outgoing at null
infinity on the other side of the throat.

When the ECO is very compact, r0/(2M) − 1 � 1, and all sources are restricted
to reside in the Schwarzschild portion of the spacetime, we may replace the second
boundary condition with a reflecting boundary condition at the ECO surface r0.
Namely, near the ECO the potential is small, V ≈ 0, and ψ̃ is a linear combination
of ingoing and outgoing waves e±iωx . Therefore near the ECO surface x0 = x(r0),
we must have

ψ̃ ∝ e−iω(x−x0) + R̃(ω)eiω(x−x0) . (4.9)

for some frequency dependent reflectivity R̃(ω).

With this insight, we can studywave emission and propagation in the ECO spacetime
using a Schwarzschild BH equipped with a reflecting boundary, as shown in Fig. 4.1.
This perspective is useful since it allows us to reprocess the emission by test particles
in a BH spacetime into the corresponding emission in the ECO spacetime, by taking
the reflecting boundary into account. From here on we can focus on BH spacetimes,
and compare wave propagation with the usual boundary conditions at the horizon
to the case of a reflecting boundary.

Generating ECO waveforms from BH waveforms
We are interested in computing the scalar waves seen by distant observers in a
BH spacetime with a reflecting boundary. For this we wish to construct the scalar
radial Green’s function g̃ref(x, x′), which obeys the scalar wave equation with a delta
function source,

d2g̃ref

dx2 +
(
ω2 − f V

)
g̃ref = δ(x − x′) , (4.10)

and the reflecting boundary condition (4.9). With the Green’s function, we can
compute the field produced by sources S̃ through integration,

ψ̃(x) =
∫ ∞

−∞

dx′ g̃ref(x, x′)S̃(x′) . (4.11)

We compute g̃ref for sources outside the reflecting boundary, x′ > x0.

To compute g̃ref we first recall how the scattering of waves works in the usual
Schwarzschild spacetime [78]. Consider the two linearly independent, homogeneous
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Exotic Compact Object

Black Hole

Figure 4.1: Top: The boundary conditions for waves propagating on a black hole
spacetime. Bottom: The reflecting boundary conditions for the waves in the exterior
of an ECO.

solutions ψ̃in,

ψ̃in ∼

{
Aout(ω)eiωx + Ain(ω)e−iωx , x →∞ ,

e−iωx , x → −∞ ,
(4.12)

which is purely outgoing at the horizon, and ψ,

ψ ∼

{
eiωx , x →∞ ,

Bout(ω)eiωx + Bin(ω)e−iωx , x → −∞ ,
(4.13)

which is purely outgoing at infinity.

The effective potentialV provides a scattering barrier for waves in the BH spacetime.
Forwaves incident from infinity, inspection of ψ̃in shows that the reflection amplitude
is Aout/Ain and the transmission amplitude is 1/Ain. For our purpose, it is more
convenient to consider the problem of reflection and transmission of waves incident
on V from the left. By inspecting ψ we find that the reflection and transmission
amplitudes for waves from the left are

R̃BH(ω) =
Bin
Bout

, T̃BH(ω) =
1

Bout
. (4.14)
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The relationship between these and the usual reflection and transmission amplitudes
can be derived by noting that Bout = Ain and Bin = −A∗out [78] .

The Green’s function for Schwarzschild, gBH(x, x′), also obeys Eq. (4.10), but with
an ingoing boundary condition at the horizon and an outgoing boundary condition
at infinity. In terms of the homogeneous solutions, it is

g̃BH =
ψ̃in(x<)ψ(x>)

WBH
, (4.15)

where we have defined x> = max(x, x′), x< = min(x, x′), and the Wronskian
WBH = 2iωBout of ψ̃in and ψ.

Since g̃BH and g̃ref both obey Eq. (4.10), we can construct g̃ref by adding a ho-
mogenous solution of the scalar equation, times a free function of x′, to g̃BH. The
homogenous solution must have the correct boundary condition as x → ∞, and so
we use ψ(x). Meanwhile, the free function in x′ is fixed by ensuring that g̃ref obeys
the correct reflecting boundary condition,

g̃ref(x, x′) ∝ e−iω(x−x0) + R̃(ω)eiω(x−x0) . (4.16)

This gives

g̃ref(x, x′) = g̃BH(x, x′) + K̃
ψ(x)ψ(x′)

WBH
, (4.17)

K̃(ω) ≡
T̃BHR̃e−2iωx0

1 − R̃BHR̃e−2iωx0
. (4.18)

This is our first key result. It shows that wave propagation in the presence of the
reflecting barrier is the same as in a BH spacetime, with an additional component
controlled by the transfer function K̃, which contains all the dependence on the
reflectivity R̃.

With the Green’s function in hand, we can compute the waves seen by distant
observers. Again it is useful to first consider a BH spacetime with the usual
boundary conditions. We define the amplitudes of waves seen by distant observers
Z∞BH and of waves at the horizon ZH

BH through

ψ̃BH(x) ∼

{
Z∞BH(ω)e

iωx , x →∞ ,

ZH
BH(ω)e

−iωx , x → −∞ .
(4.19)
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In terms of a given source S̃ with support outside x0, Eqs. (4.11), (4.13) and (4.15)
imply

Z∞BH =
∫ ∞

−∞

dx′
ψ̃in(x′)S̃(x′)

WBH
, (4.20)

ZH
BH =

∫ ∞

−∞

dx′
ψ(x′)S̃(x′)

WBH
. (4.21)

With our definitions, Z∞BH is simply related to the waveformmeasured by asymptotic
observers in terms of the retarded time u = t − x,

ψ∞BH(u) =
∫ +∞

−∞

dω
2π

Z∞BHe−iωu . (4.22)

Similarly, in terms of the advanced time v = t + x, the waveform at the BH horizon
is the Fourier conjugate to ZH

BH,

ψH
BH(v) =

∫ +∞

−∞

dω
2π

ZH
BHe−iωv . (4.23)

Having defined these amplitudes, in the presence of the reflecting boundary we
can use g̃ref from Eq. (4.17) in Eq. (4.11) to compute the asymptotic amplitude
associated with scalar waves ψ̃,

ψ̃ ∼ Z∞refe
iωx , x →∞ . (4.24)

We find that

Z∞ref = Z∞BH + K̃ZH
BH . (4.25)

This is our second key result. It shows that the waveform seen by distant observers
can be understood as the sum of the usual emission in a BH spacetime, along with
an additional signal K̃ZH

BH. This additional emission arises from the reflection of
the radiation which would normally enter the horizon, but is reprocessed by the
transfer function K̃. The power of Eq. (4.25) is that is allows us to compute the total
asymptotic waveform in and ECO spacetime from the corresponding waveforms
observed near infinity and the horizon in a BH spacetime, given a particular choice
of R̃ and x0.

We gain further insight into the nature of the additional emission by expanding K̃
as a geometric series,

K̃ = T̃BHR̃e−2iωx0

∞∑
n=1
(R̃BHR̃)

(n−1)e−2i(n−1)ωx0 . (4.26)



79

Figure 4.2: A conformal diagram illustrating the production of echoes. The wave-
form that impinges on the reflecting boundary at x0 is approximately the same as the
waveform that reaches the horizon in the BH spacetime, ψH

BH(v). Repeated partial
reflections between x0 and the peak of the potential xpeak result in an asymptotic
waveform ψ∞(u) made up of a main burst followed by echoes. Each echo is a
reprocessed version of the waveform on the horizon ψH

BH(v).

This shows that the additional signal takes the form of a series of terms, each repro-
cessing the waves that impinge on the boundary with a different transfer function.
As we show in Sec. 4.3, in many circumstances each term in this sequence results in
a distinct pulse. Figure 4.2 illustrates the propagation of the echoes on a conformal
diagram. The first term is the result of the primary reflection of ψH

BH off of the
boundary at x0, which generates a factor of R̃ along with a phase factor 2iωx0. The
phase factor corresponds to a time delay between the first pulse and the main burst
due the pulse’s extra round trip journey between the boundary at x0 and the peak of
the scattering potential V at xpeak ≈ 0. When the pulse reaches the potential barrier,
it is partially transmitted, contributing the final factor of T̃BH.

The successive terms are “echoes” of this first reflection which bounce an integer
number of times between the potential barrier, contributing a factor of R̃BH, and
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the reflecting boundary, contributing a factor of R̃, before transmitting through
the potential barrier with an additional propagation delay. Note that while the
precise propagation delay of each pulse depends on the phases of T̃BH, R̃BH, and
generically R̃, the delay between echoes is constant starting with the second echo.
With this picture in mind, we define the difference between the waveform and the
corresponding BH waveform to be the echo amplitude

Zecho = K̃ZH
BH . (4.27)

Meanwhile, we can also consider the entire transfer function K̃ given in Eq. (4.18).
This function possesses its own set of resonances, and there is a complementary
perspective where the waves propagating towards the reflecting boundary excite the
modes of a resonant cavity between the boundary and potential barrier. We discuss
this perspective in Sec. 4.4.

4.3 Examples of Echoes
In this section we illustrate the reprocessing of the horizon waveform ψH

BH using
two simple examples: a spacetime with a frequency independent reflectivity R̃ and
a wormhole spacetime. We show that the additional waves appear as a sequence
of echoes when the boundary is far from the peak of the potential barrier, but this
behavior is lost for boundaries closer to the peak.

Individual echoes
The picture of successive echoes is made even more apparent by working in the time
domain. The waveform seen by distant observers is determined through Z∞ref by

ψ∞(u) =
∫ ∞

−∞

dω
2π

Z∞refe
−iωu = ψ∞BH(u) + ψecho(u) , (4.28)

ψecho(u) ≡
∫ ∞

−∞

dω
2π
K̃ZH

BHe−iωu , (4.29)

where we have denoted the additional waveform due to the reflecting boundary
ψecho. For understanding the echoes, it is useful to further split ψecho =

∑
n ψ
(n)
echo

into contributions ψ(n)echo from each term in Eq. (4.26) for K̃,

ψ
(n)
echo(u) ≡

∫ +∞

−∞

dω
2π
K̃ (n)ZH

BHe−iωu , (4.30)

K̃ (n)(ω) ≡ (T̃BHR̃)(R̃BHR̃)
(n−1)e−2iωx0n , (4.31)

which are defined in terms of transfer functions K̃ (n) for each echo.
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Figure 4.3: The frequency domain ` = 2 black hole reflectivity |R̃BH | and transmis-
sivity |T̃BH |. We also plot the magnitude of the rescaled transfer functions |K̃ (n) |/R̃n

for a boundary with constant reflectivity, for n = 2, 3, 10 and 11.

In the time domain, the reflection and transmission amplitudes are given by response
functions

RBH(t) =
∫

dω
2π
R̃BH(ω)e−iωt , (4.32)

and similarly for TBH(t), R(t), and K(t).

To derive the expression for the echoes, recall that multiplication of two functions
f̃ (ω) and g̃(ω) in the frequency domain corresponds to convolution ( f ∗ g) in the
time domain, where

( f ∗ g)(t) =
∫ ∞

−∞

dτ f (t − τ)g(τ) . (4.33)

With this notation the first echo is

ψ
(1)
echo(u) = [K

(1) ∗ ψH
BH](u)

= [(TBH ∗ R) ∗ ψ
H
BH](u + 2x0), (4.34)

where K (n) is the Fourier conjugate to K̃ (n), ψH
BH is the Fourier conjugate to ZH

BH,
and recall that x0 is negative for boundaries near the horizon. For the successive
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Figure 4.4: The ` = 2 scalar reflectivity and transmissivity of the potential barrier,
calculated numerically in the time domain.

echoes,

ψ
(n)
echo(u) =[K

(n) ∗ ψH
BH](u)

=[(TBH ∗ R) ∗ (RBH ∗ R) ∗ . . .

∗ (RBH ∗ R) ∗ ψ
H
BH](u + 2nx0) . (4.35)

where there are n − 1 convolutions of (RBH ∗ R) with ψH
BH.

We calculate the BH response functionsRBH and TBH both in the time and frequency
domain using numerical methods described in Appendix 4.8. The blue and red
dashed curves in Fig. 4.3 show R̃BH and T̃BH in the frequency domain for the ` = 2
scalar wave equation1. As expected [52, 78, 144], at low frequencies compared to
the size of the potential peak (Mω)2 � Vp, waves are completely reflected,

|T̃BH(ω)| → 0, |R̃BH(ω)| → 1, (4.36)

1 From their definitions, T̃BH = 1/Bout and R̃BH = Bin/Bout possess resonances (poles) at the
complex BH QNM frequencies [39]; however these resonances do not manifest themselves as clearly
separated peaks on the real ω axis since the width of the QNM resonances is large compared to their
spacing.
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while at high frequencies (Mω)2 � Vp waves are completely transmitted

T̃BH(ω) → 1, |R̃BH(ω)| → 0, (4.37)

The transition between the two regimes occurs at approximately the real part of the
` = 2 fundamental BH QNM frequency

MΩ = MΩR + iMΩI ≈ 0.48 − 0.10i , (4.38)

since Vp ≈ (MΩR)
2.

Figure 4.4 shows RBH and TBH in the time domain. Both response functions ring
down at the BH QNM frequency Ω. As is explained in the appendix, the high
frequency behavior for T̃BH implies that in the time domain TBH(t) contains a δ(t)
singularity at t = 0, which is subtracted off in the figure.

Using the echo response functions computed from T̃BH and R̃BH, we now study the
echo morphology from a variety of ECOs. When presenting numerical results, we
use units so that the mass of the BH spacetime is unity, M = 1, and when we discuss
a particle with scalar charge q we also set q = 1.

Frequency Independent Reflectivity
The simplest type of boundary condition in this model is a frequency independent
reflectivity R̃. In this case, the echoes have a straightforward dependence on the
ECO parameters R̃ and x0. The reflectivity factors out of the response functionsK (n)

and controls the size of each echo, without contributing any phase factors. Thus the
majority of the time delay between echoes is due to the phase 2ωx0, corresponding
to a round trip journey from the potential peak near x ≈ 0 and the boundary at x0,
with only a small contribution from the BH scattering coefficient R̃BH.

The shape of each echo is described by the rescaled response functions

e2iωx0nK̃ (n)(ω)/R̃n = T̃BH(ω)R̃BH(ω)
(n−1) , (4.39)

which we show in Fig. 4.3. Recall that |T̃BH | is approximately zero low frequencies
and approximately one at large frequencies, while the opposite is true for |R̃BH |. This
behavior produces a small window of frequencies where the second echo response
function is nonzero. The third echo response comes from the multiplying the second
echo response function by R̃BH; this results in a smaller slightly shifted window of
frequencies. This pattern repeats with each subsequent response function. However,
as the window shifts to the left, |R̃BH | → 1 and so the change in absolute value of
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Figure 4.5: The constant reflectivity ` = 2 echo response functions K (n) for n = 2
and 3 (top) and n = 10 and 11 (bottom). We divide the response functions by R̃n to
rescale them and time shift each by 2n|x0 | so they overlap.

the transfer functions slows, so that there is very little difference between 10th and
11th echoes.

In the time domain, the rescaled response functions in Eq. (4.39) are time shifted to
remove the delay between echoes due to the factor of e2iωx0n. Figure 4.5 shows the
rescaled and shifted time domain echo response functions, obtained by numerically
performing the convolutions on TBH and RBH. Each transfer function goes to zero
at early times and is a decaying sinusoid at late times. The complex frequency of
the sinusoid is nearly the fundamental QNM frequency Ω for the first few echoes,
while for later echoes the decay time gets longer and the oscillation frequency gets
slightly smaller.

Similar trends are seen in the echoes themselves. The waveforms at both infinity
and on the horizon depend on our particular choice of sources and initial data. As an
illustration throughout this paper, we consider the echoes produced by a test particle
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with unit scalar charge following an orbit that we refer to as the ISCO plunge orbit.
This orbit is a geodesic that spirals inward from the innermost stable circular orbit
(ISCO), with the ISCO energy and angular momentum, and reaches the horizon at
an advanced time vH. We select this orbit since it is a reasonable model for the
ringdown portion of the scalar waveform for orbits that have been circularized prior
to reaching the ISCO radius, by a mechanism such as radiation reaction [84]. We
use a numerical Green’s function to generate the waveform from this source, which
we subsequently window at early times so it smoothly starts from zero. Details on
the entire procedure are found in Appendix 4.9.

Since our method is to reprocess waveforms from BH spacetimes, our formalism
cannot capture the emission in an actual ECO spacetime after the particle passes x0.
Namely, Eq. (4.17) for g̃ref can only be used when the source is outside x0, but we use
Eq. (4.17) for all source locations. Using a particular ECO model, this additional
radiation could be added directly to our waveforms, with only a small remaining
inaccuracy due to the suppressed emission in our waveforms as the particle travels
from x0 to the horizon.

Figures 4.6 and 4.7 show the (`,m) = (2, 2) horizon waveform and select echoes
in the time domain from the ISCO plunge. At early times the horizon waveform
frequency is ω = mΩISCO, where ΩISCO is the ISCO orbital frequency, and at late
times there is a ringdown at the fundamental BH QNM frequency. The echoes
also display a highly suppressed oscillation at ω ≈ mΩISCO at early times and
then asymptote to decaying sinusoids at late times. The complex frequency of
the sinusoid displays the same qualitative behavior as the echo response functions;
each echo decays less than the previous and has a slightly lower frequency, with
consecutive early echoes differing more than consecutive late echoes. We explore
these features in more detail in Sec. 4.5.

Wormhole
The echoes from specific ECO spacetimes can also be placed within the reflect-
ing boundary formalism. Consider for example a wormhole produced by iden-
tifying two Schwarzschild spacetimes of mass M at an areal radius r0. In Ap-
pendix 4.10, we show that an observer in one universe can describe the influ-
ence of the other universe on wave propagation by a reflecting boundary condition
ψ̃ ∝ R̃(ω)eiω(x−x0) + e−iω(x−x0) as x → x0, where

R̃(ω) = R̃BH(ω)e−2iωx0 . (4.40)
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Figure 4.6: Top: The (`,m) = (2, 2)waveform on the horizon ψH
BH, as produced by a

test charge following the ISCO plunge orbit. Bottom: The corresponding first echo
ψ
(1)
echo, rescaled and shifted in time, for a frequency-independent reflectivity.

The free propagation phase e−2iωx0 appearing in the reflectivity accounts for the
additional delay as the waves propagate to the potential peak in the other universe
and back again.

Echoes in the wormhole spacetime are simply related to frequency independent
R̃ = 1 echoes. Namely the nth echo in the wormhole spacetime is the 2nth echo of
the R̃ = 1 case, as can be seen from Eq. (4.31). Therefore, the wormhole echoes
exhibit the same patterns as the frequency-independent echoes. A comparison of
the first echoes and the fifth echoes produced by a test charge following the ISCO
plunge orbit is shown in Fig. 4.8.
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Figure 4.7: The (`,m) = (2, 2) echoes for a frequency independent reflectivity R̃.
The source is a test charge following the ISCO plunge orbit. We show the imaginary
part of each echo, rescaled by R̃n and shifted in time to overlap. Top: The second
and third echoes. Bottom: The tenth and eleventh echoes. At this stage, successive
echoes change only slightly in duration and amplitude.

Echo interference
Having explored the individual echo pulses, we now examine the full echowaveform.
When the spacing between echoes is large compared to the duration of each echo,
the echoes do not interfere and the total waveform appears as a sum of echo pulses.
Figure 4.9 shows the waveform ψ∞(u) generated by the ISCO plunge orbit in the
case R̃ = 1, truncating the echo sum at n = 11. We illustrate the ` = 2 waveform
for two locations x0 of the boundary.

The top panel shows the total waveform for x0 = −50M . The first part of the
waveform is the BH waveform ψ∞BH, which initially oscillates at roughly a frequency
of mΩISCO and transitions to ringing at the BH QNM frequencies. The transition
occurs around a retarded time uLR, when the particle crosses the light ring. Roughly
|2x0 | later, there are three to four distinct echo pulses, each spaced by roughly |2x0 |.
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Figure 4.8: The imaginary part of the (`,m) = (2, 2) time domain echoes excited by
a test charge following the ISCO plunge orbit in a wormhole spacetime, as compared
with the echoes of the R̃ = 1 reflecting boundary. We plot the first echo (top) and
fifth echo (bottom). Each wormhole echo is shifted by ∆u = 4n|x0 |, while each
constant reflectivity echo is shifted by ∆u = 2n|x0 |.

As we observed earlier, the later echoes decaymore slowly and do not appear distinct
because they have a long enough duration to interfere with each other. The bottom
panel shows the case x0 = −20M , where there are only two distinct pulses before
the echoes begin to interfere.

We show additional examples in Fig. 4.10, using our ISCO plunge waveform. In
this figure, the ECO surface is located at x0 = −50M and R̃ ranges from 0.01 to 1.
While only three to four distinct echoes are visible at large R̃, for R̃ = 0.1 we can
see many pulses in the rapidly decaying waveform.

The observation also holds for wormhole waveforms, which we show in Fig. 4.11.
The doubled propagation time as compared to the R̃ = 1 case produces a longer
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Figure 4.9: The imaginary part of the (`,m) = (2, 2) total waveform ψ∞ excited
by test charge following the ISCO plunge orbit. We show results for an ECO with
R̃ = 1 and x0 = −50M (top), and an ECOwith R̃ = 1 and x0 = −20M (bottom). We
shift the time axis by the retarded time that the charge crosses the spherical photon
orbit, uLR.

spacing between echoes. As such, the early wormhole echoes are more distinct than
early R̃ = 1 echoes.

Meanwhile, when the spacing between the echoes is small compared to the echo
duration, there can be no distinct pulses. Instead, the waveform resembles a single
decaying sinusoid at a frequency different than the BH frequency. Figure 4.12
shows an occurrence of this for R̃ = 1, x0 = −3M and the ISCO plunge orbit. In
this case, the total waveform, appearing as the red solid curve, initially agrees with
the BH waveform ψ∞BH, appearing as the black dotted curve, but then transitions
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Figure 4.10: The imaginary part of the (`,m) = (2, 2) total waveform ψ∞ excited
by a test charge following the ISCO plunge orbit. We show results for ECOs with
x0 = −50M and several different choices of a frequency independent R̃.

to a decaying sinusoid. Note that this case pushes the limits of our approximation
that the waves propagate freely near x0; for x0 = −3M , r0 ≈ 2.08M and V(r0) is
approximately 25% its peak value.

This decaying sinusoid is in fact the coherent superposition of the late echoes, a
fact that we illustrate by plotting the last seven echoes appearing in the echo sum in
purple. This coherent superposition occurs because the later echoes all have nearly
the same frequency. Finally note that the missing echoes from the truncated sum are
not negligible compared to the total waveform, a fact we illustrate by also plotting
the last echo appearing in the sum in green. In Sec. 4.4 we study this example in
the frequency domain, and we find that this is an example of the excitation of a
single resonant mode of the ECO spacetime as described by our reflecting boundary
condition.

4.4 Excitation of ECO Modes
The presence of the reflecting boundary condition drastically changes the spectrum
of the spacetime. The result is a different set of resonant frequencies, those of the
ECO spacetime. In this section we explore how our model treats these modes, and
how they relate to the echoes discussed in Sec. 4.3.
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Figure 4.11: The imaginary part of the (`,m) = (2, 2) total waveform ψ∞ excited by
a test charge following the ISCO plunge orbit. We show results for a wormhole with
x0 = −50M (top) and x0 = −20M (bottom).

New Modes
The QNM resonances are the complex poles of the Green’s function. From
Eq. (4.15), we see that for a BH, they occur when WBH = 0. The BH QNMs
are not poles of the ECO Green’s function. As is seen from Eq. (4.17), the first and
second terms both have poles at the QNM frequencies, but these cancel in the full
expression.

The modes of the ECO spacetime come from the poles of the response function
K̃(ω) appearing in the Green’s function,

K̃ =
T̃BHR̃e−2iωx0

1 − R̃BHR̃e−2iωx0
.
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Figure 4.12: The imaginary part of the (`,m) = (2, 2), time domain, total waveform
excited by a test charge following the ISCO plunge orbit. We show results from
an ECO with R̃ = 1 and x0 = −3M . The total waveform is obtained by summing
the black hole waveform ψ∞BH and a finite number of echoes. Each curve contains a
different numbers of echoes.

These modes obey both the reflecting boundary condition at x0 as well as the
outgoing wave condition at I+. Figure 4.13 shows the |K̃ | for R̃ = 1, R̃ = 0.5, and
for the wormhole spacetime, each for two values of x0: x0 = −3M and x0 = −50M .
In the figure, each peak of |K̃ | represents a resonance of the transfer function2.

Observe that in all our cases there are no new modes at large frequencies ω � ΩR.
This behavior can be understood analytically. Recall that at large frequencies
R̃BH → 0 and T̃BH → 1. This means that

K̃(ω) → R̃(ω)e−2iωx0, ω→∞ , (4.41)

and the additional resonances are exactly the poles of R̃.

For x0 = −3M , Fig. 4.13 clearly displays a single new mode at a frequency close
to the fundamental QNM of a BH, for both R̃ = 1 and the wormhole. In the case

2 A peak of the transfer function K̃ on the real axis is a resonance in the sense that amplification
occurs at this frequency. To show that a complex pole of the Green’s function is responsible for this
peak, one must examine K̃ in the complex ω plane.
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Figure 4.13: Top: The ` = 2 echo transfer function |K̃(ω)| for x0 = −3M and
several choices of R̃. Note that |K̃ | is a symmetric function of ω. Bottom: The
same plot for x0 = −50M .

R̃ = 0.5, there is a small peak in |K | at about the same frequency, although it is less
visible.

For x0 = −50M and constant R̃, there is a set of newmodes with a frequency spacing
of 2π/(2|x0 |). For the wormhole, there is a set of new modes and with a spacing
of 2π/(4|x0 |). This frequency spacing corresponds to approximately the light travel
time T from the potential peak to the boundary and back. For an optical cavity, this
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spacing is known as the free spectral range of the cavity,

ωFSR =
2π
T
. (4.42)

To understand the resonances, we can use techniques from similar problems involv-
ing optical cavities. The zeros of the denominator of Eq. (4.18) contribute a set of
resonances ωn given by

1 = R̃BH(ωn)R̃(ωn)e−2iωnx0 . (4.43)

Consider first the case that R̃(ω) is frequency independent. In this case, there are two
frequency scales in the problem; the scale δωBH ≈ R̃BH(ω)/∂ωR̃BH(ω) on which
the reflectivity changes and the scale ωFSR on which the exponent of the exponential
changes. When the frequency dependence of the R̃BH is weak, i.e.ωFSR/δωBH � 1,
then to leading order in ωFSR/δωBH

ωn = nωFSR + i
ωFSR
2π

ln(R̃R̃BH) + O

(
ωFSR
δωBH

)
, (4.44)

where R̃BH is evaluated at nωFSR. We see that the new modes are spaced by ωFSR

in agreement with Fig. 4.13, and they decay provided |R̃ | < 1.

More generally, when R̃(ω) has frequency dependence we can often separate it into
factors with fast and slow frequency dependence,

R̃(ω)e−2iωx0 = R̂(ω)eiωT , (4.45)

where R̂(ω) varies appreciably over a characteristic range of frequencies δω which
is large compared to 2π/T . Again, T is approximately the round trip travel time
between the potential peak and the major features in the true potential characterizing
the ECO. For the wormhole, δω = δωBH and T = −4x0 is the light travel time.
Provided both ωFSR/δωBH � 1 and ωFSR/δω � 1, working to leading order, we
again arrive at Eq. (4.44) where ωFSR = 2π/T and we must allow for O(ωFSR/δω)

errors.

Notice also that the ECO resonances for R̃ = 0.5 are broader than the R̃ = 1
resonances, while the width of the wormhole resonances is similar to the R̃ = 1 res-
onances. This also follows from Eq. (4.44) since the width of the resonances is con-
trolled by the decay rate of the new modes, which is proportional toωFSR ln(R̃R̃BH).
In the low frequency regime that the new modes appear at, R̃ ≈ 1 for the wormhole
and we expect the width to be similar to the R̃ = 1 case.
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Figure 4.14: The modulus of the (`,m) = (2, 2) horizon waveform generated by a
test charge following the ISCO plunge orbit.

Single Mode Excitation
We return to Fig. 4.12, where for R̃ = 1 and x0 = −3M the echo waveform appears
as a single decaying sinusoid which differs from the QNMs of the BH. This behavior
can be interpreted as the excitation of a single resonant mode of K̃ by the plunge.
This is clearest in the frequency domain.

The excitation of the modes is encoded in the product Zecho = K̃ZH
BH. Figure 4.14

displays the horizon waveform ZH
BH. For this orbit, most of the power is at negative

frequencies and there are strong peaks near orbital frequency ω = −mΩISCO and
fundamental BH QNM frequency ω = −ΩR. Furthermore, ZH

BH goes to zero at high
frequencies.

The echo waveform Zecho is shown in Fig. 4.15 for the case R̃ = 1, x0 = −3M .
Note that Zecho inherits the resonance from K̃ . This resonant frequency is similar
to the fundamental BH QNM, but has a much slower decay, as can be noted by the
slenderness of the peak compared to the peak in the horizon amplitude at the same
frequency.
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Figure 4.15: Single mode Excitation. The (`,m) = (2, 2) response function |K̃ |, the
horizon waveform ZH

BH , and the echo sum ψ̃echo for R̃ = 1 and x0 = −3M . The
waveforms are generated by a test charge following the ISCO plunge orbit

Echoes from Interference of Modes
Recall that for large values of x0, the total waveform appears as a sum of distinct echo
pulses. This scenario also can be understood in terms of the additional resonances of
the ECO spacetime. Figure 4.16 shows the frequency domain echo amplitude Zecho

for three choices of R̃, all with x0 = −50M: R̃ = 1 appears in the top panel, R̃ = 0.5
appears in the middle panel, and the wormhole appears in the bottom panel. The
horizon amplitude is substantial at all of the resonances of K̃, which have spacing
ωFSR. The result is that all of the resonances appear in the Zecho in all three cases.

In fact, this is what we expect a sum of echo pulses to look like in the frequency
domain. Suppose that in the time domain a function f (t) is a sum of delta function
pulses spaced by T = 2π/∆ω beginning at time t = 0, with each pulse γ times
smaller than than the previous,

f (t) =
∞∑

n=0
γnδ (t − nT) . (4.46)

Then in the frequency domain f̃ (ω) is an infinite sum of equally spaced, equally
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excited resonances (see Appendix 4.11 for a derivation)

f̃ (ω) =
i∆ω
2π

∞∑
n=−∞

1
ω − ωn

,

ωn = n∆ω + i
∆ω

2π
ln γ . (4.47)

Before the echoes begin to blend together, but after the initial BH waveform decays,
the waveforms ψ∞(u) shown in Figs. 4.9, 4.10 and 4.11 are loosely of the form of
f (u) if we view each pulse as a delta function and choose T = 2|x0 | (or T = 4|x0 | for
the wormhole case). Therefore it is not surprising that Zecho(ω) resembles f̃ (ω) at
low frequencies, where it is more reasonable to approximate each pulse appearing
in the plots by a delta function.

4.5 General Features of echoes
We turn now to some additional applications of our formalism for reprocessing black
hole waveforms into waveforms from ECOs. After reviewing some general features
of echoes in our model, we develop a simple template that broadly reproduces the
echoes seen by distant observers. We also discuss the energy content of these echoes.

General Features of echoes
The horizon waveform ψH

BH has some generic features which should hold for many
sources. Much like the inspiral, merger, and ringdown signal emitted from a compact
binary, there are three phases to ψH

BH. These phases are easily identifiable for
the horizon waveform generated by the ISCO plunge, shown in the top panel of
Fig. 4.6. At early times, when the small body is approximately on the ISCO
orbit, the waveform frequency is approximately proportional to the ISCO orbital
frequency, ω = mΩISCO. The waveform peaks around when the small body crosses
the horizon at vH, and there is also a discontinuity in the derivative of ψH

BH when the
particle crosses the horizon (or x0, in our large |x0 | approximation). At late times,
after the particle has crossed the horizon, the waveform is dominated by a decaying
sinusoid at the fundamental BH QNM frequency. These features are also seen in
the frequency domain waveform shown in Fig. 4.14 and discussed in Sec. 4.4.

The ringdown has a larger effect on the shape of the first few echoes than the
earlier parts of ψH

BH, because the fundamental QNM frequency is transmitted more
easily through the potential barrier. Meanwhile, the horizon waveform at early
times, which is generally at lower frequencies associated with the inspiral orbital
timescale, mostly reflects off of the inside of the potential barrier and contributes
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less to the first echo. The later echoes, having already lost power at frequencies near
ω = ΩR from each earlier scatter off of the potential barrier, depend more intricately
on the details of the horizon waveform at early times.

We illustrate this in Fig. 4.17, which examines echoes from the ISCO plunge for
constant reflectivity R̃. Figure 4.17 shows the frequency domain horizon waveform
ZH
BH as well as three echoes Z (n)echo, where

Z (n)echo = K̃
(n)ZH

BH (4.48)

are the Fourier conjugates of the nth echoes ψ(n)echo(u). The first echo inherits the
peak of ZH

BH near ΩR, but the peak near mΩISCO is removed by T̃BH. The third echo
similarly retains a peak nearω = −ΩR, although shifted to a slightly lower frequency
compared to the first, and is significantly narrower. By the tenth eleventh echoes,
the differences between successive echoes has become small, and the echoes retain a
suppressed peak near (but to the right of) ω = −ΩR. Overall, we see that because of
the low frequency suppression in all the echoes, the ringdown portion of the horizon
waveform is most important for determining the shape of the first several echoes.

Template for echoes
The observation that the ringdown of the horizon waveform ψH

BH is the most im-
portant factor for determining the shape of the echoes leads to a simple idea for a
template for the echoes. Construct a template ZH

T for the horizon waveform ZH
BH

consisting of only a ringdown at the fundamental QNM frequency. Then construct
a template ZT for the echoes Zecho and a template Z (n)T for each echo Z (n)echo using the
transfer functions

ZT = K̃ZH
T , Z (n)T = K̃

(n)ZH
T . (4.49)

Tomodel the ringdown of the horizonwaveform, we take a superposition of decaying
sinusoids that each are excited at a slightly different time. In the time domain our
template for the horizon waveform is

ψH
T (t) = (ψQNM ∗ h)(t)

h(t) =
β
√

2π
exp

(
−(t − ts)

2

2/β2

)
ψQNM(t) = θ(t)

(
−iα+e−iΩ+t − iα−e−iΩ−t

)
, (4.50)

where we use ψH
T to indicate the Fourier conjugate of ZH

T . We weight each decaying
sinusoid by the Gaussian h(t). The template is parametrized by two complex
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amplitudes α± for the sinusoids at the positive and negative QNM frequencies,
Ω± = ±ΩR + iΩI , a central start time ts, and a frequency width β. In the frequency
domain, the template for the horizon waveform takes the even simpler form

ZH
T (ω; ®p) = eiωtse−ω

2/(2β2)

(
α+

ω −Ω+
+

α−
ω −Ω−

)
, (4.51)

where ®p = (α+, α−, ts, β) are the template parameters.

To evaluate the template we investigate its ability to match both individual echoes
and complete waveforms produced from a test charge following the ISCO plunge
orbit, in the case of a constant R̃. To quantify the match, we define the overlap of
two waveforms as

ρ2(Z1, Z2) =
| < Z1 |Z2 > |

2

< Z1 |Z1 >< Z2 |Z2 >
, (4.52)

in terms of the inner product

< a|b >=
∫ ∞

−∞

dω
2π

ã∗(ω)b̃(ω) . (4.53)

The overlap satisfies 0 ≤ ρ ≤ 1, with ρ ≈ 1 indicating a good match.

For our first test of the model, we consider the overlap for the individual echoes,
ρ(Z (n)T , Z (n)echo; ®p). Note that the overlap for the individual echoes is independent of
x0 and R̃. We set the template parameters ®p = ®p1 by analytically maximizing
the overlap over α± [154] at fixed nonlinear model parameters ts and β; we then
numerically search for optimal parameters ts and β. We compute the overlap for
successive echoes using the same fixed ®p1.

In Fig. 4.18, we plot ρ(Z (n)T , Z (n)echo; ®p1) versus n for the first twenty echoes. We
see that the overlap is approximately between 0.96 and 0.97 and asymptotes to a
constant as the echo number n grows. We show a direct comparison of the template
and the first echo in Fig. 4.19 to give an example of the type of match produced by
an overlap in this range3. Importantly, this analysis shows that the first echo can be
used to generate values of the template parameters that produce reasonably good
overlaps for later echoes.

3 Note that our procedure does not completely fix the parameters α± since the normalized
overlap is invariant under shifts Z (n)T → aZ (n)T for any complex constant a. To completely fix the
parameters for Figs. 4.19 and 4.20, we also impose the constraints < Z (n)T |Z

(n)
T >=< Z (n)echo |Z

(n)
echo >

and ph(< Z (n)T |Z
(n)
echo >) = 0. This is equivalent to minimizing the least squares differences between

the waveforms while holding < Z (n)T |Z
(n)
T > constant.
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It is insightful to compare these overlaps to the corresponding overlap ρ(ZH
T , ZH

BH; ®p1)

between the horizon waveform and its template at the same parameters ®p1. This
overlap is ρ = 0.72, and it is smaller than the overlap for the individual echoes. A
direct comparison of the horizon waveform and its template, shown in Fig. 4.20,
reveals that the template misses key features of the horizon waveform at low frequen-
cies |ω| < ΩR. We explain the enhanced performance of the template for the echoes
compared to the horizon waveform as being due to the echo transfer functions K̃ (n),
which filter out the low frequencies where the template performs poorly.

To investigate how the template models the full echo amplitude Zecho, we investigate
the overlap ρ(ZT, Zecho; ®p). Note that this overlap does depend on x0 and R̃. We fix
x0 and R̃ and maximize over the template parameters ®p. The results are shown in
Fig. 4.21 for x0 = −3M,−20M , and −50M at several values of R̃ ranging from 0.01
to 1.

We see that the overlap is generally greater than 0.96 for R̃ < 0.99. For R̃ ≥ 0.99,
the overlap for the larger values of x0 drops significantly. The dramatic reduction
in the overlap occurs because the amount of power (as determined by the power
density dP/dω = |Zecho |

2) in the echo waveform at low frequencies significantly
increases as R̃ → 1 when x0 is large. This power is contained in the narrow
resonances appearing in Fig. 4.16. This degrades the overlap because the template
is only designed to perform well for frequencies near the BH QNM frequency ΩR.
For example when x0 = −50M and R̃ = 0.999, less than 8% of the power is at
frequencies |ω| < 0.6ΩR, while when R̃ = 1, the number jumps to 35%.

Energy in the echoes
Our formalism also allows us to relate the energy in the ECOwaveform to the energy
in the BH waveforms on the horizon H+ and at asymptotic infinity I+. For very
compact ECOs, we derive a simple relationship between the energy in the black
hole waveform and the energy in the ECO waveform.

The stress energy tensor for the scalar field is Tµν = ∇µφ∇νφ − (1/2)gµν∇ρφ∇ρφ
and energy flow is governed by the energy flux vector −Tµν(∂/∂t)ν. Given a wave
ψ(v) that impinges on the horizon or a wave ψ(u) that is incident on I+, the energy
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E[ψ] is the functional

E[ψ] =
∑̀

m

E`m[ψ], (4.54)

E`m[ψ] =
∫ ∞

−∞

dτ | Ûψ`m(τ)|2 =
∫ ∞

−∞

dω
2π

ω2 |Z`m(ω)|2, (4.55)

where we have temporarily restored the harmonic indices. The last equality is an
application of Parseval’s theorem, and we have denoted Zlm as the Fourier conjugate
of ψlm.

The energy of the ECO waveform E∞ can be expressed in terms of the energy in
the black hole waveform E∞BH = E[ψ∞BH], the energy in the echoes Eecho = E[ψecho],
and correlations between the echoes and the black hole waveform

E[ψ∞BH] = E[ψ∞BH + ψecho]

= E∞BH + Eecho + 2<
[∫ ∞

−∞

dτ Ûψ∞BH(τ) Ûψecho(τ)
∗

]
. (4.56)

In the limit that x0 is much larger than the duration of each echo, the different echoes
do not overlap, allowing us to neglect the correlations, so that

E∞ ≈ E∞BH + Eecho. (4.57)

An identical argument allows us to write the echo energy as an approximate sum of
the energy in each echo.

Eecho ≈

∞∑
n=1

E[ψ(n)echo] =

∞∑
n=1

∫
dω
2π

ω2 |Z (n)echo |
2

=

∫
dω
2π
|R̃T̃BH |

2
∞∑

m=0
|R̃R̃BH |

2mω2 |ZH
BH |

2

=

∫
dω
2π

|R̃T̃BH |
2

1 − |R̃R̃BH |2
ω2 |ZH

BH |
2 , (4.58)

where we have used Eqs. (4.31) and (4.48).

When R̃ = 1, since |T̃BH |2 = 1 − |R̃BH |
2, the echo energy Eecho is precisely the

energy EH
BH = E[ψH

BH] that would have gone down the horizon in the BH spacetime.
When |R̃ | < 1, there will be less energy in the echoes than the horizon waveform,
falling to 0 as R̃ → 0. Finally, Eq. (4.58) predicts that for very compact ECOs, the
relationship between the energy in the ECO waveform and BH waveforms on H+

and I+ is independent of x0.



102

Figure 4.22 shows Eecho/EH
BH for (`,m) = (2, 2) waveforms from the ISCO plunge

orbit for a variety of R̃ and x0. As expected, smaller values of R̃ produce echoes
containing less energy and the ratio becomes independent of x0 as x0 → ∞. For
perfectly reflecting, extremely compact ECOs with x0 > 20M , more than 97% of
the energy in the horizon waveform is radiated in the echoes.

4.6 Conclusions
In this work, we derive a relationship between the Green’s functions for a massless
scalar field in a BH spacetime and in the exterior region of ECOs. This is accom-
plished by replacing the compact object with a reflecting boundary near the horizon
of the BH. The exterior of any ECO can be modeled with a particular choice of
boundary location and frequency dependent reflectivity.

We use the relationship between Green’s functions to show that the ECO waveform
seen by asymptotic observers is the same as that seen in the BH spacetime, plus
additional emission from reflection off the boundary. This additional emission can
be computed by reprocessing the horizon waveform in the BH spacetime using a
simple transfer function. We find that the difference between the BH and ECO
waveforms at infinity can be understood either as a superposition of echo pulses
or a superposition of modes associated with poles in the ECO Green’s function.
Furthermore, we show how both the individual echoes and the newmode frequencies
encode the information describing the ECOmodel; namely the boundary reflectivity
and location.

Our formalism also explains how the BH QNMs imprint themselves in ECO wave-
forms: The ECO waveform has a main burst that rings down at the black hole
QNM frequencies. In addition, the frequency content of the individual echo pulses
is largely determined by the frequency content in the horizon waveform ψH

BH near
the BH QNM frequencies. Despite the imprint of these frequencies on the ECO
waveform, our formalism also shows that the BH QNM frequencies are not poles in
the ECO Green’s function. Rather, the piece of the Green’s function responsible for
producing the main burst and the piece responsible for the echoes both have poles
at the BH QNM frequencies, which cancel in the full expression.

We demonstrate how our formalism can be used to reprocess a black hole waveform
into an ECO waveform by studying the echoes produced by a test charge spiralling
in from the ISCO. We use our numerical results and analytic observations to design
a simple template for the echoes that accurately reproduces our waveforms, with
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normalized overlaps ρ > 0.95 for most values of boundary location and reflectivity
(taken here to be frequency independent).

To determine the significance of our proposed template, future work will be required
to extend the formalism to gravitational perturbations of Kerr. In addition to the
added algebraic complexity, one will have to overcome the absence of Birkhoff’s
theorem in Kerr, as well as the lack of a simple scheme for parameterizing reflecting
boundary conditions for gravitational perturbations [126] (see [112] for one possible
prescription). Ideally, futureworkwill also extend the formalism beyond test particle
sources, so that comparable mass binaries can be treated. Nevertheless, our results
indicate that a relatively simple template, combined with a prescription for repro-
cessing waveforms generated in black hole spacetimes, can be used to investigate
the existence of ECOs and their echoes using gravitational wave observations.
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4.8 Appendix A: Calculation of the reflection and transmission coefficients
In this appendix we describe our calculation of the reflection and transmission
coefficients RBH and TBH, in both the time and frequency domains.

Time Domain
The scattering coefficients R̃BH and T̃BH are defined from the frequency domain
solution ψ̃up to Eq. (4.4). An equivalent time-domain definition is found in terms of
a solution ψ to the characteristic initial value problem

∂2ψ

∂u∂v
+

f V
4
ψ = 0 (4.59)

with characteristic initial data posed on the past horizon H− and past null infinity
I− consisting of a delta function pulse

ψ(u)|H− = δ(u), ψ(v)|I− = 0 (4.60)
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as shown in Fig. 4.23. Then TBH(u) is the field ψ(u)|I+ evaluated at future null
infinity and RBH(v) is the field ψ(v)|H+ evaluated on the future horizon. This is
seen as follows.

When V = 0, the general solution to Eq. (4.59) is a superposition of an outward
traveling wave and an inward traveling wave,

ψ(v, u) = h(u) + k(v), (4.61)

where h and k are free functions. The potential can be neglected, V ≈ 0, in the near
horizon region, roughly bounded by the left blue dashed line in Fig. 4.23, and also
in the far field region, roughly bounded by the right blued dashed line. We match
the general solution Eq. (4.61) to the boundary data in these regions to obtain

ψ(v, u) =

δ(u) + ψ(v)|H+ , x → −∞ ,

ψ(u)|I+ , x →∞ .
(4.62)

Notice the field on the horizon is not determined by the initial conditions in the near
horizon matching region. Likewise the field at future null infinity is not determined
by the initial conditions in the far-field matching region. Calculating these fields
requires all of the initial data.

Rewriting the solution in (t, x) coordinates and taking the Fourier transform with
respect to t yields

ψ̃(ω, x) =


eiωx + ψ̃(ω)|H+e−iωx, x → −∞

ψ̃(ω)|I+eiωx, x →∞.
(4.63)

Comparing this with frequency domain definition Eq. (4.14) of RBH and TBH, we
identify

ψ̃(ω)|H+ = R̃BH(ω) , (4.64)

ψ̃(ω)|I+ = T̃BH(ω) , (4.65)

establishing the equivalence of the two definitions.

For our numerical calculations, it is important to realize that TBH(u) only has support
for u ≥ 0 and TBH(0) = δ(0). The first fact follows from ψ(v, u) = 0 for u < 0,
since for these times ψ lies in the domain of dependence of the portion of initial
data which is equal to zero. The second conclusion follows from the high frequency
behavior T̃BH → 1 as ω/ΩR → ±∞ [52]. This implies that T̃BH = 1 + f (ω), where
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f → 0 as ω → ±∞. Taking the Fourier transform of both sides gives the delta
function at u = 0.

We use our characteristic code for homogeneous solutions towave equations detailed
in Sec. 4.9 to solve this characteristic initial value problem. Namely, we pose the
initial data on the future part of a null cone described by v = v0 and u = 0 and
choose−v0 large enough that the delta function pulse δ(u) is deep in the near horizon
region. We use a discrete approximation for the delta function in the initial data

δ(u) =


1
2(2h)

, u = 0

0, otherwise
. (4.66)

where our numerical grid is spaced by 2h. We extract RBH off of the ray u = uE in
our computational domain that is closest toH+. Similarly we extract TBH off of the
ray v = vE in our computational domain that is closest to I+.

We performed convergence checks on our choice of stepsize h, initial data ray
location v0 and the location of the extraction rays vE and uE . We used h = 0.025M .
We verified that the same numerical approximation of the δ(u) that we used in our
initial data appears in TBH. For calculations in the paper that rely on TBH, we insert
the δ function analytically and only use the smooth part of TBH from our code. To
obtain the smooth part of TBH(u) near zero we extrapolated this data backwards in
time a single time step.

Frequency Domain
For computations that required accurate frequency domain representations of R̃BH

and T̃BH, we also computed R̃BH and T̃BH directly in the frequency domain. This
also provided an independent check of our time domain methods.

At a fixed frequency, the homogeneous wave equation (4.4) together with one of the
two boundary conditions in Eq. (4.13) forms a boundary value problem for ψ̃up(ω, x).
The coefficients Bout and Bin necessary to compute R̃BH and T̃BH are determined
from the solution and its derivative near the opposite boundary by comparing to the
remaining boundary condition.

We numerically integrated outward from the horizon, using an analytic third-order
expansion of ψ̃ to match the boundary condition there. We extracted the field at a
large radius r = 1000M , matching to an asymptotic expansion of ψ̃ including terms
up to third order in 1/r .
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4.9 Appendix B: Point Particle Waveforms
In this appendix we provide Green’s functions solutions for the scalar field ψBH in
the BH spacetime, specialized to point particle sources for observers at future null
infinity I+ and the future horizonH+.

Green’s Function solution
The boundary conditions for ψBH in Eq. (4.19) select the retarded solution to the
Klein-Gordon equation

ψBH(x, t) =
∫ ∞

−∞

dt′
∫ ∞

−∞

dx′S(x, t)gBH(x, x′, t − t′),

S(x, t) = −r f (r)ρ`m(x, t), (4.67)

constructed from the retarded (biscalar) Green’s function gBH(x, x′, τ) and the spher-
ical harmonic components of the scalar charge density4. The retarded Green’s
function obeys gBH(x, x′, t − t′) = 0 when t − t′ < |x − x′| and the differential
equation

∂2gBH

∂x2 −
∂2gBH

∂t2 − f (r)V(r)gBH = δ(t − t′)δ(x − x′). (4.68)

We are interested in thewaveforms on either the BH horizon or at asymptotic infinity.
This leads us to consider the asymptotic Green’s functions

gBH ∼


gH(x′, v − v′), as x → −∞, v fixed ,

g∞(x′, u − u′), as x →∞, u fixed ,
(4.69)

which describe the response on the horizon and at infinity, respectively.

We also need the appropriate source functions, specialized to ingoing coordinates
(v, x) and outgoing coordinates (u, x). The scalar charge density of a point particle
of scalar charge q, following the trajectory xµp (τ) is

ρ(xµ) = q
∫

dτ
δ(4)(xµ − xµp (τ))

√
−g

, (4.70)

Resolving into spherical harmonics ρ =
∑
`m ρ`mỲ m, re-parameterizing by advanced

time, and writing the result in ingoing coordinates leads to

S(x, v) = Ŝin(v)δ(x − xp),

Ŝin(v) =
−qY ∗

`m(θp, φp)

rp(dvp/dτ)
, (4.71)

4Note that S, ψBH, gBH and all variants of them which appear in this appendix have (`,m) indices
which we suppress for brevity.
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where the trajectory is evaluated at v. Similarly, if we re-parameterize by the retarded
time, and write the result in outgoing coordinates, the source is

S(x, u) = Ŝout(u)δ(x − xp),

Ŝout(u) =
−qY ∗

`m(θp, φp)

rp(dup/dτ)
, (4.72)

where the trajectory is evaluated at the retarded time u.

With these definitions, the horizon waveform is

ψH
BH(v) =

∫ ∞

−∞

dx′
∫ ∞

−∞

dv′S(x′, v′)gH(x′, v − v′)

=

∫ ∞

−∞

dv′Ŝin(v′)gH(xp(v
′), v − v′). (4.73)

For a particle that crosses the horizon at an advance time v = vH, this becomes,
using the causal property of the retarded Green’s function,

ψH
BH(v) =


∫ v

−∞

dv′Ŝin(v′)gH(xp(v
′), v − v′), v < vH ,∫ vH

−∞

dv′Ŝin(v′)gH(xp(v
′), v − v′), v ≥ vH .

(4.74)

Meanwhile, the asymptotic waveform is given by

ψ∞BH(u) =
∫ ∞

−∞

dx′
∫ ∞

−∞

du′S(x′, u′)g∞(x′, u − u′)

=

∫ u

−∞

du′Ŝout(u′)g∞(xp(u′), u − u′). (4.75)

where we have again used causality to truncate the upper limit of the integration to
u.

In this paper, we extensively study the radiation produced by a test charge on
the ISCO plunge orbit. Such a particle asymptotes to the ISCO radius r = 6M as
t → −∞ and has a specific energy EISCO = 2

√
2/3 and a specific angular momentum

of LISCO =
√

12M . To calculate the waveforms ψ∞BH and ψH
BH we rely on Eqs. (4.74)

and (4.75) with analytic expressions for the trajectory found in [84], and a Green’s
function that we compute numerically using a characteristic code detailed in Sec. 4.9.

Characteristic Initial Value Problem for the Green’s function
We obtain the retarded Green’s function gBH for the scalar field in the BH spacetime
as the solution of a characteristic initial value problem. In null coordinates (v, u),
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Eq. (4.68) for gBH(v, v′, u, u′) takes the form

∂2gBH
∂v∂u

+
f V
4

gBH = −
1
2
δ(∆u)δ(∆v) (4.76)

where ∆u = u − u′, ∆v = v − v′. Causality motivates us to look for a distributional
solution

gBH(v, v
′, u, u′) = ĝ(v, v′, u, u′)θ(∆u)θ(∆v), (4.77)

where ĝ is a smooth function defined in the future light cone of the source point
(v′, u′). Substitution of the ansatz (4.77) in (4.76) yields

δ(∆u)δ(∆v)ĝ + θ(∆u)δ(∆v)
∂ĝ

∂u
+ θ(∆v)δ(∆u)

∂ĝ

∂v

+ θ(∆u)θ(∆v)
(
∂2ĝ

∂v∂u
+

f V
4

ĝ

)
= −

1
2
δ(∆u)δ(∆v) (4.78)

We now equate terms of equal singularity strength. The first term on the LHS
balances the RHS if we demand [ĝ] ≡ g(v′, v′, u′, u′) = −1/2. The second term,
which is only nonzero along v = v′, vanishes if we demand ∂uĝ |v=v′ = 0, which can
be integrated to yield ĝ |v=v′ = −1/2. Likewise, setting the third term to zero yields
ĝ |u=u′ = −1/2. Finally, the fourth term vanishes if ĝ satisfies the homogeneous wave
equation equation

∂2ĝ

∂v∂u
+

f V
4

ĝ = 0 (4.79)

in the forward light cone of source point.

Equation (4.79), together with the initial data ĝ = −1/2 posed on the future part of
the null cone formed by the rays u = u′ and v = v′, is a characteristic initial value
problem for gBH. We solve this numerically using a characteristic code described in
Sec. 4.9.

Characteristic Code
We numerically compute ĝBH using a finite-difference characteristic code based on
the method of Price and Lousto [98]. For this, we fix a source point (v′, u′) and solve
the homogeneous wave equation (4.79) obeyed by ĝ(v, u). We discretize the field
point coordinates (v, u) onto a rectangular grid with nodes spaced by 2h.

A standard computational cell centered on the point C = (v, u) is shown in Fig. 4.24.
Referring to the figure, given the data ψS, ψW , and ψE on the bottom three corners of
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a computational cell, the value on top corner ψN can be obtained with the stepping
algorithm

ψN = −ψS + (1 + 2WC h2)(ψE + ψW ) (4.80)

WC = −
f V
4

����
C
. (4.81)

This algorithm can be derived by integrating the homogeneous wave equation (4.79)
over a computational cell with O(h4) accuracy. Our code inputs initial data on the
future part of the light cone formed by the rays v = v′ and u = u′ and is second order
convergent. We generate values for ψ on the remaining nodes of the grid using the
stepping algorithm (4.80).

To obtain g∞(x′,∆u), we further fix ∆u and use our characteristic code to obtain gBH
as a function of field point radius r . Using the fact that the field has an expansion in
powers of 1/r , we then extrapolate the field to future null infinity using Richardson
extrapolation.

To extract gH(x′,∆v), we use our characteristic code to obtain gBH evaluated on the
ray u = constant that is closest to the horizon in our computational domain. For
early advanced time ∆v, this ray is buried deep in the near horizon region, and we
approximate gH(x′,∆v) as gBH evaluated on this ray. We check that this scheme
converges as we move the extraction ray u = constant towardsH+.

We perform these calculations for radii between r′ − 2M = 1.7 × 10−5 and r′ =

rISCO = 6M with ∆x′ = 1. We then interpolate between these values to obtain
gH(x′,∆v) and g∞(x′,∆u) that we use in the calculations presented in this paper.

Windowing and Frequency Domain Waveforms
Waveforms from physically relevant orbits are finite in duration. The waveforms
produced by the exact ISCO plunge orbit are not; at late times, the waveforms
ringdown to zero, but at arbitrarily early times they have an oscillation atω = mΩISCO

due to the test charge orbiting on the ISCO.

Hence, for all calculations in this paper we consider the echoes produced by a
windowed horizon waveform. More precisely we apply a one-sided version of the
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Planck-Taper [108] window function to the exact ISCO plunge horizon waveforms:

σT (t, t1, n) =


0, t ≤ t1

1
1 + ez , t1 < t < t2

1, t ≥ t2

, (4.82)

where t1 is free parameter indicating when the window starts, t2 = t1 + 2aπ/ΩISCO

with a a free parameter, and z is a function that goes from∞ at t1 to −∞ at t2,

z =
t2 − t1
t − t1

+
t2 − t1
t − t2

. (4.83)

We choose parameters that leave 3 oscillations at early times near ω ≈ mΩISCO and
smoothly turn on over the course of two oscillations.

We obtain the horizon waveform ZH
BH in the frequency domain by numerically

performing the inverse Fourier transform of the time domain waveform ψH
BH.

4.10 Appendix C: Wormhole Reflectivity
In this appendix, we compute R̃(ω) for awormhole [57] describing twoSchwarzschild
spacetimes of mass M identified with a thin shell of exotic stress-energy at an areal
radius r0 corresponding to a tortoise coordinate location of x0. Note that the value of
R̃ depends on our phase convention, and we use that of Eq. (4.9), which is invariant
under shifts of the origin of the tortoise coordinate x.

To begin, define a new tortoise coordinate y covering the entire wormhole spacetime,

dr
dy
=


(
1 −

2M
r

)
, y > 0

−

(
1 −

2M
r

)
, y < 0,

(4.84)

with a different origin y(r0) = 0 than is used for the coordinate x. Scalar waves
propagating in the wormhole spacetime are described by the scalar wave equation
on the domain −∞ < y < ∞, with a non-differentiable, but continuous potential
V(y) at y = r0. The reflectivity R̃ is determined by matching the solution obeying
the outgoing boundary condition in the left half of the universe to a solution in the
right half.

We accomplish this using the homogeneous solution ψ̃up, although with a different
phase normalization than in Eq. (4.13) due to the shift in the origin y,

ψ̃up(y) ∼ eiωy , y →∞ (4.85)
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For compact wormholes r0 → 2M the potential V ≈ 0 near the location x = 0 and
we have

ψ̃up(y) ∼ Cout(ω)eiωy + Cin(ω)e−iωy , y → 0 (4.86)

From these we define R̃W = Cin/Cout to denote the reflection coefficient using the
phase convention (4.85).

In the left half of the universe, ψ̃up(−y) is the solution describing waves that are
completely outgoing at null infinity. Near the matching radius y = 0, we have by
definition

ψ̃up(−y) ∝ e−iωy + R̃Weiωy . (4.87)

This matches to the form of desired boundary condition for waves in the right half,
ψ ∝ e−iωy + R̃eiωy, if we choose R̃ = R̃W.

Finally, we express this result in terms of the BH scattering coefficients, which use
the phase convention of Eq. (4.13). The scattering coefficients defined by Eq. (4.85)
are related to those of Eq. (4.13) through a simple shift of the origin of y. This
means that

R̃W = e−2iωx0R̃BH (4.88)

We see then that the wormhole can be treated using a reflecting boundary at x0 with

R̃(ω) = R̃BH(ω)e−2iωx0 . (4.89)

We use this simple result to explore the echoes in wormhole spacetimes.

4.11 Appendix D: Fourier Transform of Decaying Sequence of Pulses
In this appendix, we derive the Fourier transform of the f (t) given in Eq. (4.46)

f (t) =
∞∑

n=0
γnδ (t − nT) , (4.90)

which involves some nontrivial manipulations to arrive at the form in Eq. (4.47).
Namely, directly evaluating the Fourier transform with the delta functions gives

f̃ (ω) =
∫ ∞

−∞

dt f (t)eiωt =

∞∑
n=0

γneiωnT (4.91)



112

The derivation of the two different forms is related to the fact that one can write the
Fourier transform c̃(ω) of a Dirac comb with period T = 2π/∆ω

c(t) =
∞∑

n=−∞

δ(t − nT) (4.92)

in two different ways. On one hand, directly integrating over the δ functions gives

c̃(ω) =
∞∑

n=−∞

eiωnT . (4.93)

On the other hand, the Dirac comb is a periodic function with a period T and can be
expanded as a Fourier series

c(t) =
∞∑

n=−∞

cne−i∆ωnt,

cn =
1
T

∫ T/2

−T/2
dtei∆ωntc(t) =

1
T
. (4.94)

Comparing this to the expression for the inverse Fourier transform
c(t) = 1/(2π)

∫
dωe−iωt c̃(ω) leads to the alternate form of c̃(ω)

c̃(ω) = ∆ω
∞∑

n=−∞

δ(ω − n∆ω) (4.95)

We use this result to derive Eq. (4.47) for f̃ .

First note that f has a simple relationship to the Dirac comb

f (t) =
∞∑

n=0
γnδ(t − nT)

= e(t/T) ln γ
∞∑

n=0
δ(t − nT) = b(t)c(t) , (4.96)

b(t) ≡ θ(t)e(t/T) ln γ , (4.97)

where θ(t) is the unit step function. Then the convolution property of the Fourier
transform implies that

f̃ (ω) =
∫ ∞

−∞

dω′

2π
b̃(ω − ω′)c̃(ω′). (4.98)

The Fourier transform b̃(ω) is

b̃(ω) =
∫ ∞

0
dt eiωt+(t/T) ln γ = −

1
iω + ln γ/T

, (4.99)

where we have used the fact that ln γ < 0 for 0 < γ ≤ 1. Substituting Eq. (4.95) and
Eq. (4.99) into Eq. (4.98) and integrating over the Dirac comb then yields Eq. (4.47).
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Figure 4.16: Multi-mode excitation. We fix x0 = −50M , a case where Fig. 4.10
shows that the time domain waveform contains echoes for a range of R̃. We show the
(`,m) = (2, 2) response function |K̃ |, the horizon waveform ZH

BH, and the echo sum
ψ̃echo. The waveforms ares generated by a test charge following the ISCO plunge
orbit. The top panel corresponds to R̃ = 1, the middle panel to R̃ = 0.5, and the
lower panel is the wormhole waveform.



114

-2.0 -1.5 -1.0 -0.5 0.0
10-6

10-5

10-4

0.001

0.010

0.100

1

Figure 4.17: The modulus of the (`,m) = (2, 2) horizon waveform ZH
BH and select

R̃ = 1 echoes Z (n)echo generated by a test charge following the ISCO plunge orbit.
Also shown are R̃BH ad T̃BH.
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Figure 4.18: The overlap ρ(Z (n)T , Z (n)echo; ®p1) for the nth individual echo plotted versus
echo number n. The parameters ®p1 are determined bymaximizing the overlap for the
first n = 1 echo. We show results for (`,m) = (2, 2) and use a test charge following
the ISCO plunge trajectory as a source for the Z (n)echo.
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Figure 4.19: A comparison of the (`,m) = (2, 2) real (top) and imaginary (bottom)
parts of the n = 1 echo template Z (1)T and the first echo. The echo is generated by a
test charge following the ISCO plunge orbit and the parameters for the template are
determined by maximizing the overlap ρ given by Eq. (4.52) between the template
and the echo. The value of the overlap is ρ = 0.969.



117

-2 -1 0 1 2
0.0

0.1

0.2

0.3

0.4

Figure 4.20: A comparison of the modulus of the (`,m) = (2, 2) of the horizon
waveform template ZH

T and numerically computed horizonwaveform. Thewaveform
is generated by a test charge following the ISCO plunge orbit and the parameters
for the template are determined by maximizing the overlap ρ between the first echo
template and the numerically calculated first echo. The value of the overlap is
ρ = 0.72.
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Figure 4.21: The overlap ρ for the (`,m) = (2, 2) echo sum Zecho for select values
of x0 and and R̃. The waveform is generated by a test charge following the ISCO
plunge orbit. The template parameters ®p are fixed in each case by maximizing the
overlap for the corresponding parameters.
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Figure 4.22: The energy Eecho in the (`,m) = (2, 2) component of the echo waveform
compared to energy EH

BH in the horizon waveform for different values of R̃ and x0.
The waveforms come from a test charge following an ISCO plunge orbit.
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Figure 4.23: A Penrose diagram illustrating the relevant surfaces of the characteristic
initial value definition of TBH and RBH. Initial data, consisting of a delta function
pulse at u = 0 (red line), is posed on H− and I−. The transfer function TBH
is extracted off of I+ and RBH is extracted off of H+. The blue dashed lines
approximately bound the near-horizon and far-field regions where V ≈ 0.
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Figure 4.24: A generic computational cell in our characteristic evolution scheme.
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C h a p t e r 5

SEARCHING FOR NEAR-HORIZON QUANTUM STRUCTURES
IN THE BINARY BLACK-HOLE STOCHASTIC

GRAVITATIONAL-WAVE BACKGROUND

Quantum gravity corrections have been speculated to lead to modifications to space-
time geometry near black hole horizons. Such structures may reflect gravitational
waves, causing echoes that follow the main gravitational waves from binary black
hole coalescence. By studying two phenomenological models of the near-horizon
structures under Schwarzschild approximation, we show that such echoes, if exist,
will give rise to a stochastic gravitational-wave background, which is very substantial
if the near-horizon structure has a near unity reflectivity for gravitational waves,
readily detectable byAdvanced LIGO. In case the reflectivity is much less than unity,
the backgroundwill mainly be arising from the first echo, with a level proportional to
the power reflectivity of the near-horizon structure, but robust against uncertainties
in the location and the shape of the structure — as long as it is localized and close
to the horizon. Sensitivity of third-generation detectors allows the detection of a
background that corresponds to power reflectivity ∼ 3× 10−3, if uncertainties in the
binary black-hole merger rate can be removed. We note that the echoes do alter the
f 2/3 power law of the background spectra at low frequencies, which is rather robust
against uncertainties.

5.1 Introduction
Black holes (BH) are monumental predictions of general relativity (GR) [79]. It is
often believed that, inside a BH, a singularity exists, around which classical GR will
break down and must be replaced by a full quantum theory of gravity (QTG). The
Planck scale of lP ∼ 1.6 × 10−35 m is often cited as the scale at which full-blown
QTG is required. However, interesting effects already arise as one applies quantum
mechanics to fluctuations around the BH horizon, the boundary of the region from
which one can escape toward infinity, even though space-time curvature does not
blow up here. Hawking showed that BHs evaporate, leading to the so-called Black-
Hole Information Paradox. During attempts to resolve this Paradox — as well as
in other contexts — it was proposed that space-time geometry near the horizon
may differ from the Kerr geometry, by having additional, quantum structures [83].
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Candidate proposals include firewall [29], fuzzball [104] and gravastar [106].

Detection of gravitational waves (GW) generated by binary black-hole (BBH) col-
lisions marked the dawn of GW astronomy [8], and brings an experimental tool to
study the nature of BH horizon. Cardoso et al. proposed that geometric structures
very close to the horizon can be probed by GW echoes that follow BBH waves,
arising from the reflection from these structures, and the subsequent rebounds be-
tween these structures and the BH potential barrier [54, 56]. Whether the observed
individual GW events have already provided positive experimental evidence towards
the echoes is still under debate [22, 24, 31]. Furthermore, the particular echo model
employed by [22, 24] was considered rather naive and needed refinement [103, 125].
For example, Mark et al., using scalar field generated by a point particle falling into
a Schwarzschild BH, illustrated that, the echoes can have a variety of time-domain
features, which depend on the location, and (in general frequency-dependent) re-
flectivity of the near-horizon structure [101]. Echo structure during the entire
inspiral-merger-ringdown wave was also analyzed in the Dyson series formalism in
Ref. [66].

In this letter, we propose to search for near-horizon structures via the stochastic
GW background (SGWB) from BBHmergers. Because the echo contribution to the
background depends only on their energy spectra, it is much less sensitive to details
of echo generation, making the methodmore robust against uncertainties in the near-
horizon structures. We estimate the magnitude and rough feature of this SGWB,
and illustrate its dependence on the near-horizon structure, following an Effective
One-Body (EOB) approach: the two-body dynamics and waveform is approximated
by the plunge of a point particle toward a Schwarzschild BH, following a trajectory
that smoothly transitions from inspiral to plunge [49? ].

5.2 GW amplitudes and power emitted
GWs emitted from a test particle plunging into a Schwarzschild BH can be described
by the Sasaki-Nakamura (SN) equation [128]:(

∂2
r∗ + ω

2 − Vl(r)
)

Xlm(ω, r∗) = Slm(ω, r), (5.1)

where r∗ is the tortoise coordinate with

dr/dr∗ = 1 − 2M/r (5.2)
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with effective potential given by

Vl(r) =
(
1 −

2M
r

) (
l(l + 1)

r2 −
6M
r3

)
. (5.3)

with M the mass of the BH. The source term is given by

Slm(ω, r) = Wlm(ω, r)r−5e−iωr∗, (5.4)

where Wlm is a functional of the trajectory of the test particle and its explicit
expression can be found in Eqs. (19)—(21) of [128]. The wave function Xlm is
related to GW in the r → +∞ limit via

h+ + ih× = 8r−1
∑
lm
−2YlmXlm(t), (5.5)

where sYlm are spin-s weighted spherical harmonics and

Xlm(t) =
∫ +∞

−∞

dω e−iωt Xlm(ω). (5.6)

The GW energy spectrum is given by

dE/dω =
∑
lm

16πω2 |Xlm(ω, r∗ →∞)|2. (5.7)

For BHs, imposing in-going boundary condition near the horizon and out-going
condition near null infinity, solution to Eq. (5.1) is expressed as

X (0)
lm (ω, r∗ →∞) = eiωr∗Z (0)lm (ω), (5.8)

with Z (0)lm defined as

Z (0)lm (ω) =

∫ +∞

−∞

dr′∗
[
Slm(ω, r′∗)X

(0)
in (ω, r

′
∗)

]
/W (0)(ω), (5.9)

and

W (0) = X (0)in ∂r∗X
(0)
out − X (0)out∂r∗X

(0)
in (5.10)

is the Wronskian between the two homogenous solutions:

X (0)in ∼ e−iωr∗ for r∗ → −∞, (5.11)

X (0)out ∼ e+iωr∗ for r∗ → +∞, (5.12)

respectively.
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5.3 Echoes from near-horizon structure
Let us now modify the Schwarzschild geometry near the horizon by creating a
Planck-scale potential barrier Vp:

Vl → Vl + Vp, (5.13)

with Vp centered at

rp = 2M + ε, (5.14)

with ε � M; In tortoise coordinate, ε = lp corresponds to rp
∗ ≈ −182M . As

discussed by [101] the effect of Vp is the same as replacing the horizon (r∗ → −∞)
boundary condition for Eq. (5.1) by

X (R)
in ∼ e−iωr∗ + Reiωr∗ for r∗ → rp

∗ , (5.15)

while keeping the r∗ → +∞ boundary condition unchanged. Here, R(ω) can be
viewed as a complex reflectivity of the potential barrier. Here we will obtain R(ω)
from Vp, while the problem of obtaining Vp once R(ω) is measured is the so-called
inverse scattering problem. The location of reflection is implicitly contained in its
frequency dependence; for example, a Dirichlet boundary condition corresponds to

RD(ω) = −e−2iωrp∗ . (5.16)

In general, if R(ω) = ρ(ω)eiψ(ω) with ρ(ω) a slowly varying complex amplitude
and ψ a fast-varying phase, then the effective location of reflection for a wavepacket
with central frequency ω0 is around [∂ψ/∂ω]ω=ω0/2.

Defining

X (R)
lm = Z (R)

lm eiωr∗, (5.17)

where Z (R)
lm can be written as a sum the main wave (for BH) and a series of echoes

[101]:

Z (R)
lm = Z (0)lm + RZ (1)lm

+∞∑
n=0
(RRBH)

n, (5.18)

with RBH the complex reflectivity of the Regge-Wheeler potential Vl [see Eq. (2.14)
of [101]] and

Z (1)lm (ω) =

∫ +∞

−∞

dr′∗
Slm(ω, r′∗)X̄

(0)
in (ω, r

′
∗)

W (0)(ω)
+ RBHZ (0)lm , (5.19)
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Figure 5.1: Trajectory of the EOB effective particle moving in a coalescing quasi-
circular orbit. The symmetric mass ratio ν = 0.25. The inner black sphere with
radius 2M represents the horizon of a Schwarzschild BH. The outer translucent
sphere with radius 3M represents the photon sphere.

with X̄ (0)in the complex conjugate of X (0)in .

Note that each echo delayed from the previous one by ∼ 2|rp
∗ | in the time domain.

For small R, we write

Z (R)
lm ≈ Z (0)lm + RZ (1)lm (5.20)

and (
dE
dω

)
R
≈16πω2

∑
lm

[���Z (0)lm

���2 + ���RZ (1)lm

���2 + 2Re(RZ (1)lm Z̄ (0)lm )

]
. (5.21)

This is the sum of energies from main wave, the first echo, and the beat between the
main wave and the first echo. While the beat is linear in R, it is highly oscillatory
in ω, since the main wave and the echo are well separated in the time domain.

5.4 Models of Reflectivity and Energy Spectra of Echoes
Without prior knowledge about details of near-horizon structures, we only assume it
is short-ranged and localized at rp

∗ . The simplest would be to introduce a δ-potential

Vp = A δ[(r∗ − rp
∗ )/M], (5.22)

with parameter A defined as the area under the Planck potential:

A = M
∫ +∞

−∞

Vp dr∗. (5.23)
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Note that A is a dimensionless quantity. As a comparison, the area under the
Regge-Wheeler potential is [62]

M
∫ +∞

−∞

Vl dr∗ = (l − 1)(l + 2)/2 + 1/4. (5.24)

Such a model corresponds to a reflectivity

R(ω) = e−2iωrp∗ A

2iMω − A
. (5.25)

This is more physical than the Dirichlet case, by reducing |R | at larger ω. Since
|R(0)| = 1 and R(+∞) = 0 are general properties of all physical potentials, we
expect Eq. (5.25) to describe a large class of near-horizon quantum structures.

To further explore the shape of Vp, we also study the Pöschl-Teller potential [124]

Vp =
α2λ(1 − λ)

M2 cosh2[α(r∗ − rp
∗ )/M]

. (5.26)

Dimensionless parameters α and λ are related to the area under Vp via

A = 2αλ(1 − λ) . (5.27)

The corresponding reflectivity is [61]

R(ω) = e−2iωrp∗
Γ(i Mω

α )Γ(λ − i Mω
α )Γ(1 − λ − i Mω

α )

Γ(−i Mω
α )Γ(1 − λ)Γ(λ)

, (5.28)

where Γ(·) is the Gamma function. In the following, we will keepA fixed and vary
α and λ to explore shapes of Vp.
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Figure 5.2: The main wave Z (0)22 and the wave Z (1)22 that generates echoes via
Eq. (5.18).
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To estimate of the echoes’ energy spectrum, we adopt the EOB approach [49? ]:
for BHs with m1 and m2, we consider a point particle with reduced mass µ =
m1m2/(m1 + m2)

2 falling down a Schwarzschild BH with total mass M = m1 + m2;
the symmetric mass ratio is defined as ν = µ/M . For motion in the equatorial plane,
we have a Hamiltonian for (r, pr, φ, pφ), with radiation reaction incorporated as a
generalized force Fφ [Eqs. (3.41)–(3.44) of [49]]. Upon obtaining the trajectory
(see Fig. 5.1 for ν = 0.25), we obtain source term Slm, and compute Z (0)lm and Z (1)lm

using Eqs. (5.9) and (5.19), which will then lead to the GW energy spectrum.

We will focus on the (l,m) = (2, 2) mode, which carries most of the GW energy.

As seen in Fig. 5.2, the main wave |Z (0)22 | recovers the f −7/6 power law at low fre-
quencies, as predicted by post-Newtonian approximation, also qualitatively mimics
a BBH waveform at intermediate (merger) to high frequencies (ringdown). Note
that the ringdown makes the the |Z (0)22 | curve turn up slightly near the leading (2, 2)
Quasi-Normal Mode (QNM) frequency of the Schwarzschild BH before sharply
decreasing, similar to Fig. 3 of Ref. [27]. The wave |Z (1)22 | peaks roughly at the QNM
frequency.

Horizon structures with A of order unity lead to significant modifications in GW
energy spectrum dE/dω. In the upper panel of Fig. 5.3, we choose the reflec-
tivity (5.25) with ε = lp and A = 0.25, 0.5, 0.75 and 1. At low frequencies,
near-horizon structures add peaks separated by

∆ω ∼ 0.017M−1 ∼ π/rp
∗ (5.29)

to the post-Newtonian dE/df ∝ f −1/3. These resonant peaks are related to the poles
of 1/(1 − RRBH) in the series sum of Eq. (5.18). Near the QNM frequency, there is
substantial additional radiation, which is due to the large value of |Z (1)22 |. In the left
panel, we choose several different values of ε which lead to different peak separation
at low frequencies. In the right panel, we consider reflectivity (5.28) and find that
the shape of the Planck potential, as characterized by α, has negligible influence to
dE/dω as long as the area keeps fixed.

5.5 Stochastic Gravitational-Wave Background (SGWB)
The SGWB is usually expressed as

Ω( f ) = ρc
−1dρGW/d ln f , (5.30)
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where ρc represents the critical density to close the universe and ρGW the GWenergy
density; it is related the dE/df of a single GW source via [153]

Ω( f ) =
f
ρc

∫ zmax

0
dz

Rm(z)[dE/df ] fz
(1 + z)H(z)

, (5.31)

where fz = f (1 + z) is the frequency at emission. Here we adopt the ΛCDM
cosmological model with

H(z) = H0[ΩM(1 + z)3 +ΩΛ]1/2, (5.32)

where the Hubble constant H0 = 70km/s Mpc, ΩM = 0.3 and ΩΛ = 0.7. Rm(z)

is the BBH merger rate per comoving volume at redshift z. We use the fiducial
model described in [18], where Rm(z) is proportional to the star formation rate with
metallicity Z < Z�/2 and delayed by the time between BBH formation and merger.
As in the Fiducial model, the parameters of BBH follow GW150914: M = 65M�,
ν = 0.25 with a local merger rate Rm(0) = 16Gpc−3 yr−1.

For A ∼ 1, we get substantial additional SGWB from the echoes (left panel of
Fig. 5.4) in a way that is insensitive to the location and shape of the near-horizon
structure, as characterized by ε and α (right panel). This robustness indicates the
area under the Planck potential is the most relevant observable of the near-horizon
structures in SGWB. For smaller A, we plot the additional SGWB, defined as
∆Ω ≡ ΩA>0 − ΩA=0 in Fig. 5.5. Here ∆Ω is approximately ∝ A2, for A > 0.03
and ε/M <

√
lPM: beating between the main wave and the echoes Eq. (5.21) is

unimportant, and the additional SGWB mainly arise from energy contained in the
first echo.

5.6 Detectability
The optimal signal-to-noise ratio (SNR) for a SGWB between a pair of detectors is
given by

√
〈Ω|Ω〉 [50], with

〈ΩA |ΩB〉 ≡ 2T

(
3H2

0
10π2

)2 ∫ +∞

0
df

ΩA( f )γ2( f )ΩB( f )
f 6P1( f )P2( f )

, (5.33)

where γ( f ) is the normalized overlap reduction function between the detectors, and
P1,2( f ) are the detectors’ noise spectral densities. We consider advanced LIGO
at design sensitivity [27], LIGO Voyager [2] and Einstein Telescope (ET) [129] at
planned sensitivities. Advanced LIGO and LIGO Voyager have the same γ and we
take the constant γ = −3/8 for co-located ET detectors [113]. The 1-year SNRs are
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A LIGO Voyager ET
0 1.42 27.5 196

0.25 1.60 30.8 270
0.5 2.15 40.9 513
1 3.99 75.2 1215
2 8.76 164.7 2561

Table 5.1: One-year SNR of three generations of GW detectors for SGWB ΩA ,
varyingA. The reflectivity corresponds to Eq. (5.25) with ε = lp. Other parameters
are the same as in the fiducial model.

listed in Table 5.1 for values ofA at order unity, in which case the echoes contribute
significantly to the SNRs.

For lower values of A, we apply the model-selection method of Ref. [50] to dis-
tinguish the SGWB with and without echo contributions. The log-likelihood ratio
(LR) between two models is given by

lnΛ =
1
4
〈∆Ω|∆Ω〉 (5.34)

and two models considered discernible when lnΛ > c > 1. Here we choose c = 12,
which corresponds to a false alarm rate of 10−6 [145]. Minimum distinguishable
A to reach this LR threshold is shown in Tab. 5.2; with 5-year integration, Voyager
can detect A ≈ 0.21, while ET can detect A ≈ 0.042.

T LIGO Voyager ET
1 yr 1.87 0.32 0.062
5 yrs 1.07 0.21 0.042

Table 5.2: The minimal distinguishableA to reach a log-likelihood ratio lnΛ > 12
for current and future GW detector with different integration times. The reflectivity
corresponds to Eq. (5.25) with ε = lp. Other parameters are the same as in the
fiducial model.

5.7 Conclusions and Discussions
As we have seen in this paper, the ∆Ω due to the echoes is largely independent from
uncertainties in rp

∗ . For strong near-horizon structures, with A the order of unity,
SGWB from the echoeswill be clearly visible. For weak near-horizon structures,∆Ω
is mainly given by the first echo, and is simply proportional to the power reflectivity
|R |2. The level detectable by ET corresponds to A ∼ 0.042, which corresponds to
|R |2 ≈ 3 × 10−3 near the peak of the echo energy spectrum. Further details of the
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background not only depends on details in the Planck potential barrier Vp, we will
also need to generalize the analysis to a Kerr BH.

Uncertainties also exist in the SGWB of the main, insprial-merger-ringdown wave,
e.g., arising from different star formation rates, different metallicity thresholds to
form BHs, details in the evolution of binary stars and the distributions in the time
delay between BBH formation and merger — all of these lead to uncertainties in
the local BBH merger rate and the local distribution of mass M and symmetric
mass ratio ν [18]. It is believed these uncertainties will be well quantified and
narrowed down by future BBH detections. For example, the range of BBH local
merger rate has been narrowed down to 12−213 Gpc−3 yr−1 using GW170104 [19].
On the other hand, as demonstrated by Zhu et al., these uncertainties only scale
the background spectra linearly at low frequencies and hence keep the power law
Ω( f ) ∝ f 2/3 for f < 100 Hz unchanged [153]. Our result shows the appearance of
the near-horizon structures changes the slfaope of Ω( f ), making it devaite from the
f 2/3 power law even at low frequencies. This may be used to alleviate the influence
from uncertainties.

In addition to BBH, binary neutron star (BNS) mergers also contribute to the
background with a comparable magnitude [9]. Within the bandwidth of ground-
based GW detectors, this background arises solely from inspiral, which gives an
f 2/3 power law and is not influenced by the presence of the near-horizon structure.
As a result, the echo SGWB∆Ω remains unchanged and our analysis on detectability
still holds.

Echoes may also be detectable from individual events. Our calculations indicate for
an event similar to GW150914, to reach an echo SNR of 10 the value ofA should be
at least 0.24 (LIGO), 0.050 (Voyager) and 0.011 (ET), respectively. However, in the
matched filtering search of individual signal, the exact waveform is required, which
in our model depends not only on A, but also on ε and α, but may depend further
on other unknown details of the Planck-scale potential — making it less robust. An
analysis combined both background and individual signals will be presented in a
separate publication.
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Figure 5.3: The energy spectra of GW emission from ν = 0.25 coalescing BBH.
Upper Panel: energy spectra for different values of A, for ε = lp, with R given by
Eq. (5.25). Middle Panel: energy spectra for different values of ε , forA = 0.5 with
R given by Eq. (5.25) . Lower Panel: energy spectra for different values of α, for
ε = lp, with R given by Eq. (5.28), fixing A = 2αλ(1 − λ) = 0.5.
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A p p e n d i x A

GRAVITATIONAL-WAVES IN GENERAL RELATIVITY

In this appendix we provide a pedagogical treatment to the gravitational-wave in
general relativity based on perturbative field theory, with an application to the binary
system.

A.1 Linearized Einstein field equation
First expand the metric gµν in Minkowski space-time:

gµν = ηµν + hµν (A.1)

gµν = ηµν − hµν + O(h2) (A.2)

Then the affine connection,

Γ
λ
µν = Γ

(1)λ
µν + Γ

(2)λ
µν + O(h

3) (A.3)

Γ
(1)λ
µν =

1
2
(hλµ,ν + hλν,µ − h λ

µν, ) (A.4)

Γ
(2)λ
µν = −

1
2

hλρ(hρµ,ν + hρν,µ − hµν,ρ) (A.5)

and the Ricci tensor,

Rµν =R(1)µν + R(2)µν + O(h
3) (A.6)

R(1)µν = −
1
2
(h λ

µν, λ + hλλ,µν − hλµ,λν − hλν,λµ) (A.7)

R(2)µν =
1
2

hλρ(hµν,λρ + hλρ,µν − hλµ,ρν − hλν,ρµ)

+
1
4
(hλ ρ

λ, − 2hλρ,λ)(hρµ,ν + hρν,µ − hµν,ρ)

+
1
4
(hρλ,µ + hρµ,λ − h ρ

λµ, )(h
λ
ρ,ν + h λ

ρν, − hλν,ρ) (A.8)

Then the Einstein field equation

Rµν −
1
2
gµνg

ρσRρσ = 8πGTµν ⇒

R(1)µν −
1
2
ηµνη

ρσR(1)ρσ = 8πG(Tµν + tµν) (A.9)
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Eq.(A.9) is the so-called linearized Einstein field equation, where tµν is the stress-
energy tensor for gravitational field itself,

tµν ≡
1

8πG
[R(1)µν −

1
2
ηµνη

ρσR(1)ρσ − Rµν +
1
2
gµνg

ρσRρσ]

=
1

8πG
[−R(2)µν +

1
2
ηµνη

ρσR(2)ρσ −
1
2
ηµνhρσR(1)ρσ +

1
2

hµνηρσR(1)ρσ] + O(h
3),

(A.10)

It is straightforward to prove R(1)µν satisfies the linearized Bianchi identity:

∂µ(R(1)µν −
1
2
ηµνηρσR(1)ρσ) = 0 (A.11)

hence the total (matter+gravity) stress energy tensor is locally conserved:

∂µ(T µν + tµν) = 0 (A.12)

For infinitesimal coordinate transformation

x′µ = xµ + ξµ(x) (A.13)

The transformation of hµν is obtained from

g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ ⇒

h′µν = hµν − ∂µξν − ∂νξµ (A.14)

We only keep the linear terms of ξ, and hence all other fields are unchanged under
the gauge transformation. Eq.(A.14) keeps the left hand side of eq.(A.9) invariant,
hence is often called the gauge transformation of hµν.

Although some exact solutions can be found (the Bondi solution), the non-linear
nature of gravity theory makes eq.(A.9) extremely hard to solve. However, general
solution can be obtained if we take the weak field approximation, where the contri-
bution from the stress-energy tensor of gravity is omitted. In this case eq.(A.9) is
truly linear:

R(1)µν −
1
2
ηµνη

ρσR(1)ρσ =8πGTµν ⇒

∂2hµν + ∂µ∂νhλλ − ∂λ∂µhλν − ∂λ∂νhλµ = − 16πG(Tµν −
1
2
ηµνTλ

λ) (A.15)

Our next mission is to solve eq.(A.15).
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A.2 Plane gravitational wave and the gauge condition
First expand hµν as the composition of plane wave:

hµν(x) =
∫

d3k
(2π)3

[h̃µν(k)eik ·x + h̃∗µν(k)e
−ik ·x] (A.16)

In vacuum, eq.(A.15) is equivalent to

k2 h̃µν + kµkν h̃λλ − kλkµh̃λν − kλkν h̃λµ = 0 ⇒

k2 h̃µν = kµ(kλ h̃λν −
1
2

kν h̃λλ) + kν(kλ h̃λµ −
1
2

kµh̃λλ) (A.17)

In order to describe the free propagating gravitational wave, the on-shell condition
k2 = 0 should be satisfied, hence hµν should satisfy Lorenz gauge condition:

kλ h̃λµ −
1
2

kµh̃λλ = 0 (A.18)

Then eq.(A.15) becomes
∂2hµν = −16πG(Tµν − 1

2ηµνT
λ
λ)

∂λhλµ −
1
2∂µhλλ = 0

(A.19)

It is more convinient to solve if we introduce h̄µν ≡ hµν − 1
2ηµνhλλ,

∂2 h̄µν = −16πGTµν

∂λ h̄λµ = 0
(A.20)

The gauge transformation eq.(A.14) for h̄µν is

h̄′µν = h̄µν − ∂µξν − ∂νξµ + ηµν∂λξλ (A.21)

For the Lorenz condition to be holden after coordinate transformation, ξµ should
satisfy ∂2ξµ = 0, which means ξµ can also be expanded as

ξµ(x) =
∫

d3k
(2π)3

[ξ̃µ(k)eik ·x + ξ̃∗µ(k)e
−ik ·x] (A.22)

Before solving eq.(A.20) we want to study the degree of freedom (DOM) of h̄µν.
Symmetric tensor ˜̄hµν has 10 DOM:

˜̄hµν =

©­­­­­«
˜̄h00

˜̄h01
˜̄h02

˜̄h03
˜̄h01

˜̄h11
˜̄h12

˜̄h13
˜̄h02

˜̄h12
˜̄h22

˜̄h23
˜̄h03

˜̄h13
˜̄h23

˜̄h33

ª®®®®®¬
(A.23)
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Take theGWpropagating directionn as the 3rd axis, estabalish a spatial orthonormal
coordinate system: 

uµ = (0, 1, 0, 0)

vν = (0, 0, 1, 0)

nν = (0, 0, 0, 1)

(A.24)

In this coordinate system, the 4-momentum of GW becomes k µ = k(1, 0, 0, 1). The
Lorenz condition k µ ˜̄hµν = 0 in this coordinate system is

˜̄h00 +
˜̄h30 = 0, ˜̄h01 +

˜̄h31 = 0, ˜̄h02 +
˜̄h32 = 0, ˜̄h03 +

˜̄h33 = 0 (A.25)

After adding the Lorenz condition, only 10 − 4 = 6 DOM are left.

˜̄hµν =

©­­­­­«
˜̄h33 − ˜̄h13 −

˜̄h23 −
˜̄h33

− ˜̄h13
˜̄h11

˜̄h12
˜̄h13

− ˜̄h23
˜̄h12

˜̄h22
˜̄h23

− ˜̄h33
˜̄h13

˜̄h23
˜̄h33

ª®®®®®¬
(A.26)

When a specific coordinate is choosen, it is not possible to make a global Lorentz
transformationwithout changing the basis vectors. However, we are still free tomake
a coordinate-dependent translation eq.(A.13), i.e. the gauge transformation for h̄µν.
Recalling eq.(A.21) and (A.22), which give ˜̄h′µν = ˜̄hµν − ikµξ̃ν − ikν ξ̃µ + iηµνkλ ξ̃λ,
in our coordinate system,

˜̄h′11 =
˜̄h11 + ik(ξ̃0 + ξ̃3),

˜̄h′13 =
˜̄h13 − ik ξ̃1,

˜̄h′12 =
˜̄h12

˜̄h′22 =
˜̄h22 + ik(ξ̃0 + ξ̃3),

˜̄h′23 =
˜̄h23 − ik ξ̃2,

˜̄h′33 =
˜̄h33 + ik(ξ̃0 − ξ̃3) (A.27)

We can choose the following gauge transformation:

ξ̃0 =
i

4k
( ˜̄h11 +

˜̄h22 + 2 ˜̄h33), ξ̃1 = −
i
k

˜̄h13, ξ̃2 = −
i
k

˜̄h23,

ξ̃3 =
i

4k
( ˜̄h11 +

˜̄h22 − 2 ˜̄h33) (A.28)

Then only 6 − 4 = 2 DOM remain, this choice of coordinates is often called the
transverse tracless (TT) gauge and in the (u, v,n) system,

˜̄hTT = h̃TT =

©­­­­­«
0 0 0 0
0 h̃+ h̃× 0
0 h̃× h̃+ 0
0 0 0 0

ª®®®®®¬
(A.29)
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Where h̃+ = 1
2 (

˜̄h11 −
˜̄h22), h̃× = ˜̄h12. They are gauge invariant.

We can rewrite this result in a coordinate system independent (i.e. Lorentz invariant)
way: 

h+ = 1
2 (u

iu j − viv j)h̄i j

h× = uiv j h̄i j

(A.30)

Where u and v are unit vectors orthogonal to the GW propagating direction n.
We can compute h̄i j in any coordinate system (as long as the Lorenz condition is
maintained) and utilize eq.(A.30) to convert it into the h+ and h× in the observer’s
coordinate system.

A.3 Gravitational wave solution I. Quadrupole radiation
The general solution to eq.(A.20) is the retarded potential solution.

∂2 h̄µν(t,x) = −16πG T µν(t,x) ⇒

h̄µν(t,x) = 4G
∫

d3y
T µν(t − |x − y |, y)

|x − y |
(A.31)

For far field approximation: |y | � |x| ≡ r ,

h̄µν(t,x) ≈
4G
r

∫
d3y T µν(t − r, y) (A.32)

From eq.(A.30), we only need h̄i j to compute the two physcial DOM, then eq.(A.32)
can be further simplified from the conservation of stress-energy tensor.

h̄i j(t,x) =
4G
r

∫
d3y T i j

=
4G
r

∫
d3y[∂k(y

iT ki) − yi∂kT k j] =
4G
r

∫
d3y yi∂tT0 j

=
2G
r
∂t

∫
d3y(yiT0 j + y jT0i) =

2G
r
∂t

∫
d3y[∂k(y

iy jT0k) − yiy j∂kT0k]

=
2G
r
∂2

t

∫
d3y yiy jT00(t − r, y) =

2G
r
ÜI(t − r) (A.33)

Where the quadrupole tensor is defined as

Ii j(t) =
∫

d3x xi x jT00(t,x) (A.34)

Eq.33 is often called the quadrupole formula for gravitational radiation.
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Note that in gravitationally bound system such as binary stars, (i) h̄i j = 4G
r

∫
d3y T i j

and (ii) h̄i j = 2G
r ∂

2
t

∫
d3y yiy jT00 can give different results. This is because in these

systems the stress-energy of gravitional field cannot be omitted, hence Tµν + tµν is
conserved instead ofTµν alone. In this case, we should have h̄i j = 4G

r

∫
d3y (T i j+ti j)

and h̄i j = 2G
r ∂

2
t

∫
d3y yiy j(T00 + t00). But t00 � T00, ti j ∼ T i j , which means (ii) is

a much better approximation than (i) in computing the GW in these systems.

A.4 Gravitational wave solution II. Moving particles radiation
The stress-energy tensor for a system consisting of several moving particles is

T µν(t,x) =
∑

n

pµn (t)v
ν
n(t)δ

3(x − xn(t)) (A.35)

Where pµn ≡ mndxµn /dτ, v
µ
n ≡ dxµn /dt. Let’s compute h̄i j directly from the retarded

potential eq.(A.31) without taking the far field approximation,

h̄i j(t,x) = 4G
∫

d3y
T i j(t − |x − y |, y)

|x − y |

=4G
∑

n

∫
d3y

pi
n(t − |x − y |) v

j
n(t − |x − y |)

|x − y |
δ3(y − xn(t − |x − y |))

=4G
∑

n

∫
d3y

pi
n(t − |x − y |) v

j
n(t − |x − y |)

|x − y |

δ3(y − xn(t′))
1 − x−y

|x−y | · vn(t − |x − y |)

=4G
∑

n

mn√
1 − v2

n(t′)

vi
n(t
′)v

j
n(t′)

rs(t′) − rs(t′) · vn(t′)
(A.36)

This result is called the Lienard-Wiechert potential. Here, t′ = t − |x − xn(t′)| is
the GW emitted time and xn(t′) = xn(t − |x − xn(t′)|) is the position of the n-th
particle when GW is emittet. xn(t′) is the solution for y to the equation inside the δ
function: y −xn(t − |x−y |) = 0. rs(t′) ≡ x−xn(t′) is the position vector pointing
from the GW emitted particle to the observer.

If all the particles move in a small region nere the origin, then rs(t′) ≈ r, t′ ≈ t − r .
In this case,

h̄i j(t,x) =
4G
r

∑
n

mn√
1 − v2

n(t − r)

vi
n(t − r)v j

n(t − r)
1 − n · vn(t − r)

(A.37)

This differs to the naive resultwhichwe put eq.(A.35) directly into h̄i j = 4G
r

∫
d3yT i j

by a factor of 1/(1 −n · vn), which can be omitted in the low-speed approximation.
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A.5 Stress-energy tensor for gravitational wave
First expand hµν(x) as eq.(A.16), then the value of hµν(x)hρσ(x) is

hµν(x)hρσ(x) =
∫

d3k
(2π)3

d3k′

(2π)3
[h̃µν(k)h̃ρσ(k′)ei(k+k ′)·x + h̃µν(k)h̃∗ρσ(k

′)ei(k−k ′)·x

+ h̃∗µν(k)h̃
∗
ρσ(k

′)e−i(k+k ′)·x + h̃∗µν(k)h̃ρσ(k
′)e−i(k−k ′)·x] (A.38)

Integrate in a region V much larger than the GW wavelength,∫
V

d3x eik·x ≈ (2π)3 δ3(k) (A.39)

Hence we have∫
V

d3x ei(k+k ′)·x =

∫
d3x ei(k+k′)·x e−i(|k|+|k′ |)t = (2π)3δ3(k + k′)e−2i |k|t∫

V
d3x ei(k−k ′)·x =

∫
d3x ei(k−k′)·x e−i(|k|−|k′ |)t = (2π)3δ3(k − k′) (A.40)

Then,∫
V

d3x hµν(x)hρσ(x) =
∫

d3k
(2π)3

[h̃µν(k)h̃∗ρσ(k) + h̃∗µν(k)h̃ρσ(k)

+ h̃µν(k)h̃ρσ(k)e−2i |k|t + h̃∗µν(k)h̃
∗
ρσ(k)e

+2i |k|t]

(A.41)

After averaging over several periods, terms associated with e±i |k|t vanish, only left∫
V

d3x hµν(x)hρσ(x) =
∫

d3k
(2π)3

h̃∗µν(k)hρσ(k) + c.c. (A.42)

In the same way,∫
V

d3x hµν,λ(x)hρσ,κ(x) =
∫

d3k
(2π)3

kλkκ h̃∗µν(k)hρσ(k) + c.c. (A.43)∫
V

d3x hµν(x)hρσ,λκ(x) = −
∫

d3k
(2π)3

kλkκ h̃∗µν(k)hρσ(k) + c.c. (A.44)

Put them into eq.(A.8),∫
V

d3x R(2)µν =
∫

d3k
(2π)3

[−
1
2

h̃∗λρ(kλkρh̃µν + kµkν h̃λρ − kλkµh̃ρν − kλkν h̃ρµ)

+
1
4
(k ρh̃∗λλ − 2kλ h̃∗λρ)(kµh̃ρν + kν h̃ρµ − kρh̃µν)

+
1
4
(kµh̃∗λρ + kλ h̃∗ρµ − k ρh̃∗λµ)(kν h̃λρ + kλ h̃ρν − kρh̃λν)] + c.c.

(A.45)



143

Applying the Lorenz condition: k µh̃µν = 1
2 kν h̃µµ and the on-shell condition: k2 = 0,

we obtain∫
V

d3x R(2)µν

=

∫
d3k
(2π)3

[−
1
2
(kµkν h̃∗λρh̃λρ −

1
2

kµkν h̃∗ρρh̃λλ) +
1
4
(kµkν h̃∗λρh̃λρ −

1
2

kµkν h̃∗ρρh̃λλ)] + c.c.

=

∫
d3k
(2π)3

[−
kµkν

2
(h̃∗λρh̃λρ −

1
2
| h̃λλ |

2)] =

∫
d3k
(2π)3

[−
kµkν

2
( ˜̄h∗λρ ˜̄hλρ −

1
2
| ˜̄hλλ |

2)]

(A.46)

Notice that ηρσR(2)ρσ = 0. On the other hand, from the linear Einstein field equation
in vacuum we have R(1)µν = 0, then from eq.(A.10)∫

V
d3x tµν =

∫
d3k
(2π)3

kµkν
16πG

( ˜̄h∗λρ ˜̄hλρ −
1
2
| ˜̄hλλ |

2) (A.47)

Insert eq.(A.26), we get∫
V

d3x tµν =
∫

d3k
(2π)3

kµkν
16πG

(|
1
2
( ˜̄h11 −

˜̄h22)|
2 + | ˜̄h12 |

2) (A.48)

From eq.(A.27), ( ˜̄h11 −
˜̄h22)/2 and ˜̄h12 are gauge invariant and hence tµν is also

gauge invariant, and∫
V

d3x tµν =
∫

d3k
(2π)3

kµkν
8πG
(| ˜̄h+ |2 + | ˜̄h× |2) (A.49)

On the other hand,∫
V

d3x ∂µh+(x)∂νh+(x) =
∫

d3k
(2π)3

2kµkν | ˜̄h+ |2 ⇒∫
V

d3x tµν =
∫

V
d3x

1
16πG

[∂µh+(x)∂νh+(x) + ∂µh×(x)∂νh×(x)] (A.50)

Remember that V is a region greater than several wavelengths. This means that
in the sense of averaging over several wavelengths and periods, the stress-energy
tensor for GW is equal to

tµν(x) =
1

16πG
[∂µh+(x)∂νh+(x) + ∂µh×(x)∂νh×(x)] (A.51)

Or equivalently, from eq.(A.47),

tµν(x) =
1

32πG
[∂µhλρ(x)∂νhλρ(x) −

1
2
∂µhλλ(x)∂νhρρ(x)] (A.52)
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A.6 Power from gravitational wave emitting
The power of the GW emitting is related to the energy flux density t0i via

P =
∮

S2

t0i dΣi =

∫
t0inir2dΩ (A.53)

Combining eq.(A.30) and eq.(A.33) we find

∂t h+ =
2G
r

u juk − v jvk

2
ÝI j k , ∂ih+ = −

2G
r

u juk − v jvk

2
ÝI j kni + O(

1
r2 ) (A.54)

∂t h× =
2G
r

u jvkÝI j k , ∂ih+ = −
2G
r

u jvkÝI j kni + O(
1
r2 ) (A.55)

Insert into eq.(A.51),

t0i = −
1

16πG
[∂t h+∂ih+ + ∂t h×∂ih×]

=
G

4πr2 [
1
4
(u jukulum + v jvkvlvm − u jukvlvm − v jvkulum) +

1
2
(u jukvlvm + v jvkulum)]

× ÝI j kÝIlm ni + O(
1
r3 )

=
G

8πr2 [(u jul + v jvl)(ukum + vkvm) −
1
2
(u juk + v jvk)(ulum + vlvm)]ÝI j kÝIlm ni + O(

1
r3 )

=
G

8πr2 [(δ jl − n jnl)(δkm − nknm) −
1
2
(δ j k − n jnk)(δlm − nlnm)]ÝI j kÝIlm ni + O(

1
r3 )

=
G

8πr2 [(δ jlδkm −
1
2
δ j kδlm) + (

1
2
δ j knlnm +

1
2
δlmn jnk − δ jlnknm − δkmn jnl)

+
1
2

n jnknlnm] × ÝI j kÝIlm ni + O(
1
r3 ) (A.56)

Where in the fourth line we used the completeness relation: u juk+v jvk+n jnk = δ j k .
Since the configuration of unit vector n is isotropic (like a hedgehog), it satisfies
the following integration identities:∫

dΩ = 4π,
∫

n jnk dΩ =
4π
3
δ j k,∫

n jnknlnmdΩ =
4π
15
(δ j kδlm + δ jlδkm + δ jmδkl) (A.57)

Then the power is,

P =
∫

t0inir2dΩ =
G
8π
[
8π
5
δ jlδkm −

8π
15
δ j kδlm]ÝI j kÝIlm

=
G
5
(ÝIi jÝIi j −

1
3
ÝIiiÝI j j) (A.58)

Eq.(A.58) is the expression of the power from GW emission.
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A.7 Application to Binary Systems
Suppose two stars with masses m1 and m2 are inspiraling along circular orbit (this is
a good approximation at the late inspiral stage since the orbital angular momentum
should have been radiated away from GW emission). Let r1 and r2 be the radiuses
from the star 1 and star 2 to the mass center respectively, R = r1 + r2 the distance
between the two stars, M = m1 + m2 the total mass of the system, and Ω the orbit
angular velocity. In the Newtonian limit, the movement of the binary system is
governed by

Gm1m2

R2 = m1r1Ω
2 = m2r2Ω

2 ,

which gives

r1 = m2R/M , r2 = m1R/M ,

R3
Ω

2 = GM . (A.59)

We are free to choose a coordinate system so that the binary stars are moving in the
x − y plane. In this case, their world-lines are

x1(t) = (m2R/M cosΩt , m2R/M sinΩt , 0)

x2(t) = (−m1R/M cosΩt , −m1R/M sinΩt , 0)

From eq.(A.35), the 00 component of the stress-energy tensor of this system is

T00(t,x) =
∑

n

mnδ
3 (x − xn(t))

= m1δ(x − m2R/M cosΩt) δ(y − m2R/M sinΩt) δ(z)

+ m2δ(x + m1R/M cosΩt) δ(y + m1R/M sinΩt) δ(z) . (A.60)

From eq.(A.34), the quadrupole momentum Ii j is

Ii j(t) =
∫

d3x xi x jT00(t,x) =
m1m2
2M

R2 ©­­«
1 + cos 2Ωt sin 2Ωt 0

sin 2Ωt 1 − cos 2Ωt 0
0 0 0

ª®®®¬ . (A.61)

Then from eq.(33), the GW h̄i j emitted from this system is

h̄i j(t,x) =
2G
r
ÜI(t − r) =

4Gm1m2
Mr

Ω
2R2 ©­­«

− cos 2Ω(t − r) − sin 2Ω(t − r) 0
− sin 2Ω(t − r) cos 2Ω(t − r) 0

0 0 0

ª®®®¬ .
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Here r is the distance from the source to the observer. In our coordinate system
where the binary star is located at the origin, the GW propagating direction n is
the unit vector pointing from the origin to the observer at r, with the other two unit
vectors u and v orthogonal to n to be chosen as

u = (cos θ cos ϕ, cos θ sin ϕ, − sin θ)

v = (− sin ϕ, cos ϕ, 0),

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

(A.62)

Then h+ and h× can be computed from eq.(A.30), and the results are
h+(t,x) = −4G

r
m1m2

M Ω2R2 1+cos2 θ
2 cos [2Ω(t − r) − 2ϕ]

h×(t,x) = −4G
r

m1m2
M Ω2R2 cos θ sin [2Ω(t − r) − 2ϕ]

. (A.63)

This result suggests the relation between the orbital angular frequency Ω and the
GW angular frequency ω:

ω = 2Ω ⇒ f = ω/2π = Ω/π (A.64)

Notice that h+ and h× are not rotation invariant. If we make an SO(2) rotation in
the u − v plane, there will be a mixture of these two.

Next we want to compute the power of GW emission from this binary system. In
sert eq.(A.61) into eq.(A.51):

ÝIi j = 4
m1m2

M
R2
Ω

3 ©­­«
sin 2Ωt − cos 2Ωt 0
− cos 2Ωt − sin 2Ωt 0

0 0 0

ª®®®¬ ⇒
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1
3
ÝIiiÝI j j) =

32
5

G
(m1m2

M

)2
Ω

6R4

=
32
5

G4M(m1m2)
2R−5 =

32
5

G
7
3

(m1m2
M

)2
Ω

10
3 (A.65)

Another way to compute the power is to start from the stress-energy tensor. Insert
eq.(A.63) into eq.(A.51),

∂t h+ = 8G
r

m1m2
M Ω3R2 1+cos2 θ

2 sin [2Ω(t − r) − 2ϕ], ∂ih+ = −ni∂t h+ + O( 1
r2 )

∂t h× = −8G
r

m1m2
M Ω3R2 cos θ cos [2Ω(t − r) − 2ϕ], ∂ih× = −ni∂t h× + O( 1

r2 )



147

which leads to

t0i = −
1

16πG
[∂t h+∂ih+ + ∂t h×∂ih×]

=
4G
πr2

(m1m2
M

)2
Ω

6R4

×

{
(
1 + cos2 θ

2
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}
ni

=
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M

)2
Ω

6R4
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(
1 + cos2 θ

2
)2 + cos2 θ

]
ni . (A.66)

Here the third equal sign is from the fact that eq.(A.51) holds in the sense of averaging
over time. Then the power is

P =
∫

t01nir2dΩ =
2G
π

(m1m2
M

)2
Ω

6R4
∫
[(

1 + cos2 θ

2
)2 + cos2 θ] dΩ

=
32
5

G
(m1m2

M

)2
Ω

6R4 (A.67)

It gives the same result as eq.(A.65).
Next we want to compute the orbit change due to the GW emission. Start from the
total energy of the binary system

E = T + V =
1
2

m1

(m2
M

RΩ
)2
+

1
2

m2

(m1
M

RΩ
)2
−

Gm1m2
R

= −
1
2

Gm1m2
R

= −
1
2
(πG)

2
3

m1m2

M
1
3

f
2
3 . (A.68)

Taking derivative of this equation gives the energy spectrum and power of GW
emission:

dEGW
df

= −
dE
df
=

1
3
(πG)

2
3M

5
3 f −

1
3 . (A.69)

dE
dt
=

1
2

Gm1m2

R2
dR
dt
= −

1
3
(πG)

2
3

m1m2

M
1
3

f −
1
3 Ûf . (A.70)

Here the chirp massM is defined as

M = (m1m2)
3
5 M−

1
5 . (A.71)

Combining eq.(A.65) and eq.(A.70) gives the relating between the changing rate of
the GW frequency and the chirp mass as well as the changing rate of orbital distance:

M =
1
G

[
5

96
π−

8
3 f −

11
3 Ûf

] 3
5

. (A.72)

dR
dt
= −

64
5

G3Mm1m2R−3 . (A.73)
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From eq.(A.72), we can solve for the GW frequency as a function of time:

f (t)−
8
3 = −

256
5
π

8
3 (GM)

5
3 (t − t0) . (A.74)

From eq.(A.73), we can solve for the orbital equations of the inspiraling binary
system:

R(t) =
[
R4

0 −
256
5

G3Mm1m2 t
] 1

4

, (A.75)

t(R) =
5

256
R4

0 − R4

G3Mm1m2
, (A.76)

Ω(t) =
dφ(t)

dt
= (GM)

1
2

[
R4

0 −
256

5
G3Mm1m2 t

]− 3
8

, (A.77)

φ(t) =
R

5
2
0 − R(t)

5
2

32G
5
2 M

1
2 m1m2

. (A.78)

As our first example, let’s consider the binary neutron star PSR B1913+16, with
mass m1 = m2 = 1.44M� and orbit period T0 = 7.75h. From eq.(A.59), the orbital
separation is R0 = 9.81 × 108m. From eq.(A.73), currently the radius decreases
per year: ∆R0 = −0.15m, or ∆R0/R0 ∼ 10−10. From eq.(A.75), two neutron
stars will collide with each other in t = 1.6 × 109yr. Notice that this predicted
lifetime is longer than the actual PSR B1913+16, which has a non-circular orbit
with eccentricity e = 0.617. The power of GW emission from highly elliptic orbit
is greater due to the larger quadrupole momentum of the system.

Our next example is the binary black hole in GW150914. The strain data from the
LIGO Livingston and LIGOHanford detectors provide valuable information such as
the peak value and the frequencies over time, from which we can infer the properties
of the source.

The GW frequency–time data is provided in Ref.[131], which is listed in Tab. A.1.
Eq.(A.74) suggests a linear relation between f −8/3 and t and the coefficient only
depends on the chirp mass. A least square-fit of the data in Tab. A.1 gives y =

x · β + β0, with y = f −8/3, x = t, β = −6.52 × 10−4, β0 = 2.75 × 10−4 and an R
square of 0.94. From eq.(A.74), the coefficient translates into a chirp mass of 37M�.
Notice that this estimation is slightly greater than the actual chirp massM = 30M�
for two reasons: (i) uncertainty is large in the observed data, (ii) the post-Newtonian
corrections are neglected. By assuming the two black holes have equal mass, we
have m1 = m2 ' 35M�.
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time (s) GW frequency (Hz)
0.3491 42
0.3598 47
0.3698 50
0.3812 43
0.3904 55
0.3975 71
0.4042 74
0.4100 86
0.4141 120
0.4176 141
0.4201 195
0.4223 242

Table A.1: The GW frequencies over time from the strain of GW150914.

Another information contained in the observation is the peak amplitude of the
strain, which marks the end of the inspiral stage. This happens at tmax ' 0.42 s, with
hmax ' 1 × 10−21 and fmax ' 150 Hz. From eq.(A.59), this frequency corresponds
to an orbit separation Rmax = 350 km. Comparing the orbital separation with the
Schwarzschild radius rs ' 100 km for m = 35M� strongly suggests that the merger
is from two black holes.

The GW energy emitted during the inspiral stage can be estimated from eq,(A.68):

EGW = Ei − E f = 0 −
(
−

1
2

Gm1m2
Rmax

)
' 2.6M� . (A.79)

This provides a lower boundary for the total emitted energy, which should also
include the merger, ringdown (and probably the echo) stages.

Eq.(A.63) suggests a relation between the amplitude of strain h and the distance of
the source r:

r =
2
5

4G2

c4
m1m2
R h

, (A.80)

where the factor 2/5 comes from the angular pattern function of the detector. Insert
the values of hmax and Rmax, we obtain r ' 400 Mpc. This estimation is very close
to the actual observed distance.
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